Structure functions and Spencer cohomology in zero and positive characteristics

Pasha Zusmanovich

University of Ostrava

Seminar "Cohomology in algebra, geometry, physics and statistics" Prague May 29, 2019

Structure functions

Let $G \subseteq GL(n)$ be a real or complex Lie group, M an *n*-dimensional real or complex manifold.

A *G*-structure on *M* is a reduction of the principal GL(n)-bundle to the principal *G*-bundle.

Structure functions are obstructions to integrability (= local flattening) of M endowed with a G-structure.

Some (well known) particular cases:

G	name of a G-structure	name of a structure function
<i>O</i> (<i>n</i>)	Riemann metric	Riemann tensor
$O(n) imes \mathbb{R}^*$	almost conformal structure	Weyl tensor
$GL(n,\mathbb{C})\subset GL(2n,\mathbb{R})$	almost complex structure	Nijenhuis tensor

Spencer cohomology

Structure functions are interpreted in terms of the Spencer cohomology $H^*(\mathcal{L}_{-1}, \mathcal{L})$ of a graded Lie algebra $\mathcal{L} = \bigoplus_{n \ge -1} \mathcal{L}_n$. Major examples of \mathcal{L} : Lie algebras of Cartan type W_n , S_n , H_{2n} .

Theorem (Serre)

The Spencer cohomology vanishes in degrees > 0 for W_n and S_n , and is fully computed for H_{2n} .

Spencer cohomology is also responsible for *filtered deformations* of a graded Lie algebra \mathscr{L} , and therefore important for characteristic p > 0 analogs of Lie algebras of Cartan type.

Let L be an abelian Lie algebra acting by derivations on an associative commutative algebra A, such that AL is a free submodule of Der(A).

The Lie algebra $\mathbb{W}(L, A)$ is defined as the vector space $AL \simeq L \otimes A$ with multiplication

$$[x \otimes a, y \otimes b] = y \otimes ax(b) - x \otimes by(a).$$

The algebras $\mathbb{W}(L, A)$ (cont.)

Particular cases of the construction from the previous slide are:

- A = K[t₁,...,t_n], L = ⟨d/dt₁,...,d/dt_n⟩: W(L,A) = one-sided Jacobson-Witt algebra = infinite-dimensional Lie algebra of the general Cartan type W_n = Lie algebra of polynomial vector fields on the plane Kⁿ.
- A = K[t₁, t₁⁻¹,..., t_n, t_n⁻¹], L = ⟨d/dt₁,..., d/dt_n⟩: W(L, A) = two-sided Jacobson–Witt algebra = Lie algebra of polynomial vector fields on the *n*-dimensional sphere.
- K is of characteristic p > 0, A = O(n; m̄), the algebra of divided powers in n variables with shearing parameters m̄ = (m₁,...,m_n), L = ⟨∂₁,...,∂_n⟩: W(L,A) = finite-dimensional Lie algebra of the general Cartan type W(n; m̄).

5/10

A unified approach to calculation of the Spencer cohomology: case W_n

Theorem

Let *L* has a basis D_1, \ldots, D_n such that the algebra *A* decomposes as the tensor product of algebras $A_1 \otimes \cdots \otimes A_n$, with D_i acting on A_i . Then

$$\mathsf{H}^{k}(L,A) \simeq L \otimes \left(\bigoplus_{1 \leq i_{1} < \cdots < i_{k} \leq n} A_{1}^{D_{1}} \otimes \cdots \otimes (A_{i_{1}})_{D_{i_{1}}} \otimes \cdots \otimes (A_{i_{k}})_{D_{i_{k}}} \otimes \cdots \otimes A_{n}^{D_{n}} \right).$$

(at i_1, \ldots, i_k are coinvariants, at the other places, invariants).

Sketch of the proof 1) $H^k(L, W(L, A)) \simeq L \otimes H^k(L, A)$. 2) Apply the Künneth formula. 6/10

A unified approach to calculation of the Spencer cohomology: case W_n (cont.)

Corollaries

Serre's vanishing result in p = 0, and non-vanishing result in p > 0. In particular,

dim H^k(W(n;
$$\overline{m}$$
)₋₁, W(n; \overline{m})) = $n \binom{n}{k}$.

^{7/10} Digression: Nijenhuis tensors

Theorem

The space of structure functions of a real 2n-dimensional manifold endowed with a $GL(n, \mathbb{C})$ -structure is $2n^2(n-1)$ -dimensional.

Proof

For any associative commutative unital algebra A,

$$H^{2}((W_{n})_{-1} \otimes A, W_{n} \otimes A) \simeq \left(B^{2,-1}((W_{n})_{-1}, W_{n}) \otimes \frac{S^{2}(A, A)}{A \oplus Der(A)}\right) \\ \oplus \left(S^{2}((W_{n})_{-1}, (W_{n})_{-1}) \otimes \frac{C^{2}(A, A)}{\{\alpha \in C^{2}(A, A) \mid \alpha(a, b) = a\beta(b) - b\beta(a)\}}\right)$$

Substitute $A = \mathbb{C}_{\mathbb{R}}$.

A unified approach to calculation of the Spencer cohomology: case S_n

The Lie algebra $\mathbb{S}(L, A)$ is defined as the kernel of homomorphism

$$div: \mathbb{W}(L, A) \to A, \quad x \otimes a \to x(a).$$

To compute the corresponding Spencer cohomology, apply the cohomology long exact sequence associated with the short exact sequence of L-modules

$$0 \to \mathbb{S}(L, A) \to \mathbb{W}(L, A) \stackrel{div}{\to} L(A) \to 0.$$

Corollary $H^k((S_n)_{-1}, S_n) = 0$ for k > 0.

8/10

The algebras $\mathbb{P}(A, \overline{D}, \overline{F})$

Let $\overline{D} = (D_1, \ldots, D_n)$ and $\overline{F} = (F_1, \ldots, F_n)$ be two *n*-element sets of pairwise commuting derivations of *A*. Then *A* equipped with the bracket

$$[a,b] = \sum_{i=1}^n \Big(D_i(a)F_i(b) - F_i(a)D_i(b) \Big),$$

denoted by $\mathbb{P}(A, \overline{D}, \overline{F})$, is a generalization of all kinds of Hamiltonian Lie algebras.

10/10

A unified approach to calculation of the Spencer cohomology: case H_{2n}

To compute the corresponding Spencer cohomology, apply considerations based on the Künneth formula, similar to the case of $\mathbb{W}(L, A)$ (but more cumbersome). Under similar assumptions,

$$\mathsf{H}^{k}\left(\mathbb{P}(A,\overline{D},\overline{F})_{-1},\mathbb{P}(A,\overline{D},\overline{F})\right)$$
$$\simeq \bigoplus_{k_{1}+\cdots+k_{n}=k}\mathsf{H}^{k_{1}}(A_{1},\overline{D}_{1},\overline{F}_{1})\otimes\cdots\otimes\mathsf{H}^{k_{n}}(A_{n},\overline{D}_{1},\overline{F}_{1}).$$

For example, the number of different summands in the "classical" case, where each set of derivations \overline{D}_i , \overline{F}_i consists of one element, and each $\mathbb{P}(A_i, \overline{D}_i, \overline{F}_i)_{-1}$ is 2-dimensional, the number of different summands in this formula is

$$\sum_{n_0+n_1+n_2=n, n_1+2n_2=k} \frac{n!}{n_0! n_1! n_2!}$$

where n_0 , n_1 , n_2 is the number of occurrences of 0th, 1st, and 2nd cohomology respectively.

That's all. Thank you.