Non-Koszulity of the alternative operad and inversion of polynomials

Pasha Zusmanovich

April 19, 2011
based on joint work with Askar Dzhumadil'daev arXiv:0906.1272

What is an operad?

An operad is a sequence $\mathcal{P}(n)$ of right S_{n}-modules equipped with compositions

$$
\circ_{i}: \mathcal{P}(n) \times \mathcal{P}(m) \rightarrow \mathcal{P}(n+m-1)
$$

satisfying associativity-like conditions:

$$
\left(f \circ_{i} g\right) \circ_{j} h=f \circ_{j}\left(g \circ_{i-j+1} h\right)
$$

- J. Stasheff, What is... an operad?, Notices Amer. Math. Soc. June/July 2004.
- P. Cartier, What is an operad?, The Independent Univ. of Moscow Seminars, 2005.

What is an operad?

An operad is a sequence $\mathcal{P}(n)$ of right S_{n}-modules equipped with compositions

$$
\circ_{i}: \mathcal{P}(n) \times \mathcal{P}(m) \rightarrow \mathcal{P}(n+m-1)
$$

satisfying associativity-like conditions:

$$
\left(f \circ_{i} g\right) \circ_{j} h=f \circ_{j}\left(g \circ_{i-j+1} h\right)
$$

- J. Stasheff, What is... an operad?, Notices Amer. Math. Soc. June/July 2004.
- P. Cartier, What is an operad?, The Independent Univ. of Moscow Seminars, 2005.

Primitive view: multilinear parts of relatively free algebras. $\mathcal{P}(n)=$ space of multilinear (nonassociative) polynomials of degree n.

What is a Koszul operad?

Koszulity = "good" homological properties.
Associative, Lie and associative commutative operads are Koszul.

What is a Koszul operad?

Koszulity = "good" homological properties.
Associative, Lie and associative commutative operads are Koszul.
Ginzburg-Kapranov criterion
If a binary quadratic operad \mathcal{P} over a field of characteristic zero is Koszul, then

$$
g_{\mathcal{P}}\left(g_{\mathcal{P}!}(t)\right)=t
$$

where

$$
g_{\mathcal{P}}(t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{\operatorname{dim} \mathcal{P}(n)}{n!} t^{n}
$$

is the Poincaré series of \mathcal{P}, and $\mathcal{P}^{\text {! }}$ is the operad dual to \mathcal{P}.

Examples of Poincaré series

$$
\begin{gathered}
g_{\mathcal{A s s}}(t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{n!} t^{n}=-\frac{t}{1+t} \\
g_{\text {Comm }}(t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!} t^{n}=e^{-t}-1 \\
g_{\mathcal{L i e}}(t)=\sum_{n=1}^{\infty}(-1)^{n} \frac{(n-1)!}{n!} t^{n}=-\log (1+t)
\end{gathered}
$$

What is a dual operad?

Pairing \langle,$\rangle on the space of multilinear (nonassociative)$ polynomials of degree 3:

$$
\begin{aligned}
\left\langle\left(x_{i} x_{j}\right) x_{k},\left(x_{\sigma(i)} x_{\sigma(j)}\right) x_{\sigma(k)}\right\rangle & =(-1)^{\sigma} \\
\left\langle x_{i}\left(x_{j} x_{k}\right), x_{\sigma(i)}\left(x_{\sigma(j)} x_{\sigma(k)}\right)\right\rangle & =-(-1)^{\sigma} \\
\left\langle\left(x_{i} x_{j}\right) x_{k}, x_{i^{\prime}}\left(x_{j^{\prime}} x_{k^{\prime}}\right)\right\rangle & =0
\end{aligned}
$$

$\sigma \in S_{3}$.
R - relations in a binary quadratic operad $R^{!}$- dual space of relations under this pairing

Dual operads

Examples
$\mathcal{A s s}!=\mathcal{A s s}$
$\mathcal{L i e}!=\mathcal{C o m m}$

Dual operads

Examples
$\mathcal{A s s}!=\mathcal{A s s}$
\mathcal{L} ie $^{!}=\mathcal{C o m m}$
A remarkable fact
If A, B are algebras over operads dual to each other, then $A \otimes B$ under the bracket

$$
\left[a \otimes b, a^{\prime} \otimes b^{\prime}\right]=a a^{\prime} \otimes b b^{\prime}-a^{\prime} a \otimes b^{\prime} b
$$

for $a, a^{\prime} \in A, b, b^{\prime} \in B$, is a Lie algebra.

Alternative algebras

$$
\begin{aligned}
& (x y) y=x(y y) \\
& (x x) y=x(x y)
\end{aligned}
$$

An example: the 8-dimensional octonion algebra.

Alternative algebras

$$
\begin{aligned}
& (x y) y=x(y y) \\
& (x x) y=x(x y)
\end{aligned}
$$

An example: the 8-dimensional octonion algebra.
Theorem
The alternative operad over a field of characteristic zero is not Koszul.

Alternative algebras

$$
\begin{aligned}
& (x y) y=x(y y) \\
& (x x) y=x(x y)
\end{aligned}
$$

An example: the 8-dimensional octonion algebra.
Theorem
The alternative operad over a field of characteristic zero is not Koszul.

Proof by the Ginzburg-Kapranov criterion.

Proof of the Theorem

Easy part:

Dual alternative algebra: associative and $x^{3}=0$.

$$
g_{\mathcal{A} \mid t t^{\prime}}(t)=-t+t^{2}-\frac{5}{6} t^{3}+\frac{1}{2} t^{4}-\frac{1}{8} t^{5}
$$

Proof of the Theorem

Easy part:
Dual alternative algebra: associative and $x^{3}=0$.

$$
g_{\mathcal{A} \mid t!}(t)=-t+t^{2}-\frac{5}{6} t^{3}+\frac{1}{2} t^{4}-\frac{1}{8} t^{5} .
$$

Difficult part:

$$
g_{\mathcal{A} / t}(t)=-t+t^{2}-\frac{7}{6} t^{3}+\frac{4}{3} t^{4}-\frac{35}{24} t^{5}+\frac{3}{2} t^{6}+O\left(t^{7}\right)
$$

Proof of the Theorem

Easy part:
Dual alternative algebra: associative and $x^{3}=0$.

$$
g_{\mathcal{A} \mid t t^{\prime}}(t)=-t+t^{2}-\frac{5}{6} t^{3}+\frac{1}{2} t^{4}-\frac{1}{8} t^{5}
$$

Difficult part:

$$
g_{\mathcal{A} / t}(t)=-t+t^{2}-\frac{7}{6} t^{3}+\frac{4}{3} t^{4}-\frac{35}{24} t^{5}+\frac{3}{2} t^{6}+O\left(t^{7}\right)
$$

Not Koszul by Ginzburg-Kapranov:

$$
g_{\mathcal{A} l t}\left(g_{\mathcal{A} / t^{!}}(t)\right)=t-\frac{11}{72} t^{6}+O\left(t^{7}\right)
$$

Albert

$\operatorname{dim} \mathcal{A} / t(n)$ for $n=1, \ldots, 6$ are computed with the help of Albert (developed in 1990s by David Pokrass Jacobs) and PARI/GP.
http://justpasha.org/math/albert/

Questions

Question

Does the inverse of the polynomial

$$
g_{\mathcal{A} / t^{\prime}}(t)=-t+t^{2}-\frac{5}{6} t^{3}+\frac{1}{2} t^{4}-\frac{1}{8} t^{5}
$$

have alternating signs?

Questions

Question
Does the inverse of the polynomial

$$
g_{\mathcal{A} / t^{\prime}}(t)=-t+t^{2}-\frac{5}{6} t^{3}+\frac{1}{2} t^{4}-\frac{1}{8} t^{5}
$$

have alternating signs?
Another question (Martin Markl and Elizabeth Remm, 2009-2011)
Does the inverse of the polynomial

$$
-t+t^{8}-t^{15}
$$

have alternating signs?

Three morals of this story

- One can do something in operads without really understanding them.
- Use open source. Make your software publically available.
- Questions about signs of inversions of polynomials are difficult. Study them!

Three morals of this story

- One can do something in operads without really understanding them.
- Use open source. Make your software publically available.
- Questions about signs of inversions of polynomials are difficult. Study them!

That's all. Thank you.

Slides at http://justpasha.org/math/alternative/

