On simple 15-dimensional Lie algebras in characteristic 2

Pasha Zusmanovich

University of Ostrava

Centre for Mathematics University of Coimbra Algebra and Combinatorics Seminar November 17, 2021

Joint work with Alexander Grishkov, Henrique Guzzo Jr., and Marina Rasskazova https://web.osu.cz/~Zusmanovich/papers/15dim.pdf Classification of simple Lie algebras

p = **0**:Killing, Cartan, Dynkin, ...

 ${\pmb \rho} > {\pmb 3}$: Witt, Kostrikin, Shafarevich, Block, Wilson, Premet, Strade, ...

p = 2, 3: ? Toral elements in the *p*-envelope: $x^{[p]} = x$.

Torus: A subalgebra consisting of toral elements. **(Absolute) toral rank**: Maximal dimension of a torus.

Example (p = 2)

The simple 3-dimensional Lie algebra S

$$[e, h] = e, \quad [f, h] = f, \quad [e, f] = h$$

has absolute toral rank 2: $\langle h + e + e^{[2]}, h + f + f^{[2]} \rangle$ is a torus.

The 15-dimensional Skryabin algebra

```
From now on, we assume p = 2.
```

A simple 15-dimensional algebra defined by Skryabin (1998) appeared in the classification of simple Lie algebras of absolute toral rank 2 having a Cartan subalgebra of toral rank 1 (2015, Grishkov & Zusmanovich).

It is a deformation of a semisimple Lie algebra

$$\mathsf{S}\otimes\mathcal{O}_1(2)+f^{[2]}\otimes\langle 1,x
angle+\partial,$$

where $\mathcal{O}_1(2)$ is the 4-dimensional divided powers algebra over an indeterminate x, ∂ its standard derivation.

The 15-dim. Skryabin algebra, multiplication table

	b ₂	b ₃	<i>b</i> 4	<i>b</i> ₅	<i>b</i> ₆	b ₇	b ₈	<i>b</i> 9	<i>c</i> ₁	<i>c</i> ₂	c ₃	<i>c</i> ₄	<i>c</i> ₅	d
<i>b</i> ₁	<i>b</i> ₃	<i>b</i> ₁	βc_5	<i>b</i> ₆	<i>b</i> ₄	δc_4	<i>b</i> 9	b7	$\delta c_5 + d$	<i>c</i> 3	<i>c</i> ₁	<i>b</i> ₂	<i>b</i> ₅	βc_2
b ₂		b ₂	<i>b</i> ₆	0	<i>b</i> 5	<i>b</i> 9	0	<i>b</i> ₈	<i>c</i> 3	0	<i>c</i> ₂	0	0	0
<i>b</i> ₃			<i>b</i> 4	b5	0	b7	b ₈	0	<i>c</i> ₁	<i>c</i> ₂	0	0	0	0
<i>b</i> ₄				0	0	$\delta c_5 + d$	<i>c</i> 3	<i>c</i> ₁	b3	<i>c</i> ₄	<i>b</i> ₂	<i>b</i> ₅	0	b_1
b5					0	<i>c</i> 3	0	<i>c</i> ₂	С4	0	0	0	0	b ₂
<i>b</i> ₆						<i>c</i> ₁	<i>c</i> ₂	0	0	0	С4	0	0	<i>b</i> 3
b7							0	0	<i>b</i> ₆	<i>c</i> 5	<i>b</i> ₅	b ₈	<i>c</i> ₂	<i>b</i> ₄
<i>b</i> ₈								0	C5	0	0	0	0	b5
<i>b</i> 9									0	0	<i>c</i> 5	0	0	<i>b</i> ₆
c_1										0	b ₈	<i>c</i> ₂	0	b ₇
<i>c</i> ₂											0	0	0	b ₈
<i>c</i> 3												0	0	<i>b</i> 9
<i>c</i> ₄													0	0
c5														C4

The 15-dim. Skryabin algebra, some properties

- $\blacktriangleright H^2(L,K) = 0$
- dim $H^3(L, K) = 15$
- dim $H^2(L, L) = 13$
- Derivation algebra = 2-envelope is of dimension 19.
- No nontrivial symmetric bilinear forms.
- The sandwich subalgebra is of dimension 3.
- The absolute toral rank is 4.
- Lots of 7-dimensional simple subalgebras, each isomorphic either to the Zassenhaus algebra, or to a Hamiltonian algebra.
- Aut(L) is isomorphic to the semidirect product of K[×] and a 7-dimensional unipotent algebraic group.
- ▶ Lots of gradings (over \mathbb{Z} , $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^4$, ...).

Thin decomposition

Let dim $L = 2^n - 1$, the absolute toral rank is n, T is a torus of dimension n in the 2-envelope such that $L \cap T = 0$. Let the root space decomposition of L with respect to T is of the form

$$L = \bigoplus_{\substack{\alpha \in \mathsf{GF}(2)^n \\ \alpha \neq (0,...,0)}} \langle e_{\alpha} \rangle.$$

Such decomposition is called *thin*.

The multiplication table in the basis $\{e_{\alpha}\}$ is of the form

$$\left[e_{lpha}, e_{eta}
ight] = egin{cases} e_{lpha+eta} \ 0 \ 0 \end{cases}$$

Fact

Over GF(2), the Skryabin algebra admits a thin decomposition with respect to each of the 26,880 4-dimensional tori in the 2-envelope.

Comparison with Eick's list

Eick (2010) produced a computer-generated list of simple Lie algebras over GF(2) of dimension \leq 20. There are 8 15-dimensional algebras in the list, and the Skryabin algebra is not there!

Some further questions

- Classify simple Lie algebras admitting a thin decomposition.
- Prove that in the "most" of the cases a simple Lie algebra contains a simple 7-dimensional subalgebra.

That's all. Thank you.