On Lie algebras in characteristic 2

Pasha Zusmanovich

University of Ostrava

Institute of Mathematics, Prague March 2, 2022

Partially based on:

A. Grishkov, H. Guzzo Jr., M. Rasskazova, P. Zusmanovich, *On simple* 15-*dimensional Lie algebras in characteristic* 2, J. Algebra **593** (2022), 295–318.

Classification of simple Lie algebras

p = **0**:Killing, Cartan, Dynkin, ...

 ${\pmb \rho} > {\pmb 3}$: Witt, Kostrikin, Shafarevich, Block, Wilson, Premet, Strade, ...

p = 2, 3: ? Toral elements in the *p*-envelope: $x^{[p]} = x$.

Torus: A subalgebra consisting of toral elements. **(Absolute) toral rank**: Maximal dimension of a torus.

Example (p = 2)

The simple 3-dimensional Lie algebra S

$$[e, h] = e, \quad [f, h] = f, \quad [e, f] = h$$

has absolute toral rank 2: $\langle h + e + e^{[2]}, h + f + f^{[2]} \rangle$ is a torus.

The 15-dimensional Skryabin algebra

```
From now on, we assume p = 2.
```

A simple 15-dimensional algebra defined by Skryabin (1998) appeared in the classification of simple Lie algebras of absolute toral rank 2 having a Cartan subalgebra of toral rank 1 (Grishkov–Zusmanovich, 2015).

It is a deformation of a semisimple Lie algebra

$$\mathsf{S}\otimes\mathcal{O}_1(2)+f^{[2]}\otimes\langle 1,x
angle+\partial,$$

where $\mathcal{O}_1(2)$ is the 4-dimensional divided powers algebra over an indeterminate x, ∂ its standard derivation.

The 15-dim. Skryabin algebra, multiplication table

The 2-parametic family $\mathscr{L}(\beta, \delta)$:

	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> 4	<i>b</i> 5	<i>b</i> ₆	b7	<i>b</i> ₈	<i>b</i> 9	<i>c</i> 1	<i>c</i> ₂	<i>c</i> 3	c4	<i>c</i> 5	d
<i>b</i> ₁	<i>b</i> ₃	<i>b</i> ₁	βc_5	<i>b</i> ₆	<i>b</i> 4	δc4	<i>b</i> 9	b7	$\delta c_5 + d$	c ₃	<i>c</i> ₁	<i>b</i> ₂	<i>b</i> ₅	βc_2
b ₂		b ₂	<i>b</i> 6	0	<i>b</i> 5	<i>b</i> 9	0	b ₈	<i>c</i> 3	0	c ₂	0	0	0
b3			<i>b</i> 4	<i>b</i> 5	0	b7	b ₈	0	<i>c</i> 1	<i>c</i> ₂	0	0	0	0
<i>b</i> 4				0	0	$\delta c_5 + d$	Сз	<i>c</i> 1	b3	С4	b ₂	<i>b</i> 5	0	b_1
b5					0	<i>c</i> 3	0	<i>c</i> ₂	С4	0	0	0	0	b ₂
<i>b</i> ₆						<i>c</i> ₁	<i>c</i> ₂	0	0	0	<i>c</i> 4	0	0	<i>b</i> 3
b7							0	0	<i>b</i> ₆	<i>c</i> 5	b ₅	<i>b</i> ₈	<i>c</i> ₂	<i>b</i> 4
b ₈								0	<i>c</i> 5	0	0	0	0	b5
<i>b</i> 9									0	0	<i>c</i> 5	0	0	<i>b</i> ₆
<i>c</i> ₁										0	b ₈	<i>c</i> ₂	0	b7
<i>c</i> ₂											0	0	0	b ₈
<i>c</i> 3												0	0	<i>b</i> 9
с4													0	0
<i>c</i> 5														с4

 $\mathscr{L}(\beta, \delta)$ is a 2-parametric linear deformation of $\mathscr{L}(\beta, \delta)$ by two non-trivial 2-cocycles, but $\mathscr{L}(\beta, \delta) \simeq \mathscr{L}(0, 0)$.

Such deformations are called *semitrivial* (Bouarroudj–Grozman–Lebedev–Leites–Shchepochkina, 2015, 2020). The 15-dim. Skryabin algebra, some properties

- ► $H^2(\mathscr{L}, K) = 0$
- dim H³(\mathscr{L}, K) = 15
- dim H²(\mathscr{L}, \mathscr{L}) = 13
- Derivation algebra = 2-envelope is of dimension 19.
- No nontrivial symmetric bilinear forms.
- The sandwich subalgebra is of dimension 3.
- The absolute toral rank is 4.
- Lots of 7-dimensional simple subalgebras, each isomorphic either to the Zassenhaus algebra, or to a Hamiltonian algebra.
- Aut(L) is isomorphic to the semidirect product of K[×] and a 7-dimensional unipotent algebraic group.
- Lots of gradings (over \mathbb{Z} , $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^4$, ...).

Comparison with Eick's list

Eick (2010) produced a computer-generated list of simple Lie algebras over GF(2) of dimension \leq 20. There are 8 15-dimensional algebras in the list, and the Skryabin algebra is not there!

That's all. Thank you.