EXAM FOR "MEASURE THEORY AND INTEGRATION" (TMAIN) WINTER SEMESTER 2018/2019

QUESTIONS SET NO. 2

1. Prove the existence of Borel non-measurable sets in \mathbb{R}^n .

2. Let μ be a measure on a set *S*. Prove that there exist measurable sets $A_1 \subset A_2 \subset ...$ such that $\bigcup_{n\geq 1}A_n = S$ and $\mu(A_n) < \infty$ for any *n*, if and only if there exists a measurable positive (i.e., f(x) > 0 for any $x \in S$) function *f* such that $\int f d\mu < \infty$.