Boris Makarov
Anatolii Podkorytov

Real Analysis:
Measures,

Integrals and
Applications

2 Springer



Universitext



Universitext

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Vincenzo Capasso
Universita degli Studi di Milano, Milan, Italy

Carles Casacuberta
Universitat de Barcelona, Barcelona, Spain

Angus Maclntyre
Queen Mary, University of London, London, UK

Kenneth Ribet
University of California, Berkeley, Berkeley, CA, USA

Claude Sabbah
CNRS, Ecole Polytechnique, Palaiseau, France

Endre Siili
University of Oxford, Oxford, UK

Wojbor A. Woyczynski
Case Western Reserve University, Cleveland, OH, USA

Universitext is a series of textbooks that presents material from a wide variety
of mathematical disciplines at master’s level and beyond. The books, often well
class-tested by their author, may have an informal, personal, even experimental
approach to their subject matter. Some of the most successful and established
books in the series have evolved through several editions, always following the
evolution of teaching curricula, into very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks
written for new, cutting-edge courses may make their way into Universitext.

For further volumes:
WwwWw.springer.com/series/223


http://www.springer.com/series/223

Boris Makarov + Anatolii Podkorytov

Real Analysis:
Measures,
Integrals and
Applications

@ Springer



Boris Makarov Anatolii Podkorytov

Mathematics and Mechanics Faculty Mathematics and Mechanics Faculty
St Petersburg State University St Petersburg State University
St Petersburg, Russia St Petersburg, Russia

Translated from the Russian language edition:
JIeKnuu 10 BEmECTBEHHOMY AHAJU3Y
by 5.M. Makapos, A.H. [Toakopsrros (B.M. Makarov, A.N. Podkorytov)

Copyright © BXB-IIetepb6ypr (BHV-Petersburg) 2011
All rights reserved.

ISSN 0172-5939 ISSN 2191-6675 (electronic)
Universitext
ISBN 978-1-4471-5121-0 ISBN 978-1-4471-5122-7 (eBook)

DOI 10.1007/978-1-4471-5122-7
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013940613

Mathematics Subject Classification: 28A12, 28A20, 28A25, 28A35, 28A75, 28A78, 28B0S5, 31B0S,
42A20, 42B05, 42B10

© Springer-Verlag London 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


http://www.springer.com
http://www.springer.com/mycopy

Diagram of Chapter Dependency




Preface to the English Translation

This book reflects our experience in teaching at the Department of Mathematics
and Mechanics of St. Petersburg State University. It is aimed primarily at readers
making their first acquaintance with the subject.

Lecture courses on measure theory and integration are often confined to abstract
measure theory, with little attention paid to such topics as integration with respect
to Lebesgue measure, its transformation under a diffeomorphism and so on—that
is, topics that are more special but no less important for applications. Believing
that such reticence is counterproductive, we choose an approach that avoids it and
combines general notions with classical special cases.

A substantial part of the book is devoted to examples illustrating the obtained
results both in and beyond the framework of mathematical analysis, in particular, in
geometry. The exercises appearing at the end of almost every section serve the same
purpose.

In the English translation we use three-digit numbers for sections. The first digit
refers to a Chapter, the second to a Section within the Chapter and the third to
Subsection. When referencing to a statement we give the number of a Subsection
which contains it. E.g., Lemma 7.5.4 would mean a lemma from Sect. 7.5.4.

Comparing with Russian edition, we have extended the book by adding, in par-
ticular, the new Sects. 6.1.3 and 6.2.6.

Taking into account the difference between curricula in Russia and the West,
as well as the considerable volume of our book, we think it necessary to say sev-
eral words about how to use it, and we draw the reader’s attention to the chapter
dependency chart. A reader interested only in an introduction to the foundations of
measure theory and integration may prefer to read only those sections of Chaps. 1-5
that are not marked with a . This symbol indicates sections that contain either some
illustrative material (e.g., Sects. 2.8, 6.6-6.7, 7.2-7.3, 8.7, 10.2, 10.6), or some op-
tional information that can be omitted in the first reading (e.g., Sects. 1.6, 4.11,
5.5-5.6, 6.5, 7.4, 8.8, 10.4, 12.1-12.3), or else material used outside Chaps. 1-5
(Sects. 2.6, 3.4, 4.9). The material of Sects. 1.1-1.4,2.1-2.5,3.1-3.2,4.1-4.8, 5.1-
5.4 can be taken as a basis for a two semester course on the foundations of measure
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viii Preface to the English Translation

theory and integration. Time permitting, the course can be extended by including
the material of Sects. 6.1-6.2, 3.3, 4.9, 6.4.

The book can also be used for courses aimed at students familiar with the notion
of integration with respect to a measure. There is a sufficiently wide choice of such
courses devoted to relatively narrow topics of real analysis. For example:

e The maximal function and differentiation of measures (Sects. 2.7,4.9, 11.2, 11.3).

e Surface integrals (Sects. 2.6, 8.1-8.6).

e Functionals in spaces of measurable and continuous functions (Sects. 11.1-11.2,
Chap. 12).

e Approximate identities and their applications (Sects. 7.5-7.6, Chap. 9).

e Fourier series and the Fourier transform (Chaps. 9, 10).

e A course covering only the preliminaries of the theory of Fourier series and
the Fourier transform may be based, for example, on Sects. 9.1.1-9.1.3, 10.1.1-
10.1.4,10.3.1-10.3.6, 10.5.1-10.5.4.

Acknowledgments We are deeply indebted to Springer for publishing our book
and we are happy to see it reach a much wider audience via its English translation.
We are grateful to V.P. Havin who attracted the publisher’s attention to the Russian
edition of our book soon after its publication.
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places. Our special thanks go to Joerg Sixt, the Springer Editor, for his invaluable
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families and colleagues who read and commented upon various drafts and con-
tributed to the translation.

Our special thanks go to O.B. Makarova (who happened to be a granddaugh-
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correspondence related to publication of this book and helped us enormously with
proofreading.
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University program ‘“Function theory, operator theory and their applications”
6.38.78.2011.

St Petersburg, Russia Boris Makarov
Anatolii Podkorytov



Preface

Measure theory has been an integral part of undergraduate and graduate curricula
in mathematics for a long time now. A number of texts in this subject area have
become well-established and widely used. For example, one might recall books by
B.Z. Vulih [Vu], A.N. Kolmogorov and S.V. Fomin [KF], not to mention the classi-
cal monograph by P. Halmos [H]. However, books on measure theory typically treat
it as an isolated subject, which makes it difficult to include it in a general course in
analysis in a natural and seamless way. For example, the invariance of the Lebesgue
measure is either omitted entirely, or considered as a special case of the invariance
of the Haar measure. Quite often, the question of how Lebesgue measure transforms
under diffeomorphisms is left out. On the other hand, most introductory courses on
integration are still based on the theory of the Riemann integral. As a result, the stu-
dents are forced to absorb numerous, however similar, definitions based on Riemann
sums corresponding to various situations, such as double integrals, triple integrals,
line integrals, surface integrals and so on. They must also overcome the unneces-
sary technical complications caused by the lack of a sufficiently general approach.
Typical examples of such difficulties include justifying the change of the order of
integration and taking limits under the integral sign.

For this reason, one often faces a two-tier exposition of the theory of integration,
where at the first stage the notion of measure is not discussed at all, and later the
elementary topics are never revisited, leaving the task of reconciling the various
approaches to the student. The authors aim to eliminate this divide and provide an
exposition of the theory of the integral that is modern, yet easily integrated into a
general course in analysis. This encapsulates in a textbook the established practice at
the Department of Mathematics and Mechanics of the University of St. Petersburg.
This practice is based on an idea introduced in the early 60s by G.P. Akilov and first
implemented by V.P. Havin during the academic year 1963—-1964.

The main emphasis of the book is on the exposition of the properties of the
Lebesgue integral and its various applications. This approach determined the style
of exposition as well as the choice of the material. It is our hope that the reader who
masters the first third of the book will be sufficiently prepared to study any area of
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< Preface

mathematics that relies upon the general theory of measure, such as, among others,
probability theory, functional analysis and mathematical physics.

Applications of the theory of integration constitute a substantial part of this book.
In addition to some elements of harmonic analysis, they also include geometric
applications, among which the reader will find both classical inequalities, such as
the Brunn—Minkowski and isoperimetric inequalities, and more recent results, such
as the proof of Brouwer’s theorem on vector fields on the sphere based on a change
of variables, the K. Ball inequality and others. In order to illustrate the effectiveness
and applicability of the theorems presented, and to give the reader an opportunity
to absorb the material in a hands-on fashion, the book includes numerous examples
and exercises of various degrees of difficulty.

Pedagogical considerations caused us to refrain from stating some of the results
in their full generality. In such cases, references to the appropriate literature are
provided for the interested reader. The notion of surface area is discussed in more
detail than is common in analysis texts. Using a descriptive definition, we prove its
uniqueness on Borel subsets of smooth and Lipschitz manifolds.

It is desirable that the reader be familiar with the notion of an integral of a con-
tinuous function of one variable on an interval prior to being exposed to the basics
of measure theory. However, we do not feel that this prerequisite necessarily needs
to be fulfilled in the context of the Riemann integral, which we view to be primarily
of historical interest. A possible alternative approach is outlined in Appendix 13.1.

This book is based on a series of lectures delivered by the authors at the De-
partment of Mathematics and Mechanics of St. Petersburg State University. The
majority of the material in Chaps. 1-8 approximately corresponds to the fourth and
fifth semester analysis program for mathematics majors in our department. The ma-
terial from Chaps. 9—12 and some other parts of the book was previously included
by the authors in advanced courses and lectures in functional analysis. Some addi-
tional information is presented in Appendices 13.2-13.6. Appendix 13.7, dedicated
to smooth mappings, is included for the sake of completeness.

The reader is expected to have the necessary mathematical background. The stu-
dents entering the fourth semester at the Department of Mathematics and Mechanics
of St. Petersburg State University are familiar with multivariable calculus and basic
linear algebra. This prerequisite material is used throughout the book without any
additional explanations. In Chap. 8, familiarity with the basics of smooth manifold
theory is assumed. In Appendices 13.2 and 13.3, the rudiments of the theory of
metric spaces are taken for granted.

The authors have previously encountered texts where a definition or notation,
once introduced, is never repeated and is used without any further comments or
references many pages later. We believe that such manner of presentation, possi-
bly appropriate in monographs of an encyclopedic nature, puts too much strain on
the reader’s memory and attention span. Taking into account the fact that this is a
textbook intended for relatively inexperienced readers, many of whom will be en-
countering the subject matter for the first time, the authors find it useful to include
some repetitions and reminders. However, they are unable to measure the degree to
which they have succeeded in this direction.



Preface xi

In the process of writing this book, the authors have frequently sought ad-
vice from their colleagues. The comments and suggestions of D.A. Vladimirov,
A.A. Lodkin, A.I. Nazarov, FL. Nazarov, A.A. Florinsky and V.P. Havin proved
especially useful. We are grateful to them as well as to A.L. Gromov, who kindly
agreed to produce computer generated graphics and K.P. Kohas, who handled the
type-setting of the book.

The chapters are numbered using Roman numerals. They are divided into sec-
tions consisting of subsections which are numbered using two Arabic numerals.
The first of these indicates the number of the section, and the second the number of
the subsection. The subsections in Appendices are numbered by two numerals, one
Roman (Appendix number) and the other Arabic, with the addition of the letter A
when referencing.

All the assertions contained in a given subsection are numbered in the same way
as the subsection itself. In the case of references within a given chapter, only the
number of the subsection is indicated. For example, the reference “by Theorem 2.1”
refers to a theorem in subsection 2.1 of a given chapter. When referencing material
from another chapter, the number of the chapter is also indicated. For example,
the reference “Corollary I1.3.4” refers to a corollary contained in subsection 3.4 of
Chapter II. The enumeration of the formulas is consecutive within each section. The
end of a proof is indicated by black triangle ».
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The intersection of sets A and B

The union of sets A and B
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The direct (Cartesian) product of sets A and B
The cardinality of a set A
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The set of integers

The set of rational numbers
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and integer coordinates, respectively
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Chapter 1
Measure

1.1 Systems of Sets

In classical analysis, one usually works with functions that depend on one or several
numerical variables, but here we will study functions whose argument is a set. Our
main focus will be on measures, i.e., set functions that generalize the notions of
length, area and volume. Dealing with such generalizations, it is natural to aim at
defining a measure on a sufficiently “good” class of sets. We would like this class
to have a number of natural properties, namely, to contain, with any two elements,
their union, intersection and set-theoretic difference. In order for a measure to be
of interest, its domain must also be sufficiently rich in sets. Aiming to satisfy these
requirements, we arrive at the notions of an algebra and a o -algebra of sets.

As a synonym for “a set of sets”, we use the term “a system of sets”. The sets
constituting a system are called its elements. The phrase “a set A is contained in
a given system of sets 2 means that A belongs to 2, i.e., A is an element of 2.
To avoid notational confusion, we usually denote sets by upper case Latin letters
A, B, ..., and points belonging to these sets by lower case Latin letters a, b, ....
For systems of sets, we use Gothic and calligraphic letters. The symbol & stands for
the empty set.

1.1.1 We assume that the reader is familiar with the basics of naive set theory. In
particular, we leave the proofs of set-theoretic identities as easy exercises. Some of
these identities, which will be used especially often, are summarized in the follow-
ing lemma for the reader’s convenience.

Lemma Let A, A, (w € Q) be arbitrary subsets of a set X. Then
() X\ UweQ Ay = mweQ(X \ Aw);

(2) X\ ﬂweQ Ap= UweQ(X \ Aw);
3) AN Ua)eQ Ay = UweQ(A NAy).

Equations (1) and (2) are called De Morgan’s laws. Equation (3) is the distributive
law of intersection over union. Associating union with addition and intersection with

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, 1
Universitext, DOI 10.1007/978-1-4471-5122-7_1, © Springer-Verlag London 2013
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multiplication, the reader can easily see the analogy between this property and the
usual distributivity for numbers.

Considering the union and intersection of a family of sets with a countable set
of indices €2, we usually assume that the indices are positive integers. This does not
affect the generality of our results, since for every “numbering” of Q2 (i.e., every
bijection n — wj, from the set of positive integers onto €2), we have the equalities

UAw:UAwna mAw:ﬂAw,,v

weR neN we2 neN

which follow directly from the definition of the union and intersection.
In what follows, we often write a set as the union of pairwise disjoint subsets.
Thus it is convenient to introduce the following definition.

Definition A family of sets {E,},eq is called a partition of a set E if E, are
pairwise disjoint and | J,,.q Ew = E.

We do not exclude the case where some elements of a partition coincide with the
empty set.

A union of disjoint sets will be called a disjoint union and denoted by V. Thus
A Vv B stands for the union A U B in the case where A N B = &. Correspondingly,
V ,eq Ew stands for the union of a family of sets E,, in the case where all these sets
are pairwise disjoint.

We always assume that the system of sets under consideration consists of subsets
of a fixed non-empty set, which will be called the ground set. The complement of a
set A in the ground set X, i.e., the set-theoretic difference X \ A, is denoted by A€.

Definition A system of sets 2/ is called symmetric if it contains the complement A€
of every element A € 2I.

Consider the following four properties of a system of sets 2I:

(o) the union of any two elements of 2 belongs to 2;

(80) the intersection of any two elements of 2[ belongs to 2,

(o) the union of any sequence of elements of 2 belongs to 2A;

(6) the intersection of any sequence of elements of 2 belongs to 2.

The following result holds.

Proposition If 2l is a symmetric system of sets, then (0y) is equivalent to (8¢) and
(0) is equivalent to (8).

Proof The proof follows immediately from De Morgan’s laws. Let us prove, for
example, that (§) = (o). Consider an arbitrary sequence {A; },>1 of elements of 2[.
Their union can be written in the form

U A, = (ﬂ A;)C.

n>1 n>1
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Since A¢, € 2 for all n (by the symmetry of 21), it follows from () that the intersec-
tion of these complements also belongs to 2. It remains to use again the symmetry
of 2(, which implies that 2 also contains the complement of this intersection, i.e.,
the union of the original sets.

The reader can easily establish the remaining implications. g

1.1.2 Now we introduce systems of sets that are of great importance for us.

Definition A non-empty symmetric system of sets 2l is called an algebra if it sat-
isfies the (equivalent) conditions (op) and (8p). An algebra is called a o-algebra
(sigma-algebra) if it satisfies the (equivalent) conditions (o) and (§).

Note the following three properties of an algebra 2.

(1) @, X €. Indeed, let A€ A. Then =ANA“cAand X =AU A
directly by the definition of an algebra.

(2) For any two sets A, B € 2, their set-theoretic difference A \ B also belongs
to 2. This follows from the identity A \ B = A N B¢ and the definition of an
algebra.

(3) If Ay, ..., A, are elements of 2, then their union and intersection also belong
to 2. This property can be proved by induction.

Examples

(1) The system that consists of all bounded subsets of the plane R? and their com-
plements is an algebra (but not a o -algebra!).

(2) The system that consists of only two sets, X and &, is obviously an algebra and
a o -algebra. It is often called the trivial algebra on X.

(3) The other extreme case (as compared to the trivial algebra) is the system of all
subsets of X. It is obviously a o -algebra.

(4) If 2 is an algebra (o -algebra) of subsets of a set X and Y C X, then the system
of sets {ANY | A €2} is an algebra (respectively, o-algebra) of subsets of Y.
We call it the induced algebra (on Y') and denote itby AN Y.

More generally, if £ is an arbitrary system of subsets of a set X and ¥ C X, then
{ENY|E €&} is called the system induced on Y by £ and is denoted by £ N Y.
The part of £ N Y that consists of the sets belonging to £ and lying in Y is denoted
by Ey. Note that if £ is an algebra, then £y is an algebra if and only if Y € £.

Proposition Let {,},cq be an arbitrary family of algebras (o-algebras) con-
sisting of subsets of some set. Then the system (),.qUe is again an algebra
(o-algebra).

Proof The proof is left to the reader. d

It is sometimes convenient to consider, along with algebras, related systems of
sets that do not satisfy the symmetry requirement. A system of sets 2 is called a
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ring if for any two elements A, B € 2, the sets AU B, AN B and A\ B also belong
to 2. A ring that contains the union of any sequence of elements is called a o -ring.
Clearly, every algebra (o -algebra) is also a ring (o -ring).

1.1.3 Every system of sets is contained in some o -algebra, for example, in the o -
algebra of all subsets of the ground set X. But this o -algebra usually contains “too
many” sets, and it is often useful to embed the given system of sets into an algebra in
the most economical way, so that the ambient algebra does not contain “superfluous”
elements.

It turns out that every finite collection of subsets {Ag};_, of a set X is a part of
an algebra consisting of finitely many elements. This is obvious if the sets under
consideration form a partition of X. Then all finite unions of these sets, together
with the empty set (which, in set theory, is considered the union over an empty
set of indices), constitute an algebra. But if the sets Ay do not form a partition,
there is a standard procedure for constructing an auxiliary partition that generates
an algebra containing these sets. This procedure is as follows: to each collection
e ={e1,...,e,}, where g =0 or g = 1, we associate the intersection B, = A‘T' N
- N Ay, where AY = Ay and A} = AS (= X \ Ag). Note that, by Property (3),
the sets B, must belong to every algebra containing Ay, ..., A,. The reader can
easily check that the sets B, form a partition of X, which we will call the canonical
partition corresponding to the sets Ay, ..., A,. We encourage the reader to find the
sets B, in the case where the original collection of sets is already a partition of X.
It is clear that B is either contained in Ay (if & = 0), or is disjoint with it. Hence
Ar=UJ e—0 Be- All finite unions of the sets B, (together with the empty set) form

an algebra containing all A;. This algebra contains at most 22" sets (see Exercise 6)
and (like any algebra consisting of finitely many sets) is a o -algebra. Clearly, it is
the smallest o -algebra containing all Ay.

The description of the sets that constitute the minimal o -algebra containing a
given infinite system of sets is very complicated; we will not consider this question,
instead restricting ourselves to the proof that such a o -algebra exists. This important
result will often be used in what follows.

Theorem For every system E of subsets of a set X there exists a minimal o -algebra
containing .

This o-algebra is called the Borel! hull of £ and is denoted by B(€). It consists
of subsets of the same ground set as &.

Proof Clearly, there exists a o -algebra containing £ (for example, the o -algebra of
all subsets of X). Consider the intersection of all such o-algebras. This system of
sets contains £ and is a o -algebra by Proposition 1.1.2. Its minimality follows from
the construction. O

"Emile Borel (1871-1956)—French mathematician.
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Definition An element of the minimal o -algebra containing all open subsets of the
space R is called a Borel subset of R™ or merely a Borel set. The o-algebra of
Borel subsets of R™ is denoted by 8™

Remarks

(1) The simplest examples of Borel sets, along with open and closed sets, are count-
able intersections of open sets and countable unions of closed sets. They are
called G5 and F, sets, respectively.

(2) It is not at all obvious that the o-algebra B does not coincide with the
o-algebra of all subsets of R™, but this is indeed the case. Moreover, these
o -algebras have different cardinalities. One can prove that ‘8" has the cardi-
nality of the continuum, i.e., the same cardinality as R while the cardinality
of the o-algebra of all subsets of R™, by Cantor’s theorem, is strictly greater
than the cardinality of R"”. We will not dwell on the proofs of these results; the
reader can find them, for example, in the books [Bo, Bou].

1.1.4 Before proceeding to the definition of another system of sets, we establish an
auxiliary result, which will be repeatedly used in what follows.

Lemma (Disjoint decomposition) Let {A,},>1 be an arbitrary sequence of sets.
Then

oo 00 n—1
UAn=\/<An\UAk> ()
n=1 n=1 k=0

(for uniformity, we assume that Ay = Q).

Proof Let E,, = A, \ UZ;(I) Ag. It is clear that these sets are pairwise disjoint: if,
say, m < n, then E,, C Ay, while E, C A, \ Ay,

To verify (1), take an arbitrary point x from [ J;2; A,. Let m be the smallest
of the indices n such that x € A,, i.e., x € A, and x ¢ Ay for k <m. Then x €
En CUps1 En. Thus U2 An € U (An \ U{Zg Ax). The reverse inclusion is

n=1

trivial. O
Note that every finite collection of sets Ay, ..., Ay satisfies a similar identity:
N N n—1
UAn=\/(An\UAk). (1"
n=1 n=1 k=0

The proof is almost a literal repetition of that of the lemma (one can also apply the
lemma to the sequence of sets {A,}° | with A, = & forn > N).

Along with algebras and o -algebras, it will also be convenient to use systems of
sets that are not so “good”, but are often more tractable; namely, so-called semirings.

Definition A system of subsets &7 is called a semiring if the following conditions
are satisfied:
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D geZ;
) if A,Be &,then AN B € &;
(II) if A, B € &2, then the set-theoretic difference A \ B can be written as a finite
union of pairwise disjoint elements of &, i.e.,

m
A\B=\/Q;. where Q; € 2.

j=1

Example The system 2 of all half-open intervals of the form [a, b), where
a,beR, a < b, and the part 22! of 2! that consists of intervals with rational
endpoints, are semirings.

We leave the reader to prove these simple but important facts.

Every algebra is a semiring, but, as one can see from the above example, the
converse is not true. If &2 is a semiring, then, for arbitrary Y, the systems & NY
and Py are, obviously, semirings too. Also, every system of pairwise disjoint sets
containing the empty set is a semiring.

The union and the set-theoretic difference of elements of a semiring & may not
belong to &?. However, they have partitions consisting of elements of &7. We will
prove this result in a slightly stronger form.

Theorem Let &2 be a semiring and P, Py, ... ... , Py, ...€ P. Then for every N
the sets P\ U,I,v:1 P, and Ufl\;l P, have decompositions of the form
N m
P\ JP.=\/ Q). where Q; € 2 ()
n=1 j=1
N N my
P, = \/ \/ Qnj, Where Qnj € & and Q,j C Py. 3)
n=1 n=1j=1
Furthermore,
00 oo my
U P, = \/ \/ Qnj, Wwhere Quj € & and Q,j C Py. 4
n=1 n=1j=1

It follows from (3) and (4) that the union of an arbitrary (finite or infinite) se-
quence of elements of a semiring can be written as a finite or countable disjoint
union of “finer” sets (i.e., subsets of the original sets) that are pairwise disjoint and
still belong to the semiring.

Proof Formula (2) can be proved by induction. To prove (3) and (4), we use (2) and
formulas (1) and (17). O
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Corollary Let & be a semiring of subsets of a set X and R be the system of sets
that can be written as finite unions of elements of &2. Then the union, intersection,
and set-theoretic difference of two elements of R also belongs to R. If X € & (or
at least X € R), then R is an algebra.

Thus the system R of finite unions of elements of a semiring & is a ring. It is
obviously the smallest ring containing .

Remark Equality (3) can be strengthened as follows: the union of P, can be written
in the form

N K
U \/ t, where Ry,...,Rxk €

and for any k and n the followmg alternative holds: either Ry is contained in P,, or
these sets are disjoint.

To prove this for N = 2, use the identity
PLU Py =(P\ P)V(PLN PV (P2\ Pr)

and write each of the differences P; \ P> and P, \ P; as a disjoint union according
to the definition of a semiring. The general case can be proved by induction (to
prove the inductive step from N to N + 1, replace P; with U _1 P in the above
argument).

1.1.5 Let &2 and Q be semirings of subsets of sets X and Y, respectively. Consider
the Cartesian product X x Y and the system &2 © Q of subsets of X x ¥ that consists
of the products of elements of &2 and Q:

POQO={PxQ|PecP, QcQ).

We call this system the product of the semirings & and Q.
Theorem The product of semirings is a semiring.

Proof The system & © Q obviously satisfies condition I from the definition of a
semiring. Let A= P x Q and B = Py x Qp, where P, Py e & and Q, Qg € Q. It
follows from the identity A N B = (P N Py) x (Q N Qo) that the system & © Q
also satisfies condition II.

To verify condition III, we may assume that B C A, i.e., Pp C P and Q¢ C Q
(otherwise replace B with B N A). Then, by the definition of a semiring, we have

P=PyvPVv---vVP, and Q=QoVvQiV---VQ,

for some Py, ..., Py € & and Q1,..., O, € Q. Hence all “rectangles” Py x 0j,
0<k<m,0< j<n,form a partition of the product A = P x Q. Removing from
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them the set B = Py x Qp, we obtain a partition of the set-theoretic difference A \ B
into elements of the system & © Q, as required in condition III. U

1.1.6 Now consider two very important examples of semirings of subsets of R™.
We identify the space R™ with the Cartesian product R x --- x R (m factors). The
coordinates of a point x € R™ are denoted by the same letter with subscripts. Thus
x = (x1,X2,...,X%y). In some cases, we will also canonically identify R with the
product of spaces of smaller dimension: R” = R¥ x R for 1 <k < m.

Recall that, by definition, the distance p(x,y) between points x,y € R" is
equal to (O}, (xk — yo)H/2. The function x > (3 j_; xH) /% = ||x]| is called
the (Euclidean) norm. Clearly, p(x, y) = ||lx — y||. Given a set A C R, the value
sup{|lx — y|| | x,y € A} is called the diameter of A and is denoted by diam(A).

The systems of sets we are going to consider first consist of rectangular paral-
lelepipeds. As is well known, an open parallelepiped in R™ spanned by linearly
independent vectors {v; }Tzl is the set (hereafter a € R™)

m

P(a;vl,...,vm)z{a+2tjvj‘0<tj<lforj=1,2,...,m
j=1

Replacing the conditions 0 < ¢; < 1 by the conditions 0 < ¢; < 1, we ob-

tain the closed parallelepiped ?(a; V1, ..., Up), Which is obviously the closure of
P(a;vy,...,vy). Every set P such that

P(a;vi,...,vm) C P CP(a; vy, ..., vn)
is also called a parallelepiped.

The vectors v; are called the edges of P(a;vy,...,v,). If they are pairwise
orthogonal, then the parallelepiped is called rectangular. The vectors of the form
a+y’ jes Vs where J is an arbitrary subset of {1, ..., m}, are called the vertices of
P(a; vy, ...,v,), and the vector a + % Z'}’Zl v; is the center of P(a;vi, ..., vp).

A key role in our considerations is played by rectangular parallelepipeds of a
special form, with edges parallel to the coordinate axes. Let us describe them in
more detail.

Leta=(ai,...,an)eR", b=(by,...,b,) e R". We write a < b i
forall j =1,...,m. The notation a < b means thata; < b; forall j =1,
Generalizing the notion of a one-dimensional interval, we set, for a < b,

faj <bj
2,...,m.

m
(a,b) = l_[(aj,bj) = {x =(t1,...,xp) |aj <xj <bjforall j = lm}
j=1

Thus, for a < b, we may say that (a, b) = P(a; vy, ..., vy), wherev; = (bj —aj)e;
for j =1,...,m. Obviously, the edge lengths of this parallelepiped are equal to
by—ai,...,by, —ay.

The corresponding closed parallelepiped, which is nothing else than
]_[;-”=1 [a;, b;], will be denoted by [a, b], by analogy with the one-dimensional case.
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Unfortunately, neither open nor closed parallelepipeds form a semiring. Hence in
what follows we are mainly interested in parallelepipeds [a, b) of another form,

which we call cells (of dimension m). By definition,
m

[a,b):l_[[aj,bj)z{x:(xl,...,xm)|aj <xj<bj forallj:l,...,m}.
j=1

If aj = b; for at least one j, then the sets (a, b) and [a, b) are empty. Thus (a, b),
[a,b) # @ if and only if a < b. Note also that the Cartesian product of cells of
dimension m and [ is again a cell (of dimension m + ).

Proposition Every non-empty cell is the intersection of a decreasing sequence of
open parallelepipeds and the union of an increasing sequence of closed paral-
lelepipeds.

Proof Let [a, b) be a non-empty cell and z > 0 be a vector such that b — h € [a, b).
Consider the parallelepipeds Iy = (a — %h b)and Sy =[a,b — %h]. Then [a, b) =
Uk>1 Sk = i1 Ik- The details are left to the reader. a

As follows from the proposition, every cell is simultaneously a G5 and an F;; set.
In particular, every cell is a Borel set.

If all edge lengths of a cell are equal, then it is called a cubic cell. If all vertices
of a cell have rational coordinates, we call it a cell with rational vertices. Note the
following simple but important fact: every cell with rational vertices is the disjoint
union of finitely many cubic cells.

Indeed, since the coordinates of the vertices of such a cell can be written as frac-
tions with a common denominator #, it can be split into cubes with edge length %

The system of all m-dimensional cells will be denoted by &, and its part con-
sisting of cells with rational vertices, by 27",

Theorem The systems ™ and 27" are semirings.

Proof The proof is by induction on the dimension. In the one-dimensional case,
the assertion is obvious (see Example 1.1.4). The inductive step is based on The-
orem 1.1.5 and the fact that, by the definition of cells, & = 2=l o P! and
gmn=gmn-1 o2 O

Remark In some cases (see the proof of Theorem 10.5.5), instead of &)" we need
to consider the system 27} consisting of all cells for which the coordinates of all
vertices belong to a fixed set E C R. As one can easily see, this system is also a
semiring.

1.1.7 The next theorem will be repeatedly used in what follows.
Theorem Every non-empty open subset G of the space R™ is the union of a count-

able family of pairwise disjoint cells whose closures are contained in G. All these
cells may be assumed to have rational vertices.



10 1 Measure

Proof For each point x € G, find a cell R, € &2 such that x € R, and R, C G.

r

Obviously, G = | J,c Rx. Since the semiring 27" is countable, among R, there
are only countably many distinct cells. Numbering them, we obtain a sequence of

cells Py (k € N) with the following properties:
o
| JP=6G. PicGforallkeN.
k=1

To obtain a decomposition of G into disjoint cells with rational vertices, it remains
to use decomposition (4) from Theorem 1.1.4 on the properties of semirings. i

Corollary B(2™) =B(") =B".

Proof The inclusions B (") C B(FP™) C B™ are obvious. The reverse inclusion
B CB(") follows from the definition of B, since, by the above theorem, the
o -algebra B(Z7") contains all open sets. d

Remark The proof of the theorem remains valid for every semiring &} provided
that the set E is dense. The corollary also remains valid in this case.

EXERCISES

1. Show that the system of all (one-dimensional) open intervals and the system of
all closed intervals are not semirings.

2. Verify that the circular arcs (including degenerate ones) of angle less than
form a semiring; show that without this additional restriction the assertion is
false.

3. What is the Borel hull of the system of all half-lines of the form (—o0, a), where
a € R? Does the answer change if we consider only rational a or if we consider
closed rather than open half-lines?

4. For sets A, B, their symmetric difference is the set AAB = (A\ B)U(B\ A).
Show that AAB = (AU B) \ (AN B). Give an example of a symmetric system
of sets 2( that contains the symmetric difference of any two elements A, B € 2|,
but is not an algebra. Hint. Assuming that X = {a, b, ¢, d}, consider the system
of all subsets of X consisting of an even number of points.

5. Let %A be the algebra of all subsets of a two-point set. Show that the semiring
20 © A does not contain the complements of one-point sets and hence is not an
algebra.

6. Show that the minimal algebra containing n sets has at most 22° elements. Show
that this bound is sharp.

7. Show that all subsets of R™ that are simultaneously G5 and F, sets form an
algebra containing all open sets. Verify that it is not a o-algebra (for instance,
it does not contain Q™).

8. Refine Theorem 1.1.7 by proving that it suffices to use only cubic cells sat-
isfying the additional condition that the diameter of each cell is substantially
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smaller than the distance to the boundary of the set:
diam(P) < Cmin{||lx — y|||x € P, y € 0G}

(here C > 0 is a predefined arbitrarily small coefficient).

9. Let Py,..., P, be elements of a semiring . Show that all elements of the
canonical partition corresponding to these sets, except possibly for the set

k=1 P, can be written as disjoint unions of elements of . Deduce the result

mentioned in Remark 1.1.4.

10. A symmetric system of sets & is called a D-system if it contains the unions of
all at most countable families of pairwise disjoint elements A, A, ... € £. Let
& be a D-system and A, B € £. Show that:

(@) if AC B,then B\ A€¢;
(b) each of the inclusions AN B €&, AUB €& and A\ B € £ implies the
other two.

11. Let a D-system contain all finite intersections of sets Ay, ..., A,. Show that it
also contains the minimal algebra generated by these sets.

12. A system § of non-empty subsets of a set X is called a filter (in X) if it con-
tains the intersection of any elements A, B € §§. For example, the system of all
neighborhoods of a given point is a filter. A filter l is called an ultrafilter if
every filter containing ( coincides with 4. An example of an ultrafilter is the
system of all sets containing a given point (a trivial ultrafilter).

Show that a filter § in X is an ultrafilter if and only if for every set A C X
the following alternative holds: either A or X \ A belongs to §. Using Zorn’s
lemma, show that for every filter there exists an ultrafilter that contains it.

1.2 Volume

In this section, we embark on the study of the main topic of this chapter. Namely,
we will investigate the properties of so-called additive set functions. The assertion
that some quantity is additive means that the value corresponding to a whole object
is equal to the sum of the values corresponding to the parts of this object for “every”
partition of the object into disjoint parts. Numerous examples of additive quantities
appearing in mathematics, as well as their prototypes in mechanics and physics,
are well known. They include, in particular, length, area, probability, mass, moment
of inertia about a fixed axis, quantity of electricity, etc. In this chapter, we restrict
ourselves to the study of additive functions with non-negative numerical (possibly
infinite) values. The properties of additive functions of an arbitrary sign will be
studied in Chap. 11. Let us proceed to more precise statements.

1.2.1 Let X be an arbitrary set and £ be a system of subsets of X.
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Definition A function ¢ : £ — (—o0, +00] defined on £ is called additive if
@(AV B)=¢(A)+ ¢(B) providedthat A, Befand AV Be€f. (D

It is called finitely additive if for every set A € £ and every finite partition of A into
elements Ay, ..., A, of £,

P(A) =" p(Ap). (1)

k=1

The sums on the right-hand sides of (1) and (1’) always make sense, because the
corresponding terms cannot take infinite values of opposite sign (by definition,
¢ > —00).

Remark 1f ¢ is defined on an algebra (or a ring) I, then the additivity of ¢ implies
its finite additivity. This can be proved by induction using (1).

1.2.2 We define the concept to which this paragraph is devoted.

Definition A finitely additive function p defined on a semiring of subsets of a set
X is called a volume?* (in X) if p is non-negative and p () = 0.

According to the definition of an additive function, a volume may take infinite
values. It is called finite if X belongs to the semiring and p(X) < +o00. A volume is
called o -finite if X can be written as the union of a sequence of sets of finite volume.

Examples

(1) The length of an interval is a volume on the semiring 2.
We leave the reader to verify this.
(2) Another very important example of a volume is a generalization of the
length, the ordinary volume M,,, which is defined on the semiring 2™ of m-
dimensional cells by the following formula:

m m
if P= H[ak, br), then Ay (P) = l_[(bk —a).
k=1 k=1

It is obvious that for m = 1, the ordinary volume coincides with the length of an
interval; for m = 2, with the area of a rectangle; and for m = 3, with the volume
of a parallelepiped. The additivity of the ordinary volume will be proved in
Corollary 1.2.4.

2This term is not widely accepted, but we temporarily use it, for lack of a better one, instead of the
lengthy expression “a non-negative finitely additive set function”.
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(3) Let g be a non-decreasing function defined on R. We define a function v, on the
semiring 2! as follows: ve([a, b)) = g(b) — g(a). Itis a volume, as the reader
can easily verify.

(4) Let 2A be an arbitrary algebra of subsets of a set X, xo € X and a € [0, +o0].
Given A € 2, put

a ifonA,

MA=10 it ¢ AL

One can easily check that p is a volume. We will say that w is the volume
generated by a point mass of size a at xg.
More generally, if the volume u of a one-point set {x¢} is equal to a > 0, we say

that © has a point mass of size a at x.

To obtain a generalization of the last example, we use the notion of the sum of a
family of numbers. For brevity, a family of non-negative numbers is called positive.
Recall that card(E) stands for the cardinality of a set E.

Definition The sum of a positive family {w,},cx is the value

SUP{ > o

xeE

E C X,card(E) < —i—oo},

which is denoted by "y y.
A family {w, }ycx of numbers of arbitrary sign is called summable it

Z |wy| < 400.

xeX

The sum of such a family is the value

Yor=) of =Y ;. where v =max{tawy,0}.

xeX xeX xeX

For a summable family, the set {x € X |wy # 0} is at most countable. Indeed,
it can be exhausted by the sets X, = {x € X | |wy| = %} (n € N), each of which is
finite, because

card(X,) <n Z lox| <n Z |wy| < 400.

xeX, xeX
Since, obviously, for every positive family we have

Yo= Y o

xeX {xeX |wy>0}

the obtained result allows one to reduce the computation of the sum of an arbitrary
summable family to the computation of the sum of a family with a countable set of
indices. The latter problem can be reduced to the computation of the sum of a series.
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If X is a countable set, a bijection ¢ : N — X will be called a numbering of X
and denoted by {x,},>1, where x, = ¢(n).

Lemma Let {wy}rex be an arbitrary positive family. If the set X is countable, then
for an arbitrary numbering {x,},>1 of X,

o0
E a)x:E Wy, -
n=1

xeX

Proof Denote by S7 and $; the left- and right-hand sides of this equality, respec-
tively. On the one hand, for every finite set £ C X, we have > YONES Z;’lozl Wy,
(since for every x € E, the number wy is an element of the series). Hence S; < S».
On the other hand, for every k we have Zﬁ:l wy, < S1, by the definition of the
sum of a family, whence S, < Sj. Since S1 < 52, this completes the proof. O

We leave the reader to check that the equality we have proved is valid for the sum
of every summable family with a countable set of indices.
Now consider the following example.

(5) Let {wy}xex be an arbitrary positive family. Assuming that 2l is an algebra of
subsets of X that contains all one-point sets, define a function p on 2 as follows:

pA)=) or (Ae)

xeA
(by definition, we assume that ) . w, = 0). Note that since (E) = w,, +
-+ 4wy, for every finite set £ = {x1, ..., xy}, we have
w(A) =sup{u(E)| E C A, card(E) < +oo}.

The reader can easily verify that u is additive.

(6) An example of a volume defined on the algebra of bounded sets and their com-
plements (see Sect. 1.1.2, Example (1)) can be obtained as follows. Given a > 0,
put

0 if A is bounded,
n(A) = e h
a if A is unbounded.
This volume will be useful for constructing various counterexamples.

1.2.3 We establish the basic properties of volume.

Theorem Let w be a volume on a semiring &, and let P, P', Py,..., P, € .
Then

(1) if P' C P, then n(P") < u(P);

() if \/i=y P C P, then Y j_; u(P) < u(P);
() if P C Uizt Pr then ju(P) < 33 _q (P
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Properties (1) and (2) are called the monotonicity and the strong monotonicity
of u, respectively; property (3) is called the subadditivity of 1.

Proof Obviously, the monotonicity of u follows from its strong monotonicity, so
we will prove the latter property.

By the theorem on the properties of semirings, the set-theoretic difference P \
V=1 Px can be written in the form P\ \/{_; Pc = \/}_; Q;, where Q; € 2.
Therefore, P = (\/j_; Px) V (\/;’7: 1 ), and, by the additivity of s,

w(P)=> 1P+ (@)=Y uPo.
k=1

k=1 j=1
To prove the subadditivity of u, put P, = P N Py. Then P = J;_, P/, P| € 2.
By the theorem on the properties of semirings,

n mg

P=\/V au.

k=1j=1

where Oy € & and Qy; C P C P for 1 <k <nand 1< j <my. It follows from
the strong monotonicity of x that Z;"i 1 1(Qkj) < (Py). Therefore,

n  mg n
p(PY=Y "> Qi) < Y n(Py).
k=1 j=1 k=1 Il

Note that if a volume is defined on an algebra (or a ring) 2, then u(A \ B) =
w(A) — w(B) provided that A, B € 2, B C A and u(B) < 4o00. Indeed, since
A\ B e, we have u(A) = u(B) + u(A\ B).

Remark A volume p defined on a semiring & can be uniquely extended to the ring
R consisting of all finite unions of elements of 2. Indeed, let E = | J;_, P, where
Py € &. We may assume without loss of generality that the sets Py are pairwise
disjoint (see Theorem 1.1.4). Put L(E) = Y} _; u(Pr). We leave the reader to show
that this function is well defined and that jx is a volume that coincides with y on Z2.

1.2.4 Now let us check that the ordinary volume is indeed a volume in the sense
of our definition. Since 2™ = 2! © 4™~ this is a corollary of the following
general theorem, in which we use the notion of the product of arbitrary semirings
(see Sect. 1.1.5).

Theorem Let X, Y be non-empty sets, &, Q be semirings of subsets of these sets,
and [, v be volumes defined on & and Q, respectively. We define a function A on
the semiring & © Q by the formula

AP x Q)=u(P)-v(Q) forany Pe &, Qe Q



16 1 Measure

(the products 0 - (400) and (400) - 0 are assumed to vanish).
Then X is a volume on & © Q.

The volume A is called the product of the volumes p and v.

Proof We need to check only the finite additivity of A. First consider a partition of
P x Q of a special form. Let P and Q be partitioned into disjoint sets:

P=PVv---Vv Py, 0=01Vv---vQy (PeZ, Q;€Q).

Then the sets P; x Q; (1 <i <1I,1< j<J)belong to the semiring & © Q and
form a partition of P x Q, which we will call a grid partition. For such a partition,
the desired equality is obvious:

I J

MP x Q) =pn(Py(Q) =) u(P)Y v(Q)= Y MPixQ).
i=1 j=l1 1<i<I
INA Y

Now consider an arbitrary partition of the set P x Q into elements of the semiring

PO O:
PxQ=(FP1 x0)V---V(PyxQ0n) (PheZ Q,eQ).

In general, it is not a grid partition, but, refining it, we can reduce the problem to
such a partition. Clearly, P =P U---U Py and Q = Q1 U --- U Qp, where the
sets Py,..., Py and Q1, ..., Q,, respectively, may not be disjoint. However, as we
observed in Sect. 1.1 (see the remark in Sect. 1.1.4), there exist partitions

P=AVvV---VA; (Aje?) and Q=B V---VvB; (Bj€Q)
such that
foralli,n, either A;C P, or A NP, =0;
forall j,n, either B;CQ, or B;NQ,=a.
Since the sets A; x B; form a grid partition of the product P x Q, we have
MPx Q)= > MAix B)). 2)
1<i<I
1<j<J

On the other hand, it is clear that for every n the families {A;|A; C P,} and
{Bj|Bj C Qn} are partitions of the sets P, and Q,, respectively. Hence {A; x
Bj|A; C Py, Bj C Oy} is a grid partition of the product P, x Q,. Therefore,

MPyx Q)= Y AA;xB)).
i:A;CP,
J:BjCOn
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Rearranging the terms on the right-hand side of (2), we obtain the desired equality:

AP x Q)= Z AMA; x Bj) = Z Z A(A; x Bj) = Z AP, % 0)).
1<i<I 1<n<N i:A;CP, 1<n<N
1<j<d J:BjCQn U

Corollary The ordinary volume A, is a volume in the sense of Definition 1.2.2.

Proof The proof proceeds by induction on the dimension. The one-dimensional case
is left to the reader. Now the additivity of 1, follows immediately from the theorem,
since 2" = 21 © 2"~ and A,, is the product of the volumes A; and A,,,_;. [J

EXERCISES In Exercises 1-3, u is a finite volume defined on an algebra 2 of
subsets of a set X.

1. Show that for any elements of 2,

u(AUB) = pu(A) + n(B) — (AN B);
u(AUBUC)=p(A) + pn(B)+u(C) —pu(ANB) —u(BNC) —u(ANC)
+u(ANBNC).

Generalize these equalities to the case of four and more sets.

2. Let u(X)=1,and let Ay, ..., A, € . Show that if 22’:1 Wu(Ar) >n — 1, then
Mi=1 Ak # 2.

3. Show that every partition of X into subsets of positive volume is at most count-
able.

1.3 Properties of Measure

The key property in the definition of a volume is its finite additivity, i.e., the as-
sertion that “the volume of a whole object is the sum of the volumes of its parts”
provided that the number of these “parts” is finite. As we will see below, this rule
may be violated if the “parts” form an infinite sequence. Of course, infinite partitions
arise only as an idealization of real-life situations, so it is hard to provide a natural
scientifically motivated explanation of why we need to consider volumes with such
a strong additivity property, which is called countable additivity.

However, intuitively, a violation of the rule “the volume of a whole object is
the sum of the volumes of its parts” for a countable set of parts seems to be quite
unnatural if, for example, by the volume we mean the length or the area. It is the
countable additivity that allows one to develop a deep theory that comes close to
the theory of integration. This and the next sections are devoted to the theory of
countably additive volumes, which is usually called measure theory. It has numerous
important applications. First of all, it is worth mentioning that measure theory lies
at the foundations of modern probability theory.
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1.3.1 Let us proceed to precise definitions.

Definition A volume p defined on a semiring &2 is called countably additive if for
every set P € & and every partition { P}72, of P into elements of &,

WPy =) u(Po).

k>l

A countably additive volume is called a measure.

Using the notion of the sum of a family and Lemma 1.2.2, we can formulate the
definition of countable additivity in an equivalent, though formally more general
form: a volume p defined on a semiring & is countably additive if for every set
P € & and every countable partition { Py, }yecq of P into elements of &2,

W(P) =) u(Py).

weR

Countable additivity does not follow from finite additivity, so that not every vol-
ume is a measure. In particular, the volume from Example (6) of Sect. 1.2.2 is not a
measure, as the reader can easily check.

Examples

(1) The ordinary volume is a measure (see Theorem 2.1.1).

(2) Consider the volume vg([a, b)) = g(b) — g(a) defined in Example (3) of
Sect. 1.2.2. Its countable additivity means, in particular, that if [bg, b) =
\/Zio[bn, byy1), where b, — b,b, < byy1, then ve([bo,b)) =
35 0 Ve ([bn bus1)). Since v([by, bus1)) = §(bus1) — g(by), this is equiva-
lent to the condition g(by,) n_)—go g().

Thus for v, to be countably additive, it is necessary that the function g be
continuous from the left.

Given an arbitrary increasing function g, one can obtain a measure by setting
g (la, b)) = g(b—0)—g(a—0), where g(a —0) and g(b —0) are the left limits
of g at the points a and b, respectively. We will prove the countable additivity
of ug in Theorem 4.10.2. It implies, in particular, that the continuity of the
function g from the left is not only a necessary, but also a sufficient condition
for the volume v, to be a measure.

(3) The volume generated by a positive point mass (see Example (4) in Sect. 1.2.2)
is a measure.

(4) Let X be an arbitrary set and 2l be a o-algebra of subsets of X containing all
one-point sets. We define a function p on 2 as follows:

the number of points in A if A is finite;

A p—
w(A) too if A is infinite.
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We leave the reader to verify that the function w thus defined is indeed a mea-
sure. It is called the counting measure.

(5) Let us verify that the volume p constructed in Example (5) of Sect. 1.2.2 is
countably additive, i.e., that & is a measure.

Indeed, let A = \/,fo=1 Ay, where A, Ay € 2. It is clear that for every n € N,
n n
(A) > ,u(\/ Ak) = Ay,
k=1 k=1

whence w(A) > Z,fi | (Ag). On the other hand, if E is an arbitrary finite subset
of A, then for some n we have E C \/;_, Ax. Therefore,

WE) < ,u(\/ Ak> =D A <) p(Ap).
k=1

k=1 = k=1

It follows that
o
H(A) = sup{M(E) |E C A, card(E) < —I—oo} < Zu(Ak).
k=1

Together with the reverse inequality obtained above, this proves the countable addi-
tivity of u.

We will say that u is the discrete measure generated by the masses wy. If v, =1,
then, obviously, u is the counting measure.

1.3.2 We establish an important characteristic property of measures.

Theorem A volume u defined on a semiring & is a measure if and only if it is
countably subadditive, i.e.,

the conditions P C | | Pc. P.Pie 2 implythat p(P)< Y u(Py). (1)
k=1 k=1

Proof 3 Let i be a countably additive volume. Replacing the sets Py in condition (1)
by the sets P, = P N P, we see that

P:UP,g, Ple? (keN).
k>1

31t is instructive to compare this argument with the proof of Theorem 1.2.3.
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By Theorem 1.1.4, P can be written in the form

ng
P=\/\Qy Qe

k>1j=1

Furthermore, \/'}": 10k C P,;. Hence, by the strong monotonicity of a volume,
Z;”‘: L (Qkj) < (P < ju(Py). Using the countable additivity, we obtain

ni
p(PY=Y "> Qi) <Y u(Pp),

k>1j=1 k>1

as required.
Now let us prove that countable subadditivity implies countable additivity. Let
{Pr}p2, C & be apartition of a set P € . By the countable subadditivity of u,

1(P) <D (). )
k>1

On the other hand, the strong monotonicity of a volume implies that w(P) >
Y iy m(Py) for every n € N. Passing to the limit as n — oo, we see that u(P) >
> k=1 w(Py). Together with (2), this proves the countable additivity of j. O

The last theorem implies a result that we will often use in what follows.

Corollary Let u be a measure defined on a o-algebra 2A. Then a countable union
of sets of zero measure is again a set of zero measure.

Indeed, if ¢, are sets from 2 that have zero measure, then their union also belongs
to A and (U, > en) < 22,5 mlen) =0.

1.3.3 We will check that for a volume defined on the algebra, countable additivity
is equivalent to a property analogous to continuity.

Theorem A volume p defined on an algebra 2 is a measure if and only if it is
continuous from below, i.e.,

the conditions A, Ay €A, Ay C Agy1, A= U Ag
k=1
imply that (L(Ag) k—> n(A). 3)
—00
Remark If the algebra 2( from the statement of the theorem is a o -algebra, then the

condition A € 2 in the definition of continuity from below can be omitted, because
it follows from the equality A = [ J k>1 Ak
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Proof Let u be a countably additive volume and A, Aj be sets satisfying con-
ditions (3). Putting By = Aj, By = Ay \ Ag—1 for k > 1, we see that By € %,
BiNBj=afork+#j (j,k€N),and

k
Ar=\/B;, A=\/B,.
j=1

Therefore, u(Ay) = Z];:1 n(B;) and

k
A) = Bj)=1li Bj)=1li Ag).
n(A) ];m /) kL’?.‘o;“( j)= lim p1(A)

Now let us prove that continuity from below implies countable additivity. Let

{E;}7Z, C Abe a partition of a set A € 2. Put Ay = \//;=] E;. Then

Are, ApCAry, A= UAk7
>1

and u(Ay) = ZI;ZI n(Ej). Since u is continuous from below, we obtain

k
A) =i Ap) = li Ej)= Ej).
p(A) = lim p1(Ar) kggo_Zu( 7 ZM( j) -
Jj=1 izl

1.3.4 Recall that a volume u defined on a semiring & of subsets of a set X is called
finite if X € &2 and u(X) < 400 (see Definition 1.2.2).

Theorem Let (1 be a finite volume defined on an algebra . The following condi-
tions are equivalent:

(1) w is a measure;
(2) w is continuous from above, i.e.,

the conditions A, A €, Ax D Ak+1, m A=A 4)
k=1

imply  n(Ax) —> n(A);
k— o0
(3) w is continuous from above at the empty set, i.e.,

the conditions Ay €A, Ar D Apt1, m Ar=0 (0]
k>1

imply — p(Ag) e 0.
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Proof (1) = (2). Let Ay be sets satisfying conditions (4). Put B= A1\ A, By =
A1\ Ag. Then By C Bi41 and B = Uk>1 By.. By the continuity of a measure from
below,

1(A) = u(Ar) = 1(Br) —> (B) = u(Ar) — u(A),

Le., u(Ax) =2 n(A).

The implication (2) = (3) is trivial. Let us prove that (3) = (1). Let {E j}?il -
2 be a partition of aset A € 2. Put Ay = \/?O=k+l Ej.Then Ay € 2, since Ay = A\
\/I;:1 E;, and the sets A, obviously satisfy all conditions (4'). Hence 1 (Ax) —> 0.

Furthermore, A = A V V§:1Ej- Thus w(A) = w(Ap) + Z/ I/L(E)
Ww(Ax) k—> 0, and, consequently, u(A) = Z/>1 u(E}), as required.
—00

Corollary Every measure is conditionally continuous from above. The latter means
that the conditions A, Ay € A, Ax D Ak+1, ﬂk>1 A = A and u(A,) < +oo for
some m imply that w(Ay) k—> w(A).

—00

To prove this, it suffices to consider the restriction of the measure u to the in-
duced algebra 20N A,, (see Example (4) in Sect. 1.1.2) and use the continuity from
above of the obtained finite measure.

Remarks

(1) If a volume is infinite, then continuity from above does not imply countable
additivity (see Exercise 1).

(2) If a volume is defined on a semiring, then in Theorems 1.3.3 and 1.3.4 only the
“only if” parts are true (see Exercise 2).

In what follows, we usually consider measures defined on ¢ -algebras. The collec-
tion consisting of three objects—a set X, a o -algebra 2 of subsets of X, and a mea-
sure u defined on 2—is usually denoted by (X, 2, ) and is called a measure space.
The sets for which the measure is defined, i.e., the elements of the o -algebra 2, are
called measurable, or, more precisely, measurable with respect to 2.

EXERCISES

1. Show that the infinite volume from Example (6) in Sect. 1.2.2 (@ = +00) is
conditionally continuous from above, but is not a measure.

2. Let X =[0,1) N Q, and let & be the system of all sets P of the form P =
[a,b) NQ, where 0 < a < b < 1. Put w(P) =b — a. Show that & is a semiring
and u is a volume that is continuous from above and from below, but is not a
measure.

3. Let (X,2, n) be a measure space, and let E; be measurable sets such that
> e, m(Ex) < +o00. Consider the sets
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A, = {x € X | x € Ey for exactly n values of k},

B, = {x € X | x € E for at least n values of k}.

Show that the sets A,,, B,, are measurable and

D oA =) n(B) =) u(En).
n=1 n=1

n=1

4. Using the counting measure on N, show that continuity from above at the empty
set does not follow from countable additivity.

5. Show that a finite volume p defined on an algebra 2 is countably additive pro-
vided that it is “continuous from below at X, i.e., the conditions Ay C Ag+1,
Ukz1 Ae = X, Ax € imply 1(Ax) — u(X).

6. Show that for a o-finite measure, every partition into sets of positive measure is
at most countable.

7. Assume that a measure is such that there exist arbitrarily (finitely) many pairwise
disjoint subsets of positive measure. Show that there exists an infinite family of
such subsets.

1.4 Extension of Measure

1.4.1 Although we have considered characteristic properties of measures, with the
exception of the counting measure, we still have not produced a non-trivial example
of a measure defined on a o -algebra.

The reason is that we are presently able to define measures only on “poor” sys-
tems of sets, such as most semirings. Due to the tractability of these systems, it is
comparatively easy to define volumes on them (see Examples (1)—(3) in Sect. 1.2.2).
But we cannot yet define measures on wider systems of sets, e.g., on o -algebras, ex-
cept for several quite trivial cases. This situation is, of course, highly unsatisfactory.

Indeed, even if we know that the ordinary volume in m-dimensional space de-
fined on the semiring of cells is countably additive (this will be proved in Theo-
rem 2.1.1), we certainly cannot consider the problem of constructing a measure on
R™ completely solved, since it is highly dubious whether a measure on Euclidean
space that cannot be used to “measure” pyramids, balls, and other important bod-
ies has any value; and this is exactly the situation we find ourselves in. The very
tractability of semirings, their being poor in sets, which allowed us, in the cases
considered above, to easily define volumes on them, now demonstrates its down-
sides. Thus we must learn to construct measures on richer systems of sets. This
problem is difficult even if we restrict ourselves to the o -algebra of Borel sets of the
real line and try to assign a length to every Borel set (speaking more formally, try to
extend the one-dimensional ordinary volume to the Borel o -algebra). It was the so-
lution of this problem suggested by Lebesgue* in 1902 that marked the beginning of

4Henri Léon Lebesgue (1875-1941)—French mathematician.
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measure theory. This result, inspired by the needs of several areas of mathematics,
was a major breakthrough in the theory of integration.

Lebesgue’s construction of an extension of the length (the one-dimensional or-
dinary volume) to a measure defined on a o -algebra of subsets of the real line was
based on clear geometric considerations. It splits into several steps. First, Lebesgue
assigns a measure m(G) to all open sets G C R, where m(G) is the sum of the
lengths of the intervals constituting G. Then he introduces a quantity called the
outer measure; for an arbitrary set E C R, it is defined by the formula

me(E) =inf{m(G)|G D E, G is an open set}.

The inner measure m;(E) of a bounded set E is equal to m;(E) = m(A) —
me(A \ E), where A is an arbitrary interval containing E. A bounded set is called
measurable if its inner and outer measures coincide. The common value of the in-
ner and outer measures of a measurable set E is declared to be the measure of E.
Then one checks that the system of measurable sets contained in a fixed interval is a
o-algebra and that the constructed measure is countably additive. Thus Lebesgue’s
method of extending a measure is not altogether direct. It contains an important
intermediate step, the construction of the outer measure. So to speak, we “cross a
chasm in two jumps”. A detailed realization of this program (which is described in
a slightly modified form, e.g., in [N]) is not at all easy.

Along with some advantages (first of all, the geometric clarity of the construc-
tion), this approach also has its disadvantages. Of course, since every open subset of
a Euclidean space is the union of a sequence of cells, the analogy we should follow
in order to extend a measure from the semiring of cells is clear. However, it is still
not clear how one should act to extend a measure defined on a semiring of subsets
of a ground set that has no topology and, consequently, no open sets. This question
is all the more relevant, because in the axiomatization of probability theory in the
framework of measure theory, the ground set is the space of “elementary events”,
which is not necessarily a topological space.

Later, due mainly to Carathéodory’s® results, it became clear that the crucial
elements of Lebesgue’s construction are the following two facts. First, that the outer
measure is countably subadditive, and, second, that it can be constructed without
involving open sets, i.e., without using the topology. For this (bearing in mind that an
open set is the union of a sequence of cells), one should only interpret the inclusion
E C G used in the one-dimensional case as the fact that E can be covered by a
sequence of elements of the semiring. This observation allows one to construct the
outer measure for an arbitrary measure, regardless of whether or not the ground set
is a topological space.

The method suggested by Carathéodory shows that it is useful, especially from
a technical point of view, not to restrict ourselves to additive functions, but instead
to consider countably subadditive functions defined on all subsets of the ground set.
These functions are now called outer measures. Here we must warn the reader that

3Constantin Carathéodory (1873-1950)—a German mathematician of Greek origin.
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the terminology is slightly confusing: in general, an outer measure is not a measure
in the sense of Definition 1.3.1.

The key point of Carathéodory’s construction is the fact that every outer measure
gives rise in a natural way to a o-algebra (which in non-degenerate cases is quite
wide) on which this outer measure is additive and hence countably additive. Thus
every outer measure generates a measure. Since outer measures are much easier
to construct, this approach turns out to be useful not only for extending measures,
but also in other cases when we need to find a measure with given properties. We
will encounter such examples when proving the existence of the surface area (which
reduces to constructing the Hausdorff measure of appropriate dimension) and when
describing positive functionals on the space of continuous functions (Sect. 12.2).

We preface a detailed description of Carathéodory’s method with the definition
of outer measures and the study of their basic properties.

1.4.2 Here we will consider subsets of a fixed non-empty set X, which we call the
ground set. Recall that by A we denote the complement of a set A C X, i.e., the
set-theoretic difference X \ A.

Definition 1 Let 2((X) be the o-algebra of all subsets of the ground set X. An outer
measure on X is a function 7 : A(X) — [0, +00] such that:

I. t(@)=0and
1I. r(A)gzgozlt(An) ifACUZOZIAn.

Property 11 is called countable subadditivity.

We mention two simple properties of outer measures.

(1) An outer measure is finitely subadditive, i.e., the inclusion A C Ay U---U Ay
implies that T(A) < (A1) + -+ t(AN).

This property follows immediately from the countable subadditivity of t if we
assume that the sets A, are empty forall n > N.

(2) An outer measure is monotone, i.e., the inclusion A C B implies that T(A) <
7(B).

This is a special case of property 1 (corresponding to N = 1).

As we will see below, outer measures naturally appear in various situations (see
Sects. 2.1, 2.6, 12.2). Here we only mention that an example of an outer measure is
any measure defined on all subsets of the ground set, in particular, a discrete measure
(see Example (5) in Sect. 1.3.1).

The next definition is motivated by our desire to single out an algebra of sets on
which an outer measure 7 is additive. If A and E are such sets, then

T1(E)=1(ENA)+1(E\ A). (1)

To construct a desired system of sets, we let it contain those subsets A of the ground
set that “split every set E additively”. Thus we arrive at the following definition.
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Definition 2 Let T be an outer measure on X. A set A is called measurable, or,
more exactly, T-measurable if (1) holds for every set E C X.
The system of all T-measurable sets will be denoted by ;.

Let us illustrate this definition by the following informal example. Consider a
commuter rail system divided into fare zones. Let X be the collection of intervals
between neighboring stations. An arbitrary collection of intervals (a subset of X)
will be called a path. If the price of a trip along a connected path is proportional to
the number of zones through which it travels, and for an unconnected path it is the
sum of the prices of the connected components, then the price of a trip is an outer
measure on the set of intervals. A path is measurable if and only if it consists of
entire zones.

Note that since £ = (ENA)U(E \ A) and an outer measure is countably subaddi-
tive, the inequality T(E) < t(ENA) 4+ t(E \ A) always holds. Hence, to verify (1),
it only suffices to establish the inequality

T(E) ZT(ENA)+T(E\A), (1)
and usually we will do exactly this.

Remark If T(A) =0, then T (E N A) = 0, and hence (1) holds for every set E. Thus
all sets of zero outer measure are measurable.

1.4.3 The main result of this subsection is the following theorem.

Theorem Let t be an outer measure on X. Then 2, is a o-algebra and the restric-
tion of T to this o-algebra is a measure.

Proof First of all, observe that the system of r-measurable sets is symmetric, i.e.,
together with every set A it also contains its complement A€. This follows from the
fact that, in view of the identity E \ A = E N A€, condition (1) can be written in a
symmetric form: T(E) = t(E N A) + t(E N A°).

Now let us prove that 2(; is an algebra of sets. According to Definition 1.1.2, it
suffices to check that 2{; contains the union of any two elements of 2.

Let A, B € 2, and let E be an arbitrary set. Using successively the measurability
of A and B, we obtain

T(E)=t(ENA)+t(E\A)=1(ENA)+1t((E\A)NB)+1((E\A)\B).

The third term on the right-hand side of this inequality is obviously equal to 7(E \
(AU B)), and the sum of the first two terms can be estimated using the subadditivity
of 7:

T(ENA)+1((EN\ANB)>t((ENA)U((E\A)NB))=1(EN(AUB)).
Thus
t(E)>1(EN(AUB))+1(E\(AUB)),
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i.e., the union A U B satisfies (1) for every set E. Hence AU B € 2, for any A and
B in 2A;. So, 2, is an algebra.

If A and B are disjoint measurable sets, then (EN(AV B))NA=ENAand (EN
(AV B))\ A= E N B for an arbitrary set E. Hence t(EN(AV B))=t(ENA)+
7(E N B). Then, by induction, for every n € N, for pairwise disjoint sets Ay, ..., A,
and an arbitrary set E,

n

r(Em\n/A,):Zr(EmAj). )
j=1

j=1

Taking E = X, we see that the outer measure is additive on 2 :

r(\/ A,-):Zr(A,-). 2)
j=1

j=1

Now let us check that 2, is a o-algebra. For this we must show that 2(; con-
tains the union A = U?‘;l A of an arbitrary sequence of measurable sets A ;. First
assume that the sets A; are pairwise disjoint. Then for every set E and every n it
follows from (2) that

r(E):r(Eﬂ\/Aj)+r<E\\/Aj) =Zr(EﬂAj)+r<E\\/Aj)
j=1 j=1 j=1 j=1
> T(ENA)+T(E\ A).
j=1

Passing to the limit as n — oo and using the countable subadditivity of T, we obtain

T(E) 2Zt(EﬂAj)+r(E\A)21(\/(EOAj)) +T(E\ A)
j=1 j=1
=1(ENA)+1(E\ A).

Thus we have confirmed that A satisfies (1'), so that A € 2.

The general case can be reduced to that considered above by using a disjoint
decomposition (see Lemma 1.1.4): A = \/?';1 B;, where By =A; and Bj = A; \
(AyU---UA;_y) for j > 2 (the sets B; are measurable, since 2 is an algebra).

It remains to prove the second claim of the theorem. Let u be the restriction of
7 to ;. It follows from (2) that u is a volume. It is countably subadditive, since T
is. By Theorem 1.3.2, pt is a measure. O

The remark at the end of Sect. 1.4.2 suggests to single out the measures satisfying
an important additional property. In view of monotonicity, it is natural to expect that
every subset of a set of zero measure also has zero measure. However, this is not
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always the case, because this subset may not be measurable (for instance, if the
measure is defined only on Borel sets). Measures for which subsets of sets of zero
measure also have zero measure are of special interest.

Definition A measure p defined on a semiring & is called complete if the condi-
tions E € & and u(E) = 0 imply that every subset E of E also belongs to & (and,
consequently, w(E) =0).

Using this definition and the remark from Sect. 1.4.2, we can refine the theorem
by saying that an outer measure generates a complete measure. In other words, we
have the following corollary.

Corollary The restriction of an outer measure Tt to the o -algebra 24, is a complete
measure.

1.4.4 We now proceed to the description of Carathéodory’s method of extending a
measure. Like Lebesgue’s original construction, it consists of two steps. At the first
step, given a measure (g, we construct an auxiliary function pu* that extends g
from the original semiring to the system of all subsets. It is no longer countably ad-
ditive, but we can prove that it has a weaker property, countable subadditivity, so that
w* is an outer measure. At the second step, we restrict the constructed outer mea-
sure to the system of p*-measurable sets; as a result, according to Theorem 1.4.3,
we obtain a new measure defined on a o -algebra. To verify that this measure is an
extension of g, it remains to show that the original semiring is contained in the
o -algebra of p*-measurable sets. Let us proceed to the realization of this program.

Let 1o be a measure defined on a semiring & of subsets of a set X. For every
set £ C X, put

o0 o0
W (E) =inf{Zuo(Pj) ‘ Ec|JPj. Pje forall j GN} (3)
j=1 j=1

(if E cannot be covered by a sequence of elements of &2, we put u*(E) = +00).

Note that instead of {P;};>1 in (3) we may consider an arbitrary countable fam-
ily {P,}weq, since the sum ) io(Py) coincides with Z;’il po(Py;) for every
numbering of 2.

Theorem The function u* defined by formula (3) is an outer measure that coincides
with o on L.

We will say that u* is the outer measure generated by 1.
Proof Let E € &. Then the sequence E, d, &, ... is a cover of E by elements

of Z. 1t follows that u*(E) < puo(E). On the other hand, if E C Uj‘;l P;, where
Pje & forall j eN, then uo(E) < Z?‘;l no(P;) by the countable subadditivity
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of a measure (Theorem 1.3.2). Since {P;} ;> is an arbitrary sequence, it follows
that po(E) < w*(E). Thus u*(E) = pno(E); in particular, u*(2) =0
It remains to show that u* is countably subadditive, i.e., that

WHE) <Y (En)
n=1

if E C U2 E,. We may assume that the right-hand side is finite, since otherwise

the inequality is trivial. Fix an arbitrary & > 0, and for every n find sets P;n) €
Z (j € N) such that

o0 o0
E,c|JP™ and Y po(P") <u(En)+ 28—n
j=1 j=1

In this case,

ECUE CUUP(")

n=1j=1
Hence, by the definition of u*(E),
00 00 ) 00
WHEY< YD mo(P) < Z(u*(En) + 2&) =D WH(En)+e.
n=1 j=1 n=1 n=1
Since ¢ is arbitrary, it follows that ©* is countably subadditive. O

1.4.5 Now we are in a position to prove the theorem on extension of measures,
which is our main goal in this section.

Theorem Let (g be a measure defined on a semiring &, u* be the outer measure
generated by o, and 2+ be the o -algebra of w*-measurable sets. Then &2 C A ,x,
and the restriction of W* to U+ is an extension of [Lo.

Proof By Theorem 1.4.3, the restriction of u* to 2(,+ is a measure. Since, by The-
orem 1.4.4, u* coincides with o on &, we need only to prove that &7 C .+, i.e.,
that every set P € & is u*-measurable. For this we must check inequality (1”) from
Sect. 1.4.2, which in our notation takes the following form: for every set E,

W (E) = w*(ENP)+ p*(E\ P). “4)

We verify this inequality in two steps. First assume that £ € &2. Then, by the
definition of a semiring, E \ P = \/;v=1 Q;, where Q; € . Hence E splits into

disjoint elements of &: E = (ENP)V \/;-V=1 Q ;. Therefore, by the additivity of g
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and the subadditivity of u*,

N N
WH(E) = po(E) = po(ENP)+ Y 1o(Q)) = w*(ENP) + > u*(Q))
j=1 j=1

N

> W (ENP) +u*(\/ Q;) =W (ENP)+u*(E\P).
j=1

Thus in the case under consideration (4) is proved.

To prove (4) in the general case, we may assume that u*(E) < +o0. Fix an ar-
bitrary & > 0 and choose sets P; € & such that E C Ujozl P; and Z;’il mo(Pj) <
w*(E) + €. As we have already proved,

uo(Pj) = u*(Pj) = w*(P; N P)+ u*(P;\ P).

Hence

WHE) +e> ) po(Pp) =) (15PN P+ u* (P \ P)).
j=1 j=1

Using the countable subadditivity and monotonicity of u*, we obtain

w*(E)+e > M*<(U Pj) ﬁP) +u*<<U Pj)\P> > (ENP)+u*(E\P).
j=1

J=1

Since ¢ is arbitrary, this implies (4). Thus we have proved the ©*-measurability of
every set P € 2, and hence the inclusion & C A ;». O

The measure constructed in the theorem is called the Carathéodory extension
of 1p. Since such an extension always exists, we may always assume without loss
of generality that a measure under consideration is defined on a o -algebra.

We draw the reader’s attention to the fact that the theorem not only guarantees the
existence of an extension, but provides formula (3), i.e., a method for computing the
extended measure p from the original measure 11o. Of course, since these measures
coincide on &, we can also rewrite formula (3) for measurable sets, replacing 1t
by i, in the form

o o
,u(A):infiZ,u(Pj)’ACUPj, Pje Zforall jeNt. (3"
Jj=1 j=1

We will often use this equality in what follows.

In conclusion, observe that the repeated application of the Carathéodory exten-
sion procedure yields the same result as the first one. To check this, let us show that
the measures (o and p generate the same outer measure. Indeed, the right-hand side
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of (3) does not increase if we replace the semiring & by the o-algebra 2, and the
measure (o by the measure . This means that the outer measure generated by u is
not greater than p*. To obtain the reverse inequality, it suffices to observe that

o o0
WHE)S Y n (A =) u(Aj)
5 =

j=

—

for every cover of E by sets A; from the o-algebra 2 ,+.

EXERCISES

1. We define a function t on subsets of the set X = {1, 2, 3} as follows:
7(9) =0, T(X) =2, T(E)=1 otherwise.

Show that 7 is an outer measure. Which sets are t-measurable?
2. Let £ be an arbitrary system of sets containing &, and let o : £ — [0, +00] be a
non-negative function with « () = 0. Put

o0 o0
T(E) :inf:Za(Ej) ‘ EC U E;, Eje&forall j GN}
j=1 j=1

(in the case where E cannot be covered by a sequence of elements of £, we
assume that t(E) = +00). Show that T is an outer measure, and that it is an
extension of « if and only if the function « is countably subadditive.

3. Let T be an outer measure. Show that a set A is r-measurable if and only if
T(BUC) =1(B) + 7(C) for any sets B and C satisfying the conditions B C A
andCNA=0.

1.5 Properties of the Carathéodory Extension

We keep the notation of the previous section and assume that w is the Carathéodory
extension of a measure p( defined on a semiring & and p* is the outer measure
generated by . We will call u*-measurable sets just measurable and denote the
o -algebra of measurable sets by 2.

1.5.1 We begin with the main question of this section: do there exist extensions
of 1 other than the Carathéodory extension? This breaks down into two questions.
First, does the measure wg have an extension to a o -algebra wider than 2(? Secondly,
do there exist other extensions of 11 to the algebra 2( or to some part of this algebra,
for example, the Borel hull of the semiring &?

We leave the first question aside. One can prove (see [Bo, Vol. 1]), that it is
usually possible to further extend the measure p, but such an extension is neither
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motivated by any application nor even by the needs of “pure” mathematics. The
o -algebra 2 is usually so wide that one has no need to extend it.

The second question is of quite a different nature, and the importance of the
answer to it cannot be overestimated. It is of crucial importance to know whether an
extension of the original measure at least to the minimal o -algebra generated by the
semiring & is unique. As we will show, in a wide class of cases (in particular, for
all finite measures), the answer to this question is positive. The existence of “non-
standard” extensions should be considered as a pathology, which usually appears in
some artificial situations; we will encounter them only in several counterexamples.

The extension is unique if we restrict ourselves to o -finite measures (introduced
in Sect. 1.2.2). Obviously, both a measure and its Carathéodory extension are o -
finite, or not o -finite.

Theorem (Uniqueness of an extension) Let u be the Carathéodory extension of a
measure (o defined on a semiring &2, 2 be the o -algebra of measurable sets, and
v be a measure extending |1 to a o-algebra ' containing . Then:

(1) v(A) < u(A) forevery set A € ANA'; if n(A) < +o0, then v(A) = u(A);
(2) if wo is o-finite, then p and v coincide on AN A’

In particular, a o -finite measure has a unique extension from the semiring & to
the o -algebras A and B ().

Proof Let {P;};>1 be a countable cover of a set A by elements of &7. Then v(A) <
Zéz;::)l V(Pj) = Z:’O: | Lo(Pj). Since this inequality holds for every cover, v(A) <
w(A).

It follows that V(P N A) = u(P N A) if P € & and u(P) < +o0. Indeed, other-
wise we have v(P N A) < u(P N A), which leads to a contradiction:

p(P)y=v(P)=v(PNA)+v(P\A) <u(PNA)+un(P\A)=pu(P).

If £ (A) < +o00 or the measure pg is o -finite, then A can be covered by elements
P; of the semiring & that have finite measure. By Theorem 1.1.4, we may assume
that they are pairwise disjoint. Then

oo oo
v(A) =D V(AN P) =D u(ANPj)=u(A).
j=1 j=1
Thus we have proved both claims of the theorem. U

Simple examples show that the o -finiteness assumption in the second claim of
the theorem is indispensable. Indeed, let X be the set consisting of two points a
and b, & be the semiring consisting of the empty set and the one-point set {a}, 1o
be the measure identically equal to zero, and p be the Carathéodory extension of
o Then, by the definition of the Carathéodory extension, u(X) = u({b}) = +o0.
On the other hand, it is clear that po has another extension, identically equal to
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zero. In the case under consideration, Theorem 1.5.1 cannot be applied, because
the measure g is not o-finite (the set X cannot be written as a countable union of
elements of &2).

Another example showing that an extension of a non-o-finite measure is not
always unique can be obtained using the discrete measure generated by a summable
family of masses (see Exercise 4).

1.5.2 Let us now consider the properties of measurable sets appearing in the
Carathéodory extension procedure. To describe them, it is convenient to introduce
several new terms.

Definition Let £ be an arbitrary system of subsets of a ground set X. A set H is
called an &, set (an & set) if H = Un>1 A, (respectively, H = ﬂn>1 A,), where
A, € & for all n € N. Sets of the type (&5 )s, 1.€., sets that can be written in the form
ﬂn>1 H,,, where H, are &, sets for all n € N, will be called &5 sets.

It is clear that both &; and & sets, as well as ;5 sets, belong to the o -algebra
B(E), the Borel hull of £.

Theorem Let pu be the Carathéodory extension of a measure [Lo from a Semir-
ing P.If u*(E) < +00, then there exists a Py set C such that

ECC and p*(E)=pu(C).

Proof By the definition of w*, for every positive integer n there exist sets Pj(”) €

& (j €N) such that

1
UrP"oE D u(P)<u*(E)+-.
i>1 i>1 "

Put C, = U, P;"). It is clear that
1
ECCie P, w (E)<SuC) <Y n(P") <p*(E)+ —
i1 8
for every n € N. Hence the set C = ﬂn>1 C,, obviously has the desired properties. []

Now we can prove that every measurable set of finite measure can be approxi-
mated, up to sets of zero measure, from the inside and from the outside by elements
of B(H).

Corollary Let A be a measurable set of finite measure. Then there exist sets B and
C from B(2?) such that

BCACC and p(C\B)=0.

In particular, n(A) = w(B) = u(C).
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Proof Let C be the set constructed in the theorem. Put e = C \ A. By the above,
there is a set ¢ € B(Z?) containing e such that u(¢) = 0. The reader can easily
check that the set B = C \ ¢ has all the required properties. g

1.5.3 Now let us establish the minimality of the Carathéodory extension. It turns out
that in the case of a o -finite measure, it is the most “economic” extension (provided
that we want to obtain a complete measure).

Theorem Let v be the Carathéodory extension of a o -finite measure o and 2 be
the o-algebra of measurable sets. If |\ is a complete measure that is an extension
of o to a o-algebra A, then A C .

Proof First of all, observe that (' O B(4?), since A’ O 2. Now let us check that
if p(e) =0, then e € A'. Indeed, as we have established in Theorem 1.5.2, the set
e is contained in a set ¢ that is also of zero measure and belongs to B(Z?). By
Theorem 1.5.1, v(€) = u(e) = 0. Hence e € 2" by the completeness of v. If A is a
measurable set of finite measure, then, by Corollary 1.5.2, it can be written in the
form A = C \ e, where C € B(2?) and u(e) =0. Hence A € 2.

Finally, if A is an arbitrary measurable set, then, using the o -finiteness of u, we
can write it as the union of a sequence of measurable sets of finite measure belonging
to 2'. Therefore, in this case we also see that A € 2. O

In conclusion, we give a convenient measurability criterion which is valid not
only for the Carathéodory extension, but also for an arbitrary complete measure.

Lemma Let (X,2, u) be an arbitrary space with a complete measure, and let
E C X. If for every ¢ > 0 there exist measurable sets A, and B, such that A, C
E C B; and u(B: \ A;) < ¢, then E is measurable.

In particular, if for every ¢ > 0 there exists a measurable set E, suchthat E C E,
and W(E;) < &, then E is measurable (and W(E) = 0).

Proof Taking ¢ equalto 1/n (n=1,2,...), consider the sets A1/, and Bj,,. Then
the sets A =|J,-; A1/, and B =(,2, By, are measurable and A C E C B. Fur-
thermore, u(B \ A) =0, since (B \ A) < u(Bijn \ A1yn) < % for every n. Thus
the set E \ A is contained in the set B \ A of zero measure, and, consequently,
it is measurable by the completeness of . Then the set E = A U (E \ A) is also
measurable. Il

EXERCISES

1. Let X and & be as in the example from Sect. 1.5.1, i.e., X = {a, b} is a two-point
set and & = {, {a}}; let up be an arbitrary finite measure on &2. Show that for
every o (0 < o < 400), the formulas
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(@) =0,  va(la}) = no({a}),
ve({b}) =, wa(X) =a+po({a))

define a measure v, that is an extension of ug to the algebra of all subsets of X.
Which of the measures v, is the Carathéodory extension of ©o? Why do the
(finite) measures v and vy, which coincide on Z2, fail to coincide on B(F)?

In the next series of exercises, u is the Carathéodory extension of a measure g
from a semiring & to the o-algebra 2 of measurable sets.

2. Show that if ug is o-finite, then the condition ©(A) < +o0 in Corollary 1.5.2
can be dropped. The set C can still be assumed to be a Py s set.

3. Show that for every set A there exists a set B € B(Z) such that A C B and
p*(A) = n(B).

4. Consider the discrete measure v generated by a countable family of masses on an
uncountable set X. Let pg be its restriction to the semiring of at most countable
subsets. Show that the Carathéodory extension of g is defined, like v, on the
o-algebra of all subsets of X, but, in contrast to v, is infinite on all uncountable
sets.

5. Let pto be a measure taking only finite values. For A € 2, put

I(A) =sup{u(B)|BC A, Be, u(B) <-+oo}.

Show that [ is a measure extending o and that this extension is minimal in the
sense that & < v for every extension v of wg to 2.
Using Exercise 1, give an example of a measure that extends (1o, but does not
coincide with & and 1.

6. Denote by A the system of all sets of zero outer measure. Show that:

(a) B(L UN) C 2 and the restriction of u to B(L UN) is a complete mea-
sure;

(b) if u is o-finite, then A = B(L UN).

Give an example of a measure for which 2( # B(Z UN) (consider the counting
measure defined on the semiring of finite subsets of an uncountable set).

7. Show that the Carathéodory extension of a o -finite complete measure u defined
on a o -algebra coincides with 1.

1.6 *Properties of the Borel Hull of a System of Sets

1.6.1 Let X, Y be arbitrary sets, ¢ : X — Y be a map from X to Y, and £ be a
system of subsets of Y. By ¢~ !(£) we denote the “inverse image of £, i.e., the
system of sets {¢ "' (E) | E € £}. It turns out that the inverse image of a o -algebra is
a o -algebra. More precisely, the following result holds.
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Lemma

(1) The inverse image of a o -algebra (algebra) is again a o -algebra (algebra).
(2) IfUis a o-algebra (algebra) of subsets of X, then the system {B C Y |¢~'(B) €
A} is also a o-algebra (algebra).

Proof Both claims follow immediately from the equalities

o' Y\B) =X\¢ '(B), ¢! (U Bn> =UJe ' Bw.

n=1 n=1

The details are left to the reader. g
The main result of this section is the following theorem.

Theorem Let X, Y be arbitrary sets, 2 be a o-algebra of subsets of X, £ be a
system of subsets of Y, and ¢ be an arbitrary map from X to Y. Then:

(1) if o~ (&) C A, then ™ (B(E)) C Us
(2) Ble ') =9 1 (BE)).

Proof (1) Consider the system of sets A' = {B C Y | o1 (B) e }. By the lemma,
A’ is a o-algebra. Since 2’ D &, it follows from the definition of the Borel hull that
A' D BE).

(2) Assuming that 2 = B(¢ ™! (£)), the first claim implies that

o7 (BE) cB(p(©)). (1)

On the other hand, by the lemma, the system <p_1(%(8)) is a o-algebra. Since
0 &) c o1 (B(E)), it follows from the definition of the Borel hull that

B(e~'(©) Co ' (B©)).

Together with (1), this yields the desired equality. 0

1.6.2 Let us mention several corollaries of the theorem we have just proved. The
first four of them are just rephrasings or special cases of the theorem, as the reader
can easily check.

In the corollaries, by £ we denote an arbitrary system of subsets of a set ¥ (as in
the theorem).

Let X CY,andletgp =id: X — Y be the identity map (that assigns to each point
x € X the same point regarded as an element of ¥). Obviously, ¢ ™! (E) = EN X for
every set E C Y. It is clear that the induced system £ N X coincides with ¢~ 1(E).
If £ consists of subsets of X, where X C Y, then, in order to distinguish between
the Borel hulls of £ that consist of subsets of X and of Y, we will denote them by
BX)(€) and BY)(E), respectively. The following result holds.
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Corollary 1 BXENX) =BV ()N X.

Note that, by definition, the left-hand side is a system of subsets of X, since ENX
is such a system.

To prove the corollary, it suffices to apply the theorem assuming that ¢ =id :
X — Y is the identity map. Then the induced system £ N X coincides with ¢~ (&),
since 1 (E) = EN X forevery set E C Y.

Generalizing the notion of a Borel set in R™ (see Sect. 1.1.3), we say that a
subset of a topological space X is a Borel set if it belongs to the minimal o -algebra
containing all open sets. This o -algebra will be denoted by B .

Corollary 2 Let X and Y be topological spaces and ¢ : X — Y be a continuous
map. Then the inverse image of every Borel subset of Y is a Borel subset of X, i.e.,
¢~ (By) C Bx.

Note that Corollary 2 is no longer true if we replace the inverse images by the
images. For example, one can prove that the image of a Borel set under the orthog-
onal projection of the plane onto a line is not always Borel. This non-trivial result is
due to M.Ya. Suslin.®

Corollary 3 Let Y be a topological space and X be a subspace of Y. Then every
Borel subset A of X is a trace of a Borel subset of Y, i.e., A= X N B, where B is
an element of *By.

Using Theorem 1.1.7, one can easily obtain the following result.

Corollary 4 Let G be an open subset of R™ and 7 = {P € ™ | P C G}. Then
B(LG) =Bc (here P is regarded as a system of subsets of G).

We write X x & for the system {X x E | E € £}. The following lemma holds.
Lemma B(X x £) =X x B(E).

Proof To prove the lemma, take ¢ to be the canonical projection of X x Y to ¥ and
apply the theorem. g

Let £ and &£ be arbitrary systems of subsets of X and Y, respectively. The system
(E'x E|E' €&, E € &} of subsets of the Cartesian product X x Y will be denoted
by &' OE.

Corollary 5 Let £ be a system of subsets of a set X. Then

B(' 0 ) =B(B(E) 0 BE)).

6Mikhail Yakovlevich Suslin (1894-1919)—Russian mathematician.



38 1 Measure
Proof Let us first check that
£ OBE) CB(E L), @)
For this it suffices to observe that, by the lemma (with X replaced by E’ € £’),
E'xB(E)= %(E’ X 5) C %(8’ @5).

Now fix some sets U € B(£’) and V € B(E). Then, by the lemma and inclu-
sion (2),
UxYe %(5/ X Y) - EB(E/OEB(E)) C ‘B(E’@S).
Analogously, X x V € B(E' © £). Hence
UxV=UxY)N(XxV)eB(E OE).

Therefore, B(B(E) O B(E)) CB(E' © ). The reverse inclusion is obvious, since
EOECBE)OBE). O

Corollary 6 If X and Y are topological spaces, then
B(Bx ©By) CBxxy-

In particular, the product of Borel subsets of X and Y is a Borel subset of X x Y.
If X and Y are second-countable, then B( By © By) =Bxxy.

Proof Let &y, By and & be the systems of open sets in the spaces X, Y and X x Y,
respectively. By Corollary 5, B(Bx © By) =B(&x © Gy). Since By © By C &,
we have

B(Bx OBy) =B(BGx ©Gy) C Bxxy.

The second axiom of countability implies that every element of & is an at
most countable union of elements of &y ® By. Hence & C B(Gx © Gy) C
B(By O By) and, consequently, By .y C B(Bx © By). The reverse inclusion,
as we have already established, always holds. 0

1.6.3 Another property of the Borel hull is related to the notion of a monotone class
of sets.

Definition A system of sets is called a monotone class if it contains the unions
of all increasing sequences and the intersections of all decreasing sequences of its
elements.

Theorem (On a monotone class) If a monotone class contains an algebra 2 of
subsets of a set X, then it contains the Borel hull of this algebra.
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Proof Consider a minimal monotone class M containing 2. Such a class obviously
exists: it suffices to consider the intersection of all monotone classes containing 2.
Let us check that M =B (2(). Clearly, M C B(2), since a o -algebra is a monotone
class. Hence it remains to establish the inclusion M D B(2l). For this it suffices to
check that the class M is a o -algebra.

First let us prove that

ifAc®, thenANBeMandANBe M forevery Be M 3)

(by B¢ we mean the complement of a set B with respectto X : B =X\ B).
Indeed, given a set A € 2, put

My={Be M|ANBeM, ANB e M}.

One can easily check that M4 is a monotone class containing 2l; by construction,
My € M. Hence, by the minimality of M, we have M 4 = M, which proves (3).
For A = X, it follows from (3) that the system M contains the complement of
each of its elements, i.e., M is symmetric.
Now let us check that the class M contains the intersection of any two of its
elements. Let B € M. Consider the system of sets

Ng={EeM|BNEeMj.

As at the previous step, it is clear that A/g is a monotone class. It follows from (3)
that it contains 2. Hence, by the minimality of M, the sets A'g and M coincide.
Since B is arbitrary, this means that M contains the intersection of any two of its
elements B and E. By the symmetry of M, it follows that it also contains finite
unions of its elements. Together with the monotonicity, this implies that M also
contains countable unions of its elements, i.e., M is a o-algebra. Thus M is a o-
algebra containing 2. Hence M D ‘B (2() by the definition of the Borel hull. d

EXERCISES

1. Show that Corollary 4 from Sect. 1.6.2 remains valid if we replace the semiring
2 by the semiring {P € 2" | P C G}.

2. Show that the map (f1,...,14,) — (¢'l,... el"m) € C" ((t1,...,tn) € R™)
sends Borel sets to Borel sets.

3. Let X be a set that consists of at least two points and & be the system of subsets

of X that consist of at most one point. Show that & is a semiring and a monotone

class that does not coincide with its Borel hull.

Show that every D-system (see Sect. 1.1, Exercise 10) is a monotone class.

5. Let £ be a D-system of subsets of R” that contains all finite intersections of
open balls. Show that it also contains all finite unions of balls. Using Exercise 4,
deduce that £ contains all Borel sets.

=



Chapter 2
The Lebesgue Measure

2.1 Definition and Basic Properties of the Lebesgue Measure

This chapter is devoted to the most important and historically the first example of a
measure: the Carathéodory extension of the ordinary volume.

2.1.1 In order to apply the general extension procedure described in Sect. 1.4 to the
ordinary volume, we should make sure that it is a measure.

Theorem The ordinary volume X, on the semiring 2™ is a o -finite measure.

Proof We only need to prove that the volume A, is countably additive, since it is
clearly o-finite. For this it suffices to check that it is countably subadditive (see
Theorem 1.3.2), i.e., thatif P, P, € 2™ (neN), P C Un>1 P,, then

In(PY <D A (Py). (1

n>1

Let us prove this inequality up to an arbitrary positive number €. Let P = [a, b) #
& and P, = [a,, b,). We will use the fact that, as follows from the definition, the
ordinary volume of a cell is a continuous function of its vertices. Choose vectors
a,, < ay in such a way that

A ([, bn)) < Am(lan, bn)) + zg—n for all n € N. )

Let us estimate the volume X, ([, t)) from above for an arbitrary t, a <t < b.
Since [a, t] C [a, b) = P and P, = [an, by) C (a),, by), it is clear that

la.c1c Pc | Pcl(a). )

n>1 n>1
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The parallelepiped [a, ¢] is compact, hence the cover of [a, t] by the sets (a),, b,)
contains a finite subcover. Thus for some N € N we have

N

la.t1C | (ay. ba).

n=1

Even more so,

N
[a,t) C U [an bn)
n=1

Using the (finite) subadditivity of the ordinary volume, we obtain

m(la, 1)) ZA (la),, bn)).

Together with (2) this yields

N

)\m([aa t)) < Z()\m(Pn) + 2%) < Z)\m(Pn) + €.

n=1 n>1

Again using the fact that the volume of a cell depends continuously on its vertices
and passing to the limit as r — b, we see that

A (P) = lim dop ([, 1)) < ;Am(mw
n

Since ¢ is arbitrary, the last inequality implies (1). 0

2.1.2 Now we are in a position to introduce, using the measure extension theo-
rem 1.4.5, the very important notion of the Lebesgue measure.

Definition The Lebesgue measure on the space R” (the m-dimensional Lebesgue
measure) is the Carathéodory extension of the ordinary volume from the semir-
ing M.

The m-dimensional Lebesgue measure is denoted by the same symbol A, as the
ordinary volume. If the dimension is fixed, we sometimes omit the subscript and
write simply A, especially in the one-dimensional case. Hereafter in this section, the
term “measure” refers to the Lebesgue measure.

The o -algebra of sets on which the m-dimensional Lebesgue measure is defined
is denoted by ™ ; sets from this o -algebra are called Lebesgue measurable, or sim-
ply measurable.
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As follows from the definition of the Carathéodory extension, for a measurable
set A,

A (A) :inf{Z/\m(Pk) ‘ P e ™, U P D A}.
k>1 k>1

Since every cell is contained in a cell of arbitrarily close measure with rational
vertices, all cells in the last formula may be assumed to have rational vertices. Thus

Am(A)zinf{ZAn,(Pk)‘Pke.9”;",UPkDA}. 3)

k>1 k>1

Hence the Lebesgue measure can also be regarded as the Carathéodory extension of
the ordinary volume from the semiring &
2.1.3 Basic properties of the Lebesgue measure.

(1) Open sets are measurable; the measure of a non-empty open set is strictly posi-
tive.

The first claim follows from Theorem 1.1.7; the second one is obvious, since a non-
empty open set contains a non-degenerate cell.

(2) Closed sets are measurable; the measure of a one-point set is zero.

The first claim follows from Property (1); the second one is obvious, since every
point is contained in a cell of arbitrarily small measure.

The following important property is obvious.

(3) The measure of a measurable bounded set is finite. Every measurable set is the
union of a sequence of sets of finite measure.

The next property shows that a set that can be well approximated by measurable
sets both from the inside and from the outside, is itself measurable.

(4) Let E C R™. Iffor every ¢ > 0 there exist measurable sets A; and B such that
A CE C B; and Ay (B: \ Ag) < g, then E is measurable.
In particular, if for every € > O there exists a measurable set E. such that
E C E; and Ay, (E;) < €, then E is measurable (and A, (E) = 0).

This property follows from the fact that the Lebesgue measure is complete. It is
a special case of Lemma 1.5.3.

(5) A countable union of sets of zero measure is again a set of zero measure.

This is a general property of all measures defined on a o -algebra (see the corol-
lary of Theorem 1.3.2).
In particular,

(5') Every countable set has zero measure.
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Since a non-empty open set is of positive measure, we see that

(6) A set of zero measure has no interior points.
(7) If A (e) =0, then for every & > 0 there exist cubic cells Q ; such that

Ugioe D @) <e

j=1 Jj=1
Indeed, it follows from (3) that e can be covered by cells P, with rational vertices
in such a way that Zn>1 Am(Py) < €. It remains to recall that every cell with ratio-
nal vertices is a disjoint union of finitely many cubic cells. Hence P, = \/];”: 1 Onj
and A, (P,) = Z];":l Am(Qnj). Therefore,

kn

kn
eCUP ZU\/Q,,]' and szm(an)ZZ)\m(Pn)<5-

n>1 n>1j=1 n>1j=1 n>1

Do there exist uncountable sets of zero measure? Such sets are easy to construct
if the dimension of the space is greater than one. In particular, examples of such
sets are provided by arbitrary proper affine subspaces. Such subspaces of maximal
dimension will be called planes. We will prove this result in full generality at the
end of Sect. 2.3.1, but now we establish it only for planes of a special form.

(8) Let m and k be positive integers,m > 2, 1 <k < m, and let c € R. Consider the
plane Hy(c) orthogonal to the kth coordinate axis:

Hi(c) = {x:(xl,...,xm) elexkzc}.

Then Ay, (Hi(c)) =0.

It suffices to prove that every bounded part of H(c) has zero measure. The latter
is true since such a part is contained in a cell of arbitrarily small measure (the kth
edge of the cell can be made arbitrarily small).

(9) Every set contained in a finite or countable union of planes perpendicular to
the coordinate axes has zero measure.

It follows that the measures of an open parallelepiped (a, b), the cell [a, b), and
the closed parallelepiped [a, b] coincide, because the boundary of a parallelepiped
has zero measure.

(10) There exist Lebesgue non-measurable sets.
We will prove a somewhat stronger assertion:
Every set of positive measure contains a Lebesgue non-measurable subset.

Indeed, let A € A™ and A,,(A) > 0. We may assume without loss of generality
that the set A is bounded: ||x|| < R for x € A. Let us introduce an equivalence
relation on A by assuming that x ~ y if the difference x — y is a vector with rational
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coordinates, i.e., if x —y € Q™. Then A is partitioned into pairwise disjoint non-
empty classes consisting of equivalent points. Clearly, each such class is at most
countable. Using the axiom of choice, take a subset E in A that contains exactly one
point in common with each class. Let us check that E is not Lebesgue measurable.
Consider the rational translations of E, i.e., the sets of the form r + E = {r + x|
x € E} with r € Q™ (we retain the notation r for vectors in Q™ up to the end of the
proof). They are pairwise disjoint (otherwise E would contain two points from the
same equivalence class). Furthermore, since ||x — y|| < 2R for x, y € A, it is clear
that A is contained in the bounded set W = \/Hr\|<2R (r+E).

Assume that E is measurable. As we will see below (see Theorem 2.4.1), a trans-
lation of a measurable set is again a measurable set of the same measure. Hence the
set W is measurable. Its measure is positive, because A C W and A,;,(A) > 0. In ad-
dition, it is finite, since W is bounded. Thus 0 < X, (W) < +00. At the same time,
by the countable additivity of the Lebesgue measure,

(W)= D" A+ E)= > u(E).

[Irll<2R [Irll<2R

But the sum on the right-hand side is either zero (if A,,(E) = 0) or infinite (if
Am(E) > 0), and this is incompatible with the double inequality 0 < A, (W) < +o0.
Thus the assumption that the set E is measurable leads to a contradiction.

Note that we have proved a more general fact than the existence of Lebesgue
non-measurable sets. Indeed, our construction does not use any specific properties
of the Lebesgue measure except for the fact that it is finite on bounded sets and
translation-invariant. This means that non-measurable sets exist for any (non-zero)
measure that enjoys these two properties. In other words, such a measure cannot
be defined on all subsets of R™. In this connection, observe that if we drop the
condition of countable additivity and content ourselves only with finite additivity,
then the situation is different: there exists a translation-invariant volume defined on
the system of all subsets of R™ that coincides with the Lebesgue measure on ™.

The complicated construction and the somewhat mysterious character of the con-
structed Lebesgue non-measurable set should not obscure the essence of the matter:
in a typical situation, when we apply the Carathéodory extension, not all sets turn
out to be measurable. An everyday illustration of this phenomenon is the following
ingenious example communicated to us by D.A. Vladimirov.

A number of shoes of the same color, model and size are heaped in a pile X.
Each proper pair (consisting of one left and one right shoe) has a price, and there is
a collection of several such pairs. Thus we have a measure (price) on a system of
subsets of X. However, it cannot be extended in a natural way to the system of all
subsets. Indeed, if we split the set formed by two proper pairs into two parts, one
consisting of the left shoes and the other one consisting of the right shoes, then the
total price of these parts (assuming that they have a price) should be the same as for
the original set. But then one of the parts must cost at least as much as a proper pair,
which is absurd.
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2.1.4 As follows from property (9), the space R with m > 2 contains uncountable
sets of zero measure. In the one-dimensional case, it is not as easy to give examples
of such sets. Here we will discuss an interesting example of this kind: the Cantor
set, which is obtained by deleting a countable set of open intervals from the segment
[0, 1]. First we delete one interval, the middle third of the initial segment [0, 1] (i.e.,
the interval (1/3,2/3)), then the middle thirds of the remaining two segments, and
so on. The points in [0, 1] that do not belong to any of the deleted intervals form the
Cantor set C. Let us consider this construction in more detail.

Example (The Cantor! set) Let A =10, 1], and let C; be the set obtained from A
by deleting the open interval § = (1/3,2/3):

Ci=A\6=]0 ! U 2 1
=avs=[oz]u[51]

We will call Ag =[0, 1/3] and A1 =[2/3, 1] the segments of the first rank. The set
C, is obtained by deleting from Ao and A; their middle thirds, i.e., the intervals
S0 =1(1/9,2/9), 81 =(7/9,8/9). The set-theoretic difference A, \ §. (¢ =0, 1)
consists of two segments; denote the left one by Ao and the right one by Agg.
Thus Cj; is the union of four segments Ao, Aor, Ao, A1, which will be called
the segments of the second rank. For future use, we note that the segments of the
second rank are indexed by the pairs 1€, where €1 and ¢, independently take the
values 0 and 1. Note also that Ag,g, C Ay .

Now the construction proceeds by induction. Assume that we have already con-
structed the set C, consisting of 2" pairwise disjoint segments of the nth rank. It
is convenient to index these segments by the sequences &1, ..., &,, where £; may
take the value O or 1. For the segments of the first and the second rank, we have
already described these indices. We then proceed as follows. When constructing the
segments of the (n + 1)th rank, we delete the middle third &, .. ¢, from each seg-
ment Ag, ., of the nth rank. The set-theoretic difference Ag, ¢, \ .., consists
of two segments of the (n + 1)th rank; we denote the left one by Ag,  ,,0 and the
right one by Ag,  ¢,1. Thus when passing from n to n 4- 1 the number of segments
doubles and the length of these segments becomes three times less. The segments of
the (n + 1)th rank are pairwise disjoint, and Ag, . ¢,e,,; C A .., Let Cpy1 be the
union of all segments of the (n + 1)th rank. The intersection C = ﬂn>1 C,, is called
the Cantor set. It has zero measure. Indeed, the length of each segment of the nth
rank is clearly equal to 1/3". Hence the measure of the set C, is equal to (2/3)",
and the measure of the set C =), C, vanishes.

Now let us prove that the set C has the same cardinality as the set £ of all binary
sequences, i.e., the cardinality of the continuum. Recall that a binary sequence is a
sequence every element of which is equal to O or 1.

Since for every binary sequence ¢ = {¢,},>1, the segment Ag ¢, 1S con-
tained in Ag, ,, the sequence {Ag, ¢, }x>1 has a non-empty intersection, which

! Georg Ferdinand Ludwig Philipp Cantor (1845-1918)—German mathematician.
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obviously consists of a single point 7 (¢). For distinct binary sequences ¢ and &', the
points 7(¢) and 7(¢’) are distinct. Indeed, let & = {e,},>1. & = {€),}n>1, and let k
be the first index such that g, # 81/1. In other words,

e=1{e1,..., 81,8k, ...} e ={er,....e1.6,...} and e #e.

By the construction of the points 7 (¢) and £ (&’),

t(8) € AE]...Sk_18k9 t(é‘/) eA

£1...8k—18) "

Since distinct segments of the kth rank are disjoint, ¢ (&) and ¢(¢’) cannot coincide,
which proves that the map ¢ — #(¢) is one-to-one. But every point in C belongs to
the intersection of a sequence of segments {Ag, ¢, },>1, so the constructed map is
onto. This completes the proof of the bijectivity of the map & — (&) from £ onto C.

EXERCISES In Exercises 1-12, by measurability we mean Lebesgue measura-
bility and X stands for the Lebesgue measure of appropriate dimension.

1.

2.

10.
11.

Let E C R™ be a measurable set, 0 < A(E) < +o00, and € € (0, 1). Show that
there exists a cube Q such that A(E N Q) > (1 —&)A,,(Q).

Let ECR™ and 0 <t < A,;,(E). Show that in E there is a bounded subset A
such that A,,(A) =t.

If the Lebesgue measure of a set A C R™ is greater than 1, then there exist
distinct points x, y € A such that x — y € Z™.

Let » > 2. Show that for almost all numbers x there exists a coefficient ¢, > 0

such that |x — §| > & for all fractions 5
Give an example of (pairwise distinct) subsets Ay, ..., Ay in [0, 1] of mea-

sure % such that all elements of the corresponding canonical partition (see
Sect. 1.1.3) are intervals of equal length.

Show that the union of any (even uncountable) family of non-degenerate inter-
vals is measurable.

Show that a point ¢ belongs to the Cantor set C if and only if it can be written
in the form ¢t = 22 —1 637", where g, is equal to O or 1. Show that such a
representation is unique. Verlfy the equalitiess C+C={s+1t|s,t € C} =0, 2]

andC—-C={s—t|s,teC}=[-1,1].

Let a, > 0 (n > 0) be a sequence of numbers such that Z;ﬁo 2"a, < 1. Letus
imitate the construction of the Cantor set. First delete from the segment [0, 1]
its middle part of length ayg, i.e., the open interval § = (l_%, H’%). From the
two remaining segments delete their middle parts of length a1, and so on. Show
that this construction yields a set of positive measure that has no interior points.
Using sets similar to those constructed in the previous exercise, show that
there exists a measurable set £ C (0, 1) such that for every non-empty interval
A C(0,1), thesets AN E and A \ E have positive measure.

Show that the boundary of an open subset of the line can have positive measure.
Using the result of Exercise 1, show that if a set A is of positive measure, then
zero is an interior point of theset A — A={x — y|x,y € A}.
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12. Let  be an ultrafilter in N that consists of infinite sets (see Sect. 1.1, Exer-
cise 12). With each set U € 4l we associate the point xy =), ;27" € [0, 1]
and consider the set £ = {xy |U € U}. Show that it is not measurable. Hint.
Show that for every interval (k27" (k + 1)27¥) c (0, 1) and every irrational
point z in this interval, the following alternative holds: either z € E, 7/ ¢ E, or
z ¢ E, 7/ € E, where 7’ is the point symmetric to z with respect to the middle of
this interval. Assume the contrary and use the result of Exercise 1 with ¢ < 1/2.

2.2 Regularity of the Lebesgue Measure

In this section, we establish an important property of the Lebesgue measure, which
shows that it agrees with the topology. We will denote the Lebesgue measure on R
by A without indicating the dimension.

2.2.1 We prove that every measurable set can be approximated by open sets.

Theorem For every measurable set E C R™ and every ¢ > 0 there exists an open
set G such that

GDE and AMG\E)<e.

Proof First assume that A(E) < +00. Using formula (3) from Sect. 2.1.2, find cells
P, =lay, b,) such that

U P,DE, ZA(Pn) <ME) +¢. (1)
n>1 n=1

Since the measure of a cell depends continuously on its vertices, we can choose
points a, < a, sufficiently close to a, so that

M[ay. bn)) < A(Py) + 28_;1 for all » in N.

Set G =J,>(ay,, bn). Obviously,

Ec|JP.c|(a,.bn) =G c | J[ap bn).

n>1 n>1 n>1

By the countable subadditivity of the Lebesgue measure,

MG) < Y M([ay. bn)) < Z(Mm + Zi) =Y AP +e<ME)+26 ()

n>l1 n>1 n>1
(in the last transition we have used inequality (1)). Therefore,
MG\ E)=A(G) — A(E) < 2e.

Since ¢ is arbitrary, the theorem is proved for a set of finite measure.
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In the general case, we write E as the union of a sequence of sets of finite mea-
sure: £ = Un>1 E,. As we have already proved, for each n there is an open set G,,
such that E,, C G, and A(G,, \ E;;) < &/2". Let us check that the set G = Un>1 G,
satisfies the desired conditions. Indeed,

E=|JE.c|JGi=G and G\E=|]J(Gs\E)C|JGn\En.

n>1 n>1 n>1 n>1

Using the countable subadditivity of A, we obtain

MG\E)< Y MGa\E) <Y 3 =e.

n>1 n>1 O
2.2.2 Let us mention several important corollaries of Theorem 2.2.1.

Corollary 1 For every measurable set E and every ¢ > 0 there exists a closed set
F suchthat F CE and M(E\ F) <e.

Proof To prove this corollary, consider an open set G such that
GDOE‘=R"\E, A(G\E)<e.

Then the set F = G°¢ is of the desired form, since it is closed, contained in E, and
E\F=G\EF°. O

Corollary 2 For every measurable set E the following equalities hold:

ME) = inf{A(G) |G D E, Gisanopen set},
ME) = sup{k(F) | F CE, Fisaclosed set}.

The second formula can be refined:
ME) = sup{A(K) | K C E, K is a compact set}.

Proof The proof of the first two equalities follows immediately from the theorem
and Corollary 1. The fact that we may use only compact subsets follows from the
formula A(F) = lim,_, oo A(F N [—n, n]™), which ensues from the continuity of A
from below (see Sect. 1.3.3). It allows one to exhaust every closed subset F C E,
and hence the whole set E, by the compact sets F N [—n,n]" with an arbitrary
accuracy. g

The property established in Corollary 2 is called the regularity of the Lebesgue
measure. It means that every measurable set can be approximated, with an arbitrarily
small change in the measure, by closed sets from the inside and by open sets from the
outside. Observe that we cannot swap the roles of closed and open sets. For instance,
let E be the set that consists of all rational points of the interval (0, 1); obviously, it
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has zero (one-dimensional) Lebesgue measure. This set cannot be approximated by
ambient closed sets, because every such set contains the segment [0, 1], so that its
measure is at least one. In a similar way, the complement of E in [0, 1], which has
measure 1 but an empty interior, cannot be approximated by smaller open sets.

Remark The first equality in Corollary 2 remains valid for any (not necessarily mea-
surable) set if one replaces A(E) by the outer measure A*(E).

Indeed, if A*(E) = 400, then it is obvious by the monotonicity of the outer
measure, and if A*(E) < 400, then one can argue in exactly the same way as in
the proof of inequality (2), but replacing A(E) with A*(E).

The value A.(E) = sup{A(F)|F C E, F isaclosed set} is sometimes called
the inner measure of E. As we have seen, the equality of the outer and the inner
measures is a necessary condition for a set to be measurable. One can prove (see
Exercise 1) that if A,(E) < +o00, then this condition is also sufficient. It was this
condition that Lebesgue used to define the measurability of a bounded set.

Corollary 3 Every measurable set E can be written in the form E = e U Un>1 Ky,
where {K,}neN is an increasing sequence of compact sets and A(e) = 0.

Proof 1t suffices to consider the case where E is bounded. By Corollary 2, there
exist compact sets K, C E such that A(E \ K,) —> 0. We may assume that
n—o0

K, C K,+1 (otherwise replace the set K, by the union Kj U --- U K},). Put

e=E\ | K.

n>1

Then E =eU|J,~; K» and A(e) =0, because A(e) < A(E\ K,) —> 0. O
= n—oo

Corollary 4 Every measurable set E can be written in the form E = (ﬂn2] Gp)\e,
where G, are open sets and L(e) = 0.

The proof of this corollary is left to the reader.

Corollaries 3 and 4 show that, up to sets of zero measure, every measurable set
is the union of a sequence of closed sets (i.e., an F, set) and the intersection of a
sequence of open sets (i.e., a G set).

Recall that the elements of the minimal o -algebra containing all open sets are
called Borel sets. Corollaries 3 and 4 imply the following.

Corollary 5 Every measurable set can be approximated from the inside and from

the outside by Borel sets of the same measure. In other words, if E is a measurable
set, then there exist Borel sets A and B such that

ACECB, A(B\A)=0.

If A(E) < +00, then this corollary is a special case of Corollary 1.5.2.
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2.2.3 If we want to generalize the notion of regularity to other measures on R™, we
must assume that these measures are defined on all open and closed sets, and hence
on the minimal o -algebra containing these sets, i.e., on the o -algebra of Borel sets.
Thus we introduce the following definition.

Definition A measure defined on the o-algebra of Borel subsets of a topological
space X is called a Borel measure on X.

Theorem 2.2.1 remains valid for every Borel measure © on an open set O
(O Cc R™) provided that this measure is finite on cells whose closures are contained
in O.

Indeed, the only specific property of the Lebesgue measure that we have used
in the proof of the theorem is that the measure of a cell depends continuously on
its vertices. In the general case, we can use instead the continuity of the measure
from above and argue in the following way. A cell P = [a, b) is the intersection
of the decreasing sequence of cells [a — %h, b), where h = b — a > 0. It is clear
that [a — %h, b] C O for sufficiently large n (recall that P C (). By the continuity
of u from above, u([a — %h b)) = w(P). Hence for every & > 0 there is a cell

[a’, b) such that P C (a’, b), [a’,b] C O, and u([a’, b)) < (P) + & (for instance,
we can puta’ =a — %h for sufficiently large n). Using this fact, we can construct
cells [a), by), a), < ay, satisfying (2) (with p in place of 1), and then the proof of
Theorem 2.2.1 for the measure © works without any modification.

All corollaries of Theorem 2.2.1 also remain valid in this more general situation.
As in the case of the Lebesgue measure, the property from Corollary 2 is called the
regularity of measure. Thus the following theorem holds.

Theorem Let O be an arbitrary open subset of the space R™. If a Borel measure |
on O is finite on cells whose closures are contained in O, then it is regular, i.e., for
every Borel set E, E C O, the following equalities hold:

W(E) = inf{u(G) |G D E, Gisanopenset, G C (9},
W(E) = sup{u(F) | FC E, Fisaclosed set}.

Corollary Let p be a Borel measure on the space R™. Then for every Borel set
E C R™ of finite measure, the following equality holds:

n(E) = sup{u(K) |K CE, Kisa compactset}.

Proof Indeed, we may assume without loss of generality that p is a finite mea-
sure (otherwise replace it with the measure it defined by the formula (A) =
w(A N E)). For a finite measure, the claim can be proved by analogy with the proof
of Corollary 2 from Sect. 2.2.2. g
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Note that a o -finite Borel measure on the space R” is not necessarily regular (see
Exercise 3). For further results on the regularity of Borel measures in metrizable
spaces, see Appendix 13.3.

EXERCISES

1. Show that the set whose inner and outer measures coincide and are finite is mea-
surable.

2. Show that the Carathéodory extension of an arbitrary regular measure is a regular
measure.

3. Show that the Borel measure on R generated by the unit masses at the points

1, %, ey %, ... 1s not regular.

2.3 Preservation of Measurability Under Smooth Maps

Let O be an open subset of the space R™. By C!(O, R") we denote the set of all
smooth maps (i.e., maps that have one continuous derivative) from O to R”. The
derivative of a smooth map @ at a point x is denoted by ®’(x). The open ball of
radius r centered at a point x is denoted by B(x, r).

2.3.1 Let us establish a simple sufficient condition for the measurability to be pre-
served. For brevity, we denote the Lebesgue measure on R” by A, without indicating
the dimension.

Theorem Let O be an open subset of the space R™, and let ® € C' (O, R™). Then
for every measurable set A, A C O, the set ©(A) is also measurable. If A(A) =0,
then A(®(A)) =0.

Proof As follows from the regularity of the Lebesgue measure (see Sect. 2.2.2,
Corollary 3), a measurable set A can be written in the form A =e U J,>; Ku,
where K, are compact sets and e is a set of zero measure. Since the sets dD(K/ 1) are
compact and

D(A) =D(e) U | 2(Ky),
n=l1

it suffices to verify the last assertion of the theorem.
So, let A(A) = 0. First assume that

ACP, PC®, where Pec P,

Let L be the Lipschitz constant corresponding to P (see Lagrange’s inequality in
Sect. 13.7.2). Fix an arbitrary ¢ > 0 and, using Property (7) from Sect. 2.1.3, find a
sequence of cubic cells {Qy},>1 such that

AclJon D mow<e

n>1 n>1
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Obviously, A C Un>l(Q,, N P). Let h, be the edge length of Q. Then ||x — y|| <
hu/m for all x,y in Q,, and hence |®(x) — ®(y)|| < L |lx — y|| < L hy,/m for
x,y € Q, N P. Thus the set ®(Q, N P) is contained in a ball of radius Lh, /m
and, consequently, in a cube with edge length 2Lh,/m. Hence 1(®(Q, N P)) <
(2Lhy/m)™ = CM(Qy). The set H =, ®(Q, N P) contains ®(A) and, being
a union of compact sets, is measurable. Furthermore,

MH) <) (@0, NP)) SC Y 1(Qn) < Ce.

n>1 n>1

Thus the set ®(A) is contained in a set of arbitrarily small measure. Since the
Lebesgue measure is complete, ®(A) is measurable and has zero measure (see
Sect. 2.1.3, Property (4)).

Now consider the general case. By Theorem 1.1.7, the open set O can be written
as the union of a sequence of cells P, whose closures are contained in O: O =
Uns1 Prs P, C O. In this case,

A= U(AOP,,), D(A) = U AN P,).
nzl nz1

As we have already proved, the sets ®(A N P,) have zero measure. Therefore the
measure of the whole set ®(A) is also zero. O

Corollary Let G be an open subset of the space R™, let f € C'(G), and let Iyp=
{(x, f(x)|x e G} C R™ 1 pe the graph of the function [ (we identify the spaces
R+ and R™ x R in the natural way). Then Am+1(Tp) =0.

Proof Let O =G x R. Let ®(x, y) = (x, f(x)) for points (x, y) in O. It is clear
that O is an open subset of the space R”*! and ® € C'(O, R"™*!). Obviously,
I'y = ®(e), where e = G x {0}. Since A,;41(e) =0, the equality A,,41(I'f) =0
follows from the theorem. O

The corollary implies, in particular, that the m-dimensional Lebesgue measure
of every proper affine subspace of R™ vanishes. Hence the measure of every paral-
lelepiped coincides, as we have already observed in Sect. 2.1.3, with the measure of
its closure and its interior. In a similar way, the measure of an open ball coincides
with the measure of its closure.

Remark Let us introduce an important class of maps which will be repeatedly used
in what follows.
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Definition Given a set £ C R™, one says that a map ® : E — R”" satisfies the
Lipschitz condition® on E if there exists a constant L such that

[®@) —@(x)|| <L|x—x'| forallx,x inE.
The number L is called the Lipschitz constant for .

As follows from Lagrange’s inequality (see Sect. 13.7.2), a smooth map locally
satisfies the Lipschitz condition.

As one can see from the proof of the theorem, we have not used the smoothness
in full strength, but need only the Lipschitz condition. Hence the theorem remains
valid for every map that locally satisfies this condition. In particular, such maps send
sets of zero measure to sets of zero measure, i.e., have Luzin’s’ property (N).

2.3.2 Here we will show that the Lebesgue measurability of a set is not in general
preserved under a continuous map. Thus the Lipschitz condition, which guarantees
the measurability of the image of a measurable set (see the remark in the previous
section) cannot be replaced by the weaker continuity condition.

In order to check this, it suffices to construct a continuous map ¢ that sends a set
e of zero measure to a set ¢(e) of positive measure. Indeed, in this case, taking a
non-measurable subset E of ¢(e) (see Sect. 2.1.3), we will obtain that E = ¢(eq)
with ep C e. The set e is measurable (the Lebesgue measure is complete, so all
subsets of a set of zero measure are measurable), while its image E is not.

In order to construct such an example, restricting ourselves to the one-dimension-
al case, we use the Cantor function ¢, which often turns out to be useful in similar
situations, because it has rather unusual properties. For example, it is continuous
and its derivative vanishes almost everywhere, but ¢  const (for other properties of
the Cantor function, see Exercises 3-5).

This function, defined on [0, 1] and closely related to the Cantor set C (see
Sect. 2.1.4), is constructed as follows. By definition, ¢(0) = 0, ¢(1) = 1, and
on the middle third of the interval (0, 1), i.e., for x € [%, %], the function ¢ is
constant and equal to the half-sum of its values at the endpoints of the interval:
o(x) = %(g)(O) + (1)) = L. For each of the remaining intervals (0, %) and (%, D),
we repeat the same procedure: at the middle third of the interval, the function ¢
is constant and equal to the half-sum of its values at the endpoints of the interval
G.e., p(x) = }‘ on [%, %] and ¢(x) = % on [%, %]). Repeating this construction ad
infinitum, we will define ¢ on a dense subset of [0, 1]. It remains to define it on the
complement of this set, i.e., on the set obtained from the Cantor set C by deleting
the endpoints of all complementary intervals. If we want to preserve the continuity
or the monotonicity on the whole interval [0, 1], this can be done in a unique way.
To see this, it suffices to observe that at each step of our construction we obtain an
increasing function whose increments on intervals of length 3%, do not exceed %
The graph of the function ¢ (see Fig. 2.1) is sometimes called the Cantor staircase.

ZRudolf Otto Sigismund Lipschitz (1832—1903)—German mathematician.
3Nikolai Nikolaevich Luzin (1883-1950)—Russian mathematician.
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Fig. 2.1 Graph of the Cantor function

It follows from the construction that ¢ is constant on complementary intervals of
the Cantor set. Since their endpoints belong to C, we have ¢(C) = ¢([0, 1]). Thus
the p-image of the Cantor set, which is of zero measure, coincides with [0, 1]. As
we have observed above, this implies that the image of some part of the Cantor set
is not measurable.

2.3.3 In conclusion of this section, we briefly discuss the preservation of Borel
measurability. There is a general result according to which a homeomorphic image
of a Borel set is again a Borel set. We confine ourselves to the proof of this assertion
under an additional assumption; this suffices for our purposes. The general result can
be proved using Theorem 13.2.3; we encourage the reader to do this (see Exercise 8).

Proposition Let © be a homeomorphism defined on a Borel set A. If the inverse
map O~ satisfies the Lipschitz condition, then B = ©(A) is a Borel set.

Proof Since the inverse map satisfies the Lipschitz condition and, consequently, is
uniformly continuous on B, it can be extended to a continuous map W : B — R™.
Let us check that

v~l(A)=B. )

If this equality is true, then, by Corollary 1 from Sect. 1.6.2, B is a Borel subset of
B (as the inverse image of a Borel set under a continuous map), and hence a Borel
subset of R” (see Corollary 2 in Sect. 1.6.2).

Obviously, ¥ ~!(A) D B. Hence, when proving equality (1), it suffices to check
the reverse inclusion. If it is false, then there is a point yo € B \ B such that
x0 = W(yo) € A. Consider points y; € B converging to yo and set x; = W(y;) =
®_1(yj). Then, since W is continuous, we have x; = W (y;) —> W(yo) = x¢. At

J—>00
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the same time, since ® is continuous,

O@;) = ®(®_1(yj)) =yj ]:; ®(xp) € ®(A) = B.
This contradicts the fact that y; —> yo ¢ B. O
j—o0

We would like to draw the reader’s attention to the fact that a homeomorphism,
while preserving Borel measurability, does not in general preserve Lebesgue mea-
surability, even if it satisfies the additional condition from the proposition (see Ex-
ercise 5).

EXERCISES

1. Show that the graph of a function continuous in an open subset of R™ has zero
(m + 1)-dimensional measure.

2. Let X be a measurable subset of R” and F € C(X,R™). Show that F preserves
measurability if and only if it sends every set of zero (Lebesgue) measure to a set
of zero measure.

3. Establish the following properties of the Cantor function ¢ (see Sect. 2.3.2):

@ ex)+e(l—x)=1for0<x < 1;

(B) ¢(x/3) = (x)/2for 0< x < 1

© ¢+ &) =) + 2 for 0 < x < 73

(d) (3)* <@x) <x¥for 0 <x <1, where @ =logs 2.

4. What is the area of the region under the graph of the Cantor function?
5. Let C be the Cantor set, ¢ be the Cantor function (see Sect. 2.3.2), and g(x) =
x4+ ¢(x) (x € [0, 1]). Show that:

(a) g is a homeomorphism;
(b) the measure of the set g(C) is equal to one;
(c) among the images of sets of zero measure there are non-measurable sets.

Thus the homeomorphism g does not preserve measurability.

6. One says that a function f on an interval [a, b] satisfies the Lipschitz condition
of order « (« > 0) if there exists a positive constant L such that | f(x) — f(y)]| <
L|x — y|* for all x, y in [a, b]. Show that the Cantor function satisfies the Lips-
chitz condition of order o = logs 2.

7. Show that for every « € (0, 1) there exists a function that satisfies the Lipschitz
condition of order « and sends some set of zero measure to a set of positive mea-
sure (and, therefore, does not preserve Lebesgue measurability). Hint. Generalize
the construction of the Cantor function using the set described in Exercise 8 from
Sect. 2.1 instead of C.

8. Show that a homeomorphic image of a Borel set is again a Borel set. Hint. Use
Theorem 13.2.3 and the scheme of the proof of Proposition 2.3.3.
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2.4 Invariance of the Lebesgue Measure Under Rigid Motions

Recall that a rigid motion of the space R™ is the composition of a translation and an
orthogonal transformation. We begin with the study of the behavior of the Lebesgue
measure under translations.

Everywhere in this section, except for Sects. 2.4.5 and 2.4.6, we denote the
Lebesgue measure by A, without indicating the dimension.

2.4.1 The translation by a vector v € R™ is the map x — v 4+ x (x € R™). The
image of a set £ under this map will be denoted by v + E.

Theorem A translation sends a measurable set to a measurable set and preserves
the measure of a set. In other words, if v e R™, E € A", then v+ E € A" and
A+ E)=A(E).

Proof The measurability of v + E follows immediately from Theorem 2.3.1, since
a translation is a smooth map. Hence, fixing an arbitrary vector v, we can define a
function u on the o-algebra A by the formula u(E) = A(v + E) (E € A™). We
leave the reader to check that w is a measure. Since the translation by v sends a cell
[a, b) to the cell [a + v, b + v) with the same edge lengths, the measures © and A
coincide on the semiring of cells, and, by the uniqueness theorem for the extension
of a measure (see Sect. 1.5.1), they coincide on the whole o -algebra ™. 0

2.4.2 Now let us consider the problem of describing all translation-invariant mea-
sures in R™. In order to exclude pathological cases (for instance, the counting mea-
sure, which is obviously invariant under any bijection), we impose a natural restric-
tion on the measures in question. It then turns out that every translation-invariant
measure is proportional to the Lebesgue measure.

Theorem Let 1 be a measure defined on the algebra A™ of Lebesgue measurable
sets. Assume that:

(a) w is translation-invariant, i.e., (v + E) = w(E) for every v in R™ and every
E in2A™;
(b) the measure of every bounded measurable set is finite.

Then there exists a constant k, 0 < k < 400, such that u = kA, i.e.,
u(E) =kM(E) foreveryset E in A", (1)

It is easy to see that condition (b) is equivalent to the assumption that the mea-
sures of all cells are finite, and, in view of condition (a), to the assumption that the
measure of at least one non-empty cell is finite. Equivalently, one might also require
that the measures of compact sets be finite.

Proof Set Q = [0, 1)™. If equality (1) holds, then, obviously, k = p(Q). It is this
number & that we will consider.
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Fig. 2.2 Partition of the unit square into congruent parts

(1) Firstlet k =1, 1.e., u(Q) = A(Q) = 1. Let us check that © = A. As we noted
after formula (3) in Sect. 2.1.2, A is the Carathéodory extension of the ordinary vol-
ume from the semiring 22" of cells with rational vertices. Hence, by the uniqueness
theorem, in order to prove that the measures A and p coincide, it suffices to verify
that they coincide on &7/ Since every cell with rational vertices is a disjoint union
of cubic cells with rational vertices, it suffices to check that A and u coincide on such
cells. Since every cell is a translation of a cell having a vertex at the origin, it suffices
to prove that the measures  and A coincide on cells of the form O, = [0, %)m with
neN.

The cell Q is the union of n™ pairwise disjoint translations of the cell Q,, (see
Fig. 2.2).

Hence " u(Q,) = n(Q) =1 and, consequently, u(Q,) =n~" = A(Qy). Thus
in the case under consideration the proof is complete.

(2) Now let k = u(Q) be an arbitrary positive number. Consider the auxiliary
measure oL = u/k. Clearly, it is also translation-invariant, and Z(Q) = 1. As we
have already proved, such a measure coincides with X, and hence (1) holds.

3) If u(Q) =0, then u(R™) =0, since the space R™ can be covered by a count-
able family of translations of the cell Q. Thus in this case u is the zero measure,
and (1) holds with k = 0. O

Remark 1f a measure u satisfying conditions (a) and (b) is defined not on the whole
o-algebra 2™, but on a subalgebra that contains all cells and the translations of all
sets belonging to this subalgebra (for example, on all Borel sets), then, as one can
see from the proof, Eq. (1) remains valid for all sets on which w is defined.

2.4.3 From the above theorem and the arguments used in Sect. 2.1.3 when prov-
ing the existence of Lebesgue non-measurable sets, it follows that there does not
exist a non-zero measure defined on all subsets of R” that is finite on all cells and
translation-invariant.
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If we drop the condition of countable additivity, then the situation changes. As
Banach* proved, in every space R” there exists a (non-unique) volume defined on
the ring of all bounded sets that is translation-invariant and coincides with the ordi-
nary volume on cells. In the two-dimensional case, one can even ensure that such
a volume is invariant not only under translations, but under all rotations. In spaces
of higher dimension, rotation-invariant volumes defined on all bounded sets cannot
exist, since there are “too many” rotations and the group of motions is “too non-
commutative” (see [N, Chap. III, Sect. 7, and Appendices]; for a discussion of this
question from a more general point of view, see [G]).

2.4.4 It turns out that the Lebesgue measure is invariant not only under translations,
but also under all orthogonal transformations.

Theorem An orthogonal transformation sends a measurable set to a measurable
set and preserves the measure of a set. In other words, if U : R" — R™ is an or-
thogonal transformation and E € 4™, then U (E) € A™ and M(U (E)) = A(E).

Proof The fact that an orthogonal transformation preserves measurability follows
from Theorem 2.3.1. In order to prove that it preserves the measure of a set, we will
use the theorem on translation-invariant measures.

On the o-algebra A consider the set function  defined by the formula

w(E)y=xU(E)) (EeA™).
The reader can easily verify that u is indeed a measure and that it is finite on cells.
Our aim is to prove that u = A. Let us check that the measure w is translation-
invariant. Since U (v+ E) = U (v) + U (E), it follows from the translation invariance
of A that
pw+E)=rU@+E))=1(U@) +U(E)) =A(U(E)) = n(E).
By Theorem 2.4.2, the measure p is proportional to the Lebesgue measure: u = kA.
Finally, let us check that k = 1. Let B be an arbitrary ball centered at the origin.
Then U (B) = B, whence
kx(B) = u(B) = A(U(B)) =A(B) > 0.

Therefore, k = 1, and the measures p and A coincide. O

Comparing the above theorem with Theorem 2.4.1, we obtain an important result.

Corollary The Lebesgue measure is invariant under rigid motions.

4Stefan Banach (1892—-1945)—Polish mathematician.
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This invariance property of the Lebesgue measure allows one to compute the vol-
umes of rectangular parallelepipeds, since every such parallelepiped can be trans-
formed by a rigid motion into a parallelepiped with edges parallel to the coordinate
axes.

Example The measure of a rectangular parallelepiped is equal to the product of the
lengths of its edges.

First observe that the volumes of all parallelepipeds with a fixed vertex and fixed
edge lengths coincide (see the remark after Corollary 2.3.1). Since the Lebesgue
measure is translation-invariant, it suffices to compute the volume of an open paral-
lelepiped of the form

m
P:[thvj‘()<tj<1f0rj:1,2,...,m

Jj=l1
whose edges v1, ..., v, are pairwise orthogonal. Let us normalize the vectors v; by
setting g; = z—’ where s; = ||lvj|| (j =1,...,m). Clearly, the vectors g1, ..., gm
J

form an orthonormal basis in R™. Consider the linear transformation U that sends
the canonical basis vectors ey, ..., e, to the vectors gi,...,gy. This is an or-
thogonal transformation, and v; = s;U(e;). By the definition of a parallelepiped,
P = U(R), where R is the parallelepiped ]_[T: 1(0, 5;). Since orthogonal transfor-
mations preserve measure,

aPy=2®) =[]si=]]lvl.
j=1 j=1

In Sect. 2.5.3, we will consider the problem of computing the volume of a (not
necessarily rectangular) parallelepiped with given edge lengths in full generality.

2.4.5 By Theorem 2.4.2, we can speak about the Lebesgue measure on any finite-
dimensional vector space X. Indeed, since X is algebraically isomorphic to R™
for m = dim X, we can use this isomorphism to “transfer” the Lebesgue measure
from R™ to X and obtain a measure u that is translation-invariant and finite on
bounded subsets. As follows from Theorem 2.4.2, any other measure satisfying
these properties is proportional to . Thus, applying this construction with another
isomorphism, we will obtain a measure proportional to w. If X is a Euclidean space,
and we consider only isomorphisms that preserve the inner product, then the mea-
sure u is determined uniquely, since, by Theorem 2.4.4, a linear isometry preserves
the Lebesgue measure.

Let us mention one important fact, which will be used in Sect. 2.5 and then
in Chap. 8. For k < m, we can naturally define the k-dimensional Lebesgue
measure on all k-dimensional affine subspaces of R™. By definition, it is the
image of the Lebesgue measure A; in R¥ under some rigid motion (we iden-
tify RF with the subspace consisting of all points whose last m — k coordi-
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nates are equal to zero). In other words, if L is a k-dimensional affine sub-
space in R™ and T : R™ — R” is a rigid motion such that L = T'(R¥), then
a set E C L is called measurable if its inverse image 7~ '(E) C RF is mea-
surable, and we set the Lebesgue measure of E equal to Ax(T~!(E)). Since
the Lebesgue measure is invariant under rigid motions (see Corollary 2.4.4), the
Lebesgue measure on a subspace does not depend on the motion used in its con-
struction. It also follows immediately from the definition that the Lebesgue mea-
sures in subspaces transform into each other under rigid motions; in this sense,
they form a coherent family. The Lebesgue measure on a k-dimensional affine
subspace will be denoted by the same symbol A; as the measure on R, It
will always be clear from the context on which subspace the measure is consid-
ered.

2.4.6 Let us find out how the measure of a set in an affine subspace L C R™ of
dimension m — 1 is related to the measure of its orthogonal projection to R”~! (as
usual, we regard R 1 ag a subspace in R™, identifying a vector (xi, ..., Xp—1)
in R~ with the vector (X1, -+, Xm—1,0) in R™). In both subspaces, the (m — 1)-
dimensional Lebesgue measures will be denoted by A,,, 1.

Let P be the orthogonal projection from R” to R”~!. We exclude the trivial case
where P (L) # R™=1 je., assume that the normal N to L is not orthogonal to the
vector e, = (0, ..., 0, 1), which is the normal to R™1 Let 0 be the angle between
these normals. Then cos@ = (N, e, )/||N|| # 0. Let us establish a relationship be-
tween the measure of a set and the measure of its projection which generalizes a
well-known fact from elementary geometry.

Proposition For every measurable set E C L,
hon1 (P(E)) = |c0s 6] 21 (E).

Proof We will assume without loss of generality that L is a linear subspace (other-
wise we can translate it). Since the restriction of the projection P to L is a linear
isomorphism, the function

wi Ev> a1 (P(E)) (ECL)

is obviously a measure on the o -algebra of Lebesgue measurable sets that is trans-
lation-invariant and finite on bounded sets. Hence (see Theorem 2.4.2) u =k Ay, —1,
where k is a positive coefficient. In other words,

hn-1(P(E)) = kA1 (E)

for every measurable set E, E C L.

In order to find k, consider an orthonormal basis vq,...,v,—1 in L with
Vly..o, Upy_2 € R™=! Then Vly.-v, Un—2, P(vy—1) is an orthogonal basis in
R”=!. Moreover, ||P(vy_1)| = |cos@|. The unit cube Q spanned by the edges
v1,...,Un—1 lies in L, and its projection is the rectangular parallelepiped spanned
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by the edges vy, ..., vy—2, P(vy—1), whose measure is equal to A,_i(P(Q)) =
| P(v—1)|| = |cosB|. Therefore,
|cos 6] = dn—1(P(Q)) =k m—1(Q) = k. O

Note that this proposition obviously remains valid in the case where cos6 = 0.

EXERCISES

1. The homothety in the space R with ratio k > 0 is the map x — kx. Arguing
as in the proof of Theorem 2.4.1, show that it sends a measurable set E to a
measurable set and the measure of the image of E is equal to k™A, (E).

2. Show thatif aset A C R is measurable, then the set B = {(x, y) e R?|x —y € A}
is also measurable.

3. How large can the area of a measurable set contained in the square [0, 6] be if
this set is disjoint with its translation by the vector (1,2)?

4. We say that a set E C R™ generates a tiling if the translations of E by all vectors
with integer coordinates form a partition of R, i.e.,

R" = \/ (n+E).

nezm

Show that the measure of a measurable set that generates a tiling is equal to one.

5. Let ECR™, A,(E) >0, and let A be a dense set in R™. Show that A, (R™ \
Ugea(a+ E)) = 0. Show that we can drop the assumption of E being measur-
able by replacing the condition A, (E) > 0 with 1% (E) > 0.

Given a number a, the translation by a modulo 1 is the map x — {x + a}, where
{x +a} is the fractional part of x +a (i.e., {x +a} = x +a — [x +a]). Two subsets of
the interval [0, 1) are said to be congruent modulo 1 if one of them can be obtained
from the other by a translation modulo 1.

6. By analogy with Theorem 2.4.1, show that the Lebesgue measure on [0, 1) is
invariant under translations modulo 1: they send measurable sets to measurable
sets and preserve the measure of a set. Extend this result to the multi-dimensional
case, replacing the interval [0, 1) by the cubic cell [0, 1)™.

7. Using the construction of a non-measurable set (see Sect. 2.1.3), show that there
exists a set E C [0, 1) with the following properties:

(a) the outer measure of E is equal to one;
(b) there exists a sequence of pairwise disjoint subsets of [0, 1) congruent to E
modulo 1.

2.5 Behavior of the Lebesgue Measure Under Linear Maps

Now we turn to the question of how the Lebesgue measure changes under an arbi-
trary linear transformation V : R — R™. If V is not invertible, then V(R™) is a
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proper subspace of R” and A, (V (R™)) = 0 (see the remark after Corollary 2.3.1),
so that the image of every set has zero measure. In what follows, we exclude this
degenerate case and consider only invertible linear transformations. Recall that the
determinant of a linear transformation acting on a finite-dimensional space is, by
definition, the determinant of the matrix of this transformation (in an arbitrary ba-
sis).

2.5.1 Let us first prove one auxiliary result.

Lemma Let V : R™ — R™ be an invertible linear transformation. Then there exist

orthonormal bases {g ;'7:1, {hj};.":1 and positive numbers sy, ..., Sy such that
m
V(X)=Zsj' (x,gjYhj forallx eR™. (1)
j=1

Moreover, |detV | =51 -5p,.
The notation (x, y) denotes the inner product of x and y.

Proof Let V* be the adjoint of V. Consider the self-adjoint transformation W =
V*V. As we know from linear algebra, there exists an orthonormal basis g1, ..., gm
consisting of the eigenvectors of W. Let cy, ..., ¢, be the corresponding eigenval-
ues. They are positive, because the quadratic form (W (x), x) = ||V (x)||? is positive
definite. Set s; = \/Ej (1 < j < m). For every vector x we have

x=) (x.gj)g; and V(@)=Y (x.g)V(g) = s;(x.gj)h;.

j=1 j=1 j=1

where h; = SL V(g;). These vectors form an orthonormal system, because
J

1
hiohj)y=—(V(g), V(g))= — (W(gn), &) = — (s?ar. g
(hi. hj) Sksj( (g0, V(g))) sij< (20), &) o (538 &))
0 ifk#j,
|1 ifk=.

Since the determinant det W is equal to the product of all eigenvalues,

m
2
MaV):daVﬂH:®HV:IIq.
j=1

Therefore, |det V| = ]_[;'»1=1 sj. O
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2.5.2 Now we can find out how the Lebesgue measure changes under a linear trans-
formation. In this and the next subsection, we denote the Lebesgue measure by A
without indicating the dimension.

Theorem [f V : R™ — R™ is a linear transformation and a set E, E C R™, is
measurable, then the set V (E) is also measurable and L(V (E)) = |det(V)| A(E).

Thus the absolute value of the determinant has a simple geometric interpretation:
it is the ratio of the measure of V (E) to the measure of E for any measurable E.

Proof The fact that the image of a measurable set under any linear transformation
is also measurable is a special case of Theorem 2.3.1. We have already seen that the
desired assertion is true for non-invertible transformations. So in what follows we
assume that V is invertible.

We define a measure p on 2" by the formula

w(E)y=Ar(V(E)) (EeuA™).
We leave the reader to check that p is indeed a measure. It is translation-invariant:
nie+E)y=r(V(c+E)) =1(V(e) + V(E)) = A(V(E)) = u(E).

Hence, by Theorem 2.4.2, u is proportional to the Lebesgue measure: u = kA,
where k is a non-negative coefficient. In order to find this coefficient, we use the
lemma to represent V in the form (1) and observe how the unit cube Q spanned by
the vectors gy, ..., gn is being transformed. Since V(g;) = s;h, the image of Q
is the rectangular parallelepiped with edges s,/ ;. Since |det V| =[]}_, s;, we see
that

m m
k=k(Q) = (@ =2(V(@) =T llsjhjl = [Tsj =ldetvi.
j=1 j=1

Let us mention a special case of this result which is constantly used in elemen-
tary geometry for computing areas and volumes: relation between the measures of
similar sets.

The homothety in the space R with ratio k, k > 0, is the map x — kx (x € R™).
The image of a set E under this map will be denoted by kE.

It is obvious that a homothety is a linear map which in every basis is represented
by the diagonal matrix with all diagonal entries equal to k. We obtain the following
special case of the above theorem.

Corollary 1 Let k be an arbitrary positive number. Then kE € A™ and MkE) =
k™ A(E) for any measurable set E.

Corollary 2 The measure of an m-dimensional ball with an arbitrary center and
radius r is equal to a,, r'™, where o, is the measure of the unit ball.
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This assertion follows from the fact that an arbitrary ball B(xg, r) can be obtained
from the unit ball by a homothety and a translation: B(xg, r) =xo + rB(0, 1).

Since an ellipsoid with semi-axes ai, ..., a, can be obtained from the unit ball
by dilations (with ratio a; along the ith axis, i = 1, ..., m), its volume is equal to
Opd] - Ay

Note also that the measure of an open convex set C is equal to the measure of its
closure. Indeed, we may assume that 0 € C. Then C € C = C UdC C kC for every
k > 1. Therefore, A(C) < A(C) < A(kC) = k™ A(C). Taking the limit as k — 1, we
obtain the desired equality. It easily implies that L(dC) = 0 (even if L(C) = +00).

2.5.3 Extending the a = 0 case of the definition from Sect. 1.1.6, we define the n-
dimensional parallelepiped in R™ (n < m) spanned by linearly independent vectors
{vj};?zl as the set

n
P(vl,...,vn):{thvj‘0<tj<1f0rj=1,2,...,n .
j=1

As before, the vectors v; will be called the edges of the parallelepiped P.

To avoid unnecessary stipulations, we keep the notation P (vy, ..., v,) in the case
where the vectors vy, ..., v, are linearly dependent, even though such a set cannot
actually be called a parallelepiped.

Let us compute the n-dimensional volume of the parallelepiped P (vy, ..., vy,).
First consider the case where n = m. Let e, ..., e, be the canonical basis vectors,
and let V be the linear transformation that sends them to the vectors vy, ..., v,.
Obviously, P(vy, ..., vy) is the V-image of the open cube Q = (0, 1)™. Using The-
orem 2.5.2, we obtain

AMP@1, ..., vm) =A(V(Q)) = |det(V)]. )
In order to express the volume of the parallelepiped P (vy, ..., v,) directly in
terms of the vectors vy, ..., v,;, we need to use the notion of Gram determinant

(which is perhaps familiar to the reader from algebra). Recall the corresponding
definition.

Definition The Gram® determinant T'(vi,...,v,) of a set of vectors vi,...,
v, € R™ is the determinant of the Gram matrix

(vi,v1)  (vi,v2) ... (V1 V)

(v2,v1) (v2,v2) ... (v2,vp)

(U, v1) (U, v2) ... (Un,Un)
whose entries are the pairwise inner products of the vectors vy, v, ..., Up.

5] grgen Pedersen Gram (1850-1916)—Danish mathematician.



66 2 The Lebesgue Measure

The Gram matrix is the matrix of the positive semidefinite quadratic form

2

n

Z (vj, vi)tjty =

Jk=1

n

ijvj

J=1

Hence the Gram determinant is non-negative (this result also follows from the the-
orem proved below). It is clear that if the vectors vy, ..., v, are linearly dependent,
then the rows of the Gram matrix are also linearly dependent and, consequently,
'wy,...,v,)=0.

For n = m, the Gram determinant has a simple geometric interpretation.

Theorem I'(vi, ..., vn) =A2(P(v1, ..., Un)).

Note that this equality is also obviously true in the case where the vectors
V1, ..., Uy are linearly dependent.

Proof Consider the linear transformation V : R™ — R that sends the canonical
basis vectors to the vectors v1, ..., v,. In the canonical basis, V is represented by
the matrix W whose columns are the vectors vy, ..., v,. By (2),

AP 1, ..., vm) = |det(V)| = |det(W)].

On the other hand, the product W’ W is precisely the Gram matrix of the system
under consideration (here W7 is the transpose of W). Hence

A(Pi...,vm) =det(WT)det(W) =det(WT W) =T (v1,...,v). O

The geometric interpretation of the Gram determinant also remains valid in the
case where the number of vectors vy, ..., vy, is less than the dimension of the space.
Indeed, these vectors, as well as the set P(vy,...,v,), lie in a subspace L, their
linear hull. If they are linearly independent, then dim L = n. Since L is isomorphic
to R” as a Euclidean space, the Lebesgue measure is defined in L, and the theorem
continues to hold:

T1, .o v0) = A2 (P01, ..., vn)).

Thus the volume of a parallelepiped with edges vy, ..., v, is the square root of the
corresponding Gram determinant.

Knowing the geometric interpretation of the Gram determinant, we can describe
how the (n-dimensional) measure changes under a linear transformation from R”
to R” forn < m.

Proposition Let V :R" — R™ (n < m) be a linear map. If E € A", then
M (V(E)) = /det(WT W) - A, (E)

(here W is the matrix of V in the canonical basis).
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Proof First let rank(V) = n. The set V(E) is measurable by the definition of the
Lebesgue measure on the space X = V(R") (see Sect. 2.4.5). In order to com-
pute A, (V(E)), we introduce an auxiliary measure u by setting u(E) = A, (V(E))
(E € 2A™). As the reader can easily verify, this measure is translation-invariant and
hence proportional to the Lebesgue measure.

It is clear that the proportionality coefficient is equal to w(Q), where Q = [0, 1)".
Let us find it using the geometric interpretation of the Gram determinant. Let
v1,..., U, be the V-images of the canonical basis vectors of V (obviously, they
are the columns of W). Hence WTW is the Gram matrix of the vectors vy, ..., U,.
On the other hand, one can easily see that V(Q) is simply the parallelepiped
P(vy, ..., v,) spanned by the vectors vy, ..., v,. By the theorem,

A (P, ..., v0) =T (1, ..., v,) = det(W W).

Therefore, £(Q) = 1, (V(Q)) = /det(WT W).

If rank(V) < n, then the set V(E) is contained in a subspace of dimension
less than n, and hence its n-dimensional measure vanishes. The value det(W W)
also vanishes, since it is the Gram determinant of the linearly dependent vectors
Ul,..., Uy. O

As is well known from linear algebra, for a matrix W with m rows and n (n < m)
columns, the following BinetG—Cauchy7 formula holds. Let A C {1,2,...,m},
card A = n, and let W4 be the n x n matrix obtained from W by deleting all rows
with indices not in A. The Binet—-Cauchy formula says that

det(WT W) =" det*(Wa).
A

This equality has a beautiful geometric interpretation. By the above proposition,
the left-hand side is simply the squared measure of the set C = V(Q), where
V :R" — R™ is the map corresponding to the matrix W and Q is an arbitrary set of
measure one. Consider the orthogonal projection P4 from R to the n-dimensional
subspace L4 spanned by the canonical basis vectors with indices in A. Clearly,
P4 oV is the map corresponding to the matrix W,4. Hence, up to sign, det(W,) is
precisely the measure of the projection P4(C). Thus the Binet—-Cauchy formula can
be rewritten in the form

(€)= 12(Pa(0)). (3)
A

In particular, the squared volume of an n-dimensional parallelepiped contained in
the space R (m > n) is the sum of the squared volumes of its projections to all

6Jacques Philippe Marie Binet (1786—1856)—French mathematician.
7Augustin—Louis Cauchy (1789-1857)—French mathematician.
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possible subspaces L 4. If n = 1, then such a parallelepiped is just an interval and
P4(C) are its projections to the coordinate axes, so that formula (3) turns into the
Pythagorean theorem. In the case n = m — 1, formula (3) (and hence the Binet—
Cauchy formula) can be proved as follows. Let N be the unit vector orthogonal to
the subspace containing the parallelepiped C. Its coordinates are cos 6y, ..., coS6y,,
where 61, ..., 0, are the angles between N and the coordinate axes. As we proved
in Proposition 2.4.6, the area of the projection of C to the subspace orthogonal to
the ith coordinate axis is equal to |cos 6;|A,,—1(C). Since Y ;| cos 91.2 =|N|?=1,
multiplying this equation by kfnfl (C) yields formula (3) in the case under consid-
eration.

We leave the reader to check that formula (3) is valid not only for a paral-
lelepiped, but also for any measurable set lying in an n-dimensional subspace of R”.

2.5.4 Using the geometric interpretation of the Gram determinant, we can general-
ize a well-known fact from elementary geometry: the volume of a parallelepiped is
the area of its base multiplied by the height.

Consider a parallelepiped P = P(vy, ..., v;) and write vy, in the form v, =
y + z, where y is the projection of v, to the subspace spanned by vy, ..., vy—1
and z (the “height” of P) is perpendicular to vy, ..., v,;—1. It is natural to say that
the parallelepiped P(vq, ..., Un—1) (of dimension m — 1) is the base of P. Since
y=civ1 + -+ + Cn—1Vm—1, multiplying the rows of the Gram matrix with indices
1,...,m — 1 by the numbers c1, ..., c;;—1 and subtracting them from the last row,
we see that I' (v, ..., vy) is equal to the determinant of the matrix

(vi,v1) (v, v2) ... (v, Up)
(v2,v1)  (v2,v2) ... (v2,Um)
(z,'vl) (z,'vz) (z,.vm)

We have (z,v;) =0for j=1,...,m—1and (z,v,) =(z,2) = llzlI%, whence

F(Ulv cet Um) = F(Ul’ R Umfl)“Z”z'

According to the geometric interpretation of the Gram determinant, this means that
the volume of the m-dimensional parallelepiped P (v, ..., v,) is equal, just as in
the three-dimensional case familiar to the reader, to the (m — 1)-dimensional volume
of its base multiplied by the height:

)\m(P(Ula cees Um)) Z)mel(P(Uh cee vmfl)) Azl 4)

Let us obtain a natural and important bound on the volume of a parallelepiped P,
which is an easy corollary of (4). Since, by the Pythagorean theorem, ||v, 12 =
Iv11% =+ 11zl > l|z]|2, it follows from (4) that

)‘-}n(P(Ula~--avm)) g)"m—l(P(vl"-vvm—])) : ||vm||
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Repeating this estimate, we obtain the important Hadamard® inequality:

A (P1, -y vm)) < vt [vm - S

In other words, the volume of the parallelepiped with edges v, ..., v, does not ex-
ceed the product of their lengths. Clearly, this bound is sharp: a parallelepiped with
edges of given lengths has the largest volume if its edges are pairwise perpendicular.

We can write the Hadamard inequality in purely analytic terms, without involving
the notion of volume. Let A be an arbitrary m x m matrix, and let a; be its kth
column (k=1,...,m). Then

|det(A)| < llai]l - llam]-

This inequality is also called the Hadamard inequality. It follows from inequality (2)
applied to the map V corresponding to the matrix A and inequality (5):

|det(A)| = Am (P(ar. ....am) < llarll -+ lamll.

2.5.5 In conclusion of this section, we consider an interesting geometric problem
related to convex bodies, i.e., convex compact sets with a non-empty interior. Con-
siderable information about a convex body can be obtained if we know an ellipsoid
of maximal volume contained in it (by an ellipsoid we mean an affine image of a
closed ball). The problem of the existence and uniqueness of such an ellipsoid is
solved by the following theorem.

Theorem Among the ellipsoids contained in a convex body K C R™, there exists a
unique ellipsoid of maximal volume.

Proof Let us first verify that such an ellipsoid exists. If a sequence of ellipsoids
E, C K is such that

MEp) — V= sup{A(E) | E C K, E is an ellipsoid},

then, passing if necessary to a subsequence, we may assume that both the centers c,
of these ellipsoids and the vectors vl.(") (i=1,...,m) corresponding to their semi-
axes have limits: ¢, — ¢ and v{") - Vl,..., v,(,'f) — vy, as n — 00. It follows that K
contains the ellipsoid £ with center ¢ and semi-axes vy, ..., v,. As we have noted

in Sect. 2.5.2, its volume is equal to (hereafter «,, is the volume of the unit ball)

ME) = [[vrll -+ lvmll = lim_ o[- o] = lim A(En) = V.

n—oo

Hence £ is an ellipsoid of maximal volume for K.

8] acques Salomon Hadamard (1865-1963)—French mathematician.
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Now assume that there exist two ellipsoids of maximal volume. Since an affine
transformation sends an ellipsoid to an ellipsoid and preserves the ratio of vol-
umes, we may assume without loss of generality that one of the ellipsoids coincides
with the unit ball B centered at the origin and the semi-axes of the other ellip-
soid (denoted by &) are parallel to the coordinate axes. Let ¢ be the center of £ and
ap, ..., a, be the lengths of its semi-axes. Then y € £ if and only if y can be written
in the form y = ¢ + (a1 x1, ..., GuXxm), where x = (x1, ..., Xn) € B.

Consider the new ellipsoid E with center 5 and semi-axes (parallel to the coordi-

nate axes) of lengths H% el H% Each point z of E can be written in the form

= %c + (Haalxl,..., 14’2“’”)@,,), where x = (xq,...,x,) € B. Hence z = #,

where y = ¢ + (a1x1, ..., dmXn) € E. Thus E C 3B + 3€ C K. At the same time,

m m
— 1+a.

Um = A (B) 2 A(E) =aml_[—l Z oy H\/a—t:am

i=1

) =z
i=1

(the product aj - - - a,, is equal to 1, because «;,;, = A(E) = a;y ay - - - ay). Since the
outer terms of the last inequality coincide, it is an equality. Hence HT“’ = /a; and,
consequently, a; = 1 for all i. Thus £ is a unit ball. If it does not coincide with B,
then, as the reader can easily verify, the convex hull of these balls contains an ellip-
soid of revolution (obtained by rotating about the axis passing through their centers)
whose volume is greater than «,,, a contradiction. O

This theorem makes it possible to prove that for a “sufficiently symmetric” body,
the ellipsoid of maximal volume is a ball. This is the case, for example, for the cube,
for the octahedron determined by the inequality > ;" |x;| < 1, and for the regular
simplex.

It turns out that the ellipsoid of maximal volume occupies a sufficiently large part
of a convex body. The following theorem holds.

Theorem (John”) Let & be the ellipsoid of maximal volume for a convex body
K CR™. Then:

(1) ifthe center of € is at the origin, then K C m¢&;
(2) ifthe body K is centrally symmetric, then K C /mE.

Considering a simplex and a cube shows that the inequalities in the theorem are
sharp.

Proof (1) As in the proof of the previous theorem, we may assume that £ coincides
with the unit ball. To prove the inclusion K C m&, assume to the contrary that
|x]| > m for some point x € K. We may assume that x = (¢, 0, ..., 0) with ¢ > m.
Let T be the convex hull of the ball £ and the point x. Obviously, T C K. Take a

9Fritz John (1910-1994)—German mathematician.
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(=)
(1+¢)?
with b% = C_le_lzs We leave the reader to check that this ellipse is contained in the
section of T by the plane O X;X>. Hence the ellipsoid E(¢) obtained by rotating
the constructed ellipse about the axis O X is contained in 7" and, consequently,
in K. Its first semi-axis has length 1 + ¢, and the other semi-axes have length b. The
volume V (¢) = A(E(¢)) can be computed by the formula

2
small number ¢ > 0 and consider the ellipse + Z—% < 1 in the plane O X1X»

m—1

Vie) =1+ =l +e)<c_617_28)2.

Clearly, V(0) = o, and V'(0) = ap, Cc_f{' > 0. Hence for ¢ > 0 close to zero,
ME(e)) = V(e) > ay, but E(e) C K. This contradicts the fact that the ellipsoid
of maximal volume for K is the unit ball.

(2) If the body K is centrally symmetric with respect to the origin, then the same
is true for the ellipsoid of maximal volume £. Indeed, since the “reflected” ellipsoid
—£& is contained in K, it follows from the uniqueness of the ellipsoid of maximal
volume that £ = —&, i.e., the center of £ coincides with the origin.

The remaining part of the proof for the case of a centrally symmetric body is
similar to the above arguments. Again assuming that £ is the unit ball, we now

define a body T as the convex hull of the ball £ and the points £(c, 0, ..., 0) for
2 2
¢ > /m, and consider the ellipse (125)2 + ;—% > 1 with b? = % inscribed

into the two-dimensional section of T by the plane O X X». We leave the reader to
complete the proof. g

EXERCISES

1. Let us regard R? as the set of complex numbers. How does the Lebesgue measure
change under the transformation z — az, where a is a fixed complex number?

2. Let A, B :R"™ — R™ be linear maps. Show that if ||A(x)|| < ||B(x)]| for every
x € R™, then A, (A(E)) < Ay (B(E)) for every measurable set E.

3. Let EC R4 and S = {x € R™|||x|| € E}. Show that these sets are either both
Lebesgue measurable or both non-measurable. Show that each of the equalities
M (E) =0 and A, (S) = 0 implies the other.

2.6 *Hausdorff Measures

Here we will construct a family of measures 11, (p > 0) generalizing the Lebesgue
measure. For p = m, the measure ), in R™ will be proportional to A,,, and for p =
1,2,...,m—1, we will obtain generalizations of the Lebesgue measures defined so
far only on (measurable) subsets of p-dimensional subspaces.

The construction of the measures ji,, is based on an important geometric charac-
teristic of a set, its diameter. Recall that the diameter of a set E is the value

diam(E) = sup{||x —yllx,ye E}
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The diameter of the empty set is assumed to be zero.
2.6.1 Let ¢ > 0. A family of sets {ey}qea is called an e-cover of a set E C R if

EC U eq and diam(ey) <e forevery o € A.

ac€A

In what follows, we will need only covers that are at most countable, so hereafter
we assume that the set A is countable without stating this explicitly. We may assume
without loss of generality that A = N. We do this in most cases, but sometimes it is
convenient to use other sets of indices. It is clear that for every ¢ > 0, the space R™
and, consequently, every subset of R™, has an e-cover.

For arbitrary p > 0 and E C R™, set

e :inf{z<dlan;<en>

Jj=1

{ej}j>1 is an e-cover ofE}.

Obviously, the function & > w,(E, &) (which may take infinite values) is de-
creasing, and hence the limit

hm I’L[J(Ev 8) = Sup:up(Aa 8)
e—>+0

e>0

exists.
Definition The function

E  w,(E) =8£rgoup(E,s),

defined on all subsets of R, is called the p-dimensional outer Hausdorff'° mea-
sure.

We will soon see that u;‘, is indeed an outer measure in the sense of Defini-
tion 1.4.2.

Note also that, interpreting the space R as a subspace of R" (n > m), we may
regard every set E contained in R™ as a subset of R”. The diameters of a set com-
puted in the spaces R™ and R”, obviously, coincide, so that the value /L”;,(E ) does
not depend on the ambient space. Thus, speaking about the outer Hausdorff measure
of a set E, we may, and shall, omit reference to the space in which we regard it to
be embedded. When it is necessary to specify the domain of the function ;ﬁ[‘,, we
mention it explicitly.

In this connection, note that for subsets of the space R™, the outer measures u’;
are of interest only for p < m, since otherwise u = 0 (see the end of Sect. 2.6.6).

10Felix Hausdorff (1868—1942)—German mathematician.
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2.6.2 Let us establish the basic properties of the function ,u*[‘,.
(1) 0< 5 (E) < +00, 15 (2) =0.
(2) Monotonicity: if E C F, then “;(E) < ,u";,(F).

These properties are obvious.

(3) w3 is an outer measure: if E C\J;2 En, then W, (E) < 3 02 wh(Ep).

Proof We will assume that ) o~ wy,(En) < 400, since otherwise the inequality in

question is trivial. Fix a number ¢ > 0 and consider g-covers {e;.")} j>1 of the sets
E,, such that

% (dmnmeyh

4 e
> ) <,up(En,£)+§ n=1,2,...).

j=1

Obviously, the family {e;")}n, j>11s an e-cover of E, and, therefore,

© sdiam(e™)\r > e 00
up(E.e)< ) (%) < Z(u,;(%e) + 2—) <D (En) +e.
n,j=1 n=1 n=1
Passing to the limit as ¢ — 0, we obtain the desired result. O

On sets that are sufficiently far from each other, the function M; is additive. More
precisely, sets E and F are called separated if

inf{||x—y|||x€E, yeF}>O.

(4) For separated sets, /L’I‘, (EVF)= u’;,(E) + ,u’;(F).

Proof Since ,LL;(E Vv F) < u;(E) + u}‘,(F) by the subadditivity of ,uﬁl;, we only
need to prove the reverse inequality.

Let 0 <& <inf{l|lx — y|||x € E, y € F}. Consider an arbitrary e-cover {e;};>1
of the set E Vv F. By the choice of ¢, for every index j at least one of the intersections

ej N E, ej N F is empty, whence
o0 . . .
diam(e;)\” diam(e;)\” diam(e;)\”
J 2 —_— .
2(72 == X 7
Eij;ﬁg ejﬂF;ég

j=l1

Since the families {e; }e,ﬂE;éZ and {ej}e/mF;ég are g-covers of the sets £ and F,
respectively, we have

1 (diam(e;)\?
> <T) > up(E. &)+ pup(F. o).
j=1
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Taking the lower boundary of the left-hand side over all e-covers, we see that
up(E NV F,e) 2 up(E, &) + up(F,e). To complete the proof, it suffices to let
e— 0. 0

(5) Let E C R, and let ® : E — R" be a map satisfying the Lipschitz condition:
|ox) — ()| <Llx—yll forx,yeE,
where L is a constant. Then
W (P(E)) < LP i (E).

In particular, ,u;‘,(CD(E)) =0if ,u;‘,(E) =0.

Proof Let M;‘,(E) < 400, and let {e;} ;> be an g-cover of E such that

>\ (diam(e;)\?
Z(T) </"(’P(E’€)+€‘
j=1

We will assume that e; C E for all j (otherwise replace e; by e; N E). Since
diam(®(e;)) < L diam(e;), the sets ®(e;) form an Le-cover of the set ®(E),
whence

0]

diam(®(e;))\?
pp(®(E), Le) < 2}(%)
]:

o . . P
<LP Z(@) < LP(up(E. &) +¢).
i=1

Passing to the limit as ¢ — 0, we obtain the desired inequality. U

Remark For ,u}“,(E) = 0, the equality ,w;(CD(E)) = 0 can be obtained under less
restrictive assumptions on the map ®. It suffices to require that it is only locally
Lipschitz (this condition is satisfied, in particular, for maps that are smooth in a
neighborhood of E). Then one should split £ into countably many parts on which
d satisfies the Lipschitz condition (with a separate constant for each part), apply the
obtained result to each of them, and then use the countable subadditivity of pL}",.

To formulate the next property, we introduce two important classes of continuous
maps.

Definition Let £ C R™. We say that a map ® : E — R” is a weak contraction of
Eif [@(x)—OW)| < |lx —y| forall x,yin E.

We say that a continuous map ® : E — R" is expanding on E if |©(x) —
O = |lx — y| forall x, y from E.
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In other words, a weak contraction is a map that satisfies the Lipschitz condition
with Lipschitz constant 1. It is not necessarily invertible. However, an expanding
map is invertible, and its inverse is a weak contraction. In particular, any expanding
map is a homeomorphism. We emphasize that the image of a Borel set under an
expanding map is again a Borel set (this is a direct corollary of the proposition from
Sect. 2.3.3).

(6) If ® is a weak contraction of a set E, then /L; OE)) < u; (E). For an expand-
ing map, the reverse inequality holds.

This follows immediately from Property (5).

(7) If amap ® preserves the distances between points of a set E, then pL’; (P(E)) =
“;(E ). In particular, the outer Hausdorff measure is invariant under transla-
tions and orthogonal transformations.

The next result follows from Property (5).

(8) The outer Hausdorff measures of similar sets are proportional. More precisely,
py@E)=lal? W,(E) where aE={ax|xe€E} (aeR).

2.6.3 As we know (see Sect. 1.4.3), every outer measure generates a measure on
the o-algebra of measurable sets. The measure obtained by restricting the outer
measure MZ to the o -algebra of measurable (i.e., M;-measurable) sets is called the
Hausdorff measure and is denoted by . Which sets are measurable with respect to
this measure? The theorem below provides a wide class of such sets. In its proof it is
convenient to use the simple and important geometric notion of the e-neighborhood
of a set.

Definition Let ¢ > 0 and E C R™. The set E, formed by the points that lie at
distance at most ¢ from E is called the e-neighborhood of E:

E, = U B(x, ¢).

xeE

Obviously, E. are open sets that grow with &: E. C Es if 0 < & < §. Note also
that

(E)e = E,, (E¢)s = E¢qs foranye >0, >0, and mEg:E.

e>0

All these equalities are easy to verify.
Theorem Borel sets are /L”I‘,—measurable.

Proof Since the measurable sets form a o-algebra, it suffices to check that any
closed set F' is measurable. By the definition of measurability, we must check that
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u;(E) = u;(E NF)+ ,u,*[;(E \ F) for every set E C R™. By the subadditivity,
u’;)(E) < u;(E NF)+ ,u;‘,(E \ F), so it remains to show that

Wo(E) > Wy(E N F) + 1 (E \ F). ()

When proving this inequality, we may assume that “;(E ) < 4o0.
Let ¢ > 0, and let F; be the e-neighborhood of F. Put A, = E \ Fy/,. Then the
sets A, and E N F are obviously separated, and, by Property (4),

Wy (E) > 1y (ENFYU Ap) = 15, (ENF) + iy (An).
To obtain (1) by passing to the limit in this inequality, we should check that
M;(An)—)M;(E\F) as n — oo. 2)

Since F is closed, (..o Fe = F, whence E\ F =, As. Set B; = Aj11\ Aj.
Now E\F=A,Vv\/ j>n Bj and, since ,u; is monotone and countably subadditive,
Wy (An) SU(E\F) < pp(An) + ) up(B)j)  (forevery n € N).

jzn

Hence if the series

D Hp(B)) 3)

izl

converges, then the difference y,;(E \F)— yf;, (A,) can be bounded by the remain-
der of a convergent series, which implies (2). To prove that the series (3) converges,
we use the fact that the sets By and B, are separated for |k — /| > 1 (which is left to
the reader to check). It follows that for every N

N N
ZM;(sz) = Mf,(\/ sz> <y (E) < o0
= =1

Hence the series Z;’ozl Wy (Baj) converges. In a similar way we verify that the series

Z;’O: 1 ,u’;(Bg j+1) converges. This ensures the convergence of the series (3), which,
as we have already observed, suffices to complete the proof of the theorem. g

We complement the obtained result with an assertion showing that any set (not
necessarily measurable) is contained in a Borel set of the same Hausdorff measure.
For the Lebesgue measure, we have already met a similar result (for a measurable
set) at the end of Sect. 2.2.2.

Proposition For every set E, E C R™, there exists a Borel set C such that E C C
and 13 (E) = 11,(C).
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Proof We will assume that u*[; (E) < +00 (otherwise we can take R™ as C). For

every n € N, find a %-cover {e;m}j?o | of E such that

i diam(e;.")) ! E ! + !
- ~ < 9 - _7
2 Hp n n

j=1
and let C,, = Ufozl e(l.n). Since the diameter of a set coincides with the diameter of
its closure, '
1\ & diam(el")y 7 1N 1
“P(C"’z)gzl(iz ) <m(F) o
j:

It is clear that the Borel set C = ﬂff:l C, contains E, and for every n,

1 1 1 1 1 1

C’_ < Cv_ < Es_ _< Cs_ .

) smleny) <mn(e7) 5 <mmle )+
Passing to the limit as n — 0o, we see that ;ﬁ;, (E) = up(C). O

2.6.4 Now let us show that in the case p = m the Hausdorff measure essentially
coincides with the m-dimensional Lebesgue measure. We will need the following
easy estimate.

Lemma If Q = [0, 1] is the unit cube, then 0 < %, (Q) < 400.

Proof To verify the left inequality, observe that every set e is contained in a closed
ball of radius diam(e). Hence every cover {e;} ;> of the cube O generates a cover
of O by closed balls B; of radii r; = diam(e;). By the countable subadditivity of
the Lebesgue measure, we have

- u 7 diam(e;)\"
1=Am(Q)gme(Bj)zzam,;nzzmamZ<Tf) ,
j=1 j=1 j=1
where a;;, = A, (B(0, 1)). Hence

1 <§: diam(e;)\"
M, 2

j=1

for an arbitrary e-cover {e;};> of the cube Q. Therefore, 1, (Q, &) = 27" /oy,

whence 1, (Q) = sup,_o um(Q, €) 227" /a.
To prove the right inequality, split the cube Q into N congruent cubes Q;.
Jm

The diameter of each of them is equal to % Hence they form a %—cover of the
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cube Q. Then
N™ o,
Jm diam(Q;)\" N
, — < _ :Nm —_— =2 n 2,
Min(Q N 12_; ) N m
Therefore,
. m _ m
MZ(Q)=Nh_r)nooum< %) <27"m? < +4o0. O

Theorem The Hausdorff measure |1, is proportional to the Lebesgue measure Ay, .

Proof Let A™ be the o -algebra of Lebesgue measurable subsets of R” and A" be
the o-algebra of ), -measurable sets.

Both measures A, and u,, are translation-invariant, and w,, ([0, 1]™) < 400 by
the lemma. By Theorem 2.4.2 and the remark after it, these measures are propor-
tional at least on the o-algebra of Borel sets, and the proportionality coefficient is
positive because wu,, ([0, 1]™) > 0. It follows that on Borel sets they vanish or do not
vanish simultaneously. Since both measures are complete, Proposition 2.6.3 implies
that 2" = 2(", and on this o -algebra the measures are proportional. g

It easily follows from this theorem that for k = 1,2,...,m — 1, a similar re-
sult holds for the restrictions of the Hausdorff measure ;. to k-dimensional affine
subspaces.

Later, in Chap. 6, we will derive a precise formula that shows how the Lebesgue
measure changes under a diffeomorphic transformation. Now we only mention a
qualitative result following from the theorem and Property (6) from Sect. 2.6.2.

Corollary The outer Lebesgue measure does not increase under weak contractions
and does not decrease under expanding maps.

One should be careful when considering the problem of whether the image of
a measurable set under an expanding map is measurable. Of course, this is only a
problem in the case of a non-smooth expanding map. The inverse of an expanding
map, which is Lipschitz, preserves Lebesgue measurability (see Sect. 2.3.1). But
the map itself does not necessarily have this property: it can expand a set of zero
measure too much (see Exercise 5 in Sect. 2.3). At the same time, as we have already
observed, the narrower class of Borel sets is preserved under expanding maps.

2.6.5 As we have proved in Theorem 2.6.4, the measures A,, and u,, are propor-
tional. The computation of the proportionality coefficient is based on two geometric
results, which are of independent interest.

Lemma (On exhaustion by balls) Every non-empty open subset G of the space R™
can be written as the union of a sequence of pairwise disjoint balls B, and a set of
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Zero measure e:

00
G:eV\/Bn.
n=1

The diameters of the balls may be chosen arbitrarily small.

Proof The proof will be divided into two steps. First we show that in every bounded
open set G, G # O, one can find pairwise disjoint balls By, ..., By such that

hn(G\ (B V-V By)) <03 (G)

(the coefficient 6 = 6,, € (0, 1) depends only on the dimension of the space).

Let us split the set G into cubic cells 9, with rational vertices (see Sect. 1.1.7).
Since they can be further split into smaller parts, we may assume that the diameters
of these cells are arbitrarily small. Since A,,(G) < 400, for sufficiently large N we
have

o0 N
In(G) =D " dm(Qn) <2 Am(Qn).
n=1 n=1
Let B, be the open ball inscribed into the cell Q,, (the centers of B, and Q,, coin-
cide, and the radius r,, of the ball is equal to half the length of the edge). The volume
of the ball constitutes a fraction of the volume of the cell that depends only on the
dimension:

m Qm ~
Am(Bp) =Qanr, = ﬁ)\m(Qn) = Am(On),
where «;,,, = A,;,;(B(0, 1)). Hence

N N o
2 m(Ba) =8 ) hm(Qn) > —hm(G).

n=1 n=1
Therefore,

~

N
An(G\(BIV -V BN)) = 2n(G) = Y (Ba) < 2n(G) = 523 ().

n=1

Thus we may set 0 = 1 — &, /2.

Let us proceed to the second step of the proof, first assuming that the set G
is bounded. As we have just seen, we can remove from G a finite collection of
pairwise disjoint balls By, ..., By, so that the measure of the remaining set is less
than 6A,,(G). Removing from G the closures of these balls, we obtain an open
set G1 C G with A,(G1) < 6X,,(G). Now we can repeat this construction with
G, finding a finite collection of pairwise disjoint balls By, 41, ..., By, such that
the measure of the remaining part of the set G is less than 6A,,(G1). Removing
from G the closures of these balls, we obtain an open set Gy C G| with A, (G2) <
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OAm(G1) < 621 (G). Continuing by induction, we construct a sequence of pairwise
disjoint balls B, B, C G, and a sequence of nested open sets G;, G D G1 D G2 D
., such that

G\ U B, C G; and X1,(Gj) < 67 am(G) for every j.
n>1

It remains to observe that the set e = G \ \/,;»| B, has zero measure, since it is
contained in the union of the sets (1, G; and [, >, dB,,.

If the set G is not bounded, it can be written as the union of a set of zero measure
and a sequence of pairwise disjoint bounded open sets. We will obtain the desired
decomposition applying the assertion already proved to each of these parts. 0

Another proof of this lemma can be obtained from the Vitali theorem (see Corol-
lary 2 in Sect. 2.7.3).

We will also need another geometric fact. Namely, the so-called isodiametric
inequality, which can be stated as follows (see Sect. 2.8.3):

Among all compact sets of a given diameter, the ball has the largest volume.
Now we can find the proportionality coefficient between the measures A,
and [,.

Proposition A, = o, .

Proof 1t suffices to establish the equality A,, (E) = «;, 0 (E) for at least one set of
positive finite measure.
Let {e;};>1 be an e-cover of a non-empty open bounded subset G in R™. Note

dlam(e} ).

that, by the isodiametric inequality, A, () < o (—=—)". Hence

e¢]

)‘m(G)gz)»m(Ej) Za <dlam(ej)> amz<@>
=1 = i

J
Taking the lower boundary of the right-hand side over all e-covers, and then passing
to the limit in &, we obtain

An(G) < apum(G). 4

On the other hand, by the lemma, the set G can be written as the union of a
sequence of pairwise disjoint balls B; = B(x;,r;) and a set e of zero Lebesgue
measure. Then

o0 o0
I (G) =) hm(Bj) = am Y1l
j=1 j=1

The radii of the balls may be chosen arbitrarily small. We will assume that all of
them are less than ¢.
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Since wn,(e) = Ay(e) =0, we have u,, (e, e) = 0, and hence there exists an
g-cover {ej} ;> of the set e such that

>\ (diam(e;) "

j=1

Thus the sequences {B;};>1 and {e;} ;> together form an e-cover of G, and, con-
sequently,

m

> >, (diam(e;)\" 1
Mm(G,s)SZVTJFZ(T’) <a—km(G)+£.
j=1 j=1

Passing to the limit as ¢ — 0, we obtain an upper bound on wu,,(G): U, (G) <
ik’" (G). Together with (4) this yields the desired result. O

2.6.6 In conclusion let us discuss the dependence of the value u;‘)(E) on p. Ob-
viously, /L’;(E) decreases as p grows. Moreover, it turns out that u; (E)=0if
u’;)(E) < +o0 for some p < ¢q.Indeed, let 0 < & < 1, and let {e;} ;> be an e-cover
of E such that

diam(e;) N
2 — <1+,up(E,e)<1+pr(E)<+oo.
j=l1

Then

1o (E. ) < i(dmm(eﬂ) <<§)‘1Pi(dim;(ej)>p

Jj=1 J=1

e\4P
*
Passing to the limit as ¢ — 0, we see that
g (E) =lim p4(E, e) =0
e—>0

The obtained result can also be interpreted as follows: if 0 < M; (E) < +00, then
uj;(E) = +4oo for ¢ < p and MZ(E) =0 for g > p. It follows that for every set E
we have

inf{g > 0] 3 (E) =0} =sup{q > 0| (E) = +-o0}.

This critical value characterizing the set E is of special importance. It is called the
Hausdorff dimension of E and is denoted by dimy (E) (if ,u; (E)y=0forallg >0,
then, by definition, dimg (E) = 0). It follows from Lemma 2.6.4 that u; (E)=0if
E C R™ and g > m. Thus the Hausdorff dimension of every subset of R” does not
exceed m. It is equal to m if the outer Lebesgue measure of the set is positive.



82

2 The Lebesgue Measure

EXERCISES

1.

2.

10.

11.

12.

Without using Proposition 2.6.5, show directly that x| ([a, b]) = (b —a)/2 and,
consequently, A1 =2u1.
What is the Hausdorff dimension of a countable set? Show that

dimg (U E,,) = supdimpy (E,).
n

n>1

Two points x, y € R™ are called e-distinguishable if ||x — y|| > &. Show that

log(N
dimy () < lim ENEE)
e>+0 |logel

where N (¢) is the maximum number of pairwise e-distinguishable points con-
tained in a bounded set £ C R™. Considering the set £ = {1,277,377, ...}
with p > 0, show that this inequality cannot be replaced by an equality.

Show that the Hausdorff dimension does not increase under a map satisfying
the Lipschitz condition and hence is preserved under a diffeomorphism.

Show that the Hausdorff dimension of the Cantor set is equal to logs 2.

Show that for x > 0, the Cantor function ¢ satisfies the equality ¢(x) =
271, ([0, x] N C), where C is the Cantor set and p = dimg (C).

Modifying the construction of the Cantor set, show that forevery p,0 < p <1,
there exists a compact set E contained in [0, 1] whose Hausdorff dimension is
equal to p. Illustrate with examples that each of the following three cases is
possible: wp(E) =0, up(E) =—+00,0 < up(E) < +o00.

Show that there exists a set contained in [0, 1] for which the Lebesgue measure
is equal to zero and the Hausdorff dimension is equal to one.

Show that in the lemma on exhaustion by balls (see Sect. 2.6.5), the ball can
be replaced with a bounded measurable set whose measure is positive and co-
incides with the measure of its closure (e.g., a convex body).

Consider a sequence of balls in R” whose radii tend to zero and whose total
volume is infinite. Show that one can put a finite number of such balls into the
cube so that they fill at least 99 % of its volume.

Let G and A be bounded open subsets of R”, A being convex. Consider a spe-
cial method of exhaustion of G which successively removes from G the maxi-
mum possible sets similar to A. That is, at the first step we find the maximum
coefficient ¢; > O such that some translation x; + c{ A of the set ¢1A is con-
tained in G (such a coefficient exists). Then we put G| = G \ (x1 +c1 A) and, re-
peating the procedure, construct a set G, and so on. Show that A, (G},) n_)—go 0.

A subset E of the space R™ is called negligible if A, (E;) = o(¢) as ¢ — 0
(here E. is the e-neighborhood of E). Show that if E is negligible, then
M;ﬁn_l (E) =0.
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2.7 *The Vitali Theorem

In this section, we prove two theorems on covers used in the study of the properties
of measurable sets and functions (see Chap. 4). We denote the Lebesgue measure
on R™ by X without indicating the dimension; given a ball B, we write r(B) for its
radius and B* for the ball of radius 5r(B) with the same center.

2.7.1 We will establish one fact of independent interest before proving the Vitali
theorem which is the main result of this section.

Theorem Let B be a collection of balls that form a cover of a bounded set E
(E C R™). If the radii of the balls are bounded, then we can extract from this col-
lection a sequence (finite or not) of pairwise disjoint balls By, such that

Ec| B

k>l

Proof We will assume without loss of generality that £ N B # & for all balls B
from B. It is clear that in this case the set |z B is bounded.

We will construct the desired sequence of balls By = B(xy, rx) by induction. For
the sake of uniformity, let B =) and R; = sup{r(B) | B € B;}. Choose B; € B; so

that r1 = r(B1) > R1/2. Assume that pairwise disjoint balls By, ..., B, and subsets
B1, ..., B, of the initial collection B have already been constructed. Let
n
By = {BGB,, BmUBkzg}.
k=1

If B, +1 # @, then we put R,| =sup{r(B) | B € B,+1} and choose a ball B, 1| so
that r,+-1 = r(By+1) > Ry+1/2, and so on. Thus either the set B,,4 is non-empty at
each step and we obtain an infinite sequence of balls, or B, = & at some step and
the process terminates. Let us consider both possibilities, starting with the second
one.

Let B, +1 = @ and x be an arbitrary point from E. It belongs to some ball B =
B(a,r) € B, and BN |J;_, Bx # @. Let j be the smallest of the indices k such
that B N By # @. Then r < R; (for j =1 this inequality is trivial, and for j > 1 it
follows from the fact that B is disjoint with the union U,ﬁ;]l By). Let us check that
X € B;‘. Indeed, since the balls B and B; have a non-empty intersection,

lx — xjll <diam(B) +r(Bj) =2r +r; <2R; +7r; < 5r;

(the last inequality holds, because r; > R /2 by construction).

Now consider the main case, where the sequence of balls {By}¢>1 is infinite.
First of all, observe that the series )| k=1 A(By) converges. Indeed, the balls By are
pairwise disjoint by construction. Hence the sum of the series is simply the measure
of the bounded set [ J k>1 Br (at the beginning of the proof, we have observed that
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the union of all balls from B is bounded). From the convergence of the series it
follows immediately that ry — O.
Let x € E, and let B be a ball from B such that x € B. Let us check that

Bn| B #2. ¢))

k=1

Indeed, otherwise B N UZ:I By =@.Then 0 <r(B) < Ry41 < 2ry4 for every n,
which is impossible since r, — 0. It follows from (1) that the intersection B N By
is not empty for some indices k. Let j be the smallest of them. Repeating the above
argument, we see that x € B;.‘. O

Note that, as one can see from the proof, the conclusion of the theorem holds for
every sequence of balls { By }¢>1 from the cover B satistying the following condition
for every n:

n n
B,H_IOUBk:@, 2r(Bn+1)>sup[r(B)‘BﬂUBk:®}. 2)
k=1 k=1

2.7.2 The theorem can be substantially refined if the cover satisfies an additional
condition.

Definition A collection B of open balls is called a Vitali'! cover of a set E
(E C R™) if for every point x in E, there is an arbitrarily small ball in B con-
taining x.

Theorem (Vitali) In every Vitali cover BB of a bounded set E there exists a sequence
(finite or not) of balls By satisfying the following conditions:

(1) the balls By are pairwise disjoint,
3) M(E\ Uz Bi) =0.

Note that we do not assume that the set E is measurable.

Proof Discarding, if necessary, balls with too large radii, we assume that r(B) < 1
for all balls B in B. Then we may apply Theorem 2.7.1. Let { Bt }x>1 be the sequence
of balls constructed in that theorem. It satisfies conditions (1) and (2). Let us check
that it also has Property (3).

If this sequence is finite and consists of n balls, then E C UZ:] By Indeed, the
finiteness means that B N | J;_, Bx # @ for every B € B. Since every point in E
belongs to a ball with arbitrarily small radius, this would be impossible unless there

“Giuseppe Vitali (1875-1932)—TItalian mathematician.
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are points in E not belonging to | J;_, Bx. Therefore, E \ |Uj_, Bx C U}, 3Bk,
and hence condition (3) is satisfied.

Now consider the case where the sequence { By}, > is infinite. Let us check that
for every n

n o0
E\|JBc | B 3)
k=1 k=n+1

Let 5,41 be the set of balls constructed in the proof of Theorem 2.7.1. It forms
a Vitali cover of the set E, = E \ j_, By, and the sequence of balls {Buk i1
satisfies condition (2). Hence, by Theorem 2.7.1, E,, C U,‘:oz 1 B:: e Therefore, for
every n we have

o0 n n o
E\|JBic (Uam) UE, C (U83k> u( U B,j).
k=1 k=1 k=1 k=n+1
Moreover,
n o0 o0 o
)\(U v B,f) < D0 A(BY)=5" )" ABY 2.0
k=1 k=n+1 k=n+1 k=n+1

(the last sum tends to zero as the remainder of a convergent series). Thus the set
E\ U2 B is contained in a set of arbitrarily small measure, which implies (3). CJ

Remark Splitting an arbitrary set into bounded parts, one can easily show that
claims (1) and (3) of the theorem also remain valid for an unbounded set E.

2.7.3 One of the important corollaries of the Vitali theorem is related to density
points.

Definition A point x is called a density point of a set E if
A* (E N B(xo, r))/)L(B(xo, r)) —1 asr— +0.

Corollary 1 Let E' be the set of density points of an arbitrary set E. Then
AME \ E") = 0. In particular, almost every point of a measurable set is a density
point of this set.

Proof Let Eg = E \ E'. If x € Ej, then there exists a sequence of radii {r,(x)},>1
decreasing to zero such that

- A*(E N B(xg, rn(x)))
n— 00 )L(B(XO, rn(x)))

< 1.
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For 6 € (0, 1) put

E9={er0 lim A(E N B(x, (%)) <9}
n—co  A(B(x,ry(x)))

Since Eg C Ey for0 <6’ and Eg = Uee(o,l) Ey, it suffices to verify that L(Eg) =0
(note that we do not know anything about the measurability of the sets Ey yet).
Fixing 6 € (0, 1) and an arbitrarily small positive number ¢, let us find an open
set G containing Ey such that L(G) < A*(Eg) + ¢ (see the remark in Sect. 2.2.2).
All balls B(x,r,(x)), x € Ep, that are contained in G and satisfy the condition
A (ENB(x,rp(x))) <OA(B(x,ry(x))) form a Vitali cover of the set Eg. By the Vi-
tali theorem, there exists a subsystem of pairwise disjoint balls By = B(x, rp, (Xk))
such that the set-theoretic difference e = Ep \ | k>1 Bk has zero measure. By the
countable subadditivity of the outer measure, we obtain

W (Eg) <A*(e)+ D A (Eg N B) < Y A*(ENBY)
k>1 k>1

<) OA(Br) <OMG) < O(A*(Eg) +e).
k>1

Thus A*(Eg) < %, and, since ¢ is arbitrary, it follows that A*(Eg) = 0. This means

that the set Ey is measurable and A(Eg) = 0. O

The Vitali theorem easily implies the result on exhaustion of an open set by balls
obtained in Lemma 2.6.5.

Corollary 2 Every non-empty open subset G in the space R™ can be written as the
union of a sequence of disjoint balls B,, and a set of zero measure e:

Proof Consider the system of all balls contained in G. It obviously forms a Vitali
cover for G. Hence, if the set G is bounded, it suffices to use Claim (2) of the Vitali
theorem and put e = G \ Uy > Bk In the case where G is not bounded, one should
refer to Remark 2.7.2. g

2.7.4 The Vitali theorem has various generalizations. To describe one of them, we
introduce the notion of a regular cover. A system of sets B={E;(x)|x € E, j e N}
is called a regular cover of a set E if the following conditions hold:

(1) Ej(x) C B(x,rj(x)), rj(x) v 0;

. AME;
(2) infjen Wfﬁg)) > 0 for every x € E.
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For example, as E;(x) one can take cubes etc. that are “not too small” compared
to B(x,r;(x)). For regular covers, an analog of the Vitali theorem holds (see, for
example, [S, Chap. IV, Sect. 3]).

Theorem In every regular cover of a set E there exists a sequence of pairwise
disjoint sets Ey = E j, (xy) such that A(E \ Uk>1 Ey) =0.

One can prove that the Vitali theorem remains valid for every Borel measure i
in a metric space if it is finite on balls and “quasihomogeneous”, i.e., there exist
constants K > 1 and a > 1 such that u(B(x,ar)) < K u(B(x,r)) for all x and
r > 0. For example, this condition is satisfied for the surface area on a compact
smooth manifold (see Chap. 8).

EXERCISES

1. Show that the Vitali theorem is also valid for an unbounded set.

2. Show that every differentiable function on an interval preserves Lebesgue mea-
surability.

3. Extend the result of Exercise 6 in Sect. 2.1 to the two-dimensional case by show-
ing that the union of an arbitrary family of non-degenerate triangles on the plane
is measurable. Is the same true if we replace triangles by their boundaries?

4. Let G be an open subset of R”, ® € C!(G,R™) and E C G. Show that if ® is
expanding on E, then |det ®’(x)| > 1 almost everywhere on E. Can we assert
that |det @’(x)| > 1 everywhere on E provided that it is connected? Hint. Show
that the desired inequality holds at every density point of E.

5. Let O be an open subset of R™, and let ® € C1(O,R™) with detd’ # 0 (the
last assumption can be dropped by Sard’s theorem, see Appendix 13.5). Show
that there exists an open set G C O such that the restriction of ® to G is one-to-
one and ®(0) = ®(G) U e, where A(e) = 0. Hint. Splitting the set O into parts,
reduce the assertion to the case where the closure of O is compact, A(00) =0,
and @ is smooth in a neighborhood of O. Show that the set of inverse images of
every point from & (O) is finite. Show that if a point x does not belong to ®(00),
then it has a neighborhood whose full inverse image breaks into n connected
components, where n is the number of inverse images of x. Using the Vitali
theorem, find a sequence of such neighborhoods that “almost cover” ®(0O) and
form G from the components of their inverse images.

2.8 *The Brunn-Minkowski Inequality

In this section, by A we denote the Lebesgue measure on R™, which we also call the
volume.

2.8.1 The main result of this section is the following statement.
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Theorem For compact sets A, B C R"™, the following inequality holds:
1 1 1
Am(A+ B) = Am(A)+rm(B).

Here A + B is the algebraic sum of A and B,i.e, A+ B={x+y|x€ A, ye B},
A, B#Q.

This is the Brunn'?>~Minkowski!? inequality.

If A and B are sets of positive measure, then the Brunn—Minkowski inequality
becomes an equality only in the case where A and B are similar. The proof of this
fact is not easy even for convex bodies (cf. Exercise 3). For a discussion of this and
related results, see, for example, [BZ].

Proof The proof splits into several steps, with the sets A and B becoming more and
more complicated.

(1) Let A and B be parallelepipeds with edge lengths a1, ..., oy and By, ..., Bu,
respectively. Then A + B is a parallelepiped with edge lengths o1 + 81, .. ., &1 + B
We will assume that «; + 8; = 1 (the general case can then be obtained by scaling
along the coordinate axes). Thus

AMA)=ay---ay, AB)=PB1--Bm, AMA+B)=1.

It remains to apply the inequality of arithmetic and geometric means:
A3 (A) + A7 (B) = ( Vot (1 ) < i 1 iﬂ 1
=(a1- oy 1 m \mi-la] 2 =

=i (A+ B).

(2) Now let each of the sets A and B be a finite union of cells. By the theorem
on properties of semirings (see Sect. 1.1.4), such unions can be assumed disjoint:

r N
A:\/Pk, B:\/Qj.
k=1 Jj=1

We will argue by induction on the sum n = r + s, assuming that P, Q; # &. The
inductive base (for n = 2) was proved in the previous step.

Assume that the desired inequality is true for r +s < n. Let us prove the inductive
step for n > 3. Since r and s are interchangeable, we may assume that r > 2. The
cells P; and P, have no common points, hence their projections to at least one
coordinate axis, say x1, have no common points either. This means that P; and P, lie

12Hermann Karl Brunn (1862-1939)—German mathematician.

13Hermann Minkowski (1864—1909)—German mathematician.
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on opposite sides of some plane x; = a. We may assume without loss of generality
that Py C HY ={(x1,...,xn) |x1 =a}and P, C H~ ={(x1, ..., %) | X1 <a}.Put

A*=ANH*,  PF=PNH%

Each of the sets A can be written as the union of at most (» — 1) cells:
r—1 r
At=Jprr. A =P
k=1 k=2

Now consider a plane x| = b that divides the set B in the same ratio as the plane
x1 = a divides the set A. More precisely, we mean that the measures of the sets
Bt =BnNn{(x1,...,xm)|x1 =b}and B~ =B N{(x1,...,%,)|x1 <b} are in the
same ratio as the measures of the sets A*. The latter condition is equivalent to the
following one: for some 6 € (0, 1),

MBY) _MAH) o MBT) KA

= = an = =
MB) — A(A) AMB)  A(A)

Note that each of the sets BT (as well as B) is the union of at most s pairwise
disjoint cells. Obviously, A+ B D (AT +BT)U(A™ + B7), and the sets AT + Bt
and A~ + B~ are disjoint (since they lie on opposite sides of the plane x; =a + b).
Hence

MA+B) 2 A((AY+BY)U(A”"+B7))=1(AT +BT)+1(A” +B").

The measures on the right-hand side can be estimated from below by the induction
hypothesis:

A(AE 4 BE) > (i (A%) + 2 (BE))".
Together with the previous inequality, this yields

m

WA+ B) = (M (AT) + 4 (BF))" + (b (A7) + 2 (B))
= 0(Am (A) + 10 (B))" + (1= 0) (A (A) + 2 (B))"
= (A (A) + 17 (B))",

which completes the inductive step.

(3) Now let A and B be arbitrary compact sets. Obviously, the set A 4+ B is also
compact. We will obtain the desired result by approximation.

The sets A and B have finite covers by open parallelepipeds (and hence cells)
lying in the §-neighborhoods of these sets. Let A’ and B’ be the unions of the cells
covering A and B, respectively. Clearly, A’ + B’ C (A + B)2s. As we have already
observed (see Sect. 2.6.3), the intersection of all §-neighborhoods of a set coincides
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with its closure. Hence, by the continuity of A from above, we have A((A + B)as) —
M(A + B) as § — 0. By the result proved at the previous step,

V(A4 Bra) 0 (4 + B) 3 18 (4) 4 28 (B) 225 (4) 415 (B).
Now the desired inequality can be obtained by passing to the limit. 0

Remark We have considered the Brunn—Minkowski inequality in the main special
case, namely, for compact sets. Using similar arguments, one can easily prove it, for
example, for open sets. However, one should bear in mind that for arbitrary mea-
surable sets A and B, the set A + B is not necessarily measurable (see Exercise 6).
Accordingly, the Brunn—Minkowski inequality for non-empty measurable sets takes
the form
L 1 1
(A*(A+B))™ = (A) + 1 (B),

where A* is the outer Lebesgue measure. To prove it, recall (see Corollary 3 in

Sect. 2.2.2) that, by the regularity of the Lebesgue measure, the sets A and B can be
written in the form

where A(e) = A(e’) =0 and {An}u>1 and {B,},>1 are increasing sequences of com-
pact sets. Since A + B D A, + B, for every n, we have

1 1 1 1
(M (A+B))™ = A (Ay + By) = Ain (Ay) + A (By).

Now A(A,) — A(A) and A(B,) — A(B) as n — 00, so that passing to the limit
yields the desired result.
One can also prove (see [F]) that

3=

1 1
(A*(A+B))" = (A" ()" + (A (B))
for arbitrary sets, but we will not dwell on this here.

2.8.2 The Brunn—Minkowski inequality easily implies an inequality relating the
volume of a body and its surface area (by a body we mean a compact set with a
non-empty interior). The notion of surface area is discussed in detail in Chap. 8;
here we restrict ourselves to defining the Minkowski surface area needed for stating
this inequality. The definition is based on the following apparent observation: when
we pass from a body K to its e¢-neighborhood (see Sect. 2.6.3), the increment of
the volume for small ¢ > O must be almost proportional to the area of the boundary
of K.
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Definition Let K C R™ be an arbitrary body and K, be its e-neighborhood. The
lower Minkowski area of 0K is the value

MK\ K
Er;il(aK): lim w
e—>+40 €

The limit lim, .o 252K (if it exists) is called the Minkowski area of 9K . We will
denote it by %,,_1(0K).

Simple calculations show that for a sphere S(r) C R™ of radius r, we have
Sm—1(S(r)) = may,r™ ', where «,, is the volume of the unit ball in R™. As we
will see (cf. Sects. 8.4.4 and 13.4.7), for bodies with sufficiently smooth boundary
and for convex bodies, the Minkowski area of the boundary is proportional to the
Hausdorff measure fi,,_1.

Theorem (Isoperimetric inequality) For every body K C R™,
1o
S (0K) = mai 2" (K).

If K is a ball, this inequality becomes an equality, which implies the isoperimet-
ric inequality in its classical form, where by the surface area we mean the lower
Minkowski area:

Among all bodies of a given volume, the ball has the smallest surface area.
Among all bodies of a given surface area, the ball has the greatest volume.

As the reader can easily check, the isoperimetric inequality can also be written
in the following form (hereafter B is a ball in R™):

_ 1 1
<2m_1(8K)>ml ><)\'(K))m
%, ,(0B) ~\\(B)
Proof Let B = B(0, 1), o), = A(B). By the Brunn—Minkowski inequality,

1
A (Ke) = An (K +6B) > 2 (K) + el

Raising to the power m yields

1

MK\ K) =A(Ke) = A(K) = meai 2" (K)+ O(&?).

The desired inequality can be obtained by dividing by & and passing to the limit:

_ . 1 .
X, 10K)= lim —A(K;\ K) Zmay 1 (K). -
e—>+0€
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2.8.3 As another application of the Brunn—Minkowski inequality, we will also prove
the isodiametric, or Bieberbach'* inequality.

Theorem Among all measurable sets of given diameter, the ball has the greatest
volume.

Proof Let A C R™ with diam(A) = d. Since the diameter of a set coincides with the
diameter of its closure, we may assume that A is closed and hence compact. Con-
sider the sets A’ = —A and E = %(A + A’). By the Brunn—Minkowski inequality,
the volume of E is not less than the volume of A:

win (E) = %A%(A +A)> %(x%(A) + 4 (A')) = A7 (A).

Let us check that the set E is contained in a closed ball of radius d/2. Indeed, if
x € E,thenx = (s —1)/2, where 5, € A. Hence ||x| = S lls — ] < 4. Thus A(A) <
M(E), and E is contained in a ball B of radius d/2. Therefore, A(A) < A(B). O

EXERCISES In what follows, A and B are subsets of R™.

1. Let A and B be compact sets. Show that the function ¢ )\% (tA+ ({1 —1)B)is
concave on [0, 1], i.e., that

2 (tA + (1 = H)B) = 1A (A) + (1 — A (B)
for every ¢, 0 <t < 1. Using the fact that the logarithm is concave, deduce that
A(tA+ (1 —1)B) = A" (AA(B).

2. Arguing as in Remark 2.8.1, show that for arbitrary (possibly, non-measurable)
sets A and B,

1 1 1
A (A+ B) 2 A8 (A) + 43 (B),

where A, is the inner measure (for the definition, see Sect. 2.2.2).

3. Show that for ellipsoids, the Brunn—Minkowski inequality becomes an equality
only in the case where they are similar. Hint. Apply the method used in the proof
of Theorem 2.5.5 on the uniqueness of an ellipsoid of maximal volume.

4. Let [a, b] be the projection to the first coordinate axis of a convex body lying in
R™ (m > 2). Let S(¢) be the area of the section of this body by the plane x| = ¢
and V (¢) be the volume of its part lying in the half-space x; < ¢. Show that the

function Sﬁ is concave and the ratio V% / Sﬁ does not decrease on (a, b].

5. Show that the arguments of Sect. 2.8.3 remain valid if we replace the Eu-
clidean norm | - || by an arbitrary norm || - ||4: if a measurable set A C R™
is such that ||x — y|lx < 2r for all x,y € A, then A(A) < A(By(r)), where
B.(r) ={x e R"| x|« <r}.

4Ludwig Georg Elias Moses Bieberbach (1886—1982)—German mathematician.
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6. Show that the algebraic sum of sets of zero Lebesgue measure can be non-
measurable. Hint. Consider the set C + 2E, where C = {Z;’lozl e 47" ey, =
Oor 1} and the set E C C is constructed from an ultrafilter ${ in N consisting
of infinite sets: £ ={)_, ;47" |U € 4}. Use the same trick as in the solution
of Exercise 12 in Sect. 2.1.



Chapter 3
Measurable Functions

The introduction of the notion of a measure is a necessary step towards the solu-
tion of the main problem, that of defining the integral. However, even now, having
become familiar with measures, we cannot proceed directly to this task. The prob-
lem is that without specifying in advance for which functions the integral is being
constructed we will inevitably run into difficulties. To illustrate this, consider the
following very simple situation.

It is natural to try to define the integral of a bounded function defined on the
interval [a, b] as the limit of the (Riemann) integral sums, i.e., sums of the form

n
Y FE) (i —xi1), wherexg=a <x) <o <Xp=b, x_1 <& <X
k=1

The limit is taken as the maximum of the differences x; — x;_1 tends to zero, and it
should not depend on the choice of the points &.

If the function f is continuous, then this limit exists (see Theorem 4.7.3). But an
attempt to apply this procedure to functions with “many” discontinuities fails. For
example, if f is the Dirichlet function, which is equal to one at rational points and
zero at irrational points, we see that the integral sum vanishes if all & are irrational
and equals b — a if all & are rational. This is true for an arbitrarily fine partition of
the interval, so that the integral sums have no limit.

To understand the reasons why this approach to the definition of the integral fails,
we should notice that for a discontinuous function, the procedure of partitioning the
interval into “small subintervals” and constructing the corresponding integral sum
is not at all as natural as for a continuous function. Indeed, in the latter case, the
limit of the integral sums does not depend on the choice of the points & because
a continuous function changes very little on the subintervals [x;_1, xx]. Of course,
we cannot expect this to hold for a discontinuous function. Hence, if we want to
construct the integral of such a function, a natural idea, first conceived by Lebesgue,
is to partition the interval [a, b] not into subintervals (on which, in spite of their
“smallness”, the function may still vary considerably), but into some other sets. And
the “smallness” of a set should be determined not in terms of its size, but in terms

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, 95
Universitext, DOI 10.1007/978-1-4471-5122-7_3, © Springer-Verlag London 2013
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of the variation of the function on this set. For example, as “small” sets we can take
the sets e = f_l([yk_l, k), where y; (k=0,1,...,n) is an increasing sequence
(with yo <inf f, y, > sup f). With this method of partitioning the interval, the def-
inition of the integral sum should be modified: instead of the differences xy — xx—1,
i.e., the lengths of the intervals [xz_1, xx], we should consider the measures of the
sets ex. In this case, the integral sum takes the form ZZ: 1 fEr)A(ex), where & € e
and A is the Lebesgue measure. Postponing the discussion of the properties of these
sums until the next chapter, we only note that the integral of f should be under-
stood as their limit as maxg (yx — yx—1) — 0. However, in order to implement the
new approach to the definition of the integral, we should fill a significant gap in our
argument. Namely, we cannot be sure that the sets ¢ are measurable (recall that not
every set is Lebesgue measurable!) and hence we have no right to speak about their
measures. Therefore, if we consider an arbitrary function, we cannot speak about
any properties of the modified integral sums, since there is no guarantee that we can
construct them. This is why, aiming at the implementation of the program suggested
above, we will abandon attempts to define the integral for an arbitrary function and
content ourselves with considering only functions for which the sets e; constructed
above are necessarily measurable. This chapter is devoted to the study of such func-
tions, called measurable functions. The class of measurable functions is extremely
wide and meets not only the demands of applications, but almost all needs of pure
mathematics. At the same time, it is sufficiently tractable and, as we will see, in
the case of functions defined in R™, is closely related to classes of simpler (e.g.,
continuous) functions.

3.1 Definition and Basic Properties of Measurable Functions

In what follows, we assume that there is a fixed set X and a o-algebra 2 of subsets
of X. The pair (X, %) is called a measurable space, and the elements of the o-
algebra 2 are called measurable sets.

As the reader will see below, it is convenient to consider real-valued functions not
only with finite, but also with infinite values. Some technical complications related
to arithmetic operations with such functions that arise at the first stages are well
compensated for by the freedom we gain allowing ourselves to consider measurable
functions with infinite values. We will see the first confirmation of this thesis in
Theorem 3.1.4.

3.1.1 One can see from the remarks at the beginning of this chapter that it is crucial
for the construction of the integral that the sets on which the oscillations of the
function are small should be measurable. A key role here is played by sets on which
the function is bounded from one side. Let us introduce the following important
definition.
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A

l
|
|
|
7

E

Fig. 3.1 Lesbegue set E(f > a)

Definition Let f: E — R = [—00, +00] be a function defined on a set E C X and
a € R. The sets

E(f<a)={xeE|f(x)<a}, E(f<a)={xeE|f(x)<a},
E(f>a)={xeE|f(0)>a), E(f>a)={xeE|f(x)>ad)

are called the Lebesgue sets of f (of the first, second, third, and fourth kind, respec-
tively).

As follows from the definition, the Lebesgue sets are the inverse images of open
and closed semi-axes, i.e., the sets

f71 ([—oo,a)), fﬁl([_oosa])’ fﬁl((av +OO])$ fﬁl([ay +OO]),

respectively (see Fig. 3.1).

As well as the notation E(f < a), E(f < a), and so on for the inverse images of
semi-axes, we will also use similar notation for the inverse images of intervals, e.g.,
E(a < f <b)=f~"((a,b)).

It turns out that the measurability of all Lebesgue sets of one kind implies the
measurability of all Lebesgue sets of the other kinds. More precisely, the following
theorem holds.

Theorem Let E be a measurable set and f : E — R. The following conditions are
equivalent:

(1) the sets E(f < a) are measurable for all a in R;
(2) the sets E(f < a) are measurable for all a in R;
(3) the sets E(f > a) are measurable for all a in R;
(4) the sets E(f > a) are measurable for all a in R.
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Proof The proof follows the scheme (1) = (2) = 3) = 4) = (1).

Since E(f <a) = ﬂn>1 E(f < a+ 1/n), the first property implies the second
one, which in turn implies the third one, because E(f >a)=E \ E(f < a).

The remaining two implications can be proved in a similar way. We leave this to
the reader. g

3.1.2 Now we introduce a class of functions that plays a key role in the theory of
integration.

Definition Let £ € 2 and f : E — R. A function f is called measurable (more
precisely, 2(-measurable, or measurable with respect to %) if its Lebesgue sets (of
all four kinds) are measurable for any a € R.

If ECR™ and 2L =A™ (or A = B"), then measurable functions are also called
Lebesgue (or Borel) measurable.

As follows from Theorem 3.1.1, for a function to be measurable it suffices that
its Lebesgue sets of only one kind (the first, the second, etc.) be measurable for all
aeR.

Remark I We emphasize that, when speaking about a measurable function, we al-
ways assume that it is defined on a measurable set.

Remark 2 Extending the definition, we say that a function f : E — R is measurable
onaset Eg, Eg C E, if the restriction f|g, is measurable (of course, Eg € ).

Examples

(1) A constant function is measurable on every (measurable) set E. In particular,
according to our definition, the function identically equal to +0co (or —o0) on
E is measurable.

(2) The characteristic function of aset A C X is the function x4 that is equal to one
on A and zero outside A. As one can easily check by considering the Lebesgue
sets of x4, this function is measurable if and only if the set A is measurable.

(3) Let X =10, 1] x [0, 1], and let 2 be the o -algebra of sets of the form e x [0, 1],
where e € A1, e C [0, 1]. Then the function f(x, y) = y is not measurable with
respect to 2. However, it is obviously Lebesgue measurable.

Let us mention some simple properties of measurable functions.

(1) The inverse images of one-point sets (including those of the points 400 and
—00) are measurable.
Indeed, if a € R, then f~'({a}) = E(f < a) N E(f > a). Furthermore,
S {Hoo) =Nz E(f > n) and =1 ({—00}) =M,51 E(f < —n).
(2) The inverse image of every interval A is measurable. In particular, the set on
which the function takes finite values, i.e., f ' (R), is measurable.
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Indeed, by Property (1), we may assume that A is an open interval: A =
(a,b).Ifa,beR, then f~1(A)=E(f <b)\ E(f <a) € A.If A is an infinite
interval, then it can be exhausted by finite intervals: A = Un>1 (an, b,). Hence
) = Unsi1 E(@n < f <by) €2L.

(3) The absolute value of a measurable function is measurable, since E(|f| < a) =
E(—a < f <a) e forevery a € R.

@) If f and g are measurable functions, then the functions ¢ = max{ f, g} and =
min{ f, g} are also measurable. In particular, the functions f+ = max{f, 0} and
f— = min{— f, 0} are measurable.

To prove this, it suffices to observe that E(p <a) = E(f <a) N E(g <a)
and E(W >a)=E(f >a)NE(g>a) forevery a e R.

(5) The inverse image of an open set is measurable.

By Theorem 1.1.7, a non-empty open subset G of R can be written in the

form G = Un% [an, b,). Hence the measurability of £~!(G) follows from the

equality f~1(G) =U,>1 E(an < f < bn).

Using Theorem 1.6.1 on the inverse image of the Borel hull, we see that a more
general result holds.

Proposition For every measurable function, the inverse image of a Borel subset of
the real line is measurable.

Note that the proposition is no longer true if instead of Borel sets we consider
Lebesgue measurable sets (see Exercise 5 in Sect. 2.3).

3.1.3 Let us continue to study the properties of measurable functions.

Theorem

(1) The restriction of a measurable function to a measurable set is measurable.
Q) IfE= Un>1 E, and a function f is measurable on each E,, then it is measur-
able on E.

Proof (1)If f isdefined on E and Ey C E, then for every a € R, the set Eo(f < a)
can be written in the form Eo(f < a) = Eg N E(f < a) and, consequently, is mea-
surable provided that E( is measurable.

(2) The measurability of f on E follows from the equality E(f < a) =

Unz1 En(f <a). O

Corollary Every measurable function f defined on E is the restriction to E of a
measurable function defined on X.

To prove this, it suffices to extend f by zero outside E. The measurability of the
function obtained in this way follows from the theorem.

Remark In view of this corollary, when studying measurable functions, we may
always assume that they are defined on the whole set X.
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3.1.4 We proceed to the problem of passing to the limit in the class of measurable
functions. We will prove that this class is closed under pointwise convergence, i.e.,
that the pointwise limit of a sequence of measurable functions is again a measurable
function.

Recall that a function f is the pointwise limit of a sequence { f;},>1 on E if

fan(x) — f(x) forevery point x in E.
n—oo

Using Remark 3.1.3, in what follows we assume that all functions under consid-
eration are defined on the whole set X.

Theorem Let {f,},>1 be an arbitrary sequence of measurable functions, g =
sup,, fu and h =inf,, f,. Then:

(1) the functions g and h are measurable;
(2) the functions lim,_,  f, and lim,_,  f, are measurable; in particular, if the
sequence { f,}n>1 has a pointwise limit, then it is a measurable function.

Since the definition of measurability allows one to consider functions with values
in R, in the above theorem we need not make any assumptions on the finiteness of
functions. In particular, for every monotone sequence of measurable functions, the
limit function (possibly taking infinite values) is measurable.

Proof (1) For every a € R, we have

X(g>a)=UX(fn>a), X(h<a)=UX(f,,<a);

n>l1 n>1

the desired assertion follows by Theorem 3.1.1.
(2) It suffices to recall the formulas

lim f,(x) = inf sup fo4x(x) and lim f,(x) = sup inf f, x(x)
n—00 nzlg>1 n—00 n>1k21

known from the theory of limits and apply the first claim of the theorem. O
3.1.5 The following theorem shows the measurability of compositions.

Theorem Let fi,..., fu be measurable functions, and let ¢ € C(H), where
H C R". Assume that (f1(x), ..., fu(x)) € H for every x. Then the function F de-
fined by the formula F(x) = ¢(f1(x), ..., fu(x)) (for x € X) is measurable.

Proof We will use the fact that for every a € R, the set H(¢ < a) is relatively open
in H by the continuity of f, i.e., H(p <a) = H N G,, where G, is an open set
in R".

Consider the auxiliary map U : X — R” defined by the formula

U@ =(fitx)s..., u®) (xeX).
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Let us check that for every open set G in R”, its inverse image U~ !(G) is mea-
surable. Indeed, the inverse image of every n-dimensional cell P = ]_[Z=1 [ag, by) is
measurable, because

n
UNP)={xeX|a< fux) <byfork=1,....n}=()X(a < fi <bp.
k=1

Since G can be written as the union of a sequence of cells, G = J;> P; (see

Theorem 1.1.7), the set U1 (G) = Uj>1 U1 (P;) is measurable.
Thus the set

X(F<a)={xeX|Ux) eH@<a)|=U""(HNG,)=U"1(G,)
is also measurable. U

Using Theorem 3.1.4, we can slightly generalize the obtained result (for a further
generalization, see Exercise 11).

Corollary Theorem 3.1.5 remains valid if ¢ is the pointwise limit of a sequence of
continuous functions {Qg}x>1.

To prove this corollary, it suffices to observe that F = ¢ o U is the limit of the
measurable functions Fy = ¢ o U, where U is the map defined in the proof of the
theorem.

3.1.6 Now let us discuss the arithmetic operations on measurable functions. Since
we allow measurable functions to take infinite values, we need to specify what we
mean by the sum and the product of such functions. For the sum, this is necessary
if the summands are infinities of opposite sign, and for the product, if one of the
factors is infinite and the other one is equal to zero. To avoid repeatedly making
stipulations, we extend the arithmetic operations to R according to the following
definition.

Definition

(1) Ifx e Rand x # 0, then x - (£00) = (£00) - x = +00 for x > 0 and x - (£00) =
(£00) - x = Foo for x <O0.

2) Foreveryxe@,wesetO-x:x-O:O.

(3) Forevery x € R, we set x/(Z£o00) = 0 (in particular, (£00)/(+o00) = 0).

(4) For every x € R, we set x + (400) = x — (—00) = (+00) + x = 400,
X+ (—00) =x — (+00) = (—00) + x = —00.

(5) (4+00) + (=00) = (—00) + (+00) = (+00) — (+00) = (—00) — (—00) =0.

As in R, division by zero is not defined in R.

The first four conventions introduced above do not violate the associativity of
the arithmetic operations. In view of the fifth convention, addition in R is no longer
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associative. This will not cause considerable trouble, because we mainly deal with
functions that take infinite values only on sets of zero measure, which, as will be
seen from what follows, can be neglected (for more details, see Sect. 4.3).

Theorem The following statements are true:

(1) The product and the sum of measurable functions are measurable.

(2) Ifafunction f is measurable and a function ¢ is continuous, and their compo-
sition @ o f is well defined, then it is measurable.

) If f 20and p > 0, then the function fP is measurable (in the case where f
takes infinite values, we assume that (+00)” = 400).

(3) The function 1/f is measurable on the set where f # 0.

Proof Let f and g be functions defined on a set E.

(1) If f and g take only finite values, then the measurability of their product
follows immediately from the previous theorem in which we put ¢(x, y) =xy.If f
and g may take infinite values, consider the sets

Eo()=E(f=0), E(f)=EQ<f<+00), Ef)=E(-0c0<f<0),
E3(f)=E(f=-00), E4(f)=E(f=+00)

and the similar sets Ey(g). By the above, the product fg is measurable on E;(f) N
Er(g) for j,k = 1,2 and constant on such intersections for other values of j,k
(j,k=0,...,4). Therefore, by Theorem 3.1.3, it is also measurable on the union of
these sets, i.e., on E. The measurability of the sum can be proved in a similar way.

(2) This is a special case of Theorem 3.1.5.

(2') The function f? is measurable on the set E(f < +00) by the previous claim
of the theorem and constant on the set E ( f = +00). Therefore, it is also measurable
on the union of ~these sets, i.e.,on E.

(3) The set E = E(f # 0) is obviously measurable. Furthermore,

E(f<OUE(f>1) fora>o0,

E(—<a)= E(—oc0o< f<0) fora =0,
E(L<f<0) fora < 0.
In all cases, the Lebesgue sets of the function 1/f are measurable. O

Corollary 1 The product of a finite family of measurable functions is measurable.

Corollary 2 A positive integer power of a measurable function f is measurable;
a negative integer power is measurable on the set where f # 0.

Corollary 3 A linear combination of measurable functions is measurable.
3.1.7 In conclusion, we consider the question of the measurability of a function

f : E — R defined on a Lebesgue measurable subset E of the space R™. We denote
the Lebesgue measure on R™ by A without indicating the dimension.
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Theorem Let f be a function defined on a set E, E € A™, that takes only finite
values. If for every € > 0 there exists a measurable set e C E such that

Ae) <e and the restriction of f to E \ e is continuous, ©

then f is Lebesgue measurable. In particular, every function continuous on E is
Lebesgue measurable.

Remark Condition (C) means that f will be continuous if we remove from its do-
main a set of arbitrarily small measure. It is this condition that Luzin called the
C-property. He proved that it is not only sufficient, but also necessary for a function
to be Lebesgue measurable, i.e., that every Lebesgue measurable function satisfies
the C-property. We will return to this topic in Sect. 3.4.3.

It obviously follows from the last theorem that every function whose set of dis-
continuities has zero measure is measurable. However, the theorem allows one to
establish the measurability of functions with “large” sets of discontinuities. An ex-
ample of this kind is the Dirichlet function. As one can easily see, it is discontinuous
at every point. However, its restriction to the set of irrational numbers is continu-
ous (being identically zero). Hence the Dirichlet function satisfies condition (C) and,
consequently, is measurable. On the other hand, its measurability is obvious without
the theorem, since it is the characteristic function of the measurable set Q.

Proof 1If f is continuous, then the Lebesgue set E(f < a) = f_l ((—o00, a)) is rel-
atively open in E. Hence it is the intersection of E with some set open in R™ and,
consequently, is measurable as the intersection of measurable sets.

If f is an arbitrary function satisfying condition (C), consider sets e¢,, C E (where
n € N) such that

1 _ . .
A(ey) < — and the restriction of f to E,, = E \ e, is continuous.
n

Put £y = ﬂn>1 e,. Obviously, L(Ep) =0, and hence f is measurable on E( (since
in the case of a complete measure, every function is measurable on a set of zero
measure). Thus E = Un>0 E,, and, as we have already proved, f is measurable on
each of the sets E,. It remains to apply Theorem 3.1.3. d

EXERCISES

1. Establish the Lebesgue measurability of a monotone function ¢ defined on an
arbitrary interval and of its composition ¢ o f with every measurable function
f (provided that this composition is well defined).

2. Let {fy}s>1 be an arbitrary sequence of measurable functions. Establish the
measurability of the sets

{xeX|3 fim fn(x)eﬁ} and
n—oo

{x € X |the sequence { f,(x)}, -, converges}.
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10.

11.

12.
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Give an example of a (Lebesgue) measurable bounded function on R that is
“so discontinuous” that one cannot make it continuous even at a single point by
modifying it at a set of zero measure. Hint. Consider the characteristic function
of the set from Exercise 9 in Sect. 2.1.

Show that the characteristic function of the set constructed in Exercise 8 of
Sect. 2.1 satisfies condition (C).

Let K be a compact subset of R”T! =R™ x R, P be the canonical projection
of R+ to R™, and Q = P(K). Show that there exists a function f : R — R
such that the graph of its restriction to Q is contained in K and the set of its
discontinuities has zero measure.

Using the result of Exercise 5 from Sect. 2.3, show that Theorem 3.1.5 is no
longer true if instead of ¢ o f one considers f o ¢.

Let f : R — R be an arbitrary (possibly non-measurable) function. Show that
the set of points where it is differentiable is measurable and the function f’
defined by the formula fl(x) = my_m W is also measurable. Show

that the function 7 +(x) = my% *+0 f(y)%){(x) can be non-measurable.
The Rademacher functions r,, (n € N) are defined on R by the formula r,,(x) =
sign sin2"mx (see Sect. 6.4.5). Show that

AM{x e ©. D) ]ry;(x) <aj for j=1,....k})
k
=[]r({x € ©. D)ra;(x) <a;})
j=1

for any ay, ..., ar € R and pairwise distinct nq, ..., ng € N.

In probability theory, functions satisfying this condition are called statistically
independent (see Sect. 6.4.4).

We say that a function f defined on R is radial if it is of the form f(x) =
So(llx]l), where fj is a function defined on R . Using Exercise 3 from Sect. 2.5,
show that f is measurable if and only if fj is measurable.

Let (X, %) be a measurable space. A map F : X — R™ is called measurable if
at least one of the following conditions is satisfied:

(a) its coordinate functions are measurable;

(b) the inverse images of Borel sets are measurable;
(c) the inverse images of cells are measurable;

(d) the inverse image of every open set is measurable.

Show that conditions (a)—(d) are equivalent.

Let F : X — R™ be a measurable map (see the previous exercise). Show that
for every Borel measurable function ¢ : R” — R, the composition ¢ o F is
measurable.

Let E be an arbitrary subset of R” and f : E — R be an arbitrary function.
Given x € E, put

x)=1lim su and h(x)=Ilim inf
g( ) r%OXQB(g,r)f x) r—0XNB(x,r)
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(the Elnctions g and /& may take inﬁ_nite values). Show that the sets f(g <a)
and E (h > a) are relatively open in E and, therefore, the functions g and % are
Borel measurable.

3.2 Simple Functions. The Approximation Theorem

As in the previous section, we assume that there is a fixed measurable space (X, 2().
All functions under consideration are defined on X.

3.2.1 We introduce a subclass of measurable functions, which will later be used
systematically for the approximation.

Definition An R-valued measurable function is called simple if the set of its values
is finite.

If f is a simple function, there is a finite partition of X into measurable sets (we
will call it admissible for f) such that f is constant on its elements. For instance,
such a partition can be obtained as follows. Let ay, ..., ay be all pairwise distinct
values of f. Put ex = f~!({ax}). Obviously, these sets are measurable and form a
partition of X that is admissible for f.

In general, an admissible partition is not unique: splitting any of its elements into
measurable parts, we will obtain a “finer” admissible partition. Thus f may take
equal values on different elements of an admissible partition. Furthermore, we do
not exclude the case where some of the elements are empty.

Example The characteristic function g of a set E is simple if and only if E is
measurable. In this case, the sets E, X \ E form an admissible partition for xg. The
family {E, X \ E, @} is also an admissible partition for xg.

Let us mention some basic properties of simple functions.

(1) Every R-valued function that is constant on the elements of some finite parti-
tion of X into measurable sets is simple.

Indeed, the set of values of such a function is finite, and the measurability
follows, for example, from Theorem 3.1.3.

(2) Any two simple functions f and g have a common admissible partition.
Indeed, a desired partition consists, for example, of the sets ex N e;, where
{ex}y—, and {e}};'?:l are admissible partitions for f and g, respectively.

(3) The sum and the product of two simple functions is a simple function.

This fact follows immediately from the existence of a common admissible par-
tition and Property (1).

(3’) A linear combination and the product of a finite family of simple functions are

simple functions.
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(4) The maximum and the minimum of a finite family of simple functions are
simple functions.
To prove this, it suffices to consider a partition that is admissible for all func-
tions of the given family.

3.2.2 The next theorem shows, in particular, that every measurable function is the
pointwise limit of a sequence of simple functions. This result is not only an impor-
tant technical tool which we will repeatedly use in what follows, it can be regarded
as an alternative definition of a measurable function: a function is called measur-
able if it is the pointwise limit of a sequence of simple functions. In contrast to
the purely descriptive definition given in the previous section, the new definition
provides a method of constructing arbitrary measurable functions starting from the
more tractable functions which we have called simple. In this sense, one may say
that the new definition is constructive. The equivalence of these two definitions,
which follows from the theorem proved below, is further evidence that the class of
measurable functions is very natural. Indeed, in Theorem 3.1.4 we have shown that
it is sufficiently wide to contain, together with every pointwise convergent sequence,
the limit of this sequence. Accordingly, the question might arise whether the class
of measurable functions is not too wide. Indeed, if we consider the space R™ with
the Lebesgue measure, this class contains not only functions that are discontinuous
at every point (for example, the Dirichlet function, i.e., the characteristic function
of the set of rational points), but even functions that (in contrast to the Dirichlet
function) cannot be made continuous by modifying them on a set of zero measure
(see Exercises 3 and 4 in Sect. 3.1). However, it follows from the theorem proved
below that if we assume that the class in question is closed under pointwise limits
and contains the characteristic functions of measurable sets as well as their linear
combinations, then no proper part of the class of all measurable functions will suf-
fice: together with characteristic functions this class contains all simple functions,
whose pointwise limits yield all measurable functions.

Theorem (Approximation by simple functions) Every non-negative measurable
function f : X — R is the pointwise limit of an increasing sequence of non-negative
simple functions f,,.If f is bounded, then we may assume that the sequence { f}n>1
converges uniformly on X.

Proof Fix a positive integer n and consider the intervals Ay = [k/n, (k + 1)/n)
for k=0,1,...,n%2 — 1 and the interval A,2 = [n, +00]. Obviously, they form a
partition of the set [0, +00]. Consider the sets e; = f‘l(Ak) k=0,1,..., n2).
They are measurable and form a partition of the set X. (It would be more accurate
to write A,({”) and e,({"), indicating that these sets depend not only on k, but also on n,
but we will not do this.) Put

k
gn(x)=— forxee;
n
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Y

Fig. 3.2 Graphs of functions f and g,

(the graph of this function is schematically shown in Fig. 3.2 by horizontal bold line
segments). Obviously,

0<gn(x) < f(x) foreveryx € X. (1)
Furthermore,

() < F(X) < gn(0) + % ifx ¢y ®)

Now let us check that the constructed sequence {g,},>1 converges pointwise to f.
Consider an arbitrary point x € X. If f(x) = 400, then x € e, for every n, whence

gn(x) =n — 400= f(x).
n—o0
If f(x) <400, then x ¢ e, for

n> f(x). 3)

Then, by (2),

0<f(x)—gn(X)<l — 0. 4

n n—oo

If f is bounded and f(x) < C for all x € X, then, taking n > C, we see that in-
equalities (3) and hence (4) are satisfied simultaneously for all x € X, which implies
the uniform convergence.

Thus the constructed functions g, have all the desired properties except for one.
In general, they do not form an increasing sequence. Hence we need to slightly
modify them. Put f, = max{g,..., g,}. Obviously, the functions f, are simple
and f; < fu+1. In addition, it follows from (1) that

0< gn(x) < fulx) < f(x) foreveryx € X.
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This guarantees both the pointwise convergence of f,, to f in the general case and
the uniform convergence in the case where f is bounded. O

Corollary Every measurable function f can be pointwise approximated by simple
functions f, satisfying the condition | f,| < |f].
If f is bounded, then this approximation may be assumed uniform.

To prove this, it suffices to approximate the functions f; = max{f, 0} and f_ =
max{— f, 0} separately as described in the theorem.

EXERCISES

1. Let {gs},>1 be the sequence constructed in the proof of Theorem 3.2.2, and let
hi = go«. Show that the sequence {A}>1 is increasing.

2. Show that every non-negative measurable function f on a set X can be written
as the sum of a series Y oo % XA, Hint. Consider the sets

Ar={xeX|f) =1},

n—1
Ap={xeX f(x)>l+zlx forn>2
n /l’l Ak = &

k
k=1

3.3 Convergence in Measure and Convergence Almost
Everywhere

From a course in analysis the reader already knows two types of convergence of
sequences of functions: pointwise and uniform. Now we will define two further
types of convergence, which play an important role in the theory of integration and
probability. Both of them apply to functions defined on a measure space.

We assume that a measure space (X, %, w) is fixed. All sets we deal with are
assumed measurable, i.e., they belong to the o-algebra 2. All functions are also
assumed measurable, and furthermore we assume that they are finite almost every-
where, i.e., may take infinite values only on sets of zero measure. The class of all
such functions on a set E will be denoted by £O(E, 11) or merely by £°(E). Every-
where in this section (except for Sect. 3.3.7), we consider functions only from this
class.

The pointwise convergence of a sequence {f,},>1 to a function f will be de-
noted, as usual, by a simple arrow, f;, njgo f, and the uniform convergence will be

denoted by a double arrow: f, = f.Recall that xg stands for the characteristic

n—o0
function of a set E, and the set {x € E | f(x) > a} is also denoted by E(f > a).

3.3.1 We introduce an important new type of convergence of functional sequences.
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Definition 1 A sequence of functions f, € LO(E, i) converges to a function f €
LO(E, 1) in measure (notation: f,, L f)if
n—oo

/L(E(|fn —fl> 8)) —> (0 for every positive ¢.
n—oo

Thus f, SN f if for sufficiently large n each of the functions f; is uniformly
n— o0

close to f on the set obtained from E by removing a subset of arbitrarily small
measure. It is worth mentioning that, in general, the subset to be removed differs for
each n and one cannot generally remove a single set outside of which all functions
fn with sufficiently large indices are uniformly close to the limit function.

Extencling~ the definition, we say that a sequence {fuln>1 converges in measure
onaset E, E C E, to a function f € LO(E) if the sequence f,, = f| # converges
in measure to f. This is obviously equivalent to the condition that the sequence
{fuXE}n>1 converges in measure to the function f* extended by zero from EtwE.
This observation allows us to assume, when discussing convergence in measure, that
the functions under consideration are defined on the whole of X, since otherwise we
can extend them to X by zero.

Let us discuss how convergence in measure is related to other types of conver-
gence. Obviously, uniform convergence implies convergence in measure; indeed, in
the case of uniform convergence, for every ¢ > 0 the set E(| f,, — f| > ¢) is empty
for sufficiently large n. However, this is no longer true if we replace uniform conver-
gence with pointwise convergence. To obtain a corresponding example, it suffices
to consider the real line with the Lebesgue measure and the functions x(;,4o00) OF
X(n,n+1)» Which converge to zero in R pointwise, but not in measure. The reader
can easily check that these sequences have no limit in the sense of convergence in
measure.

Of course, convergence in measure does not imply pointwise convergence. In-
deed, if a sequence of functions f;, converges both pointwise and in measure (as
is the case, for example, if the sequence converges uniformly), then we may break
the pointwise convergence by modifying the values of f,, on sets of zero measure.
However, this does not affect the convergence in measure, as follows from its def-
inition. Hence it is natural to compare convergence in measure with “weakened
pointwise convergence”’, which is insensitive to modifications of functions on sets
of zero measure. We make the following definition.

Definition 2 A sequence of measurable functions f, : E — R converges to a func-
tion f almost everywhere on E (notation: f;, 25 f) if there exists a set e C E of
n—o0

zero measure such that f,, — f pointwise on E \ e.
n—o0

In this definition (as well as in the previous one), we assume that there is a fixed
measure p. If we also consider other measures, then we speak about convergence
w-almost everywhere (respectively, convergence in measure with respect to w).
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By Theorem 3.1.4, the limit function f is measurable on the set E \ e. If the
measure u is complete, then f is measurable not only on E \ e, but also on E. If (in
the case of a non-complete measure) f is not measurable on E, then, modifying it
on a set of zero measure (for example, setting it equal to zero on ¢), we can obtain a
measurable function that is the limit of the sequence { f,,},,>1 in the sense of almost
everywhere convergence.

Formally speaking, we can drop the condition of measurability of f;, in Defini-
tion 2, but we will not need such a generalization.

There is a subtle relation between convergence in measure and almost every-
where convergence, see H. Lebesgue’s and F. Riesz’s theorems proved in this sec-
tion. But we begin with a counterexample showing that almost everywhere conver-
gence does not follow from convergence in measure.

Example Let X =R and p = A be the one-dimensional Lebesgue measure. For ev-
ery positive integer k, consider the partition of the interval [0, 1) into the subinter-
vals Ak, p) = [2%, pz_-:l)’ where p =0, 1,...,2F— 1. To define a function f,,, write
the index n > 1 in the form n = 2% + p, where 0 < p < 2k (such a representation
is obviously unique, and k is just the integer part of log, n), and set f, = XA, p)-
Since
1 2
X(fa#0=Akp) and A(AGp) =3¢ <~ — 0.

n n—o00

the constructed sequence converges in measure to zero. However, the numerical
sequence { f;,(x)},>1 has no limit for any x € [0, 1), since among the values f; (x)
there are infinitely many ones and zeros.

3.3.2 As we have observed, convergence in measure does not follow from almost
everywhere convergence. However, the situation changes dramatically if the set un-
der consideration has finite measure.

Theorem (Lebesgue) On a set of finite measure, almost everywhere convergence
implies convergence in measure.

Proof Let f, 25 fon E and (E) < 400. Redefining the functions, if necessary,
n—oQ

on a set of zero measure (for example, setting them equal to zero on this set), we
assume that f, — f everywhere on E.
n—oo

For a monotone sequence { f;},>1 that converges pointwise to zero, the desired
assertion is almost obvious. Indeed, in this case, for every ¢ > 0 the sets E(| f;,| > ¢€)
decrease as n grows and have an empty intersection. Since the measure is continuous
from above, w(E(|f,] > ¢€)) =2 0 (it is here that the condition w(E) < 400 is

crucial). Thus we have established the convergence of {f,},>1 in measure in the
special case under consideration.
In the general case, where f,(x) — f(x) for all x € E, we apply the
n— oo

result already proved to the functions @, (x) = sup;>, |fi(x) — f(x)|. Clearly,
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¢n(x) —> 0 monotonically everywhere, and, by the above, u(E (¢, > ¢)) — 0.
n— o0 n— o0

It remains to use the inclusion E(| f, — f| > &) C E(¢, > &), which follows from
the inequality | f;, — f| < ¢n:

M(E(|f”_f|>€))<M(E(g0n>g)) njo)oo -

3.3.3 Before continuing to discuss the relations between convergence in measure
and almost everywhere convergence, we prove a simple but important result often
used in probability theory.

Lemma (Borel—Cantellil) Let {E;},>1 be a sequence of measurable sets and E =
No2, UL, Ex. i.e.

E = {x € X | x € E, for infinitely many n}.
IJ”Z@] W(Ey) <400, then u(E) =0.

Proof Since E C |, >y En, we have w(E) < Y, <; n(Ey) = 0. d
= = —00

This lemma implies a useful criterion for almost everywhere convergence.

Corollary Let &, > 0. &y —> 0. gn € L0X, 1), and X, = X(|gn| > €n). If

Zn>1 w(X,) < o0, then g, 2%00. Furthermore, for every ¢ > 0 there exists a
n—>oo

set e such that

ule) <e and g,(x) = OonX\e.

n—o00

To prove the almost everywhere convergence, one should, given an arbitrary
e > 0, apply the Borel-Cantelli lemma to the sets E, = X (|g,| > ¢€), taking into
account that £, C X, for sufficiently large n.

To prove the second claim of the corollary, choose N so large that

> n(Xn) <e

n>N

and pute =_J,. v X». Then |g,(x)| <&, forx € X \eandn > N.

3.3.4 Let us return to discussing the relations between almost everywhere conver-
gence and convergence in measure. As we have seen, a sequence that converges
in measure may be divergent at every point. However, the situation changes if we

consider subsequences.

!Francesco Paolo Cantelli (1875-1966)—Italian mathematician.
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Theorem (F. Riesz?) Every sequence that converges in measure contains a subse-
quence that converges almost everywhere to the same limit.

Note that, in contrast to Lebesgue’s theorem, here we do not assume that the
measure is finite.

Proof Let f, — f.Then
n—o0

M(X<|fn - fl> %)) — 0

for every k € N. Hence there exists an increasing sequence of indices ny such that

1 1
M<X<|fn—f|>;)> <2_k for all n > ng.

The sequence { fy,, }x>1 has the desired property. Indeed, applying the corollary of
the Borel-Cantelli lemma to the functions gy = | f,, — f|, we see that g kﬁ) 0,
—00

. a.e.
1.€., f"k kjo)o f O

Remark The subsequence constructed in the proof of Riesz’s theorem, besides
being almost everywhere convergent, has another useful (and stronger) property.
Namely, for every ¢ > 0 there exists a set e such that

ule)<e and f,, = fonX\e.

k— 00

To prove this, it suffices to apply the definition of the functions f,, and the corol-
lary of the Borel-Cantelli lemma.

3.3.5 Using Riesz’s theorem, one can reduce some questions about convergence in
measure to similar questions about almost everywhere convergence. As examples,
consider the problems related to the uniqueness of the limit and passing to the limit
in inequalities.

Corollary 1 Ifa sequence { fu}n>1 converges in measure to functions f and g, then
f(x) = g(x) for almost all x.

Proof By Riesz’s theorem, there exists a subsequence { f;,, }x>1 that converges to
S almost everywhere. Since the subsequence { f;;, }x>1, along with the original se-
quence, converges in measure to g, again applying Riesz’s theorem, we can find a
subsequence { f"kj }j>1 that converges almost everywhere to g. Thus the functions

ZFrigyes Riesz (1880-1956)—Hungarian mathematician.
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f and g coincide almost everywhere as limits of the almost everywhere convergent
sequence {f,,kj Jit O

Corollary 2 If f, LN f and f, < g almost everywhere for every n, then f < g
n—oo

almost everywhere on E.

Proof Let f,, be a subsequence that converges to f almost everywhere. By our
condition, f,, < g outside of some set e, of zero measure. Putting e = U,fil ek,
we obtain a set of zero measure such that for any x ¢ e and k € N the inequality
S (x) < g(x) holds. It remains to pass to the limit as kK — oo. Il

3.3.6 Almost everywhere convergence is closely related to a stronger type of con-
vergence which we now define.

Definition We say that a sequence { f;,},>1 converges to f almost uniformly on X
if for every positive ¢ there exists a set A, such that

u(Ag)<e and f, = f on X\ A..

n—oo

Almost uniform convergence implies almost everywhere convergence. Indeed,
the sequence { f,},>1 converges pointwise outside of each set Ay, and hence out-
side of their intersection ﬂk>1 Aj/k, which obviously has zero measure. As we
observed after Riesz’s theorem (see Remark 3.3.4), the sequence constructed in its
proof converges not only almost everywhere, but almost uniformly.

Surprisingly, we have the following unexpected result: on a set of finite measure,
almost uniform convergence is equivalent to almost everywhere convergence.

Theorem (Egorov®) Let f,, f € LO(X, ), and let f, == f.If u(X) < +o0, then
n—0o0

fn —> f almost uniformly on X.
n— o0

Considering the sequence x(;,,+1) shows that this theorem cannot be extended
to sets of infinite measure.

Proof Put g,(x) = SUPg >, | fxk(x) — f(x)]. Clearly, g, ndji; 0. By Lebesgue’s theo-

rem (see Sect. 3.3.2), g, 0 (it is here that the finiteness of u is crucial). Hence
n—o0

(cf. the proof of Riesz’s theorem) there exists a subsequence {g, }«>1 such that
1 1
12 X 8ny > % < 2_k

3Dmitri Fyodorovich Egorov (1869-1931)—Russian mathematician.
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By the corollary of the Borel-Cantelli lemma, this subsequence converges to zero
almost uniformly. Since | f, — f| < g, for n > ny, the sequence {f;, — f},>1 also
converges to zero almost uniformly. d

3.3.7 In conclusion, we establish another useful property of almost everywhere con-
vergence.

Theorem (Diagonal sequence) Let u be a o-finite measure, and let f ™ ¢

LO9X, 1), gn € LOX, 1) for nk e N. Iff(")—>g,,f0reveryneNand

gn 25 h, then there exists a strictly increasing sequence of indices k, such that
P

f(n) a.e.

Ky n—>oo

Note that %, in contrast to fk(") and g,, may take infinite values on sets of positive
measure.

Proof First assume that the measure is finite. Then f}, (m) k—> gn by Lebesgue’s the-

orem. This means that

w(X(| £ = gn| > €)) 2.0 for every n € N and every & > 0.
—00

Hence for every n there exists an index k, (k, > k,—1) such that

1 1
M(X(’fk(:) _gn| > ;)) < e
By the corollary of the Borel-Cantelli lemma, fk(") —gn 2% 0. Thus
n n— 00

f(n) (f(n) gn) + &n 25 h,
n—od
which completes the proof of the theorem for a finite measure. d

The case of an infinite measure can be reduced to that considered above by the
following lemma.

Lemma If u is a o-finite measure, then there exists a finite measure v such that
V(E)=0ifand only if n(E) =

Thus “almost everywhere” assertions for the measures @ and v hold simultane-
ously. Hence we may assume without loss of generality that the measure w in the
diagonal sequence theorem is finite.
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Proof of the Lemma Let X = Uflozl Xn, where 0 < u(X,) < +00. We will obtain a
measure with the desired property by putting

I w(ENXy)

D ST
n>1 M Ap
for every measurable set E.
The reader can easily check that v is a measure and that © and v vanish on the
same sets. g

Remark The diagonal sequence theorem is no longer true if we replace almost ev-
erywhere convergence by pointwise convergence, see Exercise 6. Since pointwise
convergence can also be interpreted as almost everywhere convergence with respect
to the counting measure, this exercise also shows that in the diagonal sequence the-
orem one cannot drop the condition of o -finiteness.

EXERCISES

1. Let f, — f in measure. Show that if u(X) < 400 and g € £°(X), then
n—o0
fng —> fg in measure. Is this true for an infinite measure?
n—0o0

2. Let{fu}n>1 be the sequence constructed in the example of Sect. 3.3.1, and let
gn = (—l)kn Jfn with k = [log, n]. Show that the sequence {g,} converges to
zero with respect to the Lebesgue measure, but

lim g,(x) = —o0, lim g,(x) =+oc forallx €[0,1).
n—00 n—>0o0o

3. Let f,g,he EO([O, 1], ), where A is the Lebesgue measure and g < f < A.
Show that there exists a sequence of functions f, € L:O([O, 1]) that converges to
f in measure and satisfies the following conditions:

Tim_ £, (x) = h(x), lim f,(x) =g(x) forevery x € [0, 1].

n—oo

4. Let g € £9(X, n), and let f, be functions from £°(X, ) such that | f,| < g
almost everywhere on X for every n. Show that if ©(X(g > a)) < +oo for
every a > 0, then the almost everywhere convergence of the sequence { f;;},>1
implies its convergence in measure.

5. Establish the following version of Riesz’s theorem: if a measure is o -finite and a
sequence { f,},>1 converges to a function f in measure on every set of positive
measure, then it contains a subsequence that converges to f almost everywhere.

6. Let £ (x) = cos*(zn!x) (x € R). Show that:

(a) for every x € R, the limit g, (x) = limy_ fk(")(x) exists;
(b) gn(x) —> x(x) everywhere on R (here yx is the Dirichlet function);
n—o0
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(c) there is no sequence of continuous functions (and, in particular, no diagonal
sequence { fk(:)}n>1) that converges to the Dirichlet function pointwise on
a non-degenerate interval.

Show that in the case of a o-finite measure, for every sequence of func-

tions f, € £LO(X, ) there exists a sequence of positive numbers ¢, such that

cn fn(x) 2% 0. Hint. Apply the diagonal sequence theorem to the functions
n—o0

f k(n) = %f n.

Using the fact that the set of all numerical sequences has the cardinality of

the continuum, show that the assertion of Exercise 7 is no longer true for the

counting measure on [0, 1].

Assume that the measure under consideration is o-finite and a sequence of

measurable functions f; converges to zero almost everywhere. Show that

ck fr najeo)o 0 for some numerical sequence ¢y — 400 (stability of almost every-

where convergence). Hint. Assuming that the sequence {| fx|}x>1 is decreasing,

apply the diagonal sequence theorem to the functions fk(") =nfy.

Using the stability of almost everywhere convergence, show that if u is a o-

finite measure, f; € £LO(X, u) (k € N), and fi ka;ego 0, then there exists a func-
N

tion g € £%(X, ) and a sequence cx — o0 such that | fi(x)| < ég(x) for
almost all x € X for every k (relatively uniform convergence, or convergence
with a regulator). Prove Egorov’s theorem using this result.

Let f be a function defined on the square [0, 11? and continuous in the first
variable (for an arbitrary fixed second variable). Show that if f(x, y) ;6 0

for almost all x € [0, 1], then the following version of Egorov’s theorem holds:
for every ¢ > 0 there exists a set e C [0, 1], L(e) < &, such that f(x, y) _6 0
y—

uniformly on [0, 1]\ e. Hint. Consider the sets

1
G,,(s):{(x,y)|0<x<1,0<y<—,

fey|> e}
n
and their projections to the x-axis.
Give an example of a Lebesgue measurable function f on the square [0, 1]?
with the following properties:

(a) forevery y € [0, 1], f(x, y) # 0 for at most one value x € [0, 1];
(b) for every x € [0, 1], f(x,y) # 0 for at most one value y € [0, 1] (which
implies that f(x, y) —6 0 for every x € [0, 1]);
y%

(c) there is no set e C [0, 1] of positive measure for which the convergence
f(x,y) —> 0 is uniform on e.
y—0
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3.4 *Approximation of Measurable Functions by Continuous
Functions. Luzin’s Theorem

In this section, we discuss properties of measurable functions on R™. The measura-
bility (of sets and functions) means their measurability with respect to the Lebesgue
measure, which we denote by A.

3.4.1 Let us first establish some auxiliary results. Recall the notion of the distance
from a point to a set.

Definition Let A C R™ and x € R™. The value
dist(x, A) = inf{|lx — y|| | y € A}
is called the distance from x to A.

Clearly, dist(x, A) = 0 only for points x lying in the closure of A. In particular,
for a closed set A, the inequality dist(x, A) > 0 holds everywhere outside A.

Lemma 1 The function x — dist(x, A) is continuous on R™.
Proof Lety € A and x, x’ e R™. Then ||x — y|| < |Ix’ — y|l + |Ix’ — x||, whence
dist(x, A) < |x" = y|| + |« — x|

Taking the lower boundary in y of the right-hand side, we see that dist(x, A) <
dist(x’, A) + ||x — x'||, i.e., dist(x, A) — dist(x’, A) < ||x — x'||. Since x and x’ are
interchangeable, it follows that

|dist(x, A) —dist(x’, A)| < [|x —x'|. O

Lemma 2 The characteristic function of a closed set F C R is the pointwise limit
of a sequence of continuous functions.

Proof Obviously, the set-theoretic difference R \ F' can be exhausted by the closed
sets H, = {x € R™|dist(x, F) > 1/n}. Consider the following smoothings of the
characteristic function of F:

dist(x, Hy)

Fn) = Gt F) + distr ) (x e R").

These functions are continuous everywhere, since the denominator does not vanish.
The reader can easily check that f,,(x) —> xr(x) for every x € R™. O
n—oo

3.4.2 We prove that a measurable function can be arbitrarily well approximated in
the sense of convergence almost everywhere by continuous functions.
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Theorem (Fréchet*) Every (Lebesgue) measurable function f on R™ is the limit of
a sequence of continuous functions converging almost everywhere.

Here we do not exclude the case where f takes infinite values on a set of positive
measure.

Proof The proof will be split into several steps, with the function f becoming more
and more complicated.

(1) Let f be the characteristic function of a measurable set E. By the regularity
of the Lebesgue measure, £ = e U UZOZI K, where A(e) =0 and K,, are com-
pact sets that form an increasing sequence (see Corollary 2.3 in Sect. 2.2.2).
Obviously, xkx, — xr almost everywhere. However, by Lemma 2, each of the
characteristic functions xg, is the limit of a sequence of continuous functions.
Hence, by the diagonal sequence theorem, x g is also the limit of a sequence of
continuous functions in the sense of almost everywhere convergence.

(2) If f is a simple function, i.e., it can be written in the form f = Z,]{\/:l CkXEy»
where Ej are measurable sets, then, in order to approximate f by continuous
functions, it suffices to approximate the functions xg, .

(3) In the general case, consider a sequence of simple functions f, that converges
to f pointwise (see Sect. 3.2.2, the corollary of the approximation theorem).
It remains to approximate each function f, by continuous functions and then
apply the diagonal sequence theorem. g

3.4.3 We will use the Fréchet theorem to prove a result that gives deep insight into
the structure of a measurable function on R™. It shows that Luzin’s condition, which
we used in Theorem 3.1.7, is not only sufficient, but also necessary for a function to
be measurable. In other words, every measurable function on R” can be transformed
into a continuous function by removing from R" a set of arbitrarily small measure.

Theorem (Luzin) Every Lebesgue measurable function f on R™ that is finite al-
most everywhere satisfies the Luzin property, i.e., for every § > O there exists a set
e CR™ such that

M(e) <& and the restriction of f to R™ \ e is continuous.

Proof By the Fréchet theorem, there exists a sequence of continuous functions f
that converges to f almost everywhere. According to Egorov’s theorem, in every
spherical layer E,, = {x € R" |n — 1 < ||x|| < n} there is a subset ¢, such that

Aey) <8/2" and fry = f on E,\ey,.

Clearly, the restriction of f to E, \ e, is continuous as the uniform limit of contin-
uous functions. Put e = U;i 1(e, US,), where S, is the sphere of radius n centered

4Maurice René Fréchet (1878—1973)—French mathematician.
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at the origin. Then, obviously, A(e) < § and the restriction of f to R™ \ e is contin-
uous. 0

The result we have proved can be slightly strengthened by using the theorem on
extension of continuous functions. The latter is formulated as follows.

Theorem Every function continuous on a closed subset F of R is the restriction
to F of a function continuous on R™.

The proof of this theorem is given in Appendix 13.2. It allows us to state Luzin’s
theorem in the following form.

Theorem Every Lebesgue measurable function f that is finite almost everywhere
on R™ coincides with a function that is continuous on R™ except for a set of ar-
bitrarily small measure. In other words, for every § > 0 there exists a function @s
continuous on R™ such that

AM{x eR™| fx) #ps(x)}) <8.

Proof Fix § > 0 and consider the set e from the statement of Luzin’s theorem. By
the regularity of the Lebesgue measure, there exists an open set G containing e
whose measure is arbitrarily close to the measure of e. Hence we may assume that
MG) < 8. Let F =R™\ G, and let fj be the restriction of f to F'. Now, to obtain
@s, it suffices to extend fy to a continuous function on R™. O

EXERCISES

1. Show that every function from £°(R™) is the limit of a sequence of continuous
functions with compact support that converges almost everywhere.

2. Show that a map F : R™ — R™ preserves Lebesgue measurability (i.e., sends
measurable sets to measurable sets) if and only if it sends sets of zero measure to
sets of zero measure.



Chapter 4
The Integral

At the beginning of the previous chapter, we briefly discussed the problem of con-
structing the integral of a bounded function defined on a finite interval [a, b]. As we
noted, if the function f under consideration is discontinuous, Riemann sums of the
form

> FE Gk — xe), )

k=1

where xo =a < x1 < --- < x, = b, & € [xx_1, xx], are strongly affected by the
choice of &, so we cannot hope that these sums will have a limit as the partition be-
comes finer. Hence, when constructing the integral of a discontinuous function, the
idea is to replace the subintervals [x¢_1, xx] (on which, in spite of their “smallness”,
the oscillations of f may be quite large) by sets on which the oscillations of f can
be controlled. More precisely, we replace (1) with the sums

> WA(ER), 2)
k=1

where yo <y <+ < yp, yo <inf f, y, > sup f and Ex = £~ ([ye—1, 0)) (k =1,
..., n).

Lebesgue described the passage from (1) to (2) as follows:! the first approach
“is comparable to a messy merchant who counts coins in the order they come to his
hand whereas we act like a prudent merchant who says:

e | have mes E; coins a one crown, that is 1 x mes E| crowns;
e mes E» coins a two crowns, that is 2 x mes E, crowns;

e mes E3 coins a five crowns, that is 5 x mes E3 crowns;

e ...

IThe quotation is borrowed from [Lus, p. 499].

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, 121
Universitext, DOI 10.1007/978-1-4471-5122-7_4, © Springer-Verlag London 2013
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Therefore I have 1 x mes E1 +2 x mes E» + 5 x mes E3 + - -- crowns.

Both approaches—no matter how rich the merchant might be—Ilead to the same
result since he only has to count a finite number of coins. But ... the difference
between the approaches is essential.”

We could give a definition of the integral based on the sums (2), as is done,
for example, in [L, N], etc. However, we prefer a slightly different approach, first
focusing on the (definition and) study of the basic properties of the integral of non-
negative functions. This approach is based on a simple and clear geometric observa-
tion, essentially known to the ancient Greeks: the region lying under the graph of a
non-negative function can be “exhausted” by the regions lying under the graphs of
simple functions. Here the sums (2) are interpreted as the integrals of simple func-
tions. The positivity of the integrand offers substantial technical advantages, making
it possible to quickly derive all basic properties of the integral, which underlie the
subsequent development (see Sect. 4.2.5).

4.1 Definition of the Integral

Everywhere in this section we consider a fixed measure space (X, 2(, ). All sets
and functions are assumed measurable. Unless otherwise stated, the values of all
functions belong to the extended real line R = [—o0, +0o0].

4.1.1 Before proceeding to definitions, we prove a lemma.

Lemma Let f be a non-negative simple function, {A./}j!’l= 10 {Bk},é/:1 be admissible

partitions for f, and aj, by be the values of f on A and By, respectively. Then

M N
> aju(A) = bin(By).
j=1 k=1

Since the measures of the sets under consideration may be infinite, we recall our
convention that 0 - x =x - 0 =0 for every x € R (see Sect. 3.1.6).

Proof 1Ttis clear that C = U?’il A;NC= UL, Bx N C for every set C C X, and

M N
wC) =) uA;NC) =) uBeNC).
j=1 k=1

Furthermore, a; = by if A; N By # &. Hence aju(A; N By) = by (A N By) for
all j, k. Therefore,
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M M N M N
D ain(A)) = ZZ aju(AjN B =Y bin(A;N By
j=1 j=1k=1 j=1k=1
N M N
= Z kD (AN B =) bieu(Br).
k=1 j=I k=1
Note that all equations remain valid in the case where some of the sets A1, ..., Ay
and Bj, ..., By have infinite measure. O

Replacing the set X by a subset E of X, we obtain an obvious generalization of
the lemma.

Corollary For every (measurable) set E C X,

M N
ZajM(Aj NE)= Zbku(Bk NE).

j=1 k=1
4.1.2 Now we are ready to define the integral of a non-negative function.

Definition 1 Let f be a non-negative simple function, {A./}?”: | be an arbitrary ad-
missible partition for f, and a; be the value of f on Aj;. The integral of f over a
set E C X is defined as

M
> ajun(ENA)) (D

j=1
and is denoted by [, f dpu.

The f symbol, which is the stylized first letter of the word Summa, was intro-
duced by Leibniz? in a work published in 1686. In manuscripts, Leibniz started to
employ it, instead of the original notation Omn, from 1675. The term “integral” first
appeared in J. Bernoulli’s® work published in 1690.

By the corollary, the sum (1) does not depend on the choice of an admissible
partition. Hence Definition 1 is correct. Furthermore, the sum (1) does not depend
on the values of f on X \ E,sinceif ENA; =0, thena;u(ENAj)=a;-0=0.
In the case where f takes a single value C on the whole of E, by abuse of notation
we denote the integral fE fdpby fE Cdu.

We now consider some properties of the integral.

2Gottfried Wilhelm Leibniz (1646—1716)—German philosopher and mathematician.
3Jacob Bernoulli (1654—1705)—Swiss mathematician.
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(1) If C is a non-negative number, then f r Cdu = Cu(E). In particular, the inte-
gral of the function identically equal to zero over an arbitrary set vanishes.
This property follows immediately from Definition 1.
(2) Monotonicity. If f and g are simple non-negative functions such that f < g on
E, then [, fdu< [pgdu.
Indeed, let {A j}ﬁ”: ; be a common admissible partition for f and g, and
{a; }?’1:1, {bj }y:l be the corresponding values of these functions. Then a; < b;
if AjNE#@,s0that aju(A; NE) <bju(A; NE) forall j, 1<j<M.
Therefore,
M M
[ ran=yama;ner<y buane= [ gau.
E X E

j=1 j=1

Definition 2 Let f be a non-negative measurable function on a set E. The integral
of f over E is defined as

/ fdu= sup{/ gdu ‘ g is a non-negative simple function, g < f on E}
E E

Remark 1 If f is a non-negative simple function, then its integrals over E in the
sense of Definitions 1 and 2 coincide. This follows from the monotonicity of the
integral of a simple function (Property (2)).

Remark 2 The integral of a non-negative (measurable) function is always defined
and non-negative. It may take the value +oco.

4.1.3 In order to define the integral of a signed measurable function f, we use the
functions fy = max{f, 0} and f_ = max{— f, 0}. They are obviously non-negative
and, as we observed earlier (see Property 4 in Sect. 3.1.2), measurable. Furthermore,
it is easy to check that

J+-f-=0, f=rH-r |fl=fv+ /-

Definition Given an arbitrary measurable function f on a set E, we keep the nota-
tion introduced above and put

/Efdu=/Ef+du—/Ef7du

if at least one of the integrals f g Jxdu is finite. In this case, the function f is said
to be integrable on E (with respect to the measure ). If both integrals |, gfrdu
are finite, then f is summable on E (with respect to the measure ().

Remark If f is non-negative, then the integrals of f in the sense of the last def-
inition and that of Definition 2 coincide, since in this case fy = f, f— =0, and
S 0dp =0 (see Property (1)).



4.2 Properties of the Integral of Non-negative Functions 125

In conclusion, note that as well as the symbol || g J dp we will also use the no-
tation f g f)du(x), f g () du(y), etc., which explicitly indicates the “variable
of integration”. This notation, which is formally superfluous, is very convenient
when solving concrete problems, especially if the function f depends on param-
eters. For instance, the symbols f(o,l)xy du(x) and f(o’l)xy du(y) make it clear
what function is being integrated, the power function x — x” in the first case, or the
exponential function y — x” in the second case.

4.2 Properties of the Integral of Non-negative Functions

As in the previous section, hereafter we consider a fixed measure space (X, 2, ).
All sets and functions are assumed measurable. The values of all functions belong
to the extended real line and are non-negative, and every measurable function is
defined on the whole set X (to satisfy the latter condition, we can extend a function
by zero outside its domain, if necessary).

4.2.1 We now establish some simple properties of the integral.

(1) Monotonicity. If f < gon E, then [, fdu < [ gdu.
For simple functions, this property has already been proved. In the general
case, it follows immediately from Definition 2 of Sect. 4.1.2.
2) If w(E) =0, then fE f dp =0 for every function f.
If f is simple, then it is bounded. Let 0 < f < C. Then 0 < fE fdu <
[ Cdu=Cp(E) =0.In the general case, the desired property follows imme-
diately from Definition 2 of Sect. 4.1.2.
B) [pfdn= [y fxedu.

This implies that the integral over E does not depend on the behavior of the
integrand outside E.

If f is a simple function and {A}1<k<n 1S an admissible partition for f, then
{ENA,ENAs, ..., ENAy, X\ E} is an admissible partition for f xg. On the
last element of this partition, the function f xg vanishes, and on the other elements,
it takes the same values as f. Thus the desired equation follows immediately from
Definition 1 of Sect. 4.1.2.

In the general case, consider arbitrary non-negative simple functions g and &
such that

g<f onE, h<fxe onX. (D

Then h = hxg and

/hd,u:/thd,u:/hd,ugffdu and
X X E E

/gdu=/gXEdu<ffXEdu
E X X
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(both inequalities follow from the definition of the integral of a non-negative func-
tion). Taking the supremum of the left-hand sides of these inequalities over & and
g satisfying conditions (1), we see (again using Definition 2 of Sect. 4.1.2) that

[x frxedu< [p fdwand [ fdu< [y fxedu.

Corollary If (measurable non-negative) functions f and g coincide on a set A,
then [, fdu= [, gdu, because f xa = gxa. In particular:

B If fx)=C forallx € A, then [, fdu=C u(A).

By abuse of notation, we denote the last integral by [ 4 Cdpu.

Remark When proving various properties of the integral, Property (3) allows one to

consider only the case where the domain of integration is the whole set X. In what
follows, we will repeatedly use this observation.

(4) Monotonicity with respect to the set. If A C B and f > 0 on B, then fA fdu <
Js fdu.

Since fxa < f xB, this property follows from the previous ones.

4.2.2 Here we will prove one of the basic properties of the integral. According to the
above remark, we consider only integrals over the whole set X. We do not assume
them to be finite.

Theorem (B. Levi*) Let { f,, tn>1 be a sequence of non-negative measurable func-
tions that has a pointwise limit f on X. If

fon < fuy1 on X foreveryn €N, 2)

then

/andunjgofxfdw

Proof First of all, observe that f is measurable as the limit of measurable functions
and f, < f for all n € N in view of (2). By the monotonicity of the integral, we

obtain
/fndm/ fn+1du</fdu-
X X X

Hence the limit L =1im,_, o [y fudp exists and L < [y, fdp.
The major part of the proof consists of verifying the reverse inequality

/fduéL-
X

“Beppo Levi (1875-1961)—Italian mathematician.
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Let g be a simple function such that 0 < g < f, A1, Ag, ..., Ay be an admissible
partition for g, and ay, as, ..., ay be the values of g on its elements. Fix an arbitrary
number 0 € (0, 1) and put X,, = X (f,, = 0g). Note that

(@ XnCXnt+1 and
® Jx.=x. 3)

n>1

Inclusion (3a) is obvious in view of (2). To prove (3b), consider an arbitrary point
x € X. If g(x) =0, then f,,(x) > 0=06g(x), and hence x € X,, for every n € N. If
g(x) > 0, then for sufficiently large n we have f,(x) > 6g(x), because f,(x) —

n—oQ

f(x) = g(x) > 0g(x) (it is here that we use the assumption € < 1). Therefore, x €
Un>1 X,, and (3b) is proved. It follows from (3) that for every set A C X we have

(ANX) CANXpp1), A= U ANX,.
n>1

Hence, by the continuity of © from below,
HANX,) — p(A). “4)
n—oo

Now we can estimate || x Jfndp from below using the monotonicity of the integral
(Properties (4) and (1)) and the definition of the integral of a simple function:

N
[ wanz [ fudnz [ ogau=Y vancacnx,.
X X X =1
In view of (4), passing to the limit as n — 0o, we obtain the inequality
L>Y faxu(Ap) = 9/ gdp.
k=1 X
Passing to the limit as & — 1, we conclude that L > fxgdu. Since g is an ar-

bitrary function, it follows from the definition of [y fdpu that L > [, fdu, as
required. d

4.2.3 Now we turn to the properties of the integral related to arithmetic operations.

(5) Additivity. If f, g > 0on X, then

/(f+g)du=f fdu+/gdu. ()
X X X
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First let f and g be simple functions, Cq, Ca, ..., Cy be a common admis-
sible partition for f and g, and ax, by be the values they take on Cy. Then

N N N
/X (f+8)du = (ar+b) u(Co) =Y aru(Cr)+ »_ b n(Cr)
k=1 k=1

k=1
:/ fdu+/gdu.
X X

The general case is proved by approximating the functions f and g by increas-
ing sequences of simple functions f, and g, (see Theorem 3.2.2): since

/(fn"'gn)dﬂz/fndﬂ"'/gndﬂa
X X X

passing to the limit in this inequality according to Levi’s theorem yields (5).
(6) Positive homogeneity. If a is a non-negative number, then | yafdu=a / x fdu.
The proof of this property goes along the same lines as that of the additiv-
ity. First we establish it for simple functions by direct computations, and then
deduce the general case by passing to the limit. The details are left to the reader.

Corollary By induction, Properties (5) and (6) immediately imply that

N N
/;((I;akfk>dﬂ=;ak/xfkdﬂ

for arbitrary numbers ay > 0 and functions f > 0.

(7) Additivity with respect to the set. If A, B C X and AN B = &, then
san=[ fau+ [ fan
AUB A B

Since ANB = &, we have xaup = xa + xB,whence fxaus = fxa+ fxB-
It remains to apply Properties (5) and (3).

Remark The last property means that the set function A — [ 4 J du defined on 2
is additive, i.e., it is a volume. Later we will prove (see Theorem 4.5.1) that it is in
fact a measure.

In conclusion, we establish a useful inequality.

(8) Strict positivity. If w(E) > 0and f(x) > 0on E, then fE fdu>0.
Let E, = E(f > %) (n € N). Clearly, U”2 | Ex = E and, consequently,
Ww(E,) > 0 for some n. Therefore,

1 1
/fdu> fdu>/ Lap=LuE) o
E En /‘ln n
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4.2.4 Now we will derive a formula for the integral with respect to a discrete mea-
sure (see Example 5 in Sect. 1.3.1). Let 2l be a o -algebra of subsets of X that con-
tains all one-point sets, {w,},ex be an arbitrary family of non-negative numbers,
and u be the corresponding discrete measure:

pAY =) ox (A,

X€A

Let us verify that

[ =3 s ©)

xeX
If f is a non-negative simple function that takes values aj,...,a, on sets
Ay, ..., A, forming a partition of X, then, by the definition of the integral of a

simple function,

/ fdu= aku(Au—ZZakwx—Zf(x)wx

k=1xeAy xeX

(the last equality follows from the additivity of the discrete measure correspond-
ing to the family of numbers { f (x) wy}xex). Thus (6) holds for simple functions.
Let us verify that it holds in the general case. Indeed, if | x fdp = +o0, then,
by Definition 2 of Sect. 4.1.2, for every C > 0 there exists a simple function
g such that 0 < g < f and fngu > C. Using formula (6) for g, we see that
Yorex Moy =Y cxg(x)wx = [y gdu > C. Hence in the case under consid-
eration, ) .y f(x) wy =400 and (6) holds.

If [. x fdp < +00, then for every & > 0 there exists a simple function g such that
0<g< fand [y fdu < [ygdu + e. For every finite set E C X, by the finite
additivity of the integral, we have

Y@=y /fd,u /fdu
xeE

xeE
Hence
Zf(X)wx—/fdu [fdu</gdu+8—2g(ﬂwx+e
xeE xeX
<Y f@ex +e.
xeX

Taking the supremum of the left-hand side over all finite subsets E, we obtain, by
the definition of the sum of a family of numbers,

D fos < / fAu <) f@ox +e.

xeX xeX
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Since ¢ is arbitrary, (6) follows.

Along with (6), a more general formula holds:

[ an=¥ rwo. @ew.

xX€A

To prove it, we may repeat the above argument with A in place of X, or use for-
mula (6) and the equalities

Lfdu=/)(fXAdu and Y fEOxa@or =Y fxX)ox.

xeX xX€A
In particular, if A = {x1, ..., x,, ...} is a countable set, then the integral fA fdu
is just the sum of a series:
o0
./fdu=§:f@0wh- (7)
A n=1

4.2.5 On the Axiomatic Definition of the Integral. Among the properties of the
integral established above, some are worth special mention. As we proved in
Sects. 4.2.1-4.2.3, the integral has, in particular, the following properties: it is non-
negative on non-negative functions (by definition), additive with respect to the set
(Property (7)), positively homogeneous (Property (6)), and continuous with respect
to increasing sequences (as follows from Levi’s theorem). It turns out that these
properties uniquely determine the integral. Let us consider this question in more
detail.

Let IC be the set (cone) of all non-negative measurable functions (which may
take infinite values) defined on X. Restricting ourselves to non-negative functions,
we may say that the integral is a map from /C x 2 to the extended real line: with each
pair (f, A) € K x 2l it associates the value fA f du. Usually, R- and R-valued maps
are called functions; however, the domain of our map (integral) is itself defined
in terms of functions, so, to avoid overloading the term “function” with different
meanings and causing ambiguities, we will call it a functional. Thus the integral is
a functional defined on KC x 2.

When considering functionals on K x 2, we do not fix a measure in advance,
so now we assume that we are given not a measure space, but a measurable space
(X, 20). In this section, unless otherwise stated, all sets are measurable and all func-
tions belong to /C; we denote the function identically equal to one on X by I

Assume that a functional J : IC x 2 — R enjoys the following properties:

@D J(f,A) =O0forall f and A;
N if ANB =9, then J(f,AU B) =J(f, A) + J(f, B) (additivity with respect
to the set);
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(1) if f takes the same value C at all points of A, then J(f, A)=C J(, A);
(AV) if {fu}n>1 is an increasing sequence of functions on X and lim,_, o fr(x) =
g(x) forall x € X, then J(f,, A) —> J(g, A) for every A.
n—oo

Let us show that these properties imply, for instance, the equation J(f + g, A) =
J(f, A+ J(g, A).

It follows immediately from the additivity with respect to the set thatif Ay, ...,
A, are pairwise disjoint sets, then for every n € N,

J(f, \ Ak) =Y _J(f Ap). ®)
k=1 k=1

If f, g are non-negative simple functions and ay, by are their values at the ele-
ments of a common admissible partition {A}}_,, then, using formula (8) and prop-
erty (IIT), we obtain

J(f—l—g,A):J(f—l—g,Aﬂ\/Ak):Z](f—l—g,AﬂAk)

k=1 k=1

n
=Y (@ +bi)J (I AN Ap)
k=1

=Y aJWLANA)+ Y biJ AN A =J(f. A)+ T (g, A).
k=1 k=1

In the general case, one should approximate f and g by increasing sequences of
simple functions f, and g, (see Theorem 3.2.2) and, using property (IV), pass to
the limit in the equation J (f,, + gn, A) = J (fn, A) + J(gn, A).

In a similar way one can prove that J(af, A) =aJ(f, A) fora > 0.

It is little wonder that the functional J has the last two properties, because, as
we are going to prove now, every functional satisfying conditions (I)—(IV) is the
integral with respect to some measure.

Theorem Let J : K x A +— R be a functional satisfying conditions (I)—(IV). Then
it has an integral representation, i.e.,

J(f,A):/ fdu forall (f,A) e x,
A
where W is a measure defined on 2.

It follows from the integral representation of J that (A) = | A ldu=J(, A),
so that u is uniquely determined.
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Proof The proof proceeds in several steps.
(D) J(xa, X)=J (1 A).
Indeed, by (II) and (III),

J(xa, X)=J(xa, A+ J(xa, X\ A =1-J@L A +0-JIL X\ A)=J(, A)

(recall that, according to our convention, the product O - J(I, X \ A) vanishes even
if J(I, X \ A) = 400).

(2) Now we set (A) = J(I, A) and verify that p is a measure. The additivity of
w follows from (II). Hence p is a volume. To prove that it is countably additive, we
verify that it is continuous from below (see Theorem 1.3.3).

Let Ay C Apg1 (n €N), UpZ; Ap = A. Then xa, < xa,,, and xa, 2, XA

pointwise on X. Hence, according to (IV), we have J(x4,, X) — J(xa,X). It
n—0o0

remains to observe that, in view of (1), J(xa, X) = J(I, A) = u(A), and similar
equations hold for A,,.

(3) Let us prove that J coincides with the integral with respect to @ on simple
functions. Indeed, if f is a non-negative simple function and a; are its values at the
elements of an admissible partition {Ak},'{V: 1» then, using (8) and (I1I), we see that

N N N
J(f,A):J(f, U(AﬂAk)) =Y J(fANA) =) aJ(ILANAY

k=1 k=1 k=1
N
=S ananan= [ rau
k=1 A

(4) Finally, let f be an arbitrary function and A be an arbitrary set. Consider
an increasing sequence of simple functions f;, that converges to f pointwise on X.
Passing to the limit in the equality J(f,, A) = f 4 Judu (by (IV) on the left-hand
side and by Levi’s theorem on the right-hand side), we obtain the desired result:

J(f, A= [, fdpu. O

This theorem allows us to declare that a functional J satisfying conditions (I)—
(IV) is the integral with respect to the measure p defined by the formula p©(A) =
J(I, A). All properties of the integral established in Sects. 4.2.1-4.2.3 can be de-
duced from these conditions. However, such an axiomatic approach leaves open the
question of whether there exists a non-trivial (not identically equal to zero) func-
tional satisfying conditions (I)-(IV), as well as the question of whether or not every
measure can be obtained in this way. To resolve these questions, one produces a
construction of a functional with the desired properties, just as we did at the very
beginning.

EXERCISES In Exercises 1-7, u is a measure defined on a o -algebra 2l of sub-
sets of a set X and f is a measurable, non-negative, everywhere finite function
on X.
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1. Show that if the measure u is finite, then the integral || y Jf du is finite if and only
if either of the sums ZZO:] nu(X(n < f <n+1)) and fo:] w(X(f =2n))is
finite.

2. Let u(X) =1, and assume that every point of X belongs to at least k of the N
measurable sets Eq, ..., Ey. Show that w(E,) > % for some n.

3. Forp>1,setl= [y fPduand

s= 32X < F <)), S= 32 (w(X( < 1))

nez nez

Show that (s < +00) = (S < +00) = (I < +00).

4. Show that the integrals |\ x fdunand / X e/ du are finite simultaneously for every
nonnegative measurable function f on X if and only if the measure u is finite
and the set X cannot be divided into an infinite number of pieces of positive
measure.

5. What can we say about a measure for which every non-negative measurable func-
tion (with finite values) is summable?

6. Prove the following version of Levi’s theorem: if a sequence of measures {1, }
defined on 2 increases to u, then fX fdu, — fX fdu.

7. Show that |, xfdn= / x fdjt, where [i is an arbitrary extension of the mea-
sure 4.

4.3 Properties of the Integral Related
to the “Almost Everywhere” Notion

A_s in the previous sections, hereafter we fix a measure space ( X, 2, n). All sets and
(IR-valued) functions under consideration are assumed measurable.

4.3.1 In the theory of functions, one often deals with propositions whose validity
depends on a point x € X. For example, “f(x) > 07, “the sequence { f;;(x)},>1 is
bounded”, “the sequence { f;,(x)},>1 converges”, etc. The most important case is
that of a proposition P (x) which is valid for all x except for the points of a set of
zero measure. Thus we introduce the following definition.

Definition A proposition P (x) is valid for almost all x in a set E C X (or almost
everywhere on E) if there exists a set ¢ C E such that u(e) =0 and P(x) is valid
for every point x in E \ e.

In Sect. 3.3.1 we already encountered a special case of this definition, when P (x)
is the proposition “the sequence { f, (x)},>1 converges” (almost everywhere conver-
gence).

A set whose complement in X has zero measure is called a set of full measure. If
a property P (x) holds on a set of full measure, i.e., almost everywhere on X, then
we say that it holds almost everywhere, omitting the reference to the set.
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Remark One should bear in mind that when we consider several measures w, v, ...,
the fact that P (x) holds almost everywhere with respect to one measure does not at
all mean that it holds almost everywhere with respect to another measure. In such
cases, to avoid ambiguity, we say that P(x) holds w-almost everywhere, v-almost
everywhere, etc.

In what follows, we will often use the following lemma.

Lemma Let {P,(x)},>1 be a sequence of propositions and P (x) be the proposition
“all P,(x) hold at a point x € X ”. If each P, (x) holds almost everywhere on a set
E C X, then P(x) also holds almost everywhere on E.

Proof This follows from the fact that the union of a sequence of sets of zero mea-
sure is again a set of zero measure (see Corollary 1.3.2). The details are left to the
reader. 0

4.3.2 Now we establish a few properties of the integral related to the “almost ev-
erywhere” notion.

(D If fE | fldu < 400, then | f(x)| < +o00 almost everywhere on E.
Let Eg={x € E||f(x)| =+oc}. Then for every ¢ >OwehavefE | fldu >
on tdu =tu(Eo). Therefore,

1
(Eo) < —/ fldu — 0.
t Jg t—00

2) If fE | fldu =0, then f(x) =0 almost everywhere on E.
Indeed, if u(E(|f] > 0)) > 0, then, by Property (8) from Sect. 4.2.3,
fE(|f|>0) | fldu > 0, a contradiction.
(3) Let Eg C E such that u(E \ Ep) = 0. Then the integral fE fdu exists if and
only if | Eo f du exists; if either integral exists, they are equal.
Indeed, by the additivity of the integral and Property (2) from Sect. 4.2.1, we
have

/fidu=f fedu+ fidMZ/ fedp. (1)
E Ey E\Ey Ey

Thus the integrals [, fydpu, on f+du, as well as the integrals [, f_dpu,
/, Eo f—du, are finite or not simultaneously, which means, by definition, that
the function f is integrable on E if and only if it is integrable on E(. The fact
that the integrals [ f dp and | £, [ du are equal follows immediately from (1)
and the definition.

(4) If measurable functions f and g coincide almost everywhere on E, then the
integral | g fdu exists if and only if / £ 8du exists; if either integral exists,
they are equal.
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Lete=E(f # g). Since f1(x) =g+(x) on E \ e, it follows from the previ-
ous property that

/fiduz fid,uz/ gid,ll:/gidﬂ,
E E\e E\e E

which implies the desired assertion.

We see that in the framework of integration problems, functions that coincide al-
most everywhere can be treated as equal. It is convenient to introduce the following
definition.

Definition Functions that coincide almost everywhere on X are called equivalent
(with respect to the measure ().

4.3.3 Addendum to the Definition of the Integral. Sometimes when dealing with
functions measurable on some set E, we we have, for some natural reason, to con-
sider also functions defined almost everywhere on E. This happens, for example, if
we are interested in the limit of a sequence of measurable functions converging not
everywhere, but only almost everywhere on E.

This situation arises often enough, and it is convenient to appropriately general-
ize the notions of a measurable function and the integral, to avoid the necessity of
making repeated comments.

Definition A function f, defined and measurable on a set Ey C E such that
W(E \ Eg) =0, will be called wide-sense measurable on E; for such a function,
by [ fdu we will understand the integral | £, [ dw, if it exists. As before (see
Definition 4.1.3), if the integrals f g J+du are finite, then the function f is said to
be summable on E.

Property (3) established above guarantees that this generalization of the notion
of integral is well defined. It is clear that all properties of the integral proved in the
last two sections remain valid for the integral understood in the wider sense.

We want to draw the reader’s attention to the fact that a wide-sense measurable
function may be defined everywhere on E, but be non-measurable on E (this may
happen if the measure under consideration is not complete).

4.4 Properties of the Integral of Summable Functions

Everywhere in this section, we consider a fixed measure space (X, %, ©). Unless
otherwise stated, all subsets of X are assumed measurable and all functions are
assumed wide-sense measurable on X. According to Definition 4.3.3, a wide-sense
measurable function f is summable on a set E € 2 with respect to the measure p if
the integrals || g J+ du are finite. The set of such functions is denoted by .Z(E, w),
or Z(E) for short if the measure is clear from the context. Studying the properties of
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the integral, we everywhere (except for Properties (2) and (8), for obvious reasons)
consider integrals of summable functions over the whole set X. The corresponding
properties of integrals over arbitrary measurable subsets of X can be obtained via
the equality [ fdu= [y fxedu (see Sect. 4.2, Property (3)); we leave the details
to the reader.

4.4.1 Properties of the Integral Expressed by Inequalities

(1) A function f is summable on X if and only if | f| € Z(X).If f € £ (X), then
| [x fdul < [x|fldu.

The summability of f means, by definition, that the integrals | x f+dp and
| x f—du are finite. This is equivalent to the summability of |f], since |f| =
f+ + f—.If f is summable, we have

'/xfd“‘:‘/xf+d“_/xf‘d“‘</Xf+d“+fxf—du=/x|f|du.

Corollary Every function summable on E is finite almost everywhere on E.

To prove this, it suffices to compare the property proved above and Property (1)
from Sect. 4.3.2.

(2) Every function summable on E is summable on every (measurable) subset of E.

This follows immediately from Property (1) and the monotonicity of the integral
over the set.

(3) Every bounded function f is summable on a set E of finite measure.

Indeed, let | f| < C on E. Then

f|f|du<f6du=cM(E)<oo,
E E

and it remains to apply Property (1).

(4) Monotonicity of the integral. If f, g € Z(X) and f < g almost everywhere,
then [y fdu < [y gdpu.

Since fy — f- < g4+ —g—,wehave f +g_ < g4+ f—. Hence, by the additivity
and monotonicity of the integral of non-negative functions,

/f+du+/g—duéfg+du+/f—du-
X X X X

Since all integrals are finite, the desired inequality follows:

/f+du—/f7duifg+du—/g7du.
X X X X
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(5) If | f| < g almost everywhere on X and g € £ (X), then f € Z(X).

The proof follows immediately from the monotonicity of the integral and Prop-
erty (1).

4.4.2 Properties of the Integral Expressed by Equalities

(6) Additivity. If f, g € L (X), then f + g € Z(X) and

/(f+g)du=/ fdu+/gdu~ (D
X X X

Let h = f + g. The functions f and g are finite almost everywhere, hence the
function 4 is defined (and measurable) on a set of full measure. Since |h] < | f|+|g|
and [y (I f1+Ighdu = [y|fldun+ [y|gldu by the additivity of the integral of
non-negative functions, 4 is summable by Property (5). To prove (1), observe that

hy —h_-=fy—f-+g+—g-, le, hy+f +g-=fr+g +h_.

Integrating the last equation and using the additivity of the integral of non-negative
functions, we obtain

/h+du+/f_du—l—/g_d,u:/f+du+/g+du+/h_du.
X X X X X X

All integrals here are finite, and hence

/h+du—/h_du=/f+du—/f_du+/g+du—/g_du.
X X X X X X

(7) Homogeneity. If f € £(X) and @ € R, then af € Z(X) and

/onfd,u,zot/de,u. 2)

If o >0, then («f)+ = af+, (@f)- = af—. By the definition of the integral (see
Sect. 4.1.3) and the positive homogeneity, we have

/Xafdu=/onf+du—/Xaf—du=a/Xf+du—a/Xf—du=a/deu,

which proves both the summability of «f and formula (2).
For o = —1 we have

(=g =max{—f£.0}=f-.  (—f)- =max{—(~1).0} = fy.
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Hence

LGJMM=Lﬁﬁﬁdu—ﬁ&ﬁldu=ﬁﬁﬁu—ﬂﬁﬂu

:-j;(fdu.

The case a < 0 follows from the above, due to the equality o = (—1)||.

Corollary (Linearity of the integral) If fi, ..., fu € Z(X), a1, ..., &, € R, then
(1 fi+-+a,fn) € LX) and

| Sasidn=Yw | sidu
Xk:l k=1 X

For n =2, this follows immediately from the additivity and homogeneity of the
integral; the general case is proved by induction.

(8) Additivity with respect to a set. Let E = | J;_, Ex, and let f be a (wide-sense)
measurable function on E. Then f is summable on E if and only if it is
summable on each E. If f € Z(E) and the sets Ej are pairwise disjoint, then

fdu= fdpu. 3)
| fau > ], s

Assuming that f is extended in an arbitrary way to the whole set X, observe
that | flxe, <|flxe <I|flxe, +---+ |flxe, for every k =1, ..., n. Hence the
inequality | x |fIxe dpu < +00, which is equivalent to the summability of f on E,
holds if and only if all inequalities fx | flxe, du <400 (k=1,...,n) hold, ie.,
f is summable on each Ey.

If the sets Ej are pairwise disjoint, then fxg = fxg, + -+ f xg,. Integrating
this equality, we arrive at the desired result.

Note that the summability of f on each set of an infinite family does not imply its
summability on the union of these sets. A corresponding example can be obtained
by considering the function identically equal to one and an arbitrary sequence of
sets of finite measure whose union has infinite measure.

(9) Integration with respect to a sum of measures. If = 11 + w2, then

/deuzfxfdu1+/xfdm )

for every non-negative function f. A (signed) function f is summable with
respect to w if and only if it is summable with respect to («1 and w». In the latter
case, (4) remains valid.
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Since w(E) = f x XE dp, formula (4) holds for characteristic functions, and
hence for all non-negative simple functions. The general case can be obtained by
passing to the limit (cf. the proof of Property (5) in Sect. 4.2.3). If f is a signed
function, then the fact that the integrals [y fdu and [y fdin, [y fdap are fi-
nite or not simultaneously follows from formula (4) applied to | f|. Since (4) holds
for fi, we obtain it for f by subtraction (which is allowed, since the integrals are
finite).

4.4.3 Now consider the integration of complex-valued functions. A complex-valued
function f is called measurable if its real and imaginary parts, i.e., the functions
g =TRe(f) and h = IZm(f), are measurable; the wide-sense measurability of f is
understood in a similar way. A function f is called summable on a set E if g and &
are summable on E. In this case, by definition,

/fdu:/gdu+i/hdu.
E E E

This immediately implies a formula for integrating the conjugate function: [ £ fdu
=Jp fdn.

The equality properties (6)—(8) of the integral remain valid for complex-valued
functions. An easy check is left to the reader.

Properties (1), (2), (3) and (5) (Property (4) no longer makes sense) also remain
valid in the complex-valued case. Since Properties (2) and (5) easily follow from
Property (1), we will prove only the latter.

Let f be a measurable complex-valued function. Keeping the notation introduced
above, we see that | f| = +/g2 + h?. Hence the function | f| is also measurable.

Furthermore,
gl 1h] <1 fl=+/g*+h> < gl + |hl,

which implies that | f| is summable if and only if both g and & are summable, i.e.,
f is summable.

Let us prove that if f is summable, then | [ fdul < [ |f|dw. Obviously,
| [ fdul =€'“ [ fdu for some a € R. Hence, by the homogeneity of the in-
tegral with respect to complex scalars, we have

'/Efdﬂ’Zeia/Efd,M:/;emfdu:/ERe(emf)du—f-i-/IEIm(ei“f)du_

Since this chain of equalities begins with a real number, it follows that
[z Zm(e' f)d = 0. Therefore,

/Efd“'Z/ER(”(eiaf)dﬂng|R€(€i“f)|dﬂ</15|6"°‘f|du=/E|f|du.

4.4.4 The remaining part of the section deals with important integral inequalities.
The functions (in general, complex-valued) under consideration are assumed wide-
sense measurable.
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Theorem (Chebyshev’s’ inequality) Let p and t be positive numbers. Given a func-
tion f defined on X, put X; = X(|f| > t). Then

1
px) < o [ 1117 d
P Jx
Proof The proof is almost obvious:
[israns [ israns [ rdp=eruco. -
X X Xy

4.4.5 The following inequality is a convenient tool for evaluating integrals.

Theorem (Holder’s® inequality) Let p, g > 1 and % + ql = 1. Then for any func-

tions f and g,
1 1
P q
/Ifgldui</ Ifl”du) </ Iglqdu> :
X X X

Proof We may assume that f and g are non-negative (otherwise replace f with
| f| and g with |g]). If at least one of the integrals fX fPdu or fX g% dp vanishes,
then the product fg vanishes almost everywhere and the inequality in question is
obvious. The case where at least one of these integrals is infinite is also trivial.
Hence in what follows we assume that

()<AP:/f1’du<+oo, 0<B‘1:/g‘1du<+oo.
X X

Let us use an auxiliary inequality to be proved a little later:

ul ve
uv< —+ — foru,v>0.
P q

Substituting u = % and v = %(), we obtain

f&) g0 1 ) 1 gk

X

A B p AP qg B4

Integrating over X yields

1 1
Edué—Jr—:l,
x AB P q

which is equivalent to the inequality in question.

SPafnuty L'vovich Chebyshev (1821-1894)—Russian mathematician.
6Ludwig Otto Holder (1859-1937)—German mathematician.
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Proceeding to the proof of the auxiliary inequality, we observe that the function
ou) = % + ”q—q — uv is convex on [0, +00) for every v > 0. Since ¢'(u) =0 at

4 . . .. . . .
the point ug = v 7, it follows that ¢ attains the minimum at this point. It is easy to
calculate that ¢ (1) = 0, and the non-negativity of ¢ follows. d

Corollary 1 If [, |f|?du < +o0 and [y |g1?dp < +o0, then the function fg is

summable and
1 1
I q
ffgdu‘<</ Ifl”du) <f Iglqdu>
X X X

(this is also called Holder’s inequality).

The summability of fg follows immediately from Holder’s inequality, the right-
hand side of which is finite.

Corollary 2 If p1,..., pm are positive numbers such that % 4+ 4 # =1, then

/Xm -~-fm|du<j1:[1</xlfj|”f d,L)”f

for any measurable functions fi, ..., fm on X.

The reader can easily prove this by induction.
We complement Corollary 1 with an inequality corresponding to the case p = 1.
To this end, we introduce the notion of a “refined” upper boundary.

Definition The essential supremum of a function f € Z°(X, 1) is the value
inf{C | f < C almost everywhere on X}.

It is denoted by esssupy f.

Clearly, if esssupy | f| < 400, then we can make f bounded redefining it on a
set of zero measure. Note also that in the definition of the essential supremum, the
lower boundary can be replaced by the minimum, so that f < esssupy f almost
everywhere. Indeed, if esssupy f = 400, this is obvious, and if esssupy f = Cp <
400, then f < Co+ % almost everywhere for every n € N, and the desired assertion
follows by passing to the limit.

The set of functions f with esssupy | f| < 400 is denoted by .Z°°(X, u).

The monotonicity of the integral implies that if f € £ (X, u) and g € L (X, w),
then the function fg is summable and

/fgdu‘<esssuplgl'/ Fldu.
X X X
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Corollary 3 Letp > 1, fx [f1Pdu < 400, and u(X) < 400. Then f is summable.

Indeed, assuming that % + % = 1 and applying Holder’s inequality to the func-
tions | f| and 1, we see that

- . p ’
/leldu—/xlfl 1du<</xlf| du) (u(x))

An important special case of Holder’s inequality is obtained for p =g = 2:

/legldu<</X|f|2du)%<fxlg|2du>%.

This is usually called the Cauchy-Bunyakovsky’ inequality.

Note also that if p is the counting measure on a finite set Xy = {1, ..., N}, then,
by the additivity of the integral, [y fdu =31, [, fdir =Y n_; fn, Where
Jfn = f(n). Hence in this case Holder’s inequality takes the form

N N ]—1} N é
Zlfngn| < (Zlfn|p> : <Z|gn|q> .
n=1 n=1

n=1

S

< +400.

Passing to the limit as N — oo, we obtain Holder’s inequality for series,

Z|ﬁ1gn|<(2|fn|f’) -(ng) :
n=1 n=1 n=1

which is just Holder’s inequality for integrals in the case where u is the counting
measure on N (see Example 4 in Sect. 1.3.1 and the example in Sect. 4.5.1 below).
The special case p = g = 2 yields the classical Cauchy inequality:

Z|fngn|<<2|fn|2> -<Z|g,1|2> :
n=1 n=1 n=1

4.4.6 The following inequality can be viewed as a generalization of the triangle
inequality for the function.

Theorem (Minkowski’s inequality) Let p > 1, and let f and g be functions that
are finite almost everywhere on X. Then

</le+gl”du)%<(fxlfl”du>}_)+<fx|gl”du)%-

7Viktor Yakovlevich Bunyakovsky (1804—1889)—Russian mathematician.
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Proof Since | f + g| < | f| + |g|, Minkowski’s inequality for p = 1 is obvious.
Hence in what follows we assume that p > 1. Set

A":f \f1P du, B"=/ gl? du. c"=/ \f +glPdp.
X X X

Clearly, the inequality needs to be proved only if A and B are finite. Let us show
that in this case C < +00. Indeed, since

|f +gl” < (2max{[f1, 1g1})” <27(1f1” + Igl?),

we have C? < 2P (AP + B?) < 400. Obviously,
cr < fX(m F1g) (11 +1gl)” " d

=f 1071+ 1gl)? " dne +/ 181171+ 1gl)” " dpe. @)
X X

Applying Holder’s inequality (see Sect. 4.4.5) with ¢ = —= > 1 to the first integral
on the right-hand side, we obtain

1

/|f| 1F1+1gl)” (/ |f|f’du)”-(/X|f+g|<f’—”4du)q=A~c5.

Analogously,
2
[ relis + g tan < ch.
X
Together with (4) this yields
r 2 2
CP<A-Ci+B-Ci=(A+B)Cua.

For C > 0, dividing both sides by C 7 yields the desired result, since p — = = 1. For
. : . . . 4q
C =0, the inequality being proved is obvious. 0

We also mention the version of Minkowski’s inequality for sums:

(Z|fn+gn|"> <(Z|fn|f’) +<Z|gn|f’>
n=1 n=1 n=1

4.5 The Integral as a Set Function

In this section, as in the previous one, we consider a fixed measure space (X, 2, u).
We assume that all subsets of X under consideration are measurable and all function
are defined at least almost everywhere on X and are wide-sense measurable.
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4.5.1 We establish one of the most important integral properties.

Theorem (Countable additivity of the integral) Let f be a non-negative function on

aset AC X and A=\/;2| Ak. Then

fAfdu=]§/Akfdu.

Note that we do not assume the integrals to be finite.

Proof Since {A;},>1 is a partition of A, we have

fxa=Y_ fxa

k=1

Let S, be the nth partial sum of the series on the right-hand side. Clearly, 0 < S, <

Sp+1 and S, —> fxa. By Levi’s theorem,
n—oo

n
[ fxndn=im [ sian=tim 3 [ fraau.
X n—oo X n—)OOkZI X
Thus

fdu= lim /fd,u: /fd,u.
A Vl—)OO]; Ak ]; Ak

0

Remark The theorem can be restated as follows: if f is a non-negative function
on X, then the set function A — [ 4 Jdu is a measure on 2 (cf. the remark after

Property (7) in Sect. 4.2.3).
Corollary 1 The theorem remains valid if f is a signed summable function.

To prove this, it remains to apply the theorem to the functions fx.

The next result shows that the integral of a summable function has the same

continuity properties as a finite measure (see Theorems 1.3.3 and 1.3.4).

Corollary 2 The integral of a summable function f is continuous from below and

from above. More explicitly, if

A=|J A AnCApp. or A=()Aw AyD A,
n>1 n>l1

theannfd'U“njgofAfdM'
In particular, if A;, D A,+1 and ﬂn>1 A, =0, then fA” fdu — 0.

n—oo
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Proof This follows directly from the fact that the finite measures vy, where
vy (A) = [, f+dp and v_(A) = [, f_dpu, are continuous from below and from
above. g

If f is a function summable on a set X of infinite measure, then the integral
/ x fdu is “essentially concentrated” on a set of finite measure. More precisely,
this means the following.

Corollary 3 If f € Z(X), then for every & > 0 there exists a set A of finite measure
such that fX\A | fldu <e.

Proof Let us verify that A can be taken equal to X (| f| > %) for sufficiently large
n. To this end, observe that the sets A, = X (| f] < %) decrease and their inter-
section coincides with X (f = 0). Since the integral is continuous from above,
fAn |fldp n—>—o>o fx(f:()) |fldu = 0. Hence fX\A [fldu = fAn |fldn < & pro-
vided that n is sufficiently large. It remains to observe that ©(A) < 400, since

1 1
;M<X<|f|>;))</A|f|du</xlf|du<+00- 0

Example If p is the counting measure defined on the algebra of all subsets of N,
then every sequence f = { f,},en is a measurable function. By the countable addi-
tivity of the integral,

du = du = |
/lel m ’;/{n}lfl n ;m

Thus the summability of f means the absolute convergence of the series Y oo fu,
and the sum of this series is the integral of f with respect to the counting measure.
The comparison theorems, rearrangement property, and other properties of abso-
lutely convergent series are just special cases of the corresponding properties of the
integral of summable functions.

More generally, if u is the discrete measure corresponding to a family of point
masses {wy}xex and the set Xo = {x € X |w, > 0} is finite or countable (Xy =
{x1,x2,...}), then for f >0 we have

/;(fdﬂ = Zf(xn)wx,,,

n>1

and this equality holds for every (possibly complex-valued) summable function.
4.5.2 We now establish another important property of the integral.

Theorem (Absolute continuity of the integral) Let f € £ (X). Then for every ¢ > 0
there exists a 6 > 0 such that fe | fldu < eif u(e) <$.
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Proof By the definition of the integral,

/|f|d,u=sup{/ gdnl0<g<|flonX, gisasimplefunction},
X X

hence there exists a simple function g, such that

&

> (D

0<s<ifl [l [ gdu+
X X
It is clear that the function g, is bounded. Let g, < C. on X. We will show that it

suffices to put § = 2%3 Indeed, if n(e) < 4, then, using (1) and the monotonicity of
the integral with respect to the set, we see that

/Ifldu=/(|fl—ga)du+/gsdu
e e e
£
</(|f|—ga)du+/Csdu<5+C5M(e)<8,
X e
as required. O

The theorem immediately implies the following result.

Corollary Let {e,},>1 be a sequence of sets such that u(e,) — 0. If f is a
summable function, then

/ fldu —> 0.
en n— 00

4.5.3 We consider the problem of calculating the integral with respect to a measure
of special form.

Definition Let v be a measure defined on the same o -algebra 2( as . If there exists
a non-negative function w such that v(A) = f 4 odu for all A €2, then w is called
the density (or the weight) of v with respect to .

Let us find a formula relating the integrals with respect to w and v.

Theorem [f v has a density w with respect to |, then for any non-negative func-
tion f,

/){fdv:Afwdu. )

A (signed) function f is summable with respect to v if and only if the product fw is
summable with respect to . In the latter case, (2) remains valid.
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In view of this result, the fact that w is the density of v with respect to u is often
denoted as follows: dv =wdu.

Proof If f is a characteristic function, then (2) follows immediately from the defini-
tion of v. Therefore, this formula is also valid for all non-negative simple functions.
To obtain the general case, it suffices to approximate f by simple functions (see
Sect. 3.2.2) and apply Levi’s theorem.

The summability condition for f can be obtained from (2) by replacing f with
| f]. The fact that (2) is valid for a signed summable function easily follows from
the equalities [y fidv = [y frowdu. O

Example Let v be the discrete measure (see Sect. 1.3.1) defined on the o -algebra
of all subsets of X that corresponds to a family w = {@(x)}scx. Clearly, w is the
density of v with respect to the counting measure.

4.5.4 It is obvious that two densities that coincide p-almost everywhere generate
the same measure. We will prove that the converse is also true, i.e., that a function
is determined up to equivalence by the values of its integrals.

Theorem Let f and g be summable functions. If

/fdu:/gd,u forall A e,
A A
then f(x) = g(x) for almost all x € X.

Proof Let h = f — g. Obviously, [ 4 hdu =0 for every A € 2l. In particular, for
A=Ay, where Ay ={xe X|h(x) >0}and A_ = {x € X | h(x) < 0}, we have

/|h|d,u:/ hdu =0, / |h|du=—/ hdu=0.
Ay Ay A

Since the sets Ay and A_ form a partition of X, it follows that f x 1hldun =
fA+ |hldw + [, |hldu = 0. Therefore, h(x) = 0 almost everywhere on X (see
Property (2) in Sect. 4.3.2). O

Corollary Let f be a function summable with respect to the Lebesgue measure
on R™, IffP fdry =0 for every cell P, then f(x) =0 almost everywhere.

Proof By assumption, the measures vi(A) = [ 4 Jxdly coincide on the semir-
ing &™. Hence, by the uniqueness of the extension 1.5.1, they coincide on the
whole o -algebra 2", i.e., fA fdry =0 for all A € 2A™. It remains to apply the
theorem. 0
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EXERCISES

1. Show that if u is a o-finite measure, then Theorem 4.5.4 remains valid for all
non-negative (not necessarily summable) functions f and g.

2. Show that a measure is o-finite if and only if there exists a positive summable
function.

4.6 The Lebesgue Integral of a Function of One Variable

In this section, A stands for the one-dimensional Lebesgue measure. The integral
/, g f dA, where E C R is a Lebesgue measurable set, is called the Lebesgue integral
(of the function f over the set E). Recall that a function summable on E may be
defined not everywhere, but only almost everywhere on E. Here we will consider
only the simplest sets, namely, intervals (possibly infinite). Note that the type of
an interval is irrelevant, since the Lebesgue measure of a one-point set is equal to
zero. Hence the integrals over (a, b), [a, b], [a, b) and (a, b] coincide. An arbitrary
interval with endpoints a and b will be denoted by (a, b).

Note that every (measurable) function that is bounded on a finite interval is
summable on this interval. In particular, a function that is continuous on a closed
interval is summable.

4.6.1 First let us study the properties of the function ¢ f f dX, which is asso-
ciated in a natural way with every summable function f on a ,b).

In the theorem below we consider a function F defined on a non-degenerate
closed interval [a, b] contained in the extended real line R. Observe that we do not
exclude the cases a = —o0 or b = 400. The continuity of F at the points +00
means that F(£o0) = lim;_, 1 F(¢). In other words, the continuity on [a, b] is
understood in the sense of the topological space R.

Theorem Let f be a summable function on an interval (a, b), —oo < a < b < 400,
and F(t) = f(a y fdh fort €la, bl. Then:

(1) if f 20, then F is non-decreasing;
(2) F is bounded and continuous on [a, b]; in particular, if b = +00 (a = —00),
then

F(t) — fdr (F@®) — O); (1)

t—+00 (a,400)
) if f is continuous at a point ty € {a, b), then F is differentiable at ty and
F'(to) = f(t0).

Claim (3), which establishes a link between integral and differential calculus,
was essentially known to Barrow.®

8]saac Barrow (1630-1677)—English mathematician.
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Proof (1) The fact that F is non-decreasing follows from the inequality

F(t)—F(s):/ fdx fors<t, s, tela,b], 2)
(5,1)

whose right-hand side is non-negative for f > 0.
(2) The boundedness of F is obvious, since

Fol< [ inans [ isidr< e
(a,r) (a,b)

Equation (2) shows that the continuity of F at a point s € R is a consequence of the
absolute continuity of the integral (see Sect. 4.5.2).
To prove (1), observe that, by the definition of F,

F(a):/fdk:O and F(b)= fdx.
%] (a,b)

Since F(t) = F(b) — f(t b) fdx,inthe case b = +00 (a = —00) it remains to check
that

/ |fld» — 0 <respectively,/ |fldx — O),
(t,400) t—+00 (—00,1) t——00

which follows immediately from the continuity of the integral from above.

(3) Let us prove the existence of the right derivative of F at a point #g, o < b. We
will assume that f is defined everywhere on (a, b) (otherwise extend f to (a, b) by
setting it equal to f (#p) at a set of zero measure; this affects neither the value of the
integral nor the continuity of f at ).

Taking Eq. (2) with s = f¢, dividing it by ¢ — 7y, and subtracting the equation
ft) = # f(to’t) f(to) dX from the result, we see that

F (1) — F(to) /
A = — di.
Pa— f (o) PR (W)(f f (1))
Hence
F(t)—F 1
(t) (t()) _f(to)‘ < _ |f—f(t0)|d)\,< sup |f(x)_f(t0)|
t—1p =1 Jay,n xelto,t]

The right-hand side tends to zero as ¢ — fy, since f is continuous at fy. Thus we
have proved that F is differentiable at 7y from the right and F (1) = f (). The
fact that F is differentiable at 7y from the left and F’ (f9) = f (¢p) can be proved in
a similar way. g

Corollary 1 Every continuous function f on an interval (a,b) has an antideriva-
tive.
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Proof The function f is summable on every closed interval contained in (a, b).
Assume that the interval (a, b) is closed from the left and put

F(t) = fdxr fortela,b). 3)
(@)

It follows from the theorem that F is an antiderivative for f. In the case where the
interval (a, b) is closed from the right, one should put

F(t)=— fdx fort e (a,b].
(t.b)

In the case of an arbitrary interval, fix a point ¢ € (a, b) and put

— fdx fortea,c),
F(l‘)= f(t,c)
f(c’[)fd)» for t € [c, b).

We leave the reader to check that the constructed function is indeed an antiderivative
for f on (a, b). O

Corollary 2 (Fundamental theorem of calculus) If ® is an antiderivative of a con-
tinuous function f on an interval [a, b], then

fdr=o(b) —P(a), ie., / @' dh=D(b) — P(a).

[a,b] [a,b]

Proof Indeed, let F be the antiderivative of f defined by (3). Then F'(a) = 0. Since
the difference of two antiderivatives is constant, it follows that ®(b) — F(b) =
®(a) — F(a) = ®(a). Hence

@@—@@:F@:/ fdn. -

la,b]

The difference ®(b) — ®(a) is often denoted by @(x)ljzg or, in short, <I>|Z, SO
that the fundamental theorem of calculus can be rewritten as

far=oW[Z.
[a,b]

The reader familiar with other definitions of integral may conclude from the fun-
damental theorem of calculus that for continuous functions, the integral over an
interval in the sense of each of these definitions coincides with the integral with
respect to the Lebesgue measure. With this in mind, for the integral over (a, b) of
a function f (continuous or just integrable with respect to the Lebesgue measure)
we use the traditional notation | ab f(x)dx, calling a and b the lower and the upper
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limit of integration,” respectively (of course, x can be replaced by any other let-
ter). With this notation, the function F' considered in the theorem can be written as
F()= [ ; f(x)dx; that is why it is often called an “integral with a variable upper
limit”.

We complement the new notation for the Lebesgue integral over an interval [a, b]
with the following convenient convention: by definition, we set

a b
/ f(x)dx:—/ fx)dx.
b a

Obviously, the fundamental theorem of calculus remains valid: swapping a and b
results in changing the sign of both sides of the formula.

Remark The fundamental theorem of calculus shows that the increment of a smooth
function F over an interval is equal to the integral of its derivative. As we will see
later, this is also true for functions from wider classes, for instance, for functions
satisfying the Lipschitz condition (see Sect. 11.4.1). Now we are going to verify
that it is true if F is continuous and convex on [a, b].

As is well known, the derivative of a convex function exists at all but at most
countably many points and is increasing (see Sect. 13.4.3). Hence it suffices to prove
the fundamental theorem of calculus under the assumption that F’ is of constant sign
(otherwise we may divide the interval [a, b] into two parts on which this condition
is satisfied). We assume without loss of generality that F’ > 0 and divide [a, b] into
equal parts of length 7 = (b — a)/n by the points xy =a +kh (k=0,1,...,n). It
follows from the three chords lemma (see Sect. 13.4.3) that for k =0, ...,n — 1,

Fi(xx)h < F(xpq1) — F(xx) < FL(xg1)h.

Since F’ is increasing, for k =1, ..., n — 2 we also have the estimates
Xk Xk+2
/ F'(x)dx < F(xk+1)—F(xk)</ F'(x)dx.
Xf—1 Xk+1

Summing these inequalities, we see that

Xp— b
f ") dx < F(xa_1) — Fx) </ F'(x) dx.

2
that is,
b

b—2h
/ F'(x)dx <Fb—h)—F(a+h) < / F'(x)dx.
a a+2h

9Following tradition, we often denote the integral over an infinite interval (a, +00) by f aoc f(x)dx,
omitting the plus sign in front of the symbol oco.
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Passing to the limit in this double inequality, we obtain the desired formula. In
particular, we see that F’ is a summable function, since the left-hand side has a
finite limit.

4.6.2 Let us discuss two important methods of computing integrals.

Proposition 1 (Integration by parts) Let u and v be continuously differentiable
functions on an interval [a, b]. Then

b x=b b
/ u(x)'(x)dx = u(x)v(x)‘ — / u' (x)v(x)dx.
a x=a a
This formula is often written in the form

b b b
/ udv=uv —/ vdu.
a a a

Proof Integrating the equation u’v + uv’ = (uv)’ and using the fundamental theo-
rem of calculus, we obtain

b b b
/ u/(x)v(x)dx+/ u(x)v/(x)dx:/ (u(x)v(x))/dx
=u(b)v(b) —u(a)v(a). Il

Various generalizations of Proposition 1 can be found in Sects. 4.6.4, 4.10.6,
4.11.4 and Exercise 9.

Example 1 Let us compute the integrals
%
W, :/ cos"xdx (n=0,1,2,...).
0

It is clear that Wy = 7 and W; = 1. Assuming that n > 2 and applying integration
by parts, we obtain

T

x=% 2 . 4
— sinxdcos" " x
0 0

x=

4

7
W, =/ cos” ! xdsinx =sinxcos" ! x
0

z z
=(n— 1)/ sin?x cos" 2 xdx = (n — 1)/ (cos" ™2 x — cos" x) dx
0 0

=n—D(Wy—2 — Wp).
Hence the integrals W, satisfy the recurrence relation

_n—l

W, = Weo (m=2,3,...).
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For an even n, repeatedly using this relation, we obtain

W _2k—1W _2k—12k—3W _
%= o k=) T T Sy M2k =
_ 2k-1)(2k—3)---3
T 2h2k—2).-2 "
Since Wy = %, it follows that!® Wy, = (z(kzk)l,? 'Z n a similar way we can prove
that Wor41 = (2k+1)” Thus
(n—1N 1 foroddn,
W,=—v,, wherev, =
n!! 7 forevenn.

This result leads to Wallis’!! famous formula, which is historically the first example
of a representation of 7 as the limit of a sequence of rational numbers. Indeed, since
UnUp—1 = 7, We have

- -2 7

T
2 all m=DI" 2n

Wn Wn—l =

The obvious inequalities W, < W,,—1 < W2 = ;25 W, imply that W, ~ W,,_.
Hence

2 T
Wi~ )

and, consequently, 4k W2k T This is an abbreviated form of Wallis’ formula;
in expanded form, it reads as follows:

o1 242k \?
r=1lm - ——— ] .
k—»ook \3-5---(2k—1)
Example 2 Let us establish a famous result due to Euler:'?

2

| T
St

The ingenious trick described below is borrowed from [M] (for other methods, based
on Fourier series, see Sects. 10.2.1, 10.3.5).

10Recall that n!! stands for the product of all positive integers less than or equal to n and having
the same parity as n.

John Wallis (1616-1703)—English mathematician.
121 eonhard Euler (1707—1783)—Swiss mathematician.
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First, using integration by parts, we obtain a recurrence formula for the integrals

z
Jn = [o? x*cos" x dx:

pie
3 3
Jy =/ x2cos" ' xdsinx = —/ sinx d(x?cos" ! x)
0 0

7 2 (2
= - 1)/ xz(cosn_zx — cos” x)dx + —f xdcos" x
0 nJo

2
=m—-Dp—2—Jp)— ;Wn

(by W,, we denote the integral computed in the previous example). Therefore,

2 n—1J,_» Iy

2 n W, W,

2
—Wy,=m—-1)J,_o—nJ,, ie.,
n

For even n, the latter equation takes the form

L_Zk_lJZ(k—l) _ﬁ_ Dk-1) _ﬁ
k2 2k Wu  Wa Wagon Wx

Hence
I 1 Jo Ja
Z = .
2 Pt k Wo Wy,
Since v{,—% = 717—;, it remains to verify that the ratio J»,/ W», tends to zero. Indeed,
J 1 [z 1 (3 2
n f x2cos? xdx < / T sinx | cos? x dx
Wa  Wan Jo Wan Jo \2
. 2 W W B 72 ! 2n+1 0
—m( 2n — 2(n+1))—7 _2n+2 njo)o .

Proposition 2 (Integration by substitution) Let f be a continuous function on
{a,b) and ¢ be a continuously differentiable function on [p,q]l. If ¢([p,q]) C
(a, b), then

»(q)

q
/ F(p00) ¢/ () dx = / FO)dy.
p

v(p)

One says that these integrals are related by the substitution y = ¢(x). To em-
phasize this, one sometimes writes the left-hand side in the form f;] flp(x))de(x).
Note that ¢ is not required to be one-to-one or monotone, so that ¢ (p) may be less
or greater than (or equal to) ¢(g). Later (see Sect. 6.2) we will see that if ¢’(x) # 0
on (p, g) (and, consequently, ¢ is strictly monotone), then the substitution rule is
valid not only for continuous, but also for arbitrary summable functions f.
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Proof Let F be an antiderivative of f on (a,b). Put H = F(¢). Clearly, H' =
F'(p)¢' = f(p)¢'. Hence H is an antiderivative of f(¢)¢’ on [p, q]. Applying
the fundamental theorem of calculus twice, we obtain

q
/ fe(x))¢'(x)dx = H(q) — H(p) = F(¢(q)) — F(¢(p))
)4

/w(q)
= Fydy.
v(p) O

The substitution rule is of great importance for the computation and study of in-
tegrals. To extend its range of applicability, we now generalize it to the case where ¢
is defined not on a closed, but only on an open (possibly infinite) interval. However,
we assume additionally that it is monotone.

Proposition 3 Let f be a non-negative continuous function on {a,b) and ¢ be a
continuously differentiable and monotone function on (p, q). If o((p, q)) C {a, b),
then

q B
/ Flo00)g () dx = fA FO)dy.
)4

where A =1im,_, 10 @(x) and B =1lim,_, 4_o ¢(x).
This formula is also valid for every continuous summable function f on (a,b).

Proof Leta < s <t < b. Then, by Proposition 2,

@(t)

t
/ fle(x))¢' (x)dx = )f(y)dy.

@(s

It remains to pass to the limit as s — a and t — b.

If f is an arbitrary continuous summable function, then it suffices to ap-
ply the obtained result to the non-negative functions f; = max{f,0} and f_ =
max{— f, 0}. U

Corollary If a continuous function f is summable on a symmetric interval (—a, a),
where 0 < a < 400, then ffa f(x)dx = foa(f(x) + f(—x))dx. In particular, if f
is even (odd), then [ f(x)dx =2 [ f(x)dx (respectively, [* f(x)dx =0).

Proof To prove this, it suffices to write the integral ff . J(x)dx in the form
ffa f()dy+ [ f(x)dx and make the substitution y = —x in the first term. [

4.6.3 Let us give some important examples of summable functions. The first three
of them serve as a kind of reference function; comparing with them often helps one
to establish the summability of many other functions.
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Example 1 Let a > 0 and f(x) = e~%* for x > 0. Obviously, the antiderivative
F(x)= —é e~ % tends to zero as x — +o00. Therefore,

[o9] t
1
/ e dx = lim e~ dx= lim (F(t)—F(0))=—F(0)=— < +o0.
0 t——+00 0 t——+00 a

So, the function e~%* is summable on the half-line [0, +00).

Example 2 Let f(x) =x7? for 1 < x < 400. An antiderivative of this function is
equal to l%x]’P for p# 1 and Inx for p=1. If p < 1, it tends to infinity as

X — +o00. I—fence for such p the function f is not summable. If p > 1, then

—dx = lim —dx = lim

00 t ll_p -1 1 N
= < +0Q.
1 xP r—+o00 Jo xP t—>+o00 1—p p— 1

Thus the function x =7 is summable on [1, +00) only for p > 1.

Example 3 Let f(x) =x"? for 0 < x < 1. Arguing as in the previous example, we
arrive at the conclusion that the function x ~” is summable on (0, 1] only for p < 1.
dx

As one can easily see, a similar result holds for the integrals [ ab Gea? and

fab (bf—;),,, where (a, b) is an arbitrary finite interval.
It follows from Examples 2 and 3 that the function x~7 is not summable on

(0, +00) for any p.

Example 4 Consider the beta function (the Euler integral of the first kind) intro-
duced by Euler:

1
B(s, 1) = / 71 = x) " dx.
0

As follows from the result of the previous example, B(s, ) < +oo only for s, ¢ > 0.

Making the substitution x = % , we can write the beta function in the form
s—1
B(s,1) = /Oo R,
o (I+yy#

As we will see later, this function happens to be useful for computing many inte-
grals.

Now consider the gamma function, which plays an important role in various
fields of mathematics.

Example 5 The gamma function (the Euler integral of the second kind) is defined
by the formula

o0
r@) = / e ™ dx.
0
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Since the integrand does not exceed Ce™*/2

for x > 1, the integral over [1, +00)
is finite. Hence the integral I"(¢) is finite if and only if fol x'~Le™* dx is finite and,
consequently, if and only if fol x'~1dx is finite, i.e., if 7 > 0. Thus the function I' is
well defined on the positive half-line. We now consider its basic properties (it will

be studied in more detail in Sect. 7.2).

The function I' satisfies the functional equation
't+1)=tI'(t) fort>0.

Indeed, using the remark to Proposition 1, we obtain

o0 o0 [o/0]
F(t—i—l):/ xte_xdx=—/ xtde_xzt/ " le™dx =1 T(r)
0 0 0

we have used the fact that the limit L = lim,_, xte™™
( x—4-00

ZEero).
The functional equation reveals a close relationship between the gamma function
and the factorial:

is obviously equal to

'h)=m—1)! forneN

(recall that, by definition, 0! = 1).
This formula can be proved by induction. The base I'(1) = 1 is obvious, and the
inductive step relies on the functional equation:

Frn+1)=nTTn)=n-(n—1)!=n!.

In a similar way, the computation of I'(n + a), where 0 < a < 1, reduces to the
computation of I'(a). One can write I'(a) in terms of known constants only for
a= % but this is not easy. To solve this problem, we need one “non-elementary
integral” (in what follows, we will compute it in several different ways).

Theorem (Euler—Poisson13integral)

o0 2
/ e dx=m.

—0o0

Proof Since e" > 1 + u, we have 1 — x2< e_"2 < # for all x € R. Hence for
every k e N,
1
(1 —xz)k < e_k)‘2 for [x] <1 and e_kxz <S— for x € R.
(1+x2)

13Siméon Denis Poisson (1781-1840)—French mathematician.
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Integrating these inequalities, we obtain

1 00 00 d
/ (l—xz)kdxg/ e_kxzdx</ 7)62](
_1 —o0 —o0 (1 +x2)

In the left integral, make the substitution x = sinf; in the middle integral, x =

1l

Bl

and in the right integral, x = tan¢. This yields the two-sided bound

1 o0 2
/ cos?H t dr < —/ e ! dt</ cosk 2t dr.
-z «/E —00 -z

Using the notation introduced in Example 1 of Sect. 4.6.2, we can rewrite this in the
form

[SE]
[STE}

o0

2k Wak+1 < / e_tz dt < 2k Wok—».
—0Q

It remains to observe that, in view of (4), both the left-hand side and the right-hand

side of this inequality tend to the common limit /7 as k — oo. U

Corollary 1 F(%) =.Jr.

Proof Making the substitution x = y? in the integral fooox_%e_x dx = F(%), we

obtain
1 x5 .,
rf=)=2 eV dy= eV dy=4m. O
2 0 —00
Corollary 2 F(n—i—%):%ﬁfor everyn € N.

Proof The proof is an almost verbatim reproduction of the computation of the
gamma function at integer points and is left to the reader. U

4.6.4 The remaining part of this section is devoted to so-called improper integrals.
Our main purpose here is to formulate the conditions under which an improper
integral over an interval coincides with the corresponding Lebesgue integral. For
additional information on improper integrals and some important examples, see
Sect. 7.4. In what follows, all functions under consideration may be either real-
or complex-valued.

Definition Let f be a measurable function on an interval (a, b) (—oo < a < b <
+00). We say f is admissible from the left on (a, b) if it is summable on every
interval (a,t), where a <t < b. If the limit lim,_, fal f(x)dx exists, it is called
the improper integral of the function f over the interval (a, b) and is denoted by
fa_)h f(x)dx. If an improper integral is finite, then we say that it converges, and
in the remaining cases (i.e., if the limit does not exist or is infinite), we say that it
diverges.
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In a similar way we define a function admissible from the right and the improper
integral of such a function. In what follows, we study the improper integrals of
functions admissible from the left, leaving it to the reader to extend the obtained
results to the case of functions admissible from the right.

It is clear that every function summable on an interval is admissible from the left
(as well as from the right), and Theorem 4.6.1 implies that the improper integral
of such a function converges and coincides with the Lebesgue integral. With this in
mind, outside this subsection we usually denote improper integrals in the ordinary
way, employing the notation | aﬁb f(x)dx only in exceptional cases. A point near
which a function f is not summable is sometimes called a singular point of f.

For improper integrals, the substitution rule stated in Proposition 3 of Sect. 4.6.2
remains valid (the assumption that the integrand is summable should be replaced
by the assumption that the improper integral converges). Integration by parts is also
available, provided that at least one of the integrals under consideration converges
and the limit L = lim,_,» u(x)v(x) exists and is finite (see Exercise 9).

Note that for a function f admissible from the left on (a,b), the conver-
gence of the integral [ aﬁb f(x)dx is equivalent to the convergence of the integral

f :b f(x)dx, where c is an arbitrary point from (a, b). It is also obvious that for a
non-negative function admissible from the left, the improper integral always exists
and coincides with the Lebesgue integral. However, for signed functions, this is no
longer the case.

Example Let us show that the Fresnel'* integral fooo e dx converges (it will be
computed in Sect. 7.4.8). To do this, we use integration by parts; this trick does
not only underly the convergence criteria established below, but can be successfully
used (as in the case under consideration) beyond the framework of these criteria.

Clearly,
/t ¢ dx = /t #d(eixz) = L el
1 1 2ix 2ix

The first term on the right-hand side has a finite limit as + — 400, and the function

Xlz e”‘2 is summable on [1, +00); the convergence of the Fresnel integral follows.

t 1 [t1 ix2
— — dx.
l+2i 1 xze *

. . . P2
At the same time, obviously, the function ¢'* is not summable on (0, +00).
Moreover, its real and imaginary parts are not summable either. For example,

N N2 N2 2 1 N2
/ |cosx2|dx=/ ICOSy'dy>/ cos ydy:—/ (14 cos2y)dy
0 0 Zﬁ 0 2N 4N 0

N
=—+4o0(l) — +o0.
4 N—o00

The integration by parts formula can be extended to improper integrals. Here we
confine ourselves to its simplest version.

14 Augustin-Jean Fresnel (1788-1827)—French physicist.
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Proposition [f u and v are continuously differentiable functions on [a, b) (—oo0 <
a < b < 400) such that there exists a finite limit L = lim,_,, u(x) v(x) and the in-
tegral fab u'(x) v(x) dx converges, then the integral fah u(x)v'(x)dx also converges
and

b b
/ u(x)v'(x)dx =L —u(a)v(a) — / u' (x)v(x)dx.

By analogy with the integration by parts formula obtained in Proposition 1, one
also writes the last equation in the form

b

b
/ u(x) v (x)dx = u(x) v(x)‘b—/ u (x) v(x)dx.

To prove the desired equation, it suffices to apply the integration by parts formula
to the interval [a, #] and to pass to the limit as t — b.

For other generalizations of Proposition 1, which allow one to consider non-
smooth functions, see Sects. 4.10.6, 4.11.4.

Proposition 3 of Sect. 4.6.2 can be extended to improper integrals in a similar
way. We encourage the reader to formulate this generalization as an exercise.

4.6.5 To establish a relation between the summability of a function and the exis-
tence of the corresponding improper integral, one uses the notion of the absolute
convergence of an improper integral.

Definition We say that an improper integral of a (measurable) function f converges
absolutely if the improper integral of the function | f| converges.

An improper integral that does converge but does not absolutely converge is
sometimes said to converge conditionally.

Theorem An improper integral |, aﬁb f(x)dx converges absolutely if and only if
the function f is summable on (a,b).

Thus an absolutely convergent improper integral is just the integral of a
summable function.

Proof We have already observed that the summability of a function implies the
convergence of the improper integral. Since the function | f| is summable simulta-
neously with f, the summability of f guarantees the absolute convergence of the
integral.

If the integral [ aﬁb f(x)dx converges absolutely, then, since the integral of a
non-negative function is continuous from below, we see that f is summable:

b t —b
fu |f(x)|dx=lli_r)rl1)/a ’f(x)’dx:/a | f(x)]dx < +o0. B
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For a real-valued function f, the conditional convergence of the improper inte-
gral fab f(x)dx implies that both functions f = max{f, 0} and f_ = max{— f, 0}
are not “small” (more exactly, not summable):

b b
/f+(x)dx:/ f-(x)dx =+o0.

Indeed, these integrals cannot be finite simultaneously, since the last theorem im-
plies that the function f is not summable; and if only one of them were finite, this
would cause the divergence of the improper integral. At the same time, the integral

t t t
/f(x)dx:f f+(x)dx—/f_(x)dx

has a finite limit as + — b, and, consequently, the integrals on the right-hand side,
each growing unboundedly with 7, must nearly cancel. Thus the conditional con-
vergence of an improper integral may occur only in the case where the integrand
f oscillates strongly enough in the vicinity of b, taking both positive and negative
values (this is clearly seen by considering the real or imaginary part of the Fresnel
integral).

4.6.6 It is crucial to have easy-to-check conditions that guarantee the convergence
of an improper integral even in the case where there is no absolute convergence.
We will consider two such results (convergence tests for improper integrals). The
reader familiar with the theory of numerical series will notice that these are analogs
of Dirichlet’s!> and Abel’s'® tests, which allow one to establish the convergence
of a numerical series even in the absence of absolute convergence. This is why the
corresponding results on convergence of improper integrals are also named after
these mathematicians. Here we will consider only simplified statements containing
some superfluous assumptions. Less restrictive conditions will be formulated later,
see Sect. 7.4.6.

Theorem (Dirichlet’s test for improper integrals) Let f € C([a, b)),g € C Y(a, b)),
where —00 < a < b < 4o00. If an antiderivative F of f is bounded on [a,b),
the function g is decreasing, and lim,_,p, g(x) = 0, then the improper integral

fab f(x) g(x)dx converges.

Here f may be either real- or complex-valued (while g is, of course, real-valued).

15 Johann Peter Gustav Lejeune Dirichlet (1805-1859)—German mathematician.
16Njels Henrik Abel (1802-1829)—Norwegian mathematician.
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Proof Integrating by parts on an interval [a, f] (a <t < b), we obtain

t t t
/f(X)g(X)dx:/ g(X)dF(X)=g(t)F(t)—g(a)F(a)—/ F(x)g'(x)dx.

(5)
By assumption, g(¢)F(t) _Z 0. Furthermore, the function Fg’ is summable on
t—
(a, b), since
b b
/ |F(x)g'(x)|dx < sup |[F| | (—g'(x))dx =g(a) sup | F| < +oo0.
a [a,b) a [a,b)

Hence the right-hand side in (5) has a finite limit (as t — b) and

b b
/ f(X)g(x)dx=—g(a)F(a)—/ F(x)g' (x)dx. (5"
O

Curiously enough, formula (5") relates an improper integral on the left-hand side
which does not in general absolutely converge to an absolutely convergent integral
on the right-hand side.

The above test is often used when studying integrals of the form

/Oog(x)eiwx dx (weR).

If g is continuously differentiable on [a, +00) and decreases to zero at infinity, then
this integral converges by Dirichlet’s test for w # 0, notwithstanding that g may be
not summable.

Example 1 Let p > 0. The improper integral

0 1 .
/ — e dx
1 xP

converges, the convergence being absolute only for p > 1.

For p > 1, the integrand is obviously summable. We will show that for p < 1,
both real and imaginary parts of the integrand are not summable. Consider, for
instance, the imaginary part. Since ﬁ > % for x > 1, it suffices to show that

J7° B g = 400, Let us consider in more detail the integrals 7, = (77" 222 gy,
which will be useful in what follows; we will not only prove that they grow un-
boundedly, but also find the growth rate. Obviously,

|smx| / sin x
I, = ——dx
! g/k—l)n Z x—l—n(k—l)
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Since w(k — 1) < x + w(k — 1) <k, the value of the kth integral lies between %

and ﬁ Taking into account that the first integral is less than 7, we obtain

2 1 1 2 1 1
—(\14+=z4++-)<hhi<ao+—|1+-+4+—).
T 2 n T 2 n—1

Since

L] fndx padp
— oo —< —< f— .« .. —7
2 n 1 X 2 n—1

the two-sided bound on [,, implies that
2 2 2
—Inn<I,<m7+—(+1Inn) <4+ —Inn.
T T b

In particular, 7, ~ %lnn as n — 00.

Example 2 Let f be a convex function on (0, +00) summable near the origin and
such that f(x) —+> 0. Then the integral C(y) = f0°° f(x)cosyxdx converges
X—> 100

and is non-negative for every y > 0.

We may assume that y = 1 (otherwise make the substitution x — yx). The prod-
uct f(x)cosx is summable near the origin, since f is. The improper integral over
[1, +00) converges by Dirichlet’s test, since f decreases on (0, +00). Indeed, by
the convexity of f, the difference f(x) — f(x +¢) for + > 0 decreases with x:
fx)— f(x+1) = f(x') — f(x' + 1) for every x’ > x. Passing to the limit as
t — +o00, we see that f(x) > f(x/).

To verify that C(1) > 0, we will prove that [,/ £ (x)cosx dx > 0 for k =
0, 1,.... The substitution x — x + 2wk reduces this problem to the case k = 0. We
have

2

f(x)cosxdx:fi(f(x)—f(n —x)— f(@+x)+ f(27r —x))cosxdx.
0

It remains to observe that f(x) — f(m —x) — f(r +x)+ f(27 —x) >0 (thisis a
special case of the inequality mentioned above with x’ =7 — x and r = 7).

Dirichlet’s test easily implies another convergence criterion for improper inte-
grals, which shows that multiplying the integrand of a convergent improper integral
by a bounded monotone function does not affect the convergence.

Corollary (Abel’s test) Let f € C([a, b)) and g € Cl([a, b)). If the improper in-
tegral |, ab f(x)dx converges and g is a bounded monotone function on [a, b), then

the integral | ab f(x)g(x)dx also converges.

Proof Let L = lim,_,; g(x). We may assume without loss of generality that g
is decreasing. Since the improper integral converges, the antiderivative F(r) =
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fat f(x)dx (a <t < D) is bounded. Obviously,
f)gx) = f(x)(g(x) — L)+ Lf(x).

Each of the integrals fah f(x)(g(x) — L)dx, fab L f(x)dx converges (the first one,
by Dirichlet’s test). Hence the integral f ab f(x)g(x)dx also converges. O

EXERCISES

1. Compute the integral ;> e+ gy (@ > 0).
2. Show that Propositions 1 and 3 of Sect. 4.6.2 remain valid for improper inte-

grals.
. . . sin? (x?)

3. For which a, b, ¢ € R} is the function =

For which real a is the integral || 100 x0e=* S’ X gy finite?

5. Let f be bounded and decrease to zero at (a, +00). Show that if the product
f(x)sinx is summable on (a, +00), then f is also summable. This result can-
not be extended to the two-dimensional case (see Exercise 3 of the next section).

6. Let p > 1, f be a non-negative summable function on R, and {x,},c7 be a

two-sided sequence of real numbers such that inf;, (x,+1 — x,) > 0. Show that

Z/OO &dx<+oo.

(x —xp)P

summable on (0, 1)?

=

neZ ¥ tntl

7. Compute the integral I = f07 Insin x dx, originally found by Euler, by making
the substitution x = 2y in the integral 2/ = f(;T Insinx dx.

8. Compute the Euler—Poisson integral once again, by replacing the function e

on the interval [0, /7] with the polynomial (1 — %)”. Hint. To estimate the
error caused by this approximation, prove the inequality 0 < e ™ — (1 — %)" <

%yz e~ for 0 < y < n. Reduce the integral foﬁ(l — ’;—2)" dx to Wy,4+1 and
use (4).
9. Letu,veC'([a,b)). Show that if two of the limits

t t
lim/ u(x)v' (x) dx, lim/ u (x)v(x)dx, lim u()v(t)
t—=b J, t—=b J, t—b

exist and are finite, then the third one also exists and the integration by parts
formula holds true. o

10. For which a € Z, b, ¢ € R does the integral fol % dx converge absolutely
(conditionally)?

11. Considering the function f(x) =

sinx

x b
of the improper integral of a function f that tends to zero at infinity is not
sufficient for the integral of f2 to converge. The same example demonstrates
that we cannot drop the assumption on the monotonicity of g in Abel’s test

(even if the integral of g converges).

show that the convergence on [0, +00)
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12. Verity that the integral fooo Xl,, sin x> dx converges not only for positive p. Can
sinx3 be replaced by sin’ x?

13. Show that the integral | :O €' @ dx, where P is a real polynomial of degree
greater than 1, converges.

14. Does the convergence of the improper integral |, 100 f(x)dx imply the summa-
bility of the function L52?

15. Compute Frullani’s'” integral fooo( flax) — f (bx))”i—", where a,b > 0 and f
is a continuous function on [0, +00) that satisfies one of the following condi-
tions:

(a) the improper integral | loo f (x)dTX converges;
() f(x+T)= f(x) for some T > 0 and arbitrary x > 0;
(c) the limit L =lim,_, yo f(x) exists and is finite.

16. Compute the integral fooo (c1cos ;—1 + -+ cpcos ;‘—n) d7x under the assumption
thatcy +---+¢, =0.

17. Show that the integral fooo f(x)sinyxdx for y > 0 is non-negative provided
that f is a function decreasing to zero on (0, +00) such that the product x f (x)
is summable near the origin.

18. Letpbea contil.luou's 27 -periodic function. Show that the integral | :o ln‘p;i)ci:x
converges only if ¢ is odd.

. d . . d

19. Show that the integral [°° T tcos sy diverges and the integral [ ln}‘i%
converges.

20. Show that for every ¢ > 0 and every measurable non-negative function f on

(0, 400), the following inequality holds:

2 ® 0
/ > fnexydx < 1/ F(x)dx.
1 — & Jo

21. Let x,, > 0, x, jgo 0, f(t) = card{n € N|x, > t}. Show that fooo f@)dt =
n
Zzozl Xn-

22. Show that | fE e* dx| < 2sin MgE) for every measurable set E C [0, 2].

4.7 The Multiple Lebesgue Integral

In this section, we consider a few properties of the integral with respect to the
Lebesgue measure on a multi-dimensional space. As in the previous section, the
integral with respect to the Lebesgue measure is called the Lebesgue integral and
is denoted by [ g J (x) dx by analogy with the one-dimensional case. The Lebesgue
measure itself is usually denoted by A, without indicating the dimension.

17Gjuliano Frullani (1795-1834)—Italian mathematician.
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Note that the integrals with respect to the planar, three-dimensional, and m-di-
mensional Lebesgue measures are usually called the double, triple, and m-multiple
integrals, respectively, and are often conveniently denoted by the symbols [, [/,

and [--- [.

4.7.1 The theorem below is a generalization of the results of Examples 2 and 3
of Sect. 4.6.3. It deals with a power of the norm, which in many cases serves as
a reference function with which one compares other functions when studying their
summability.

Theorem Let B be a ball in R™ of radius r centered at a point a. Given p > 0, set
fx)=l|lx —al|~? for x € R™. Then:

(1) f is summable on B if and only if p < m;

(2) f is summable on R™ \ B if and only if p > m.

Proof First recall that the volume (m-dimensional Lebesgue measure) of an m-
dimensional ball of radius R is equal to «,;, R™, where «,, is the volume of a ball of
unit radius (see Corollary 2 in Sect. 2.5.2). Hence the volume of the spherical layer
ER)={x eR"| § < |lx — all < R} is, obviously, equal to

ME(R)) =amR™ — an (;) =au(2" —1) (g) =BnR",

where 8, = o, (1 —27™).
Now divide the ball B into the spherical layers E; = E(zr—k): B={0}v \/k>1 Ey.
Then

m
A(ED) = B (%) for all k € N.

Furthermore,

Zk—l p 2k p
<—> < fx) < (—) for x € Ey.
r r

Integrating this inequality, we see that
2k71 p PN 2k p N
() (i) e froene () (5"

AKX <[ f(x)dx < B2KPT™)
Ey

ie.,

where A and B are positive coefficients that do not depend on k. The obtained two-
sided bound on the integrals || E f(x)dx implies that if either of the series

o0 o0
Zz"<l’—'") and Z F(x)dx
k=1 k=1" Ex
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converges, then the other one also converges. But it is obvious that the first series
has a finite sum only for p < m, and the sum of the second series, by the count-
able additivity of the integral, is equal to [ g J (x)dx; the first claim of the theorem
follows.

The proof of the second claim is entirely similar (one should consider the spher-
ical layers E (2%r)), and is left to the reader. O

4.7.2 The mean value theorem, known for the integral over the interval (see
Sect. 13.1.2), is also valid for multiple integrals.

Theorem (Mean value theorem) Let E C R™ be a connected set of finite measure.
If f is a continuous summable (in particular, continuous bounded) function on E,
then there exists a point ¢ € E such that

fEf(X)dx = f(OME).

Proof We may assume that A(E) # 0, since otherwise any point of E can be taken
as ¢. Let A =infg f and B =supg f (A, B € R). Integrating the inequality A <
f < B and dividing the result by A(E), we obtain

1
AgC:m/Ef(x)dng. (1)

It remains to prove that C is a value of f. If A < C < B, this follows from the
intermediate value theorem, which states that the set of values of f contains the
interval (A, B). If, however, C = A (or C = B), then f is equal to A (respectively,
B) almost everywhere on E. Indeed, in the case C = A it follows from (1) that
Je(f(x) — A)dx = 0. Since the integrand is non-negative, this in turn implies that
f(x) — A =0 almost everywhere on E (see Property (2) in Sect. 4.3.2). Thus almost
every point of E can be taken as c. g

Remark As one can easily see, the proof of the mean value theorem does not use
any properties of the Lebesgue measure except for the finiteness of A(E). Hence
the theorem remains valid for every Borel measure w such that u(E) < +o0o. Here
E may be assumed to be a connected subset of an arbitrary Hausdorff topological
space.

4.7.3 The Integral as the Limit of Riemann Sums

Definition Let t = {ek},]{\]= | be a partition of a set E C R™ into measurable subsets.
The value r(t) = max;grgn diam(ey) is called the mesh of 7.

If a point (tag) & is fixed in each set E N e, then T together with the family
€ = (&}, of tags is called a tagged partition.
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Now let f be a function defined on E. With each tagged partition (7, £) we can
associate the following sum:

N
o (fit.&) =) fE) e

k=1
(where A is the Lebesgue measure on R™). It is called the Riemann sum of the
function f with respect to the tagged partition (7, £).
Theorem (On the limit of the Riemann sums) If E is a compact set and f is a
continuous function on E, then o (f, 1, &) (T)O fE f(x)dx. In more detail, this
r(t)—

means that for every ¢ > 0 there exists a 6 > 0 such that whatever family of tags &
one chooses,

<é&

o (f.1.6)— /E £ dx

as soonas r(t) <94.

Proof Let w be the modulus of continuity of f:

w@®) =sup{|f&x)— fFDM|IlIx -yl <t, x,yeE}.

In particular, | f(x) — f(y)| < w(]]x — y||) for x, y € E. Hence for every point
& € ek,

/ FG)dx — fEMe)| =
ex

/ (f) = fE&)d / | f(x) = f(&0)]dx
ek

< w(diam(ex)) A (ex).

Since diam(eg) = diam(ey ), we have

Mz

(x)dx —o (f. 7, 5)‘

f f@x)dx — f(&)r(er)

k=1
N
<Y o(diam(ex))A(ex) < o(r(v))A(E).
k=1
The theorem follows, because @ (t) 0 (here we use Cantor’s uniform continuity
theorem). n

Remark The above proof, as well as the proof of Theorem 4.7.2, does not use spe-
cial properties of the Lebesgue measure. The reader can easily check that the proof
remains valid in a much more general situation. In particular, we may assume that E
is a compact metric space and A is an arbitrary finite measure defined on a o -algebra
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containing all open sets (the latter condition is needed to guarantee the measurability
of a continuous function).

EXERCISES

1. Let f be a function summable on every ball B(x,r) C R™. Show that the func-
tion (x,7r) fB(”) | f(»)|dy is continuous on R™ x R .

2. Show that the integral of a bounded monotone function over an interval is the
limit of the Riemann sums.

3. Show that [;°f;* Isinxlsinyl ;7 gy < 400, although 1o _dxdy 4.

exXyIn(x+y+2) exXyIn(x+y+2) =

4.8 Interchange of Limits and Integration

Here we will prove several important results that allow us to justify the formula
limy, 00 x Sndp = / x f dp provided that the sequence f, converges, in some
sense or other, to f. Thus our aim is to obtain conditions under which one can
interchange limits and integration.

Everywhere in this section, p stands for a measure defined on a o -algebra of
subsets of a set X and the functions under consideration are assumed to be defined
at least almost everywhere on X.

4.8.1 We begin with an easy theorem, which is probably familiar, in some form or
other, to the reader. To simplify the statement, we assume that the functions under
consideration are defined everywhere on X.

Theorem Let 1(X) < +o0, and let { f,}u>1 be a sequence of summable functions
that converges to a limit function f uniformly on X. Then f is summable and

[y fadi— [y fdpasn— oo.

Proof The function f is measurable as the limit of a sequence of measurable func-
tions. Since u(X) < 400 and | f, — f| < 1 everywhere on X for sufficiently large n,
the difference f,, — f is summable. Therefore, the limit function f is also summable.
The convergence [y fudp — [y fdp is obvious, since

[ = [ rau|< [ 1 pan<uco swin -1 0
X X X X n—00

4.8.2 Theorem 4.8.1 is sufficient for solving simple problems related to interchang-
ing limits and integration. However, in many cases its conditions turn out to be too
restrictive, so that we need more general results. The first of them will be obtained
by slightly generalizing one of the most important theorems on the interchange of
limits and integration proved in Sect. 4.2.2.
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Theorem (B. Levi) Let f,, be a sequence of measurable functions that converges to
a function f almost everywhere on X. If for everyn € N,

0< fu(x) < fur1(x) foralmostall x € X,

then

/andu;gofxfdu.

Proof Since the countable union of sets of zero measure is again a set of zero mea-

sure, there is a set Xo C X of full measure on which all assumptions of B. Levi’s

theorem 4.2.2 are satisfied. Therefore, [, fndu —> [y fdu. This is just what
Xo n—so0 ¥ X0

we wanted to show, because the integrals over X and X coincide. O

Corollary 1 A series of almost everywhere non-negative measurable functions can
be integrated term by term.

Proof 1t suffices to apply B. Levi’s theorem to the partial sums of the series under
consideration. O

Note that in Corollary 1 we impose no assumptions on the convergence of the
series. This proves useful in the next result.

Corollary 2 If the number series ng S x | fuldu converges, then the function
series Zn>1 fn(x) converges absolutely almost everywhere.

Proof Let S = Zn>1 | fn]. Tt follows from Corollary 1 (regardless of the conver-
gence of the series Y, > | fu|) that

[ sau=3 [ 1fldi<+o.

n>1

Thus the function S is summable on X. Hence it is finite almost everywhere, which
is equivalent to the required assertion. d

Corollary 2 provides a useful method of proving the almost everywhere conver-
gence of various function series.

Example Let {x,},>1 be an arbitrary sequence of numbers (for instance, the set of

rational numbers arranged in an arbitrary order). If the series Zn>1 a, converges
- a
absolutely, then the series Zn>1 Thon converges absolutely almost everywhere

(with respect to the Lebesgue measure) on R.
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To prove this, it suffices to check that the series under consideration converges
absolutely almost everywhere on an arbitrary interval (—A, A). Obviously,

A A—xy \/_
|a|/ —\| |/ =4V Alay|.
/— " Ax,l o A\/_ "

lan|

Hence the series 2”21 f_A A Tl dx converges, and it remains to apply Corol-

|x_xn

lary 2.

4.8.3 B. Levi’s theorem applies only to increasing sequences of non-negative func-
tions and cannot be used if these conditions are not satisfied. The following two
important dominated convergence theorems fill this gap, providing convenient suffi-
cient conditions for the interchange of limits and integration for arbitrary sequences
of functions (either real- or complex-valued).

It is intuitively clear that if the integral f x |f — gldu is small, then the func-
tions f and g are “close” on a set of “sufficiently large” measure. If we want to
obtain conditions under which f x| fo— fldu e 0, then we would expect the

functions f; to be close to f on sets of ever increasing measure. To obtain a precise
formulation of this condition, we will use the notion of convergence in measure (see
Sect. 3.3). Recall that X (f >a)={x € X | f(x) > a}.

Theorem (Lebesgue) Let { f,,}n>1 be a sequence of measurable functions that con-
verges in measure to a function f on X. If

{ @ i) <ghx) almost everywhere on X for every n € N, L

(b) g is summable on X,

then the functions f, and f are summable,
/ | fn — fldn —> 0, and, consequently, / fudu — / fdu.
X n—00 X n—oo [y

Note that the convergence of f;, to f in measure is a necessary condition for the
conclusion of the theorem to be true, since (X (| f — ful > €)) < %fx |f — faldu
by Chebyshev’s inequality (see Sect. 4.4.4).

Proof The summability of f, is guaranteed by condition (L). The function f is
measurable by the definition of convergence in measure. Passing to the limit in
inequality (a) (see Corollary 2 in Sect. 3.3.5), we see that | f(x)| < g(x) almost
everywhere on X, which implies the summability of f.

Since
‘ / fudp— / fdu
X X

it suffices to establish the first of the relations to be proved.

<fx|fn — fldp.
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First assume that u(X) < +oo. Fix an arbitrary ¢ > 0 and set X,(g) =
X(|fn — f| > ¢). Obviously,

/Ifn—fldu=/ +/ </ 2gdu+/8du-
X Xn(e) X\ X, (e) X (e) X

Since w(X,(e)) — 0, we have fx © gdpu —> 0 by the absolute continuity of
n—00 n n—oo

the integral. Hence f X, e) 8 du < 5 for sufficiently large n, and, consequently,

/len—fldu<8+M(X)8,

which proves the theorem in the case under consideration.
If (X)) = 400, then fix ¢ > 0 and consider a set A of finite measure such that
fX\A gdu < & (see Corollary 3 in Sect. 4.5.1). Then

/X|fn—f|du</A|fn—f|du+fX\A2gdu</A|fn—f|du+2e.

Since u(A) < 400, it follows from the above that f A lfu—fldu —> 0, and hence
n—o0
fX | fu — fldun < 3¢ for sufficiently large n. d

Remark As one can see from the proof, in the case where u is an infinite but o -

finite measure, the theorem remains valid if we replace the convergence in measure

on X with the weaker assumption that f, —> f in measure on every set of fi-
n—o0

nite measure (for a more general result, see Exercise 8). Since for a finite measure,
convergence in measure follows from almost everywhere convergence (see Theo-
rem 3.3.2), Lebesgue’s theorem remains valid in the case of a o-finite measure if
we replace convergence in measure with almost everywhere convergence. We will
prove that this is in fact true for an arbitrary measure.

4.8.4 Theorem 4.8.3 remains valid even if the convergence in measure is replaced
with the convergence almost everywhere.

Theorem (Lebesgue) Let { f,,}n>1 be a sequence of measurable functions that con-

verges to a function f almost everywhere on X. If condition (L) is satisfied, then the
functions f, and f are summable,

n—oo

/ |fu— fldu — 0, and, consequently, / fudi — fdu.
X n—00 X X

Proof The summability of f,, and f can be proved in exactly the same way as in
Theorem 4.8.3. Set

hw = sup{| fu = f1. 1 = f )
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Obviously, lim,— o0 by (x) = limy— oo | fu(x) — f(x)| =0 almost everywhere on X.
Moreover, h,+1 < h, < 2g for every n € N. Applying B. Levi’s theorem to the
increasing sequence {2g — h,},>1, we see that

/(Zg—hn)du — f 2gdu.
X n—o0 X

Hence f X h,du njo)o 0, and, consequently,

/Ifn—fldu</hndu—>0. .
X X

n—oo

Condition (L) is not necessary for the interchange of limits and integration. One
can see this from the following example. Let i be the Lebesgue measure on R and
consider the functions f,, defined by the formula f,(x) = ¢, > 0 for n]?
% and f;(x) = 0 for the other values of x. Obviously, f,(x) —> 0 everywhere.

n—o0

<x <
Furthermore, fR Jfan(x)dx = W — 0 provided that ¢, = o(n?). However, the
n—>0o0

functions f; are not necessarily dominated by a summable function. Indeed, such a
function is, obviously, not less than the sum Zn>1 Jfn(x), the integral of which is
equal to Zn>1 % If, for example, c¢,, = n, the latter series diverges.

Example 1 Let u be a finite Borel measure on [0, +00). Let us find the limit of the
sequence of integrals

I = / (") dp(x),
[0,400)

where g is a continuous function that has a finite limit C at infinity.
The pointwise convergence obviously holds:
p0) ifoL<x<1,
p(x") — f)=1e0) ifx=1,
n—00
c if x > 1.

Since the function ¢ is bounded on [0, +00) and the measure w is finite, condi-
tion (L) is satisfied (the sequence is dominated by the constant function equal to
sup |¢| everywhere). Hence we may apply Lebesgue’s theorem:

lim 1, =/[0+ )f(x)du(X)=<p(0)u([0, 1) + o) u({1}) + C p((1, +00)).

In particular, if u is a discrete measure generated by point masses wy at integer
points, and Zk>0 wi < +00, then

=" e(k")or — ¢O)wo+¢(Hwi+C Y o
k=0 k=2
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In some cases, not only the integrand f;,, but also the domain of integration de-
pends on the index n. However, extending f;, by zero outside of this set, we can
reduce such a situation to the standard one (where the domain of integration is con-
stant).

Example 2 Let a > 0. We will prove that the integrals

n x\"
= [t (1-2) @
0 n

tend to [ x4 le™ dx =T'(a) as n — oo.

To this end, set f,(x) = x¢~1(1 — %)” for x € (0,n] and f,,(x) =0 for x > n.
Clearly, f,(x) — fx)= x4 le=* for every x > 0. To prove that lim,,_, oo I, =
I'(a), we will cnhegli that the functions f;, satisfy condition (L) of Lebesgue’s theo-
rem. Indeed, since 1 — 7 < e™*/" we have (1 — St < e for 0 < x < n, whence
0 < f(x) <x%le™ for all x > 0. Thus the functions f, are dominated by a
summable function on (0, +00).

4.8.5 The next application of Lebesgue’s theorem is of a more general nature; we
preface it with an auxiliary result.

Let f be a function defined on a bounded set E C R™. With every tagged parti-
tion (7, &) of E, which consists of sets e1, ..., e, and tags &, ..., &, (by construc-
tion, & € E Neg), we associate the simple function

fr=)_ FE)Xe-

k=1

Thus f;(x) = f(&) for x € ex. Recall that the mesh of t is equal to r(r) =
max; k<, diam (eg) (see Sect. 4.7.3).

Lemma If r(t) — 0, then f;(x) — f(x) at all points of continuity of f. More
precisely: if x is a point of continuity of f, then for every ¢ > 0 there exists a § > 0
such that | fr (x) — f(x)| < e as soonasr(t) <§.

Proof Tt suffices, given ¢, to choose a § > 0 such that |f(x) — f(y)| < ¢ for
lx —y|l <6 and y € E. In this case, if r(r) < § and x € ¢, then ||§ — x| < 6,

whence | f(x) — fr (O] =[f(x) = f)| <e. O
The following theorem generalizes Theorem 4.7.3.

Theorem Let E be a bounded (measurable) subset of R™. If f is a bounded func-
tion defined on E and the set of discontinuities of f is of zero measure, then the
integral [ f(x)dx is the limit of Riemann sums (in the same sense as in Theo-
rem 4.7.3).
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Proof First observe that, by Theorem 3.1.7, the function f is measurable. Let 7 =
{ex};—, be a partition of E and & = {&]};_,, where & € E Ne, be a family of
tags for t. By definition, the Riemann sum S(f, 7, §) corresponding to the tagged
partition (t, §) is equal to S(f,7,&) =Y y_; f(&)Am(ex). In the notation of the
lemma, this formula can be rewritten in the form

S(fsrvé):/%fr(x)dx.

Since fr(x) — f(x) as r(r) — 0 at all points of continuity of f, we see that

fz, —> f almost everywhere for every sequence of partitions 7, such that
n—o0

r(t,) —> 0. Furthermore, it is obvious that the functions f; are uniformly
n—o0
bounded. Hence, by Lebesgue’s theorem, f £ fr,()dx — f £ f(x)dx, which is
n—>oo

equivalent to the required assertion. 0

By tradition, for functions defined on an interval [a, b], the integral is defined as
the limit of the Riemann sums corresponding to partitions of [a, b] into finer and
finer subintervals. This definition was suggested by Riemann,'® so the integral un-
derstood in this way is called the Riemann integral. It is worth mentioning that such
sums and their limits were earlier considered by Cauchy, but only for continuous
functions. As follows from the theorem proved above, if f is bounded and contin-
uous almost everywhere on [a, b], then the corresponding Riemann integral exists
and coincides with the integral of f with respect to the Lebesgue measure. We leave
the reader to prove that the assumptions made in the theorem (that f is bounded and
the set of discontinuities of f has zero measure) are not only sufficient, but also nec-
essary for the integral | g J (x)dx to coincide with the limit of the Riemann sums
(see Exercises 10—12). Thus the Riemann integral of a bounded function over a finite
interval exists if and only if it is continuous almost everywhere.

4.8.6 The next theorem is not exactly a result on the interchange of limits and in-
tegration, but it shows that in a wide class of cases one can pass to the limit in an
inequality. More precisely, the integral of non-negative functions has an important
property: it is lower semicontinuous with respect to almost everywhere convergence.
This property is often used in the cases where one has to establish the summability
of a limit function.

Theorem 1 (Fatou'®) Ler { f, }n>1 be a sequence of non-negative measurable func-
tions that converges to f almost everywhere on X. If for some C > 0,

/ fundn < C  foreveryn eN, 1)
X

then [y fdu<C.

18Georg Friedrich Bernhard Riemann (1826-1866)—German mathematician.
19pjerre J oseph Louis Fatou (1878-1929)—French mathematician.
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Remark Even if the integrals of all functions f, are equal, the integral of the limit
function may be strictly less than their common value. To obtain a corresponding ex-
ample, assume that our measure space is the interval (0, 1) with Lebesgue measure
and f, is the function defined by the formula

n f0r0<x<%,

Su(x) = {

0 for%<x<l.

Obviously, f,(x) —> 0 pointwise on (0, 1) and fol Jfn(x)dx = 1, while the integral
n—oo

of the limit function vanishes.

The same example shows that Fatou’s theorem is no longer true if we reverse
the inequalities in condition (1) and in the conclusion of the theorem; that is, the
integral, while being lower semicontinuous, is not upper semicontinuous.

Changing the signs of f;, in the above example, we see that Fatou’s theorem is not
true without the assumption that the functions under consideration are non-negative.

Proof Let g,(x) = inf{f,(x), fu+1(x), ..., fu+x(x),...} (x € X). Clearly,
gn < 8n+1, &n —> f almost everywhere on X, and
n—od

/gndugffnduéc foralln e N.
X X

Therefore, by B. Levi’s theorem,

/fdu: lim/g,,d,ugC. [
X n—od X

Since the sequence {g,},>1 is monotone, we can drop the assumption that the se-
quence { f,},>1 converges and use the equation lim, o g, =lim,,_, . f, to prove
a formally stronger version of Fatou’s theorem:

for every sequence of non-negative measurable functions { fu}n>1,

/ lim f,dp < lim Sndp. (2)
X n—oo n—-00J X

The reader has probably encountered situations where a more general result is
much less important than a central special case. In our opinion, Fatou’s theorem and
its generalization provide such an example. For another example, see Exercise 4,
which generalizes B. Levi’s theorem.

Theorem 1 remains valid if we replace almost everywhere convergence with con-
vergence in measure.

Theorem 1’ (Fatou) Let {fu}n>1 be a sequence of non-negative measurable func-
tions that converges in measure to a function f. If for some C > 0,

/ fadu < C  foreveryneN,
X

then [y fdu <C.
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Proof Using Riesz’ theorem (see Sect. 3.3.4), choose a subsequence { f;;, }x>1 that
converges to f almost everywhere. Applying Theorem 1 to this subsequence, we
obtain the desired result. O

Note that in the case of a finite measure Theorem 1’ is stronger than Theorem 1.
In addition, the result obtained in the former does not follow from (2), because
the lower limit lim,_,  f, can be substantially less than f (see Sect. 3.3, Exer-
cises 2, 3).

4.8.7 As we have seen, the existence of a summable dominating function is not
a necessary condition for the interchange of limits and integration; however, in
Lebesgue’s theorem it is essential and cannot be dispensed with. But an analysis
of the proof shows that this condition can be weakened. Indeed, what we in fact
need is not the existence of a summable dominating function, but the smallness
of the integrals f . | fuldu for sets e of sufficiently small measure implied by this
assumption. So we introduce the following definition.

Definition We say that functions f,, (o € A) have absolutely equicontinuous inte-
grals if they are summable and

Ve>036>0: (u(e) <8) = (VaeA/|fa|du<e). 3)

If a family {fy}qea is dominated by a summable function, i.e., there exists
a summable function g such that |fy| < g almost everywhere for every «, then
[, 1 faldp < [, gd, and condition (3) is satisfied by the absolute continuity of the
integral of g.

It turns out that the absolute equicontinuity of the integrals of f;, (n € N) is a nec-
essary condition for the integrals || g Jn du to have a finite limit for every measurable
set E and, in particular, for the convergence || x| fo— fldu = 0. The proof of

this theorem, due to Vitali, is rather involved (see, for example, [Bo, Vol. I]), so we
do not reproduce it here, but establish a much easier result that the absolute equicon-
tinuity is sufficient for the interchange of limits and integration. Note that the proof
of this result provides a typical application of Fatou’s theorem, which is used to
estimate the integral of the limit function.

Theorem (Vitali) Let {f,},>1 be a sequence of measurable functions that con-

verges to a function f in measure on X. If 1(X) < oo and the functions f, have ab-

solutely equicontinuous integrals, then f is summable and |. x | fo— fldu —> 0.
n—oo

Proof Fix an arbitrary ¢ > 0, and let § be a number such that condition (3) is satis-
fied. Set e, = X (| f — fu| > ¢€). Since u(e,) —> 0 by assumption, it follows that
n— o0

w(e,) < 6 for sufficiently large n; by condition (3), for such n and for all k¥ we have
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fen | fx|du < e. By Fatou’s theorem, it follows that fen | fldu < e. Therefore,
[1r=pdu=[ 15 pidis [ 15 fuldu
X X\en en

</ sdu+/ |f|du+/ [fuldp <eu(X)+e+¢
X\en ey en
=(/L(X)+2)8.

Since this inequality holds for sufficiently large n, it follows that fx' f -
fulduw —> 0. Furthermore, f is summable, because f = f,, + (f — fu), with
n—od

both terms on the right-hand side being summable. d
Vitali’s theorem implies a useful corollary.

Corollary Let 1(X) < +o0, and let { fy}n>1 be a sequence of measurable func-
tions that converges in measure to a function f. If there exist p > 1 and C > 0 such
that

/ | ful?du < C  foralln, V)
X
then the functions f, and f are summable and | x | fo = fldu —> 0.

n— o0

Proof To apply Vitali’s theorem, we should check the summability of f, and the
absolute equicontinuity of the integrals of f;,. Both these facts follow from Holder’s
inequality. Indeed, assuming that % + é = 1, for every set e we have

E.

/IfnldM< (/Ifnlpdu)p(ﬂ(e))‘ <C%(M(6))$~

This implies both the summability of f, (for e = X) and condition (3), since the
integrals fc | fnldu are arbitrarily small for all n provided that the measure of e is
sufficiently small. g

Following the same scheme, we can use Vitali’s theorem to deduce a more gen-
eral result, whose proof we leave to the reader.

Theorem (de La Vallée Poussin?®) Ler n(X) < oo, and let { f}n>1 be a sequence
of measurable functions that converges in measure to a function f. If there exists

20Charles-Jean Etienne Gustave Nicolas de La Vallée Poussin (1866—1962)—Belgian mathemati-
cian.
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a non-negative function ® that grows unboundedly on [0, +00) and satisfies the
condition

Sup/X [ ful@( fr]) dp < +o00,

then the functions f, and f are summable and fx | fn— fldu — 0.
n—o00

EXERCISES

1.

Give an example of a sequence of positive continuous functions f;, on [a, b]
such that fab fn(x)dx —> 0 and sup, f,(x) =400 at every point x € [a, b].
n—oQ

Show, by an example, that B. Levi’s theorem is no longer true if we drop the
assumption that the functions under consideration are non-negative.
Leta, >0and Y 2, a, <+o0. Show that:

(a) if )07 anInn < 400, then the series Y - | 4 converges almost ev-
erywhere on R (with respect to the Lebesgue measure) for every sequence
{xn} CR;

(b) if Z —1ayInn = 400 and X is a countable dense subset of the interval
(0, 1), then, depending on the numbering {x,} of X, the series in question
may converge almost everywhere on (0, 1) as well as diverge almost every-

where on (0, 1) (and even at every point of (0, 1)).

Prove the following generalization of B. Levi’s theorem. Let { f,;},>1 be a se-
quence of non-negative measurable functions that converges to f almost ev-
erywhere on X. If f, < f almost everywhere for every n, then [ x fndu —>

n—oo
Jx fdu.
Let {fy}n>1 be a sequence of non-negative measurable functions that con-

verges to a summable function f almost everywhere on X. If [, x fnd —>
n—oo

Jx fdu, then [ fudu —> [ fdpu for every measurable set E C X. More-
n—o00
over, [ x Ifu — fldiw —> 0. Hint. To prove the first claim, apply Fatou’s theo-
n—oo

rem; to prove the second claim, use the identity | f, — fl = fu — f +2(fn — f)—
and Lebesgue’s theorem.

Is the sequence of functions %(M)z, which pointwise converges to zero,
dominated by a summable function on (0, 77)?

Show that if u is a finite measure, then f;, = f in measure if and only if
Jx 1|fn pdu —> 0.

+fn— n—00
Let n be a measure such that u(A) = sup{u(E) | E C A, u(E) < +oo} for
every measurable set A. Show that Theorem 4.8.3 remains valid if we replace
the convergence of f, to f in measure on X with convergence in measure
on every set of finite measure. The latter condition is obviously satisfied if
fu = f almost everywhere.

Is the sequence of functions f,(x) = — ’1 e dominated by a summable
function on (—z, 77)? What is the limit hmn_)OO f [ fu(x)]dx?
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10. Show that if a function f defined on a ball is not bounded, then the correspond-
ing Riemann sums S(f, t, £) cannot have a finite limit as r(t) — O.

11. Let f be a measurable function defined on a bounded subset e of R such that
the set of discontinuities of f is of positive measure. Show that the Riemann
sums of f corresponding to finer and finer partitions have no limit (even if we
restrict ourselves to partitions of E into sets of the form £ N P, where P is a
cell). Hint. Consider a set of positive measure K C E such that

lim f(y)— lim f(y)>e>0 forallxeK.
y—=>x y—x

Verify that there exist a partition t of arbitrarily small mesh and families of tags
& and &' for  such that S(f, 7,&) — S(f, 7,&") > SAn(K).

12. Show that Theorem 4.8.5 and the result of Exercise 11 remain valid for every
finite Borel measure. The result of Exercise 10 also remains valid under the
additional assumption that every non-empty open set has positive measure.

13. Show that in the definition of absolute equicontinuity, the integrals fe | faldu
may be replaced by | [, fo dpl.

4.9 *The Maximal Function and Differentiation of the Integral
with Respect to a Set

In this section, we study the following problem: to what degree can Barrow’s the-
orem on differentiation of the integral of a continuous function with respect to a
variable upper limit (see Sect. 4.6.1) be extended to summable functions? As one
can easily see, there is no difficulty in generalizing it to the case of multiple inte-
grals keeping the assumption that the integrand is continuous. However, an attempt
to extend the class of functions under consideration encounters major difficulties
even in the one-dimensional case. If the integrand is only summable, we cannot ex-
pect the derivative with respect to a variable upper limit to exist at every point. It
is also clear that even if this derivative exists, it does not necessarily coincide with
the corresponding value of the integrand (since we can modify the latter at a set of
zero measure in an arbitrary way without affecting the integral). Hence we should
adjust the statement of the problem. Obviously, we can hope for the derivative to
coincide with the integrand only almost everywhere. It is extremely important to
find out whether or not the derivative does indeed exist almost everywhere. More
precisely, we formulate the question as follows. Given a summable function on R™,
is it true that the limit of the average values of f over balls shrinking to a point,
i.e., lim,_ ¢ % fB(x’r) f(y)dy, exists almost everywhere? We will see that the an-
swer to this question is positive and, moreover, the above limit coincides with f(x)
almost everywhere.

By A we denote the Lebesgue measure on R” and by A* the corresponding outer
measure; v(r) = A(B(0,r)). Let Z(R™) be the set of functions summable on R™
with respect to the Lebesgue measure.
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4.9.1 The problem of differentiating the integral with a variable upper limit deals in
fact with the behavior of average values of the form % fXHh f(y)dy.In various esti-
mates related to average values of a function (of one or several variables), it is often
useful to employ a function dominating these averages. The most convenient of such
functions was introduced by Hardy?! and Littlewood?®?; it is the smallest function
dominating the averages of f over balls. Here is the corresponding definition.

Definition Let f € 2 (R™). The function My defined by the formula

1
My (x) =sup — |lf)|dy (xeR™)
r>0V I") B(x,r)

is called the maximal function (for f).

Note that the maximal function is measurable. Indeed, as follows from the ab-
solute continuity of the integral, the function (x, r) — ﬁ / B(.r) | f(y)|dy is con-
tinuous. Hence the supremum in the definition of M can be taken only over the
rational values of r. Thus the maximal function is measurable as the supremum of a
countable family of measurable functions. If 1 = me | f(x)ldx > 0, then M is not
summable. Indeed, if the norm ||x|| is sufficiently large, then

| dv > const

M > — > .
102 531D Lo Wy > o

One can show that the maximal function is not necessarily summable even on sets
of finite measure (see Exercise 1). However, it is finite almost everywhere, as the
following important theorem implies.

Theorem Let f € Z(R™) and E; = {x e R™ | My (x) >t} fort > 0. Then

m

5
ME}) < —f | f(x)|dx. (D
t Jgrm

Since {x € R™ | M 7 (x) = 400} C E; for every t > 0, it follows that the function
M is finite almost everywhere.

Proof To estimate the measure of the set E;, we use Theorem 2.7.1. Since M 7 (x) =

sup,...g ﬁ fB(x " |f(»)|dy >t for x € E;, for every point x € E; there exists a ball
B(x, ry) such that

1

V() JBGr)

lf)]dy > 1.

21Godfrey Harold Hardy (1877-1947)—English mathematician.
22John Edensor Littlewood (1885-1977)—English mathematician.
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This inequality can be rewritten as
1
v(ro) <~ | £ ()] dy. 2
! B(x,ry)

It follows that v(ry) < % me | f (y)| dy, and hence the radii of the balls are uniformly
bounded. To apply Theorem 2.7.1, instead of the whole set E;, which may be un-
bounded, consider an arbitrary bounded part E? of E;. Then, according to this the-
orem, in the family {B(x, ry)} EO there is a (possibly finite) sequence of pairwise

disjoint balls By = B(xy, ry,) such that E? C Uk>1 B}, where B} = B(xg, 5ry,).
Hence, using (2), we obtain

Z/\ (Bf) —SmZA(Bk) / | fn]dy

5 5
-= |f(y)|dy<7f £ ()] dy.
Rm

k>1 Bk

Since Et0 is arbitrary, this inequality holds for E; as well. O

4.9.2 Now we turn to the main problem of this section: is it true that the limit
lim;,—, 5o m f E,(x) f(y)dy, where E, (x) are sets of positive measure shrinking
to a point x, exists almost everywhere and coincides with f(x)? Keeping in mind the
analogy with the one-dimensional case, where E, (x) are intervals shrinking to x, it
is natural to interpret our question as asking about the derivative of the integral with
respect to the system of sets { £, (x)}.

It is obvious that the behavior of f at points “far” from x (in particular, the
summability of f on the whole space R™) does not affect the existence and the value
of the limit in question. So it makes sense to introduce a wider class of functions
than .2 (R™); this class of measurable functions often appears in function theory as
well as in other areas of mathematics.

Definition A measurable function f in R™ is called locally summable in R™ if it is
summable on every bounded set, i.e.,

/ |f(x)|dx<—|—oo for every R > 0.
B(0,R)

The set of all such functions will be denoted by ZHoc (R™). It is clear that every
locally summable function is finite almost everywhere and the class -#oc(R™) con-
tains both continuous and simple functions.

First we consider the case of differentiating the integral with respect to a family
of concentric balls. Our main goal is to prove the following important result.
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Theorem (Lebesgue) If f € Loc (R™), then

— [fG) = f)|dy —0 3)
v(r) JBx.r) r—0
for almost all x. In particular,
— f(y)dy — f(x) almost everywhere. 3)
v(r) JBx,r) r—0

A point x at which (3) holds is called a Lebesgue point of f.>3 Thus the Lebesgue
differentiation theorem can also be stated as follows:

almost every point of a locally summable function f is a Lebesgue point of f.

Of course, every continuity point of f is a Lebesgue point of f, since

1

— |f) = f@)|dy< sup |f(») — f(x)|—>0.
v(r) JBx,r ) r—0

yeB(x,r

We preface the proof of the theorem with a useful lemma.

Lemma A function f fromthe class £ (X, i) can be approximated by simple func-
tions in the following sense: for every ¢ > O there exists a simple function g such that

/ |f —gldu <e.
X

Proof If f is non-negative, then this claim follows immediately from the definition
of the integral. Indeed,

/ fd,u:sup{/ hdpu|0<h< f, hisasimplefunction},
X X

and hence there exists a simple function g such that 0 < ¢ < f and |, xfdn <
/ x &du + &. It provides the desired approximation:

/XIf—gldu=/X(f—g)du«=fodu—/ngu<e.

In the general case, it suffices to approximate the functions f and f_. g

Proof of the theorem We assume without loss of generality that f is real-valued.
It suffices to show that for every R > 0 almost all points of the ball B(0, R) are
Lebesgue points of f. To prove this, fix a radius R and observe that for || x| < R the

23In some books, the term “Lebesgue set” refers to the set of Lebesgue points of a function. We
draw the reader’s attention to this terminological ambiguity.
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validity of (3) does not depend on the values of f outside of B(0, R). This allows
us to assume that f € Z(R™) (it suffices to redefine f by zero outside of the ball).

In the subsequent argument, we will consider functions f of more and more
complicated structure. First assume that f = xg is the characteristic function of a
measurable set E. Then

1—xeg(y) ifxekE,

lfO) = F@] = [xe) — x| = 0 fx gL

Hence

MENB(x,r)) .
L o srofa | L e
v() S, A Y= ) aEnBe)

o) , ifx¢E.

By Corollary 1 of Vitali’s theorem (see Sect. 2.7.3), almost every point of E is a
density point of this set, which implies that the right-hand side tends to zero almost
everywhere as r — 0.

It is clear that (3) remains valid for every linear combination of characteristic
functions, i.e., for every simple function.

Now we turn to the main case, where f is an arbitrary summable function. We
will show that for an arbitrary a > 0, the measure of the set

— 1
Ea<f)={xeR’” lim — )!f(y)—f(x)|dy>a}

r—0 v(r) B(x,r
vanishes. This will complete the proof of the theorem, since points at which (3) does
not hold are contained in the union (J;2 | Ej/n(f).

Fix a > 0; we will estimate the outer measure of the set E,( f) (leaving aside the
question of its measurability). Obviously,

— 1 1
S 3 o PO~ I @Iy <Fm oo | [ r ol dy +[700)

<My(x) + [ f(x)

’

whence
a a
E,(f) C {xeR’"‘Mf(x) > E}U {xeRm“f(xﬂ > E}
But

2
,\({x eR™ ’ || > %}) <= / | f(x)|dx (by Chebyshev’s inequality),
a Rm

Sm
A({xeRm ‘Mf(x)> %}) <27/R | f(x)|dx (by Theorem 4.9.1).
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Therefore,
* C
W (Ea(f)) < = / | /(0] dx, )
a Jrm

where C is a coefficient that depends only on the dimension.

To complete the proof of the theorem, we will show that A*(E,(f)) = 0. As we
have already established, (3) holds almost everywhere for a simple function. Hence,
taking an arbitrary simple function g, averaging the inequality

|fF ) — fF] =g —g@| <|(F ) —8) — (Fx) — )]
<|fFO) = fFO] +[8() — 8|

over the ball B(x,r), and taking the limit superior as r — 0, we see that
A (EL(f)) = A*(Eq (f — g)). Thus inequality (4) can be substantially strengthened:
for an arbitrary simple function g,

C
W (ED) =1 (Ef—0) < ¢ [ [f0—glar. @)

As follows from the lemma, the right-hand side can be made arbitrarily small by the
choice of g. Thus A*(E,(f)) =0. O

Remark 1 Since equality (3) holds for every continuous function g, it follows from
the above argument that inequality (4") also holds for such g. As we will show in
Chap. 9, Lemma 4.9.2 remains valid if we replace simple functions with continu-
ous ones. Hence we could prove the theorem using continuous rather than simple
functions and applying Theorem 9.2.3 instead of the lemma.

Remark 2 The theorem can easily be extended to the (formally more general) case
where a function is defined only on a subset of R™. Let us say that a function f is
locally summable on an open set O C R™, or on an arbitrary interval A C R, if it
is summable on every compact subset. In this case, (3) holds for almost all points
of O.

Indeed, O can be exhausted by a sequence of closed cubes contained in it. Hence
it suffices to prove (3) for almost all points of every such cube Q. The corresponding
assertion follows immediately by applying the theorem to the function f¢ that coin-
cides with f on Q and vanishes outside of Q (note that fp € Z(R™) C Loc(R™),
since fQ | f(x)|dx < 4+00).

4.9.3 Now we turn to the famous Lebesgue theorem, which provides the general-
ization of Barrow’s theorem that we discussed at the beginning of this section. It
concerns functions that can be written as integrals with a variable upper limit.



186 4 The Integral

Definition A function F defined on an interval A, A C R, is called absolutely
continuous on A if it can be written in the form

X
F(x):F(c)+/ fdy (xed), ®)
c
where ¢ € A and f is locally summable on A.

We draw the reader’s attention to the fact that if the interval A is closed, then f
is summable on A. Otherwise this is not necessarily so (see Exercise 4).

It follows from Theorem 4.6.1 that every absolutely continuous function is con-
tinuous. The converse is not true even for monotone functions (see Exercises 4, 5).
The simplest examples of absolutely continuous functions are C! functions. Clearly,
the functions |x|, +/]x| are absolutely continuous on R. As follows from the remark
after the fundamental theorem of calculus (Sect. 4.6.1), a convex continuous func-
tion on an interval is absolutely continuous on this interval.

In the one-dimensional case, Theorem 4.9.2 shows that if F is the function de-
fined by (5), then the limit of the ratio ZEHALG=h) _ L (¥t £(yy gy as b — 0
exists almost everywhere and coincides with f(x). One can strengthen this result
by showing that the function F' is almost everywhere differentiable in the classical
sense.

Theorem (Lebesgue) If F is a function that is absolutely continuous on an inter-
val A, then it is differentiable almost everywhere, its derivative is locally summable,
and F(y) — F(x) = [} F/(t)dt forany x, y € A.

Proof Let F be a function satisfying (5). We will prove that for almost all x the
right derivative of F at x exists and coincides with f(x). Indeed, if # > O, then

F h) —F 1 x+h 1 x+h
W‘ﬂ”:ﬁ/ f(y)dy—f(X)ZE/ (fO) = f(x))dy.
Therefore,

F h)—F 1 [rth
—9i7}—39—fuﬂ<5/ £ = £ dy

1 [xth

<o [ lro-rwla,
x—h

and the right-hand side tends to zero as 7 — 0 almost everywhere on A by Theo-

rem 4.9.2. It follows that the right derivative exists. Clearly, the existence of the left

derivative can be proved in a similar way, and then the desired formula is obvious. [J

The theorem shows that absolutely continuous functions admit the following de-
scription: a function F is absolutely continuous on an interval A if the derivative F’
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exists almost everywhere, is locally summable, and F can be recovered from F’ by
the formula

F(x):F(c)+/ F'()dy (c,xeA).

Note that the local summability of the derivative F’, which exists almost every-
where, is only necessary, but not sufficient for this equality to hold (see Exercise 5).

4.9.4 One may differentiate the integral with respect to other families of sets instead
of concentric balls. Using the notion of a regular cover (see Sect. 2.7.4), we can
easily obtain the following corollary of Theorem 4.9.2.

Corollary If f is a locally summable function on an open subset O of R™ and
{En(x)}xex.nen is a regular cover of X C O, then

lim —— y)— f(x)|dy —> 0 almost everywhere on X.
A TE G Sy 1O TN 2, Y

Note that we do not assume the set X to be measurable.

Proof For every x in X, let

E,(x)C B(x,r,,(x)), rp(x) = 0, and infM =0(x).

nv(r,(x)) B

Then the desired assertion follows from the inequality

1
|f() — fF@)|dy <

1
ot R ol
MER(X)) JE, ) 6 () (ra(x) B(x,r,,<x>>|f 0= S @) dy

whose right-hand side tends to zero almost everywhere by Theorem 4.9.2. 0

EXERCISES

1. Let f(x) = xli%c for x € (0, %) and f(x) = 0 at the other points. Show that
My(x) > lel—nXI for x € (0, JT) and, consequently, the maximal function is not
summable in any neighborhood of the origin.

2. Give an example of a function f in .Z’(R) such that the maximal function My is
not summable on any non-empty interval.

3. Let f(x) = sin% for x 20, f(0) =0 and F(x) = fOx f(y)dy. Show that O is
not a Lebesgue point of f, but nevertheless the derivative F’(0) does exist and
is equal to zero.

4. Show that the function f(x) = f(f sin% % (x € [0, 1]) is continuous but not abso-
lutely continuous on the closed interval [0, 1], though it is absolutely continuous
on the semi-open interval (0, 1].

5. Show that the Cantor function (see Sect. 2.3.2) is not absolutely continuous
(while having zero derivative almost everywhere).
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4.10 *The Lebesgue—Stieltjes Measure and Integral

Here we consider an important class of measures generated by increasing functions.
The one-dimensional Lebesgue measure of a subset of the real line can be inter-
preted as the mass of this subset provided that the mass is distributed with a con-
stant density. Dropping the latter condition, we arrive at the notion of the Lebesgue—
Stieltjes>* measure.

4.10.1 We now proceed to precise definitions. Let A be a non-empty open in-
terval (finite or not), and let g be an increasing function defined on A. Given
c € A, by g(c —0) and g(c + 0) we denote the one-sided limits lim,_,.—g g(x)
and limy_, .40 g(x), respectively. These limits are finite, g(c —0) < g(c+0), and g
has a discontinuity at a point c if and only if g(c — 0) < g(c 4+ 0). Since g is increas-
ing, it follows that g(c 4+ 0) < g(¢’ — 0) for ¢ < ¢’ (¢, ¢’ € A). Hence the intervals
(g(c —0), g(c + 0)) corresponding to different points of discontinuity are disjoint.
Since every such interval contains a rational number, the set of discontinuities of a
monotone function is at most countable.

Now consider the semiring & (A) of all semi-open finite intervals [a, b) whose
closures are contained in A. We define a volume 11, on & (A) by the formula

,ug([a,b)) =gb—-—0)—g@—0) (a,beA, a<b).

We leave the reader to check that the function g thus defined is indeed a volume,
i.e., that it is non-negative and additive. One may ask why we did not define
by the simpler formula v, ([a, b)) = g(b) — g(a) (see Example (3) in Sect. 1.2.2).
Of course, if g is continuous, or at least left-continuous, both formulas give the
same result. The reason why we have to use the more complicated formula is that
the volume (1, as we will soon prove, is always a measure, while the function vg
(being a volume) is not a measure in the case where g is not left-continuous (see
Example (2) in Sect. 1.3.1).

Since g(u) < g(v — 0) < g(w) for u < v (u, v € A), it follows that
limy_,.—og(x — 0) = g(c — 0) for ¢ € A. This immediately implies the follow-
ing property of the volume (g, which will be useful when proving its countable
additivity: if [a, b] C A, then

,b))= 1 ,b))=li ,1)). 1
wg(la, b)) = lim pig(ls, b)) = lim pg(la,1) (M
4.10.2 First we establish that volume pi is countably additive.

Theorem The volume (iq is a o -finite measure.

24Thomas Joannes Stieltjes (1856—1894)—Dutch mathematician.
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Proof > We need to prove only the countable additivity of the volume Mg, its o-
finiteness being obvious. As we know (see Theorem 1.3.2), it suffices to verify that
g is countably subadditive: if P, P, € #(A), P C UZ‘;I P,, then

g(P) <D g (Py). 0]

n=1
We will prove inequality (2) up to €, where ¢ is an arbitrary positive number. Let
P =la,b) # < and P, = [ay,, b,). Using (1), find s, € A such that s, < a,, and

g (Ins b)) < g (lan. b)) + zi (neN). 3)

Let us estimate the volume 1, ([a, t)) from above for an arbitrary ¢ € (a, b). Clearly,

la.t1C P C P | JGn bu).

n=1 n=1

Since the interval [a,t] is compact, for sufficiently large N we have [a,?] C
Uff:l(sn, b,). Then a fortiori [a, t) C Uflv:l[sn, by). Since the volume p, is subad-
ditive, the inequalities (3) yield the bound

¢(la.n) Zug [sn. bn)) Z(Mg([ansb ) + ) Zug [an. bn)) +

n=1

Applying (1) once again, we see that

sl 0) = i sl 0) € 3, ) -
n=1

Since ¢ is arbitrary, this implies (2). g
4.10.3 Now we can introduce the main notion of this section.

Definition The Lebesgue—Stieltjes measure generated by an increasing function g
is the Carathéodory extension of the volume 1.

For this measure, we keep the notation u,; the o-algebra of subsets of the in-
terval A on which it is defined will be denoted by 2, (A). The Lebesgue measure
is a special case of the Lebesgue—Stieltjes measure, corresponding to A = R and
g(x) =x.

25t is instructive to compare this proof with that of the countable additivity of the ordinary volume
(Theorem 2.1.1).
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Note that the o-algebra 20, (A) contains all subintervals of A and hence all open
and Borel subsets of A.

Let us compute the measure (g of a one-point set. Let ¢ € A, and let ¢, € A
be points of continuity of g such that ¢;, > ¢, +1, ¢ = Put P, =[c, ¢;). Then

P, D P,41 and ﬂ,@ | Pr = {c}. Since every measure is conditionally continuous
from above, uy(P,) —> ug({c}). Furthermore,
n—>oo

g (Pa) = g(ea) = glc = 0) —> gl(c+0) = glc —0),

whence ug({c}) = g(c +0) — g(c —0). Thus ug({c}) > 0 if and only if ¢ is a point
of discontinuity of g; the measure concentrated at ¢ is equal to the jump of g at this
point.

Knowing the measure of one-point sets, one can easily compute the measure of
an arbitrary interval contained in A. For example, if [a, b] C A, then

tig([a, b]) = g (la, b) U (b)) = pg(la, b)) + pg ({b}) = g(b 4 0) — g(a — 0).

We leave the reader to find the measure of intervals of other types.

In general, the o-algebras 2, for different functions g do not coincide. For ex-
ample, if an increasing function g is constant on (a, b) C A, then ug((a, b)) =0
and, by the completeness of 11, the o-algebra 2, (A) contains all subsets of this in-
terval. At the same time we know that every non-degenerate interval (a, b) contains
sets that are not Lebesgue measurable (see Sect. 2.1.3).

In order to deal with measures defined on the same o -algebra, one often considers
Lebesgue—Stieltjes measures only on Borel subsets. The restriction of g to the o-
algebra of Borel sets is called the Borel-Stieltjes measure.

Up to now we have only considered the case where the function g, which gen-
erates a Lebesgue—Stieltjes measure, is defined on an open interval A. If A has the
form A ={[p, q), then we define 1o on semi-open subintervals of A of the form
[a, b) in the same way as above, with the only difference that g(p — 0) should now
be understood as g(p). Thus the mass concentrated at the point p will be equal to
the jump of g at p. If A is a right-closed interval, then we should assume that the
mass concentrated at the point g is equal to g(q) — g(¢ — 0). One may say that if
A= (p,q)and p € A (or g € A), we extend the function g by assuming it constant
on the half-line (—oo, p] (respectively, [g, +00)), and then consider the measure
generated by the extended function only on subsets of the original interval.

It is clear that if the difference of two increasing functions is constant, then they
generate the same Lebesgue—Stieltjes measure. However, this may also happen in
other cases, because the volume, and hence the measure, 11, does not depend on the
values of g at points of discontinuity. Replacing g(x) at each point of discontinuity x
by the value g(x) = g(x —0), we obtain a “corrected” function, which generates the
same volume as g but is left-continuous at every point. Thus we may assume without
loss of generality that the volume (i is generated by a left-continuous function; this
is sometimes technically convenient. For a description of all functions generating
the same measure, see Exercise 6.
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Remark We have introduced a class of Borel measures defined on subsets of a given
interval A. These measures are finite on compact subsets of A. A natural question is
whether there exist other Borel measures having this property. We will show that the
answer to this question is negative, assuming, to avoid some minor complications,
that A is an open interval.

Consider a Borel measure v that is finite on &(A), fix an arbitrary interior point
p € A, and define a function g on A by the formula

v([p,x)) forx=p,
g(x)=
—v([x, p)) forx < p.

We leave the reader to show that if [a, b] C A, then g(b) — g(a) = v([a, b)), and
that g is increasing and left-continuous. Thus the measures v and u, coincide on
Z(A) and hence, by the uniqueness theorem, on all Borel subsets of A.

To complete our discussion of the definition of the Lebesgue—Stieltjes measure,
observe that if g1 and g, are increasing functions defined on A, then for Borel
subsets of A we have g, 4g,(A) = g (A) + pg, (A), i€, g 4o, = Mg, + g, fOr
any Borel-Stieltjes measures. However, for Lebesgue—Stieltjes measures, this is not
generally the case, since, as we have already mentioned, these measures may be
defined on different o -algebras.

4.10.4 Consider two classes of increasing functions generating Stieltjes measures
of different types.

Let g be an increasing function on an interval A, Ao be the set of points of
discontinuity of g, and w, be the (possibly zero) jump of g at a point x € A. Note
that if a,b € A, a < b, then the increment of g over the interval [a, b] is not less
than the sum of its jumps corresponding to the points of discontinuity in (a, b).
Indeed,

dYoooe= Y or<pg(ab)=gb—0)—ga+0) <gb)—ga.
x€(a,b) x€(a,b)NAg

This implies, in particular, that the sum er[a’b] wy 1s finite.

Definition An increasing function g on an interval A is called a jump function if
its increment corresponding to any two points of continuity is equal to the sum of
the jumps between them, i.e., for any two points of continuity a, b € A, a < b, the

equality g(b) — 8(a) =D\ capynay @x (= X re(a.p) @x) holds.

One of the simplest examples of a jump function is [x], the integer part of x.
However, there are more complicated cases; for instance, the set of points of dis-
continuity of a jump function may be dense in A.

Example A jump function can be constructed as follows. Let {x1,x2,...} be an
arbitrary countable subset of an interval A and w, w», .. .be positive numbers with
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> o2 | wn < +00. Set

h() =Y on=Y_ oux+(x —xp),
n=1

Xp <X

where x, is the characteristic function of the half-line (0, +-00). Since the series
defining & uniformly converges, this function is continuous (from both sides) at all
points x # x,. Further, for every m we have

00
h(x) = wmx, (x = xm) + Z O X+ (X — Xp),
n#m

and the sum of the series is continuous at x,,, which implies that the function #, as
well as x, (x — x;»), is left-continuous at x,,, with the jump at x,, equal to wy,. At
the same time, if a and b are points of continuity and a < b, then h(b) — h(a) =
ZKXH < @Wn, 0 that & is a jump function.

By increasing the values of /4 at points of discontinuity in an appropriate way, we
again obtain a jump function with the given jumps from the left and from the right.

Note that the condition ) oo | w, < 400 can be weakened. The reader can easily
check that all arguments used in the construction of 4 remain valid if we replace it
with a weaker condition: ) 1, j@n <00 foranya,be A, a <b.

Let us find the measure generated by the jump function g. As above, let Ag be
the set of points of discontinuity of g and w, be the (possibly zero) jump of g at a
pointx € A.Ifa, b€ A, a < b, then

ne(la, ) =gb—0)—gla—0) = > wr=pg(la,b)NA). (4
x€la,b)NAg

If @ and b are points of continuity of g, then the middle equality holds by the defini-
tion of a jump function; in the general case, it can be proved by passing to the limit.
It follows from (4) that ug (A) = g (Ap) and, consequently, e (A\ Ag) = 0. Since
the measure (1, is complete, the o -algebra 24, (A) coincides with the algebra of all
subsets of the interval A.

Equation (4) shows that on the semiring &?(A) the measure u, coincides with
the discrete measure generated by the masses {wy,}rea (see Sect. 1.3.1). By the
uniqueness theorem (Sect. 1.5.1), these measures are identical. Thus if g is a jump
function, then the measure i, is just the discrete measure generated by the family
of jumps of g.

Now consider a situation that is in a sense opposite to the previous one; namely,
the case where the function g not only has no jumps, i.e., is continuous, but is
absolutely continuous (see Sect. 4.9.3). By Theorem 4.9.3, g is then differentiable
almost everywhere, and g is increasing if and only if g’ is non-negative.

We will prove that in this case the measure (1, has a density (see Sect. 4.5.3) with
respect to the Lebesgue measure.
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Lemma Let g be an increasing function absolutely continuous on an interval A.
Then pug(A) = fA g’ (x) dx for every Lebesgue measurable set A C A.

Proof Consider the measure v defined on the o -algebra 2((A) of Lebesgue measur-
able subsets of A by the formula

v(A):/ gx)ydx (AeAW)).
A

Since the measures v and jig coincide on the semiring &7(A), it follows from the
uniqueness theorem (see Sect. 1.5.1) that they coincide on all Borel sets, and hence,
by the completeness of 11,4, on the whole o -algebra 2(A). Thus

A(A) CAg(A) and pg(A)=v(A) for A cA(A). O

Remark Applying Theorem 4.5.3 to the measure u, generated by a function g sat-
isfying the assumptions of the lemma, we see that for every Lebesgue measurable
non-negative function f,

/.fdMgZ/ fg'dx, (5)
A A

where A is the one-dimensional Lebesgue measure.

4.10.5 Bearing in mind that Lebesgue—Stieltjes measures may be defined on differ-
ent o-algebras, in this subsection, when speaking about the sum of measures, we
mean Borel-Stieltjes measures, i.e. we consider only the measures of Borel sets.

Let g be an increasing function defined on an interval A (to avoid obvious minor
technicalities, we assume it open), {wy }xea be the family of jumps of g, and Ag =
{x € Alw, > 0} be the set of points of discontinuity of g. Fix an arbitrary point
p € A and put

Zte[p’x) w; for x > p,
h(x)=140 for x = p,
- Zte[x,p) w; forx <p

(cf. the formula from the remark in Sect. 4.10.3). Let Ag = {x1,x,...} and
h, = wy,; then h coincides with the function considered in Example 4.10.4. As we
have mentioned, it is not necessary to assume that the family of masses is summable;
in our case, it is summable on every closed subinterval of A, which suffices to con-
struct 4. As we have shown in Example 4.10.4, the function 4 is increasing, has
the same points of discontinuity and the same jumps as g, and is a jump function.
Modifying, if necessary, the values of & at points of discontinuity, we can make it
have the same jumps from the left and from the right as g. Assuming that 4 has this
property, we see that the difference g. = g — h is a continuous function. It is increas-
ing. Indeed, leta, b € A, a < b. When proving the inequality g.(b) — g.(a) > 0, we
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may assume, by the continuity of g., that a and b are points of continuity of g (and
h). In this case,

ge(b) — gc(a) = g(b) — g(a) — (h(b) — h(a)) = g(b) — g(a) — Z wy 20,
x€(a,b)

since the increment of an increasing function over the interval [a, b] is not less than
the sum of its jumps corresponding to the points of discontinuity lying in (a, b).
So, every increasing function can be written as the sum of a jump function and a
continuous increasing function: g = h + g..
Now consider the (Borel) measures g, (4. and uy, corresponding to these func-
tions. It is clear that if a, b € A, a < b, then

g —0)—gla—0)=h(b—-0)—hla—0)+gc(b) — gc(a),

ie.,

g (la. b)) = pun(la, b)) + ug (la, b)).

Thus on the semiring &?(A) the measure u, coincides with the sum py, + ptg.. By
the uniqueness theorem, these measures coincide on the Borel hull of the semiring
P (A), i.e., on all Borel subsets of A. Therefore (see Sect. 4.4.2, Property (9)), for
every non-negative (measurable) function f,

[ = [ s+ [ ran.

Since a jump function generates a discrete measure, the integral with respect to w,
can be computed according to the general formula (see Sect. 4.2.4):

/Afduh= > oy,

XeAg

Computing the integral with respect to pg. may be rather difficult (see Exercises 7
and 8). It simplifies substantially if the function g, is absolutely continuous. In this

case, by (5),
[ = [ sean
A A

In conclusion, note that the integral with respect to the measure u, is called
the Lebesgue—Stieltjes integral, or simply the Stieltjes integral. To denote it, along
with the symbols [, fdug, [, f(x)dg(x), the shorter classical notation [, f dg,
/ 4 f(x)dg(x) is also used; in what follows, we will usually employ the latter nota-
tion.

4.10.6 In this section, we obtain a generalization of the integration by parts formula
to Stieltjes integrals.
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Theorem Let g be a non-decreasing function and F an absolutely continuous func-
tion on [a, b]. Then

b b
/[ g =F g - | Feogmar.

Proof Since F' = (F'), — (F')_, with (F'), > 0, it suffices to prove the desired
formula in the case where F’ > 0, so in what follows we assume that this condition
is satisfied.

Let 7 be an arbitrary partition of the interval [a, b] formed by points xo = a <
X] <--- < x, =Db. Since g is increasing, for k =0, 1,...,n — 1 we have

Xk

Xk+1 +1
(Fresn) — Fx0)g(eo) = g(x0) / Fl(x)dx < / F'(x) g(x) dx
Xk X,

k

Xk+1
< g(rrn) / " F ) dx = (Flasn) — Foi0)g ().
Xk

Summing these inequalities, we obtain

n—1 b
S (Fewn) = Fow)e < [ F(n gl
k=0 a
n—1
<D (FOogn) = F(x)) g (xk1)- (6)
k=0

Let us transform the sum on the left-hand side:

n—1

Z(F(xk+1) — F(x1)) 8 (x1)

k=0

n n—1
=Y Fgu-1) — Y Foux)g(x)

k=1 k=0

= F(b)g(b) — F(a)g(a) — Y Fxi)(g(xx) — g(xi—1))
k=1

=F(x)gkx)

— Sz

xX=
X=a
Transforming the sum on the right-hand side of (6) in a similar way, we obtain

n—1

x=b
D (Furn) = F)g () = F)g)| =S,
k=0
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where S, = Y72 F (xk41)(g(xx) — g(xg—1)). Thus

x=b b x=b
F(x)g(x)‘ -5 < / F'(x)g(x)dx < F(x)g(x) - S
X=a a X=a
Now assume that the partition points lying inside [a, b] are points of continuity
of g. In this case, the sums S; and S; turn into Riemann sums for the integral
f[a’ b] F(x)dg(x). Hence, refining the partition, passing to the limit, and using the
remark to Theorem 4.7.3, we obtain the equation

x=b b
Foog|_ = [ Fodgo = [ Fogedn,

[a,b] a

which is equivalent to the desired one. g

For another proof of this theorem, see Corollary 3 in Sect. 5.3.4.

One should bear in mind that the integration by parts formula proved above is
valid in the case where g is defined on the closed interval [a, b], so that, by defini-
tion, the measure j assigns the masses g(a +0) — g(a) and g(b) — g(b — 0) to the
points a and b, respectively. If the measure u, is generated by a function defined on
an interval containing [a, b], then the equation

x=b b
| Fwdsw =rFesw| - [ Feogma

may no longer be true, since the measures of the one-point sets {a} and {b} may
differ from the above one-sided jumps. However, the integration by parts formula
clearly remains true if the measure has no masses at a and b, i.e., if they are points of
continuity of g. In the case where the function g is left-continuous, the integration
by parts formula always holds when integrating over an interval closed from the left
and open from the right:

x=b b
/[b)F(x)dg(x)=F(X)g(x)‘x:a—/ F'(x)g(x)dx.

EXERCISES
1. Compute the integral f[ 2]xdg()c), where g(x) =x — [%] (the symbol [a]
=,

75
stands for the integer part of a).

2. Letg(x)= Z;'lil 27y, (x = %) (x € R), where x_ is the characteristic func-
tion of the half-line (0, +00). Do the integrals f s x2d g(x) over the intervals
§= (%, 1)and § = [%, 1] differ (and, if so, what is the difference)? Consider the
same questions for the intervals (%, %), (%, %] and [%, %).

3. Compute the integrals | %2 g dg for the functions g from Exercises 1 and 2. Are

these integrals equal to the limits of the corresponding Riemann sums?
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4. Show that if an increasing function g is continuous on [a, b], then the formula

/ gtr dg B g5+l(b) _ g(r-i-l(a)
[a,b] o—+1

holds for every o > 0. Is this true if we drop the condition that g is continuous?

5. Show that the measure generated on (0, +00) by the function g(x) =Inx is
defined on Lebesgue measurable sets and invariant under multiplication by a
positive number c¢ (i.e., the sets A C (0, +00) and cA = {cx | x € A} have the
same measure provided that they are measurable).

6. Show that if two increasing functions generate the same Lebesgue—Stieltjes
measure, then their difference is constant on the set of (common) points of
continuity.

7. Compute the integral fol xdep(x), where ¢ is the Cantor function (see
Sect. 2.3.2).

8. Show that the integral F(y) = fol eY*dp(x) (y € R), where ¢ is the Cantor
function, is equal to ¢?¥/2 72 cos 3¢+ Verify that F(y) /> 0 as |y| — +oo.

9. Show thatif f isa continuous function and g is an increasing function on [a, b],
then the Lebesgue—Stieltjes integral f[a’ b] f dug coincides with the limit of the

classical Riemann sums S; (f, &) = Z’,Z;é F (&) (g(xk+1) — g(xx)) as the mesh
of T tends to zero.

10. Let f € C([—1, 1]), ¢ be the Cantor function, and a, = 222:1 ;—’,ﬁ, where ¢ =
(&15-.-,&n), &k =0 or 1 (a, are the left endpoints of segments of the nth rank
appearing in the construction of the Cantor set). Show that as n — oo,

1 1
z—an(x—as)iifo fGe=y)de(y) on0, 1]

11. One says that two measure spaces (X, %, 1) and (Y, *B, v) are isomorphic if
there exist sets e C X and ¢’ C Y of zero measure and a bijection @ : X \ e —
Y \ € such that the set A C X \ e is measurable if and only if the set ®(A) is
measurable and, in the latter case, the measures of these sets coincide. Show that
if we replace the Lebesgue measure on the interval [0, 1] by the measure corre-
sponding to the Cantor function ¢, then we will obtain an isomorphic measure
space. Hint. Use the equality ¢(C) =[O0, 1].

4.11 *Functions of Bounded Variation
4.11.1 Consider a function f defined on a closed interval [a, b]. Given an arbitrary
partition t of [a, b] formed by points xo =a < x| <--- < x, = b, set

n—1

Se=Y | f Gt — fx)].

k=0

Obviously, when new partition points are added to 7, the sum S; may only increase.
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Definition The value sup, S; is called the fotal variation of the function f on the
interval [a, b] and is denoted by VZ (). If VZ( f) is finite, f is called a function of
bounded variation.

Itis clear that if f satisfies the Lipschitz condition on the interval [a, b], then it is
of finite variation. However, one should bear in mind that if f satisfies the Lipschitz
condition of order o < 1, then its variation may be infinite not only on the interval
[a, b], but on every (non-degenerate) subinterval (see Exercise 4).

Let us mention a few properties of the total variation.

() Vo) = 1f ) = f@)l.

(2) A monotone function f is of bounded variation, with Vg (H=I1fb)— fla).

(3) A linear combination of functions of bounded variation is again a function of
bounded variation, with

VO(f+2) < V() +VE(g) and VE(af)=|a|Vi(f) foraeR.

Now we establish a less obvious property of the total variation, namely, its addi-
tivity.

Theorem Ifa < c < b, then VE(f) = VE(f) + VE(f).
The theorem applies both to the case of bounded and unbounded variation.

Proof Let T be an arbitrary partition of the interval [a,b] formed by points
X0, - --» Xp. Assume that one of these points, say x,,, coincides with c. Then the
points xq, ..., X, and x,, ..., x, form partitions of the intervals [a, c] and [c, b],
respectively. Hence

m—1

| fGoe) = )|+ |f(xk+1> — fGO| S VS + VEh.
=2

k=0 k=m

This inequality remains valid in the case where c is not a partition point, since adding
it to the set of partition points does not decrease the sum S;. Therefore,

V2(F) < VE() + VE(h).

On the other hand, if ” and t” are arbitrary partitions of the intervals [a, ¢] and
[c, b] formed by points yo, ..., ¥, and zo, ..., z4, respectively, then zg = y, and the
points yo, ..., ¥p, 21, . - ., Z4 form a partition 7 of the interval [a, b], with

Sy + 8 =8¢ < VZ(f)
Taking the supremum first over t’ and then over 7”7, we see that
Vo) + VAN Vo).

Together with the reverse inequality obtained above, this proves the theorem. g



4.11 *Functions of Bounded Variation 199

As one can see from Properties (2) and (3), the difference of increasing functions
is a function of bounded variation. It follows from the last theorem that the converse
is also true.

Corollary A function of bounded variation can be written as the difference of in-
creasing functions.

Proof Indeed, it is clear that the function V (x) = V3 (f) is increasing. Furthermore,
it follows from Property (1) and the above theorem that the difference W(x) =
Vz (f) — f(x) is also increasing: if x, y € [a, b], x < y, then

W) = W@ = (Va(H=Vi(H)) = (O = f®) = Vi) —|f)—F@)|=0.
Hence

f=v-w (1)
is a representation of f in the desired form. O

This corollary implies, in particular, that the set of points of discontinuity of a
function of bounded variation is at most countable.

4.11.2 It turns out that the continuity of the function is stored in the transition to
variation. More precisely, the following statement is valid.

Theorem Let f be a function of bounded variation on [a, b] and V (x) = V;(f)
fora <x <b, V(a) =0.If f is continuous at a point c € [a, b], then V is also
continuous at this point.

Proof We will prove that V is right-continuous (the left-continuity can be proved in
a similar way). Let a < ¢ < b. By the corollary of Theorem 4.11.1, f can be written
as the difference of increasing functions: f = g — h. Hence for x € (¢, b) we have

0K V()= V(e)=Vi(f)=Vi(g—h) <Vig) +Vih)
= (g(x) — g(©)) + (h(x) — h(0)).

The right-hand side tends to zero as x — c if the functions g and % are continuous
at c. Let us verify that we may assume this without loss of generality. Indeed, if these
functions are discontinuous at ¢, then their jumps at this point are equal, since the
difference g — & is continuous. Modify g and & by decreasing them at the interval
(c, b] by the jump at ¢ and setting their values at ¢ equal to their right limits at c.
As one can easily check, the modified functions are increasing, continuous at ¢, and
their difference coincides with g — A, i.e., with f. U

In view of the representation (1), the above theorem implies that a function of
bounded variation can be written as the difference of increasing functions that are
continuous at the same points as f.
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4.11.3 As one can see from the following theorem, on transition to the variation not
only continuity but also the absolute continuity persist.

Theorem If a function f is absolutely continuous on [a, b], then it is of bounded
variation, with

b
Vi) = / |f/(0)|dt. 2)

Proof By assumption, f(x) = f(a) + f; w(t)dt for x € [a, b], where the func-
tion w (which coincides with f’ almost everywhere by Theorem 4.9.3) is summable
on [a, b]. Therefore, for every partition xo =a <x; <--- <x, =b,

n—1 n—1 Xk41 n—l Xk+1
S F ) — fao| =Y / Fwd| <Y / 1)) di
k=0 Xk k=0 " Xk

k=0
b
=/ |f'@®)]dtr.

Hence f is of bounded variation and

b
V(f) < / /0| dr. 3)

We will prove the reverse inequality up to an arbitrary ¢ > 0. For this, using the
absolute continuity of the integral and the regularity of the Lebesgue measure, we
find closed sets Q. C {x € [a,b]| f'(x) >0} and Q_ C {x € [a,b]| f'(x) < O}
such that

/ |f'(x)|dx <&, where Q=0Q,UQ_. 4)
[a.b)\Q

Since the sets Q1 are disjoint and compact, they are separated, that is, there exists
ad>0suchthat |x —y|>dforanyxe Qrandye Q_.

Now consider a partition t of the interval [a, b] formed by points xg =a < x| <
-+ < Xxp = b such that x| — xx < § for all k. Then every interval Ay = [xk, Xg+1]
may have a non-empty intersection with at most one of the sets Q. Hence the
function f’ does not change sign at the intersection A; N Q, and, consequently,

>‘/ £/ dx —f £ 0)| dx
ANQ A\Q

=f \f’(x)ydx—/ |f/(x)|dx.
ArNQ A\Q

Summing these inequalities, we obtain a lower bound on the sum S; =

SO 1) — f ()l

| fGo) — f)| = ‘ /A f(x)dx
k




4.11 *Functions of Bounded Variation 201

St 2[ /()] dx —/ | f'(x)| dx
[a.b]NQ [a.b]\Q
b
Z/ |f’(x)]dx—2/ | f/(x)| dx.
a la,b\Q

In view of (4), this implies the inequality VZ(f) > S > fab | f'(x)| dx —2¢. Since ¢
is arbitrary, we have VZ( = fab | f/(x)| dx, which together with (3) implies (2).

Later (see Theorem 11.1.6) we will use another idea to obtain a more general
result.
Note that a function f absolutely continuous on [a, b] can be written as the
difference of absolutely continuous increasing functions, since
X X X
f(x)—f(a)=/ f’(y)dy=/ (f’(y))+dy—/ (f'()_dy.
a a a
4.11.4 Starting from the definition of the Stieltjes integral, we can introduce the
notion of the integral with respect to a function of bounded variation, which is
useful in some cases. First we make a preliminary observation: if increasing func-
tions g, h, g1, k1 on an interval [a, b] satisfy the condition g — h = g; — hy, then
for every bounded Borel measurable function ¢ we have f abtpdg — f abtpdh =

fab pdg)— fub @ dh.Indeed, by assumption, g +h; = g +h, and the corresponding
equality holds also for the Borel-Stieltjes measures: (g + pp, = g, + g Hence
(see Sect. 4.4.2, Property (9))

b b b b
/wdug+/ soduh]:/ wdug1+f odiip,
a a a a

and our claim follows.

Definition Let f be a function of bounded variation on [a, b] and ¢ be a Borel
measurable bounded function on [a, b]. The integral of ¢ with respect to f over
[a, b], denoted by fab @df, is the difference fab pdg — fab @ dh, where g and h are
increasing functions such that g —h = f.

The remark made before the definition shows that this integral is well defined: the
difference fab pdg — fab @ dh does not depend on the choice of increasing functions
g and h satisfying the condition g —h = f.

It is clear that the integral with respect to a function of bounded variation is
linear, since this is true for Stieltjes integrals. For the same reason, the integral with
respect to a function of bounded variation satisfies the integration by parts formula
(cf. Theorem 4.10.6):

b b b
/ ) df(x) =@(x) f(x)‘a —/ ¢'(x) f(x) dx,
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where ¢ is absolutely continuous and f is of bounded variation on [a, b].
If f is absolutely continuous on [a, b], then there is a formula generalizing for-
mula (5) from the previous section:

b b
/<pdf=/ of di,

where A is the one-dimensional Lebesgue measure.
Let us establish another property of the integral with respect to a function of
bounded variation.

Theorem If ¢ is continuous and f is of bounded variation on [a, b], then

b
/ wdf‘ < sup lg| - VE(f).
a [a,b]

As we will show later (see Theorem 11.1.8), this inequality holds not only for
continuous, but also for any Borel measurable bounded functions ¢.

Proof We use the fact that for the integral with respect to a function of bounded
variation, as for the Stieltjes integral, Theorem 4.7.3 holds, i.e., the integral is the
limit of the Riemann sums.

Consider an arbitrary partition T = {x, ..., x,} of [a, b] and the corresponding
sum:
n—1
Se =Y @& (f (xeg1) — f(00).
k=0

where & € [xk, Xk+1). Obviously,

n—1

n—1
1Se1 <Y o@D f Garn) = FE| MDY [ f ) = Fu)| < M-V,

k=0 k=0
“)

where M = supy, 4 |¢l.
The function f can be written as the difference f = g — h, where g and h are
increasing functions (see the corollary of Theorem 4.11.1). Hence

S, =8 -8,

where

n—1 n—1

S, = Z(P(Sk)(g(XkH) — g(x1)), S = Z<P($k)(h(xk+1) — h(xp)).

k=0 k=0
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If we assume (and we may do this without loss of generality) that all interior par-
tition points are points of continuity of g and 4, then the sums S, and S/ turn into
Riemann sums. Therefore, by Theorem 4.7.3, these sums, and hence the sum S;,
tend to the corresponding integrals as the mesh of t tends to zero. To complete the

proof, it suffices to pass to the limit in inequality (4). O
EXERCISES
1. The product of two functions of bounded variation is again a function of bounded

variation; the quotient of two functions of bounded variation is again a function
of bounded variation provided that the denominator is bounded away from zero.
Let f and g be functions of bounded variation defined on [a, b]. Show that the
integration by parts formula for | ab f dg may be false. Is it true under the addi-
tional assumption that at least one of the functions is continuous on [a, b]?
Using the function x2sin x%, show that a differentiable function (unlike a smooth
one) may have unbounded variation on a closed interval.

Show that the function x — f(x) = (Inx)~Lsin(Inx) for0 < x < 1, f(0)=0,is
of unbounded variation and satisfies the Lipschitz condition of an arbitrary order
less than one. Using a series of the form Zfiil ay f (x — x,,), construct a function
that satisfies the Lipschitz condition of an arbitrary order less than one and is of
unbounded variation on every subinterval.



Chapter 5
The Product Measure

5.1 Definition of the Product Measure

Given two measures on the subsets of the sets X and Y, our goal is to construct a
new measure (the so-called product measure) defined on subsets of the Cartesian
product X x Y. The definition of the product measure relies on Theorem 1.4.5 on
the standard extension of measures and on Theorem 5.1.2. When proving the latter,
we will use the properties of the integral. There exists yet another approach to the
proof, which is independent of the notion of the integral. Technically it is more
complicated than the one we present but it is of independent interest because it
allows us to give an alternative definition of the integral. We will discuss this in
more detail in Sect. 5.5.
All measures in this chapter are assumed to be o -finite.

5.1.1 We leave the proof of the following lemma to the reader.
Lemma Ler A, A’ C X, B, B' CY, and let {B,}weq be a family of subsets of the

set Y. Then:

(1) Ax BC A’ x B’ ifand only if either AC A’ and BC B',or A x B=@;
(2) (Ax B)N(A x B)=(ANA") x (BN B'):

(3) Ax(B\B)=(AxB)\(AxB);

4 Ax UweQ B, = UweQ(A X By);

5) Ax mweQ B, = mweQ(A X Bgy).

The same properties hold with the roles of the first and the second factors exchanged.

5.1.2 Now we turn to the construction of the product measure.
Let (X, %2, n) and (Y, B, v) be two measure spaces with o -finite measures. Put

P ={AxB|Ae, u(A) <+oo, BeB, v(B) <+oo}.
We will call the sets A x B € & measurable rectangles.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, 205
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Define the function mg on & by
mo(A x B) = u(A)v(B).

Theorem The collection &2 of all measurable rectangles is a semiring. The func-
tion mq is a o -finite measure on .

Proof Since the collections of sets {A € 2| u(A) < +o0o} and {B € B|v(B) <
+o00} are, obviously, semirings, the first statement of the theorem is a special case
of Theorem 1.1.5.

To prove the second statement, we will show first that the function m is count-
ably additive. Note thatif A C X, B C Y, then

Xax(x,y)=xa(x) xp(y) forallxeX, yeY.

Assume that the measurable rectangles Py = Ay x Bg, k € N, are pairwise dis-
joint and their union P = Uk>1 Py belongs to the semiring &. Then P = A x B,
where A €2, BB, and xp = Zk>1 Xp,» €.,

XA X =Y x4, (X) x5, (y) forallxe X, yeY.
k>1

Integrating this non-negative series termwise with respect to the measure v (which
is possible by Levy’s theorem, see Sect. 4.8.2), we get the equality

xa(x)v(B) = Z XA, (x)v(Bg) forall x € X.
k>1
Integrating termwise again (this time with respect to the measure (), we obtain

R(AYV(B) =) w(AV(By), thatis, mo(P) =) mo(Py).

k>1 k=1

Thus, the countable additivity of the function m is proved.
Since the measures u and v are o -finite, the sets X and Y can be represented as

x = xx. Y=|J Y. wherepu(Xy) < +o0, v(¥;) < +ooforall k € N.
k>1 k>1

So, the o -finiteness of the measure m follows from the identity

XxY= U X x Y.
k,n>1 O

Remark 1t is clear from the proof of the theorem that we have not used the o-
finiteness of the measures p© and v when proving the countable additivity of my.
The o -finiteness of these measures implies the o -finiteness of mg, which, in turn,
guarantees the uniqueness of the extension of my.
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5.1.3 The theorem we just proved allows us to introduce the following

Definition Let (X, %, 1) and (Y, 28, v) be measure spaces with o -finite measures.
The measure obtained by the standard extension of the measure mg described in
Theorem 5.1.2 from the semiring & is called the product measure of the measures
@ and v. It is denoted by p x v, and the o -algebra on which it is defined is denoted
by 2 ® B. The measure space (X x Y, A ® B, u x v) is called the product of the
measure spaces (X, 2, 1) and (Y, B, v).

Remarks

(1) A very simple example of a product measure is the product of two one-
dimensional Lebesgue measures, which, as we shall prove in Sect. 5.4, is simply
the Lebesgue measure on the plane. Similarly, the Lebesgue measure on R3 is
the product of the planar and the one-dimensional Lebesgue measures.

(2) The Cartesian product of measurable sets is measurable. If p(e) = 0, then
(uxv)lexY)=0.

Indeed, let A € 2, B € B. If the measures of these sets are finite, then their
product A x B is measurable by the definition of the product measure. In the
general case, each of the sets A and B can be represented as a union of sets Ay
and B, of finite measure respectively (k, n € N). Thereby, the set

AxB=|JxB) = J@ x By

k=1 k=1n2>1

is measurable as a countable union of measurable sets.
Let u(e) =0. Since Y = Uk>1 Yr where v(Y;) < 400, we have e x ¥ =
Uk>1(e x Yi) and (u x v)(e x Yi) = u(e) - v(¥y) =0. Thus

(Lxv)(exY) <Y (uxv)ex Y=Y 0=0.

k>1 k>1

The definition of the product of two measure spaces can be generalized naturally
to the case of an arbitrary number of factors. For instance, if

(X1, 241, 1), (X2,20, u2), (X3,%3, u3)

are three measure spaces with o-finite measures and R is the collection of the
“measurable parallelepipeds”, i.e., of the sets of the form A x B x C where A C X1,
B C X, C C X3 are measurable sets of finite measure, then we can define the
function vy on Rg by

V(A X B x C) = p1(A) pa(B) u3(C).

Repeating the arguments used in the proof of Theorem 5.1.2 with some necessary
modifications, we can show that Ry is a semiring and vy is a o -finite measure. The



208 5 The Product Measure

product measure @1 X @2 X u3 is then the standard extension of the measure vy.
The product measure operation defined in this way is associative: (i1 X (o) X 3 =
w1 X (U2 X u3) = (1 X w2 X u3. We leave it to the reader to verify this claim by
himself (see Exercise 1). Similarly, one can define the product measure for every
finite family of measures.

EXERCISES

1. Let (X1,%A1, 1), (X2,%2, w2), (X3,23, u3) be three measure spaces with
o -finite measures. Identifying the sets (X| x X2) x X3, X1 x (X2 x X3) and
X1 x X» x X3 in the canonical way, show that the product operation is associa-
tive, i.e., that (w1 X p2) X U3 = @1 X (U2 X u3) = (1 X w2 x u3. Hint. Using
the uniqueness of the extension of measures (Theorem 1.5.1) and the complete-
ness of the standard extension, show that these measures are defined on the same
o -algebra.

5.2 The Computation of the Measure of a Set via the Measures
of Its Cross Sections. The Integral as the Measure
of the Subgraph

Let us remind the reader that the function f defined almost everywhere on the mea-
sure space (X, %2, u) is called measurable in the wide sense if it is measurable on
some subset Xy C X of full measure. In this case, it coincides with a function mea-
surable on X almost everywhere. The integral | x S du is then defined as / Xo fdu
(see Sect. 4.3.3).

5.2.1 Let X and Y be two arbitrary sets and C C X x Y. Put
Ci={yeY|(x,yecC}, C'={xeX|@x yeC}

Definition We will call the sets C, and C” cross sections of the set C of the first
and the second kind respectively.

It is worth emphasizing that the cross sections of the first and the second kind
are subsets of the sets Y and X respectively. Let us exhibit some properties of cross
sections.

Lemma Let {C,}necq be a family of subsets of the Cartesian product X x Y. Then
(U cw) = J(Co)x and (ﬂ cw) = (Co)x-
weR X weQ weR X weQ

Also, (C\ C")y = Cx \ C,, for all sets C, C' C X x Y, and C, N C, = & when
cNnC' =a.



5.2 The Computation of the Measure of a Set via the Measures 209

We leave the proof of this lemma to the reader.

5.2.2 The following theorem shows that the measure of a set C C X x Y is com-
pletely determined by the measures of its cross sections. This is a far-reaching gen-
eralization of the famous Cavalieri' principle, about which we will reveal more later
(see the end of Sect. 5.4.1).

Theorem Let (X,2A, u) and (Y,*B,v) be measure spaces with o-finite complete
measures. Let m =y x v. If C € A @ ‘B, then:

(1) Cx €*B for almost every x € X
(2) the function x +— v(Cy) is measurable on X in the wide sense;

(3) m(C) = [x v(Cy)dp(x).

The analogous statements also hold for cross sections of the second kind.

Note that we do not exclude the case when the function in (2) takes infinite val-
ues.

One should keep in mind that the measurability of the cross sections of the set C
(of both the first and the second kind) by no means guarantees that C is measurable
even if condition (2) of the theorem holds as well. It follows, for instance, from the
existence of a Lebesgue non-measurable set on the plane whose intersection with
every line consists of at most two points. An example of such a set, constructed by
Sierpinski,2 can be found in [GO], p. 142.

Proof We will carry out the proof in several steps. For the first three steps, we will
assume that the measures © and v are finite.

(1) We start by proving the statements of the theorem for the sets in the Borel
hull of the semiring &. Here, as in the previous section, &7 is the semiring of the
measurable rectangles, i.e., of the sets of the form A x B where A € 2 and B € ‘B.
Note that in the case under consideration, we have X x Y € .

Consider the collection £ of all sets £ C X x Y satisfying the following condi-
tions:

D EyeBforallx € X;
(IT) the function x — v(E,) is measurable on X.

Every set E belongs or does not belong to £ simultaneously with its complement
E°€ because (E€)xy =Y \ Ex and v((E)yx) = v(Y) — v(Cy) (we need the finiteness
of the measure v to derive the last equality).

Francesco Bonaventura Cavalieri (1598—1647)—Italian mathematician.
2Wactav Franciszek Sierpinski (1882-1969)—Polish mathematician.
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Every union of an increasing sequence of sets in £ also belongs to £. Indeed,
assume that

o0
E:UEn, where E{ C E, C--- and E,, € € for alln € N.

n=1

Then E, € ‘B for all x € X because, by the lemma, E, = Un>1(E,,)x. In addi-
tion, by the theorem on the continuity from below of measure, one has v((E,)y) —
v(Ey). So the function x — v(E,) is measurable as a limit of measurable functions.
Thus, the collection £ is a monotone class. Let us note one more of its properties:
if the sets A, B € £ are disjoint, then A v B € £. This property follows from the
identities

(AVB),=AcV By,  v((AVB))=v(Ay) +V(By).

Clearly, the collection £ contains the semiring &?. Moreover, it contains all finite
unions of sets from & because, by the theorem on properties of semirings (see
Sect. 1.1.4), each such union can be represented as a union of pairwise disjoint sets
from 2. Since X x Y € &, by the corollary to that theorem, the collection £ contains
the algebra generated by 2. Therefore £ satisfies the assumptions of the monotone
class theorem (see Sect. 1.6.3) and, thereby, contains the entire Borel hull 28(%?) of
the semiring 2. In particular, the statements (1) and (2) of the theorem hold for all
sets in B(H).

Let us show now that the equality (3) also holds for all sets in *B(%?). Consider
the function E +— f x V(Ex)du(x) on this o -algebra. It follows from Lemma 5.2.1
and the countable additivity of the integral that this function is a measure. The reader
can easily check that it coincides with m on the sets from the semiring &. So the
equality (3) follows from the uniqueness of the extension of a measure.

Thus, the theorem has been proved for all sets in B(Z?).

(2) Consider now the case when C is a set from 2 ® B and m(C) = 0. Let C be
a set in B(Z) of zero measure containing C (the existence of such a set has been
proved in the corollary to Theorem 1.5.2). Then

f v(Cy)dp(x) =m(C) =0.
X

Therefore v(&x) = 0 for almost all x € X. The inclusion Cy C c + and the complete-
ness of the measure v imply that the set C, is measurable whenever v(gx) =0,ie.,
for almost all x € X. The remaining statements of the theorem for the set C now
become obvious.

(3) Let us turn to the general case. Again, using the corollary to Theorem 1.5.2,
we can represent C as C = c \ e where Cisasetin B(H) and m(e) = 0. Therefore
the set C, = @ \ ey is measurable for almost all x € X together with the set e,. It
follows that the values of the function x — v(Cy) = v(Ex) — v(ey) (defined almost
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everywhere) coincide with v(E +) almost everywhere, which implies its measurabil-
ity on a set of full measure and the equality

m(C) =m(C) = /X v(Cy)du(x) = fx v(Cx)dp(x).

Thus, the theorem is proved for the case when the measures p and v are finite.

As can be seen from the above arguments, one can relax the boundedness condi-
tion imposed on the measures p and v, assuming instead that the set C is contained
in a measurable rectangle.

(4) Let us turn to the case when the measures  and v are infinite. Then the sets
X and Y can be represented as disjoint unions X =\/,~; X, and Y =\/ 5 Ya,
where X,,, Y, are sets of finite measure. Consider a measurable set C C X x Y. Itis
clear that

(ool )
m(C)=Y_Y m(Crn). where Cr,=CN(Xg x Yy).
k=1n=1

Applying the part of the theorem proved above to each of the sets Cy , C Xi x Y,
we see that, for every k, n € N, one has

m(Cy,n) =/ v(¥, NCy)du(x).
Xk

Since Cy = /2 (Y, N Cy), we have v(Cy) = > o2 | v(¥, N Cy). Therefore,

[ vcoduer =3 [ venanco
X k=17 Xk

- szx V(Y N Cdp) =33 m(Crn) = m(C).
k

k=1n=1 k=1n=1

The concluding part of the proof is, of course, also valid in the case when only
one of the measures is infinite. For example, if v(Y) < +o00, we can just consider
the sets X; x Y instead of X} x Y. O

Remark We would like to draw the reader’s attention to the fact that at the first step
of the proof we established that the sections C, of a set C in B(P) are measurable
for all (rather than almost all) x € X. Moreover, the proof of this result did not
use the completeness of the measures, so that it holds for arbitrary measures, not
necessarily complete. (We retain our assumption that all measures in question are
o -finite.)

One can see from the proof that, if only the cross sections of the first kind are
considered, then the theorem remains valid if only the completeness of the measure
v is assumed. We shall use this observation in the next theorem (on the measure of
the subgraph).
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Corollary Let
P(O)={xeX|Ci#0}, P(O)={yeY|C’ 2]}

be the canonical projections of the subset C C X x Y to the sets X and Y. If the
projection P1(C) (P2(C)) is measurable, then m(C) = fP] ©) v(Cy)du(x) (respec-

tively, m(C) = [p, ) K(C)dv(y)).

Proof This equality follows from the theorem directly because C, = & and
v(Cy) =0 when x ¢ P1(C). O

Note that we cannot drop the assumption that the projection is measurable be-
cause the projection of a measurable set may be non-measurable. For example, if E
is a non-measurable subset of X and F is a non-empty subset of ¥ of measure 0,
then E x F is measurable but its projection to X is not.

5.2.3 Now we shall discuss the “geometric meaning” of the integral. We will fix a
measure space (X, 2(, u) with o-finite measure and a function f on X with values
in R. Throughout the rest of this section, the symbol m will denote the product
measure of the measure 1 and the one-dimensional Lebesgue measure A.

Definition Given a non-negative function f, we will call the set
PrE)={(x,y)eXxR|xeE, 0<y< f(x)}

the subgraph of f over the set E C X.
We will call the set

Fr(E)y={(x,y)eXxR|x€E, y=f(x)}

the graph of the function f E — R. Note that the function f may take infi-
nite values. Nevertheless, even in this case, the sets & (E), I (E) are contained
in X xR, notin X x R, according to our definition. In the case when E = X, we
will just call these sets the subgraph and the graph of the function f and denote
them by & and I f respectively.

First of all, let us check the following claim, some special cases of which we
have already met (see Corollary 2.3.1 and Exercise 1 in Sect. 2.3).

Lemma Ifareal-valued function f is measurable on the set E, then m(I" s (E)) = 0.
If a non-negative function f is measurable in the wide sense, then its subgraph is
measurable.

Proof Since the measure y is o -finite, we may restrict ourselves to the case (E) <
+00. Fix an arbitrarily small ¢ > 0 and put

ekz{er|k8<f(x)<(k+1)8}, where k € 7Z.
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Obviously, the sets e, are pairwise disjoint (they exhaust E if the function f takes
only finite values). In addition, I' y (ex) C e x [ke, (k + 1)¢) and, thereby,

T/(E)C U e x [ke, (k+ 1)e) = H,.
keZ

The set H, is measurable and

m(He) = euer) < en(E).
keZ

Thus, the graph can be covered by a set of arbitrarily small measure. Taking into
account that the measure m is complete, we conclude from this that the graph is
measurable and has zero measure (see Lemma 1.5.3).

Let us turn to the proof of the measurability of the subgraph of a measurable
function. First, consider the case when the function f is simple. Let {Ek},i\’:1 be
an admissible partition for f and let {01;(},1(\’=1 be the corresponding values of the
function. It is clear that

N
Pr(E)=E x[0.a] and 2; =] Ex x [0, a].
k=1

One can see from this that the subgraph of a simple function is measurable as a
union of measurable rectangles.

A general non-negative function f measurable on X can be approximated by a
pointwise increasing sequence of non-negative simple functions { f,;},>1 (see The-
orem 3.2.2). The reader can easily verify the inclusions

P\TyC U Py, C Py
n>1

Since, as we have proved, m(I'¢) = 0, these inclusions imply that the subgraph
differs from the union of a sequence of measurable sets just by a set of zero measure
and, thereby, is itself measurable. This implies the measurability of & (E) too
because Z(E) = &7 N (E x R). The subgraph & (E) is measurable for every
function f measurable on E because we can view f as a restriction of a function
measurable on the entire set X.

Lastly, assume that the function f is measurable in the wide sense, i.e., it is
measurable on some subset X of full measure. It is clear that

Py=Pp(Xo)UPgle),

where e = X \ X, 11(e) = 0. The set &7(Xj) is measurable according to what we
have proved above, and the subgraph & (e) is measurable due to the completeness
of the measure m because

Pre) CexR and m(e xR)=0. O
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Now, let us turn to the main result of this section.

Theorem (On the measure of the subgraph) Let A be the Lebesgue measure on R,
let (X,%U, u) be a measure space with o -finite measure, let m = (1 x A, and let f
be a non-negative function defined on X. The function f is measurable in the wide
sense if and only if its subgraph is measurable. In this case,

[ ran=m). M)

Proof The measurability of the subgraph of a non-negative measurable function has
been established in the lemma.

Assume now that the subgraph of the function f is measurable. Obviously, the
cross section (), coincides with the closed interval [0, f(x)] when f(x) < 400
and with [0, +00) when f(x) = 400. By Theorem 5.2.2 (see also the remark to
it, where it has been pointed out that if only the cross sections of the first kind
are considered, the assumption about the completeness of the measure p may be
dropped), we obtain that the function x > A((Z),) = f(x) is measurable in the
wide sense and the equality (1) holds. g

Remarks

(1) The theorem just proved confirms once more that the definition of a measurable
function we accepted is reasonable: the non-negative measurable in the wide
sense functions are exactly the functions to whose subgraphs one can assign a
measure in a natural way. If the product measure is constructed without using
the notion of the integral, then the equality (1) can be taken as the definition of
the integral of a non-negative measurable function. In this case, some proper-
ties of integrals become obvious. For example, Levy’s theorem follows directly
from the continuity from below of the measure © x A. We shall return to the
discussion of such a definition in Sect. 5.5.2.

(2) For a non-positive function f, one can introduce an analog of the subgraph: the
set

PHE)={(x,y) e ExRIx€E, f(x)<y<O0}.

Approximating the function (— f) by simple functions, one can easily check
that Theorem 5.2.3 remains valid for non-positive functions if one replaces the
subgraph by the set &7 (E), and the equality (1) by m(Z¢(E)) = fE | fldu =
—/ g f di. Thus, for every integrable function f, the equality

[ ran=m(@(E0) - m(FE-)

holds where Ei = E(+f > 0). If u is the Lebesgue measure and the sets
P(Ey), Pr(E_) are congruent (in particular, if the set E is symmetric with
respect to the origin and f is odd), then | gfdu=0.
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EXERCISES

1. Let f and g be two measurable almost everywhere finite functions defined on
the measure space (X, 2, i). Prove that, if g < f, then the set

O0={(x.yeXxRlxeX, gx)<y< fx)}

is measurable in X x R and m(Q) = fX(f —g)du where m = u x A, and A is
the Lebesgue measure on R.

2. Prove that if pairwise disjoint disks contained in a square cover it up to a set
of measure 0O, then the sum of the lengths of their boundary circumferences is
infinite.

5.3 Double and Iterated Integrals

Our goal is to reduce the computation of the integral with respect to the product
measure i X v to the computation of integrals with respect to the measures u and v.
We shall consider only real-valued functions here, although all results we will obtain
below can be generalized to the complex-valued case in the obvious way.

5.3.1 With every function f defined on the set C C X x Y, one can associate two
families of functions obtained by “fixing one of the variables”. More precisely, this
means that on every non-empty cross section Cy, one can define the function f, by
the rule fy(y) = f(x,y). Similarly on every cross section C”, one can define the
function f¥ by f¥(x) = f(x, y). This notation will frequently be used later.

Passing to the study of the connection between the integral with respect to the
product measure p x v and the integrals with respect to the measures w and v,
consider first the case when the function to integrate is non-negative. The following
important theorem holds.

Theorem (Tonelli®) Let (X,2, ) and (Y,B,v) be two measure spaces with
o -finite complete measures. Let m = u X v. Let f be a non-negative function de-
fined on X x Y that is measurable with respect to the o -algebra A Q B. Then:

(1) foralmost all x € X, the function fy is measurable on Y
(1) for almostall y € Y, the function f is measurable on X,
(2) the function

x'—>¢(x)Efyfde=/Yf(x,y)dv(y)

is measurable on X in the wide sense;

3Leonida Tonelli (1885-1946)—Italian mathematician.
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(2') the function

ym/x(y)z/ deu=f £ ) dp()
X X

is measurable on Y in the wide sense;
(3) the equalities

fdm=/¢du=/1//dv (1)
XxY X Y

hold.

Remark The last equality can be rewritten as

f(x,y)dm(x,y)=/</ f(x,y)dv(y))du(X)
XxY X Y

=/</ f(x,y)du(x)> dv(y).
Y X

The integral on the left-hand side of this equality is called a double integral, and the
other two integrals are called repeated integrals. Let us emphasize that this equality
of the repeated integrals, often referred to as “the validity of changing the order
of integration”, is used very frequently when computing double integrals (see, in
particular, Examples 1 and 2 below).

Proof Consider three cases corresponding to more and more general functions f.
(1) Let f = xc be the characteristic function of a measurable set C C X x Y.
Then, for all x in X and yin Y,

f) = xetey = 1 e e e s

= X, ==

x(y) = xelx,y 0, when (x,y) ¢C,
1, whenyeC,,

_ = xc, ().

0, wheny ¢ Cy,

Thus, fr = xc,. Since, by Theorem 5.2.2, the sets C, are measurable for almost
all x, the function f is measurable as well. Integrating the equality f, = xc,, we
see that

p(x) = /Y Sedv=v(Cy).

By Theorem 5.2.2, the function ¢ is measurable in the wide sense. Finally, integrat-
ing the last equality and using Theorem 5.2.2 again, we get the desired equality

_/}((p(X)dM(X)Z/XV(Cx)dM(X)ZM(C)= fdm.

XxY
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(2) Now let f be a simple function. Then f = Z,ivzl crkxc, where ¢ > 0. It
follows that f, = Z,ivzl ck(xc,)x and p(x) = Z/1<V=1 cxv((Cr)x), which implies the
statements (1)—(3).

(3) In the general case, approximate f by an increasing sequence of simple func-
tions f,. Then fy = lim,_ (f)x, Which guarantees the measurability of f, for
almost all x in X. Since (f)x < (fn+1)x, Levy’s theorem yields

<p(x)=fyfx(y)dv(y)=n1_i)rgown(x),

where the function ¢, is defined by ¢,(x) = fY(f,,)x(y)dv(y). Obviously,
On < @41 almost everywhere. Using Levy’s theorem again, we get

/(p(x)du(x): 1im/<p,,(x)du(x)= lim fondm = fdm.
X n—o0 Jx =0 Jxxy XxY

The statements (1'), (2") and the second of the equalities (1) can be proved simi-
larly. 0

Corollary 1 Ler f be a non-negative measurable function defined on a (measur-
able) set C C X x Y. If the projection P1(C) is measurable, then

/fdm=/ ( f(x,y)dv(y)) dp(x). 1)
C P1(C) Cy

Proof To prove the corollary, it is enough to extend the function f by zero outside
the set C and to use statement (3) of the theorem. O

A similar equality holds when the projection P, (C) is measurable. In that case

/ fdm 2/ ( f(x,y)d,u(x)) dv(y). (1)
c Py \Jey

Corollary 2 If the function f is measurable on X x Y, then:

(1) for almost all x € X, the function f, is measurable on'Y;
Q) if fY | fxMdv(y) < +00 for almost all x € X, then the function x +—
fy f(x,y)dv(y) is measurable on X in the wide sense.

Similar statements hold for the function f7.

Proof The first statement follows from the equality fy = (f4)x — (f=)x and the
measurability of the functions (fi), (see Tonelli’s theorem). To prove the sec-
ond statement, it suffices to note that (again, by Tonelli’s theorem) the functions
X fY (f+)x(y)dv(y) are measurable in the wide sense. They are finite almost
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everywhere, so their difference

/Yf+<x,y>dv(y>—/Yﬂ(x,y)dv(y)=fyf(x,y>du(y)

is well-defined and measurable on a set of full measure. O

5.3.2 Let us consider a few examples demonstrating applications of Tonelli’s theo-
rem. Note that in all cases we shall use only the equality of the repeated integrals and
we will not be interested in the product measure itself. The only related fact that we
will really need is the measurability of a function defined and continuous on an open
subset of the space R? with respect to the product measure of the one-dimensional
Lebesgue measures A;. This is obvious because the measure A; x A; is defined on
the two-dimensional rectangles and, thereby, on all open sets as well. (As we shall
see in Sect. 5.4, the measure A X A1 is just the planar Lebesgue measure, but we do
not need this fact right now.)

Example 1 We will use Tonelli’s theorem to compute the Euler—Poisson integral
o0 2 .
I = ffoo e *" dx again (see also Sect. 4.6.3).
It is clear that

5 © 2 © 2 © _af [® _p2
I"=(2 e dx |2 eV dy)dx=4 e eV dy)dx.
0 0 0 0

Make the change of variable y = xu in the inner integral:

o0 o0
1= 4/ e_x2 (/ e_xzuzx du) dx.
0 0

L . 2 (1a?) -
Taking into account that the integrand (x, u) — x e (747 is measurable and non-
negative, we can change the order of integration using Tonelli’s theorem:

o0 oo PN
& =4/ (/ xe(IHunx dx) du.
0 0

The inner integral can be computed using an explicit antiderivative:

00 1

0 2(1+u?)’

/Ooxe—(l+l42)x2 dx = — 1 e—(1+uz)x2
0 2(1 +u?)

Therefore

2 * 1
1“=2 du=m.
o 1+u?

Thus, [ = /7.



5.3 Double and Iterated Integrals 219

Example 2 Let us use Tonelli’s theorem to derive an important formula relating the
functions B and I', which is due to Euler (see Sect. 4.6.3):

L'()I'@)

forall s, > 0.
I'(s+1)

1
B(s,t):/ XA =x)"ldx =
0

To prove it, write the product I'(s)I"(¢) as a repeated integral with the outer in-
tegration taken with respect to x and make the change of variable y = u — x in the

inner integral:
o o0
NN / e (/ yi=le™y dy) dx
0 0

= /ooxs_1</oo(u —x) e du) dx.
0 X

The resulting repeated integral equals the double integral over the angle C =
{(x,u)]0 < x < u}. It is clear that C, = (x, +00) and C* = (0, ). Changing the
order of integration and using the formula (1”), we get

L)L) = /Oo<fuxs—l(u —x)le dx) du,
0 0

which, after one more change of variable x = uv, yields the identity

o] 1
l"(s)F(t):/ u“f‘e"(/ u“(l—v)“dv)du.
0 0

It remains to note that the inner integral equals B(s, ).

dx
Jx(1=x)’
we again arrive at the identity F(%) = /7, which we obtained in Sect. 4.6.3.

The Euler formula also allows one to express the frequently encountered integrals

Putting s =1 = % in the Euler formula and computing the integral fol

f07 sin” ¢ cos? pde (p, g > —1) in terms of the I"-function. Indeed,

L L[z -1 . 2
f sm”(pcosqud(pzzf sin”~ pcos?™  pdsin” ¢
0 0

1 1 —1 —1
=—/ xpT(l—x)qux
2 Jo

=1B<p+1 q+1)=r(f’7“)r(%).
2 2 2r (25 + 1)

2

5.3.3 Tonelli’s theorem remains valid for sign-changing functions if one replaces
the assumption “measurable in the wide sense” by “summable”. Let us discuss this
important observation in more detail.
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Theorem (Fubini*) Let (X, 2, 1) and (Y, B, v) be two measure space with o -finite
complete measures and let m = u X v. If a (real or complex-valued) function f is
summable on X X Y with respect to the measure m, then:

(1) for almost all x € X, the function f, is summable on Y ;
(") for almost all y € Y, the function f? is summable on X ;
(2) the function

x> o(x) Efyfxdv:/yf(x,y)dv(y)

is summable on X;
(2') the function

ym/x(y)z/ deu=f £ ) dp()
X X

is summable on Y,
(3) the equalities

fdm:/godu:/Ipdv 2)
XxY X Y

hold.

Proof Obviously, we can restrict ourselves to the case when the function f is real-
valued. Due to the symmetry between X and Y, it suffices to prove the statements (1)
and (2) and the first of the equalities (2). Let f+ = max{=£ f, 0}. By Tonelli’s theo-
rem,

fidm=/</ fi(x,y)dV(y))dM(x)<+00- 3)
XxY x \Jy

By the same theorem, the functions (f1), are measurable for almost all x, and the
functions

x*_>§0l(x)5/;/f+(x’)’)d‘)()’)a xwwz(x)zfyff(x,y)dv(y)

are measurable in the wide sense. The inequalities (3) show that the functions ¢
and ¢; are summable and, thereby, finite almost everywhere. The latter means that
the functions (f+), are summable on Y for almost all x € X. Now, to prove state-
ments (1) and (2) of the theorem, it remains to note that

So=(fPx — (x, Q=01 —@2. €]

To prove the first of the equalities (2), one should just take the difference of the
equalities (3) and use the relations (4). O

4Guido Fubini (1879-1943)—Italian mathematician.
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Note that if the function f is summable on a (measurable) set C C X x Y and
the projection P;(C) is measurable, then formula (1”) remains valid:

/fdm=/ ( f(x,y)dv(y)>dM(X)- 2"
C P (C) Cy

For the proof, it is enough to extend the function f by zero outside the set C and to
use statement (3) of Fubini’s theorem.

Needless to say, in the case when the projection P»(C) is measurable, a similar
equality is valid (see (17)).

Remark Both the Tonelli and the Fubini theorems require the assumption that the
function f under consideration is measurable on X x Y, or, as is often said, “as a
function of two variables”. This assumption is stronger than the assumption that f
is “measurable in each variable separately”, i.e., that the functions f, and f~ are
measurable. On the other hand, if the functions g, & are measurable on X, Y respec-
tively, then the functions g, 7 defined on X x Y by g(x,y) = g(x), H(x,y) = h(y)
are measurable on X x Y. To check this, it suffices to consider only the function g,
assuming it real-valued. Then it is clear that the Lebesgue sets of the function g are
of the form E x Y where E € 2. Therefore they are measurable by Remark (2) from
Sect. 5.1.3. ~

The measurability of the functions g and 7 on X x Y implies the measurability
of their product f =g - i, which is sometimes denoted by the symbol g ® h.

5.3.4 Let us point out some useful formulae implied by Fubini’s theorem.
Corollary 1 Assume that the functions g and h are summable on the measure
spaces (X, 2, u) and (Y, B, v) with o-finite measures respectively. Then the func-

tion f = g ® h is summable on X X Y with respect to the measure m =y X v
and

/ f(x,y)dm(x,y)zf g(X)dM(X)~/h(y)dV(y)-
XxY X Y

Proof Assuming for the time being that the measures p and v are complete, we
check that the function f is summable using Tonelli’s theorem. The measurability
of the function f is established in the remark in Sect. 5.3.3. Let us check that it is
summable using Tonelli’s theorem. Indeed,

/ |f(x,y)!dm(x,y)=/</ yg(x)h(y)wv(y))dﬂ(x)
XxY X Y
=/ !gm!(/ |h(Y)|dv(y))du(x)
X Y
=</Y ’h(y)}dV(y)>'<fx\g(x)\du(x))<+oo_
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Now, when the summability of the function f is established, the desired equality
follows from Fubini’s theorem.

In the case where the measures are not complete, one should write down the
equality in question for their standard extensions and use the fact that the integral
over the extended measures remains the same (see Exercise 7 from Sect. 4.2). [

The argument we just presented is very typical. When computing the integral, we
rely on Fubini’s theorem but first we need to check that the integrand is summable,
which can be done using Tonelli’s theorem.

In Corollary 2, we will show that the integration by parts formula obtained earlier
for smooth functions (see Sect. 4.6.2) is valid under less restrictive assumptions as
well. Let us remind the reader (see Sect. 4.9.3) that a function f is called absolutely
continuous on a closed interval [a, b] if it can be represented as f(x) = f(a) +
fax @(t) dt where the function ¢ is summable on [a, b]. By Theorem 4.9.3, one has
@ = f' almost everywhere.

Corollary 2 Let the functions f and g be absolutely continuous on a closed interval
la, b]. Then

b b b
/ fx) g ) dx = f(x)gx) a—/ f'(x)g(x)dx.

X

X=
Proof First, let us prove this formula under the additional assumption f(a) =
g(b) = 0. Then the substitution term vanishes and our task can be reduced to
the change of the order of integration. Indeed, since the functions f’ and g’ are
summable on [a, b], Corollary 1 implies that the function (x,y) — f'(x)g'(y)
is summable on the square [a,b]2 and, thereby, on the triangle C = {(x,y) €

la,b]*|a < y < x < b} as well. It is easy to check that its cross sections for
X,y €la,b] are

sz[av-x]v Cy:[yvb]
Since f(x) = fax f'(y)dy, Formula (2) implies

b b x
/ £ g () dx = / g’(x)( / f’(y)dy>dx= //c £ g () dxdy
b b b
- f f’(y)( f g/(x)dx>dy=— / £ g dy.
a y a

which establishes the desired formula in the special case under consideration. To
prove it in the general case, one should merely apply the result just obtained to the

functions f(x) — f(a), g(x) — g(b). O

Let us generalize this corollary and obtain the integration by parts formula for
the integral with respect to the Lebesgue—Stieltjes measure (another proof of this
formula is given in Sect. 4.10.6).
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Corollary 3 Let g be a non-decreasing function on the closed interval [a, b]. If the
function f is absolutely continuous on [a, b], then

x=b b
T @ s = @]~ - [ s

[a,

Proof As in the proof of Corollary 2, it suffices to consider the case f(a) =
g(b) = 0. Applying Fubini’s theorem to the product measure pg; x A and chang-
ing the order of integration, we get

x b
FGO)dgr) = / (/ f’(u)du)dg(x)= / f(u)(f dg(x))du.
[a,b] [a,b] \Va a [u,b]

When u > a, the inner integral on the right-hand side equals g(b) — g(u — 0) and,
therefore, coincides with —g(u) almost everywhere (with respect to the Lebesgue
measure). Therefore,

b
Fo)dg(x) = — / Fu) () du. .

[a,b]

The formula just obtained remains valid in the case when g is a function of
bounded variation as well.

5.3.5 The summability of the functions f,, ¥, ¢ and ¢ considered in Fubini’s
theorem does not guarantee the equality of the repeated integrals, much less the
summability of the function f with respect to the measure © x v even in the case
when the measures are finite and the repeated integrals are equal. We will demon-
strate this using the following two examples. In both, we assume that the measures
w and v coincide with the one-dimensional Lebesgue measure on [—1, 1].

. . _ xz—yz _ 2xy
Consider the functions f(x,y) = e and g(x,y) = [ for

x2 4+ y2 > 0. It is clear that the functions fy, f~, gx, g are summable on [—1, 1]
for all x, y #0in [—1, 1]. Obviously,

1 1
/lg(xﬁ)’)dyZ/lg(x,y)dx:O.

The reader will easily establish the identity

1 1 y 2
/_1f(x,y)dy=/_1d<x2+y2>= T2 «F0

which, in view of the fact that f is antisymmetric, yields

! 2
/Llf(x’y)dxz—m (y #0).
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Therefore,

[ ts)as [
— x=m, ——55dx = —m.
S\ 2+ y2)? Y S\ (24 y2)? g
Thus, the repeated integrals associated with the function f are finite but have op-
posite signs, which implies, in particular, that this function is not summable on
[—1,11%

The repeated integrals associated with the function g give the same value (zero).
Despite this, the function g is not summable. Indeed,

L[ snmlar)a=a [( [ )
g, y)|ay |ax = 5 oo dy|ax
—1\J-1 o \Jo (x24y2)?
1 y=1
0 X=+y2ly—o
L X
:4[ - — dx = +4o0.
o \x 14+x2

We leave it to the reader to construct examples of functions such that one of the
repeated integrals is finite and the other one either does not exist or exists but is
infinite.

EXERCISES

1. Let f be a non-negative function on X x Y and let x € X. Prove that the subgraph
P, of the function f; coincides with the cross section (&), of the subgraph
Pyof f.

2. Prove Tonelli’s theorem using Theorem 5.2.3 on the measure of the subgraph and
Exercise 1.

3. Let u be any finite Borel measure on R™. Prove that, for every 0 < p < m, the
integral me ”i“ ()X”)p is finite for almost all (with respect to the Lebesgue measure)
yeR™,

4. If a measurable function f is positive on a set E and (E) < 400, then fE fdu-

[z %du w?(E). Hint. Use the inequality fgi + J’;Q; >2.
5. Let u be a Borel measure on the closed interval [a,b] such that
u([a, b]) = 1. Prove that for all increasing (or decreasing) functions f and g

on [a, b] the Chebyshev inequality

b b b
[ reans [ ran [ san
a a a

holds. If one of the functions is increasing and the other one is decreasing then
the inequality sign should be reversed. Hint. Use the fact that the product ( f (x) —

F () (g(x) — g(y)) does not change sign.
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6. Let ¢ be the Cantor function. For which p > 0 are the integrals

// de(x)de(y) // do(x)de(y)
012 (x2+y2)% " 012 |x—=yl?

finite?

5.4 Lebesgue Measure as a Product Measure

Our goal is to relate the Lebesgue measure A, on the space R” +4 to the Lebesgue
measures A, and A, on the spaces R” and RY respectively. We shall identify the
space RP19 with the Cartesian product R” x RY, assuming that the pair (x, y),
where x = (x1,...,x,) € R? and y = (y1, ..., y4) € R?, coincides with the point
(X1s e s Xpa Vs e e s Vg) in RPHa,

Let us remind the reader that the symbol ™ denotes the semiring of cells in R™.

5.4.1 We proceed directly to the main statement of this Section.
Theorem A, , =i, X A,4.

This implies, in particular, that the product measure operation is associative on
the class of Lebesgue measures:

(Ap X Ag) X Ap =Ap X (Ag X Ap) = Apyggr.

Proof Let & be a semiring of all sets of the form A x B, where A and B are
measurable subsets of finite measure of the spaces R” and RY respectively. Every
cell from ZP+4 is, obviously, a product of two cells from Z?? and 9. Thus,
Priac P

The measures A,,4 and A, X A, have been obtained as the standard extensions
of the measures /,1, (the classical volume defined on Z?7*7) and my (the mea-
sure defined on &—see Sect. 5.1.2) respectively. To prove that the measures X 1,
and A, x A4 coincide, it suffices to show that the measures /,,, and mo gener-
ate the same outer measures: [}, = mg. Since mq extends [, 14 from the semir-
ing 2P to the wider semiring 2, the definition of the outer measure generated
by a measure immediately implies the inequality mg < I3, . It remains to check
the opposite inequality. It suffices to prove that [}, , (E) < mg(E) + ¢ for every set
E c RP*4 such that mO(E) < 400, and every ¢ > 0. By the definition of mg, there
exist measurable subsets A; C R” and B; C RY of finite measure (j € N) such that
ECJj>1Aj x Bjand

D Ap(Arg(B)) < my(E) +e.
j>1
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Due to the regularity of the Lebesgue measure, the sets A;, B; can be covered by
open sets G, H; (in the respective spaces) so close to them in measure that if we
replace A; by G; and B; by H;, the last inequality will still hold. As a result, we
shall obtain the inclusion E C ;> G x H; and the inequality

D ap(G g (H)) < mi(E) +e.
izl

Since the measures A4 and A, x A, coincide on Z?P14, they coincide on all open
sets in R719. The sets G; x H; are open, so

130Gy x Hj) = hpig(Gj x H)=1p(G ) hg(H)) (jEN).

Now the desired estimate follows from the countable subadditivity of 7, g

I, (E) < le+q(cj x Hj) = Zx,,(c,-)xq(H,-) <m(E) +e.
izl j>1 O

Remark The integrals with respect to the planar, the three-dimensional, and the m-
dimensional Lebesgue measures (over a subset E of the corresponding space) are
called double, triple, and m-fold integrals and are often denoted by the symbols

/f(x,y)dxdy, // f(x,y,2)dxdydz and
E E

// Fx1, .. xm)dxy - -dx,.
E

Since for summable and arbitrary non-negative functions, the integral with respect
to the product measure equals the repeated integral, this notation does not lead to
any confusion.

5.4.2 According to the classical Cavalieri principle, if two bodies can be positioned
in space so that each plane parallel to a given one intersects the two bodies by planar
domains of equal areas, then the volumes of these bodies are equal. Since, as we
have established above, the measure A, is the product measure of the measures
Ap and Ay, Theorem 5.2.2 implies the following assertion, which we will refer to as
the Cavalieri principle throughout the rest of the book:

If two measurable sets contained in RP14 = RP x RY can be positioned
so that the Lebesgue measures of all their cross sections of the first (or the
second) kind are equal, then their (p + q)-dimensional Lebesgue measures
are equal.

Now we will consider some applications of Theorem 5.2.2, the Tonelli theorem,
and the Cavalieri principle. By volume, we shall mean the m-dimensional Lebesgue
measure.

First, we will compute the volume of a cone in several dimensions.
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Example 1 We will call the set C = {(¢t,y) e R"|r € [0, H], y € %E} a cone
with altitude H and base E, E C R™~!. The cone with a measurable base E is
measurable because it is the image of the cylinder [0, H] x E under the smooth
mapping (¢, y) — (t, # v). For fixed ¢, the cone cross section C; is either empty
@if t ¢ [0, H]), or the set #E whose measure equals A, _1(E) (ﬁ)m_l. By Theo-
rem 5.2.2,

H f m—1 1
A (C) =/ )»m(Cz)dl=/ )»m—l(E)(—> dt = —Hp-1(E),
R 0 H m

when m = 2 and m = 3 this implies the well-known school formulae for the area of
a triangle and the volumes of a pyramid and a circular cone.

In the next example, we shall obtain an important result: the formula for the
volume of a multi-dimensional ball.

Example 2 When studying the change of the Lebesgue measure under linear trans-
formations (see Sect. 2.5.2), we established that the volume of any m-dimensional
ball of radius R equals «;,, R™ where «,, is the volume of the unit ball. Obviously,
o :2anda2:f_112vl —12dt=m.

To compute «,, for m > 2, we will identify the space R™ with the Cartesian
product R"~! x R. By definition, the cross section (B™)” of the open unit ball B™
is the set

[xeR™ | (x,y) e B"} = {x e R" | |Ix)? < 1 — y?}.

For |y| > 1, it is empty, and for |y| < 1 it is an (m — 1)-dimensional ball of radius
/1 — y2. The (m — 1)-dimensional volume of the latter equals o, 1 (1 — y?) nrt , SO,
by Theorem 5.2.2, o, = f_ll om—1(1—y?) t dy. The change of variable y = sinu
gives the recurrence relation

s

2
am:2am_1/ cos™ udu.
0

We computed the last integral in Sect. 4.6.2. It equals (mn:!lg)” vy Where vy, = 7

for even m and v, = 1 for odd m. Obviously, v, v;,—1 = % Applying the obtained
recurrence relation twice, we arrive at the formula

(m— 1! (m—2)!! (m— 1! 2
Oy =20m—1 ———— Uy =42 Um—1 Up = —Qp—2.
m!! (m— 1D m

m!!
Since we know the initial values o1 =2 and a» = 7, this formula yields

" MILC.OA lkeN
=—, =2— fora .
Y%k = Uk = = ok !
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G
.

Fig. 5.1 Horizontal cross sections of equal area

The I'-function allows us to cover both the odd and the even cases in one common
formula. Indeed, k! =T'(k + 1) and /7 2k + 1)!! = 2P (k4 %) (see Sect. 4.6.3).
Plugging these values of factorials into the formulae for px and opi+1, we see that,
for every m € N, the equality

holds.

In relation to Examples 1 and 2, let us remind the reader of the following discov-
ery of Archimedes,” which he was very proud of: the ball fills 2/3 of the volume
of its circumscribed cylinder (Cicero claimed that he had found Archimedes’ grave
in an abandoned cemetery by a small column with the engraving of a ball and a
cylinder above an accompanying verse).

To obtain this beautiful result, one should compare the ball and the body obtained
by removing from the cylinder two cones with vertex at the center of the ball and
bases at each end of the cylinder. It is easy to see from the Fig. 5.1 that the ball and
this body have horizontal cross sections of equal area (compare with Exercise 11).

Similarly, one can find the volume of the four-dimensional ball avoiding any
integration. Indeed, it is clear that the volume of the Cartesian product of two unit
disks equals 72. Identifying the point (x, y,u,v) with the pair (£,7) where & =
(x,¥), n=(u,v), we will split the product C = B2 x B? into two parts as follows:

K={¢EmeCllgl<Inll}, K'={¢E meCllgl=lnl}

(their two-dimensional analogs {(s,?)||s| < |f] < 1} and {(s,#) |1 > |s| > |t|} are
formed by two pairs of vertical triangles tiling the square [—1, 1] x [—1, 1]). It is
clear that these sets are congruent and A4(K N K’) = 0. Therefore

1 2
r(K) = 5?»4(C)= T

5 Archimedes (" Ap x tunénc, circa 287 — 212 BC)—Greek mathematician and inventor.
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Let us find the area of the cross section K¢ of the body K for ||§|| < 1 (otherwise it
is empty). Since

Ke={neR*|¢E neK)={neR &l <Inll <1},

this cross section is an annulus whose area equals 77 (1 — || £]|?). An easy computation
shows that the two-dimensional cross section (B*) ¢ of the four-dimensional unit ball
has exactly the same area. Thus, according to the Cavalieri principle, its volume is
equal to that of K, i.e.,

2
ra(BY) = ra(K) = %

Example 3 Let us compute the integral I, (a) = me e=xI? gy (a > 0). In the one-
dimensional case, this reduces to the Euler—Poisson integral:

o0 1 o0
Il(a)=/ ef"xzdxz—/‘ e”zduz\/i.
) Va ) a

Representing the m-dimensional Lebesgue measure as the product measure of
the (m — 1)-dimensional and the one-dimensional Lebesgue measures and using
Tonelli’s theorem, we get the recurrence relation I, (a) = I,,—1(a) - I1(a), which
immediately implies that 1, (a) = (%) .

Example 4 Let us generalize the result obtained in Example 2 and find the volume
Vp(R) of the set

Wp(R)={(x1,....xm) €R™ | [x1|”' + -+ |xn”" <R} (R>0),

where P = (p1,..., pm) € RY.

First, note that the linear change of variable x; = Rl/pfuj (j=1,...,m) maps
the set Wp(R) to Wp(1). Therefore (see Sect. 2.5.2) Vp(R) = R1Vp(1) where
q= % +--+ #. Thus it suffices to compute Vp(1). To this end, we will use Theo-

rem 5.2.2. Assuming thatm > 1,put P’ = (py, ..., pm—1) and ¢’ = %+---+p"1171.

Since the cross section of the set Wp (1) corresponding to the fixed coordinate x,,
is, obviously, Wps (1 — |x,,,|P™), we obtain

1 1 ,
Vp(l) = / V(1= [xm|P") dxp =2Vpr (1) / (1= xp™) dxp.
—1 0
After the change of variable u = xbm | this identity becomes

2 1 2
Vep(l)=—Vp/(1) [ (1—u)umm " du.
p 0

m
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The last integral can be expressed in terms of values of the I'-function (see Exam-
ple 2 in Sect. 5.3.2) and we obtain the dimension reduction formula

Vo= 2y (l)r(1+qf)r(#)_2v (1)F(1+q’)r(1+p%n)
ot Pa+q " r(+q)

It follows easily from this that

2m ﬁ 1
Ve(l) = F(1+—).
P+ o+ 50 pj

When p| =--- = p,, = p, this yields the formula for the volume of the set W, =
{(xn, oo xm) € R [ ]? + -+ o [P < 1}

1
(14 4)

InWp) =07 m)

When p =2, we get the formula for the volume of the ball once more.

5.4.3 Let us mention a nice formula relating the double and the repeated integrals.
As a preliminary step, we establish a lemma that will also be of use for us later. In
this lemma, we will identify the space R with the Cartesian product R” x R”
(see the beginning of Sect. 5.4).

Lemma Let f be a measurable function defined on R™. Then the functions
(x,y) > f(x —y)and (x,y) — f(x + y) are measurable on the space R*".

Proof 1t suffices to prove the result for the function (x, y) — F(x,y) = f(x — y),
which we may also assume real-valued (the argument for the second function is
similar). Let E = {x € R"| f(x) < a}. Then

[, eR™|F(x,y) = f(x —y) <a}
={(x,y)eR™ | x—yeE}=T""(E xR"),
where T : R — R>" is the linear mapping defined by 7'(x, y) = (x — y, y). The

mapping T is, obviously, invertible. Therefore, the Lebesgue set of the function F
is measurable as the image of the measurable set £ x R™. 0

The following example essentially repeats the derivation of Euler’s formula re-
lating the functions B and T (see Sect. 5.3.2, Example 2).
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Example (Liouville’s identity®) Let f be a non-negative measurable function
on R, . Then, for all positive numbers p and g the identity

J[[, ety tavay =gy [ ranrtota
2 0

holds where B(p, g) = fol sP=1(1 — 5)9=1 ds is the Euler B-function.

Indeed, we can extend f to the negative semi-axis by zero. Then, according to
the lemma, the function (x, y) — f(x 4 y) is measurable on Ri. Using Tonelli’s
theorem, replace the double integral by the repeated integral with the outer inte-
gration with respect to x and make the change of variable y =¢ — x in the inner
integral:

/A@Z Fx+y)xP~ 1y axdy zfoox"‘1</oo FO(t —x)q_ldt) dx.
T 0 X

The repeated integral on the right-hand side of this equality equals the double inte-
gral over the angle C = {(x,1) |0 < x < t}. Clearly, Cy; = (x, +00) and C" = (0, 1).
Changing the order of integration, we see that

o] t
//Rz f(x+y)x"‘1yq—1dxdy=/0 f(r)(/o x”_l(t—x)q_ldx> dt.

To obtain the desired result, it remains to make the change of variable x = ¢s in the
inner integral.

5.4.4 In the conclusion of this section, we will, relying on the representation of the
double integral as a repeated one, prove an inequality that plays an important role in
mathematical physics. It concerns the domination of an integral of a certain power
of function of class C(]) (R™) (i.e., a smooth compactly supported function) by the
integral of the appropriate power of norm of its gradient. In the one-dimensional
case, we obviously have f(x) = [~ f/(t)di = — fxoo f(®)dt, so

1 o0
Uun<5f 10| d. (1)

This estimate can be generalized for functions of several variables in the following
way.

6] oseph Liouville (1809-1882)—French mathematician.



232 5 The Product Measure

Theorem (The Gagliardo’—Nirenberg®—Sobolev® inequality) Let 1 < p < m,
q= mm—_’}, and C = p;Z—:Il,. Then, for every function f € Cé (R™), the inequality

1

1 C 5
(/ \f<x>\qu)q<—(/ ngadf(x)H”dx) @
Rm 2 Rm

holds.

To begin with, we will establish a nice inequality, which strengthens (2) some-
what in the case p = 1.

Lemma Let g = " and let f € C}(R™). Then

1y 1
<f !f(x)lqu>q<—</ ol [ !f;m<x)\dx).
RITI 2 an R"l

For ¢ = 400 (i.e., in the case m = 1), the left-hand side should be understood as
supgm | f1, so the statement of the lemma coincides with the inequality (1).

Proof We will carry out the proof by induction on m. Since for m = 1 the desired
result reduces to (1), it remains to prove the inductive step. Let m > 1. Assume that
the statement of the lemma is true for functions of m — 1 variables. Writing the
vector x € R™ as (s, t) where s e R”~! and r € R, put

1,»(r)=/ |fi,(s.0|ds forj=1,....m—1  and
Rm—1

In(s) =/ | i (s, 0)]dt.
R

In addition to the exponent ¢ = "+, corresponding to the dimension m, we shall
m—1
m—2"

need the exponent r =
assumption,

corresponding to the dimension m — 1. By the induction

1
N
<A{ml | f(s, D) ds) < 5(11 (0) - In1 (1)) = )

Note also that | f (s, )| < %Im (s) (this is nothing but the inequality (1)) and, there-
1

fore, | f(s,1)|2 <2'79| f(s, )| Iy ~" (s). The Holder inequality with the exponent r

"Emilio Gagliardo (1930-2008)—Italian mathematician.
8Louis Nirenberg (born 1925)—American mathematician.

9Sergey L’vovich Sobolev (1908-1989)—Russian mathematician.
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yields

1
~/]Rmfl ‘f(s’ t)’q ds < 21_q /];mfl |f(S, t)‘lﬂ’rlnil (S) dS

1 _1
<21—f1</ ‘f(s,t)’rds)r(/ Im(s)ds>m1.
Rmfl Rmfl

Taking the inequality (3) into account, we see that

_1

m—1

/ | £(s.0|" ds <279 (11 (0) - Ly () 7T - (/ Im(S)dS)
Rm—1 Rm—1

Integrating this inequality with respect to ¢, we obtain

f |fo)|Tdx <274 /R(h () Im,](t))ﬁ dt - (me_] Im(s)ds) "

Estimating the first integral on the right by Holder’s inequality for several functions
(see Corollary 2 in Sect. 4.4.5 with py =m — 1), we get the inequality

1

/ |f(x)|qu<2—‘1</ I1(t)dt-~~/ Iml(t)dt>mdt
Rm R R
1
] </ ]m(s)ds> nzfl,
Rm—1

which is, obviously, equivalent to the one we set out to prove. U

Proof of the theorem For p = 1, the inequality (2) with the coefficient C = 1 follows
from the lemma immediately because | f;k (x)] < |lgrad f(x)] for all k and x.
m

Now let p > 1. Then C > 1, and an easy computation shows that g = C .25 =

c—-1 %. Introduce the auxiliary function ¢ = | £|€. Since C > 1, ¢ is smooth
and || gradg|| = C| £|€~!|lgrad f||. Applying the inequality (2) with p = 1 to ¢, we
obtain:

m—1

(/ q)%(x)dx) ' <1f | grad o) | dx,
m 2 ]Rm

ie.,

woC _
(/ \f(x)\qu) <3 / £ )] | erad £ ()] dx. @)
Rm Rm



234 5 The Product Measure

Estimating the last integral by Holder’s inequality with exponent p and taking into
account that (C — 1) % =g, we see that

p=1 1
/Rm |f(x)|c_1||gradf(x)|| dx < (/Rm |f(x)|qu> ' (/R"' ||gradf(x)||pdx)p

Together with (4), this yields the desired result because ”’T_l —e=l o

EXERCISES

1. Let E C R, be a measurable set. Prove that the “annulus” A = {(x,y) €
R?|/x2+y2 € E} is measurable and A>(A) =27 [ tdt.

2. Assume that the set £ C R?, contained in the half-plane y > 0, is measur-
able. Prove that the volume of the body T = {(x, y,z) € R3| (x,/y2 +z2) €
E}, which is obtained by the revolution of E around the x-axis, equals
2w f f pydxdy.

3. Prove by induction that for every vector a € R™, the volume of the simplex
S(a) ={x e R} |2t +--- + 22 < 1} equals T,

4. Prove that the volume of the regular m- dlmensmnal simplex ¥ with edges of

vm+1
miam/2:

unit length equals Find the elhpsmd E of maximal volume for X. Inves-

tigate the growth of the quantity (i’:ﬁ E; ) (volume ratio for ¥) as the dimen-

sion increases.
5. Letl<p<+4oo, Vy={(x1,....,%m) | Yj—; Ixk|? < 1}. Find the ellipsoid E,,
of maximal volume for V). For which C does the inclusion V, C C E}, hold?

Investigate the growth of the quantity (i"’(( o )))m as the dimension increases.

For which p is it bounded?
6. Let ACR™ and B C R” be two convex origin-symmetric compact bodies, let
C C R™" be the convex hull of the union (A x {0}) U ({0} x B). Prove that

m!n!
)\m—&-n(c) - mkm(A))”n(B)-

7. Let K be an arbitrary convex body in R” and V = 1,,(K). Prove that if the
(m — 1)-dimensional volume of the projection of K to every hyperplane is at
least S, then diam(K) < %

8. Prove that a non-zero polynomial of several variables (either algebraic or
trigonometric) takes non-zero values almost everywhere.

9. LetEq,...,E, C[0,1)and S = A(E) + --- + A(E,). Prove that there exist
translations of the sets E; modulo 1 (see Exercise 6 in Sect. 2.4) whose union
covers [0, 1) almost entirely: the measure of the difference [0, 1) \ U’}-Zl{x i+

E;} is less than e~5. Generalize this statement to the multi-dimensional case.
Hint. Consider the integral

/ / </ xi({t —x1}) - ({t—xn})d[>dxl,”dxn’
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10.

11.

12.

13.

14.

15.

16.

17.
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where y; is the characteristic function of the set [0, 1) \ E; (j =1,...,n).
Applying the method used in the proof of Theorem 5.4.4, prove the following
generalization of Lemma 5.4.4:

1 1
a C np
([ lrwra) <S([ imwrac [ lmwra)”.
Rm Rm Rm

Let f be a function that is summable on the square (0, 1)? and satisfies the con-
dition | [f, . p f(x, y)dxdy| <1 for any measurable sets A, B C (0, 1). Show
that the integral [/ 0.1y | f(x,y)|dxdy can be arbitrarily large (one possible
example is given in Exercise 9 of Sect. 10.2).

In three-dimensional space, consider the ball inscribed into a cube and the tetra-
hedron that is the convex hull of two non-coplanar diagonals of opposite faces
of this cube (say, horizontal for the sake of definiteness). Prove that the ratio
of the areas of the horizontal cross sections of the ball and the tetrahedron is
constant and find the volume of the ball using the Cavalieri principle.'”

Using the Cavalieri principle obtain the formula for the volume of a cone (see
Example 1 in Sect. 5.4.2) without employing integration. Hint. Verify that the
measure E +— A, (Cg), where E € A"~ and Cp = {(t,ty)|t€[0,1], y € E},
is translation invariant, so it is a multiple of the Lebesgue measure.

Let

ECR" 2, Kp={(tw,1x) eR*xR"2|0<t <1, (w,x)eS' x E}

be the cone with vertex at the origin and “cylindrical base” S! x E. Using the
Cavalieri principle, prove that the measure E > A,,(Kg) defined on 2”2 is
proportional to A,,—2(E).

Representing the polydisk B? x --- x B2 (k factors) as the union of k congru-
ent cones with cylindrical bases and the common vertex at the origin, find the
proportionality coefficient and derive the formula A, (Kg) = 27” Am—2(E) for
even m.

Taking the Cartesian product of the polydisk and [—1, 1] and refining the argu-
ment from the previous exercise, prove that the formula 1, (Kg) = 27” Am—2(E)
obtained there remains valid for odd m.

Using the Cavalieri principle alone, derive the recurrent formula for the volume
of the m-dimensional ball: «,,, = %’am_z (m > 3). Hint. Use the results of the
two previous exercises with £ = B™ 2,

Prove that the interval [0, 1] and the square [0, 11? endowed with the corre-
sponding Lebesgue measures are isomorphic as measure spaces (the definition
of an isomorphism of measure spaces was given in Exercise 11, Sect. 4.10).
Generalizing this result, prove that the measure spaces R™ and R" with the

10This problem was proposed by A. Andzans in a slightly different formulation (see “Kvant”, 1990,
No. 3, p. 27, Problem M1211). The authors are grateful to A.N. Petrov for drawing their attention
to this result.
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corresponding Lebesgue measures are isomorphic. Hint. Using the binary rep-
resentations of numbers x € [0, 1], consider the mapping

oo oo oo
x=) a2 o) = (Zm_lz—", Zmz—") elo, 1.
k=1 k=1

k=1

5.5 *An Alternative Approach to the Definition of the Product
Measure and the Integral

In this section, we shall give an alternative proof of Theorem 5.1.2 on the countable
additivity of the product measure that does not use the notion of the integral. This
allows us to define the integral of a non-negative function as the measure of its sub-
graph. As we shall see, this approach to the construction of the integral is equivalent
to the one in Chap. 4.

5.5.1 As in Sect. 5.1, let (X,%(, n) and (Y,*B,v) be two measure spaces with
o -finite measures, let

P ={AxB|Ae, u(A) <+oo, BeB, v(B) <+0o0}

be the semiring of measurable rectangles, and let m¢ be the product of the measures
w and v, defined on & by

mo(A x B) = j1(A) v(B). (D

It was shown in Theorem 1.2.4 that mq is a volume. We now want to prove its
countable additivity.

Assume first that the measures p and v are finite. Then X x ¥ € & and, by the
remark in Sect. 1.2.3, we may assume that the volume m has been extended to the
algebra € of all sets representable as finite unions of measurable rectangles. We will
use the same notation m for this extended volume.

As a preliminary step, let us prove the following lemma, which is a substantially
weakened version of Theorem 5.2.2. We shall need it for estimating the volumes
of sets from the algebra €. The notions of the cross section C, and the canonical
projection P;(C) used in the lemma are defined in Sects. 5.2.1 and 5.2.2.

Lemma If C is a set from the algebra € such that v(Cy) < 8 for all x € X, then
mo(C) < 6§ - w(P(C)). In particular, mg(C) < 6 - u(X).

Proof By the definition of the algebra €, all its elements are representable as unions
of finitely many measurable rectangles. We will carry out the proof by induction
on the number of rectangles comprising the set C. The induction base (C is a mea-
surable rectangle) is obvious. Now we will assume that the statement of the lemma
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holds for all unions of at most » — 1 measurable rectangles and will prove it for the
set C = Jy_;(Ax x By), where Ay € A, By € B.

PutU = UZ;]I Ay, and split the set C into three parts D, E and F so that P| (D) =
A, \U, PI(E)=U\ A, and P{(F)=U N A, (the sets D, E and F are disjoint
because their projections to X do not overlap). Since D, E and F are subsets of C,
each of their cross sections is contained in the corresponding cross section of the
set C. Therefore, v(D,), v(Ey), v(Fy) < § for all x in X. To apply the induction
assumption to the sets D, E and F, let us check that each of them is a union of at
most n — 1 measurable rectangles. This is obvious for the sets D and E because

n—1

D=(A,\U)x B, and E=|J(Ac\ Ay x Bx.
k=1

It follows directly from the definition of the set F' that, if x € U N A,,, then

n—1 n—1
Fx:cx=(U<AmAn>ka) UBn=<U<AmAn)x(BkUBn>> :

k=1 k=1

and, therefore, F = UZ;% (Ax N A,) x (B U B,;). One can see from this that the
induction assumption can also be applied to F'. Using the additivity of mg, we obtain
the desired inequality:

mo(C) = mo(D) +mo(E) +mo(F) < Su(P1(D)) + 8u(P1(E)) + Su(P1(F))
=8(w(U\ Ap) + w(U N Ap) + 1(Ay \ U)) =81 (U U Ay)
=du(P1(0)). O

It can be seen from the proof that we have used only the finite additivity of the
measures i and v, not the countable additivity, so the lemma is valid not only for
measures, but also for volumes.

Now we can prove that the product of measures is a measure.

Theorem The volume my is countably additive.

Proof Assume first that the measures p and v are normalized, ie., u(X) =
v(Y) =1, and that the volume m has already been extended to the algebra € con-
sisting of all sets representable as finite unions of measurable rectangles.

Let us prove that this volume is continuous from above on the empty set, which,
by Theorem 1.3.4, implies its countable additivity. So, let the sets C,, from € satisfy
the conditions

o0
CiDCuy1 forneN, (| Ch=2.

n=1

We have to prove that mo(C,) — 0 as n — oo.
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Assume the contrary. Then for some § > 0,
mo(C,) > 38 forall n.

Consider the set E,, consisting of those points x for which the cross section (C; )y
has “large” measure. More precisely, put

8
E, = xeX)v((Cn)x)> 3
It is easy to check that the function x — v((C,,),) is simple and the set E,, is mea-
surable with respect to 2. Clearly, C, C (E,, X Y)UC), where C, = C,, \ (E, x Y).
Therefore,

8 <mo(Cy) <mo(En x Y) 4+ mo(C}).

Also, v((C))yx) < % Using the lemma proved above to estimate mq(C),), we obtain
3 3
8 <mo(Cp) <mo(Ep X Y) + 3= w(Ey) + 2

(recall that u(X) = v(Y) = 1). Therefore, w(E,) > % Thus, the measures of the
sets E, do not tend to zero. Since the sets E, form a decreasing sequence, their
intersection cannot be empty. Let xg € ﬂ;’lozl E,. Then v((Cy)y,) > % for each n.
Since the sets (C,)y, form a decreasing sequence, their intersection is not empty.
Let yg € ﬂ;’le (Cr)xy- Then the point (xg, yo) belongs to each of the sets C,,, which
is impossible by our assumptions, and we get the contradiction sought.

Once we have established the statement of the theorem for normalized mea-
sures, we immediately get it for arbitrary finite measures as well. Consider now the
case when u and v are arbitrary o -finite measures. Assume that C = A x B € &,
C = UZOZI C,, and the sets C,, from & are pairwise disjoint. Then ©(A) < 400
and v(B) < +00 by the definition of the semiring &. Therefore we can replace X
by A, and Y by B, consider the restriction of m to the semiring of those measurable
rectangles that are contained in A x B, and then just refer to the already considered
case of finite measures. O

Now we can justifiably define (as in Sect. 5.1.1) the product measure @ x v as
the standard extension of the measure my.

5.5.2 Let us sketch an alternative approach to the definition of the integral of a
non-negative measurable function (for measurable functions of arbitrary sign, we
will preserve the definition from Sect. 4.1.3). Let us remind the reader that, as it
has been proved in Lemma 5.2.3 (without using the integral), the subgraph of a
non-negative measurable function (in the wide sense) is measurable.

Definition Let (X, 2(, i) be a measure space with o -finite measure, let m = u x A
where A is the one-dimensional Lebesgue measure. The integral of a non-negative
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measurable function f over a set A € 2 is the measure of its subgraph Z7;(A)
over A.

To distinguish this integral from the integral introduced in Chap. 4, we will de-
note it by the symbol I(f, A). Thus, I is a functional (with values in [0, +00])
defined on the set I x 2, where K is the cone of non-negative functions that are
measurable on X.

It is easy to check that the functional [ satisfies the conditions (I)—(IV) from
Sect. 4.2.5. Indeed, condition (I) is obvious. Condition (II) follows from the identity
Pr(AV B)= P (A) v Z¢(B) and the additivity of the measure m.

If f(x) =cforall x in A, then &f(A) = A x [0, c] and, therefore, I(f, A) =
ciu(A) =cI(I, A), which means that condition (III) is satisfied.

Finally, condition (IV) is also satisfied. Indeed, if {f,},>1 is an increasing se-
quence of non-negative measurable functions that converges to f pointwise, then
the inclusions

Pr\TrC U‘@fﬂc‘@f
n>1

hold. In addition, we have m(I'y) =0 and &y, C Py, .. Therefore, m(Z,) —
m () by the continuity from below of the measure. This means that I (f,, X) —
I(f, X), which coincides with the statement of condition (IV).

As we have already pointed out in Sect. 4.2.5, all other properties of the integral
obtained in Sect. 4.2 follow from (I)—(IV).

EXERCISES

1. Let (X, %, u) be a measure space with o-finite complete measure. We will call
a non-negative function f measurable if its subgraph is measurable with respect
to the algebra 2 ® 2. Prove that this definition is equivalent to the definition of
measurability using Lebesgue sets.

5.6 *Infinite Products of Measures

5.6.1 Now we will define the product measure of an infinite sequence of measures.
Let us remind the reader that the product measure operation is associative for fi-
nite families of measures (see Sect. 5.1.3), so, in particular, ;1 X (o X -+ X Uy =
p1 X (2 X - X y).

Let (X,,, 2, un) (n € N) be measure spaces with normalized measures, i.e., with
measures satisfying the condition w, (X,) = 1 (such measures are also called prob-
ability measures). Put

]

o
Y =[] X Yu= ] X% @m=1.2..).
k=1

k=n+1
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If all the sets X coincide with X, we will denote their product by the symbol XV,

A set A C Y will be called a cylindrical subset of rank n if it is representable as
A = B x Y,, where the set B (which we will call the base of the set A) belongs to
the o -algebra on which the product measure 1 x --- X u, is defined. Obviously,
every cylindrical set of rank n with base B is simultaneously a cylindrical set of
rank n 4+ 1 with base B x X,,11.

We leave it to the reader to check that the cylindrical sets of all possible ranks
form an algebra. For every cylindrical set A of rank n with base B, put

V(A) = (1 X -+ X pin)(B).

This definition is self-consistent because

(1 X oo X ) (B) = (g X oo X iy X iy 1) (B X Xpyp1) =---.

Let us verify that the function v is additive, i.e., that it is a volume. Indeed, let A
and A’ be cylindrical sets. Obviously, without loss of generality, we may assume
that they have the same rank. Then A= B x Y, and A’ =B’ x ¥,,. If A and A’ are
disjoint, then so are their bases, and, since A U A’ = (B U B’) x Y,,, we have

V(AUA") = (u1 x -+ x up)(BUB’)
= (1 X X ) (B) 4 (1 X -+ X ) (B") = v(A) +v(A").
We will call the volume v the product of the measures 1, s, . ...
Note also that, for almost all x; € X1, the cross sections of the cylindrical set

A = B x Y, of rank n are cylindrical sets (of rank n — 1) in Y7. This follows from
the identity

Ay, ={(x2,...,x,,,...)€Y1|(x1,x2,...,xn,...)€A}
={(x2,....x0) € X2 x -+ x X | (x1,X2,..., %) € B} x ¥, = By, x ¥,

and Theorem 5.2.2, which guarantees the measurability of B,, for almost all
X1 € X 1.

5.6.2 Let us prove the countable additivity of the volume v following the idea used
in the proof of Theorem 5.5.1.

Theorem The infinite product of measures is a measure.

Proof Since the collection of all cylindrical sets is an algebra and v is a finite vol-

ume, to prove the countable additivity of the latter, it suffices to check that it is

continuous from above on the empty set (see Theorem 1.3.4). Let A* be cylindri-

cal sets, A¥ > Ak+1 M2 AK = &, We will prove that v(AF) = 0. Arguing by
— 00

contradiction, assume that for some § > 0, we have

v(AF) >8>0 forallk. 1)
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We shall derive from this that there exists a ¢; € X such that for the cross sections
A]c‘ ,» the inequalities

8
vi(A%) > 5 holdforall k, (1)

where v is the product of the measures (o, us, .. .. Let Ak = B¥ x Y, be a cylin-
drical set of rank ny and let A = o X -+ X iy, . Put

EkZ{X1€X1|U1(Ak) (Bk)

l\)l%
—_—

Then
8 < w(A) = (w1 x pa x - x ) (B¥) = (1 x 2)(BY)

)
:fE A(Bf:l)dm(xm/ M(BE) () < (B +
k

X1\Ex

and, therefore, i (Ey) > % Since the sets Ej decrease, we have m(ﬂ,fil Ep) > 0.
Obviously, the inequalities (1”) hold for all points ¢| € ﬂ,fil E;. for which the cross
sections are measurable.

Replacing (1) with (1’), and v with v and repeating the above argument, we will
find a point ¢; € X, such that

(=2

VZ(A]((cl,cz)) > 1 for all k,
where v is the product of the measures u3, i4, . ...

Continuing this process by induction, we w111 get a sequence of points ¢; € X
such that for all j and k, the cross sections A o)) have positive volumes (prod-
ucts of measures 41, (Uj42,...) and, thereby, are non-empty. This is the crux of
the argument: contrary to our assumptions, the point ¢ = (c1, ¢2, ...) € X belongs
to all sets AX. Indeed, for J = ny, the statement that the cross section A‘V(‘Cl ) is

------

non-empty means that it coincides with Y;,, . Therefore, AF contains all points of the
form (c1, ..., Cnys Xng+1, Xny+2, - - -). In particular, A¥ contains the point c. Since k
is arbitrary, we obtain the sought contradiction. U

The infinite product of measures (1, 2, ... we have constructed is defined on
the algebra of cylindrical sets, which is usually not a o -algebra. Extending it in the
standard way (see Sect. 1.4), we obtain a measure defined on a o -algebra. We will
call this extension the product measure of the measures (41, (2, ... and denote it by
the symbol 1 X g X - --.

In conclusion, note that some properties of the infinite product of measures may
seem unusual. For instance, a set A C XN may have zero measure even though for
each its points x = (x1, x2, ...), all “cross sections”

An(x)={y|(x1,...,xn_l,y,xn+1,...)€A} (neN)
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coincide with X (A can be taken to be the set of all bounded sequences, see Exer-
cise 3).

EXERCISES

1.

Prove that the closed interval [0, 1] with the Lebesgue measure A is isomorphic,
as a measure space (see the definition in Exercise 11, Sect. 5.4), to the measure
space (X, %, w), where X = [0, 1]N, and t =A X A X ---.

Give an example of a sequence of non-negative functions f, € .2 (X, i) such
that their integrals are bounded and that

for every subsequence {ny}, sup | S (x)| = +o00o almost everywhere.
k

Hint. Consider the measure p from Exercise 1 and the functions f,(x) = \/%,

where x = (x1, x2,...) € (0, I)N.

Let y be a probability measure on R with density #e”

2

=Y XY X
Prove that every infinite-dimensional cube and the set of all bounded sequences
have zero measure but, for sufficiently large @ > 0, the p-measure of the set

P(a)={(x1,x2,..) | Ixn] <ay/In(n + 1), n e N}

is arbitrarily close to one.
Let u be the measure on RY defined in the previous exercise. Put

Eaz{xz(xl,xz,...)eRN

lim —— <ay.

n—>o0 /Inn

Prove that u(E;) =0fora =1and w(E;) = 1 when a > 1. Derive from this that

w(H) =1 where H is the set of all points x € RN such that Tim,,_, o0 % =1.




Chapter 6
Change of Variables in an Integral

6.1 Integration over a Weighted Image of a Measure

6.1.1 Our main goal in this chapter is to learn how to change variables in an integral
with respect to Lebesgue measure. As often happens, it is useful to begin with a more
general question: is it possible to use a “parametrization” ® : X — Y of aset Y to
reduce the integration with respect to a measure given on Y to the integration with
respect to a measure given on X ? More precisely, given measure spaces (X, 2, i)
and (Y,*B,v), amap ®: X — Y, and a function f defined on Y, it is extremely
important to know conditions under which we can establish a relation between the
integral of f with respect to v and the integral of f o ® with respect to u. Of
course, to make it possible, we must assume that the measures i and v are somehow
compatible. We describe this compatibility by introducing the notion of a weighted
image of a measure.

Definition Let (X, %, u) be a measure space, let B be an arbitrary o-algebra of
subsets of Y, and let ® : X — Y be a mapping satisfying the condition

o '(B)e for every set B in B.

For a non-negative measurable function w on X, we define the function v : 8 — R
as follows:

V(B)=/ w(x)du(x) (BeD). (D
o-1(B)

Obviously, v is a measure on 8. We call it a weighted image (more precisely, the
w-weighted ®-image) of . We call the function w a weight or a weight function.
‘We note that here we do not assume that the map & is one-to-one or surjective.

The following theorem demonstrates a connection between the integrals with
respect to the measures v and .

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications, 243
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Theorem Let v be an w-weighted image of a measure i under amap @ : X — Y.
Then, for every non-negative measurable function f onY, the composition f o ® is
also measurable, and the following holds:

/f(y)dV(y) =/ f(@))wx)dp(x). 2)
Y X
The above relation is also valid for every summable function f on'Y.

Proof The fact that the composition g = f o ® is measurable follows from the
definition of a weighted image of a measure. Indeed, X (g <a) = (Y (f<a)e
2 since the inequality g(x) = f(P(x)) < a is equivalent to the inclusion ®(x) €
Y(f < a) for every real a.

We verify Eq. (2) by successively complicating the function f. If f = xp is the
characteristic function of B, B € ‘B, then

1 ifd(x) e B,

(f o ®)(x) = {0 if ®(x) ¢ B

1 ifxed (B),
= :XCD*I(B)(X)'

0 ifx¢g ® 1 (B)

Thus, f o ® = x¢-1(p)- In this case, Eq. (2) follows directly from the definition
of v. For a non-negative simple function f, Eq. (2) follows from the linearity of the
integral.

In the case where f is an arbitrary non-negative measurable function, we con-
sider an increasing sequence of non-negative simple functions f, that converges
pointwise to f. Then

/an(y)dv(y)=/an(<1>(X))w(x)du(X)-

Passing to the limit (this is possible by Levi’s theorem), we obtain Eq. (2), which
completes the proof of the theorem for f > 0.
As we proved, the relation

/Ylf(y)ldv(y)zfx|f(¢>(x))|w(X)dM(X)

is valid for every measurable function f on Y. Therefore, the functions f and
(f o ®) w are simultaneously summable with respect to the measures v and u, re-
spectively. If f is summable, we write Eq. (2) for the functions f; = max{0, f} and
f— =max{0, — f}. Subtracting the equations obtained, we see that Eq. (2) is also
valid for a real function f. The complex case is obvious. g

Equation (2) can be represented formally in a more general form.
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Corollary Let B € B. Then
/ FOYdv(y) = f F(O0))0 () dux).
B »-1(B)

For the proof, it is sufficient to apply the theorem to the function f - xp.

6.1.2 We consider two important specific cases of a weighted image of a measure.
First, we consider the case where w = 1. Then Eq. (1) takes the form v(B) =
w(®~1(B)). The measure v is called the ®-image of w and is denoted by ® ().
For more details concerning integration over the image of a measure in the case
where Y =R, see Sect. 6.4.
The second case is obtained by putting ¥ = X, B =2 and ® = Id. Now, Eq. (1)
takes the form

v(B):/wdu (Be, 1"
B

and, by (2), we have

fxf(X)dv(X)=/Xf(X)w(X)dM(X) 2)

for every non-negative function.

We already know this result (see Sect. 4.5.3). In this specific case, we called the
function w the density of the measure v with respect to w. Equation (2') suggests
the following symbolic notation for this situation: dv =wdpu.

From Theorem 4.5.4, it follows that the density of a measure v is determined
uniquely up to equivalence if the measure is finite.

The same is true for a o-finite measure (see Exercise 1, Sect. 4.5). Using the
notion of image of a measure, we can say that the w-weighted ®-image of w is
the ®-image of the measure having density w with respect to u: v = ®(u1), where
dur=wdu.

To make Eq. (2') easy-to-use, it is desirable to have convenient criteria for w to
be the density of a given measure with respect to another one. Now, we establish
one such simple and important criterion.

Theorem Let v and v be measures defined on a o -algebra 2l of subsets of a set X.
In order that a non-negative function w be the density of v with respect to [ it is
necessary and sufficient that the following two-sided estimate' be valid for every set
Ain

M(A)igfa) <V(A) < u(A)sup w.
A

! As usual, we assume that the products 0 - (+-00) and (+00) - 0 are zero.
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Proof The necessity is obvious, so we proceed to prove sufficiency, i.e., to prove
Eq. (1"). We may assume that @ > 0 on B since we obviously have v(e) =0 =
fe wdp for e = {x € B|w(x) = 0}. Assuming that the function w is positive, we fix
an arbitrary number ¢ in the interval (0, 1) and consider the sets

Bj:{xeB|qj ga)(x)<qj_1} (j €Z).

These sets are measurable and form a partition of B. From the two-sided estimate,
it follows immediately that

q’1u(Bj) <v(B;) <q’'u(B)).

Similar inequalities,

B < [ otdu <ol ).

Bj

are valid for the integrals over the sets B;.
Consequently,

, 1 ; 1
q/Bw(X)du(X)ézc]’M(Bj)<V(B)< P ICUICHE ?1/3”(”‘“‘(”'
7 J

Thus,

1
CIf o) du(x) <v(B) < —/ w(x)du(x)
B q JB

for every ¢ in the interval (0, 1). Passing to the limit as ¢ — 1, we obtain the re-
quired relation. d

6.1.3 We give an example showing how to use the measure conservation condition.
Let (X, 2, ) be a finite measure space, and let 7 : X — X be a measure-preserving
map. Then the following theorem of Poincaré” holds.

Theorem (Poincaré recurrence theorem) Let u(X) < 0o, and let T : X — X be
a measure-preserving map. Under the map T, almost every point of an arbitrary
measurable set A C X returns to A infinitely many times, i.e., for almost all x in A,
we have T" (x) € A for infinitely many n.

Proof First, we verify that almost every point of A returns to A at least once,
i.e., that, for almost every point x of A, there exists a power 7" of T such that
T"(x) € A. Indeed, the points whose T-images do not belong to A form the set
ANT~1(X\ A). Similarly, the points whose images do not belong to A after n-fold

2Jules Henri Poincaré (1854—-1912)—French mathematician.
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action of 7 form the set AN T~"(X \ A). Therefore, the points that never return
to A form the set

B=ANT YX\A)N---NT"(X\A)N---.

The sets B, T~'(B), T7%(B),... are disjoint. Indeed, if xo € T~%(B) and
xo € T~%+D(B) (I > 0), then, by the definition of a preimage, we have yy =
Tk(xp) € B, and so T*H (xg) = T'yg € B. This means that the point yg of B re-
turns to B, a contradiction. Since the sets B, T~1(B), T2(B), ... are disjoint,
have that same measure, and @ (X) < oo, we obtain p(B) = 0. Thus, all points of A
except those of the set B of measure zero return to A.

Applying this result to the maps T2, 73, ... and using the fact that the union of
a sequence of sets of measure zero has measure zero, we see that, for almost every
point of A, there exist arbitrarily large powers of T that return the point to A. The
theorem is proved. g

EXERCISES

1. Let v/ be the image and v be the w-weighted image of a measure y under a
bijective map ®. Prove that dv =w o &~ dv’.

2. Define the map @ : [0, 1) — [0, 1) x [0, 1) as follows: if the binary expansion of
x has the form x =0, a¢ja203. .., then ®(x) = (y1, y2), where y; =0, ¢13.. .,
and y» = 0, 004 ... (we arbitrarily fix one of the binary expansions if x has
more than one such expansion). Prove that the set A C [0, 1) x [0, 1) is Lebesgue
measurable if and only if its preimage ®~'(A) is Lebesgue measurable. Find the
d-image of Lebesgue measure.

3. Let A be Lebesgue measure on [0, 1), and let {x} be the fractional part of x.
Consider the map ¢(x) = {%} from [0, 1) toitself (by definition, ¢(0) = 0). Prove
that w(x) = Z/?io m is the density of the measure ¢(4), i.e.,

el (A) =/ w(x)dx
A

for every measurable set A lying in [0, 1). We note that by formula (9) from
Sect. 7.2.6, we have w(x) = (InT'(x))”.

4. Prove that the measure defined on (0, 1) and having density with respect to

1
T+x
the Lebesgue measure is invariant under the map ¢(x) = {%}, ie.,

dx dx
= (A (,1).
w—l(A)l—f-)C A1+X

5. Let ¢ and 1 be non-decreasing functions bounded on R, and let

g(x)=/R<p<x—t>dw<r> (x € R).
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Prove that the measure 1, is the image of the measure y X py under the map
(x,y) > x+yand ug(A) = fR e (—t+ A)dyr(t) for every Borel set A. Prove
that the function g is continuous if at least one of the functions ¢ or ¥ is contin-
uous.

6. Prove that the function g from the previous exercise is strictly increasing on
[0, 2] if ¢ = ¥ is the Cantor function (from the left and from the right of [0, 1]
the values of ¢ are equal to 0 and 1, respectively). Hint. On every interval of the
form Ap = [2t¢, 2t +2-37"],where ty =k -37" (ne N, k=0,1,...,3" — 1),
the increment of g is positive since the strip {(x, y) € R?|x 4+ y € Ag} contains
a square whose sides are segments of rank n arising in the construction of the
Cantor set.

7. Prove that the function g in Exercise 6 is not absolutely continuous. Hint. Verify
that, for each n, at least half of the measure ji, is concentrated on the intervals
Ay for which the ternary expansion of #; contains at least n/2 ones; prove that
the total length of these intervals is arbitrarily small for large n.

6.2 Change of Variable in a Multiple Integral

We want to concretize the general scheme developed in Sect. 6.1 and find a relation
between the integrals over open subsets O and O’ of the space R™ in the case where
the first set is mapped onto the second one by a diffeomorphism. In this section, by
measurable sets we mean Lebesgue measurable sets and the integrals are regarded
only with respect to Lebesgue measure on R, which is denoted by the letter A
without indicating the dimension.

In what follows, @' (x) is the Jacobi® matrix of a smooth map P at a point x (the
matrix corresponding to the linear map dy ® in the canonical basis of the space R");
the determinant of this matrix (the Jacobian of ®) is denoted by J (x) (x € O).

We recall (see Sect. 13.7.3) that a diffeomorphism is a bijective smooth map of
an open subset of R to an open subset of R” with smooth inverse. As proved in
Theorem 2.3.1, the image of a measurable set under a smooth map is measurable
and the image of a set of measure zero has measure zero.

6.2.1 Before applying Theorem 6.1.1 to our situation, it is necessary to find out how
Lebesgue measure transforms under a diffeomorphism. It is convenient to state this
question as a problem on the calculation of the measure v defined on the o -algebra
of measurable subsets of O by the equation v(A) = A(P(A)). More specifically, we
want to find out whether the measure v has a density with respect to the Lebesgue
measure and find the density if it exists.

In search of a hypothetic density at an arbitrary point a, a € O, the key point is
the fact that, in the vicinity of this point, the diffeomorphism & is well approximated

3Carl Gustav Jacob Jacobi (1804—1851)—German mathematician.
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by the affine map x — E)(x) = ®(a) + d,; P(x — a) the influence of which on the
Lebesgue measure is well known (see Theorems 2.4.1 and 2.5.2):

AM(D(A)) = 1(da®(A)) = |detd, PIA(A) = | Jo(a) |1 (A).

Therefore, it is natural to assume that the following approximate equation is valid
for a measurable set A lying in a small neighborhood of a:

AMD(A) ~A(B(A)) = | Jo (@) |1 (A).

At the same time, it follows from the mean value theorem that |Je(a)|A(A) ~
[4 Jo(x)| dx, from which we obtain

V(A) = A(D(A)) %/A |Jo(x)|dx.

The last relation makes it very probable that the function |J¢| might be the density
of the measure v with respect to the Lebesgue measure.
Now, we give a precise statement and a formal proof of this fact.

Theorem Let ® be a diffeomorphism defined on an open set O, O C R™. Then the
following relation is valid for every measurable set A, A C O:

A(P(A)) =/A |Jo(x)| dx. (D)

Proof On the o-algebra of measurable sets contained in O, we define a measure v
by the equation

V(A) =A((A) (ACO)

and verify that the measure satisfies the condition

inf | Jo|A(A) < v(A) < sup [Jo[A(A). 2
A

As stated in Theorem 6.1.2, this implies the relation v(A) = fA |Jo (x)|dx, which
proves the theorem.

Proceeding to prove inequality (2), we note that it is sufficient to verify the right-
hand inequality since, applying it to the map ®~! and to the set ®(A), we obtain
the left-hand inequality (recall that Jo (x) - Jo-1(y) =1 for y = ®(x) and x € O).

As the first and most difficult step, we prove by contradiction the right-hand
inequality (2) for an arbitrary cubic cell whose closure lies in O. We assume that
A(Q)supy [Jo| < v(Q) for a cubic cell Q such that 0 C O.Then CA(Q) < v(Q)
for some C > sup, |Jo|. We divide Q into 2™ cells the edges of which are two
times smaller than those of Q. Among the new cells, there is a cell, call it O, such
that CA(Q1) < v(Q1). Repeating the above construction, we inductively construct
a sequence of embedded cubic cells {Q,} such that diam(Q,) — 0 and

CM(Q,) <v(Q,) foralln.
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Leta e[ N 0, and L = d,®. By assumption, L is an invertible linear map, and
since a € Q, we have |det L| = |Jp(a)| < C. We consider the auxiliary map

V) =a+ L7 () — @(a)).

Near the point a, this map is close to the identity, W (x) = x +o(x —a). Therefore,
for every ¢ > 0, there is a small ball B centered at a such that

Jm

By construction, we have a € Q,, and Q,, C B for sufficiently large n. Let & be
the length of an edge of the cube Q, and x € Q,. Since ||x — a|| < /mh, we
obtain || W(x) — x|| < eh, and a similar inequality is valid for all coordinates of the
difference W (x) — x. Therefore, the vector W (x) belongs to a cube whose edge is at
most (1 + 2¢)h. Consequently,

||\I!(x)—x||< |x —al| forall x in B.

A(W(00) < (1+26)"h" = (14 26)"1(Qn).

Using Theorem 2.5.2 and the fact that the Lebesgue measure is translation invariant
(see Sect. 2.4.1), we obtain

MW(Q0) =ML o @(Qy) = |det L™ |- A(P(Qn) = Ivd(e?z)l

Thus,
CA(Qp) <v(Qp) =Idet L] - 1(W(Q,)) < (1+2&)"|det L| - 1(Qp).

Therefore, C < (1 + 2¢)™|detL| for all ¢ > 0, i.e., C < |detL| = |Jo(a)|. How-
ever, this is impossible since C > sup,, |Jo| and a € Q. The contradiction obtained
proves that our assumption is false and the inequality v(Q) < A(Q)supy [Jo| is
valid for each cubic cell Q such that O C O.

We note that the estimate from above in (2) is valid for a set A if it is valid for
the sets of some at most countable partition of A. From this it follows immediately
that the estimate is valid for every open set G, G C O (it is sufficient to divide G
into cubic cells with closures in G, see Theorem 1.1.7). Moreover, we can assume
in what follows that A is a bounded set whose closure is contained in the set O. For
such a set, the right-hand side of inequality (2) can be obtained using the regularity
of the Lebesgue measure:

v(A) < inf w(G)<  inf (AG~su J ):AA~su Tol.
(A) oot (G) oot (G) GP|<I>| (A) AP| o|

G is open G is open

This completes the proof of (2) and the theorem. g
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From the continuity of J¢ and formula (1), it follows that

A(P(A))

B ©

|Jo(a)| =1lim
where the limit is calculated under the assumption that A(A) > 0 and the sets A
“shrink” to the point a (i.e., A C B(a,r), r — 0). Thus, as we surmised from the
very beginning, “in the small”, the number |J¢ (a)| can be regarded as the measure
distortion coefficient under the map ® (in much the same way as in the case of a
linear map, the absolute value of the determinant is a “global” measure distortion
coefficient).

As follows from Theorem 8.8.1, the assertion of Theorem 6.2.1 remains valid if
instead of the smoothness of ® we assume that it is a homeomorphism such that
both & and its inverse satisfy the Lipschitz condition. For a generalization of the
theorem to maps that are not one-to-one, see, for example, [EG].

6.2.2 Now we have everything we need to obtain the main result of the present
section, the change of variable formula for multiple integrals.

Theorem Let @ be a diffeomorphism defined on an open set O, O C R™. Then, for
every measurable non-negative function f defined on O’ = ®(0), we have

/ fdy =/ (@) |Jo(x)|dx. 4)
(@4 @)
The above equation is valid for every summable function f on O’

Proof By the previous theorem, this is a special case of Theorem 6.1.1, where
X=0,Y=0, w=|Jgl|, and u and v are the Lebesgue measures on the o-
algebras of measurable subsets of @ and ', respectively. The fact that the set
®~!(B) is measurable follows from the smoothness of ®~!, and the equation
MB) = fqu(B) |Jo(x)| dx required by Definition 6.1.1 is equivalent to the state-
ment of Theorem 6.2.1. O

As in Sect. 6.1 (see Corollary 6.1.1), the formula proved above is valid in a more
general form. Namely, for every measurable set A lying in O, we have

/ FOdr(y) = / F(@)) [ Jo ()| dAx).
D(A) A

The function f is summable on ®(A) if and only if the function (f o ®)|Je]| is
summable on A.

Remark The conditions of Theorem 6.2.2 can be weakened slightly by allowing the
function @ to “worsen” on a “negligible” set. We describe this in more detail. Let
XCR", &:X — R" and Y = ®(X). If the restriction of ® to an open subset O
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of X is a diffeomorphism and both the difference ¢ = X \ O and its image ®(e) have
zero measure, then the conclusion of Theorem 6.2.2 remains valid, and the equation

/Yf(y)dyZ/Xf(cb(X))|Jq>(X)|dx @)

is valid for every function f summable on Y.
Indeed, since e and Y \ ®(O) C ®(e) are sets of measure zero, we have

ff(y)dy=/ f(y)dy=/ f(<I>(x))\Jq>(x)\dx=/ F(@)) | Jo(x)|dx.
Y d(0) O X

We note that the map @, which is one-to-one on O, need not satisfy this condition
on X and may be not only non-smooth, but even discontinuous on e.

We consider the simplest special case of the theorem. Letm =1, ® € CY([a, b)),
and let ®'(x) # 0 for x € (a, b). By the last condition, the function @’ preserves sign
on (a, b) and the function ® is strictly monotonic. By Theorem 6.2.2, we obtain that
the equation

f(y)dy=/ , F(@)|@'(x)|dx

[p.q] [a,D]

is valid for every measurable non-negative function f on [p, g] = ®([a, b]).
Considering the cases @ > 0 and ®’ < 0, the reader can easily verify that, in

both cases, the above equation implies the formula

@ (b)

b
f F(®0)) () dx = L o

obtained in Proposition 2, Sect. 4.6.2 only for a continuous function f on (p, q)
(however, under some weaker assumptions on P).

‘We mention two simple specific cases of Theorem 6.2.2 that will be used repeat-
edly in the sequel.

(a

TRANSLATION. For every vector v € R”, we have the equation

/f(y)dy=/ f(v+x)dX=/ flw—x)dx.
Rm Rm Rm

For the proof, it is sufficient to observe that a translation, as well as a translation
followed by a reflection, is a diffeomorphism of the space R™ the absolute value
of the Jacobian of which is equal to 1 everywhere.

LINEAR CHANGE. Let L : R™ — R™ be an invertible linear map. Then

/f(y)dy=|detL|f F(L())dx.
Rm Rm

In particular, the equation

/ FO)dy = le]" / Flex)dx
Rrﬂ RITI

is valid for every non-zero coefficient c.
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In both cases, for simplicity, we consider integration over the entire space R™.
From this, the formulas for integration over a part of R” can easily be obtained.

623 If ®: O — (O is a diffeomorphism, then the position of a point y in O’
is completely determined by the point x = ®~!(y), and, therefore, the Cartesian
coordinates of x are often called the curvilinear coordinates of y. It is convenient to
think of O and O’ as sets lying in different spaces R™ by considering two copies
of this space (it is natural to denote the coordinates of the points in these spaces by
different letters). A subset of the set O’ on which the curvilinear coordinate with
a given index k is constant is called a coordinate surface (a coordinate line in the
two-dimensional case). A coordinate surface is the image of the intersection of O
and a plane x; = const. This surface can also be regarded as the level surface for the
kth coordinate function of the map @~ !, Thus, @ is “foliated” into the coordinate
surfaces x; = const, which are obviously disjoint. Such a foliation can be produced
in m ways, depending on the index of a coordinate. Every point in O’ lies in the
intersection of m coordinate surfaces.

Fixing all coordinates of a point a = (ay, ..., a,) € O except the kth one and
changing this coordinate in the vicinity of a;, we obtain a path parametrizing a
curve passing through the point ®(a). The corresponding curve is called a coordi-
nate line. The tangent vector to it at the point ®(a) is simply the kth column of the
Jacobi matrix @'(a); we denote this vector by tx. It is well known (see Sect. 2.5.2)
that the number |Jg(a)| has a simple geometric interpretation as the volume of
the parallelepiped spanned by the vectors 71, ..., 7,,. Sometimes, especially in the
cases where the curvilinear coordinates have a simple geometric interpretation, the
situation in question can be described without mentioning the diffeomorphism &.
Instead, we say that the set O’ “is equipped with curvilinear coordinates” and give
the dependencies yy = @i(x1,...,x;) of the Cartesian coordinates of a point in
@’ on the curvilinear coordinates, i.e., the coordinate functions of the diffeomor-
phism ®. Since the diffeomorphism ® is not given explicitly, instead of the determi-
nant Jo (x) = detd, P one uses the functional determinant % = det || ?)T“’i I
corresponding to the system of functions ¢, ..., @. ‘

Sometimes it is possible to calculate the absolute value of the Jacobian with-
out using its definition directly but applying Eq. (3) to sets A of one form or an-
other. Let, for example, A be a cell ]_[anl[ak,ak + hg) lying in O, where h =
(h1, ..., hy) € RE. Its image is a “curvilinear parallelepiped” bounded by the cor-
responding coordinate surfaces. The “edges” of the parallelepiped lie on the coordi-
nate lines and are close to the tangent vectors hy 7 for small /.

Quite often, the principal part of the volume of the curvilinear parallelepiped
can be found directly, using the geometric interpretation of curvilinear coordinates,
which makes it possible to calculate |Jg (a)| as well.

Example We calculate the area S of the curvilinear quadrangle

M={(x,y)€R2+}a2<xy<b2,a< gﬁ}
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(a,b,a and B are positive parameters, a < b and o < B). To this end, we introduce
curvilinear coordinates u and v in Ri by the equations

u=xy and v= X.

X
The corresponding coordinate lines are hyperbolas and rays. Since the curvilinear
coordinates on M can take, respectively, the values from a? to b and from « to f8
independently of one another, the points (u, v) corresponding to the points (x, y)
in M “on the u v-plane” fill the rectangle [a?, b?]  [a, Bl. As a rule, such a sim-
plification of a given domain is one of the main goals when changing variables.

It is easy to prove that gg:;; = 2% = 2v. Consequently, the Jacobian of the map

(u,v) — (x,y) is equal to zl_v (we call the reader’s attention to the fact that here it
was easier to first find the Jacobian of the map inverse to (u, v) — (x, y)). There-
fore, the required area is equal to

b? ﬁd d b2_ 2
S=// 1dxdy=// udv b —a”y B
M 2Jo 2V 2 o

6.2.4 Polar Coordinates. Besides the Cartesian coordinates x and y, there are other
numerical parameters that can be used to locate points in the plane. For example,
the distance » from a point to the origin O (of a Cartesian coordinate system) and
the polar angle ¢, i.e., the angle formed by a fixed ray from O and the radius-vector
of the point. The numbers r and ¢ are called the polar coordinates of the point.
Introducing Cartesian coordinates so that the polar angle is counted anticlockwise
from the positive x-axis towards the positive y-axis, we see that the Cartesian and
polar coordinates are connected by the formulas

X =rcosg, y =rsing.
Formally speaking, these equations define a smooth map

r, @)= @, ¢) = (rcose,rsing),

taking the r, ¢ plane into the x, y plane. However, taking into account the geometric
meaning of the parameter r (the distance from the origin), we assume that the map
@ is defined in the half-plane » > 0. Obviously, the map & is not one-to-one. To
make it one-to-one, we must assume that the angle ¢ changes in an open interval
the length of which does not exceed 2.

As the reader can easily verify, the restriction of ® to a strip of the form Py =
(0, 400) x (o, @ + 27) is one-to-one, and its image is the plane with the ray L, =
{(rcosa, rsina) |r > 0} removed, or, as one says, the plane cut along the ray L.
It is obvious that Ly = ® (3 Py), and so ®(P,) = RZ. Since the map & is not one-
to-one, it is necessary to specify the range of the polar angle when passing from
Cartesian to polar coordinates. As a rule, one uses the intervals (0, 27) and (—m, )
(corresponding to « =0 and @ = —m).
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Fig. 6.1 Increment of a circular sector

The coordinate lines, i.e., the lines r = const and ¢ = const, are circles (cen-
tered at the origin O) and rays (from O), respectively. The rectangle [ro, ro + p] X
[0, o +&] transforms into the curvilinear quadrangle bounded by the circles r = rg
and r =ro + p and by the rays ¢ = ¢g and ¢ = ¢g + & (see Fig. 6.1).

For small p and &, this curvilinear quadrangle is almost a rectangle with sides ro&
and p. Therefore, up to higher order infinitesimals, the area is equal to rop&. Re-
calling that the value of the Jacobian J¢ at (g, ¢o) is the area distortion coefficient,
we come to the conclusion that Jg (rg, ¢o) = ro. The reader can easily obtain this
result by calculating the second order functional determinant. By the remark follow-
ing Theorem 6.2.2, the general change of variables formula (4') takes the following
form in the case of transition to polar coordinates:

/f f(x,y)dxdy:// f(rcose,rsing)rdrde,
A @' (A)

where A ¢ R? and &, is the restriction of ® to Pg. In particular,

oa+2w 00
// f(x,y)dxdy:/ (/ f(rcosgo,rsinw)rdr)dgo.
R2 o 0

Example 1 Using polar coordinates, we can easily find the area of the “curvilinear
triangle” (see Fig. 6.2)

T = {(rcosrp,rsimp) ER2|¢ eA, 0Ly gp((p)},

where A C R is an interval of length less than or equal to 27r and p is a non-negative
function measurable on A.
Putting f = x7 in the last formula, we obtain the required result

p() 1
AZ(T)=// ldxdyzf(f rdr)d<p=—/ 02 () dg.
T a\Jo 2 Ja

Example 2 The use of polar coordinates gives us one more way of calculating the
Euler-Poisson integral I = foo —x? dx (cf. Sect. 5.3.2, Example 1). As before, we
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Fig. 6.2 Curvilinear triangle

transform 72 by Fubini’s theorem,

(0.¢] o0
122/ e_xzdx~/ e_yzdysz e_(x2+y2)dxdy.
oo o R2

Now, passing to polar coordinates, we obtain

_ 2 [ee) ) o) )
12=// e~y )dxdy=/ </ e " rdr)d(p:rr/ e’ d(r2)=7r.
R2 0 0 0
Therefore, [ = /7.

6.2.5 Spherical Coordinates. Spherical coordinates in three-dimensional space are
an analog of polar coordinates in a plane. The location of a point (x, y, z) can be
determined by the following three numerical parameters: the distance r from the
point to the origin, the polar angle ¢ corresponding to the projection of the point
on the x, y plane, and the angle 6 between the radius-vector of the point and the
positive z-axis.

The spherical and Cartesian coordinates are connected by the formulas

X =rcosgsind, y=rsingsinb, z=rcos6.
Formally speaking, these equations define a smooth map
r,9,0) > O(r,p,0) = (rcosesiné, rsingsiné, r cosd)

taking the r, ¢, 0 space to the x, y, z space. However, taking into account the geo-
metric meaning of the parameter r (the distance from the origin), we assume that the
map P is defined on the half-space r > 0. Obviously, the map & is not one-to-one.
To make it one-to-one, we must restrict the ranges of the angles ¢ and 6. As to 0,
we will always assume that 0 < 6 < . We also assume that the angle ¢ changes
from O to 27 (sometimes, it is convenient to change these bounds to —m and 7,
respectively). As the reader can easily verify, the restriction of ® to an infinite paral-
lelepiped of the form P = (0, +00) x (0, 2) x (0, ) is one-to-one and its image is
the entire space R3 with the half-plane Lo = {(rsin6,0,rcosf) |r >0, 0 <6 < 7}
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Fig. 6.3 Curvilinear parallelepiped corresponding to increments of spherical coordinates

removed. Obviously, Ly = ® (3 P), and so ®(P) = R3. In what follows, we assume
that & is defined on P.

The coordinate surfaces, i.e., the surfaces r = const, ¢ = const, and 6 = const
are spheres (centered at the origin O), half-planes bounded by the z-axis, and cir-
cular cones with vertex at O that are symmetric with respect to the z-axis. The
intersections of the sphere with the half-planes and cones forms a grid of meridi-
ans and parallels (this is why the angle 6’ = /2 — 0 (the “latitude”) is sometimes
considered instead of the angle ).

The map @ transforms the parallelepiped [ro, ro + p] X [¢0, @0 +&] X [60, O + 1]
into the curvilinear parallelepiped bounded by the spheres r = rg and r = ro + p, the
half-planes ¢ = ¢o and ¢ = ¢o + &, and the conical surfaces 6 =6y and 8 =6y + 1
(see Fig. 6.3).

For small p, &, and n, this parallelepiped is almost rectangular. Its base lying
on the sphere r = r¢ is bounded by the arcs of meridians and parallels. This base
is almost a rectangle with length of sides equal to ron and rgsin6p&, respectively.
Therefore, up to higher order infinitesimals, the volume of the curvilinear paral-
lelepiped is equal to (rg sinfy) p&n. Recalling that the value of the Jacobian Jg
at (rg, o, 6p) is the volume distortion coefficient, we come to the conclusion that
Jo (ro, o, 00) = rg sinfy. The reader can easily obtain the same result by perform-
ing all necessary formal calculation. In the case of transition to spherical coordi-
nates, we can take into account the remark following Theorem 6.2.2 and represent
the general change of variables formula in the integral as follows:

// f(x,y,2)dxdydz
A

= /// f(rcosgsiné, rsingsiné, rcos®)r’sin6 drdedo,
o-1(A)
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where A  R3. In particular,

// fx,y,2)dxdydz
R3
T p2m oo
=/ / / f(rcos<psin9,rsin<psin9,rcos@)rzsinGdrdgon.
o Jo Jo

Example We use spherical coordinates to calculate the Fourier transform of a radial
function. In the general case, the Fourier transform of a function f summable on R™
is defined by the equation

oy = / Fe 2T g,
Rm

Let f be a measurable radial function of three variables, i.e., a function of the form
f(x) = fo(llx|), where fj is a measurable function on R . Converting to spherical
coordinates, we see that [ps | f(x)|dx =47 [;° | fo(r)|r? dr. Therefore, the func-
tion f is summable in R? if and only if the inequality fooo | fo(r)|r?dr < 400 is
valid. In this case, the calculation of fcan be reduced to the calculation of the
integral over the semi-axis R .

As y # 0, we make an orthogonal change of variables x — u in the integral f(y)
that takes the unit vector y/||y|| to (0, 0, 1). Then

~

)= / Fo(llxl)e™ e dx = / Fo(llul)e™> M0 du.
R3 R3

Converting the last integral to spherical coordinates, we obtain

oo b4 2
fo= / fo(r)r? </ </ e 2mirlylieost ging d(p) d@) dr
0 0o \Jo

00 T )
=2 / fo(r) 2 (/ e Zmirllylicostd gin g d@) dr.
0 0

The integral with respect to 6 can easily be calculated, and we obtain the required

formula
2

Iyl
‘We see that the Fourier transform of a radial function is a radial function.

7o) = /O fo(rr sin(2rrllyl) dr.

6.2.6 We consider the question of the change of volume under diffeomorphisms
generated by a system of differential equations

dxi
szl(-xla~"axm)?
dx

- = fu(x1, ..., Xm),

dr
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where f1, ..., fi are smooth functions defined on the entire space R and the vari-
able ¢ is regarded as time.
This system can be written in the concise form

77 =), ®)

where f :R™ — R™ denotes a smooth map with coordinate functions fi, ..., fi
called a direction field.

In the theory of ordinary differential equations, it is proved that, for all initial
conditions, system (5) has a unique solution defined for all ¢ close to the initial
moment #p. We assume that all these solutions are defined for all # € R. Assuming
that the initial conditions correspond to the moment ¢ = 0, we obtain that, for ev-
ery t, there is a unique solution x () corresponding to the given initial condition
x = x(0). This gives rise to the map S; : R” — R taking the initial point x(0) to
the point x(¢) (So = id). In the theory of differential equations, it is proved that the
map (x, 1) — S;(x) is smooth (see, e.g., P. Hartman “Ordinary Differential Equa-
tions”). Since the solution satisfying given initial conditions is unique, we obtain the
equation S;4; = S; o S; valid for all ¢, T € R. In particular, the map S; is invertible
since S; o S_; = S_; 0 §; = Sy = id, and, consequently, (S)~1=S_;. Thus, S; is a
diffeomorphism. The family of diffeomorphisms {S;};cr is called a flow. Our goal
is clarify how the volume (i.e., Lebesgue measure on R™) changes under the action
of diffeomorphisms forming the flow.

From (5) it follows that

t

t
x(t):x(0)+/ fx@)du, ie., S,(x):x+/ F(Su@))du.  (6)
0 0

First, we prove the following formula describing the derivative of a diffeomor-
phism S; : R" — R for small ¢:

S/(x) =id +1f'(x) + a(t, x), @)
where %a(t, x) = 0as ¢t — 0if x belongs to a bounded set.

Differentiating Eq. (6) with respect to x (for justification of differentiation under
the integral sign, see Sect. 7.1), we obtain the relation

t
S/ (x) = id + / I (Su(x)) S, (x) du.
0

From this equation we obtain that S/(x) — id as r — 0. Continuing the last equa-
tion, we obtain

t
S;(X)=id+tf’(X)+/O (f"(Su()) S, (x) — f'(x)) du. (8)

It is clear that the difference f/(S, (x))S, (x) — f’(x) tends to zero as u — 0, and the
convergence is uniform if x is taken from a bounded set. Therefore, the last term on
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the right-hand side of Eq. (8) is o(¢) (uniformly with respect to x), which proves (7).
Consequently, as ¢t — 0, we have

det S| (x) = det(id + tf'(x) + o(t, x)) = | + ttrace f'(x) + o(1,x),  (9)

where trace f’(x) is the trace of the matrix f’(x), which is also called the divergence
of the direction field and is denoted by div f(x) : div f(x) = % xX)+---+ gx_':l (x).
We leave it as an exercise (connected with the calculation of a determinant) for the
reader to check the second equality in (9).

Let A be a bounded measurable set, A; = S;(A) and V(¢) = 1,,,(A;). By Theo-

rem 6.2.1, we obtain
V(t) =/ |det S} (x)| dx.
A

Using Eq. (9) for sufficiently small ¢ and taking into account the fact that the o-term
is uniformly small on A, we see that

V()= / (1 + t trace f'(x) +0(t)) dx =V (0) —I—t/ div f(x)dx + o(2).
A A

Consequently,
V'(0) :/ div f(x)dx. (10)
A

Since S;4+; = S 0S¢, we obtain V (7 + 1) = A, (S;(A;)). Therefore, replacing A
by A; and applying formula (10), we obtain that the relation

V(1) :/ div f(x)dx
Ar

is valid for all T € R. This result is well known as Liouville’s theorem. The theorem
implies the following statement.

Corollary Ifdiv f(x) =0, then the flow preserves the volume.

Example The motion of material particles of mass m and charge ¢ in a stationary
electromagnetic field is described by the Lorentz equation

@ _(e+tvxn
m— = -V X ,
dt 9 c

where v = Z_); is the velocity of the particle, c is the speed of light in vacuum, and
E = E(x) and B = B(x) are certain smooth vector functions (the intensity and the
inductance of the field); the symbol x denotes the vector product.

The Lorentz equation takes the form (5) for the vectors w = (x, v) in the six-

dimensional space if we rewrite it as mdd—'f = f(w), where the right-hand side
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is f(w) = (mv,q(E + Lv x B)) = (v, v2,v3, Vi, V2, V3), where vy, v, v3 and
V1, Va, V3 are the coordinates of the vectors m v and g(E + % v X B), respectively.
It is easy to verify that V; does not depend on v; (i =1, 2, 3). Therefore,

div f(w) = v1 31)2 dvz dVp Vo dVs
iv f(w) = — AT ST e T
ax 0x3 dvy oy ov3

Thus, the Lebesgue measure A¢ is invariant under the flow corresponding to the
Lorentz equation.

We observe that to describe the properties of a material particle motion it is help-
ful to use the measure on a six-dimensional space.

Remark The reader can verify that the diffeomorphisms S; are volume-preserving
if and only if div f(x) =

EXERCISES

1. Calculate the integral [[g, |ax + byle=* ) dx dy.
2. Calculate the integral ffffx2+;2+u2+v2<1 o g dydudv.

3. Calculate the integral f< Ax) <l e$A%X) dx, where A is a positive definite m x m
matrix.

4. Let E = {(x1,x2,x3,x4) € R4|1/x%+x32+xf < x1}. For which values of

t € R* is the integral /, £ e~ dx finite? Calculate the integral.
5. Making an appropriate orthogonal transformation, calculate the integral
fo”<r |{a, x)|? dx over the m-dimensional ball for p > —1.

o

Calculate the integral [g,, e~ 2™ dx, where Q(x) = 1< <hm XXk
7. For which values of a and b is the integral

/(0 ) (min(xy, ..., )" (max(xy, .. .,xm))b dx

finite, where m > 2? Express it in terms of the beta function.
8. Prove that, for every non-negative measurable function f on Rand all a, b € R,
the relation

b o0
// f(ax 4 by) dxdy = AGD) du, where c =lal+ ||
R

> (14+x2)(1 +y?) o L u?
holds.
9. Using the previous problem and induction, prove that, for p € (—1,1) and a =
(ai,...,ay) € R™, the relation
p
1 [(x, a)|” dx -
pr 2 2 > =Cr Z lakl )
T Jre (1 +x7)(1+x5) - (1 + x5,) Pt

where C), = 2 o 1f:2 dt, holds.
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10. Regarding the plane R? as the set of complex numbers, find a function & > 0
such that the measure v with density w > 0 (dv = wdA3) is invariant under
multiplication, i.e., such that the image of v under the map z — az coincides
with v for all a # 0.

11. Let p > 0, E C R™, and A, (E) = A, (B(0, r)). Prove that

d d
/ _Y g/ 4z for every x in R™.
e llx—=yll” B, 1zIIP

12. Prove that the inequality
dxdy
V1o (E)
EX+iy

holds for every set E C R? of finite measure.
Hint. By a rotation reduce the left-hand side of the inequality to an integral of
the function Re and verify that, for a given area of the integration region, this
integral is max1mal if the integration is performed over an appropriate Lebesgue
set of the integrand.

13. Let f(x,y) be the number of points (k, j) with integer coordinates satisfying

the condition k> + j2 <x? +y%, andlet S=3",, ¢~ Prove that

/ f(X,y)e_(xzﬂz) dxdy =S
R2

Hint. Converting to polar coordinates, use integration by parts by means of the
functions F(r) = f(r,0).
14. Let A ={(z1,22) € C2|0 < |z1| < |z2| < 1}, and let

43(21,22):(11,12 1—%) ((z1,22) € A).

Prove that @ is a diffeomorphism preserving the four-dimensional Lebesgue
measure. Find A4(A) and ®(A).

6.3 Integral Representation of Additive Functions

Since its inception, the integral calculus proved to be a very successful tool in solv-
ing applied problems of mechanics and physics. Among them are the problems asso-
ciated with additive quantities such as calculation of mass, statical moments, energy,
etc. In the present section, we consider a general scheme that allows us to evaluate
and estimate such quantities in a wide range of cases.

Turning to applications, we set ourselves a restricted task. We are concerned
only with evaluation of quantities based on their given properties. As a rule, these
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properties are quite obvious intuitively, and justifying the use of them, we apply
only the simplest plausible considerations, leaving a more thorough justification to
other branches of science.

6.3.1 Modifications of Theorem 6.1.2 allow us to obtain integral representations
of various additive physical and mechanical quantities. We consider one of these
modifications.

Proposition Let (X, %A, u) be a finite measure space, and let ¢ be an additive func-
tion defined on a o -algebra 2. If there exists a bounded measurable function f such
that

n(A) iI/}ff S @(A) < pu(A)sup [ forevery A in 2,
A
then (A) = [ fdu (A €).

Generalizing the definition from Sect. 6.1.2, we call the function f the density of
the additive function ¢. As follows from Theorem 4.5.4, the density is determined
uniquely up to equivalence.

We note that we did not assume in the proposition that the additive function ¢ is
countably additive. This weakening of the conditions imposed on ¢ is compensated
by the assumptions that the measure w is finite and the density f is bounded.

Proof We fix an arbitrary ¢ > 0 and consider the sets
Ar={xeAlke < f(x) < (k+1De} (ke).

These sets are measurable and constitute a finite partition of the set A (if the quantity
|k| is sufficiently small, then Ay = & since f is bounded). Summing the inequalities
ek (Ar) < p(Ag) <e(k+ 1)u(Ag), which follow from the two-sided estimate, we
see that ¢ (A) is closely approximated by the sum S =¢ ", ., kuu(Ayg),

S<9(A) < S+en(A).

In the same way, from the inequalities eku(Ag) < f A fx)dux) <
ek + 1) (Ayp), it follows that

S < / fO)dux) <S+eu(A).
A

Thus, |@(A) — f 4 S du(x)] < en(A), which is equivalent to the required state-
ment since ¢ is arbitrary. g

6.3.2 We use Proposition 6.3.1 to calculate the attractive force between a material
particle with mass 119 and a compact set A C R? on which the mass y is distributed.
We assume that the particle lies outside the set A.
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Not to deal with a vector quantity, we consider the projection of the attractive
force F (A) in a fixed direction corresponding to a unit vector I, i.e., the inner prod-
uct Fj(A) = (F(A) l)

Obviously, F;(A) is an additive set function. Without loss of generality, we may
assume that the point mass is concentrated at the origin. If the set A degenerates to
a point wg # 0, then, by the law of gravitation, we have

Fi(A) =

(wo, 1)
r3 ’

where r = ||wg|| and y is a proportionality coefficient (the gravitational constant).
It is natural to assume that the following estimates are valid:

- -

l
hon(4) inf, S < F(A) < yion(A) sup (.

By Proposition 6.3.1, we obtain that

)
Fi(A) = )/Mo/ WD) ).

a lwl?

Changing variables, we easily obtain that if the mass ¢ is concentrated at a point wy
with coordinates a, b, c, then the force components are calculated by the formulas

xX—a
x = Y10 Wdll(w),

y=wm/||Pde)

zZ—c¢
z=yuo/1——;duuw,
alrl
where w = (x, y,z) and r = [Jw — wy]|.
Example We calculate the force F that the uniform ball of radius R exerts on a
particle of unit mass (we assume that the particle lies outside the ball).
We assume that the center of the ball coincides with the origin, the particle has the

coordinates (0, 0, ¢), ¢ > R, and the mass is distributed in the ball with (constant)
density p. Using the formulas for the components of the attractive force, we obtain

= dxdydz,
F //fm 21 y? +(z—c)2)3/2 Ty
dxdydz,

f//m) 242 +(z—6)2)3/2 rayaz

p(z—c)
= dxdydz.
y///B(R) (x2+y2+(z—0)?)3/? ravaz
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From symmetry considerations, it is clear that F = F), = 0, which, of course, fol-

lows easily from the fact that the integrands are odd functions. Converting to polar
coordinates, we see that

p(z—rc)
F,= dxdydz
’ )////B(R) (x2+y2+ (z —c)2)3/2 y

e R (rcos@ — c)r?sin®
=7 drdfdg

o JoJo (r?2—2rccos6 +c?)3/?

R T .
(rcos@ — c) siné
=2 ? a9 ) dr.
nypw/(; ' (/(; (r2 —2rccosf + c2)3/2 ) r

We leave it as an exercise for the reader to verify that the resulting integral with
respect to 0 is equal to —C%. Therefore,

R 2 4 51 w(B(R))
FZZZJT]//O/ F2<——2>dr=—)/,0—R3—2=—y72 .
0 c 3 c c

Thus, a material particle is attracted by a uniform ball as if all the ball’s mass were
concentrated at its center.

6.3.3 We consider one more application of Proposition 6.3.1.

Let P be a fixed plane in the space R™. The plane divides the space R™ into
two half-spaces one of which will be called the (+4)-half-space and the other one
the (—)-half-space. By the arm p(x) of a point x with respect to the plane P, we
mean the distance from x to P taken with the plus sign if the point belongs to the
(+4)-half-space and with the minus sign otherwise. If P = Py is the coordinate plane
xi = 0, then by the (+4)-half-space, we mean the half-space x; > 0. Then the arm
of x with respect to Py is just the kth coordinate of x. By a mass distributed on
aset A C R™, we mean a Borel measure p concentrated on A (u(R™ \ A) =0).
In particular, by a point mass po concentrated at a point x we mean the measure
generated by the load pg at x (see Sect. 1.2.2, Example (4)).

It is well known from theoretical mechanics that the statical moment of a dis-
tributed mass of a set A with respect to a plane P is the physical quantity Mp(A)
characterizing the “disequilibrium degree”. It has the following properties.

(1) Additivity:

Mp(AUB)=Mp(A)+Mp(B), ifANB=0

(here and below, we assume that all sets under consideration are Borel sets).
(2) The moment satisfies the inequality

w1(A) inf p(x) < Mp(A) < p(A) sup p(x),

x€A

where (£(A) is the mass of A.
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If A = {xo} is a singleton and po is a mass concentrated at a point xp, then
Property (2) implies that Mp(A) = o p(xo)-

We point out that condition (2) is natural. Indeed, if a set A lies in the (4)-half-
space and we concentrate all mass distributed in A at a point that is farther from the
plane P than the points of the set A, then we obtain a system with “even less equi-
librium” than before. This corresponds to the right-hand inequality in property (2).

Property (2) implies that the moment is positive in the sense that the moment of
a set lying in the (4-)-half-space is non-negative. Since the moment is additive and
positive, it is monotonic for the sets lying in the (+)-half-subspace: if A C B, then
Mp(A) < Mp(B). However, there is no need to dwell on these properties because
they follow from the integral representation of the moment. Since the moment is an
additive set function satisfying the two-sided estimate, we can use Proposition 6.3.1.
The direct application of this proposition shows that the following statement is valid.

Proposition Let u be a finite mass distributed on a bounded set A. Then
Mp(A) = /A p(x)dup(x).

Definition The center of mass of a set A with mass distributed on it is a point C
such that the moment of A with respect to any plane passing through C is equal to
zero.

We prove that the center of mass always exists.

First, we find necessary conditions for a point to be a center of mass. Let u be
non-zero mass distributed on A, and let C = (cy, ..., ¢;;) be a center of mass. Let
P be a plane that passes through C and is defined by the equation x; — cx = 0.
Obviously, the arm of a point x = (x, ..., x,,) with respect to this plane coincides
(depending on the choice of (+4)-half-subspace) either with x; — ¢ or with ¢ — x.
In any case, we have

0=MP(A)=/AP(X)du(x)=/A(xk—Ck)du(x)=Mk(A)—Cku(A),

where Mj (A) is the moment with respect to the plane x; = 0. Thus, only the point
C with coordinates ¢y = My (A)/uw(A) (k=1,...,m) can be a center of mass.

Now, we prove that this point is indeed the center of mass. Let P be an arbitrary
plane passing through C. This plane is given by an equation of the form

m
Zak(xk —cx)=0.
k=1

Without loss of generality, we may assume that ) ;_, a,f = 1. Taking the half-
subspace defined by the inequality ka:1 ar(xx — cx) > 0 as the (+)-half-space,
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we obtain that the arm of the point x = (xy,...,x,) coincides with the sum
Y e ak(xx — cx). Therefore,

m

Mp ()= [ 3 axtr = e die = Y (M) - cuu(a)) =0,
k=1

k=1

which proves the statement.
As well as a proof of the existence of a center of mass, we obtain the following
formulas for its coordinates:

1
ckzm/Axkd,u(x) k=1,...,m).

We note that if the set A in question is finite, A = {ay, ..., ay}, and the mass py is
concentrated at ag, then the above formulas imply that the center of mass of such a
system is a convex combination of the points ai,

C:M1a1+~--+MNaN
T e T

The coefficients of this convex combination are proportional to the masses concen-
trated at the corresponding points.

Example We find the center of mass C of the uniform set B! = B(0, 1) N R (the
set R% consists of the points with positive coordinates). We may assume that the
density of the mass distribution is equal to 1, i.e., & = A;;,. Then the mass is equal to
the volume of B!, u(B}) = ‘;T';,’ (recall that o, = A, (B(0, 1))).
By symmetry, the coordinates of the vector C are equal, C = (c, ..., c). By the
formulas for the coordinates of the center of mass, we obtain
1 2"

= Xpdx = — Xmdx.
uB) Jer ™" ST

Cc

To evaluate this integral, we represent the vector x from B_’f in the form x = (y, ),
where y € B!, 1 € (0, 1) and ||y||> + > < 1. Then

m 1
c= i tam1 (V1 — 2B ) dr

Um Jo

1 _
:ﬁ t.am_l.(l_tz)Tld[:iam_]_
am Jo 2m—1 m+1 oy
Since o, = n%/ I'(1 + 75) (see Sect. 5.4.2), we have
2 T 1 reP)

Tl yEremh) T Jr s
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For m = 3, we obtain C = (%, %, %). We observe that Stirling’s formula (see

Sect. 7.2.6) implies that the coordinates of the point C tend to zero like ,/ % as
m — o0.

Therefore, the norm ||C|| tends to \/g . A more detailed study shows that ||C]|

increases with the dimension, which means that an increasingly larger portion of
volume of the set B’} is concentrated near the spherical part of its boundary.

EXERCISES

1. Find the force with which the uniform spherical layer B, g = {w € R*|r <
|lw| < R} attracts a material particle wg, wo ¢ B, r. Consider the cases
lwoll > R and [fwol| <r.

2. Assume that a set A lies in a plane on one side of a line £. Use the result of Exer-
cise 2, Sect. 5.4 to prove Guldin’s theorem:* the volume of a solid of revolution
obtained by rotating the set A about the line £ is equal to the product of the area
of A and the distance traveled by the center of mass of A (it is assumed that the
mass is distributed on A with constant density).

Assume that a finite mass w is distributed on a bounded set A C R?. The moment
of inertia I,(A) of a set A with respect to an axis £ is a physical quantity charac-
terizing the kinetic energy of a body rotating about this axis. More precisely, the
kinetic energy is equal to %14 (A)w?, where o is the angular velocity. For a point
mass (o located at distance r from the axis of rotation, the kinetic energy E is

2 2
calculated by the formula E = 25~ = %wz. Thus, in this case, the moment of

inertia is equal to por>.

It is clear from physical considerations that the moment of inertia with respect
to a fixed axis is an additive set function that does not decrease as the distance
between the body and the axes increases. Thus, if we concentrate all mass at a
point of the body farthest from the axis, then the moment of inertia can only
increase. Respectively, if we concentrate all mass at a point closest to the axis,
then the moment of inertia can only decrease. This means that the following
two-sided estimates are valid for I, (A):

p(A) inf dist?(x, £) < Ip(A) < u(A) sup dist®(x, £).
xe

xeA

This allows us to use Proposition 6.3.1 in the calculation of moments of inertia.

3. Find the moments of inertia of a uniform ball with respect to its diameter and a
tangent line.

4. Find the moments of inertia of a uniform right circular cylinder with respect to
the axis of symmetry, a generatrix, and a diameter of the base.

5. Find the moment of inertia of a ball with respect to its diameter if the mass
distribution density is inversely proportional to the distance from the origin.

4Paul Guldin (1577-1643)—Swiss mathematician.
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6. For which of the lines parallel to each other is the moment of inertia of a body
minimal?

7. Assume that mass is uniformly distributed on a measurable cone (see, e.g.,
Sect. 5.4.2, Example 1). Prove that the distance from the center of mass to the
plane containing the base of the cone is proportional to the hight of the cone.
Prove that the proportionality coefficient depends only on the dimension and
find this coefficient.

8. Assume that mass is uniformly distributed on a convex body K C R™ and that
the center of mass coincides with the origin. Prove that —K C mK. Hint. Prove
that each chord passing through the center of mass is divided by the center of
mass into segments with length at least m+r1 of the length of the chord.

9. Verify that the moment of inertia of a uniform cube (of arbitrary dimension) with
respect to a line passing through the center of cube does not depend on the line.
For which mass distribution does this property remain valid? Is it true that the
sum of the squares of the distances from the vertices to a line passing through
the center of the cube is the same whichever line we take?

6.4 *Distribution Functions. Independent Functions

6.4.1 We consider an important specific case of the weighted image of a measure.
As in Sect. 6.1, let (X, 2, ) be a measure space. Unless otherwise stated, we as-
sume that all functions in question are measurable.

Let Y =R, and let B = B(R) be the o-algebra of Borel sets. Further, let /2 be
a measurable almost everywhere finite function on X. It is well known (see Propo-
sition 3.1.2) that the preimage i~ !(B) is measurable for every Borel set B C R.
Therefore, we can define the measure v = () on B, which is the image of p with
respect to h. We assume in addition that the measure v is finite on intervals. Then
v is a Borel-Stieltjes measure and, consequently, is generated by a non-decreasing
function. To specify this function, we introduce the following definition.

Definition Let /2 be a measurable almost everywhere finite function on X. We as-
sume that the set

X(h<t)y={xeX|h(x) <t}

has a finite measure for every t € R and put H(t) = (X (h < t)). The function H
is called the distribution function of the function h (with respect to the measure ©
or in measure ().

It is obvious that a distribution function is non-decreasing. From the lower con-
tinuity of measure, it follows that a distribution function is left-continuous. We note
that the function ¢ — w(X (h < t)) coincides with H at all points of continuity. If
the measure is finite, then every measurable almost everywhere finite function has a
distribution function.
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Proposition Under the assumption of the definition, h(1) coincides with the Borel—
Stieltjes measure generated by H.

For the definition of a Borel-Stieltjes measure, see Sect. 4.10.3.

Proof By the uniqueness theorem 1.5.1, it is sufficient to check that the measures in
question coincide on the right-open semi-intervals, which, in turn, follows from the
definition of the functions H. O

In our specific case, the general theorem proved in Sect. 6.1.1 turns into the the-
orem stated below. We notice that a function f considered in the above-mentioned
general theorem must be measurable with respect to the o -algebra B, which now
is the o -algebra of Borel subsets of the real line. Such functions are called Borel
measurable. It is obvious that all continuous functions are Borel measurable.

Theorem Let f be a non-negative Borel measurable function defined on R, let h be
an almost everywhere finite measurable function on X, and let H be the distribution
function of h. Then

/ f(h())dp(x) = / f@dH@). (1
X R

This relation remains valid for functions f taking values of an arbitrary sign pro-
vided the composition f o h is summable.

The above theorem is obtained from Theorem 6.1.1 by putting (Y,‘B,v) =
R,B(R), h(e)), ® =h and w = 1. We note that the condition in Definition 6.1.1
(the preimage h~1(B) of a Borel set B is measurable) is fulfilled by Proposi-
tion 3.1.2.

Remark Specific cases of Eq. (1) are the formulas

00 00
fhdu=/ tdH(1), / Ihl”du=f 1P dH (1),
X —00 X —00

which are frequently used in probability theory. The reader familiar with probability
theory will recognize these formulas as those for the mean and the absolute moments
of a random variable /.

6.4.2 We give several examples.

Example 1 We consider the integral me f(lx|l)dx, where f is a non-negative
function measurable on the semi-axis (0, +00).

Let & be a function defined by the equation i (x) = ||x|| for x € R™. Its distribu-
tion function is as follows: H(t) =0if t <0 and H(t) = o, if t > 0, where o,
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is the volume of the unit ball. Therefore,
o0 o0
Lé fwxmdx:/‘.ﬂUdHU)zmmf/ F@m=tde
m 0 0

(the last equality is a consequence of formula (5) of Remark 4.10.4 and the fact that
H is smooth on (0, +00)).

Example 2 The formula from Example 1 provides a new way to calculate the

Euler—Poisson integral I = f fooo e_)62 dx, the value of which is already known (see
Sect. 5.3.2, Example 1 and Sect. 6.2.4, Example 2).
As before, we transform /2 by Fubini’s theorem,

2 - g —(x24y?)
I" = e dx- e Y dy= e Ydxdy.
—00 —00 R2

Now, using the formula from Example 1 for m = 2 and taking f(t) = e~

obtain
o 00
// e_(x2+y2)dxdy=f e d(n?) = (-me| =
R2 0 0

Thus, I = /7.

Example 3 Generalizing the method used in the previous example, we find the vol-
ume V of the set

2
. we

W= {1,y ) €R™ g PV - P < 1,

where p1, ..., p, are positive numbers (in Sect. 5.4.2, Example 4, this problem is
solved without using the distribution function). To this end, we calculate the integral

m
1 :/ exp<—2|xj|p/)dx
Rm

j=1
in two different ways.
On the one hand, we use Fubini’s theorem and obtain

m 00 i m 1
1=||f e—”dzzzm||r(1+—).
j=177% j=1 bi

On the other hand, we can use formula (1), with f(¢) = e~ and h(x) = |x1|P! +
-+ = |xp|Pm. The corresponding distribution function H (¢) for # > 0 can be calcu-
lated by the linear change of variables x; = tl/pf'uj (G=1,...,m):
H(@t) = hm ({ G o) [ [PV 4+ | |P7 < 1))
= tq)&m({(uh oot Hug [PV - g | P < 1}) =th (W) =11V,
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where ¢ = % 4+ 4+ ;7. Therefore, formula (1) yields the relation

1=/oof(t)dH(t)=/ooe"d(Vﬂ):vr(1+q).
0 0

Thus,

I 2m “
TT+q) P45+ 4 5 U( >

In the case where p; = --- = p,, = 2, we once again obtain the formula for the
volume of the m-dimensional unit ball B™ (see Sect. 5.4.2),

m

214 1) 77

o (B") = ra+4%) ~ra+%y

In conclusion, we present a more general result. We use a distribution func-
tion to estimate the ratio of the volumes of the compact sets K C R™ and AK =
{x —y|x,y € K}. In the general case, such an estimate is impossible (for example,
if K c R? consists of two non-parallel intervals, then A, (K) =0 but 12(AK) > 0).
However, the following statement is proved in [RS].

Theorem Let K C R™ be a convex body. Then
2" (K) < A (AK) < Chpp A (K.

Proof The estimate from below is easily obtained from the Brunn—Minkowski
inequality. Indeed, since A, (—K) = 1,,(K) and AK = K + (—K), we have
1 1 1 1 1

20 (K) = dp (K) + M (—K) < Ay (K + (—K)) = Ay (AK).
The estimate from above is harder to prove. It is obvious that

kﬁz(K)=/ XK(x)<fR XK()’)dy>dx:/ XK(X)</ XK(x—z)dz>dx
=/ (/ xK(x)XK(x—z)dx>dz=/ (KN (z+K))dz
m m Rm

Ifz¢ AK,then KN (z+ K) = &. Indeed, in the representation z = x — (x — z), we
have either x ¢ K or x — z ¢ K. Consequently, A,,(K N (z+ K)) =0 for z ¢ AK,
and so,

A2 (K) :/ (KN (z+K))dz
AK

To estimate A, (K N (z + K)) from below, we take z € AK, 7 # 0, and find h =
h(z) € (0, 1] such that + € 9AK . Let ; =a — b, where a, b € K. We prove that

ha+(1—h)K CKNz+K).
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The inclusion ha + (1 — h)K C K is obvious, and the inclusion ha + (1 — h)K C
z + K follows from the fact that ha = hb + h, and, therefore,

ha+(1—-hWK=z+hb+(1—-h)KCz+K.
Thus,
Am(K N (z+K)) = Am(ha+ 1 —)K)=(1—=h)"kp(K).
Consequently,
ho (K) > xm(K)/ (1-h(z)" dz.
AK
To calculate the last integral, we consider the distribution function for A:

H) =Mn({z € AK |h(2) <t}) =An(t AK) =1"2p(AK) ifO<1<]1,
H@) =0 ifr <0,
H(t) =Ap(AK) ifr>1.

By Theorem 6.4.1, we have

1 1
/ (l—h(z))mdz=/ (l—t)de(t)zmkm(AK)f "N — ™ dt
AK 0 0

m!m!
=mB(m,m + DAn(AK) = ——1u(AK).
2m)!
Thus,
2K > I AK ) (K
m( )/ W m( ) m( ),
which is equivalent to the required inequality. g

Remark Obviously, AK =2K for a centrally symmetric convex body K and, con-
sequently, A, (AK) =21, (K). Therefore, the estimate from below for the volume
Am(AK) given in the theorem is sharp. The estimate from above is also sharp; it be-
comes an equality if K is a simplex since, in this case, we have K N (z + K) =
ha + (1 — h)K. We leave it to the reader to verify this equation. It is convenient to
verify it for the simplex K = {(x, ..., x») € RY|x; +- - - + X, < 1} by proving that
h(x) =max{d 3 ()4, Yy (—xi)+ ).

6.4.3 As we said before, if a measure pu is finite, then the distribution function al-
ways exists, but, in the case of an infinite measure, this is not the case. For example,
every positive function summable with respect to an infinite measure does not have
a distribution function. Therefore, it is often useful to change the definition of a
distribution function.
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Definition Let 7 be a non-negative measurable function on X such that, for all
t > 0, the set

X(h>t)={xeX|h(x)>t}

has a finite measure. We put H (t) = (X (h > t)) and call the function H the de-
creasing distribution function for h.

To avoid ambiguity, we sometimes call the distribution function defined in
Sect. 6.4.1 the increasing distribution function.
From the continuity of a measure, it follows that H (¢) = 0 if and only
—>—+00

if h(x) < 400 almost everywhere on X. As well as the increasing distribution
function, the function H is also left-continuous. The sets X (h<t)and X(h > 1)
both have a finite measure only if the measure p is finite. In this case, we obtain
H(+0)+ H (t) = u(X). We note that a non-negative measurable function & cer-
tainly has a decreasing distribution function if | x h? dp < +oo for some p > 0.
This follows directly from Chebyshev’s inequality (see Theorem 4.4.4):

~ 1
H(;):M(X(h>l))<t—p/hpd,u<+oo forall # > 0.
X

We do not state an analog of Theorem 6.4.1 for decreasing distribution functions,
contenting ourselves instead with a more specific statement.

Proposition Let p > 0, and let h be a non-negative measurable function with a
decreasing distribution function H. Then

o0
/h”du:p/ P~VH (1) dt.
X 0

Proof We transform the integral [y h? dp as follows:

h(x)
/h”d,u:p/(f t”_ldt>d,u(x).
X X 0

The repeated integral on the right-hand side is equal to the double integral of the
function (x, 1) — tP~! over the subgraph of the function & = &, (X) of h. To
change the order of integration, we observe that, for 7 > 0, the cross section 92’ of
the subgraph is the set X (h > ) (see Fig. 6.4). Therefore, changing the order of
integration, we obtain

o0 o0
/ hPdu = p/ tp_1</ 1d,u> dt = p/ P u(X(h =) dt.
X 0 X (h>t) 0

It remains to observe that u(X (h > ~t)) —H (t) almost everywhere, namely, at the
points of continuity of the function H. g
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14

X

Fig. 6.4 Cross section of the subgraph of /4 on a level ¢

6.4.4 Throughout this section, we assume that all functions in question are defined
on a fixed normalized measure space (X, 2, u) (u(X) =1).Let f1,..., f, be mea-
surable almost everywhere finite real functions. For each function fj, there exists a
Borel measure v that is the image of © with respect to f; this measure is called the
distribution of fi. We also consider the map ® : X — R" with coordinate functions
f1s---, fn, and put v = ® (). The measure v is called the simultaneous distribu-
tion of the functions f1, ..., f,. We introduce the notion of independent functions,
which play a fundamental role in probability theory.

Definition Functions fi, ..., f, are called independent if v coincides with the mea-
sure vy X - -+ X vy, (the product of the measures vy, ..., v,). Functions of an infinite
family are called independent if the functions in each finite subfamily are indepen-
dent.

The uniqueness of measure extensions implies that to prove that the measures v
and vy X --- X v, coincide it is sufficient to prove that they coincide on the cells,
i.e., that for every cell P = HZ:I [ak, by) the equation

w(@(P) = H (£ (lax, b))

k=1

is valid. Since the set @1 (P) coincides with Miz1 fk_l ([ak, br)), the last equation
can be represented in the form

n

M(ﬁ £ (lax, bk))) =[] w(£" (la. b)) )

k=1

If the functions f1, ..., f,, are independent and a non-negative function 4 defined
on R” is Borel measurable, then Theorem 6.1.1 implies

/Xh(fl(x),---,fn(x))du(x)=/Rnh(t1,~--,tn)dV1(t1)--~dvn(tn), 3)

and this equation remains valid if the function % is summable.
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In turn, if Eq. (3) is valid for every non-negative function #, then, in particu-
lar, Eq. (2) is also valid. Indeed, it is sufficient to put 4 = xp. Thus, Eq. (3) is a
characteristic property of independent functions.

It follows from (3) that if independent functions fi, ..., f, are summable, then
the product f --- f, is also summable (since [y | fi--- fuldpw =[Tez; [x | fild),
and the integral of the product of these functions is equal to the product of the
integrals (cf. Corollary 1, Sect. 5.3.4).

If fi,...,f, are real functions, then the system of sets of the form
ﬂZ:1 f,:l(Ak), where Aj are various left-closed intervals, is a semiring; we
denote it by Z(f1,..., fn) and its Borel hull by 24(f1,..., fu). It is obvious
that the functions f1,..., f, are measurable with respect to A(f1,..., f,