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Preface to the English Translation

This book reflects our experience in teaching at the Department of Mathematics
and Mechanics of St. Petersburg State University. It is aimed primarily at readers
making their first acquaintance with the subject.

Lecture courses on measure theory and integration are often confined to abstract
measure theory, with little attention paid to such topics as integration with respect
to Lebesgue measure, its transformation under a diffeomorphism and so on—that
is, topics that are more special but no less important for applications. Believing
that such reticence is counterproductive, we choose an approach that avoids it and
combines general notions with classical special cases.

A substantial part of the book is devoted to examples illustrating the obtained
results both in and beyond the framework of mathematical analysis, in particular, in
geometry. The exercises appearing at the end of almost every section serve the same
purpose.

In the English translation we use three-digit numbers for sections. The first digit
refers to a Chapter, the second to a Section within the Chapter and the third to
Subsection. When referencing to a statement we give the number of a Subsection
which contains it. E.g., Lemma 7.5.4 would mean a lemma from Sect. 7.5.4.

Comparing with Russian edition, we have extended the book by adding, in par-
ticular, the new Sects. 6.1.3 and 6.2.6.

Taking into account the difference between curricula in Russia and the West,
as well as the considerable volume of our book, we think it necessary to say sev-
eral words about how to use it, and we draw the reader’s attention to the chapter
dependency chart. A reader interested only in an introduction to the foundations of
measure theory and integration may prefer to read only those sections of Chaps. 1–5
that are not marked with a �. This symbol indicates sections that contain either some
illustrative material (e.g., Sects. 2.8, 6.6–6.7, 7.2–7.3, 8.7, 10.2, 10.6), or some op-
tional information that can be omitted in the first reading (e.g., Sects. 1.6, 4.11,
5.5–5.6, 6.5, 7.4, 8.8, 10.4, 12.1–12.3), or else material used outside Chaps. 1–5
(Sects. 2.6, 3.4, 4.9). The material of Sects. 1.1–1.4, 2.1–2.5, 3.1–3.2, 4.1–4.8, 5.1–
5.4 can be taken as a basis for a two semester course on the foundations of measure
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viii Preface to the English Translation

theory and integration. Time permitting, the course can be extended by including
the material of Sects. 6.1–6.2, 3.3, 4.9, 6.4.

The book can also be used for courses aimed at students familiar with the notion
of integration with respect to a measure. There is a sufficiently wide choice of such
courses devoted to relatively narrow topics of real analysis. For example:

• The maximal function and differentiation of measures (Sects. 2.7, 4.9, 11.2, 11.3).
• Surface integrals (Sects. 2.6, 8.1–8.6).
• Functionals in spaces of measurable and continuous functions (Sects. 11.1–11.2,

Chap. 12).
• Approximate identities and their applications (Sects. 7.5–7.6, Chap. 9).
• Fourier series and the Fourier transform (Chaps. 9, 10).
• A course covering only the preliminaries of the theory of Fourier series and

the Fourier transform may be based, for example, on Sects. 9.1.1–9.1.3, 10.1.1–
10.1.4, 10.3.1–10.3.6, 10.5.1–10.5.4.

Acknowledgments We are deeply indebted to Springer for publishing our book
and we are happy to see it reach a much wider audience via its English translation.
We are grateful to V.P. Havin who attracted the publisher’s attention to the Russian
edition of our book soon after its publication.
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F.L. Nazarov and O.L. Vinogradov, which helped us to improve the text in many
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tributed to the translation.
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correspondence related to publication of this book and helped us enormously with
proofreading.
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University program “Function theory, operator theory and their applications”
6.38.78.2011.
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Preface

Measure theory has been an integral part of undergraduate and graduate curricula
in mathematics for a long time now. A number of texts in this subject area have
become well-established and widely used. For example, one might recall books by
B.Z. Vulih [Vu], A.N. Kolmogorov and S.V. Fomin [KF], not to mention the classi-
cal monograph by P. Halmos [H]. However, books on measure theory typically treat
it as an isolated subject, which makes it difficult to include it in a general course in
analysis in a natural and seamless way. For example, the invariance of the Lebesgue
measure is either omitted entirely, or considered as a special case of the invariance
of the Haar measure. Quite often, the question of how Lebesgue measure transforms
under diffeomorphisms is left out. On the other hand, most introductory courses on
integration are still based on the theory of the Riemann integral. As a result, the stu-
dents are forced to absorb numerous, however similar, definitions based on Riemann
sums corresponding to various situations, such as double integrals, triple integrals,
line integrals, surface integrals and so on. They must also overcome the unneces-
sary technical complications caused by the lack of a sufficiently general approach.
Typical examples of such difficulties include justifying the change of the order of
integration and taking limits under the integral sign.

For this reason, one often faces a two-tier exposition of the theory of integration,
where at the first stage the notion of measure is not discussed at all, and later the
elementary topics are never revisited, leaving the task of reconciling the various
approaches to the student. The authors aim to eliminate this divide and provide an
exposition of the theory of the integral that is modern, yet easily integrated into a
general course in analysis. This encapsulates in a textbook the established practice at
the Department of Mathematics and Mechanics of the University of St. Petersburg.
This practice is based on an idea introduced in the early 60s by G.P. Akilov and first
implemented by V.P. Havin during the academic year 1963–1964.

The main emphasis of the book is on the exposition of the properties of the
Lebesgue integral and its various applications. This approach determined the style
of exposition as well as the choice of the material. It is our hope that the reader who
masters the first third of the book will be sufficiently prepared to study any area of
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x Preface

mathematics that relies upon the general theory of measure, such as, among others,
probability theory, functional analysis and mathematical physics.

Applications of the theory of integration constitute a substantial part of this book.
In addition to some elements of harmonic analysis, they also include geometric
applications, among which the reader will find both classical inequalities, such as
the Brunn–Minkowski and isoperimetric inequalities, and more recent results, such
as the proof of Brouwer’s theorem on vector fields on the sphere based on a change
of variables, the K. Ball inequality and others. In order to illustrate the effectiveness
and applicability of the theorems presented, and to give the reader an opportunity
to absorb the material in a hands-on fashion, the book includes numerous examples
and exercises of various degrees of difficulty.

Pedagogical considerations caused us to refrain from stating some of the results
in their full generality. In such cases, references to the appropriate literature are
provided for the interested reader. The notion of surface area is discussed in more
detail than is common in analysis texts. Using a descriptive definition, we prove its
uniqueness on Borel subsets of smooth and Lipschitz manifolds.

It is desirable that the reader be familiar with the notion of an integral of a con-
tinuous function of one variable on an interval prior to being exposed to the basics
of measure theory. However, we do not feel that this prerequisite necessarily needs
to be fulfilled in the context of the Riemann integral, which we view to be primarily
of historical interest. A possible alternative approach is outlined in Appendix 13.1.

This book is based on a series of lectures delivered by the authors at the De-
partment of Mathematics and Mechanics of St. Petersburg State University. The
majority of the material in Chaps. 1–8 approximately corresponds to the fourth and
fifth semester analysis program for mathematics majors in our department. The ma-
terial from Chaps. 9–12 and some other parts of the book was previously included
by the authors in advanced courses and lectures in functional analysis. Some addi-
tional information is presented in Appendices 13.2–13.6. Appendix 13.7, dedicated
to smooth mappings, is included for the sake of completeness.

The reader is expected to have the necessary mathematical background. The stu-
dents entering the fourth semester at the Department of Mathematics and Mechanics
of St. Petersburg State University are familiar with multivariable calculus and basic
linear algebra. This prerequisite material is used throughout the book without any
additional explanations. In Chap. 8, familiarity with the basics of smooth manifold
theory is assumed. In Appendices 13.2 and 13.3, the rudiments of the theory of
metric spaces are taken for granted.

The authors have previously encountered texts where a definition or notation,
once introduced, is never repeated and is used without any further comments or
references many pages later. We believe that such manner of presentation, possi-
bly appropriate in monographs of an encyclopedic nature, puts too much strain on
the reader’s memory and attention span. Taking into account the fact that this is a
textbook intended for relatively inexperienced readers, many of whom will be en-
countering the subject matter for the first time, the authors find it useful to include
some repetitions and reminders. However, they are unable to measure the degree to
which they have succeeded in this direction.



Preface xi

In the process of writing this book, the authors have frequently sought ad-
vice from their colleagues. The comments and suggestions of D.A. Vladimirov,
A.A. Lodkin, A.I. Nazarov, F.L. Nazarov, A.A. Florinsky and V.P. Havin proved
especially useful. We are grateful to them as well as to A.L. Gromov, who kindly
agreed to produce computer generated graphics and K.P. Kohas, who handled the
type-setting of the book.

The chapters are numbered using Roman numerals. They are divided into sec-
tions consisting of subsections which are numbered using two Arabic numerals.
The first of these indicates the number of the section, and the second the number of
the subsection. The subsections in Appendices are numbered by two numerals, one
Roman (Appendix number) and the other Arabic, with the addition of the letter A
when referencing.

All the assertions contained in a given subsection are numbered in the same way
as the subsection itself. In the case of references within a given chapter, only the
number of the subsection is indicated. For example, the reference “by Theorem 2.1”
refers to a theorem in subsection 2.1 of a given chapter. When referencing material
from another chapter, the number of the chapter is also indicated. For example,
the reference “Corollary II.3.4” refers to a corollary contained in subsection 3.4 of
Chapter II. The enumeration of the formulas is consecutive within each section. The
end of a proof is indicated by black triangle �.
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Basic Notation

Logical Symbols
P ⇒Q, Q⇐ P P implies Q

∀ Universal quantifier (“for every”)
∃ Existential quantifier (“there exists”)

Sets
x ∈X An element x belongs to a set X
x /∈X An element x does not belong to a set X
A⊂ B , B ⊃A A is a subset of a set B
A∩B The intersection of sets A and B

A∪B The union of sets A and B

A∨B The union of disjoint sets A and B

A \B The difference of sets A and B

A×B The direct (Cartesian) product of sets A and B

card(A) The cardinality of a set A
{x ∈X |P(x)} The subset of a set X whose elements have the

property P

∅ The empty set

Sets of Numbers
N The set of positive integers
Z The set of integers
Q The set of rational numbers
R The set of real numbers
R= [−∞,+∞] The extended real line
C The set of complex numbers
R

m The arithmetic m-dimensional space
R+ The set of positive numbers
R

m+ The subset of Rm consisting of all points with positive
coordinates

Q
m, Zm The subsets of Rm consisting of all points with rational

and integer coordinates, respectively

xvii



xviii Basic Notation

(a, b), [a, b), [a, b] An open, half-open, and closed interval, respectively
〈a, b〉 An arbitrary interval with endpoints a and b

infA (supA) The greatest lower (least upper) bound of a number set A

Sets in Topological and Metric Spaces
A The closure of a set A
Int(A) The interior of a set A
B(a, r) The open ball of radius r > 0 centered at a
B(a, r) The closed ball of radius r > 0 centered at a
B(r) or Bm(r) The ball B(0, r) in the space R

m

Bm The ball Bm(1)
Sm−1 The unit sphere (the boundary of Bm) in the space R

m

diam(A) The diameter of a set A
dist(x,A) The distance from a point x to a set A

Systems of Sets
Am The σ -algebra of Lebesgue measurable subsets of Rm

Bm The σ -algebra of Borel subsets of Rm

B(E) The Borel hull of a system E
BX The σ -algebra of Borel subsets of a space X

Pm The semiring of m-dimensional cells
P �Q The product of semirings P and Q
Maps and Functions
det(A) The determinant of a square matrix A

f+, f− The functions max{f,0}, max{−f,0}
fn ⇒ f A sequence of functions fn uniformly converges to a

function f

J�(x)= det(�′(x)) The Jacobian of a map � at a point x
supp(f ) The support of a function f

T :X→ Y A map T acting from X to Y

T (A) The image of a set A under a map T

T −1(B) The inverse image of a set B under a map T

T ◦ S The composition of maps T and S

T |A The restriction of a map T to a set A
esssup

X

f The essential supremum of a function f on a set X

x �→ T (x) A map T sends a point x to T (x)

�f (E) The graph of a function f :E→R

Pf (E) The region under the graph of a non-negative function f

over a set E
χE The characteristic function of a set E
�′(x) The Jacobi matrix of a map � at a point x
‖ · ‖ The Euclidean norm of a vector, or the norm of a

function in L 2(X,μ), or the norm in a Banach space
‖f ‖p The norm of a function f in L p(X,μ)

‖f ‖∞ = esssup
X

|f |
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〈·, ·〉 The inner product of vectors in a Euclidean space, or of
functions in L 2(X,μ)

Measures
(X,A,μ) A measure space
(X,A) A measurable space
αm The volume (Lebesgue measure) of the unit ball in R

m

λm m-dimensional Lebesgue measure
μ× ν The product of measures μ and ν

σk k-dimensional area

Sets of Functions
C(X) The set of continuous functions on a topological space X

C0(X) The set of compactly supported continuous functions on
a locally compact topological space X

Cr(O) (Cr(O;Rn)) The set of r times (r = 0,1, . . . ,+∞) differentiable
functions (Rn-valued maps) defined on an open subset O
of Rm

C∞0 (O) The set of infinitely differentiable compactly supported
functions defined on an open subset O of Rm

L 0(X,μ) The set of measurable functions defined on X and finite
almost everywhere with respect to a measure μ

L p(X,μ) The set of functions from L 0(X,μ) satisfying the
condition

∫
X
|f |p dμ <+∞

L∞(X,μ) The set of functions each of which is bounded on a subset
of full measure

L (X,μ)=L 1(X,μ) The set of functions summable on X with respect to a
measure μ



Chapter 1
Measure

1.1 Systems of Sets

In classical analysis, one usually works with functions that depend on one or several
numerical variables, but here we will study functions whose argument is a set. Our
main focus will be on measures, i.e., set functions that generalize the notions of
length, area and volume. Dealing with such generalizations, it is natural to aim at
defining a measure on a sufficiently “good” class of sets. We would like this class
to have a number of natural properties, namely, to contain, with any two elements,
their union, intersection and set-theoretic difference. In order for a measure to be
of interest, its domain must also be sufficiently rich in sets. Aiming to satisfy these
requirements, we arrive at the notions of an algebra and a σ -algebra of sets.

As a synonym for “a set of sets”, we use the term “a system of sets”. The sets
constituting a system are called its elements. The phrase “a set A is contained in
a given system of sets A” means that A belongs to A, i.e., A is an element of A.
To avoid notational confusion, we usually denote sets by upper case Latin letters
A,B, . . . , and points belonging to these sets by lower case Latin letters a, b, . . . .
For systems of sets, we use Gothic and calligraphic letters. The symbol ∅ stands for
the empty set.

1.1.1 We assume that the reader is familiar with the basics of naive set theory. In
particular, we leave the proofs of set-theoretic identities as easy exercises. Some of
these identities, which will be used especially often, are summarized in the follow-
ing lemma for the reader’s convenience.

Lemma Let A, Aω (ω ∈�) be arbitrary subsets of a set X. Then

(1) X \⋃
ω∈�Aω =⋂

ω∈�(X \Aω);
(2) X \⋂

ω∈�Aω =⋃
ω∈�(X \Aω);

(3) A∩⋃
ω∈�Aω =⋃

ω∈�(A∩Aω).

Equations (1) and (2) are called De Morgan’s laws. Equation (3) is the distributive
law of intersection over union. Associating union with addition and intersection with

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_1, © Springer-Verlag London 2013
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multiplication, the reader can easily see the analogy between this property and the
usual distributivity for numbers.

Considering the union and intersection of a family of sets with a countable set
of indices �, we usually assume that the indices are positive integers. This does not
affect the generality of our results, since for every “numbering” of � (i.e., every
bijection n �→ ωn from the set of positive integers onto �), we have the equalities

⋃

ω∈�
Aω =

⋃

n∈N
Aωn,

⋂

ω∈�
Aω =

⋂

n∈N
Aωn,

which follow directly from the definition of the union and intersection.
In what follows, we often write a set as the union of pairwise disjoint subsets.

Thus it is convenient to introduce the following definition.

Definition A family of sets {Eω}ω∈� is called a partition of a set E if Eω are
pairwise disjoint and

⋃
ω∈�Eω =E.

We do not exclude the case where some elements of a partition coincide with the
empty set.

A union of disjoint sets will be called a disjoint union and denoted by ∨. Thus
A∨ B stands for the union A ∪ B in the case where A ∩ B =∅. Correspondingly,∨

ω∈�Eω stands for the union of a family of sets Eω in the case where all these sets
are pairwise disjoint.

We always assume that the system of sets under consideration consists of subsets
of a fixed non-empty set, which will be called the ground set. The complement of a
set A in the ground set X, i.e., the set-theoretic difference X \A, is denoted by Ac.

Definition A system of sets A is called symmetric if it contains the complement Ac

of every element A ∈A.

Consider the following four properties of a system of sets A:

(σ0) the union of any two elements of A belongs to A;
(δ0) the intersection of any two elements of A belongs to A;
(σ ) the union of any sequence of elements of A belongs to A;
(δ) the intersection of any sequence of elements of A belongs to A.

The following result holds.

Proposition If A is a symmetric system of sets, then (σ0) is equivalent to (δ0) and
(σ ) is equivalent to (δ).

Proof The proof follows immediately from De Morgan’s laws. Let us prove, for
example, that (δ)⇒ (σ ). Consider an arbitrary sequence {An}n�1 of elements of A.
Their union can be written in the form

⋃

n�1

An =
(⋂

n�1

Ac
n

)c

.
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Since Ac
n ∈A for all n (by the symmetry of A), it follows from (δ) that the intersec-

tion of these complements also belongs to A. It remains to use again the symmetry
of A, which implies that A also contains the complement of this intersection, i.e.,
the union of the original sets.

The reader can easily establish the remaining implications. �

1.1.2 Now we introduce systems of sets that are of great importance for us.

Definition A non-empty symmetric system of sets A is called an algebra if it sat-
isfies the (equivalent) conditions (σ0) and (δ0). An algebra is called a σ -algebra
(sigma-algebra) if it satisfies the (equivalent) conditions (σ ) and (δ).

Note the following three properties of an algebra A.

(1) ∅,X ∈ A. Indeed, let A ∈ A. Then ∅ = A ∩ Ac ∈ A and X = A ∪ Ac ∈ A

directly by the definition of an algebra.
(2) For any two sets A,B ∈ A, their set-theoretic difference A \ B also belongs

to A. This follows from the identity A \ B = A ∩ Bc and the definition of an
algebra.

(3) If A1, . . . ,An are elements of A, then their union and intersection also belong
to A. This property can be proved by induction.

Examples

(1) The system that consists of all bounded subsets of the plane R
2 and their com-

plements is an algebra (but not a σ -algebra!).
(2) The system that consists of only two sets, X and ∅, is obviously an algebra and

a σ -algebra. It is often called the trivial algebra on X.
(3) The other extreme case (as compared to the trivial algebra) is the system of all

subsets of X. It is obviously a σ -algebra.
(4) If A is an algebra (σ -algebra) of subsets of a set X and Y ⊂X, then the system

of sets {A ∩ Y |A ∈ A} is an algebra (respectively, σ -algebra) of subsets of Y .
We call it the induced algebra (on Y ) and denote it by A∩ Y .

More generally, if E is an arbitrary system of subsets of a set X and Y ⊂X, then
{E ∩ Y |E ∈ E} is called the system induced on Y by E and is denoted by E ∩ Y .
The part of E ∩ Y that consists of the sets belonging to E and lying in Y is denoted
by EY . Note that if E is an algebra, then EY is an algebra if and only if Y ∈ E .

Proposition Let {Aω}ω∈� be an arbitrary family of algebras (σ -algebras) con-
sisting of subsets of some set. Then the system

⋂
ω∈�Aω is again an algebra

(σ -algebra).

Proof The proof is left to the reader. �

It is sometimes convenient to consider, along with algebras, related systems of
sets that do not satisfy the symmetry requirement. A system of sets A is called a
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ring if for any two elements A,B ∈A, the sets A∪B , A∩B and A \B also belong
to A. A ring that contains the union of any sequence of elements is called a σ -ring.

Clearly, every algebra (σ -algebra) is also a ring (σ -ring).

1.1.3 Every system of sets is contained in some σ -algebra, for example, in the σ -
algebra of all subsets of the ground set X. But this σ -algebra usually contains “too
many” sets, and it is often useful to embed the given system of sets into an algebra in
the most economical way, so that the ambient algebra does not contain “superfluous”
elements.

It turns out that every finite collection of subsets {Ak}nk=1 of a set X is a part of
an algebra consisting of finitely many elements. This is obvious if the sets under
consideration form a partition of X. Then all finite unions of these sets, together
with the empty set (which, in set theory, is considered the union over an empty
set of indices), constitute an algebra. But if the sets Ak do not form a partition,
there is a standard procedure for constructing an auxiliary partition that generates
an algebra containing these sets. This procedure is as follows: to each collection
ε = {ε1, . . . , εn}, where εk = 0 or εk = 1, we associate the intersection Bε = A

ε1
1 ∩

· · · ∩ A
εn
n , where A0

k = Ak and A1
k = Ac

k (= X \ Ak). Note that, by Property (3),
the sets Bε must belong to every algebra containing A1, . . . ,An. The reader can
easily check that the sets Bε form a partition of X, which we will call the canonical
partition corresponding to the sets A1, . . . ,An. We encourage the reader to find the
sets Bε in the case where the original collection of sets is already a partition of X.
It is clear that Bε is either contained in Ak (if εk = 0), or is disjoint with it. Hence
Ak =⋃

εk=0 Bε . All finite unions of the sets Bε (together with the empty set) form

an algebra containing all Ak . This algebra contains at most 22n
sets (see Exercise 6)

and (like any algebra consisting of finitely many sets) is a σ -algebra. Clearly, it is
the smallest σ -algebra containing all Ak .

The description of the sets that constitute the minimal σ -algebra containing a
given infinite system of sets is very complicated; we will not consider this question,
instead restricting ourselves to the proof that such a σ -algebra exists. This important
result will often be used in what follows.

Theorem For every system E of subsets of a set X there exists a minimal σ -algebra
containing E .

This σ -algebra is called the Borel1 hull of E and is denoted by B(E). It consists
of subsets of the same ground set as E .

Proof Clearly, there exists a σ -algebra containing E (for example, the σ -algebra of
all subsets of X). Consider the intersection of all such σ -algebras. This system of
sets contains E and is a σ -algebra by Proposition 1.1.2. Its minimality follows from
the construction. �

1Émile Borel (1871–1956)—French mathematician.
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Definition An element of the minimal σ -algebra containing all open subsets of the
space R

m is called a Borel subset of R
m or merely a Borel set. The σ -algebra of

Borel subsets of Rm is denoted by Bm.

Remarks

(1) The simplest examples of Borel sets, along with open and closed sets, are count-
able intersections of open sets and countable unions of closed sets. They are
called Gδ and Fσ sets, respectively.

(2) It is not at all obvious that the σ -algebra Bm does not coincide with the
σ -algebra of all subsets of R

m, but this is indeed the case. Moreover, these
σ -algebras have different cardinalities. One can prove that Bm has the cardi-
nality of the continuum, i.e., the same cardinality as R

m while the cardinality
of the σ -algebra of all subsets of Rm, by Cantor’s theorem, is strictly greater
than the cardinality of Rm. We will not dwell on the proofs of these results; the
reader can find them, for example, in the books [Bo, Bou].

1.1.4 Before proceeding to the definition of another system of sets, we establish an
auxiliary result, which will be repeatedly used in what follows.

Lemma (Disjoint decomposition) Let {An}n�1 be an arbitrary sequence of sets.
Then

∞⋃

n=1

An =
∞∨

n=1

(

An\
n−1⋃

k=0

Ak

)

(1)

(for uniformity, we assume that A0 =∅).

Proof Let En = An \⋃n−1
k=0 Ak . It is clear that these sets are pairwise disjoint: if,

say, m< n, then Em ⊂Am, while En ⊂An \Am.
To verify (1), take an arbitrary point x from

⋃∞
n=1 An. Let m be the smallest

of the indices n such that x ∈ An, i.e., x ∈ Am and x /∈ Ak for k < m. Then x ∈
Em ⊂⋃

n�1 En. Thus
⋃∞

n=1 An ⊂⋃∞
n=1(An \⋃n−1

k=0 Ak). The reverse inclusion is
trivial. �

Note that every finite collection of sets A1, . . . ,AN satisfies a similar identity:

N⋃

n=1

An =
N∨

n=1

(

An\
n−1⋃

k=0

Ak

)

. (1′)

The proof is almost a literal repetition of that of the lemma (one can also apply the
lemma to the sequence of sets {An}∞n=1 with An =∅ for n >N ).

Along with algebras and σ -algebras, it will also be convenient to use systems of
sets that are not so “good”, but are often more tractable; namely, so-called semirings.

Definition A system of subsets P is called a semiring if the following conditions
are satisfied:
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(I) ∅ ∈P ;
(II) if A,B ∈P , then A∩B ∈P ;

(III) if A,B ∈P , then the set-theoretic difference A \ B can be written as a finite
union of pairwise disjoint elements of P , i.e.,

A \B =
m∨

j=1

Qj, where Qj ∈P.

Example The system P1 of all half-open intervals of the form [a, b), where
a, b ∈R, a � b, and the part P1

r of P1 that consists of intervals with rational
endpoints, are semirings.

We leave the reader to prove these simple but important facts.

Every algebra is a semiring, but, as one can see from the above example, the
converse is not true. If P is a semiring, then, for arbitrary Y , the systems P ∩ Y

and PY are, obviously, semirings too. Also, every system of pairwise disjoint sets
containing the empty set is a semiring.

The union and the set-theoretic difference of elements of a semiring P may not
belong to P . However, they have partitions consisting of elements of P . We will
prove this result in a slightly stronger form.

Theorem Let P be a semiring and P,P1, . . . . . . ,Pn, . . . ∈P . Then for every N

the sets P \⋃N
n=1 Pn and

⋃N
n=1 Pn have decompositions of the form

P \
N⋃

n=1

Pn =
m∨

j=1

Qj, where Qj ∈P; (2)

N⋃

n=1

Pn =
N∨

n=1

mn∨

j=1

Qnj , where Qnj ∈P and Qnj ⊂ Pn. (3)

Furthermore,

∞⋃

n=1

Pn =
∞∨

n=1

mn∨

j=1

Qnj , where Qnj ∈P and Qnj ⊂ Pn. (4)

It follows from (3) and (4) that the union of an arbitrary (finite or infinite) se-
quence of elements of a semiring can be written as a finite or countable disjoint
union of “finer” sets (i.e., subsets of the original sets) that are pairwise disjoint and
still belong to the semiring.

Proof Formula (2) can be proved by induction. To prove (3) and (4), we use (2) and
formulas (1) and (1′). �
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Corollary Let P be a semiring of subsets of a set X and R be the system of sets
that can be written as finite unions of elements of P . Then the union, intersection,
and set-theoretic difference of two elements of R also belongs to R. If X ∈P (or
at least X ∈R), then R is an algebra.

Thus the system R of finite unions of elements of a semiring P is a ring. It is
obviously the smallest ring containing P .

Remark Equality (3) can be strengthened as follows: the union of Pn can be written
in the form

N⋃

n=1

Pn =
K∨

k=1

Rk, where R1, . . . ,RK ∈P

and for any k and n the following alternative holds: either Rk is contained in Pn, or
these sets are disjoint.

To prove this for N = 2, use the identity

P1 ∪ P2 = (P1 \ P2)∨ (P1 ∩ P2)∨ (P2 \ P1)

and write each of the differences P1 \ P2 and P2 \ P1 as a disjoint union according
to the definition of a semiring. The general case can be proved by induction (to
prove the inductive step from N to N + 1, replace P1 with

⋃N
n=1 Pn in the above

argument).

1.1.5 Let P and Q be semirings of subsets of sets X and Y , respectively. Consider
the Cartesian product X×Y and the system P�Q of subsets of X×Y that consists
of the products of elements of P and Q:

P �Q= {P ×Q |P ∈P, Q ∈Q}.
We call this system the product of the semirings P and Q.

Theorem The product of semirings is a semiring.

Proof The system P �Q obviously satisfies condition I from the definition of a
semiring. Let A= P ×Q and B = P0 ×Q0, where P,P0 ∈P and Q,Q0 ∈Q. It
follows from the identity A ∩ B = (P ∩ P0)× (Q ∩Q0) that the system P �Q
also satisfies condition II.

To verify condition III, we may assume that B ⊂ A, i.e., P0 ⊂ P and Q0 ⊂Q

(otherwise replace B with B ∩A). Then, by the definition of a semiring, we have

P = P0 ∨ P1 ∨ · · · ∨ Pm and Q=Q0 ∨Q1 ∨ · · · ∨Qn

for some P1, . . . ,Pm ∈P and Q1, . . . ,Qn ∈Q. Hence all “rectangles” Pk ×Qj ,
0 � k �m, 0 � j � n, form a partition of the product A= P ×Q. Removing from
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them the set B = P0×Q0, we obtain a partition of the set-theoretic difference A\B
into elements of the system P �Q, as required in condition III. �

1.1.6 Now consider two very important examples of semirings of subsets of Rm.
We identify the space R

m with the Cartesian product R× · · · ×R (m factors). The
coordinates of a point x ∈ R

m are denoted by the same letter with subscripts. Thus
x ≡ (x1, x2, . . . , xm). In some cases, we will also canonically identify R

m with the
product of spaces of smaller dimension: Rm =R

k ×R
m−k for 1 � k <m.

Recall that, by definition, the distance ρ(x, y) between points x, y ∈ R
m is

equal to (
∑m

k=1(xk − yk)
2)1/2. The function x �→ (

∑m
k=1 x

2
k )

1/2 ≡ ‖x‖ is called
the (Euclidean) norm. Clearly, ρ(x, y) = ‖x − y‖. Given a set A ⊂ R

m, the value
sup{‖x − y‖ |x, y ∈A} is called the diameter of A and is denoted by diam(A).

The systems of sets we are going to consider first consist of rectangular paral-
lelepipeds. As is well known, an open parallelepiped in R

m spanned by linearly
independent vectors {vj }mj=1 is the set (hereafter a ∈R

m)

P(a;v1, . . . , vm)=
{

a +
m∑

j=1

tj vj

∣
∣
∣ 0 < tj < 1 for j = 1,2, . . . ,m

}

.

Replacing the conditions 0 < tj < 1 by the conditions 0 � tj � 1, we ob-
tain the closed parallelepiped P (a;v1, . . . , vm), which is obviously the closure of
P(a;v1, . . . , vm). Every set P such that

P(a;v1, . . . , vm)⊂ P ⊂ P(a;v1, . . . , vm)

is also called a parallelepiped.
The vectors vj are called the edges of P(a;v1, . . . , vm). If they are pairwise

orthogonal, then the parallelepiped is called rectangular. The vectors of the form
a+∑

j∈J vj , where J is an arbitrary subset of {1, . . . ,m}, are called the vertices of

P(a;v1, . . . , vm), and the vector a + 1
2

∑m
j=1 vj is the center of P(a;v1, . . . , vm).

A key role in our considerations is played by rectangular parallelepipeds of a
special form, with edges parallel to the coordinate axes. Let us describe them in
more detail.

Let a = (a1, . . . , am) ∈ R
m, b = (b1, . . . , bm) ∈ R

m. We write a � b if aj � bj
for all j = 1, . . . ,m. The notation a < b means that aj < bj for all j = 1,2, . . . ,m.
Generalizing the notion of a one-dimensional interval, we set, for a � b,

(a, b)=
m∏

j=1

(aj , bj )=
{
x = (x1, . . . , xm) |aj < xj < bj for all j = 1, . . . ,m

}
.

Thus, for a < b, we may say that (a, b)= P(a;v1, . . . , vm), where vj = (bj −aj )ej
for j = 1, . . . ,m. Obviously, the edge lengths of this parallelepiped are equal to
b1 − a1, . . . , bm − am.

The corresponding closed parallelepiped, which is nothing else than∏m
j=1[aj , bj ], will be denoted by [a, b], by analogy with the one-dimensional case.
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Unfortunately, neither open nor closed parallelepipeds form a semiring. Hence in
what follows we are mainly interested in parallelepipeds [a, b) of another form,
which we call cells (of dimension m). By definition,

[a, b)=
m∏

j=1

[aj , bj )=
{
x = (x1, . . . , xm) |aj � xj < bj for all j = 1, . . . ,m

}
.

If aj = bj for at least one j , then the sets (a, b) and [a, b) are empty. Thus (a, b),
[a, b) �= ∅ if and only if a < b. Note also that the Cartesian product of cells of
dimension m and l is again a cell (of dimension m+ l).

Proposition Every non-empty cell is the intersection of a decreasing sequence of
open parallelepipeds and the union of an increasing sequence of closed paral-
lelepipeds.

Proof Let [a, b) be a non-empty cell and h > 0 be a vector such that b− h ∈ [a, b).
Consider the parallelepipeds Ik = (a − 1

k
h, b) and Sk = [a, b− 1

k
h]. Then [a, b)=⋃

k�1 Sk =⋂
k�1 Ik . The details are left to the reader. �

As follows from the proposition, every cell is simultaneously a Gδ and an Fσ set.
In particular, every cell is a Borel set.

If all edge lengths of a cell are equal, then it is called a cubic cell. If all vertices
of a cell have rational coordinates, we call it a cell with rational vertices. Note the
following simple but important fact: every cell with rational vertices is the disjoint
union of finitely many cubic cells.

Indeed, since the coordinates of the vertices of such a cell can be written as frac-
tions with a common denominator n, it can be split into cubes with edge length 1

n
.

The system of all m-dimensional cells will be denoted by Pm, and its part con-
sisting of cells with rational vertices, by Pm

r .

Theorem The systems Pm and Pm
r are semirings.

Proof The proof is by induction on the dimension. In the one-dimensional case,
the assertion is obvious (see Example 1.1.4). The inductive step is based on The-
orem 1.1.5 and the fact that, by the definition of cells, Pm =Pm−1 �P1 and
Pm

r =Pm−1
r �P1

r . �

Remark In some cases (see the proof of Theorem 10.5.5), instead of Pm
r we need

to consider the system Pm
E consisting of all cells for which the coordinates of all

vertices belong to a fixed set E ⊂ R. As one can easily see, this system is also a
semiring.

1.1.7 The next theorem will be repeatedly used in what follows.

Theorem Every non-empty open subset G of the space R
m is the union of a count-

able family of pairwise disjoint cells whose closures are contained in G. All these
cells may be assumed to have rational vertices.
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Proof For each point x ∈ G, find a cell Rx ∈Pm
r such that x ∈ Rx and Rx ⊂ G.

Obviously, G =⋃
x∈G Rx . Since the semiring Pm

r is countable, among Rx there
are only countably many distinct cells. Numbering them, we obtain a sequence of
cells Pk (k ∈N) with the following properties:

∞⋃

k=1

Pk =G, Pk ⊂G for all k ∈N.

To obtain a decomposition of G into disjoint cells with rational vertices, it remains
to use decomposition (4) from Theorem 1.1.4 on the properties of semirings. �

Corollary B(Pm)=B(Pm
r )=Bm.

Proof The inclusions B(Pm
r )⊂B(Pm)⊂Bm are obvious. The reverse inclusion

Bm ⊂B(Pm
r ) follows from the definition of Bm, since, by the above theorem, the

σ -algebra B(Pm
r ) contains all open sets. �

Remark The proof of the theorem remains valid for every semiring Pm
E provided

that the set E is dense. The corollary also remains valid in this case.

EXERCISES

1. Show that the system of all (one-dimensional) open intervals and the system of
all closed intervals are not semirings.

2. Verify that the circular arcs (including degenerate ones) of angle less than π

form a semiring; show that without this additional restriction the assertion is
false.

3. What is the Borel hull of the system of all half-lines of the form (−∞, a), where
a ∈R? Does the answer change if we consider only rational a or if we consider
closed rather than open half-lines?

4. For sets A,B , their symmetric difference is the set A�B = (A \B)∪ (B \A).
Show that A�B = (A∪B) \ (A∩B). Give an example of a symmetric system
of sets A that contains the symmetric difference of any two elements A,B ∈A,
but is not an algebra. Hint. Assuming that X = {a, b, c, d}, consider the system
of all subsets of X consisting of an even number of points.

5. Let A be the algebra of all subsets of a two-point set. Show that the semiring
A�A does not contain the complements of one-point sets and hence is not an
algebra.

6. Show that the minimal algebra containing n sets has at most 22n
elements. Show

that this bound is sharp.
7. Show that all subsets of Rm that are simultaneously Gδ and Fσ sets form an

algebra containing all open sets. Verify that it is not a σ -algebra (for instance,
it does not contain Q

m).
8. Refine Theorem 1.1.7 by proving that it suffices to use only cubic cells sat-

isfying the additional condition that the diameter of each cell is substantially
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smaller than the distance to the boundary of the set:

diam(P )� C min
{‖x − y‖ |x ∈ P, y ∈ ∂G

}

(here C > 0 is a predefined arbitrarily small coefficient).
9. Let P1, . . . ,Pn be elements of a semiring P . Show that all elements of the

canonical partition corresponding to these sets, except possibly for the set⋂n
k=1 P

c
k , can be written as disjoint unions of elements of P . Deduce the result

mentioned in Remark 1.1.4.
10. A symmetric system of sets E is called a D-system if it contains the unions of

all at most countable families of pairwise disjoint elements A1,A2, . . . ∈ E . Let
E be a D-system and A,B ∈ E . Show that:

(a) if A⊂ B , then B \A ∈ E ;
(b) each of the inclusions A ∩ B ∈ E , A ∪ B ∈ E and A \ B ∈ E implies the

other two.

11. Let a D-system contain all finite intersections of sets A1, . . . ,An. Show that it
also contains the minimal algebra generated by these sets.

12. A system F of non-empty subsets of a set X is called a filter (in X) if it con-
tains the intersection of any elements A,B ∈ F. For example, the system of all
neighborhoods of a given point is a filter. A filter U is called an ultrafilter if
every filter containing U coincides with U. An example of an ultrafilter is the
system of all sets containing a given point (a trivial ultrafilter).
Show that a filter F in X is an ultrafilter if and only if for every set A ⊂ X

the following alternative holds: either A or X \ A belongs to F. Using Zorn’s
lemma, show that for every filter there exists an ultrafilter that contains it.

1.2 Volume

In this section, we embark on the study of the main topic of this chapter. Namely,
we will investigate the properties of so-called additive set functions. The assertion
that some quantity is additive means that the value corresponding to a whole object
is equal to the sum of the values corresponding to the parts of this object for “every”
partition of the object into disjoint parts. Numerous examples of additive quantities
appearing in mathematics, as well as their prototypes in mechanics and physics,
are well known. They include, in particular, length, area, probability, mass, moment
of inertia about a fixed axis, quantity of electricity, etc. In this chapter, we restrict
ourselves to the study of additive functions with non-negative numerical (possibly
infinite) values. The properties of additive functions of an arbitrary sign will be
studied in Chap. 11. Let us proceed to more precise statements.

1.2.1 Let X be an arbitrary set and E be a system of subsets of X.
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Definition A function ϕ : E→ (−∞,+∞] defined on E is called additive if

ϕ(A∨B)= ϕ(A)+ ϕ(B) provided that A,B ∈ E and A∨B ∈ E . (1)

It is called finitely additive if for every set A ∈ E and every finite partition of A into
elements A1, . . . ,An of E ,

ϕ(A)=
n∑

k=1

ϕ(Ak). (1′)

The sums on the right-hand sides of (1) and (1′) always make sense, because the
corresponding terms cannot take infinite values of opposite sign (by definition,
ϕ >−∞).

Remark If ϕ is defined on an algebra (or a ring) A, then the additivity of ϕ implies
its finite additivity. This can be proved by induction using (1).

1.2.2 We define the concept to which this paragraph is devoted.

Definition A finitely additive function μ defined on a semiring of subsets of a set
X is called a volume2 (in X) if μ is non-negative and μ(∅)= 0.

According to the definition of an additive function, a volume may take infinite
values. It is called finite if X belongs to the semiring and μ(X) <+∞. A volume is
called σ -finite if X can be written as the union of a sequence of sets of finite volume.

Examples

(1) The length of an interval is a volume on the semiring P1.
We leave the reader to verify this.

(2) Another very important example of a volume is a generalization of the
length, the ordinary volume λm, which is defined on the semiring Pm of m-
dimensional cells by the following formula:

if P =
m∏

k=1

[ak, bk), then λm(P )=
m∏

k=1

(bk − ak).

It is obvious that for m= 1, the ordinary volume coincides with the length of an
interval; for m= 2, with the area of a rectangle; and for m= 3, with the volume
of a parallelepiped. The additivity of the ordinary volume will be proved in
Corollary 1.2.4.

2This term is not widely accepted, but we temporarily use it, for lack of a better one, instead of the
lengthy expression “a non-negative finitely additive set function”.
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(3) Let g be a non-decreasing function defined on R. We define a function νg on the
semiring P1 as follows: νg([a, b))= g(b)− g(a). It is a volume, as the reader
can easily verify.

(4) Let A be an arbitrary algebra of subsets of a set X, x0 ∈ X and a ∈ [0,+∞].
Given A ∈A, put

μ(A)=
{
a if x0 ∈A,

0 if x0 /∈A.

One can easily check that μ is a volume. We will say that μ is the volume
generated by a point mass of size a at x0.

More generally, if the volume μ of a one-point set {x0} is equal to a > 0, we say
that μ has a point mass of size a at x0.

To obtain a generalization of the last example, we use the notion of the sum of a
family of numbers. For brevity, a family of non-negative numbers is called positive.
Recall that card(E) stands for the cardinality of a set E.

Definition The sum of a positive family {ωx}x∈X is the value

sup

{∑

x∈E
ωx

∣
∣
∣E ⊂X, card(E) <+∞

}

,

which is denoted by
∑

x∈X ωx .
A family {ωx}x∈X of numbers of arbitrary sign is called summable if

∑

x∈X
|ωx |<+∞.

The sum of such a family is the value
∑

x∈X
ωx =

∑

x∈X
ω+x −

∑

x∈X
ω−x , where ω±x =max{±ωx,0}.

For a summable family, the set {x ∈ X |ωx �= 0} is at most countable. Indeed,
it can be exhausted by the sets Xn = {x ∈ X | |ωx | � 1

n
} (n ∈ N), each of which is

finite, because

card(Xn)� n
∑

x∈Xn

|ωx |� n
∑

x∈X
|ωx |<+∞.

Since, obviously, for every positive family we have
∑

x∈X
ωx =

∑

{x∈X |ωx>0}
ωx,

the obtained result allows one to reduce the computation of the sum of an arbitrary
summable family to the computation of the sum of a family with a countable set of
indices. The latter problem can be reduced to the computation of the sum of a series.
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If X is a countable set, a bijection ϕ : N→ X will be called a numbering of X

and denoted by {xn}n�1, where xn = ϕ(n).

Lemma Let {ωx}x∈X be an arbitrary positive family. If the set X is countable, then
for an arbitrary numbering {xn}n�1 of X,

∑

x∈X
ωx =

∞∑

n=1

ωxn.

Proof Denote by S1 and S2 the left- and right-hand sides of this equality, respec-
tively. On the one hand, for every finite set E ⊂X, we have

∑
x∈E ωx �

∑∞
n=1 ωxn

(since for every x ∈E, the number ωx is an element of the series). Hence S1 � S2.
On the other hand, for every k we have

∑k
n=1 ωxn � S1, by the definition of the

sum of a family, whence S2 � S1. Since S1 � S2, this completes the proof. �

We leave the reader to check that the equality we have proved is valid for the sum
of every summable family with a countable set of indices.

Now consider the following example.

(5) Let {ωx}x∈X be an arbitrary positive family. Assuming that A is an algebra of
subsets of X that contains all one-point sets, define a function μ on A as follows:

μ(A)=
∑

x∈A
ωx (A ∈A)

(by definition, we assume that
∑

x∈∅ωx = 0). Note that since μ(E) = ωx1 +· · · +ωxN for every finite set E = {x1, . . . , xN }, we have

μ(A)= sup
{
μ(E) |E ⊂A, card(E) <+∞}

.

The reader can easily verify that μ is additive.
(6) An example of a volume defined on the algebra of bounded sets and their com-

plements (see Sect. 1.1.2, Example (1)) can be obtained as follows. Given a > 0,
put

μ(A)=
{

0 if A is bounded,

a if A is unbounded.

This volume will be useful for constructing various counterexamples.

1.2.3 We establish the basic properties of volume.

Theorem Let μ be a volume on a semiring P , and let P,P ′,P1, . . . ,Pn ∈P .
Then

(1) if P ′ ⊂ P , then μ(P ′)� μ(P );
(2) if

∨n
k=1 Pk ⊂ P , then

∑n
k=1 μ(Pk)� μ(P );

(3) if P ⊂⋃n
k=1 Pk , then μ(P )�

∑n
k=1 μ(Pk).
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Properties (1) and (2) are called the monotonicity and the strong monotonicity
of μ, respectively; property (3) is called the subadditivity of μ.

Proof Obviously, the monotonicity of μ follows from its strong monotonicity, so
we will prove the latter property.

By the theorem on the properties of semirings, the set-theoretic difference P \∨n
k=1 Pk can be written in the form P \ ∨n

k=1 Pk = ∨m
j=1 Qj , where Qj ∈ P .

Therefore, P = (
∨n

k=1 Pk)∨ (
∨m

j=1 Qj), and, by the additivity of μ,

μ(P )=
n∑

k=1

μ(Pk)+
m∑

j=1

μ(Qj )�
n∑

k=1

μ(Pk).

To prove the subadditivity of μ, put P ′k = P ∩ Pk . Then P =⋃n
k=1 P

′
k , P ′k ∈P .

By the theorem on the properties of semirings,

P =
n∨

k=1

mk∨

j=1

Qkj ,

where Qkj ∈P and Qkj ⊂ P ′k ⊂ Pk for 1 � k � n and 1 � j �mk . It follows from
the strong monotonicity of μ that

∑mk

j=1 μ(Qkj )� μ(Pk). Therefore,

μ(P )=
n∑

k=1

mk∑

j=1

μ(Qkj )�
n∑

k=1

μ(Pk).
�

Note that if a volume is defined on an algebra (or a ring) A, then μ(A \ B) =
μ(A) − μ(B) provided that A,B ∈ A, B ⊂ A and μ(B) < +∞. Indeed, since
A \B ∈A, we have μ(A)= μ(B)+μ(A \B).

Remark A volume μ defined on a semiring P can be uniquely extended to the ring
R consisting of all finite unions of elements of P . Indeed, let E =⋃n

k=1 Pk , where
Pk ∈P . We may assume without loss of generality that the sets Pk are pairwise
disjoint (see Theorem 1.1.4). Put μ̃(E)=∑n

k=1 μ(Pk). We leave the reader to show
that this function is well defined and that μ̃ is a volume that coincides with μ on P .

1.2.4 Now let us check that the ordinary volume is indeed a volume in the sense
of our definition. Since Pm =P1 �Pm−1, this is a corollary of the following
general theorem, in which we use the notion of the product of arbitrary semirings
(see Sect. 1.1.5).

Theorem Let X,Y be non-empty sets, P,Q be semirings of subsets of these sets,
and μ,ν be volumes defined on P and Q, respectively. We define a function λ on
the semiring P �Q by the formula

λ(P ×Q)= μ(P ) · ν(Q) for any P ∈P,Q ∈Q
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(the products 0 · (+∞) and (+∞) · 0 are assumed to vanish).
Then λ is a volume on P �Q.

The volume λ is called the product of the volumes μ and ν.

Proof We need to check only the finite additivity of λ. First consider a partition of
P ×Q of a special form. Let P and Q be partitioned into disjoint sets:

P = P1 ∨ · · · ∨ PI , Q=Q1 ∨ · · · ∨QJ (Pi ∈P, Qj ∈Q).

Then the sets Pi ×Qj (1 � i � I , 1 � j � J ) belong to the semiring P �Q and
form a partition of P ×Q, which we will call a grid partition. For such a partition,
the desired equality is obvious:

λ(P ×Q)= μ(P )ν(Q)=
I∑

i=1

μ(Pi)

J∑

j=1

ν(Qj )=
∑

1�i�I
1�j�J

λ(Pi ×Qj).

Now consider an arbitrary partition of the set P ×Q into elements of the semiring
P �Q:

P ×Q= (P1 ×Q1)∨ · · · ∨ (PN ×QN) (Pn ∈P,Qn ∈Q).

In general, it is not a grid partition, but, refining it, we can reduce the problem to
such a partition. Clearly, P = P1 ∪ · · · ∪ PN and Q =Q1 ∪ · · · ∪QN , where the
sets P1, . . . ,PN and Q1, . . . ,Qn, respectively, may not be disjoint. However, as we
observed in Sect. 1.1 (see the remark in Sect. 1.1.4), there exist partitions

P =A1 ∨ · · · ∨AI (Ai ∈P) and Q= B1 ∨ · · · ∨BJ (Bj ∈Q)

such that

for all i, n, either Ai ⊂ Pn or Ai ∩ Pn =∅;
for all j,n, either Bj ⊂Qn or Bj ∩Qn =∅.

Since the sets Ai ×Bj form a grid partition of the product P ×Q, we have

λ(P ×Q)=
∑

1�i�I
1�j�J

λ(Ai ×Bj ). (2)

On the other hand, it is clear that for every n the families {Ai |Ai ⊂ Pn} and
{Bj |Bj ⊂ Qn} are partitions of the sets Pn and Qn, respectively. Hence {Ai ×
Bj |Ai ⊂ Pn, Bj ⊂Qn} is a grid partition of the product Pn ×Qn. Therefore,

λ(Pn ×Qn)=
∑

i:Ai⊂Pn
j :Bj⊂Qn

λ(Ai ×Bj ).
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Rearranging the terms on the right-hand side of (2), we obtain the desired equality:

λ(P ×Q)=
∑

1�i�I
1�j�J

λ(Ai×Bj )=
∑

1�n�N

∑

i:Ai⊂Pn
j :Bj⊂Qn

λ(Ai×Bj )=
∑

1�n�N

λ(Pn×Qn).

�

Corollary The ordinary volume λm is a volume in the sense of Definition 1.2.2.

Proof The proof proceeds by induction on the dimension. The one-dimensional case
is left to the reader. Now the additivity of λm follows immediately from the theorem,
since Pm =P1 �Pm−1 and λm is the product of the volumes λ1 and λm−1. �

EXERCISES In Exercises 1–3, μ is a finite volume defined on an algebra A of
subsets of a set X.

1. Show that for any elements of A,

μ(A∪B)= μ(A)+μ(B)−μ(A∩B);
μ(A∪B ∪C)= μ(A)+μ(B)+μ(C)−μ(A∩B)−μ(B ∩C)−μ(A∩C)

+μ(A∩B ∩C).

Generalize these equalities to the case of four and more sets.
2. Let μ(X)= 1, and let A1, . . . ,An ∈ A. Show that if

∑n
k=1 μ(Ak) > n− 1, then⋂n

k=1 Ak �=∅.
3. Show that every partition of X into subsets of positive volume is at most count-

able.

1.3 Properties of Measure

The key property in the definition of a volume is its finite additivity, i.e., the as-
sertion that “the volume of a whole object is the sum of the volumes of its parts”
provided that the number of these “parts” is finite. As we will see below, this rule
may be violated if the “parts” form an infinite sequence. Of course, infinite partitions
arise only as an idealization of real-life situations, so it is hard to provide a natural
scientifically motivated explanation of why we need to consider volumes with such
a strong additivity property, which is called countable additivity.

However, intuitively, a violation of the rule “the volume of a whole object is
the sum of the volumes of its parts” for a countable set of parts seems to be quite
unnatural if, for example, by the volume we mean the length or the area. It is the
countable additivity that allows one to develop a deep theory that comes close to
the theory of integration. This and the next sections are devoted to the theory of
countably additive volumes, which is usually called measure theory. It has numerous
important applications. First of all, it is worth mentioning that measure theory lies
at the foundations of modern probability theory.
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1.3.1 Let us proceed to precise definitions.

Definition A volume μ defined on a semiring P is called countably additive if for
every set P ∈P and every partition {Pk}∞k=1 of P into elements of P ,

μ(P )=
∑

k�1

μ(Pk).

A countably additive volume is called a measure.

Using the notion of the sum of a family and Lemma 1.2.2, we can formulate the
definition of countable additivity in an equivalent, though formally more general
form: a volume μ defined on a semiring P is countably additive if for every set
P ∈P and every countable partition {Pω}ω∈� of P into elements of P ,

μ(P )=
∑

ω∈�
μ(Pω).

Countable additivity does not follow from finite additivity, so that not every vol-
ume is a measure. In particular, the volume from Example (6) of Sect. 1.2.2 is not a
measure, as the reader can easily check.

Examples

(1) The ordinary volume is a measure (see Theorem 2.1.1).
(2) Consider the volume νg([a, b)) = g(b) − g(a) defined in Example (3) of

Sect. 1.2.2. Its countable additivity means, in particular, that if [b0, b) =∨∞
n=0[bn, bn+1), where bn → b, bn < bn+1, then νg([b0, b)) =∑∞
n=0 νg([bn, bn+1)). Since ν([bn, bn+1)) = g(bn+1) − g(bn), this is equiva-

lent to the condition g(bn) −→
n→∞ g(b).

Thus for νg to be countably additive, it is necessary that the function g be
continuous from the left.

Given an arbitrary increasing function g, one can obtain a measure by setting
μg([a, b))= g(b−0)−g(a−0), where g(a−0) and g(b−0) are the left limits
of g at the points a and b, respectively. We will prove the countable additivity
of μg in Theorem 4.10.2. It implies, in particular, that the continuity of the
function g from the left is not only a necessary, but also a sufficient condition
for the volume νg to be a measure.

(3) The volume generated by a positive point mass (see Example (4) in Sect. 1.2.2)
is a measure.

(4) Let X be an arbitrary set and A be a σ -algebra of subsets of X containing all
one-point sets. We define a function μ on A as follows:

μ(A)=
{

the number of points in A if A is finite;
+∞ if A is infinite.
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We leave the reader to verify that the function μ thus defined is indeed a mea-
sure. It is called the counting measure.

(5) Let us verify that the volume μ constructed in Example (5) of Sect. 1.2.2 is
countably additive, i.e., that μ is a measure.

Indeed, let A=∨∞
k=1 Ak , where A,Ak ∈A. It is clear that for every n ∈N,

μ(A)� μ

(
n∨

k=1

Ak

)

=
n∑

k=1

μ(Ak),

whence μ(A) �
∑∞

k=1 μ(Ak). On the other hand, if E is an arbitrary finite subset
of A, then for some n we have E ⊂∨n

k=1 Ak . Therefore,

μ(E)� μ

(
n∨

k=1

Ak

)

=
n∑

k=1

μ(Ak)�
∞∑

k=1

μ(Ak).

It follows that

μ(A)= sup
{
μ(E) |E ⊂A, card(E) <+∞}

�
∞∑

k=1

μ(Ak).

Together with the reverse inequality obtained above, this proves the countable addi-
tivity of μ.

We will say that μ is the discrete measure generated by the masses ωx . If ωx ≡ 1,
then, obviously, μ is the counting measure.

1.3.2 We establish an important characteristic property of measures.

Theorem A volume μ defined on a semiring P is a measure if and only if it is
countably subadditive, i.e.,

the conditions P ⊂
⋃

k�1

Pk, P,Pk ∈P imply that μ(P )�
∑

k�1

μ(Pk). (1)

Proof 3 Let μ be a countably additive volume. Replacing the sets Pk in condition (1)
by the sets P ′k = P ∩ Pk , we see that

P =
⋃

k�1

P ′k, P ′k ∈P (k ∈N).

3It is instructive to compare this argument with the proof of Theorem 1.2.3.
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By Theorem 1.1.4, P can be written in the form

P =
∨

k�1

nk∨

j=1

Qkj (Qkj ∈P).

Furthermore,
∨nk

j=1 Qkj ⊂ P ′k . Hence, by the strong monotonicity of a volume,
∑nk

j=1 μ(Qkj )� μ(P ′k)� μ(Pk). Using the countable additivity, we obtain

μ(P )=
∑

k�1

nk∑

j=1

μ(Qkj )�
∑

k�1

μ(Pk),

as required.
Now let us prove that countable subadditivity implies countable additivity. Let

{Pk}∞k=1 ⊂P be a partition of a set P ∈P . By the countable subadditivity of μ,

μ(P )�
∑

k�1

μ(Pk). (2)

On the other hand, the strong monotonicity of a volume implies that μ(P ) �∑n
k=1 μ(Pk) for every n ∈ N. Passing to the limit as n→∞, we see that μ(P ) �∑
k�1 μ(Pk). Together with (2), this proves the countable additivity of μ. �

The last theorem implies a result that we will often use in what follows.

Corollary Let μ be a measure defined on a σ -algebra A. Then a countable union
of sets of zero measure is again a set of zero measure.

Indeed, if en are sets from A that have zero measure, then their union also belongs
to A and μ(

⋃
n�1 en)�

∑
n�1 μ(en)= 0.

1.3.3 We will check that for a volume defined on the algebra, countable additivity
is equivalent to a property analogous to continuity.

Theorem A volume μ defined on an algebra A is a measure if and only if it is
continuous from below, i.e.,

the conditions A,Ak ∈A, Ak ⊂Ak+1, A=
⋃

k�1

Ak

imply that μ(Ak) −→
k→∞ μ(A). (3)

Remark If the algebra A from the statement of the theorem is a σ -algebra, then the
condition A ∈A in the definition of continuity from below can be omitted, because
it follows from the equality A=⋃

k�1 Ak .



1.3 Properties of Measure 21

Proof Let μ be a countably additive volume and A, Ak be sets satisfying con-
ditions (3). Putting B1 = A1, Bk = Ak \ Ak−1 for k > 1, we see that Bk ∈ A,
Bk ∩Bj =∅ for k �= j (j, k ∈N), and

Ak =
k∨

j=1

Bj , A=
∨

j�1

Bj .

Therefore, μ(Ak)=∑k
j=1 μ(Bj ) and

μ(A)=
∑

j�1

μ(Bj )= lim
k→∞

k∑

j=1

μ(Bj )= lim
k→∞μ(Ak).

Now let us prove that continuity from below implies countable additivity. Let
{Ej }∞j=1 ⊂A be a partition of a set A ∈A. Put Ak =∨k

j=1 Ej . Then

Ak ∈A, Ak ⊂Ak+1, A=
⋃

k�1

Ak,

and μ(Ak)=∑k
j=1 μ(Ej ). Since μ is continuous from below, we obtain

μ(A)= lim
k→∞μ(Ak)= lim

k→∞

k∑

j=1

μ(Ej )=
∑

j�1

μ(Ej ).
�

1.3.4 Recall that a volume μ defined on a semiring P of subsets of a set X is called
finite if X ∈P and μ(X) <+∞ (see Definition 1.2.2).

Theorem Let μ be a finite volume defined on an algebra A. The following condi-
tions are equivalent:

(1) μ is a measure;
(2) μ is continuous from above, i.e.,

the conditions A,Ak ∈A, Ak ⊃Ak+1,
⋂

k�1

Ak =A (4)

imply μ(Ak) −→
k→∞ μ(A);

(3) μ is continuous from above at the empty set, i.e.,

the conditions Ak ∈A, Ak ⊃Ak+1,
⋂

k�1

Ak =∅ (4′)

imply μ(Ak) −→
k→∞ 0.
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Proof (1)⇒ (2). Let Ak be sets satisfying conditions (4). Put B = A1 \ A, Bk =
A1 \Ak . Then Bk ⊂ Bk+1 and B =⋃

k�1 Bk . By the continuity of a measure from
below,

μ(A1)−μ(Ak)= μ(Bk) −→
k→∞ μ(B)= μ(A1)−μ(A),

i.e., μ(Ak) −→
k→∞ μ(A).

The implication (2)⇒ (3) is trivial. Let us prove that (3)⇒ (1). Let {Ej }∞j=1 ⊂
A be a partition of a set A ∈A. Put Ak =∨∞

j=k+1 Ej . Then Ak ∈A, since Ak =A \
∨k

j=1 Ej , and the sets Ak obviously satisfy all conditions (4′). Hence μ(Ak) −→
k→∞ 0.

Furthermore, A = Ak ∨ ∨k
j=1 Ej . Thus μ(A) = μ(Ak) + ∑k

j=1 μ(Ej ),
μ(Ak) −→

k→∞ 0, and, consequently, μ(A)=∑
j�1 μ(Ej ), as required. �

Corollary Every measure is conditionally continuous from above. The latter means
that the conditions A, Ak ∈ A, Ak ⊃ Ak+1,

⋂
k�1 Ak = A and μ(Am) < +∞ for

some m imply that μ(Ak) −→
k→∞ μ(A).

To prove this, it suffices to consider the restriction of the measure μ to the in-
duced algebra A∩Am (see Example (4) in Sect. 1.1.2) and use the continuity from
above of the obtained finite measure.

Remarks

(1) If a volume is infinite, then continuity from above does not imply countable
additivity (see Exercise 1).

(2) If a volume is defined on a semiring, then in Theorems 1.3.3 and 1.3.4 only the
“only if” parts are true (see Exercise 2).

In what follows, we usually consider measures defined on σ -algebras. The collec-
tion consisting of three objects—a set X, a σ -algebra A of subsets of X, and a mea-
sure μ defined on A—is usually denoted by (X,A,μ) and is called a measure space.
The sets for which the measure is defined, i.e., the elements of the σ -algebra A, are
called measurable, or, more precisely, measurable with respect to A.

EXERCISES

1. Show that the infinite volume from Example (6) in Sect. 1.2.2 (a = +∞) is
conditionally continuous from above, but is not a measure.

2. Let X = [0,1) ∩ Q, and let P be the system of all sets P of the form P ≡
[a, b)∩Q, where 0 � a � b� 1. Put μ(P )= b− a. Show that P is a semiring
and μ is a volume that is continuous from above and from below, but is not a
measure.

3. Let (X,A,μ) be a measure space, and let Ek be measurable sets such that∑∞
k=1 μ(Ek) <+∞. Consider the sets
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An = {x ∈X |x ∈Ek for exactly n values of k},
Bn = {x ∈X |x ∈Ek for at least n values of k}.

Show that the sets An,Bn are measurable and

∞∑

n=1

nμ(An)=
∞∑

n=1

μ(Bn)=
∞∑

n=1

μ(En).

4. Using the counting measure on N, show that continuity from above at the empty
set does not follow from countable additivity.

5. Show that a finite volume μ defined on an algebra A is countably additive pro-
vided that it is “continuous from below at X”, i.e., the conditions Ak ⊂ Ak+1,⋃

k�1 Ak =X, Ak ∈A imply μ(Ak) −→
k→∞ μ(X).

6. Show that for a σ -finite measure, every partition into sets of positive measure is
at most countable.

7. Assume that a measure is such that there exist arbitrarily (finitely) many pairwise
disjoint subsets of positive measure. Show that there exists an infinite family of
such subsets.

1.4 Extension of Measure

1.4.1 Although we have considered characteristic properties of measures, with the
exception of the counting measure, we still have not produced a non-trivial example
of a measure defined on a σ -algebra.

The reason is that we are presently able to define measures only on “poor” sys-
tems of sets, such as most semirings. Due to the tractability of these systems, it is
comparatively easy to define volumes on them (see Examples (1)–(3) in Sect. 1.2.2).
But we cannot yet define measures on wider systems of sets, e.g., on σ -algebras, ex-
cept for several quite trivial cases. This situation is, of course, highly unsatisfactory.

Indeed, even if we know that the ordinary volume in m-dimensional space de-
fined on the semiring of cells is countably additive (this will be proved in Theo-
rem 2.1.1), we certainly cannot consider the problem of constructing a measure on
R

m completely solved, since it is highly dubious whether a measure on Euclidean
space that cannot be used to “measure” pyramids, balls, and other important bod-
ies has any value; and this is exactly the situation we find ourselves in. The very
tractability of semirings, their being poor in sets, which allowed us, in the cases
considered above, to easily define volumes on them, now demonstrates its down-
sides. Thus we must learn to construct measures on richer systems of sets. This
problem is difficult even if we restrict ourselves to the σ -algebra of Borel sets of the
real line and try to assign a length to every Borel set (speaking more formally, try to
extend the one-dimensional ordinary volume to the Borel σ -algebra). It was the so-
lution of this problem suggested by Lebesgue4 in 1902 that marked the beginning of

4Henri Léon Lebesgue (1875–1941)—French mathematician.
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measure theory. This result, inspired by the needs of several areas of mathematics,
was a major breakthrough in the theory of integration.

Lebesgue’s construction of an extension of the length (the one-dimensional or-
dinary volume) to a measure defined on a σ -algebra of subsets of the real line was
based on clear geometric considerations. It splits into several steps. First, Lebesgue
assigns a measure m(G) to all open sets G ⊂ R, where m(G) is the sum of the
lengths of the intervals constituting G. Then he introduces a quantity called the
outer measure; for an arbitrary set E ⊂R, it is defined by the formula

me(E)= inf
{
m(G) |G⊃E, G is an open set

}
.

The inner measure mi(E) of a bounded set E is equal to mi(E) = m(�) −
me(� \E), where � is an arbitrary interval containing E. A bounded set is called
measurable if its inner and outer measures coincide. The common value of the in-
ner and outer measures of a measurable set E is declared to be the measure of E.
Then one checks that the system of measurable sets contained in a fixed interval is a
σ -algebra and that the constructed measure is countably additive. Thus Lebesgue’s
method of extending a measure is not altogether direct. It contains an important
intermediate step, the construction of the outer measure. So to speak, we “cross a
chasm in two jumps”. A detailed realization of this program (which is described in
a slightly modified form, e.g., in [N]) is not at all easy.

Along with some advantages (first of all, the geometric clarity of the construc-
tion), this approach also has its disadvantages. Of course, since every open subset of
a Euclidean space is the union of a sequence of cells, the analogy we should follow
in order to extend a measure from the semiring of cells is clear. However, it is still
not clear how one should act to extend a measure defined on a semiring of subsets
of a ground set that has no topology and, consequently, no open sets. This question
is all the more relevant, because in the axiomatization of probability theory in the
framework of measure theory, the ground set is the space of “elementary events”,
which is not necessarily a topological space.

Later, due mainly to Carathéodory’s5 results, it became clear that the crucial
elements of Lebesgue’s construction are the following two facts. First, that the outer
measure is countably subadditive, and, second, that it can be constructed without
involving open sets, i.e., without using the topology. For this (bearing in mind that an
open set is the union of a sequence of cells), one should only interpret the inclusion
E ⊂ G used in the one-dimensional case as the fact that E can be covered by a
sequence of elements of the semiring. This observation allows one to construct the
outer measure for an arbitrary measure, regardless of whether or not the ground set
is a topological space.

The method suggested by Carathéodory shows that it is useful, especially from
a technical point of view, not to restrict ourselves to additive functions, but instead
to consider countably subadditive functions defined on all subsets of the ground set.
These functions are now called outer measures. Here we must warn the reader that

5Constantin Carathéodory (1873–1950)—a German mathematician of Greek origin.
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the terminology is slightly confusing: in general, an outer measure is not a measure
in the sense of Definition 1.3.1.

The key point of Carathéodory’s construction is the fact that every outer measure
gives rise in a natural way to a σ -algebra (which in non-degenerate cases is quite
wide) on which this outer measure is additive and hence countably additive. Thus
every outer measure generates a measure. Since outer measures are much easier
to construct, this approach turns out to be useful not only for extending measures,
but also in other cases when we need to find a measure with given properties. We
will encounter such examples when proving the existence of the surface area (which
reduces to constructing the Hausdorff measure of appropriate dimension) and when
describing positive functionals on the space of continuous functions (Sect. 12.2).

We preface a detailed description of Carathéodory’s method with the definition
of outer measures and the study of their basic properties.

1.4.2 Here we will consider subsets of a fixed non-empty set X, which we call the
ground set. Recall that by Ac we denote the complement of a set A ⊂ X, i.e., the
set-theoretic difference X \A.

Definition 1 Let A(X) be the σ -algebra of all subsets of the ground set X. An outer
measure on X is a function τ : A(X)→[0,+∞] such that:

I. τ(∅)= 0 and
II. τ(A)�

∑∞
n=1 τ(An) if A⊂⋃∞

n=1 An.

Property II is called countable subadditivity.

We mention two simple properties of outer measures.

(1) An outer measure is finitely subadditive, i.e., the inclusion A⊂ A1 ∪ · · · ∪AN

implies that τ(A)� τ(A1)+ · · · + τ(AN).

This property follows immediately from the countable subadditivity of τ if we
assume that the sets An are empty for all n >N .

(2) An outer measure is monotone, i.e., the inclusion A ⊂ B implies that τ(A) �
τ(B).

This is a special case of property 1 (corresponding to N = 1).
As we will see below, outer measures naturally appear in various situations (see

Sects. 2.1, 2.6, 12.2). Here we only mention that an example of an outer measure is
any measure defined on all subsets of the ground set, in particular, a discrete measure
(see Example (5) in Sect. 1.3.1).

The next definition is motivated by our desire to single out an algebra of sets on
which an outer measure τ is additive. If A and E are such sets, then

τ(E)= τ(E ∩A)+ τ(E \A). (1)

To construct a desired system of sets, we let it contain those subsets A of the ground
set that “split every set E additively”. Thus we arrive at the following definition.
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Definition 2 Let τ be an outer measure on X. A set A is called measurable, or,
more exactly, τ -measurable if (1) holds for every set E ⊂X.

The system of all τ -measurable sets will be denoted by Aτ .

Let us illustrate this definition by the following informal example. Consider a
commuter rail system divided into fare zones. Let X be the collection of intervals
between neighboring stations. An arbitrary collection of intervals (a subset of X)
will be called a path. If the price of a trip along a connected path is proportional to
the number of zones through which it travels, and for an unconnected path it is the
sum of the prices of the connected components, then the price of a trip is an outer
measure on the set of intervals. A path is measurable if and only if it consists of
entire zones.

Note that since E = (E∩A)∪(E\A) and an outer measure is countably subaddi-
tive, the inequality τ(E)� τ(E ∩A)+ τ(E \A) always holds. Hence, to verify (1),
it only suffices to establish the inequality

τ(E)� τ(E ∩A)+ τ(E \A), (1′)

and usually we will do exactly this.

Remark If τ(A)= 0, then τ(E∩A)= 0, and hence (1′) holds for every set E. Thus
all sets of zero outer measure are measurable.

1.4.3 The main result of this subsection is the following theorem.

Theorem Let τ be an outer measure on X. Then Aτ is a σ -algebra and the restric-
tion of τ to this σ -algebra is a measure.

Proof First of all, observe that the system of τ -measurable sets is symmetric, i.e.,
together with every set A it also contains its complement Ac. This follows from the
fact that, in view of the identity E \A= E ∩Ac , condition (1) can be written in a
symmetric form: τ(E)= τ(E ∩A)+ τ(E ∩Ac).

Now let us prove that Aτ is an algebra of sets. According to Definition 1.1.2, it
suffices to check that Aτ contains the union of any two elements of Aτ .

Let A,B ∈Aτ , and let E be an arbitrary set. Using successively the measurability
of A and B , we obtain

τ(E)= τ(E ∩A)+ τ(E \A)= τ(E ∩A)+ τ
(
(E \A)∩B

)+ τ
(
(E \A) \B)

.

The third term on the right-hand side of this inequality is obviously equal to τ(E \
(A∪B)), and the sum of the first two terms can be estimated using the subadditivity
of τ :

τ(E ∩A)+ τ
(
(E \A)∩B

)
� τ

(
(E ∩A)∪ (

(E \A)∩B
))= τ

(
E ∩ (A∪B)

)
.

Thus

τ(E)� τ
(
E ∩ (A∪B)

)+ τ
(
E \ (A∪B)

)
,
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i.e., the union A∪B satisfies (1′) for every set E. Hence A∪B ∈Aτ for any A and
B in Aτ . So, Aτ is an algebra.

If A and B are disjoint measurable sets, then (E∩(A∨B))∩A=E∩A and (E∩
(A∨B)) \A=E ∩B for an arbitrary set E. Hence τ(E ∩ (A∨B))= τ(E ∩A)+
τ(E∩B). Then, by induction, for every n ∈N, for pairwise disjoint sets A1, . . . ,An

and an arbitrary set E,

τ

(

E ∩
n∨

j=1

Aj

)

=
n∑

j=1

τ(E ∩Aj). (2)

Taking E =X, we see that the outer measure is additive on Aτ :

τ

(
n∨

j=1

Aj

)

=
n∑

j=1

τ(Aj ). (2′)

Now let us check that Aτ is a σ -algebra. For this we must show that Aτ con-
tains the union A=⋃∞

j=1 Aj of an arbitrary sequence of measurable sets Aj . First
assume that the sets Aj are pairwise disjoint. Then for every set E and every n it
follows from (2) that

τ(E)= τ

(

E ∩
n∨

j=1

Aj

)

+ τ

(

E \
n∨

j=1

Aj

)

=
n∑

j=1

τ(E ∩Aj)+ τ

(

E \
n∨

j=1

Aj

)

�
n∑

j=1

τ(E ∩Aj)+ τ(E \A).

Passing to the limit as n→∞ and using the countable subadditivity of τ , we obtain

τ(E) �
∞∑

j=1

τ(E ∩Aj)+ τ(E \A)� τ

( ∞∨

j=1

(E ∩Aj)

)

+ τ(E \A)

= τ(E ∩A)+ τ(E \A).

Thus we have confirmed that A satisfies (1′), so that A ∈Aτ .
The general case can be reduced to that considered above by using a disjoint

decomposition (see Lemma 1.1.4): A =∨∞
j=1 Bj , where B1 = A1 and Bj = Aj \

(A1 ∪ · · · ∪Aj−1) for j � 2 (the sets Bj are measurable, since Aτ is an algebra).
It remains to prove the second claim of the theorem. Let μ be the restriction of

τ to Aτ . It follows from (2′) that μ is a volume. It is countably subadditive, since τ

is. By Theorem 1.3.2, μ is a measure. �

The remark at the end of Sect. 1.4.2 suggests to single out the measures satisfying
an important additional property. In view of monotonicity, it is natural to expect that
every subset of a set of zero measure also has zero measure. However, this is not
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always the case, because this subset may not be measurable (for instance, if the
measure is defined only on Borel sets). Measures for which subsets of sets of zero
measure also have zero measure are of special interest.

Definition A measure μ defined on a semiring P is called complete if the condi-
tions E ∈P and μ(E)= 0 imply that every subset Ẽ of E also belongs to P (and,
consequently, μ(Ẽ)= 0).

Using this definition and the remark from Sect. 1.4.2, we can refine the theorem
by saying that an outer measure generates a complete measure. In other words, we
have the following corollary.

Corollary The restriction of an outer measure τ to the σ -algebra Aτ is a complete
measure.

1.4.4 We now proceed to the description of Carathéodory’s method of extending a
measure. Like Lebesgue’s original construction, it consists of two steps. At the first
step, given a measure μ0, we construct an auxiliary function μ∗ that extends μ0
from the original semiring to the system of all subsets. It is no longer countably ad-
ditive, but we can prove that it has a weaker property, countable subadditivity, so that
μ∗ is an outer measure. At the second step, we restrict the constructed outer mea-
sure to the system of μ∗-measurable sets; as a result, according to Theorem 1.4.3,
we obtain a new measure defined on a σ -algebra. To verify that this measure is an
extension of μ0, it remains to show that the original semiring is contained in the
σ -algebra of μ∗-measurable sets. Let us proceed to the realization of this program.

Let μ0 be a measure defined on a semiring P of subsets of a set X. For every
set E ⊂X, put

μ∗(E)= inf

{ ∞∑

j=1

μ0(Pj )

∣
∣
∣E ⊂

∞⋃

j=1

Pj , Pj ∈P for all j ∈N

}

(3)

(if E cannot be covered by a sequence of elements of P , we put μ∗(E)=+∞).
Note that instead of {Pj }j�1 in (3) we may consider an arbitrary countable fam-

ily {Pω}ω∈�, since the sum
∑

ω∈� μ0(Pω) coincides with
∑∞

j=1 μ0(Pωj
) for every

numbering of �.

Theorem The function μ∗ defined by formula (3) is an outer measure that coincides
with μ0 on P .

We will say that μ∗ is the outer measure generated by μ0.

Proof Let E ∈ P . Then the sequence E,∅,∅, . . . is a cover of E by elements
of P . It follows that μ∗(E) � μ0(E). On the other hand, if E ⊂⋃∞

j=1 Pj , where
Pj ∈P for all j ∈ N, then μ0(E) �

∑∞
j=1 μ0(Pj ) by the countable subadditivity
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of a measure (Theorem 1.3.2). Since {Pj }j�1 is an arbitrary sequence, it follows
that μ0(E)� μ∗(E). Thus μ∗(E)= μ0(E); in particular, μ∗(∅)= 0.

It remains to show that μ∗ is countably subadditive, i.e., that

μ∗(E)�
∞∑

n=1

μ∗(En)

if E ⊂⋃∞
n=1 En. We may assume that the right-hand side is finite, since otherwise

the inequality is trivial. Fix an arbitrary ε > 0, and for every n find sets P
(n)
j ∈

P (j ∈N) such that

En ⊂
∞⋃

j=1

P
(n)
j and

∞∑

j=1

μ0
(
P

(n)
j

)
<μ∗(En)+ ε

2n
.

In this case,

E ⊂
∞⋃

n=1

En ⊂
∞⋃

n=1

∞⋃

j=1

P
(n)
j .

Hence, by the definition of μ∗(E),

μ∗(E)�
∞∑

n=1

∞∑

j=1

μ0
(
P

(n)
j

)
<

∞∑

n=1

(

μ∗(En)+ ε

2n

)

=
∞∑

n=1

μ∗(En)+ ε.

Since ε is arbitrary, it follows that μ∗ is countably subadditive. �

1.4.5 Now we are in a position to prove the theorem on extension of measures,
which is our main goal in this section.

Theorem Let μ0 be a measure defined on a semiring P , μ∗ be the outer measure
generated by μ0, and Aμ∗ be the σ -algebra of μ∗-measurable sets. Then P ⊂Aμ∗ ,
and the restriction of μ∗ to Aμ∗ is an extension of μ0.

Proof By Theorem 1.4.3, the restriction of μ∗ to Aμ∗ is a measure. Since, by The-
orem 1.4.4, μ∗ coincides with μ0 on P , we need only to prove that P ⊂Aμ∗ , i.e.,
that every set P ∈P is μ∗-measurable. For this we must check inequality (1′) from
Sect. 1.4.2, which in our notation takes the following form: for every set E,

μ∗(E)� μ∗(E ∩ P)+μ∗(E \ P). (4)

We verify this inequality in two steps. First assume that E ∈P . Then, by the
definition of a semiring, E \ P =∨N

j=1 Qj , where Qj ∈P . Hence E splits into

disjoint elements of P : E = (E∩P)∨∨N
j=1 Qj . Therefore, by the additivity of μ0
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and the subadditivity of μ∗,

μ∗(E)= μ0(E)= μ0(E ∩ P)+
N∑

j=1

μ0(Qj )= μ∗(E ∩ P)+
N∑

j=1

μ∗(Qj )

� μ∗(E ∩ P)+μ∗
(

N∨

j=1

Qj

)

= μ∗(E ∩ P)+μ∗(E \ P).

Thus in the case under consideration (4) is proved.
To prove (4) in the general case, we may assume that μ∗(E) <+∞. Fix an ar-

bitrary ε > 0 and choose sets Pj ∈P such that E ⊂⋃∞
j=1 Pj and

∑∞
j=1 μ0(Pj ) <

μ∗(E)+ ε. As we have already proved,

μ0(Pj )= μ∗(Pj )� μ∗(Pj ∩ P)+μ∗(Pj \ P).

Hence

μ∗(E)+ ε >

∞∑

j=1

μ0(Pj )�
∞∑

j=1

(
μ∗(Pj ∩ P)+μ∗(Pj \ P)

)
.

Using the countable subadditivity and monotonicity of μ∗, we obtain

μ∗(E)+ε > μ∗
(( ∞⋃

j=1

Pj

)

∩P

)

+μ∗
(( ∞⋃

j=1

Pj

)

\P
)

� μ∗(E∩P)+μ∗(E \P).

Since ε is arbitrary, this implies (4). Thus we have proved the μ∗-measurability of
every set P ∈P , and hence the inclusion P ⊂Aμ∗ . �

The measure constructed in the theorem is called the Carathéodory extension
of μ0. Since such an extension always exists, we may always assume without loss
of generality that a measure under consideration is defined on a σ -algebra.

We draw the reader’s attention to the fact that the theorem not only guarantees the
existence of an extension, but provides formula (3), i.e., a method for computing the
extended measure μ from the original measure μ0. Of course, since these measures
coincide on P , we can also rewrite formula (3) for measurable sets, replacing μ0
by μ, in the form

μ(A)= inf

{ ∞∑

j=1

μ(Pj )

∣
∣
∣A⊂

∞⋃

j=1

Pj , Pj ∈P for all j ∈N

}

. (3′)

We will often use this equality in what follows.
In conclusion, observe that the repeated application of the Carathéodory exten-

sion procedure yields the same result as the first one. To check this, let us show that
the measures μ0 and μ generate the same outer measure. Indeed, the right-hand side
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of (3) does not increase if we replace the semiring P by the σ -algebra Aμ∗ and the
measure μ0 by the measure μ. This means that the outer measure generated by μ is
not greater than μ∗. To obtain the reverse inequality, it suffices to observe that

μ∗(E)�
∞∑

j=1

μ∗(Aj )=
∞∑

j=1

μ(Aj )

for every cover of E by sets Aj from the σ -algebra Aμ∗ .

EXERCISES

1. We define a function τ on subsets of the set X = {1,2,3} as follows:

τ(∅)= 0, τ (X)= 2, τ (E)= 1 otherwise.

Show that τ is an outer measure. Which sets are τ -measurable?
2. Let E be an arbitrary system of sets containing ∅, and let α : E→[0,+∞] be a

non-negative function with α(∅)= 0. Put

τ(E)= inf

{ ∞∑

j=1

α(Ej )

∣
∣
∣E ⊂

∞⋃

j=1

Ej , Ej ∈ E for all j ∈N

}

(in the case where E cannot be covered by a sequence of elements of E , we
assume that τ(E) = +∞). Show that τ is an outer measure, and that it is an
extension of α if and only if the function α is countably subadditive.

3. Let τ be an outer measure. Show that a set A is τ -measurable if and only if
τ(B ∪C)= τ(B)+ τ(C) for any sets B and C satisfying the conditions B ⊂A

and C ∩A=∅.

1.5 Properties of the Carathéodory Extension

We keep the notation of the previous section and assume that μ is the Carathéodory
extension of a measure μ0 defined on a semiring P and μ∗ is the outer measure
generated by μ0. We will call μ∗-measurable sets just measurable and denote the
σ -algebra of measurable sets by A.

1.5.1 We begin with the main question of this section: do there exist extensions
of μ0 other than the Carathéodory extension? This breaks down into two questions.
First, does the measure μ0 have an extension to a σ -algebra wider than A? Secondly,
do there exist other extensions of μ0 to the algebra A or to some part of this algebra,
for example, the Borel hull of the semiring P?

We leave the first question aside. One can prove (see [Bo, Vol. 1]), that it is
usually possible to further extend the measure μ, but such an extension is neither
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motivated by any application nor even by the needs of “pure” mathematics. The
σ -algebra A is usually so wide that one has no need to extend it.

The second question is of quite a different nature, and the importance of the
answer to it cannot be overestimated. It is of crucial importance to know whether an
extension of the original measure at least to the minimal σ -algebra generated by the
semiring P is unique. As we will show, in a wide class of cases (in particular, for
all finite measures), the answer to this question is positive. The existence of “non-
standard” extensions should be considered as a pathology, which usually appears in
some artificial situations; we will encounter them only in several counterexamples.

The extension is unique if we restrict ourselves to σ -finite measures (introduced
in Sect. 1.2.2). Obviously, both a measure and its Carathéodory extension are σ -
finite, or not σ -finite.

Theorem (Uniqueness of an extension) Let μ be the Carathéodory extension of a
measure μ0 defined on a semiring P , A be the σ -algebra of measurable sets, and
ν be a measure extending μ0 to a σ -algebra A′ containing P . Then:

(1) ν(A)� μ(A) for every set A ∈A∩A′; if μ(A) <+∞, then ν(A)= μ(A);
(2) if μ0 is σ -finite, then μ and ν coincide on A∩A′.

In particular, a σ -finite measure has a unique extension from the semiring P to
the σ -algebras A and B(P).

Proof Let {Pj }j�1 be a countable cover of a set A by elements of P . Then ν(A)�∑∞
j=1 ν(Pj ) =∑∞

j=1 μ0(Pj ). Since this inequality holds for every cover, ν(A) �
μ(A).

It follows that ν(P ∩A)= μ(P ∩A) if P ∈P and μ(P ) <+∞. Indeed, other-
wise we have ν(P ∩A) < μ(P ∩A), which leads to a contradiction:

μ(P )= ν(P )= ν(P ∩A)+ ν(P \A) < μ(P ∩A)+μ(P \A)= μ(P ).

If μ(A) <+∞ or the measure μ0 is σ -finite, then A can be covered by elements
Pj of the semiring P that have finite measure. By Theorem 1.1.4, we may assume
that they are pairwise disjoint. Then

ν(A)=
∞∑

j=1

ν(A∩ Pj )=
∞∑

j=1

μ(A∩ Pj )= μ(A).

Thus we have proved both claims of the theorem. �

Simple examples show that the σ -finiteness assumption in the second claim of
the theorem is indispensable. Indeed, let X be the set consisting of two points a

and b, P be the semiring consisting of the empty set and the one-point set {a}, μ0
be the measure identically equal to zero, and μ be the Carathéodory extension of
μ0. Then, by the definition of the Carathéodory extension, μ(X)= μ({b})=+∞.
On the other hand, it is clear that μ0 has another extension, identically equal to



1.5 Properties of the Carathéodory Extension 33

zero. In the case under consideration, Theorem 1.5.1 cannot be applied, because
the measure μ0 is not σ -finite (the set X cannot be written as a countable union of
elements of P).

Another example showing that an extension of a non-σ -finite measure is not
always unique can be obtained using the discrete measure generated by a summable
family of masses (see Exercise 4).

1.5.2 Let us now consider the properties of measurable sets appearing in the
Carathéodory extension procedure. To describe them, it is convenient to introduce
several new terms.

Definition Let E be an arbitrary system of subsets of a ground set X. A set H is
called an Eσ set (an Eδ set) if H =⋃

n�1 An (respectively, H =⋂
n�1 An), where

An ∈ E for all n ∈N. Sets of the type (Eσ )δ , i.e., sets that can be written in the form⋂
n�1 Hn, where Hn are Eσ sets for all n ∈N, will be called Eσδ sets.

It is clear that both Eσ and Eδ sets, as well as Eσδ sets, belong to the σ -algebra
B(E), the Borel hull of E .

Theorem Let μ be the Carathéodory extension of a measure μ0 from a semir-
ing P . If μ∗(E) <+∞, then there exists a Pσδ set C such that

E ⊂ C and μ∗(E)= μ(C).

Proof By the definition of μ∗, for every positive integer n there exist sets P
(n)
j ∈

P (j ∈N) such that
⋃

j�1

P
(n)
j ⊃E,

∑

j�1

μ
(
P

(n)
j

)
<μ∗(E)+ 1

n
.

Put Cn =⋃
j�1 P

(n)
j . It is clear that

E ⊂ Cn ∈Pσ , μ∗(E)� μ(Cn)�
∑

j�1

μ
(
P

(n)
j

)
<μ∗(E)+ 1

n

for every n ∈N. Hence the set C =⋂
n�1 Cn obviously has the desired properties. �

Now we can prove that every measurable set of finite measure can be approxi-
mated, up to sets of zero measure, from the inside and from the outside by elements
of B(P).

Corollary Let A be a measurable set of finite measure. Then there exist sets B and
C from B(P) such that

B ⊂A⊂ C and μ(C \B)= 0.

In particular, μ(A)= μ(B)= μ(C).



34 1 Measure

Proof Let C be the set constructed in the theorem. Put e = C \ A. By the above,
there is a set ẽ ∈ B(P) containing e such that μ(̃e) = 0. The reader can easily
check that the set B = C \ ẽ has all the required properties. �

1.5.3 Now let us establish the minimality of the Carathéodory extension. It turns out
that in the case of a σ -finite measure, it is the most “economic” extension (provided
that we want to obtain a complete measure).

Theorem Let μ be the Carathéodory extension of a σ -finite measure μ0 and A be
the σ -algebra of measurable sets. If μ′ is a complete measure that is an extension
of μ0 to a σ -algebra A′, then A⊂A′.

Proof First of all, observe that A′ ⊃B(P), since A′ ⊃P . Now let us check that
if μ(e) = 0, then e ∈ A′. Indeed, as we have established in Theorem 1.5.2, the set
e is contained in a set ẽ that is also of zero measure and belongs to B(P). By
Theorem 1.5.1, ν(̃e)= μ(̃e)= 0. Hence e ∈ A′ by the completeness of ν. If A is a
measurable set of finite measure, then, by Corollary 1.5.2, it can be written in the
form A= C \ e, where C ∈B(P) and μ(e)= 0. Hence A ∈A′.

Finally, if A is an arbitrary measurable set, then, using the σ -finiteness of μ, we
can write it as the union of a sequence of measurable sets of finite measure belonging
to A′. Therefore, in this case we also see that A ∈A′. �

In conclusion, we give a convenient measurability criterion which is valid not
only for the Carathéodory extension, but also for an arbitrary complete measure.

Lemma Let (X,A,μ) be an arbitrary space with a complete measure, and let
E ⊂X. If for every ε > 0 there exist measurable sets Aε and Bε such that Aε ⊂
E ⊂ Bε and μ(Bε \Aε) < ε, then E is measurable.

In particular, if for every ε > 0 there exists a measurable set Eε such that E ⊂Eε

and μ(Eε) < ε, then E is measurable (and μ(E)= 0).

Proof Taking ε equal to 1/n (n= 1,2, . . .), consider the sets A1/n and B1/n. Then
the sets A=⋃∞

n=1 A1/n and B =⋂∞
n=1 B1/n are measurable and A⊂ E ⊂ B . Fur-

thermore, μ(B \ A) = 0, since μ(B \ A) � μ(B1/n \ A1/n) <
1
n

for every n. Thus
the set E \ A is contained in the set B \ A of zero measure, and, consequently,
it is measurable by the completeness of μ. Then the set E = A ∪ (E \ A) is also
measurable. �

EXERCISES

1. Let X and P be as in the example from Sect. 1.5.1, i.e., X = {a, b} is a two-point
set and P = {∅, {a}}; let μ0 be an arbitrary finite measure on P . Show that for
every α (0 � α �+∞), the formulas
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να(∅)= 0, να
({a})= μ0

({a}),
να

({b})= α, να(X)= α+μ0
({a})

define a measure να that is an extension of μ0 to the algebra of all subsets of X.
Which of the measures να is the Carathéodory extension of μ0? Why do the
(finite) measures ν1 and ν2, which coincide on P , fail to coincide on B(P)?

In the next series of exercises, μ is the Carathéodory extension of a measure μ0

from a semiring P to the σ -algebra A of measurable sets.

2. Show that if μ0 is σ -finite, then the condition μ(A) < +∞ in Corollary 1.5.2
can be dropped. The set C can still be assumed to be a Pσδ set.

3. Show that for every set A there exists a set B ∈B(P) such that A ⊂ B and
μ∗(A)= μ(B).

4. Consider the discrete measure ν generated by a countable family of masses on an
uncountable set X. Let μ0 be its restriction to the semiring of at most countable
subsets. Show that the Carathéodory extension of μ0 is defined, like ν, on the
σ -algebra of all subsets of X, but, in contrast to ν, is infinite on all uncountable
sets.

5. Let μ0 be a measure taking only finite values. For A ∈A, put

μ̃(A)= sup
{
μ(B) |B ⊂A, B ∈A, μ(B) <+∞}

.

Show that μ̃ is a measure extending μ0 and that this extension is minimal in the
sense that μ̃� ν for every extension ν of μ0 to A.
Using Exercise 1, give an example of a measure that extends μ0, but does not
coincide with μ and μ̃.

6. Denote by N the system of all sets of zero outer measure. Show that:

(a) B(P ∪N )⊂ A and the restriction of μ to B(P ∪N ) is a complete mea-
sure;

(b) if μ is σ -finite, then A=B(P ∪N ).

Give an example of a measure for which A �=B(P ∪N ) (consider the counting
measure defined on the semiring of finite subsets of an uncountable set).

7. Show that the Carathéodory extension of a σ -finite complete measure μ defined
on a σ -algebra coincides with μ.

1.6 �Properties of the Borel Hull of a System of Sets

1.6.1 Let X, Y be arbitrary sets, ϕ : X→ Y be a map from X to Y , and E be a
system of subsets of Y . By ϕ−1(E) we denote the “inverse image of E”, i.e., the
system of sets {ϕ−1(E) |E ∈ E}. It turns out that the inverse image of a σ -algebra is
a σ -algebra. More precisely, the following result holds.
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Lemma

(1) The inverse image of a σ -algebra (algebra) is again a σ -algebra (algebra).
(2) If A is a σ -algebra (algebra) of subsets of X, then the system {B ⊂ Y |ϕ−1(B) ∈

A} is also a σ -algebra (algebra).

Proof Both claims follow immediately from the equalities

ϕ−1(Y \B)=X \ ϕ−1(B), ϕ−1

( ∞⋃

n=1

Bn

)

=
∞⋃

n=1

ϕ−1(Bn).

The details are left to the reader. �

The main result of this section is the following theorem.

Theorem Let X, Y be arbitrary sets, A be a σ -algebra of subsets of X, E be a
system of subsets of Y , and ϕ be an arbitrary map from X to Y . Then:

(1) if ϕ−1(E)⊂A, then ϕ−1(B(E))⊂A;
(2) B(ϕ−1(E))= ϕ−1(B(E)).

Proof (1) Consider the system of sets A′ = {B ⊂ Y |ϕ−1(B) ∈ A}. By the lemma,
A′ is a σ -algebra. Since A′ ⊃ E , it follows from the definition of the Borel hull that
A′ ⊃B(E).

(2) Assuming that A=B(ϕ−1(E)), the first claim implies that

ϕ−1(
B(E)

)⊂B
(
ϕ−1(E)

)
. (1)

On the other hand, by the lemma, the system ϕ−1(B(E)) is a σ -algebra. Since
ϕ−1(E)⊂ ϕ−1(B(E)), it follows from the definition of the Borel hull that

B
(
ϕ−1(E)

)⊂ ϕ−1(
B(E)

)
.

Together with (1), this yields the desired equality. �

1.6.2 Let us mention several corollaries of the theorem we have just proved. The
first four of them are just rephrasings or special cases of the theorem, as the reader
can easily check.

In the corollaries, by E we denote an arbitrary system of subsets of a set Y (as in
the theorem).

Let X ⊂ Y , and let ϕ = id :X→ Y be the identity map (that assigns to each point
x ∈X the same point regarded as an element of Y ). Obviously, ϕ−1(E)=E∩X for
every set E ⊂ Y . It is clear that the induced system E ∩X coincides with ϕ−1(E).
If E consists of subsets of X, where X ⊂ Y , then, in order to distinguish between
the Borel hulls of E that consist of subsets of X and of Y , we will denote them by
B(X)(E) and B(Y )(E), respectively. The following result holds.
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Corollary 1 B(X)(E ∩X)=B(Y )(E)∩X.

Note that, by definition, the left-hand side is a system of subsets of X, since E∩X

is such a system.
To prove the corollary, it suffices to apply the theorem assuming that ϕ = id :

X→ Y is the identity map. Then the induced system E ∩X coincides with ϕ−1(E),
since ϕ−1(E)=E ∩X for every set E ⊂ Y .

Generalizing the notion of a Borel set in R
m (see Sect. 1.1.3), we say that a

subset of a topological space X is a Borel set if it belongs to the minimal σ -algebra
containing all open sets. This σ -algebra will be denoted by BX .

Corollary 2 Let X and Y be topological spaces and ϕ : X→ Y be a continuous
map. Then the inverse image of every Borel subset of Y is a Borel subset of X, i.e.,
ϕ−1(BY )⊂BX .

Note that Corollary 2 is no longer true if we replace the inverse images by the
images. For example, one can prove that the image of a Borel set under the orthog-
onal projection of the plane onto a line is not always Borel. This non-trivial result is
due to M.Ya. Suslin.6

Corollary 3 Let Y be a topological space and X be a subspace of Y . Then every
Borel subset A of X is a trace of a Borel subset of Y , i.e., A= X ∩ B , where B is
an element of BY .

Using Theorem 1.1.7, one can easily obtain the following result.

Corollary 4 Let G be an open subset of Rm and Pm
G = {P ∈Pm |P ⊂G}. Then

B(Pm
G)=BG (here Pm

G is regarded as a system of subsets of G).

We write X× E for the system {X×E |E ∈ E}. The following lemma holds.

Lemma B(X× E)=X×B(E).

Proof To prove the lemma, take ϕ to be the canonical projection of X× Y to Y and
apply the theorem. �

Let E ′ and E be arbitrary systems of subsets of X and Y , respectively. The system
{E′ ×E |E′ ∈ E ′, E ∈ E} of subsets of the Cartesian product X×Y will be denoted
by E ′ � E .

Corollary 5 Let E ′ be a system of subsets of a set X. Then

B
(
E ′ � E

)=B
(
B

(
E ′

)�B(E)
)
.

6Mikhail Yakovlevich Suslin (1894–1919)—Russian mathematician.
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Proof Let us first check that

E ′ �B(E)⊂B
(
E ′ � E

)
. (2)

For this it suffices to observe that, by the lemma (with X replaced by E′ ∈ E ′),

E′ ×B(E)=B
(
E′ × E

)⊂B
(
E ′ � E

)
.

Now fix some sets U ∈B(E ′) and V ∈B(E). Then, by the lemma and inclu-
sion (2),

U × Y ∈B
(
E ′ × Y

)⊂B
(
E ′ �B(E)

)⊂B
(
E ′ � E

)
.

Analogously, X× V ∈B(E ′ � E). Hence

U × V = (U × Y)∩ (X× V ) ∈B
(
E ′ � E

)
.

Therefore, B(B(E ′)�B(E))⊂B(E ′ � E). The reverse inclusion is obvious, since
E ′ � E ⊂B(E ′)�B(E). �

Corollary 6 If X and Y are topological spaces, then

B(BX �BY )⊂BX×Y .

In particular, the product of Borel subsets of X and Y is a Borel subset of X× Y .
If X and Y are second-countable, then B(BX �BY )=BX×Y .

Proof Let GX , GY and G be the systems of open sets in the spaces X, Y and X×Y ,
respectively. By Corollary 5, B(BX�BY )=B(GX�GY ). Since GX�GY ⊂G,
we have

B(BX �BY )=B(GX �GY )⊂BX×Y .

The second axiom of countability implies that every element of G is an at
most countable union of elements of GX � GY . Hence G ⊂ B(GX � GY ) ⊂
B(BX �BY ) and, consequently, BX×Y ⊂B(BX �BY ). The reverse inclusion,
as we have already established, always holds. �

1.6.3 Another property of the Borel hull is related to the notion of a monotone class
of sets.

Definition A system of sets is called a monotone class if it contains the unions
of all increasing sequences and the intersections of all decreasing sequences of its
elements.

Theorem (On a monotone class) If a monotone class contains an algebra A of
subsets of a set X, then it contains the Borel hull of this algebra.
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Proof Consider a minimal monotone class M containing A. Such a class obviously
exists: it suffices to consider the intersection of all monotone classes containing A.
Let us check that M=B(A). Clearly, M⊂B(A), since a σ -algebra is a monotone
class. Hence it remains to establish the inclusion M⊃B(A). For this it suffices to
check that the class M is a σ -algebra.

First let us prove that

if A ∈A, then A∩B ∈M and A∩Bc ∈M for every B ∈M (3)

(by Bc we mean the complement of a set B with respect to X : Bc =X \B).
Indeed, given a set A ∈A, put

MA =
{
B ∈M |A∩B ∈M, A∩Bc ∈M

}
.

One can easily check that MA is a monotone class containing A; by construction,
MA ⊂M. Hence, by the minimality of M, we have MA =M, which proves (3).

For A = X, it follows from (3) that the system M contains the complement of
each of its elements, i.e., M is symmetric.

Now let us check that the class M contains the intersection of any two of its
elements. Let B ∈M. Consider the system of sets

NB = {E ∈M |B ∩E ∈M}.
As at the previous step, it is clear that NB is a monotone class. It follows from (3)
that it contains A. Hence, by the minimality of M, the sets NB and M coincide.
Since B is arbitrary, this means that M contains the intersection of any two of its
elements B and E. By the symmetry of M, it follows that it also contains finite
unions of its elements. Together with the monotonicity, this implies that M also
contains countable unions of its elements, i.e., M is a σ -algebra. Thus M is a σ -
algebra containing A. Hence M⊃B(A) by the definition of the Borel hull. �

EXERCISES

1. Show that Corollary 4 from Sect. 1.6.2 remains valid if we replace the semiring
Pm

G by the semiring {P ∈Pm
r |P ⊂G}.

2. Show that the map (t1, . . . , tm) �→ (eit1, . . . , eitm) ∈ C
m ((t1, . . . , tm) ∈ R

m)

sends Borel sets to Borel sets.
3. Let X be a set that consists of at least two points and P be the system of subsets

of X that consist of at most one point. Show that P is a semiring and a monotone
class that does not coincide with its Borel hull.

4. Show that every D-system (see Sect. 1.1, Exercise 10) is a monotone class.
5. Let E be a D-system of subsets of R

m that contains all finite intersections of
open balls. Show that it also contains all finite unions of balls. Using Exercise 4,
deduce that E contains all Borel sets.



Chapter 2
The Lebesgue Measure

2.1 Definition and Basic Properties of the Lebesgue Measure

This chapter is devoted to the most important and historically the first example of a
measure: the Carathéodory extension of the ordinary volume.

2.1.1 In order to apply the general extension procedure described in Sect. 1.4 to the
ordinary volume, we should make sure that it is a measure.

Theorem The ordinary volume λm on the semiring Pm is a σ -finite measure.

Proof We only need to prove that the volume λm is countably additive, since it is
clearly σ -finite. For this it suffices to check that it is countably subadditive (see
Theorem 1.3.2), i.e., that if P,Pn ∈Pm (n ∈N), P ⊂⋃

n�1 Pn, then

λm(P )�
∑

n�1

λm(Pn). (1)

Let us prove this inequality up to an arbitrary positive number ε. Let P = [a, b) �=
∅ and Pn = [an, bn). We will use the fact that, as follows from the definition, the
ordinary volume of a cell is a continuous function of its vertices. Choose vectors
a′n < an in such a way that

λm

([
a′n, bn

))
< λm

([an, bn)
)+ ε

2n
for all n ∈N. (2)

Let us estimate the volume λm([a, t)) from above for an arbitrary t , a < t < b.
Since [a, t] ⊂ [a, b)= P and Pn = [an, bn)⊂ (a′n, bn), it is clear that

[a, t] ⊂ P ⊂
⋃

n�1

Pn ⊂
⋃

n�1

(
a′n, bn

)
.
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The parallelepiped [a, t] is compact, hence the cover of [a, t] by the sets (a′n, bn)
contains a finite subcover. Thus for some N ∈N we have

[a, t] ⊂
N⋃

n=1

(
a′n, bn

)
.

Even more so,

[a, t)⊂
N⋃

n=1

[
a′n, bn

)
.

Using the (finite) subadditivity of the ordinary volume, we obtain

λm

([a, t)) �
N∑

n=1

λm

([a′n, bn)
)
.

Together with (2) this yields

λm

([a, t)) <

N∑

n=1

(

λm(Pn)+ ε

2n

)

<
∑

n�1

λm(Pn)+ ε.

Again using the fact that the volume of a cell depends continuously on its vertices
and passing to the limit as t→ b, we see that

λm(P )= lim
t→b

λm

([a, t)) �
∑

n�1

λm(Pn)+ ε.

Since ε is arbitrary, the last inequality implies (1). �

2.1.2 Now we are in a position to introduce, using the measure extension theo-
rem 1.4.5, the very important notion of the Lebesgue measure.

Definition The Lebesgue measure on the space R
m (the m-dimensional Lebesgue

measure) is the Carathéodory extension of the ordinary volume from the semir-
ing Pm.

The m-dimensional Lebesgue measure is denoted by the same symbol λm as the
ordinary volume. If the dimension is fixed, we sometimes omit the subscript and
write simply λ, especially in the one-dimensional case. Hereafter in this section, the
term “measure” refers to the Lebesgue measure.

The σ -algebra of sets on which the m-dimensional Lebesgue measure is defined
is denoted by Am; sets from this σ -algebra are called Lebesgue measurable, or sim-
ply measurable.



2.1 Definition and Basic Properties of the Lebesgue Measure 43

As follows from the definition of the Carathéodory extension, for a measurable
set A,

λm(A)= inf

{∑

k�1

λm(Pk)

∣
∣
∣Pk ∈Pm,

⋃

k�1

Pk ⊃A

}

.

Since every cell is contained in a cell of arbitrarily close measure with rational
vertices, all cells in the last formula may be assumed to have rational vertices. Thus

λm(A)= inf

{∑

k�1

λm(Pk)

∣
∣
∣Pk ∈Pm

r ,
⋃

k�1

Pk ⊃A

}

. (3)

Hence the Lebesgue measure can also be regarded as the Carathéodory extension of
the ordinary volume from the semiring Pm

r .

2.1.3 Basic properties of the Lebesgue measure.

(1) Open sets are measurable; the measure of a non-empty open set is strictly posi-
tive.

The first claim follows from Theorem 1.1.7; the second one is obvious, since a non-
empty open set contains a non-degenerate cell.

(2) Closed sets are measurable; the measure of a one-point set is zero.

The first claim follows from Property (1); the second one is obvious, since every
point is contained in a cell of arbitrarily small measure.

The following important property is obvious.

(3) The measure of a measurable bounded set is finite. Every measurable set is the
union of a sequence of sets of finite measure.

The next property shows that a set that can be well approximated by measurable
sets both from the inside and from the outside, is itself measurable.

(4) Let E ⊂R
m. If for every ε > 0 there exist measurable sets Aε and Bε such that

Aε ⊂E ⊂ Bε and λm(Bε \Aε) < ε, then E is measurable.
In particular, if for every ε > 0 there exists a measurable set Eε such that

E ⊂Eε and λm(Eε) < ε, then E is measurable (and λm(E)= 0).

This property follows from the fact that the Lebesgue measure is complete. It is
a special case of Lemma 1.5.3.

(5) A countable union of sets of zero measure is again a set of zero measure.

This is a general property of all measures defined on a σ -algebra (see the corol-
lary of Theorem 1.3.2).

In particular,

(5′) Every countable set has zero measure.
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Since a non-empty open set is of positive measure, we see that

(6) A set of zero measure has no interior points.
(7) If λm(e)= 0, then for every ε > 0 there exist cubic cells Qj such that

⋃

j�1

Qj ⊃ e,
∑

j�1

λm(Qj ) < ε.

Indeed, it follows from (3) that e can be covered by cells Pn with rational vertices
in such a way that

∑
n�1 λm(Pn) < ε. It remains to recall that every cell with ratio-

nal vertices is a disjoint union of finitely many cubic cells. Hence Pn =∨kn
j=1 Qnj

and λm(Pn)=∑kn
j=1 λm(Qnj ). Therefore,

e⊂
⋃

n�1

Pn =
⋃

n�1

kn∨

j=1

Qnj and
∑

n�1

kn∑

j=1

λm(Qnj )=
∑

n�1

λm(Pn) < ε.

Do there exist uncountable sets of zero measure? Such sets are easy to construct
if the dimension of the space is greater than one. In particular, examples of such
sets are provided by arbitrary proper affine subspaces. Such subspaces of maximal
dimension will be called planes. We will prove this result in full generality at the
end of Sect. 2.3.1, but now we establish it only for planes of a special form.

(8) Let m and k be positive integers, m� 2, 1 � k �m, and let c ∈R. Consider the
plane Hk(c) orthogonal to the kth coordinate axis:

Hk(c)=
{
x = (x1, . . . , xm) ∈R

m |xk = c
}
.

Then λm(Hk(c))= 0.

It suffices to prove that every bounded part of Hk(c) has zero measure. The latter
is true since such a part is contained in a cell of arbitrarily small measure (the kth
edge of the cell can be made arbitrarily small).

(9) Every set contained in a finite or countable union of planes perpendicular to
the coordinate axes has zero measure.

It follows that the measures of an open parallelepiped (a, b), the cell [a, b), and
the closed parallelepiped [a, b] coincide, because the boundary of a parallelepiped
has zero measure.

(10) There exist Lebesgue non-measurable sets.

We will prove a somewhat stronger assertion:

Every set of positive measure contains a Lebesgue non-measurable subset.

Indeed, let A ∈ Am and λm(A) > 0. We may assume without loss of generality
that the set A is bounded: ‖x‖ < R for x ∈ A. Let us introduce an equivalence
relation on A by assuming that x ∼ y if the difference x−y is a vector with rational
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coordinates, i.e., if x − y ∈ Q
m. Then A is partitioned into pairwise disjoint non-

empty classes consisting of equivalent points. Clearly, each such class is at most
countable. Using the axiom of choice, take a subset E in A that contains exactly one
point in common with each class. Let us check that E is not Lebesgue measurable.
Consider the rational translations of E, i.e., the sets of the form r + E = {r + x |
x ∈E} with r ∈Q

m (we retain the notation r for vectors in Q
m up to the end of the

proof). They are pairwise disjoint (otherwise E would contain two points from the
same equivalence class). Furthermore, since ‖x − y‖< 2R for x, y ∈ A, it is clear
that A is contained in the bounded set W =∨

‖r‖<2R(r +E).
Assume that E is measurable. As we will see below (see Theorem 2.4.1), a trans-

lation of a measurable set is again a measurable set of the same measure. Hence the
set W is measurable. Its measure is positive, because A⊂W and λm(A) > 0. In ad-
dition, it is finite, since W is bounded. Thus 0 < λm(W) <+∞. At the same time,
by the countable additivity of the Lebesgue measure,

λm(W)=
∑

‖r‖<2R

λm(r +E)=
∑

‖r‖<2R

λm(E).

But the sum on the right-hand side is either zero (if λm(E) = 0) or infinite (if
λm(E) > 0), and this is incompatible with the double inequality 0 < λm(W) <+∞.
Thus the assumption that the set E is measurable leads to a contradiction.

Note that we have proved a more general fact than the existence of Lebesgue
non-measurable sets. Indeed, our construction does not use any specific properties
of the Lebesgue measure except for the fact that it is finite on bounded sets and
translation-invariant. This means that non-measurable sets exist for any (non-zero)
measure that enjoys these two properties. In other words, such a measure cannot
be defined on all subsets of R

m. In this connection, observe that if we drop the
condition of countable additivity and content ourselves only with finite additivity,
then the situation is different: there exists a translation-invariant volume defined on
the system of all subsets of Rm that coincides with the Lebesgue measure on Am.

The complicated construction and the somewhat mysterious character of the con-
structed Lebesgue non-measurable set should not obscure the essence of the matter:
in a typical situation, when we apply the Carathéodory extension, not all sets turn
out to be measurable. An everyday illustration of this phenomenon is the following
ingenious example communicated to us by D.A. Vladimirov.

A number of shoes of the same color, model and size are heaped in a pile X.
Each proper pair (consisting of one left and one right shoe) has a price, and there is
a collection of several such pairs. Thus we have a measure (price) on a system of
subsets of X. However, it cannot be extended in a natural way to the system of all
subsets. Indeed, if we split the set formed by two proper pairs into two parts, one
consisting of the left shoes and the other one consisting of the right shoes, then the
total price of these parts (assuming that they have a price) should be the same as for
the original set. But then one of the parts must cost at least as much as a proper pair,
which is absurd.
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2.1.4 As follows from property (9), the space R
m with m� 2 contains uncountable

sets of zero measure. In the one-dimensional case, it is not as easy to give examples
of such sets. Here we will discuss an interesting example of this kind: the Cantor
set, which is obtained by deleting a countable set of open intervals from the segment
[0,1]. First we delete one interval, the middle third of the initial segment [0,1] (i.e.,
the interval (1/3,2/3)), then the middle thirds of the remaining two segments, and
so on. The points in [0,1] that do not belong to any of the deleted intervals form the
Cantor set C. Let us consider this construction in more detail.

Example (The Cantor1 set) Let � = [0,1], and let C1 be the set obtained from �

by deleting the open interval δ = (1/3,2/3):

C1 =� \ δ =
[

0,
1

3

]

∪
[

2

3
,1

]

.

We will call �0 = [0,1/3] and �1 = [2/3,1] the segments of the first rank. The set
C2 is obtained by deleting from �0 and �1 their middle thirds, i.e., the intervals
δ0 = (1/9,2/9), δ1 = (7/9,8/9). The set-theoretic difference �ε \ δε (ε = 0, 1)
consists of two segments; denote the left one by �ε0 and the right one by �ε1.
Thus C2 is the union of four segments �00, �01, �10, �11, which will be called
the segments of the second rank. For future use, we note that the segments of the
second rank are indexed by the pairs ε1ε2, where ε1 and ε2 independently take the
values 0 and 1. Note also that �ε1ε2 ⊂�ε1 .

Now the construction proceeds by induction. Assume that we have already con-
structed the set Cn consisting of 2n pairwise disjoint segments of the nth rank. It
is convenient to index these segments by the sequences ε1, . . . , εn, where εj may
take the value 0 or 1. For the segments of the first and the second rank, we have
already described these indices. We then proceed as follows. When constructing the
segments of the (n+ 1)th rank, we delete the middle third δε1,...,εn from each seg-
ment �ε1,...,εn of the nth rank. The set-theoretic difference �ε1...εn \ δε1...εn consists
of two segments of the (n+ 1)th rank; we denote the left one by �ε1...εn0 and the
right one by �ε1...εn1. Thus when passing from n to n+ 1 the number of segments
doubles and the length of these segments becomes three times less. The segments of
the (n+ 1)th rank are pairwise disjoint, and �ε1...εnεn+1 ⊂�ε1...εn . Let Cn+1 be the
union of all segments of the (n+ 1)th rank. The intersection C =⋂

n�1 Cn is called
the Cantor set. It has zero measure. Indeed, the length of each segment of the nth
rank is clearly equal to 1/3n. Hence the measure of the set Cn is equal to (2/3)n,
and the measure of the set C =⋂

n�1 Cn vanishes.
Now let us prove that the set C has the same cardinality as the set E of all binary

sequences, i.e., the cardinality of the continuum. Recall that a binary sequence is a
sequence every element of which is equal to 0 or 1.

Since for every binary sequence ε = {εn}n�1, the segment �ε1...εnεn+1 is con-
tained in �ε1...εn , the sequence {�ε1...εn}n�1 has a non-empty intersection, which

1Georg Ferdinand Ludwig Philipp Cantor (1845–1918)—German mathematician.
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obviously consists of a single point t (ε). For distinct binary sequences ε and ε′, the
points t (ε) and t (ε′) are distinct. Indeed, let ε = {εn}n�1, ε′ = {ε′n}n�1, and let k
be the first index such that εn �= ε′n. In other words,

ε = {ε1, . . . , εk−1, εk, . . .}, ε′ = {
ε1, . . . , εk−1, ε

′
k, . . .

}
and εk �= ε′k.

By the construction of the points t (ε) and t (ε′),

t (ε) ∈�ε1...εk−1εk , t
(
ε′

) ∈�ε1...εk−1ε
′
k
.

Since distinct segments of the kth rank are disjoint, t (ε) and t (ε′) cannot coincide,
which proves that the map ε �→ t (ε) is one-to-one. But every point in C belongs to
the intersection of a sequence of segments {�ε1...εn}n�1, so the constructed map is
onto. This completes the proof of the bijectivity of the map ε �→ t (ε) from E onto C.

EXERCISES In Exercises 1–12, by measurability we mean Lebesgue measura-
bility and λ stands for the Lebesgue measure of appropriate dimension.

1. Let E ⊂ R
m be a measurable set, 0 < λ(E) < +∞, and ε ∈ (0,1). Show that

there exists a cube Q such that λ(E ∩Q) > (1− ε)λm(Q).
2. Let E ⊂ R

m and 0 < t < λm(E). Show that in E there is a bounded subset A
such that λm(A)= t .

3. If the Lebesgue measure of a set A ⊂ R
m is greater than 1, then there exist

distinct points x, y ∈A such that x − y ∈ Z
m.

4. Let r > 2. Show that for almost all numbers x there exists a coefficient cx > 0
such that |x − k

n
|� cx

nr for all fractions k
n

.
5. Give an example of (pairwise distinct) subsets A1, . . . ,AN in [0,1] of mea-

sure 1
2 such that all elements of the corresponding canonical partition (see

Sect. 1.1.3) are intervals of equal length.
6. Show that the union of any (even uncountable) family of non-degenerate inter-

vals is measurable.
7. Show that a point t belongs to the Cantor set C if and only if it can be written

in the form t = 2
∑∞

n=1 εn3−n, where εn is equal to 0 or 1. Show that such a
representation is unique. Verify the equalities C + C = {s + t | s, t ∈ C} = [0,2]
and C − C = {s − t | s, t ∈ C} = [−1,1].

8. Let an > 0 (n� 0) be a sequence of numbers such that
∑∞

n=0 2nan < 1. Let us
imitate the construction of the Cantor set. First delete from the segment [0,1]
its middle part of length a0, i.e., the open interval δ = (

1−a0
2 ,

1+a0
2 ). From the

two remaining segments delete their middle parts of length a1, and so on. Show
that this construction yields a set of positive measure that has no interior points.

9. Using sets similar to those constructed in the previous exercise, show that
there exists a measurable set E ⊂ (0,1) such that for every non-empty interval
�⊂ (0,1), the sets �∩E and � \E have positive measure.

10. Show that the boundary of an open subset of the line can have positive measure.
11. Using the result of Exercise 1, show that if a set A is of positive measure, then

zero is an interior point of the set A−A= {x − y |x, y ∈A}.



48 2 The Lebesgue Measure

12. Let U be an ultrafilter in N that consists of infinite sets (see Sect. 1.1, Exer-
cise 12). With each set U ∈ U we associate the point xU =∑

n∈U 2−n ∈ [0,1]
and consider the set E = {xU |U ∈ U}. Show that it is not measurable. Hint.
Show that for every interval (k2−N, (k + 1)2−N) ⊂ (0,1) and every irrational
point z in this interval, the following alternative holds: either z ∈ E, z′ /∈ E, or
z /∈E, z′ ∈E, where z′ is the point symmetric to z with respect to the middle of
this interval. Assume the contrary and use the result of Exercise 1 with ε < 1/2.

2.2 Regularity of the Lebesgue Measure

In this section, we establish an important property of the Lebesgue measure, which
shows that it agrees with the topology. We will denote the Lebesgue measure on R

m

by λ without indicating the dimension.

2.2.1 We prove that every measurable set can be approximated by open sets.

Theorem For every measurable set E ⊂ R
m and every ε > 0 there exists an open

set G such that

G⊃E and λ(G \E) < ε.

Proof First assume that λ(E) <+∞. Using formula (3) from Sect. 2.1.2, find cells
Pn = [an, bn) such that

⋃

n�1

Pn ⊃E,

∞∑

n=1

λ(Pn) < λ(E)+ ε. (1)

Since the measure of a cell depends continuously on its vertices, we can choose
points a′n < an sufficiently close to an so that

λ
([
a′n, bn

))
< λ(Pn)+ ε

2n
for all n in N.

Set G=⋃
n�1(a

′
n, bn). Obviously,

E ⊂
⋃

n�1

Pn ⊂
⋃

n�1

(
a′n, bn

)=G⊂
⋃

n�1

[
a′n, bn

)
.

By the countable subadditivity of the Lebesgue measure,

λ(G)�
∑

n�1

λ
([
a′n, bn

))
<

∑

n�1

(

λ(Pn)+ ε

2n

)

=
∑

n�1

λ(Pn)+ ε < λ(E)+ 2ε (2)

(in the last transition we have used inequality (1)). Therefore,

λ(G \E)= λ(G)− λ(E) < 2ε.

Since ε is arbitrary, the theorem is proved for a set of finite measure.
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In the general case, we write E as the union of a sequence of sets of finite mea-
sure: E =⋃

n�1 En. As we have already proved, for each n there is an open set Gn

such that En ⊂Gn and λ(Gn \En) < ε/2n. Let us check that the set G=⋃
n�1 Gn

satisfies the desired conditions. Indeed,

E =
⋃

n�1

En ⊂
⋃

n�1

Gn =G and G \E =
⋃

n�1

(Gn \E)⊂
⋃

n�1

(Gn \En).

Using the countable subadditivity of λ, we obtain

λ(G \E)�
∑

n�1

λ(Gn \En) <
∑

n�1

ε

2n
= ε.

�

2.2.2 Let us mention several important corollaries of Theorem 2.2.1.

Corollary 1 For every measurable set E and every ε > 0 there exists a closed set
F such that F ⊂E and λ(E \ F) < ε.

Proof To prove this corollary, consider an open set G such that

G⊃Ec =R
m \E, λ

(
G \Ec

)
< ε.

Then the set F =Gc is of the desired form, since it is closed, contained in E, and
E \ F =G \Ec. �

Corollary 2 For every measurable set E the following equalities hold:

λ(E)= inf
{
λ(G) |G⊃E, G is an open set

}
,

λ(E)= sup
{
λ(F ) |F ⊂E, F is a closed set

}
.

The second formula can be refined:

λ(E)= sup
{
λ(K) |K ⊂E, K is a compact set

}
.

Proof The proof of the first two equalities follows immediately from the theorem
and Corollary 1. The fact that we may use only compact subsets follows from the
formula λ(F ) = limn→∞ λ(F ∩ [−n,n]m), which ensues from the continuity of λ

from below (see Sect. 1.3.3). It allows one to exhaust every closed subset F ⊂ E,
and hence the whole set E, by the compact sets F ∩ [−n,n]m with an arbitrary
accuracy. �

The property established in Corollary 2 is called the regularity of the Lebesgue
measure. It means that every measurable set can be approximated, with an arbitrarily
small change in the measure, by closed sets from the inside and by open sets from the
outside. Observe that we cannot swap the roles of closed and open sets. For instance,
let E be the set that consists of all rational points of the interval (0,1); obviously, it
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has zero (one-dimensional) Lebesgue measure. This set cannot be approximated by
ambient closed sets, because every such set contains the segment [0,1], so that its
measure is at least one. In a similar way, the complement of E in [0,1], which has
measure 1 but an empty interior, cannot be approximated by smaller open sets.

Remark The first equality in Corollary 2 remains valid for any (not necessarily mea-
surable) set if one replaces λ(E) by the outer measure λ∗(E).

Indeed, if λ∗(E) = +∞, then it is obvious by the monotonicity of the outer
measure, and if λ∗(E) < +∞, then one can argue in exactly the same way as in
the proof of inequality (2), but replacing λ(E) with λ∗(E).

The value λ∗(E) = sup{λ(F ) |F ⊂ E, F is a closed set} is sometimes called
the inner measure of E. As we have seen, the equality of the outer and the inner
measures is a necessary condition for a set to be measurable. One can prove (see
Exercise 1) that if λ∗(E) < +∞, then this condition is also sufficient. It was this
condition that Lebesgue used to define the measurability of a bounded set.

Corollary 3 Every measurable set E can be written in the form E = e∪⋃
n�1 Kn,

where {Kn}n∈N is an increasing sequence of compact sets and λ(e)= 0.

Proof It suffices to consider the case where E is bounded. By Corollary 2, there
exist compact sets Kn ⊂ E such that λ(E \ Kn) −→

n→∞ 0. We may assume that

Kn ⊂Kn+1 (otherwise replace the set Kn by the union K1 ∪ · · · ∪Kn). Put

e=E \
⋃

n�1

Kn.

Then E = e ∪⋃
n�1 Kn and λ(e)= 0, because λ(e)� λ(E \Kn) −→

n→∞ 0. �

Corollary 4 Every measurable set E can be written in the form E = (
⋂

n�1 Gn)\e,
where Gn are open sets and λ(e)= 0.

The proof of this corollary is left to the reader.
Corollaries 3 and 4 show that, up to sets of zero measure, every measurable set

is the union of a sequence of closed sets (i.e., an Fσ set) and the intersection of a
sequence of open sets (i.e., a Gδ set).

Recall that the elements of the minimal σ -algebra containing all open sets are
called Borel sets. Corollaries 3 and 4 imply the following.

Corollary 5 Every measurable set can be approximated from the inside and from
the outside by Borel sets of the same measure. In other words, if E is a measurable
set, then there exist Borel sets A and B such that

A⊂E ⊂ B, λ(B \A)= 0.

If λ(E) <+∞, then this corollary is a special case of Corollary 1.5.2.
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2.2.3 If we want to generalize the notion of regularity to other measures on R
m, we

must assume that these measures are defined on all open and closed sets, and hence
on the minimal σ -algebra containing these sets, i.e., on the σ -algebra of Borel sets.
Thus we introduce the following definition.

Definition A measure defined on the σ -algebra of Borel subsets of a topological
space X is called a Borel measure on X.

Theorem 2.2.1 remains valid for every Borel measure μ on an open set O
(O ⊂R

m) provided that this measure is finite on cells whose closures are contained
in O.

Indeed, the only specific property of the Lebesgue measure that we have used
in the proof of the theorem is that the measure of a cell depends continuously on
its vertices. In the general case, we can use instead the continuity of the measure
from above and argue in the following way. A cell P = [a, b) is the intersection
of the decreasing sequence of cells [a − 1

n
h, b), where h = b − a > 0. It is clear

that [a − 1
n
h, b] ⊂O for sufficiently large n (recall that P ⊂O). By the continuity

of μ from above, μ([a − 1
n
h, b)) −→

n→∞ μ(P ). Hence for every ε > 0 there is a cell

[a′, b) such that P ⊂ (a′, b), [a′, b] ⊂O, and μ([a′, b)) < μ(P )+ ε (for instance,
we can put a′ = a − 1

n
h for sufficiently large n). Using this fact, we can construct

cells [a′n, bn), a′n < an, satisfying (2) (with μ in place of λ), and then the proof of
Theorem 2.2.1 for the measure μ works without any modification.

All corollaries of Theorem 2.2.1 also remain valid in this more general situation.
As in the case of the Lebesgue measure, the property from Corollary 2 is called the
regularity of measure. Thus the following theorem holds.

Theorem Let O be an arbitrary open subset of the space Rm. If a Borel measure μ

on O is finite on cells whose closures are contained in O, then it is regular, i.e., for
every Borel set E, E ⊂O, the following equalities hold:

μ(E)= inf
{
μ(G) |G⊃E, G is an open set, G⊂O

}
,

μ(E)= sup
{
μ(F) |F ⊂E, F is a closed set

}
.

Corollary Let μ be a Borel measure on the space R
m. Then for every Borel set

E ⊂R
m of finite measure, the following equality holds:

μ(E)= sup
{
μ(K) |K ⊂E, K is a compact set

}
.

Proof Indeed, we may assume without loss of generality that μ is a finite mea-
sure (otherwise replace it with the measure μ̃ defined by the formula μ̃(A) =
μ(A∩E)). For a finite measure, the claim can be proved by analogy with the proof
of Corollary 2 from Sect. 2.2.2. �
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Note that a σ -finite Borel measure on the space Rm is not necessarily regular (see
Exercise 3). For further results on the regularity of Borel measures in metrizable
spaces, see Appendix 13.3.

EXERCISES

1. Show that the set whose inner and outer measures coincide and are finite is mea-
surable.

2. Show that the Carathéodory extension of an arbitrary regular measure is a regular
measure.

3. Show that the Borel measure on R generated by the unit masses at the points
1, 1

2 , . . . ,
1
n
, . . . is not regular.

2.3 Preservation of Measurability Under Smooth Maps

Let O be an open subset of the space R
m. By C1(O,Rn) we denote the set of all

smooth maps (i.e., maps that have one continuous derivative) from O to R
n. The

derivative of a smooth map � at a point x is denoted by �′(x). The open ball of
radius r centered at a point x is denoted by B(x, r).

2.3.1 Let us establish a simple sufficient condition for the measurability to be pre-
served. For brevity, we denote the Lebesgue measure on R

m by λ, without indicating
the dimension.

Theorem Let O be an open subset of the space R
m, and let � ∈ C1(O,Rm). Then

for every measurable set A, A⊂O, the set �(A) is also measurable. If λ(A)= 0,
then λ(�(A))= 0.

Proof As follows from the regularity of the Lebesgue measure (see Sect. 2.2.2,
Corollary 3), a measurable set A can be written in the form A = e ∪ ⋃

n�1 Kn,
where Kn are compact sets and e is a set of zero measure. Since the sets �(Kn) are
compact and

�(A)=�(e)∪
⋃

n�1

�(Kn),

it suffices to verify the last assertion of the theorem.
So, let λ(A)= 0. First assume that

A⊂ P, P ⊂O, where P ∈Pm.

Let L be the Lipschitz constant corresponding to P (see Lagrange’s inequality in
Sect. 13.7.2). Fix an arbitrary ε > 0 and, using Property (7) from Sect. 2.1.3, find a
sequence of cubic cells {Qn}n�1 such that

A⊂
⋃

n�1

Qn,
∑

n�1

λ(Qn) < ε.
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Obviously, A⊂⋃
n�1(Qn ∩ P). Let hn be the edge length of Qn. Then ‖x − y‖�

hn

√
m for all x, y in Qn, and hence ‖�(x)−�(y)‖ � L‖x − y‖ � Lhn

√
m for

x, y ∈Qn ∩ P . Thus the set �(Qn ∩ P ) is contained in a ball of radius Lhn

√
m

and, consequently, in a cube with edge length 2Lhn

√
m. Hence λ(�(Qn ∩ P)) �

(2Lhn

√
m)m ≡ Cλ(Qn). The set H =⋃

n�1 �(Qn ∩P) contains �(A) and, being
a union of compact sets, is measurable. Furthermore,

λ(H)�
∑

n�1

λ
(
�(Qn ∩ P)

)
� C

∑

n�1

λ(Qn) < Cε.

Thus the set �(A) is contained in a set of arbitrarily small measure. Since the
Lebesgue measure is complete, �(A) is measurable and has zero measure (see
Sect. 2.1.3, Property (4)).

Now consider the general case. By Theorem 1.1.7, the open set O can be written
as the union of a sequence of cells Pn whose closures are contained in O: O =⋃

n�1 Pn, P n ⊂O. In this case,

A=
⋃

n�1

(A∩ Pn), �(A)=
⋃

n�1

�(A∩ Pn).

As we have already proved, the sets �(A ∩ Pn) have zero measure. Therefore the
measure of the whole set �(A) is also zero. �

Corollary Let G be an open subset of the space R
m, let f ∈ C1(G), and let �f =

{(x, f (x)) |x ∈G} ⊂ R
m+1 be the graph of the function f (we identify the spaces

R
m+1 and R

m ×R in the natural way). Then λm+1(�f )= 0.

Proof Let O = G× R. Let �(x,y) = (x, f (x)) for points (x, y) in O. It is clear
that O is an open subset of the space R

m+1 and � ∈ C1(O,Rm+1). Obviously,
�f = �(e), where e = G × {0}. Since λm+1(e) = 0, the equality λm+1(�f ) = 0
follows from the theorem. �

The corollary implies, in particular, that the m-dimensional Lebesgue measure
of every proper affine subspace of Rm vanishes. Hence the measure of every paral-
lelepiped coincides, as we have already observed in Sect. 2.1.3, with the measure of
its closure and its interior. In a similar way, the measure of an open ball coincides
with the measure of its closure.

Remark Let us introduce an important class of maps which will be repeatedly used
in what follows.



54 2 The Lebesgue Measure

Definition Given a set E ⊂ R
m, one says that a map � : E → R

n satisfies the
Lipschitz condition2 on E if there exists a constant L such that

∥
∥�(x)−�

(
x′

)∥
∥ � L

∥
∥x − x′

∥
∥ for all x, x′ in E.

The number L is called the Lipschitz constant for �.

As follows from Lagrange’s inequality (see Sect. 13.7.2), a smooth map locally
satisfies the Lipschitz condition.

As one can see from the proof of the theorem, we have not used the smoothness
in full strength, but need only the Lipschitz condition. Hence the theorem remains
valid for every map that locally satisfies this condition. In particular, such maps send
sets of zero measure to sets of zero measure, i.e., have Luzin’s3 property (N).

2.3.2 Here we will show that the Lebesgue measurability of a set is not in general
preserved under a continuous map. Thus the Lipschitz condition, which guarantees
the measurability of the image of a measurable set (see the remark in the previous
section) cannot be replaced by the weaker continuity condition.

In order to check this, it suffices to construct a continuous map ϕ that sends a set
e of zero measure to a set ϕ(e) of positive measure. Indeed, in this case, taking a
non-measurable subset E of ϕ(e) (see Sect. 2.1.3), we will obtain that E = ϕ(e0)

with e0 ⊂ e. The set e0 is measurable (the Lebesgue measure is complete, so all
subsets of a set of zero measure are measurable), while its image E is not.

In order to construct such an example, restricting ourselves to the one-dimension-
al case, we use the Cantor function ϕ, which often turns out to be useful in similar
situations, because it has rather unusual properties. For example, it is continuous
and its derivative vanishes almost everywhere, but ϕ �≡ const (for other properties of
the Cantor function, see Exercises 3–5).

This function, defined on [0,1] and closely related to the Cantor set C (see
Sect. 2.1.4), is constructed as follows. By definition, ϕ(0) = 0, ϕ(1) = 1, and
on the middle third of the interval (0,1), i.e., for x ∈ [ 1

3 ,
2
3 ], the function ϕ is

constant and equal to the half-sum of its values at the endpoints of the interval:
ϕ(x)= 1

2 (ϕ(0)+ ϕ(1))= 1
2 . For each of the remaining intervals (0, 1

3 ) and ( 2
3 ,1),

we repeat the same procedure: at the middle third of the interval, the function ϕ

is constant and equal to the half-sum of its values at the endpoints of the interval
(i.e., ϕ(x) = 1

4 on [ 1
9 ,

2
9 ] and ϕ(x) = 3

4 on [ 7
9 ,

8
9 ]). Repeating this construction ad

infinitum, we will define ϕ on a dense subset of [0,1]. It remains to define it on the
complement of this set, i.e., on the set obtained from the Cantor set C by deleting
the endpoints of all complementary intervals. If we want to preserve the continuity
or the monotonicity on the whole interval [0,1], this can be done in a unique way.
To see this, it suffices to observe that at each step of our construction we obtain an
increasing function whose increments on intervals of length 1

3n do not exceed 1
2n .

The graph of the function ϕ (see Fig. 2.1) is sometimes called the Cantor staircase.

2Rudolf Otto Sigismund Lipschitz (1832–1903)—German mathematician.
3Nikolai Nikolaevich Luzin (1883–1950)—Russian mathematician.
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Fig. 2.1 Graph of the Cantor function

It follows from the construction that ϕ is constant on complementary intervals of
the Cantor set. Since their endpoints belong to C, we have ϕ(C) = ϕ([0,1]). Thus
the ϕ-image of the Cantor set, which is of zero measure, coincides with [0,1]. As
we have observed above, this implies that the image of some part of the Cantor set
is not measurable.

2.3.3 In conclusion of this section, we briefly discuss the preservation of Borel
measurability. There is a general result according to which a homeomorphic image
of a Borel set is again a Borel set. We confine ourselves to the proof of this assertion
under an additional assumption; this suffices for our purposes. The general result can
be proved using Theorem 13.2.3; we encourage the reader to do this (see Exercise 8).

Proposition Let � be a homeomorphism defined on a Borel set A. If the inverse
map �−1 satisfies the Lipschitz condition, then B =�(A) is a Borel set.

Proof Since the inverse map satisfies the Lipschitz condition and, consequently, is
uniformly continuous on B , it can be extended to a continuous map � : B→ R

m.
Let us check that

�−1(A)= B. (1)

If this equality is true, then, by Corollary 1 from Sect. 1.6.2, B is a Borel subset of
B (as the inverse image of a Borel set under a continuous map), and hence a Borel
subset of Rm (see Corollary 2 in Sect. 1.6.2).

Obviously, �−1(A)⊃ B . Hence, when proving equality (1), it suffices to check
the reverse inclusion. If it is false, then there is a point y0 ∈ B \ B such that
x0 = �(y0) ∈ A. Consider points yj ∈ B converging to y0 and set xj = �(yj ) =
�−1(yj ). Then, since � is continuous, we have xj = �(yj ) −→

j→∞ �(y0) = x0. At
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the same time, since � is continuous,

�(xj )=�
(
�−1(yj )

)= yj −→
j→∞�(x0) ∈�(A)= B.

This contradicts the fact that yj −→
j→∞ y0 /∈ B . �

We would like to draw the reader’s attention to the fact that a homeomorphism,
while preserving Borel measurability, does not in general preserve Lebesgue mea-
surability, even if it satisfies the additional condition from the proposition (see Ex-
ercise 5).

EXERCISES

1. Show that the graph of a function continuous in an open subset of Rm has zero
(m+ 1)-dimensional measure.

2. Let X be a measurable subset of Rm and F ∈ C(X,Rm). Show that F preserves
measurability if and only if it sends every set of zero (Lebesgue) measure to a set
of zero measure.

3. Establish the following properties of the Cantor function ϕ (see Sect. 2.3.2):

(a) ϕ(x)+ ϕ(1− x)= 1 for 0 � x � 1;
(b) ϕ(x/3)= ϕ(x)/2 for 0 � x � 1;
(c) ϕ(x + 2

3n )= ϕ(x)+ 1
2n for 0 � x � 1

3n ;
(d) ( x2 )

α � ϕ(x)� xα for 0 � x � 1, where α = log3 2.

4. What is the area of the region under the graph of the Cantor function?
5. Let C be the Cantor set, ϕ be the Cantor function (see Sect. 2.3.2), and g(x) =

x + ϕ(x) (x ∈ [0,1]). Show that:

(a) g is a homeomorphism;
(b) the measure of the set g(C) is equal to one;
(c) among the images of sets of zero measure there are non-measurable sets.

Thus the homeomorphism g does not preserve measurability.
6. One says that a function f on an interval [a, b] satisfies the Lipschitz condition

of order α (α > 0) if there exists a positive constant L such that |f (x)−f (y)|�
L|x − y|α for all x, y in [a, b]. Show that the Cantor function satisfies the Lips-
chitz condition of order α = log3 2.

7. Show that for every α ∈ (0,1) there exists a function that satisfies the Lipschitz
condition of order α and sends some set of zero measure to a set of positive mea-
sure (and, therefore, does not preserve Lebesgue measurability). Hint. Generalize
the construction of the Cantor function using the set described in Exercise 8 from
Sect. 2.1 instead of C.

8. Show that a homeomorphic image of a Borel set is again a Borel set. Hint. Use
Theorem 13.2.3 and the scheme of the proof of Proposition 2.3.3.
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2.4 Invariance of the Lebesgue Measure Under Rigid Motions

Recall that a rigid motion of the space Rm is the composition of a translation and an
orthogonal transformation. We begin with the study of the behavior of the Lebesgue
measure under translations.

Everywhere in this section, except for Sects. 2.4.5 and 2.4.6, we denote the
Lebesgue measure by λ, without indicating the dimension.

2.4.1 The translation by a vector v ∈ R
m is the map x �→ v + x (x ∈ R

m). The
image of a set E under this map will be denoted by v+E.

Theorem A translation sends a measurable set to a measurable set and preserves
the measure of a set. In other words, if v ∈ R

m, E ∈ Am, then v + E ∈ Am and
λ(v+E)= λ(E).

Proof The measurability of v +E follows immediately from Theorem 2.3.1, since
a translation is a smooth map. Hence, fixing an arbitrary vector v, we can define a
function μ on the σ -algebra Am by the formula μ(E) = λ(v + E) (E ∈ Am). We
leave the reader to check that μ is a measure. Since the translation by v sends a cell
[a, b) to the cell [a + v, b + v) with the same edge lengths, the measures μ and λ

coincide on the semiring of cells, and, by the uniqueness theorem for the extension
of a measure (see Sect. 1.5.1), they coincide on the whole σ -algebra Am. �

2.4.2 Now let us consider the problem of describing all translation-invariant mea-
sures in R

m. In order to exclude pathological cases (for instance, the counting mea-
sure, which is obviously invariant under any bijection), we impose a natural restric-
tion on the measures in question. It then turns out that every translation-invariant
measure is proportional to the Lebesgue measure.

Theorem Let μ be a measure defined on the algebra Am of Lebesgue measurable
sets. Assume that:

(a) μ is translation-invariant, i.e., μ(v +E)= μ(E) for every v in R
m and every

E in Am;
(b) the measure of every bounded measurable set is finite.

Then there exists a constant k, 0 � k <+∞, such that μ= kλ, i.e.,

μ(E)= kλ(E) for every set E in A
m. (1)

It is easy to see that condition (b) is equivalent to the assumption that the mea-
sures of all cells are finite, and, in view of condition (a), to the assumption that the
measure of at least one non-empty cell is finite. Equivalently, one might also require
that the measures of compact sets be finite.

Proof Set Q = [0,1)m. If equality (1) holds, then, obviously, k = μ(Q). It is this
number k that we will consider.
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Fig. 2.2 Partition of the unit square into congruent parts

(1) First let k = 1, i.e., μ(Q)= λ(Q)= 1. Let us check that μ= λ. As we noted
after formula (3) in Sect. 2.1.2, λ is the Carathéodory extension of the ordinary vol-
ume from the semiring Pm

r of cells with rational vertices. Hence, by the uniqueness
theorem, in order to prove that the measures λ and μ coincide, it suffices to verify
that they coincide on Pm

r . Since every cell with rational vertices is a disjoint union
of cubic cells with rational vertices, it suffices to check that λ and μ coincide on such
cells. Since every cell is a translation of a cell having a vertex at the origin, it suffices
to prove that the measures μ and λ coincide on cells of the form Qn = [0, 1

n
)m with

n ∈N.
The cell Q is the union of nm pairwise disjoint translations of the cell Qn (see

Fig. 2.2).
Hence nmμ(Qn)= μ(Q)= 1 and, consequently, μ(Qn)= n−m = λ(Qn). Thus

in the case under consideration the proof is complete.
(2) Now let k = μ(Q) be an arbitrary positive number. Consider the auxiliary

measure μ̃ = μ/k. Clearly, it is also translation-invariant, and μ̃(Q) = 1. As we
have already proved, such a measure coincides with λ, and hence (1) holds.

(3) If μ(Q)= 0, then μ(Rm)= 0, since the space Rm can be covered by a count-
able family of translations of the cell Q. Thus in this case μ is the zero measure,
and (1) holds with k = 0. �

Remark If a measure μ satisfying conditions (a) and (b) is defined not on the whole
σ -algebra Am, but on a subalgebra that contains all cells and the translations of all
sets belonging to this subalgebra (for example, on all Borel sets), then, as one can
see from the proof, Eq. (1) remains valid for all sets on which μ is defined.

2.4.3 From the above theorem and the arguments used in Sect. 2.1.3 when prov-
ing the existence of Lebesgue non-measurable sets, it follows that there does not
exist a non-zero measure defined on all subsets of Rm that is finite on all cells and
translation-invariant.
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If we drop the condition of countable additivity, then the situation changes. As
Banach4 proved, in every space R

m there exists a (non-unique) volume defined on
the ring of all bounded sets that is translation-invariant and coincides with the ordi-
nary volume on cells. In the two-dimensional case, one can even ensure that such
a volume is invariant not only under translations, but under all rotations. In spaces
of higher dimension, rotation-invariant volumes defined on all bounded sets cannot
exist, since there are “too many” rotations and the group of motions is “too non-
commutative” (see [N, Chap. III, Sect. 7, and Appendices]; for a discussion of this
question from a more general point of view, see [G]).

2.4.4 It turns out that the Lebesgue measure is invariant not only under translations,
but also under all orthogonal transformations.

Theorem An orthogonal transformation sends a measurable set to a measurable
set and preserves the measure of a set. In other words, if U : Rm → R

m is an or-
thogonal transformation and E ∈Am, then U(E) ∈Am and λ(U(E))= λ(E).

Proof The fact that an orthogonal transformation preserves measurability follows
from Theorem 2.3.1. In order to prove that it preserves the measure of a set, we will
use the theorem on translation-invariant measures.

On the σ -algebra Am consider the set function μ defined by the formula

μ(E)= λ
(
U(E)

) (
E ∈A

m
)
.

The reader can easily verify that μ is indeed a measure and that it is finite on cells.
Our aim is to prove that μ = λ. Let us check that the measure μ is translation-
invariant. Since U(v+E)=U(v)+U(E), it follows from the translation invariance
of λ that

μ(v+E)= λ
(
U(v +E)

)= λ
(
U(v)+U(E)

)= λ
(
U(E)

)= μ(E).

By Theorem 2.4.2, the measure μ is proportional to the Lebesgue measure: μ= kλ.
Finally, let us check that k = 1. Let B be an arbitrary ball centered at the origin.
Then U(B)= B , whence

kλ(B)= μ(B)= λ
(
U(B)

)= λ(B) > 0.

Therefore, k = 1, and the measures μ and λ coincide. �

Comparing the above theorem with Theorem 2.4.1, we obtain an important result.

Corollary The Lebesgue measure is invariant under rigid motions.

4Stefan Banach (1892–1945)—Polish mathematician.
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This invariance property of the Lebesgue measure allows one to compute the vol-
umes of rectangular parallelepipeds, since every such parallelepiped can be trans-
formed by a rigid motion into a parallelepiped with edges parallel to the coordinate
axes.

Example The measure of a rectangular parallelepiped is equal to the product of the
lengths of its edges.

First observe that the volumes of all parallelepipeds with a fixed vertex and fixed
edge lengths coincide (see the remark after Corollary 2.3.1). Since the Lebesgue
measure is translation-invariant, it suffices to compute the volume of an open paral-
lelepiped of the form

P =
{

m∑

j=1

tj vj

∣
∣
∣ 0 < tj < 1 for j = 1,2, . . . ,m

}

whose edges v1, . . . , vm are pairwise orthogonal. Let us normalize the vectors vj by
setting gj = vj

sj
, where sj = ‖vj‖ (j = 1, . . . ,m). Clearly, the vectors g1, . . . , gm

form an orthonormal basis in R
m. Consider the linear transformation U that sends

the canonical basis vectors e1, . . . , em to the vectors g1, . . . , gm. This is an or-
thogonal transformation, and vj = sjU(ej ). By the definition of a parallelepiped,
P = U(R), where R is the parallelepiped

∏m
j=1(0, sj ). Since orthogonal transfor-

mations preserve measure,

λ(P )= λ(R)=
m∏

j=1

sj =
m∏

j=1

‖vj‖.

In Sect. 2.5.3, we will consider the problem of computing the volume of a (not
necessarily rectangular) parallelepiped with given edge lengths in full generality.

2.4.5 By Theorem 2.4.2, we can speak about the Lebesgue measure on any finite-
dimensional vector space X. Indeed, since X is algebraically isomorphic to R

m

for m = dimX, we can use this isomorphism to “transfer” the Lebesgue measure
from R

m to X and obtain a measure μ that is translation-invariant and finite on
bounded subsets. As follows from Theorem 2.4.2, any other measure satisfying
these properties is proportional to μ. Thus, applying this construction with another
isomorphism, we will obtain a measure proportional to μ. If X is a Euclidean space,
and we consider only isomorphisms that preserve the inner product, then the mea-
sure μ is determined uniquely, since, by Theorem 2.4.4, a linear isometry preserves
the Lebesgue measure.

Let us mention one important fact, which will be used in Sect. 2.5 and then
in Chap. 8. For k < m, we can naturally define the k-dimensional Lebesgue
measure on all k-dimensional affine subspaces of R

m. By definition, it is the
image of the Lebesgue measure λk in R

k under some rigid motion (we iden-
tify R

k with the subspace consisting of all points whose last m − k coordi-
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nates are equal to zero). In other words, if L is a k-dimensional affine sub-
space in R

m and T : Rm → R
m is a rigid motion such that L = T (Rk), then

a set E ⊂ L is called measurable if its inverse image T −1(E) ⊂ R
k is mea-

surable, and we set the Lebesgue measure of E equal to λk(T
−1(E)). Since

the Lebesgue measure is invariant under rigid motions (see Corollary 2.4.4), the
Lebesgue measure on a subspace does not depend on the motion used in its con-
struction. It also follows immediately from the definition that the Lebesgue mea-
sures in subspaces transform into each other under rigid motions; in this sense,
they form a coherent family. The Lebesgue measure on a k-dimensional affine
subspace will be denoted by the same symbol λk as the measure on R

k . It
will always be clear from the context on which subspace the measure is consid-
ered.

2.4.6 Let us find out how the measure of a set in an affine subspace L ⊂ R
m of

dimension m− 1 is related to the measure of its orthogonal projection to R
m−1 (as

usual, we regard R
m−1 as a subspace in R

m, identifying a vector (x1, . . . , xm−1)

in R
m−1 with the vector (x1, . . . , xm−1,0) in R

m). In both subspaces, the (m− 1)-
dimensional Lebesgue measures will be denoted by λm−1.

Let P be the orthogonal projection from R
m to R

m−1. We exclude the trivial case
where P(L) �= R

m−1, i.e., assume that the normal N to L is not orthogonal to the
vector em = (0, . . . ,0,1), which is the normal to R

m−1. Let θ be the angle between
these normals. Then cos θ = 〈N,em〉/‖N‖ �= 0. Let us establish a relationship be-
tween the measure of a set and the measure of its projection which generalizes a
well-known fact from elementary geometry.

Proposition For every measurable set E ⊂ L,

λm−1
(
P(E)

)= |cos θ |λm−1(E).

Proof We will assume without loss of generality that L is a linear subspace (other-
wise we can translate it). Since the restriction of the projection P to L is a linear
isomorphism, the function

μ : E �→ λm−1
(
P(E)

)
(E ⊂ L)

is obviously a measure on the σ -algebra of Lebesgue measurable sets that is trans-
lation-invariant and finite on bounded sets. Hence (see Theorem 2.4.2) μ= k λm−1,
where k is a positive coefficient. In other words,

λm−1
(
P(E)

)= k λm−1(E)

for every measurable set E, E ⊂ L.
In order to find k, consider an orthonormal basis v1, . . . , vm−1 in L with

v1, . . . , vm−2 ∈ R
m−1. Then v1, . . . , vm−2,P (vm−1) is an orthogonal basis in

R
m−1. Moreover, ‖P(vm−1)‖ = |cos θ |. The unit cube Q spanned by the edges

v1, . . . , vm−1 lies in L, and its projection is the rectangular parallelepiped spanned
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by the edges v1, . . . , vm−2,P (vm−1), whose measure is equal to λm−1(P (Q)) =
‖P(vm−1)‖ = |cos θ |. Therefore,

|cos θ | = λm−1
(
P(Q)

)= k λm−1(Q)= k. �

Note that this proposition obviously remains valid in the case where cos θ = 0.

EXERCISES

1. The homothety in the space R
m with ratio k > 0 is the map x �→ kx. Arguing

as in the proof of Theorem 2.4.1, show that it sends a measurable set E to a
measurable set and the measure of the image of E is equal to kmλm(E).

2. Show that if a set A⊂R is measurable, then the set B = {(x, y) ∈R
2 |x−y ∈A}

is also measurable.
3. How large can the area of a measurable set contained in the square [0,6]2 be if

this set is disjoint with its translation by the vector (1,2)?
4. We say that a set E ⊂R

m generates a tiling if the translations of E by all vectors
with integer coordinates form a partition of Rm, i.e.,

R
m =

∨

n∈Zm

(n+E).

Show that the measure of a measurable set that generates a tiling is equal to one.
5. Let E ⊂ R

m, λm(E) > 0, and let A be a dense set in R
m. Show that λm(Rm \⋃

a∈A(a +E))= 0. Show that we can drop the assumption of E being measur-
able by replacing the condition λm(E) > 0 with λ∗m(E) > 0.

Given a number a, the translation by a modulo 1 is the map x �→ {x + a}, where
{x+a} is the fractional part of x+a (i.e., {x+a} = x+a−[x+a]). Two subsets of
the interval [0,1) are said to be congruent modulo 1 if one of them can be obtained
from the other by a translation modulo 1.

6. By analogy with Theorem 2.4.1, show that the Lebesgue measure on [0,1) is
invariant under translations modulo 1: they send measurable sets to measurable
sets and preserve the measure of a set. Extend this result to the multi-dimensional
case, replacing the interval [0,1) by the cubic cell [0,1)m.

7. Using the construction of a non-measurable set (see Sect. 2.1.3), show that there
exists a set E ⊂ [0,1) with the following properties:

(a) the outer measure of E is equal to one;
(b) there exists a sequence of pairwise disjoint subsets of [0,1) congruent to E

modulo 1.

2.5 Behavior of the Lebesgue Measure Under Linear Maps

Now we turn to the question of how the Lebesgue measure changes under an arbi-
trary linear transformation V : Rm → R

m. If V is not invertible, then V (Rm) is a
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proper subspace of Rm and λm(V (Rm))= 0 (see the remark after Corollary 2.3.1),
so that the image of every set has zero measure. In what follows, we exclude this
degenerate case and consider only invertible linear transformations. Recall that the
determinant of a linear transformation acting on a finite-dimensional space is, by
definition, the determinant of the matrix of this transformation (in an arbitrary ba-
sis).

2.5.1 Let us first prove one auxiliary result.

Lemma Let V :Rm→R
m be an invertible linear transformation. Then there exist

orthonormal bases {gj }mj=1, {hj }mj=1 and positive numbers s1, . . . , sm such that

V (x)=
m∑

j=1

sj 〈x,gj 〉hj for all x ∈R
m. (1)

Moreover, |detV | = s1 · · · sm.

The notation 〈x, y〉 denotes the inner product of x and y.

Proof Let V ∗ be the adjoint of V . Consider the self-adjoint transformation W =
V ∗V . As we know from linear algebra, there exists an orthonormal basis g1, . . . , gm

consisting of the eigenvectors of W . Let c1, . . . , cm be the corresponding eigenval-
ues. They are positive, because the quadratic form 〈W(x), x〉 = ‖V (x)‖2 is positive
definite. Set sj =√cj (1 � j �m). For every vector x we have

x =
m∑

j=1

〈x,gj 〉gj and V (x)=
m∑

j=1

〈x,gj 〉V (gj )=
m∑

j=1

sj 〈x,gj 〉hj ,

where hj = 1
sj

V (gj ). These vectors form an orthonormal system, because

〈hk,hj 〉 = 1

sksj

〈
V (gk),V (gj )

〉= 1

sksj

〈
W(gk), gj

〉= 1

sksj

〈
s2
k gk, gj

〉

=
{

0 if k �= j,

1 if k = j.

Since the determinant detW is equal to the product of all eigenvalues,

(detV )2 = detV ∗V = detW =
m∏

j=1

cj .

Therefore, |detV | =∏m
j=1 sj . �
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2.5.2 Now we can find out how the Lebesgue measure changes under a linear trans-
formation. In this and the next subsection, we denote the Lebesgue measure by λ

without indicating the dimension.

Theorem If V : Rm → R
m is a linear transformation and a set E, E ⊂ R

m, is
measurable, then the set V (E) is also measurable and λ(V (E))= |det(V )|λ(E).

Thus the absolute value of the determinant has a simple geometric interpretation:
it is the ratio of the measure of V (E) to the measure of E for any measurable E.

Proof The fact that the image of a measurable set under any linear transformation
is also measurable is a special case of Theorem 2.3.1. We have already seen that the
desired assertion is true for non-invertible transformations. So in what follows we
assume that V is invertible.

We define a measure μ on Am by the formula

μ(E)= λ
(
V (E)

) (
E ∈A

m
)
.

We leave the reader to check that μ is indeed a measure. It is translation-invariant:

μ(c+E)= λ
(
V (c+E)

)= λ
(
V (c)+ V (E)

)= λ
(
V (E)

)= μ(E).

Hence, by Theorem 2.4.2, μ is proportional to the Lebesgue measure: μ = kλ,
where k is a non-negative coefficient. In order to find this coefficient, we use the
lemma to represent V in the form (1) and observe how the unit cube Q spanned by
the vectors g1, . . . , gm is being transformed. Since V (gj ) = sjhj , the image of Q

is the rectangular parallelepiped with edges sjhj . Since |detV | =∏m
j=1 sj , we see

that

k = kλ(Q)= μ(Q)= λ
(
V (Q)

)=
m∏

j=1

‖sjhj‖ =
m∏

j=1

sj = |detV |. �

Let us mention a special case of this result which is constantly used in elemen-
tary geometry for computing areas and volumes: relation between the measures of
similar sets.

The homothety in the space Rm with ratio k, k > 0, is the map x �→ kx (x ∈R
m).

The image of a set E under this map will be denoted by kE.
It is obvious that a homothety is a linear map which in every basis is represented

by the diagonal matrix with all diagonal entries equal to k. We obtain the following
special case of the above theorem.

Corollary 1 Let k be an arbitrary positive number. Then kE ∈ Am and λ(kE) =
kmλ(E) for any measurable set E.

Corollary 2 The measure of an m-dimensional ball with an arbitrary center and
radius r is equal to αm rm, where αm is the measure of the unit ball.
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This assertion follows from the fact that an arbitrary ball B(x0, r) can be obtained
from the unit ball by a homothety and a translation: B(x0, r)= x0 + rB(0,1).

Since an ellipsoid with semi-axes a1, . . . , am can be obtained from the unit ball
by dilations (with ratio ai along the ith axis, i = 1, . . . ,m), its volume is equal to
αma1 · · ·am.

Note also that the measure of an open convex set C is equal to the measure of its
closure. Indeed, we may assume that 0 ∈ C. Then C ⊂ C = C ∪ ∂C ⊂ kC for every
k > 1. Therefore, λ(C)� λ(C)� λ(kC)= kmλ(C). Taking the limit as k→ 1, we
obtain the desired equality. It easily implies that λ(∂C)= 0 (even if λ(C)=+∞).

2.5.3 Extending the a = 0 case of the definition from Sect. 1.1.6, we define the n-
dimensional parallelepiped in R

m (n�m) spanned by linearly independent vectors
{vj }nj=1 as the set

P(v1, . . . , vn)=
{

n∑

j=1

tj vj

∣
∣
∣ 0 < tj < 1 for j = 1,2, . . . , n

}

.

As before, the vectors vj will be called the edges of the parallelepiped P .
To avoid unnecessary stipulations, we keep the notation P(v1, . . . , vn) in the case

where the vectors v1, . . . , vn are linearly dependent, even though such a set cannot
actually be called a parallelepiped.

Let us compute the n-dimensional volume of the parallelepiped P(v1, . . . , vn).
First consider the case where n=m. Let e1, . . . , em be the canonical basis vectors,
and let V be the linear transformation that sends them to the vectors v1, . . . , vm.
Obviously, P(v1, . . . , vm) is the V -image of the open cube Q= (0,1)m. Using The-
orem 2.5.2, we obtain

λ
(
P(v1, . . . , vm)

)= λ
(
V (Q)

)= ∣
∣det(V )

∣
∣. (2)

In order to express the volume of the parallelepiped P(v1, . . . , vm) directly in
terms of the vectors v1, . . . , vm, we need to use the notion of Gram determinant
(which is perhaps familiar to the reader from algebra). Recall the corresponding
definition.

Definition The Gram5 determinant �(v1, . . . , vn) of a set of vectors v1, . . . ,

vn ∈R
m is the determinant of the Gram matrix

⎛

⎜
⎜
⎜
⎝

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

⎞

⎟
⎟
⎟
⎠

,

whose entries are the pairwise inner products of the vectors v1, v2, . . . , vn.

5Jørgen Pedersen Gram (1850–1916)—Danish mathematician.
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The Gram matrix is the matrix of the positive semidefinite quadratic form

n∑

j,k=1

〈vj , vk〉tj tk =
∥
∥
∥
∥
∥

n∑

j=1

tj vj

∥
∥
∥
∥
∥

2

.

Hence the Gram determinant is non-negative (this result also follows from the the-
orem proved below). It is clear that if the vectors v1, . . . , vn are linearly dependent,
then the rows of the Gram matrix are also linearly dependent and, consequently,
�(v1, . . . , vn)= 0.

For n=m, the Gram determinant has a simple geometric interpretation.

Theorem �(v1, . . . , vm)= λ2(P (v1, . . . , vm)).

Note that this equality is also obviously true in the case where the vectors
v1, . . . , vm are linearly dependent.

Proof Consider the linear transformation V : Rm → R
m that sends the canonical

basis vectors to the vectors v1, . . . , vm. In the canonical basis, V is represented by
the matrix W whose columns are the vectors v1, . . . , vm. By (2),

λ
(
P(v1, . . . , vm)

)= ∣
∣det(V )

∣
∣= ∣

∣det(W)
∣
∣.

On the other hand, the product WT W is precisely the Gram matrix of the system
under consideration (here WT is the transpose of W ). Hence

λ2(
P(v1 . . . , vm)

)= det
(
WT

)
det(W)= det

(
WT W

)= �(v1, . . . , vm). �

The geometric interpretation of the Gram determinant also remains valid in the
case where the number of vectors v1, . . . , vn is less than the dimension of the space.
Indeed, these vectors, as well as the set P(v1, . . . , vn), lie in a subspace L, their
linear hull. If they are linearly independent, then dimL= n. Since L is isomorphic
to R

n as a Euclidean space, the Lebesgue measure is defined in L, and the theorem
continues to hold:

�(v1, . . . , vn)= λ2
n

(
P(v1, . . . , vn)

)
.

Thus the volume of a parallelepiped with edges v1, . . . , vn is the square root of the
corresponding Gram determinant.

Knowing the geometric interpretation of the Gram determinant, we can describe
how the (n-dimensional) measure changes under a linear transformation from R

n

to R
m for n <m.

Proposition Let V :Rn→R
m (n�m) be a linear map. If E ∈An, then

λn

(
V (E)

)=
√

det
(
WT W

) · λn(E)

(here W is the matrix of V in the canonical basis).
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Proof First let rank(V ) = n. The set V (E) is measurable by the definition of the
Lebesgue measure on the space X = V (Rn) (see Sect. 2.4.5). In order to com-
pute λn(V (E)), we introduce an auxiliary measure μ by setting μ(E)= λn(V (E))

(E ∈An). As the reader can easily verify, this measure is translation-invariant and
hence proportional to the Lebesgue measure.

It is clear that the proportionality coefficient is equal to μ(Q), where Q= [0,1)n.
Let us find it using the geometric interpretation of the Gram determinant. Let
v1, . . . , vn be the V -images of the canonical basis vectors of V (obviously, they
are the columns of W ). Hence WT W is the Gram matrix of the vectors v1, . . . , vn.
On the other hand, one can easily see that V (Q) is simply the parallelepiped
P(v1, . . . , vn) spanned by the vectors v1, . . . , vn. By the theorem,

λ2
n

(
P(v1, . . . , vn)

)= �(v1, . . . , vn)= det
(
WT W

)
.

Therefore, μ(Q)= λn(V (Q))=√
det(WT W).

If rank(V ) < n, then the set V (E) is contained in a subspace of dimension
less than n, and hence its n-dimensional measure vanishes. The value det(WT W)

also vanishes, since it is the Gram determinant of the linearly dependent vectors
v1, . . . , vn. �

As is well known from linear algebra, for a matrix W with m rows and n (n�m)

columns, the following Binet6–Cauchy7 formula holds. Let A ⊂ {1,2, . . . ,m},
cardA= n, and let WA be the n× n matrix obtained from W by deleting all rows
with indices not in A. The Binet–Cauchy formula says that

det
(
WT W

)=
∑

A

det2(WA).

This equality has a beautiful geometric interpretation. By the above proposition,
the left-hand side is simply the squared measure of the set C = V (Q), where
V :Rn→R

m is the map corresponding to the matrix W and Q is an arbitrary set of
measure one. Consider the orthogonal projection PA from R

m to the n-dimensional
subspace LA spanned by the canonical basis vectors with indices in A. Clearly,
PA ◦ V is the map corresponding to the matrix WA. Hence, up to sign, det(WA) is
precisely the measure of the projection PA(C). Thus the Binet–Cauchy formula can
be rewritten in the form

λ2
n(C)=

∑

A

λ2
n

(
PA(C)

)
. (3)

In particular, the squared volume of an n-dimensional parallelepiped contained in
the space R

m (m � n) is the sum of the squared volumes of its projections to all

6Jacques Philippe Marie Binet (1786–1856)—French mathematician.
7Augustin-Louis Cauchy (1789–1857)—French mathematician.
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possible subspaces LA. If n = 1, then such a parallelepiped is just an interval and
PA(C) are its projections to the coordinate axes, so that formula (3) turns into the
Pythagorean theorem. In the case n = m − 1, formula (3) (and hence the Binet–
Cauchy formula) can be proved as follows. Let N be the unit vector orthogonal to
the subspace containing the parallelepiped C. Its coordinates are cos θ1, . . . , cos θm,
where θ1, . . . , θm are the angles between N and the coordinate axes. As we proved
in Proposition 2.4.6, the area of the projection of C to the subspace orthogonal to
the ith coordinate axis is equal to |cos θi |λm−1(C). Since

∑m
i=1 cos θ2

i = ‖N‖2 = 1,
multiplying this equation by λ2

m−1(C) yields formula (3) in the case under consid-
eration.

We leave the reader to check that formula (3) is valid not only for a paral-
lelepiped, but also for any measurable set lying in an n-dimensional subspace of Rm.

2.5.4 Using the geometric interpretation of the Gram determinant, we can general-
ize a well-known fact from elementary geometry: the volume of a parallelepiped is
the area of its base multiplied by the height.

Consider a parallelepiped P = P(v1, . . . , vm) and write vm in the form vm =
y + z, where y is the projection of vm to the subspace spanned by v1, . . . , vm−1
and z (the “height” of P ) is perpendicular to v1, . . . , vm−1. It is natural to say that
the parallelepiped P(v1, . . . , vm−1) (of dimension m − 1) is the base of P . Since
y = c1v1 + · · · + cm−1vm−1, multiplying the rows of the Gram matrix with indices
1, . . . ,m− 1 by the numbers c1, . . . , cm−1 and subtracting them from the last row,
we see that �(v1, . . . , vm) is equal to the determinant of the matrix

⎛

⎜
⎜
⎜
⎝

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vm〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vm〉

...
...

. . .
...

〈z, v1〉 〈z, v2〉 . . . 〈z, vm〉

⎞

⎟
⎟
⎟
⎠

.

We have 〈z, vj 〉 = 0 for j = 1, . . . ,m− 1 and 〈z, vm〉 = 〈z, z〉 = ‖z‖2, whence

�(v1, . . . , vm)= �(v1, . . . , vm−1)‖z‖2.

According to the geometric interpretation of the Gram determinant, this means that
the volume of the m-dimensional parallelepiped P(v1, . . . , vm) is equal, just as in
the three-dimensional case familiar to the reader, to the (m−1)-dimensional volume
of its base multiplied by the height:

λm

(
P(v1, . . . , vm)

)= λm−1
(
P(v1, . . . , vm−1)

) · ‖z‖. (4)

Let us obtain a natural and important bound on the volume of a parallelepiped P ,
which is an easy corollary of (4). Since, by the Pythagorean theorem, ‖vm‖2 =
‖y‖2 + ‖z‖2 � ‖z‖2, it follows from (4) that

λm

(
P(v1, . . . , vm)

)
� λm−1

(
P(v1, . . . , vm−1)

) · ‖vm‖.
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Repeating this estimate, we obtain the important Hadamard8 inequality:

λm

(
P(v1, . . . , vm)

)
� ‖v1‖ · · · ‖vm‖. (5)

In other words, the volume of the parallelepiped with edges v1, . . . , vm does not ex-
ceed the product of their lengths. Clearly, this bound is sharp: a parallelepiped with
edges of given lengths has the largest volume if its edges are pairwise perpendicular.

We can write the Hadamard inequality in purely analytic terms, without involving
the notion of volume. Let A be an arbitrary m × m matrix, and let ak be its kth
column (k = 1, . . . ,m). Then

∣
∣det(A)

∣
∣ � ‖a1‖ · · · ‖am‖.

This inequality is also called the Hadamard inequality. It follows from inequality (2)
applied to the map V corresponding to the matrix A and inequality (5):

∣
∣det(A)

∣
∣= λm

(
P(a1, . . . , am)

)
� ‖a1‖ · · · ‖am‖.

2.5.5 In conclusion of this section, we consider an interesting geometric problem
related to convex bodies, i.e., convex compact sets with a non-empty interior. Con-
siderable information about a convex body can be obtained if we know an ellipsoid
of maximal volume contained in it (by an ellipsoid we mean an affine image of a
closed ball). The problem of the existence and uniqueness of such an ellipsoid is
solved by the following theorem.

Theorem Among the ellipsoids contained in a convex body K ⊂R
m, there exists a

unique ellipsoid of maximal volume.

Proof Let us first verify that such an ellipsoid exists. If a sequence of ellipsoids
En ⊂K is such that

λ(En) −→
n→∞ V = sup

{
λ(E) |E ⊂K, E is an ellipsoid

}
,

then, passing if necessary to a subsequence, we may assume that both the centers cn

of these ellipsoids and the vectors v
(n)
i (i = 1, . . . ,m) corresponding to their semi-

axes have limits: cn→ c and v
(n)
1 → v1, . . . , v

(n)
m → vm as n→∞. It follows that K

contains the ellipsoid E with center c and semi-axes v1, . . . , vm. As we have noted
in Sect. 2.5.2, its volume is equal to (hereafter αm is the volume of the unit ball)

λ(E)= αm ‖v1‖ · · · ‖vm‖ = αm lim
n→∞

∥
∥v(n)

1

∥
∥ · · ·∥∥v(n)

m

∥
∥= lim

n→∞λ(En)= V.

Hence E is an ellipsoid of maximal volume for K .

8Jacques Salomon Hadamard (1865–1963)—French mathematician.
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Now assume that there exist two ellipsoids of maximal volume. Since an affine
transformation sends an ellipsoid to an ellipsoid and preserves the ratio of vol-
umes, we may assume without loss of generality that one of the ellipsoids coincides
with the unit ball B centered at the origin and the semi-axes of the other ellip-
soid (denoted by E) are parallel to the coordinate axes. Let c be the center of E and
a1, . . . , am be the lengths of its semi-axes. Then y ∈ E if and only if y can be written
in the form y = c+ (a1x1, . . . , amxm), where x = (x1, . . . , xm) ∈ B .

Consider the new ellipsoid E with center c
2 and semi-axes (parallel to the coordi-

nate axes) of lengths 1+a1
2 , . . . , 1+am

2 . Each point z of E can be written in the form

z = 1
2c + ( 1+a1

2 x1, . . . ,
1+am

2 xm), where x = (x1, . . . , xm) ∈ B . Hence z = x+y
2 ,

where y = c+ (a1x1, . . . , amxm) ∈ E . Thus E ⊂ 1
2B + 1

2E ⊂K . At the same time,

αm = λm(B)� λ(E)= αm

m∏

i=1

1+ ai

2
� αm

m∏

i=1

√
ai = αm

(the product a1 · · ·am is equal to 1, because αm = λ(E) = αm a1 · · ·am). Since the
outer terms of the last inequality coincide, it is an equality. Hence 1+ai

2 =√ai and,
consequently, ai = 1 for all i. Thus E is a unit ball. If it does not coincide with B ,
then, as the reader can easily verify, the convex hull of these balls contains an ellip-
soid of revolution (obtained by rotating about the axis passing through their centers)
whose volume is greater than αm, a contradiction. �

This theorem makes it possible to prove that for a “sufficiently symmetric” body,
the ellipsoid of maximal volume is a ball. This is the case, for example, for the cube,
for the octahedron determined by the inequality

∑m
i=1 |xi |� 1, and for the regular

simplex.
It turns out that the ellipsoid of maximal volume occupies a sufficiently large part

of a convex body. The following theorem holds.

Theorem (John9) Let E be the ellipsoid of maximal volume for a convex body
K ⊂R

m. Then:

(1) if the center of E is at the origin, then K ⊂mE ;
(2) if the body K is centrally symmetric, then K ⊂√mE .

Considering a simplex and a cube shows that the inequalities in the theorem are
sharp.

Proof (1) As in the proof of the previous theorem, we may assume that E coincides
with the unit ball. To prove the inclusion K ⊂ mE , assume to the contrary that
‖x‖> m for some point x ∈K . We may assume that x = (c,0, . . . ,0) with c > m.
Let T be the convex hull of the ball E and the point x. Obviously, T ⊂ K . Take a

9Fritz John (1910–1994)—German mathematician.
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small number ε � 0 and consider the ellipse (x1−ε)2

(1+ε)2 + x2
2

b2 � 1 in the plane OX1X2

with b2 = c−1−2ε
c−1 . We leave the reader to check that this ellipse is contained in the

section of T by the plane OX1X2. Hence the ellipsoid E(ε) obtained by rotating
the constructed ellipse about the axis OX1 is contained in T and, consequently,
in K . Its first semi-axis has length 1+ ε, and the other semi-axes have length b. The
volume V (ε)= λ(E(ε)) can be computed by the formula

V (ε)= αm(1+ ε)bm−1 = αm(1+ ε)

(
c− 1− 2ε

c− 1

)m−1
2

.

Clearly, V (0) = αm and V ′(0) = αm
c−m
c−1 > 0. Hence for ε > 0 close to zero,

λ(E(ε)) = V (ε) > αm, but E(ε) ⊂ K . This contradicts the fact that the ellipsoid
of maximal volume for K is the unit ball.

(2) If the body K is centrally symmetric with respect to the origin, then the same
is true for the ellipsoid of maximal volume E . Indeed, since the “reflected” ellipsoid
−E is contained in K , it follows from the uniqueness of the ellipsoid of maximal
volume that E =−E , i.e., the center of E coincides with the origin.

The remaining part of the proof for the case of a centrally symmetric body is
similar to the above arguments. Again assuming that E is the unit ball, we now
define a body T as the convex hull of the ball E and the points ±(c,0, . . . ,0) for

c >
√
m, and consider the ellipse

x2
1

(1+ε)2 + x2
2

b2 � 1 with b2 = c2−(1+ε)2

c2−1
inscribed

into the two-dimensional section of T by the plane OX1X2. We leave the reader to
complete the proof. �

EXERCISES

1. Let us regard R
2 as the set of complex numbers. How does the Lebesgue measure

change under the transformation z �→ az, where a is a fixed complex number?
2. Let A,B : Rm → R

m be linear maps. Show that if ‖A(x)‖ � ‖B(x)‖ for every
x ∈R

m, then λm(A(E))� λm(B(E)) for every measurable set E.
3. Let E ⊂ R+ and S = {x ∈ R

m| ‖x‖ ∈ E}. Show that these sets are either both
Lebesgue measurable or both non-measurable. Show that each of the equalities
λ1(E)= 0 and λm(S)= 0 implies the other.

2.6 �Hausdorff Measures

Here we will construct a family of measures μp (p > 0) generalizing the Lebesgue
measure. For p =m, the measure μp in R

m will be proportional to λm, and for p =
1,2, . . . ,m− 1, we will obtain generalizations of the Lebesgue measures defined so
far only on (measurable) subsets of p-dimensional subspaces.

The construction of the measures μp is based on an important geometric charac-
teristic of a set, its diameter. Recall that the diameter of a set E is the value

diam(E)= sup
{‖x − y‖ |x, y ∈E

}
.
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The diameter of the empty set is assumed to be zero.

2.6.1 Let ε > 0. A family of sets {eα}α∈A is called an ε-cover of a set E ⊂R
m if

E ⊂
⋃

α∈A
eα and diam(eα)� ε for every α ∈A.

In what follows, we will need only covers that are at most countable, so hereafter
we assume that the set A is countable without stating this explicitly. We may assume
without loss of generality that A=N. We do this in most cases, but sometimes it is
convenient to use other sets of indices. It is clear that for every ε > 0, the space R

m

and, consequently, every subset of Rm, has an ε-cover.
For arbitrary p > 0 and E ⊂R

m, set

μp(E, ε)= inf

{ ∞∑

j=1

(
diam(ej )

2

)p ∣
∣
∣
∣ {ej }j�1 is an ε-cover of E

}

.

Obviously, the function ε �→ μp(E, ε) (which may take infinite values) is de-
creasing, and hence the limit

lim
ε→+0

μp(E, ε)= sup
ε>0

μp(A, ε)

exists.

Definition The function

E �→ μ∗p(E)= lim
ε→+0

μp(E, ε),

defined on all subsets of Rm, is called the p-dimensional outer Hausdorff 10 mea-
sure.

We will soon see that μ∗p is indeed an outer measure in the sense of Defini-
tion 1.4.2.

Note also that, interpreting the space R
m as a subspace of Rn (n > m), we may

regard every set E contained in R
m as a subset of Rn. The diameters of a set com-

puted in the spaces R
m and R

n, obviously, coincide, so that the value μ∗p(E) does
not depend on the ambient space. Thus, speaking about the outer Hausdorff measure
of a set E, we may, and shall, omit reference to the space in which we regard it to
be embedded. When it is necessary to specify the domain of the function μ∗p , we
mention it explicitly.

In this connection, note that for subsets of the space R
m, the outer measures μ∗p

are of interest only for p �m, since otherwise μ∗p ≡ 0 (see the end of Sect. 2.6.6).

10Felix Hausdorff (1868–1942)—German mathematician.
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2.6.2 Let us establish the basic properties of the function μ∗p .

(1) 0 � μ∗p(E)�+∞, μ∗p(∅)= 0.
(2) Monotonicity: if E ⊂ F , then μ∗p(E)� μ∗p(F ).

These properties are obvious.

(3) μ∗p is an outer measure: if E ⊂⋃∞
n=1 En, then μ∗p(E)�

∑∞
n=1 μ

∗
p(En).

Proof We will assume that
∑∞

n=1 μ
∗
p(En) <+∞, since otherwise the inequality in

question is trivial. Fix a number ε > 0 and consider ε-covers {e(n)j }j�1 of the sets
En such that

∞∑

j=1

(diam(e
(n)
j )

2

)p

< μp(En, ε)+ ε

2n
(n= 1,2, . . . ).

Obviously, the family {e(n)j }n,j�1 is an ε-cover of E, and, therefore,

μp(E, ε)�
∞∑

n,j=1

(diam(e
(n)
j )

2

)p

�
∞∑

n=1

(

μp(En, ε)+ ε

2n

)

�
∞∑

n=1

μ∗p(En)+ ε.

Passing to the limit as ε→ 0, we obtain the desired result. �

On sets that are sufficiently far from each other, the function μ∗p is additive. More
precisely, sets E and F are called separated if

inf
{‖x − y‖ |x ∈E, y ∈ F

}
> 0.

(4) For separated sets, μ∗p(E ∨ F)= μ∗p(E)+μ∗p(F ).

Proof Since μ∗p(E ∨ F) � μ∗p(E) + μ∗p(F ) by the subadditivity of μ∗p , we only
need to prove the reverse inequality.

Let 0 < ε < inf{‖x − y‖ |x ∈ E, y ∈ F }. Consider an arbitrary ε-cover {ej }j�1
of the set E∨F . By the choice of ε, for every index j at least one of the intersections
ej ∩E, ej ∩ F is empty, whence

∞∑

j=1

(
diam(ej )

2

)p

�
∑

ej∩E �=∅

(
diam(ej )

2

)p

+
∑

ej∩F �=∅

(
diam(ej )

2

)p

.

Since the families {ej }ej∩E �=∅ and {ej }ej∩F �=∅ are ε-covers of the sets E and F ,
respectively, we have

∞∑

j=1

(
diam(ej )

2

)p

� μp(E, ε)+μp(F, ε).
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Taking the lower boundary of the left-hand side over all ε-covers, we see that
μp(E ∨ F,ε) � μp(E, ε) + μp(F, ε). To complete the proof, it suffices to let
ε→ 0. �

(5) Let E ⊂R
m, and let � :E→R

n be a map satisfying the Lipschitz condition:
∥
∥�(x)−�(y)

∥
∥ � L‖x − y‖ for x, y ∈E,

where L is a constant. Then

μ∗p
(
�(E)

)
� Lpμ∗p(E).

In particular, μ∗p(�(E))= 0 if μ∗p(E)= 0.

Proof Let μ∗p(E) <+∞, and let {ej }j�1 be an ε-cover of E such that

∞∑

j=1

(
diam(ej )

2

)p

< μp(E, ε)+ ε.

We will assume that ej ⊂ E for all j (otherwise replace ej by ej ∩ E). Since
diam(�(ej )) � L diam(ej ), the sets �(ej ) form an Lε-cover of the set �(E),
whence

μp

(
�(E),Lε

)
�

∞∑

j=1

(
diam(�(ej ))

2

)p

� Lp
∞∑

j=1

(
diam(ej )

2

)p

< Lp
(
μp(E, ε)+ ε

)
.

Passing to the limit as ε→ 0, we obtain the desired inequality. �

Remark For μ∗p(E) = 0, the equality μ∗p(�(E)) = 0 can be obtained under less
restrictive assumptions on the map �. It suffices to require that it is only locally
Lipschitz (this condition is satisfied, in particular, for maps that are smooth in a
neighborhood of E). Then one should split E into countably many parts on which
� satisfies the Lipschitz condition (with a separate constant for each part), apply the
obtained result to each of them, and then use the countable subadditivity of μ∗p .

To formulate the next property, we introduce two important classes of continuous
maps.

Definition Let E ⊂ R
m. We say that a map � : E→ R

n is a weak contraction of
E if ‖�(x)−�(y)‖� ‖x − y‖ for all x, y in E.

We say that a continuous map � : E → R
n is expanding on E if ‖�(x) −

�(y)‖� ‖x − y‖ for all x, y from E.
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In other words, a weak contraction is a map that satisfies the Lipschitz condition
with Lipschitz constant 1. It is not necessarily invertible. However, an expanding
map is invertible, and its inverse is a weak contraction. In particular, any expanding
map is a homeomorphism. We emphasize that the image of a Borel set under an
expanding map is again a Borel set (this is a direct corollary of the proposition from
Sect. 2.3.3).

(6) If � is a weak contraction of a set E, then μ∗p(�(E))� μ∗p(E). For an expand-
ing map, the reverse inequality holds.

This follows immediately from Property (5).

(7) If a map � preserves the distances between points of a set E, then μ∗p(�(E))=
μ∗p(E). In particular, the outer Hausdorff measure is invariant under transla-
tions and orthogonal transformations.

The next result follows from Property (5).

(8) The outer Hausdorff measures of similar sets are proportional. More precisely,

μ∗p(a E)= |a|p μ∗p(E) where aE = {ax |x ∈E} (a ∈R).

2.6.3 As we know (see Sect. 1.4.3), every outer measure generates a measure on
the σ -algebra of measurable sets. The measure obtained by restricting the outer
measure μ∗p to the σ -algebra of measurable (i.e., μ∗p-measurable) sets is called the
Hausdorff measure and is denoted by μp . Which sets are measurable with respect to
this measure? The theorem below provides a wide class of such sets. In its proof it is
convenient to use the simple and important geometric notion of the ε-neighborhood
of a set.

Definition Let ε > 0 and E ⊂ R
m. The set Eε formed by the points that lie at

distance at most ε from E is called the ε-neighborhood of E:

Eε =
⋃

x∈E
B(x, ε).

Obviously, Eε are open sets that grow with ε: Eε ⊂ Eδ if 0 < ε < δ. Note also
that

(E )ε =Eε, (Eε)δ =Eε+δ for any ε > 0, δ > 0, and
⋂

ε>0

Eε =E.

All these equalities are easy to verify.

Theorem Borel sets are μ∗p-measurable.

Proof Since the measurable sets form a σ -algebra, it suffices to check that any
closed set F is measurable. By the definition of measurability, we must check that
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μ∗p(E) = μ∗p(E ∩ F) + μ∗p(E \ F) for every set E ⊂ R
m. By the subadditivity,

μ∗p(E)� μ∗p(E ∩ F)+μ∗p(E \ F), so it remains to show that

μ∗p(E)� μ∗p(E ∩ F)+μ∗p(E \ F). (1)

When proving this inequality, we may assume that μ∗p(E) <+∞.
Let ε > 0, and let Fε be the ε-neighborhood of F . Put An = E \ F1/n. Then the

sets An and E ∩ F are obviously separated, and, by Property (4),

μ∗p(E)� μ∗p
(
(E ∩ F)∪An

)= μ∗p(E ∩ F)+μ∗p(An).

To obtain (1) by passing to the limit in this inequality, we should check that

μ∗p(An)→ μ∗p(E \ F) as n→∞. (2)

Since F is closed,
⋂

ε>0 Fε = F , whence E \ F =⋃
n�1 An. Set Bj =Aj+1 \Aj .

Now E \F =An∨∨
j�n Bj and, since μ∗p is monotone and countably subadditive,

μ∗p(An)� μ∗p(E \ F)� μ∗p(An)+
∑

j�n

μ∗p(Bj ) (for every n ∈N).

Hence if the series
∑

j�1

μ∗p(Bj ) (3)

converges, then the difference μ∗p(E \F)−μ∗p(An) can be bounded by the remain-
der of a convergent series, which implies (2). To prove that the series (3) converges,
we use the fact that the sets Bk and Bl are separated for |k − l|> 1 (which is left to
the reader to check). It follows that for every N

N∑

j=1

μ∗p(B2j )= μ∗p

(
N∨

j=1

B2j

)

� μ∗p(E) <+∞.

Hence the series
∑∞

j=1 μ
∗
p(B2j ) converges. In a similar way we verify that the series

∑∞
j=1 μ

∗
p(B2j+1) converges. This ensures the convergence of the series (3), which,

as we have already observed, suffices to complete the proof of the theorem. �

We complement the obtained result with an assertion showing that any set (not
necessarily measurable) is contained in a Borel set of the same Hausdorff measure.
For the Lebesgue measure, we have already met a similar result (for a measurable
set) at the end of Sect. 2.2.2.

Proposition For every set E, E ⊂ R
m, there exists a Borel set C such that E ⊂ C

and μ∗p(E)= μp(C).
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Proof We will assume that μ∗p(E) < +∞ (otherwise we can take R
m as C). For

every n ∈N, find a 1
n

-cover {e(n)j }∞j=1 of E such that

∞∑

j=1

(diam(e
(n)
j )

2

)p

< μp

(

E,
1

n

)

+ 1

n
,

and let Cn =⋃∞
j=1 e

(n)
j . Since the diameter of a set coincides with the diameter of

its closure,

μp

(

Cn,
1

n

)

�
∞∑

j=1

(diam(e
(n)
j )

2

)p

< μp

(

E,
1

n

)

+ 1

n
.

It is clear that the Borel set C =⋂∞
n=1 Cn contains E, and for every n,

μp

(

C,
1

n

)

� μp

(

Cn,
1

n

)

� μp

(

E,
1

n

)

+ 1

n
� μp

(

C,
1

n

)

+ 1

n
.

Passing to the limit as n→∞, we see that μ∗p(E)= μp(C). �

2.6.4 Now let us show that in the case p = m the Hausdorff measure essentially
coincides with the m-dimensional Lebesgue measure. We will need the following
easy estimate.

Lemma If Q= [0,1]m is the unit cube, then 0 <μ∗m(Q) <+∞.

Proof To verify the left inequality, observe that every set e is contained in a closed
ball of radius diam(e). Hence every cover {ej }j�1 of the cube Q generates a cover
of Q by closed balls Bj of radii rj = diam(ej ). By the countable subadditivity of
the Lebesgue measure, we have

1= λm(Q)�
∞∑

j=1

λm(Bj )=
m∑

j=1

αmrmj = 2mαm

∞∑

j=1

(
diam(ej )

2

)m

,

where αm = λm(B(0,1)). Hence

1

2mαm

�
∞∑

j=1

(
diam(ej )

2

)m

for an arbitrary ε-cover {ej }j�1 of the cube Q. Therefore, μm(Q,ε) � 2−m/αm,
whence μm(Q)= supε>0 μm(Q,ε)� 2−m/αm.

To prove the right inequality, split the cube Q into Nm congruent cubes Qj .

The diameter of each of them is equal to
√
m

N
. Hence they form a

√
m

N
-cover of the
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cube Q. Then

μm

(

Q,

√
m

N

)

�
Nm
∑

j=1

(
diam(Qj )

2

)m

=Nm

(√
m

2N

)m

= 2−mm
m
2 .

Therefore,

μ∗m(Q)= lim
N→∞μm

(

Q,

√
m

N

)

� 2−mm
m
2 <+∞. �

Theorem The Hausdorff measure μm is proportional to the Lebesgue measure λm.

Proof Let Am be the σ -algebra of Lebesgue measurable subsets of Rm and Ãm be
the σ -algebra of μ∗m-measurable sets.

Both measures λm and μm are translation-invariant, and μm([0,1]m) <+∞ by
the lemma. By Theorem 2.4.2 and the remark after it, these measures are propor-
tional at least on the σ -algebra of Borel sets, and the proportionality coefficient is
positive because μm([0,1]m) > 0. It follows that on Borel sets they vanish or do not
vanish simultaneously. Since both measures are complete, Proposition 2.6.3 implies
that Am = Ãm, and on this σ -algebra the measures are proportional. �

It easily follows from this theorem that for k = 1,2, . . . ,m − 1, a similar re-
sult holds for the restrictions of the Hausdorff measure μk to k-dimensional affine
subspaces.

Later, in Chap. 6, we will derive a precise formula that shows how the Lebesgue
measure changes under a diffeomorphic transformation. Now we only mention a
qualitative result following from the theorem and Property (6) from Sect. 2.6.2.

Corollary The outer Lebesgue measure does not increase under weak contractions
and does not decrease under expanding maps.

One should be careful when considering the problem of whether the image of
a measurable set under an expanding map is measurable. Of course, this is only a
problem in the case of a non-smooth expanding map. The inverse of an expanding
map, which is Lipschitz, preserves Lebesgue measurability (see Sect. 2.3.1). But
the map itself does not necessarily have this property: it can expand a set of zero
measure too much (see Exercise 5 in Sect. 2.3). At the same time, as we have already
observed, the narrower class of Borel sets is preserved under expanding maps.

2.6.5 As we have proved in Theorem 2.6.4, the measures λm and μm are propor-
tional. The computation of the proportionality coefficient is based on two geometric
results, which are of independent interest.

Lemma (On exhaustion by balls) Every non-empty open subset G of the space R
m

can be written as the union of a sequence of pairwise disjoint balls Bn and a set of
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zero measure e:

G= e ∨
∞∨

n=1

Bn.

The diameters of the balls may be chosen arbitrarily small.

Proof The proof will be divided into two steps. First we show that in every bounded
open set G, G �=∅, one can find pairwise disjoint balls B1, . . . ,BN such that

λm

(
G \ (B1 ∨ · · · ∨BN)

)
< θλm(G)

(the coefficient θ = θm ∈ (0,1) depends only on the dimension of the space).
Let us split the set G into cubic cells Qn with rational vertices (see Sect. 1.1.7).

Since they can be further split into smaller parts, we may assume that the diameters
of these cells are arbitrarily small. Since λm(G) <+∞, for sufficiently large N we
have

λm(G)=
∞∑

n=1

λm(Qn) < 2
N∑

n=1

λm(Qn).

Let Bn be the open ball inscribed into the cell Qn (the centers of Bn and Qn coin-
cide, and the radius rn of the ball is equal to half the length of the edge). The volume
of the ball constitutes a fraction of the volume of the cell that depends only on the
dimension:

λm(Bn)= αmrmn =
αm

2m
λm(Qn)≡ α̃mλm(Qn),

where αm = λm(B(0,1)). Hence

N∑

n=1

λm(Bn)= α̃m

N∑

n=1

λm(Qn) >
α̃m

2
λm(G).

Therefore,

λm

(
G \ (B1 ∨ · · · ∨BN)

)= λm(G)−
N∑

n=1

λm(Bn) < λm(G)− α̃m

2
λm(G).

Thus we may set θ = 1− α̃m/2.
Let us proceed to the second step of the proof, first assuming that the set G

is bounded. As we have just seen, we can remove from G a finite collection of
pairwise disjoint balls B1, . . . ,BN1 so that the measure of the remaining set is less
than θλm(G). Removing from G the closures of these balls, we obtain an open
set G1 ⊂ G with λm(G1) < θλm(G). Now we can repeat this construction with
G1, finding a finite collection of pairwise disjoint balls BN1+1, . . . ,BN2 such that
the measure of the remaining part of the set G1 is less than θλm(G1). Removing
from G1 the closures of these balls, we obtain an open set G2 ⊂G1 with λm(G2) <
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θλm(G1) < θ2λm(G). Continuing by induction, we construct a sequence of pairwise
disjoint balls Bn, Bn ⊂G, and a sequence of nested open sets Gj , G⊃G1 ⊃G2 ⊃
. . . , such that

G \
⋃

n�1

Bn ⊂Gj and λm(Gj ) < θjλm(G) for every j.

It remains to observe that the set e = G \∨
n�1 Bn has zero measure, since it is

contained in the union of the sets
⋂

j�1 Gj and
⋃

n�1 ∂Bn.
If the set G is not bounded, it can be written as the union of a set of zero measure

and a sequence of pairwise disjoint bounded open sets. We will obtain the desired
decomposition applying the assertion already proved to each of these parts. �

Another proof of this lemma can be obtained from the Vitali theorem (see Corol-
lary 2 in Sect. 2.7.3).

We will also need another geometric fact. Namely, the so-called isodiametric
inequality, which can be stated as follows (see Sect. 2.8.3):

Among all compact sets of a given diameter, the ball has the largest volume.

Now we can find the proportionality coefficient between the measures λm

and μm.

Proposition λm = αmμm.

Proof It suffices to establish the equality λm(E)= αmμm(E) for at least one set of
positive finite measure.

Let {ej }j�1 be an ε-cover of a non-empty open bounded subset G in R
m. Note

that, by the isodiametric inequality, λm(ej )� αm(
diam(ej )

2 )m. Hence

λm(G)�
∞∑

j=1

λm(ej )�
∞∑

j=1

αm

(
diam(ej )

2

)m

= αm

∞∑

j=1

(
diam(ej )

2

)m

.

Taking the lower boundary of the right-hand side over all ε-covers, and then passing
to the limit in ε, we obtain

λm(G)� αmμm(G). (4)

On the other hand, by the lemma, the set G can be written as the union of a
sequence of pairwise disjoint balls Bj = B(xj , rj ) and a set e of zero Lebesgue
measure. Then

λm(G)=
∞∑

j=1

λm(Bj )= αm

∞∑

j=1

rmj .

The radii of the balls may be chosen arbitrarily small. We will assume that all of
them are less than ε.
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Since μm(e) = λm(e) = 0, we have μm(e, ε) = 0, and hence there exists an
ε-cover {ej }j�1 of the set e such that

∞∑

j=1

(
diam(ej )

2

)m

< ε.

Thus the sequences {Bj }j�1 and {ej }j�1 together form an ε-cover of G, and, con-
sequently,

μm(G,ε)�
∞∑

j=1

rmj +
∞∑

j=1

(
diam(ej )

2

)m

<
1

αm

λm(G)+ ε.

Passing to the limit as ε → 0, we obtain an upper bound on μm(G): μm(G) �
1
αm

λm(G). Together with (4) this yields the desired result. �

2.6.6 In conclusion let us discuss the dependence of the value μ∗p(E) on p. Ob-
viously, μ∗p(E) decreases as p grows. Moreover, it turns out that μ∗q(E) = 0 if
μ∗p(E) <+∞ for some p < q . Indeed, let 0 < ε < 1, and let {ej }j�1 be an ε-cover
of E such that

∞∑

j=1

(
diam(ej )

2

)p

< 1+μp(E, ε)� 1+μ∗p(E) <+∞.

Then

μq(E, ε) �
∞∑

j=1

(
diam(ej )

2

)q

�
(
ε

2

)q−p ∞∑

j=1

(
diam(ej )

2

)p

<

(
ε

2

)q−p(
1+μ∗p(E)

)
.

Passing to the limit as ε→ 0, we see that

μ∗q(E)= lim
ε→0

μq(E, ε)= 0.

The obtained result can also be interpreted as follows: if 0 <μ∗p(E) <+∞, then
μ∗q(E)=+∞ for q < p and μ∗q(E)= 0 for q > p. It follows that for every set E
we have

inf
{
q > 0 |μ∗q(E)= 0

}= sup
{
q > 0 |μ∗q(E)=+∞}

.

This critical value characterizing the set E is of special importance. It is called the
Hausdorff dimension of E and is denoted by dimH (E) (if μ∗q(E)= 0 for all q > 0,
then, by definition, dimH (E)= 0). It follows from Lemma 2.6.4 that μ∗q(E)= 0 if
E ⊂R

m and q > m. Thus the Hausdorff dimension of every subset of Rm does not
exceed m. It is equal to m if the outer Lebesgue measure of the set is positive.
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EXERCISES

1. Without using Proposition 2.6.5, show directly that μ1([a, b])= (b−a)/2 and,
consequently, λ1 = 2μ1.

2. What is the Hausdorff dimension of a countable set? Show that

dimH

(⋃

n�1

En

)

= sup
n

dimH (En).

3. Two points x, y ∈R
m are called ε-distinguishable if ‖x − y‖� ε. Show that

dimH (E)� lim
ε→+0

log(NE(ε))

| log ε| ,

where NE(ε) is the maximum number of pairwise ε-distinguishable points con-
tained in a bounded set E ⊂ R

m. Considering the set E = {1,2−p,3−p, . . .}
with p > 0, show that this inequality cannot be replaced by an equality.

4. Show that the Hausdorff dimension does not increase under a map satisfying
the Lipschitz condition and hence is preserved under a diffeomorphism.

5. Show that the Hausdorff dimension of the Cantor set is equal to log3 2.
6. Show that for x � 0, the Cantor function ϕ satisfies the equality ϕ(x) =

2pμp([0, x] ∩ C), where C is the Cantor set and p = dimH (C).
7. Modifying the construction of the Cantor set, show that for every p, 0 <p < 1,

there exists a compact set E contained in [0,1] whose Hausdorff dimension is
equal to p. Illustrate with examples that each of the following three cases is
possible: μp(E)= 0, μp(E)=+∞, 0 <μp(E) <+∞.

8. Show that there exists a set contained in [0,1] for which the Lebesgue measure
is equal to zero and the Hausdorff dimension is equal to one.

9. Show that in the lemma on exhaustion by balls (see Sect. 2.6.5), the ball can
be replaced with a bounded measurable set whose measure is positive and co-
incides with the measure of its closure (e.g., a convex body).

10. Consider a sequence of balls in R
m whose radii tend to zero and whose total

volume is infinite. Show that one can put a finite number of such balls into the
cube so that they fill at least 99 % of its volume.

11. Let G and A be bounded open subsets of Rm, A being convex. Consider a spe-
cial method of exhaustion of G which successively removes from G the maxi-
mum possible sets similar to A. That is, at the first step we find the maximum
coefficient c1 > 0 such that some translation x1 + c1A of the set c1A is con-
tained in G (such a coefficient exists). Then we put G1 =G\(x1+c1A) and, re-
peating the procedure, construct a set G2, and so on. Show that λm(Gn) −→

n→∞ 0.

12. A subset E of the space R
m is called negligible if λm(Eε) = o(ε) as ε→ 0

(here Eε is the ε-neighborhood of E). Show that if E is negligible, then
μ∗m−1(E)= 0.
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2.7 �The Vitali Theorem

In this section, we prove two theorems on covers used in the study of the properties
of measurable sets and functions (see Chap. 4). We denote the Lebesgue measure
on R

m by λ without indicating the dimension; given a ball B , we write r(B) for its
radius and B∗ for the ball of radius 5r(B) with the same center.

2.7.1 We will establish one fact of independent interest before proving the Vitali
theorem which is the main result of this section.

Theorem Let B be a collection of balls that form a cover of a bounded set E

(E ⊂R
m). If the radii of the balls are bounded, then we can extract from this col-

lection a sequence (finite or not) of pairwise disjoint balls Bk such that

E ⊂
⋃

k�1

B∗k .

Proof We will assume without loss of generality that E ∩ B �= ∅ for all balls B

from B. It is clear that in this case the set
⋃

B∈B B is bounded.
We will construct the desired sequence of balls Bk = B(xk, rk) by induction. For

the sake of uniformity, let B = B1 and R1 = sup{r(B) |B ∈ B1}. Choose B1 ∈ B1 so
that r1 = r(B1) > R1/2. Assume that pairwise disjoint balls B1, . . . ,Bn and subsets
B1, . . . ,Bn of the initial collection B have already been constructed. Let

Bn+1 =
{

B ∈ Bn

∣
∣
∣B ∩

n⋃

k=1

Bk =∅

}

.

If Bn+1 �=∅, then we put Rn+1 = sup{r(B) |B ∈ Bn+1} and choose a ball Bn+1 so
that rn+1 = r(Bn+1) > Rn+1/2, and so on. Thus either the set Bn+1 is non-empty at
each step and we obtain an infinite sequence of balls, or Bn+1 =∅ at some step and
the process terminates. Let us consider both possibilities, starting with the second
one.

Let Bn+1 =∅ and x be an arbitrary point from E. It belongs to some ball B =
B(a, r) ∈ B, and B ∩⋃n

k=1 Bk �= ∅. Let j be the smallest of the indices k such
that B ∩ Bk �=∅. Then r � Rj (for j = 1 this inequality is trivial, and for j > 1 it

follows from the fact that B is disjoint with the union
⋃j−1

k=1 Bk). Let us check that
x ∈ B∗j . Indeed, since the balls B and Bj have a non-empty intersection,

‖x − xj‖< diam(B)+ r(Bj )= 2r + rj � 2Rj + rj < 5rj

(the last inequality holds, because rj > Rj/2 by construction).
Now consider the main case, where the sequence of balls {Bk}k�1 is infinite.

First of all, observe that the series
∑

k�1 λ(Bk) converges. Indeed, the balls Bk are
pairwise disjoint by construction. Hence the sum of the series is simply the measure
of the bounded set

⋃
k�1 Bk (at the beginning of the proof, we have observed that
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the union of all balls from B is bounded). From the convergence of the series it
follows immediately that rk → 0.

Let x ∈E, and let B be a ball from B such that x ∈ B . Let us check that

B ∩
∞⋃

k=1

Bk �=∅. (1)

Indeed, otherwise B ∩⋃n
k=1 Bk =∅. Then 0 < r(B)� Rn+1 < 2rn+1 for every n,

which is impossible since rn → 0. It follows from (1) that the intersection B ∩ Bk

is not empty for some indices k. Let j be the smallest of them. Repeating the above
argument, we see that x ∈ B∗j . �

Note that, as one can see from the proof, the conclusion of the theorem holds for
every sequence of balls {Bk}k�1 from the cover B satisfying the following condition
for every n:

Bn+1 ∩
n⋃

k=1

Bk =∅, 2r(Bn+1) > sup

{

r(B)

∣
∣
∣B ∩

n⋃

k=1

Bk =∅

}

. (2)

2.7.2 The theorem can be substantially refined if the cover satisfies an additional
condition.

Definition A collection B of open balls is called a Vitali11 cover of a set E

(E ⊂R
m) if for every point x in E, there is an arbitrarily small ball in B con-

taining x.

Theorem (Vitali) In every Vitali cover B of a bounded set E there exists a sequence
(finite or not) of balls Bk satisfying the following conditions:

(1) the balls Bk are pairwise disjoint;
(2) E ⊂⋃

k�1 B
∗
k ;

(3) λ(E \⋃
k�1 Bk)= 0.

Note that we do not assume that the set E is measurable.

Proof Discarding, if necessary, balls with too large radii, we assume that r(B) < 1
for all balls B in B. Then we may apply Theorem 2.7.1. Let {Bk}k�1 be the sequence
of balls constructed in that theorem. It satisfies conditions (1) and (2). Let us check
that it also has Property (3).

If this sequence is finite and consists of n balls, then E ⊂⋃n
k=1 Bk . Indeed, the

finiteness means that B ∩⋃n
k=1 Bk �= ∅ for every B ∈ B. Since every point in E

belongs to a ball with arbitrarily small radius, this would be impossible unless there

11Giuseppe Vitali (1875–1932)—Italian mathematician.
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are points in E not belonging to
⋃n

k=1 Bk . Therefore, E \⋃n
k=1 Bk ⊂⋃n

k=1 ∂Bk ,
and hence condition (3) is satisfied.

Now consider the case where the sequence {Bk}k�1 is infinite. Let us check that
for every n

E \
n⋃

k=1

Bk ⊂
∞⋃

k=n+1

B∗k . (3)

Let Bn+1 be the set of balls constructed in the proof of Theorem 2.7.1. It forms
a Vitali cover of the set En = E \⋃n

k=1 Bk , and the sequence of balls {Bn+k}k�1

satisfies condition (2). Hence, by Theorem 2.7.1, En ⊂⋃∞
k=1 B

∗
n+k . Therefore, for

every n we have

E \
∞⋃

k=1

Bk ⊂
(

n⋃

k=1

∂Bk

)

∪En ⊂
(

n⋃

k=1

∂Bk

)

∪
( ∞⋃

k=n+1

B∗k

)

.

Moreover,

λ

(
n⋃

k=1

∂Bk ∪
∞⋃

k=n+1

B∗k

)

�
∞∑

k=n+1

λ
(
B∗k

)= 5m

∞∑

k=n+1

λ(Bk) −→
n→∞ 0

(the last sum tends to zero as the remainder of a convergent series). Thus the set
E \⋃∞

k=1 Bk is contained in a set of arbitrarily small measure, which implies (3). �

Remark Splitting an arbitrary set into bounded parts, one can easily show that
claims (1) and (3) of the theorem also remain valid for an unbounded set E.

2.7.3 One of the important corollaries of the Vitali theorem is related to density
points.

Definition A point x0 is called a density point of a set E if

λ∗
(
E ∩B(x0, r)

)
/λ

(
B(x0, r)

)→ 1 as r→+0.

Corollary 1 Let E′ be the set of density points of an arbitrary set E. Then
λ(E \ E′) = 0. In particular, almost every point of a measurable set is a density
point of this set.

Proof Let E0 = E \E′. If x ∈ E0, then there exists a sequence of radii {rn(x)}n�1

decreasing to zero such that

lim
n→∞

λ∗(E ∩B(x0, rn(x)))

λ(B(x0, rn(x)))
< 1.
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For θ ∈ (0,1) put

Eθ =
{

x ∈E0

∣
∣
∣ lim
n→∞

λ∗(E ∩B(x, rn(x)))

λ(B(x, rn(x)))
< θ

}

.

Since Eθ ⊂Eθ ′ for θ < θ ′ and E0 =⋃
θ∈(0,1) Eθ , it suffices to verify that λ(Eθ )= 0

(note that we do not know anything about the measurability of the sets Eθ yet).
Fixing θ ∈ (0,1) and an arbitrarily small positive number ε, let us find an open
set G containing Eθ such that λ(G) < λ∗(Eθ )+ ε (see the remark in Sect. 2.2.2).
All balls B(x, rn(x)), x ∈ Eθ , that are contained in G and satisfy the condition
λ∗(E∩B(x, rn(x)))� θλ(B(x, rn(x))) form a Vitali cover of the set Eθ . By the Vi-
tali theorem, there exists a subsystem of pairwise disjoint balls Bk = B(xk, rnk

(xk))

such that the set-theoretic difference e = Eθ \⋃
k�1 Bk has zero measure. By the

countable subadditivity of the outer measure, we obtain

λ∗(Eθ )� λ∗(e)+
∑

k�1

λ∗(Eθ ∩Bk)�
∑

k�1

λ∗(E ∩Bk)

�
∑

k�1

θλ(Bk)� θλ(G) < θ
(
λ∗(Eθ )+ ε

)
.

Thus λ∗(Eθ ) <
εθ

1−θ
, and, since ε is arbitrary, it follows that λ∗(Eθ )= 0. This means

that the set Eθ is measurable and λ(Eθ)= 0. �

The Vitali theorem easily implies the result on exhaustion of an open set by balls
obtained in Lemma 2.6.5.

Corollary 2 Every non-empty open subset G in the space R
m can be written as the

union of a sequence of disjoint balls Bn and a set of zero measure e:

G= e ∪
∞⋃

n=1

Bn.

Proof Consider the system of all balls contained in G. It obviously forms a Vitali
cover for G. Hence, if the set G is bounded, it suffices to use Claim (2) of the Vitali
theorem and put e=G \⋃

k�1 Bk . In the case where G is not bounded, one should
refer to Remark 2.7.2. �

2.7.4 The Vitali theorem has various generalizations. To describe one of them, we
introduce the notion of a regular cover. A system of sets B = {Ej(x) |x ∈E, j ∈N}
is called a regular cover of a set E if the following conditions hold:

(1) Ej(x)⊂ B(x, rj (x)), rj (x) −→
j→∞ 0;

(2) infj∈N
λ(Ej (x))

λ(B(x,rj (x)))
> 0 for every x ∈E.



2.8 �The Brunn–Minkowski Inequality 87

For example, as Ej(x) one can take cubes etc. that are “not too small” compared
to B(x, rj (x)). For regular covers, an analog of the Vitali theorem holds (see, for
example, [S, Chap. IV, Sect. 3]).

Theorem In every regular cover of a set E there exists a sequence of pairwise
disjoint sets Ek =Ejk (xk) such that λ(E \⋃

k�1 Ek)= 0.

One can prove that the Vitali theorem remains valid for every Borel measure μ

in a metric space if it is finite on balls and “quasihomogeneous”, i.e., there exist
constants K > 1 and a > 1 such that μ(B(x, ar)) � K μ(B(x, r)) for all x and
r > 0. For example, this condition is satisfied for the surface area on a compact
smooth manifold (see Chap. 8).

EXERCISES

1. Show that the Vitali theorem is also valid for an unbounded set.
2. Show that every differentiable function on an interval preserves Lebesgue mea-

surability.
3. Extend the result of Exercise 6 in Sect. 2.1 to the two-dimensional case by show-

ing that the union of an arbitrary family of non-degenerate triangles on the plane
is measurable. Is the same true if we replace triangles by their boundaries?

4. Let G be an open subset of Rm, � ∈ C1(G,Rm) and E ⊂G. Show that if � is
expanding on E, then |det�′(x)| � 1 almost everywhere on E. Can we assert
that |det�′(x)|� 1 everywhere on E provided that it is connected? Hint. Show
that the desired inequality holds at every density point of E.

5. Let O be an open subset of Rm, and let � ∈ C1(O,Rm) with det�′ �= 0 (the
last assumption can be dropped by Sard’s theorem, see Appendix 13.5). Show
that there exists an open set G⊂O such that the restriction of � to G is one-to-
one and �(O)=�(G) ∪ e, where λ(e)= 0. Hint. Splitting the set O into parts,
reduce the assertion to the case where the closure of O is compact, λ(∂O)= 0,
and � is smooth in a neighborhood of O. Show that the set of inverse images of
every point from �(O) is finite. Show that if a point x does not belong to �(∂O),
then it has a neighborhood whose full inverse image breaks into n connected
components, where n is the number of inverse images of x. Using the Vitali
theorem, find a sequence of such neighborhoods that “almost cover” �(O) and
form G from the components of their inverse images.

2.8 �The Brunn–Minkowski Inequality

In this section, by λ we denote the Lebesgue measure on R
m, which we also call the

volume.

2.8.1 The main result of this section is the following statement.
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Theorem For compact sets A,B ⊂R
m, the following inequality holds:

λ
1
m (A+B)� λ

1
m (A)+ λ

1
m (B).

Here A+B is the algebraic sum of A and B , i.e., A+B = {x + y |x ∈A, y ∈ B},
A,B �=∅.

This is the Brunn12–Minkowski13 inequality.
If A and B are sets of positive measure, then the Brunn–Minkowski inequality

becomes an equality only in the case where A and B are similar. The proof of this
fact is not easy even for convex bodies (cf. Exercise 3). For a discussion of this and
related results, see, for example, [BZ].

Proof The proof splits into several steps, with the sets A and B becoming more and
more complicated.

(1) Let A and B be parallelepipeds with edge lengths α1, . . . , αm and β1, . . . , βm,
respectively. Then A+B is a parallelepiped with edge lengths α1+β1, . . . , α1+βm.
We will assume that αj + βj ≡ 1 (the general case can then be obtained by scaling
along the coordinate axes). Thus

λ(A)= α1 · · ·αm, λ(B)= β1 · · ·βm, λ(A+B)= 1.

It remains to apply the inequality of arithmetic and geometric means:

λ
1
m (A)+ λ

1
m (B)= (α1 · · ·αm)

1
m + (β1 · · ·βm)

1
m � 1

m

m∑

j=1

αj + 1

m

m∑

j=1

βj = 1

= λ
1
m (A+B).

(2) Now let each of the sets A and B be a finite union of cells. By the theorem
on properties of semirings (see Sect. 1.1.4), such unions can be assumed disjoint:

A=
r∨

k=1

Pk, B =
s∨

j=1

Qj .

We will argue by induction on the sum n= r + s, assuming that Pk,Qj �=∅. The
inductive base (for n= 2) was proved in the previous step.

Assume that the desired inequality is true for r+s < n. Let us prove the inductive
step for n � 3. Since r and s are interchangeable, we may assume that r � 2. The
cells P1 and Pr have no common points, hence their projections to at least one
coordinate axis, say x1, have no common points either. This means that P1 and Pr lie

12Hermann Karl Brunn (1862–1939)—German mathematician.
13Hermann Minkowski (1864–1909)—German mathematician.
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on opposite sides of some plane x1 = a. We may assume without loss of generality
that P1 ⊂H+ = {(x1, . . . , xm) |x1 � a} and Pr ⊂H− = {(x1, . . . , xm) |x1 < a}. Put

A± =A∩H±, P±k = Pk ∩H±.

Each of the sets A± can be written as the union of at most (r − 1) cells:

A+ =
r−1⋃

k=1

P+k , A− =
r⋃

k=2

P−k .

Now consider a plane x1 = b that divides the set B in the same ratio as the plane
x1 = a divides the set A. More precisely, we mean that the measures of the sets
B+ = B ∩ {(x1, . . . , xm) |x1 � b} and B− = B ∩ {(x1, . . . , xm) |x1 < b} are in the
same ratio as the measures of the sets A±. The latter condition is equivalent to the
following one: for some θ ∈ (0,1),

λ(B+)
λ(B)

= λ(A+)
λ(A)

= θ and
λ(B−)
λ(B)

= λ(A−)
λ(A)

= 1− θ.

Note that each of the sets B± (as well as B) is the union of at most s pairwise
disjoint cells. Obviously, A+B ⊃ (A+ +B+)∪ (A−+B−), and the sets A++B+
and A− +B− are disjoint (since they lie on opposite sides of the plane x1 = a+ b).
Hence

λ(A+B)� λ
((
A+ +B+

)∪ (
A− +B−

))= λ
(
A+ +B+

)+ λ
(
A− +B−

)
.

The measures on the right-hand side can be estimated from below by the induction
hypothesis:

λ
(
A± +B±

)
�

(
λ

1
m

(
A±

)+ λ
1
m

(
B±

))m
.

Together with the previous inequality, this yields

λ(A+B)�
(
λ

1
m

(
A+

)+ λ
1
m

(
B+

))m + (
λ

1
m

(
A−

)+ λ
1
m

(
B−

))m

= θ
(
λ

1
m (A)+ λ

1
m (B)

)m + (1− θ)
(
λ

1
m (A)+ λ

1
m (B)

)m

= (
λ

1
m (A)+ λ

1
m (B)

)m
,

which completes the inductive step.
(3) Now let A and B be arbitrary compact sets. Obviously, the set A+B is also

compact. We will obtain the desired result by approximation.
The sets A and B have finite covers by open parallelepipeds (and hence cells)

lying in the δ-neighborhoods of these sets. Let A′ and B ′ be the unions of the cells
covering A and B , respectively. Clearly, A′ +B ′ ⊂ (A+B)2δ . As we have already
observed (see Sect. 2.6.3), the intersection of all δ-neighborhoods of a set coincides
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with its closure. Hence, by the continuity of λ from above, we have λ((A+B)2δ)→
λ(A+B) as δ→ 0. By the result proved at the previous step,

λ
1
m

(
(A+B)2δ

)
� λ

1
m

(
A′ +B ′

)
� λ

1
m

(
A′

)+ λ
1
m

(
B ′

)
� λ

1
m (A)+ λ

1
m (B).

Now the desired inequality can be obtained by passing to the limit. �

Remark We have considered the Brunn–Minkowski inequality in the main special
case, namely, for compact sets. Using similar arguments, one can easily prove it, for
example, for open sets. However, one should bear in mind that for arbitrary mea-
surable sets A and B , the set A+B is not necessarily measurable (see Exercise 6).
Accordingly, the Brunn–Minkowski inequality for non-empty measurable sets takes
the form

(
λ∗(A+B)

) 1
m � λ

1
m (A)+ λ

1
m (B),

where λ∗ is the outer Lebesgue measure. To prove it, recall (see Corollary 3 in
Sect. 2.2.2) that, by the regularity of the Lebesgue measure, the sets A and B can be
written in the form

A= e ∪
∞⋃

n=1

An, B = e′ ∪
∞⋃

n=1

Bn,

where λ(e)= λ(e′)= 0 and {An}n�1 and {Bn}n�1 are increasing sequences of com-
pact sets. Since A+B ⊃An +Bn for every n, we have

(
λ∗(A+B)

) 1
m � λ

1
m (An +Bn)� λ

1
m (An)+ λ

1
m (Bn).

Now λ(An)→ λ(A) and λ(Bn)→ λ(B) as n→∞, so that passing to the limit
yields the desired result.

One can also prove (see [F]) that

(
λ∗(A+B)

) 1
m �

(
λ∗(A)

) 1
m + (

λ∗(B)
) 1

m

for arbitrary sets, but we will not dwell on this here.

2.8.2 The Brunn–Minkowski inequality easily implies an inequality relating the
volume of a body and its surface area (by a body we mean a compact set with a
non-empty interior). The notion of surface area is discussed in detail in Chap. 8;
here we restrict ourselves to defining the Minkowski surface area needed for stating
this inequality. The definition is based on the following apparent observation: when
we pass from a body K to its ε-neighborhood (see Sect. 2.6.3), the increment of
the volume for small ε > 0 must be almost proportional to the area of the boundary
of K .
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Definition Let K ⊂ R
m be an arbitrary body and Kε be its ε-neighborhood. The

lower Minkowski area of ∂K is the value

�−m−1(∂K)= lim
ε→+0

λ(Kε \K)

ε
.

The limit limε→0
λ(Kε\K)

ε
(if it exists) is called the Minkowski area of ∂K . We will

denote it by �m−1(∂K).

Simple calculations show that for a sphere S(r) ⊂ R
m of radius r , we have

�m−1(S(r)) = mαmrm−1, where αm is the volume of the unit ball in R
m. As we

will see (cf. Sects. 8.4.4 and 13.4.7), for bodies with sufficiently smooth boundary
and for convex bodies, the Minkowski area of the boundary is proportional to the
Hausdorff measure μm−1.

Theorem (Isoperimetric inequality) For every body K ⊂R
m,

�−m−1(∂K)�mα
1
m
m λ

m−1
m (K).

If K is a ball, this inequality becomes an equality, which implies the isoperimet-
ric inequality in its classical form, where by the surface area we mean the lower
Minkowski area:

Among all bodies of a given volume, the ball has the smallest surface area.
Among all bodies of a given surface area, the ball has the greatest volume.

As the reader can easily check, the isoperimetric inequality can also be written
in the following form (hereafter B is a ball in R

m):

(
�−m−1(∂K)

�−m−1(∂B)

) 1
m−1

�
(
λ(K)

λ(B)

) 1
m

.

Proof Let B = B(0,1), αm = λ(B). By the Brunn–Minkowski inequality,

λ
1
m (Kε)= λ

1
m (K + εB)� λ

1
m (K)+ ε α

1
m
m .

Raising to the power m yields

λ(Kε \K)= λ(Kε)− λ(K)�mεα
1
m
m λ

m−1
m (K)+O

(
ε2)

.

The desired inequality can be obtained by dividing by ε and passing to the limit:

�−m−1(∂K)= lim
ε→+0

1

ε
λ(Kε \K)�mα

1
m
m λ

m−1
m (K). �
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2.8.3 As another application of the Brunn–Minkowski inequality, we will also prove
the isodiametric, or Bieberbach14 inequality.

Theorem Among all measurable sets of given diameter, the ball has the greatest
volume.

Proof Let A⊂R
m with diam(A)= d . Since the diameter of a set coincides with the

diameter of its closure, we may assume that A is closed and hence compact. Con-
sider the sets A′ = −A and E = 1

2 (A+ A′). By the Brunn–Minkowski inequality,
the volume of E is not less than the volume of A:

λ
1
m (E)= 1

2
λ

1
m

(
A+A′

)
� 1

2

(
λ

1
m (A)+ λ

1
m

(
A′

))= λ
1
m (A).

Let us check that the set E is contained in a closed ball of radius d/2. Indeed, if
x ∈E, then x = (s− t)/2, where s, t ∈A. Hence ‖x‖ = 1

2‖s− t‖� d
2 . Thus λ(A)�

λ(E), and E is contained in a ball B of radius d/2. Therefore, λ(A)� λ(B). �

EXERCISES In what follows, A and B are subsets of Rm.

1. Let A and B be compact sets. Show that the function t �→ λ
1
m (tA+ (1− t)B) is

concave on [0,1], i.e., that

λ
1
m

(
tA+ (1− t)B

)
� tλ

1
m (A)+ (1− t)λ

1
m (B)

for every t , 0 � t � 1. Using the fact that the logarithm is concave, deduce that

λ
(
tA+ (1− t)B

)
� λt (A)λ1−t (B).

2. Arguing as in Remark 2.8.1, show that for arbitrary (possibly, non-measurable)
sets A and B ,

λ
1
m∗ (A+B)� λ

1
m∗ (A)+ λ

1
m∗ (B),

where λ∗ is the inner measure (for the definition, see Sect. 2.2.2).
3. Show that for ellipsoids, the Brunn–Minkowski inequality becomes an equality

only in the case where they are similar. Hint. Apply the method used in the proof
of Theorem 2.5.5 on the uniqueness of an ellipsoid of maximal volume.

4. Let [a, b] be the projection to the first coordinate axis of a convex body lying in
R

m (m� 2). Let S(t) be the area of the section of this body by the plane x1 = t

and V (t) be the volume of its part lying in the half-space x1 � t . Show that the

function S
1

m−1 is concave and the ratio V
1
m /S

1
m−1 does not decrease on (a, b].

5. Show that the arguments of Sect. 2.8.3 remain valid if we replace the Eu-
clidean norm ‖ · ‖ by an arbitrary norm ‖ · ‖∗: if a measurable set A ⊂ R

m

is such that ‖x − y‖∗ � 2r for all x, y ∈ A, then λ(A) � λ(B∗(r)), where
B∗(r)= {x ∈R

m| ‖x‖∗ < r}.

14Ludwig Georg Elias Moses Bieberbach (1886–1982)—German mathematician.
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6. Show that the algebraic sum of sets of zero Lebesgue measure can be non-
measurable. Hint. Consider the set C + 2E, where C = {∑∞

n=1 εn4−n| εn =
0 or 1} and the set E ⊂ C is constructed from an ultrafilter U in N consisting
of infinite sets: E = {∑n∈U 4−n |U ∈ U}. Use the same trick as in the solution
of Exercise 12 in Sect. 2.1.



Chapter 3
Measurable Functions

The introduction of the notion of a measure is a necessary step towards the solu-
tion of the main problem, that of defining the integral. However, even now, having
become familiar with measures, we cannot proceed directly to this task. The prob-
lem is that without specifying in advance for which functions the integral is being
constructed we will inevitably run into difficulties. To illustrate this, consider the
following very simple situation.

It is natural to try to define the integral of a bounded function defined on the
interval [a, b] as the limit of the (Riemann) integral sums, i.e., sums of the form

n∑

k=1

f (ξk)(xk − xk−1), where x0 = a < x1 < · · ·< xn = b, xk−1 � ξk � xk.

The limit is taken as the maximum of the differences xk − xk−1 tends to zero, and it
should not depend on the choice of the points ξk .

If the function f is continuous, then this limit exists (see Theorem 4.7.3). But an
attempt to apply this procedure to functions with “many” discontinuities fails. For
example, if f is the Dirichlet function, which is equal to one at rational points and
zero at irrational points, we see that the integral sum vanishes if all ξk are irrational
and equals b− a if all ξk are rational. This is true for an arbitrarily fine partition of
the interval, so that the integral sums have no limit.

To understand the reasons why this approach to the definition of the integral fails,
we should notice that for a discontinuous function, the procedure of partitioning the
interval into “small subintervals” and constructing the corresponding integral sum
is not at all as natural as for a continuous function. Indeed, in the latter case, the
limit of the integral sums does not depend on the choice of the points ξk because
a continuous function changes very little on the subintervals [xk−1, xk]. Of course,
we cannot expect this to hold for a discontinuous function. Hence, if we want to
construct the integral of such a function, a natural idea, first conceived by Lebesgue,
is to partition the interval [a, b] not into subintervals (on which, in spite of their
“smallness”, the function may still vary considerably), but into some other sets. And
the “smallness” of a set should be determined not in terms of its size, but in terms

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_3, © Springer-Verlag London 2013
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of the variation of the function on this set. For example, as “small” sets we can take
the sets ek = f−1([yk−1, yk)), where yk (k = 0,1, . . . , n) is an increasing sequence
(with y0 � inff , yn > supf ). With this method of partitioning the interval, the def-
inition of the integral sum should be modified: instead of the differences xk − xk−1,
i.e., the lengths of the intervals [xk−1, xk], we should consider the measures of the
sets ek . In this case, the integral sum takes the form

∑n
k=1 f (ξk)λ(ek), where ξk ∈ ek

and λ is the Lebesgue measure. Postponing the discussion of the properties of these
sums until the next chapter, we only note that the integral of f should be under-
stood as their limit as maxk(yk − yk−1)→ 0. However, in order to implement the
new approach to the definition of the integral, we should fill a significant gap in our
argument. Namely, we cannot be sure that the sets ek are measurable (recall that not
every set is Lebesgue measurable!) and hence we have no right to speak about their
measures. Therefore, if we consider an arbitrary function, we cannot speak about
any properties of the modified integral sums, since there is no guarantee that we can
construct them. This is why, aiming at the implementation of the program suggested
above, we will abandon attempts to define the integral for an arbitrary function and
content ourselves with considering only functions for which the sets ek constructed
above are necessarily measurable. This chapter is devoted to the study of such func-
tions, called measurable functions. The class of measurable functions is extremely
wide and meets not only the demands of applications, but almost all needs of pure
mathematics. At the same time, it is sufficiently tractable and, as we will see, in
the case of functions defined in R

m, is closely related to classes of simpler (e.g.,
continuous) functions.

3.1 Definition and Basic Properties of Measurable Functions

In what follows, we assume that there is a fixed set X and a σ -algebra A of subsets
of X. The pair (X,A) is called a measurable space, and the elements of the σ -
algebra A are called measurable sets.

As the reader will see below, it is convenient to consider real-valued functions not
only with finite, but also with infinite values. Some technical complications related
to arithmetic operations with such functions that arise at the first stages are well
compensated for by the freedom we gain allowing ourselves to consider measurable
functions with infinite values. We will see the first confirmation of this thesis in
Theorem 3.1.4.

3.1.1 One can see from the remarks at the beginning of this chapter that it is crucial
for the construction of the integral that the sets on which the oscillations of the
function are small should be measurable. A key role here is played by sets on which
the function is bounded from one side. Let us introduce the following important
definition.
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Fig. 3.1 Lesbegue set E(f > a)

Definition Let f :E→R= [−∞,+∞] be a function defined on a set E ⊂X and
a ∈R. The sets

E(f < a)≡ {
x ∈E |f (x) < a

}
, E(f � a)≡ {

x ∈E |f (x)� a
}
,

E(f > a)≡ {
x ∈E |f (x) > a

}
, E(f � a)≡ {

x ∈E |f (x)� a
}

are called the Lebesgue sets of f (of the first, second, third, and fourth kind, respec-
tively).

As follows from the definition, the Lebesgue sets are the inverse images of open
and closed semi-axes, i.e., the sets

f−1([−∞, a)
)
, f−1([−∞, a]), f−1(

(a,+∞]), f−1([a,+∞]),
respectively (see Fig. 3.1).

As well as the notation E(f < a), E(f � a), and so on for the inverse images of
semi-axes, we will also use similar notation for the inverse images of intervals, e.g.,
E(a < f � b)= f−1((a, b]).

It turns out that the measurability of all Lebesgue sets of one kind implies the
measurability of all Lebesgue sets of the other kinds. More precisely, the following
theorem holds.

Theorem Let E be a measurable set and f :E→R. The following conditions are
equivalent:

(1) the sets E(f < a) are measurable for all a in R;
(2) the sets E(f � a) are measurable for all a in R;
(3) the sets E(f > a) are measurable for all a in R;
(4) the sets E(f � a) are measurable for all a in R.
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Proof The proof follows the scheme (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).
Since E(f � a)=⋂

n�1 E(f < a + 1/n), the first property implies the second
one, which in turn implies the third one, because E(f > a)=E \E(f � a).

The remaining two implications can be proved in a similar way. We leave this to
the reader. �

3.1.2 Now we introduce a class of functions that plays a key role in the theory of
integration.

Definition Let E ∈ A and f : E → R. A function f is called measurable (more
precisely, A-measurable, or measurable with respect to A) if its Lebesgue sets (of
all four kinds) are measurable for any a ∈R.

If E ⊂R
m and A=Am (or A=Bm), then measurable functions are also called

Lebesgue (or Borel) measurable.

As follows from Theorem 3.1.1, for a function to be measurable it suffices that
its Lebesgue sets of only one kind (the first, the second, etc.) be measurable for all
a ∈R.

Remark 1 We emphasize that, when speaking about a measurable function, we al-
ways assume that it is defined on a measurable set.

Remark 2 Extending the definition, we say that a function f : E→R is measurable
on a set E0, E0 ⊂E, if the restriction f |E0 is measurable (of course, E0 ∈A).

Examples

(1) A constant function is measurable on every (measurable) set E. In particular,
according to our definition, the function identically equal to +∞ (or −∞) on
E is measurable.

(2) The characteristic function of a set A⊂X is the function χA that is equal to one
on A and zero outside A. As one can easily check by considering the Lebesgue
sets of χA, this function is measurable if and only if the set A is measurable.

(3) Let X = [0,1]× [0,1], and let A be the σ -algebra of sets of the form e×[0,1],
where e ∈A1, e⊂ [0,1]. Then the function f (x, y)= y is not measurable with
respect to A. However, it is obviously Lebesgue measurable.

Let us mention some simple properties of measurable functions.

(1) The inverse images of one-point sets (including those of the points +∞ and
−∞) are measurable.

Indeed, if a ∈ R, then f−1({a}) = E(f � a) ∩ E(f � a). Furthermore,
f−1({+∞})=⋂

n�1 E(f > n) and f−1({−∞})=⋂
n�1 E(f <−n).

(2) The inverse image of every interval � is measurable. In particular, the set on
which the function takes finite values, i.e., f−1(R), is measurable.
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Indeed, by Property (1), we may assume that � is an open interval: � =
(a, b). If a, b ∈R, then f−1(�)=E(f < b)\E(f � a) ∈A. If � is an infinite
interval, then it can be exhausted by finite intervals: �=⋃

n�1(an, bn). Hence

f−1(�)=⋃
n�1 E(an < f < bn) ∈A.

(3) The absolute value of a measurable function is measurable, since E(|f |< a)=
E(−a < f < a) ∈A for every a ∈R.

(4) If f and g are measurable functions, then the functions ϕ =max{f,g} and ψ =
min{f,g} are also measurable. In particular, the functions f+ =max{f,0} and
f− =min{−f,0} are measurable.

To prove this, it suffices to observe that E(ϕ < a)= E(f < a) ∩ E(g < a)

and E(ψ > a)=E(f > a)∩E(g > a) for every a ∈R.
(5) The inverse image of an open set is measurable.

By Theorem 1.1.7, a non-empty open subset G of R can be written in the
form G=⋃

n�1[an, bn). Hence the measurability of f−1(G) follows from the

equality f−1(G)=⋃
n�1 E(an � f < bn).

Using Theorem 1.6.1 on the inverse image of the Borel hull, we see that a more
general result holds.

Proposition For every measurable function, the inverse image of a Borel subset of
the real line is measurable.

Note that the proposition is no longer true if instead of Borel sets we consider
Lebesgue measurable sets (see Exercise 5 in Sect. 2.3).

3.1.3 Let us continue to study the properties of measurable functions.

Theorem

(1) The restriction of a measurable function to a measurable set is measurable.
(2) If E =⋃

n�1 En and a function f is measurable on each En, then it is measur-
able on E.

Proof (1) If f is defined on E and E0 ⊂E, then for every a ∈R, the set E0(f < a)

can be written in the form E0(f < a)=E0 ∩E(f < a) and, consequently, is mea-
surable provided that E0 is measurable.

(2) The measurability of f on E follows from the equality E(f < a) =⋃
n�1 En(f < a). �

Corollary Every measurable function f defined on E is the restriction to E of a
measurable function defined on X.

To prove this, it suffices to extend f by zero outside E. The measurability of the
function obtained in this way follows from the theorem.

Remark In view of this corollary, when studying measurable functions, we may
always assume that they are defined on the whole set X.
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3.1.4 We proceed to the problem of passing to the limit in the class of measurable
functions. We will prove that this class is closed under pointwise convergence, i.e.,
that the pointwise limit of a sequence of measurable functions is again a measurable
function.

Recall that a function f is the pointwise limit of a sequence {fn}n�1 on E if

fn(x) −→
n→∞ f (x) for every point x in E.

Using Remark 3.1.3, in what follows we assume that all functions under consid-
eration are defined on the whole set X.

Theorem Let {fn}n�1 be an arbitrary sequence of measurable functions, g =
supn fn and h= infn fn. Then:

(1) the functions g and h are measurable;
(2) the functions limn→∞ fn and limn→∞ fn are measurable; in particular, if the

sequence {fn}n�1 has a pointwise limit, then it is a measurable function.

Since the definition of measurability allows one to consider functions with values
in R, in the above theorem we need not make any assumptions on the finiteness of
functions. In particular, for every monotone sequence of measurable functions, the
limit function (possibly taking infinite values) is measurable.

Proof (1) For every a ∈R, we have

X(g > a)=
⋃

n�1

X(fn > a), X(h < a)=
⋃

n�1

X(fn < a);

the desired assertion follows by Theorem 3.1.1.
(2) It suffices to recall the formulas

lim
n→∞fn(x)= inf

n�1
sup
k�1

fn+k(x) and lim
n→∞

fn(x)= sup
n�1

inf
k�1

fn+k(x)

known from the theory of limits and apply the first claim of the theorem. �

3.1.5 The following theorem shows the measurability of compositions.

Theorem Let f1, . . . , fn be measurable functions, and let ϕ ∈ C(H), where
H ⊂R

n. Assume that (f1(x), . . . , fn(x)) ∈H for every x. Then the function F de-
fined by the formula F(x)= ϕ(f1(x), . . . , fn(x)) (for x ∈X) is measurable.

Proof We will use the fact that for every a ∈R, the set H(ϕ < a) is relatively open
in H by the continuity of f , i.e., H(ϕ < a) = H ∩Ga , where Ga is an open set
in R

n.
Consider the auxiliary map U :X→R

n defined by the formula

U(x)= (
f1(x), . . . , fn(x)

)
(x ∈X).
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Let us check that for every open set G in R
n, its inverse image U−1(G) is mea-

surable. Indeed, the inverse image of every n-dimensional cell P =∏n
k=1[ak, bk) is

measurable, because

U−1(P )= {
x ∈X |ak � fk(x) < bk for k = 1, . . . , n

}=
n⋂

k=1

X(ak � fk < bk).

Since G can be written as the union of a sequence of cells, G = ⋃
j�1 Pj (see

Theorem 1.1.7), the set U−1(G)=⋃
j�1 U

−1(Pj ) is measurable.
Thus the set

X(F < a)= {
x ∈X |U(x) ∈H(ϕ < a)

}=U−1(H ∩Ga)=U−1(Ga)

is also measurable. �

Using Theorem 3.1.4, we can slightly generalize the obtained result (for a further
generalization, see Exercise 11).

Corollary Theorem 3.1.5 remains valid if ϕ is the pointwise limit of a sequence of
continuous functions {ϕk}k�1.

To prove this corollary, it suffices to observe that F = ϕ ◦ U is the limit of the
measurable functions Fk = ϕk ◦U , where U is the map defined in the proof of the
theorem.

3.1.6 Now let us discuss the arithmetic operations on measurable functions. Since
we allow measurable functions to take infinite values, we need to specify what we
mean by the sum and the product of such functions. For the sum, this is necessary
if the summands are infinities of opposite sign, and for the product, if one of the
factors is infinite and the other one is equal to zero. To avoid repeatedly making
stipulations, we extend the arithmetic operations to R according to the following
definition.

Definition

(1) If x ∈R and x �= 0, then x · (±∞)= (±∞) ·x =±∞ for x > 0 and x · (±∞)=
(±∞) · x =∓∞ for x < 0.

(2) For every x ∈R, we set 0 · x = x · 0= 0.
(3) For every x ∈R, we set x/(±∞)= 0 (in particular, (±∞)/(±∞)= 0).
(4) For every x ∈ R, we set x + (+∞) = x − (−∞) = (+∞) + x = +∞,

x + (−∞)= x − (+∞)= (−∞)+ x =−∞.
(5) (+∞)+ (−∞)= (−∞)+ (+∞)= (+∞)− (+∞)= (−∞)− (−∞)= 0.

As in R, division by zero is not defined in R.

The first four conventions introduced above do not violate the associativity of
the arithmetic operations. In view of the fifth convention, addition in R is no longer
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associative. This will not cause considerable trouble, because we mainly deal with
functions that take infinite values only on sets of zero measure, which, as will be
seen from what follows, can be neglected (for more details, see Sect. 4.3).

Theorem The following statements are true:

(1) The product and the sum of measurable functions are measurable.
(2) If a function f is measurable and a function ϕ is continuous, and their compo-

sition ϕ ◦ f is well defined, then it is measurable.
(2′) If f � 0 and p > 0, then the function f p is measurable (in the case where f

takes infinite values, we assume that (+∞)p =+∞).
(3) The function 1/f is measurable on the set where f �= 0.

Proof Let f and g be functions defined on a set E.
(1) If f and g take only finite values, then the measurability of their product

follows immediately from the previous theorem in which we put ϕ(x, y)= xy. If f
and g may take infinite values, consider the sets

E0(f )=E(f = 0), E1(f )=E(0 < f <+∞), E2(f )=E(−∞< f < 0),

E3(f )=E(f =−∞), E4(f )=E(f =+∞)

and the similar sets Ek(g). By the above, the product fg is measurable on Ej(f )∩
Ek(g) for j, k = 1,2 and constant on such intersections for other values of j, k

(j, k = 0, . . . ,4). Therefore, by Theorem 3.1.3, it is also measurable on the union of
these sets, i.e., on E. The measurability of the sum can be proved in a similar way.

(2) This is a special case of Theorem 3.1.5.
(2′) The function f p is measurable on the set E(f <+∞) by the previous claim

of the theorem and constant on the set E(f =+∞). Therefore, it is also measurable
on the union of these sets, i.e., on E.

(3) The set Ẽ =E(f �= 0) is obviously measurable. Furthermore,

Ẽ

(
1

f
< a

)

=

⎧
⎪⎨

⎪⎩

E(f < 0)∪E
(
f > 1

a

)
for a > 0,

E(−∞< f < 0) for a = 0,

E
( 1
a
< f < 0

)
for a < 0.

In all cases, the Lebesgue sets of the function 1/f are measurable. �

Corollary 1 The product of a finite family of measurable functions is measurable.

Corollary 2 A positive integer power of a measurable function f is measurable;
a negative integer power is measurable on the set where f �= 0.

Corollary 3 A linear combination of measurable functions is measurable.

3.1.7 In conclusion, we consider the question of the measurability of a function
f :E→R defined on a Lebesgue measurable subset E of the space Rm. We denote
the Lebesgue measure on R

m by λ without indicating the dimension.
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Theorem Let f be a function defined on a set E, E ∈ Am, that takes only finite
values. If for every ε > 0 there exists a measurable set e⊂E such that

λ(e) < ε and the restriction of f to E \ e is continuous, (C)

then f is Lebesgue measurable. In particular, every function continuous on E is
Lebesgue measurable.

Remark Condition (C) means that f will be continuous if we remove from its do-
main a set of arbitrarily small measure. It is this condition that Luzin called the
C-property. He proved that it is not only sufficient, but also necessary for a function
to be Lebesgue measurable, i.e., that every Lebesgue measurable function satisfies
the C-property. We will return to this topic in Sect. 3.4.3.

It obviously follows from the last theorem that every function whose set of dis-
continuities has zero measure is measurable. However, the theorem allows one to
establish the measurability of functions with “large” sets of discontinuities. An ex-
ample of this kind is the Dirichlet function. As one can easily see, it is discontinuous
at every point. However, its restriction to the set of irrational numbers is continu-
ous (being identically zero). Hence the Dirichlet function satisfies condition (C) and,
consequently, is measurable. On the other hand, its measurability is obvious without
the theorem, since it is the characteristic function of the measurable set Q.

Proof If f is continuous, then the Lebesgue set E(f < a)= f−1((−∞, a)) is rel-
atively open in E. Hence it is the intersection of E with some set open in R

m and,
consequently, is measurable as the intersection of measurable sets.

If f is an arbitrary function satisfying condition (C), consider sets en ⊂E (where
n ∈N) such that

λ(en) <
1

n
and the restriction of f to En ≡E \ en is continuous.

Put E0 =⋂
n�1 en. Obviously, λ(E0)= 0, and hence f is measurable on E0 (since

in the case of a complete measure, every function is measurable on a set of zero
measure). Thus E =⋃

n�0 En, and, as we have already proved, f is measurable on
each of the sets En. It remains to apply Theorem 3.1.3. �

EXERCISES

1. Establish the Lebesgue measurability of a monotone function ϕ defined on an
arbitrary interval and of its composition ϕ ◦ f with every measurable function
f (provided that this composition is well defined).

2. Let {fn}n�1 be an arbitrary sequence of measurable functions. Establish the
measurability of the sets

{
x ∈X | ∃ lim

n→∞fn(x) ∈R

}
and

{
x ∈X | the sequence

{
fn(x)

}
n�1 converges

}
.
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3. Give an example of a (Lebesgue) measurable bounded function on R that is
“so discontinuous” that one cannot make it continuous even at a single point by
modifying it at a set of zero measure. Hint. Consider the characteristic function
of the set from Exercise 9 in Sect. 2.1.

4. Show that the characteristic function of the set constructed in Exercise 8 of
Sect. 2.1 satisfies condition (C).

5. Let K be a compact subset of Rm+1 = R
m ×R, P be the canonical projection

of Rm+1 to R
m, and Q= P(K). Show that there exists a function f :Rm→R

such that the graph of its restriction to Q is contained in K and the set of its
discontinuities has zero measure.

6. Using the result of Exercise 5 from Sect. 2.3, show that Theorem 3.1.5 is no
longer true if instead of ϕ ◦ f one considers f ◦ ϕ.

7. Let f : R→ R be an arbitrary (possibly non-measurable) function. Show that
the set of points where it is differentiable is measurable and the function f ′
defined by the formula f ′(x) = limy→x

f (y)−f (x)
y−x

is also measurable. Show

that the function f ′+(x)= limy→x+0
f (y)−f (x)

y−x
can be non-measurable.

8. The Rademacher functions rn (n ∈N) are defined on R by the formula rn(x)=
sign sin 2nπx (see Sect. 6.4.5). Show that

λ
({

x ∈ (0,1) | rnj
(x) < aj for j = 1, . . . , k

})

=
k∏

j=1

λ
({

x ∈ (0,1) | rnj
(x) < aj

})

for any a1, . . . , ak ∈R and pairwise distinct n1, . . . , nk ∈N.
In probability theory, functions satisfying this condition are called statistically
independent (see Sect. 6.4.4).

9. We say that a function f defined on R
m is radial if it is of the form f (x) =

f0(‖x‖), where f0 is a function defined on R+. Using Exercise 3 from Sect. 2.5,
show that f is measurable if and only if f0 is measurable.

10. Let (X,A) be a measurable space. A map F :X→ R
m is called measurable if

at least one of the following conditions is satisfied:

(a) its coordinate functions are measurable;
(b) the inverse images of Borel sets are measurable;
(c) the inverse images of cells are measurable;
(d) the inverse image of every open set is measurable.

Show that conditions (a)–(d) are equivalent.
11. Let F : X→ R

m be a measurable map (see the previous exercise). Show that
for every Borel measurable function ϕ : Rm → R, the composition ϕ ◦ F is
measurable.

12. Let E be an arbitrary subset of Rm and f : E → R be an arbitrary function.
Given x ∈E, put

g(x)= lim
r→0

sup
X∩B(x,r)

f and h(x)= lim
r→0

inf
X∩B(x,r)

f
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(the functions g and h may take infinite values). Show that the sets E(g < a)

and E(h > a) are relatively open in E and, therefore, the functions g and h are
Borel measurable.

3.2 Simple Functions. The Approximation Theorem

As in the previous section, we assume that there is a fixed measurable space (X,A).
All functions under consideration are defined on X.

3.2.1 We introduce a subclass of measurable functions, which will later be used
systematically for the approximation.

Definition An R-valued measurable function is called simple if the set of its values
is finite.

If f is a simple function, there is a finite partition of X into measurable sets (we
will call it admissible for f ) such that f is constant on its elements. For instance,
such a partition can be obtained as follows. Let a1, . . . , aN be all pairwise distinct
values of f . Put ek = f−1({ak}). Obviously, these sets are measurable and form a
partition of X that is admissible for f .

In general, an admissible partition is not unique: splitting any of its elements into
measurable parts, we will obtain a “finer” admissible partition. Thus f may take
equal values on different elements of an admissible partition. Furthermore, we do
not exclude the case where some of the elements are empty.

Example The characteristic function χE of a set E is simple if and only if E is
measurable. In this case, the sets E, X \E form an admissible partition for χE . The
family {E,X \E,∅} is also an admissible partition for χE .

Let us mention some basic properties of simple functions.

(1) Every R-valued function that is constant on the elements of some finite parti-
tion of X into measurable sets is simple.
Indeed, the set of values of such a function is finite, and the measurability
follows, for example, from Theorem 3.1.3.

(2) Any two simple functions f and g have a common admissible partition.
Indeed, a desired partition consists, for example, of the sets ek ∩ e′j , where
{ek}nk=1 and {e′j }mj=1 are admissible partitions for f and g, respectively.

(3) The sum and the product of two simple functions is a simple function.
This fact follows immediately from the existence of a common admissible par-
tition and Property (1).

(3′) A linear combination and the product of a finite family of simple functions are
simple functions.
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(4) The maximum and the minimum of a finite family of simple functions are
simple functions.
To prove this, it suffices to consider a partition that is admissible for all func-
tions of the given family.

3.2.2 The next theorem shows, in particular, that every measurable function is the
pointwise limit of a sequence of simple functions. This result is not only an impor-
tant technical tool which we will repeatedly use in what follows, it can be regarded
as an alternative definition of a measurable function: a function is called measur-
able if it is the pointwise limit of a sequence of simple functions. In contrast to
the purely descriptive definition given in the previous section, the new definition
provides a method of constructing arbitrary measurable functions starting from the
more tractable functions which we have called simple. In this sense, one may say
that the new definition is constructive. The equivalence of these two definitions,
which follows from the theorem proved below, is further evidence that the class of
measurable functions is very natural. Indeed, in Theorem 3.1.4 we have shown that
it is sufficiently wide to contain, together with every pointwise convergent sequence,
the limit of this sequence. Accordingly, the question might arise whether the class
of measurable functions is not too wide. Indeed, if we consider the space R

m with
the Lebesgue measure, this class contains not only functions that are discontinuous
at every point (for example, the Dirichlet function, i.e., the characteristic function
of the set of rational points), but even functions that (in contrast to the Dirichlet
function) cannot be made continuous by modifying them on a set of zero measure
(see Exercises 3 and 4 in Sect. 3.1). However, it follows from the theorem proved
below that if we assume that the class in question is closed under pointwise limits
and contains the characteristic functions of measurable sets as well as their linear
combinations, then no proper part of the class of all measurable functions will suf-
fice: together with characteristic functions this class contains all simple functions,
whose pointwise limits yield all measurable functions.

Theorem (Approximation by simple functions) Every non-negative measurable
function f :X→R is the pointwise limit of an increasing sequence of non-negative
simple functions fn. If f is bounded, then we may assume that the sequence {fn}n�1

converges uniformly on X.

Proof Fix a positive integer n and consider the intervals �k = [k/n, (k + 1)/n)
for k = 0,1, . . . , n2 − 1 and the interval �n2 = [n,+∞]. Obviously, they form a
partition of the set [0,+∞]. Consider the sets ek = f−1(�k) (k = 0,1, . . . , n2).
They are measurable and form a partition of the set X. (It would be more accurate
to write �

(n)
k and e

(n)
k , indicating that these sets depend not only on k, but also on n,

but we will not do this.) Put

gn(x)= k

n
for x ∈ ek
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Fig. 3.2 Graphs of functions f and gn

(the graph of this function is schematically shown in Fig. 3.2 by horizontal bold line
segments). Obviously,

0 � gn(x)� f (x) for every x ∈X. (1)

Furthermore,

gn(x)� f (x)� gn(x)+ 1

n
, if x /∈ en2 . (2)

Now let us check that the constructed sequence {gn}n�1 converges pointwise to f .
Consider an arbitrary point x ∈X. If f (x)=+∞, then x ∈ en2 for every n, whence

gn(x)= n −→
n→∞+∞= f (x).

If f (x) <+∞, then x /∈ en2 for

n > f (x). (3)

Then, by (2),

0 � f (x)− gn(x)�
1

n
−→
n→∞ 0. (4)

If f is bounded and f (x)� C for all x ∈X, then, taking n > C, we see that in-
equalities (3) and hence (4) are satisfied simultaneously for all x ∈X, which implies
the uniform convergence.

Thus the constructed functions gn have all the desired properties except for one.
In general, they do not form an increasing sequence. Hence we need to slightly
modify them. Put fn = max{g1, . . . , gn}. Obviously, the functions fn are simple
and fn � fn+1. In addition, it follows from (1) that

0 � gn(x)� fn(x)� f (x) for every x ∈X.
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This guarantees both the pointwise convergence of fn to f in the general case and
the uniform convergence in the case where f is bounded. �

Corollary Every measurable function f can be pointwise approximated by simple
functions fn satisfying the condition |fn|� |f |.

If f is bounded, then this approximation may be assumed uniform.

To prove this, it suffices to approximate the functions f+ =max{f,0} and f− =
max{−f,0} separately as described in the theorem.

EXERCISES

1. Let {gn}n�1 be the sequence constructed in the proof of Theorem 3.2.2, and let
hk = g2k . Show that the sequence {hk}k�1 is increasing.

2. Show that every non-negative measurable function f on a set X can be written
as the sum of a series

∑∞
n=1

1
n
χAn . Hint. Consider the sets

A1 =
{
x ∈X |f (x)� 1

}
,

An =
{

x ∈X

∣
∣
∣
∣f (x)� 1

n
+

n−1∑

k=1

1

k
χAk

}

for n� 2.

3.3 Convergence in Measure and Convergence Almost
Everywhere

From a course in analysis the reader already knows two types of convergence of
sequences of functions: pointwise and uniform. Now we will define two further
types of convergence, which play an important role in the theory of integration and
probability. Both of them apply to functions defined on a measure space.

We assume that a measure space (X,A,μ) is fixed. All sets we deal with are
assumed measurable, i.e., they belong to the σ -algebra A. All functions are also
assumed measurable, and furthermore we assume that they are finite almost every-
where, i.e., may take infinite values only on sets of zero measure. The class of all
such functions on a set E will be denoted by L0(E,μ) or merely by L0(E). Every-
where in this section (except for Sect. 3.3.7), we consider functions only from this
class.

The pointwise convergence of a sequence {fn}n�1 to a function f will be de-
noted, as usual, by a simple arrow, fn −→

n→∞ f , and the uniform convergence will be

denoted by a double arrow: fn ⇒
n→∞

f . Recall that χE stands for the characteristic

function of a set E, and the set {x ∈E |f (x) > a} is also denoted by E(f > a).

3.3.1 We introduce an important new type of convergence of functional sequences.
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Definition 1 A sequence of functions fn ∈ L0(E,μ) converges to a function f ∈
L0(E,μ) in measure (notation: fn

μ−→
n→∞f ) if

μ
(
E

(|fn − f |> ε
)) −→

n→∞ 0 for every positive ε.

Thus fn
μ−→

n→∞f if for sufficiently large n each of the functions fn is uniformly

close to f on the set obtained from E by removing a subset of arbitrarily small
measure. It is worth mentioning that, in general, the subset to be removed differs for
each n and one cannot generally remove a single set outside of which all functions
fn with sufficiently large indices are uniformly close to the limit function.

Extending the definition, we say that a sequence {fn}n�1 converges in measure
on a set Ẽ, Ẽ ⊂ E, to a function f ∈ L0(Ẽ) if the sequence f̃n = fn|Ẽ converges
in measure to f . This is obviously equivalent to the condition that the sequence
{fnχẼ}n�1 converges in measure to the function f extended by zero from Ẽ to E.
This observation allows us to assume, when discussing convergence in measure, that
the functions under consideration are defined on the whole of X, since otherwise we
can extend them to X by zero.

Let us discuss how convergence in measure is related to other types of conver-
gence. Obviously, uniform convergence implies convergence in measure; indeed, in
the case of uniform convergence, for every ε > 0 the set E(|fn − f |> ε) is empty
for sufficiently large n. However, this is no longer true if we replace uniform conver-
gence with pointwise convergence. To obtain a corresponding example, it suffices
to consider the real line with the Lebesgue measure and the functions χ(n,+∞) or
χ(n,n+1), which converge to zero in R pointwise, but not in measure. The reader
can easily check that these sequences have no limit in the sense of convergence in
measure.

Of course, convergence in measure does not imply pointwise convergence. In-
deed, if a sequence of functions fn converges both pointwise and in measure (as
is the case, for example, if the sequence converges uniformly), then we may break
the pointwise convergence by modifying the values of fn on sets of zero measure.
However, this does not affect the convergence in measure, as follows from its def-
inition. Hence it is natural to compare convergence in measure with “weakened
pointwise convergence”, which is insensitive to modifications of functions on sets
of zero measure. We make the following definition.

Definition 2 A sequence of measurable functions fn :E→R converges to a func-

tion f almost everywhere on E (notation: fn
a.e.−→

n→∞f ) if there exists a set e ⊂ E of

zero measure such that fn −→
n→∞ f pointwise on E \ e.

In this definition (as well as in the previous one), we assume that there is a fixed
measure μ. If we also consider other measures, then we speak about convergence
μ-almost everywhere (respectively, convergence in measure with respect to μ).
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By Theorem 3.1.4, the limit function f is measurable on the set E \ e. If the
measure μ is complete, then f is measurable not only on E \ e, but also on E. If (in
the case of a non-complete measure) f is not measurable on E, then, modifying it
on a set of zero measure (for example, setting it equal to zero on e), we can obtain a
measurable function that is the limit of the sequence {fn}n�1 in the sense of almost
everywhere convergence.

Formally speaking, we can drop the condition of measurability of fn in Defini-
tion 2, but we will not need such a generalization.

There is a subtle relation between convergence in measure and almost every-
where convergence, see H. Lebesgue’s and F. Riesz’s theorems proved in this sec-
tion. But we begin with a counterexample showing that almost everywhere conver-
gence does not follow from convergence in measure.

Example Let X =R and μ= λ be the one-dimensional Lebesgue measure. For ev-
ery positive integer k, consider the partition of the interval [0,1) into the subinter-
vals �(k,p)= [ p

2k ,
p+1
2k ), where p = 0,1, . . . ,2k−1. To define a function fn, write

the index n > 1 in the form n = 2k + p, where 0 � p < 2k (such a representation
is obviously unique, and k is just the integer part of log2 n), and set fn = χ�(k,p).
Since

X(fn �= 0)=�(k,p) and λ
(
�(k,p)

)= 1

2k
� 2

n
−→
n→∞ 0,

the constructed sequence converges in measure to zero. However, the numerical
sequence {fn(x)}n�1 has no limit for any x ∈ [0,1), since among the values fn(x)

there are infinitely many ones and zeros.

3.3.2 As we have observed, convergence in measure does not follow from almost
everywhere convergence. However, the situation changes dramatically if the set un-
der consideration has finite measure.

Theorem (Lebesgue) On a set of finite measure, almost everywhere convergence
implies convergence in measure.

Proof Let fn
a.e.−→

n→∞f on E and μ(E) <+∞. Redefining the functions, if necessary,

on a set of zero measure (for example, setting them equal to zero on this set), we
assume that fn −→

n→∞ f everywhere on E.

For a monotone sequence {fn}n�1 that converges pointwise to zero, the desired
assertion is almost obvious. Indeed, in this case, for every ε > 0 the sets E(|fn|> ε)

decrease as n grows and have an empty intersection. Since the measure is continuous
from above, μ(E(|fn| > ε)) −→

n→∞ 0 (it is here that the condition μ(E) < +∞ is

crucial). Thus we have established the convergence of {fn}n�1 in measure in the
special case under consideration.

In the general case, where fn(x) −→
n→∞ f (x) for all x ∈ E, we apply the

result already proved to the functions ϕn(x) = supk�n |fk(x) − f (x)|. Clearly,
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ϕn(x) −→
n→∞ 0 monotonically everywhere, and, by the above, μ(E(ϕn > ε))−→

n→∞0.

It remains to use the inclusion E(|fn − f |> ε)⊂ E(ϕn > ε), which follows from
the inequality |fn − f |� ϕn:

μ
(
E

(|fn − f |> ε
))

� μ
(
E(ϕn > ε)

) −→
n→∞ 0. �

3.3.3 Before continuing to discuss the relations between convergence in measure
and almost everywhere convergence, we prove a simple but important result often
used in probability theory.

Lemma (Borel–Cantelli1) Let {En}n�1 be a sequence of measurable sets and E =⋂∞
n=1

⋃∞
k=n Ek , i.e.,

E = {
x ∈X |x ∈En for infinitely many n

}
.

If
∑

n�1 μ(En) <+∞, then μ(E)= 0.

Proof Since E ⊂⋃
n�k En, we have μ(E)�

∑
n�k μ(En) −→

k→∞ 0. �

This lemma implies a useful criterion for almost everywhere convergence.

Corollary Let εn > 0, εn −→
n→∞ 0, gn ∈ L0(X,μ), and Xn = X(|gn| > εn). If

∑
n�1 μ(Xn) < +∞, then gn

a.e.−→
n→∞0. Furthermore, for every ε > 0 there exists a

set e such that

μ(e) < ε and gn(x) ⇒
n→∞

0 on X \ e.

To prove the almost everywhere convergence, one should, given an arbitrary
ε > 0, apply the Borel–Cantelli lemma to the sets En = X(|gn| > ε), taking into
account that En ⊂Xn for sufficiently large n.

To prove the second claim of the corollary, choose N so large that

∑

n>N

μ(Xn) < ε

and put e=⋃
n>N Xn. Then |gn(x)|< εn for x ∈X \ e and n >N .

3.3.4 Let us return to discussing the relations between almost everywhere conver-
gence and convergence in measure. As we have seen, a sequence that converges
in measure may be divergent at every point. However, the situation changes if we
consider subsequences.

1Francesco Paolo Cantelli (1875–1966)—Italian mathematician.
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Theorem (F. Riesz2) Every sequence that converges in measure contains a subse-
quence that converges almost everywhere to the same limit.

Note that, in contrast to Lebesgue’s theorem, here we do not assume that the
measure is finite.

Proof Let fn
μ−→

n→∞f . Then

μ

(

X

(

|fn − f |> 1

k

))

−→
n→∞ 0

for every k ∈N. Hence there exists an increasing sequence of indices nk such that

μ

(

X

(

|fn − f |> 1

k

))

<
1

2k
for all n� nk.

The sequence {fnk
}k�1 has the desired property. Indeed, applying the corollary of

the Borel–Cantelli lemma to the functions gk = |fnk
− f |, we see that gk

a.e.−→
k→∞0,

i.e., fnk

a.e.−→
k→∞f . �

Remark The subsequence constructed in the proof of Riesz’s theorem, besides
being almost everywhere convergent, has another useful (and stronger) property.
Namely, for every ε > 0 there exists a set e such that

μ(e) < ε and fnk
⇒

k→∞
f on X \ e.

To prove this, it suffices to apply the definition of the functions fnk
and the corol-

lary of the Borel–Cantelli lemma.

3.3.5 Using Riesz’s theorem, one can reduce some questions about convergence in
measure to similar questions about almost everywhere convergence. As examples,
consider the problems related to the uniqueness of the limit and passing to the limit
in inequalities.

Corollary 1 If a sequence {fn}n�1 converges in measure to functions f and g, then
f (x)= g(x) for almost all x.

Proof By Riesz’s theorem, there exists a subsequence {fnk
}k�1 that converges to

f almost everywhere. Since the subsequence {fnk
}k�1, along with the original se-

quence, converges in measure to g, again applying Riesz’s theorem, we can find a
subsequence {fnkj

}j�1 that converges almost everywhere to g. Thus the functions

2Frigyes Riesz (1880–1956)—Hungarian mathematician.
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f and g coincide almost everywhere as limits of the almost everywhere convergent
sequence {fnkj

}j�1. �

Corollary 2 If fn
μ−→

n→∞f and fn � g almost everywhere for every n, then f � g

almost everywhere on E.

Proof Let fnk
be a subsequence that converges to f almost everywhere. By our

condition, fnk
� g outside of some set ek of zero measure. Putting e =⋃∞

k=1 ek ,
we obtain a set of zero measure such that for any x /∈ e and k ∈ N the inequality
fnk

(x)� g(x) holds. It remains to pass to the limit as k→∞. �

3.3.6 Almost everywhere convergence is closely related to a stronger type of con-
vergence which we now define.

Definition We say that a sequence {fn}n�1 converges to f almost uniformly on X

if for every positive ε there exists a set Aε such that

μ(Aε) < ε and fn ⇒
n→∞

f on X \Aε.

Almost uniform convergence implies almost everywhere convergence. Indeed,
the sequence {fn}n�1 converges pointwise outside of each set A1/k , and hence out-
side of their intersection

⋂
k�1 A1/k , which obviously has zero measure. As we

observed after Riesz’s theorem (see Remark 3.3.4), the sequence constructed in its
proof converges not only almost everywhere, but almost uniformly.

Surprisingly, we have the following unexpected result: on a set of finite measure,
almost uniform convergence is equivalent to almost everywhere convergence.

Theorem (Egorov3) Let fn,f ∈ L0(X,μ), and let fn
a.e.−→

n→∞f . If μ(X) <+∞, then

fn −→
n→∞ f almost uniformly on X.

Considering the sequence χ(n,n+1) shows that this theorem cannot be extended
to sets of infinite measure.

Proof Put gn(x)= supk�n |fk(x)− f (x)|. Clearly, gn
a.e.−→

n→∞0. By Lebesgue’s theo-

rem (see Sect. 3.3.2), gn
μ−→

n→∞0 (it is here that the finiteness of μ is crucial). Hence

(cf. the proof of Riesz’s theorem) there exists a subsequence {gnk
}k�1 such that

μ

(

X

(

gnk
>

1

k

))

<
1

2k
.

3Dmitri Fyodorovich Egorov (1869–1931)—Russian mathematician.
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By the corollary of the Borel–Cantelli lemma, this subsequence converges to zero
almost uniformly. Since |fn − f |� gnk

for n� nk , the sequence {fn − f }n�1 also
converges to zero almost uniformly. �

3.3.7 In conclusion, we establish another useful property of almost everywhere con-
vergence.

Theorem (Diagonal sequence) Let μ be a σ -finite measure, and let f
(n)
k ∈

L0(X,μ), gn ∈ L0(X,μ) for n, k ∈ N. If f
(n)
k

a.e.−→
k→∞gn for every n ∈ N and

gn
a.e.−→

n→∞h, then there exists a strictly increasing sequence of indices kn such that

f
(n)
kn

a.e.−→
n→∞h.

Note that h, in contrast to f
(n)
k and gn, may take infinite values on sets of positive

measure.

Proof First assume that the measure is finite. Then f
(n)
k

μ−→
k→∞gn by Lebesgue’s the-

orem. This means that

μ
(
X

(∣
∣f (n)

k − gn

∣
∣ > ε

)) −→
k→∞ 0 for every n ∈N and every ε > 0.

Hence for every n there exists an index kn (kn > kn−1) such that

μ

(

X

(∣
∣f (n)

kn
− gn

∣
∣ >

1

n

))

<
1

2n
.

By the corollary of the Borel–Cantelli lemma, f (n)
kn
− gn

a.e.−→
n→∞0. Thus

f
(n)
kn
= (

f
(n)
kn
− gn

)+ gn
a.e.−→

n→∞h,

which completes the proof of the theorem for a finite measure. �

The case of an infinite measure can be reduced to that considered above by the
following lemma.

Lemma If μ is a σ -finite measure, then there exists a finite measure ν such that
ν(E)= 0 if and only if μ(E)= 0.

Thus “almost everywhere” assertions for the measures μ and ν hold simultane-
ously. Hence we may assume without loss of generality that the measure μ in the
diagonal sequence theorem is finite.
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Proof of the Lemma Let X =⋃∞
n=1 Xn, where 0 <μ(Xn) <+∞. We will obtain a

measure with the desired property by putting

ν(E)=
∑

n�1

1

2n

μ(E ∩Xn)

μ(Xn)

for every measurable set E.
The reader can easily check that ν is a measure and that μ and ν vanish on the

same sets. �

Remark The diagonal sequence theorem is no longer true if we replace almost ev-
erywhere convergence by pointwise convergence, see Exercise 6. Since pointwise
convergence can also be interpreted as almost everywhere convergence with respect
to the counting measure, this exercise also shows that in the diagonal sequence the-
orem one cannot drop the condition of σ -finiteness.

EXERCISES

1. Let fn −→
n→∞ f in measure. Show that if μ(X) < +∞ and g ∈ L0(X), then

fng −→
n→∞ fg in measure. Is this true for an infinite measure?

2. Let {fn}n�1 be the sequence constructed in the example of Sect. 3.3.1, and let
gn = (−1)knfn with k = [log2 n]. Show that the sequence {gn} converges to
zero with respect to the Lebesgue measure, but

lim
n→∞

gn(x)=−∞, lim
n→∞gn(x)=+∞ for all x ∈ [0,1).

3. Let f,g,h ∈ L0([0,1], λ), where λ is the Lebesgue measure and g � f � h.
Show that there exists a sequence of functions fn ∈ L0([0,1]) that converges to
f in measure and satisfies the following conditions:

lim
n→∞fn(x)= h(x), lim

n→∞
fn(x)= g(x) for every x ∈ [0,1].

4. Let g ∈ L0(X,μ), and let fn be functions from L0(X,μ) such that |fn| � g

almost everywhere on X for every n. Show that if μ(X(g > a)) < +∞ for
every a > 0, then the almost everywhere convergence of the sequence {fn}n�1

implies its convergence in measure.
5. Establish the following version of Riesz’s theorem: if a measure is σ -finite and a

sequence {fn}n�1 converges to a function f in measure on every set of positive
measure, then it contains a subsequence that converges to f almost everywhere.

6. Let f (n)
k (x)= cos2k(πn!x) (x ∈R). Show that:

(a) for every x ∈R, the limit gn(x)= limk→∞ f
(n)
k (x) exists;

(b) gn(x) −→
n→∞ χ(x) everywhere on R (here χ is the Dirichlet function);
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(c) there is no sequence of continuous functions (and, in particular, no diagonal
sequence {f (n)

kn
}n�1) that converges to the Dirichlet function pointwise on

a non-degenerate interval.

7. Show that in the case of a σ -finite measure, for every sequence of func-
tions fn ∈ L0(X,μ) there exists a sequence of positive numbers cn such that
cnfn(x)

a.e.−→
n→∞0. Hint. Apply the diagonal sequence theorem to the functions

f
(n)
k = 1

k
fn.

8. Using the fact that the set of all numerical sequences has the cardinality of
the continuum, show that the assertion of Exercise 7 is no longer true for the
counting measure on [0,1].

9. Assume that the measure under consideration is σ -finite and a sequence of
measurable functions fk converges to zero almost everywhere. Show that
ckfk

a.e.−→
n→∞0 for some numerical sequence ck →+∞ (stability of almost every-

where convergence). Hint. Assuming that the sequence {|fk|}k�1 is decreasing,

apply the diagonal sequence theorem to the functions f
(n)
k = nfk .

10. Using the stability of almost everywhere convergence, show that if μ is a σ -
finite measure, fk ∈ L0(X,μ) (k ∈ N), and fk

a.e.−→
k→∞0, then there exists a func-

tion g ∈ L0(X,μ) and a sequence ck →+∞ such that |fk(x)| � 1
ck
g(x) for

almost all x ∈ X for every k (relatively uniform convergence, or convergence
with a regulator). Prove Egorov’s theorem using this result.

11. Let f be a function defined on the square [0,1]2 and continuous in the first
variable (for an arbitrary fixed second variable). Show that if f (x, y) −→

y→0
0

for almost all x ∈ [0,1], then the following version of Egorov’s theorem holds:
for every ε > 0 there exists a set e ⊂ [0,1], λ(e) < ε, such that f (x, y)−→

y→0
0

uniformly on [0,1] \ e. Hint. Consider the sets

Gn(ε)=
{

(x, y) |0 < x < 1,0 < y <
1

n
,

∣
∣f (x, y)

∣
∣ > ε

}

and their projections to the x-axis.
12. Give an example of a Lebesgue measurable function f on the square [0,1]2

with the following properties:

(a) for every y ∈ [0,1], f (x, y) �= 0 for at most one value x ∈ [0,1];
(b) for every x ∈ [0,1], f (x, y) �= 0 for at most one value y ∈ [0,1] (which

implies that f (x, y)−→
y→0

0 for every x ∈ [0,1]);
(c) there is no set e⊂[0,1] of positive measure for which the convergence

f (x, y)−→
y→0

0 is uniform on e.
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3.4 �Approximation of Measurable Functions by Continuous
Functions. Luzin’s Theorem

In this section, we discuss properties of measurable functions on R
m. The measura-

bility (of sets and functions) means their measurability with respect to the Lebesgue
measure, which we denote by λ.

3.4.1 Let us first establish some auxiliary results. Recall the notion of the distance
from a point to a set.

Definition Let A⊂R
m and x ∈R

m. The value

dist(x,A)= inf
{‖x − y‖ ∣

∣y ∈A
}

is called the distance from x to A.

Clearly, dist(x,A)= 0 only for points x lying in the closure of A. In particular,
for a closed set A, the inequality dist(x,A) > 0 holds everywhere outside A.

Lemma 1 The function x �→ dist(x,A) is continuous on R
m.

Proof Let y ∈A and x, x′ ∈R
m. Then ‖x − y‖� ‖x′ − y‖ + ‖x′ − x‖, whence

dist(x,A)�
∥
∥x′ − y

∥
∥+ ∥

∥x′ − x
∥
∥.

Taking the lower boundary in y of the right-hand side, we see that dist(x,A) �
dist(x′,A)+ ‖x − x′‖, i.e., dist(x,A)− dist(x′,A)� ‖x − x′‖. Since x and x′ are
interchangeable, it follows that

∣
∣dist(x,A)− dist

(
x′,A

)∣
∣ �

∥
∥x − x′

∥
∥. �

Lemma 2 The characteristic function of a closed set F ⊂R
m is the pointwise limit

of a sequence of continuous functions.

Proof Obviously, the set-theoretic difference Rm \F can be exhausted by the closed
sets Hn = {x ∈ R

m|dist(x,F ) � 1/n}. Consider the following smoothings of the
characteristic function of F :

fn(x)= dist(x,Hn)

dist(x,F )+ dist(x,Hn)

(
x ∈R

m
)
.

These functions are continuous everywhere, since the denominator does not vanish.
The reader can easily check that fn(x) −→

n→∞ χF (x) for every x ∈R
m. �

3.4.2 We prove that a measurable function can be arbitrarily well approximated in
the sense of convergence almost everywhere by continuous functions.



118 3 Measurable Functions

Theorem (Fréchet4) Every (Lebesgue) measurable function f on R
m is the limit of

a sequence of continuous functions converging almost everywhere.

Here we do not exclude the case where f takes infinite values on a set of positive
measure.

Proof The proof will be split into several steps, with the function f becoming more
and more complicated.

(1) Let f be the characteristic function of a measurable set E. By the regularity
of the Lebesgue measure, E = e ∪⋃∞

n=1 Kn, where λ(e)= 0 and Kn are com-
pact sets that form an increasing sequence (see Corollary 2.3 in Sect. 2.2.2).
Obviously, χKn → χE almost everywhere. However, by Lemma 2, each of the
characteristic functions χKn is the limit of a sequence of continuous functions.
Hence, by the diagonal sequence theorem, χE is also the limit of a sequence of
continuous functions in the sense of almost everywhere convergence.

(2) If f is a simple function, i.e., it can be written in the form f =∑N
k=1 ckχEk

,
where Ek are measurable sets, then, in order to approximate f by continuous
functions, it suffices to approximate the functions χEk

.
(3) In the general case, consider a sequence of simple functions fn that converges

to f pointwise (see Sect. 3.2.2, the corollary of the approximation theorem).
It remains to approximate each function fn by continuous functions and then
apply the diagonal sequence theorem. �

3.4.3 We will use the Fréchet theorem to prove a result that gives deep insight into
the structure of a measurable function on R

m. It shows that Luzin’s condition, which
we used in Theorem 3.1.7, is not only sufficient, but also necessary for a function to
be measurable. In other words, every measurable function on R

m can be transformed
into a continuous function by removing from R

m a set of arbitrarily small measure.

Theorem (Luzin) Every Lebesgue measurable function f on R
m that is finite al-

most everywhere satisfies the Luzin property, i.e., for every δ > 0 there exists a set
e⊂R

m such that

λ(e) < δ and the restriction of f to R
m \ e is continuous.

Proof By the Fréchet theorem, there exists a sequence of continuous functions fk

that converges to f almost everywhere. According to Egorov’s theorem, in every
spherical layer En = {x ∈R

m |n− 1 � ‖x‖< n} there is a subset en such that

λ(en) < δ/2n and fk ⇒ f on En \ en.
Clearly, the restriction of f to En \ en is continuous as the uniform limit of contin-
uous functions. Put e=⋃∞

n=1(en ∪ Sn), where Sn is the sphere of radius n centered

4Maurice René Fréchet (1878–1973)—French mathematician.
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at the origin. Then, obviously, λ(e) < δ and the restriction of f to R
m \ e is contin-

uous. �

The result we have proved can be slightly strengthened by using the theorem on
extension of continuous functions. The latter is formulated as follows.

Theorem Every function continuous on a closed subset F of Rm is the restriction
to F of a function continuous on R

m.

The proof of this theorem is given in Appendix 13.2. It allows us to state Luzin’s
theorem in the following form.

Theorem Every Lebesgue measurable function f that is finite almost everywhere
on R

m coincides with a function that is continuous on R
m except for a set of ar-

bitrarily small measure. In other words, for every δ > 0 there exists a function ϕδ

continuous on R
m such that

λ
({

x ∈R
m

∣
∣f (x) �= ϕδ(x)

})
< δ.

Proof Fix δ > 0 and consider the set e from the statement of Luzin’s theorem. By
the regularity of the Lebesgue measure, there exists an open set G containing e

whose measure is arbitrarily close to the measure of e. Hence we may assume that
λ(G) < δ. Let F = R

m \G, and let f0 be the restriction of f to F . Now, to obtain
ϕδ , it suffices to extend f0 to a continuous function on R

m. �

EXERCISES

1. Show that every function from L0(Rm) is the limit of a sequence of continuous
functions with compact support that converges almost everywhere.

2. Show that a map F : Rm → R
m preserves Lebesgue measurability (i.e., sends

measurable sets to measurable sets) if and only if it sends sets of zero measure to
sets of zero measure.



Chapter 4
The Integral

At the beginning of the previous chapter, we briefly discussed the problem of con-
structing the integral of a bounded function defined on a finite interval [a, b]. As we
noted, if the function f under consideration is discontinuous, Riemann sums of the
form

n∑

k=1

f (ξk)(xk − xk−1), (1)

where x0 = a < x1 < · · · < xn = b, ξk ∈ [xk−1, xk], are strongly affected by the
choice of ξk , so we cannot hope that these sums will have a limit as the partition be-
comes finer. Hence, when constructing the integral of a discontinuous function, the
idea is to replace the subintervals [xk−1, xk] (on which, in spite of their “smallness”,
the oscillations of f may be quite large) by sets on which the oscillations of f can
be controlled. More precisely, we replace (1) with the sums

n∑

k=1

ykλ(Ek), (2)

where y0 < y1 < · · ·< yn, y0 � inff , yn > supf and Ek = f−1([yk−1, yk)) (k = 1,
. . . , n).

Lebesgue described the passage from (1) to (2) as follows:1 the first approach
“is comparable to a messy merchant who counts coins in the order they come to his
hand whereas we act like a prudent merchant who says:

• I have mesE1 coins à one crown, that is 1×mesE1 crowns;
• mesE2 coins à two crowns, that is 2×mesE2 crowns;
• mesE3 coins à five crowns, that is 5×mesE3 crowns;
• . . .

1The quotation is borrowed from [Lus, p. 499].

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_4, © Springer-Verlag London 2013
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Therefore I have 1×mesE1 + 2×mesE2 + 5×mesE3 + · · · crowns.
Both approaches—no matter how rich the merchant might be—lead to the same

result since he only has to count a finite number of coins. But . . . the difference
between the approaches is essential.”

We could give a definition of the integral based on the sums (2), as is done,
for example, in [L, N], etc. However, we prefer a slightly different approach, first
focusing on the (definition and) study of the basic properties of the integral of non-
negative functions. This approach is based on a simple and clear geometric observa-
tion, essentially known to the ancient Greeks: the region lying under the graph of a
non-negative function can be “exhausted” by the regions lying under the graphs of
simple functions. Here the sums (2) are interpreted as the integrals of simple func-
tions. The positivity of the integrand offers substantial technical advantages, making
it possible to quickly derive all basic properties of the integral, which underlie the
subsequent development (see Sect. 4.2.5).

4.1 Definition of the Integral

Everywhere in this section we consider a fixed measure space (X,A,μ). All sets
and functions are assumed measurable. Unless otherwise stated, the values of all
functions belong to the extended real line R= [−∞,+∞].

4.1.1 Before proceeding to definitions, we prove a lemma.

Lemma Let f be a non-negative simple function, {Aj }Mj=1, {Bk}Nk=1 be admissible
partitions for f , and aj , bk be the values of f on Aj and Bk , respectively. Then

M∑

j=1

ajμ(Aj )=
N∑

k=1

bkμ(Bk).

Since the measures of the sets under consideration may be infinite, we recall our
convention that 0 · x = x · 0= 0 for every x ∈R (see Sect. 3.1.6).

Proof It is clear that C =⋃M
j=1 Aj ∩C =⋃N

k=1 Bk ∩C for every set C ⊂X, and

μ(C)=
M∑

j=1

μ(Aj ∩C)=
N∑

k=1

μ(Bk ∩C).

Furthermore, aj = bk if Aj ∩ Bk �= ∅. Hence ajμ(Aj ∩ Bk) = bkμ(Aj ∩ Bk) for
all j , k. Therefore,
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M∑

j=1

ajμ(Aj )=
M∑

j=1

N∑

k=1

ajμ(Aj ∩Bk)=
M∑

j=1

N∑

k=1

bkμ(Aj ∩Bk)

=
N∑

k=1

bk

M∑

j=1

μ(Aj ∩Bk)=
N∑

k=1

bkμ(Bk).

Note that all equations remain valid in the case where some of the sets A1, . . . ,AM

and B1, . . . ,BN have infinite measure. �

Replacing the set X by a subset E of X, we obtain an obvious generalization of
the lemma.

Corollary For every (measurable) set E ⊂X,

M∑

j=1

ajμ(Aj ∩E)=
N∑

k=1

bkμ(Bk ∩E).

4.1.2 Now we are ready to define the integral of a non-negative function.

Definition 1 Let f be a non-negative simple function, {Aj }Mj=1 be an arbitrary ad-
missible partition for f , and aj be the value of f on Aj . The integral of f over a
set E ⊂X is defined as

M∑

j=1

ajμ(E ∩Aj) (1)

and is denoted by
∫
E
f dμ.

The
∫

symbol, which is the stylized first letter of the word Summa, was intro-
duced by Leibniz2 in a work published in 1686. In manuscripts, Leibniz started to
employ it, instead of the original notation Omn, from 1675. The term “integral” first
appeared in J. Bernoulli’s3 work published in 1690.

By the corollary, the sum (1) does not depend on the choice of an admissible
partition. Hence Definition 1 is correct. Furthermore, the sum (1) does not depend
on the values of f on X \E, since if E ∩Aj =∅, then ajμ(E ∩Aj)= aj · 0= 0.
In the case where f takes a single value C on the whole of E, by abuse of notation
we denote the integral

∫
E
f dμ by

∫
E
C dμ.

We now consider some properties of the integral.

2Gottfried Wilhelm Leibniz (1646–1716)—German philosopher and mathematician.
3Jacob Bernoulli (1654–1705)—Swiss mathematician.
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(1) If C is a non-negative number, then
∫
E
C dμ= Cμ(E). In particular, the inte-

gral of the function identically equal to zero over an arbitrary set vanishes.
This property follows immediately from Definition 1.

(2) Monotonicity. If f and g are simple non-negative functions such that f � g on
E, then

∫
E
f dμ�

∫
E
g dμ.

Indeed, let {Aj }Mj=1 be a common admissible partition for f and g, and

{aj }Mj=1, {bj }Mj=1 be the corresponding values of these functions. Then aj � bj
if Aj ∩ E �= ∅, so that ajμ(Aj ∩ E) � bjμ(Aj ∩ E) for all j , 1 � j � M .
Therefore,

∫

E

f dμ=
M∑

j=1

ajμ(Aj ∩E)�
M∑

j=1

bjμ(Aj ∩E)=
∫

E

g dμ.

Definition 2 Let f be a non-negative measurable function on a set E. The integral
of f over E is defined as

∫

E

f dμ= sup

{∫

E

g dμ

∣
∣
∣g is a non-negative simple function, g � f on E

}

.

Remark 1 If f is a non-negative simple function, then its integrals over E in the
sense of Definitions 1 and 2 coincide. This follows from the monotonicity of the
integral of a simple function (Property (2)).

Remark 2 The integral of a non-negative (measurable) function is always defined
and non-negative. It may take the value +∞.

4.1.3 In order to define the integral of a signed measurable function f , we use the
functions f+ =max{f,0} and f− =max{−f,0}. They are obviously non-negative
and, as we observed earlier (see Property 4 in Sect. 3.1.2), measurable. Furthermore,
it is easy to check that

f+ · f− = 0, f = f+ − f−, |f | = f+ + f−.

Definition Given an arbitrary measurable function f on a set E, we keep the nota-
tion introduced above and put

∫

E

f dμ=
∫

E

f+ dμ−
∫

E

f− dμ

if at least one of the integrals
∫
E
f± dμ is finite. In this case, the function f is said

to be integrable on E (with respect to the measure μ). If both integrals
∫
E
f± dμ

are finite, then f is summable on E (with respect to the measure μ).

Remark If f is non-negative, then the integrals of f in the sense of the last def-
inition and that of Definition 2 coincide, since in this case f+ = f , f− = 0, and∫
E

0dμ= 0 (see Property (1)).
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In conclusion, note that as well as the symbol
∫
E
f dμ we will also use the no-

tation
∫
E
f (x)dμ(x),

∫
E
f (y)dμ(y), etc., which explicitly indicates the “variable

of integration”. This notation, which is formally superfluous, is very convenient
when solving concrete problems, especially if the function f depends on param-
eters. For instance, the symbols

∫
(0,1) x

y dμ(x) and
∫
(0,1) x

y dμ(y) make it clear
what function is being integrated, the power function x �→ xy in the first case, or the
exponential function y �→ xy in the second case.

4.2 Properties of the Integral of Non-negative Functions

As in the previous section, hereafter we consider a fixed measure space (X,A,μ).
All sets and functions are assumed measurable. The values of all functions belong
to the extended real line and are non-negative, and every measurable function is
defined on the whole set X (to satisfy the latter condition, we can extend a function
by zero outside its domain, if necessary).

4.2.1 We now establish some simple properties of the integral.

(1) Monotonicity. If f � g on E, then
∫
E
f dμ�

∫
E
g dμ.

For simple functions, this property has already been proved. In the general
case, it follows immediately from Definition 2 of Sect. 4.1.2.

(2) If μ(E)= 0, then
∫
E
f dμ= 0 for every function f .

If f is simple, then it is bounded. Let 0 � f � C. Then 0 �
∫
E
f dμ �∫

E
C dμ= Cμ(E)= 0. In the general case, the desired property follows imme-

diately from Definition 2 of Sect. 4.1.2.
(3)

∫
E
f dμ= ∫

X
fχE dμ.

This implies that the integral over E does not depend on the behavior of the
integrand outside E.

If f is a simple function and {Ak}1�k�N is an admissible partition for f , then
{E ∩A1,E ∩A2, . . . ,E ∩ AN,X \ E} is an admissible partition for f χE . On the
last element of this partition, the function f χE vanishes, and on the other elements,
it takes the same values as f . Thus the desired equation follows immediately from
Definition 1 of Sect. 4.1.2.

In the general case, consider arbitrary non-negative simple functions g and h

such that

g � f on E, h� f χE on X. (1)

Then h= hχE and
∫

X

hdμ=
∫

X

hχE dμ=
∫

E

hdμ�
∫

E

f dμ and

∫

E

g dμ=
∫

X

gχE dμ�
∫

X

fχE dμ
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(both inequalities follow from the definition of the integral of a non-negative func-
tion). Taking the supremum of the left-hand sides of these inequalities over h and
g satisfying conditions (1), we see (again using Definition 2 of Sect. 4.1.2) that∫
X
fχE dμ�

∫
E
f dμ and

∫
E
f dμ�

∫
X
fχE dμ.

Corollary If (measurable non-negative) functions f and g coincide on a set A,
then

∫
A
f dμ= ∫

A
g dμ, because f χA = gχA. In particular:

(3′) If f (x)= C for all x ∈A, then
∫
A
f dμ= Cμ(A).

By abuse of notation, we denote the last integral by
∫
A
C dμ.

Remark When proving various properties of the integral, Property (3) allows one to
consider only the case where the domain of integration is the whole set X. In what
follows, we will repeatedly use this observation.

(4) Monotonicity with respect to the set. If A⊂ B and f � 0 on B , then
∫
A
f dμ�∫

B
f dμ.

Since fχA � fχB , this property follows from the previous ones.

4.2.2 Here we will prove one of the basic properties of the integral. According to the
above remark, we consider only integrals over the whole set X. We do not assume
them to be finite.

Theorem (B. Levi4) Let {fn}n�1 be a sequence of non-negative measurable func-
tions that has a pointwise limit f on X. If

fn � fn+1 on X for every n ∈N, (2)

then
∫

X

fn dμ −→
n→∞

∫

X

f dμ.

Proof First of all, observe that f is measurable as the limit of measurable functions
and fn � f for all n ∈ N in view of (2). By the monotonicity of the integral, we
obtain

∫

X

fn dμ�
∫

X

fn+1 dμ�
∫

X

f dμ.

Hence the limit L= limn→∞
∫
X
fn dμ exists and L�

∫
X
f dμ.

The major part of the proof consists of verifying the reverse inequality
∫

X

f dμ� L.

4Beppo Levi (1875–1961)—Italian mathematician.
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Let g be a simple function such that 0 � g � f , A1,A2, . . . ,AN be an admissible
partition for g, and a1, a2, . . . , aN be the values of g on its elements. Fix an arbitrary
number θ ∈ (0,1) and put Xn =X(fn � θg). Note that

(a) Xn ⊂Xn+1 and

(b)
⋃

n�1

Xn =X. (3)

Inclusion (3a) is obvious in view of (2). To prove (3b), consider an arbitrary point
x ∈X. If g(x)= 0, then fn(x)� 0= θg(x), and hence x ∈Xn for every n ∈ N. If
g(x) > 0, then for sufficiently large n we have fn(x) > θg(x), because fn(x) −→

n→∞
f (x)� g(x) > θg(x) (it is here that we use the assumption θ < 1). Therefore, x ∈⋃

n�1 Xn, and (3b) is proved. It follows from (3) that for every set A⊂X we have

(A∩Xn)⊂ (A∩Xn+1), A=
⋃

n�1

A∩Xn.

Hence, by the continuity of μ from below,

μ(A∩Xn) −→
n→∞ μ(A). (4)

Now we can estimate
∫
X
fn dμ from below using the monotonicity of the integral

(Properties (4) and (1)) and the definition of the integral of a simple function:

∫

X

fn dμ�
∫

Xn

fn dμ�
∫

Xn

θg dμ=
N∑

k=1

θakμ(Ak ∩Xn).

In view of (4), passing to the limit as n→∞, we obtain the inequality

L�
N∑

k=1

θakμ(Ak)= θ

∫

X

g dμ.

Passing to the limit as θ → 1, we conclude that L �
∫
X
g dμ. Since g is an ar-

bitrary function, it follows from the definition of
∫
X
f dμ that L �

∫
X
f dμ, as

required. �

4.2.3 Now we turn to the properties of the integral related to arithmetic operations.

(5) Additivity. If f , g � 0 on X, then

∫

X

(f + g)dμ=
∫

X

f dμ+
∫

X

g dμ. (5)
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First let f and g be simple functions, C1, C2, . . . , CN be a common admis-
sible partition for f and g, and ak , bk be the values they take on Ck . Then

∫

X

(f + g)dμ =
N∑

k=1

(ak + bk)μ(Ck)=
N∑

k=1

ak μ(Ck)+
N∑

k=1

bk μ(Ck)

=
∫

X

f dμ+
∫

X

g dμ.

The general case is proved by approximating the functions f and g by increas-
ing sequences of simple functions fn and gn (see Theorem 3.2.2): since

∫

X

(fn + gn) dμ=
∫

X

fn dμ+
∫

X

gn dμ,

passing to the limit in this inequality according to Levi’s theorem yields (5).
(6) Positive homogeneity. If a is a non-negative number, then

∫
X
af dμ= a

∫
X
f dμ.

The proof of this property goes along the same lines as that of the additiv-
ity. First we establish it for simple functions by direct computations, and then
deduce the general case by passing to the limit. The details are left to the reader.

Corollary By induction, Properties (5) and (6) immediately imply that

∫

X

(
N∑

k=1

akfk

)

dμ=
N∑

k=1

ak

∫

X

fk dμ

for arbitrary numbers ak � 0 and functions fk � 0.

(7) Additivity with respect to the set. If A,B ⊂X and A∩B =∅, then
∫

A∪B
f dμ=

∫

A

f dμ+
∫

B

f dμ.

Since A∩B =∅, we have χA∪B = χA+χB , whence f χA∪B = f χA+fχB .
It remains to apply Properties (5) and (3).

Remark The last property means that the set function A �→ ∫
A
f dμ defined on A

is additive, i.e., it is a volume. Later we will prove (see Theorem 4.5.1) that it is in
fact a measure.

In conclusion, we establish a useful inequality.

(8) Strict positivity. If μ(E) > 0 and f (x) > 0 on E, then
∫
E
f dμ> 0.

Let En = E(f > 1
n
) (n ∈ N). Clearly,

⋃
n�1 En = E and, consequently,

μ(En) > 0 for some n. Therefore,
∫

E

f dμ�
∫

En

f dμ�
∫

En

1

n
dμ= 1

n
μ(En) > 0.
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4.2.4 Now we will derive a formula for the integral with respect to a discrete mea-
sure (see Example 5 in Sect. 1.3.1). Let A be a σ -algebra of subsets of X that con-
tains all one-point sets, {ωx}x∈X be an arbitrary family of non-negative numbers,
and μ be the corresponding discrete measure:

μ(A)=
∑

x∈A
ωx (A ∈A).

Let us verify that
∫

X

f dμ=
∑

x∈X
f (x)ωx. (6)

If f is a non-negative simple function that takes values a1, . . . , an on sets
A1, . . . ,An forming a partition of X, then, by the definition of the integral of a
simple function,

∫

X

f dμ=
n∑

k=1

akμ(Ak)=
n∑

k=1

∑

x∈Ak

akωx =
∑

x∈X
f (x)ωx

(the last equality follows from the additivity of the discrete measure correspond-
ing to the family of numbers {f (x)ωx}x∈X). Thus (6) holds for simple functions.
Let us verify that it holds in the general case. Indeed, if

∫
X
f dμ = +∞, then,

by Definition 2 of Sect. 4.1.2, for every C > 0 there exists a simple function
g such that 0 � g � f and

∫
X
g dμ > C. Using formula (6) for g, we see that∑

x∈X f (x)ωx �
∑

x∈X g(x)ωx =
∫
X
g dμ > C. Hence in the case under consid-

eration,
∑

x∈X f (x)ωx =+∞ and (6) holds.
If

∫
X
f dμ <+∞, then for every ε > 0 there exists a simple function g such that

0 � g � f and
∫
X
f dμ <

∫
X
g dμ + ε. For every finite set E ⊂ X, by the finite

additivity of the integral, we have

∑

x∈E
f (x)ωx =

∑

x∈E

∫

{x}
f dμ=

∫

E

f dμ.

Hence

∑

x∈E
f (x)ωx =

∫

E

f dμ�
∫

X

f dμ <

∫

X

g dμ+ ε =
∑

x∈X
g(x)ωx + ε

�
∑

x∈X
f (x)ωx + ε.

Taking the supremum of the left-hand side over all finite subsets E, we obtain, by
the definition of the sum of a family of numbers,

∑

x∈X
f (x)ωx �

∫

X

f dμ�
∑

x∈X
f (x)ωx + ε.
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Since ε is arbitrary, (6) follows.

Along with (6), a more general formula holds:

∫

A

f dμ=
∑

x∈A
f (x)ωx (A ∈A).

To prove it, we may repeat the above argument with A in place of X, or use for-
mula (6) and the equalities

∫

A

f dμ=
∫

X

fχA dμ and
∑

x∈X
f (x)χA(x)ωx =

∑

x∈A
f (x)ωx.

In particular, if A= {x1, . . . , xn, . . .} is a countable set, then the integral
∫
A
f dμ

is just the sum of a series:

∫

A

f dμ=
∞∑

n=1

f (xn)ωxn . (7)

4.2.5 On the Axiomatic Definition of the Integral. Among the properties of the
integral established above, some are worth special mention. As we proved in
Sects. 4.2.1–4.2.3, the integral has, in particular, the following properties: it is non-
negative on non-negative functions (by definition), additive with respect to the set
(Property (7)), positively homogeneous (Property (6)), and continuous with respect
to increasing sequences (as follows from Levi’s theorem). It turns out that these
properties uniquely determine the integral. Let us consider this question in more
detail.

Let K be the set (cone) of all non-negative measurable functions (which may
take infinite values) defined on X. Restricting ourselves to non-negative functions,
we may say that the integral is a map from K×A to the extended real line: with each
pair (f,A) ∈K×A it associates the value

∫
A
f dμ. Usually, R- and R-valued maps

are called functions; however, the domain of our map (integral) is itself defined
in terms of functions, so, to avoid overloading the term “function” with different
meanings and causing ambiguities, we will call it a functional. Thus the integral is
a functional defined on K×A.

When considering functionals on K × A, we do not fix a measure in advance,
so now we assume that we are given not a measure space, but a measurable space
(X,A). In this section, unless otherwise stated, all sets are measurable and all func-
tions belong to K; we denote the function identically equal to one on X by I.

Assume that a functional J :K×A �→R enjoys the following properties:

(I) J (f,A)� 0 for all f and A;
(II) if A∩B =∅, then J (f,A∪B)= J (f,A)+ J (f,B) (additivity with respect

to the set);
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(III) if f takes the same value C at all points of A, then J (f,A)= C J(I,A);
(IV) if {fn}n�1 is an increasing sequence of functions on X and limn→∞ fn(x)=

g(x) for all x ∈X, then J (fn,A) −→
n→∞ J (g,A) for every A.

Let us show that these properties imply, for instance, the equation J (f +g,A)=
J (f,A)+ J (g,A).

It follows immediately from the additivity with respect to the set that if A1, . . . ,
An are pairwise disjoint sets, then for every n ∈N,

J

(

f,

n∨

k=1

Ak

)

=
n∑

k=1

J (f,Ak). (8)

If f , g are non-negative simple functions and ak , bk are their values at the ele-
ments of a common admissible partition {Ak}nk=1, then, using formula (8) and prop-
erty (III), we obtain

J (f + g,A)= J

(

f + g,A∩
n∨

k=1

Ak

)

=
n∑

k=1

J (f + g,A∩Ak)

=
n∑

k=1

(ak + bk)J (I,A∩Ak)

=
n∑

k=1

akJ (I,A∩Ak)+
n∑

k=1

bkJ (I,A∩Ak)= J (f,A)+ J (g,A).

In the general case, one should approximate f and g by increasing sequences of
simple functions fn and gn (see Theorem 3.2.2) and, using property (IV), pass to
the limit in the equation J (fn + gn,A)= J (fn,A)+ J (gn,A).

In a similar way one can prove that J (af,A)= aJ (f,A) for a > 0.
It is little wonder that the functional J has the last two properties, because, as

we are going to prove now, every functional satisfying conditions (I)–(IV) is the
integral with respect to some measure.

Theorem Let J : K×A �→ R be a functional satisfying conditions (I)–(IV). Then
it has an integral representation, i.e.,

J (f,A)=
∫

A

f dμ for all (f,A) ∈K×A,

where μ is a measure defined on A.

It follows from the integral representation of J that μ(A) = ∫
A
Idμ= J (I,A),

so that μ is uniquely determined.
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Proof The proof proceeds in several steps.
(1) J (χA,X)= J (I,A).
Indeed, by (II) and (III),

J (χA,X)= J (χA,A)+ J (χA,X \A)= 1 · J (I,A)+ 0 · J (I,X \A)= J (I,A)

(recall that, according to our convention, the product 0 · J (I,X \A) vanishes even
if J (I,X \A)=+∞).

(2) Now we set μ(A)= J (I,A) and verify that μ is a measure. The additivity of
μ follows from (II). Hence μ is a volume. To prove that it is countably additive, we
verify that it is continuous from below (see Theorem 1.3.3).

Let An ⊂ An+1 (n ∈ N),
⋃∞

n=1 An = A. Then χAn � χAn+1 and χAn −→n→∞ χA

pointwise on X. Hence, according to (IV), we have J (χAn,X) −→
n→∞ J (χA,X). It

remains to observe that, in view of (1), J (χA,X) = J (I,A) = μ(A), and similar
equations hold for An.

(3) Let us prove that J coincides with the integral with respect to μ on simple
functions. Indeed, if f is a non-negative simple function and ak are its values at the
elements of an admissible partition {Ak}Nk=1, then, using (8) and (III), we see that

J (f,A)= J

(

f,

N⋃

k=1

(A∩Ak)

)

=
N∑

k=1

J (f,A∩Ak)=
N∑

k=1

akJ (I,A∩Ak)

=
N∑

k=1

akμ(A∩Ak)=
∫

A

f dμ.

(4) Finally, let f be an arbitrary function and A be an arbitrary set. Consider
an increasing sequence of simple functions fn that converges to f pointwise on X.
Passing to the limit in the equality J (fn,A) = ∫

A
fn dμ (by (IV) on the left-hand

side and by Levi’s theorem on the right-hand side), we obtain the desired result:
J (f,A)= ∫

A
f dμ. �

This theorem allows us to declare that a functional J satisfying conditions (I)–
(IV) is the integral with respect to the measure μ defined by the formula μ(A) =
J (I,A). All properties of the integral established in Sects. 4.2.1–4.2.3 can be de-
duced from these conditions. However, such an axiomatic approach leaves open the
question of whether there exists a non-trivial (not identically equal to zero) func-
tional satisfying conditions (I)–(IV), as well as the question of whether or not every
measure can be obtained in this way. To resolve these questions, one produces a
construction of a functional with the desired properties, just as we did at the very
beginning.

EXERCISES In Exercises 1–7, μ is a measure defined on a σ -algebra A of sub-
sets of a set X and f is a measurable, non-negative, everywhere finite function
on X.
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1. Show that if the measure μ is finite, then the integral
∫
X
f dμ is finite if and only

if either of the sums
∑∞

n=1 nμ(X(n � f < n+ 1)) and
∑∞

n=1 μ(X(f � n)) is
finite.

2. Let μ(X) = 1, and assume that every point of X belongs to at least k of the N

measurable sets E1, . . . ,EN . Show that μ(En)� k
N

for some n.
3. For p � 1, set I = ∫

X
f p dμ and

s =
∑

n∈Z
2n

(
μ

(
X

(
2n < f � 2n+1))) 1

p , S =
∑

n∈Z
2n

(
μ

(
X

(
2n < f

))) 1
p .

Show that (s <+∞)⇒ (S <+∞)⇒ (I <+∞).
4. Show that the integrals

∫
X
f dμ and

∫
X
ef dμ are finite simultaneously for every

nonnegative measurable function f on X if and only if the measure μ is finite
and the set X cannot be divided into an infinite number of pieces of positive
measure.

5. What can we say about a measure for which every non-negative measurable func-
tion (with finite values) is summable?

6. Prove the following version of Levi’s theorem: if a sequence of measures {μn}
defined on A increases to μ, then

∫
X
f dμn→

∫
X
f dμ.

7. Show that
∫
X
f dμ = ∫

X
f dμ̃, where μ̃ is an arbitrary extension of the mea-

sure μ.

4.3 Properties of the Integral Related
to the “Almost Everywhere” Notion

As in the previous sections, hereafter we fix a measure space (X,A,μ). All sets and
(R-valued) functions under consideration are assumed measurable.

4.3.1 In the theory of functions, one often deals with propositions whose validity
depends on a point x ∈ X. For example, “f (x) > 0”, “the sequence {fn(x)}n�1 is
bounded”, “the sequence {fn(x)}n�1 converges”, etc. The most important case is
that of a proposition P(x) which is valid for all x except for the points of a set of
zero measure. Thus we introduce the following definition.

Definition A proposition P(x) is valid for almost all x in a set E ⊂ X (or almost
everywhere on E) if there exists a set e ⊂ E such that μ(e) = 0 and P(x) is valid
for every point x in E \ e.

In Sect. 3.3.1 we already encountered a special case of this definition, when P(x)

is the proposition “the sequence {fn(x)}n�1 converges” (almost everywhere conver-
gence).

A set whose complement in X has zero measure is called a set of full measure. If
a property P(x) holds on a set of full measure, i.e., almost everywhere on X, then
we say that it holds almost everywhere, omitting the reference to the set.
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Remark One should bear in mind that when we consider several measures μ, ν, . . . ,
the fact that P(x) holds almost everywhere with respect to one measure does not at
all mean that it holds almost everywhere with respect to another measure. In such
cases, to avoid ambiguity, we say that P(x) holds μ-almost everywhere, ν-almost
everywhere, etc.

In what follows, we will often use the following lemma.

Lemma Let {Pn(x)}n�1 be a sequence of propositions and P(x) be the proposition
“all Pn(x) hold at a point x ∈X”. If each Pn(x) holds almost everywhere on a set
E ⊂X, then P(x) also holds almost everywhere on E.

Proof This follows from the fact that the union of a sequence of sets of zero mea-
sure is again a set of zero measure (see Corollary 1.3.2). The details are left to the
reader. �

4.3.2 Now we establish a few properties of the integral related to the “almost ev-
erywhere” notion.

(1) If
∫
E
|f |dμ <+∞, then |f (x)|<+∞ almost everywhere on E.

Let E0 = {x ∈E | |f (x)| = +∞}. Then for every t > 0 we have
∫
E
|f |dμ�∫

E0
t dμ= tμ(E0). Therefore,

μ(E0)�
1

t

∫

E

|f |dμ −→
t→∞ 0.

(2) If
∫
E
|f |dμ= 0, then f (x)= 0 almost everywhere on E.

Indeed, if μ(E(|f | > 0)) > 0, then, by Property (8) from Sect. 4.2.3,∫
E(|f |>0) |f |dμ > 0, a contradiction.

(3) Let E0 ⊂ E such that μ(E \ E0) = 0. Then the integral
∫
E
f dμ exists if and

only if
∫
E0

f dμ exists; if either integral exists, they are equal.
Indeed, by the additivity of the integral and Property (2) from Sect. 4.2.1, we

have
∫

E

f± dμ=
∫

E0

f± dμ+
∫

E\E0

f± dμ=
∫

E0

f± dμ. (1)

Thus the integrals
∫
E
f+ dμ,

∫
E0

f+ dμ, as well as the integrals
∫
E
f− dμ,

∫
E0

f− dμ, are finite or not simultaneously, which means, by definition, that
the function f is integrable on E if and only if it is integrable on E0. The fact
that the integrals

∫
E
f dμ and

∫
E0

f dμ are equal follows immediately from (1)
and the definition.

(4) If measurable functions f and g coincide almost everywhere on E, then the
integral

∫
E
f dμ exists if and only if

∫
E
g dμ exists; if either integral exists,

they are equal.
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Let e=E(f �= g). Since f±(x)= g±(x) on E \ e, it follows from the previ-
ous property that

∫

E

f± dμ=
∫

E\e
f± dμ=

∫

E\e
g± dμ=

∫

E

g± dμ,

which implies the desired assertion.

We see that in the framework of integration problems, functions that coincide al-
most everywhere can be treated as equal. It is convenient to introduce the following
definition.

Definition Functions that coincide almost everywhere on X are called equivalent
(with respect to the measure μ).

4.3.3 Addendum to the Definition of the Integral. Sometimes when dealing with
functions measurable on some set E, we we have, for some natural reason, to con-
sider also functions defined almost everywhere on E. This happens, for example, if
we are interested in the limit of a sequence of measurable functions converging not
everywhere, but only almost everywhere on E.

This situation arises often enough, and it is convenient to appropriately general-
ize the notions of a measurable function and the integral, to avoid the necessity of
making repeated comments.

Definition A function f , defined and measurable on a set E0 ⊂ E such that
μ(E \ E0) = 0, will be called wide-sense measurable on E; for such a function,
by

∫
E
f dμ we will understand the integral

∫
E0

f dμ, if it exists. As before (see
Definition 4.1.3), if the integrals

∫
E
f± dμ are finite, then the function f is said to

be summable on E.

Property (3) established above guarantees that this generalization of the notion
of integral is well defined. It is clear that all properties of the integral proved in the
last two sections remain valid for the integral understood in the wider sense.

We want to draw the reader’s attention to the fact that a wide-sense measurable
function may be defined everywhere on E, but be non-measurable on E (this may
happen if the measure under consideration is not complete).

4.4 Properties of the Integral of Summable Functions

Everywhere in this section, we consider a fixed measure space (X,A,μ). Unless
otherwise stated, all subsets of X are assumed measurable and all functions are
assumed wide-sense measurable on X. According to Definition 4.3.3, a wide-sense
measurable function f is summable on a set E ∈A with respect to the measure μ if
the integrals

∫
E
f± dμ are finite. The set of such functions is denoted by L (E,μ),

or L (E) for short if the measure is clear from the context. Studying the properties of



136 4 The Integral

the integral, we everywhere (except for Properties (2) and (8), for obvious reasons)
consider integrals of summable functions over the whole set X. The corresponding
properties of integrals over arbitrary measurable subsets of X can be obtained via
the equality

∫
E
f dμ= ∫

X
fχE dμ (see Sect. 4.2, Property (3)); we leave the details

to the reader.

4.4.1 Properties of the Integral Expressed by Inequalities

(1) A function f is summable on X if and only if |f | ∈L (X). If f ∈L (X), then
| ∫

X
f dμ|� ∫

X
|f |dμ.

The summability of f means, by definition, that the integrals
∫
X
f+ dμ and∫

X
f− dμ are finite. This is equivalent to the summability of |f |, since |f | =

f+ + f−. If f is summable, we have
∣
∣
∣
∣

∫

X

f dμ

∣
∣
∣
∣=

∣
∣
∣
∣

∫

X

f+ dμ−
∫

X

f− dμ

∣
∣
∣
∣ �

∫

X

f+ dμ+
∫

X

f− dμ=
∫

X

|f |dμ.

Corollary Every function summable on E is finite almost everywhere on E.

To prove this, it suffices to compare the property proved above and Property (1)
from Sect. 4.3.2.

(2) Every function summable on E is summable on every (measurable) subset of E.

This follows immediately from Property (1) and the monotonicity of the integral
over the set.

(3) Every bounded function f is summable on a set E of finite measure.

Indeed, let |f |� C on E. Then
∫

E

|f |dμ�
∫

E

C dμ= Cμ(E) <∞,

and it remains to apply Property (1).

(4) Monotonicity of the integral. If f,g ∈ L (X) and f � g almost everywhere,
then

∫
X
f dμ�

∫
X
g dμ.

Since f+−f− � g+−g−, we have f++g− � g++f−. Hence, by the additivity
and monotonicity of the integral of non-negative functions,

∫

X

f+ dμ+
∫

X

g− dμ�
∫

X

g+ dμ+
∫

X

f− dμ.

Since all integrals are finite, the desired inequality follows:
∫

X

f+ dμ−
∫

X

f− dμ�
∫

X

g+ dμ−
∫

X

g− dμ.
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(5) If |f |� g almost everywhere on X and g ∈L (X), then f ∈L (X).

The proof follows immediately from the monotonicity of the integral and Prop-
erty (1).

4.4.2 Properties of the Integral Expressed by Equalities

(6) Additivity. If f , g ∈L (X), then f + g ∈L (X) and

∫

X

(f + g)dμ=
∫

X

f dμ+
∫

X

g dμ. (1)

Let h = f + g. The functions f and g are finite almost everywhere, hence the
function h is defined (and measurable) on a set of full measure. Since |h|� |f |+ |g|
and

∫
X
(|f | + |g|) dμ = ∫

X
|f |dμ + ∫

X
|g|dμ by the additivity of the integral of

non-negative functions, h is summable by Property (5). To prove (1), observe that

h+ − h− = f+ − f− + g+ − g−, i.e., h+ + f− + g− = f+ + g− + h−.

Integrating the last equation and using the additivity of the integral of non-negative
functions, we obtain

∫

X

h+ dμ+
∫

X

f− dμ+
∫

X

g− dμ=
∫

X

f+ dμ+
∫

X

g+ dμ+
∫

X

h− dμ.

All integrals here are finite, and hence

∫

X

h+ dμ−
∫

X

h− dμ=
∫

X

f+ dμ−
∫

X

f− dμ+
∫

X

g+ dμ−
∫

X

g− dμ.

(7) Homogeneity. If f ∈L (X) and α ∈R, then αf ∈L (X) and

∫

X

αf dμ= α

∫

X

f dμ. (2)

If α � 0, then (αf )+ = αf+, (αf )− = αf−. By the definition of the integral (see
Sect. 4.1.3) and the positive homogeneity, we have

∫

X

αf dμ=
∫

X

αf+ dμ−
∫

X

αf− dμ= α

∫

X

f+ dμ− α

∫

X

f− dμ= α

∫

X

f dμ,

which proves both the summability of αf and formula (2).
For α =−1 we have

(−f )+ =max{−f,0} = f−, (−f )− =max
{−(−f ),0

}= f+.
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Hence
∫

X

(−f )dμ =
∫

X

(−f )+ dμ−
∫

X

(−f )− dμ=
∫

X

f− dμ−
∫

X

f+ dμ

= −
∫

X

f dμ.

The case α < 0 follows from the above, due to the equality α = (−1)|α|.

Corollary (Linearity of the integral) If f1, . . . , fn ∈L (X), α1, . . . , αn ∈ R, then
(α1f1 + · · · + αnfn) ∈L (X) and

∫

X

n∑

k=1

αkfk dμ=
n∑

k=1

αk

∫

X

fk dμ.

For n= 2, this follows immediately from the additivity and homogeneity of the
integral; the general case is proved by induction.

(8) Additivity with respect to a set. Let E =⋃n
k=1 Ek , and let f be a (wide-sense)

measurable function on E. Then f is summable on E if and only if it is
summable on each Ek . If f ∈L (E) and the sets Ek are pairwise disjoint, then

∫

E

f dμ=
n∑

k=1

∫

Ek

f dμ. (3)

Assuming that f is extended in an arbitrary way to the whole set X, observe
that |f |χEk

� |f |χE � |f |χE1 + · · · + |f |χEn for every k = 1, . . . , n. Hence the
inequality

∫
X
|f |χE dμ <+∞, which is equivalent to the summability of f on E,

holds if and only if all inequalities
∫
X
|f |χEk

dμ < +∞ (k = 1, . . . , n) hold, i.e.,
f is summable on each Ek .

If the sets Ek are pairwise disjoint, then f χE = f χE1 + · · · + f χEn . Integrating
this equality, we arrive at the desired result.

Note that the summability of f on each set of an infinite family does not imply its
summability on the union of these sets. A corresponding example can be obtained
by considering the function identically equal to one and an arbitrary sequence of
sets of finite measure whose union has infinite measure.

(9) Integration with respect to a sum of measures. If μ= μ1 +μ2, then

∫

X

f dμ=
∫

X

f dμ1 +
∫

X

f dμ2 (4)

for every non-negative function f . A (signed) function f is summable with
respect to μ if and only if it is summable with respect to μ1 and μ2. In the latter
case, (4) remains valid.
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Since μ(E) = ∫
X
χE dμ, formula (4) holds for characteristic functions, and

hence for all non-negative simple functions. The general case can be obtained by
passing to the limit (cf. the proof of Property (5) in Sect. 4.2.3). If f is a signed
function, then the fact that the integrals

∫
X
f dμ and

∫
X
f d1μ,

∫
X
f d2μ are fi-

nite or not simultaneously follows from formula (4) applied to |f |. Since (4) holds
for f±, we obtain it for f by subtraction (which is allowed, since the integrals are
finite).

4.4.3 Now consider the integration of complex-valued functions. A complex-valued
function f is called measurable if its real and imaginary parts, i.e., the functions
g =Re(f ) and h= Im(f ), are measurable; the wide-sense measurability of f is
understood in a similar way. A function f is called summable on a set E if g and h

are summable on E. In this case, by definition,
∫

E

f dμ=
∫

E

g dμ+ i

∫

E

hdμ.

This immediately implies a formula for integrating the conjugate function:
∫
E
f dμ

= ∫
E
f dμ.

The equality properties (6)–(8) of the integral remain valid for complex-valued
functions. An easy check is left to the reader.

Properties (1), (2), (3) and (5) (Property (4) no longer makes sense) also remain
valid in the complex-valued case. Since Properties (2) and (5) easily follow from
Property (1), we will prove only the latter.

Let f be a measurable complex-valued function. Keeping the notation introduced
above, we see that |f | = √

g2 + h2. Hence the function |f | is also measurable.
Furthermore,

|g|, |h|� |f | =
√
g2 + h2 � |g| + |h|,

which implies that |f | is summable if and only if both g and h are summable, i.e.,
f is summable.

Let us prove that if f is summable, then | ∫
E
f dμ| � ∫

E
|f |dμ. Obviously,

| ∫
E
f dμ| = eiα

∫
E
f dμ for some α ∈ R. Hence, by the homogeneity of the in-

tegral with respect to complex scalars, we have
∣
∣
∣
∣

∫

E

f dμ

∣
∣
∣
∣= eiα

∫

E

f dμ=
∫

E

eiαf dμ=
∫

E

Re
(
eiαf

)
dμ+ i

∫

E

Im
(
eiαf

)
dμ.

Since this chain of equalities begins with a real number, it follows that∫
E
Im(eiαf ) dμ= 0. Therefore,

∣
∣
∣
∣

∫

E

f dμ

∣
∣
∣
∣=

∫

E

Re
(
eiαf

)
dμ�

∫

E

∣
∣Re

(
eiαf

)∣
∣dμ�

∫

E

∣
∣eiαf

∣
∣dμ=

∫

E

|f |dμ.

4.4.4 The remaining part of the section deals with important integral inequalities.
The functions (in general, complex-valued) under consideration are assumed wide-
sense measurable.
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Theorem (Chebyshev’s5 inequality) Let p and t be positive numbers. Given a func-
tion f defined on X, put Xt =X(|f |� t). Then

μ(Xt)�
1

tp

∫

X

|f |p dμ.

Proof The proof is almost obvious:
∫

X

|f |p dμ�
∫

Xt

|f |p dμ�
∫

Xt

tpdμ= tpμ(Xt ). �

4.4.5 The following inequality is a convenient tool for evaluating integrals.

Theorem (Hölder’s6 inequality) Let p, q > 1 and 1
p
+ 1

q
= 1. Then for any func-

tions f and g,

∫

X

|f g|dμ�
(∫

X

|f |p dμ

) 1
p ·

(∫

X

|g|q dμ

) 1
q

.

Proof We may assume that f and g are non-negative (otherwise replace f with
|f | and g with |g|). If at least one of the integrals

∫
X
f p dμ or

∫
X
gq dμ vanishes,

then the product fg vanishes almost everywhere and the inequality in question is
obvious. The case where at least one of these integrals is infinite is also trivial.
Hence in what follows we assume that

0 <Ap =
∫

X

f p dμ <+∞, 0 <Bq =
∫

X

gq dμ <+∞.

Let us use an auxiliary inequality to be proved a little later:

uv � up

p
+ vq

q
for u,v � 0.

Substituting u= f (x)
A

and v = g(x)
B

, we obtain

f (x)

A
· g(x)

B
� 1

p
· f

p(x)

Ap
+ 1

q
· g

q(x)

Bq
.

Integrating over X yields
∫

X

fg

AB
dμ� 1

p
+ 1

q
= 1,

which is equivalent to the inequality in question.

5Pafnuty L’vovich Chebyshev (1821–1894)—Russian mathematician.
6Ludwig Otto Hölder (1859–1937)—German mathematician.
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Proceeding to the proof of the auxiliary inequality, we observe that the function
ϕ(u) = up

p
+ vq

q
− uv is convex on [0,+∞) for every v � 0. Since ϕ′(u) = 0 at

the point u0 = v
q
p , it follows that ϕ attains the minimum at this point. It is easy to

calculate that ϕ(u0)= 0, and the non-negativity of ϕ follows. �

Corollary 1 If
∫
X
|f |p dμ < +∞ and

∫
X
|g|q dμ < +∞, then the function fg is

summable and

∣
∣
∣
∣

∫

X

fg dμ

∣
∣
∣
∣ �

(∫

X

|f |p dμ

) 1
p ·

(∫

X

|g|q dμ

) 1
q

(this is also called Hölder’s inequality).

The summability of fg follows immediately from Hölder’s inequality, the right-
hand side of which is finite.

Corollary 2 If p1, . . . , pm are positive numbers such that 1
p1
+ · · · + 1

pm
= 1, then

∫

X

|f1 · · ·fm|dμ�
m∏

j=1

(∫

X

|fj |pj dμ

) 1
pj

for any measurable functions f1, . . . , fm on X.

The reader can easily prove this by induction.
We complement Corollary 1 with an inequality corresponding to the case p = 1.

To this end, we introduce the notion of a “refined” upper boundary.

Definition The essential supremum of a function f ∈L 0(X,μ) is the value

inf{C |f � C almost everywhere on X}.
It is denoted by esssupX f .

Clearly, if esssupX |f | < +∞, then we can make f bounded redefining it on a
set of zero measure. Note also that in the definition of the essential supremum, the
lower boundary can be replaced by the minimum, so that f � esssupX f almost
everywhere. Indeed, if esssupX f =+∞, this is obvious, and if esssupX f = C0 <

+∞, then f � C0+ 1
n

almost everywhere for every n ∈N, and the desired assertion
follows by passing to the limit.

The set of functions f with esssupX |f |<+∞ is denoted by L∞(X,μ).
The monotonicity of the integral implies that if f ∈L (X,μ) and g ∈L∞(X,μ),

then the function fg is summable and
∣
∣
∣
∣

∫

X

fg dμ

∣
∣
∣
∣ � esssup

X

|g| ·
∫

X

|f |dμ.
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Corollary 3 Let p > 1,
∫
X
|f |p dμ <+∞, and μ(X) <+∞. Then f is summable.

Indeed, assuming that 1
p
+ 1

q
= 1 and applying Hölder’s inequality to the func-

tions |f | and 1, we see that

∫

X

|f |dμ=
∫

X

|f | · 1dμ�
(∫

X

|f |p dμ

) 1
p (

μ(X)
) 1

q <+∞.

An important special case of Hölder’s inequality is obtained for p = q = 2:

∫

X

|f g|dμ�
(∫

X

|f |2 dμ
) 1

2
(∫

X

|g|2 dμ
) 1

2

.

This is usually called the Cauchy–Bunyakovsky7 inequality.
Note also that if μ is the counting measure on a finite set XN = {1, . . . ,N}, then,

by the additivity of the integral,
∫
XN

f dμ = ∑N
n=1

∫
{n} f dμ = ∑N

n=1 fn, where
fn = f (n). Hence in this case Hölder’s inequality takes the form

N∑

n=1

|fngn|�
(

N∑

n=1

|fn|p
) 1

p

·
(

N∑

n=1

|gn|q
) 1

q

.

Passing to the limit as N →∞, we obtain Hölder’s inequality for series,

∞∑

n=1

|fngn|�
( ∞∑

n=1

|fn|p
) 1

p

·
( ∞∑

n=1

|gn|q
) 1

q

,

which is just Hölder’s inequality for integrals in the case where μ is the counting
measure on N (see Example 4 in Sect. 1.3.1 and the example in Sect. 4.5.1 below).

The special case p = q = 2 yields the classical Cauchy inequality:

∞∑

n=1

|fngn|�
( ∞∑

n=1

|fn|2
) 1

2

·
( ∞∑

n=1

|gn|2
) 1

2

.

4.4.6 The following inequality can be viewed as a generalization of the triangle
inequality for the function.

Theorem (Minkowski’s inequality) Let p � 1, and let f and g be functions that
are finite almost everywhere on X. Then

(∫

X

|f + g|p dμ

) 1
p

�
(∫

X

|f |p dμ

) 1
p +

(∫

X

|g|p dμ

) 1
p

.

7Viktor Yakovlevich Bunyakovsky (1804–1889)—Russian mathematician.
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Proof Since |f + g| � |f | + |g|, Minkowski’s inequality for p = 1 is obvious.
Hence in what follows we assume that p > 1. Set

Ap =
∫

X

|f |p dμ, Bp =
∫

X

|g|p dμ, Cp =
∫

X

|f + g|p dμ.

Clearly, the inequality needs to be proved only if A and B are finite. Let us show
that in this case C <+∞. Indeed, since

|f + g|p �
(
2 max

{|f |, |g|})p � 2p
(|f |p + |g|p)

,

we have Cp � 2p(Ap +Bp) <+∞. Obviously,

Cp �
∫

X

(|f | + |g|)(|f | + |g|)p−1
dμ

=
∫

X

|f |(|f | + |g|)p−1
dμ+

∫

X

|g|(|f | + |g|)p−1
dμ. (4)

Applying Hölder’s inequality (see Sect. 4.4.5) with q = p
p−1 > 1 to the first integral

on the right-hand side, we obtain

∫

X

|f |(|f | + |g|)p−1
dμ�

(∫

X

|f |p dμ

) 1
p ·

(∫

X

|f + g|(p−1)q dμ

) 1
q =A ·C p

q .

Analogously,
∫

X

|g| |f + g|p−1 dμ� B ·C p
q .

Together with (4) this yields

Cp �A ·C p
q +B ·C p

q = (A+B)C
p
q .

For C > 0, dividing both sides by C
p
q yields the desired result, since p− p

q
= 1. For

C = 0, the inequality being proved is obvious. �

We also mention the version of Minkowski’s inequality for sums:

( ∞∑

n=1

|fn + gn|p
) 1

p

�
( ∞∑

n=1

|fn|p
) 1

p

+
( ∞∑

n=1

|gn|p
) 1

p

.

4.5 The Integral as a Set Function

In this section, as in the previous one, we consider a fixed measure space (X,A,μ).
We assume that all subsets of X under consideration are measurable and all function
are defined at least almost everywhere on X and are wide-sense measurable.
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4.5.1 We establish one of the most important integral properties.

Theorem (Countable additivity of the integral) Let f be a non-negative function on
a set A⊂X and A=∨∞

k=1 Ak . Then

∫

A

f dμ=
∞∑

k=1

∫

Ak

f dμ.

Note that we do not assume the integrals to be finite.

Proof Since {An}n�1 is a partition of A, we have

f χA =
∞∑

k=1

f χAk
.

Let Sn be the nth partial sum of the series on the right-hand side. Clearly, 0 � Sn �
Sn+1 and Sn −→

n→∞ f χA. By Levi’s theorem,

∫

X

fχA dμ= lim
n→∞

∫

X

Sn dμ= lim
n→∞

n∑

k=1

∫

X

fχAk
dμ.

Thus
∫

A

f dμ= lim
n→∞

n∑

k=1

∫

Ak

f dμ=
∞∑

k=1

∫

Ak

f dμ. �

Remark The theorem can be restated as follows: if f is a non-negative function
on X, then the set function A �→ ∫

A
f dμ is a measure on A (cf. the remark after

Property (7) in Sect. 4.2.3).

Corollary 1 The theorem remains valid if f is a signed summable function.

To prove this, it remains to apply the theorem to the functions f±.
The next result shows that the integral of a summable function has the same

continuity properties as a finite measure (see Theorems 1.3.3 and 1.3.4).

Corollary 2 The integral of a summable function f is continuous from below and
from above. More explicitly, if

A=
⋃

n�1

An, An ⊂An+1, or A=
⋂

n�1

An, An ⊃An+1,

then
∫
An

f dμ −→
n→∞

∫
A
f dμ.

In particular, if An ⊃An+1 and
⋂

n�1 An =∅, then
∫
An

f dμ −→
n→∞ 0.
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Proof This follows directly from the fact that the finite measures ν±, where
ν+(A) = ∫

A
f+ dμ and ν−(A) = ∫

A
f− dμ, are continuous from below and from

above. �

If f is a function summable on a set X of infinite measure, then the integral∫
X
f dμ is “essentially concentrated” on a set of finite measure. More precisely,

this means the following.

Corollary 3 If f ∈L (X), then for every ε > 0 there exists a set A of finite measure
such that

∫
X\A |f |dμ < ε.

Proof Let us verify that A can be taken equal to X(|f | � 1
n
) for sufficiently large

n. To this end, observe that the sets An = X(|f | < 1
n
) decrease and their inter-

section coincides with X(f = 0). Since the integral is continuous from above,∫
An
|f |dμ −→

n→∞
∫
X(f=0) |f |dμ = 0. Hence

∫
X\A |f |dμ =

∫
An
|f |dμ < ε pro-

vided that n is sufficiently large. It remains to observe that μ(A) <+∞, since

1

n
μ

(

X

(

|f |� 1

n

))

�
∫

A

|f |dμ�
∫

X

|f |dμ <+∞. �

Example If μ is the counting measure defined on the algebra of all subsets of N,
then every sequence f = {fn}n∈N is a measurable function. By the countable addi-
tivity of the integral,

∫

N

|f |dμ=
∞∑

n=1

∫

{n}
|f |dμ=

∞∑

n=1

|fn|.

Thus the summability of f means the absolute convergence of the series
∑∞

n=1 fn,
and the sum of this series is the integral of f with respect to the counting measure.
The comparison theorems, rearrangement property, and other properties of abso-
lutely convergent series are just special cases of the corresponding properties of the
integral of summable functions.

More generally, if μ is the discrete measure corresponding to a family of point
masses {ωx}x∈X and the set X0 = {x ∈ X |ωx > 0} is finite or countable (X0 =
{x1, x2, . . .}), then for f � 0 we have

∫

X

f dμ=
∑

n�1

f (xn)ωxn,

and this equality holds for every (possibly complex-valued) summable function.

4.5.2 We now establish another important property of the integral.

Theorem (Absolute continuity of the integral) Let f ∈L (X). Then for every ε > 0
there exists a δ > 0 such that

∫
e
|f |dμ < ε if μ(e) < δ.
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Proof By the definition of the integral,

∫

X

|f |dμ= sup

{∫

X

g dμ |0 � g � |f | on X, g is a simple function

}

,

hence there exists a simple function gε such that

0 � gε � |f |,
∫

X

|f |dμ <

∫

X

gε dμ+ ε

2
. (1)

It is clear that the function gε is bounded. Let gε � Cε on X. We will show that it
suffices to put δ = ε

2Cε
. Indeed, if μ(e) < δ, then, using (1) and the monotonicity of

the integral with respect to the set, we see that

∫

e

|f |dμ =
∫

e

(|f | − gε

)
dμ+

∫

e

gε dμ

�
∫

X

(|f | − gε

)
dμ+

∫

e

Cε dμ <
ε

2
+Cεμ(e) < ε,

as required. �

The theorem immediately implies the following result.

Corollary Let {en}n�1 be a sequence of sets such that μ(en) → 0. If f is a
summable function, then

∫

en

|f |dμ −→
n→∞ 0.

4.5.3 We consider the problem of calculating the integral with respect to a measure
of special form.

Definition Let ν be a measure defined on the same σ -algebra A as μ. If there exists
a non-negative function ω such that ν(A)= ∫

A
ωdμ for all A ∈A, then ω is called

the density (or the weight) of ν with respect to μ.

Let us find a formula relating the integrals with respect to μ and ν.

Theorem If ν has a density ω with respect to μ, then for any non-negative func-
tion f ,

∫

X

f dν =
∫

X

fωdμ. (2)

A (signed) function f is summable with respect to ν if and only if the product fω is
summable with respect to μ. In the latter case, (2) remains valid.
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In view of this result, the fact that ω is the density of ν with respect to μ is often
denoted as follows: dν = ωdμ.

Proof If f is a characteristic function, then (2) follows immediately from the defini-
tion of ν. Therefore, this formula is also valid for all non-negative simple functions.
To obtain the general case, it suffices to approximate f by simple functions (see
Sect. 3.2.2) and apply Levi’s theorem.

The summability condition for f can be obtained from (2) by replacing f with
|f |. The fact that (2) is valid for a signed summable function easily follows from
the equalities

∫
X
f± dν = ∫

X
f±ωdμ. �

Example Let ν be the discrete measure (see Sect. 1.3.1) defined on the σ -algebra
of all subsets of X that corresponds to a family ω = {ω(x)}x∈X . Clearly, ω is the
density of ν with respect to the counting measure.

4.5.4 It is obvious that two densities that coincide μ-almost everywhere generate
the same measure. We will prove that the converse is also true, i.e., that a function
is determined up to equivalence by the values of its integrals.

Theorem Let f and g be summable functions. If

∫

A

f dμ=
∫

A

g dμ for all A ∈A,

then f (x)= g(x) for almost all x ∈X.

Proof Let h = f − g. Obviously,
∫
A
hdμ = 0 for every A ∈ A. In particular, for

A=A±, where A+ = {x ∈X |h(x)� 0} and A− = {x ∈X |h(x) < 0}, we have

∫

A+
|h|dμ=

∫

A+
hdμ= 0,

∫

A−
|h|dμ=−

∫

A−
hdμ= 0.

Since the sets A+ and A− form a partition of X, it follows that
∫
X
|h|dμ =∫

A+ |h|dμ +
∫
A− |h|dμ = 0. Therefore, h(x) = 0 almost everywhere on X (see

Property (2) in Sect. 4.3.2). �

Corollary Let f be a function summable with respect to the Lebesgue measure
on R

m. If
∫
P
f dλm = 0 for every cell P , then f (x)= 0 almost everywhere.

Proof By assumption, the measures ν±(A) = ∫
A
f± dλm coincide on the semir-

ing Pm. Hence, by the uniqueness of the extension 1.5.1, they coincide on the
whole σ -algebra Am, i.e.,

∫
A
f dλm = 0 for all A ∈ Am. It remains to apply the

theorem. �
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EXERCISES

1. Show that if μ is a σ -finite measure, then Theorem 4.5.4 remains valid for all
non-negative (not necessarily summable) functions f and g.

2. Show that a measure is σ -finite if and only if there exists a positive summable
function.

4.6 The Lebesgue Integral of a Function of One Variable

In this section, λ stands for the one-dimensional Lebesgue measure. The integral∫
E
f dλ, where E ⊂R is a Lebesgue measurable set, is called the Lebesgue integral

(of the function f over the set E). Recall that a function summable on E may be
defined not everywhere, but only almost everywhere on E. Here we will consider
only the simplest sets, namely, intervals (possibly infinite). Note that the type of
an interval is irrelevant, since the Lebesgue measure of a one-point set is equal to
zero. Hence the integrals over (a, b), [a, b], [a, b) and (a, b] coincide. An arbitrary
interval with endpoints a and b will be denoted by 〈a, b〉.

Note that every (measurable) function that is bounded on a finite interval is
summable on this interval. In particular, a function that is continuous on a closed
interval is summable.

4.6.1 First let us study the properties of the function t �→ ∫
(a,t)

f dλ, which is asso-
ciated in a natural way with every summable function f on 〈a, b〉.

In the theorem below we consider a function F defined on a non-degenerate
closed interval [a, b] contained in the extended real line R. Observe that we do not
exclude the cases a = −∞ or b = +∞. The continuity of F at the points ±∞
means that F(±∞) = limt→±∞ F(t). In other words, the continuity on [a, b] is
understood in the sense of the topological space R.

Theorem Let f be a summable function on an interval 〈a, b〉,−∞� a < b�+∞,
and F(t)= ∫

(a,t)
f dλ for t ∈ [a, b]. Then:

(1) if f � 0, then F is non-decreasing;
(2) F is bounded and continuous on [a, b]; in particular, if b = +∞ (a =−∞),

then

F(t) −→
t→+∞

∫

(a,+∞)

f dλ
(
F(t) −→

t→−∞ 0
); (1)

(3) if f is continuous at a point t0 ∈ 〈a, b〉, then F is differentiable at t0 and
F ′(t0)= f (t0).

Claim (3), which establishes a link between integral and differential calculus,
was essentially known to Barrow.8

8Isaac Barrow (1630–1677)—English mathematician.
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Proof (1) The fact that F is non-decreasing follows from the inequality

F(t)− F(s)=
∫

(s,t)

f dλ for s � t, s, t ∈ [a, b], (2)

whose right-hand side is non-negative for f � 0.
(2) The boundedness of F is obvious, since

∣
∣F(t)

∣
∣ �

∫

(a,t)

|f |dλ�
∫

(a,b)

|f |dλ <+∞.

Equation (2) shows that the continuity of F at a point s ∈R is a consequence of the
absolute continuity of the integral (see Sect. 4.5.2).

To prove (1), observe that, by the definition of F ,

F(a)=
∫

∅

f dλ= 0 and F(b)=
∫

(a,b)

f dλ.

Since F(t)= F(b)−∫
(t,b)

f dλ, in the case b=+∞ (a =−∞) it remains to check
that

∫

(t,+∞)

|f |dλ −→
t→+∞ 0

(

respectively,
∫

(−∞,t)

|f |dλ −→
t→−∞ 0

)

,

which follows immediately from the continuity of the integral from above.
(3) Let us prove the existence of the right derivative of F at a point t0, t0 < b. We

will assume that f is defined everywhere on 〈a, b〉 (otherwise extend f to 〈a, b〉 by
setting it equal to f (t0) at a set of zero measure; this affects neither the value of the
integral nor the continuity of f at t0).

Taking Eq. (2) with s = t0, dividing it by t − t0, and subtracting the equation
f (t0)= 1

t−t0

∫
(t0,t)

f (t0) dλ from the result, we see that

F(t)− F(t0)

t − t0
− f (t0)= 1

t − t0

∫

(t0,t)

(
f − f (t0)

)
dλ.

Hence
∣
∣
∣
∣
F(t)− F(t0)

t − t0
− f (t0)

∣
∣
∣
∣ �

1

t − t0

∫

(t0,t)

∣
∣f − f (t0)

∣
∣dλ� sup

x∈[t0,t]
∣
∣f (x)− f (t0)

∣
∣.

The right-hand side tends to zero as t → t0, since f is continuous at t0. Thus we
have proved that F is differentiable at t0 from the right and F ′+(t0) = f (t0). The
fact that F is differentiable at t0 from the left and F ′−(t0)= f (t0) can be proved in
a similar way. �

Corollary 1 Every continuous function f on an interval 〈a, b〉 has an antideriva-
tive.
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Proof The function f is summable on every closed interval contained in 〈a, b〉.
Assume that the interval 〈a, b〉 is closed from the left and put

F(t)=
∫

(a,t)

f dλ for t ∈ [a, b〉. (3)

It follows from the theorem that F is an antiderivative for f . In the case where the
interval 〈a, b〉 is closed from the right, one should put

F(t)=−
∫

(t,b)

f dλ for t ∈ 〈a, b].

In the case of an arbitrary interval, fix a point c ∈ (a, b) and put

F(t)=
{− ∫

(t,c)
f dλ for t ∈ 〈a, c),

∫
(c,t)

f dλ for t ∈ [c, b〉.

We leave the reader to check that the constructed function is indeed an antiderivative
for f on 〈a, b〉. �

Corollary 2 (Fundamental theorem of calculus) If � is an antiderivative of a con-
tinuous function f on an interval [a, b], then

∫

[a,b]
f dλ=�(b)−�(a), i.e.,

∫

[a,b]
�′ dλ=�(b)−�(a).

Proof Indeed, let F be the antiderivative of f defined by (3). Then F(a)= 0. Since
the difference of two antiderivatives is constant, it follows that �(b) − F(b) =
�(a)− F(a)=�(a). Hence

�(b)−�(a)= F(b)=
∫

[a,b]
f dλ. �

The difference �(b)−�(a) is often denoted by �(x)|x=b
x=a or, in short, �|ba , so

that the fundamental theorem of calculus can be rewritten as
∫

[a,b]
f dλ=�(x)|x=b

x=a.

The reader familiar with other definitions of integral may conclude from the fun-
damental theorem of calculus that for continuous functions, the integral over an
interval in the sense of each of these definitions coincides with the integral with
respect to the Lebesgue measure. With this in mind, for the integral over 〈a, b〉 of
a function f (continuous or just integrable with respect to the Lebesgue measure)
we use the traditional notation

∫ b

a
f (x) dx, calling a and b the lower and the upper
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limit of integration,9 respectively (of course, x can be replaced by any other let-
ter). With this notation, the function F considered in the theorem can be written as
F(t)= ∫ t

a
f (x) dx; that is why it is often called an “integral with a variable upper

limit”.
We complement the new notation for the Lebesgue integral over an interval [a, b]

with the following convenient convention: by definition, we set

∫ a

b

f (x) dx =−
∫ b

a

f (x) dx.

Obviously, the fundamental theorem of calculus remains valid: swapping a and b

results in changing the sign of both sides of the formula.

Remark The fundamental theorem of calculus shows that the increment of a smooth
function F over an interval is equal to the integral of its derivative. As we will see
later, this is also true for functions from wider classes, for instance, for functions
satisfying the Lipschitz condition (see Sect. 11.4.1). Now we are going to verify
that it is true if F is continuous and convex on [a, b].

As is well known, the derivative of a convex function exists at all but at most
countably many points and is increasing (see Sect. 13.4.3). Hence it suffices to prove
the fundamental theorem of calculus under the assumption that F ′ is of constant sign
(otherwise we may divide the interval [a, b] into two parts on which this condition
is satisfied). We assume without loss of generality that F ′ � 0 and divide [a, b] into
equal parts of length h= (b− a)/n by the points xk = a + kh (k = 0, 1, . . . , n). It
follows from the three chords lemma (see Sect. 13.4.3) that for k = 0, . . . , n− 1,

F ′+(xk)h� F(xk+1)− F(xk)� F ′−(xk+1)h.

Since F ′ is increasing, for k = 1, . . . , n− 2 we also have the estimates
∫ xk

xk−1

F ′(x) dx � F(xk+1)− F(xk)�
∫ xk+2

xk+1

F ′(x) dx.

Summing these inequalities, we see that

∫ xn−2

a

F ′(x) dx � F(xn−1)− F(x1)�
∫ b

x2

F ′(x) dx,

that is,

∫ b−2h

a

F ′(x) dx � F(b− h)− F(a + h)�
∫ b

a+2h
F ′(x) dx.

9Following tradition, we often denote the integral over an infinite interval (a,+∞) by
∫∞
a

f (x)dx,
omitting the plus sign in front of the symbol ∞.
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Passing to the limit in this double inequality, we obtain the desired formula. In
particular, we see that F ′ is a summable function, since the left-hand side has a
finite limit.

4.6.2 Let us discuss two important methods of computing integrals.

Proposition 1 (Integration by parts) Let u and v be continuously differentiable
functions on an interval [a, b]. Then

∫ b

a

u(x)v′(x) dx = u(x)v(x)

∣
∣
∣
x=b

x=a
−

∫ b

a

u′(x)v(x) dx.

This formula is often written in the form

∫ b

a

udv = uv

∣
∣
∣
b

a
−

∫ b

a

v du.

Proof Integrating the equation u′v + uv′ = (uv)′ and using the fundamental theo-
rem of calculus, we obtain

∫ b

a

u′(x)v(x) dx +
∫ b

a

u(x)v′(x) dx =
∫ b

a

(
u(x)v(x)

)′
dx

= u(b)v(b)− u(a)v(a). �

Various generalizations of Proposition 1 can be found in Sects. 4.6.4, 4.10.6,
4.11.4 and Exercise 9.

Example 1 Let us compute the integrals

Wn =
∫ π

2

0
cosn x dx (n= 0,1,2, . . .).

It is clear that W0 = π
2 and W1 = 1. Assuming that n� 2 and applying integration

by parts, we obtain

Wn =
∫ π

2

0
cosn−1 x d sinx = sinx cosn−1 x

∣
∣
∣
x= π

2

x=0
−

∫ π
2

0
sinx d cosn−1 x

= (n− 1)
∫ π

2

0
sin2 x cosn−2 x dx = (n− 1)

∫ π
2

0

(
cosn−2 x − cosn x

)
dx

= (n− 1)(Wn−2 −Wn).

Hence the integrals Wn satisfy the recurrence relation

Wn = n− 1

n
Wn−2 (n= 2,3, . . .).
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For an even n, repeatedly using this relation, we obtain

W2k = 2k − 1

2k
W2(k−1) = 2k− 1

2k

2k− 3

2k− 2
W2(k−2) = · · ·

= (2k − 1)(2k − 3) · · ·3 · 1
(2k)(2k − 2) · · ·2 W0.

Since W0 = π
2 , it follows that10 W2k = (2k−1)!!

(2k)!!
π
2 . In a similar way we can prove

that W2k+1 = (2k)!!
(2k+1)!! . Thus

Wn = (n− 1)!!
n!! vn, where vn =

{
1 for odd n,
π
2 for even n.

This result leads to Wallis’11 famous formula, which is historically the first example
of a representation of π as the limit of a sequence of rational numbers. Indeed, since
vnvn−1 ≡ π

2 , we have

WnWn−1 = π

2

(n− 1)!!
n!!

(n− 2)!!
(n− 1)!! =

π

2n
.

The obvious inequalities Wn < Wn−1 < Wn−2 = n
n−1Wn imply that Wn ∼ Wn−1.

Hence

W 2
n ∼

π

2n
(4)

and, consequently, 4kW 2
2k+1 → π . This is an abbreviated form of Wallis’ formula;

in expanded form, it reads as follows:

π = lim
k→∞

1

k

(
2 · 4 · · · (2k)

3 · 5 · · · (2k− 1)

)2

.

Example 2 Let us establish a famous result due to Euler:12

∞∑

k=1

1

k2
= π2

6
.

The ingenious trick described below is borrowed from [M] (for other methods, based
on Fourier series, see Sects. 10.2.1, 10.3.5).

10Recall that n!! stands for the product of all positive integers less than or equal to n and having
the same parity as n.
11John Wallis (1616–1703)—English mathematician.
12Leonhard Euler (1707–1783)—Swiss mathematician.
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First, using integration by parts, we obtain a recurrence formula for the integrals

Jn =
∫ π

2
0 x2 cosn x dx:

Jn =
∫ π

2

0
x2 cosn−1 x d sinx =−

∫ π
2

0
sinx d

(
x2 cosn−1 x

)

= (n− 1)
∫ π

2

0
x2(

cosn−2 x − cosn x
)
dx + 2

n

∫ π
2

0
x d cosn x

= (n− 1)(Jn−2 − Jn)− 2

n
Wn

(by Wn we denote the integral computed in the previous example). Therefore,

2

n
Wn = (n− 1)Jn−2 − nJn, i.e.,

2

n2
= n− 1

n

Jn−2

Wn

− Jn

Wn

.

For even n, the latter equation takes the form

1

2k2
= 2k− 1

2k

J2(k−1)

W2k
− J2k

W2k
= J2(k−1)

W2(k−1)
− J2k

W2k
.

Hence

1

2

n∑

k=1

1

k2
= J0

W0
− J2n

W2n
.

Since J0
W0
= π2

12 , it remains to verify that the ratio J2n/W2n tends to zero. Indeed,

J2n

W2n
= 1

W2n

∫ π
2

0
x2 cos2n x dx <

1

W2n

∫ π
2

0

(
π

2
sinx

)2

cos2n x dx

= π2

4W2n
(W2n −W2(n+1))= π2

4

(

1− 2n+ 1

2n+ 2

)

−→
n→∞ 0.

Proposition 2 (Integration by substitution) Let f be a continuous function on
〈a, b〉 and ϕ be a continuously differentiable function on [p,q]. If ϕ([p,q]) ⊂
〈a, b〉, then

∫ q

p

f
(
ϕ(x)

)
ϕ′(x) dx =

∫ ϕ(q)

ϕ(p)

f (y) dy.

One says that these integrals are related by the substitution y = ϕ(x). To em-
phasize this, one sometimes writes the left-hand side in the form

∫ q

p
f (ϕ(x)) dϕ(x).

Note that ϕ is not required to be one-to-one or monotone, so that ϕ(p) may be less
or greater than (or equal to) ϕ(q). Later (see Sect. 6.2) we will see that if ϕ′(x) �= 0
on (p, q) (and, consequently, ϕ is strictly monotone), then the substitution rule is
valid not only for continuous, but also for arbitrary summable functions f .
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Proof Let F be an antiderivative of f on 〈a, b〉. Put H = F(ϕ). Clearly, H ′ =
F ′(ϕ)ϕ′ = f (ϕ)ϕ′. Hence H is an antiderivative of f (ϕ)ϕ′ on [p,q]. Applying
the fundamental theorem of calculus twice, we obtain

∫ q

p

f
(
ϕ(x)

)
ϕ′(x) dx = H(q)−H(p)= F

(
ϕ(q)

)− F
(
ϕ(p)

)

=
∫ ϕ(q)

ϕ(p)

f (y) dy. �

The substitution rule is of great importance for the computation and study of in-
tegrals. To extend its range of applicability, we now generalize it to the case where ϕ

is defined not on a closed, but only on an open (possibly infinite) interval. However,
we assume additionally that it is monotone.

Proposition 3 Let f be a non-negative continuous function on 〈a, b〉 and ϕ be a
continuously differentiable and monotone function on (p, q). If ϕ((p, q))⊂ 〈a, b〉,
then

∫ q

p

f
(
ϕ(x)

)
ϕ′(x) dx =

∫ B

A

f (y)dy,

where A= limx→p+0 ϕ(x) and B = limx→q−0 ϕ(x).
This formula is also valid for every continuous summable function f on (a, b).

Proof Let a < s < t < b. Then, by Proposition 2,

∫ t

s

f
(
ϕ(x)

)
ϕ′(x) dx =

∫ ϕ(t)

ϕ(s)

f (y) dy.

It remains to pass to the limit as s→ a and t→ b.
If f is an arbitrary continuous summable function, then it suffices to ap-

ply the obtained result to the non-negative functions f+ = max{f,0} and f− =
max{−f,0}. �

Corollary If a continuous function f is summable on a symmetric interval (−a, a),
where 0 < a �+∞, then

∫ a

−a
f (x) dx = ∫ a

0 (f (x)+ f (−x)) dx. In particular, if f
is even (odd), then

∫ a

−a
f (x) dx = 2

∫ a

0 f (x)dx (respectively,
∫ a

−a
f (x) dx = 0).

Proof To prove this, it suffices to write the integral
∫ a

−a
f (x) dx in the form

∫ 0
−a

f (y) dy + ∫ a

0 f (x)dx and make the substitution y =−x in the first term. �

4.6.3 Let us give some important examples of summable functions. The first three
of them serve as a kind of reference function; comparing with them often helps one
to establish the summability of many other functions.
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Example 1 Let a > 0 and f (x) = e−ax for x � 0. Obviously, the antiderivative
F(x)=− 1

a
e−ax tends to zero as x→+∞. Therefore,

∫ ∞

0
e−ax dx = lim

t→+∞

∫ t

0
e−ax dx = lim

t→+∞
(
F(t)− F(0)

)=−F(0)= 1

a
<+∞.

So, the function e−ax is summable on the half-line [0,+∞).

Example 2 Let f (x)= x−p for 1 � x <+∞. An antiderivative of this function is
equal to 1

1−p
x1−p for p �= 1 and lnx for p = 1. If p � 1, it tends to infinity as

x→+∞. Hence for such p the function f is not summable. If p > 1, then
∫ ∞

1

1

xp
dx = lim

t→+∞

∫ t

0

1

xp
dx = lim

t→+∞
t1−p − 1

1− p
= 1

p− 1
<+∞.

Thus the function x−p is summable on [1,+∞) only for p > 1.

Example 3 Let f (x)= x−p for 0 < x � 1. Arguing as in the previous example, we
arrive at the conclusion that the function x−p is summable on (0,1] only for p < 1.

As one can easily see, a similar result holds for the integrals
∫ b

a
dx

(x−a)p
and

∫ b

a
dx

(b−x)p
, where (a, b) is an arbitrary finite interval.

It follows from Examples 2 and 3 that the function x−p is not summable on
(0,+∞) for any p.

Example 4 Consider the beta function (the Euler integral of the first kind) intro-
duced by Euler:

B(s, t)=
∫ 1

0
xs−1(1− x)t−1 dx.

As follows from the result of the previous example, B(s, t) <+∞ only for s, t > 0.
Making the substitution x = y

1+y
, we can write the beta function in the form

B(s, t)=
∫ ∞

0

ys−1

(1+ y)s+t
dy.

As we will see later, this function happens to be useful for computing many inte-
grals.

Now consider the gamma function, which plays an important role in various
fields of mathematics.

Example 5 The gamma function (the Euler integral of the second kind) is defined
by the formula

�(t)=
∫ ∞

0
xt−1 e−x dx.
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Since the integrand does not exceed Ce−x/2 for x � 1, the integral over [1,+∞)

is finite. Hence the integral �(t) is finite if and only if
∫ 1

0 xt−1 e−x dx is finite and,

consequently, if and only if
∫ 1

0 xt−1 dx is finite, i.e., if t > 0. Thus the function � is
well defined on the positive half-line. We now consider its basic properties (it will
be studied in more detail in Sect. 7.2).

The function � satisfies the functional equation

�(t + 1)= t�(t) for t > 0.

Indeed, using the remark to Proposition 1, we obtain

�(t + 1)=
∫ ∞

0
xt e−x dx =−

∫ ∞

0
xt de−x = t

∫ ∞

0
xt−1e−x dx = t �(t)

(we have used the fact that the limit L = limx→+∞ xt e−x is obviously equal to
zero).

The functional equation reveals a close relationship between the gamma function
and the factorial:

�(n)= (n− 1)! for n ∈N

(recall that, by definition, 0! = 1).
This formula can be proved by induction. The base �(1)= 1 is obvious, and the

inductive step relies on the functional equation:

�(n+ 1)= n�(n)= n · (n− 1)! = n!.
In a similar way, the computation of �(n+ a), where 0 < a < 1, reduces to the

computation of �(a). One can write �(a) in terms of known constants only for
a = 1

2 , but this is not easy. To solve this problem, we need one “non-elementary
integral” (in what follows, we will compute it in several different ways).

Theorem (Euler–Poisson13integral)

∫ ∞

−∞
e−x2

dx =√π.

Proof Since eu � 1+ u, we have 1− x2 � e−x2 � 1
1+x2 for all x ∈ R. Hence for

every k ∈N,

(
1− x2)k � e−kx2

for |x|� 1 and e−kx2 � 1
(
1+ x2

)k for x ∈R.

13Siméon Denis Poisson (1781–1840)—French mathematician.
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Integrating these inequalities, we obtain

∫ 1

−1

(
1− x2)k

dx �
∫ ∞

−∞
e−kx2

dx �
∫ ∞

−∞
dx

(1+ x2)k
.

In the left integral, make the substitution x = sin t ; in the middle integral, x = t√
k

;
and in the right integral, x = tan t . This yields the two-sided bound

∫ π
2

− π
2

cos2k+1 t dt � 1√
k

∫ ∞

−∞
e−t2

dt �
∫ π

2

− π
2

cos2k−2 t dt.

Using the notation introduced in Example 1 of Sect. 4.6.2, we can rewrite this in the
form

2
√
kW2k+1 �

∫ ∞

−∞
e−t2

dt � 2
√
kW2k−2.

It remains to observe that, in view of (4), both the left-hand side and the right-hand
side of this inequality tend to the common limit

√
π as k→∞. �

Corollary 1 �( 1
2 )=

√
π .

Proof Making the substitution x = y2 in the integral
∫∞

0 x− 1
2 e−x dx = �( 1

2 ), we
obtain

�

(
1

2

)

= 2
∫ ∞

0
e−y2

dy =
∫ ∞

−∞
e−y2

dy =√π. �

Corollary 2 �(n+ 1
2 )= (2n−1)!!

2n

√
π for every n ∈N.

Proof The proof is an almost verbatim reproduction of the computation of the
gamma function at integer points and is left to the reader. �

4.6.4 The remaining part of this section is devoted to so-called improper integrals.
Our main purpose here is to formulate the conditions under which an improper
integral over an interval coincides with the corresponding Lebesgue integral. For
additional information on improper integrals and some important examples, see
Sect. 7.4. In what follows, all functions under consideration may be either real-
or complex-valued.

Definition Let f be a measurable function on an interval 〈a, b〉 (−∞ � a < b �
+∞). We say f is admissible from the left on 〈a, b〉 if it is summable on every
interval (a, t), where a < t < b. If the limit limt→b

∫ t

a
f (x) dx exists, it is called

the improper integral of the function f over the interval 〈a, b〉 and is denoted by∫→b

a
f (x) dx. If an improper integral is finite, then we say that it converges, and

in the remaining cases (i.e., if the limit does not exist or is infinite), we say that it
diverges.
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In a similar way we define a function admissible from the right and the improper
integral of such a function. In what follows, we study the improper integrals of
functions admissible from the left, leaving it to the reader to extend the obtained
results to the case of functions admissible from the right.

It is clear that every function summable on an interval is admissible from the left
(as well as from the right), and Theorem 4.6.1 implies that the improper integral
of such a function converges and coincides with the Lebesgue integral. With this in
mind, outside this subsection we usually denote improper integrals in the ordinary
way, employing the notation

∫→b

a
f (x) dx only in exceptional cases. A point near

which a function f is not summable is sometimes called a singular point of f .
For improper integrals, the substitution rule stated in Proposition 3 of Sect. 4.6.2

remains valid (the assumption that the integrand is summable should be replaced
by the assumption that the improper integral converges). Integration by parts is also
available, provided that at least one of the integrals under consideration converges
and the limit L= limx→b u(x)v(x) exists and is finite (see Exercise 9).

Note that for a function f admissible from the left on 〈a, b〉, the conver-
gence of the integral

∫→b

a
f (x) dx is equivalent to the convergence of the integral

∫→b

c
f (x) dx, where c is an arbitrary point from (a, b). It is also obvious that for a

non-negative function admissible from the left, the improper integral always exists
and coincides with the Lebesgue integral. However, for signed functions, this is no
longer the case.

Example Let us show that the Fresnel14 integral
∫∞

0 eix
2
dx converges (it will be

computed in Sect. 7.4.8). To do this, we use integration by parts; this trick does
not only underly the convergence criteria established below, but can be successfully
used (as in the case under consideration) beyond the framework of these criteria.
Clearly,

∫ t

1
eix

2
dx =

∫ t

1

1

2ix
d

(
eix

2)= 1

2ix
eix

2
∣
∣
∣
t

1
+ 1

2i

∫ t

1

1

x2
eix

2
dx.

The first term on the right-hand side has a finite limit as t→+∞, and the function
1
x2 eix

2
is summable on [1,+∞); the convergence of the Fresnel integral follows.

At the same time, obviously, the function eix
2

is not summable on (0,+∞).
Moreover, its real and imaginary parts are not summable either. For example,

∫ N

0

∣
∣cosx2

∣
∣dx =

∫ N2

0

|cosy|
2
√
y

dy >

∫ N2

0

cos2 y

2N
dy = 1

4N

∫ N2

0
(1+ cos 2y)dy

= N

4
+ o(1) −→

N→∞+∞.

The integration by parts formula can be extended to improper integrals. Here we
confine ourselves to its simplest version.

14Augustin-Jean Fresnel (1788–1827)—French physicist.
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Proposition If u and v are continuously differentiable functions on [a, b) (−∞<

a < b �+∞) such that there exists a finite limit L= limx→b u(x) v(x) and the in-
tegral

∫ b

a
u′(x) v(x) dx converges, then the integral

∫ b

a
u(x) v′(x) dx also converges

and
∫ b

a

u(x) v′(x) dx = L− u(a) v(a)−
∫ b

a

u′(x) v(x) dx.

By analogy with the integration by parts formula obtained in Proposition 1, one
also writes the last equation in the form

∫ b

a

u(x) v′(x) dx = u(x) v(x)

∣
∣
∣
b

a
−

∫ b

a

u′(x) v(x) dx.

To prove the desired equation, it suffices to apply the integration by parts formula
to the interval [a, t] and to pass to the limit as t→ b.

For other generalizations of Proposition 1, which allow one to consider non-
smooth functions, see Sects. 4.10.6, 4.11.4.

Proposition 3 of Sect. 4.6.2 can be extended to improper integrals in a similar
way. We encourage the reader to formulate this generalization as an exercise.

4.6.5 To establish a relation between the summability of a function and the exis-
tence of the corresponding improper integral, one uses the notion of the absolute
convergence of an improper integral.

Definition We say that an improper integral of a (measurable) function f converges
absolutely if the improper integral of the function |f | converges.

An improper integral that does converge but does not absolutely converge is
sometimes said to converge conditionally.

Theorem An improper integral
∫→b

a
f (x) dx converges absolutely if and only if

the function f is summable on (a, b).

Thus an absolutely convergent improper integral is just the integral of a
summable function.

Proof We have already observed that the summability of a function implies the
convergence of the improper integral. Since the function |f | is summable simulta-
neously with f , the summability of f guarantees the absolute convergence of the
integral.

If the integral
∫→b

a
f (x) dx converges absolutely, then, since the integral of a

non-negative function is continuous from below, we see that f is summable:

∫ b

a

∣
∣f (x)

∣
∣dx = lim

t→b

∫ t

a

∣
∣f (x)

∣
∣dx =

∫ →b

a

∣
∣f (x)

∣
∣dx <+∞. �
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For a real-valued function f , the conditional convergence of the improper inte-
gral

∫ b

a
f (x) dx implies that both functions f+ =max{f,0} and f− =max{−f,0}

are not “small” (more exactly, not summable):

∫ b

a

f+(x) dx =
∫ b

a

f−(x) dx =+∞.

Indeed, these integrals cannot be finite simultaneously, since the last theorem im-
plies that the function f is not summable; and if only one of them were finite, this
would cause the divergence of the improper integral. At the same time, the integral

∫ t

a

f (x) dx =
∫ t

a

f+(x) dx −
∫ t

a

f−(x) dx

has a finite limit as t → b, and, consequently, the integrals on the right-hand side,
each growing unboundedly with t , must nearly cancel. Thus the conditional con-
vergence of an improper integral may occur only in the case where the integrand
f oscillates strongly enough in the vicinity of b, taking both positive and negative
values (this is clearly seen by considering the real or imaginary part of the Fresnel
integral).

4.6.6 It is crucial to have easy-to-check conditions that guarantee the convergence
of an improper integral even in the case where there is no absolute convergence.
We will consider two such results (convergence tests for improper integrals). The
reader familiar with the theory of numerical series will notice that these are analogs
of Dirichlet’s15 and Abel’s16 tests, which allow one to establish the convergence
of a numerical series even in the absence of absolute convergence. This is why the
corresponding results on convergence of improper integrals are also named after
these mathematicians. Here we will consider only simplified statements containing
some superfluous assumptions. Less restrictive conditions will be formulated later,
see Sect. 7.4.6.

Theorem (Dirichlet’s test for improper integrals) Let f ∈ C([a, b)), g ∈ C1([a, b)),
where −∞ < a < b � +∞. If an antiderivative F of f is bounded on [a, b),
the function g is decreasing, and limx→b g(x) = 0, then the improper integral∫ b

a
f (x)g(x) dx converges.

Here f may be either real- or complex-valued (while g is, of course, real-valued).

15Johann Peter Gustav Lejeune Dirichlet (1805–1859)—German mathematician.
16Niels Henrik Abel (1802–1829)—Norwegian mathematician.
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Proof Integrating by parts on an interval [a, t] (a < t < b), we obtain

∫ t

a

f (x)g(x) dx =
∫ t

a

g(x) dF (x)= g(t)F (t)− g(a)F (a)−
∫ t

a

F (x)g′(x) dx.

(5)

By assumption, g(t)F (t) −→
t→b

0. Furthermore, the function Fg′ is summable on

(a, b), since

∫ b

a

∣
∣F(x)g′(x)

∣
∣dx � sup

[a,b)
|F |

∫ b

a

(−g′(x)
)
dx = g(a) sup

[a,b)
|F |<+∞.

Hence the right-hand side in (5) has a finite limit (as t→ b) and

∫ b

a

f (x)g(x) dx =−g(a)F (a)−
∫ b

a

F (x)g′(x) dx. (5′)

�

Curiously enough, formula (5′) relates an improper integral on the left-hand side
which does not in general absolutely converge to an absolutely convergent integral
on the right-hand side.

The above test is often used when studying integrals of the form
∫ ∞

a

g(x) eiωx dx (ω ∈R).

If g is continuously differentiable on [a,+∞) and decreases to zero at infinity, then
this integral converges by Dirichlet’s test for ω �= 0, notwithstanding that g may be
not summable.

Example 1 Let p > 0. The improper integral
∫ ∞

1

1

xp
eix dx

converges, the convergence being absolute only for p > 1.
For p > 1, the integrand is obviously summable. We will show that for p � 1,

both real and imaginary parts of the integrand are not summable. Consider, for
instance, the imaginary part. Since 1

xp � 1
x

for x � 1, it suffices to show that
∫∞

1
|sinx|

x
dx =+∞. Let us consider in more detail the integrals In =

∫ πn

0
|sinx|

x
dx,

which will be useful in what follows; we will not only prove that they grow un-
boundedly, but also find the growth rate. Obviously,

In =
n∑

k=1

∫ kπ

(k−1)π

|sinx|
x

dx =
n∑

k=1

∫ π

0

sinx

x + π(k − 1)
dx.
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Since π(k − 1)� x + π(k − 1)� πk, the value of the kth integral lies between 2
πk

and 2
π(k−1) . Taking into account that the first integral is less than π , we obtain

2

π

(

1+ 1

2
+ · · · + 1

n

)

< In < π + 2

π

(

1+ 1

2
+ · · · + 1

n− 1

)

.

Since

1

2
+ · · · + 1

n
<

∫ n

1

dx

x
< 1+ 1

2
+ · · · + 1

n− 1
,

the two-sided bound on In implies that

2

π
lnn < In < π + 2

π
(1+ lnn) < 4+ 2

π
lnn.

In particular, In ∼ 2
π

lnn as n→∞.

Example 2 Let f be a convex function on (0,+∞) summable near the origin and
such that f (x) −→

x→+∞ 0. Then the integral C(y) = ∫∞
0 f (x) cosyx dx converges

and is non-negative for every y > 0.
We may assume that y = 1 (otherwise make the substitution x �→ yx). The prod-

uct f (x) cosx is summable near the origin, since f is. The improper integral over
[1,+∞) converges by Dirichlet’s test, since f decreases on (0,+∞). Indeed, by
the convexity of f , the difference f (x) − f (x + t) for t � 0 decreases with x:
f (x) − f (x + t) � f (x′) − f (x′ + t) for every x′ � x. Passing to the limit as
t→+∞, we see that f (x)� f (x′).

To verify that C(1) � 0, we will prove that
∫ 2π(k+1)

2πk
f (x) cosx dx � 0 for k =

0,1, . . . . The substitution x �→ x + 2πk reduces this problem to the case k = 0. We
have
∫ 2π

0
f (x) cosx dx =

∫ π
2

0

(
f (x)− f (π − x)− f (π + x)+ f (2π − x)

)
cosx dx.

It remains to observe that f (x)− f (π − x)− f (π + x)+ f (2π − x)� 0 (this is a
special case of the inequality mentioned above with x′ = π − x and t = π ).

Dirichlet’s test easily implies another convergence criterion for improper inte-
grals, which shows that multiplying the integrand of a convergent improper integral
by a bounded monotone function does not affect the convergence.

Corollary (Abel’s test) Let f ∈ C([a, b)) and g ∈ C1([a, b)). If the improper in-
tegral

∫ b

a
f (x) dx converges and g is a bounded monotone function on [a, b), then

the integral
∫ b

a
f (x)g(x) dx also converges.

Proof Let L = limx→b g(x). We may assume without loss of generality that g

is decreasing. Since the improper integral converges, the antiderivative F(t) =
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∫ t

a
f (x) dx (a � t < b) is bounded. Obviously,

f (x)g(x)= f (x)
(
g(x)−L

)+Lf (x).

Each of the integrals
∫ b

a
f (x)(g(x)−L)dx,

∫ b

a
Lf (x) dx converges (the first one,

by Dirichlet’s test). Hence the integral
∫ b

a
f (x)g(x) dx also converges. �

EXERCISES

1. Compute the integral
∫∞

0 e−a(x2+1/x2)dx (a > 0).
2. Show that Propositions 1 and 3 of Sect. 4.6.2 remain valid for improper inte-

grals.

3. For which a, b, c ∈R+ is the function sina(xb)
xc summable on (0,1)?

4. For which real a is the integral
∫∞

1 xae−x3 sin2 x dx finite?
5. Let f be bounded and decrease to zero at (a,+∞). Show that if the product

f (x) sinx is summable on (a,+∞), then f is also summable. This result can-
not be extended to the two-dimensional case (see Exercise 3 of the next section).

6. Let p > 1, f be a non-negative summable function on R, and {xn}n∈Z be a
two-sided sequence of real numbers such that infn(xn+1 − xn) > 0. Show that

∑

n∈Z

∫ ∞

xn+1

f (x)

(x − xn)p
dx <+∞.

7. Compute the integral I = ∫ π
2

0 ln sinx dx, originally found by Euler, by making
the substitution x = 2y in the integral 2I = ∫ π

0 ln sinx dx.

8. Compute the Euler–Poisson integral once again, by replacing the function e−x2

on the interval [0,√n ] with the polynomial (1 − x2

n
)n. Hint. To estimate the

error caused by this approximation, prove the inequality 0 � e−y − (1− y
n
)n �

3
n
y2 e−y for 0 � y � n. Reduce the integral

∫ √n

0 (1 − x2

n
)n dx to W2n+1 and

use (4).
9. Let u, v ∈ C1([a, b)). Show that if two of the limits

lim
t→b

∫ t

a

u(x)v′(x) dx, lim
t→b

∫ t

a

u′(x)v(x) dx, lim
t→b

u(t)v(t)

exist and are finite, then the third one also exists and the integration by parts
formula holds true.

10. For which a ∈ Z, b, c ∈ R does the integral
∫ 1

0
sina(xb)

xc dx converge absolutely
(conditionally)?

11. Considering the function f (x)= sinx√
x

, show that the convergence on [0,+∞)

of the improper integral of a function f that tends to zero at infinity is not
sufficient for the integral of f 2 to converge. The same example demonstrates
that we cannot drop the assumption on the monotonicity of g in Abel’s test
(even if the integral of g converges).
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12. Verify that the integral
∫∞

0
1
xp sinx3 dx converges not only for positive p. Can

sinx3 be replaced by sin3 x?
13. Show that the integral

∫∞
a

ei P (x) dx, where P is a real polynomial of degree
greater than 1, converges.

14. Does the convergence of the improper integral
∫∞

1 f (x)dx imply the summa-

bility of the function f (x)

x3 ?

15. Compute Frullani’s17 integral
∫∞

0 (f (ax) − f (bx)) dx
x

, where a, b > 0 and f

is a continuous function on [0,+∞) that satisfies one of the following condi-
tions:

(a) the improper integral
∫∞

1 f (x)dx
x

converges;
(b) f (x + T )= f (x) for some T > 0 and arbitrary x � 0;
(c) the limit L= limx→+∞ f (x) exists and is finite.

16. Compute the integral
∫∞

0 (c1 cos x
a1
+ · · · + cn cos x

an
) dx

x
under the assumption

that c1 + · · · + cn = 0.
17. Show that the integral

∫∞
0 f (x) sinyx dx for y > 0 is non-negative provided

that f is a function decreasing to zero on (0,+∞) such that the product xf (x)

is summable near the origin.
18. Let ϕ be a continuous 2π -periodic function. Show that the integral

∫∞
π

ϕ(x)dx
lnx+cosx

converges only if ϕ is odd.
19. Show that the integral

∫∞
π

sinx dx
lnx+cosx+sinx

diverges and the integral
∫∞
π

sinx dx

lnx+cosx2

converges.
20. Show that for every ε > 0 and every measurable non-negative function f on

(0,+∞), the following inequality holds:

∫ 2

1

∞∑

n=1

f (nεx)dx � 1

ε

∫ ∞

0
f (x)dx.

21. Let xn > 0, xn −→
n→∞ 0, f (t) = card{n ∈ N |xn > t}. Show that

∫∞
0 f (t) dt =

∑∞
n=1 xn.

22. Show that | ∫
E
eix dx|� 2 sin λ1(E)

2 for every measurable set E ⊂ [0,2π].

4.7 The Multiple Lebesgue Integral

In this section, we consider a few properties of the integral with respect to the
Lebesgue measure on a multi-dimensional space. As in the previous section, the
integral with respect to the Lebesgue measure is called the Lebesgue integral and
is denoted by

∫
E
f (x)dx by analogy with the one-dimensional case. The Lebesgue

measure itself is usually denoted by λ, without indicating the dimension.

17Giuliano Frullani (1795–1834)—Italian mathematician.
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Note that the integrals with respect to the planar, three-dimensional, and m-di-
mensional Lebesgue measures are usually called the double, triple, and m-multiple
integrals, respectively, and are often conveniently denoted by the symbols

∫∫
,
∫∫∫

,
and

∫ · · · ∫ .

4.7.1 The theorem below is a generalization of the results of Examples 2 and 3
of Sect. 4.6.3. It deals with a power of the norm, which in many cases serves as
a reference function with which one compares other functions when studying their
summability.

Theorem Let B be a ball in R
m of radius r centered at a point a. Given p > 0, set

f (x)= ‖x − a‖−p for x ∈R
m. Then:

(1) f is summable on B if and only if p <m;
(2) f is summable on R

m \B if and only if p >m.

Proof First recall that the volume (m-dimensional Lebesgue measure) of an m-
dimensional ball of radius R is equal to αmRm, where αm is the volume of a ball of
unit radius (see Corollary 2 in Sect. 2.5.2). Hence the volume of the spherical layer
E(R)= {x ∈R

m | R2 � ‖x − a‖<R} is, obviously, equal to

λ
(
E(R)

)= αmRm − αm

(
R

2

)m

= αm

(
2m − 1

)
(
R

2

)m

= βmRm,

where βm = αm(1− 2−m).
Now divide the ball B into the spherical layers Ek =E( r

2k ): B = {0}∨∨
k�1 Ek .

Then

λ(Ek)= βm

(
r

2k

)m

for all k ∈N.

Furthermore,
(

2k−1

r

)p

� f (x)�
(

2k

r

)p

for x ∈Ek.

Integrating this inequality, we see that
(

2k−1

r

)p

· βm

(
r

2k

)m

�
∫

Ek

f (x) dx �
(

2k

r

)p

· βm

(
r

2k

)m

,

i.e.,

A2k(p−m) �
∫

Ek

f (x) dx � B2k(p−m),

where A and B are positive coefficients that do not depend on k. The obtained two-
sided bound on the integrals

∫
Ek

f (x) dx implies that if either of the series

∞∑

k=1

2k(p−m) and
∞∑

k=1

∫

Ek

f (x) dx
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converges, then the other one also converges. But it is obvious that the first series
has a finite sum only for p < m, and the sum of the second series, by the count-
able additivity of the integral, is equal to

∫
B
f (x)dx; the first claim of the theorem

follows.
The proof of the second claim is entirely similar (one should consider the spher-

ical layers E(2kr)), and is left to the reader. �

4.7.2 The mean value theorem, known for the integral over the interval (see
Sect. 13.1.2), is also valid for multiple integrals.

Theorem (Mean value theorem) Let E ⊂ R
m be a connected set of finite measure.

If f is a continuous summable (in particular, continuous bounded) function on E,
then there exists a point c ∈E such that

∫

E

f (x)dx = f (c)λ(E).

Proof We may assume that λ(E) �= 0, since otherwise any point of E can be taken
as c. Let A = infE f and B = supE f (A,B ∈ R). Integrating the inequality A �
f � B and dividing the result by λ(E), we obtain

A� C = 1

λ(E)

∫

E

f (x)dx � B. (1)

It remains to prove that C is a value of f . If A < C < B , this follows from the
intermediate value theorem, which states that the set of values of f contains the
interval (A,B). If, however, C =A (or C = B), then f is equal to A (respectively,
B) almost everywhere on E. Indeed, in the case C = A it follows from (1) that∫
E
(f (x)−A)dx = 0. Since the integrand is non-negative, this in turn implies that

f (x)−A= 0 almost everywhere on E (see Property (2) in Sect. 4.3.2). Thus almost
every point of E can be taken as c. �

Remark As one can easily see, the proof of the mean value theorem does not use
any properties of the Lebesgue measure except for the finiteness of λ(E). Hence
the theorem remains valid for every Borel measure μ such that μ(E) <+∞. Here
E may be assumed to be a connected subset of an arbitrary Hausdorff topological
space.

4.7.3 The Integral as the Limit of Riemann Sums

Definition Let τ = {ek}Nk=1 be a partition of a set E ⊂R
m into measurable subsets.

The value r(τ )=max1�k�N diam(ek) is called the mesh of τ .
If a point (tag) ξk is fixed in each set E ∩ ek , then τ together with the family

ξ ≡ {ξk}Nk=1 of tags is called a tagged partition.
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Now let f be a function defined on E. With each tagged partition (τ, ξ) we can
associate the following sum:

σ (f, τ, ξ)=
N∑

k=1

f (ξk)λ(ek)

(where λ is the Lebesgue measure on R
m). It is called the Riemann sum of the

function f with respect to the tagged partition (τ, ξ).

Theorem (On the limit of the Riemann sums) If E is a compact set and f is a
continuous function on E, then σ (f, τ, ξ) −→

r(τ )→0

∫
E
f (x)dx. In more detail, this

means that for every ε > 0 there exists a δ > 0 such that whatever family of tags ξ

one chooses,
∣
∣
∣
∣σ (f, τ, ξ)−

∫

E

f (x)dx

∣
∣
∣
∣ < ε

as soon as r(τ ) < δ.

Proof Let ω be the modulus of continuity of f :

ω(t)= sup
{∣
∣f (x)− f (y)

∣
∣ | ‖x − y‖� t, x, y ∈E

}
.

In particular, |f (x) − f (y)| � ω(‖x − y‖) for x, y ∈ E. Hence for every point
ξk ∈ ek ,

∣
∣
∣
∣

∫

ek

f (x) dx − f (ξk)λ(ek)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

ek

(
f (x)− f (ξk)

)
dx

∣
∣
∣
∣ �

∫

ek

∣
∣f (x)− f (ξk)

∣
∣dx

� ω
(
diam(ek)

)
λ(ek).

Since diam(ek)= diam(ek), we have

∣
∣
∣
∣

∫

E

f (x)dx − σ (f, τ, ξ)

∣
∣
∣
∣ �

N∑

k=1

∣
∣
∣
∣

∫

ek

f (x) dx − f (ξk)λ(ek)

∣
∣
∣
∣

�
N∑

k=1

ω
(
diam(ek)

)
λ(ek)� ω

(
r(τ )

)
λ(E).

The theorem follows, because ω(t)−→
t→0

0 (here we use Cantor’s uniform continuity

theorem). �

Remark The above proof, as well as the proof of Theorem 4.7.2, does not use spe-
cial properties of the Lebesgue measure. The reader can easily check that the proof
remains valid in a much more general situation. In particular, we may assume that E
is a compact metric space and λ is an arbitrary finite measure defined on a σ -algebra



4.8 Interchange of Limits and Integration 169

containing all open sets (the latter condition is needed to guarantee the measurability
of a continuous function).

EXERCISES

1. Let f be a function summable on every ball B(x, r)⊂ R
m. Show that the func-

tion (x, r) �→ ∫
B(x,r)

|f (y)|dy is continuous on R
m ×R+.

2. Show that the integral of a bounded monotone function over an interval is the
limit of the Riemann sums.

3. Show that
∫∞

0

∫∞
0

|sinx| |siny|
exy ln(x+y+2) dx dy <+∞, although

∫∞
0

∫∞
0

dx dy

exy ln(x+y+2) =+∞.

4.8 Interchange of Limits and Integration

Here we will prove several important results that allow us to justify the formula
limn→∞

∫
X
fn dμ =

∫
X
f dμ provided that the sequence fn converges, in some

sense or other, to f . Thus our aim is to obtain conditions under which one can
interchange limits and integration.

Everywhere in this section, μ stands for a measure defined on a σ -algebra of
subsets of a set X and the functions under consideration are assumed to be defined
at least almost everywhere on X.

4.8.1 We begin with an easy theorem, which is probably familiar, in some form or
other, to the reader. To simplify the statement, we assume that the functions under
consideration are defined everywhere on X.

Theorem Let μ(X) <+∞, and let {fn}n�1 be a sequence of summable functions
that converges to a limit function f uniformly on X. Then f is summable and∫
X
fn dμ→

∫
X
f dμ as n→∞.

Proof The function f is measurable as the limit of a sequence of measurable func-
tions. Since μ(X) <+∞ and |fn−f |< 1 everywhere on X for sufficiently large n,
the difference fn−f is summable. Therefore, the limit function f is also summable.
The convergence

∫
X
fn dμ→

∫
X
f dμ is obvious, since

∣
∣
∣
∣

∫

X

fn dμ−
∫

X

f dμ

∣
∣
∣
∣ �

∫

X

|fn − f |dμ� μ(X) sup
X

|fn − f | −→
n→∞ 0. �

4.8.2 Theorem 4.8.1 is sufficient for solving simple problems related to interchang-
ing limits and integration. However, in many cases its conditions turn out to be too
restrictive, so that we need more general results. The first of them will be obtained
by slightly generalizing one of the most important theorems on the interchange of
limits and integration proved in Sect. 4.2.2.



170 4 The Integral

Theorem (B. Levi) Let fn be a sequence of measurable functions that converges to
a function f almost everywhere on X. If for every n ∈N,

0 � fn(x)� fn+1(x) for almost all x ∈X,

then
∫

X

fn dμ −→
n→∞

∫

X

f dμ.

Proof Since the countable union of sets of zero measure is again a set of zero mea-
sure, there is a set X0 ⊂ X of full measure on which all assumptions of B. Levi’s
theorem 4.2.2 are satisfied. Therefore,

∫
X0

fn dμ −→
n→∞

∫
X0

f dμ. This is just what

we wanted to show, because the integrals over X and X0 coincide. �

Corollary 1 A series of almost everywhere non-negative measurable functions can
be integrated term by term.

Proof It suffices to apply B. Levi’s theorem to the partial sums of the series under
consideration. �

Note that in Corollary 1 we impose no assumptions on the convergence of the
series. This proves useful in the next result.

Corollary 2 If the number series
∑

n�1

∫
X
|fn|dμ converges, then the function

series
∑

n�1 fn(x) converges absolutely almost everywhere.

Proof Let S = ∑
n�1 |fn|. It follows from Corollary 1 (regardless of the conver-

gence of the series
∑

n�1 |fn|) that

∫

X

S dμ=
∑

n�1

∫

X

|fn|dμ <+∞.

Thus the function S is summable on X. Hence it is finite almost everywhere, which
is equivalent to the required assertion. �

Corollary 2 provides a useful method of proving the almost everywhere conver-
gence of various function series.

Example Let {xn}n�1 be an arbitrary sequence of numbers (for instance, the set of
rational numbers arranged in an arbitrary order). If the series

∑
n�1 an converges

absolutely, then the series
∑

n�1
an√|x−xn| converges absolutely almost everywhere

(with respect to the Lebesgue measure) on R.
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To prove this, it suffices to check that the series under consideration converges
absolutely almost everywhere on an arbitrary interval (−A,A). Obviously,

∫ A

−A

∣
∣
∣
∣

an√|x − xn|
∣
∣
∣
∣dx = |an|

∫ A−xn

−A−xn

dx√|x| � |an|
∫ A

−A

dx√|x| = 4
√
A |an|.

Hence the series
∑

n�1

∫ A

−A
|an|√|x−xn| dx converges, and it remains to apply Corol-

lary 2.

4.8.3 B. Levi’s theorem applies only to increasing sequences of non-negative func-
tions and cannot be used if these conditions are not satisfied. The following two
important dominated convergence theorems fill this gap, providing convenient suffi-
cient conditions for the interchange of limits and integration for arbitrary sequences
of functions (either real- or complex-valued).

It is intuitively clear that if the integral
∫
X
|f − g|dμ is small, then the func-

tions f and g are “close” on a set of “sufficiently large” measure. If we want to
obtain conditions under which

∫
X
|fn − f |dμ −→

n→∞ 0, then we would expect the

functions fn to be close to f on sets of ever increasing measure. To obtain a precise
formulation of this condition, we will use the notion of convergence in measure (see
Sect. 3.3). Recall that X(f > a)= {x ∈X |f (x) > a}.

Theorem (Lebesgue) Let {fn}n�1 be a sequence of measurable functions that con-
verges in measure to a function f on X. If

{
(a) |fn(x)|� g(x) almost everywhere on X for every n ∈N,

(b) g is summable on X,
(L)

then the functions fn and f are summable,
∫

X

|fn − f |dμ −→
n→∞ 0, and, consequently,

∫

X

fn dμ −→
n→∞

∫

X

f dμ.

Note that the convergence of fn to f in measure is a necessary condition for the
conclusion of the theorem to be true, since μ(X(|f − fn|> ε))� 1

ε

∫
X
|f − fn|dμ

by Chebyshev’s inequality (see Sect. 4.4.4).

Proof The summability of fn is guaranteed by condition (L). The function f is
measurable by the definition of convergence in measure. Passing to the limit in
inequality (a) (see Corollary 2 in Sect. 3.3.5), we see that |f (x)| � g(x) almost
everywhere on X, which implies the summability of f .

Since
∣
∣
∣
∣

∫

X

fn dμ−
∫

X

f dμ

∣
∣
∣
∣ �

∫

X

|fn − f |dμ,

it suffices to establish the first of the relations to be proved.
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First assume that μ(X) < +∞. Fix an arbitrary ε > 0 and set Xn(ε) =
X(|fn − f |> ε). Obviously,

∫

X

|fn − f |dμ=
∫

Xn(ε)

· · · +
∫

X\Xn(ε)

· · ·�
∫

Xn(ε)

2g dμ+
∫

X

ε dμ.

Since μ(Xn(ε)) −→
n→∞ 0, we have

∫
Xn(ε)

g dμ −→
n→∞ 0 by the absolute continuity of

the integral. Hence
∫
Xn(ε)

g dμ < ε
2 for sufficiently large n, and, consequently,

∫

X

|fn − f |dμ < ε+μ(X)ε,

which proves the theorem in the case under consideration.
If μ(X) =+∞, then fix ε > 0 and consider a set A of finite measure such that∫

X\A g dμ< ε (see Corollary 3 in Sect. 4.5.1). Then

∫

X

|fn − f |dμ�
∫

A

|fn − f |dμ+
∫

X\A
2g dμ<

∫

A

|fn − f |dμ+ 2 ε.

Since μ(A) <+∞, it follows from the above that
∫
A
|fn−f |dμ −→

n→∞ 0, and hence
∫
X
|fn − f |dμ < 3ε for sufficiently large n. �

Remark As one can see from the proof, in the case where μ is an infinite but σ -
finite measure, the theorem remains valid if we replace the convergence in measure
on X with the weaker assumption that fn −→

n→∞ f in measure on every set of fi-

nite measure (for a more general result, see Exercise 8). Since for a finite measure,
convergence in measure follows from almost everywhere convergence (see Theo-
rem 3.3.2), Lebesgue’s theorem remains valid in the case of a σ -finite measure if
we replace convergence in measure with almost everywhere convergence. We will
prove that this is in fact true for an arbitrary measure.

4.8.4 Theorem 4.8.3 remains valid even if the convergence in measure is replaced
with the convergence almost everywhere.

Theorem (Lebesgue) Let {fn}n�1 be a sequence of measurable functions that con-
verges to a function f almost everywhere on X. If condition (L) is satisfied, then the
functions fn and f are summable,

∫

X

|fn − f |dμ −→
n→∞ 0, and, consequently,

∫

X

fn dμ −→
n→∞

∫

X

f dμ.

Proof The summability of fn and f can be proved in exactly the same way as in
Theorem 4.8.3. Set

hn = sup
{|fn − f |, |fn+1 − f |, . . .}.
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Obviously, limn→∞ hn(x)= limn→∞ |fn(x)− f (x)| = 0 almost everywhere on X.
Moreover, hn+1 � hn � 2g for every n ∈ N. Applying B. Levi’s theorem to the
increasing sequence {2g− hn}n�1, we see that

∫

X

(2g − hn)dμ −→
n→∞

∫

X

2g dμ.

Hence
∫
X
hn dμ −→

n→∞ 0, and, consequently,

∫

X

|fn − f |dμ�
∫

X

hn dμ −→
n→∞ 0. �

Condition (L) is not necessary for the interchange of limits and integration. One
can see this from the following example. Let μ be the Lebesgue measure on R and
consider the functions fn defined by the formula fn(x) = cn > 0 for 1

n+1 < x <
1
n

and fn(x) = 0 for the other values of x. Obviously, fn(x) −→
n→∞ 0 everywhere.

Furthermore,
∫
R
fn(x) dx = cn

n(n+1) −→n→∞ 0 provided that cn = o(n2). However, the

functions fn are not necessarily dominated by a summable function. Indeed, such a
function is, obviously, not less than the sum

∑
n�1 fn(x), the integral of which is

equal to
∑

n�1
cn

n(n+1) . If, for example, cn = n, the latter series diverges.

Example 1 Let μ be a finite Borel measure on [0,+∞). Let us find the limit of the
sequence of integrals

In =
∫

[0,+∞)

ϕ
(
xn

)
dμ(x),

where ϕ is a continuous function that has a finite limit C at infinity.
The pointwise convergence obviously holds:

ϕ
(
xn

) −→
n→∞ f (x)=

⎧
⎪⎨

⎪⎩

ϕ(0) if 0 � x < 1,

ϕ(1) if x = 1,

C if x > 1.

Since the function ϕ is bounded on [0,+∞) and the measure μ is finite, condi-
tion (L) is satisfied (the sequence is dominated by the constant function equal to
sup |ϕ| everywhere). Hence we may apply Lebesgue’s theorem:

lim
n→∞ In =

∫

[0,+∞)

f (x) dμ(x)= ϕ(0)μ
([0,1

)
)+ ϕ(1)μ

({1})+Cμ
(
(1,+∞)

)
.

In particular, if μ is a discrete measure generated by point masses ωk at integer
points, and

∑
k�0 ωk <+∞, then

In =
∑

k�0

ϕ
(
kn

)
ωk −→

n→∞ ϕ(0)ω0 + ϕ(1)ω1 +C
∑

k�2

ωk.
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In some cases, not only the integrand fn, but also the domain of integration de-
pends on the index n. However, extending fn by zero outside of this set, we can
reduce such a situation to the standard one (where the domain of integration is con-
stant).

Example 2 Let a > 0. We will prove that the integrals

In =
∫ n

0
xa−1

(

1− x

n

)n

dx

tend to
∫∞

0 xa−1e−x dx = �(a) as n→∞.
To this end, set fn(x) = xa−1(1 − x

n
)n for x ∈ (0, n] and fn(x) = 0 for x > n.

Clearly, fn(x) −→
n→∞ f (x) = xa−1e−x for every x > 0. To prove that limn→∞ In =

�(a), we will check that the functions fn satisfy condition (L) of Lebesgue’s theo-
rem. Indeed, since 1− x

n
� e−x/n, we have (1− x

n
)n � e−x for 0 < x � n, whence

0 � fn(x) � xa−1e−x for all x > 0. Thus the functions fn are dominated by a
summable function on (0,+∞).

4.8.5 The next application of Lebesgue’s theorem is of a more general nature; we
preface it with an auxiliary result.

Let f be a function defined on a bounded set E ⊂ R
m. With every tagged parti-

tion (τ, ξ) of E, which consists of sets e1, . . . , en and tags ξ1, . . . , ξn (by construc-
tion, ξk ∈E ∩ ek), we associate the simple function

fτ =
n∑

k=1

f (ξk)χek .

Thus fτ (x) = f (ξk) for x ∈ ek . Recall that the mesh of τ is equal to r(τ ) =
max1�k�n diam (ek) (see Sect. 4.7.3).

Lemma If r(τ )→ 0, then fτ (x)→ f (x) at all points of continuity of f . More
precisely: if x is a point of continuity of f , then for every ε > 0 there exists a δ > 0
such that |fτ (x)− f (x)|< ε as soon as r(τ ) < δ.

Proof It suffices, given ε, to choose a δ > 0 such that |f (x) − f (y)| < ε for
‖x − y‖ < δ and y ∈ E. In this case, if r(τ ) < δ and x ∈ ek , then ‖ξk − x‖ < δ,
whence |f (x)− fτ (x)| = |f (x)− f (ξk)|< ε. �

The following theorem generalizes Theorem 4.7.3.

Theorem Let E be a bounded (measurable) subset of Rm. If f is a bounded func-
tion defined on E and the set of discontinuities of f is of zero measure, then the
integral

∫
E
f (x)dx is the limit of Riemann sums (in the same sense as in Theo-

rem 4.7.3).
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Proof First observe that, by Theorem 3.1.7, the function f is measurable. Let τ =
{ek}nk=1 be a partition of E and ξ = {ξk}nk=1, where ξk ∈ E ∩ ek , be a family of
tags for τ . By definition, the Riemann sum S(f, τ, ξ) corresponding to the tagged
partition (τ, ξ) is equal to S(f, τ, ξ) =∑n

k=1 f (ξk)λm(ek). In the notation of the
lemma, this formula can be rewritten in the form

S(f, τ, ξ)=
∫

E

fτ (x) dx.

Since fτ (x)→ f (x) as r(τ ) → 0 at all points of continuity of f , we see that
fτn −→n→∞ f almost everywhere for every sequence of partitions τn such that

r(τn) −→
n→∞ 0. Furthermore, it is obvious that the functions fτ are uniformly

bounded. Hence, by Lebesgue’s theorem,
∫
E
fτn(x) dx −→n→∞

∫
E
f (x)dx, which is

equivalent to the required assertion. �

By tradition, for functions defined on an interval [a, b], the integral is defined as
the limit of the Riemann sums corresponding to partitions of [a, b] into finer and
finer subintervals. This definition was suggested by Riemann,18 so the integral un-
derstood in this way is called the Riemann integral. It is worth mentioning that such
sums and their limits were earlier considered by Cauchy, but only for continuous
functions. As follows from the theorem proved above, if f is bounded and contin-
uous almost everywhere on [a, b], then the corresponding Riemann integral exists
and coincides with the integral of f with respect to the Lebesgue measure. We leave
the reader to prove that the assumptions made in the theorem (that f is bounded and
the set of discontinuities of f has zero measure) are not only sufficient, but also nec-
essary for the integral

∫
E
f (x)dx to coincide with the limit of the Riemann sums

(see Exercises 10–12). Thus the Riemann integral of a bounded function over a finite
interval exists if and only if it is continuous almost everywhere.

4.8.6 The next theorem is not exactly a result on the interchange of limits and in-
tegration, but it shows that in a wide class of cases one can pass to the limit in an
inequality. More precisely, the integral of non-negative functions has an important
property: it is lower semicontinuous with respect to almost everywhere convergence.
This property is often used in the cases where one has to establish the summability
of a limit function.

Theorem 1 (Fatou19) Let {fn}n�1 be a sequence of non-negative measurable func-
tions that converges to f almost everywhere on X. If for some C > 0,∫

X

fn dμ� C for every n ∈N, (1)

then
∫
X
f dμ� C.

18Georg Friedrich Bernhard Riemann (1826–1866)—German mathematician.
19Pierre Joseph Louis Fatou (1878–1929)—French mathematician.
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Remark Even if the integrals of all functions fn are equal, the integral of the limit
function may be strictly less than their common value. To obtain a corresponding ex-
ample, assume that our measure space is the interval (0,1) with Lebesgue measure
and fn is the function defined by the formula

fn(x)=
{
n for 0 < x < 1

n
,

0 for 1
n
� x < 1.

Obviously, fn(x) −→
n→∞ 0 pointwise on (0,1) and

∫ 1
0 fn(x) dx = 1, while the integral

of the limit function vanishes.
The same example shows that Fatou’s theorem is no longer true if we reverse

the inequalities in condition (1) and in the conclusion of the theorem; that is, the
integral, while being lower semicontinuous, is not upper semicontinuous.

Changing the signs of fn in the above example, we see that Fatou’s theorem is not
true without the assumption that the functions under consideration are non-negative.

Proof Let gn(x) = inf{fn(x), fn+1(x), . . . , fn+k(x), . . .} (x ∈ X). Clearly,
gn � gn+1, gn −→

n→∞ f almost everywhere on X, and
∫

X

gn dμ�
∫

X

fn dμ� C for all n ∈N.

Therefore, by B. Levi’s theorem,
∫

X

f dμ= lim
n→∞

∫

X

gn dμ� C. �

Since the sequence {gn}n�1 is monotone, we can drop the assumption that the se-
quence {fn}n�1 converges and use the equation limn→∞ gn = limn→∞ fn to prove
a formally stronger version of Fatou’s theorem:

for every sequence of non-negative measurable functions {fn}n�1,
∫

X

lim
n→∞

fn dμ� lim
n→∞

∫

X

fn dμ. (2)

The reader has probably encountered situations where a more general result is
much less important than a central special case. In our opinion, Fatou’s theorem and
its generalization provide such an example. For another example, see Exercise 4,
which generalizes B. Levi’s theorem.

Theorem 1 remains valid if we replace almost everywhere convergence with con-
vergence in measure.

Theorem 1′ (Fatou) Let {fn}n�1 be a sequence of non-negative measurable func-
tions that converges in measure to a function f . If for some C > 0,

∫

X

fn dμ� C for every n ∈N,

then
∫
X
f dμ� C.
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Proof Using Riesz’ theorem (see Sect. 3.3.4), choose a subsequence {fnk
}k�1 that

converges to f almost everywhere. Applying Theorem 1 to this subsequence, we
obtain the desired result. �

Note that in the case of a finite measure Theorem 1′ is stronger than Theorem 1.
In addition, the result obtained in the former does not follow from (2), because
the lower limit limn→∞ fn can be substantially less than f (see Sect. 3.3, Exer-
cises 2, 3).

4.8.7 As we have seen, the existence of a summable dominating function is not
a necessary condition for the interchange of limits and integration; however, in
Lebesgue’s theorem it is essential and cannot be dispensed with. But an analysis
of the proof shows that this condition can be weakened. Indeed, what we in fact
need is not the existence of a summable dominating function, but the smallness
of the integrals

∫
e
|fn|dμ for sets e of sufficiently small measure implied by this

assumption. So we introduce the following definition.

Definition We say that functions fα (α ∈ A) have absolutely equicontinuous inte-
grals if they are summable and

∀ε > 0 ∃ δ > 0 : (
μ(e) < δ

) ⇒
(

∀α ∈A

∫

e

|fα|dμ < ε

)

. (3)

If a family {fα}α∈A is dominated by a summable function, i.e., there exists
a summable function g such that |fα| � g almost everywhere for every α, then∫
e
|fα|dμ�

∫
e
g dμ, and condition (3) is satisfied by the absolute continuity of the

integral of g.
It turns out that the absolute equicontinuity of the integrals of fn (n ∈N) is a nec-

essary condition for the integrals
∫
E
fn dμ to have a finite limit for every measurable

set E and, in particular, for the convergence
∫
X
|fn − f |dμ −→

n→∞ 0. The proof of

this theorem, due to Vitali, is rather involved (see, for example, [Bo, Vol. I]), so we
do not reproduce it here, but establish a much easier result that the absolute equicon-
tinuity is sufficient for the interchange of limits and integration. Note that the proof
of this result provides a typical application of Fatou’s theorem, which is used to
estimate the integral of the limit function.

Theorem (Vitali) Let {fn}n�1 be a sequence of measurable functions that con-
verges to a function f in measure on X. If μ(X) <∞ and the functions fn have ab-
solutely equicontinuous integrals, then f is summable and

∫
X
|fn − f |dμ −→

n→∞ 0.

Proof Fix an arbitrary ε > 0, and let δ be a number such that condition (3) is satis-
fied. Set en = X(|f − fn|> ε). Since μ(en) −→

n→∞ 0 by assumption, it follows that

μ(en) < δ for sufficiently large n; by condition (3), for such n and for all k we have
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∫
en
|fk|dμ < ε. By Fatou’s theorem, it follows that

∫
en
|f |dμ� ε. Therefore,

∫

X

|f − fn|dμ=
∫

X\en
|f − fn|dμ+

∫

en

|f − fn|dμ

�
∫

X\en
ε dμ+

∫

en

|f |dμ+
∫

en

|fn|dμ� εμ(X)+ ε+ ε

= (
μ(X)+ 2

)
ε.

Since this inequality holds for sufficiently large n, it follows that
∫
X
|f −

fn|dμ −→
n→∞ 0. Furthermore, f is summable, because f = fn + (f − fn), with

both terms on the right-hand side being summable. �

Vitali’s theorem implies a useful corollary.

Corollary Let μ(X) < +∞, and let {fn}n�1 be a sequence of measurable func-
tions that converges in measure to a function f . If there exist p > 1 and C > 0 such
that

∫

X

|fn|p dμ� C for all n, (V)

then the functions fn and f are summable and
∫
X
|fn − f |dμ −→

n→∞ 0.

Proof To apply Vitali’s theorem, we should check the summability of fn and the
absolute equicontinuity of the integrals of fn. Both these facts follow from Hölder’s
inequality. Indeed, assuming that 1

p
+ 1

q
= 1, for every set e we have

∫

e

|fn|dμ�
(∫

e

|fn|p dμ

) 1
p (

μ(e)
) 1

q � C
1
p

(
μ(e)

) 1
q .

This implies both the summability of fn (for e = X) and condition (3), since the
integrals

∫
e
|fn|dμ are arbitrarily small for all n provided that the measure of e is

sufficiently small. �

Following the same scheme, we can use Vitali’s theorem to deduce a more gen-
eral result, whose proof we leave to the reader.

Theorem (de La Vallée Poussin20) Let μ(X) <∞, and let {fn}n�1 be a sequence
of measurable functions that converges in measure to a function f . If there exists

20Charles-Jean Étienne Gustave Nicolas de La Vallée Poussin (1866–1962)—Belgian mathemati-
cian.
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a non-negative function � that grows unboundedly on [0,+∞) and satisfies the
condition

sup
n

∫

X

|fn|�(|fn|) dμ <+∞,

then the functions fn and f are summable and
∫
X
|fn − f |dμ −→

n→∞ 0.

EXERCISES

1. Give an example of a sequence of positive continuous functions fn on [a, b]
such that

∫ b

a
fn(x) dx −→

n→∞ 0 and supn fn(x)=+∞ at every point x ∈ [a, b].
2. Show, by an example, that B. Levi’s theorem is no longer true if we drop the

assumption that the functions under consideration are non-negative.
3. Let an � 0 and

∑∞
n=1 an <+∞. Show that:

(a) if
∑∞

n=1 an lnn < +∞, then the series
∑∞

n=1
an|x−xn| converges almost ev-

erywhere on R (with respect to the Lebesgue measure) for every sequence
{xn} ⊂R;

(b) if
∑∞

n=1 an lnn = +∞ and X is a countable dense subset of the interval
(0,1), then, depending on the numbering {xn} of X, the series in question
may converge almost everywhere on (0,1) as well as diverge almost every-
where on (0,1) (and even at every point of (0,1)).

4. Prove the following generalization of B. Levi’s theorem. Let {fn}n�1 be a se-
quence of non-negative measurable functions that converges to f almost ev-
erywhere on X. If fn � f almost everywhere for every n, then

∫
X
fn dμ −→

n→∞∫
X
f dμ.

5. Let {fn}n�1 be a sequence of non-negative measurable functions that con-
verges to a summable function f almost everywhere on X. If

∫
X
fn dμ −→

n→∞∫
X
f dμ, then

∫
E
fn dμ −→

n→∞
∫
E
f dμ for every measurable set E ⊂X. More-

over,
∫
X
|fn − f |dμ −→

n→∞ 0. Hint. To prove the first claim, apply Fatou’s theo-

rem; to prove the second claim, use the identity |fn−f | = fn−f +2(fn−f )−
and Lebesgue’s theorem.

6. Is the sequence of functions 1
n
( sinnx

x
)2, which pointwise converges to zero,

dominated by a summable function on (0,π)?
7. Show that if μ is a finite measure, then fn −→

n→∞ f in measure if and only if
∫
X

|fn−f |
1+|fn−f | dμ −→n→∞ 0.

8. Let μ be a measure such that μ(A) = sup{μ(E) |E ⊂ A, μ(E) < +∞} for
every measurable set A. Show that Theorem 4.8.3 remains valid if we replace
the convergence of fn to f in measure on X with convergence in measure
on every set of finite measure. The latter condition is obviously satisfied if
fn −→

n→∞ f almost everywhere.

9. Is the sequence of functions fn(x) = n
n−(n−1)eix

dominated by a summable
function on (−π,π)? What is the limit limn→∞

∫ π

−π
|fn(x)|dx?
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10. Show that if a function f defined on a ball is not bounded, then the correspond-
ing Riemann sums S(f, τ, ξ) cannot have a finite limit as r(τ )→ 0.

11. Let f be a measurable function defined on a bounded subset e of Rm such that
the set of discontinuities of f is of positive measure. Show that the Riemann
sums of f corresponding to finer and finer partitions have no limit (even if we
restrict ourselves to partitions of E into sets of the form E ∩ P , where P is a
cell). Hint. Consider a set of positive measure K ⊂E such that

lim
y→x

f (y)− lim
y→x

f (y)� ε > 0 for all x ∈K.

Verify that there exist a partition τ of arbitrarily small mesh and families of tags
ξ and ξ ′ for τ such that S(f, τ, ξ)− S(f, τ, ξ ′) > ε

2λm(K).
12. Show that Theorem 4.8.5 and the result of Exercise 11 remain valid for every

finite Borel measure. The result of Exercise 10 also remains valid under the
additional assumption that every non-empty open set has positive measure.

13. Show that in the definition of absolute equicontinuity, the integrals
∫
e
|fα|dμ

may be replaced by | ∫
e
fα dμ|.

4.9 �The Maximal Function and Differentiation of the Integral
with Respect to a Set

In this section, we study the following problem: to what degree can Barrow’s the-
orem on differentiation of the integral of a continuous function with respect to a
variable upper limit (see Sect. 4.6.1) be extended to summable functions? As one
can easily see, there is no difficulty in generalizing it to the case of multiple inte-
grals keeping the assumption that the integrand is continuous. However, an attempt
to extend the class of functions under consideration encounters major difficulties
even in the one-dimensional case. If the integrand is only summable, we cannot ex-
pect the derivative with respect to a variable upper limit to exist at every point. It
is also clear that even if this derivative exists, it does not necessarily coincide with
the corresponding value of the integrand (since we can modify the latter at a set of
zero measure in an arbitrary way without affecting the integral). Hence we should
adjust the statement of the problem. Obviously, we can hope for the derivative to
coincide with the integrand only almost everywhere. It is extremely important to
find out whether or not the derivative does indeed exist almost everywhere. More
precisely, we formulate the question as follows. Given a summable function on R

m,
is it true that the limit of the average values of f over balls shrinking to a point,
i.e., limr→0

1
v(r)

∫
B(x,r)

f (y) dy, exists almost everywhere? We will see that the an-
swer to this question is positive and, moreover, the above limit coincides with f (x)

almost everywhere.
By λ we denote the Lebesgue measure on R

m and by λ∗ the corresponding outer
measure; v(r) = λ(B(0, r)). Let L (Rm) be the set of functions summable on R

m

with respect to the Lebesgue measure.
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4.9.1 The problem of differentiating the integral with a variable upper limit deals in
fact with the behavior of average values of the form 1

h

∫ x+h

x
f (y) dy. In various esti-

mates related to average values of a function (of one or several variables), it is often
useful to employ a function dominating these averages. The most convenient of such
functions was introduced by Hardy21 and Littlewood22; it is the smallest function
dominating the averages of f over balls. Here is the corresponding definition.

Definition Let f ∈L (Rm). The function Mf defined by the formula

Mf (x)= sup
r>0

1

v(r)

∫

B(x,r)

∣
∣f (y)

∣
∣dy

(
x ∈R

m
)

is called the maximal function (for f ).

Note that the maximal function is measurable. Indeed, as follows from the ab-
solute continuity of the integral, the function (x, r) �→ 1

v(r)

∫
B(x,r)

|f (y)|dy is con-
tinuous. Hence the supremum in the definition of Mf can be taken only over the
rational values of r . Thus the maximal function is measurable as the supremum of a
countable family of measurable functions. If I = ∫

Rm |f (x)|dx > 0, then Mf is not
summable. Indeed, if the norm ‖x‖ is sufficiently large, then

Mf (x)�
1

v(2‖x‖)
∫

B(x,2‖x‖)
∣
∣f (y)

∣
∣dy � const

‖x‖m I.

One can show that the maximal function is not necessarily summable even on sets
of finite measure (see Exercise 1). However, it is finite almost everywhere, as the
following important theorem implies.

Theorem Let f ∈L (Rm) and Et = {x ∈R
m |Mf (x) > t} for t > 0. Then

λ(Et )�
5m

t

∫

Rm

∣
∣f (x)

∣
∣dx. (1)

Since {x ∈R
m |Mf (x)=+∞}⊂Et for every t > 0, it follows that the function

Mf is finite almost everywhere.

Proof To estimate the measure of the set Et , we use Theorem 2.7.1. Since Mf (x)=
supr>0

1
v(r)

∫
B(x,r)

|f (y)|dy > t for x ∈Et , for every point x ∈Et there exists a ball
B(x, rx) such that

1

v(rx)

∫

B(x,rx)

∣
∣f (y)

∣
∣dy > t.

21Godfrey Harold Hardy (1877–1947)—English mathematician.
22John Edensor Littlewood (1885–1977)—English mathematician.
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This inequality can be rewritten as

v(rx) <
1

t

∫

B(x,rx)

∣
∣f (y)

∣
∣dy. (2)

It follows that v(rx)� 1
t

∫
Rm |f (y)|dy, and hence the radii of the balls are uniformly

bounded. To apply Theorem 2.7.1, instead of the whole set Et , which may be un-
bounded, consider an arbitrary bounded part E0

t of Et . Then, according to this the-
orem, in the family {B(x, rx)}x∈E0

t
there is a (possibly finite) sequence of pairwise

disjoint balls Bk = B(xk, rxk ) such that E0
t ⊂

⋃
k�1 B

∗
k , where B∗k = B(xk,5rxk ).

Hence, using (2), we obtain

λ
(
E0

t

)
�

∞∑

k=1

λ
(
B∗k

)= 5m
∞∑

k=1

λ(Bk)�
5m

t

∞∑

k=1

∫

Bk

∣
∣f (y)

∣
∣dy

= 5m

t

∫

∨
k�1 Bk

∣
∣f (y)

∣
∣dy � 5m

t

∫

Rm

∣
∣f (y)

∣
∣dy.

Since E0
t is arbitrary, this inequality holds for Et as well. �

4.9.2 Now we turn to the main problem of this section: is it true that the limit
limn→∞ 1

λ(En(x))

∫
En(x)

f (y) dy, where En(x) are sets of positive measure shrinking
to a point x, exists almost everywhere and coincides with f (x)? Keeping in mind the
analogy with the one-dimensional case, where En(x) are intervals shrinking to x, it
is natural to interpret our question as asking about the derivative of the integral with
respect to the system of sets {En(x)}.

It is obvious that the behavior of f at points “far” from x (in particular, the
summability of f on the whole space Rm) does not affect the existence and the value
of the limit in question. So it makes sense to introduce a wider class of functions
than L (Rm); this class of measurable functions often appears in function theory as
well as in other areas of mathematics.

Definition A measurable function f in R
m is called locally summable in R

m if it is
summable on every bounded set, i.e.,

∫

B(0,R)

∣
∣f (x)

∣
∣dx <+∞ for every R > 0.

The set of all such functions will be denoted by Lloc(R
m). It is clear that every

locally summable function is finite almost everywhere and the class Lloc(R
m) con-

tains both continuous and simple functions.
First we consider the case of differentiating the integral with respect to a family

of concentric balls. Our main goal is to prove the following important result.
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Theorem (Lebesgue) If f ∈Lloc(R
m), then

1

v(r)

∫

B(x,r)

∣
∣f (y)− f (x)

∣
∣dy −→

r→0
0 (3)

for almost all x. In particular,

1

v(r)

∫

B(x,r)

f (y) dy −→
r→0

f (x) almost everywhere. (3′)

A point x at which (3) holds is called a Lebesgue point of f .23 Thus the Lebesgue
differentiation theorem can also be stated as follows:

almost every point of a locally summable function f is a Lebesgue point of f .
Of course, every continuity point of f is a Lebesgue point of f , since

1

v(r)

∫

B(x,r)

∣
∣f (y)− f (x)

∣
∣dy � sup

y∈B(x,r)

∣
∣f (y)− f (x)

∣
∣−→
r→0

0.

We preface the proof of the theorem with a useful lemma.

Lemma A function f from the class L (X,μ) can be approximated by simple func-
tions in the following sense: for every ε > 0 there exists a simple function g such that

∫

X

|f − g|dμ < ε.

Proof If f is non-negative, then this claim follows immediately from the definition
of the integral. Indeed,

∫

X

f dμ= sup

{∫

X

hdμ |0 � h� f, h is a simple function

}

,

and hence there exists a simple function g such that 0 � g � f and
∫
X
f dμ <∫

X
g dμ+ ε. It provides the desired approximation:

∫

X

|f − g|dμ=
∫

X

(f − g)dμ=
∫

X

f dμ−
∫

X

g dμ< ε.

In the general case, it suffices to approximate the functions f+ and f−. �

Proof of the theorem We assume without loss of generality that f is real-valued.
It suffices to show that for every R > 0 almost all points of the ball B(0,R) are
Lebesgue points of f . To prove this, fix a radius R and observe that for ‖x‖<R the

23In some books, the term “Lebesgue set” refers to the set of Lebesgue points of a function. We
draw the reader’s attention to this terminological ambiguity.
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validity of (3) does not depend on the values of f outside of B(0,R). This allows
us to assume that f ∈L (Rm) (it suffices to redefine f by zero outside of the ball).

In the subsequent argument, we will consider functions f of more and more
complicated structure. First assume that f = χE is the characteristic function of a
measurable set E. Then

∣
∣f (y)− f (x)

∣
∣= ∣

∣χE(y)− χE(x)
∣
∣=

{
1− χE(y) if x ∈E,

χE(y) if x /∈E.

Hence

1

v(r)

∫

B(x,r)

∣
∣f (y)− f (x)

∣
∣dy =

⎧
⎨

⎩

1− λ(E∩B(x,r))
v(r)

, if x ∈E,

λ(E∩B(x,r))
v(r)

, if x /∈E.

By Corollary 1 of Vitali’s theorem (see Sect. 2.7.3), almost every point of E is a
density point of this set, which implies that the right-hand side tends to zero almost
everywhere as r→ 0.

It is clear that (3) remains valid for every linear combination of characteristic
functions, i.e., for every simple function.

Now we turn to the main case, where f is an arbitrary summable function. We
will show that for an arbitrary a > 0, the measure of the set

Ea(f )=
{

x ∈R
m

∣
∣
∣ lim
r→0

1

v(r)

∫

B(x,r)

∣
∣f (y)− f (x)

∣
∣dy > a

}

vanishes. This will complete the proof of the theorem, since points at which (3) does
not hold are contained in the union

⋃∞
n=1 E1/n(f ).

Fix a > 0; we will estimate the outer measure of the set Ea(f ) (leaving aside the
question of its measurability). Obviously,

lim
r→0

1

v(r)

∫

B(x,r)

∣
∣f (y)− f (x)

∣
∣dy � lim

r→0

1

v(r)

∫

B(x,r)

∣
∣f (y)

∣
∣dy + ∣

∣f (x)
∣
∣

� Mf (x)+
∣
∣f (x)

∣
∣,

whence

Ea(f )⊂
{

x ∈R
m

∣
∣
∣Mf (x) >

a

2

}

∪
{

x ∈R
m

∣
∣
∣
∣
∣f (x)

∣
∣ >

a

2

}

.

But

λ

({

x ∈R
m

∣
∣
∣
∣
∣f (x)

∣
∣ >

a

2

})

� 2

a

∫

Rm

∣
∣f (x)

∣
∣dx (by Chebyshev’s inequality),

λ

({

x ∈R
m

∣
∣
∣Mf (x) >

a

2

})

� 2
5m

a

∫

Rm

∣
∣f (x)

∣
∣dx (by Theorem 4.9.1).
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Therefore,

λ∗
(
Ea(f )

)
� C

a

∫

Rm

∣
∣f (x)

∣
∣dx, (4)

where C is a coefficient that depends only on the dimension.
To complete the proof of the theorem, we will show that λ∗(Ea(f ))= 0. As we

have already established, (3) holds almost everywhere for a simple function. Hence,
taking an arbitrary simple function g, averaging the inequality

∣
∣f (y)− f (x)

∣
∣− ∣

∣g(y)− g(x)
∣
∣ �

∣
∣(f (y)− g(y)

)− (
f (x)− g(x)

)∣
∣

�
∣
∣f (y)− f (x)

∣
∣+ ∣

∣g(y)− g(x)
∣
∣

over the ball B(x, r), and taking the limit superior as r → 0, we see that
λ∗(Ea(f ))= λ∗(Ea(f −g)). Thus inequality (4) can be substantially strengthened:
for an arbitrary simple function g,

λ∗
(
Ea(f )

)= λ∗
(
Ea(f − g)

)
� C

a

∫

Rm

∣
∣f (x)− g(x)

∣
∣dx. (4′)

As follows from the lemma, the right-hand side can be made arbitrarily small by the
choice of g. Thus λ∗(Ea(f ))= 0. �

Remark 1 Since equality (3) holds for every continuous function g, it follows from
the above argument that inequality (4′) also holds for such g. As we will show in
Chap. 9, Lemma 4.9.2 remains valid if we replace simple functions with continu-
ous ones. Hence we could prove the theorem using continuous rather than simple
functions and applying Theorem 9.2.3 instead of the lemma.

Remark 2 The theorem can easily be extended to the (formally more general) case
where a function is defined only on a subset of Rm. Let us say that a function f is
locally summable on an open set O ⊂ R

m, or on an arbitrary interval � ⊂ R, if it
is summable on every compact subset. In this case, (3) holds for almost all points
of O.

Indeed, O can be exhausted by a sequence of closed cubes contained in it. Hence
it suffices to prove (3) for almost all points of every such cube Q. The corresponding
assertion follows immediately by applying the theorem to the function fQ that coin-
cides with f on Q and vanishes outside of Q (note that fQ ∈L (Rm)⊂Lloc(R

m),
since

∫
Q
|f (x)|dx <+∞).

4.9.3 Now we turn to the famous Lebesgue theorem, which provides the general-
ization of Barrow’s theorem that we discussed at the beginning of this section. It
concerns functions that can be written as integrals with a variable upper limit.
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Definition A function F defined on an interval �, � ⊂ R, is called absolutely
continuous on � if it can be written in the form

F(x)= F(c)+
∫ x

c

f (y) dy (x ∈�), (5)

where c ∈� and f is locally summable on �.

We draw the reader’s attention to the fact that if the interval � is closed, then f

is summable on �. Otherwise this is not necessarily so (see Exercise 4).
It follows from Theorem 4.6.1 that every absolutely continuous function is con-

tinuous. The converse is not true even for monotone functions (see Exercises 4, 5).
The simplest examples of absolutely continuous functions are C1 functions. Clearly,
the functions |x|, √|x| are absolutely continuous on R. As follows from the remark
after the fundamental theorem of calculus (Sect. 4.6.1), a convex continuous func-
tion on an interval is absolutely continuous on this interval.

In the one-dimensional case, Theorem 4.9.2 shows that if F is the function de-
fined by (5), then the limit of the ratio F(x+h)−F(x−h)

2h = 1
2h

∫ x+h

x−h
f (y) dy as h→ 0

exists almost everywhere and coincides with f (x). One can strengthen this result
by showing that the function F is almost everywhere differentiable in the classical
sense.

Theorem (Lebesgue) If F is a function that is absolutely continuous on an inter-
val �, then it is differentiable almost everywhere, its derivative is locally summable,
and F(y)− F(x)= ∫ y

x
F ′(t) dt for any x, y ∈�.

Proof Let F be a function satisfying (5). We will prove that for almost all x the
right derivative of F at x exists and coincides with f (x). Indeed, if h > 0, then

F(x + h)− F(x)

h
−f (x)= 1

h

∫ x+h

x

f (y) dy−f (x)= 1

h

∫ x+h

x

(
f (y)−f (x)

)
dy.

Therefore,

∣
∣
∣
∣
F(x + h)− F(x)

h
− f (x)

∣
∣
∣
∣ �

1

h

∫ x+h

x

∣
∣f (y)− f (x)

∣
∣dy

� 1

h

∫ x+h

x−h

∣
∣f (y)− f (x)

∣
∣dy,

and the right-hand side tends to zero as h→ 0 almost everywhere on � by Theo-
rem 4.9.2. It follows that the right derivative exists. Clearly, the existence of the left
derivative can be proved in a similar way, and then the desired formula is obvious. �

The theorem shows that absolutely continuous functions admit the following de-
scription: a function F is absolutely continuous on an interval � if the derivative F ′
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exists almost everywhere, is locally summable, and F can be recovered from F ′ by
the formula

F(x)= F(c)+
∫ x

c

F ′(y) dy (c, x ∈�).

Note that the local summability of the derivative F ′, which exists almost every-
where, is only necessary, but not sufficient for this equality to hold (see Exercise 5).

4.9.4 One may differentiate the integral with respect to other families of sets instead
of concentric balls. Using the notion of a regular cover (see Sect. 2.7.4), we can
easily obtain the following corollary of Theorem 4.9.2.

Corollary If f is a locally summable function on an open subset O of Rm and
{En(x)}x∈X,n∈N is a regular cover of X ⊂O, then

lim
n→∞

1

λ(En(x))

∫

En(x)

∣
∣f (y)− f (x)

∣
∣dy −→

n→∞ 0 almost everywhere on X.

Note that we do not assume the set X to be measurable.

Proof For every x in X, let

En(x)⊂ B
(
x, rn(x)

)
, rn(x) −→

n→∞ 0, and inf
n

λ(En(x))

v(rn(x))
= θ(x).

Then the desired assertion follows from the inequality

1

λ(En(x))

∫

En(x)

∣
∣f (y)− f (x)

∣
∣dy � 1

θ(x)v(rn(x))

∫

B(x,rn(x))

∣
∣f (y)− f (x)

∣
∣dy,

whose right-hand side tends to zero almost everywhere by Theorem 4.9.2. �

EXERCISES

1. Let f (x) = 1
x ln2 x

for x ∈ (0, 1
2 ) and f (x) = 0 at the other points. Show that

Mf (x) � 1
|x lnx| for x ∈ (0, 1

4 ) and, consequently, the maximal function is not
summable in any neighborhood of the origin.

2. Give an example of a function f in L (R) such that the maximal function Mf is
not summable on any non-empty interval.

3. Let f (x) = sin 1
x

for x �= 0, f (0) = 0 and F(x) = ∫ x

0 f (y)dy. Show that 0 is
not a Lebesgue point of f , but nevertheless the derivative F ′(0) does exist and
is equal to zero.

4. Show that the function f (x)= ∫ x

0 sin 1
t

dt
t
(x ∈ [0,1]) is continuous but not abso-

lutely continuous on the closed interval [0,1], though it is absolutely continuous
on the semi-open interval (0,1].

5. Show that the Cantor function (see Sect. 2.3.2) is not absolutely continuous
(while having zero derivative almost everywhere).
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4.10 �The Lebesgue–Stieltjes Measure and Integral

Here we consider an important class of measures generated by increasing functions.
The one-dimensional Lebesgue measure of a subset of the real line can be inter-
preted as the mass of this subset provided that the mass is distributed with a con-
stant density. Dropping the latter condition, we arrive at the notion of the Lebesgue–
Stieltjes24 measure.

4.10.1 We now proceed to precise definitions. Let � be a non-empty open in-
terval (finite or not), and let g be an increasing function defined on �. Given
c ∈ �, by g(c − 0) and g(c + 0) we denote the one-sided limits limx→c−0 g(x)

and limx→c+0 g(x), respectively. These limits are finite, g(c− 0)� g(c+ 0), and g

has a discontinuity at a point c if and only if g(c−0) < g(c+0). Since g is increas-
ing, it follows that g(c + 0)� g(c′ − 0) for c < c′ (c, c′ ∈�). Hence the intervals
(g(c− 0), g(c+ 0)) corresponding to different points of discontinuity are disjoint.
Since every such interval contains a rational number, the set of discontinuities of a
monotone function is at most countable.

Now consider the semiring P(�) of all semi-open finite intervals [a, b) whose
closures are contained in �. We define a volume μg on P(�) by the formula

μg

([a, b))= g(b− 0)− g(a − 0) (a, b ∈�, a � b).

We leave the reader to check that the function μg thus defined is indeed a volume,
i.e., that it is non-negative and additive. One may ask why we did not define μg

by the simpler formula νg([a, b)) = g(b)− g(a) (see Example (3) in Sect. 1.2.2).
Of course, if g is continuous, or at least left-continuous, both formulas give the
same result. The reason why we have to use the more complicated formula is that
the volume μg , as we will soon prove, is always a measure, while the function νg
(being a volume) is not a measure in the case where g is not left-continuous (see
Example (2) in Sect. 1.3.1).

Since g(u) � g(v − 0) � g(v) for u < v (u, v ∈ �), it follows that
limx→c−0 g(x − 0) = g(c − 0) for c ∈ �. This immediately implies the follow-
ing property of the volume μg , which will be useful when proving its countable
additivity: if [a, b] ⊂�, then

μg

([a, b))= lim
s→a−0

μg

([s, b))= lim
t→b−0

μg

([a, t)). (1)

4.10.2 First we establish that volume μg is countably additive.

Theorem The volume μg is a σ -finite measure.

24Thomas Joannes Stieltjes (1856–1894)—Dutch mathematician.
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Proof 25 We need to prove only the countable additivity of the volume μg , its σ -
finiteness being obvious. As we know (see Theorem 1.3.2), it suffices to verify that
μg is countably subadditive: if P , Pn ∈P(�), P ⊂⋃∞

n=1 Pn, then

μg(P )�
∞∑

n=1

μg(Pn). (2)

We will prove inequality (2) up to ε, where ε is an arbitrary positive number. Let
P = [a, b) �=∅ and Pn = [an, bn). Using (1), find sn ∈� such that sn < an and

μg

([sn, bn)
)
<μg

([an, bn)
)+ ε

2n
(n ∈N). (3)

Let us estimate the volume μg([a, t)) from above for an arbitrary t ∈ (a, b). Clearly,

[a, t] ⊂ P ⊂
∞⋃

n=1

Pn ⊂
∞⋃

n=1

(sn, bn).

Since the interval [a, t] is compact, for sufficiently large N we have [a, t] ⊂⋃N
n=1(sn, bn). Then a fortiori [a, t)⊂⋃N

n=1[sn, bn). Since the volume μg is subad-
ditive, the inequalities (3) yield the bound

μg

([a, t)) �
N∑

n=1

μg

([sn, bn)
)
<

N∑

n=1

(

μg

([an, bn)
)+ ε

2n

)

<

∞∑

n=1

μg

([an, bn)
)+ ε.

Applying (1) once again, we see that

μg

([a, b))= lim
t→b−0

μg

([a, t)) �
∞∑

n=1

μg

([an, bn)
)+ ε.

Since ε is arbitrary, this implies (2). �

4.10.3 Now we can introduce the main notion of this section.

Definition The Lebesgue–Stieltjes measure generated by an increasing function g

is the Carathéodory extension of the volume μg .

For this measure, we keep the notation μg ; the σ -algebra of subsets of the in-
terval � on which it is defined will be denoted by Ag(�). The Lebesgue measure
is a special case of the Lebesgue–Stieltjes measure, corresponding to � = R and
g(x)≡ x.

25It is instructive to compare this proof with that of the countable additivity of the ordinary volume
(Theorem 2.1.1).
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Note that the σ -algebra Ag(�) contains all subintervals of � and hence all open
and Borel subsets of �.

Let us compute the measure μg of a one-point set. Let c ∈ �, and let cn ∈ �

be points of continuity of g such that cn > cn+1, cn −→
n→∞ c. Put Pn = [c, cn). Then

Pn ⊃ Pn+1 and
⋂

n�1 Pn = {c}. Since every measure is conditionally continuous
from above, μg(Pn) −→

n→∞ μg({c}). Furthermore,

μg(Pn)= g(cn)− g(c− 0) −→
n→∞ g(c+ 0)− g(c− 0),

whence μg({c})= g(c+ 0)− g(c− 0). Thus μg({c}) > 0 if and only if c is a point
of discontinuity of g; the measure concentrated at c is equal to the jump of g at this
point.

Knowing the measure of one-point sets, one can easily compute the measure of
an arbitrary interval contained in �. For example, if [a, b] ⊂�, then

μg

([a, b])= μg

([a, b)∪ {b})= μg

([a, b))+μg

({b})= g(b+ 0)− g(a − 0).

We leave the reader to find the measure of intervals of other types.
In general, the σ -algebras Ag for different functions g do not coincide. For ex-

ample, if an increasing function g is constant on (a, b) ⊂ �, then μg((a, b)) = 0
and, by the completeness of μg , the σ -algebra Ag(�) contains all subsets of this in-
terval. At the same time we know that every non-degenerate interval (a, b) contains
sets that are not Lebesgue measurable (see Sect. 2.1.3).

In order to deal with measures defined on the same σ -algebra, one often considers
Lebesgue–Stieltjes measures only on Borel subsets. The restriction of μg to the σ -
algebra of Borel sets is called the Borel–Stieltjes measure.

Up to now we have only considered the case where the function g, which gen-
erates a Lebesgue–Stieltjes measure, is defined on an open interval �. If � has the
form � = [p,q), then we define μg on semi-open subintervals of � of the form
[a, b) in the same way as above, with the only difference that g(p− 0) should now
be understood as g(p). Thus the mass concentrated at the point p will be equal to
the jump of g at p. If � is a right-closed interval, then we should assume that the
mass concentrated at the point q is equal to g(q)− g(q − 0). One may say that if
�= 〈p,q〉 and p ∈� (or q ∈�), we extend the function g by assuming it constant
on the half-line (−∞,p] (respectively, [q,+∞)), and then consider the measure
generated by the extended function only on subsets of the original interval.

It is clear that if the difference of two increasing functions is constant, then they
generate the same Lebesgue–Stieltjes measure. However, this may also happen in
other cases, because the volume, and hence the measure, μg does not depend on the
values of g at points of discontinuity. Replacing g(x) at each point of discontinuity x

by the value g̃(x)= g(x−0), we obtain a “corrected” function, which generates the
same volume as g but is left-continuous at every point. Thus we may assume without
loss of generality that the volume μg is generated by a left-continuous function; this
is sometimes technically convenient. For a description of all functions generating
the same measure, see Exercise 6.
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Remark We have introduced a class of Borel measures defined on subsets of a given
interval �. These measures are finite on compact subsets of �. A natural question is
whether there exist other Borel measures having this property. We will show that the
answer to this question is negative, assuming, to avoid some minor complications,
that � is an open interval.

Consider a Borel measure ν that is finite on P(�), fix an arbitrary interior point
p ∈�, and define a function g on � by the formula

g(x)=
{
ν([p,x)) for x � p,

−ν([x,p)) for x < p.

We leave the reader to show that if [a, b] ⊂ �, then g(b)− g(a) = ν([a, b)), and
that g is increasing and left-continuous. Thus the measures ν and μg coincide on
P(�) and hence, by the uniqueness theorem, on all Borel subsets of �.

To complete our discussion of the definition of the Lebesgue–Stieltjes measure,
observe that if g1 and g2 are increasing functions defined on �, then for Borel
subsets of � we have μg1+g2(A)= μg1(A)+μg2(A), i.e., μg1+g2 = μg1 +μg2 for
any Borel–Stieltjes measures. However, for Lebesgue–Stieltjes measures, this is not
generally the case, since, as we have already mentioned, these measures may be
defined on different σ -algebras.

4.10.4 Consider two classes of increasing functions generating Stieltjes measures
of different types.

Let g be an increasing function on an interval �, �0 be the set of points of
discontinuity of g, and ωx be the (possibly zero) jump of g at a point x ∈�. Note
that if a, b ∈�, a < b, then the increment of g over the interval [a, b] is not less
than the sum of its jumps corresponding to the points of discontinuity in (a, b).
Indeed,

∑

x∈(a,b)
ωx =

∑

x∈(a,b)∩�0

ωx � μg

(
(a, b)

)= g(b− 0)− g(a + 0)� g(b)− g(a).

This implies, in particular, that the sum
∑

x∈[a,b]ωx is finite.

Definition An increasing function g on an interval � is called a jump function if
its increment corresponding to any two points of continuity is equal to the sum of
the jumps between them, i.e., for any two points of continuity a, b ∈�, a < b, the
equality g(b)− g(a)=∑

x∈(a,b)∩�0
ωx (=∑

x∈(a,b) ωx) holds.

One of the simplest examples of a jump function is [x], the integer part of x.
However, there are more complicated cases; for instance, the set of points of dis-
continuity of a jump function may be dense in �.

Example A jump function can be constructed as follows. Let {x1, x2, . . .} be an
arbitrary countable subset of an interval � and ω1, ω2, . . . be positive numbers with
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∑∞
n=1 ωn <+∞. Set

h(x)=
∑

xn<x

ωn =
∞∑

n=1

ωnχ+(x − xn),

where χ+ is the characteristic function of the half-line (0,+∞). Since the series
defining h uniformly converges, this function is continuous (from both sides) at all
points x �= xn. Further, for every m we have

h(x)= ωmχ+(x − xm)+
∞∑

n�=m

ωnχ+(x − xn),

and the sum of the series is continuous at xm, which implies that the function h, as
well as χ+(x − xm), is left-continuous at xm, with the jump at xm equal to ωm. At
the same time, if a and b are points of continuity and a < b, then h(b) − h(a) =∑

a<xn<b ωn, so that h is a jump function.
By increasing the values of h at points of discontinuity in an appropriate way, we

again obtain a jump function with the given jumps from the left and from the right.
Note that the condition

∑∞
n=1 ωn <+∞ can be weakened. The reader can easily

check that all arguments used in the construction of h remain valid if we replace it
with a weaker condition:

∑
xn∈[a,b]ωn <+∞ for any a, b ∈�, a < b.

Let us find the measure generated by the jump function g. As above, let �0 be
the set of points of discontinuity of g and ωx be the (possibly zero) jump of g at a
point x ∈�. If a, b ∈�, a < b, then

μg

([a, b))= g(b− 0)− g(a − 0)=
∑

x∈[a,b)∩�0

ωx = μg

([a, b)∩�0
)
. (4)

If a and b are points of continuity of g, then the middle equality holds by the defini-
tion of a jump function; in the general case, it can be proved by passing to the limit.
It follows from (4) that μg(�)= μg(�0) and, consequently, μg(�\�0)= 0. Since
the measure μg is complete, the σ -algebra Ag(�) coincides with the algebra of all
subsets of the interval �.

Equation (4) shows that on the semiring P(�) the measure μg coincides with
the discrete measure generated by the masses {ωx}x∈� (see Sect. 1.3.1). By the
uniqueness theorem (Sect. 1.5.1), these measures are identical. Thus if g is a jump
function, then the measure μg is just the discrete measure generated by the family
of jumps of g.

Now consider a situation that is in a sense opposite to the previous one; namely,
the case where the function g not only has no jumps, i.e., is continuous, but is
absolutely continuous (see Sect. 4.9.3). By Theorem 4.9.3, g is then differentiable
almost everywhere, and g is increasing if and only if g′ is non-negative.

We will prove that in this case the measure μg has a density (see Sect. 4.5.3) with
respect to the Lebesgue measure.
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Lemma Let g be an increasing function absolutely continuous on an interval �.
Then μg(A)= ∫

A
g′(x) dx for every Lebesgue measurable set A⊂�.

Proof Consider the measure ν defined on the σ -algebra A(�) of Lebesgue measur-
able subsets of � by the formula

ν(A)=
∫

A

g′(x) dx
(
A ∈A(�)

)
.

Since the measures ν and μg coincide on the semiring P(�), it follows from the
uniqueness theorem (see Sect. 1.5.1) that they coincide on all Borel sets, and hence,
by the completeness of μg , on the whole σ -algebra A(�). Thus

A(�)⊂Ag(�) and μg(A)= ν(A) for A ∈A(�). �

Remark Applying Theorem 4.5.3 to the measure μg generated by a function g sat-
isfying the assumptions of the lemma, we see that for every Lebesgue measurable
non-negative function f ,

∫

�

f dμg =
∫

�

fg′ dλ, (5)

where λ is the one-dimensional Lebesgue measure.

4.10.5 Bearing in mind that Lebesgue–Stieltjes measures may be defined on differ-
ent σ -algebras, in this subsection, when speaking about the sum of measures, we
mean Borel–Stieltjes measures, i.e. we consider only the measures of Borel sets.

Let g be an increasing function defined on an interval � (to avoid obvious minor
technicalities, we assume it open), {ωx}x∈� be the family of jumps of g, and �0 =
{x ∈ � |ωx > 0} be the set of points of discontinuity of g. Fix an arbitrary point
p ∈� and put

h(x)=

⎧
⎪⎨

⎪⎩

∑
t∈[p,x) ωt for x > p,

0 for x = p,

−∑
t∈[x,p) ωt for x < p

(cf. the formula from the remark in Sect. 4.10.3). Let �0 = {x1, x2, . . .} and
hn ≡ ωxn ; then h coincides with the function considered in Example 4.10.4. As we
have mentioned, it is not necessary to assume that the family of masses is summable;
in our case, it is summable on every closed subinterval of �, which suffices to con-
struct h. As we have shown in Example 4.10.4, the function h is increasing, has
the same points of discontinuity and the same jumps as g, and is a jump function.
Modifying, if necessary, the values of h at points of discontinuity, we can make it
have the same jumps from the left and from the right as g. Assuming that h has this
property, we see that the difference gc = g−h is a continuous function. It is increas-
ing. Indeed, let a, b ∈�, a < b. When proving the inequality gc(b)−gc(a)� 0, we
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may assume, by the continuity of gc , that a and b are points of continuity of g (and
h). In this case,

gc(b)− gc(a)= g(b)− g(a)− (
h(b)− h(a)

)= g(b)− g(a)−
∑

x∈(a,b)
ωx � 0,

since the increment of an increasing function over the interval [a, b] is not less than
the sum of its jumps corresponding to the points of discontinuity lying in (a, b).

So, every increasing function can be written as the sum of a jump function and a
continuous increasing function: g = h+ gc.

Now consider the (Borel) measures μg , μgc and μh corresponding to these func-
tions. It is clear that if a, b ∈�, a < b, then

g(b− 0)− g(a − 0)= h(b− 0)− h(a − 0)+ gc(b)− gc(a),

i.e.,

μg

([a, b))= μh

([a, b))+μgc

([a, b)).
Thus on the semiring P(�) the measure μg coincides with the sum μh +μgc . By
the uniqueness theorem, these measures coincide on the Borel hull of the semiring
P(�), i.e., on all Borel subsets of �. Therefore (see Sect. 4.4.2, Property (9)), for
every non-negative (measurable) function f ,

∫

�

f dμg =
∫

�

f dμh +
∫

�

f dμgc .

Since a jump function generates a discrete measure, the integral with respect to μh

can be computed according to the general formula (see Sect. 4.2.4):
∫

�

f dμh =
∑

x∈�0

f (x)ωx.

Computing the integral with respect to μgc may be rather difficult (see Exercises 7
and 8). It simplifies substantially if the function gc is absolutely continuous. In this
case, by (5),

∫

�

f dμgc =
∫

�

fg′c dλ.

In conclusion, note that the integral with respect to the measure μg is called
the Lebesgue–Stieltjes integral, or simply the Stieltjes integral. To denote it, along
with the symbols

∫
A
f dμg ,

∫
A
f (x)dμg(x), the shorter classical notation

∫
A
f dg,∫

A
f (x)dg(x) is also used; in what follows, we will usually employ the latter nota-

tion.

4.10.6 In this section, we obtain a generalization of the integration by parts formula
to Stieltjes integrals.
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Theorem Let g be a non-decreasing function and F an absolutely continuous func-
tion on [a, b]. Then

∫

[a,b]
F(x)dg(x)= F(x)g(x)

∣
∣
∣
b

a
−

∫ b

a

F ′(x)g(x) dx.

Proof Since F ′ = (F ′)+ − (F ′)− , with (F ′)± � 0, it suffices to prove the desired
formula in the case where F ′ � 0, so in what follows we assume that this condition
is satisfied.

Let τ be an arbitrary partition of the interval [a, b] formed by points x0 = a <

x1 < · · ·< xn = b. Since g is increasing, for k = 0,1, . . . , n− 1 we have

(
F(xk+1)− F(xk)

)
g(xk)= g(xk)

∫ xk+1

xk

F ′(x) dx �
∫ xk+1

xk

F ′(x)g(x) dx

� g(xk+1)

∫ xk+1

xk

F ′(x) dx = (
F(xk+1)− F(xk)

)
g(xk+1).

Summing these inequalities, we obtain

n−1∑

k=0

(
F(xk+1)− F(xk)

)
g(xk)�

∫ b

a

F ′(x)g(x) dx

�
n−1∑

k=0

(
F(xk+1)− F(xk)

)
g(xk+1). (6)

Let us transform the sum on the left-hand side:

n−1∑

k=0

(
F(xk+1)− F(xk)

)
g(xk)

=
n∑

k=1

F(xk)g(xk−1)−
n−1∑

k=0

F(xk)g(xk)

= F(b)g(b)− F(a)g(a)−
n∑

k=1

F(xk)
(
g(xk)− g(xk−1)

)

= F(x)g(x)

∣
∣
∣
x=b

x=a
− Sτ .

Transforming the sum on the right-hand side of (6) in a similar way, we obtain

n−1∑

k=0

(
F(xk+1)− F(xk)

)
g(xk+1)= F(x)g(x)

∣
∣
∣
x=b

x=a
− S′τ ,
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where S′τ =
∑n−1

k=0 F(xk+1)(g(xk)− g(xk−1)). Thus

F(x)g(x)

∣
∣
∣
x=b

x=a
− Sτ �

∫ b

a

F ′(x)g(x) dx � F(x)g(x)

∣
∣
∣
x=b

x=a
− S′τ .

Now assume that the partition points lying inside [a, b] are points of continuity
of g. In this case, the sums Sτ and S′τ turn into Riemann sums for the integral∫
[a,b] F(x)dg(x). Hence, refining the partition, passing to the limit, and using the

remark to Theorem 4.7.3, we obtain the equation

F(x)g(x)

∣
∣
∣
x=b

x=a
−

∫

[a,b]
F(x)dg(x)=

∫ b

a

F ′(x)g(x) dx,

which is equivalent to the desired one. �

For another proof of this theorem, see Corollary 3 in Sect. 5.3.4.
One should bear in mind that the integration by parts formula proved above is

valid in the case where g is defined on the closed interval [a, b], so that, by defini-
tion, the measure μg assigns the masses g(a+ 0)− g(a) and g(b)− g(b− 0) to the
points a and b, respectively. If the measure μg is generated by a function defined on
an interval containing [a, b], then the equation

∫

[a,b]
F(x)dg(x)= F(x)g(x)

∣
∣
∣
x=b

x=a
−

∫ b

a

F ′(x)g(x) dx

may no longer be true, since the measures of the one-point sets {a} and {b} may
differ from the above one-sided jumps. However, the integration by parts formula
clearly remains true if the measure has no masses at a and b, i.e., if they are points of
continuity of g. In the case where the function g is left-continuous, the integration
by parts formula always holds when integrating over an interval closed from the left
and open from the right:

∫

[a,b)
F (x) dg(x)= F(x)g(x)

∣
∣
∣
x=b

x=a
−

∫ b

a

F ′(x)g(x) dx.

EXERCISES

1. Compute the integral
∫
[ 1√

15
,2] x dg(x), where g(x) = x − [ 1

x
] (the symbol [a]

stands for the integer part of a).
2. Let g(x)=∑∞

n=1 2−nχ+(x − 1
n
) (x ∈ R), where χ+ is the characteristic func-

tion of the half-line (0,+∞). Do the integrals
∫
δ
x2 dg(x) over the intervals

δ = ( 2
3 ,1) and δ = [ 2

3 ,1] differ (and, if so, what is the difference)? Consider the
same questions for the intervals ( 1

3 ,
1
2 ), (

1
3 ,

1
2 ] and [ 1

3 ,
1
2 ).

3. Compute the integrals
∫ 2

1
2
g dg for the functions g from Exercises 1 and 2. Are

these integrals equal to the limits of the corresponding Riemann sums?
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4. Show that if an increasing function g is continuous on [a, b], then the formula
∫

[a,b]
gσ dg = gσ+1(b)− gσ+1(a)

σ + 1

holds for every σ > 0. Is this true if we drop the condition that g is continuous?
5. Show that the measure generated on (0,+∞) by the function g(x) = lnx is

defined on Lebesgue measurable sets and invariant under multiplication by a
positive number c (i.e., the sets A ⊂ (0,+∞) and cA = {cx |x ∈ A} have the
same measure provided that they are measurable).

6. Show that if two increasing functions generate the same Lebesgue–Stieltjes
measure, then their difference is constant on the set of (common) points of
continuity.

7. Compute the integral
∫ 1

0 x dϕ(x), where ϕ is the Cantor function (see
Sect. 2.3.2).

8. Show that the integral F(y) = ∫ 1
0 eiyxdϕ(x) (y ∈ R), where ϕ is the Cantor

function, is equal to eiy/2 ∏∞
k=1 cos y

3k . Verify that F(y) �→ 0 as |y| →+∞.
9. Show that if f is a continuous function and g is an increasing function on [a, b],

then the Lebesgue–Stieltjes integral
∫
[a,b] f dμg coincides with the limit of the

classical Riemann sums Sτ (f, ξ)=∑n−1
k=0 f (ξk)(g(xk+1)− g(xk)) as the mesh

of τ tends to zero.
10. Let f ∈ C([−1,1]), ϕ be the Cantor function, and aε = 2

∑n
k=1

εk
3k , where ε =

(ε1, . . . , εn), εk = 0 or 1 (aε are the left endpoints of segments of the nth rank
appearing in the construction of the Cantor set). Show that as n→∞,

1

2n

∑

ε

f (x − aε)⇒
∫ 1

0
f (x − y)dϕ(y) on [0,1].

11. One says that two measure spaces (X,A,μ) and (Y,B, ν) are isomorphic if
there exist sets e ⊂X and e′ ⊂ Y of zero measure and a bijection � :X \ e→
Y \ e′ such that the set A⊂ X \ e is measurable if and only if the set �(A) is
measurable and, in the latter case, the measures of these sets coincide. Show that
if we replace the Lebesgue measure on the interval [0,1] by the measure corre-
sponding to the Cantor function ϕ, then we will obtain an isomorphic measure
space. Hint. Use the equality ϕ(C)= [0,1].

4.11 �Functions of Bounded Variation

4.11.1 Consider a function f defined on a closed interval [a, b]. Given an arbitrary
partition τ of [a, b] formed by points x0 = a < x1 < · · ·< xn = b, set

Sτ =
n−1∑

k=0

∣
∣f (xk+1)− f (xk)

∣
∣.

Obviously, when new partition points are added to τ , the sum Sτ may only increase.
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Definition The value supτ Sτ is called the total variation of the function f on the
interval [a, b] and is denoted by Vb

a(f ). If Vb
a(f ) is finite, f is called a function of

bounded variation.

It is clear that if f satisfies the Lipschitz condition on the interval [a, b], then it is
of finite variation. However, one should bear in mind that if f satisfies the Lipschitz
condition of order α < 1, then its variation may be infinite not only on the interval
[a, b], but on every (non-degenerate) subinterval (see Exercise 4).

Let us mention a few properties of the total variation.

(1) Vb
a(f )� |f (b)− f (a)|.

(2) A monotone function f is of bounded variation, with Vb
a(f )= |f (b)− f (a)|.

(3) A linear combination of functions of bounded variation is again a function of
bounded variation, with

Vb
a(f + g)� Vb

a(f )+Vb
a(g) and Vb

a(αf )= |α|Vb
a(f ) for α ∈R.

Now we establish a less obvious property of the total variation, namely, its addi-
tivity.

Theorem If a < c < b, then Vb
a(f )=Vc

a(f )+Vb
c(f ).

The theorem applies both to the case of bounded and unbounded variation.

Proof Let τ be an arbitrary partition of the interval [a, b] formed by points
x0, . . . , xn. Assume that one of these points, say xm, coincides with c. Then the
points x0, . . . , xm and xm, . . . , xn form partitions of the intervals [a, c] and [c, b],
respectively. Hence

Sτ =
m−1∑

k=0

∣
∣f (xk+1)− f (xk)

∣
∣+

n−1∑

k=m

∣
∣f (xk+1)− f (xk)

∣
∣ � Vc

a(f )+Vb
c(f ).

This inequality remains valid in the case where c is not a partition point, since adding
it to the set of partition points does not decrease the sum Sτ . Therefore,

Vb
a(f )� Vc

a(f )+Vb
c(f ).

On the other hand, if τ ′ and τ ′′ are arbitrary partitions of the intervals [a, c] and
[c, b] formed by points y0, . . . , yp and z0, . . . , zq , respectively, then z0 = yp and the
points y0, . . . , yp, z1, . . . , zq form a partition τ of the interval [a, b], with

Sτ ′ + Sτ ′′ = Sτ � Vb
a(f ).

Taking the supremum first over τ ′ and then over τ ′′, we see that

Vc
a(f )+Vb

c(f )� Vb
a(f ).

Together with the reverse inequality obtained above, this proves the theorem. �
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As one can see from Properties (2) and (3), the difference of increasing functions
is a function of bounded variation. It follows from the last theorem that the converse
is also true.

Corollary A function of bounded variation can be written as the difference of in-
creasing functions.

Proof Indeed, it is clear that the function V (x)=Vx
a(f ) is increasing. Furthermore,

it follows from Property (1) and the above theorem that the difference W(x) =
Vx

a(f )− f (x) is also increasing: if x, y ∈ [a, b], x < y, then

W(y)−W(x)= (
Vy

a(f )−Vx
a(f )

)−(
f (y)−f (x)

)
� Vy

x(f )− ∣
∣f (y)−f (x)

∣
∣ � 0.

Hence

f = V −W (1)

is a representation of f in the desired form. �

This corollary implies, in particular, that the set of points of discontinuity of a
function of bounded variation is at most countable.

4.11.2 It turns out that the continuity of the function is stored in the transition to
variation. More precisely, the following statement is valid.

Theorem Let f be a function of bounded variation on [a, b] and V (x) = Vx
a(f )

for a < x � b, V (a) = 0. If f is continuous at a point c ∈ [a, b], then V is also
continuous at this point.

Proof We will prove that V is right-continuous (the left-continuity can be proved in
a similar way). Let a � c < b. By the corollary of Theorem 4.11.1, f can be written
as the difference of increasing functions: f = g − h. Hence for x ∈ (c, b) we have

0 � V (x)− V (c)=Vx
c (f )=Vx

c (g − h)� Vx
c (g)+Vx

c (h)

= (
g(x)− g(c)

)+ (
h(x)− h(c)

)
.

The right-hand side tends to zero as x→ c if the functions g and h are continuous
at c. Let us verify that we may assume this without loss of generality. Indeed, if these
functions are discontinuous at c, then their jumps at this point are equal, since the
difference g − h is continuous. Modify g and h by decreasing them at the interval
(c, b] by the jump at c and setting their values at c equal to their right limits at c.
As one can easily check, the modified functions are increasing, continuous at c, and
their difference coincides with g − h, i.e., with f . �

In view of the representation (1), the above theorem implies that a function of
bounded variation can be written as the difference of increasing functions that are
continuous at the same points as f .
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4.11.3 As one can see from the following theorem, on transition to the variation not
only continuity but also the absolute continuity persist.

Theorem If a function f is absolutely continuous on [a, b], then it is of bounded
variation, with

Vb
a(f )=

∫ b

a

∣
∣f ′(t)

∣
∣dt. (2)

Proof By assumption, f (x) = f (a) + ∫ x

a
ω(t) dt for x ∈ [a, b], where the func-

tion ω (which coincides with f ′ almost everywhere by Theorem 4.9.3) is summable
on [a, b]. Therefore, for every partition x0 = a < x1 < · · ·< xn = b,

n−1∑

k=0

∣
∣f (xk+1)− f (xk)

∣
∣ =

n−1∑

k=0

∣
∣
∣
∣

∫ xk+1

xk

f ′(t) dt
∣
∣
∣
∣ �

n−1∑

k=0

∫ xk+1

xk

∣
∣f ′(t)

∣
∣dt

=
∫ b

a

∣
∣f ′(t)

∣
∣dt.

Hence f is of bounded variation and

Vb
a(f )�

∫ b

a

∣
∣f ′(t)

∣
∣dt. (3)

We will prove the reverse inequality up to an arbitrary ε > 0. For this, using the
absolute continuity of the integral and the regularity of the Lebesgue measure, we
find closed sets Q+ ⊂ {x ∈ [a, b] |f ′(x) � 0} and Q− ⊂ {x ∈ [a, b] |f ′(x) < 0}
such that

∫

[a,b]\Q
∣
∣f ′(x)

∣
∣dx < ε, where Q=Q+ ∪Q−. (4)

Since the sets Q± are disjoint and compact, they are separated, that is, there exists
a δ > 0 such that |x − y|� δ for any x ∈Q+ and y ∈Q−.

Now consider a partition τ of the interval [a, b] formed by points x0 = a < x1 <

· · ·< xn = b such that xk+1 − xk < δ for all k. Then every interval �k = [xk, xk+1]
may have a non-empty intersection with at most one of the sets Q±. Hence the
function f ′ does not change sign at the intersection �k ∩Q, and, consequently,

∣
∣f (xk+1)− f (xk)

∣
∣ =

∣
∣
∣
∣

∫

�k

f ′(x) dx
∣
∣
∣
∣ �

∣
∣
∣
∣

∫

�k∩Q
f ′(x) dx

∣
∣
∣
∣−

∫

�k\Q
∣
∣f ′(x)

∣
∣dx

=
∫

�k∩Q
∣
∣f ′(x)

∣
∣dx −

∫

�k\Q
∣
∣f ′(x)

∣
∣dx.

Summing these inequalities, we obtain a lower bound on the sum Sτ =∑n−1
k=0 |f (xk+1)− f (xk)|:
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Sτ �
∫

[a,b]∩Q
∣
∣f ′(x)

∣
∣dx −

∫

[a,b]\Q
∣
∣f ′(x)

∣
∣dx

=
∫ b

a

∣
∣f ′(x)

∣
∣dx − 2

∫

[a,b]\Q
∣
∣f ′(x)

∣
∣dx.

In view of (4), this implies the inequality Vb
a(f )� Sτ >

∫ b

a
|f ′(x)|dx−2ε. Since ε

is arbitrary, we have Vb
a(f )�

∫ b

a
|f ′(x)|dx, which together with (3) implies (2). �

Later (see Theorem 11.1.6) we will use another idea to obtain a more general
result.

Note that a function f absolutely continuous on [a, b] can be written as the
difference of absolutely continuous increasing functions, since

f (x)− f (a)=
∫ x

a

f ′(y) dy =
∫ x

a

(
f ′(y)

)
+ dy −

∫ x

a

(
f ′(y)

)
− dy.

4.11.4 Starting from the definition of the Stieltjes integral, we can introduce the
notion of the integral with respect to a function of bounded variation, which is
useful in some cases. First we make a preliminary observation: if increasing func-
tions g,h,g1, h1 on an interval [a, b] satisfy the condition g − h = g1 − h1, then
for every bounded Borel measurable function ϕ we have

∫ b

a
ϕ dg − ∫ b

a
ϕ dh =

∫ b

a
ϕ dg1−

∫ b

a
ϕ dh1. Indeed, by assumption, g+h1 = g1+h, and the corresponding

equality holds also for the Borel–Stieltjes measures: μg + μh1 = μg1 + μg . Hence
(see Sect. 4.4.2, Property (9))

∫ b

a

ϕ dμg +
∫ b

a

ϕ dμh1 =
∫ b

a

ϕ dμg1 +
∫ b

a

ϕ dμh,

and our claim follows.

Definition Let f be a function of bounded variation on [a, b] and ϕ be a Borel
measurable bounded function on [a, b]. The integral of ϕ with respect to f over
[a, b], denoted by

∫ b

a
ϕ df , is the difference

∫ b

a
ϕ dg − ∫ b

a
ϕ dh, where g and h are

increasing functions such that g − h= f .

The remark made before the definition shows that this integral is well defined: the
difference

∫ b

a
ϕ dg− ∫ b

a
ϕ dh does not depend on the choice of increasing functions

g and h satisfying the condition g − h= f .
It is clear that the integral with respect to a function of bounded variation is

linear, since this is true for Stieltjes integrals. For the same reason, the integral with
respect to a function of bounded variation satisfies the integration by parts formula
(cf. Theorem 4.10.6):

∫ b

a

ϕ(x) df (x)= ϕ(x)f (x)

∣
∣
∣
b

a
−

∫ b

a

ϕ′(x)f (x) dx,
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where ϕ is absolutely continuous and f is of bounded variation on [a, b].
If f is absolutely continuous on [a, b], then there is a formula generalizing for-

mula (5) from the previous section:

∫ b

a

ϕ df =
∫ b

a

ϕf ′ dλ,

where λ is the one-dimensional Lebesgue measure.
Let us establish another property of the integral with respect to a function of

bounded variation.

Theorem If ϕ is continuous and f is of bounded variation on [a, b], then

∣
∣
∣
∣

∫ b

a

ϕ df

∣
∣
∣
∣ � sup

[a,b]
|ϕ| ·Vb

a(f ).

As we will show later (see Theorem 11.1.8), this inequality holds not only for
continuous, but also for any Borel measurable bounded functions ϕ.

Proof We use the fact that for the integral with respect to a function of bounded
variation, as for the Stieltjes integral, Theorem 4.7.3 holds, i.e., the integral is the
limit of the Riemann sums.

Consider an arbitrary partition τ = {x0, . . . , xn} of [a, b] and the corresponding
sum:

Sτ =
n−1∑

k=0

ϕ(ξk)
(
f (xk+1)− f (xk)

)
,

where ξk ∈ [xk, xk+1). Obviously,

|Sτ |�
n−1∑

k=0

∣
∣ϕ(ξk)

∣
∣
∣
∣f (xk+1)− f (xk)

∣
∣ �M

n−1∑

k=0

∣
∣f (xk+1)− f (xk)

∣
∣ �M ·Vb

a(f ),

(4)

where M = sup[a,b] |ϕ|.
The function f can be written as the difference f = g − h, where g and h are

increasing functions (see the corollary of Theorem 4.11.1). Hence

Sτ = S′τ − S′′τ ,

where

S′τ =
n−1∑

k=0

ϕ(ξk)
(
g(xk+1)− g(xk)

)
, S′′τ =

n−1∑

k=0

ϕ(ξk)
(
h(xk+1)− h(xk)

)
.
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If we assume (and we may do this without loss of generality) that all interior par-
tition points are points of continuity of g and h, then the sums S′τ and S′′τ turn into
Riemann sums. Therefore, by Theorem 4.7.3, these sums, and hence the sum Sτ ,
tend to the corresponding integrals as the mesh of τ tends to zero. To complete the
proof, it suffices to pass to the limit in inequality (4). �

EXERCISES

1. The product of two functions of bounded variation is again a function of bounded
variation; the quotient of two functions of bounded variation is again a function
of bounded variation provided that the denominator is bounded away from zero.

2. Let f and g be functions of bounded variation defined on [a, b]. Show that the
integration by parts formula for

∫ b

a
f dg may be false. Is it true under the addi-

tional assumption that at least one of the functions is continuous on [a, b]?
3. Using the function x2 sin 1

x2 , show that a differentiable function (unlike a smooth
one) may have unbounded variation on a closed interval.

4. Show that the function x �→ f (x)= (lnx)−1 sin(lnx) for 0 < x � 1, f (0)= 0, is
of unbounded variation and satisfies the Lipschitz condition of an arbitrary order
less than one. Using a series of the form

∑∞
n=1 anf (x−xn), construct a function

that satisfies the Lipschitz condition of an arbitrary order less than one and is of
unbounded variation on every subinterval.



Chapter 5
The Product Measure

5.1 Definition of the Product Measure

Given two measures on the subsets of the sets X and Y , our goal is to construct a
new measure (the so-called product measure) defined on subsets of the Cartesian
product X × Y . The definition of the product measure relies on Theorem 1.4.5 on
the standard extension of measures and on Theorem 5.1.2. When proving the latter,
we will use the properties of the integral. There exists yet another approach to the
proof, which is independent of the notion of the integral. Technically it is more
complicated than the one we present but it is of independent interest because it
allows us to give an alternative definition of the integral. We will discuss this in
more detail in Sect. 5.5.

All measures in this chapter are assumed to be σ -finite.

5.1.1 We leave the proof of the following lemma to the reader.

Lemma Let A, A′ ⊂ X, B , B ′ ⊂ Y , and let {Bω}ω∈� be a family of subsets of the
set Y . Then:

(1) A×B ⊂A′ ×B ′ if and only if either A⊂A′ and B ⊂ B ′, or A×B =∅;
(2) (A×B)∩ (A′ ×B ′)= (A∩A′)× (B ∩B ′);
(3) A× (B \B ′)= (A×B) \ (A×B ′);
(4) A×⋃

ω∈�Bω =⋃
ω∈�(A×Bω);

(5) A×⋂
ω∈�Bω =⋂

ω∈�(A×Bω).

The same properties hold with the roles of the first and the second factors exchanged.

5.1.2 Now we turn to the construction of the product measure.
Let (X,A,μ) and (Y,B, ν) be two measure spaces with σ -finite measures. Put

P = {
A×B |A ∈A, μ(A) <+∞, B ∈B, ν(B) <+∞}

.

We will call the sets A×B ∈P measurable rectangles.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_5, © Springer-Verlag London 2013
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Define the function m0 on P by

m0(A×B)= μ(A)ν(B).

Theorem The collection P of all measurable rectangles is a semiring. The func-
tion m0 is a σ -finite measure on P .

Proof Since the collections of sets {A ∈ A |μ(A) < +∞} and {B ∈ B |ν(B) <

+∞} are, obviously, semirings, the first statement of the theorem is a special case
of Theorem 1.1.5.

To prove the second statement, we will show first that the function m0 is count-
ably additive. Note that if A⊂X, B ⊂ Y , then

χA×B(x, y)= χA(x)χB(y) for all x ∈X, y ∈ Y.

Assume that the measurable rectangles Pk = Ak × Bk , k ∈ N, are pairwise dis-
joint and their union P ≡⋃

k�1 Pk belongs to the semiring P . Then P = A× B ,
where A ∈A, B ∈B, and χP =∑

k�1 χPk
, i.e.,

χA(x)χB(y)=
∑

k�1

χAk
(x)χBk

(y) for all x ∈X, y ∈ Y.

Integrating this non-negative series termwise with respect to the measure ν (which
is possible by Levy’s theorem, see Sect. 4.8.2), we get the equality

χA(x) ν(B)=
∑

k�1

χAk
(x) ν(Bk) for all x ∈X.

Integrating termwise again (this time with respect to the measure μ), we obtain

μ(A)ν(B)=
∑

k�1

μ(Ak)ν(Bk), that is, m0(P )=
∑

k�1

m0(Pk).

Thus, the countable additivity of the function m0 is proved.
Since the measures μ and ν are σ -finite, the sets X and Y can be represented as

X =
⋃

k�1

Xk, Y =
⋃

k�1

Yk, where μ(Xk) <+∞, ν(Yk) <+∞ for all k ∈N.

So, the σ -finiteness of the measure m0 follows from the identity

X× Y =
⋃

k,n�1

Xk × Yn.
�

Remark It is clear from the proof of the theorem that we have not used the σ -
finiteness of the measures μ and ν when proving the countable additivity of m0.
The σ -finiteness of these measures implies the σ -finiteness of m0, which, in turn,
guarantees the uniqueness of the extension of m0.
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5.1.3 The theorem we just proved allows us to introduce the following

Definition Let (X,A,μ) and (Y,B, ν) be measure spaces with σ -finite measures.
The measure obtained by the standard extension of the measure m0 described in
Theorem 5.1.2 from the semiring P is called the product measure of the measures
μ and ν. It is denoted by μ× ν, and the σ -algebra on which it is defined is denoted
by A⊗B. The measure space (X × Y,A⊗B,μ× ν) is called the product of the
measure spaces (X,A,μ) and (Y,B, ν).

Remarks

(1) A very simple example of a product measure is the product of two one-
dimensional Lebesgue measures, which, as we shall prove in Sect. 5.4, is simply
the Lebesgue measure on the plane. Similarly, the Lebesgue measure on R

3 is
the product of the planar and the one-dimensional Lebesgue measures.

(2) The Cartesian product of measurable sets is measurable. If μ(e) = 0, then
(μ× ν)(e× Y)= 0.

Indeed, let A ∈ A, B ∈B. If the measures of these sets are finite, then their
product A× B is measurable by the definition of the product measure. In the
general case, each of the sets A and B can be represented as a union of sets Ak

and Bn of finite measure respectively (k,n ∈N). Thereby, the set

A×B =
⋃

k�1

(Ak ×B)=
⋃

k�1

⋃

n�1

(Ak ×Bn)

is measurable as a countable union of measurable sets.
Let μ(e) = 0. Since Y =⋃

k�1 Yk where ν(Yk) < +∞, we have e × Y =⋃
k�1(e× Yk) and (μ× ν)(e× Yk)= μ(e) · ν(Yk)= 0. Thus

(μ× ν)(e× Y)�
∑

k�1

(μ× ν)(e× Yk)=
∑

k�1

0= 0.

The definition of the product of two measure spaces can be generalized naturally
to the case of an arbitrary number of factors. For instance, if

(X1,A1,μ1), (X2,A2,μ2), (X3,A3,μ3)

are three measure spaces with σ -finite measures and R0 is the collection of the
“measurable parallelepipeds”, i.e., of the sets of the form A×B×C where A⊂X1,
B ⊂ X2, C ⊂ X3 are measurable sets of finite measure, then we can define the
function ν0 on R0 by

ν0(A×B ×C)= μ1(A)μ2(B)μ3(C).

Repeating the arguments used in the proof of Theorem 5.1.2 with some necessary
modifications, we can show that R0 is a semiring and ν0 is a σ -finite measure. The
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product measure μ1 × μ2 × μ3 is then the standard extension of the measure ν0.
The product measure operation defined in this way is associative: (μ1×μ2)×μ3 =
μ1 × (μ2 × μ3)= μ1 × μ2 × μ3. We leave it to the reader to verify this claim by
himself (see Exercise 1). Similarly, one can define the product measure for every
finite family of measures.

EXERCISES

1. Let (X1,A1,μ1), (X2,A2,μ2), (X3,A3,μ3) be three measure spaces with
σ -finite measures. Identifying the sets (X1 × X2) × X3, X1 × (X2 × X3) and
X1 ×X2 ×X3 in the canonical way, show that the product operation is associa-
tive, i.e., that (μ1 × μ2)× μ3 = μ1 × (μ2 × μ3)= μ1 × μ2 × μ3. Hint. Using
the uniqueness of the extension of measures (Theorem 1.5.1) and the complete-
ness of the standard extension, show that these measures are defined on the same
σ -algebra.

5.2 The Computation of the Measure of a Set via the Measures
of Its Cross Sections. The Integral as the Measure
of the Subgraph

Let us remind the reader that the function f defined almost everywhere on the mea-
sure space (X,A,μ) is called measurable in the wide sense if it is measurable on
some subset X0 ⊂X of full measure. In this case, it coincides with a function mea-
surable on X almost everywhere. The integral

∫
X
f dμ is then defined as

∫
X0

f dμ

(see Sect. 4.3.3).

5.2.1 Let X and Y be two arbitrary sets and C ⊂X× Y . Put

Cx =
{
y ∈ Y | (x, y) ∈ C

}
, Cy = {

x ∈X | (x, y) ∈ C
}
.

Definition We will call the sets Cx and Cy cross sections of the set C of the first
and the second kind respectively.

It is worth emphasizing that the cross sections of the first and the second kind
are subsets of the sets Y and X respectively. Let us exhibit some properties of cross
sections.

Lemma Let {Cω}ω∈� be a family of subsets of the Cartesian product X× Y . Then
( ⋃

ω∈�
Cω

)

x

=
⋃

ω∈�
(Cω)x and

( ⋂

ω∈�
Cω

)

x

=
⋂

ω∈�
(Cω)x.

Also, (C \ C′)x = Cx \ C′x for all sets C, C′ ⊂ X × Y , and Cx ∩ C′x = ∅ when
C ∩C′ =∅.



5.2 The Computation of the Measure of a Set via the Measures 209

We leave the proof of this lemma to the reader.

5.2.2 The following theorem shows that the measure of a set C ⊂ X × Y is com-
pletely determined by the measures of its cross sections. This is a far-reaching gen-
eralization of the famous Cavalieri1 principle, about which we will reveal more later
(see the end of Sect. 5.4.1).

Theorem Let (X,A,μ) and (Y,B, ν) be measure spaces with σ -finite complete
measures. Let m= μ× ν. If C ∈A⊗B, then:

(1) Cx ∈B for almost every x ∈X;
(2) the function x �→ ν(Cx) is measurable on X in the wide sense;
(3) m(C)= ∫

X
ν(Cx)dμ(x).

The analogous statements also hold for cross sections of the second kind.

Note that we do not exclude the case when the function in (2) takes infinite val-
ues.

One should keep in mind that the measurability of the cross sections of the set C
(of both the first and the second kind) by no means guarantees that C is measurable
even if condition (2) of the theorem holds as well. It follows, for instance, from the
existence of a Lebesgue non-measurable set on the plane whose intersection with
every line consists of at most two points. An example of such a set, constructed by
Sierpinski,2 can be found in [GO], p. 142.

Proof We will carry out the proof in several steps. For the first three steps, we will
assume that the measures μ and ν are finite.

(1) We start by proving the statements of the theorem for the sets in the Borel
hull of the semiring P . Here, as in the previous section, P is the semiring of the
measurable rectangles, i.e., of the sets of the form A×B where A ∈A and B ∈B.
Note that in the case under consideration, we have X× Y ∈P .

Consider the collection E of all sets E ⊂X × Y satisfying the following condi-
tions:

(I) Ex ∈B for all x ∈X;
(II) the function x �→ ν(Ex) is measurable on X.

Every set E belongs or does not belong to E simultaneously with its complement
Ec because (Ec)x = Y \Ex and ν((Ec)x)= ν(Y )− ν(Cx) (we need the finiteness
of the measure ν to derive the last equality).

1Francesco Bonaventura Cavalieri (1598–1647)—Italian mathematician.
2Wacłav Franciszek Sierpiński (1882–1969)—Polish mathematician.



210 5 The Product Measure

Every union of an increasing sequence of sets in E also belongs to E . Indeed,
assume that

E =
∞⋃

n=1

En, where E1 ⊂E2 ⊂ · · · and En ∈ E for all n ∈N.

Then Ex ∈ B for all x ∈ X because, by the lemma, Ex = ⋃
n�1(En)x . In addi-

tion, by the theorem on the continuity from below of measure, one has ν((En)x)→
ν(Ex). So the function x �→ ν(Ex) is measurable as a limit of measurable functions.
Thus, the collection E is a monotone class. Let us note one more of its properties:
if the sets A,B ∈ E are disjoint, then A ∨ B ∈ E . This property follows from the
identities

(A∨B)x =Ax ∨Bx, ν
(
(A∨B)x

)= ν(Ax)+ ν(Bx).

Clearly, the collection E contains the semiring P . Moreover, it contains all finite
unions of sets from P because, by the theorem on properties of semirings (see
Sect. 1.1.4), each such union can be represented as a union of pairwise disjoint sets
from P . Since X×Y ∈ E , by the corollary to that theorem, the collection E contains
the algebra generated by P . Therefore E satisfies the assumptions of the monotone
class theorem (see Sect. 1.6.3) and, thereby, contains the entire Borel hull B(P) of
the semiring P . In particular, the statements (1) and (2) of the theorem hold for all
sets in B(P).

Let us show now that the equality (3) also holds for all sets in B(P). Consider
the function E �→ ∫

X
ν(Ex)dμ(x) on this σ -algebra. It follows from Lemma 5.2.1

and the countable additivity of the integral that this function is a measure. The reader
can easily check that it coincides with m on the sets from the semiring P . So the
equality (3) follows from the uniqueness of the extension of a measure.

Thus, the theorem has been proved for all sets in B(P).
(2) Consider now the case when C is a set from A⊗B and m(C)= 0. Let C̃ be

a set in B(P) of zero measure containing C (the existence of such a set has been
proved in the corollary to Theorem 1.5.2). Then

∫

X

ν(C̃x) dμ(x)=m(C̃)= 0.

Therefore ν(C̃x)= 0 for almost all x ∈X. The inclusion Cx ⊂ C̃x and the complete-
ness of the measure ν imply that the set Cx is measurable whenever ν(C̃x)= 0, i.e.,
for almost all x ∈ X. The remaining statements of the theorem for the set C now
become obvious.

(3) Let us turn to the general case. Again, using the corollary to Theorem 1.5.2,
we can represent C as C = C̃ \e where C̃ is a set in B(P) and m(e)= 0. Therefore
the set Cx = C̃x \ ex is measurable for almost all x ∈X together with the set ex . It
follows that the values of the function x �→ ν(Cx)= ν(C̃x)− ν(ex) (defined almost
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everywhere) coincide with ν(C̃x) almost everywhere, which implies its measurabil-
ity on a set of full measure and the equality

m(C)=m(C̃)=
∫

X

ν(C̃x) dμ(x)=
∫

X

ν(Cx)dμ(x).

Thus, the theorem is proved for the case when the measures μ and ν are finite.
As can be seen from the above arguments, one can relax the boundedness condi-

tion imposed on the measures μ and ν, assuming instead that the set C is contained
in a measurable rectangle.

(4) Let us turn to the case when the measures μ and ν are infinite. Then the sets
X and Y can be represented as disjoint unions X =∨

n�1 Xn and Y =∨
n�1 Yn,

where Xn, Yn are sets of finite measure. Consider a measurable set C ⊂X× Y . It is
clear that

m(C)=
∞∑

k=1

∞∑

n=1

m(Ck,n), where Ck,n = C ∩ (Xk × Yn).

Applying the part of the theorem proved above to each of the sets Ck,n ⊂Xk × Yn,
we see that, for every k,n ∈N, one has

m(Ck,n)=
∫

Xk

ν(Yn ∩Cx)dμ(x).

Since Cx =∨∞
n=1(Yn ∩Cx), we have ν(Cx)=∑∞

n=1 ν(Yn ∩Cx). Therefore,

∫

X

ν(Cx)dμ(x) =
∞∑

k=1

∫

Xk

ν(Cx) dμ(x)

=
∞∑

k=1

∞∑

n=1

∫

Xk

ν(Yn ∩Cx)dμ(x)=
∞∑

k=1

∞∑

n=1

m(Ck,n)=m(C).

The concluding part of the proof is, of course, also valid in the case when only
one of the measures is infinite. For example, if ν(Y ) < +∞, we can just consider
the sets Xk × Y instead of Xk × Yn. �

Remark We would like to draw the reader’s attention to the fact that at the first step
of the proof we established that the sections Cx of a set C in B(P) are measurable
for all (rather than almost all) x ∈ X. Moreover, the proof of this result did not
use the completeness of the measures, so that it holds for arbitrary measures, not
necessarily complete. (We retain our assumption that all measures in question are
σ -finite.)

One can see from the proof that, if only the cross sections of the first kind are
considered, then the theorem remains valid if only the completeness of the measure
ν is assumed. We shall use this observation in the next theorem (on the measure of
the subgraph).
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Corollary Let

P1(C)= {x ∈X |Cx �=∅}, P2(C)= {
y ∈ Y |Cy �=∅

}

be the canonical projections of the subset C ⊂ X × Y to the sets X and Y . If the
projection P1(C) (P2(C)) is measurable, then m(C)= ∫

P1(C)
ν(Cx) dμ(x) (respec-

tively, m(C)= ∫
P2(C)

μ(Cy)dν(y)).

Proof This equality follows from the theorem directly because Cx = ∅ and
ν(Cx)= 0 when x /∈ P1(C). �

Note that we cannot drop the assumption that the projection is measurable be-
cause the projection of a measurable set may be non-measurable. For example, if E
is a non-measurable subset of X and F is a non-empty subset of Y of measure 0,
then E × F is measurable but its projection to X is not.

5.2.3 Now we shall discuss the “geometric meaning” of the integral. We will fix a
measure space (X,A,μ) with σ -finite measure and a function f on X with values
in R. Throughout the rest of this section, the symbol m will denote the product
measure of the measure μ and the one-dimensional Lebesgue measure λ.

Definition Given a non-negative function f , we will call the set

Pf (E)= {
(x, y) ∈X×R |x ∈E, 0 � y � f (x)

}

the subgraph of f over the set E ⊂X.
We will call the set

�f (E)= {
(x, y) ∈X×R |x ∈E, y = f (x)

}

the graph of the function f E → R. Note that the function f may take infi-
nite values. Nevertheless, even in this case, the sets Pf (E), �f (E) are contained
in X×R, not in X × R, according to our definition. In the case when E = X, we
will just call these sets the subgraph and the graph of the function f and denote
them by Pf and �f respectively.

First of all, let us check the following claim, some special cases of which we
have already met (see Corollary 2.3.1 and Exercise 1 in Sect. 2.3).

Lemma If a real-valued function f is measurable on the set E, then m(�f (E))= 0.
If a non-negative function f is measurable in the wide sense, then its subgraph is
measurable.

Proof Since the measure μ is σ -finite, we may restrict ourselves to the case μ(E) <

+∞. Fix an arbitrarily small ε > 0 and put

ek =
{
x ∈E |kε � f (x) < (k + 1)ε

}
, where k ∈ Z.
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Obviously, the sets ek are pairwise disjoint (they exhaust E if the function f takes
only finite values). In addition, �f (ek)⊂ ek × [kε, (k + 1)ε) and, thereby,

�f (E)⊂
⋃

k∈Z
ek ×

[
kε, (k + 1)ε

)=Hε.

The set Hε is measurable and

m(Hε)=
∑

k∈Z
εμ(ek)� εμ(E).

Thus, the graph can be covered by a set of arbitrarily small measure. Taking into
account that the measure m is complete, we conclude from this that the graph is
measurable and has zero measure (see Lemma 1.5.3).

Let us turn to the proof of the measurability of the subgraph of a measurable
function. First, consider the case when the function f is simple. Let {Ek}Nk=1 be
an admissible partition for f and let {ak}Nk=1 be the corresponding values of the
function. It is clear that

Pf (Ek)=Ek × [0, ak] and Pf =
N⋃

k=1

Ek × [0, ak].

One can see from this that the subgraph of a simple function is measurable as a
union of measurable rectangles.

A general non-negative function f measurable on X can be approximated by a
pointwise increasing sequence of non-negative simple functions {fn}n�1 (see The-
orem 3.2.2). The reader can easily verify the inclusions

Pf \ �f ⊂
⋃

n�1

Pfn ⊂Pf .

Since, as we have proved, m(�f ) = 0, these inclusions imply that the subgraph
differs from the union of a sequence of measurable sets just by a set of zero measure
and, thereby, is itself measurable. This implies the measurability of Pf (E) too
because Pf (E) =Pf ∩ (E × R). The subgraph Pf (E) is measurable for every
function f measurable on E because we can view f as a restriction of a function
measurable on the entire set X.

Lastly, assume that the function f is measurable in the wide sense, i.e., it is
measurable on some subset X0 of full measure. It is clear that

Pf =Pf (X0)∪Pf (e),

where e =X \X0, μ(e)= 0. The set Pf (X0) is measurable according to what we
have proved above, and the subgraph Pf (e) is measurable due to the completeness
of the measure m because

Pf (e)⊂ e×R and m(e×R)= 0. �
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Now, let us turn to the main result of this section.

Theorem (On the measure of the subgraph) Let λ be the Lebesgue measure on R,
let (X,A,μ) be a measure space with σ -finite measure, let m = μ× λ, and let f
be a non-negative function defined on X. The function f is measurable in the wide
sense if and only if its subgraph is measurable. In this case,

∫

X

f dμ=m(Pf ). (1)

Proof The measurability of the subgraph of a non-negative measurable function has
been established in the lemma.

Assume now that the subgraph of the function f is measurable. Obviously, the
cross section (Pf )x coincides with the closed interval [0, f (x)] when f (x) <+∞
and with [0,+∞) when f (x) = +∞. By Theorem 5.2.2 (see also the remark to
it, where it has been pointed out that if only the cross sections of the first kind
are considered, the assumption about the completeness of the measure μ may be
dropped), we obtain that the function x �→ λ((Pf )x) = f (x) is measurable in the
wide sense and the equality (1) holds. �

Remarks

(1) The theorem just proved confirms once more that the definition of a measurable
function we accepted is reasonable: the non-negative measurable in the wide
sense functions are exactly the functions to whose subgraphs one can assign a
measure in a natural way. If the product measure is constructed without using
the notion of the integral, then the equality (1) can be taken as the definition of
the integral of a non-negative measurable function. In this case, some proper-
ties of integrals become obvious. For example, Levy’s theorem follows directly
from the continuity from below of the measure μ × λ. We shall return to the
discussion of such a definition in Sect. 5.5.2.

(2) For a non-positive function f , one can introduce an analog of the subgraph: the
set

P̃f (E)= {
(x, y) ∈E ×R |x ∈E, f (x)� y � 0

}
.

Approximating the function (−f ) by simple functions, one can easily check
that Theorem 5.2.3 remains valid for non-positive functions if one replaces the
subgraph by the set P̃f (E), and the equality (1) by m(P̃f (E))= ∫

E
|f |dμ=

− ∫
E
f dμ. Thus, for every integrable function f , the equality

∫

X

f dμ=m
(
Pf (E+)

)−m
(
P̃f (E−)

)

holds where E± = E(±f > 0). If μ is the Lebesgue measure and the sets
Pf (E+), P̃f (E−) are congruent (in particular, if the set E is symmetric with
respect to the origin and f is odd), then

∫
E
f dμ= 0.
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EXERCISES

1. Let f and g be two measurable almost everywhere finite functions defined on
the measure space (X,A,μ). Prove that, if g � f , then the set

Q= {
(x, y) ∈X×R |x ∈X, g(x)� y � f (x)

}

is measurable in X ×R and m(Q)= ∫
X
(f − g)dμ where m= μ× λ, and λ is

the Lebesgue measure on R.
2. Prove that if pairwise disjoint disks contained in a square cover it up to a set

of measure 0, then the sum of the lengths of their boundary circumferences is
infinite.

5.3 Double and Iterated Integrals

Our goal is to reduce the computation of the integral with respect to the product
measure μ× ν to the computation of integrals with respect to the measures μ and ν.
We shall consider only real-valued functions here, although all results we will obtain
below can be generalized to the complex-valued case in the obvious way.

5.3.1 With every function f defined on the set C ⊂ X × Y , one can associate two
families of functions obtained by “fixing one of the variables”. More precisely, this
means that on every non-empty cross section Cx , one can define the function fx by
the rule fx(y) = f (x, y). Similarly on every cross section Cy , one can define the
function f y by f y(x)= f (x, y). This notation will frequently be used later.

Passing to the study of the connection between the integral with respect to the
product measure μ × ν and the integrals with respect to the measures μ and ν,
consider first the case when the function to integrate is non-negative. The following
important theorem holds.

Theorem (Tonelli3) Let (X,A,μ ) and (Y,B, ν ) be two measure spaces with
σ -finite complete measures. Let m = μ× ν. Let f be a non-negative function de-
fined on X× Y that is measurable with respect to the σ -algebra A⊗B. Then:

(1) for almost all x ∈X, the function fx is measurable on Y ;
(1′) for almost all y ∈ Y , the function f y is measurable on X;
(2) the function

x �→ ϕ(x)≡
∫

Y

fx dν =
∫

Y

f (x, y) dν(y)

is measurable on X in the wide sense;

3Leonida Tonelli (1885–1946)—Italian mathematician.
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(2′) the function

y �→ψ(y)≡
∫

X

f y dμ=
∫

X

f (x, y) dμ(x)

is measurable on Y in the wide sense;
(3) the equalities

∫

X×Y

f dm=
∫

X

ϕ dμ=
∫

Y

ψ dν (1)

hold.

Remark The last equality can be rewritten as

∫

X×Y

f (x, y) dm(x, y) =
∫

X

(∫

Y

f (x, y) dν(y)

)

dμ(x)

=
∫

Y

(∫

X

f (x, y) dμ(x)

)

dν(y).

The integral on the left-hand side of this equality is called a double integral, and the
other two integrals are called repeated integrals. Let us emphasize that this equality
of the repeated integrals, often referred to as “the validity of changing the order
of integration”, is used very frequently when computing double integrals (see, in
particular, Examples 1 and 2 below).

Proof Consider three cases corresponding to more and more general functions f .
(1) Let f = χC be the characteristic function of a measurable set C ⊂ X × Y .

Then, for all x in X and y in Y ,

fx(y) = χC(x, y)=
{

1, when (x, y) ∈ C,

0, when (x, y) /∈ C,

=
{

1, when y ∈ Cx,

0, when y /∈ Cx,
= χCx (y).

Thus, fx = χCx . Since, by Theorem 5.2.2, the sets Cx are measurable for almost
all x, the function fx is measurable as well. Integrating the equality fx = χCx , we
see that

ϕ(x)=
∫

Y

fx dν = ν(Cx).

By Theorem 5.2.2, the function ϕ is measurable in the wide sense. Finally, integrat-
ing the last equality and using Theorem 5.2.2 again, we get the desired equality

∫

X

ϕ(x)dμ(x)=
∫

X

ν(Cx)dμ(x)=m(C)=
∫

X×Y

f dm.
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(2) Now let f be a simple function. Then f = ∑N
k=1 ckχCk

where ck � 0. It
follows that fx =∑N

k=1 ck(χCk
)x and ϕ(x)=∑N

k=1 ckν((Ck)x), which implies the
statements (1)–(3).

(3) In the general case, approximate f by an increasing sequence of simple func-
tions fn. Then fx = limn→∞(fn)x , which guarantees the measurability of fx for
almost all x in X. Since (fn)x � (fn+1)x , Levy’s theorem yields

ϕ(x)=
∫

Y

fx(y) dν(y)= lim
n→∞ϕn(x),

where the function ϕn is defined by ϕn(x) =
∫
Y
(fn)x(y) dν(y). Obviously,

ϕn � ϕn+1 almost everywhere. Using Levy’s theorem again, we get

∫

X

ϕ(x)dμ(x)= lim
n→∞

∫

X

ϕn(x) dμ(x)= lim
n→∞

∫

X×Y

fn dm=
∫

X×Y

f dm.

The statements (1′), (2′) and the second of the equalities (1) can be proved simi-
larly. �

Corollary 1 Let f be a non-negative measurable function defined on a (measur-
able) set C ⊂X× Y . If the projection P1(C) is measurable, then

∫

C

f dm=
∫

P1(C)

(∫

Cx

f (x, y) dν(y)

)

dμ(x). (1′)

Proof To prove the corollary, it is enough to extend the function f by zero outside
the set C and to use statement (3) of the theorem. �

A similar equality holds when the projection P2(C) is measurable. In that case

∫

C

f dm=
∫

P2(C)

(∫

Cy

f (x, y) dμ(x)

)

dν(y). (1′′)

Corollary 2 If the function f is measurable on X× Y , then:

(1) for almost all x ∈X, the function fx is measurable on Y ;
(2) if

∫
Y
|fx(y)|dν(y) < +∞ for almost all x ∈ X, then the function x �→∫

Y
f (x, y) dν(y) is measurable on X in the wide sense.

Similar statements hold for the function f y .

Proof The first statement follows from the equality fx = (f+)x − (f−)x and the
measurability of the functions (f±)x (see Tonelli’s theorem). To prove the sec-
ond statement, it suffices to note that (again, by Tonelli’s theorem) the functions
x �→ ∫

Y
(f±)x(y) dν(y) are measurable in the wide sense. They are finite almost
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everywhere, so their difference

∫

Y

f+(x, y) dν(y)−
∫

Y

f−(x, y) dν(y)=
∫

Y

f (x, y) dν(y)

is well-defined and measurable on a set of full measure. �

5.3.2 Let us consider a few examples demonstrating applications of Tonelli’s theo-
rem. Note that in all cases we shall use only the equality of the repeated integrals and
we will not be interested in the product measure itself. The only related fact that we
will really need is the measurability of a function defined and continuous on an open
subset of the space R

2 with respect to the product measure of the one-dimensional
Lebesgue measures λ1. This is obvious because the measure λ1 × λ1 is defined on
the two-dimensional rectangles and, thereby, on all open sets as well. (As we shall
see in Sect. 5.4, the measure λ1×λ1 is just the planar Lebesgue measure, but we do
not need this fact right now.)

Example 1 We will use Tonelli’s theorem to compute the Euler–Poisson integral
I = ∫∞

−∞ e−x2
dx again (see also Sect. 4.6.3).

It is clear that

I 2 =
(

2
∫ ∞

0
e−x2

dx

)(

2
∫ ∞

0
e−y2

dy

)

dx = 4
∫ ∞

0
e−x2

(∫ ∞

0
e−y2

dy

)

dx.

Make the change of variable y = xu in the inner integral:

I 2 = 4
∫ ∞

0
e−x2

(∫ ∞

0
e−x2u2

x du

)

dx.

Taking into account that the integrand (x,u) �→ x e−x2(1+u2) is measurable and non-
negative, we can change the order of integration using Tonelli’s theorem:

I 2 = 4
∫ ∞

0

(∫ ∞

0
xe−(1+u2)x2

dx

)

du.

The inner integral can be computed using an explicit antiderivative:

∫ ∞

0
xe−(1+u2)x2

dx =− 1

2(1+ u2)
e−(1+u2)x2

∣
∣
∣
∞
0
= 1

2(1+ u2)
.

Therefore

I 2 = 2
∫ ∞

0

1

1+ u2
du= π.

Thus, I =√π .
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Example 2 Let us use Tonelli’s theorem to derive an important formula relating the
functions B and �, which is due to Euler (see Sect. 4.6.3):

B(s, t)=
∫ 1

0
xs−1(1− x)t−1 dx = �(s)�(t)

�(s + t)
for all s, t > 0.

To prove it, write the product �(s)�(t) as a repeated integral with the outer in-
tegration taken with respect to x and make the change of variable y = u− x in the
inner integral:

�(s)�(t) =
∫ ∞

0
xs−1e−x

(∫ ∞

0
yt−1e−y dy

)

dx

=
∫ ∞

0
xs−1

(∫ ∞

x

(u− x)t−1e−u du

)

dx.

The resulting repeated integral equals the double integral over the angle C =
{(x,u) |0 < x < u}. It is clear that Cx = (x,+∞) and Cu = (0, u). Changing the
order of integration and using the formula (1′′), we get

�(s)�(t)=
∫ ∞

0

(∫ u

0
xs−1(u− x)t−1e−u dx

)

du,

which, after one more change of variable x = uv, yields the identity

�(s)�(t)=
∫ ∞

0
us+t−1e−u

(∫ 1

0
vs−1(1− v)t−1 dv

)

du.

It remains to note that the inner integral equals B(s, t).
Putting s = t = 1

2 in the Euler formula and computing the integral
∫ 1

0
dx√

x(1−x)
,

we again arrive at the identity �( 1
2 )=

√
π , which we obtained in Sect. 4.6.3.

The Euler formula also allows one to express the frequently encountered integrals
∫ π

2
0 sinp ϕ cosq ϕ dϕ (p, q >−1) in terms of the �-function. Indeed,

∫ π
2

0
sinp ϕ cosq ϕ dϕ = 1

2

∫ π
2

0
sinp−1 ϕ cosq−1 ϕ d sin2 ϕ

= 1

2

∫ 1

0
x

p−1
2 (1− x)

q−1
2 dx

= 1

2
B

(
p+ 1

2
,
q + 1

2

)

= �(
p+1

2 )�(
q+1

2 )

2�(
p+q

2 + 1)
.

5.3.3 Tonelli’s theorem remains valid for sign-changing functions if one replaces
the assumption “measurable in the wide sense” by “summable”. Let us discuss this
important observation in more detail.
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Theorem (Fubini4) Let (X,A,μ) and (Y,B, ν) be two measure space with σ -finite
complete measures and let m= μ× ν. If a (real or complex-valued) function f is
summable on X× Y with respect to the measure m, then:

(1) for almost all x ∈X, the function fx is summable on Y ;
(1′) for almost all y ∈ Y , the function f y is summable on X;
(2) the function

x �→ ϕ(x)≡
∫

Y

fx dν =
∫

Y

f (x, y) dν(y)

is summable on X;
(2′) the function

y �→ψ(y)≡
∫

X

f y dμ=
∫

X

f (x, y) dμ(x)

is summable on Y ;
(3) the equalities

∫

X×Y

f dm=
∫

X

ϕ dμ=
∫

Y

ψ dν (2)

hold.

Proof Obviously, we can restrict ourselves to the case when the function f is real-
valued. Due to the symmetry between X and Y , it suffices to prove the statements (1)
and (2) and the first of the equalities (2). Let f± =max{±f,0}. By Tonelli’s theo-
rem,

∫

X×Y

f± dm=
∫

X

(∫

Y

f±(x, y) dν(y)
)

dμ(x) <+∞. (3)

By the same theorem, the functions (f±)x are measurable for almost all x, and the
functions

x �→ ϕ1(x)≡
∫

Y

f+(x, y) dν(y), x �→ ϕ2(x)≡
∫

Y

f−(x, y) dν(y)

are measurable in the wide sense. The inequalities (3) show that the functions ϕ1
and ϕ2 are summable and, thereby, finite almost everywhere. The latter means that
the functions (f±)x are summable on Y for almost all x ∈ X. Now, to prove state-
ments (1) and (2) of the theorem, it remains to note that

fx = (f+)x − (f−)x, ϕ = ϕ1 − ϕ2. (4)

To prove the first of the equalities (2), one should just take the difference of the
equalities (3) and use the relations (4). �

4Guido Fubini (1879–1943)—Italian mathematician.
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Note that if the function f is summable on a (measurable) set C ⊂ X × Y and
the projection P1(C) is measurable, then formula (1′) remains valid:

∫

C

f dm=
∫

P1(C)

(∫

Cx

f (x, y) dν(y)

)

dμ(x). (2′)

For the proof, it is enough to extend the function f by zero outside the set C and to
use statement (3) of Fubini’s theorem.

Needless to say, in the case when the projection P2(C) is measurable, a similar
equality is valid (see (1′′)).

Remark Both the Tonelli and the Fubini theorems require the assumption that the
function f under consideration is measurable on X × Y , or, as is often said, “as a
function of two variables”. This assumption is stronger than the assumption that f
is “measurable in each variable separately”, i.e., that the functions fx and f y are
measurable. On the other hand, if the functions g, h are measurable on X, Y respec-
tively, then the functions g̃, h̃ defined on X× Y by g̃(x, y)= g(x), h̃(x, y)= h(y)

are measurable on X× Y . To check this, it suffices to consider only the function g,
assuming it real-valued. Then it is clear that the Lebesgue sets of the function g̃ are
of the form E×Y where E ∈A. Therefore they are measurable by Remark (2) from
Sect. 5.1.3.

The measurability of the functions g̃ and h̃ on X × Y implies the measurability
of their product f = g̃ · h̃, which is sometimes denoted by the symbol g⊗ h.

5.3.4 Let us point out some useful formulae implied by Fubini’s theorem.

Corollary 1 Assume that the functions g and h are summable on the measure
spaces (X,A,μ) and (Y,B, ν) with σ -finite measures respectively. Then the func-
tion f = g ⊗ h is summable on X × Y with respect to the measure m = μ × ν

and
∫

X×Y

f (x, y) dm(x, y)=
∫

X

g(x)dμ(x) ·
∫

Y

h(y) dν(y).

Proof Assuming for the time being that the measures μ and ν are complete, we
check that the function f is summable using Tonelli’s theorem. The measurability
of the function f is established in the remark in Sect. 5.3.3. Let us check that it is
summable using Tonelli’s theorem. Indeed,

∫

X×Y

∣
∣f (x, y)

∣
∣dm(x, y)=

∫

X

(∫

Y

∣
∣g(x)h(y)

∣
∣dν(y)

)

dμ(x)

=
∫

X

∣
∣g(x)

∣
∣
(∫

Y

∣
∣h(y)

∣
∣dν(y)

)

dμ(x)

=
(∫

Y

∣
∣h(y)

∣
∣dν(y)

)

·
(∫

X

∣
∣g(x)

∣
∣dμ(x)

)

<+∞.
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Now, when the summability of the function f is established, the desired equality
follows from Fubini’s theorem.

In the case where the measures are not complete, one should write down the
equality in question for their standard extensions and use the fact that the integral
over the extended measures remains the same (see Exercise 7 from Sect. 4.2). �

The argument we just presented is very typical. When computing the integral, we
rely on Fubini’s theorem but first we need to check that the integrand is summable,
which can be done using Tonelli’s theorem.

In Corollary 2, we will show that the integration by parts formula obtained earlier
for smooth functions (see Sect. 4.6.2) is valid under less restrictive assumptions as
well. Let us remind the reader (see Sect. 4.9.3) that a function f is called absolutely
continuous on a closed interval [a, b] if it can be represented as f (x) = f (a) +∫ x

a
ϕ(t) dt where the function ϕ is summable on [a, b]. By Theorem 4.9.3, one has

ϕ = f ′ almost everywhere.

Corollary 2 Let the functions f and g be absolutely continuous on a closed interval
[a, b]. Then

∫ b

a

f (x)g′(x) dx = f (x)g(x)

∣
∣
∣
x=b

x=a
−

∫ b

a

f ′(x)g(x) dx.

Proof First, let us prove this formula under the additional assumption f (a) =
g(b) = 0. Then the substitution term vanishes and our task can be reduced to
the change of the order of integration. Indeed, since the functions f ′ and g′ are
summable on [a, b], Corollary 1 implies that the function (x, y) �→ f ′(x)g′(y)
is summable on the square [a, b]2 and, thereby, on the triangle C = { (x, y) ∈
[a, b]2 |a � y � x � b} as well. It is easy to check that its cross sections for
x, y ∈ [a, b] are

Cx = [a, x], Cy = [y, b].
Since f (x)= ∫ x

a
f ′(y) dy, Formula (2′) implies

∫ b

a

f (x)g′(x) dx =
∫ b

a

g′(x)
(∫ x

a

f ′(y) dy
)

dx =
∫∫

C

f ′(y)g′(x) dx dy

=
∫ b

a

f ′(y)
(∫ b

y

g′(x) dx
)

dy =−
∫ b

a

f ′(y)g(y) dy,

which establishes the desired formula in the special case under consideration. To
prove it in the general case, one should merely apply the result just obtained to the
functions f (x)− f (a), g(x)− g(b). �

Let us generalize this corollary and obtain the integration by parts formula for
the integral with respect to the Lebesgue–Stieltjes measure (another proof of this
formula is given in Sect. 4.10.6).
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Corollary 3 Let g be a non-decreasing function on the closed interval [a, b]. If the
function f is absolutely continuous on [a, b], then

∫

[a,b]
f (x)dg(x)= f (x)g(x)

∣
∣
∣
x=b

x=a
−

∫ b

a

f ′(x)g(x) dx.

Proof As in the proof of Corollary 2, it suffices to consider the case f (a) =
g(b) = 0. Applying Fubini’s theorem to the product measure μg × λ and chang-
ing the order of integration, we get

∫

[a,b]
f (x)dg(x)=

∫

[a,b]

(∫ x

a

f ′(u) du
)

dg(x)=
∫ b

a

f ′(u)
(∫

[u,b]
dg(x)

)

du.

When u > a, the inner integral on the right-hand side equals g(b)− g(u− 0) and,
therefore, coincides with −g(u) almost everywhere (with respect to the Lebesgue
measure). Therefore,

∫

[a,b]
f (x)dg(x)=−

∫ b

a

f ′(u)g(u)du. �

The formula just obtained remains valid in the case when g is a function of
bounded variation as well.

5.3.5 The summability of the functions fx , f y , ϕ and ψ considered in Fubini’s
theorem does not guarantee the equality of the repeated integrals, much less the
summability of the function f with respect to the measure μ× ν even in the case
when the measures are finite and the repeated integrals are equal. We will demon-
strate this using the following two examples. In both, we assume that the measures
μ and ν coincide with the one-dimensional Lebesgue measure on [−1,1].

Consider the functions f (x, y) = x2−y2

(x2+y2)2 and g(x, y) = 2xy
(x2+y2)2 for

x2 + y2 > 0. It is clear that the functions fx , f y , gx , gy are summable on [−1,1]
for all x, y �= 0 in [−1,1]. Obviously,

∫ 1

−1
g(x, y) dy =

∫ 1

−1
g(x, y) dx = 0.

The reader will easily establish the identity

∫ 1

−1
f (x, y) dy =

∫ 1

−1
d

(
y

x2 + y2

)

= 2

1+ x2
(x �= 0),

which, in view of the fact that f is antisymmetric, yields

∫ 1

−1
f (x, y) dx =− 2

1+ y2
(y �= 0).
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Therefore,

∫ 1

−1

(∫ 1

−1

x2 − y2

(x2 + y2)2
dy

)

dx = π,

∫ 1

−1

(∫ 1

−1

x2 − y2

(x2 + y2)2
dx

)

dy =−π.

Thus, the repeated integrals associated with the function f are finite but have op-
posite signs, which implies, in particular, that this function is not summable on
[−1,1]2.

The repeated integrals associated with the function g give the same value (zero).
Despite this, the function g is not summable. Indeed,

∫ 1

−1

(∫ 1

−1

∣
∣g(x, y)

∣
∣dy

)

dx = 4
∫ 1

0

(∫ 1

0

2xy

(x2 + y2)2
dy

)

dx

= 4
∫ 1

0

(

− x

x2 + y2

∣
∣
∣
∣

y=1

y=0

)

dx

= 4
∫ 1

0

(
1

x
− x

1+ x2

)

dx =+∞.

We leave it to the reader to construct examples of functions such that one of the
repeated integrals is finite and the other one either does not exist or exists but is
infinite.

EXERCISES

1. Let f be a non-negative function on X×Y and let x ∈X. Prove that the subgraph
Pfx of the function fx coincides with the cross section (Pf )x of the subgraph
Pf of f .

2. Prove Tonelli’s theorem using Theorem 5.2.3 on the measure of the subgraph and
Exercise 1.

3. Let μ be any finite Borel measure on R
m. Prove that, for every 0 < p < m, the

integral
∫
Rm

dμ(x)
‖x−y‖p is finite for almost all (with respect to the Lebesgue measure)

y ∈R
m.

4. If a measurable function f is positive on a set E and μ(E) <+∞, then
∫
E
f dμ ·

∫
E

1
f
dμ� μ2(E). Hint. Use the inequality f (x)

f (y)
+ f (y)

f (x)
� 2.

5. Let μ be a Borel measure on the closed interval [a, b] such that
μ([a, b]) = 1. Prove that for all increasing (or decreasing) functions f and g

on [a, b] the Chebyshev inequality

∫ b

a

fg dμ�
∫ b

a

f dμ ·
∫ b

a

g dμ

holds. If one of the functions is increasing and the other one is decreasing then
the inequality sign should be reversed. Hint. Use the fact that the product (f (x)−
f (y))(g(x)− g(y)) does not change sign.
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6. Let ϕ be the Cantor function. For which p > 0 are the integrals
∫∫

[0,1]2
dϕ(x)dϕ(y)

(x2 + y2)
p
2

,

∫∫

[0,1]2
dϕ(x)dϕ(y)

|x − y|p

finite?

5.4 Lebesgue Measure as a Product Measure

Our goal is to relate the Lebesgue measure λp+q on the space Rp+q to the Lebesgue
measures λp and λq on the spaces R

p and R
q respectively. We shall identify the

space R
p+q with the Cartesian product Rp × R

q , assuming that the pair (x, y),
where x = (x1, . . . , xp) ∈ R

p and y = (y1, . . . , yq) ∈ R
q , coincides with the point

(x1, . . . , xp, y1, . . . , yq) in R
p+q .

Let us remind the reader that the symbol Pm denotes the semiring of cells in R
m.

5.4.1 We proceed directly to the main statement of this Section.

Theorem λp+q = λp × λq .

This implies, in particular, that the product measure operation is associative on
the class of Lebesgue measures:

(λp × λq)× λr = λp × (λq × λr)= λp+q+r .

Proof Let P be a semiring of all sets of the form A × B , where A and B are
measurable subsets of finite measure of the spaces R

p and R
q respectively. Every

cell from Pp+q is, obviously, a product of two cells from Pp and Pq . Thus,
Pp+q ⊂P .

The measures λp+q and λp × λq have been obtained as the standard extensions
of the measures lp+q (the classical volume defined on Pp+q ) and m0 (the mea-
sure defined on P—see Sect. 5.1.2) respectively. To prove that the measures λp+q

and λp × λq coincide, it suffices to show that the measures lp+q and m0 gener-
ate the same outer measures: l∗p+q = m∗0. Since m0 extends lp+q from the semir-
ing Pp+q to the wider semiring P , the definition of the outer measure generated
by a measure immediately implies the inequality m∗0 � l∗p+q . It remains to check
the opposite inequality. It suffices to prove that l∗p+q(E) <m∗0(E)+ ε for every set
E ⊂R

p+q such that m∗0(E) <+∞, and every ε > 0. By the definition of m∗0, there
exist measurable subsets Aj ⊂R

p and Bj ⊂R
q of finite measure (j ∈N) such that

E ⊂⋃
j�1 Aj ×Bj and

∑

j�1

λp(Aj )λq(Bj ) < m∗0(E)+ ε.
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Due to the regularity of the Lebesgue measure, the sets Aj , Bj can be covered by
open sets Gj, Hj (in the respective spaces) so close to them in measure that if we
replace Aj by Gj and Bj by Hj , the last inequality will still hold. As a result, we
shall obtain the inclusion E ⊂⋃

j�1 Gj ×Hj and the inequality

∑

j�1

λp(Gj )λq(Hj ) < m∗0(E)+ ε.

Since the measures λp+q and λp×λq coincide on Pp+q , they coincide on all open
sets in R

p+q . The sets Gj ×Hj are open, so

l∗p+q(Gj ×Hj)= λp+q(Gj ×Hj)= λp(Gj )λq(Hj ) (j ∈N).

Now the desired estimate follows from the countable subadditivity of l∗p+q :

l∗p+q(E)�
∑

j�1

l∗p+q(Gj ×Hj)=
∑

j�1

λp(Gj )λq(Hj ) < m∗0(E)+ ε.
�

Remark The integrals with respect to the planar, the three-dimensional, and the m-
dimensional Lebesgue measures (over a subset E of the corresponding space) are
called double, triple, and m-fold integrals and are often denoted by the symbols

∫∫

E

f (x, y) dx dy,

∫∫∫

E

f (x, y, z) dx dy dz and

∫
· · ·

∫

E

f (x1, . . . , xm)dx1 · · ·dxm.

Since for summable and arbitrary non-negative functions, the integral with respect
to the product measure equals the repeated integral, this notation does not lead to
any confusion.

5.4.2 According to the classical Cavalieri principle, if two bodies can be positioned
in space so that each plane parallel to a given one intersects the two bodies by planar
domains of equal areas, then the volumes of these bodies are equal. Since, as we
have established above, the measure λp+q is the product measure of the measures
λp and λq , Theorem 5.2.2 implies the following assertion, which we will refer to as
the Cavalieri principle throughout the rest of the book:

If two measurable sets contained in R
p+q ≡ R

p × R
q can be positioned

so that the Lebesgue measures of all their cross sections of the first (or the
second) kind are equal, then their (p + q)-dimensional Lebesgue measures
are equal.

Now we will consider some applications of Theorem 5.2.2, the Tonelli theorem,
and the Cavalieri principle. By volume, we shall mean the m-dimensional Lebesgue
measure.

First, we will compute the volume of a cone in several dimensions.
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Example 1 We will call the set C = {(t, y) ∈ R
m | t ∈ [0,H ], y ∈ t

H
E} a cone

with altitude H and base E, E ⊂ R
m−1. The cone with a measurable base E is

measurable because it is the image of the cylinder [0,H ] × E under the smooth
mapping (t, y) �→ (t, t

H
y). For fixed t , the cone cross section Ct is either empty

(if t /∈ [0,H ]), or the set t
H
E, whose measure equals λm−1(E) ( t

H
)m−1. By Theo-

rem 5.2.2,

λm(C)=
∫

R

λm(Ct ) dt =
∫ H

0
λm−1(E)

(
t

H

)m−1

dt = 1

m
Hλm−1(E),

when m= 2 and m= 3 this implies the well-known school formulae for the area of
a triangle and the volumes of a pyramid and a circular cone.

In the next example, we shall obtain an important result: the formula for the
volume of a multi-dimensional ball.

Example 2 When studying the change of the Lebesgue measure under linear trans-
formations (see Sect. 2.5.2), we established that the volume of any m-dimensional
ball of radius R equals αm Rm where αm is the volume of the unit ball. Obviously,
α1 = 2 and α2 =

∫ 1
−1 2

√
1− t2 dt = π .

To compute αm for m > 2, we will identify the space R
m with the Cartesian

product Rm−1 ×R. By definition, the cross section (Bm)y of the open unit ball Bm

is the set

{
x ∈R

m−1 | (x, y) ∈ Bm
}= {

x ∈R
m−1 | ‖x‖2 < 1− y2}

.

For |y|� 1, it is empty, and for |y|< 1 it is an (m− 1)-dimensional ball of radius√
1− y2. The (m−1)-dimensional volume of the latter equals αm−1(1−y2)

m−1
2 , so,

by Theorem 5.2.2, αm =
∫ 1
−1 αm−1(1− y2)

m−1
2 dy. The change of variable y = sinu

gives the recurrence relation

αm = 2αm−1

∫ π
2

0
cosm udu.

We computed the last integral in Sect. 4.6.2. It equals (m−1)!!
m!! vm where vm = π

2
for even m and vm = 1 for odd m. Obviously, vmvm−1 ≡ π

2 . Applying the obtained
recurrence relation twice, we arrive at the formula

αm = 2αm−1
(m− 1)!!

m!! vm = 4αm−2
(m− 2)!!
(m− 1)!! vm−1

(m− 1)!!
m!! vm = 2π

m
αm−2.

Since we know the initial values α1 = 2 and α2 = π , this formula yields

α2k = πk

k! , α2k+1 = 2
(2π)k

(2k + 1)!! for all k ∈N.
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Fig. 5.1 Horizontal cross sections of equal area

The �-function allows us to cover both the odd and the even cases in one common
formula. Indeed, k! = �(k+ 1) and

√
π(2k+ 1)!! = 2k+1�(k+ 3

2 ) (see Sect. 4.6.3).
Plugging these values of factorials into the formulae for α2k and α2k+1, we see that,
for every m ∈N, the equality

αm = π
m
2

�(m2 + 1)

holds.
In relation to Examples 1 and 2, let us remind the reader of the following discov-

ery of Archimedes,5 which he was very proud of: the ball fills 2/3 of the volume
of its circumscribed cylinder (Cicero claimed that he had found Archimedes’ grave
in an abandoned cemetery by a small column with the engraving of a ball and a
cylinder above an accompanying verse).

To obtain this beautiful result, one should compare the ball and the body obtained
by removing from the cylinder two cones with vertex at the center of the ball and
bases at each end of the cylinder. It is easy to see from the Fig. 5.1 that the ball and
this body have horizontal cross sections of equal area (compare with Exercise 11).

Similarly, one can find the volume of the four-dimensional ball avoiding any
integration. Indeed, it is clear that the volume of the Cartesian product of two unit
disks equals π2. Identifying the point (x, y,u, v) with the pair (ξ, η) where ξ =
(x, y), η= (u, v), we will split the product C = B2×B2 into two parts as follows:

K = {
(ξ, η) ∈ C | ‖ξ‖� ‖η‖}, K ′ = {

(ξ, η) ∈ C | ‖ξ‖� ‖η‖}

(their two-dimensional analogs {(s, t) | |s| � |t | � 1} and {(s, t) |1 � |s| � |t |} are
formed by two pairs of vertical triangles tiling the square [−1,1] × [−1,1]). It is
clear that these sets are congruent and λ4(K ∩K ′)= 0. Therefore

λ4(K)= 1

2
λ4(C)= π2

2
.

5Archimedes (′Aρχιμήδης , circa 287 – 212 BC)—Greek mathematician and inventor.
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Let us find the area of the cross section Kξ of the body K for ‖ξ‖< 1 (otherwise it
is empty). Since

Kξ =
{
η ∈R

2 | (ξ, η) ∈K
}= {

η ∈R
2 | ‖ξ‖� ‖η‖< 1

}
,

this cross section is an annulus whose area equals π(1−‖ξ‖2). An easy computation
shows that the two-dimensional cross section (B4)ξ of the four-dimensional unit ball
has exactly the same area. Thus, according to the Cavalieri principle, its volume is
equal to that of K , i.e.,

λ4
(
B4)= λ4(K)= π2

2
.

Example 3 Let us compute the integral Im(a)= ∫
Rm e−a‖x‖2

dx (a > 0). In the one-
dimensional case, this reduces to the Euler–Poisson integral:

I1(a)=
∫ ∞

−∞
e−ax2

dx = 1√
a

∫ ∞

−∞
e−u2

du=
√

π

a
.

Representing the m-dimensional Lebesgue measure as the product measure of
the (m − 1)-dimensional and the one-dimensional Lebesgue measures and using
Tonelli’s theorem, we get the recurrence relation Im(a) = Im−1(a) · I1(a), which
immediately implies that Im(a)= (π

a
)
m
2 .

Example 4 Let us generalize the result obtained in Example 2 and find the volume
VP (R) of the set

WP (R)= {
(x1, . . . , xm) ∈R

m
∣
∣ |x1|p1 + · · · + |xm|pm < R

}
(R > 0),

where P = (p1, . . . , pm) ∈R
m+.

First, note that the linear change of variable xj = R1/pj uj (j = 1, . . . ,m) maps
the set WP (R) to WP (1). Therefore (see Sect. 2.5.2) VP (R)=RqVP (1) where
q = 1

p1
+· · ·+ 1

pm
. Thus it suffices to compute VP (1). To this end, we will use Theo-

rem 5.2.2. Assuming that m> 1, put P ′ = (p1, . . . , pm−1) and q ′ = 1
p1
+· · ·+ 1

pm−1
.

Since the cross section of the set WP (1) corresponding to the fixed coordinate xm
is, obviously, WP ′ (1− |xm|pm), we obtain

VP (1)=
∫ 1

−1
VP ′

(
1− |xm|pm

)
dxm = 2VP ′(1)

∫ 1

0

(
1− x

pm
m

)q ′
dxm.

After the change of variable u= x
pm
m , this identity becomes

VP (1)= 2

pm

VP ′(1)
∫ 1

0
(1− u)q

′
u

1
pm
−1

du.
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The last integral can be expressed in terms of values of the �-function (see Exam-
ple 2 in Sect. 5.3.2) and we obtain the dimension reduction formula

VP (1)= 2

pm

VP ′(1)
�(1+ q ′)�( 1

pm
)

�(1+ q)
= 2VP ′(1)

�(1+ q ′)�(1+ 1
pm

)

�(1+ q)
.

It follows easily from this that

VP (1)= 2m

�(1+ 1
p1
+ · · · + 1

pm
)

m∏

j=1

�

(

1+ 1

pj

)

.

When p1 = · · · = pm = p, this yields the formula for the volume of the set Wp =
{(x1, . . . , xm) ∈R

m | |x1|p + · · · + |xm|p < 1}:

λm(Wp)=
2m�m(1+ 1

p
)

�(1+ m
p
)

.

When p = 2, we get the formula for the volume of the ball once more.

5.4.3 Let us mention a nice formula relating the double and the repeated integrals.
As a preliminary step, we establish a lemma that will also be of use for us later. In
this lemma, we will identify the space R

2m with the Cartesian product Rm × R
m

(see the beginning of Sect. 5.4).

Lemma Let f be a measurable function defined on R
m. Then the functions

(x, y) �→ f (x − y) and (x, y) �→ f (x + y) are measurable on the space R
2m.

Proof It suffices to prove the result for the function (x, y) �→ F(x, y)= f (x − y),
which we may also assume real-valued (the argument for the second function is
similar). Let E = {x ∈R

m |f (x) < a}. Then

{
(x, y) ∈R

2m
∣
∣F(x, y)= f (x − y) < a

}

= {
(x, y) ∈R

2m
∣
∣ x − y ∈E

}= T −1(
E ×R

m
)
,

where T : R2m→ R
2m is the linear mapping defined by T (x, y)= (x − y, y). The

mapping T is, obviously, invertible. Therefore, the Lebesgue set of the function F

is measurable as the image of the measurable set E ×R
m. �

The following example essentially repeats the derivation of Euler’s formula re-
lating the functions B and � (see Sect. 5.3.2, Example 2).
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Example (Liouville’s identity6) Let f be a non-negative measurable function
on R+. Then, for all positive numbers p and q the identity

∫∫

R
2+
f (x + y)xp−1 yq−1 dx dy = B(p,q)

∫ ∞

0
f (t)tp+q−1 dt

holds where B(p,q)= ∫ 1
0 sp−1(1− s)q−1 ds is the Euler B-function.

Indeed, we can extend f to the negative semi-axis by zero. Then, according to
the lemma, the function (x, y) �→ f (x + y) is measurable on R

2+. Using Tonelli’s
theorem, replace the double integral by the repeated integral with the outer inte-
gration with respect to x and make the change of variable y = t − x in the inner
integral:

∫∫

R
2+
f (x + y)xp−1yq−1 dx dy =

∫ ∞

0
xp−1

(∫ ∞

x

f (t)(t − x)q−1 dt

)

dx.

The repeated integral on the right-hand side of this equality equals the double inte-
gral over the angle C = {(x, t) |0 < x < t}. Clearly, Cx = (x,+∞) and Ct = (0, t).
Changing the order of integration, we see that

∫∫

R
2+
f (x + y)xp−1yq−1 dx dy =

∫ ∞

0
f (t)

(∫ t

0
xp−1(t − x)q−1 dx

)

dt.

To obtain the desired result, it remains to make the change of variable x = ts in the
inner integral.

5.4.4 In the conclusion of this section, we will, relying on the representation of the
double integral as a repeated one, prove an inequality that plays an important role in
mathematical physics. It concerns the domination of an integral of a certain power
of function of class C1

0(R
m) (i.e., a smooth compactly supported function) by the

integral of the appropriate power of norm of its gradient. In the one-dimensional
case, we obviously have f (x)= ∫ x

−∞ f ′(t) dt =− ∫∞
x

f ′(t) dt , so

∣
∣f (x)

∣
∣ � 1

2

∫ ∞

−∞
∣
∣f ′(t)

∣
∣dt. (1)

This estimate can be generalized for functions of several variables in the following
way.

6Joseph Liouville (1809–1882)—French mathematician.
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Theorem (The Gagliardo7–Nirenberg8–Sobolev9 inequality) Let 1 � p < m,
q = mp

m−p
and C = p m−1

m−p
. Then, for every function f ∈ C1

0(R
m), the inequality

(∫

Rm

∣
∣f (x)

∣
∣q dx

) 1
q

� C

2

(∫

Rm

∥
∥gradf (x)

∥
∥p

dx

) 1
p

(2)

holds.

To begin with, we will establish a nice inequality, which strengthens (2) some-
what in the case p = 1.

Lemma Let q = m
m−1 and let f ∈ C1

0(R
m). Then

(∫

Rm

∣
∣f (x)

∣
∣q dx

) 1
q

� 1

2

(∫

Rm

∣
∣f ′x1

(x)
∣
∣dx · · ·

∫

Rm

∣
∣f ′xm(x)

∣
∣dx

) 1
m

.

For q =+∞ (i.e., in the case m= 1), the left-hand side should be understood as
supRm |f |, so the statement of the lemma coincides with the inequality (1).

Proof We will carry out the proof by induction on m. Since for m= 1 the desired
result reduces to (1), it remains to prove the inductive step. Let m> 1. Assume that
the statement of the lemma is true for functions of m − 1 variables. Writing the
vector x ∈R

m as (s, t) where s ∈R
m−1 and t ∈R, put

Ij (t)=
∫

Rm−1

∣
∣f ′xj (s, t)

∣
∣ds for j = 1, . . . ,m− 1 and

Im(s)=
∫

R

∣
∣f ′xm(s, t)

∣
∣dt.

In addition to the exponent q = m
m−1 , corresponding to the dimension m, we shall

need the exponent r = m−1
m−2 , corresponding to the dimension m−1. By the induction

assumption,

(∫

Rm−1

∣
∣f (s, t)

∣
∣r ds

) 1
r

� 1

2

(
I1(t) · · · Im−1(t)

) 1
m−1 . (3)

Note also that |f (s, t)|� 1
2Im(s) (this is nothing but the inequality (1)) and, there-

fore, |f (s, t)|q � 21−q |f (s, t)| I
1

m−1
m (s). The Hölder inequality with the exponent r

7Emilio Gagliardo (1930–2008)—Italian mathematician.
8Louis Nirenberg (born 1925)—American mathematician.
9Sergey L’vovich Sobolev (1908–1989)—Russian mathematician.
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yields

∫

Rm−1

∣
∣f (s, t)

∣
∣q ds � 21−q

∫

Rm−1

∣
∣f (s, t)

∣
∣I

1
m−1
m (s) ds

� 21−q

(∫

Rm−1

∣
∣f (s, t)

∣
∣r ds

) 1
r
(∫

Rm−1
Im(s) ds

) 1
m−1

.

Taking the inequality (3) into account, we see that

∫

Rm−1

∣
∣f (s, t)

∣
∣q ds � 2−q

(
I1(t) · · · Im−1(t)

) 1
m−1 ·

(∫

Rm−1
Im(s) ds

) 1
m−1

.

Integrating this inequality with respect to t , we obtain

∫

Rm

∣
∣f (x)

∣
∣q dx � 2−q

∫

R

(
I1(t) · · · Im−1(t)

) 1
m−1 dt ·

(∫

Rm−1
Im(s) ds

) 1
m−1

.

Estimating the first integral on the right by Hölder’s inequality for several functions
(see Corollary 2 in Sect. 4.4.5 with pk =m− 1), we get the inequality

∫

Rm

∣
∣f (x)

∣
∣q dx � 2−q

(∫

R

I1(t) dt · · ·
∫

R

Im−1(t) dt

) 1
m−1

dt

·
(∫

Rm−1
Im(s) ds

) 1
m−1

,

which is, obviously, equivalent to the one we set out to prove. �

Proof of the theorem For p = 1, the inequality (2) with the coefficient C = 1 follows
from the lemma immediately because |f ′xk (x)|� ‖gradf (x)‖ for all k and x.

Now let p > 1. Then C > 1, and an easy computation shows that q = C m
m−1 =

(C − 1) p
p−1 . Introduce the auxiliary function ϕ = |f |C . Since C > 1, ϕ is smooth

and ‖gradϕ‖ = C|f |C−1‖gradf ‖. Applying the inequality (2) with p = 1 to ϕ, we
obtain:

(∫

Rm

ϕ
m

m−1 (x) dx

)m−1
m

� 1

2

∫

Rm

∥
∥gradϕ(x)

∥
∥dx,

i.e.,

(∫

Rm

∣
∣f (x)

∣
∣q dx

)m−1
m

� C

2

∫

Rm

∣
∣f (x)

∣
∣C−1∥

∥gradf (x)
∥
∥dx. (4)
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Estimating the last integral by Hölder’s inequality with exponent p and taking into
account that (C − 1) p

p−1 = q , we see that

∫

Rm

∣
∣f (x)

∣
∣C−1∥

∥gradf (x)
∥
∥dx �

(∫

Rm

∣
∣f (x)

∣
∣q dx

) p−1
p

(∫

Rm

∥
∥gradf (x)

∥
∥p

dx

) 1
p

.

Together with (4), this yields the desired result because m−1
m
− p−1

p
= 1

p
− 1

m
= 1

q
. �

EXERCISES

1. Let E ⊂ R+ be a measurable set. Prove that the “annulus” A = {(x, y) ∈
R

2 |√x2 + y2 ∈E} is measurable and λ2(A)= 2π
∫
E
t dt .

2. Assume that the set E ⊂ R
2, contained in the half-plane y > 0, is measur-

able. Prove that the volume of the body T = {(x, y, z) ∈ R
3 | (x,√

y2 + z2) ∈
E}, which is obtained by the revolution of E around the x-axis, equals
2π

∫∫
E
y dx dy.

3. Prove by induction that for every vector a ∈ R
m+, the volume of the simplex

S(a)= {x ∈R
m+ | x1

a1
+ · · · + xm

am
� 1} equals a1···am

m! .
4. Prove that the volume of the regular m-dimensional simplex � with edges of

unit length equals
√
m+1

m!2m/2 . Find the ellipsoid E of maximal volume for �. Inves-

tigate the growth of the quantity (
λm(�)
λm(E)

)
1
m (volume ratio for �) as the dimen-

sion increases.
5. Let 1 � p <+∞, Vp = {(x1, . . . , xm) | ∑m

k=1 |xk|p � 1}. Find the ellipsoid Ep

of maximal volume for Vp . For which C does the inclusion Vp ⊂ CEp hold?

Investigate the growth of the quantity (
λm(Vp)

λm(Ep)
)

1
m as the dimension increases.

For which p is it bounded?
6. Let A⊂ R

m and B ⊂ R
n be two convex origin-symmetric compact bodies, let

C ⊂R
m+n be the convex hull of the union (A× {0})∪ ({0} ×B). Prove that

λm+n(C)= m!n!
(m+ n)!λm(A)λn(B).

7. Let K be an arbitrary convex body in R
m and V = λm(K). Prove that if the

(m− 1)-dimensional volume of the projection of K to every hyperplane is at
least S, then diam(K)� mV

S
.

8. Prove that a non-zero polynomial of several variables (either algebraic or
trigonometric) takes non-zero values almost everywhere.

9. Let E1, . . . ,En ⊂ [0,1) and S = λ(E1) + · · · + λ(En). Prove that there exist
translations of the sets Ej modulo 1 (see Exercise 6 in Sect. 2.4) whose union
covers [0,1) almost entirely: the measure of the difference [0,1) \⋃n

j=1{xj +
Ej } is less than e−S . Generalize this statement to the multi-dimensional case.
Hint. Consider the integral

∫ 1

0
· · ·

∫ 1

0

(∫ 1

0
χ1

({t − x1}
) · · ·χn

({t − xn}
)
dt

)

dx1 · · · dxn,
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where χj is the characteristic function of the set [0,1) \Ej (j = 1, . . . , n).
10. Applying the method used in the proof of Theorem 5.4.4, prove the following

generalization of Lemma 5.4.4:

(∫

Rm

∣
∣f (x)

∣
∣q dx

) 1
q

� C

2

(∫

Rm

∣
∣f ′x1

(x)
∣
∣p dx · · ·

∫

Rm

∣
∣f ′xm(x)

∣
∣p dx

) 1
mp

.

11. Let f be a function that is summable on the square (0,1)2 and satisfies the con-
dition | ∫∫

A×B
f (x, y) dx dy|� 1 for any measurable sets A,B ⊂ (0,1). Show

that the integral
∫∫

(0,1)2 |f (x, y)|dx dy can be arbitrarily large (one possible
example is given in Exercise 9 of Sect. 10.2).

12. In three-dimensional space, consider the ball inscribed into a cube and the tetra-
hedron that is the convex hull of two non-coplanar diagonals of opposite faces
of this cube (say, horizontal for the sake of definiteness). Prove that the ratio
of the areas of the horizontal cross sections of the ball and the tetrahedron is
constant and find the volume of the ball using the Cavalieri principle.10

13. Using the Cavalieri principle obtain the formula for the volume of a cone (see
Example 1 in Sect. 5.4.2) without employing integration. Hint. Verify that the
measure E �→ λm(CE), where E ∈Am−1 and CE = {(t, ty) | t ∈ [0,1], y ∈E},
is translation invariant, so it is a multiple of the Lebesgue measure.

14. Let

E ⊂R
m−2, KE =

{
(tw, tx) ∈R

2 ×R
m−2 |0 � t � 1, (w,x) ∈ S1 ×E

}

be the cone with vertex at the origin and “cylindrical base” S1 ×E. Using the
Cavalieri principle, prove that the measure E �→ λm(KE) defined on Am−2 is
proportional to λm−2(E).
Representing the polydisk B2 × · · · × B2 (k factors) as the union of k congru-
ent cones with cylindrical bases and the common vertex at the origin, find the
proportionality coefficient and derive the formula λm(KE) = 2π

m
λm−2(E) for

even m.
15. Taking the Cartesian product of the polydisk and [−1,1] and refining the argu-

ment from the previous exercise, prove that the formula λm(KE)= 2π
m

λm−2(E)

obtained there remains valid for odd m.
16. Using the Cavalieri principle alone, derive the recurrent formula for the volume

of the m-dimensional ball: αm = 2π
m

αm−2 (m� 3). Hint. Use the results of the
two previous exercises with E = Bm−2.

17. Prove that the interval [0,1] and the square [0,1]2 endowed with the corre-
sponding Lebesgue measures are isomorphic as measure spaces (the definition
of an isomorphism of measure spaces was given in Exercise 11, Sect. 4.10).
Generalizing this result, prove that the measure spaces R

m and R
n with the

10This problem was proposed by A. Andzans in a slightly different formulation (see “Kvant”, 1990,
No. 3, p. 27, Problem M1211). The authors are grateful to A.N. Petrov for drawing their attention
to this result.
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corresponding Lebesgue measures are isomorphic. Hint. Using the binary rep-
resentations of numbers x ∈ [0,1], consider the mapping

x =
∞∑

k=1

εk2−k �−→�(x)=
( ∞∑

k=1

ε2k−12−k,

∞∑

k=1

ε2k2−k

)

∈ [0,1]2.

5.5 �An Alternative Approach to the Definition of the Product
Measure and the Integral

In this section, we shall give an alternative proof of Theorem 5.1.2 on the countable
additivity of the product measure that does not use the notion of the integral. This
allows us to define the integral of a non-negative function as the measure of its sub-
graph. As we shall see, this approach to the construction of the integral is equivalent
to the one in Chap. 4.

5.5.1 As in Sect. 5.1, let (X,A,μ) and (Y,B, ν) be two measure spaces with
σ -finite measures, let

P = {
A×B |A ∈A, μ(A) <+∞, B ∈B, ν(B) <+∞}

be the semiring of measurable rectangles, and let m0 be the product of the measures
μ and ν, defined on P by

m0(A×B)= μ(A)ν(B). (1)

It was shown in Theorem 1.2.4 that m0 is a volume. We now want to prove its
countable additivity.

Assume first that the measures μ and ν are finite. Then X × Y ∈P and, by the
remark in Sect. 1.2.3, we may assume that the volume m0 has been extended to the
algebra C of all sets representable as finite unions of measurable rectangles. We will
use the same notation m0 for this extended volume.

As a preliminary step, let us prove the following lemma, which is a substantially
weakened version of Theorem 5.2.2. We shall need it for estimating the volumes
of sets from the algebra C. The notions of the cross section Cx and the canonical
projection P1(C) used in the lemma are defined in Sects. 5.2.1 and 5.2.2.

Lemma If C is a set from the algebra C such that ν(Cx) � δ for all x ∈ X, then
m0(C)� δ ·μ(P1(C)). In particular, m0(C)� δ ·μ(X).

Proof By the definition of the algebra C, all its elements are representable as unions
of finitely many measurable rectangles. We will carry out the proof by induction
on the number of rectangles comprising the set C. The induction base (C is a mea-
surable rectangle) is obvious. Now we will assume that the statement of the lemma
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holds for all unions of at most n− 1 measurable rectangles and will prove it for the
set C =⋃n

k=1(Ak ×Bk), where Ak ∈A, Bk ∈B.
Put U =⋃n−1

k=1 Ak and split the set C into three parts D, E and F so that P1(D)=
An \ U , P1(E) = U \ An and P1(F ) = U ∩ An (the sets D, E and F are disjoint
because their projections to X do not overlap). Since D, E and F are subsets of C,
each of their cross sections is contained in the corresponding cross section of the
set C. Therefore, ν(Dx), ν(Ex), ν(Fx) � δ for all x in X. To apply the induction
assumption to the sets D, E and F , let us check that each of them is a union of at
most n− 1 measurable rectangles. This is obvious for the sets D and E because

D = (An \U)×Bn and E =
n−1⋃

k=1

(Ak \An)×Bk.

It follows directly from the definition of the set F that, if x ∈U ∩An, then

Fx = Cx =
(

n−1⋃

k=1

(Ak ∩An)×Bk

)

x

∪Bn =
(

n−1⋃

k=1

(Ak ∩An)× (Bk ∪Bn)

)

x

,

and, therefore, F =⋃n−1
k=1(Ak ∩ An) × (Bk ∪ Bn). One can see from this that the

induction assumption can also be applied to F . Using the additivity of m0, we obtain
the desired inequality:

m0(C) = m0(D)+m0(E)+m0(F )� δμ
(
P1(D)

)+ δμ
(
P1(E)

)+ δμ
(
P1(F )

)

= δ
(
μ(U \An)+μ(U ∩An)+μ(An \U)

)= δμ(U ∪An)

= δμ
(
P1(C)

)
. �

It can be seen from the proof that we have used only the finite additivity of the
measures μ and ν, not the countable additivity, so the lemma is valid not only for
measures, but also for volumes.

Now we can prove that the product of measures is a measure.

Theorem The volume m0 is countably additive.

Proof Assume first that the measures μ and ν are normalized, i.e., μ(X) =
ν(Y )= 1, and that the volume m0 has already been extended to the algebra C con-
sisting of all sets representable as finite unions of measurable rectangles.

Let us prove that this volume is continuous from above on the empty set, which,
by Theorem 1.3.4, implies its countable additivity. So, let the sets Cn from C satisfy
the conditions

Cn ⊃ Cn+1 for n ∈N,

∞⋂

n=1

Cn =∅.

We have to prove that m0(Cn)→ 0 as n→∞.



238 5 The Product Measure

Assume the contrary. Then for some δ > 0,

m0(Cn) > δ for all n.

Consider the set En consisting of those points x for which the cross section (Cn)x
has “large” measure. More precisely, put

En =
{

x ∈X

∣
∣
∣ν

(
(Cn)x

)
>

δ

2

}

.

It is easy to check that the function x �→ ν((Cn)x) is simple and the set En is mea-
surable with respect to A. Clearly, Cn ⊂ (En×Y)∪C′n where C′n = Cn \ (En×Y).
Therefore,

δ < m0(Cn)�m0(En × Y)+m0
(
C′n

)
.

Also, ν((C′n)x)� δ
2 . Using the lemma proved above to estimate m0(C

′
n), we obtain

δ < m0(Cn)�m0(En × Y)+ δ

2
= μ(En)+ δ

2

(recall that μ(X) = ν(Y ) = 1). Therefore, μ(En) >
δ
2 . Thus, the measures of the

sets En do not tend to zero. Since the sets En form a decreasing sequence, their
intersection cannot be empty. Let x0 ∈⋂∞

n=1 En. Then ν((Cn)x0) >
δ
2 for each n.

Since the sets (Cn)x0 form a decreasing sequence, their intersection is not empty.
Let y0 ∈⋂∞

n=1(Cn)x0 . Then the point (x0, y0) belongs to each of the sets Cn, which
is impossible by our assumptions, and we get the contradiction sought.

Once we have established the statement of the theorem for normalized mea-
sures, we immediately get it for arbitrary finite measures as well. Consider now the
case when μ and ν are arbitrary σ -finite measures. Assume that C = A× B ∈P ,
C =⋃∞

n=1 Cn, and the sets Cn from P are pairwise disjoint. Then μ(A) < +∞
and ν(B) <+∞ by the definition of the semiring P . Therefore we can replace X

by A, and Y by B , consider the restriction of m0 to the semiring of those measurable
rectangles that are contained in A×B , and then just refer to the already considered
case of finite measures. �

Now we can justifiably define (as in Sect. 5.1.1) the product measure μ× ν as
the standard extension of the measure m0.

5.5.2 Let us sketch an alternative approach to the definition of the integral of a
non-negative measurable function (for measurable functions of arbitrary sign, we
will preserve the definition from Sect. 4.1.3). Let us remind the reader that, as it
has been proved in Lemma 5.2.3 (without using the integral), the subgraph of a
non-negative measurable function (in the wide sense) is measurable.

Definition Let (X,A,μ) be a measure space with σ -finite measure, let m= μ× λ

where λ is the one-dimensional Lebesgue measure. The integral of a non-negative
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measurable function f over a set A ∈ A is the measure of its subgraph Pf (A)

over A.

To distinguish this integral from the integral introduced in Chap. 4, we will de-
note it by the symbol I (f,A). Thus, I is a functional (with values in [0,+∞])
defined on the set K × A, where K is the cone of non-negative functions that are
measurable on X.

It is easy to check that the functional I satisfies the conditions (I)–(IV) from
Sect. 4.2.5. Indeed, condition (I) is obvious. Condition (II) follows from the identity
Pf (A∨B)=Pf (A)∨Pf (B) and the additivity of the measure m.

If f (x) = c for all x in A, then Pf (A) = A× [0, c] and, therefore, I (f,A) =
cμ(A)= c I (I,A), which means that condition (III) is satisfied.

Finally, condition (IV) is also satisfied. Indeed, if {fn}n�1 is an increasing se-
quence of non-negative measurable functions that converges to f pointwise, then
the inclusions

Pf \ �f ⊂
⋃

n�1

Pfn ⊂Pf

hold. In addition, we have m(�f ) = 0 and Pfn ⊂Pfn+1 . Therefore, m(Pfn)→
m(Pf ) by the continuity from below of the measure. This means that I (fn,X)→
I (f,X), which coincides with the statement of condition (IV).

As we have already pointed out in Sect. 4.2.5, all other properties of the integral
obtained in Sect. 4.2 follow from (I)–(IV).

EXERCISES

1. Let (X,A,μ) be a measure space with σ -finite complete measure. We will call
a non-negative function f measurable if its subgraph is measurable with respect
to the algebra A⊗A1. Prove that this definition is equivalent to the definition of
measurability using Lebesgue sets.

5.6 �Infinite Products of Measures

5.6.1 Now we will define the product measure of an infinite sequence of measures.
Let us remind the reader that the product measure operation is associative for fi-
nite families of measures (see Sect. 5.1.3), so, in particular, μ1 × μ2 × · · · × μn =
μ1 × (μ2 × · · · ×μn).

Let (Xn,An,μn) (n ∈N) be measure spaces with normalized measures, i.e., with
measures satisfying the condition μn(Xn)= 1 (such measures are also called prob-
ability measures). Put

Y =
∞∏

k=1

Xk, Yn =
∞∏

k=n+1

Xk (n= 1,2, . . .).
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If all the sets Xk coincide with X, we will denote their product by the symbol XN.
A set A⊂ Y will be called a cylindrical subset of rank n if it is representable as

A= B × Yn, where the set B (which we will call the base of the set A) belongs to
the σ -algebra on which the product measure μ1 × · · · × μn is defined. Obviously,
every cylindrical set of rank n with base B is simultaneously a cylindrical set of
rank n+ 1 with base B ×Xn+1.

We leave it to the reader to check that the cylindrical sets of all possible ranks
form an algebra. For every cylindrical set A of rank n with base B , put

ν(A)= (μ1 × · · · ×μn)(B).

This definition is self-consistent because

(μ1 × · · · ×μn)(B)= (μ1 × · · · ×μn ×μn+1)(B ×Xn+1)= · · · .
Let us verify that the function ν is additive, i.e., that it is a volume. Indeed, let A

and A′ be cylindrical sets. Obviously, without loss of generality, we may assume
that they have the same rank. Then A= B × Yn and A′ = B ′ × Yn. If A and A′ are
disjoint, then so are their bases, and, since A∪A′ = (B ∪B ′)× Yn, we have

ν
(
A∪A′

) = (μ1 × · · · ×μn)
(
B ∪B ′

)

= (μ1 × · · · ×μn)(B)+ (μ1 × · · · ×μn)
(
B ′

)= ν(A)+ ν
(
A′

)
.

We will call the volume ν the product of the measures μ1,μ2, . . . .
Note also that, for almost all x1 ∈ X1, the cross sections of the cylindrical set

A= B × Yn of rank n are cylindrical sets (of rank n− 1) in Y1. This follows from
the identity

Ax1 =
{
(x2, . . . , xn, . . .) ∈ Y1 | (x1, x2, . . . , xn, . . .) ∈A

}

= {
(x2, . . . , xn) ∈X2 × · · · ×Xn | (x1, x2, . . . , xn) ∈ B

}× Yn = Bx1 × Yn

and Theorem 5.2.2, which guarantees the measurability of Bx1 for almost all
x1 ∈X1.

5.6.2 Let us prove the countable additivity of the volume ν following the idea used
in the proof of Theorem 5.5.1.

Theorem The infinite product of measures is a measure.

Proof Since the collection of all cylindrical sets is an algebra and ν is a finite vol-
ume, to prove the countable additivity of the latter, it suffices to check that it is
continuous from above on the empty set (see Theorem 1.3.4). Let Ak be cylindri-
cal sets, Ak ⊃ Ak+1,

⋂∞
k=1 A

k = ∅. We will prove that ν(Ak) −→
k→∞ 0. Arguing by

contradiction, assume that for some δ > 0, we have

ν
(
Ak

)
� δ > 0 for all k. (1)
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We shall derive from this that there exists a c1 ∈X1 such that for the cross sections
Ak

c1
, the inequalities

ν1
(
Ak

c1

)
� δ

2
hold for all k, (1′)

where ν1 is the product of the measures μ2,μ3, . . . . Let Ak = Bk × Ynk
be a cylin-

drical set of rank nk and let λ= μ2 × · · · ×μnk
. Put

Ek =
{

x1 ∈X1
∣
∣ν1

(
Ak

x1

)= λ
(
Bk

x1

)
� δ

2

}

.

Then

δ � ν
(
Ak

)= (μ1 ×μ2 × · · · ×μnk
)
(
Bk

)= (μ1 × λ)
(
Bk

)

=
∫

Ek

λ
(
Bk

x1

)
dμ1(x1)+

∫

X1\Ek

λ
(
Bk

x1

)
dμ1(x1)� μ1(Ek)+ δ

2

and, therefore, μ1(Ek)� δ
2 . Since the sets Ek decrease, we have μ1(

⋂∞
k=1 Ek) > 0.

Obviously, the inequalities (1′) hold for all points c1 ∈⋂∞
k=1 Ek for which the cross

sections are measurable.
Replacing (1) with (1′), and ν with ν1 and repeating the above argument, we will

find a point c2 ∈X2 such that

ν2
(
Ak

(c1,c2)

)
� δ

4
for all k,

where ν2 is the product of the measures μ3,μ4, . . . .
Continuing this process by induction, we will get a sequence of points cj ∈ Xj

such that for all j and k, the cross sections Ak
(c1,...,cj )

have positive volumes (prod-
ucts of measures μj+1,μj+2, . . .) and, thereby, are non-empty. This is the crux of
the argument: contrary to our assumptions, the point c = (c1, c2, . . .) ∈ X belongs
to all sets Ak . Indeed, for j = nk , the statement that the cross section Ak

(c1,...,cnk )
is

non-empty means that it coincides with Ynk
. Therefore, Ak contains all points of the

form (c1, . . . , cnk
, xnk+1, xnk+2, . . .). In particular, Ak contains the point c. Since k

is arbitrary, we obtain the sought contradiction. �

The infinite product of measures μ1,μ2, . . . we have constructed is defined on
the algebra of cylindrical sets, which is usually not a σ -algebra. Extending it in the
standard way (see Sect. 1.4), we obtain a measure defined on a σ -algebra. We will
call this extension the product measure of the measures μ1,μ2, . . . and denote it by
the symbol μ1 ×μ2 × · · · .

In conclusion, note that some properties of the infinite product of measures may
seem unusual. For instance, a set A⊂XN may have zero measure even though for
each its points x = (x1, x2, . . .), all “cross sections”

An(x)=
{
y | (x1, . . . , xn−1, y, xn+1, . . .) ∈A

}
(n ∈N)
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coincide with X (A can be taken to be the set of all bounded sequences, see Exer-
cise 3).

EXERCISES

1. Prove that the closed interval [0,1] with the Lebesgue measure λ is isomorphic,
as a measure space (see the definition in Exercise 11, Sect. 5.4), to the measure
space (X,A,μ), where X = [0,1]N, and μ= λ× λ× · · · .

2. Give an example of a sequence of non-negative functions fn ∈L (X,μ) such
that their integrals are bounded and that

for every subsequence {nk}, sup
k

∣
∣fnk

(x)
∣
∣=+∞ almost everywhere.

Hint. Consider the measure μ from Exercise 1 and the functions fn(x) = 1√
xn

,

where x = (x1, x2, . . .) ∈ (0,1)N.
3. Let γ be a probability measure on R with density 1√

π
e−t2

, μ = γ × γ × · · · .
Prove that every infinite-dimensional cube and the set of all bounded sequences
have zero measure but, for sufficiently large a > 0, the μ-measure of the set

P(a)= {
(x1, x2, . . .) | |xn|� a

√
ln(n+ 1), n ∈N

}

is arbitrarily close to one.
4. Let μ be the measure on R

N defined in the previous exercise. Put

Ea =
{

x = (x1, x2, . . .) ∈R
N

∣
∣
∣ lim
n→∞

|xn|√
lnn

< a

}

.

Prove that μ(Ea)= 0 for a = 1 and μ(Ea)= 1 when a > 1. Derive from this that
μ(H)= 1 where H is the set of all points x ∈R

N such that limn→∞ |xn|√
lnn
= 1.



Chapter 6
Change of Variables in an Integral

6.1 Integration over a Weighted Image of a Measure

6.1.1 Our main goal in this chapter is to learn how to change variables in an integral
with respect to Lebesgue measure. As often happens, it is useful to begin with a more
general question: is it possible to use a “parametrization” � : X→ Y of a set Y to
reduce the integration with respect to a measure given on Y to the integration with
respect to a measure given on X? More precisely, given measure spaces (X,A,μ)

and (Y,B, ν), a map � : X→ Y , and a function f defined on Y , it is extremely
important to know conditions under which we can establish a relation between the
integral of f with respect to ν and the integral of f ◦ � with respect to μ. Of
course, to make it possible, we must assume that the measures μ and ν are somehow
compatible. We describe this compatibility by introducing the notion of a weighted
image of a measure.

Definition Let (X,A,μ) be a measure space, let B be an arbitrary σ -algebra of
subsets of Y , and let � : X→ Y be a mapping satisfying the condition

�−1(B) ∈A for every set B in B.

For a non-negative measurable function ω on X, we define the function ν : B→R

as follows:

ν(B)=
∫

�−1(B)

ω(x) dμ(x) (B ∈B). (1)

Obviously, ν is a measure on B. We call it a weighted image (more precisely, the
ω-weighted �-image) of μ. We call the function ω a weight or a weight function.

We note that here we do not assume that the map � is one-to-one or surjective.

The following theorem demonstrates a connection between the integrals with
respect to the measures ν and μ.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_6, © Springer-Verlag London 2013
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Theorem Let ν be an ω-weighted image of a measure μ under a map � :X→ Y .
Then, for every non-negative measurable function f on Y , the composition f ◦� is
also measurable, and the following holds:

∫

Y

f (y) dν(y)=
∫

X

f
(
�(x)

)
ω(x)dμ(x). (2)

The above relation is also valid for every summable function f on Y .

Proof The fact that the composition g = f ◦ � is measurable follows from the
definition of a weighted image of a measure. Indeed, X(g < a)=�−1(Y (f < a)) ∈
A since the inequality g(x) = f (�(x)) < a is equivalent to the inclusion �(x) ∈
Y(f < a) for every real a.

We verify Eq. (2) by successively complicating the function f . If f = χB is the
characteristic function of B , B ∈B, then

(f ◦�)(x) =
{

1 if �(x) ∈ B,

0 if �(x) /∈ B

=
{

1 if x ∈�−1(B),

0 if x /∈�−1(B)
= χ�−1(B)(x).

Thus, f ◦ � = χ�−1(B). In this case, Eq. (2) follows directly from the definition
of ν. For a non-negative simple function f , Eq. (2) follows from the linearity of the
integral.

In the case where f is an arbitrary non-negative measurable function, we con-
sider an increasing sequence of non-negative simple functions fn that converges
pointwise to f . Then

∫

Y

fn(y) dν(y)=
∫

X

fn

(
�(x)

)
ω(x)dμ(x).

Passing to the limit (this is possible by Levi’s theorem), we obtain Eq. (2), which
completes the proof of the theorem for f � 0.

As we proved, the relation
∫

Y

∣
∣f (y)

∣
∣dν(y)=

∫

X

∣
∣f

(
�(x)

)∣
∣ω(x)dμ(x)

is valid for every measurable function f on Y . Therefore, the functions f and
(f ◦�)ω are simultaneously summable with respect to the measures ν and μ, re-
spectively. If f is summable, we write Eq. (2) for the functions f+ =max{0, f } and
f− = max{0,−f }. Subtracting the equations obtained, we see that Eq. (2) is also
valid for a real function f . The complex case is obvious. �

Equation (2) can be represented formally in a more general form.
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Corollary Let B ∈B. Then
∫

B

f (y)dν(y)=
∫

�−1(B)

f
(
�(x)

)
ω(x)dμ(x).

For the proof, it is sufficient to apply the theorem to the function f · χB .

6.1.2 We consider two important specific cases of a weighted image of a measure.
First, we consider the case where ω ≡ 1. Then Eq. (1) takes the form ν(B) =

μ(�−1(B)). The measure ν is called the �-image of μ and is denoted by �(μ).
For more details concerning integration over the image of a measure in the case
where Y =R, see Sect. 6.4.

The second case is obtained by putting Y =X, B=A and �= Id. Now, Eq. (1)
takes the form

ν(B)=
∫

B

ωdμ (B ∈A), (1′)

and, by (2), we have
∫

X

f (x)dν(x)=
∫

X

f (x)ω(x)dμ(x) (2′)

for every non-negative function.
We already know this result (see Sect. 4.5.3). In this specific case, we called the

function ω the density of the measure ν with respect to μ. Equation (2′) suggests
the following symbolic notation for this situation: dν = ωdμ.

From Theorem 4.5.4, it follows that the density of a measure ν is determined
uniquely up to equivalence if the measure is finite.

The same is true for a σ -finite measure (see Exercise 1, Sect. 4.5). Using the
notion of image of a measure, we can say that the ω-weighted �-image of μ is
the �-image of the measure having density ω with respect to μ: ν =�(μ1), where
dμ1 = ωdμ.

To make Eq. (2′) easy-to-use, it is desirable to have convenient criteria for ω to
be the density of a given measure with respect to another one. Now, we establish
one such simple and important criterion.

Theorem Let μ and ν be measures defined on a σ -algebra A of subsets of a set X.
In order that a non-negative function ω be the density of ν with respect to μ it is
necessary and sufficient that the following two-sided estimate1 be valid for every set
A in A:

μ(A) inf
A

ω� ν(A)� μ(A) sup
A

ω.

1As usual, we assume that the products 0 · (+∞) and (+∞) · 0 are zero.
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Proof The necessity is obvious, so we proceed to prove sufficiency, i.e., to prove
Eq. (1′). We may assume that ω > 0 on B since we obviously have ν(e) = 0 =∫
e
ω dμ for e= {x ∈ B |ω(x)= 0}. Assuming that the function ω is positive, we fix

an arbitrary number q in the interval (0,1) and consider the sets

Bj =
{
x ∈ B |qj � ω(x) < qj−1}

(j ∈ Z).

These sets are measurable and form a partition of B . From the two-sided estimate,
it follows immediately that

qjμ(Bj )� ν(Bj )� qj−1μ(Bj ).

Similar inequalities,

qjμ(Bj )�
∫

Bj

ω(x)dμ(x)� qj−1μ(Bj ),

are valid for the integrals over the sets Bj .
Consequently,

q

∫

B

ω(x)dμ(x)�
∑

j

qjμ(Bj )� ν(B)� 1

q

∑

j

qjμ(Bj )�
1

q

∫

B

ω(x)dμ(x).

Thus,

q

∫

B

ω(x)dμ(x)� ν(B)� 1

q

∫

B

ω(x)dμ(x)

for every q in the interval (0,1). Passing to the limit as q → 1, we obtain the re-
quired relation. �

6.1.3 We give an example showing how to use the measure conservation condition.
Let (X,A,μ) be a finite measure space, and let T :X→X be a measure-preserving
map. Then the following theorem of Poincaré2 holds.

Theorem (Poincaré recurrence theorem) Let μ(X) <∞, and let T : X→ X be
a measure-preserving map. Under the map T , almost every point of an arbitrary
measurable set A⊂X returns to A infinitely many times, i.e., for almost all x in A,
we have T n(x) ∈A for infinitely many n.

Proof First, we verify that almost every point of A returns to A at least once,
i.e., that, for almost every point x of A, there exists a power T n of T such that
T n(x) ∈A. Indeed, the points whose T -images do not belong to A form the set
A∩T −1(X \A). Similarly, the points whose images do not belong to A after n-fold

2Jules Henri Poincaré (1854–1912)—French mathematician.
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action of T form the set A ∩ T −n(X \ A). Therefore, the points that never return
to A form the set

B =A∩ T −1(X \A)∩ · · · ∩ T −n(X \A)∩ · · · .

The sets B , T −1(B), T −2(B), . . . are disjoint. Indeed, if x0 ∈ T −k(B) and
x0 ∈ T −(k+l)(B) (l > 0), then, by the definition of a preimage, we have y0 =
T k(x0) ∈ B , and so T k+l (x0) = T ly0 ∈ B . This means that the point y0 of B re-
turns to B , a contradiction. Since the sets B , T −1(B), T −2(B), . . . are disjoint,
have that same measure, and μ(X) <∞, we obtain μ(B)= 0. Thus, all points of A
except those of the set B of measure zero return to A.

Applying this result to the maps T 2, T 3, . . . and using the fact that the union of
a sequence of sets of measure zero has measure zero, we see that, for almost every
point of A, there exist arbitrarily large powers of T that return the point to A. The
theorem is proved. �

EXERCISES

1. Let ν′ be the image and ν be the ω-weighted image of a measure μ under a
bijective map �. Prove that dν = ω ◦�−1 dν′.

2. Define the map � : [0,1)→[0,1)× [0,1) as follows: if the binary expansion of
x has the form x = 0, α1α2α3 . . . , then �(x)= (y1, y2), where y1 = 0, α1α3 . . . ,
and y2 = 0, α2α4 . . . (we arbitrarily fix one of the binary expansions if x has
more than one such expansion). Prove that the set A⊂ [0,1)×[0,1) is Lebesgue
measurable if and only if its preimage �−1(A) is Lebesgue measurable. Find the
�-image of Lebesgue measure.

3. Let λ be Lebesgue measure on [0,1), and let {x} be the fractional part of x.
Consider the map ϕ(x)= { 1

x
} from [0,1) to itself (by definition, ϕ(0)= 0). Prove

that ω(x)=∑∞
k=0

1
(k+x)2 is the density of the measure ϕ(λ), i.e.,

λ
(
ϕ−1(A)

)=
∫

A

ω(x)dx

for every measurable set A lying in [0,1). We note that by formula (9) from
Sect. 7.2.6, we have ω(x)= (ln�(x))′′.

4. Prove that the measure defined on (0,1) and having density 1
1+x

with respect to

the Lebesgue measure is invariant under the map ϕ(x)= { 1
x
}, i.e.,

∫

ϕ−1(A)

dx

1+ x
=

∫

A

dx

1+ x

(
A⊂ (0,1)

)
.

5. Let ϕ and ψ be non-decreasing functions bounded on R, and let

g(x)=
∫

R

ϕ(x − t) dψ(t) (x ∈R).
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Prove that the measure μg is the image of the measure μϕ × μψ under the map
(x, y) �→ x+ y and μg(A)= ∫

R
μϕ(−t +A)dψ(t) for every Borel set A. Prove

that the function g is continuous if at least one of the functions ϕ or ψ is contin-
uous.

6. Prove that the function g from the previous exercise is strictly increasing on
[0,2] if ϕ = ψ is the Cantor function (from the left and from the right of [0,1]
the values of ϕ are equal to 0 and 1, respectively). Hint. On every interval of the
form �k = [2tk,2tk + 2 · 3−n], where tk = k · 3−n (n ∈N, k = 0,1, . . . ,3n − 1),
the increment of g is positive since the strip {(x, y) ∈ R

2 |x + y ∈�k} contains
a square whose sides are segments of rank n arising in the construction of the
Cantor set.

7. Prove that the function g in Exercise 6 is not absolutely continuous. Hint. Verify
that, for each n, at least half of the measure μg is concentrated on the intervals
�k for which the ternary expansion of tk contains at least n/2 ones; prove that
the total length of these intervals is arbitrarily small for large n.

6.2 Change of Variable in a Multiple Integral

We want to concretize the general scheme developed in Sect. 6.1 and find a relation
between the integrals over open subsets O and O′ of the space Rm in the case where
the first set is mapped onto the second one by a diffeomorphism. In this section, by
measurable sets we mean Lebesgue measurable sets and the integrals are regarded
only with respect to Lebesgue measure on R

m, which is denoted by the letter λ

without indicating the dimension.
In what follows, �′(x) is the Jacobi3 matrix of a smooth map � at a point x (the

matrix corresponding to the linear map dx� in the canonical basis of the space Rm);
the determinant of this matrix (the Jacobian of �) is denoted by J�(x) (x ∈O).

We recall (see Sect. 13.7.3) that a diffeomorphism is a bijective smooth map of
an open subset of Rm to an open subset of Rm with smooth inverse. As proved in
Theorem 2.3.1, the image of a measurable set under a smooth map is measurable
and the image of a set of measure zero has measure zero.

6.2.1 Before applying Theorem 6.1.1 to our situation, it is necessary to find out how
Lebesgue measure transforms under a diffeomorphism. It is convenient to state this
question as a problem on the calculation of the measure ν defined on the σ -algebra
of measurable subsets of O by the equation ν(A)= λ(�(A)). More specifically, we
want to find out whether the measure ν has a density with respect to the Lebesgue
measure and find the density if it exists.

In search of a hypothetic density at an arbitrary point a, a ∈O, the key point is
the fact that, in the vicinity of this point, the diffeomorphism � is well approximated

3Carl Gustav Jacob Jacobi (1804–1851)—German mathematician.
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by the affine map x �→ �̃(x) =�(a)+ da�(x − a) the influence of which on the
Lebesgue measure is well known (see Theorems 2.4.1 and 2.5.2):

λ
(
�̃(A)

)= λ
(
da�(A)

)= |detda�|λ(A)= ∣
∣J�(a)

∣
∣λ(A).

Therefore, it is natural to assume that the following approximate equation is valid
for a measurable set A lying in a small neighborhood of a:

λ
(
�(A)

)≈ λ
(
�̃(A)

)= ∣
∣J�(a)

∣
∣λ(A).

At the same time, it follows from the mean value theorem that |J�(a)|λ(A) ≈∫
A
|J�(x)|dx, from which we obtain

ν(A)= λ
(
�(A)

)≈
∫

A

∣
∣J�(x)

∣
∣dx.

The last relation makes it very probable that the function |J�| might be the density
of the measure ν with respect to the Lebesgue measure.

Now, we give a precise statement and a formal proof of this fact.

Theorem Let � be a diffeomorphism defined on an open set O, O ⊂R
m. Then the

following relation is valid for every measurable set A, A⊂O:

λ
(
�(A)

)=
∫

A

∣
∣J�(x)

∣
∣dx. (1)

Proof On the σ -algebra of measurable sets contained in O, we define a measure ν

by the equation

ν(A)= λ
(
�(A)

)
(A⊂O)

and verify that the measure satisfies the condition

inf
A
|J�|λ(A)� ν(A)� sup

A

|J�|λ(A). (2)

As stated in Theorem 6.1.2, this implies the relation ν(A) = ∫
A
|J�(x)|dx, which

proves the theorem.
Proceeding to prove inequality (2), we note that it is sufficient to verify the right-

hand inequality since, applying it to the map �−1 and to the set �(A), we obtain
the left-hand inequality (recall that J�(x) · J�−1(y)= 1 for y =�(x) and x ∈O).

As the first and most difficult step, we prove by contradiction the right-hand
inequality (2) for an arbitrary cubic cell whose closure lies in O. We assume that
λ(Q) supQ |J�|< ν(Q) for a cubic cell Q such that Q⊂O. Then Cλ(Q) < ν(Q)

for some C > supQ |J�|. We divide Q into 2m cells the edges of which are two
times smaller than those of Q. Among the new cells, there is a cell, call it Q1, such
that Cλ(Q1) < ν(Q1). Repeating the above construction, we inductively construct
a sequence of embedded cubic cells {Qn} such that diam(Qn)→ 0 and

Cλ(Qn) < ν(Qn) for all n.
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Let a ∈⋂
n Qn and L= da�. By assumption, L is an invertible linear map, and

since a ∈Q, we have |detL| = |J�(a)|<C. We consider the auxiliary map

�(x)= a +L−1(
�(x)−�(a)

)
.

Near the point a, this map is close to the identity, �(x)= x+o(x−a). Therefore,
for every ε > 0, there is a small ball B centered at a such that

∥
∥�(x)− x

∥
∥ � ε√

m
‖x − a‖ for all x in B.

By construction, we have a ∈ Qn and Qn ⊂ B for sufficiently large n. Let h be
the length of an edge of the cube Qn and x ∈ Qn. Since ‖x − a‖ � √mh, we
obtain ‖�(x)− x‖� εh, and a similar inequality is valid for all coordinates of the
difference �(x)− x. Therefore, the vector �(x) belongs to a cube whose edge is at
most (1+ 2ε)h. Consequently,

λ
(
�(Qn)

)
� (1+ 2ε)mhm = (1+ 2ε)mλ(Qn).

Using Theorem 2.5.2 and the fact that the Lebesgue measure is translation invariant
(see Sect. 2.4.1), we obtain

λ
(
�(Qn)

)= λ
(
L−1 ◦�(Qn)

)= ∣
∣detL−1

∣
∣ · λ(

�(Qn)
)= ν(Qn)

|detL| .

Thus,

Cλ(Qn) < ν(Qn)= |detL| · λ(
�(Qn)

)
� (1+ 2ε)m|detL| · λ(Qn).

Therefore, C < (1 + 2ε)m|detL| for all ε > 0, i.e., C � |detL| = |J�(a)|. How-
ever, this is impossible since C > supQ |J�| and a ∈Q. The contradiction obtained
proves that our assumption is false and the inequality ν(Q) � λ(Q) supQ |J�| is
valid for each cubic cell Q such that Q⊂O.

We note that the estimate from above in (2) is valid for a set A if it is valid for
the sets of some at most countable partition of A. From this it follows immediately
that the estimate is valid for every open set G, G ⊂ O (it is sufficient to divide G

into cubic cells with closures in G, see Theorem 1.1.7). Moreover, we can assume
in what follows that A is a bounded set whose closure is contained in the set O. For
such a set, the right-hand side of inequality (2) can be obtained using the regularity
of the Lebesgue measure:

ν(A)� inf
A⊂G⊂O
G is open

ν(G)� inf
A⊂G⊂O
G is open

(
λ(G) · sup

G

|J�|
)
= λ(A) · sup

A

|J�|.

This completes the proof of (2) and the theorem. �
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From the continuity of J� and formula (1), it follows that

∣
∣J�(a)

∣
∣= lim

λ(�(A))

λ(A)
, (3)

where the limit is calculated under the assumption that λ(A) > 0 and the sets A

“shrink” to the point a (i.e., A ⊂ B(a, r), r → 0). Thus, as we surmised from the
very beginning, “in the small”, the number |J�(a)| can be regarded as the measure
distortion coefficient under the map � (in much the same way as in the case of a
linear map, the absolute value of the determinant is a “global” measure distortion
coefficient).

As follows from Theorem 8.8.1, the assertion of Theorem 6.2.1 remains valid if
instead of the smoothness of � we assume that it is a homeomorphism such that
both � and its inverse satisfy the Lipschitz condition. For a generalization of the
theorem to maps that are not one-to-one, see, for example, [EG].

6.2.2 Now we have everything we need to obtain the main result of the present
section, the change of variable formula for multiple integrals.

Theorem Let � be a diffeomorphism defined on an open set O, O ⊂R
m. Then, for

every measurable non-negative function f defined on O′ =�(O), we have
∫

O′
f (y)dy =

∫

O
f

(
�(x)

)∣
∣J�(x)

∣
∣dx. (4)

The above equation is valid for every summable function f on O′

Proof By the previous theorem, this is a special case of Theorem 6.1.1, where
X = O, Y = O′, ω = |J�|, and μ and ν are the Lebesgue measures on the σ -
algebras of measurable subsets of O and O′, respectively. The fact that the set
�−1(B) is measurable follows from the smoothness of �−1, and the equation
λ(B) = ∫

�−1(B)
|J�(x)|dx required by Definition 6.1.1 is equivalent to the state-

ment of Theorem 6.2.1. �

As in Sect. 6.1 (see Corollary 6.1.1), the formula proved above is valid in a more
general form. Namely, for every measurable set A lying in O, we have

∫

�(A)

f (y) dλ(y)=
∫

A

f
(
�(x)

)∣
∣J�(x)

∣
∣dλ(x).

The function f is summable on �(A) if and only if the function (f ◦ �)|J�| is
summable on A.

Remark The conditions of Theorem 6.2.2 can be weakened slightly by allowing the
function � to “worsen” on a “negligible” set. We describe this in more detail. Let
X ⊂ R

m, � : X→ R
m and Y =�(X). If the restriction of � to an open subset O
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of X is a diffeomorphism and both the difference e=X\O and its image �(e) have
zero measure, then the conclusion of Theorem 6.2.2 remains valid, and the equation

∫

Y

f (y) dy =
∫

X

f
(
�(x)

)∣
∣J�(x)

∣
∣dx (4′)

is valid for every function f summable on Y .
Indeed, since e and Y \�(O)⊂�(e) are sets of measure zero, we have

∫

Y

f (y) dy =
∫

�(O)

f (y) dy =
∫

O
f

(
�(x)

)∣
∣J�(x)

∣
∣dx =

∫

X

f
(
�(x)

)∣
∣J�(x)

∣
∣dx.

We note that the map �, which is one-to-one on O, need not satisfy this condition
on X and may be not only non-smooth, but even discontinuous on e.

We consider the simplest special case of the theorem. Let m= 1, � ∈ C1([a, b]),
and let �′(x) �= 0 for x ∈ (a, b). By the last condition, the function �′ preserves sign
on (a, b) and the function � is strictly monotonic. By Theorem 6.2.2, we obtain that
the equation ∫

[p,q]
f (y)dy =

∫

[a,b]
f

(
�(x)

)∣
∣�′(x)

∣
∣dx

is valid for every measurable non-negative function f on [p,q] =�([a, b]).
Considering the cases �′ > 0 and �′ < 0, the reader can easily verify that, in

both cases, the above equation implies the formula
∫ b

a

f
(
�(x)

)
�′(x) dx =

∫ �(b)

�(a)

f (y) dy

obtained in Proposition 2, Sect. 4.6.2 only for a continuous function f on (p, q)

(however, under some weaker assumptions on �).
We mention two simple specific cases of Theorem 6.2.2 that will be used repeat-

edly in the sequel.

TRANSLATION. For every vector v ∈R
m, we have the equation

∫

Rm

f (y) dy =
∫

Rm

f (v + x)dx =
∫

Rm

f (v − x)dx.

For the proof, it is sufficient to observe that a translation, as well as a translation
followed by a reflection, is a diffeomorphism of the space R

m the absolute value
of the Jacobian of which is equal to 1 everywhere.

LINEAR CHANGE. Let L :Rm→R
m be an invertible linear map. Then

∫

Rm

f (y) dy = |detL|
∫

Rm

f
(
L(x)

)
dx.

In particular, the equation
∫

Rm

f (y) dy = |c|m
∫

Rm

f (cx) dx

is valid for every non-zero coefficient c.
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In both cases, for simplicity, we consider integration over the entire space R
m.

From this, the formulas for integration over a part of Rm can easily be obtained.

6.2.3 If � : O→ O′ is a diffeomorphism, then the position of a point y in O′
is completely determined by the point x = �−1(y), and, therefore, the Cartesian
coordinates of x are often called the curvilinear coordinates of y. It is convenient to
think of O and O′ as sets lying in different spaces R

m by considering two copies
of this space (it is natural to denote the coordinates of the points in these spaces by
different letters). A subset of the set O′ on which the curvilinear coordinate with
a given index k is constant is called a coordinate surface (a coordinate line in the
two-dimensional case). A coordinate surface is the image of the intersection of O
and a plane xk = const. This surface can also be regarded as the level surface for the
kth coordinate function of the map �−1. Thus, O′ is “foliated” into the coordinate
surfaces xk = const, which are obviously disjoint. Such a foliation can be produced
in m ways, depending on the index of a coordinate. Every point in O′ lies in the
intersection of m coordinate surfaces.

Fixing all coordinates of a point a = (a1, . . . , am) ∈ O except the kth one and
changing this coordinate in the vicinity of ak , we obtain a path parametrizing a
curve passing through the point �(a). The corresponding curve is called a coordi-
nate line. The tangent vector to it at the point �(a) is simply the kth column of the
Jacobi matrix �′(a); we denote this vector by τk . It is well known (see Sect. 2.5.2)
that the number |J�(a)| has a simple geometric interpretation as the volume of
the parallelepiped spanned by the vectors τ1, . . . , τm. Sometimes, especially in the
cases where the curvilinear coordinates have a simple geometric interpretation, the
situation in question can be described without mentioning the diffeomorphism �.
Instead, we say that the set O′ “is equipped with curvilinear coordinates” and give
the dependencies yk = ϕk(x1, . . . , xm) of the Cartesian coordinates of a point in
O′ on the curvilinear coordinates, i.e., the coordinate functions of the diffeomor-
phism �. Since the diffeomorphism � is not given explicitly, instead of the determi-
nant J�(x) = detdx� one uses the functional determinant D(ϕ1,...,ϕm)

D(x1,...,xm)
= det‖ ∂ϕk

∂xj
‖

corresponding to the system of functions ϕ1, . . . , ϕm.
Sometimes it is possible to calculate the absolute value of the Jacobian with-

out using its definition directly but applying Eq. (3) to sets A of one form or an-
other. Let, for example, A be a cell

∏m
k=1[ak, ak + hk) lying in O, where h =

(h1, . . . , hm) ∈ R
m+. Its image is a “curvilinear parallelepiped” bounded by the cor-

responding coordinate surfaces. The “edges” of the parallelepiped lie on the coordi-
nate lines and are close to the tangent vectors hkτk for small h.

Quite often, the principal part of the volume of the curvilinear parallelepiped
can be found directly, using the geometric interpretation of curvilinear coordinates,
which makes it possible to calculate |J�(a)| as well.

Example We calculate the area S of the curvilinear quadrangle

M =
{

(x, y) ∈R
2+

∣
∣
∣a2 � xy � b2, α � y

x
� β

}
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(a, b,α and β are positive parameters, a < b and α < β). To this end, we introduce
curvilinear coordinates u and v in R

2+ by the equations

u= xy and v = y

x
.

The corresponding coordinate lines are hyperbolas and rays. Since the curvilinear
coordinates on M can take, respectively, the values from a2 to b2 and from α to β

independently of one another, the points (u, v) corresponding to the points (x, y)

in M “on the uv-plane” fill the rectangle [a2, b2] × [α,β]. As a rule, such a sim-
plification of a given domain is one of the main goals when changing variables.
It is easy to prove that D(u,v)

D(x,y)
= 2 y

x
= 2v. Consequently, the Jacobian of the map

(u, v) �→ (x, y) is equal to 1
2v (we call the reader’s attention to the fact that here it

was easier to first find the Jacobian of the map inverse to (u, v) �→ (x, y)). There-
fore, the required area is equal to

S =
∫∫

M

1dx dy =
∫ b2

a2

∫ β

α

dudv

2v
= b2 − a2

2
ln

β

α
.

6.2.4 Polar Coordinates. Besides the Cartesian coordinates x and y, there are other
numerical parameters that can be used to locate points in the plane. For example,
the distance r from a point to the origin O (of a Cartesian coordinate system) and
the polar angle ϕ, i.e., the angle formed by a fixed ray from O and the radius-vector
of the point. The numbers r and ϕ are called the polar coordinates of the point.
Introducing Cartesian coordinates so that the polar angle is counted anticlockwise
from the positive x-axis towards the positive y-axis, we see that the Cartesian and
polar coordinates are connected by the formulas

x = r cosϕ, y = r sinϕ.

Formally speaking, these equations define a smooth map

(r, ϕ) �→�(r,ϕ)= (r cosϕ, r sinϕ),

taking the r , ϕ plane into the x, y plane. However, taking into account the geometric
meaning of the parameter r (the distance from the origin), we assume that the map
� is defined in the half-plane r � 0. Obviously, the map � is not one-to-one. To
make it one-to-one, we must assume that the angle ϕ changes in an open interval
the length of which does not exceed 2π .

As the reader can easily verify, the restriction of � to a strip of the form Pα =
(0,+∞)× (α,α + 2π) is one-to-one, and its image is the plane with the ray Lα =
{(r cosα, r sinα) | r � 0} removed, or, as one says, the plane cut along the ray Lα .
It is obvious that Lα =�(∂Pα), and so �(Pα)= R

2. Since the map � is not one-
to-one, it is necessary to specify the range of the polar angle when passing from
Cartesian to polar coordinates. As a rule, one uses the intervals (0,2π) and (−π,π)

(corresponding to α = 0 and α =−π ).
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Fig. 6.1 Increment of a circular sector

The coordinate lines, i.e., the lines r = const and ϕ = const, are circles (cen-
tered at the origin O) and rays (from O), respectively. The rectangle [r0, r0 + ρ] ×
[ϕ0, ϕ0+ξ ] transforms into the curvilinear quadrangle bounded by the circles r = r0
and r = r0 + ρ and by the rays ϕ = ϕ0 and ϕ = ϕ0 + ξ (see Fig. 6.1).

For small ρ and ξ , this curvilinear quadrangle is almost a rectangle with sides r0ξ

and ρ. Therefore, up to higher order infinitesimals, the area is equal to r0ρξ . Re-
calling that the value of the Jacobian J� at (r0, ϕ0) is the area distortion coefficient,
we come to the conclusion that J�(r0, ϕ0) = r0. The reader can easily obtain this
result by calculating the second order functional determinant. By the remark follow-
ing Theorem 6.2.2, the general change of variables formula (4′) takes the following
form in the case of transition to polar coordinates:

∫∫

A

f (x, y) dx dy =
∫∫

�−1
α (A)

f (r cosϕ, r sinϕ)r dr dϕ,

where A⊂R
2 and �α is the restriction of � to Pα . In particular,

∫∫

R2
f (x, y) dx dy =

∫ α+2π

α

(∫ ∞

0
f (r cosϕ, r sinϕ)r dr

)

dϕ.

Example 1 Using polar coordinates, we can easily find the area of the “curvilinear
triangle” (see Fig. 6.2)

T = {
(r cosϕ, r sinϕ) ∈R

2 |ϕ ∈�, 0 � r � ρ(ϕ)
}
,

where �⊂R is an interval of length less than or equal to 2π and ρ is a non-negative
function measurable on �.

Putting f = χT in the last formula, we obtain the required result

λ2(T )=
∫∫

T

1dx dy =
∫

�

(∫ ρ(ϕ)

0
r dr

)

dϕ = 1

2

∫

�

ρ2(ϕ) dϕ.

Example 2 The use of polar coordinates gives us one more way of calculating the
Euler–Poisson integral I = ∫∞

−∞ e−x2
dx (cf. Sect. 5.3.2, Example 1). As before, we
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Fig. 6.2 Curvilinear triangle

transform I 2 by Fubini’s theorem,

I 2 =
∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−y2

dy =
∫∫

R2
e−(x2+y2) dx dy.

Now, passing to polar coordinates, we obtain

I 2 =
∫∫

R2
e−(x2+y2) dx dy =

∫ 2π

0

(∫ ∞

0
e−r2

r dr

)

dϕ = π

∫ ∞

0
e−r2

d
(
r2)= π.

Therefore, I =√π .

6.2.5 Spherical Coordinates. Spherical coordinates in three-dimensional space are
an analog of polar coordinates in a plane. The location of a point (x, y, z) can be
determined by the following three numerical parameters: the distance r from the
point to the origin, the polar angle ϕ corresponding to the projection of the point
on the x, y plane, and the angle θ between the radius-vector of the point and the
positive z-axis.

The spherical and Cartesian coordinates are connected by the formulas

x = r cosϕ sin θ, y = r sinϕ sin θ, z= r cos θ.

Formally speaking, these equations define a smooth map

(r, ϕ, θ) �→�(r,ϕ, θ)= (r cosϕ sin θ, r sinϕ sin θ, r cos θ)

taking the r, ϕ, θ space to the x, y, z space. However, taking into account the geo-
metric meaning of the parameter r (the distance from the origin), we assume that the
map � is defined on the half-space r � 0. Obviously, the map � is not one-to-one.
To make it one-to-one, we must restrict the ranges of the angles ϕ and θ . As to θ ,
we will always assume that 0 � θ � π . We also assume that the angle ϕ changes
from 0 to 2π (sometimes, it is convenient to change these bounds to −π and π ,
respectively). As the reader can easily verify, the restriction of � to an infinite paral-
lelepiped of the form P = (0,+∞)× (0,2π)× (0,π) is one-to-one and its image is
the entire space R3 with the half-plane L0 = {(r sin θ,0, r cos θ) | r � 0, 0 � θ � π}
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Fig. 6.3 Curvilinear parallelepiped corresponding to increments of spherical coordinates

removed. Obviously, L0 =�(∂P ), and so �(P )=R
3. In what follows, we assume

that � is defined on P .
The coordinate surfaces, i.e., the surfaces r = const, ϕ = const, and θ = const

are spheres (centered at the origin O), half-planes bounded by the z-axis, and cir-
cular cones with vertex at O that are symmetric with respect to the z-axis. The
intersections of the sphere with the half-planes and cones forms a grid of meridi-
ans and parallels (this is why the angle θ ′ = π/2− θ (the “latitude”) is sometimes
considered instead of the angle θ ).

The map � transforms the parallelepiped [r0, r0+ρ]×[ϕ0, ϕ0+ξ ]×[θ0, θ0+η]
into the curvilinear parallelepiped bounded by the spheres r = r0 and r = r0+ρ, the
half-planes ϕ = ϕ0 and ϕ = ϕ0 + ξ , and the conical surfaces θ = θ0 and θ = θ0 + η

(see Fig. 6.3).
For small ρ, ξ , and η, this parallelepiped is almost rectangular. Its base lying

on the sphere r = r0 is bounded by the arcs of meridians and parallels. This base
is almost a rectangle with length of sides equal to r0η and r0 sin θ0ξ , respectively.
Therefore, up to higher order infinitesimals, the volume of the curvilinear paral-
lelepiped is equal to (r2

0 sin θ0)ρξη. Recalling that the value of the Jacobian J�

at (r0, ϕ0, θ0) is the volume distortion coefficient, we come to the conclusion that
J�(r0, ϕ0, θ0)= r2

0 sin θ0. The reader can easily obtain the same result by perform-
ing all necessary formal calculation. In the case of transition to spherical coordi-
nates, we can take into account the remark following Theorem 6.2.2 and represent
the general change of variables formula in the integral as follows:

∫∫∫

A

f (x, y, z) dx dy dz

=
∫∫∫

�−1(A)

f (r cosϕ sin θ, r sinϕ sin θ, r cos θ) r2 sin θ dr dϕ dθ,
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where A⊂R
3. In particular,

∫∫∫

R3
f (x, y, z) dx dy dz

=
∫ π

0

∫ 2π

0

∫ ∞

0
f (r cosϕ sin θ, r sinϕ sin θ, r cos θ) r2 sin θ dr dϕ dθ.

Example We use spherical coordinates to calculate the Fourier transform of a radial
function. In the general case, the Fourier transform of a function f summable on R

m

is defined by the equation

f̂ (y)=
∫

Rm

f (x)e−2πi〈x,y〉 dx.

Let f be a measurable radial function of three variables, i.e., a function of the form
f (x)= f0(‖x‖), where f0 is a measurable function on R+. Converting to spherical
coordinates, we see that

∫
R3 |f (x)|dx = 4π

∫∞
0 |f0(r)|r2 dr . Therefore, the func-

tion f is summable in R
3 if and only if the inequality

∫∞
0 |f0(r)|r2 dr < +∞ is

valid. In this case, the calculation of f̂ can be reduced to the calculation of the
integral over the semi-axis R+.

As y �= 0, we make an orthogonal change of variables x �→ u in the integral f̂ (y)

that takes the unit vector y/‖y‖ to (0,0,1). Then

f̂ (y)=
∫

R3
f0

(‖x‖)e−2πi〈x,y〉 dx =
∫

R3
f0

(‖u‖)e−2πi‖y‖u3 du.

Converting the last integral to spherical coordinates, we obtain

f̂ (y)=
∫ ∞

0
f0(r) r

2
(∫ π

0

(∫ 2π

0
e−2πir‖y‖ cos θ sin θ dϕ

)

dθ

)

dr

= 2π
∫ ∞

0
f0(r) r

2
(∫ π

0
e−2πir‖y‖ cos θ sin θ dθ

)

dr.

The integral with respect to θ can easily be calculated, and we obtain the required
formula

f̂ (y)= 2

‖y‖
∫ ∞

0
f0(r)r sin

(
2πr‖y‖)dr.

We see that the Fourier transform of a radial function is a radial function.

6.2.6 We consider the question of the change of volume under diffeomorphisms
generated by a system of differential equations

dx1

dt
= f1(x1, . . . , xm),

...

dxm

dt
= fm(x1, . . . , xm),
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where f1, . . . , fm are smooth functions defined on the entire space Rm and the vari-
able t is regarded as time.

This system can be written in the concise form

dx

dt
= f (x), (5)

where f : Rm → R
m denotes a smooth map with coordinate functions f1, . . . , fm

called a direction field.
In the theory of ordinary differential equations, it is proved that, for all initial

conditions, system (5) has a unique solution defined for all t close to the initial
moment t0. We assume that all these solutions are defined for all t ∈ R. Assuming
that the initial conditions correspond to the moment t = 0, we obtain that, for ev-
ery t , there is a unique solution x(t) corresponding to the given initial condition
x = x(0). This gives rise to the map St : Rm → R

m taking the initial point x(0) to
the point x(t) (S0 = id). In the theory of differential equations, it is proved that the
map (x, t) �→ St (x) is smooth (see, e.g., P. Hartman “Ordinary Differential Equa-
tions”). Since the solution satisfying given initial conditions is unique, we obtain the
equation St+τ = St ◦ Sτ valid for all t, τ ∈ R. In particular, the map St is invertible
since St ◦ S−t = S−t ◦ St = S0 = id , and, consequently, (St )

−1 = S−t . Thus, St is a
diffeomorphism. The family of diffeomorphisms {St }t∈R is called a flow. Our goal
is clarify how the volume (i.e., Lebesgue measure on R

m) changes under the action
of diffeomorphisms forming the flow.

From (5) it follows that

x(t)= x(0)+
∫ t

0
f

(
x(u)

)
du, i.e., St (x)= x +

∫ t

0
f

(
Su(x)

)
du. (6)

First, we prove the following formula describing the derivative of a diffeomor-
phism St :Rm→R

m for small t :

S′t (x)= id+ tf ′(x)+ α(t, x), (7)

where 1
t
α(t, x)⇒ 0 as t→ 0 if x belongs to a bounded set.

Differentiating Eq. (6) with respect to x (for justification of differentiation under
the integral sign, see Sect. 7.1), we obtain the relation

S′t (x)= id+
∫ t

0
f ′

(
Su(x)

)
S′u(x) du.

From this equation we obtain that S′t (x)→ id as t → 0. Continuing the last equa-
tion, we obtain

S′t (x)= id+ tf ′(x)+
∫ t

0

(
f ′

(
Su(x)

)
S′u(x)− f ′(x)

)
du. (8)

It is clear that the difference f ′(Su(x))S
′
u(x)−f ′(x) tends to zero as u→ 0, and the

convergence is uniform if x is taken from a bounded set. Therefore, the last term on
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the right-hand side of Eq. (8) is o(t) (uniformly with respect to x), which proves (7).
Consequently, as t→ 0, we have

detS′t (x)= det
(
id+ tf ′(x)+ o(t, x)

)= 1+ t tracef ′(x)+ o(t, x), (9)

where tracef ′(x) is the trace of the matrix f ′(x), which is also called the divergence
of the direction field and is denoted by divf (x) : divf (x)= ∂f1

∂x1
(x)+· · ·+ ∂fm

∂xm
(x).

We leave it as an exercise (connected with the calculation of a determinant) for the
reader to check the second equality in (9).

Let A be a bounded measurable set, At = St (A) and V (t)= λm(At ). By Theo-
rem 6.2.1, we obtain

V (t)=
∫

A

∣
∣detS′t (x)

∣
∣dx.

Using Eq. (9) for sufficiently small t and taking into account the fact that the o-term
is uniformly small on A, we see that

V (t)=
∫

A

(
1+ t tracef ′(x)+ o(t)

)
dx = V (0)+ t

∫

A

divf (x)dx + o(t).

Consequently,

V ′(0)=
∫

A

divf (x)dx. (10)

Since Sτ+t = St ◦ Sτ , we obtain V (τ + t)= λm(St (Aτ )). Therefore, replacing A

by Aτ and applying formula (10), we obtain that the relation

V ′(τ )=
∫

Aτ

divf (x)dx

is valid for all τ ∈R. This result is well known as Liouville’s theorem. The theorem
implies the following statement.

Corollary If divf (x)≡ 0, then the flow preserves the volume.

Example The motion of material particles of mass m and charge q in a stationary
electromagnetic field is described by the Lorentz equation

m
dv

dt
= q

(

E + 1

c
v×B

)

,

where v = dx
dt

is the velocity of the particle, c is the speed of light in vacuum, and
E = E(x) and B = B(x) are certain smooth vector functions (the intensity and the
inductance of the field); the symbol × denotes the vector product.

The Lorentz equation takes the form (5) for the vectors w = (x, v) in the six-
dimensional space if we rewrite it as mdw

dt
= f (w), where the right-hand side
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is f (w) = (mv,q(E + 1
c
v × B)) = (v1, v2, v3,V1,V2,V3), where v1, v2, v3 and

V1,V2,V3 are the coordinates of the vectors mv and q(E + 1
c
v ×B), respectively.

It is easy to verify that Vi does not depend on vi (i = 1,2,3). Therefore,

divf (w)= ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
+ ∂V1

∂v1
+ ∂V2

∂v2
+ ∂V3

∂v3
≡ 0.

Thus, the Lebesgue measure λ6 is invariant under the flow corresponding to the
Lorentz equation.

We observe that to describe the properties of a material particle motion it is help-
ful to use the measure on a six-dimensional space.

Remark The reader can verify that the diffeomorphisms St are volume-preserving
if and only if divf (x)≡ 0.

EXERCISES

1. Calculate the integral
∫∫

R2 |ax + by|e−(x2+y2) dx dy.

2. Calculate the integral
∫∫∫∫

x2+y2+u2+v2�1 e
x2+y2−u2−v2

dx dy dudv.

3. Calculate the integral
∫
〈Ax,x〉�1 e

〈Ax,x〉 dx, where A is a positive definite m×m

matrix.
4. Let E = {(x1, x2, x3, x4) ∈ R

4 |
√
x2

2 + x2
3 + x2

4 � x1}. For which values of

t ∈R
4 is the integral

∫
E
e−〈x,t〉 dx finite? Calculate the integral.

5. Making an appropriate orthogonal transformation, calculate the integral∫
‖x‖<r

|〈a, x〉|p dx over the m-dimensional ball for p >−1.

6. Calculate the integral
∫
Rm e−Q(x) dx, where Q(x)=∑

1�j�k�m xjxk .
7. For which values of a and b is the integral

∫

(0,1)m

(
min(x1, . . . , xm)

)a(
max(x1, . . . , xm)

)b
dx,

finite, where m� 2? Express it in terms of the beta function.
8. Prove that, for every non-negative measurable function f on R and all a, b ∈R,

the relation

1

π

∫∫

R2

f (ax + by)

(1+ x2)(1+ y2)
dx dy =

∫ ∞

−∞
f (cu)

1+ u2
du, where c= |a| + |b|

holds.
9. Using the previous problem and induction, prove that, for p ∈ (−1,1) and a =

(a1, . . . , am) ∈R
m, the relation

1

πm

∫

Rm

|〈x, a〉|p dx

(1+ x2
1)(1+ x2

2) · · · (1+ x2
m)
= Cp

(
m∑

k=1

|ak|
)p

,

where Cp = 2
π

∫∞
0

tp

1+t2 dt , holds.
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10. Regarding the plane R
2 as the set of complex numbers, find a function ω > 0

such that the measure ν with density ω > 0 (dν = ωdλ2) is invariant under
multiplication, i.e., such that the image of ν under the map z �→ az coincides
with ν for all a �= 0.

11. Let p > 0, E ⊂R
m, and λm(E)= λm(B(0, r)). Prove that

∫

E

dy

‖x − y‖p �
∫

B(0,r)

dz

‖z‖p for every x in R
m.

12. Prove that the inequality
∣
∣
∣
∣

∫∫

E

dx dy

x + iy

∣
∣
∣
∣ �

√
π λ2(E)

holds for every set E ⊂R
2 of finite measure.

Hint. By a rotation, reduce the left-hand side of the inequality to an integral of
the function Re 1

z
and verify that, for a given area of the integration region, this

integral is maximal if the integration is performed over an appropriate Lebesgue
set of the integrand.

13. Let f (x, y) be the number of points (k, j) with integer coordinates satisfying
the condition k2 + j2 < x2 + y2, and let S =∑

n∈Z e−n2
. Prove that

∫∫

R2
f (x, y)e−(x2+y2) dx dy = πS2.

Hint. Converting to polar coordinates, use integration by parts by means of the
functions F(r)= f (r,0).

14. Let A= {(z1, z2) ∈C
2 |0 < |z1|< |z2|< 1}, and let

�(z1, z2)=
(

z1, z2

√

1− |z1|2
|z2|2

)
(
(z1, z2) ∈A

)
.

Prove that � is a diffeomorphism preserving the four-dimensional Lebesgue
measure. Find λ4(A) and �(A).

6.3 Integral Representation of Additive Functions

Since its inception, the integral calculus proved to be a very successful tool in solv-
ing applied problems of mechanics and physics. Among them are the problems asso-
ciated with additive quantities such as calculation of mass, statical moments, energy,
etc. In the present section, we consider a general scheme that allows us to evaluate
and estimate such quantities in a wide range of cases.

Turning to applications, we set ourselves a restricted task. We are concerned
only with evaluation of quantities based on their given properties. As a rule, these
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properties are quite obvious intuitively, and justifying the use of them, we apply
only the simplest plausible considerations, leaving a more thorough justification to
other branches of science.

6.3.1 Modifications of Theorem 6.1.2 allow us to obtain integral representations
of various additive physical and mechanical quantities. We consider one of these
modifications.

Proposition Let (X,A,μ) be a finite measure space, and let ϕ be an additive func-
tion defined on a σ -algebra A. If there exists a bounded measurable function f such
that

μ(A) inf
A

f � ϕ(A)� μ(A) sup
A

f for every A in A,

then ϕ(A)= ∫
A
f dμ (A ∈A).

Generalizing the definition from Sect. 6.1.2, we call the function f the density of
the additive function ϕ. As follows from Theorem 4.5.4, the density is determined
uniquely up to equivalence.

We note that we did not assume in the proposition that the additive function ϕ is
countably additive. This weakening of the conditions imposed on ϕ is compensated
by the assumptions that the measure μ is finite and the density f is bounded.

Proof We fix an arbitrary ε > 0 and consider the sets

Ak =
{
x ∈A |kε � f (x) < (k + 1)ε

}
(k ∈ Z).

These sets are measurable and constitute a finite partition of the set A (if the quantity
|k| is sufficiently small, then Ak =∅ since f is bounded). Summing the inequalities
εkμ(Ak)� ϕ(Ak)� ε(k+ 1)μ(Ak), which follow from the two-sided estimate, we
see that ϕ(A) is closely approximated by the sum S = ε

∑
k∈Z kμ(Ak),

S � ϕ(A)� S + εμ(A).

In the same way, from the inequalities εkμ(Ak) �
∫
Ak

f (x) dμ(x) �
ε(k + 1)μ(Ak), it follows that

S �
∫

A

f (x)dμ(x)� S + εμ(A).

Thus, |ϕ(A)− ∫
A
f (x)dμ(x)|� εμ(A), which is equivalent to the required state-

ment since ε is arbitrary. �

6.3.2 We use Proposition 6.3.1 to calculate the attractive force between a material
particle with mass μ0 and a compact set A⊂R

3 on which the mass μ is distributed.
We assume that the particle lies outside the set A.
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Not to deal with a vector quantity, we consider the projection of the attractive
force �F(A) in a fixed direction corresponding to a unit vector �l, i.e., the inner prod-
uct Fl(A)= 〈 �F(A), �l〉.

Obviously, Fl(A) is an additive set function. Without loss of generality, we may
assume that the point mass is concentrated at the origin. If the set A degenerates to
a point w0 �= 0, then, by the law of gravitation, we have

Fl(A)= γμ0μ(A)
〈w0, �l〉

r3
,

where r = ‖w0‖ and γ is a proportionality coefficient (the gravitational constant).
It is natural to assume that the following estimates are valid:

γμ0μ(A) inf
w∈A

〈w, �l〉
‖w‖3

� Fl(A)� γμ0μ(A) sup
w∈A

〈w, �l〉
‖w‖3

.

By Proposition 6.3.1, we obtain that

Fl(A)= γμ0

∫

A

〈w, �l〉
‖w‖3

dμ(w).

Changing variables, we easily obtain that if the mass μ0 is concentrated at a point w0
with coordinates a, b, c, then the force components are calculated by the formulas

Fx = γμ0

∫

A

x − a

‖r‖3
dμ(w),

Fy = γμ0

∫

A

y − b

‖r‖3
dμ(w),

Fz = γμ0

∫

A

z− c

‖r‖3
dμ(w),

where w = (x, y, z) and r = ‖w−w0‖.

Example We calculate the force �F that the uniform ball of radius R exerts on a
particle of unit mass (we assume that the particle lies outside the ball).

We assume that the center of the ball coincides with the origin, the particle has the
coordinates (0,0, c), c > R, and the mass is distributed in the ball with (constant)
density ρ. Using the formulas for the components of the attractive force, we obtain

Fx = γ

∫∫∫

B(R)

ρ x

(x2 + y2 + (z− c)2)3/2
dx dy dz,

Fy = γ

∫∫∫

B(R)

ρ y

(x2 + y2 + (z− c)2)3/2
dx dy dz,

Fz = γ

∫∫∫

B(R)

ρ (z− c)

(x2 + y2 + (z− c)2)3/2
dx dy dz.
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From symmetry considerations, it is clear that Fx = Fy = 0, which, of course, fol-
lows easily from the fact that the integrands are odd functions. Converting to polar
coordinates, we see that

Fz = γ

∫∫∫

B(R)

ρ (z− c)

(x2 + y2 + (z− c)2)3/2
dx dy dz

= γ

∫ 2π

0

∫ π

0

∫ R

0

ρ (r cos θ − c)r2 sin θ

(r2 − 2rc cos θ + c2)3/2
dr dθ dϕ

= 2πγρ

∫ R

0
r2

(∫ π

0

(r cos θ − c) sin θ

(r2 − 2rc cos θ + c2)3/2
dθ

)

dr.

We leave it as an exercise for the reader to verify that the resulting integral with
respect to θ is equal to − 2

c2 . Therefore,

Fz = 2πγρ

∫ R

0
r2

(

− 2

c2

)

dr =−γρ
4π

3
R3 1

c2
=−γ

μ(B(R))

c2
.

Thus, a material particle is attracted by a uniform ball as if all the ball’s mass were
concentrated at its center.

6.3.3 We consider one more application of Proposition 6.3.1.
Let P be a fixed plane in the space R

m. The plane divides the space R
m into

two half-spaces one of which will be called the (+)-half-space and the other one
the (−)-half-space. By the arm p(x) of a point x with respect to the plane P , we
mean the distance from x to P taken with the plus sign if the point belongs to the
(+)-half-space and with the minus sign otherwise. If P = Pk is the coordinate plane
xk = 0, then by the (+)-half-space, we mean the half-space xk � 0. Then the arm
of x with respect to Pk is just the kth coordinate of x. By a mass distributed on
a set A ⊂ R

m, we mean a Borel measure μ concentrated on A (μ(Rm \ A) = 0).
In particular, by a point mass μ0 concentrated at a point x we mean the measure
generated by the load μ0 at x (see Sect. 1.2.2, Example (4)).

It is well known from theoretical mechanics that the statical moment of a dis-
tributed mass of a set A with respect to a plane P is the physical quantity MP (A)

characterizing the “disequilibrium degree”. It has the following properties.
(1) Additivity:

MP (A∪B)=MP (A)+MP (B), if A∩B =∅

(here and below, we assume that all sets under consideration are Borel sets).
(2) The moment satisfies the inequality

μ(A) inf
x∈Ap(x)�MP (A)� μ(A) sup

x∈A
p(x),

where μ(A) is the mass of A.



266 6 Change of Variables in an Integral

If A = {x0} is a singleton and μ0 is a mass concentrated at a point x0, then
Property (2) implies that MP (A)= μ0 p(x0).

We point out that condition (2) is natural. Indeed, if a set A lies in the (+)-half-
space and we concentrate all mass distributed in A at a point that is farther from the
plane P than the points of the set A, then we obtain a system with “even less equi-
librium” than before. This corresponds to the right-hand inequality in property (2).

Property (2) implies that the moment is positive in the sense that the moment of
a set lying in the (+)-half-space is non-negative. Since the moment is additive and
positive, it is monotonic for the sets lying in the (+)-half-subspace: if A⊂ B , then
MP (A)�MP (B). However, there is no need to dwell on these properties because
they follow from the integral representation of the moment. Since the moment is an
additive set function satisfying the two-sided estimate, we can use Proposition 6.3.1.
The direct application of this proposition shows that the following statement is valid.

Proposition Let μ be a finite mass distributed on a bounded set A. Then

MP (A)=
∫

A

p(x)dμ(x).

Definition The center of mass of a set A with mass distributed on it is a point C

such that the moment of A with respect to any plane passing through C is equal to
zero.

We prove that the center of mass always exists.
First, we find necessary conditions for a point to be a center of mass. Let μ be

non-zero mass distributed on A, and let C = (c1, . . . , cm) be a center of mass. Let
P be a plane that passes through C and is defined by the equation xk − ck = 0.
Obviously, the arm of a point x = (x1, . . . , xm) with respect to this plane coincides
(depending on the choice of (+)-half-subspace) either with xk − ck or with ck − xk .
In any case, we have

0=MP (A)=
∫

A

p(x)dμ(x)=
∫

A

(xk − ck) dμ(x)=Mk(A)− ckμ(A),

where Mk(A) is the moment with respect to the plane xk = 0. Thus, only the point
C with coordinates ck =Mk(A)/μ(A) (k = 1, . . . ,m) can be a center of mass.

Now, we prove that this point is indeed the center of mass. Let P be an arbitrary
plane passing through C. This plane is given by an equation of the form

m∑

k=1

ak(xk − ck)= 0.

Without loss of generality, we may assume that
∑m

k=1 a
2
k = 1. Taking the half-

subspace defined by the inequality
∑m

k=1 ak(xk − ck) > 0 as the (+)-half-space,
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we obtain that the arm of the point x = (x1, . . . , xm) coincides with the sum∑m
k=1 ak(xk − ck). Therefore,

MP (A)=
∫

A

m∑

k=1

ak(xk − ck) dμ=
m∑

k=1

ak
(
Mk(A)− ckμ(A)

)= 0,

which proves the statement.
As well as a proof of the existence of a center of mass, we obtain the following

formulas for its coordinates:

ck = 1

μ(A)

∫

A

xk dμ(x) (k = 1, . . . ,m).

We note that if the set A in question is finite, A= {a1, . . . , aN }, and the mass μk is
concentrated at ak , then the above formulas imply that the center of mass of such a
system is a convex combination of the points ak ,

C = μ1a1 + · · · +μNaN

μ1 + · · · +μN

.

The coefficients of this convex combination are proportional to the masses concen-
trated at the corresponding points.

Example We find the center of mass C of the uniform set Bm+ = B(0,1) ∩R
m+ (the

set Rm+ consists of the points with positive coordinates). We may assume that the
density of the mass distribution is equal to 1, i.e., μ= λm. Then the mass is equal to
the volume of Bm+ , μ(Bm+ )= αm

2m (recall that αm = λm(B(0,1))).
By symmetry, the coordinates of the vector C are equal, C = (c, . . . , c). By the

formulas for the coordinates of the center of mass, we obtain

c= 1

μ(Bm+ )

∫

Bm+
xm dx = 2m

αm

∫

Bm+
xm dx.

To evaluate this integral, we represent the vector x from Bm+ in the form x = (y, t),
where y ∈ Bm−1+ , t ∈ (0,1) and ‖y‖2 + t2 < 1. Then

c = 2m

αm

∫ 1

0
tλm−1

(√
1− t2Bm−1+

)
dt

= 2m

αm

∫ 1

0
t · αm−1

2m−1
· (1− t2)m−1

2 dt = 2

m+ 1

αm−1

αm

.

Since αm = π
m
2 /�(1+ m

2 ) (see Sect. 5.4.2), we have

c= 2

m+ 1

�(m+2
2 )√

π �(m+1
2 )

= 1√
π

�(m+2
2 )

�(m+3
2 )

.
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For m = 3, we obtain C = ( 3
8 ,

3
8 ,

3
8 ). We observe that Stirling’s formula (see

Sect. 7.2.6) implies that the coordinates of the point C tend to zero like
√

2
πm

as
m→∞.

Therefore, the norm ‖C‖ tends to
√

2
π

. A more detailed study shows that ‖C‖
increases with the dimension, which means that an increasingly larger portion of
volume of the set Bm+ is concentrated near the spherical part of its boundary.

EXERCISES

1. Find the force with which the uniform spherical layer Br,R = {w ∈ R
3|r �

‖w‖ � R} attracts a material particle w0, w0 /∈ Br,R . Consider the cases
‖w0‖>R and ‖w0‖< r .

2. Assume that a set A lies in a plane on one side of a line �. Use the result of Exer-
cise 2, Sect. 5.4 to prove Guldin’s theorem:4 the volume of a solid of revolution
obtained by rotating the set A about the line � is equal to the product of the area
of A and the distance traveled by the center of mass of A (it is assumed that the
mass is distributed on A with constant density).

Assume that a finite mass μ is distributed on a bounded set A⊂R
3. The moment

of inertia I�(A) of a set A with respect to an axis � is a physical quantity charac-
terizing the kinetic energy of a body rotating about this axis. More precisely, the
kinetic energy is equal to 1

2I�(A)ω2, where ω is the angular velocity. For a point
mass μ0 located at distance r from the axis of rotation, the kinetic energy E is

calculated by the formula E = μ0v
2

2 = μ0r
2

2 ω2. Thus, in this case, the moment of
inertia is equal to μ0r

2.
It is clear from physical considerations that the moment of inertia with respect
to a fixed axis is an additive set function that does not decrease as the distance
between the body and the axes increases. Thus, if we concentrate all mass at a
point of the body farthest from the axis, then the moment of inertia can only
increase. Respectively, if we concentrate all mass at a point closest to the axis,
then the moment of inertia can only decrease. This means that the following
two-sided estimates are valid for I�(A):

μ(A) inf
x∈Adist2(x, �)� I�(A)� μ(A) sup

x∈A
dist2(x, �).

This allows us to use Proposition 6.3.1 in the calculation of moments of inertia.
3. Find the moments of inertia of a uniform ball with respect to its diameter and a

tangent line.
4. Find the moments of inertia of a uniform right circular cylinder with respect to

the axis of symmetry, a generatrix, and a diameter of the base.
5. Find the moment of inertia of a ball with respect to its diameter if the mass

distribution density is inversely proportional to the distance from the origin.

4Paul Guldin (1577–1643)—Swiss mathematician.
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6. For which of the lines parallel to each other is the moment of inertia of a body
minimal?

7. Assume that mass is uniformly distributed on a measurable cone (see, e.g.,
Sect. 5.4.2, Example 1). Prove that the distance from the center of mass to the
plane containing the base of the cone is proportional to the hight of the cone.
Prove that the proportionality coefficient depends only on the dimension and
find this coefficient.

8. Assume that mass is uniformly distributed on a convex body K ⊂ R
m and that

the center of mass coincides with the origin. Prove that −K ⊂mK . Hint. Prove
that each chord passing through the center of mass is divided by the center of
mass into segments with length at least 1

m+1 of the length of the chord.
9. Verify that the moment of inertia of a uniform cube (of arbitrary dimension) with

respect to a line passing through the center of cube does not depend on the line.
For which mass distribution does this property remain valid? Is it true that the
sum of the squares of the distances from the vertices to a line passing through
the center of the cube is the same whichever line we take?

6.4 �Distribution Functions. Independent Functions

6.4.1 We consider an important specific case of the weighted image of a measure.
As in Sect. 6.1, let (X,A,μ) be a measure space. Unless otherwise stated, we as-
sume that all functions in question are measurable.

Let Y = R, and let B=B(R) be the σ -algebra of Borel sets. Further, let h be
a measurable almost everywhere finite function on X. It is well known (see Propo-
sition 3.1.2) that the preimage h−1(B) is measurable for every Borel set B ⊂ R.
Therefore, we can define the measure ν = h(μ) on B, which is the image of μ with
respect to h. We assume in addition that the measure ν is finite on intervals. Then
ν is a Borel–Stieltjes measure and, consequently, is generated by a non-decreasing
function. To specify this function, we introduce the following definition.

Definition Let h be a measurable almost everywhere finite function on X. We as-
sume that the set

X(h < t)= {
x ∈X |h(x) < t

}

has a finite measure for every t ∈ R and put H(t)= μ(X(h < t)). The function H

is called the distribution function of the function h (with respect to the measure μ

or in measure μ).

It is obvious that a distribution function is non-decreasing. From the lower con-
tinuity of measure, it follows that a distribution function is left-continuous. We note
that the function t �→ μ(X(h � t)) coincides with H at all points of continuity. If
the measure is finite, then every measurable almost everywhere finite function has a
distribution function.
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Proposition Under the assumption of the definition, h(μ) coincides with the Borel–
Stieltjes measure generated by H .

For the definition of a Borel–Stieltjes measure, see Sect. 4.10.3.

Proof By the uniqueness theorem 1.5.1, it is sufficient to check that the measures in
question coincide on the right-open semi-intervals, which, in turn, follows from the
definition of the functions H . �

In our specific case, the general theorem proved in Sect. 6.1.1 turns into the the-
orem stated below. We notice that a function f considered in the above-mentioned
general theorem must be measurable with respect to the σ -algebra B, which now
is the σ -algebra of Borel subsets of the real line. Such functions are called Borel
measurable. It is obvious that all continuous functions are Borel measurable.

Theorem Let f be a non-negative Borel measurable function defined on R, let h be
an almost everywhere finite measurable function on X, and let H be the distribution
function of h. Then

∫

X

f
(
h(x)

)
dμ(x)=

∫

R

f (t) dH(t). (1)

This relation remains valid for functions f taking values of an arbitrary sign pro-
vided the composition f ◦ h is summable.

The above theorem is obtained from Theorem 6.1.1 by putting (Y,B, ν) =
(R,B(R), h(μ)), �= h and ω ≡ 1. We note that the condition in Definition 6.1.1
(the preimage h−1(B) of a Borel set B is measurable) is fulfilled by Proposi-
tion 3.1.2.

Remark Specific cases of Eq. (1) are the formulas

∫

X

hdμ=
∫ ∞

−∞
t dH(t),

∫

X

|h|p dμ=
∫ ∞

−∞
|t |p dH(t),

which are frequently used in probability theory. The reader familiar with probability
theory will recognize these formulas as those for the mean and the absolute moments
of a random variable h.

6.4.2 We give several examples.

Example 1 We consider the integral
∫
Rm f (‖x‖) dx, where f is a non-negative

function measurable on the semi-axis (0,+∞).
Let h be a function defined by the equation h(x)= ‖x‖ for x ∈R

m. Its distribu-
tion function is as follows: H(t)= 0 if t � 0 and H(t)= αmtm if t > 0, where αm
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is the volume of the unit ball. Therefore,
∫

Rm

f
(‖x‖)dx =

∫ ∞

0
f (t) dH(t)=mαm

∫ ∞

0
f (t)tm−1 dt

(the last equality is a consequence of formula (5) of Remark 4.10.4 and the fact that
H is smooth on (0,+∞)).

Example 2 The formula from Example 1 provides a new way to calculate the
Euler–Poisson integral I = ∫∞

−∞ e−x2
dx, the value of which is already known (see

Sect. 5.3.2, Example 1 and Sect. 6.2.4, Example 2).
As before, we transform I 2 by Fubini’s theorem,

I 2 =
∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−y2

dy =
∫∫

R2
e−(x2+y2) dx dy.

Now, using the formula from Example 1 for m = 2 and taking f (t) = e−t2
, we

obtain
∫∫

R2
e−(x2+y2) dx dy =

∫ ∞

0
e−t2

d
(
πt2)= (−π)e−t2

∣
∣
∣
∞
0
= π.

Thus, I =√π .

Example 3 Generalizing the method used in the previous example, we find the vol-
ume V of the set

W = {
(x1, . . . , xm) ∈R

m | |x1|p1 + · · · + |xm|pm � 1
}
,

where p1, . . . , pm are positive numbers (in Sect. 5.4.2, Example 4, this problem is
solved without using the distribution function). To this end, we calculate the integral

I =
∫

Rm

exp

(

−
m∑

j=1

|xj |pj

)

dx

in two different ways.
On the one hand, we use Fubini’s theorem and obtain

I =
m∏

j=1

∫ ∞

−∞
e−t

pj
dt = 2m

m∏

j=1

�

(

1+ 1

pj

)

.

On the other hand, we can use formula (1), with f (t) = e−t and h(x) = |x1|p1 +
· · · + |xm|pm . The corresponding distribution function H(t) for t > 0 can be calcu-
lated by the linear change of variables xj = t1/pj uj (j = 1, . . . ,m):

H(t)= λm

({
(x1, . . . , xm) | |x1|p1 + · · · + |xm|pm � t

})

= tqλm

({
(u1, . . . , um) | |u1|p1 + · · · + |um|pm � 1

})= tqλm(W)= tqV ,
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where q = 1
p1
+ · · · + 1

pm
. Therefore, formula (1) yields the relation

I =
∫ ∞

0
f (t) dH(t)=

∫ ∞

0
e−t d

(
V tq

)= V�(1+ q).

Thus,

V = I

�(1+ q)
= 2m

�(1+ 1
p1
+ · · · + 1

pm
)

m∏

j=1

�

(

1+ 1

pj

)

.

In the case where p1 = · · · = pm = 2, we once again obtain the formula for the
volume of the m-dimensional unit ball Bm (see Sect. 5.4.2),

λm

(
Bm

)= 2m�m(1+ 1
2 )

�(1+ m
2 )

= π
m
2

�(1+ m
2 )

.

In conclusion, we present a more general result. We use a distribution func-
tion to estimate the ratio of the volumes of the compact sets K ⊂ R

m and �K =
{x − y |x, y ∈K}. In the general case, such an estimate is impossible (for example,
if K ⊂R

2 consists of two non-parallel intervals, then λ2(K)= 0 but λ2(�K) > 0).
However, the following statement is proved in [RS].

Theorem Let K ⊂R
m be a convex body. Then

2mλm(K)� λm(�K)� Cm
2mλm(K).

Proof The estimate from below is easily obtained from the Brunn–Minkowski
inequality. Indeed, since λm(−K) = λm(K) and �K = K + (−K), we have

2λ
1
m
m (K)= λ

1
m
m (K)+ λ

1
m
m (−K)� λ

1
m
m (K + (−K))= λ

1
m
m (�K).

The estimate from above is harder to prove. It is obvious that

λ2
m(K)=

∫

Rm

χK(x)

(∫

Rm

χK(y)dy

)

dx =
∫

Rm

χK(x)

(∫

Rm

χK(x − z) dz

)

dx

=
∫

Rm

(∫

Rm

χK(x)χK(x − z) dx

)

dz=
∫

Rm

λm

(
K ∩ (z+K)

)
dz.

If z /∈�K , then K ∩ (z+K)=∅. Indeed, in the representation z= x− (x− z), we
have either x /∈K or x − z /∈K . Consequently, λm(K ∩ (z+K))= 0 for z /∈�K ,
and so,

λ2
m(K)=

∫

�K

λm

(
K ∩ (z+K)

)
dz.

To estimate λm(K ∩ (z + K)) from below, we take z ∈ �K , z �= 0, and find h =
h(z) ∈ (0,1] such that z

h
∈ ∂�K . Let z

h
= a − b, where a, b ∈K . We prove that

ha + (1− h)K ⊂K ∩ (z+K).
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The inclusion ha + (1− h)K ⊂K is obvious, and the inclusion ha + (1− h)K ⊂
z+K follows from the fact that ha = hb+ h, and, therefore,

ha + (1− h)K = z+ hb+ (1− h)K ⊂ z+K.

Thus,

λm

(
K ∩ (z+K)

)
� λm

(
ha + (1− h)K

)= (1− h)mλm(K).

Consequently,

λ2
m(K)� λm(K)

∫

�K

(
1− h(z)

)m
dz.

To calculate the last integral, we consider the distribution function for h:

H(t)= λm

({
z ∈�K |h(z) < t

})= λm(t �K)= tmλm(�K) if 0 < t < 1,

H(t)= 0 if t � 0,

H(t)= λm(�K) if t � 1.

By Theorem 6.4.1, we have

∫

�K

(
1− h(z)

)m
dz=

∫ 1

0
(1− t)m dH(t)=mλm(�K)

∫ 1

0
tm−1(1− t)m dt

=mB(m,m+ 1)λm(�K)= m!m!
(2m)!λm(�K).

Thus,

λ2
m(K)� m!m!

(2m)!λm(�K)λm(K),

which is equivalent to the required inequality. �

Remark Obviously, �K = 2K for a centrally symmetric convex body K and, con-
sequently, λm(�K)= 2mλm(K). Therefore, the estimate from below for the volume
λm(�K) given in the theorem is sharp. The estimate from above is also sharp; it be-
comes an equality if K is a simplex since, in this case, we have K ∩ (z + K) =
ha + (1− h)K . We leave it to the reader to verify this equation. It is convenient to
verify it for the simplex K = {(x1, . . . , xm) ∈R

m+|x1+· · ·+xm � 1} by proving that
h(x)=max{∑m

k=1(xk)+,
∑m

k=1(−xk)+}.

6.4.3 As we said before, if a measure μ is finite, then the distribution function al-
ways exists, but, in the case of an infinite measure, this is not the case. For example,
every positive function summable with respect to an infinite measure does not have
a distribution function. Therefore, it is often useful to change the definition of a
distribution function.
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Definition Let h be a non-negative measurable function on X such that, for all
t > 0, the set

X(h > t)= {
x ∈X |h(x) > t

}

has a finite measure. We put H̃ (t) = μ(X(h > t)) and call the function H̃ the de-
creasing distribution function for h.

To avoid ambiguity, we sometimes call the distribution function defined in
Sect. 6.4.1 the increasing distribution function.

From the continuity of a measure, it follows that H̃ (t) −→
t→+∞ 0 if and only

if h(x) < +∞ almost everywhere on X. As well as the increasing distribution
function, the function H̃ is also left-continuous. The sets X(h � t) and X(h > t)

both have a finite measure only if the measure μ is finite. In this case, we obtain
H(t + 0)+ H̃ (t)= μ(X). We note that a non-negative measurable function h cer-
tainly has a decreasing distribution function if

∫
X
hp dμ < +∞ for some p > 0.

This follows directly from Chebyshev’s inequality (see Theorem 4.4.4):

H̃ (t)= μ
(
X(h > t)

)
� 1

tp

∫

X

hp dμ<+∞ for all t > 0.

We do not state an analog of Theorem 6.4.1 for decreasing distribution functions,
contenting ourselves instead with a more specific statement.

Proposition Let p > 0, and let h be a non-negative measurable function with a
decreasing distribution function H̃ . Then

∫

X

hp dμ= p

∫ ∞

0
tp−1H̃ (t) dt.

Proof We transform the integral
∫
X
hp dμ as follows:

∫

X

hp dμ= p

∫

X

(∫ h(x)

0
tp−1 dt

)

dμ(x).

The repeated integral on the right-hand side is equal to the double integral of the
function (x, t) �→ tp−1 over the subgraph of the function P =Ph(X) of h. To
change the order of integration, we observe that, for t > 0, the cross section P t of
the subgraph is the set X(h � t) (see Fig. 6.4). Therefore, changing the order of
integration, we obtain

∫

X

hp dμ= p

∫ ∞

0
tp−1

(∫

X(h�t)

1dμ

)

dt = p

∫ ∞

0
tp−1μ

(
X(h� t)

)
dt.

It remains to observe that μ(X(h � t)) = H̃ (t) almost everywhere, namely, at the
points of continuity of the function H̃ . �
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Fig. 6.4 Cross section of the subgraph of h on a level t

6.4.4 Throughout this section, we assume that all functions in question are defined
on a fixed normalized measure space (X,A,μ) (μ(X)= 1). Let f1, . . . , fn be mea-
surable almost everywhere finite real functions. For each function fk , there exists a
Borel measure νk that is the image of μ with respect to fk ; this measure is called the
distribution of fk . We also consider the map � :X→R

n with coordinate functions
f1, . . . , fn, and put ν = �(μ). The measure ν is called the simultaneous distribu-
tion of the functions f1, . . . , fn. We introduce the notion of independent functions,
which play a fundamental role in probability theory.

Definition Functions f1, . . . , fn are called independent if ν coincides with the mea-
sure ν1 × · · · × νn (the product of the measures ν1, . . . , νn). Functions of an infinite
family are called independent if the functions in each finite subfamily are indepen-
dent.

The uniqueness of measure extensions implies that to prove that the measures ν

and ν1 × · · · × νn coincide it is sufficient to prove that they coincide on the cells,
i.e., that for every cell P =∏n

k=1[ak, bk) the equation

μ
(
�−1(P )

)=
n∏

k=1

μ
(
f−1
k

([ak, bk)
))

is valid. Since the set �−1(P ) coincides with
⋂n

k=1 f
−1
k ([ak, bk)), the last equation

can be represented in the form

μ

(
n⋂

k=1

f−1
k

([ak, bk)
)
)

=
n∏

k=1

μ
(
f−1
k

([ak, bk)
))
. (2)

If the functions f1, . . . , fn are independent and a non-negative function h defined
on R

n is Borel measurable, then Theorem 6.1.1 implies
∫

X

h
(
f1(x), . . . , fn(x)

)
dμ(x)=

∫

Rn

h(t1, . . . , tn) dν1(t1) · · · dνn(tn), (3)

and this equation remains valid if the function h is summable.
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In turn, if Eq. (3) is valid for every non-negative function h, then, in particu-
lar, Eq. (2) is also valid. Indeed, it is sufficient to put h = χP . Thus, Eq. (3) is a
characteristic property of independent functions.

It follows from (3) that if independent functions f1, . . . , fn are summable, then
the product f1 · · ·fn is also summable (since

∫
X
|f1 · · ·fn|dμ=∏n

k=1

∫
X
|fk|dμ),

and the integral of the product of these functions is equal to the product of the
integrals (cf. Corollary 1, Sect. 5.3.4).

If f1, . . . , fn are real functions, then the system of sets of the form⋂n
k=1 f

−1
k (�k), where �k are various left-closed intervals, is a semiring; we

denote it by P(f1, . . . , fn) and its Borel hull by A(f1, . . . , fn). It is obvious
that the functions f1, . . . , fn are measurable with respect to A(f1, . . . , fn) and
that A(f1, . . . , fn) is the minimal σ -algebra with respect to which all functions
f1, . . . , fn are measurable. Similarly, we denote by A({fn}n�1) the Borel hull of the
union

⋃∞
n=1 P(f1, . . . , fn). This is the minimal σ -algebra with respect to which all

functions of the sequence {fn}n�1 are measurable.

Lemma Let the functions f1, . . . , fn, g1, . . . , gm be independent. Then the algebras
A(f1, . . . , fn) and A(g1, . . . , gm) are independent in the sense that

μ(A∩B)= μ(A)μ(B) for all A ∈A(f1, . . . , fn), B ∈A(g1, . . . , gm). (4)

Proof If A ∈P(f1, . . . , fn) and B ∈P(g1, . . . , gm), then Eq. (4) is valid by the
definition of independent functions. We fix a set Q ∈P(g1, . . . , gm) and consider
the following two measures defined on the σ -algebra A(f1, . . . , fn):

μ1(A)= μ(A∩Q) and μ2(A)= μ(A)μ(Q)
(
A ∈A(f1, . . . , fn)

)
.

These measures coincide on the semiring P(f1, . . . , fn), and, by the unique-
ness theorem, they coincide on A(f1, . . . , fn). Now, we fix an arbitrary set A ∈
A(f1, . . . , fn) and consider the following two measures defined on the σ -algebra
A(g1, . . . , gm):

ν1(B)= μ(A∩B) and ν2(B)= μ(A)μ(B)
(
B ∈A(g1, . . . , gm)

)
.

If follows from the above that ν1 and ν2 coincide on P(g1, . . . , gm), and, by the
uniqueness theorem, they also coincide on A(g1, . . . , gm), which completes the
proof. �

Remark Equation (4) also remains valid in the case of infinite families of inde-
pendent functions since this equation is valid for A ∈ ⋃∞

n=1 P(f1, . . . , fn) and
B ∈⋃∞

n=1 P(g1, . . . , gn).

Corollary Let the functions f1, . . . , fn, g1, . . . , gm be independent. If functions
F and G are measurable with respect to the σ -algebras A(f1, . . . , fn) and
A(g1, . . . , gm), respectively, then they are independent.
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Proof The fact that F and G are independent follows from Eq. (4) applied to the
sets A= F−1(�) and B =G−1(�′), where � and �′ are arbitrary intervals. �

Let {fn}n�1 be a sequence of independent functions, and let An =
A(fn, fn+1, . . .) be the minimal σ -algebra with respect to which all functions
fn,fn+1, . . . are measurable. Obviously, the σ -algebras An decrease as n increases.
The intersection of all An contains sets that “do not depend on any number of the
initial functions f1, . . . , fm”. Such a set is, for example, the convergence set of the
series

∑∞
k=1 fk , since the series

∑∞
k=1 fk and

∑∞
k=n fk converge simultaneously.

It turns out that the following statement is valid for the sets belonging to the
intersection

⋂∞
n=1 An.

Theorem (Zero-one law) If A ∈⋂∞
n=1 An, then either μ(A)= 0 or μ(A)= 1.

Proof We verify that if B ∈A1, then

μ(A∩B)= μ(A)μ(B). (4′)

Indeed, by the remark to the lemma, the algebras A(f1, . . . , fn) and An+1 are in-
dependent for every n, and, therefore, Eq. (4′) is valid for every set B in the semiring⋃∞

n=1 P(f1, . . . , fn). By the uniqueness theorem, the measures B �→ μ(A∩B) and
B �→ μ(A)μ(B) also coincide on the Borel hull of this semiring, i.e., on A1, which
proves Eq. (4′). For B =A, Eq. (4′) turns into μ(A)= (μ(A))2 which holds only if
μ(A)= 0 or μ(A)= 1. �

Corollary If the functions f1, f2, . . . are independent, then the series
∑∞

n=1 fn ei-
ther converges almost everywhere or diverges almost everywhere.

Proof This is a special case of the zero-one law since, as noted above, the conver-
gence set of the series belongs to the intersection

⋂∞
n=1 An. �

Using an infinite product of measures, we can easily verify that there exists a
sequence of independent functions with arbitrarily prescribed distributions νn (n=
1,2, . . .). Indeed, it is sufficient to consider the measure μ = ν1 × ν2 × · · · in the
infinite product RN =R×R× · · · and put hn(t) equal to the nth coordinate of the
point t ∈R

N.

6.4.5 An important example of independent functions is provided by the Radema-
cher functions5 rn (n= 1,2, . . .). The function rn is defined as follows. We divide
the interval (0,1) into equal parts by the points k2−n, and put rn(x)= (−1)k in the
interval �n,k = (k2−n, (k+ 1)2−n) (k = 0,1, . . . ,2n− 1). Furthermore, we assume

5Hans Adolph Rademacher (1892–1969)—German mathematician.
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that rn(k2−n)= 0 for k = 0,1, . . . ,2n and that the function rn is 1-periodic. It can
easily be seen that

rn(x)= r1
(
2n−1x

)= sign sin
(
2nπx

)
.

The reader can easily verify that the values of the Rademacher functions at a
point x ∈ (0,1) are closely related to the digits of the binary expansion of x, i.e., if
x is not a dyadic fraction and x =∑∞

n=1
εn(x)

2n , where εn(x)= 0 or 1, then rn(x)=
1− 2εn(x).

It is clear that λ1({x ∈ (0,1) | rn(x) = 1}) = λ1({x ∈ (0,1) | rn(x) = −1}) = 1
2 ,

and, therefore, all Rademacher functions have the same increasing distribution func-
tion F ,

F(t)=

⎧
⎪⎨

⎪⎩

0 t �−1,
1
2 −1 < t � 1,

1 t > 1.

The function F gives rise to the measure ν on R generated by the loads 1
2 at the

points ±1. Obviously,

∫ 1

0
h

(
rn(x)

)
dx = h(−1)+ h(1)

2
=

∫

R

h(t) dF (t).

Being regarded as functions on the interval (0,1) with Lebesgue measure, the
Rademacher functions form an independent system. To prove this, it is sufficient
to check Eq. (3). In our case, this means that

∫ 1

0
h

(
r1(x), . . . , rn(x)

)
dx =

∫

Rn

h(t1, . . . , tn) dF (t1) · · · dF(tn)

for all n. We calculate the left-hand and right-hand sides of this equation sepa-
rately. Since the values of the functions r1, . . . , rn are constant on each interval
�n,k , we see that the family {rk(x)}nk=1 is a sequence of ±1 for x ∈ �n,k . The
reader can easily prove by induction that distinct intervals �n,k give rise to distinct
sequences. Since the number of intervals �n,k as well as the number of n-tuples
ε = (ε1, . . . , εn) with εk =±1 is equal to 2n, there is a one-to-one correspondence
between them. Therefore,

∫ 1

0
h

(
r1(x), . . . , rn(x)

)
dx =

2n−1∑

k=1

∫

�n,k

h
(
r1(x), . . . , rn(x)

)
dx

= 1

2n

∑

ε∈{−1,1}n
h(ε1, . . . , εn).

On the other hand, since F gives rise to the measure ν generated by the loads 1
2

at the points ±1, we see that ν × · · · × ν (n times) is the measure generated by
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the loads 2−n in the vertices of the cube [−1,1]n, i.e., at all points of the form
ε = (ε1, . . . , εn), where εk =±1. Therefore,

∫

Rn

h(t1, . . . , tn) dF (t1) · · · dF(tn)=
∑

ε∈{−1,1}n
h(ε1, . . . , εn)2

−n.

Since the right-hand side of this equation coincides with the right-hand side of the
previous equation, we see that (3) is valid for the Rademacher functions. Similarly, it
is easy to prove that the digits of the binary (decimal, p-ary) expansion of x ∈ (0,1)
are independent functions.

The use of distribution functions is helpful not only in the calculation of inte-
grals but also in proofs of integral inequalities. In the remainder of this section, we
consider such an example related to an important inequality.

We estimate the decreasing distribution function of the function |S|, where
S = ∑n

j=1 aj rj (here, a1, . . . , an ∈ R and r1, . . . , rn are Rademacher functions),
i.e., the measure of the set Et = {x ∈ (0,1) | |S(x)| > t}. It is important to obtain
an estimate that depends not on the number n of summands but on the total value
of the coefficients a1, . . . , an. More precisely, our goal is to estimate the measure

F̃ (t)= λ1(Et ) by the parameter A= (
∑

a2
j )

1
2 .

We start with the inequality 1 � eu(|S(x)|−t), valid for x ∈ Et and all u > 0 (we
will use the freedom in the choice of the parameter u later). Obviously,

F̃ (t)= λ1(Et )�
∫

Et

eu(|S(x)|−t) dx � e−ut

∫ 1

0

(
euS(x) + e−uS(x)

)
dx.

Since the Rademacher functions are independent, the integrals
∫ 1

0 e±uS(x) dx split
into the product of integrals

∫ 1

0
e±uS(x) dx =

n∏

j=1

∫ 1

0
e±uaj rj (x) dx =

n∏

j=1

cosh(uaj ).

Therefore, F̃ (t) � 2e−ut
∏n

j=1 cosh(uaj ). Using the inequality coshx � ex
2/2,

which can easily be proved by comparing the coefficients of the Taylor expansions,
we can find an upper bound for the latter product. We obtain

F̃ (t)� 2e−ut
n∏

j=1

e
u2a2

j /2 = 2e−ut+u2A2/2.

Now, we choose a u so that the right-hand side of the inequality is minimal. To this
end, we put u= t/A2. As a result, we come to the required estimate

F̃ (t)= λ(Et )� 2e−t2/(2A2).
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This estimate enables us to obtain the Khintchine6 inequality, which says that

(∫ 1

0

∣
∣S(x)

∣
∣p dx

)1/p

� Cp

(
a2

1 + · · · + a2
n

)1/2
, (5)

for every p > 0 (the constant Cp depends only on p). Since
∫ 1

0 |S(x)|2 dx =
a2

1 + · · · + a2
n, Hölder’s inequality implies that we can take Cp = 1 if p ∈ (0,2].

We also notice that the Khintchine inequality is sharp in order of magnitude: it can
be supplemented by a similar estimate from below (see Exercise 7 in Sect. 9.1).

For the proof, we use Proposition 6.4.3. Applying the estimate obtained above
for the distribution function, we have

∫ 1

0

∣
∣S(x)

∣
∣p dx = p

∫ ∞

0
tp−1F̃ (t) dt � 2p

∫ ∞

0
tp−1e−t2/(2A2) dt.

It remains to express the latter integral in terms of the function � (see Sect. 4.6.3,
Example 5). Using the change of variables s = t2/(2A2) in the latter integral, we
see that

∫ ∞

0
tp−1e−t2/(2A2) dt = p2p/2Ap

∫ ∞

0
s

p
2−1e−s ds = p2p/2�(p/2)Ap.

This gives inequality (5) with Cp =
√

2(p�(p/2))1/p . By Stirling’s formula (see
Sect. 7.2.6), we can easily prove that Cp ∼√p/e as p→+∞.

EXERCISES

1. Let f be a non-negative Lebesgue measurable function defined on R+, and let
R

m+ = {x = (x1, x2, . . . , xm) |x1 > 0, x2 > 0, . . . , xm > 0}. Prove the relations:

(a)
∫

R
m+
f (x1 + x2 + · · · + xm)dx = 1

(m− 1)!
∫ ∞

0
tm−1f (t) dt;

(b)
∫

R
m+
f

(
max{x1, x2, . . . , xm}

)
dx =m

∫ ∞

0
tm−1f (t) dt.

2. Prove the following Catalan7 formula: if f is a non-negative Borel measurable
function on R, then

∫

X

g(x)f
(
h(x)

)
dμ(x)=

∫

R

f (t) dH(t).

Here, the function g � 0 is summable on X, h is measurable, and H is the in-
creasing distribution function of h in a measure with density g with respect to μ

(i.e., H(t)= ∫
X(h<t)

g dμ).

6Aleksandr Yakovlevich Khintchine (1894–1959)—Russian mathematician.
7Eugène Charles Catalan (1814–1894)—Belgian mathematician.
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3. Prove the following generalization of Proposition 6.4.3. Let ϕ be a continuously
differentiable increasing function on [0,+∞) such that ϕ(0)= 0. Then

∫

X

ϕ(h)dμ=
∫ ∞

0
ϕ′(t)H̃ (t) dt,

where the function h is non-negative and H̃ is the decreasing distribution func-
tion of h.

4. If μ is a non-zero finite measure on X, μ(X) �= 1, then there are no pairs of
independent functions defined on X.

5. Let ρ(x) be the distance from a point x to a convex bounded set A⊂R
2. Calcu-

late the increasing distribution function of the function ρ.
6. Let f (x)= a1

x−c1
+ · · · + an

x−cn
, where a1, . . . , an are positive and c1, . . . , cn are

arbitrary real numbers. Prove Boole’s8 equations:

λ
({

x ∈R | f (x) > t
}) = λ

({
x ∈R | f (x) <−t

})

= a1 + · · · + an

t
for all t > 0.

6.5 �Computation of Multiple Integrals by Integrating over
the Sphere

In this section, we will use the following notation:

R
m± = {x = (x1, . . . , xm) ∈R

m | ± xm > 0};
Sm−1± = Sm−1 ∩R

m±;
Bm = {x ∈R

m | ‖x‖< 1} is the unit ball in the space R
m;

P is the orthogonal projection of Rm onto R
m−1: if x = (x1, . . . , xm−1, xm), then

P(x)= (x1, . . . , xm−1) ∈R
m−1 (m� 2).

6.5.1 In Chap. 8, we define a measure on smooth surfaces (the “surface area”).
Here, running a few steps forward, we note only that this measure σ (= σm−1) is
constructed on the sphere Sm−1 in such a way that a set A⊂ Sm−1+ is measurable if
and only if its projection P(A) is Lebesgue measurable in the space R

m−1, and if
P(A) is measurable, then the measure σ(A) is calculated by the formula

σ(A)=
∫

P(A)

du
√

1− ‖u‖2
.

8George Boole (1815–1864)—British mathematician.
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We remark that the restriction of P to Sm−1+ is the map inverse to the map
T : Bm−1 → Sm−1+ defined by the equation

T (u)= (
u,

√
1− ‖u‖2

)
, where u ∈ Bm−1

(throughout this section, we identify a pair (u, t), where u = (u1, . . . , um−1) ∈
R

m−1, t ∈R, with the point (u1, . . . , um−1, t) ∈R
m).

Thus, the restriction of the measure σ to the σ -algebra of measurable subsets of
the upper hemisphere is the ω-weighted image of the measure λm−1 in the unit ball
under the map T , where ω(u) = 1√

1−‖u‖2
. From the definition of the measure σ

given above, it follows that a function g defined on Sm−1+ and the composition g ◦T
are measurable simultaneously. Using Theorem 6.1.1, we see that

∫

Sm−1+
g(ξ) dσ (ξ)=

∫

Bm−1
g

(
T (u)

) du
√

1− ‖u‖2
(1)

for every non-negative measurable function g on Sm−1+ .
Similar facts also hold for the lower hemisphere.
We will find the total area of the sphere Sm−1 (m > 1) right away. It is clear that

σ
(
Sm−1)= 2σ

(
Sm−1+

)= 2
∫

Bm−1

du
√

1− ‖u‖2
.

By the formula obtained in Example 1 of Sect. 6.4.2, we have

2
∫

Bm−1

du
√

1− ‖u‖2
= 2(m− 1)αm−1

∫ 1

0

tm−2

√
1− t2

dt

= (m− 1)αm−1

∫ 1

0

tm−3

√
1− t2

d
(
t2)

= (m− 1)αm−1

∫ 1

0
s

m−1
2 −1(1− s)

1
2−1 ds,

where αm−1 is the (m − 1)-dimensional volume of the ball Bm−1. As proved in
Sect. 5.4.2 (Example 2) and in Sect. 5.3.2 (Example 2),

αm−1 = π(m−1)/2

�((m+ 1)/2)
,

∫ 1

0
s

m−1
2 −1(1− s)

1
2−1 ds = �((m− 1)/2)�(1/2)

�(m/2)
.

Substituting these expressions into the previous equation, we obtain

σ
(
Sm−1)= (m− 1)

π(m−1)/2

�((m+ 1)/2)

�((m− 1)/2)�(1/2)

�(m/2)
= 2πm/2

�(m/2)
.

The formula for the area of a higher-dimensional sphere was found for the first time
by Jacobi.
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6.5.2 After giving the above information needed in the sequel, we now turn to
the question we are presently interested in. Our goal is to generalize the results
of Sects. 6.2.4 and 6.2.5 (the calculation of integrals with the help of polar and
spherical coordinates) to higher dimensional spaces.

Theorem For every non-negative Lebesgue measurable function f defined on R
m,

the following relation holds:
∫

Rm

f (y) dy =
∫ ∞

0
tm−1

(∫

Sm−1
f (tξ) dσ (ξ)

)

dt. (2)

Here, the function ξ �→ f (tξ) is measurable on Sm−1 for almost all t > 0 and the
internal integral on the right-hand side of (2) is a measurable function of t .

This statement can obviously be carried over to the functions summable on an
arbitrary ball B(0, r),

∫

B(0,r)
f (y) dy =

∫ r

0
tm−1

(∫

Sm−1
f (tξ) dσ (ξ)

)

dt. (2′)

Proof We prove a formula similar to (2), where the space R
m and the sphere Sm−1

are replaced by the half-space R
m+ and the hemisphere Sm−1+ ,

∫

R
m+
f (y)dy =

∫ ∞

0
tm−1

(∫

Sm−1+
f (tξ) dσ (ξ)

)

dt.

It can easily be proved that a similar equation holds for the half-space R
m− and the

hemi-sphere Sm−1− . Therefore, Eq. (2) is also valid.
By (1), we have

∫

Sm−1+
f (tξ) dσ (ξ)=

∫

Bm−1
f

(
tT (u)

) du
√

1− ‖u‖2
,

where T (u)= (u,
√

1− ‖u‖2). Therefore, it is sufficient to verify the equation
∫

R
m+
f (y)dy =

∫ ∞

0
tm−1

(∫

Bm−1
f

(
tT (u)

) du
√

1− ‖u‖2

)

dt (3)

the proof to which we now proceed.
We put G= Bm−1 ×R+ and define the map � : G→R

m+ by the equation

�(x)= tT (u), where x = (u, t) ∈G.

This map is, obviously, smooth. We leave it to the reader to verify that the map

y �→�(y)=
(

P

(
y

‖y‖
)

,‖y‖
)

∈ Bm−1 ×R+
(
y ∈R

m+
)

(which is also smooth) is inverse to �. Thus, � is a diffeomorphism.
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Since the composition f ◦ � is measurable, we can use Tonelli’s theorem and
represent the right-hand side of Eq. (3) as follows:

∫ ∞

0
tm−1

(∫

Bm−1
f

(
tT (u)

) du
√

1− ‖u‖2

)

dt =
∫

G

f
(
�(x)

) tm−1
√

1− ‖u‖2
dx.

We notice that, by Tonelli’s theorem, the function u �→ f (tT (u)) is measurable for
almost all t > 0. By the definition of the measure on the sphere, we obtain that the
function ξ �→ f (tξ), where ξ ∈ Sm−1+ is also measurable for almost all t > 0.

Thus, Eq. (3) is equivalent to the equation

∫

R
m+
f (y)dy =

∫

G

f
(
�(x)

) tm−1
√

1− ‖u‖2
dx.

We show that the last equation follows from the change of variables formula for
multiple integrals and smooth maps (see Theorem 6.2.2). To this end, we prove that

the Jacobian of J�(x) of � at a point x = (u, t) (x ∈G) is equal to tm−1√
1−‖u‖2

. Since

�(x)= (tu, t
√

1− ‖u‖2), we have

J�(x)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t 0 . . . 0 u1
0 t . . . 0 u2
...

...
. . .

...
...

0 0 . . . t um−1
−tcu1 −tcu2 . . . −tcum−1 1/c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where, for brevity, we put c = 1√
1−‖u‖2

. Multiplying the kth row (1 � k < m) by

cuk and adding all rows to the last row, we obtain

J�(x)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t 0 . . . 0 u1
0 t . . . 0 u2
...

...
. . .

...
...

0 0 . . . t um−1
0 0 . . . 0 v

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= tm−1v,

where

v = 1

c
+ c‖u‖2 =

√
1− ‖u‖2 + ‖u‖2

√
1− ‖u‖2

= 1
√

1− ‖u‖2
.

Thus, the equation

∣
∣J�(x)

∣
∣= tm−1

√
1− ‖u‖2

for x = (u, t) ∈G.

is proved, which completes the proof of the theorem. �
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If the function f (x) in Eq. (2) is a product of two functions one of which depends
only on t = ‖x‖ and the other only on the direction of the vector x, i.e., only on
ξ = x/‖x‖, then the integral on the right-hand side of (2) splits into the product of
two integrals (over the positive semi-axis and over the unit sphere). This allows us to
reduce the calculation of the integral over the sphere to the calculation of a multiple
integral. Here is a typical example of such a situation.

Example 1 We calculate the integral

J =
∫

Sm−1
|ξ1|p1 · · · |ξm|pm dσ(ξ) (p1, . . . , pm ∈R).

As will be seen, this integral is finite only if all pj are larger than −1.
To this end, we consider the auxiliary integral

I =
∫

Rm

|x1|p1 · · · |xm|pme−‖x‖2
dx

(as usual, ‖x‖ is the Euclidean norm of x = (x1, . . . , xm)).
On the one hand, we have I = I1 · · · Im, where

Ij =
∫ ∞

−∞
|u|pj e−u2

du=
{
�(

pj+1
2 ) for pj >−1,

+∞ for pj �−1.

It follows, in particular, that the integral I is finite only if p1, . . . , pm >−1.
On the other hand, formula (2) gives

I = J

∫ ∞

0
tm+p−1e−t2

dt = J

2
�

(
m+ p

2

)

,

where p = p1 + · · · + pm. Thus, if all pj are larger than −1, then

J = 2I

�(
m+p

2 )
= 2

�(
m+p1+···+pm

2 )

m∏

j=1

�

(
1+ pj

2

)

,

and J =+∞ otherwise.

Example 2 Let q and p1, . . . , pm be real numbers. For x = (x1, . . . , xm), x ∈ R
m,

we put

f (x)= |x1|p1 · · · |xm|pm

(1+ ‖x‖2)q
.

We find the conditions under which f is summable on the space R
m. Using the

notation introduced in the previous example, we obtain by (2) that

∫

Rm

f (x) dx = J

∫ ∞

0

tp+m−1

(1+ t2)q
dt, where p = p1 + · · · + pm.
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Taking into account the result of Example 1, we see that f is summable if and only
if the inequalities q >

p+m
2 and p1, . . . , pm >−1 are valid.

We note also that the change t = tgϕ reduces the integral on the right-hand side
of the last formula to an integral expressible in terms of the function � (see the end
of Sect. 5.3.2).

Remark The above theorem can be restated as follows. We consider the measure
μ= λ1×σ on the direct product R+×Sm−1. The map � : R+×Sm−1 →R

m \ {0}
defined by the equation �(t, ξ) = t ξ is, obviously a homeomorphism. If f is the
characteristic function of a set A⊂R

m, then Theorem 6.5.2 implies that

λm(A)=
∫

R+×Sm−1
tm−1f (tξ) dμ(t, ξ)=

∫

�−1(A)

tm−1 dμ(t, ξ).

Thus, the Lebesgue measure λm is the ω-weighted image of the measure μ= λ1×σ

with respect to the map � with ω(t, ξ)= tm−1. We leave it to the reader to verify
that the converse is also true, i.e., that Theorem 6.5.2 follows from this statement.

6.5.3 We present some corollaries of Theorem 6.5.2. The first of them is a direct
generalization of the formula for the area in polar coordinates (see Sect. 6.2.4).

Corollary 1 The volume of the set V = {rξ | ξ ∈ Sm−1, 0 � r � ρ(ξ)}, where ρ is
a non-negative measurable function on the sphere Sm−1, can be calculated by the
formula

λm(V )= 1

m

∫

Sm−1
ρm(ξ) dσ (ξ). (4)

In particular, for ρ ≡ 1, we again obtain the Jacobi formula for the surface area
of a sphere.

Proof For the proof, we apply formula (2) to the characteristic function of V , chang-
ing the order of integration on the right-hand side. We have

λm(V )=
∫

Rm

χV (x) dx =
∫

Sm−1

(∫ ∞

0
rm−1χV (rξ) dr

)

dσ(ξ).

Since χV (rξ)= 0 for r > ρ(ξ) and χV (rξ)= 1 for r � ρ(ξ), we obtain the required
equation

λm(V )=
∫

Sm−1

(∫ ρ(ξ)

0
rm−1 dr

)

dσ(ξ)= 1

m

∫

Sm−1
ρm(ξ) dσ (ξ). �

To obtain one more result by Jacobi, we represent Eq. (4) in the following form:
if f is a non-negative measurable function on R

m satisfying the conditions f (x) > 0
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for x �= 0 and f (tx)= tf (x) for t � 0, x ∈R
m, then

λm

({
x ∈R

m |f (x)� 1
})= 1

m

∫

Sm−1

dσ(ξ)

f m(ξ)
. (4′)

To prove this, it is sufficient to apply formula (4) to the function ρ(ξ) = 1/f (ξ),
since the inequalities f (rξ)� 1 and r � ρ(ξ) are equivalent.

Corollary 2 Let A be a positive definite m×m matrix. Then the following Jacobi
equation holds:

∫

Sm−1

dσ(ξ)

〈Aξ, ξ 〉m2 =
mαm√
detA

.

Proof Indeed, representing A in the form A = A2
1, where A1 is a positive definite

matrix, we put f (x) = ‖A1(x)‖. Then
√〈Aξ, ξ 〉 = ‖A1(ξ)‖ = f (ξ), and the set

V = {x ∈R
m |f (x)� 1} is A−1

1 (Bm). Therefore, by formula (4′), we obtain

∫

Sm−1

dσm−1(ξ)

〈Aξ, ξ 〉m2 =mλm(V )=mdet
(
A−1

1

)
λm

(
Bm

)= mαm√
detA

. �

We finish this section with a result obtained earlier by a different method (see
Sect. 6.4.2, Example 1).

Corollary 3 Let ϕ be a non-negative (Lebesgue) measurable function defined
on R+. Then

∫

Rm

ϕ
(‖x‖)dx =mαm

∫ ∞

0
tm−1ϕ(t) dt.

Proof This follows from Theorem 6.5.2 applied to the radial function f (x) =
ϕ(‖x‖). �

6.5.4 From the formula for the volume of the m-dimensional unit ball, it immedi-
ately follows that, for large m, the majority of its volume is concentrated near the
boundary sphere. For example, the volume of the ball of radius 1− 1√

m
is negligibly

small in comparison with the volume of Bm. In other words, for large m, the thin
spherical layer {x ∈ R

m|1− 1√
m

< ‖x‖ < 1} almost exhausts the unit ball. There-
fore, Alice finding herself in a 1000-dimensional space would be unable to regale
herself with watermelon. Even if the thickness of the rind of a watermelon is in-
credibly small and makes up 1 % of its radius, the rind makes up 99.99 % of the
watermelon.

This phenomenon leads to the following result, unexpected at first sight: for a
function varying sufficiently regularly in R

m and for large m, the mean values of
the function in the ball and on the boundary sphere almost coincide. More precisely,
let f be a function defined on the unit ball B

m
and satisfying the Lipschitz condition
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|f (x)− f (y)|� L‖x − y‖, where L is a constant, and let fB and fS be the mean
values of f in the ball B

m
and on the sphere Sm−1, respectively,

fB = 1

αm

∫

‖x‖�1
f (x)dx, fS = 1

sm

∫

‖ξ‖=1
f (ξ) dσ (ξ)

(here αm is the volume of B
m

and sm is the surface area of Sm−1). Then

|fB − fS |� L

m
.

For the proof, we write the integral over the ball in spherical coordinates (see
Eq. (2′)),

∫

‖x‖�1
f (x)dx =

∫

‖ξ‖=1

(∫ 1

0
f (tξ) tm−1 dt

)

dσ(ξ).

Taking into account the equation sm =mαm, we obtain

fS − fB = 1

sm

∫

‖ξ‖=1

(

f (ξ)−m

∫ 1

0
f (tξ) tm−1 dt

)

dσ(ξ)

= m

sm

∫

‖ξ‖=1

(∫ 1

0

(
f (ξ)− f (tξ)

)
tm−1 dt

)

dσ(ξ).

Therefore,

|fS − fB |� m

sm

∫

‖ξ‖=1

(∫ 1

0
L(1− t) tm−1 dt

)

dσ(ξ)= L

m+ 1
.

EXERCISES

1. Let f be a continuous function on R
m (m � 2), and let I (r) = ∫

‖x‖�r
f (x) dx

for r � 0. Prove that

I ′(r)= rm−1
∫

Sm−1
f (rξ) dσ (ξ).

2. For which numbers p1 > 0, . . . , pm > 0 are the following integrals finite?

(a)
∫

Bm

dx

|x1|p1 + · · · + |xm|pm
,

(b)
∫

Rm\Bm

dx

|x1|p1 + · · · + |xm|pm
.

3. For which a, p and q is the function xpyq

(1+x2+y2)a
summable in the angles {(x, y) ∈

R
2 |0 < y < x} and {(x, y) ∈R

2 |0 < y < x < 2y}? Compare the result obtained
with the summability condition from Example 2 in Sect. 6.5.2.
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4. Using the geometric interpretation of the Jacobian, prove that it is equal to
‖x‖−2m for the inversion with respect to the unit sphere (i.e., for the map
x �→ x/‖x‖2).

5. Generalize the result of Sect. 6.5.4, by estimating the difference fS−fB in terms
of the modulus of continuity of f .

6.6 �Some Geometric Applications

In this section, we give analytic proofs of interesting geometric results connected
with Brouwer’s fixed point theorem and vector fields on a sphere.

6.6.1 Brouwer’s theorem stating that every continuous map of a closed ball into
itself has a fixed point plays an important role in the theory of non-linear equations
and topology. It can be deduced from the theorem stating that there is no a smooth
retraction of a ball to its boundary or from the theorem stating that a non-degenerate
smooth tangent vector field does not exist on an even-dimensional sphere. We prove
these important theorems following the papers [Mi] and [R].

As usual, let B be the closure of the unit ball B in R
m, I be the identity matrix,

�′ be the Jacobi matrix of the smooth map �, and J� be the determinant of �′
(Jacobian). We say that a map defined on a subset of the space R

m is smooth if it is
a restriction of a smooth map defined on a neighborhood of this subset.

Lemma Let O ⊂R
m be an open set, and let K be a compact subset of O. Let � ∈

C1(O,Rm) and �t(x)= x + t�(x), where x ∈O and t ∈ R. Then, for sufficiently
small t > 0, we have:

(1) �t is one-to-one on K ;
(2)

J�t (x) > 0 on K. (1)

Moreover, J�t (x) is a polynomial in t (with coefficients depending on x).

Proof First, we verify that � satisfies the Lipschitz condition on K , i.e., that, for
some L> 0 the inequality

∥
∥�(x)−�(y)

∥
∥ � L‖x − y‖ (2)

is valid for all x and y in K . We know that this is the case if K is a convex compact
set (see Theorem 13.7.2). If K is not convex, then it can be covered by a finite
number of open balls B1, . . . ,BN the closures of which are contained in O. Let L′
be the maximal Lipschitz constant for these balls. If points x, y ∈K belong to one
of the balls, then ‖�(x)−�(y)‖� L′‖x − y‖. Otherwise, the pair (x, y) belongs
to the compact set

(K ×K) \
N⋃

n=1

(Bn ×Bn),



290 6 Change of Variables in an Integral

and, therefore, the quantity ‖x − y‖ is separated from zero by a number η > 0.
Consequently, in this case, we have

∥
∥�(x)−�(y)

∥
∥ � 2M � 2M

η
‖x − y‖,

where M = maxz∈K ‖�(z)‖. Thus, if L = max{L′,2M/η}, then inequality (2) is
valid for all x, y ∈K . We see that

∥
∥�t(x)−�t(y)

∥
∥ � ‖x − y‖ − t

∥
∥�(x)−�(y)

∥
∥ � (1− tL)‖x − y‖> 0

for x, y ∈ K, x �= y, and 0 < t < 1/L, which proves the first statement of the
lemma.

The last statement of the lemma follows from the properties of determinants and
the fact that �′t (x) = I + t� ′(x). The second statement is obtained by continuity
considerations if we take into account that J�0(x)= det(I )= 1 > 0. �

6.6.2 Now we are ready to turn to the retraction theorem.

Definition Let A⊂X ⊂R
m. A continuous map � :X→R

m is called a retraction
of X to A if

�(X)⊂A and �(x)= x for all x ∈A.

Theorem (Retraction theorem) There is no retraction of the ball B to its boundary.

Proof We confine ourselves to the proof of the non-existence of a smooth retrac-
tion. The general case can be obtained from the smooth one by approximation (see
Exercise 1). We assume the contrary. Let O be an open set containing B , and let
�= (ϕ1, . . . , ϕm) :O→R

m be a smooth map whose restriction to B is a retraction
of B to the sphere Sm−1. Since the image of the unit ball has no interior points, it
follows from the open mapping theorem 13.7.3 that

J�(x)= det
(
�′(x)

)= 0 for all x ∈ B. (3)

We consider the family {�t }0�t�1 of maps, where �t : O→ R
m is defined by

the equation

�t(x)= x + t
(
�(x)− x

)= (1− t)x + t�(x) for x ∈O (0 � t � 1).

It is clear that �t(B)⊂ B and, moreover,

�t(B)⊂ B for 0 � t < 1 (4)

since
∥
∥�t(x)

∥
∥ � (1− t)‖x‖ + t

∥
∥�(x)

∥
∥ < (1− t)+ t = 1 for all x ∈ B and 0 � t < 1.
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On the sphere Sm−1, the map �t is the identity. Indeed,

�t(x)= (1− t)x + t�(x)= (1− t)x + tx = x for x ∈ Sm−1. (5)

We assume that inequality (1) is valid for 0 < t < δ. By the open mapping theorem
(see Sect. 13.7.3), it follows from (1) that

the set �t(B) is open for 0 < t < δ. (6)

We verify that relations (4), (5) and (6) imply that

�t(B)= B for 0 < t < δ. (7)

By (4), it is sufficient to show that the set �t(B) is not only open but also
(relatively) closed in B . Then Eq. (7) will follow from the fact that B is con-
nected. So, let {yn}n�1 ⊂�t(B), yn −→

n→∞ y0 ∈ B . We choose an xn ∈ B such that

yn =�t(xn) for n ∈N. Without loss of generality, we may assume that the sequence
{xn}n�1 converges (otherwise, it can be replaced by a convergent subsequence). Let
xn −→

n→∞ x0. If ‖x0‖ = 1, then ‖�t(xn)‖ −→
n→∞ ‖�t(x0)‖ = ‖x0‖ = 1, which is impos-

sible since ‖�t(xn)‖ = ‖yn‖ −→
n→∞ ‖y0‖ < 1. Therefore, ‖x0‖ < 1. Consequently,

x0 ∈ B and

y0 = lim
n→∞yn = lim

n→∞�(xn)=�(x0) ∈�(B),

which proves that �(B) is closed in B along with Eq. (7). As stated in the lemma,
the map �t is one-to-one for small t . Thus, it is a diffeomorphism of B onto itself.
Using the theorem on a smooth change of variables in a multiple integral and taking
into account (1), we obtain that

λm(B)=
∫

B

J�t (x) dx for sufficiently small t > 0. (8)

By the lemma, J�t (x) is a polynomial in t . Consequently, the right-hand side
of Eq. (8) is also a polynomial in t . Since this polynomial is constant for small t ,
it is identically constant. Therefore, Eq. (8) is valid not only for small but for all
t ∈ [0,1] and, in particular, for t = 1. Since �1 ≡�, it follows from (8) that

λm(B)=
∫

B

J�(x)dx.

However, this is impossible since the right-hand side of the last equation is zero
by (3).

Thus, the assumption of the existence of a smooth retraction leads to a contradic-
tion. �

6.6.3 Now, we show how to deduce Brouwer’s theorem from the retraction theorem.
We recall that a fixed point of a map f : X→X is a point x ∈X such that f (x)= x.
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Theorem (Brouwer9 fixed point theorem) Every continuous map of a ball B into
itself has a fixed point.

Proof First, we prove that the theorem is valid for smooth maps. Assuming the con-
trary, let f : B→ B be a smooth map without a fixed point. We use f to construct
a smooth retraction � of the ball to its boundary.

Since y = f (x) �= x for x ∈ B , the points x and y uniquely determine the ray
�x = {y + t (x − y) | t � 0} that has origin at y and passes through x. Since the
points x and y lie in B , the open ray �x \ {y}meets the sphere Sm−1 at a single point
(sketch it!). We take this point as �(x). Analytically, this means that the equation
‖y + t (x − y)‖2 = 1 quadratic in t has a unique positive root. We can represent the
equation in the form

‖x − y‖2t2 + 2〈y, x − y〉t + ‖y‖2 − 1= 0.

The unique positive root of this equation, which we denote by t∗, is calculated by
the formula

t∗ = −〈y, x − y〉 +√〈y, x − y〉2 + ‖x − y‖2(1− ‖y‖2)

‖x − y‖2
(9)

(note that if ‖y‖ = 1, then 〈y, x − y〉 = 〈y, x〉 − 1 < 0, since, otherwise, 〈y, x〉 = 1,
which is possible only if the vectors x and y coincide). The map � can be given by
the formula

�(x)= y + t∗(x − y) for x ∈ B, (10)

where the number t∗ is defined by Eq. (9). Since ‖y‖� 1 and x �= y for x ∈ B , the
denominator and the expression under the root sign in (9) do not vanish not only in
the ball B but also in its neighborhood. Therefore, the right-hand side of Eq. (10) is
defined and is smooth in a neighborhood of B . Thus, the map � is smooth on B . By
the definition of t∗, we obtain that ‖�(x)‖ = 1 for all x ∈ B . Moreover, if ‖x‖ = 1,
then the point at which the open ray �x \ {y} meets the sphere coincides with x (it
can easily be seen that this is equivalent to the equation t∗ = 1). Consequently, the
map � is the identity on the sphere, and, therefore, is a smooth retraction, which
contradicts the previous theorem.

Now, we prove by contradiction that the theorem is valid for an arbitrary con-
tinuous map. Let f : B → B be a continuous map without fixed points. Then the
difference x − f (x) does not vanish on B , and so there is a positive δ such that

∥
∥x − f (x)

∥
∥ > 2δ

for all x ∈ B . We construct a smooth map of the ball to itself without fixed points.

9Luitzen Egbertus Jan Brouwer (1881–1966)—Dutch mathematician.
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Let f1, . . . , fm be the coordinate functions of f . By the Weierstrass approxima-
tion theorem (see Sect. 7.6.4), there exist polynomials P1, . . . ,Pm such that

∣
∣fk(x)− Pk(x)

∣
∣ <

δ

m
for all x ∈ B and k, 1 � k �m.

Let F : Rm→R
m be the map with coordinate functions P1, . . . ,Pm. It is clear that

∥
∥f (x)− F(x)

∥
∥2 =

m∑

k=1

∣
∣fk(x)− Pk(x)

∣
∣2

< δ2 (11)

for all x ∈ B . The image of B under F need not belong to the ball. Therefore, we
consider the map ϕ = (1 + δ)−1F . Obviously, ϕ ∈ C∞(Rm,Rm). We verify that
ϕ(B)⊂ B . Indeed, for x ∈ B , we have

∥
∥ϕ(x)

∥
∥= 1

1+ δ

∥
∥F(x)

∥
∥ � 1

1+ δ

(∥
∥f (x)

∥
∥+ ∥

∥F(x)− f (x)
∥
∥

)
<

1

1+ δ
(1+ δ)= 1.

We prove that the map ϕ has no fixed point in B . Indeed, by (10) and (11), we obtain

∥
∥x − ϕ(x)

∥
∥ �

∥
∥x − f (x)

∥
∥− ∥

∥f (x)− ϕ(x)
∥
∥ � 2δ−

∥
∥
∥
∥

1+ δ

1+ δ
f (x)− 1

1+ δ
F (x)

∥
∥
∥
∥

� 2δ− δ

1+ δ

∥
∥f (x)

∥
∥− 1

1+ δ

∥
∥f (x)− F(x)

∥
∥ � 2δ − 2δ

1+ δ
> 0

for x ∈ B . Thus, if there is a continuous map of the ball to itself without fixed
points, then there is a smooth map with the same property, which, as proved above,
is impossible. �

For another proof of the theorem, see Exercise 2.

Corollary Let K ⊂R
m be a compact set homeomorphic to a ball B . Every contin-

uous map of K to itself has a fixed point.

Proof The proof of the corollary is left as an exercise to the reader. �

The general case of the retraction theorem (i.e., for arbitrary continuous maps)
can be obtained from the case of smooth maps by approximation considerations as
in the proof of Brouwer’s theorem. However, the retraction theorem can be deduced
from Brouwer’s theorem directly. Indeed, if f : B→ Sm−1 is a retraction of the ball
B to its boundary, then the map −f cannot have fixed points, which contradicts
Brouwer’s theorem.

6.6.4 Now, we turn our attention to questions concerning vector fields on spheres.
By a vector field, we mean a “continuous map on R

m”. More precisely, by a vector
field on a set X ⊂ R

m, we mean a continuous map V : X→ R
m. A vector field
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is called normalized if ‖V (x)‖ = 1 for all x ∈ X. We say that a vector field V on
the sphere Sm−1 consists of tangent vectors if V (x)⊥ x (i.e., if 〈x,V (x)〉 = 0 ) for
x ∈ Sm−1. Such a vector field is called a tangent vector field.

An example of a normalized tangent vector field on the sphere S2n−1 ⊂R
2n can

be obtained as follows. We put

V (x)= (x2,−x1, . . . , x2n,−x2n−1), for x = (x1, x2, . . . , x2n−1, x2n) ∈ S2n−1.

It is clear that V (x)⊥ x since

〈
x,V (x)

〉= x1x2 − x2x1 + · · · + x2n−1x2n − x2nx2n−1 = 0.

However, there are no nowhere-zero tangent vector fields on even-dimensional
spheres. This statement is also known as the hairy ball theorem: you cannot comb a
hairy ball flat without creating a cowlick. Here is a precise formulation.

Theorem Let m > 1 be an even integer. Then there are no non-vanishing tangent
vector fields on the sphere Sm−1 ⊂R

m.

Proof We assume the contrary, considering first the smooth case. Let V be a smooth
nowhere-zero tangent vector field on Sm−1 (as in Sect. 6.6.1, the smoothness on the
sphere means that V is the restriction of a map smooth in a neighborhood of the
sphere). Without loss of generality, we will assume that V is normalized (otherwise,
we replace it by the field 1

‖V (x)‖V (x)). We extend V to R
m \ {0} as follows: �(x)=

‖x‖V (x/‖x‖). It is obvious that � is a smooth map.
We consider the map �t(x) = x + t�(x), where t is a positive number. Since

x ⊥ �(x) and ‖�(x)‖ = ‖x‖, we see that �t takes the sphere of radius r to
the sphere of radius r

√
1+ t2. Now, we fix a spherical layer G0 = {x ∈ R

m |
a < ‖x‖ < b}, where 0 < a < b. It is clear that its image �t(G0) is contained in
the spherical layer Gt = {x ∈ R

m |a√1+ t2 < ‖x‖ < b
√

1+ t2}. We verify that
the map is onto for sufficiently small t > 0, i.e., that

�t(G0)=Gt . (12)

We notice that, by Lemma 6.6.1 (for K = G0) and the smoothness of the inverse
map, we see that �t is a diffeomorphism for sufficiently small t > 0. To prove (12),
it is sufficient to show that, for a < r < b, the image of the sphere S(r) of radius r

coincides with the sphere S̃(r) = S(r
√

1+ t2). As noted above, �t(S(r)) ⊂ S̃(r).
The set �t(S(r)) is, obviously, closed. At the same time, �t(S(r)) is relatively open
in S̃(r), which follows from the equation

�t

(
S(r)

)=�t

(
S(r)∩G0

)= S̃(r)∩�t(G0)

since the set �t(G0) is open. Since the sphere is connected, the set S̃(r) must coin-
cide with its (obviously, non-empty) closed-open subset, and, therefore, �t(S(r))=
S̃(r). By arbitrariness of r , we obtain Eq. (12).
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Now, using Eq. (12), we calculate the volume of the set Gt in two ways. On the
one hand, we obviously have

λm(Gt)= λm

(
B

(
b
√

1+ t2
) \B(

a
√

1+ t2
))= αm

(
bm − am

)(
1+ t2)m/2

. (13)

On the other hand, assuming that t > 0 is sufficiently small and using the formula
for the image of a measure under a diffeomorphism, we obtain

λm(Gt)=
∫

G0

J�t (x) dx.

By Lemma 6.6.1, the right-hand side of this equation is a polynomial in t . Taking
into account (13), we see that the function (1+ t2)m/2 is a polynomial for sufficiently
small positive t , which is impossible if m is odd because, for such m, infinitely many
derivatives of this function would be non-zero.

Thus, we have proved that there are no smooth non-degenerate tangent vector
fields on an even-dimensional sphere. Now, we consider the case of non-smooth
fields, which (as in the proof of Brouwer’s theorem) is settled by approximation.

Let V be a field of non-zero tangent vectors on the sphere Sm−1. As in the smooth
case, we may assume that the field is normalized. We use this field to construct
a smooth field of non-zero tangent vectors, which will contradict the part of the
theorem proved above.

Let f1, . . . , fm be the coordinate functions of the field V . By the Weierstrass
theorem (see Sect. 7.6.4), there exist polynomials P1, . . . ,Pm such that

∣
∣fk(x)− Pk(x)

∣
∣ <

1

2m
for all x ∈ Sm−1 and k = 1, . . . ,m.

Let F : Rm→R
m be the map with coordinate functions P1, . . . ,Pm. Clearly,

∥
∥V (x)− F(x)

∥
∥2 =

m∑

k=1

∣
∣fk(x)− Pk(x)

∣
∣2

<
1

4

for all x ∈ Sm−1. In general, the vectors F(x) are not tangent to the sphere but,
being close to V (x), they have a non-zero “tangent component”. This enables us to
modify the vectors to obtain a non-degenerate smooth field of tangent vectors.

Subtracting the radial component from the vector F(x), we put

W(x)= F(x)− 〈
x,F (x)

〉
x for x ∈ Sm−1.

It is clear that W is a smooth vector field. Moreover,
∥
∥W(x)

∥
∥ �

∥
∥F(x)

∥
∥− ∣

∣〈x,F (x)
〉∣∣

�
∥
∥V (x)

∥
∥− ∥

∥V (x)− F(x)
∥
∥− ∣

∣〈x,V (x)− F(x)
〉∣∣

� 1− 2
∥
∥V (x)− F(x)

∥
∥ > 0
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since 〈x,V (x)〉 = 0. We prove that the field W consists of tangent vectors. Indeed,
〈
x,W(x)

〉= 〈
x,F (x)− 〈

x,F (x)
〉
x

〉= 〈
x,F (x)

〉− 〈
x,F (x)

〉‖x‖2 = 0

for all x ∈ Sm−1. Thus, the smooth field W consists of non-zero tangent vectors,
which, as proved above, is impossible. �

EXERCISES

1. Complete the proof of the retraction theorem in the general case without us-
ing Brouwer’s theorem. Hint. If � is an arbitrary retraction, then the difference
�(x)− x is small in a neighborhood of the sphere. Therefore, in the ball B , the
function �(x)− x can be approximated up to an accuracy of 1/2 by a smooth
map � that vanishes on the sphere. Then a smooth retraction �1 can be obtained
by putting �1(x)= x+�(x)

‖x+�(x)‖ , which leads to a contradiction.
2. Give another proof of Brouwer’s theorem by verifying that if a continuous map

f : B→ B has no fixed points, then the map �(x)= g(x)/‖g(x)‖, where

g(x)= x − 1− ‖x‖2

1− 〈x,f (x)〉f (x) (x ∈ B),

is a retraction of the ball to its boundary.
3. Prove the following sharpening of Brouwer’s theorem: if the map � : B→ R

m

is continuous and �(Sm−1)⊂ B , then � has a fixed point. Hint. Verify that the
map x �→�(x)/max{1,‖�(x)‖} has the same fixed points as �.

6.7 �Some Geometric Applications (Continued)

6.7.1 In this section, we discuss an interesting geometric problem connected with
the calculation of the measure of a set by the measures of its cross sections. Let A
and B be measurable sets in the space R

m. Is it possible to compare their measures
(volumes) if we know only the measures (areas) of some of their intersections with
subspaces of smaller dimension? Cavalieri’s principle implies that λm(A) < λm(B)

if λm−1(A∩H) < λm−1(B ∩H) for all planes H perpendicular to a fixed direction.
It turns out that the situation changes drastically if instead of parallel planes we

consider planes passing through a fixed point.
In 1956 Busemann10 and Petty11 considered the following question. Let A and B

be convex sets symmetric with respect to the origin. Is it true that λm(A) < λm(B)

if λm−1(A ∩ H) < λm−1(B ∩ H) for every plane H passing through the origin?
It is clear that certain geometric restrictions (convexity, symmetry) of the set are
necessary since otherwise the answer is negative (see Exercise 1).

10Herbert Busemann (1905–1994)—American mathematician.
11Clinton Petty (born 1923)—American mathematician.
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The Busemann–Petty question, a positive answer to which is clear in the two-
dimensional case (it is enough to use polar coordinates), is not so simple in the
spaces of higher dimension. It was not until almost 20 years later, in 1975, that the
following unexpected fact was established: for large m the answer is negative. Ten
years later, Ball12 proved that if the dimension is sufficiently large (more precisely,
if m� 10), then counterexamples are given by a ball and a cube.

Following [NP], we prove a beautiful result of Ball: the area of a plane cross
section of a cube takes its maximum value for a cross section that passes through a
diagonal of a two-dimensional face and is perpendicular to this face. More precisely,
the area of an arbitrary plane cross section of the cube Q = [− 1

2 ,
1
2 ]m does not

exceed
√

2, and equality is attained only for the planes of the form xk =±xj , k �= j .
Knowing the estimate for the areas of the plane cross sections of the cube, we

can easily answer the Busemann–Petty question if the dimension m is large. It is
sufficient to compare the unit cube Q and the ball B(rm) in R

m having Lebesgue
measure 1. Indeed, since 1= λm(B(rm))= αm rmm (as usual, αm is the volume of the
unit ball in R

m), then rm = 1/ m√αm. Consequently, the measure sm of the central
cross section of B(rm) is equal to

sm = αm−1 r
m−1
m = αm−1

α
1− 1

m
m

.

Taking into account the equation αm = π
m
2 /�(1+ m

2 ) (see Sect. 5.4.2) and Stirling’s
formula, we obtain sm→√

e. Therefore, sm >
√

2 if the dimension m is sufficiently
large. Thus, we come to the following paradoxical result: for large m, the area of an
arbitrary central cross section of the ball is greater than the area of an arbitrary cross
section of the unit cube but their volumes are equal.

We verify that sm >
√

2 for m� 10. By direct calculation, we obtain

s10 = (120)
9
10

945
32

√
π
= 1.420 . . . >

√
2 and

s11 = 1

120

(
10395

64

√
π

) 10
11 = 1.433 . . . >

√
2.

Therefore, it is sufficient to prove that the inequality sm−2 < sm is valid for m> 10.
Since

sm = αm−1

α
m−1
m

m

= �
m−1
m (m+2

2 )

�(m+1
2 )

= sm−2
(2mm−3)

1
m−2

m− 1
�

2
m(m−2)

(
m+ 2

2

)

,

12Keith Martin Ball (born 1960)—British mathematician.
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this is equivalent to the inequality

�

(
m+ 2

2

)

>
(m− 1)

m(m−2)
2

(2mm−3)
m
2
= m

m
2

2
m
2

((

1− 1

m

)m)m−2
2

.

Taking into account that 1− 1
m

< e− 1
m , we must show that

�

(
m+ 2

2

)

� e

(
m

2e

)m
2

.

This immediately follows from Stirling’s formula (see Eq. (8′′) in Sect. 7.2.6) but
can also be obtained by induction (with the inductive step from m to m+ 2), which
we leave as an exercise to the reader.

We note that it is known today that the answer to the Busemann–Petty question
is affirmative only if m � 4. For a more detailed history of the Busemann–Petty
problem, see [Ko].

6.7.2 Now, we estimate the area of a cross section of Q= [− 1
2 ,

1
2 ]m. To obtain an

estimate from above, we first find an integral representation for this area. Although it
is natural to look for the cross sections with maximal area among the cross sections
passing through the center of the cube, we also need other cross sections.

The volume of a set A, A⊂ R
m, can be represented in terms of the areas of its

cross sections

A(ω, r)= {
x ∈A | 〈x,ω〉 = r

} (
r ∈R

m
)

by the planes perpendicular to the vector ω �= 0. Indeed, Cavalieri’s principle implies
the equation

λm(A)=
∫

R

λm−1
(
A(ω, r)

)
dr, if ‖ω‖ = 1.

We prove that

λm−1
(
Q(ω, r)

)= 2

π
‖ω‖

∫ ∞

0
cos(2rt)

m∏

j=1

sinωj t

ωj t
dt (1)

(if ωj = 0, then the quotient
sinωj t

ωj t
must be replaced by 1).

If ω is proportional to a vector from the canonical basis, then Eq. (1) is valid for
all r �= ± 1

2‖ω‖. This immediately follows from the formula
∫∞

0
sin ct

t
dt = π

2 sign c

(see Example 2 in Sect. 7.1.6). It can easily be seen that the above formula also
gives the required result in the two-dimensional case. Therefore, we will assume
that m > 2 and that at least two of the coordinates ω1, . . . ,ωm of ω are non-zero.
Then (1) is valid for all r . We give two proofs of this formula. The first proof, though
completely elementary, is more technically involved and uses induction on dimen-
sion. The second, less cumbersome proof assumes an acquaintance with Fourier
transforms (see Sect. 10.5).
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Fig. 6.5 Cross section of the cube by an oblique plane and its projection

We note that it is sufficient to prove formula (1) for a single vector proportional
to ω since Q(aω, r)=Q(ω, r

a
).

Assuming that formula (1) is valid for the cross sections of a cube of dimension
m− 1, we prove it for the cross sections of the m-dimensional cube Q. To this end,
for ωm �= 0, we consider the projection P of a cross section Q(ω, r) on the plane
xm = 0. Assuming that ωm is positive, we see that

λm−1
(
Q(ω, r)

)= ‖ω‖
ωm

λm−1(P ).

To calculate λm−1(P ), we put ω̃ = (ω1, . . . ,ωm−1). This is a non-zero vector since
at least two coordinates of the vector ω are non-zero. As seen in Fig. 6.5, non-
empty cross sections (in R

m−1) of P by planes perpendicular to ω̃ coincide with the
corresponding cross sections of the cube Q̃= [− 1

2 ,
1
2 ]m−1.

Indeed, since

P =
{

x̃ ∈ Q̃
∣
∣ ∃xm ∈

[

−1

2
,

1

2

]

: 〈ω̃, x̃〉 +ωmxm = r

}

=
{

x̃ ∈ Q̃
∣
∣ 〈ω̃, x̃〉 ∈

[

r − 1

2
ωm, r + 1

2
ωm

]}

,

the cross section P(ω̃,u) coincides with Q̃(ω̃, u) for u ∈ [r −ωm/2, r +ωm/2] and
is empty for the remaining u.

Replacing, if necessary, the vector ω by a proportional vector, we may assume
that ‖ω̃‖ = 1. Then, as noted above, Cavalieri’s principle implies the equation

λm−1(P )=
∫

R

λm−2
(
P(ω̃,u)

)
du=

∫ r+ωm/2

r−ωm/2
λm−2

(
Q̃(ω̃, u)

)
du.
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By the induction assumption, we have

λm−2
(
Q̃(ω̃, u)

)= 2

π

∫ ∞

0
cos(2ut)

m−1∏

j=1

sinωj t

ωj t
dt.

Therefore,

λm−1
(
Q(ω, r)

)= ‖ω‖
ωm

λm−1(P )

= ‖ω‖
ωm

∫ r+ωm/2

r−ωm/2

2

π

∫ ∞

0
cos(2ut)

m−1∏

j=1

sinωj t

ωj t
dt du

= 2

π

‖ω‖
ωm

∫ ∞

0

(∫ r+ωm/2

r−ωm/2
cos(2ut) du

)m−1∏

j=1

sinωj t

ωj t
dt

= 2

π
‖ω‖

∫ ∞

0
cos(2rt)

sinωmt

ωmt

m−1∏

j=1

sinωj t

ωj t
dt,

which completes the proof.
Proceeding to the proof of formula (1) based on the Fourier transform, we fix a

unit vector ω (with at least two non-zero coordinates) and find the Fourier transform
of the function

r �→ s(r)= λm−1
(
Q(ω, r)

)
(r ∈R).

To this end, we calculate the value the Fourier transform χ̂ of the characteristic
function χ of Q at the point tω. By definition, we have

χ̂ (tω)=
∫

Q

e−2πi〈tω,x〉 dx =
m∏

j=1

∫ 1
2

− 1
2

e−2πitωj xj dxj =
m∏

j=1

sin(πωj t)

πωj t
.

Now, we consider an orthogonal transformation L in R
m taking the first vector of

the canonical basis to the vector ω. By Fubini’s theorem, we obtain

χ̂(tω) =
∫

Rm

χ(x)e−2πit〈ω,x〉 dx =
∫

Rm

χ(Ly)e−2πity1 dy

=
∫ ∞

−∞
s(y1)e

−2πity1 dy1 = ŝ(t),

where ŝ is the Fourier transform of s. Comparing the two equations obtained, we
see that

ŝ(t)=
m∏

j=1

sin(πωj t)

πωj t
.
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Since the function ŝ is summable on R, we can find s(r) by the inversion formula
(see Theorem 10.5.4):

s(r)=
∫ ∞

−∞
ŝ(t)e2πirt dt = 2

∫ ∞

0
cos 2πrt

m∏

j=1

sin(πωj t)

πωj t
dt.

It remains to make the change of variables πt �→ t .

6.7.3 In the proof of the inequality λm−1(Q(ω, r))�
√

2, we may assume without
loss of generality that ‖ω‖ = 1 and all coordinates of the vector ω are positive.
If at least one of the coordinates, e.g., ωm is large, ωm � 1√

2
, then the inequality

λm−1(Q(ω, r)) �
√

2 is obvious (since the measure of the projection of the cross
section on the plane ωm = 0 is at most 1). Now, we assume that 0 < ωj < 1√

2
for

all j = 1, . . . ,m. From Eq. (1) and Hölder’s inequality (see Sect. 4.4.5, Corollary 2)
with exponents 1/ω2

j , we obtain

λm−1
(
Q(ω, r)

)
� 2

π

∫ ∞

0

m∏

j=1

∣
∣
∣
∣
sinωj t

ωj t

∣
∣
∣
∣dt �

2

π

m∏

j=1

(∫ ∞

0

∣
∣
∣
∣
sinωj t

ωj t

∣
∣
∣
∣

1/ω2
j

dt

)ω2
j

= 2

π

m∏

j=1

(
1

ωj

∫ ∞

0

∣
∣
∣
∣
sin t

t

∣
∣
∣
∣

1/ω2
j

dt

)ω2
j

.

Now, we use Ball’s integral inequality (whose proof we postpone until the next
section)

∫ ∞

0

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣

p

dx <
π√
2p

for p > 2.

Setting p equal to 1
ω2
j

> 2 (j = 1, . . . ,m) and taking into account the relation

ω2
1 + · · · +ω2

m = 1, we see that

λm−1
(
Q(ω, r)

)
<

2

π

m∏

j=1

(
π√

2

)ω2
j =√2,

as required.
The above proof shows that the area of a cross section is equal to

√
2 only if all

coordinates of the vector ω, ‖ω‖ = 1, are either zero or ±1/
√

2. Therefore, only the
cross sections by the planes xj =±xk (k �= j ) are extremal.

We note also that Eq. (1) gives the following expression for the area Sm of the
central cross section of the unit cube by the plane orthogonal to its main diagonal
(i.e., by the plane x1 + · · · + xm = 0):

Sm = 2

π

√
m

∫ ∞

0

(
sin t

t

)m

dt.
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Ball’s integral inequality implies that these areas are not maximal for m > 2. The
fact that they are not maximal for sufficiently large m follows from the asymptotic
Laplace formula (see Sect. 7.3.3, Example 3) since, by this formula, we have Sm→√

6
π

<
√

2.

6.7.4 Despite the deceptive simplicity of Ball’s inequality, its proof is technically
involved. We obtain it from an integral inequality interesting in itself and connected
with decreasing distribution functions.

Let (X,A,μ) be a measure space, and let f be a non-negative measurable almost
everywhere finite function on X. The integral Ip(f ) = ∫

X
f p dμ (0 < p < +∞)

contains a great deal of information about the function f and is used in various
problems. Often it is important to compare the values of these integrals for differ-
ent p. In the case of a normalized measure (i.e., if μ(X)= 1), the behavior of Ip(f )

is quite simple: it follows from Hölder’s inequality (see Sect. 4.4.5) that the quan-
tities I

1/p
p (f ) increase with p. It is more complicated to compare their growth for

two distinct functions. In particular, the following question is of some interest: under
which conditions is the inequality Ip(g)� Ip(f ) valid for all p > q if we know that
it is valid at the “initial point”, i.e., at p = q? The answer is given by the following
statement.

Proposition Let (X,A,μ) be a measure space, and let non-negative measurable
almost everywhere finite functions f and g on X have finite decreasing distribution
functions F and G,

F(t)= μ
(
X(f > t)

)
, G(t)= μ

(
X(g > t)

)
(t > 0).

If at some point t0 > 0, the difference F −G changes its sign from minus to plus
(i.e., F(t)�G(t) for t ∈ (0, t0) and F(t)�G(t) for t > t0), then for p > q > 0

the inequality
∫

X

gq dμ�
∫

X

f q dμ implies the inequality
∫

X

gpdμ�
∫

X

f p dμ.

The latter inequality becomes an equality only in the two trivial cases: F ≡ G or∫
X
gp dμ= ∫

X
f p dμ=+∞.

Proof Assuming that
∫
X
f p dμ <+∞ (otherwise everything is obvious), we put

�(p)=
∫

X

f p dμ−
∫

X

gp dμ.

By assumption �(q)� 0, and we must prove that �(p)� 0 for p > q . To this end,
we must verify that the difference R = A�(p)− B�(q) is non-negative for some
positive A and B . We will see that, for our purposes, it is convenient to take A and
B equal, respectively, to the derivatives of tq and tp at the point t0.
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With the help of distribution functions, we represent the integrals
∫
X
f p dμ and∫

X
gp dμ in the form (see Proposition 6.4.3)

�(p)=
∫

X

f p dμ−
∫

X

gp dμ=
∫ ∞

0

(
F(t)−G(t)

)
ptp−1 dt.

Taking A= qt
q−1
0 and B = pt

p−1
0 , we obtain

R =
∫ ∞

0

(
F(t)−G(t)

)(
qt

q−1
0 ptp−1 − pt

p−1
0 qtq−1)

dt.

The difference

pqt
q−1
0 tp−1 − pqt

p−1
0 tq−1 = pq(t0t)

q−1(
tp−q − t

p−q

0

)

has the same sign as F(t)−G(t). Therefore, we have a non-negative function under
the last integral. Consequently, R � 0. Moreover, R > 0 if F �≡G. �

Remark The above proof suggest the following slightly stronger result:

I (p)=
∫ ∞

0

(
F(t)−G(t)

)
(

t

t0

)p−1

dt = 1

pt
p−1
0

∫

X

(
f p − gp

)
dμ

is non-decreasing.

6.7.5 We finish this section with a proof of Ball’s integral inequality
∫ ∞

0

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣

p

dx <
π√
2p

for p > 2.

If p = 2, then the inequality becomes an equality. This can easily be obtained
by integrating by parts the equation

∫∞
0

sinx
x

dx = π
2 (see Sect. 7.1.6, Example 2).

For 1 < p < 2, the sign in Ball’s inequality must be replaced with its opposite (see
Exercise 2).

We represent the inequality in question in the form
∫ ∞

0
gp(x) dx <

∫ ∞

0
f p(x) dx (p > 2),

where g(x)= | sinx
x
| and f (x)= e− x2

2π . Since the inequality becomes an equality for
p = 2, it is sufficient to prove that the difference F −G of decreasing distribution
functions at some point t0 changes its sign from minus to plus. Since each of the
functions f and g is at most 1, we have F(t) = G(t) = 0 for t � 1. Therefore,

below we may assume that t ∈ (0,1). Obviously, F(t) = f−1(t) =
√

2π ln 1
t
. It is

more complicated to find the values of the function G, and to estimate them, we need
the quantities tm =max(πm,πm+π) g, m ∈N. It is clear that 1

π(m+ 1
2 )

< tm < 1
πm

.
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Fig. 6.6 Roots of the equation | sinx|
x
= t

Using the expansion of sine into an infinite product (see Sect. 7.2.5, formula (7)),
we obtain that the function g decreases on the interval (0,1) and does not exceed
e−x2/6,

g(x)=
∞∏

k=1

(

1− x2

π2k2

)

�
∞∏

k=1

e−x2/(πk)2 = e−x2/6

(at the end, we used the relation
∑∞

k=1
1
k2 = π2

6 proved in Example 2 of Sect. 4.6.2).
Therefore, for t ∈ (t1,1), we obtain

G(t)= (g|(0,1))−1(t)�
√

6 ln
1

t
<

√

2π ln
1

t
= F(t)

and, consequently, the difference F −G is positive on (t1,1). At the same time, the
difference changes its sign since

2
∫ ∞

0
t
(
F(t)−G(t)

)
dt =

∫ ∞

0

(
f 2(x)− g2(x)

)
dx = 0.

To prove that the change of the sign takes place only once, it is sufficient to prove
that F − G increases on (0, t1). To this end, we prove that |G′(t)| > |F ′(t)| for
t ∈ (0, t1), t �= tm. It is clear that the function G is everywhere continuous and dif-
ferentiable at the points distinct from tm (m ∈N). Moreover,

∣
∣G′(t)

∣
∣=−G′(t)=

∑

x>0:
g(x)=t

1

|g′(x)| .

Let t ∈ (tm+1, tm). For such t , the equation g(x)= t has a unique root on (0,π)

and two roots on the intervals (πk,πk + π) for k = 1, . . . ,m (see Fig. 6.6).
We estimate |g′(x)| from above at these points. If x ∈ (0,π), then

∣
∣g′(x)

∣
∣= sinx − x cosx

x2
� 1

2
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(the inequality sinx − x cosx � x2/2 can easily be proved by differentiation). If
x ∈ (πk,πk + π) for k � 1, then

∣
∣g′(x)

∣
∣= 1

x

∣
∣
∣
∣cosx − sinx

x

∣
∣
∣
∣ �

1

x

(

1+ | sin(x − πk)|
πk

)

� 1

x

(

1+ x − πk

πk

)

= 1

πk
.

Consequently, for t ∈ (tm+1, tm), we have

∣
∣G′(t)

∣
∣ � 2+ 2

m∑

k=1

πk = 2+ πm(m+ 1) > π

(

m+ 3

2

)

>
1

tm+1
.

Thus,
∣
∣
∣
∣
G′(t)
F ′(t)

∣
∣
∣
∣=

∣
∣G′(t)

∣
∣t

√
2

π
ln

1

t
� 1

tm+1

√
2

π
t2 ln

1

t
.

Since t1 < 1
π

, the product t2 ln 1
t

increases on (0, t1), and, therefore, for t > tm+1,
we obtain

∣
∣
∣
∣
G′(t)
F ′(t)

∣
∣
∣
∣ >

1

tm+1

√
2

π
t2
m+1 ln

1

tm+1
�

√
2

π
ln

1

t2
>

√
2

π
ln 2π.

It remains to observe that the right-hand side of the inequality is greater than 1 since
ln 4x > x on [1,2] by the concavity of the logarithm.

EXERCISES

1. Prove that a spherical layer can have an arbitrarily large volume whereas the area
of its cross section by every plane is arbitrarily small.

2. Prove that
∫∞

0 | sinx
x
|p dx > π√

2p
for 0 <p < 2. Hint. Use Remark 6.7.4.



Chapter 7
Integrals Dependent on a Parameter

7.1 Basic Theorems

When dealing with functions of “two variables”, i.e., with functions defined on the
direct product of two sets, the reader has probably encountered the situation in which
it is required to decide whether it is possible to perform an operation (passage to the
limit, differentiation, integration) for one variable independently of the operations
for the other variable. In other words, do the operations for different variables com-
mute? Speaking of differentiation, we should mention the well-known theorem on
the equality of mixed partial derivatives. The reader probably also knows the theo-
rem on equality of iterated limits which says that under certain conditions the two
limiting passages commute. We will study this question in the case where one of the
operations is integration.

Our goal in this section is to study the properties of an “integral dependent on a
parameter”, i.e., a function J defined by an equation of the form

J (y)=
∫

X

f (x, y) dμ(x) (y ∈ Y).

Here μ is a measure defined on a σ -algebra of subsets of a set X, the function
x �→ f (x, y) is summable on X for every y ∈ Y , and Y is a subset of a metrizable
topological space Ỹ . If X is a topological space, then we always assume that the
measure μ is defined on all Borel sets (and, consequently, all continuous functions
on X are measurable). We do not exclude the case where μ is the counting measure;
therefore the results below are valid, in particular, for absolutely convergent series.

First of all, we are interested in the continuity and (in the case where Y ⊂R
m) in

the differentiability of the function J . Actually, this is a question about the validity
of interchanging the integration with respect to the first variable with other analytical
operations (passage to the limit, differentiation) with respect to the second variable
(see the Theorems in Sects. 7.1.2 and 7.1.5). We encountered such a situation in
Sect. 4.8, where we discussed the passage to the limit under the integral sign and
the index of a function played the role of a parameter. These results will serve as a
basis for subsequent reasoning.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_7, © Springer-Verlag London 2013
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It is also natural to study the problem of integration with respect to a parameter.
However, there is no need to touch on this here, since to a great extent the problem
is solved by Fubini’s theorem.

7.1.1 In this section and the next, we restate three theorems from Sect. 4.8 for the
case of a “continuous parameter”. In all three statements, a is a limit point1 of the
set Y in the space Ỹ and ϕ(x) = limy→a f (x, y), where f and ϕ are functions
(in general, complex-valued) defined on X × Y and X, respectively. We present
conditions under which the following relation holds:

J (y)=
∫

X

f (x, y) dμ(x)−→
y→a

∫

X

ϕ(x)dμ(x), (1)

i.e.,

lim
y→a

∫

X

f (x, y) dμ(x)=
∫

X

(
lim
y→a

f (x, y)
)
dμ(x).

Theorem If μ(X) < +∞ and the convergence f (x, y) −→
y→a

ϕ(x) is uniform with

respect to x ∈X, then the function ϕ is summable on X and relation (1) holds.

Proof Since the space Ỹ is metrizable, we can argue “in terms of sequences”. We
must prove that

J (yn)=
∫

X

f (x, yn) dμ(x) −→
n→∞

∫

X

ϕ(x)dμ(x)

for every sequence {yn} of points yn ∈ Y \ {a}, n ∈N, converging to a. This fact and
the summability of ϕ follows directly from Theorem 4.8.1 all conditions of which
are fulfilled with fn(x)= f (x, yn). �

7.1.2 For convenience of reference, we present here modifications of Lebesgue’s
theorems (see Sects. 4.8.3 and 4.8.4) and the corollary to Vitali’s theorem (see
Sect. 4.8.7) for the case of a “continuous parameter”.

Theorem 1 Let ϕ(x) = limy→a f (x, y) for almost all x ∈ X. Assume that there
exist a neighborhood U of a and a function g : X → R such that the following
conditions hold:

(a) for almost all x ∈X and every y ∈ (Y ∩U) \ {a}
the inequality

∣
∣f (x, y)

∣
∣ � g(x) holds,

(b) the function g is summable on X.

⎫
⎪⎪⎬

⎪⎪⎭
(Lloc)

Then the function ϕ is summable on X and relation (1) holds.

1In particular, if Ỹ = [−∞,+∞], then the cases a =±∞ are possible.



7.1 Basic Theorems 309

Condition (Lloc) can be weakened by requiring that the inequality |f (x, y)| �
g(x) be valid for each y ∈ Y only on a set of full measure possibly depending on y.
The above proof of the theorem remains valid for this generalization of condition
(Lloc). However, in the sequel, (see Theorems 7.1.5 and 7.1.7) we need the exact
formulation of condition (Lloc) given in Theorem 1.

Proof As in Theorem 7.1.1, we consider the sequence of functions fn(x) =
f (x, yn), where yn→ a, yn ∈ (Y ∩U) \ {a} and apply Lebesgue’s theorem 4.8.4. �

In the case where X = N and μ is the counting measure, the integral∫
X
f (x, y) dμ(x) becomes the sum of the (absolutely convergent) series

∑∞
n=1 f (n, y), and condition (Lloc) coincides with the condition in the Weierstrass

M-test for uniform convergence of a series in a neighborhood of a. It follows from
Theorem 1 that the limit of the sum can be found termwise.

If μ(X) <+∞ and the function f is bounded, then condition (Lloc) obviously
holds for every limit point of Y .

In the case of finite measure, condition (Lloc) can be replaced by a modification
of condition (V) of Corollary 4.8.7.

Theorem 2 Let μ(X) < +∞ and ϕ(x) = limy→a f (x, y) for almost all x ∈ X. If
there exists a neighborhood U of a and numbers s > 1 and C > 0 such that

∫

X

∣
∣f (x, y)

∣
∣s dμ(x)� C for all y ∈ (Y ∩U) \ {a}, (Vloc)

then the function ϕ is summable on X and relation (1) holds.

Proof The proof of this theorem is the same as the proof of the preceding one, the
only difference being that now we refer to Corollary 4.8.7 instead of Lebesgue’s
theorem. �

In some cases, condition (Vloc) is a useful alternative to condition (Lloc). For
example, if X = Y is a ball in R

m, μ is Lebesgue measure, and f (x, y)= 1
‖x−y‖p ,

where p < m, then condition (Vloc) (for 1 < s < m/p) is fulfilled at an arbitrary
point a ∈ Y , and, therefore, the function J is continuous on Y . At the same time,
condition (Lloc) cannot hold at any a ∈ Y , since we have

sup
y∈U\{x}

f (x, y)=+∞ for all x ∈U

in each neighborhood U of a.

7.1.3 The following theorem is obviously a special case of Theorem 1 of Sect. 7.1.2.

Theorem If a function f satisfies condition (Lloc) at a point y0 ∈ Y and is conti-
nuous with respect to the second variable at almost all x ∈X, i.e.,

f (x, y) −→
y→y0

f (x, y0) for almost all x ∈X, (2)
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then the function J is continuous at y0:

J (y)=
∫

X

f (x, y) dμ(x) −→
y→y0

J (y0)=
∫

X

f (x, y0) dμ(x).

We remark that condition (2) is certainly fulfilled if X is a topological space and
the function f is continuous on X× Y .

Corollary If X is a compact space with a finite measure and Y ⊂R is an arbitrary
interval, then the continuity of f on X × Y implies the continuity of the integral
J (y)= ∫

X
f (x, y) dμ(x) on this interval.

Proof Indeed, every point of the interval has a relative neighborhood U whose clo-
sure is a compact set contained in the interval. By the Weierstrass theorem, the
function f is bounded on the product X × U , which guarantees the fulfillment of
condition (Lloc). �

It is clear that the corollary is valid not only for an interval but for every locally
compact space Y ; in particular, it is valid if Y is an open or closed subset of a
Euclidean space.

7.1.4 We consider two examples. We prove that the functions H and K defined by
the equations

H(y)=
∫ ∞

0

cosxy

1+ x2
dx for y ∈R,

K(y)=
∫ ∞

0
e−xy sinx dx for y ∈ (0,+∞)

are continuous.
In the first case, we have f (x, y)= cosxy

1+x2 . Since

∣
∣
∣
∣
cosxy

1+ x2

∣
∣
∣
∣ �

1

1+ x2
for all x, y ∈R and

∫ ∞

0

dx

1+ x2
<+∞,

we see that the function f satisfies condition (Lloc) at every point y ∈R. It remains
to refer to Theorem 1 of Sect. 7.1.2.

In the second case, we have f (x, y) = e−xy sinx. In contrast to the preceding
example, there is now no majorant g0 common for all y ∈ Y and summable on
(0,+∞) for which the inequality |f (x, y)| � g0(x) holds for all x, y > 0. Never-
theless, condition (Lloc) still holds for every point y ∈ (0,+∞), but now, for every
y > 0, we must choose a neighborhood and a summable majorant depending on the
neighborhood. Indeed, let y0 > 0 and U = (y0/2,+∞). Then

∣
∣e−xy sinx

∣
∣ � e−

xy0
2 for all x > 0, y ∈U, and

∫ ∞

0
e−

xy0
2 dx <+∞.
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The second of the above examples can be handled in a different way by direct
calculation. Indeed, integrating by parts twice, we obtain

K(y)=−e−xy cosx
∣
∣
∣
∞
0
− y

∫ ∞

0
e−xy cosx dx

= 1− y

(

e−xy sinx

∣
∣
∣
∞
0
+ y

∫ ∞

0
e−xy sinx dx

)

= 1− y2K(y).

Consequently, K(y)= 1/(1+ y2) for every y > 0.
The first solution, based on the general scheme, is presented here for two reasons.

First, it is typical for such problems. For example, in the same way, we can prove
that the integral

∫∞
0 e−xyh(x) dx is continuous with respect to the parameter y for

every bounded function h. Secondly, even if we know how to calculate the integral,
we must sometimes check condition (Lloc) for the integrand (see Example 2 of
Sect. 7.1.6 below).

7.1.5 Theorem 1 of Sect. 7.1.2 allows us easily obtain conditions not only for the
continuity but also for the differentiability of an integral depending on a parameter.

Theorem Let Y ⊂R be an arbitrary interval. Assume that:

(a) the derivative

f ′y(x, y)= lim
h→0

f (x, y + h)− f (x, y)

h

exists for almost all x ∈X and every y ∈ Y ;
(b) the function f ′y satisfies condition (Lloc) at a point y0 ∈ Y .

Then the function J is differentiable at y0 and

J ′(y0)=
∫

X

f ′y(x, y0) dμ(x). (3)

This formula is called the Leibniz rule.

Proof Let x ∈X, y0 + h ∈ Y , h �= 0, and

F(x,h)= f (x, y0 + h)− f (x, y0)

h
.

Since

J (y0 + h)− J (y0)

h
=

∫

X

f (x, y0 + h)− f (x, y0)

h
dμ(x)=

∫

X

F(x,h)dμ(x),

(4)

we see that the existence of a finite derivative J ′(y0) and Eq. (3) is immediately
obtained by passing to the limit as h→ 0 under the integral sign in Eq. (4). We
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can justify the passage to the limit by Theorem 1 of Sect. 7.1.2 if we prove that the
function F satisfies condition (Lloc) at the point h= 0. Let us check this. Since the
function f ′y satisfies condition (Lloc), there exist a positive number δ and a function
g summable on X such that

∣
∣f ′y(x, y)

∣
∣ � g(x) for almost all x ∈X and for y ∈ Y, 0 < |y − y0|< δ.

The Lagrange mean value theorem applied to the function y �→ f (x, y) on the in-
terval with endpoints y0 and y0 + h gives the relation F(x,h) = f ′y(x, y0 + θh),
where θ is a number in the interval (0,1). Therefore, |F(x,h)| � g(x) for almost
all x ∈X and 0 < |h|< δ. Consequently, condition (Lloc) is fulfilled for F . �

Usually, when using the theorem proved above, there is no doubt as to the
existence of the partial derivative f ′y and it only remains to check that it satis-
fies condition (Lloc). The situation is even simpler in the case where X = [p,q],
Y = 〈a, b〉, and the functions f and f ′y are continuous in the rectangle X × Y .
Then the function J (y)= ∫ q

p
f (x, y) dx is continuously differentiable on 〈a, b〉 and

J ′(y)= ∫ q

p
f ′y(x, y) dx.

Remark Theorem 7.1.5 obviously also remains valid in the more general setting
where Y is a subset of a multi-dimensional space and the derivative J ′(y) is replaced
by the partial derivative with respect to one of the coordinates.

7.1.6 We consider some applications of the results obtained. First of all, we apply
them to calculate two important integrals of functions whose primitives cannot be
expressed in terms of elementary functions.

Example 1 Calculate the integral

J (y)=
∫ ∞

0
e−x2

cosyx dx for y ∈R.

By the theorem on differentiation of an integral with respect to a parameter (all
conditions of this theorem are obviously met), this is a smooth function and

J ′(y)=−
∫ ∞

0
xe−x2

sinyx dx.

Integrating by parts, we obtain

J ′(y)= 1

2
e−x2

sinyx

∣
∣
∣
∞
0
− y

2

∫ ∞

0
e−x2

cosyx dx =−y

2

∫ ∞

0
e−x2

cosyx dx.

Therefore, J ′(y) + y
2 J (y) = 0. Consequently, (ey

2/4J (y))′ = 0. Thus, J (y) =
Ce−y2/4. Since C = J (0)=

√
π

2 (see Sect. 4.6.3), we come to the required result,

J (y)=
∫ ∞

0
e−x2

cosyx dx =
√
π

2
e−y2/4.
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Example 2 We consider the integral

J (y)=
∫ ∞

0
e−xy sinx

x
dx for y ∈ (0,+∞).

We prove that the function J is differentiable and use this fact to find J (y). It is
clear that, in our case, we have f ′y(x, y)=−e−xy sinx for all x, y > 0. As proved
in Sect. 7.1.4, the function f ′y satisfies condition (Lloc) at every point of the semi-
axis (0,+∞). Therefore, we may use the Leibniz rule,

J ′(y)=−
∫ ∞

0
e−xy sinx dx for y > 0.

The last integral was calculated in Example 7.1.4 (we remark that the knowledge of
this integral does not spare us the necessity of using condition (Lloc) for justification
of the above equation). Consequently,

J ′(y)=− 1

1+ y2
and J (y)= C − arctany for all y > 0,

where C is a constant. To determine the constant, we observe that J (y) −→
y→+∞ 0

since |J (y)|� ∫∞
0 e−xy dx = 1

y
. Therefore, C = π

2 , and thus

J (y)= π

2
− arctany for all y > 0. (5)

Up to now, we have considered the integral J (y) only for y > 0. However,
the integrand also makes sense for y = 0. Moreover, we know (see Example 1 of
Sect. 4.6.6) that, although the function f (x,0)= sinx

x
is not summable, the improper

integral
∫∞

0
sinx
x

dx nevertheless converges. Therefore, it is natural to define the in-
tegral J (y) also for y = 0 by J (0)= ∫∞

0
sinx
x

dx. This naturally raises the question
of whether the integral J (y) thus defined is continuous at zero. It is clear that

e−xy sinx

x
−→
y→0

sinx

x
for all x > 0.

The justification of the passage to the limit J (y)→ J (0) is complicated by the fact
that the integrand J (0) is not summable. Therefore, we cannot use Theorem 1 of
Sect. 7.1.2 here, the conditions of which guarantee the summability of the limiting
function. In Sect. 7.4, we obtain general theorems allowing us to verify the conti-
nuity of an improper integral depending on a parameter, but now we prove that the
function J is continuous at zero directly. We verify that the difference

J (y)− J (0)=
∫ ∞

0

(
e−yx − 1

) sinx

x
dx

tends to zero as y → 0. To this end, we estimate the integral over the intervals
[0, t] and [t,+∞) separately; here t > 0 is an auxiliary parameter which will be
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specified later. The integral over the interval [0, t] can be coarsely estimated: since
0 � 1− e−yx � yx, we have

∣
∣
∣
∣

∫ t

0

(
e−yx − 1

) sinx

x
dx

∣
∣
∣
∣ �

∫ t

0
xy

1

x
dx = yt.

Integrating by parts in the second integral, we obtain
∫ ∞

t

(
e−yx − 1

) sinx

x
dx =

∫ ∞

t

(
e−yx − 1

)d(− cosx)

x

=−(
1− e−ty

)cos t

t
+

∫ ∞

t

cosx

(
e−yx − 1

x

)′

x

dx.

Consequently,
∣
∣
∣
∣

∫ ∞

t

(
e−yx − 1

) sinx

x
dx

∣
∣
∣
∣ �

1

t
+

∫ ∞

t

(
1

x2
+ y

x
e−yx

)

dx

� 2

t
+ y

t

∫ ∞

t

e−yx dx <
3

t
.

Thus, |J (y)− J (0)|� yt + 3
t

for all positive y and t . Putting t = 1√
y

, we see that

|J (y)− J (0)|� 4
√
y, which implies the continuity of J (y) as y→ 0.

Taking into account (5), we obtain the value of the important integral
∫ ∞

0

sinx

x
dx = π

2
.

7.1.7 Theorem 7.1.5 also remains valid in the case of differentiability with respect
to a complex parameter.

Theorem Let Y be an open subset of the complex plane. If the conditions:

(a) the function y �→ f (x, y) is holomorphic in Y for almost all x ∈X;
(b) the partial derivative f ′y satisfies condition (Lloc) at a point y0 ∈ Y , are fulfilled,

then the integral J (y)= ∫
X
f (x, y) dμ(x) is differentiable at y0 and

J ′(y0)=
∫

X

f ′y(x, y0) dμ(x).

Proof The proof of Theorem 7.1.5 can be repeated verbatim, the only difference
being that now, in the case where the disk B(y0, |h|) lies in Y , we use the estimate

∣
∣F(x,h)

∣
∣=

∣
∣
∣
∣

∫ 1

0
f ′y(x, y0 + th) dt

∣
∣
∣
∣ � max

0�t�1

∣
∣f ′y(x, y0 + th)

∣
∣

instead of the Lagrange mean value theorem. By condition (Lloc), for h sufficiently
small in absolute value, the right-hand side of the above inequality has a summable
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majorant independent of h. Knowing this, we can finish the proof as in the case of a
real parameter. �

It follows from the above theorem that if the function ϕ is summable on a finite
interval [a, b], then the function

F(z)=
∫ b

a

ϕ(t)ezt dt

is holomorphic on the entire complex plane. Thus, the Laplace and Fourier trans-
forms of a summable function with compact support, i.e., the integrals

L(z)=
∫

R+
ϕ(t)e−zt dt and F(z)=

∫

R

ϕ(t)e−izt dt

are entire functions.

Example 1 We find the Laplace transform of a power function. Let a > 0, z ∈ C,
x =Re(z) > 0, and

L(z)=
∫ ∞

0
ta−1e−zt dt.

Obviously, |f (t, z)| = |ta−1e−zt | = ta−1e−xt , and, therefore, the integrand is
summable for every z, Re(z) > 0. The derivative f ′z satisfies the condition (Lloc)
at every point in the right half-plane. Therefore,

L′(z)=−
∫ ∞

0
tae−zt dt = 1

z
tae−tz

∣
∣
∣
∞
t=0
− a

z

∫ ∞

0
ta−1e−zt dt =−a

z
L(z).

This equation can be represented in the form (zaL(z))′ ≡ 0, which implies that
zaL(z) ≡ const. We will assume that za is the branch of the power function equal
to 1 at z= 1. Then L(z)= L(1)

za
, and it remains to recall the definition of the gamma

function (see Sect. 4.6.3) to complete the calculation,

L(1)=
∫ ∞

0
ta−1e−t dt = �(a).

Thus, L(z)= �(a)
za

.

Example 2 Let X be a closed subset of the complex plane, let G be the complement
of X, and let h be a function summable on X with respect to the measure μ (we
recall that according to our agreement at the beginning of the section, a measure on
a topological space is defined at least for all Borel subsets). We define a function J

on G by the equation

J (z)=
∫

X

h(ζ )

ζ − z
dμ(ζ ) (z ∈G).

The function J is called an integral of Cauchy type.
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We verify that this function is holomorphic in G and its derivatives can be calcu-
lated by differentiation with respect to the parameter under the integral sign, i.e.,

J (n)(z)= n!
∫

X

h(ζ )

(ζ − z)n+1
dμ(ζ ) for all z ∈G, n ∈N.

In our case, we have f (ζ, z)= h(ζ )/(ζ −z) and f ′z(ζ, z)= h(ζ )/(ζ −z)2 for ζ ∈X,
z ∈ G. In a neighborhood of z0, the denominator ζ − z is separated from zero.
Indeed, if the disk B(z0,2r) is contained in G, then the inequality |ζ − z|� r holds
for |z− z0|< r and ζ ∈X. Therefore, the function ζ �→ f (ζ, z) is summable on X

for every z ∈G and

∣
∣f ′z(ζ, z)

∣
∣=

∣
∣
∣
∣

h(ζ )

(ζ − z)2

∣
∣
∣
∣ �

|h(ζ )|
r2

for all ζ ∈X, |z− z0|< r.

The last estimate shows that the function f ′z satisfies condition (Lloc) at z0. Since
z0 is arbitrary, we obtain by Theorem 7.1.7 that the function J is holomorphic in G

and

J ′(z)=
∫

X

h(ζ )

(ζ − z)2
dμ(ζ ) for all z ∈G.

The higher order derivatives are calculated similarly.

EXERCISES

1. For the family of functions {ln(1 − 2r cosx + r2)}0<r<1, find a majorant
summable on (0,2π).

2. Does the family {1/|1− reix |}0<r<1 have a majorant summable on (0,2π)?
3. Prove that

∫ 2π

0

dx

|1− reix | ∼
r→1−0

2 ln
1

1− r
;

∫ 2π

0

dx

|1− reix |p ∼
r→1−0

Cp

(1− r)p−1
(p > 1),

where Cp = 2
∫∞

0
dt

(1+t2)p/2 .
4. Let E ⊂ R

m be a bounded measurable set. Prove that the function y �→∫
E

dx
‖x−y‖p is continuous in the space R

m for p <m.

5. Calculate the integral
∫ π

2
0

x
tanx

dx. Hint. Consider the integral
∫ π

2
0

arctan(y tanx)
tanx

dx

as y � 0.

7.2 �The Gamma Function

In the present section, we consider an important example of an integral depending
on a parameter. Here we are talking about the gamma function introduced by Euler,
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or the Euler integral of the second kind, which is of the same fundamental signifi-
cance as the elementary functions. We have already encountered it episodically (see
Sects. 4.6.3 and 5.3.2). In particular, we used the gamma function in Sect. 5.4.2 to
calculate the volume of the m-dimensional ball.

7.2.1 We recall that the gamma function is defined for x > 0 by the formula

�(x)=
∫ ∞

0
tx−1e−t dt. (1)

We leave it to the reader to verify that the derivative f ′x of the integrand f (t, x)=
tx−1e−t satisfies condition (Lloc) in a neighborhood of every point x0 > 0. By The-
orem 7.1.5, the gamma function is differentiable and

�′(x)=
∫ ∞

0
tx−1e−t ln t dt.

Similarly, we can prove that the gamma function has a derivative of an arbitrary or-
der and find a formula for it. In particular, �′′(x)= ∫∞

0 tx−1e−t ln2 t dt > 0. There-
fore, the gamma function is a convex function of class C∞((0,+∞)).

Integrating by parts, we can easily verify that � satisfies the functional equation

�(x + 1)= x�(x) for x > 0. (2)

We evaluate � for positive integers. It is clear that �(1) = 1. By Eq. (2) and
induction, we obtain �(n + 1) = n! for all n ∈ N. Thus, the gamma function is a
continuation of the function n! to the positive real axis (at first sight, the function n!
is intimately connected only with positive integers).

By the change of variable t = u2, the integral
∫∞

0 t−1/2e−t dt = �(1/2) can be

reduced to the Euler–Poisson integral I = ∫∞
−∞ e−u2

du, which we calculated re-
peatedly (see, e.g., Sect. 6.2.4). Thus, �(1/2) = I =√π . Based on this result and
functional equation (2), we can find the values of � at half-integers,

�

(

n+ 1

2

)

= (2n− 1)!!
2n

√
π (n ∈N).

Equation (2) enables us to study the behavior of � in the vicinity of zero,

�(x)= 1

x
�(x + 1)∼ 1

x
as x→+0.

For large x, the values �(x) are large, since

�(1+ x)=
∫ ∞

0
txe−t dt �

∫ ∞

x

txe−t dt � xx

∫ ∞

x

e−t dt =
(
x

e

)x

.

This simple estimate describes well the growth of � at infinity. Below (see
Sect. 7.2.6), we obtain the precise asymptotic behavior of �(x) as x→+∞.
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Fig. 7.1 Graph of the gamma function

The functional equation (2) suggests a natural continuation of � to the negative
semi-axis. Indeed, we should take the formula �(x)= 1

x
�(x+1) as the definition of

� on the interval (−1,0). Then the values of � on (−1,0) are negative and the one-
sided limits at the points 0 and −1 are infinite. Using the definition of � on (−1,0),
we can define it on the interval (−2,−1). Proceeding in this way, we define �(x)

for all x < 0, x �= −1,−2, . . . . We see that (−1)n�(x) > 0 if x ∈ (−n,−n+1), and
|�(x)| −→

x→−n
+∞ (n= 1,2, . . .). Now it is clear that Eq. (2) can be generalized as

follows:

�(x + 1)= x �(x) for x ∈R \ {0,−1,−2, . . .}. (2′)

The properties of the gamma function obtained above allows us to sketch the
graph of � (see Fig. 7.1). We remark that since �(2) = 1= �(1), Rolle’s theorem
implies that there is a (unique) critical point of � in the interval (1,2). At this point
the function assumes a local minimum. Moreover, every interval (−n,−n + 1),
n ∈N, contains a unique critical point of � (see Exercise 8).

Replacing x by a complex number z in Eq. (1) (and regarding tz−1 as e(z−1) ln t ),
we see that this equation allows us to define � not only at x > 0 but also at com-
plex z provided Re(z) > 0, i.e., in the right complex half-plane. It follows from
Theorem 7.1.7 that � is holomorphic in this half-plane. Moreover, the identity
�(z+ 1)= z�(z) remains valid and can be used to define � in the entire complex
plane except at the points 0,−1,−2, . . . in the same way as for � on the semi-axis
(−∞,0). However, we content ourselves with the study of the gamma function only
on the real axis.

7.2.2 In this section and the next, we obtain very important formulas for the gamma
function.

First of all, we recall the formula connecting the functions B and �. The function
B is defined (see Sect. 4.6.3) by the formula B(x, y)= ∫ 1

0 tx−1(1− t)y−1 dt , where
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x, y > 0. As proved in Sect. 5.3.2, we have B(x, y)= �(x)�(y)
�(x+y)

, i.e.,

∫ 1

0
tx−1(1− t)y−1 dt = �(x)�(y)

�(x + y)
. (3)

From this equation, we derive the following asymptotic relation (see also Exer-
cise 9):

�(x + a)∼ xa�(x) for x→+∞. (4)

By virtue of the functional equation for � it is sufficient to prove this for a > 0. By
(3), we obtain

�(x)�(a)

�(x + a)
=

∫ 1

0
ta−1(1− t)x−1 dt (a, x > 0).

For convenience, we replace x with x + 1. Using the change of variables t = u/x,
we obtain

�(x + 1)�(a)

�(x + a + 1)
= 1

xa

∫ x

0
ua−1

(

1− u

x

)x

du.

Since 1− t � e−t , we see that 1− u
x
� e−u/x and (1− u

x
)x � e−u for 0 � u � x.

Consequently, for every x, the integrand in the last integral (we assume that this
function is zero for u > x) has the majorant ua−1e−u summable on (0,+∞). There-
fore, Theorem 1 of Sect. 7.1.2 implies

xa �(x + 1)�(a)

�(x + a + 1)
=

∫ x

0
ua−1

(

1− u

x

)x

du −→
x→+∞

∫ ∞

0
ua−1e−u du= �(a)

(the passage to the limit is actually justified in Example 2 of Sect. 4.8.4). Dividing
by �(a), we can represent this in a form equivalent to (4):

xa x�(x)

(x + a)�(x + a)
−→

x→+∞ 1.

For a sharpening of this relation, see Exercise 9 and Example 1 of Sect. 7.3.5.

7.2.3 The following formula makes it possible to find the values of � without inte-
gration:

�(x)= lim
n→∞

nx n!
x(x + 1) · · · (x + n− 1)(x + n)

for x ∈R, x �= 0,−1,−2, . . .

This formula is similar to Euler’s definition of � (see Exercise 2) and is known as
the Euler–Gauss formula.2

2Carl Friedrich Gauss (1777–1855)—German mathematician.
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For the proof we observe that �(x+n)= (x+n−1) · · · (x+1)x�(x). Therefore,

nxn!
x(x + 1) · · · (x + n)

= n

x + n
· nx(n− 1)!
x(x + 1) · · · (x + n− 1)

= n

x + n
·�(x) · nx�(n)

�(x + n)
.

It remains to use relation (4).
For x = 1

2 , the Euler–Gauss formula essentially coincides with the Wallis for-
mula (see Sect. 4.6.2). Indeed, for x = 1

2 we obtain

√
π = �

(
1

2

)

= lim
n→∞

√
nn!

1
2 · 3

2 · · · ( 1
2 + n)

= 2 lim
n→∞

√
n

(2n)!!
(2n+ 1)!! ,

which is equivalent to the Wallis formula.

To obtain one more famous formula connected with the gamma function, we
recall the asymptotic behavior of the partial sums of the harmonic series: there exists
a γ (the Euler constant) such that

1+ 1

2
+ 1

3
+ · · · + 1

n
= lnn+ γ + o(1).

This follows from the convergence of the series
∑∞

k=1(
1
k
− ln(1+ 1

k
)), since its nth

partial sum is equal to 1+ 1
2 + · · · + 1

n
− ln(n+ 1).

We will use this result to obtain a beautiful expansion of the function 1/� in
an infinite product. We recall that by the infinite product of a numerical sequence
a1, a2, . . . , we mean the limit limn→∞

∏n
k=1 ak , which is denoted by

∏∞
k=1 ak .

We prove that

1

�(x)
= xeγx

∞∏

k=1

(

1+ x

k

)

e−
x
k (x ∈R) (5)

(since |�(x)| → +∞ as x → 0,−1,−2, . . . , it is natural to assume that the quo-
tient 1/� is zero at these points). The relation obtained is called the Weierstrass
formula.3

For the proof, we rewrite the Euler–Gauss formula as

1

�(x)
= lim

n→∞n−xx(1+ x) · · ·
(

1+ x

n

)

.

Now, after elementary transformations, we obtain

1

�(x)
= x lim

n→∞n−x

n∏

k=1

(

1+ x

k

)

= x lim
n→∞ ex(1+

1
2+···+ 1

n
−lnn)

n∏

k=1

(

1+ x

k

)

e−
x
k .

Since 1+ 1
2 + · · · + 1

n
− lnn→ γ , we see that the limit limn→∞

∏n
k=1(1+ x

k
)e− x

k

exists and the Weierstrass formula is valid.

3Karl Theodor Wilhelm Weierstrass (1815–1897)—German mathematician.
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7.2.4 Equation (3) enables us to obtain Legendre’s (duplication) formula,4 also sim-
ply called the duplication formula:

�(x)�

(

x + 1

2

)

=
√
π

22x−1
�(2x) (x > 0).

To this end, we transform the right-hand side of the equation

�2(x)

�(2x)
=

∫ 1

0
tx−1(1− t)x−1 dt.

We have

�2(x)

�(2x)
=

∫ 1

0

(
t− t2)x−1

dt =
∫ 1

0

(
1

4
−

(
1

2
− t

)2)x−1

dt = 2
∫ 1

2

0

(
1

4
− s2

)x−1

ds.

Substituting u= 4s2, we obtain by (3)

�2(x)

�(2x)
= 21−2x

∫ 1

0
u−

1
2 (1− u)x−1 du= 21−2x �( 1

2 )�(x)

�(x + 1
2 )

.

Since �( 1
2 )=

√
π , we come to the required formula.

As follows from (2′), the formula proved above is valid not only for positive x

but also for all real x such that 2x �= 0,−1,−2, . . . .

7.2.5 Now we obtain one of the most important formulas connected with the gamma
function. This is Euler’s reflection formula

�(x)�(1− x)= π

sinπx
for x ∈R \Z.

Our elegant proof of this formula follows the proof in the book [Ar].
We prove that the product θ(x) = sinπx

π
�(x)�(1 − x) is constant on R \ Z. It

follows from Eq. (2′) that the function θ has period 1. Indeed,

θ(x + 1)=− sin(πx)

π
�(x + 1)�(−x)=− sin(πx)

π
x�(x)

�(1− x)

−x
= θ(x).

Moreover,

θ(x)= sin(πx)

πx
�(x + 1)�(1− x).

Hence, extending θ by the formula θ(n)= 1 for n ∈ Z, we obtain a 1-periodic func-
tion infinitely differentiable in a neighborhood of zero and, consequently, on the
entire real axis. It is clear that θ > 0 on R.

4Adrien-Marie Legendre (1752–1833)—French mathematician.
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For x > 0, Legendre’s formula implies (as the reader can easily verify) the rela-
tion

θ

(
x

2

)

θ

(
1+ x

2

)

= θ(x).

Taking logarithms, we see that

g

(
x

2

)

+ g

(
x + 1

2

)

= g(x), (6)

where g = ln θ . Consequently, the continuous and 1-periodic function g′′ satisfies
the identity

g′′
(
x

2

)

+ g′′
(

1+ x

2

)

= 4g′′(x).

For M =max |g′′|, we obtain that 2M � 4M . Since 0 �M <+∞, this means that
M = 0, i.e., g = ln θ is a linear function. Taking into account that g(0)= g(1)= 0,
we obtain g ≡ 0, i.e., θ ≡ 1.

The reflection formula can be used to obtain Euler’s famous factorization of the
sine function into “simple factors” just as polynomials can be represented in a sim-
ilar form.

Since the sine function has infinitely many zeros, we have to use infinite products.
Euler’s result is as follows:

sinπx = πx

∞∏

n=1

(

1− x2

n2

)

for each x ∈R. (7)

Rejecting the trivial case, we may assume that x /∈ Z. Multiplying the Weierstrass
formulas for �(x) and �(−x), we obtain

1

�(x)�(−x)
=−x2

∞∏

n=1

(

1− x2

n2

)

.

It remains to apply the reflection formula,

sinπx = π

�(x)�(1− x)
= π

(−x)�(x)�(−x)
= πx

∞∏

n=1

(

1− x2

n2

)

.

We remark that, as seen from the above proof, the reflection formula can in turn be
derived from the Weierstrass formula and Eq. (7).
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7.2.6 Now we turn to a more substantial study of the asymptotic behavior of �(x)

as x→+∞. The asymptotic behavior is described by Stirling’s formula5

�(x) ∼
x→+∞

√
2π xx− 1

2 e−x. (8)

In Sect. 7.3 we obtain this result as a particular case of a more general statement,
but now we use a different approach based on our knowledge of the gamma function
and allowing us to obtain a sharpening of asymptotic formula (8).

First of all, we replace the rapidly decreasing gamma function by its logarithm.
The next step is to find the asymptotic behavior of the second derivative of ln�(x).

Taking logarithms in Eq. (5) for x > 0, we obtain

− ln�(x)= lnx + γ x +
∞∑

n=1

(

ln

(

1+ x

n

)

− x

n

)

.

Differentiating twice, we obtain

(
ln�(x)

)′′ =
∞∑

n=0

1

(x + n)2
. (9)

The termwise differentiation is legal since the series obtained converges uniformly
on every closed interval lying in (0,+∞).

The general method that, in particular, makes it possible to obtain arbitrarily
precise asymptotic representation of the sum of series (9) as x→+∞ is provided
by the Euler–Maclaurin formula (see [F], vol. II, [Bou]). However, we will not use
it, instead obtaining the first several terms of the asymptotic of (ln �(x))′′ directly.
The principal term of the asymptotic can easily be found since the sum of series (9)
is close to the integral. We obtain

1

x
=

∫ ∞

0

dt

(x + t)2
�

∞∑

n=0

1

(x + n)2
� 1

x2
+

∫ ∞

0

dt

(x + t)2
= 1

x
+ 1

x2
.

Thus,

(
ln �(x)

)′′ = 1

x
+O

(
1

x2

)

(from here to the end of this section, we assume that x > 0 and that the symbol O
refers to x→+∞ without saying it explicitly). The trick that we will use here is as
follows. We will successively sharpen the asymptotic formula obtained, extracting
the principal parts by series whose sums can easily be found. First, we represent 1

x

5James Stirling (1692–1770)— Scotish mathematician.
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in the form

1

x
=

∞∑

n=0

(
1

x + n
− 1

x + n+ 1

)

=
∞∑

n=0

1

(x + n)(x + n+ 1)

and subtract it from (9). We obtain

(
ln �(x)

)′′ − 1

x
=

∞∑

n=0

(
1

(x + n)2
− 1

(x + n)(x + n+ 1)

)

=
∞∑

n=0

1

(x + n)2(x + n+ 1)
. (10)

Again, comparing the series obtained with the corresponding integral, we see that

1

2(x + 1)2
=

∫ ∞

0

dt

(x + t + 1)3
�

(
ln �(x)

)′′ − 1

x
=

∞∑

n=0

1

(x + n)2(x + n+ 1)

� 1

x3
+

∫ ∞

0

dt

(x + t)3
= 1

2x2
+ 1

x3
.

Consequently,

(
ln �(x)

)′′ − 1

x
= 1

2x2
+ h(x), where h(x)=O

(
1

x3

)

. (11)

This result (for another proof of which, see Exercise 13) is already sufficient to
prove (8). Indeed, it is clear that

∫ x

1
h(t) dt =

∫ ∞

1
h(t) dt −

∫ ∞

x

h(t) dt = const+O

(
1

x2

)

.

Therefore, integrating expansion (11) from 1 to x, we obtain the equation

(
ln�(x)

)′ =A+ lnx − 1

2x
+O

(
1

x2

)

.

One more integration gives the relation

ln �(x)= B +Ax + x lnx − x − 1

2
lnx +O

(
1

x

)

.

To find A and B , it is convenient to write this equation (slightly coarsening it) as the
equivalence

�(x) ∼
x→+∞ Cxx− 1

2 e(A−1)x,



7.2 �The Gamma Function 325

where C = eB . To determine A, we use the functional equation, which implies that

�(x)= �(x + 1)

x
∼

x→+∞
C

x
(x + 1)x+

1
2 e(A−1)(x+1).

Taking the ratio of the right-hand sides of these equivalencies, we obtain

(

1+ 1

x

)x+ 1
2

eA−1 −→
x→+∞ 1,

which is possible only if A= 0. The constant B can be found similarly by means of
Legendre’s formula, which implies that

C2xx− 1
2 e−x

(

x + 1

2

)x

e−x− 1
2 ∼

x→+∞

√
π

22x−1
C(2x)2x− 1

2 e−2x.

Dividing by Cx2x− 1
2 e−2x , we see that C(1+ 1

2x )
xe− 1

2 −→
x→+∞

√
2π , which implies

the equality C =√2π . Thus,

ln �(x)=
(

x − 1

2

)

ln x − x + 1

2
ln(2π)+O

(
1

x

)

,

i.e.,

�(x)=√2πxx− 1
2 e−x

(

1+O

(
1

x

))

. (8′)

The above relations, as well as Eq. (8), are also called Stirling’s formulas.
To sharpen the asymptotic, we represent 1

x2 in the form

1

x2
=

∞∑

n=0

(
1

(x + n)2
− 1

(x + n+ 1)2

)

=
∞∑

n=0

2(x + n)+ 1

(x + n)2(x + n+ 1)2

and, multiplying by 1
2 , we subtract it from (10). We obtain

(
ln �(x)

)′′ − 1

x
− 1

2x2
= 1

2

∞∑

n=0

1

(x + n)2(x + n+ 1)2
. (12)

Since

1

6(x + 1)3
= 1

2

∫ ∞

0

dt

(x + t + 1)4

�
(
ln �(x)

)′′ − 1

x
− 1

2x2
= 1

2

∞∑

n=0

1

(x + n)2(x + n+ 1)2

� 1

2x4
+ 1

2

∫ ∞

0

dt

(x + t)4
= 1

2x4
+ 1

6x3
,
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we see that

(
ln �(x)

)′′ − 1

x
− 1

2x2
= 1

6x3
+O

(
1

x4

)

.

The further sharpening of the asymptotic can be performed repeatedly, but we make
only one more step. Applying the trick used twice, we represent 1

x3 in the form

1

x3
=

∞∑

n=0

(
1

(x + n)3
− 1

(x + n+ 1)3

)

=
∞∑

n=0

3(x + n)2 + 3(x + n)+ 1

(x + n)3(x + n+ 1)3
.

Multiplying by 1
6 and subtracting from (12), we obtain

(
ln �(x)

)′′ − 1

x
− 1

2x2
− 1

6x3
=−1

6

∞∑

n=0

1

(x + n)3(x + n+ 1)3
≡−1

6
s(x),

where

1

5(x + 1)5
=

∫ ∞

0

dt

(x + t + 1)6
� s(x)=

∞∑

n=0

1

(x + n)3(x + n+ 1)3

<
1

x6
+

∫ ∞

0

dt

(x + t)6
= 1

5x5
+ 1

x6
.

It can easily be verified that 1
5x5 − 1

x6 < 1
5(x+1)5 . Therefore, |s(x)− 1

5x5 |< 1
x6 . Thus,

(
ln �(x)

)′′ = 1

x
+ 1

2x2
+ 1

6x3
− 1

30x5
+ θ

6x6
, |θ |< 1.

After integration we obtain the following sharpening of formula (8′):

�(x)=√2π xx− 1
2 e−xe

1
12x− 1

360x3+ θ

120x4 , |θ |< 1. (8′′)

7.2.7 We generalize Legendre’s formula and verify that the relation (the Gauss mul-
tiplication theorem)

�(x)�

(

x + 1

p

)

· · ·�
(

x + p− 1

p

)

= (2π)
p−1

2

ppx− 1
2

�(px) (px �= 0,−1,−2, . . .)

is valid for every p = 2,3,4, . . . . For the proof, we use the Euler–Gauss formula
and represent the left-hand side in the form

p−1∏

k=0

�

(

x+ k

p

)

= lim
n→∞

p−1∏

k=0

n!nx+ k
p

∏n
j=0(x + k

p
+ j)

= lim
n→∞

(n!)pnpx+ p−1
2 p(n+1)p

∏p−1
k=0

∏n
j=0(px + pj + k)

.
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It can easily be seen that the arising product is equal to the product of factors of
the form px + i for 0 � i � pn + p − 1. Replacing the last p − 1 factors by the
equivalent quantities pn (as n→∞), we obtain that the product is equivalent to

(pn)p−1
pn∏

i=0

(px + i).

Therefore,

p−1∏

k=0

�

(

x + k

p

)

= lim
n→∞

(n!)pnpx+ p−1
2 p(n+1)p

(pn)p−1
∏pn

i=0(px + i)

= p−px lim
n→∞

(n!)ppnp+1

(np)!np−1
2

· lim
n→∞

(np)px(np)!
px(px + 1) · · · (px + pn)

.

By the Gauss formula, the second limit is �(px). It remains to observe that the

first limit (independent of x) is equal to (2π)
p−1

2
√
p. This can easily be proved by

Stirling’s formula and is left to the reader. Thus, we arrive at the required result.

7.2.8 We now pause to discuss one more property of the gamma function. It will be
shown that this property along with functional equation (2) characterizes the gamma
function up to a constant factor. We speak of the logarithmic convexity. A positive
function f is called logarithmically convex if lnf is a convex function.

The convexity of ln� certainly follows from formula (9) demonstrating that
(ln �)′′ > 0. However, the logarithmic convexity of � can be proved directly from
the definition of �. Indeed, the logarithmic convexity of � is obviously equiva-
lent to the fact that �(αx + (1 − α)y) � �α(x)�1−α(y) for all positive x, y and
α ∈ (0,1). The last inequality follows from Hölder’s inequality (see Theorem 4.4.5
for p = 1/α). Indeed,

�
(
αx + (1− α)y

)=
∫ ∞

0

(
tx−1e−t

)α(
ty−1e−t

)1−α
dt

�
(∫ ∞

0
tx−1e−t dt

)α (∫ ∞

0
ty−1e−t dt

)1−α

= �α(x)�1−α(y).

The gamma function is not a unique solution of the functional equation
f (x + 1) = xf (x). For example, other solutions can be obtained by multiplying
the gamma function by 1-periodic functions. Thus, this equation does not determine
the gamma function uniquely. The state of affairs changes radically if we seek so-
lutions in the class of logarithmically convex functions. In this class the equation in
question has a unique (up to a positive coefficient) solution.

In other words, the following statement is true.6

6To the best of our knowledge, this was first published by H. Bohr and J. Mollerup in “Laerebog i
Matematisk Analyse” in 1922 (see e.g. [LO]).
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Theorem If a logarithmically convex function f on (0,+∞) satisfies the functional
equation f (x + 1)= xf (x), then f (x)= f (1)�(x).

Proof We verify that the quotient f/� is constant. To this end, we consider the
function M = ln(f/�), which is continuous on (0,+∞) as the difference of two
convex functions. Moreover, M is one-sided 1-periodic, i.e., M(x + 1)=M(x) for
all x > 0. Assuming that M is not constant, we consider a point x0 ∈ (1,2] at which
M attains its maximum value. In this case, for some h ∈ (0,1), the second difference
�2

hM(x)=M(x + h)− 2M(x)+M(x − h) is negative, �2
hM(x0)= δ < 0. At the

same time, �2
h(lnf (x))� 0 since f is logarithmically convex. However, for each n,

the one-sided periodicity implies

0 ��2
h

(
lnf (x0+n)

)=�2
hM(x0+n)+�2

h

(
ln�(x0+n)

)= δ+�2
h

(
ln�(x0+n)

)
.

It follows from (4) that �2
h(ln�(x))→ 0 for x →+∞. Therefore, passing to the

limit as n→∞ in the inequality 0 � δ +�2
h(ln�(x0 + n)), we obtain 0 � δ < 0,

a contradiction. �

EXERCISES

1. Express the following integrals in terms of �:

(a)
∫ 1

0
xa−1(

1− xb
)c

dx (a, b, c > 0);

(b)
∫ ∞

0

xa−1

(1+ xb)c
dx (a, b, c > 0, bc > a).

2. Prove the relation

�(x)= 1

x

∞∏

n=1

(1+ 1
n
)x

1+ x
n

for x �= 0,−1,−2, . . .

used by Euler as a definition of �.
3. If the numbers a1, b1, . . . , ak, bk in R \ N are such that a1 + · · · + ak =

b1 + · · · + bk , then

∞∏

n=1

(n− a1) · · · (n− ak)

(n− b1) · · · (n− bk)
= �(1− b1) · · ·�(1− bk)

�(1− a1) · · ·�(1− ak)
.

4. Let S(t)=∏∞
n=1(1+ t2

n2 )= shπt
πt

. Prove that

S

(
a√

x2 − a2

)

� �(x − a)�(x + a)

�2(x)
� S(a) for x > 1+ |a|.
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5. Differentiating the series expansion of ln� (see Sect. 7.2.6), prove that

�′(1)=−γ and �′(n+ 1)= n!
(

−γ + 1+ 1

2
+ · · · + 1

n

)

.

6. Calculate �′(n+ 1
2 ) for n= 0,1,2, . . .

7. Find the limit limx→−n(x + n)�(x) for n ∈N.
8. Use the logarithmic convexity of � on (0,+∞) and Eq. (2′) to prove that the

function |�(x)| is logarithmically convex (and, consequently, convex) on each
interval (−n,−n+ 1), n ∈N.

9. By sharpening relation (4), prove that the inequality

xa x

x + a
�(x)� �(x + a)� xa�(x)

holds for 0 < a < 1 and x > 0 (use the logarithmic convexity of �).
10. Use the preceding exercise to prove the inequality (ln�(x))′ � lnx for x > 0.
11. Verify that Theorem 7.2.8 remains valid in the class of positive functions f ∈

C((0,+∞)) satisfying the condition

lim
x→+∞

�2
h

(
ln f (x)

)
� 0

(“the logarithmic convexity of f at infinity”) for sufficiently small h > 0.
12. By Stirling’s formula (8) (do not use formula (8′′)), prove that

√
2πnnne−ne

1
12n+1 < n!<√2πnnne−ne

1
12n (n ∈N),

(verify that the ratios of the left-hand and right-hand sides of the inequality to n!
are monotonic).

13. Prove relation (11) by comparing series (9) with the sum

∞∑

n=0

1

(x + n)2 − 1
4

=
∞∑

n=0

(
1

x + n− 1
2

− 1

x + n+ 1
2

)

.

14. Supplementing the estimate for s obtained in the proof of Stirling’s formula,
prove that 0 < s(x) < 1

5x5 and obtain the inequality

√
2π xx− 1

2 e−xe
1

12x− 1
360x3 <�(x) <

√
2πxx− 1

2 e−xe
1

12x .

15. Use the identity 1
y2 = 1

y(y+1) + 1
y(y+1)(y+2) + · · · + (j−1)!

y(y+1)···(y+j)
· · · for y = x,

x + 1, x + 2, . . . to derive from (11) the equation

(
ln�(x)

)′′ = 1

x
+

∞∑

n=1

n!
n+ 1

· 1

x(x + 1) · · · (x + n)
(x > 0),

which can be used to sharpen relation (8′′).
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7.3 �The Laplace Method

This section is devoted to the study of the asymptotic behavior of an important class
of integrals depending on a parameter in a specific way, namely, the integrals

�(x)=
∫

T

f (t)ϕx(t) dμ(t),

where the function ϕ is non-negative and bounded. The interest in the asymptotic
behavior of such integrals as x→+∞ comes from problems of classical analysis,
mathematical physics, probability theory, etc. A systematic study of this problem
was first made by Laplace7 to substantiate the law of large numbers. Throughout
this section, when we speak of the asymptotic behavior of the integrals �(x), we
refer to the asymptotic as x→+∞ without saying it explicitly.

7.3.1 We start the study of the integrals in question from the simplest and, at the
same time, the most important case where the set T is an interval (possibly infi-
nite) and μ is Lebesgue measure. We will assume that the function ϕ is positive,
bounded and piecewise monotonic, but the function f is summable on (a, b). Thus,
the integral

�(x)=
∫ b

a

f (t) ϕx(t) dt (1)

is finite for all x � 0.
Instead of the summability of f , we may assume that only the product f ϕx0 is

summable for some x0 > 0 and consider the integral �(x) for x � x0. Obviously,
we can reduce this case to the preceding one by replacing f with f ϕx0 .

The Laplace method is based on the fact that the main contribution to the integral
�(x) comes from the integrals over the neighborhoods of the points at which the
function ϕ attains its maximum value. This is well illustrated on the graph of ϕx ,
which, for large x, has “humps” in neighborhoods of such points; the larger the x,
the more pronounced the hump (see Fig. 7.2 illustrating the case maxϕ = 1).

Usually, such sharp oscillations of the integrand complicate the calculation of the
integral, but, in the case in question, they simplify the determination of the asymp-
totic. Two hundred years ago, in the preface to his famous “Analytical Theory of
Probability”, Laplace wrote with enthusiasm that the method discovered by him “is
the more required, the more exact”.

Dividing, if necessary, the interval of integration into several parts, we may as-
sume that the function ϕ is monotonic. Clearly, it is sufficient to consider only the
case where ϕ decreases, since the case where ϕ increases can be reduced the pre-
ceding one by a change of variable. We assume that ϕ is decreasing on [a, b), where
−∞< a < b�+∞, and verify, first of all, that the integrals of the form (1) demon-
strate the localization phenomenon, i.e., their asymptotic depends on the behavior

7Pierre-Simon Laplace (1749–1827)—French mathematician.
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Fig. 7.2 Graphs of the functions ϕ and ϕx for large x

of the integrand only in an arbitrarily small neighborhood of the point a. More
precisely, the following simple but important assertion concerning localization is
valid.

Lemma Assume that ϕ decreases, f is summable on [a, b), and that the following
conditions hold:

(1) 0 < ϕ(t) < ϕ(a)= limu→a ϕ(u) for t ∈ (a, b);
(2) f preserves sign in a neighborhood of the point a and does not vanish at the

points close to a, i.e.,

Ic =
∫ c

a

f (t) dt �= 0 for all c sufficiently close to a.

Then the asymptotic expansions

�(x)∼
∫ c

a

f (t) ϕx(t) dt and ϕx(c)= o
(
�(x)

)
as x→+∞

are valid for all c ∈ (a, b).

Thus, the main contribution to �(x) comes from the integral over an arbitrary
small interval (a, c), and the contribution of the integral over the remaining interval
is negligibly small.

Proof From the inequality | ∫ b

c
f (t)ϕx(t) dt | � ϕx(c)

∫ b

c
|f (t)|dt , it follows that

�(x)= ∫ c

a
f (t)ϕx(t) dt +O(ϕx(c)). Therefore, we need to prove only the relation

ϕx(c) = o(�(x)). Since the function ϕ decreases, the point c can be chosen arbi-
trarily close to a. Without loss of generality, we may assume that the function f is
non-negative on the interval [a, c].

By assumption, there exists a point c ∈ (a, c) such that ϕ(c) < ϕ(c). Then Ic > 0
and
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�(x)

ϕx(c)
� 1

ϕx(c)

∫ c

a

f (t) ϕx(t) dt + 1

ϕx(c)

∫ b

c

f (t) ϕx(t) dt

� ϕx(c)

ϕx(c)
Ic −

∫ b

c

∣
∣f (t)

∣
∣dt −→

x→+∞+∞,

which completes the proof of the lemma. �

The localization property proved above is an important qualitative characteristic
of the integrals �(x). It provides the basis for the study of these integrals for large
values of the parameter x. In particular, it allows us to compare the behavior of
the integrals �(x) = ∫ b

a
f (t)ϕx(t) dt and �(x) = ∫ b

a
g(t)ϕx(t) dt as x →+∞ if

we take into account the information on the behavior of the quotient g(t)/f (t) as
t→ a. We state this technically useful result in more detail.

Corollary Assume that functions ϕ and f satisfy the conditions of the lemma. As-
sume that a function g is summable on [a, b) and �(x)= ∫ b

a
g(t) ϕx(t) dt . Then:

(a) if g(t)=O(f (t)) as t→ a, then �(x)=O(�(x)) as x→+∞;
(b) if g(t)= o(f (t)) as t→ a, then �(x)= o(�(x)) as x→+∞;
(c) if g(t)∼ f (t) as t→ a, then �(x)∼�(x) as x→+∞.

Proof (a) By assumption, there exists a coefficient C > 0 and a point c ∈ (a, b) such
that |g(t)| � C|f (t)| on (a, c). We can choose c so close to a that the function f

preserves the sign on (a, c). Then

∣
∣�(x)

∣
∣ �

∫ c

a

∣
∣g(t)

∣
∣ϕx(t) dt +

∫ b

c

∣
∣g(t)

∣
∣ϕx(t) dt

� C

∫ c

a

∣
∣f (t)

∣
∣ϕx(t) dt +O

(
ϕx(c)

)
.

Since f preserves the sign on (a, c), the lemma implies that

∣
∣�(x)

∣
∣ � C

∣
∣
∣
∣

∫ c

a

f (t) ϕx(t) dt

∣
∣
∣
∣+ o

(
�(x)

)= C
∣
∣�(x)

∣
∣+ o

(
�(x)

)
,

which completes the proof of statement (a).
The same reasoning proves statement (b), since the coefficient C can be taken

arbitrarily small. Finally, to prove statement (c), we apply (b) to the difference
f − g. �

7.3.2 The study of the integrals �(x) is based on the following simple idea: we use
localization to approximate the functions f and ϕ in the vicinity of a by functions
generating an easily computable integral.

Obviously, the behavior of �(x) as x →+∞ is determined to a great extent
by the rate of decrease of the maximum value of ϕ(t) when the argument t moves
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away from the point a. In other words, in the problem in question, the infinitesimal
ϕ(a)−ϕ(t) (as t→ a) plays a decisive role. Therefore, its rate of change should be
taken into account in the first place when making a choice of an approximation.

For smooth ϕ, the following two cases are of greatest importance:

(a) ϕ(t)− ϕ(a) ∼
t→a

ϕ′(a)(t − a), where ϕ′(a) < 0;

(b) ϕ(t)− ϕ(a) ∼
t→a

1

2
ϕ′′(a)(t − a)2, where ϕ′′(a) < 0

(
ϕ′(a)= 0

)
.

In these cases, if f (t)−→
t→a

L �= 0, then the following Laplace asymptotic formu-

las

(a) �(x) ∼
x→+∞ L

ϕ(a)

|ϕ′(a)|x ϕx(a),

(b) �(x) ∼
x→+∞ L

√
πϕ(a)

2|ϕ′′(a)|x ϕx(a)

(2)

are valid.
We obtain a more general result provided the difference ϕ(a)− ϕ(t) is a power-

type infinitesimal, i.e., ϕ(a)−ϕ(t) ∼
t→a

C(t−a)p , where C,p > 0. Representing the

function ϕ in the form ϕ(t)= e−S(t), we see that the above condition is equivalent
to S(t)− S(a) ∼

t→a

C
ϕ(a)

(t − a)p .

The proof of the main result for ϕ(a)= 1 essentially reduces to the justification
of the natural idea of replacing ϕ(t) by a “similar” function e−C(t−a)p in the vicinity
of the point a. We fulfill this idea in three steps.

First of all, we consider the integral
∫∞

0 e−xtp dt , which will serve as a standard
model and can easily be calculated by the gamma function,

∫ ∞

0
e−xtp dt =

∫ ∞

0
e−u d

(
u

x

) 1
p = 1

p
�

(
1

p

)

x
− 1

p .

In the next step, we use the localization property to verify that the replacement
of tp by an equivalent function does not change the asymptotic of the integral. The
following statement holds.

Lemma Let ϕ be a function defined on [0, b) and satisfying the conditions of the
localization lemma. If ln ϕ(t) ∼

t→+0
−tp for some p > 0, then

�(x)=
∫ b

0
ϕx(t) dt ∼

x→+∞

∫ ∞

0
e−xtp dt = Cp x

− 1
p , where Cp = 1

p
�

(
1

p

)

.

Proof We put S(t) = − ln ϕ(t). Fixing an arbitrary number θ ∈ (0,1), we find a
c ∈ (0, b) such that (θt)p < S(t) < ( t

θ
)p for 0 < t < c. By the localization lemma,
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we have

�(x) ∼
x→+∞�(x)=

∫ c

0
e−xS(t) dt.

We estimate the integral � . Obviously,

∫ c

0
e−x( t

θ
)p dt < �(x) <

∫ c

0
e−x(θt)p dt.

As x →+∞, the integrals on the right-hand and left-hand sides of the above in-

equality are equivalent to Cp θ x
− 1

p and Cp

θ
x
− 1

p , respectively. Slightly changing
the coefficients, we obtain

Cp θ2 < x
1
p �(x) <

Cp

θ2

for sufficiently large x. Since x1/p�(x) ∼
x→+∞ x1/p�(x), we see that (again for

sufficiently large x)

Cpθ
3 < x

1
p �(x) <

Cp

θ3
.

Since θ ∈ (0,1) is arbitrary, we obtain that x
1
p �(x) −→

x→+∞ Cp . �

Now we are ready to turn to the concluding step and obtain the main result.

Theorem Let ϕ be an decreasing positive function, and let f be a summable func-
tion on [a, b). Assume that:

(a) there exist positive numbers C and p such that ϕ(a)− ϕ(t) ∼
t→a

C(t − a)p;

(b) there exist numbers L �= 0 and q >−1 such that f (t) ∼
t→a

L(t − a)q .

Then

�(x)=
∫ b

a

f (t)ϕx(t) dt ∼
x→+∞

L

p
�

(
q + 1

p

)(
ϕ(a)

Cx

) q+1
p

ϕx(a). (3)

In particular, for q = 0 and p = 1 or 2, we obtain the Laplace formulas (2).

As has already been pointed out, the case where the function ϕ increases can be
reduced to what has just been considered by a change of variable. Therefore, if ϕ is
a non-negative non-decreasing function on the interval (a, b] (here −∞� a < b <

+∞), ϕ(b)− ϕ(t)∼ C(b − t)p , and f (t)∼ L(b − t)q as t → b, then relation (3)
remains valid (with a replaced by b).

If the function ϕ attains its maximum value at a point t0 of the interval (a, b), in-
creases from the left and decreases from the right of it, and ϕ(t0)−ϕ(t)∼ C|t− t0|p
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and f (t)∼ L|t − t0|q as t → t0, then, applying the formula to each of the intervals
(a, t0] and [t0, b) separately, we see that the right-hand side must be doubled,

�(x)=
∫ b

a

f (t)ϕx(t) dt ∼
x→+∞

2L

p
�

(
q + 1

p

)(
ϕ(t0)

Cx

) q+1
p

ϕx(t0). (3′)

Proof Replacing ϕ by ϕ/ϕ(a), we may assume that ϕ(a) = 1. Moreover, we will
assume that a = 0 (which can be achieved by the change of variable t �→ t − a).
Thus, we must prove that

�(x)=
∫ b

0
f (t)ϕx(t) dt ∼

x→+∞
L

p
�

(
q + 1

p

)

(Cx)
− q+1

p

if 1− ϕ(t) ∼
t→0

Ctp . By virtue of the localization lemma, we may change the func-

tion f by an equivalent, not changing the asymptotic. We have

�(x) ∼
x→+∞

∫ b

0
Ltqϕx(t) dt = L

q + 1

∫ bq+1

0
ϕx

(
u

1
q+1

)
du

= L

q + 1

∫ B

0
e−CxS(u) du,

where S(u) = − 1
C

lnϕ(u
1

q+1 ) and B = bq+1. As u→ 0, we again obtain, by as-
sumption, that

S(u)∼ 1

C

(
1− ϕ

(
u

1
q+1

))∼ u
p

q+1 .

This allows us to apply the lemma (with Cx in place of x and p
q+1 in place of p) to

the integral over the interval [0,B) and obtain

�(x) ∼
x→+∞

L

q + 1

q + 1

p
�

(
q + 1

p

)

(Cx)
− q+1

p = L

p
�

(
q + 1

p

)

(Cx)
− q+1

p . �

Remark A negligibly small contribution to �(x) comes not only from the point of
the interval (c, b) with a fixed c ∈ (a, b). We can choose the parameter c dependent
on x and tending (not very rapidly) to the point a. Under the conditions of the
theorem, the following sharpening of the localization property is valid: if α(x)→ 0
and x1/pα(x)→+∞ as x→+∞, then

∫ b

a

f (t)ϕx(t) dt ∼
x→+∞

∫ a+α(x)

a

f (t)ϕx(t) dt.

Indeed, as in the proof of the theorem, we assume that a = 0 and ϕ(a)= 1. Since
the integral over the interval [c, b) is exponentially small for a fixed c ∈ (a, b), it is
sufficient to estimate the integral over the interval [α(x), c]. We choose a number c
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so small that |f (t)|� 2|L|tq and 1−ϕ(t)� C
2 tp for t ∈ [0, c]. Then ϕ(t)� e−Ctp/2

and, therefore,
∣
∣
∣
∣

∫ c

α(x)

f (t)ϕx(t) dt

∣
∣
∣
∣ � 2|L|

∫ ∞

α(x)

tqe−
C
2 xtp dt = 2|L|

x
q+1
p

∫ ∞

x
1
p α(x)

uqe−
C
2 up

du

= o
(
�(x)

)
.

This estimate implies that if ( x
lnx

)
1
p α(x)→+∞ as x→+∞, the relative error of

the approximate equality �(x) ≈ ∫ a+α(x)

a
f (t)ϕx(t) dt decreases “overpowerly”,

i.e., faster that every negative power of x.

In Theorem 7.3.2, we assumed that the difference ϕ(a)− ϕ(t) and the function
f (t) have power type principal parts as t→ a. In Sect. 7.3.4, we consider examples
where this condition is violated. In our study of these examples, an important role
is played by the choice of a neighborhood of the point a that shrinks as x grows. It
should be noted that if the infinitesimal ϕ(a)− ϕ(t) is not of power type, then, re-
placing it by an equivalent function, we can change the asymptotic of the integral in
question (see Exercise 10). Additional restrictions allowing us to make this change
are given in Exercise 11.

7.3.3 We consider several examples of application of the Laplace formula.

Example 1 We find the asymptotic of the integral
∫ π

2
0 cosx t dt . To this end, we use

Laplace formula (2b) with functions ϕ(t)= cos t and f (t)≡ 1, which immediately
leads to the relation

∫ π
2

0
cosx t dt ∼

x→+∞

√
π

2x
.

We recall that, if x = n is an integer, then the integral is equal to vn
(n−1)!!

n!! , where
vn = 1 for odd n and vn = π

2 for even n. Therefore, for such x, the asymptotic can
be obtained by Stirling’s formula.

Example 2 The asymptotic of the gamma function (Stirling’s formula). The inte-
grand in the integral �(x + 1) = ∫∞

0 txe−t dt attains its maximum value at t = x,
and in a neighborhood of this point the graph has a sharply pronounced “peak”,
which suggests that we may use the Laplace method. However, this method cannot
be applied directly since the local maximum of the integrand changes with the pa-
rameter. To represent the integrand in the form considered in Theorem 7.3.2, it is
necessary to use a sliding peak, which can be achieved by the substitution t = xu.
This gives us the relation

�(x + 1)= xx+1
∫ ∞

0
ϕx(u)du,
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where ϕ(u) = ue−u. Obviously, the function ϕ increases on [0,1], decreases
on [1,+∞) and ϕ′′(1) = −e−1. Taking into account that the maximum value
ϕ(1)= e−1 is attained at an interior point of the interval, we obtain by (3′) that

∫ ∞

0
ϕx(u)du ∼

x→+∞

√
2π

x
e−x.

Consequently,

�(x)= 1

x
�(x + 1)= xx

∫ ∞

0
ϕx(u)du ∼

x→+∞
√

2πxx− 1
2 e−x.

Previously (see Sect. 7.2.6), this result was obtained by a different method.

Example 3 In Sect. 6.7.3, we discussed the cross sections of the cube [− 1
2 ,

1
2 ]n

and incidentally obtained a formula for the area Sn of the cross section created by
the plane that passes through the center of the cube and is orthogonal to its main
diagonal,

Sn = 2

π

√
n

∫ ∞

0

(
sin t

t

)n

dt.

Let us trace the behavior of the quantities Sn as n increases unboundedly. This be-
havior is determined by the asymptotic of the integrals

In =
∫ ∞

0

(
sin t

t

)n

dt.

A direct application of the Laplace formula is complicated by the fact that the func-
tion sin t

t
changes its sign as t � 0. However, we can easily overcome this difficulty

since, as n→∞, the integral over the interval [π,+∞) is exponentially small,
∫ ∞

π

∣
∣
∣
∣
sin t

t

∣
∣
∣
∣

n

dt �
∫ ∞

π

1

tn
dt � 1

πn−1
(n� 2).

At the same time, the Laplace formula can be applied to the integral over the interval
[0,π]. Indeed, since 1

t
sin t = 1− 1

6 t
2 + o(t2) as t→ 0, we obtain

∫ π

0

(
sin t

t

)n

dt ∼
n→∞

1

2

√
6π

n
.

Therefore, In ∼ 1
2

√
6π
n

and, consequently, Sn →
√

6
π

. This result will be supple-
mented below in Example 2 of Sect. 7.3.5.

Example 4 We find the asymptotic of the sums

Sn = 1+ n+ n2

2! + · · · +
nk

k! + · · · +
nn

n! .
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Obviously, Sn is the value of the nth Taylor polynomial of the function ex calcu-
lated at the point n. Using the integral representation of the remainder in the Taylor
formula, we obtain

ex =
n∑

k=0

xk

k! +
1

n!
∫ x

0
(x − t)net dt.

For x = n, the substitution t = ns gives

en − Sn = 1

n!
∫ n

0
(n− t)net dt = nn+1

n!
∫ 1

0

(
(1− s)es

)n
ds.

Since (1− s)es = 1− 1
2 s

2 + o(s2) as s→ 0, the Laplace formula gives

en − Sn ∼
n→∞

nn+1

n!
√

π

2n
.

Now, to obtain the final result, it remains to use Stirling’s formula, which implies
that en − Sn ∼ 1

2e
n, i.e., Sn ∼ 1

2e
n.

Remark 1 If we weaken conditions (a) and (b) in Theorem 7.3.2 by replacing them
with the two-sided estimates ϕ(a)− ϕ(t)  

t→a
(t − a)p and 0 � f (t)  

t→a
(t − a)q ,

then, by Lemma 7.3.1, we can obtain the two-sided estimate �(x)  
x→+∞ x

− q+1
p .

For example, it can easily be verified that the Cantor function ϕ satisfies the identity
ϕ(t)+ϕ(1− t)= 1 and the double inequality (t/2)p � ϕ(t)� tp , where p = log3 2,
on the interval [0,1]. Therefore, the integral �(x) = ∫ 1

0 ϕx(t) dt satisfies the two-
sided estimate �(x)  

x→+∞ x− log2 3. It is considerably harder to describe its asymp-

totic behavior (see Exercise 14).

Remark 2 It is worth noting that the assumption that the function ϕ is monotonic
has been used only in the proof of the localization lemma. In this lemma and, con-
sequently, in Theorem 7.3.2 this assumption can be replaced by the following less
restrictive assumption:

lim
t→a

ϕ(t) > sup
t>c

ϕ(t) for all c in the interval (a, b).

This condition is fulfilled, for example, if the function ϕ is continuous on [a, b] and
ϕ(a) > ϕ(t) for t �= a.

7.3.4 Applications of the Laplace method are not confined to the justification of
formulas (2), (3) and (3′). This method is widely used in many different situations.
The main idea of the method, localization and replacing the integrand by its Taylor
expansion in a small neighborhood of a point, also turns out to be quite effective in
the cases where the conditions of Theorem 7.3.2 are violated. The main difficulty
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is to choose a neighborhood. On the one hand, the neighborhood should not be too
large, since otherwise the error caused by the application of the Taylor formula will
manifest itself. On the other hand, to compensate the error arising in replacing the
given integral with the integral over a neighborhood, we cannot take the neighbor-
hood to be too small. A successful choice of a neighborhood allowing us to make
both of the above-mentioned errors negligible is the core of the method.

Here, having no intention of making general statements and wanting only to give
an idea of how to find the asymptotic in such situations, we follow Newton, who
said that “in studies of science, examples are more useful than rules”, and confine
ourselves to considering two specific problems (see also Exercises 9, 10 and 12).

Example 1 Let

�(x)=
∫ b

0
|ln t |re−xtp dt,

where p > 0 and r is an arbitrary real number (for r �−1, we assume that 0 < b < 1
to guarantee that the non-summable singularity, at the point t = 1, of the integrand
does not belong to the interval of integration). We remark that, in this example, the
function f (t) = |ln t |r does not satisfy condition (b) of Theorem 7.3.2 as t → 0
(and is not even summable on (0,+∞) if b = +∞). To find the asymptotic, we
choose a neighborhood by the method described in the remark to this theorem.

Since the function ϕ(t) = e−tp attains its maximum value at t = 0, the main
contribution to �(x) comes from the integral over a neighborhood of zero. We have
a great freedom in the choice of such a neighborhood. We put α(x)= x−1/(2p) and
study the behavior of the integrals �1(x)=

∫ α(x)

0 · · · and �2(x)=
∫ b

α(x)
· · · , the sum

of which is �(x). We make the change of variables u = x1/pt in the first integral
and then, after elementary transformations, we obtain

�1(x)= x−1/p lnr
(
x1/p)

∫ x1/(2p)

0

∣
∣
∣
∣1− p

lnu

lnx

∣
∣
∣
∣

r

e−up

du.

For 0 < u< x1/(2p) and sufficiently large x, the following estimates are valid:

1

2
�

∣
∣
∣
∣1− p

lnu

lnx

∣
∣
∣
∣ � 1+ p|lnu|.

Consequently, for every r (positive or negative), we have

∣
∣
∣
∣1− p

lnu

lnx

∣
∣
∣
∣

r

� 2|r| + (
1+ p|lnu|)r , if 0 < u< x1/(2p).

This inequality enables us to use Lebesgue’s theorem, and we obtain

∫ x1/(2p)

0

∣
∣
∣
∣1− p

lnu

lnx

∣
∣
∣
∣

r

e−up

du −→
x→+∞

∫ ∞

0
e−up

du= �

(

1+ 1

p

)

.
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Therefore, �1(x) ∼ �(1 + 1
p
)x−1/p lnr (x1/p). Now, we verify that �2(x) =

o(�1(x)). Indeed,

�2(x) �
∫ b

α(x)

|ln t |re−xtp dt � e−(x−1)αp(x)

∫ b

α(x)

|ln t |re−tp dt � const

e
√
x

= o
(
�1(x)

)
.

Thus,
∫ b

0
|ln t |re−xtp dt ∼

x→+∞ �

(

1+ 1

p

)(
lnx

p

)r

x−1/p.

This integral, as well as the integral
∫∞

0 e−xtp dt considered in Theorem 7.3.2,

may serve as a standard model in the study of integrals of the form
∫ b

a
f (t)ϕx(t) dt ,

where f (t) ∼
t→+0

L(t − a)q |ln(t − a)|r (see Exercises 5 and 6).

Example 2 We find the asymptotic of the integral

�(x)=
∫ 1/e

0

(

1+ 1

ln t

)x

dt.

The function ϕ(t)= 1+ 1
ln t

(we assume that ϕ(0)= 1) strictly decreases on the in-
terval of integration. Therefore, the main contribution to the integral comes from
the points t close to zero. We cannot apply formula (3) since the infinitesimal
ϕ(0)− ϕ(t)=−1/ ln t is not of power type. To overcome this difficulty, it is worth-
while to make the change of variables t = e−u, which leads to the relation

�(x)=
∫ ∞

1

(

1− 1

u

)x

e−u du.

For a fixed x, the integrand attains its maximum value at the point ux = 1
2 (1 +√

1+ 4x)≈√x. Its value at u=√x is equal to

(

1− 1√
x

)x

e−
√
x = e−2

√
x+O(1).

The integrand is considerably smaller at the points u�√x/3 and does not exceed

e−u− x
u � e− 10

3
√
x . Therefore, the contribution of these points to the integral �(x) is

small; it admits the estimate o(e−3
√
x).

Now, we consider the integral �̃(x) over the remaining interval (
√
x/3,+∞),

where
√
x/3 > 1. This is just the “small” neighborhood of the point ux in which it

will be possible to approximate the integrand by its Taylor expansion,

(

1− 1

u

)x

e−u = exp

(

−u− x

(
1

u
+ 1

2u2
+O

(
1

u3

)))

for u�
√
x/3.
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As we have already noted, the maximum value of the integrand is attained at the
point ux ≈ √x changing with x. To decrease this dependence and reduce the sit-
uation to the case considered in Theorem 7.3.2, we make the change of variable
u=√xv. Then

�̃(x)=√x

∫ ∞
1
3

exp

(

−√x

(

v + 1

v

)

− 1

2v2
+O

(
1√
x v3

))

dv

=√x

∫ ∞
1
3

exp

(

−√x

(

v + 1

v

)

− 1

2v2

)(

1+O

(
1√
x

))

dv.

It is clear that

�̃(x) ∼
x→+∞

√
x

∫ ∞
1
3

exp

(

−√x

(

v + 1

v

)

− 1

2v2

)

dv.

We can apply Theorem 7.3.2 (with parameter
√
x instead of x) to the integral ob-

tained. Taking into account that the function e−(v+ 1
v
) attains its maximum value e−2

at the interior point v = 1 of the interval of integration, we obtain by (3′) that

�̃(x) ∼
x→+∞

√
π

e

4
√
xe−2

√
x.

The given integral �(x) has the same asymptotic since, as we already know, �(x)−
�̃(x)= o(e−3

√
x) as x→+∞.

We call the reader’s attention to the fact that, under the conditions of Theo-
rem 7.3.2, for ϕ(a)= 1, the integral �(x) decreases like a power function. However,
in the example in question, the function �(x) decreases faster than any negative
power of the parameter. The reason is that the function 1 + 1

ln t
has a “supersharp

peak”, i.e., as the argument t increases, the function loses its maximum values faster
than any function of the form 1− tp (p > 0) (see also Exercise 10).

7.3.5 Up to this point, we have used the Laplace method only for extracting the prin-
cipal part of an integral of the form (1) and have said nothing about the further sharp-
ening of an asymptotic obtained. Turning to this question, we will assume through-
out this section that the functions ϕ and f satisfy the conditions of Theorem 7.3.2
with a = 0. Certainly, to sharpen the result obtained in this Theorem, we need ad-
ditional information about the behavior of the function ϕ and f in the vicinity of
zero. Usually, one proceeds from local asymptotic expansions of these functions,
generalizing in some sense the Taylor expansion. We recall that a series

∑∞
j=0 aj t

qj

(or
∑∞

j=0 aj t
−qj ), where q0 < q1 < · · · and qj →+∞, is called an asymptotic ex-

pansion of F as t → 0 (as t →+∞) if the relation F(t) =∑n
j=0 aj t

qj + o(tqn)

(respectively, F(t) =∑n
j=0 aj t

−qj + o(t−qn)) is valid for each n. In particular, if
F has derivatives of all orders at zero, then the Taylor formula implies the asymp-

totic expansion
∑∞

j=0
F (j)(0)

j ! tj as t → 0 (regardless of whether the Taylor series
converges for some t �= 0 or not).
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In what follows, we will repeatedly use the formula

∫ ∞

0
tqe−xtp dt =

∫ ∞

0

(
u

x

) q
p

e−u d

(
u

x

) 1
p = 1

p
�

(
q + 1

p

)

x
− q+1

p . (4)

We remark that the error that arises when replacing the infinite interval of integration
on the right-hand side of this equation by a finite one is exponentially small, more
precisely,

∫ b

0
tqe−xtp dt = 1

p
�

(
1+ q

p

)

x
− 1+q

p +O
(
e−xbp

)
as x→+∞. (4′)

Indeed, since tqe−xtp � C

t2 e
−xbp for t � b, x > 0, we have

∫ ∞

0
tqe−xtp dt −

∫ b

0
tqe−xtp dt =

∫ ∞

b

tqe−xtp dt �
∫ ∞

b

C

t2
e−xbpdt = C

b
e−xbp .

The following lemma describes the asymptotic behavior of the integral �(x) in
the simplest and, at the same time, the most important case where ϕ(t)= e−tp .

Lemma (Watson8) Let f be a summable function on an interval [0, b) (0 < b �
+∞), and let �(x)= ∫ b

0 f (t)e−xtp dt . If

f (t)= a1t
q1 + · · · + ant

qn + o
(
tqn

)
as t→ 0,

where −1 < q1 < · · ·< qn, then

�(x)=
∫ b

0
f (t) e−xtp dt = 1

p

n∑

j=1

aj�

(
1+ qj

p

)

x
− 1+qj

p + o
(
x
− 1+qn

p
)

(5)

as x→+∞.

Proof The required statement is obtained directly from relation (4′) since, by Corol-
lary to Lemma 7.3.1, we have

∫ b

0
o
(
tqn

)
e−xtp dt = o

(∫ ∞

0
tqne−xtp dt

)

= o
(
x
− 1+qn

p
)
. �

From Watson’s lemma and the definition of an asymptotic expansion, we imme-
diately obtain the following statement.

8George Neville Watson (1886–1965)—British mathematician.
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Corollary If, for 0 � t < δ, the function f can be represented in the form f (t)=
tqg(t), where g ∈ C∞([0, δ)), then the asymptotic expansion

�(x)= 1

p

n∑

j=0

g(j)(0)

j ! �

(
q + j + 1

p

)

x
− q+j+1

p + o
(
x
− q+n+1

p
)

as x→+∞ (6)

is valid for every n.

It is interesting to note that, though asymptotic equalities can break down un-
der formal differentiation (e.g., an infinitesimal can have an unbounded derivative),
under the conditions of Watson’s lemma, the asymptotic equality (5) (and, conse-
quently, also (6)) remains valid under repeated differentiation.

Indeed, applying the Leibniz rule (Theorem 7.1.5), we see that the function �(x)

belongs to the class C∞ and

�′(x)=
∫ b

0
f (t)

(
e−xtp

)′
x
dt =−

∫ b

0
f̃ (t)e−xtpdt,

where

f̃ (t)= tpf (t)= a1t
p+q1 + · · · + ant

p+qn + o
(
tp+qn

)
as t→ 0.

We may assume that b <+∞ (otherwise, making an exponentially small error, we
can integrate over a smaller interval). Then the function f̃ is summable on (0, b).
Applying Watson’s lemma to it, we obtain

�′(x)=−
∫ b

0
f̃ (t)e−xtpdt =− 1

p

n∑

j=1

aj�

(
1+ p+ qj

p

)

x
− 1+p+qj

p + o
(
x
− 1+p+qn

p
)

=
(

1

p

n∑

j=1

aj�

(
1+ qj

p

)

x
− 1+qj

p

)′

x

+ o
(
x
− 1+qn

p
−1)

,

which guarantees the validity of differentiating relation (5) termwise.
How to treat the case where the function ϕ does not coincide with e−tp and is

more complicated? Without going into details, we outline two possible approaches.
The first approach is straightforward and consists of reducing the problem to the
preceding one. Assuming that ϕ is a smooth function defined on (0, b) and strictly
decreasing from 1 to zero, we make the change of variable u = − lnϕ(t) in the
integral �(x)= ∫ b

0 f (t)ϕx(t) dt . Then the integral takes the form

�(x)=
∫ ∞

0
g(u)e−xu du,

where g(u) = f (ψ(u))ψ ′(u), ψ is a function inverse to − lnϕ. Knowing asymp-
totic expansions of the functions f , ϕ and ϕ′, we can find an asymptotic expansion
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of g, which makes it possible to use Watson’s lemma. If f ∈ C∞, then Lagrange’s
formula for the power series expansion of the inverse function can be useful.

The second approach is to use additional information about the behavior of the
difference ϕ(0) − ϕ(t) to represent ϕx as the product of e−Cxtp and the sum of a
series in powers of xs(t), where the function s(t) decreases rapidly as t→ 0.

We consider this approach in more detail. As before, to simplify the notation, we
assume that ϕ(0)= 1. Then the function S =− lnϕ can be represented in the form
S(t)= Ctp + s(t), where s(t)= o(tp) as t → 0. We will assume that s(t)=O(tr )

as t→ 0, where r > p. Moreover, without loss of generality, we may assume that the
function s is bounded on [0, b). Otherwise, we can make the interval of integration
smaller, since the replacement of [0, b) by [0, c) gives an exponentially small error.
Since

ϕx(t)= e−xCtp−xs(t) = e−xCtp
(

1− xs(t)+ · · · + (−xs(t))n−1

(n− 1)! +O
((
xtr

)n)
)

and f (t)=O(tq), we have

�(x)=
n−1∑

j=0

(−x)j

j !
∫ b

0
f (t)sj (t)e−xCtp dt +O

(

xn

∫ b

0
tq+nre−xCtp dt

)

. (7)

Every term can be estimated by formula (4′). In particular, the O-term has order

x
− q+1+n(r−p)

p . If we know more about the behavior of the functions f and s as
t→ 0, we can make more precise the asymptotic of each term by Watson’s lemma.
Of course, this sharpening makes sense so long as the precision guaranteed by the
remainder is not exceeded.

The following two examples are intended to illustrate this approach. The first
example is connected with the gamma function.

Example 1 Applying the method described above, we will sharpen the relation
xa�(x)
�(x+a)

−→
x→+∞ 1 obtained in Sect. 7.2.2. To this end, we use the well-known for-

mula connecting the functions B and �,

�(a)�(x + 1)

�(x + a + 1)
= B(a, x + 1)=

∫ 1

0
ta−1(1− t)x dx

(here a > 0; to simplify the subsequent formulas, we consider B(a, x + 1) instead
of B(a, x)). Obviously,

(1− t)x = e−xt
(
(1− t)et

)x = e−xt e−xs(t),

where s(t)=− ln(1− t)− t = t2

2 + t3

3 + · · · =O(t2), for t ∈ [0,1/2]. Therefore,
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∫ 1

0
ta−1(1− t)x dx =

∫ 1/2

0
ta−1e−xt

(

1− x

2
t2 +O

(
xt3 + x2t4)

)

dt +O

(
1

2x

)

= �(a)

xa
− x

2

�(a + 2)

xa+2
− x

3

�(a + 3)

xa+3
+ x2O

(
1

xa+4

)

= �(a)

xa

(

1− (a + 1)a

2x
+O

(
1

x2

))

.

Dividing both sides of the equation

�(a)�(x + 1)

�(x + a + 1)
= �(a)x�(x)

(x + a)�(x + a)

by �(a), we obtain

xa�(x)

�(x + a)
=

(

1+ a

x

)(

1− (a + 1)a

2x
+O

(
1

x2

))

= 1+ a(1− a)

2x
+O

(
1

x2

)

.

The next example has already been considered in the above-mentioned “Analyti-
cal theory of probability” by Laplace (Book 1, No 42). Here we are dealing with the
integral

∫ π/2

0

(
sin t

t

)x

cosyt dt

in which x and the real parameter y may vary independently. The result becomes
especially apparent if we represent the parameter in the form y = r

√
x (r � 0).

Example 2 We find the asymptotic of the integral

Ir (x)=
∫ π/2

0

(
sin t

t

)x

cosyt dt as x→+∞,

where y = r
√
x. In this case ϕ(t)= sin t

t
and

S(t)=− lnϕ(t)= 1

6
t2 + s(t), where s(t)= 1

180
t4 +O

(
t6)

as t→ 0.

Putting n= 2 in formula (7), we obtain

Ir (x)=
∫ π/2

0

(
1− xs(t)

)
e−

x
6 t

2
cosyt dt +O

(

x2
∫ π/2

0
t8|cosyt |e− x

6 t
2
dt

)

.

We replace (with exponentially small error) the integration over the interval [0,π/2]
by the integration over [0,+∞) and |cosyt | in the O-term by 1. Then we come to
the relation

Ir(x)=
∫ ∞

0

(

1− x

180
t4

)

e−
x
6 t

2
cosyt dt +O

(∫ ∞

0

(
xt6 + x2t8)

e−
x
6 t

2
dt

)

.
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It can easily be seen that the O-term has order of smallness O(x−5/2) (with an
absolute constant). Thus,

Ir (x)=
∫ ∞

0

(

1− x

180
t4

)

e−
x
6 t

2
cos(

√
x rt) dt +O

(
x−

5
2
)
.

Now, making the change of variable t =
√

6
x
u in the integral, we obtain

Ir(x)=
√

6

x

∫ ∞

0

(

1− u4

5x

)

e−u2
cos(

√
6 ru)du+O

(
x−

5
2
)
.

To calculate the last integral, we use the following relation obtained in Example 1
of Sect. 7.1.6:

∫ ∞

0
e−u2

cos(
√

6 ru) du=
√
π

2
e−

3
2 r

2
.

Differentiating this identity with respect to the parameter r four times, we can also
find the integral

∫∞
0 u4e−u2

cos(
√

6 ru)du. A simple calculation leads to the re-
quired formula,

Ir(x)=
√

3π

2x

(

1− 3

20x

(
1− 6r2 + 3r4)

)

e−
3
2 r

2 +O
(
x−

5
2
)
.

Of particular interest is the case where x = m ∈ N. Then the power ( sin t
t

)m is
defined for all t . Replacing (with exponentially small error) the integral I2r (m) by
the integral over the interval (0,+∞), we obtain

∫ ∞

0

(
sin t

t

)m

cos(2
√
mrt) dt =

√
3π

2m

(

1− 3

20m

(
1− 24r2 + 48r4)

)

e−6r2

+O
(
m−

5
2
)
.

We recall that (see Eq. (1) of Sect. 6.7.2 for ω = (1, . . . ,1)), up to a factor, the
integral on the left-hand side coincides with the area Sm(r) of the cross section of
the m-dimensional unit cube by the plane perpendicular to the main diagonal of the
cube and lying at distance r from its center,

Sm(r)= 2

π

√
m

∫ ∞

0

(
sin t

t

)m

cos(2
√
mrt) dt.

Therefore,

Sm(r)=
√

6

π

(

1− 3

20m

(
1− 24r2 + 48r4)

)

e−6r2 +O
(
m−2)

(the constant in the O-term is absolute).
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For r = 0, i.e., for the central cross sections, this gives the following sharpening
of the asymptotic formula obtained in Example 3 of Sect. 7.3.3:

Sm(0)=
√

6

π

(

1− 3

20m

)

+O
(
m−2)

.

A more precise calculation (formula (7) with n= 3 must be applied to the integral
I0(x)) leads to the asymptotic relation

Sm(0)=
√

6

π

(

1− 3

20m
− 13

1120m2

)

+O
(
m−3)

.

7.3.6 We discuss the Laplace method in the general situation mentioned at the
beginning of this section. Let (T ,A,μ) be a measure space, and let ϕ and f be
non-negative measurable functions on T . We assume that ϕ is bounded and f is
summable. Under these assumptions, the integrals

�(x)=
∫

T

f (t)ϕx(t) dμ(t)

are finite for all x � 0. The question of their behavior as x→+∞ is a direct gen-
eralization of the problem considered in the preceding subsections of the present
section. We certainly exclude the trivial case where the product f ϕ vanishes almost
everywhere on T . Replacing the measure, we can reduce the problem to the case of
a finite measure and f ≡ 1. Indeed, it follows from Eq. (2′) of Sect. 6.1.2 that

�(x)=
∫

T

ϕx(t) dν(t), where ν(A)=
∫

A

f (t) dμ(t) (A ∈A)

and ν(T ) = ∫
T
f dμ < +∞. To avoid additional constraints, we will assume in

this section that the functions f and ϕ are everywhere positive on T (this can be
achieved by replacing, if necessary, T by the set {t ∈ T |f (t)ϕ(t) > 0}). Then the
inequalities ν(A) > 0 and μ(A) > 0 are equivalent, and, therefore, the conditions
“almost everywhere with respect to the measure μ” and “almost everywhere with
respect to the measure ν” have the same meaning.

It appears at first sight that dropping the assumptions concerning the nature of
the monotonicity of the function ϕ (its piecewise monotonicity) made in the one-
dimensional case, we are unable to give even a qualitative description of the behav-
ior of �(x). However, in the new situation the following principle underlying all
preceding reasoning is preserved: the contribution to the integral �(x) coming from
the points at which the value of the function ϕ is below a certain level, say, ϕ < h,
is negligibly small in comparison with that coming from the points where ϕ � h (of
course, under the assumption that the set Th = {t ∈ T |ϕ(t)� h} is of positive mea-
sure). By abuse of language, we may say that the main contribution to the integral
�(x) comes from the points t ∈ T at which the values ϕ(t) are “almost maximal”.
To make this statement more precise, we use the notion of the genuine supremum of
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a function f introduced in Sect. 4.4.5. We denote it by H , and, by definition, obtain
H = inf{C ∈R |ϕ � C almost everywhere on T }. It can easily be seen that

H = sup
{
h ∈R |ν(Th) > 0

}
,

and that, under our assumptions, we have 0 <H <+∞.
The above equation implies that ν(Th) > 0 for h <H and ν(Th)= 0 for h >H .

If the set TH has positive measure, then the asymptotic of the integral �(x) is ob-
vious: since the fraction (ϕ/H)x tends to zero as x→+∞ outside TH and is equal
to 1 almost everywhere on TH , we obtain by Theorem 1 of Sect. 7.1.2 that

�(x)

Hx
=

∫

T

(
ϕ

H

)x

dν −→
x→+∞ ν(TH ).

Thus, in the simplest case in question, we have �(x)∼Hx ν(TH ).
Now we discuss a more interesting case where ν(TH )= 0. Then ϕ(t) < H almost

everywhere on T , and, for all h <H , the sets Th are of positive measure. Obviously,

∫

Th

ϕx dν � hxν(Th) and
∫

T \Th

ϕx dν = hx

∫

T \Th

(
ϕ

h

)x

dν = o
(
hx

)
.

Therefore, the integral over T \Th is negligibly small in comparison with the integral
over Th as x→+∞. Hence we obtain the following counterpart of the localization
principle in the case in question: the main contribution to �(x) comes from the in-
tegral over the set Th with parameter h arbitrarily close to H . Therefore, to find the
asymptotic of the integral �(x), it is important to know the rate of decrease of the
measure of Th as h→H . In other words, the asymptotic is determined by the de-
creasing distribution function f̃ (h)= ν(Th) (see Sect. 6.4.3). By Proposition 6.4.3,
the integral �(x) can be represented in the form

�(x)= x

∫ ∞

0
hx−1f̃ (h) dh= x

∫ H

0
hx−1f̃ (h) dh (8)

(we have taken into account that f̃ (h)= 0 for h >H ). Thus, the Laplace “abstract”
integrals are reduced to the classical ones studied above with the difference that now
the integrand f̃ is given not directly but by the equation

f̃ (h)= ν(Th)=
∫

Th

f dμ.

It follows from the above that conceptually there is nothing new in the general
case in comparison with the classical one. However, some technical difficulties con-
nected with estimating the function f̃ (h) must be overcome to find the asymptotic.
For example, in contrast to the one-dimensional case, now it is quite natural to con-
sider the situation where the sets Th shrink not to a point but to a set of measure
zero, say, to a surface, as h→H (see Example 2 below).
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Example 1 For t = (t1, . . . , tm) ∈R
m, we put ‖t‖p = (|t1|p+· · ·+|tm|p)

1
p (p > 0).

We find the asymptotic of the integral

�(x)=
∫

Sm−1
‖t‖xp dσ,

where σ is the area on the (m− 1)-dimensional unit sphere Sm−1.
The maximum value of ‖t‖p on the sphere depends on the parameter p. The case

where p = 2 is trivial. If p > 2, then H =maxt∈Sm−1 ‖t‖p = 1 (this value is attained
at the 2m points ±e1, . . . ,±em, where e1, . . . , em are the vectors of the canonical

basis). If p ∈ (0,2), then H =maxt∈Sm−1 ‖t‖p =m
1
p
− 1

2 (this value is attained at the
2m points whose coordinates have absolute values equal to 1/

√
m).

We consider the case where p > 2 in more detail. We will find the asymptotic of
�(x) with the help of Eq. (8) containing the distribution function f̃ (h), which is the
area of the set Th = {t ∈ Sm−1 | ‖t‖p � h}. We need to estimate the area for h close
to H = 1. For such h, this set is partitioned into 2m congruent parts. It is sufficient
to estimate the area of one of them, say, of the part lying close to em. As h→ 1, the
area of this part is equivalent to the area of its projection on the subspace tm = 0.
The projection is formed by the points t ′ = (t1, . . . , tm−1) the coordinates of which
satisfy the inequality

|t1|p + · · · + |tm−1|p +
(
1− ∥

∥t ′
∥
∥2) p

2 � hp

(‖t ′‖ is the Euclidean norm of the vector t ′). As h→ 1, the projection shrinks to the
origin, and, therefore, is formed by the points satisfying the relation

1− p

2

∥
∥t ′

∥
∥2 + o

(∥
∥t ′

∥
∥2)

� hp.

It contains an (m− 1)-dimensional ball of radius (1− ε)
√

2
p
(1− hp) and is con-

tained in a ball of radius (1+ ε)
√

2
p
(1− hp), where ε tends to zero as h→ 1. Con-

sequently, the area of the projection is equivalent to αm−1(
2
p
(1 − hp))

m−1
2 , where

αm−1 is the volume of the unit ball Bm−1. Thus,

f̃ (h)= σ(ϕ � h) ∼
h→1

2mαm−1

(
2

p

(
1− hp

)
)m−1

2 ∼
h→1

2mαm−1
(
2(1− h)

)m−1
2 .

We obtain

�(x)= x

∫ 1

0
hx−1f̃ (h) dh ∼

x→+∞mαm−12
m+1

2 x

∫ 1

0
hx−1(1− h)

m−1
2 dh.

After simple calculations, we obtain that

�(x)=
∫

Sm−1

(|t1|p + · · · + |tm|p
) x

p dσ ∼
x→+∞ 2m

(
2π

x

)m−1
2
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for p > 2. The case where 0 < p < 2 is considered similarly. We leave it for the
reader as an exercise (see Exercise 18). We will return to this example in Sect. 7.3.8,
illustrating one more method of studying the integrals �(x).

The following example shows that sometimes it is helpful to take into account
the specific features of the problem and use modifications of the general method.

Example 2 Let r,p1, . . . , pm be positive numbers. We find the asymptotic of the
integral

�(x)=
∫

Rm

ϕx(t) dt,

where

ϕ(t)= e−||t1|p1+···+|tm|pm−1|r (
t = (t1, . . . , tm) ∈R

m
)
.

Obviously, the genuine supremum of ϕ coincides with its maximum value and is
equal to 1. The maximum is attained at all points of the surface

{
t ∈R

m | |t1|p1 + · · · + |tm|pm = 1
}
.

We use the distribution function F of the sum
∑m

j=1 |tj |pj (see Example 3 of
Sect. 6.4.2),

F(u)= V us (u > 0), where s = 1

p1
+ · · · + 1

pm

and

V = 2m

�(1+ s)

m∏

j=1

�

(

1+ 1

pj

)

.

Then

�(x)=
∫ ∞

0
e−x|u−1|r dF (u)= s V

∫ ∞

0
e−x|u−1|r us−1 du.

To find the asymptotic of �(x), it remains to apply formula (3′) for t0 = 1, p = r ,
q = 0, and C = L= 1. We obtain

∫

Rm

e−x||t1|p1+···+|tm|pm−1|r dt ∼
x→+∞ 2sV �

(

1+ 1

r

)

x−
1
r .

7.3.7 Here, we consider a multi-dimensional version of the Laplace integral

�(x)=
∫

T

f (t)ϕx(t) dt,

where T is a Lebesgue measurable subset of the space R
m. Our goal is to obtain

a version of Theorem 7.3.2 in the situation where the sets Th = {t ∈ T |ϕ(t) � h}
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shrink to a single point as h increases to maxϕ. This is a replacement of the mono-
tonicity assumption of ϕ in the one-dimensional case. This assumption taken to-
gether with other conditions allows us to obtain a multi-dimensional generalization
of Theorem 7.3.2 without using the distribution function. Additional restrictions
imposed on the functions f and ϕ below are similar to the conditions of Theo-
rem 7.3.2. They can conveniently be described in terms of spherical coordinates
(see Sect. 6.5.2). We write σ for the area on the unit sphere Sm−1.

Theorem Let T ⊂ R
m and a ∈ Int(T ). Let f be a summable function and ϕ be

a measurable function defined on T , and let 0 � ϕ(t) � ϕ(a) and diam(Th)→ 0
as h→ ϕ(a)− 0. Assume that there exist numbers p > 0, q >−m and c > 0 and
non-negative functions F and G on the unit sphere Sm−1 such that the following
conditions are fulfilled for almost all ξ ∈ Sm−1:

(a) the limits C(ξ)= limr→0
ϕ(a)−ϕ(a+rξ)

rp
and L(ξ)= limr→0

f (a+rξ)
rq

exist;

(b) ϕ(a)−ϕ(a+rξ)
rp

� F(ξ) and |f (a+rξ)
rq

|�G(ξ) for 0 < r < c.

If, in addition, the function GF
− q+m

p is summable on Sm−1, then

�(x)= I + o(1)

p
�

(
q +m

p

)(
ϕ(a)

x

) q+m
p

ϕx(a) as x→+∞,

where

I =
∫

Sm−1
L(ξ)C

− q+m
p (ξ) dσ (ξ).

In particular, if I �= 0, then

�(x) ∼
x→+∞

I

p
�

(
q +m

p

)(
ϕ(a)

x

) q+m
p

ϕx(a). (9)

Obviously, formula (9) is a multi-dimensional version of (3′). Formula (3) corre-
sponds to the situation in which a is a boundary point of the set T . Putting f = 0
outside T , we can reduce this case to the case considered in the theorem. In particu-
lar, the theorem remains valid if the intersection of T with a ball B(a,ρ) coincides
with the intersection of the ball with the cone {a+rξ | ξ ∈E ⊂ Sm−1, 0 � r <+∞}
and ϕ and f satisfy the conditions of the theorem for almost all ξ ∈E. In this case,
we can use relation (9), assuming that the function L is zero outside E.

If the function C is separated from zero and the limit relations (a) are fulfilled
uniformly on Sm−1, then the theorem can be proved similarly to Theorem 7.3.2 by
dropping condition (b) and assuming only that the function L is summable (we ad-
vise the reader to verify this). For a more general result, we need a more powerful
tool, namely Lebesgue’s dominated convergence theorem (Theorem 7.1.2). The ap-
plication of this theorem in the proof of Theorem 7.3.2 could simplify the reasoning
somewhat, but we preferred to manage with comparatively elementary tools.
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Proof Without loss of generality, we may assume that a = 0 and ϕ(0) = 1. Since
diam(Th) −→

h→1−0
0, we see that, for h sufficiently close to 1, the set Th lies in the

ball B = B(0, c) in which condition (b) is fulfilled. Consequently, ϕ < h outside
the ball B , which implies that the integral

∫
T \B f (t)ϕx(t) dt is exponentially small.

Therefore, it is sufficient to consider the case where T = B . Introducing spherical
coordinates and making the change of variable r = x−1/pu, we obtain

x
q+m
p �(x)= x

q+m
p

∫

Sm−1

(∫ c

0
rm−1f (rξ)ϕx(rξ) dr

)

dσ(ξ)

=
∫

Sm−1

(∫ cx
1
p

0
um−1x

q
p f

(
x
− 1

p uξ
)
ϕx

(
x
− 1

p uξ
)
dr

)

dσ(ξ).

By condition (a), the integrand (we assume that the integrand is defined on the prod-

uct P = Sm−1 × (0,+∞) and is equal to zero if u > cx
1
p ) converges pointwise to

the limit function

uq+m−1L(ξ)e−upC(ξ)

as x→+∞. The passage to the limit on the right-hand side of the last equation (we
will justify it later) gives

x
q+m
p �(x) −→

x→+∞ J =
∫∫

P

uq+m−1L(ξ)e−upC(ξ) dσ (ξ) du.

The integral J can easily be calculated,

J =
∫

Sm−1
L(ξ)

(∫ ∞

0
uq+m−1e−upC(ξ) du

)

dσ(ξ)= I

p
�

(
q +m

p

)

.

To justify the passage to the limit, we can use Theorem 1 of Sect. 7.1.2. Indeed,
since condition (b) implies the inequalities

x
q
p

∣
∣f

(
x
− 1

p uξ
)∣
∣ � uqG(ξ) and ϕx

(
x
− 1

p uξ
)
�

(

1− up

x
F(ξ)

)x

� e−upF(ξ),

we see that the integrand is dominated by uq+m−1G(ξ)e−upF(ξ) on the set P . Up to
notation, the proof of its summability based on Tonelli’s theorem coincides with the
calculation of the integral J . �

Of most importance is the specific case in which the smooth function ϕ attains
its maximum value at an interior point a, the second differential d2

aϕ is a negative
definite quadratic form, and there exists a finite non-zero limit L0 = limt→a f (t).
Then p = 2, q = 0, C =− 1

2d
2
aϕ, and L≡ L0. Therefore,

I = L0

∫

Sm−1

(

−1

2
d2
aϕ

)−m
2

(ξ) dσ (ξ).
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This integral can be expressed (see Corollary 2 of Sect. 6.5.3) in terms of the de-
terminant of the second derivative matrix (the determinant of the Hesse matrix9)
of ϕ,

∫

Sm−1

(−d2
aϕ

)−m
2 (ξ) dσ (ξ)= 2π

m
2

�(m2 )
√|�| , where �= det

(
∂2ϕ

∂tk∂tj
(a)

)

1�k,j�m

.

Thus, we come to the following multi-dimensional version of Laplace’s for-
mula (2b):

�(x) ∼
x→+∞

L0√|�|
(

2πϕ(a)

x

)m
2

ϕx(a). (10)

7.3.8 Completing the study of the Laplace method, we consider some applications
of Theorem 7.3.7.

Example 1 We find the asymptotic of the integral

�(x)=
∫∫

[−1,1]2
(cos t1 + cos t2)

x dt

as x→+∞. In this case, ϕ(t)= cos t1+ cos t2, maxϕ = 2 and ϕ(t)= 2− 1
2‖t‖2+

o(‖t‖2) as t → 0. Therefore, �= det( ∂2ϕ
∂tk∂tj

(0))1�k,j�2 = 1, and, by formula (10),
we obtain

∫∫

[−1,1]2
(cos t1 + cos t2)

x dt ∼
x→+∞

4π

x
2x.

Example 2 We return to Example 1 of Sect. 7.3.6 and find the asymptotic of the
integral �(x)= ∫

Sm−1 ‖t‖xp dσ (t) in the case where p ∈ (0,2).
We reduce the problem to the case in which it is possible to apply formula (10).

To this end, we use a method which is effective in many similar situations. The idea
of the method, to use the positive homogeneity of the function t �→ ‖t‖p and replace
the integral over the sphere by the integral over the entire space, has already been
exploited in Example 1 of Sect. 6.5.2.

We consider the integral

�̃(x)=
∫

Rm

‖t‖xpe−
x

2m ‖t‖2
dt

(here, as usual, ‖t‖ = ‖t‖2 is the Euclidean norm of the vector t ; the coefficient
1

2m in the exponent is introduced to simplify the calculation). Using spherical co-
ordinates (see Sect. 6.5.2), we can easily obtain the following relation between the

9Ludwig Otto Hesse (1811–1874)—German mathematician.
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integrals �(x) and �̃(x):

�̃(x)=
∫

Sm−1

∫ ∞

0
rm+x−1 ‖ξ‖xp e−

x
2m r2

dσ(ξ) dr = �(x)

2

(
2m

x

) x+m
2

�

(
x +m

2

)

.

Thus, the problem is reduced to the study of the integral

�̃(x)= 2m

∫

R
m+
ϕx(t) dt, where ϕ(t)= ‖t‖pe−‖t‖2/(2m).

Since ‖t‖p � m
1
p
− 1

2 ‖t‖ for p ∈ (0,2), we obtain ϕ(t) � m
1
p
− 1

2 ‖t‖e−‖t‖2/(2m) �
m

1
p /
√
e. At the point a = (1, . . . ,1) (and only at this point) the inequalities turn

into equalities, i.e., ϕ(a) = m
1
p /
√
e is the strict maximum of ϕ. Now, we can use

formula (10). We leave it to the reader to carry out the necessary calculations and
verify that the determinant of the Hesse matrix of the function ϕ at the point a is
equal to 2

p−2 (
2−p
m

ϕ(a))m. Therefore, the following asymptotic relation is valid for
p ∈ (0,2):

∫

Sm−1

(|t1|p + · · · + |tm|p
) x

p dσ (t) ∼
x→+∞ 2

(
8π

(2− p)x

)m−1
2

m
( 1
p
− 1

2 )x .

In the theorem, we considered the case where the increment ϕ(a)− ϕ(a + rξ)

tends to zero as r → 0 whose order does not depend on the direction of ξ ∈ Sm−1.
However, this assumption is often violated. In many situations the smooth function
ϕ attains its maximum value at the point a but the second differential d2

aϕ is degen-
erate and negative semi-definite (possibly, d2

aϕ ≡ 0). Then, in the vicinity of a, the
increment ϕ(a)− ϕ(t) is described by a non-negative polynomial of higher degree.
For example, we have the asymptotic relation

ϕ(a)− ϕ(t)= c1(t1 − a1)
2n1 + · · · + cm(tm − am)2nm + o

(‖t − a‖n)
, as t→ a,

where the coefficients c1, . . . , cm are positive and n = max(n1, . . . , nm). By the
change of variables uj = (tj − aj )

nj (j = 1, . . . ,m), we can reduce this situation to
the case described by the theorem. We clarify this by the following example.

Example 3 We find the asymptotic of the integral

�(x)=
∫∫

R2

(
u2 + v2)β/2

e−x(|u|+v4) dudv.

It is clear that the integral is finite for β >−2 and is equal to 4
∫∫

R
2+ . . . . We make

the change of variables u = t2 and v = s
1
2 in the integral over the set R2+. As a

result, we obtain

�(x)=
∫∫

R2

(
t4 + |s|)β/2 |t |√|s|e

−x(t2+s2) dt ds. (11)
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Now the conditions of Theorem 7.3.7 are fulfilled with the functions

ϕ(t, s)= e−(t2+s2) and f (t, s)= (
t4+ |s|) β

2
|t |√|s| = r

β+1
2

(
r3ξ4

1 + |ξ2|
) β

2
|ξ1|√|ξ2| ,

where r = √t2 + s2, ξ1 = t/r , ξ2 = s/r . We have p = 2, C(ξ) ≡ 1, q = β+1
2

and L(ξ) = limr→0 r
− β+1

2 f (rξ1, rξ2) = |ξ1||ξ2| β−1
2 . Obviously, the function L is

summable on the circle for β >−1. This is not the case if β �−1, and the theorem
is not applicable. In this case, we have to invoke some additional considerations
(see Example 4). As to the case where β >−1, the reader can easily verify that the
conditions of the theorem are fulfilled. Since

I = 4
∫ π/2

0
cos θ sin

β−1
2 θ dθ = 8

β + 1
,

formula (9) implies the following relation for m= 2, p = 2, q = (β + 1)/2, a = 0
and ϕ(0)= 1:

�(x) ∼
x→+∞

I

p
�

(
q + 2

p

)

x
− q+2

p = �

(
β + 1

4

)

x−
β+5

4 .

Now we consider the problem in the situation where the conditions of the theo-
rem do not hold.

Example 4 We find the asymptotic of the integral from Example 3 for−2 < β <−1
(we invite the reader to investigate the case β =−1 independently, see Exercise 17).

Passing to polar coordinates in Eq. (11), we can represent the integral in the form

�(x)= 4
∫ ∞

0
r

β+3
2 e−xr2

(∫ π/2

0

(
r3 cos4 θ + sin θ

)β/2 cos θ√
sin θ

dθ

)

dr

= 4
∫ ∞

0
r

β+3
2 e−xr2

(∫ 1

0

(
r3(

1− u2)2 + u
)β/2 du√

u

)

dr.

Since β < −1, the inner integral tends to infinity as r → 0. To be able to apply
Theorem 7.3.2, we must find its asymptotic behavior. It can easily be verified (the
reader is invited to prove this independently) that

∫ 1

0

(
r3(

1− u2)2 + u
)β/2 du√

u
∼

r→0
g(r)=

∫ 1

0

(
r3 + u

)β/2 du√
u
.

Making the change of variables u= r3v in the last integral, we see that

g(r)= r
3
2 (β+1)

∫ 1/r3

0
(1+ v)β/2 dv√

v
∼

r→0
r

3
2 (β+1)

∫ ∞

0
(1+ v)β/2 dv√

v
.
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Transforming the integral obtained by the change of variable v = z/(1 − z), we
obtain

∫ ∞

0
(1+ v)β/2 dv√

v
=

∫ 1

0
z−1/2(1− z)−

β+1
2 −1 dz= �(1/2)�(|β + 1|/2)

�(|β|/2)
.

Thus,

�(x) ∼
x→+∞ 4

∫ ∞

0
r

β+3
2 g(r)e−xr2

dr,

where

g(r) ∼
r→0

�(1/2)�(|β + 1|/2)

�(|β|/2)
r

3
2 (β+1).

By Theorem 7.3.2 with p = 2 and q = β+3
2 + 3

2 (β + 1)= 2β + 3, we obtain

�(x) ∼
x→+∞ 2

�(1/2)�(|β + 1|/2)

�(|β|/2)
�(β + 2) x−β−2.

Using Legendre’s formula and the reflection formula for the Gamma function (see
Sects. 7.2.4 and 7.2.5), we can simplify the coefficient on the right-hand side of the
equation and obtain

�(x) ∼
x→+∞

23+βπ2

�2(
|β|
2 ) sinπβ

x−β−2.

EXERCISES

1. Let f and ϕ be non-negative functions on (a, b) and ϕ(t)→ 1 as t→ a. Prove
that if

∫ c

a
f (t) dt > 0 for a < c < b, then the integral �(x) = ∫ b

a
f (t)ϕx(t) dt

cannot decrease exponentially, i.e., that qx = o(�(x)) as x →+∞ for every
q ∈ (0,1).

2. Prove that
∫∞

0
cos2 1/t

t1/2 e−xt dt ∼
x→+∞

1
2

√
π
x

.

3. Prove that
∫∞

0
cos 1/t
t2/3 e−xt dt = o(x−N) as x→+∞ for every N > 0.

This example together with Exercise 2 shows that the non-negativity condition
in the corollary to Lemma 7.3.1 cannot be dropped.

4. Use the representation sinu
u
= ∫ 1

0 cosut dt to find the asymptotic of the deriva-
tives ( sinu

u
)(n) as n→∞.

5. Use the result of Example 1 of Sect. 7.3.4 to generalize Lemma 7.3.2 by proving
that

∫ b

0
|ln t |rϕx(t) dt ∼

x→+∞ �

(

1+ 1

p

)(
lnx

p

)r

x
− 1

p .

6. Use the result of the preceding exercise and follow the proof of Theorem 7.3.2
to verify that replacing condition (b) of the theorem by

f (t) ∼
t→a

L(t − a)q
∣
∣ln(t − a)

∣
∣r , where r ∈R,
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implies the asymptotic relation

�(x) ∼
x→+∞

L

p
�

(
q + 1

p

)(
ln x

p

)r(
ϕ(a)

Cx

) q+1
p

ϕx(a).

7. Prove that

�′(x)= �(x)

(

lnx +O

(
1

x

))

and �′′(x)= �(x)

(

ln2 x +O

(
lnx

x

))

as x→+∞.
8. Let ϕ(a) = 1 in Theorem 7.3.2. Prove that replacing condition (b) with

1−ϕ(t)
(t−a)p

→+∞ (or 1−ϕ(t)
(t−a)p

→ 0) as t → a leads to the relation x
q+1
p �(x)→ 0

(respectively, x
q+1
p �(x)→+∞).

9. Find the asymptotic of the integrals
∫ 1

2
0 txt dt and

∫ 1
0 txt dt .

10. Prove that
∫ 1

e

0 ex/ ln t dt ∼
x→+∞

√
π

4√x

e2
√
x

.

It is instructive to compare this result with Example 2 of Sect. 7.3.4. Although
the functions ϕ(t)= 1+ 1

ln t
and ψ(t)= e1/ ln t are very close to each other in

the vicinity of zero (ϕ(t)−1∼ψ(t)−1 as t→ 0), the corresponding integrals,
nevertheless, have distinct asymptotics.

11. Let a non-negative function f be summable and functions S and R be contin-
uous and strictly increasing on [a, b). Let, in addition, S(a) = R(a) = 0 and
S(t)−R(t)=O((t − a)2) as t→ a. Prove that the integrals

�(x)=
∫ b

a

f (t)e−xS(t) dt and �(x)=
∫ b

a

f (t)e−xR(t) dt

are equivalent if one of them, say, �(x) decreases not too fast to zero, i.e., if
ln�(x)= o(

√
x) as x→+∞.

Comparing Exercise 10 with Example 2 of Sect. 7.3.4, we see that the last
condition cannot be weakened and replaced by ln�(x)=O(

√
x).

12. Let p > 0. Prove that

∫ ∞

0
e−xtp−t−p

dt ∼
x→+∞

√
π

p
x
− 2+p

4p e−2
√
x.

13. Sharpen the result of Example 4 of Sect. 7.3.3 by proving that

Sn = en

2

(

1+ 2

3

√
2

πn
+O

(
1

n
3
2

))

.
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14. Prove that the following asymptotic relation is valid for the integral �(x) =∫ 1
0 ϕx(t) dt , where ϕ is the Cantor function:

�(x) ∼
x→+∞

θ(log2 x)

xlog2 3
, where θ(u)= 1

2

∑

k∈Z

3k+u

sinh(2k+u)
.

In particular, �(2n)∼ θ(0)3−n (n ∈N).
It can be proved that the function θ is “almost constant”: 1.9964 < θ(u) <

1.997.
15. Let H be the genuine supremum of a positive measurable function ϕ. By gene-

ralizing Exercise 1, prove that the limit relation 1
x

ln�(x) −→
x→+∞ lnH is valid

for the integral �(x)= ∫
T
ϕx(t) dν(t).

16. Let B be the unit ball in R
3. Prove that

∫∫∫

B

√
s2 + t2 + u2

(

1− |s| + t2 + u4

2

)x

ds dt du ∼
x→+∞

16

3x2
.

17. Use the result of Exercise 6 to prove that the function � considered in Exam-
ples 3 and 4 of Sect. 7.3.8 has the asymptotic

�(x) ∼
x→+∞

3

4

lnx

x

if β =−1.
18. Reasoning as in the case p > 2 in Example 1 of Sect. 7.3.6, find the asymptotic

of the integral
∫
Sm−1 ‖t‖xp dσ (t) for p ∈ (0,2).

19. Verify that, without substantial changes in the proof, Theorem 7.3.7 can be gen-
eralized to the case in which the function f satisfies the following conditions:
for some s � 0 and almost all ξ ∈ Sm−1, the limit L(ξ) = limr→0

f (a+rξ)
rq |ln r|s ex-

ists and |f (a+rξ)|
rq |ln r|s �G(ξ) (0 < r < c). Then, keeping the other conditions and

notation in the theorem unchanged, we have the relation

�(x)= I + o(1)

p
�

(
q +m

p

)(
lnx

p

)s(
ϕ(a)

x

) q+m
p

ϕx(a) as x→+∞.

The above relation is also valid for s < 0 if the quotients (ϕ(a)−ϕ(a+ rξ))/rp

are separated from zero.
20. Show that if s < 0, then the result of the preceding exercise is not valid with-

out additional assumptions; namely, the product x
q+m
p �(x) (for simplicity, we

assume that ϕ(a) = 1) can tend to zero arbitrarily slowly. Hint. For a = 0,
consider the functions f (rξ) = rq lns 1

r
and ϕ(rξ) = e−rp(C(ξ)+θ(r)), where

θ is a continuous slowly increasing function on [0,1], θ(0) = 0, and C is a
non-negative measurable function on the sphere Sm−1 such that the integral
∫
Sm−1 C

− q+m
p (ξ) dσ (ξ) is finite.
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7.4 �Improper Integrals Dependent on a Parameter

7.4.1 Up to now we have investigated the integrals J (y) = ∫
X
f (x, y) dμ(x) de-

pendent on a parameter under the assumption that the integrand is summable for
every y. However, sometimes this requirement turns out to be too burdensome, as
we have seen in Example 2 of Sect. 7.1.6, where we had to appeal to the concept
of improper integral introduced in Sect. 4.6.4. Now we consider this problem more
systematically. Here, we of course have to reduce the generality considerably, re-
placing a measure space by an interval with Lebesgue measure.

Thus, we will assume that X = 〈a, b〉, the function f is defined on the product
〈a, b〉×Y , and the summability requirement for the function x �→ f (x, y) for every
y ∈ Y is weakened and replaced with the convergence requirement for the improper
integral

∫→b

a
f (x, y) dx. We recall that, by definition, the latter requirement means

that the function x �→ f (x, y) is summable on each interval (a, t), where a < t < b,
(we called such functions left admissible, see Definition 4.6.4) and the limit J (y)=
limt→b

∫ t

a
f (x, y) dx exists and is finite. In the absence of absolute convergence the

properties of such integrals cannot be studied by the previous methods that assume
the summability of the integrand. Therefore, to extend the results of Sect. 7.1 to
improper integrals, we need a new notion, the uniform convergence of an improper
integral, which replaces the condition (Lloc) used in Sect. 7.1. We motivate this
notion with two examples.

Let us consider the integrals

J (y)=
∫ ∞

0

(
1− e−xy

) sinx

x
dx and I (y)=

∫ ∞

0

sinxy

x
dx (y � 0).

Obviously, J (0) = I (0) = 0. For y > 0, we already know the value of each of the
integrals (see Sect. 7.1.6): J (y) = arctany and I (y) = I (1) = π

2 . Hence we see
that

J (y) →
y→0

J (0)= 0, I (y) �
y→0

I (0).

That is all we need to know about these integrals in the sequel. What is the reason
why the former function is continuous at zero and the latter is not? After all, in both
cases the integrand tends to zero as y→ 0. It is obvious that if the integrals J and I

were calculated over an arbitrary finite interval [0, t], both integrals would converge
to zero. Thus, the behavior of the integrals J and I is determined by the behavior of
the “remainder integrals”

jt (y)=
∫ ∞

t

(
1− e−xy

) sinx

x
dx and it (y)=

∫ ∞

t

sinxy

x
dx.

In the proof that the integral J is continuous at zero, we actually proved (see
Sect. 7.1.6) that the inequality |jt (y)|� 3/t holds for all y > 0. Consequently,

∣
∣J (y)

∣
∣=

∣
∣
∣
∣

∫ t

0

(
1− e−xy

) sinx

x
dx + jt (y)

∣
∣
∣
∣ �

∣
∣
∣
∣

∫ t

0

(
1− e−xy

) sinx

x
dx

∣
∣
∣
∣+

3

t
.
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Therefore, we can first make the second summand arbitrarily small (for all y > 0
at once) by choosing an appropriate t , and then, fixing a t , make the first summand
small for small y > 0.

We see a different picture in the second case. Splitting the integral I (y) as before
into two summands,

I (y)=
∫ t

0

sinxy

x
dx + it (y),

we use the change of variables z= xy to verify that

it (y)=
∫ ∞

yt

sin z

z
dz.

Thus, for an arbitrarily large parameter t , the integral it (y) is close to I (1) �= 0 for
small y and does not tend to zero as y→ 0.

The above reasoning shows that the fact that the former integral is continuous and
the latter discontinuous is caused by the distinct behavior of the remainder integrals
jt and it . The continuity of J follows from that fact that the remainder integral jt
can be made small for sufficiently large t and for all values of the parameter at
once. This is the property that underlies the definition of the uniform convergence
of improper integrals.

7.4.2 By an improper integral dependent on a parameter, we mean a function J

defined on a set Y by the formula

J (y)=
∫ →b

a

f (x, y) dx (y ∈ Y), (1)

where f is a function (in general, complex-valued) defined on 〈a, b〉 × Y . We al-
ways assume that improper integral (1) converges for each value of y in Y (see
Sect. 4.6.4). We do not exclude the possibility that the integrand is summable for
some values of y.

Naturally, in the same way we can also define an improper integral with a sin-
gularity at the left-endpoint of the interval of integration. This case, as well as the
more general case of an integral with several singularities, can be investigated in
much the same way. Therefore, in the sequel we will confine ourselves to consider-
ing improper integrals of the above-mentioned form.

In the present section, the following important concept plays a decisive role.

Definition We say that the improper integral (1) converges uniformly on Y (or with
respect to y ∈ Y ) if

∫ t

a

f (x, y) dx −→
t→b

J (y) uniformly on Y.
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Since it is obvious that

J (y)−
∫ t

a

f (x, y) dx =
∫ →b

t

f (x, y) dx,

the definition can be rewritten in the following form:

sup
y∈Y

∣
∣
∣
∣

∫ →b

t

f (x, y) dx

∣
∣
∣
∣−→ 0 as t→ b. (2)

This condition is certainly fulfilled in the simplest situation where the family
of functions {x �→ f (x, y)}y∈Y has a summable majorant, i.e., where there ex-
ists a summable function F on the interval (a, b) such that |f (x, y)| � F(x) for
all x ∈ (a, b) and y ∈ Y . Indeed, in this case, we have supy∈Y |

∫ b

t
f (x, y) dx| �

∫ b

t
F (x) dx, and it remains to observe that

∫ b

t
F (x) dx → 0 as t → b since the

function F is summable on (a, b). However, we are not presently interested in this
situation since the existence of a summable majorant implies the conditions investi-
gated in Sect. 7.1. At the same time the uniform convergence may be useful in the
case where all functions x �→ f (x, y) are summable but do not have a summable
majorant (see Exercise 4).

7.4.3 Our first result concerning the behavior of the improper integral J (y) is as
follows.

Theorem Let Y be a subset of a metrizable topological space Ỹ and y0 ∈ Ỹ be
a limit point of Y . Assume that a function f : X × Y �→ C satisfies the following
conditions:

(a) for almost all x in (a, b), the limit f0(x)= limy→y0 f (x, y) exists;
(b) the function f0 is summable on each interval (a, t) (a < t < b) and

∫ t

a

f (x, y) dx→
∫ t

a

f0(x) dx as y→ y0;

(c) the improper integral (1) converges uniformly with respect to y ∈ Y .

Then the improper integral J0 =
∫→b

a
f0(x) dx converges and

J (y)=
∫ →b

a

f (x, y) dx −→
y→y0

J0.

The following statement is a direct consequence of the theorem.

Corollary If y0 ∈ Y and conditions (b) and (c) of the theorem are preserved but
condition (a) is replaced with the condition

(a′) for all x in (a, b) the function y �→ f (x, y) is continuous at y0, then the integral
J is continuous at y0.
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Before passing to the proof of the theorem, we make two remarks.

Remark 1 Condition (b) is fulfilled if there exists a left-admissible function g such
that |f (x, y)| � g(x) almost everywhere on (a, b) for each y ∈ Y (see Theorem 1
of Sect. 7.1.2).

Remark 2 Since the existence of a limit is a local property, there is no need to
assume that the integral in the theorem (and in the corollary) converges uniformly
on the entire set Y . It is sufficient to require the uniform convergence only on the
intersection Y ∩U(y0), where U(y0) is a neighborhood of y0.

To prove the theorem we simply apply the well-known statement about inter-
changing the order of integration (see, for example, [Z] v. II, Chap. XVI, Sect. 3.2;
[Fi] v. II, No. 436).

Proposition Let T and Y be subsets of metrizable topological spaces T̃ and Ỹ ,
respectively, and let t0 ∈ T̃ and y0 ∈ Ỹ be their limit points. Assume that F is a
function defined on the product T × Y and satisfying the following conditions:

(I) for every t ∈ T , the limit L(t)= limy→y0 F(t, y) exists and is finite;
(II) for every y ∈ Y , the limit J (y)= limt→t0 F(t, y) exists and is finite.

If in at least one of these cases the convergence is uniform (on T or Y ), then the
functions J and L have equal finite limits: limt→t0 L(t)= limy→y0 J (y).

In other words, the conditions of the proposition guarantee that the iterated limits
exist, are finite, and coincide,

lim
t→t0

lim
y→y0

F(t, y)= lim
y→y0

lim
t→t0

F(t, y).

Proof of the theorem Turning to the proof of the theorem, we assume that T =
(a, b), T0 = R, t0 = b and F(t, y)= ∫ t

a
f (x, y) dx. Then the statement in question

reduces to the proposition given above. Indeed, it follows from condition (b) that F
satisfies assumption I with L(t)= ∫ t

a
f0(x) dx. Assumption II is also fulfilled since

the uniform convergence of the integral (i.e., condition (c)) is the uniform conver-
gence of F(t, y) to J (y) with respect to y ∈ Y as t→ b. Therefore, the theorem on
the change of order of integration guarantees that the limit limt→b L(t) exists and
is finite, i.e. that the improper integral

∫→b

a
f0(x) dx converges and coincides with

the limit limy→y0 J (y). �

7.4.4 After conditions for the continuity of an improper integral dependent on a pa-
rameter have been found, it is natural to obtain a counterpart of Theorem 7.1.5, the
Leibniz rule. However, we postpone this topic until the next section since it is con-
venient to be able to integrate with respect to a parameter. We did not discuss results
of this type in Sect. 7.1 since, for summable functions, the problem of integration
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with respect to a parameter is covered by Fubini’s theorem. Now we will discuss its
generalization to improper integrals.

Let μ be a complete measure defined on a σ -algebra of subsets of a set Y . We
shall show that, under natural additional assumptions, the change in the order of in-
tegration in improper integrals is legal (for an alternative condition, see Exercise 5).

Theorem Let a function f be summable with respect to the measure10 λ1 × μ on
every set (a, t)×Y , a < t < b, and let I (x)= ∫

Y
f (x, y) dμ(y). If μ(Y ) <+∞ and

the improper integral (1) converges uniformly on Y , then the function J is summable
on Y , the improper integral

∫→b

a
I (x) dx converges, and the following equation

holds:
∫

Y

J (y) dμ(y)=
∫ →b

a

I (x) dx. (3)

Proof Let Jt (y)=
∫ t

a
f (x, y) dx for t ∈ (a, b) and y ∈ Y . By Fubini’s theorem, the

function Jt is summable on Y . Since the uniform convergence of the integral J (y)

is equivalent to relation (2), we see that for a t sufficiently close to b the following
inequality holds:

∣
∣J (y)− Jt (y)

∣
∣=

∣
∣
∣
∣

∫ →b

t

f (x, y) dx

∣
∣
∣
∣ � 1 for all y ∈ Y.

Since the measure μ is finite, we obtain that the function J − Jt is summable and,
consequently, the function J is also summable.

By Fubini’s theorem, the function I is summable on the interval (a, t) and
∫ t

a

I (x) dx =
∫ t

a

(∫

Y

f (x, y) dμ(y)

)

dx =
∫

Y

(∫ t

a

f (x, y) dx

)

dμ(y)

=
∫

Y

J (y) dμ(y)−
∫

Y

(∫ →b

t

f (x, y) dx

)

dμ(y).

Thus,
∣
∣
∣
∣

∫ t

a

I (x) dx −
∫

Y

J (y) dμ(y)

∣
∣
∣
∣ �

∫

Y

∣
∣
∣
∣

∫ →b

t

f (x, y) dx

∣
∣
∣
∣dμ(y)

� μ(Y ) sup
y∈Y

∣
∣
∣
∣

∫ →b

t

f (x, y) dx

∣
∣
∣
∣−→t→b

0.

This means that the improper integral
∫→b

a
I (x) dx converges and is equal to∫

Y
J (y) dμ(y). �

Corollary If Y is a compact subset of the space R
m, μ = λm, and the function f

is continuous on [a, b)× Y , then Eq. (3) is valid under the single condition that the
improper integral J (y) converges uniformly on Y .

10We recall that by λ1 we denote the one-dimensional Lebesgue measure.
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7.4.5 We are now ready to turn to the proof of the Leibniz rule for differentiat-
ing improper integrals with respect to a parameter, which is an important tool for
studying such integrals.

Theorem Let f be a continuous function defined on the set [a, b)× 〈c, d〉, and let
integral (1) converge for each y ∈ 〈c, d〉. Assume that:

(a) for each x ∈ [a, b), y ∈ 〈c, d〉, the partial derivative f ′y(x, y) exists and is con-
tinuous on [a, b)× 〈c, d〉;

(b) the integral I (y)= ∫→b

a
f ′y(x, y) dx converges uniformly on Y .

Then J ∈ C1(〈c, d〉) and J ′(y)= I (y), i.e.,
(∫ →b

a

f (x, y) dx

)′

y

=
∫ →b

a

f ′y(x, y) dx.

Proof First of all, we note that the integral I depends continuously on y by the
corollary to Theorem 7.4.3. Applying to I the theorem on integrating with respect
to a parameter on an arbitrary interval with endpoints s0, s ∈ 〈c, d〉, we obtain

∫ s

s0

I (y) dy =
∫ s

s0

(∫ →b

a

f ′y(x, y) dx
)

dy =
∫ →b

a

(∫ s

s0

f ′y(x, y) dy
)

dx

=
∫ →b

a

(
f (x, s)− f (x, s0)

)
dx = J (s)− J (s0).

Since the integral on the left-hand side of the equation is differentiable, so is J .
Barrow’s theorem implies that J ′(s)= I (s). �

7.4.6 After basic properties of an integral dependent on a parameter have been
established and we have become convinced of the usefulness of the concept of uni-
form convergence, it is desirable to have convenient and easy-to-use uniform conver-
gence tests. We prove two such tests similar to the Dirichlet and Abel convergence
tests for improper integrals (see Sect. 4.6.6), but we first generalize them somewhat,
dropping superfluous smoothness requirements, and obtain some estimates. In these
statements, the function f is, in general, complex-valued.

Lemma Let a function f be left admissible on an interval [a, b), −∞< a < b �
+∞, and let g be a function that tends monotonically to zero as x→ b. Assume that
the function t �→ ∫ t

a
f (x) dx (a < t < b) is bounded. Then the improper integral

∫→b

a
f (x)g(x) dx converges and the following inequality holds:

∣
∣
∣
∣

∫ →b

a

f (x)g(x) dx

∣
∣
∣
∣ �

∣
∣g(a)

∣
∣ sup
t∈(a,b)

∣
∣
∣
∣

∫ t

a

f (x) dx

∣
∣
∣
∣. (4)

Proof To a great extent, the proof repeats the proof of the Dirichlet test. Both proofs
are based on the integration by parts formula, but this time g is not necessarily
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smooth, and we use a version of this formula obtained in Corollary 3 of Sect. 5.3.4.
The equation proved there implies (without loss of generality, we assume that the
function g is increasing) that

∫ t

a

f (x)g(x) dx = F(t)g(t)−
∫

(a,t]
F(x)dg(x) (a < t < b),

where F(t) = ∫ t

a
f (x) dx. Obviously, the measure μ generated by the function g

is finite and the bounded function F is summable with respect to μ. Therefore,
the integral

∫
(a,t] F(x)dg(x) tends to the finite limit

∫
(a,b)

F (x) dg(x) as t → b.
Since F(t)g(t)−→

t→b
0, we obtain from the above equation that the improper integral

∫→b

a
f (x)g(x) dx converges and the equation

∫ →b

a

f (x)g(x) dx =−
∫

(a,b)

F (x) dg(x)

holds. This immediately implies estimate (4):
∣
∣
∣
∣

∫ →b

a

f (x)g(x) dx

∣
∣
∣
∣ � μ

(
(a, b)

)
sup

t∈(a,b)

∣
∣F(t)

∣
∣ �

∣
∣g(a)

∣
∣ sup
t∈(a,b)

∣
∣F(t)

∣
∣.

�

If the limit limt→b F (t) exists and is finite, i.e., the improper integral∫→b

a
f (x) dx converges, then the condition g(t) −→

t→b
0 can be dropped, and we

obtain the following version of the lemma.

Corollary Assume that an integral
∫→b

a
f (x) dx converges and a function g is

monotonic and bounded on [a, b). Then the integral
∫→b

a
f (x)g(x) dx converges

and the following inequality holds:
∣
∣
∣
∣

∫ →b

a

f (x)g(x) dx

∣
∣
∣
∣ � 5 sup

t∈(a,b)

∣
∣g(t)

∣
∣ sup
t∈(a,b)

∣
∣
∣
∣

∫ →b

t

f (x) dx

∣
∣
∣
∣.

Proof By the lemma, the integral
∫→b

a
f (x)(g(x)−L)dx, where L= limx→b g(x),

converges. Representing the product f (x)g(x) in the form Lf (x)+f (x)(g(x)−L),
we obtain the convergence of the integral

∫→b

a
f (x)g(x) dx as well as the following

consequence of inequality (4):
∣
∣
∣
∣

∫ →b

a

f (x)g(x) dx

∣
∣
∣
∣ � |L|

∣
∣
∣
∣

∫ →b

a

f (x) dx

∣
∣
∣
∣+

∣
∣g(a + 0)−L

∣
∣ sup
t∈(a,b)

∣
∣
∣
∣

∫ t

a

f (x) dx

∣
∣
∣
∣.

Since the numbers |L| and |g(a + 0)| do not exceed sup(a,b) |g|, we can complete
the proof via the obvious estimate

∣
∣
∣
∣

∫ t

a

f (x) dx

∣
∣
∣
∣=

∣
∣
∣
∣

∫ →b

a

f (x) dx −
∫ →b

t

f (x) dx

∣
∣
∣
∣ � 2 sup

s∈(a,b)

∣
∣
∣
∣

∫ →b

s

f (x) dx

∣
∣
∣
∣. �
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Before passing to our main goal in this section, uniform convergence tests for
an improper integral dependent on a parameter, we make a convention about ter-
minology. We will have to consider functions x �→ f (x, y) (for a fixed y ∈ Y ) and
y �→ f (x, y) (for a fixed x ∈ X). In Sect. 5.3.1, these functions were denoted by
f y and fx , respectively. In what follows, we say, by abuse of language, that a func-
tion f has a certain property (is measurable, continuous, etc.) for a given y if the
function f y does; likewise for the first variable. For example, the statement “for a
given y, a function f is monotonic with respect to the first variable” means that f y

is monotonic.

Theorem (Dirichlet uniform convergence test for an improper integral) Let −∞<

a < b � +∞, and let Y be an arbitrary set. Let f and g be functions defined on
[a, b)× Y and satisfying the following conditions:

(1) for each y ∈ Y , the function f is left admissible as a function of x and the
function g is monotonic with respect to x on [a, b);

(2) the function (t, y) �→ F(t, y)= ∫ t

a
f (x, y) dx is bounded on (a, b)× Y ;

(3) g(x, y)−→
x→b

0 converges uniformly with respect to y ∈ Y .

Then the improper integral

J (y)=
∫ →b

a

f (x, y)g(x, y) dx

converges uniformly on Y .

Proof The convergence of J (y) for each y in Y follows from the lemma. As noted
in Sect. 7.4.2, the uniform convergence is equivalent to the relation

sup
y∈Y

∣
∣
∣
∣

∫ →b

s

f (x, y)g(x, y) dx

∣
∣
∣
∣−→s→b

0. (2′)

By condition (2), there exists a number C such that |F(t, y)|� C for all t in (a, b)

and y in Y . Replacing the interval [a, b) by [s, b) and the integral
∫ t

a
f (x) dx by

∫ t

s

f (x, y) dx = F(t, y)− F(s, y)

in inequality (4), we obtain that

∣
∣
∣
∣

∫ →b

s

f (x, y)g(x, y) dx

∣
∣
∣
∣ � 2C

∣
∣g(s, y)

∣
∣ (a < s < b).

To verify relation (2′), it now remains for us only to use condition (3). �

Theorem (Abel uniform convergence test for an improper integral) If an improper
integral

∫→b

a
f (x, y) dy converges uniformly on a set Y and a function g is bounded
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on a set (a, b)× Y and monotonic with respect to the first variable for each y ∈ Y ,
then the integral

∫→b

a
f (x, y)g(x, y) dx also converges uniformly on Y .

For the proof it suffices to refer the inequality proved in the corollary to the
lemma.

7.4.7 The following two particular cases are especially convenient.

Corollary 1 If a function ϕ is defined on an interval [a,+∞) and tends monotoni-
cally to zero as x→+∞, then the integral

J (y)=
∫ ∞

a

ϕ(x)eixy dx (5)

converges uniformly on every set R \ (−δ, δ), where δ > 0.

This statement follows from the Dirichlet test applied to the functions f (x, y)=
eixy and g(x, y)= ϕ(x). In this case, we obviously have

∣
∣F(t, y)

∣
∣=

∣
∣
∣
∣

∫ t

a

eixydx

∣
∣
∣
∣=

∣
∣
∣
∣
eity − eiay

iy

∣
∣
∣
∣ �

2

|y| �
2

δ
.

It is useful to note that the monotonicity of ϕ(x) is essential only for large
x since the uniform convergence is connected with the behavior of the integrals∫ t

a
ϕ(x)eixy dx as t →+∞. For an arbitrary interval [a, c] the summability of ϕ is

sufficient.
Since the integrand is continuous with respect to y, we obtain by the corollary to

Theorem 7.4.3 that J ∈ C(R \ {0}). Moreover, the parameter y may take complex
values provided that Imy � 0, y �= 0. In this case, the estimate |F(t, y)| � 2

|y| re-
mains valid, and therefore, the same reasoning gives the continuity of the integral
J in the entire half-plane Imy � 0 except at the origin. We note also that The-
orem 7.1.7 implies that at the interior points (i.e., if Imy > 0) the function J is
holomorphic.

Corollary 2 If an improper integral I = ∫∞
0 f (x)dx converges and a function �

is monotonic and bounded on [0,+∞), then the integral

J (y)=
∫ ∞

0
�(yx)f (x) dx

converges uniformly with respect to y > 0 and J (y)−→
y→0

�(+0)I , where �(+0)=
limy→0 �(y).

This is a direct consequence of the Abel test. It is frequently used in the calcula-
tion of conditionally convergent improper integrals. For example, if the function f

is bounded, then, taking �(x)= e−x , we can represent the required integral I as the
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limit of the absolutely convergent integral J (y) as y→+0, which is usually easier
to calculate than the given integral I . We have already encountered this situation in
Example 2 of Sect. 7.1.6. There we first used differentiation with respect to a pa-
rameter to calculate the integral J (y)= ∫∞

0
sinx
x

e−xy dx for y > 0, and then proved
its continuity at y = 0 “by hand”. Now this passage to the limit can be justified by
Corollary 2.

7.4.8 We will apply the results obtained to calculate important integrals of functions
whose primitives cannot be expressed in terms of elementary functions.

Example 1 As proved in Example 1 of Sect. 7.1.7, for a > 0 and Re(z) > 0, the
integral L(z)= ∫∞

0 xa−1e−zx dx is equal to �(a)/za , where za is the branch of the
power function such that za = 1 at z = 1. At the same time, if 0 < a < 1, then the
integral L(z) also converges for purely imaginary z �= 0, and so, for such a, the
function L is defined on the entire half-plane Re z� 0 except at zero. The uniform
convergence on the set |z|� δ > 0, Re z� 0 follows easily from the Dirichlet test.
Therefore, the function L(z) is continuous for Re z � 0, z �= 0, and the equation
L(z)= �(a)/za remains valid also for purely imaginary z. In particular, for z = i,
we obtain

∫ ∞

0
xa−1e−ix dx = �(a)

ia
= �(a)e−i πa

2 (0 < a < 1).

Separating the real and imaginary parts, we can represent this equation in the form

(C)
∫ ∞

0

cosx

x1−a
dx = �(a) cos

πa

2
,

(S)
∫ ∞

0

sinx

x1−a
dx = �(a) sin

πa

2
.

Equation (S) is also valid for −1 < a < 0 (it is sufficient to integrate by parts equa-
tion (C)). Moreover, passing to the limit in (S) as a→ 0, we obtain the value of the
required important integral

∫∞
0

sinx
x

dx = π
2 once again (see Exercise 2).

We also mention the special case corresponding to the value a = 1
2 ,

∫ ∞

0

1√
x
e−ix dx = �

(
1

2

)

e−i π4 = (1− i)

√
π

2
.

By the substitution x = t2, the integral on the left-hand side of this equation can
be reduced to the Fresnel integral (see Sect. 4.6.4)

∫∞
0

1√
x
e−ix dx = 2

∫∞
0 e−it2

dt .
Thus,

∫ ∞

0
e−it2

dt = 1− i

2

√
π

2
, and so

∫ ∞

0
cos t2 dt =

∫ ∞

0
sin t2 dt = 1

2

√
π

2
.
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Example 2 Here we compute certain integrals that were first found by Laplace:

C(y)=
∫ ∞

0

cosyx

1+ x2
dx and S(y)=

∫ ∞

0

x sinyx

1+ x2
dx (y ∈R).

The function C is continuous and bounded on R since the integrand has the
summable majorant 1

1+x2 .
The integrals C(y) and S(y) are closely connected with each other: using the

Leibniz rule, we obtain that C′(y)=−S(y) for y > 0. To justify the applicability of
the Leibniz rule we have only to refer (see Theorem 7.4.5) to uniform convergence
of the integral S(y) near an arbitrary point y0 > 0, which follows immediately from
the uniform convergence of the integrals of the form (5) for ϕ(x)= x/(1+ x2).

The Leibniz rule cannot be applied to the integral S(y) directly since the im-
proper integral obtained by formal differentiation with respect to the parameter di-
verges. Here the following artificial device will be helpful: before the differentia-
tion is performed, we extract from S(y) a “slowly converging” part, the integral∫∞

0
sinyx

x
dx, which is known (see Example 2 of Sect. 7.1.6),

S(y)=
∫ ∞

0

(
x

1+ x2
− 1

x

)

sinyx dx+
∫ ∞

0

sinyx

x
dx =−

∫ ∞

0

sinyx

x(1+ x2)
dx+ π

2
.

Now the Leibniz rule can obviously be applied to the arising integral, and we obtain
the relation S′(y) = −C(y). Consequently, C′′(y) = C(y). It is known from the
theory of ordinary differential equations that the general solution of this equation
has the form C(y)=Aey +Be−y (A,B ∈R). Since the function C is bounded, the
coefficient A is zero, i.e., C(y)= Be−y for y > 0. To find the coefficient B , we use
the continuity of C at zero,

B = lim
y→0

C(y)= C(0)=
∫ ∞

0

dx

1+ x2
= π

2
.

Thus, C(y)= π
2 e
−y and, consequently, S(y)= π

2 e
−y for y > 0. Taking into account

the fact that the former function is even and the latter is odd, we obtain

C(y)= π

2
e−|y| and S(y)= π

2
e−|y| signy for y ∈R.

We remark that for the calculation of the integral C(y) = ∫∞
0

cosxy
1+x2 dx, where

the integrand is summable, it was convenient to go outside the class of summable
functions and use the theory developed for improper integrals (see also Exercise 3).

7.4.9 In conclusion, we discuss the asymptotic of integrals similar to those con-
sidered in Sect. 7.3 in the course of deriving the Laplace formula. We mean the
integrals of the form

I (x)=
∫

Rm

f (t)eixϕ(t) dt (x ∈R), (6)
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which play an important role in the stationary phase method used in the study of
wave processes. From physical considerations, which we will not dwell on here, it
is natural to call the function f the amplitude and the function ϕ the phase function.
Imposing certain restrictions on these functions, we find the rate of change of the
integral I (x) as x →±∞. It should be noted that the reason for this decrease is
fundamentally different from that which determined the asymptotic in Sect. 7.3.
While there the smallness of the integral was a consequence of the smallness of the
integrand, here the integral I (x) is small for large x because the real and imaginary
parts of the exponential factor frequently change their signs (we will return to this
phenomenon in Sect. 9.2.5 in the course of the proof of the Riemann–Lebesgue
theorem).

So that technical details will not befog the main idea, we do not seek for max-
imum generality, instead confining ourselves to the case of infinitely smooth func-
tions f and ϕ, assuming everywhere that the phase function is real-valued and the
amplitude has a compact support. The latter condition guarantees, in particular, the
summability of the integrand.

Our first result concerns the case where ϕ has no critical points on the support
of f .

Theorem If f,ϕ ∈ C∞(Rm) and gradϕ �= 0 on suppf , then integral (6) decreases
“overpowerly” as x→∞, i.e., for each n ∈N

I (x)=O

(
1

xn

)

as x→±∞.

Proof Using the partition of unity subordinate to the covering of the support
K = suppf by the sets {t ∈ R

m | ∂ϕ
∂tj

(t) �= 0} (see Sect. 8.1.8), we may assume that
∂ϕ
∂t1

(t) �= 0 on K . Then the Jacobian J� of the map

t = (t1, t2, . . . , tm) �→�(t)= (
ϕ(t), t2, . . . , tm

)

is separated from zero on K , and, by the theorem on local invertibility, � is a dif-
feomorphism in a neighborhood of each point of K . Again using the partition of
unity, if required, we may assume that � is a diffeomorphism (of class C∞) in a
neighborhood G of the support of f . Using the change of variable u = �(t), we
obtain

I (x) =
∫

G

f (t)

|J�(t)|e
ixϕ(t)

∣
∣J�(t)

∣
∣dt =

∫

�(G)

f (�−1(u))

|J�(�−1(u))|e
ixu1 du

=
∫

Rm

g(u)eixu1du,
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where g = f (�−1)

|J�(�−1)| ∈ C∞0 . Integrating by parts the right-hand side of this equation
n times with respect to the first coordinate, we see that

∣
∣I (x)

∣
∣=

∣
∣
∣
∣

1

(ix)n

∫

Rm

∂ng

∂un
1
(u)eixu1 du

∣
∣
∣
∣ �

1

|x|n
∫

Rm

∣
∣
∣
∣
∂ng

∂un
1
(u)

∣
∣
∣
∣du. �

7.4.10 We begin the investigation of the integral I (x) in the case where the function
ϕ has critical points lying in suppf with the most important specific case where ϕ

is a non-degenerate quadratic form. The general case can be reduced to this one
provided that the Hesse matrix of the phase function is invertible at the critical
points (see Sect. 7.4.11 below).

Thus, let

I (x)=
∫

Rm

f (t)eixQ(t) dt,

where Q is a non-degenerate real quadratic form and f ∈ C∞0 (Rm). Since the form
Q can be diagonalized by an orthogonal transformation, from now on we may as-
sume that

Q(t)=
m∑

j=1

aj t
2
j

(
t = (t1, . . . , tm) ∈R

m
)
. (7)

It will be convenient to use a special case of this formula in which |a1| = · · · =
|am| = 1. Up to renumbering the coordinates this means that

Q(t)=
p∑

j=1

t2
j −

q∑

j=1

t2
p+j , (7′)

where p+ q =m (if p = 0, then the first sum in Eq. (7′) must be replaced by zero,
and if q = 0, then the second sum must be replaced by zero).

We begin with an estimate of integral I (1) in this special case.

Lemma If a quadratic form Q has the form (7′) and a function f belonging to
the class C∞0 (Rm) is such that the inequality | ∂αf

∂tα
| � M is valid everywhere for

0 � |α|� 2m, then |I (1)|� 8mM .

Here α = (α1, . . . , αm) ∈ Z
m+ is a multi-index and |α| = α1 + · · · + αm.

Proof We use induction on the number of variables. For m = 1, we estimate the
integrals of f (t)eit

2
over each of the intervals [1,+∞), (−∞,−1] and [−1,1]

separately. Integrating by parts two times, we obtain



372 7 Integrals Dependent on a Parameter

∫ ∞

1
f (t)eit

2
dt = 1

2i

∫ ∞

1

f (t)

t
d

(
eit

2)

=−f (1)

2i
ei − 1

(2i)2

∫ ∞

1

1

t

(
f (t)

t

)′
d

(
eit

2)

=−f (1)

2i
ei − f ′(1)− f (1)

4
ei

−
∫ ∞

1

t2f ′′(t)− 3tf ′(t)+ 3f (t)

4t4
eit

2
dt.

Therefore, the integral over the interval [1,+∞) does not exceed M
2 + M+M

4 +
7M
4

∫∞
1

dt

t2 � 3M . The same estimate is also valid for the integral
∫ −1
−∞ f (t)eit

2
dt .

Consequently,

∣
∣
∣
∣

∫ ∞

−∞
f (t)eit

2
dt

∣
∣
∣
∣ �

∣
∣
∣
∣

∫ −1

−∞
· · ·

∣
∣
∣
∣+

∣
∣
∣
∣

∫ 1

−1
· · ·

∣
∣
∣
∣+

∣
∣
∣
∣

∫ ∞

1
· · ·

∣
∣
∣
∣ � 3M + 2M + 3M = 8M.

Obviously, this estimate is also valid for the integral
∫∞
−∞ f (t)e−it2

dt .
Now assume that the assertion of the lemma is valid for the functions of m− 1

variables. For brevity we put u = (t1, . . . , tm−1) and represent Q(t) in the form
Q(t)= Q̃(u)± t2

m. Then

I (1)=
∫ ∞

−∞
h(tm)e±it2

m dtm, where h(tm)=
∫

Rm−1
f (u, tm)eiQ̃(u) du.

Since, by the induction assumption applied to the functions f , ∂f
∂tm

and ∂2f

∂t2
m

, the

functions |h|, |h′|, and |h′′| do not exceed 8m−1M , to complete the proof it remains
to use the fact that the statement is valid for m= 1. �

Theorem Let Q be a non-degenerate quadratic form, f ∈ C∞0 (Rm), and I (x) =∫
Rm f (t)eixQ(t) dt . Then

I (x)= f (0)√|det(A)|
(
π

x

)m
2

ei
π
4 S +O

(
1

x
m
2 +1

)

, as x→+∞

where A is the matrix of Q and S is its signature (the difference between the number
of positive and negative eigenvalues of A).

Proof First we consider the case where f (0) = 0. We will assume that x > 1. By
Hadamard’s lemma (see Sect. 13.7.8) we have f (t)= t1g1(t)+· · ·+ tmgm(t), where
g1, . . . , gm ∈ C∞0 (Rm). Therefore, it is sufficient to consider a function f of the
form f (t) = tkg(t) with g belonging to the class C∞0 (Rm). Integrating by parts
with respect to the kth coordinate and making the change of variables t = u√

x
, we
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obtain

I (x)=± 1

2ix

∫

Rm

∂g

∂tk
(t)eixQ(t) dt =± 1

2ix

1

x
m
2

∫

Rm

∂g

∂tk

(
u√
x

)

eiQ(u) du

(the choice of signs in this formula is determined by the sign with which the term
t2
k appears in Q). Since, for x > 1, the function ∂g

∂tk
( u√

x
) has uniformly bounded

derivatives up to order 2m inclusive, it follows from the lemma that the last integral
is bounded by a constant independent of x. This implies the statement in the case
f (0)= 0.

Now let f (0) �= 0. Making an orthogonal change of variables, if necessary, we
may assume that the matrix A is diagonal and Q has the form (7). Then det (A)=
a1 · · ·am. We transform the integral I (x) by dilations in the directions of coordinate
axes with coefficients

√|aj |:

I (x)= 1√|det(A)|I1(x), I1(x)=
∫

Rm

f1(u)e
ixQ1(u) du.

Here f1(0) = f (0) and Q1 is a quadratic form of the form (7′), where p is the
number of positive and q is the number of negative eigenvalues of A. Thus, in what
follows, we may and will assume without loss of generality that Q has the form (7′).

We consider a function θ ∈ C∞0 (R) such that θ(u)= 1 in a neighborhood of zero
and put

K±(x)=
∫

R

θ(u)e±ixu2
du.

It is clear that the product �(t)= θ(t1) · · · θ(tm) belongs to C∞0 (Rm) and
∫

Rm

�(t)eixQ(t) dt =K
p
+(x)K

q
−(x). (8)

Since the difference f̃ = f − f (0)� is an infinitely differentiable function with
compact support and f̃ (0)= 0, we obtain

I (x)− f (0)Kp
+(x)K

q
−(x)=

∫

Rm

f̃ (t)eixQ(t) dt =O

(
1

x
m
2 +1

)

. (9)

Thus, to complete the proof it remains only for us to find the asymptotic of the
integrals K±(x). Obviously,

K±(x)=
∫ ∞

−∞
e±ixu2

du+
∫ ∞

−∞
(
θ(u)− 1

)
e±ixu2

du.

The first of the integrals is reduced to the Fresnel integral calculated in Example 1
of the preceding section,

∫ ∞

−∞
e±ixu2

du= 1√
x

∫ ∞

−∞
e±it2

dt =
√

π

x
e±i π4 .
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The second integral converges rapidly to zero. Indeed, since θ ∈ C∞0 (R) and
θ(u) = 1 in a neighborhood of zero, we see that the function (θ(u) − 1)/u is in-
finitely smooth on R. Moreover, this function tends to zero at infinity together
with all its derivatives. Therefore, representing the integral in question in the form
±1
2ix

∫∞
−∞

θ(u)−1
u

d(e±ixu2
) and integrating by parts two times, we see that the integral

decreases at least as x−2. Thus,

K±(x)=
√

π

x
e±i π4 +O

(
x−2)

.

Taking into account (8), (9) and the equations p + q = m and p − q = S, we can
complete the proof as follows:

I (x)= f (0)

(√
π

x
ei

π
4 +O

(
1

x2

))p(√
π

x
e−i π4 +O

(
1

x2

))q

+O

(
1

x
m
2 +1

)

= f (0)

(
π

x

)m
2

ei
π
4 (p−q) +O

(
1

x
m
2 +1

)

= f (0)

(
π

x

)m
2

ei
π
4 S +O

(
1

x
m
2 +1

)

. �

7.4.11 We generalize the result obtained by replacing the quadratic form Q by a
smooth function ϕ. As follows from Theorem 7.4.9, the contribution to integral (6)
that comes from the complement of a neighborhood of the set of critical points
is small. Therefore, everything reduces to the calculation of the contribution that
comes from (arbitrarily small) neighborhoods of the critical points. We carry out
this calculation, assuming that the critical points are non-degenerate. We recall that
a critical point p of a function ϕ is called non-degenerate if its Hesse matrix H(p)=
(

∂2ϕ
∂tj ∂tk

(p))1�j,k�m is invertible.
We denote by S(p) the signature of the second differential of a function ϕ at a

point p.

Theorem Let f,ϕ ∈ C∞(Rm), where f has a compact support and ϕ is a real-
valued function having a finite number of critical points p1, . . . , pn in supp(f ) all
of which are non-degenerate. Then as x→+∞,

I (x) =
∫

Rm

f (t)eixϕ(t) dt

=
(

2π

x

)m
2

n∑

j=1

f (pj )
√|det(H(pj ))|

eixϕ(pj )ei
π
4 S(pj ) +O

(
1

x
m
2 +1

)

.

Proof We begin with a basic particular case where n= 1 and p1 = 0 (if p1 �= 0 it is
necessary to use a shift). We verify that the support of f can be assumed arbitrarily
small. To this end, we consider the function θ ∈ C∞0 (Rm) that is zero outside the
ball B(ρ) and is equal to 1 near the origin. The choice of a radius ρ will be made
precise later (it depends only on the properties of ϕ). Since the product f · (1− θ)
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satisfies the conditions of Theorem 7.4.9, the replacement of f by f θ leads to a
small change of I (x) (the error caused by the change converges to zero overpow-
erly). This allows us to assume in the sequel that supp(f ) ⊂ B(ρ). By the Morse
lemma (see Sect. 13.7.8), for a sufficiently small ρ, there exists a diffeomorphism
� ∈ C∞(B(ρ),Rm) such that �(0) = 0, J�(0) = 1, and the following relation is
valid for u=�(t):

ϕ(t)− ϕ(0)=Q(u)=
m∑

j=1

aju
2
j .

The change of variable u = �(t) reduces the integral I (x) to the following form
considered in the theorem of the preceding section:

I (x)=
∫

�(B(ρ))

f (�−1(u))

|J�(�−1(u))|e
ix(ϕ(0)+Q(u)) du= eixϕ(0)

∫

Rm

f̃ (u)eixQ(u) du,

where f̃ = f (�−1)

|J�(�−1)| on �(B(ρ)) and f̃ = 0 outside this set. Moreover, f̃ (0) =
f (0) since J�(0)= 1. As det(H(0))= 2ma1 · · ·am, it only remains to refer to The-
orem 7.4.10.

In the general case, we construct disjoint balls with centers at the points
p1, . . . , pn and the functions θ1, . . . , θn with the properties described above. Since
ϕ has no critical points outside the balls, it follows from Theorem 7.4.9 that the
replacement of f by (θ1 + · · · + θn)f changes the integral I (x) by an amount that
decreases overpowerly at infinity. The integral of the function (θ1+· · ·+θn)f splits
into a sum of integrals of the types considered above. �

EXERCISES

1. Prove that
∫∞

0
1−e−x

x
cosax dx = 1

2 ln(1+ 1
a2 ) for a ∈R \ {0}. Hint. Check that

the integral is equal to the limit of the integral I (y)= ∫∞
0 e−xy 1−e−x

x
cosax dx

as y→+0. Use the Leibniz rule to calculate I (y).
2. Prove that the integral on the right-hand side of Eq. (S) of Sect. 7.4.8 converges

uniformly in a neighborhood of a = 0. Passing to the limit as a→ 0, find once
again the integral

∫∞
0

sinx
x

dx.
3. By analogy with the calculation of the Laplace integrals, find the integral

J (y)= ∫∞
0

cosyx
1+x4 dx (y ∈R).

4. Verify that the integral
∫∞

0
sinx
x

dx

ln2(2+xy)
converges uniformly on (0,1) but does

not satisfy condition (Lloc) in any neighborhood of zero.
5. Preserving the notation of Theorem 7.4.4 on integration with respect to a pa-

rameter, prove that the requirement that the measure be finite and the integral be
uniformly convergent can be replaced by the following condition: there exists a
summable function ϕ on Y such that | ∫ t

a
f (x, y) dx|� ϕ(y) for t ∈ (a, b) and

y ∈ Y .
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6. Use the preceding exercise to justify a reversal in the order of integration in the
iterated integrals

∫ ∞

0

(∫ ∞

0
e−xy sinx dy

)

dx and
∫ ∞

0

(∫ ∞

0
e−xy2

sinx dy

)

dx.

Use this to find once again the integrals
∫∞

0
sinx
x

dx and
∫∞

0
sinx√

x
dx.

7. In the notation of Theorem 7.4.5 on differentiation with respect to a parameter
prove the following sharpening of this theorem: if

(a) for some point y0 in Y the integral J (y0) converges;
(b) for almost all x ∈ (a, b) and each y ∈ Y , the partial derivative f ′y(x, y)

exists and satisfies the inequality |f ′y(x, y)| � g(x), where g is a left-
admissible function on the interval (a, b);

(c) the integral I (y) = ∫→b

a
f ′y(x, y) dx converges uniformly on Y ,

then the improper integral J (y) converges for each y ∈ Y , the function
J is differentiable on Y and J ′(y)= I (y).

8. Prove that
∫∞
−∞

sinx

1+y2 sin2 x

dx
x
= π√

1+y2
for y ∈R. Hint. Use the following partial

fraction expansion of 1
sinx

:

1

sinx
= 1

x
+ 2x

∞∑

n=1

(−1)n

x2 − (πn)2

(see Example 2 of Sect. 10.3.5).
9. Use the result of Exercise 8 to find the value of the integral

∫∞
0

arctan (y sinx)
x

dx

(y ∈R).
10. Let f be a function defined almost everywhere on R

m and summable in every
ball B(R). We will say that an improper integral of f converges if the limit

lim
R→+∞

∫

‖x‖�R

f (x)dx

exists and is finite (in which case, it will be denoted, as before, by
∫
Rm f (x) dx).

Prove that if the integral converges, then the following multi-dimensional ver-
sion of Corollary 2 of Sect. 7.4.7 is valid: if � is a bounded monotonic function,
then the improper integral J (y)= ∫

Rm �(y‖x‖) f (x) dx on (0,+∞) converges
for all y > 0 and

J (y)−→
y→0

�(+0)
∫

Rm

f (x) dx.

7.5 Existence Conditions and Basic Properties of Convolution

We will assume that all functions considered in the present section are, in general,
complex-valued and measurable on R

m (in the wide sense; see Sect. 4.3.3), and a
measure will mean Lebesgue measure. As before, let B(r) be the ball of radius r

with center at the origin.
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7.5.1 We introduce the main concept to which this Section is devoted.

Definition Let f and g be functions measurable on R
m. If

∫

Rm

∣
∣f (x − y)g(y)

∣
∣dy <+∞ for almost all x ∈R

m, (1)

then the function h defined almost everywhere by the equation

h(x)=
∫

Rm

f (x − y)g(y) dy (2)

is called the convolution of f and g and is denoted by f ∗ g.

Condition (1) will be called the convolution existence condition. By the change of
variable y→ z= x − y, we can easily verify that the above condition is equivalent
to the condition

∫

Rm

∣
∣f (z)g(x − z)

∣
∣dz <+∞ for almost all x ∈R

m,

in which case equation (2) implies h(x)= ∫
Rm f (z)g(x− z) dz. Therefore, the con-

volutions f ∗ g and g ∗ f exist simultaneously and are equal. Thus, convolution is
commutative, i.e., f ∗ g = g ∗ f (if at least one of the convolutions exists).

We see that the properties of convolution are similar to those of multiplication of
numbers. The convolution is not only commutative, but, obviously, also distributive,
i.e., f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2. Without going deeply into this analogy (see
Exercise 1), we will use the terminology invoked by this association. In particular,
we call the functions f and g the convolution factors.

We also mention that convolution commutes with a shift: if fh is a shift of f ,
i.e., fh(x) = f (x − h), then it follows directly from the definition of convolution
that (f ∗ g)h = fh ∗ g = f ∗ gh.

Besides pure mathematical questions (among them, as we will see in the next
section, are approximation problems) the concept of convolution has its origins in
applied problems. For example, convolution arises as a natural mathematical model
of a real device that transforms incoming signals. Let us discuss it in more detail.
Suppose we have a device (“black box”) reacting to signals, which will be regarded
as functions of time with compact support. It is natural to assume that the reaction
of the device (its “response”) to the signal fh coming with a delay h differs from
its response to the signal f only in the corresponding delay in time. In other words,
the transformation performed by the device that takes an incoming signal f to its
response f̃ commutes with the shift in time: f̃h = (f̃ )h. Furthermore, we assume
that the device takes a linear combination of signals to a linear combination of the
responses. The main characteristic of such a device (or, as is often said, the system
function) is its reaction to a pulse action δα , which can be regarded as a function
with unit integral (the “pulse energy”) constant on a very small interval �α = [0, α)
and equal zero outside it. In other words, δα = 1

α
χα , where χα is the characteristic
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function of the interval �α . For sufficiently small α, the reaction of the device to the
signals δα does not practically depend on α. Therefore, replacing δα by the “limit
function”, we can regard an instantaneous unit pulse as the Dirac function11 δ (the
conventionality of this term will be discussed in Sect. 7.6.1), which has the following
properties:

δ(t)= 0 if t �= 0, δ(0)=+∞,

∫ ∞

−∞
δ(t) dt = 1.

The response E to a signal δ ≈ δα is called the system function of the device. Rep-
resenting an arbitrary signal f as a linear combination of step functions constant on
the intervals [nα, (n+ 1)α) with required accuracy, we obtain that

f (t)≈
∑

n

f (nα)χα(t − nα)≈ α
∑

n

f (nα)δα(t − nα).

Because the transformation performed by the device is linear and commutes with
a shift, we obtain

f̃ (s)≈ α
∑

n

f (nα)E(s − nα).

This sum is nothing but an integral sum for the integral

∫ ∞

−∞
f (t)E(s − t) dt.

Taking into account the fact that the above approximation becomes arbitrarily ac-
curate for sufficiently small α, we may assume that f̃ (s)= ∫∞

−∞ f (u)E(s − u)du.
Thus, the response of the device to a signal f coincides with the convolution of f

and the system function of the device. For that reason convolution is of essential
importance in the theoretical foundations of optics and radio engineering.

7.5.2 First, we establish an auxiliary statement.

Lemma If f and g are measurable functions on R
m satisfying condition (1), then

their convolution f ∗ g is also measurable on R
m.

Proof It is sufficient to proof the theorem for real-valued functions. In this case,
we can use Lemma 5.4.3, which implies that the integrand in Eq. (2) is not only
measurable for almost all x ∈ R

m as a function of y, but also measurable with re-
spect to the “totality” of the variables x and y (i.e., the function (x, y) �→ F(x, y)=
f (x−y)g(y) is measurable on R

m×R
m). Therefore, to prove the lemma, it remains

to refer to Corollary 2 of Tonelli’s theorem (see Sect. 5.3.1). �

11Paul Adrien Maurice Dirac (1902–1984)—British physicist.
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Theorem The convolution of functions f and g summable on R
m is defined almost

everywhere on R
m, is summable, and satisfies the inequality

∫

Rm

∣
∣(f ∗ g)(x)∣∣dx �

∫

Rm

∣
∣f (x)

∣
∣dx

∫

Rm

∣
∣g(x)

∣
∣dx.

Proof We put H(x) = ∫
Rm |f (x − y)g(y)|dy. Since (by Lemma 5.4.3) the func-

tion (x, y) �→ f (x − y)g(y) is measurable on R
m × R

m, it follows from Tonelli’s
theorem that

∫

Rm

H(x)dx =
∫

Rm

(∫

Rm

∣
∣f (x − y)

∣
∣dx

)
∣
∣g(y)

∣
∣dy.

The change of variable x �→ x − y shows that the inner integral is equal to∫
Rm |f (x)|dx for every y. Therefore,

∫

Rm

H(x)dx =
∫

Rm

∣
∣f (x)

∣
∣dx

∫

Rm

∣
∣g(y)

∣
∣dy <+∞.

Consequently, the function H summable and, therefore, H(x) < +∞ almost ev-
erywhere. Thus, condition (1) is fulfilled, and the convolution (f ∗ g)(x) exists. Its
measurability is established in the lemma, and the summability follows from the
inequality |(f ∗ g)(x)|�H(x). Moreover,

∫

Rm

∣
∣(f ∗ g)(x)∣∣dx �

∫

Rm

H(x)dx =
∫

Rm

∣
∣f (x)

∣
∣dx

∫

Rm

∣
∣g(y)

∣
∣dy. �

7.5.3 We supplement Theorem 7.5.2 and obtain alternative conditions sufficient for
the existence of a convolution. We consider a wider class of functions than L (Rm),
the class of measurable functions, which is frequently encountered in function the-
ory and in other branches of mathematics.

Definition A measurable function f in R
m is called locally summable in R

m if it is
summable on every bounded set, i.e., if

∫

B(R)

∣
∣f (x)

∣
∣dx <+∞ for every R > 0.

The set of all functions locally summable in R
m will be denoted by Lloc(R

m). Ob-
viously, every locally summable function is almost everywhere finite and C(Rm)⊂
Lloc(R

m).

We remind the reader that the closure of the set {x ∈R
m |f (x) �= 0} is called the

support of a function f and is denoted by supp(f ). By A+B , where A, B ⊂ R
m,

we denote the set {a + b |a ∈A, b ∈ B}.
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Theorem If f ∈Lloc(R
m) and g is a summable function with compact support,

then the convolution f ∗ g exists and

supp(f ∗ g)⊂ supp(f )+ supp(g). (3)

Proof Let supp(g)⊂ B(r). As in Theorem 7.5.2, we put

H(x)=
∫

Rm

∣
∣f (x − y)g(y)

∣
∣dy =

∫

B(r)

∣
∣f (x − y)g(y)

∣
∣dy

and prove that H(x) < +∞ almost everywhere. For this, we check that H ∈
Lloc(R

m), i.e., that
∫
B(R)

H(x)dx <+∞ for every R > 0. Indeed, since supp(g)⊂
B(r), we have

∫

B(R)

H(x)dx =
∫

B(R)

(∫

B(r)

∣
∣f (x − y)g(y)

∣
∣dy

)

dx

=
∫

B(r)

∣
∣g(y)

∣
∣
(∫

B(R)

∣
∣f (x − y)

∣
∣dx

)

dy

�
∫

B(r)

∣
∣g(y)

∣
∣
(∫

B(r+R)

∣
∣f (u)

∣
∣du

)

dy

=
∫

B(r+R)

∣
∣f (u)

∣
∣du ·

∫

B(r)

∣
∣g(y)

∣
∣dy <+∞.

The last inequality is valid since f is locally summable. Thus, the function H is
finite almost everywhere in the ball B(R), and, consequently, almost everywhere
on R

m. Therefore, condition (1) is fulfilled, and the convolution f ∗ g exists.
To prove inclusion (3), we remark that if f (x − y)g(y) �= 0, then x − y ∈

supp(f ) and y ∈ supp(g), and so, x = (x− y)+ y ∈ supp(f )+ supp(g). Therefore,
f (x − y)g(y) ≡ 0 in the case where x /∈ supp(f ) + supp(g). Consequently,
f ∗ g = 0 outside the set supp(f )+ supp(g), i.e.,

{
x ∈R

m | (f ∗ g)(x) �= 0
}⊂ supp(f )+ supp(g).

Since supp(g) is compact, the set on the right-hand side of this inclusion is closed
(we leave it to the reader to prove this independently), which implies that

supp(f ∗ g)= {
x ∈Rm | (f ∗ g)(x) �= 0

}⊂ supp(f )+ supp(g). �

Corollary The convolution of two summable functions with compact supports has
a compact support.

7.5.4 We now discuss differential properties of convolution. First, we prove an aux-
iliary result.
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Lemma (Truncation lemma) Let f, f̃ ∈Lloc(R
m), and let a function g be bounded

and satisfy the inclusion supp(g)⊂ B(r). If f coincides with f̃ in the ball B(R+r),
then the convolutions f ∗ g and f̃ ∗ g coincide in the ball B(R).

Proof Let ‖x‖<R. Then ‖x − y‖<R + r for ‖y‖< r . Therefore,

(f ∗ g)(x)=
∫

B(r)

f (x − y)g(y) dy =
∫

B(r)

f̃ (x − y)g(y) dy = (f̃ ∗ g)(x). �

Theorem Let f ∈Lloc(R
m), and let g be a bounded function with compact sup-

port. Then:

(1) if at least one of the functions f or g is continuous, then the convolution f ∗ g
is continuous;

(2) if at least one of the functions f or g is continuously differentiable, then the
convolution is continuously differentiable and its derivatives can be calculated
by the formula (k = 1, . . . ,m)

∂(f ∗ g)
∂xk

(x)=
⎧
⎨

⎩

(f ∗ ∂g
∂xk

)(x) if g ∈ C1(Rm);
(
∂f
∂xk
∗ g)(x) if f ∈ C1(Rm).

(4)

Remark The first assertion of the theorem admits an essential sharpening. As we
will see in the sequel (see Corollary 9.3.2), the convolution of a locally summable
function and a bounded summable function is continuous without any additional
assumptions.

Proof We will assume that supp(g)⊂ B(r).
(1) If g is continuous and f is summable, then the integral

∫
Rm f (y)g(x − y)dy

is continuous with respect to the parameter by Theorem 7.1.3. If f is not summable,
then we use the obvious fact that it is sufficient to prove the continuity of the convo-
lution in an arbitrary ball B(R). We can also use the truncation lemma and replace
f by a summable function f̃ that has a compact support and coincides with f on a
ball B(R + r). The same method can be applied if f is continuous because, in this
case, we may assume that f̃ is continuous.

(2) Turning to the proof of the smoothness of convolution, we first assume that
the function g is smooth. It is obvious that if x0 ∈R

m and ‖x − x0‖< 1, then

(f ∗ g)(x)=
∫

Rm

f (y)g(x − y)dy =
∫

B(x0,r+1)
f (y)g(x − y)dy.

Applying the Leibniz rule (see Theorem 7.1.5) to the right-hand side of this equa-
tion, we immediately obtain the required result,

∂(f ∗ g)
∂xk

(x)=
∫

B(x0,r+1)
f (y)

∂g

∂xk
(x − y)dy =

(

f ∗ ∂g

∂xk

)

(x).
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We verify that, in the case in question, the application of the Leibniz rule is legal. For
this, we must check that the partial derivative ∂

∂xk
(f (y)g(x−y))= f (y)

∂g
∂xk

(x−y)

satisfies condition (Lloc) at x0.
This is indeed the case because

∣
∣
∣
∣f (y)

∂g

∂xk
(x − y)

∣
∣
∣
∣ �M

∣
∣f (y)

∣
∣χB(x0,r+1)(y) for all x ∈ B(x0, r + 1),

where M =maxx | ∂g(x)∂xk
|.

Now assume that f is continuously differentiable. To prove that the convolution
is differentiable on B(R), we should replace f by a function f̃ that has a compact
support and coincides with f on a sufficiently large ball, as we did in the proof of
the continuity of convolution, the only difference being that the function f̃ must
now be smooth. For example, we can multiply f by a smooth function that has a
compact support and is equal to 1 on a ball B(R+ r). Then, interchanging the roles
of g and f̃ and using the formula proved above, we find that

∂(f ∗ g)
∂xk

(x)= ∂(g ∗ f̃ )

∂xk
(x)=

(

g ∗ ∂f̃

∂xk

)

(x)=
(

g ∗ ∂f

∂xk

)

(x)=
(

∂f

∂xk
∗ g

)

(x)

for ‖x‖<R. Since R is arbitrary, this proves the theorem. �

Corollary The convolution of a locally summable function f and a bounded func-
tion ϕ with compact support is infinitely differentiable if at least one of the functions
f or ϕ is infinitely differentiable.

Proof The assertion should be proved by induction using (4). �

In particular, it follows from the corollary that a linear differential operator with
constant coefficients commutes with convolution.

7.5.5 The concept of convolution has different generalizations and modifications.
We mention some of them.

In the case where the functions in question are periodic on the real line, the
convolution is defined in the same way as above with the only difference that now
the integral over R is replaced by the integral over an interval with length equal to
the period (no matter which interval is used). For definiteness, we will assume that
the period is 2π . It is clear that the convolution of periodic functions is also periodic.
We leave it to the reader to verify independently that an analog of Theorem 7.5.2 is
valid for the convolution of periodic functions. One simply repeats the proof of this
theorem, changing the domain of integration appropriately.

The above applies in full to functions defined on R
m and 2π -periodic with re-

spect to each variable. Their convolution is defined by the equation

(f ∗ g)(x)=
∫

(−π,π)m
f (x − y)g(y) dy.
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One more version of the definition of convolution can be obtained as follows. If
a function g is summable and non-negative, then the integral

∫
Rm f (x − y)g(y) dy

can be regarded as an integral with respect to the measure ν having density g with
respect to Lebesgue measure, (f ∗g)(x)= ∫

Rm f (x−y)dν(y). The right-hand side
of this equation will be used as the definition of the convolution of a function and
a measure. To guarantee the existence of the convolution, we will assume that all
measures are finite and all functions are bounded.

Definition Let ν be a finite Borel measure on R
m, and let f be a measurable

bounded function on R
m. The convolution f ∗ ν is defined by the equation

(f ∗ ν)(x)=
∫

Rm

f (x − y)dν(y)
(
x ∈R

m
)
.

One more version of convolution can be considered if μ is the counting measure
defined on the integer lattice Z

m. In this case, instead of functions, we speak of
multiple sequences. By analogy with (2), the convolution of such sequences f =
{fn}n∈Zm and g = {gn}n∈Zm is defined by the formula

(f ∗ g)k =
∫

Zm

f (k − n)g(n)dμ(n)=
∑

n∈Zm

fk−n gn

(
k ∈ Z

m
)
.

We invite the reader to state and prove a counterpart of Theorem 7.5.2 for this case.

EXERCISE

1. Prove the associativity of convolution: if f,g,h ∈ L (Rm), the functions
(f ∗ g) ∗ h and f ∗ (g ∗ h) coincide almost everywhere.

2. Prove that the convolution of two functions of class Cr one of which has a com-
pact support is a function of class C2r (r = 0,1, . . .).

3. Verify that the measure μ defined on the semi-axis R+ = (0,+∞) by the equa-
tion dμ = dx

x
is invariant with respect to multiplication, i.e., for every measur-

able set E ⊂ R+ and every a > 0, the relation μ(E) = μ(aE) is valid, where
aE = {ax |x ∈ E}. This fact makes it possible to define a convolution on the
semi-axis as follows:

(f ∗ g)(x)=
∫ ∞

0
f

(
x

y

)

g(y)
dy

y
.

Verify that all theorems proved in this Sect. 7.5 remain valid for the convolu-
tion thus defined (by definition, a function belongs to the class Lloc(R+) if it is
summable on every compact set lying in R+).

4. Prove that the convolution of a Borel measure finite on compact sets and a func-
tion of class Cr with compact support is again a function of the same class.
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7.6 Approximate Identities

7.6.1 If one of the convolution factors is non-negative and its integral is 1, then
the convolution can be regarded as the mean value of the other factor. Indeed, if
g � 0 and

∫
Rm g(y) dy = 1, then infRm f � (f ∗ g)(x) � supRm f for x ∈ R

m. If
the support of g is contained in a ball B(r), then the estimate can be sharpened as
follows:

inf
B(x,r)

f � (f ∗ g)(x)� sup
B(x,r)

f
(
x ∈R

m
)
.

Therefore, if f is continuous, then the convolution must be close to f for a small r .
At the same time, the convolution often has higher degree of smoothness than the
function f itself. In particular, as we will prove in Example 1 of Sect. 7.6.2, the con-
volution of an arbitrary locally summable function and the characteristic function of
an arbitrary ball is continuous. Thus, we may hope that convolution can be used to
obtain a method of approximating functions by smoother ones.

Since the convolution of a locally summable function and a characteristic func-
tion of a ball is continuous, we obtain that there is no locally summable function
playing the role of identity for convolution; in other words, there is no locally
summable function the convolution with which would not change the other con-
volution factor (even if this factor is a continuous function with compact support,
see Exercise 1). At the same time, a convolution with measure δ0 generated by a
unit point mass concentrated at zero has this property,

(f ∗ δ0)(x)=
∫

Rm

f (x − y)dδ0(y)= f (x) for all x in R
m.

The measure δ0 certainly does not have a density with respect to Lebesgue measure.
However, avoiding integration with respect to the measure δ0, the famous physicist
Paul Dirac actually suggested to assume that such a density nevertheless exists.
He introduced a “function” δ (now known as the Dirac delta function) having the
following properties:

I. δ(x)=
{

0 for x �= 0,

+∞ for x = 0,
and

II.
∫

Rm

δ(x) dx = 1.

From this he concluded that, for every continuous function f on R
m, the relation

f (x) = ∫
Rm f (x − y)δ(y) dy is valid, i.e., that δ is an identity for convolution in

the class of continuous functions. It is this fact that plays a crucial role. Properties I
and II characterizing the Dirac delta function are clearly incompatible. However, if
we regard the integral

∫
Rm f (x−y)δ(y) dy simply as a new notation for the integral∫

Rm f (x − y)dδ0(y), then the calculation involving the function δ becomes legal.
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As has already been said, the measure δ0 has no density with respect to Lebesgue
measure, and a function satisfying properties I and II does not exist. In this connec-
tion there is a problem of approximating δ0 by measures having densities, i.e., by
measures of the form ω(x)dx. In a wide range of cases, we will see that, on the one
hand, a convolution with a measure of this form causes little change in the function
(since the measure is close to δ0) and, on the other hand, it results in a function
smoother than the initial one. This opens possibilities for approximating arbitrary
functions by smooth ones. The character of an approximation may be different and
requires clarification. In the present and the next section, we obtain results con-
nected mainly with pointwise and uniform approximation. A different approach to
this problem will be considered in Chap. 9.

First of all we define a family of functions by which the measure δ0 is approxi-
mated.

Definition Let T ⊂ (0,+∞), and let t0 be a limit point of T (0 � t0 � +∞).
A family of functions {ωt }t∈T defined on R

m is called an approximate identity in R
m

(as t→ t0) if

(a) ωt � 0,

(b)
∫

Rm

ωt (x) dx = 1,

(c)
∫

‖x‖>δ

ωt (x) dx −→
t→t0

0 for every δ > 0.

Remarks

(1) Taking into account equation (b), we can restate condition (c) in the following
form:

∫

‖x‖<δ

ωt (x) dx −→
t→t0

1 for every δ > 0.

Thus, the main contribution to the integral
∫
Rm ωt (x) dx comes from the integral

over an arbitrarily small neighborhood of zero. This property of an approximate
identity is sometimes called the localization property. It says that, for t close to
t0, the graph of ωt can schematically be displayed as a “narrow and tall hump”.
Such functions are sometimes called δ-images.

(2) Sometimes the positivity condition for ωt is lifted and condition a) is replaced
by the less restrictive assumption

(a′)
∫

Rm

∣
∣ωt(x)

∣
∣dx � C for some C > 0 and all t ∈ T

(and the function ωt in condition (c) is replaced by |ωt |).
Because of equation (b), condition (a′) is automatically fulfilled for non-

negative functions. Many of the results obtained below also remain valid in a
more general setting, but we will not dwell on this.
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7.6.2 We consider some examples of approximate identities. In all cases the families
under consideration are approximate identities as t →+0, T = (0,+∞), and the
convolution factors are assumed to be locally summable on R

m.

Example 1 (Steklov12 averages) Let ωt = 1
v(t)

χB(t), where v(t) is the volume
(Lebesgue measure) of a ball B(t) in R

m. Obviously, this family is an approxi-
mate identity. The value of the convolution f ∗ ωt at a point x is the average of f

over the ball B(x, t):

(f ∗ωt)(x)=
∫

Rm

f (y)
1

v(t)
χB(t)(x − y)dy = 1

v(t)

∫

B(x,t)

f (y) dy.

This average has systematically been used by Steklov, and the convolutions ft =
f ∗ωt are called Steklov averages of f . They are continuous if the function is locally
summable (in the sequel, we will establish a more general result, see Sect. 9.3.2). In-
deed, assume that ‖x−x0‖< 1. For such x, the symmetric difference ex of the balls
B(x0, t) and B(x, t) lies in the ball B(x0,1+ t). Since the function f is summable
on B(x0,1+ t), and λ(ex)→ 0 as x→ x0, it follows from the absolute continuity
of the integral that

∣
∣ft (x)− ft (x0)

∣
∣ � 1

v(t)

∫

ex

∣
∣f (y)

∣
∣dy −→

x→x0
0.

Example 2 The example considered above fits into a general scheme allowing one
to construct different approximate identities. The scheme is as follows.

Let ψ be a non-negative summable function on R
m, and let

C =
∫

Rm

ψ(x)dx > 0.

We put

ωt(x)= 1

Ctm
ψ

(
x

t

)
(
x ∈R

m
)
.

The family {ωt }t>0 is an approximate identity as t→ 0. Condition (a) in the defini-
tion of an approximate identity is obviously fulfilled, and the fact that condition (b)
is valid can be verified by the change of variable y = x/t :

∫

Rm

ωt (x) dx = 1

C

∫

Rm

ψ(y)dy = 1.

At the same time, condition (c) is also fulfilled since we have
∫

‖x‖<δ

ωt (x) dx = 1

C

∫

‖y‖<δ/t

ψ(y) dy −→
t→0

1

for every δ > 0.

12Vladimir Andreevich Steklov (1863–1926)—Russian mathematician.
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In Example 1, the characteristic function of the ball B(1) plays the role of ψ .
It is especially convenient to use approximate identities obtained by the method

described above in the case where ψ is a function of class C∞ and its support lies in
the unit ball. Such approximate identities were first systematically used by Sobolev,
and we call them Sobolev approximate identities.

7.6.3 Now we state the main result concerning approximate identities. We will re-
turn to this question in Sect. 9.3.

Theorem Let f be a bounded measurable function on R
m, and let {ωt }t∈T be an

approximate identity as t→ t0, ft = f ∗ωt . Then:

(1) if the limit L = limx→x0 f (x) exists and is finite for a point x0 in R
m, then

ft (x0)−→
t→t0

L;

(2) if f ∈ C(Rm), then ft ⇒
t→t0

f on every bounded set.

Proof By definition

ft (x0)=
∫

Rm

f (x0 − y)ωt (y) dy.

Multiplying the equation

1=
∫

Rm

ωt (y) dy

by L and subtracting the equation obtained from the preceding one, we obtain

ft (x0)−L=
∫

Rm

(
f (x0 − y)−L

)
ωt(y) dy.

We prove that the right-hand side of this relation tends to zero as t → t0. By as-
sumption, we have |f |� C everywhere. Therefore, the inequality

∣
∣ft (x0)−L

∣
∣ �

∫

Rm

∣
∣f (x0 − y)−L

∣
∣ωt(y) dy =

∫

‖y‖<δ

· · · +
∫

‖y‖>δ

· · ·

� sup
0<‖z−x0‖<δ

∣
∣f (z)−L

∣
∣
∫

‖y‖<δ

ωt (y) dy + 2C
∫

‖y‖>δ

ωt (y) dy (1)

holds for every δ > 0. Since
∫
‖y‖<δ

ωt (y) dy �
∫
Rm ωt (y) dy = 1, it follows that

∣
∣ft (x0)−L

∣
∣ � sup

0<‖z−x0‖<δ

∣
∣f (z)−L

∣
∣+ 2C

∫

‖y‖>δ

ωt (y) dy.

Now, we can make the first summand on the right-hand side of the inequality ar-
bitrarily small by an appropriate choice of δ, and then, fixing δ, we can make the
second summand small by condition (c).
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The proof of the second assertion of the theorem will repeat the proof of the first
one if we replace x0 by x, L by f (x), and take into account that, for every bounded
set E, we can choose the same δ for all x ∈ E since f is uniformly continuous on
every bounded set. �

Remark It can be seen from the proof of the theorem that if f is uniformly contin-
uous on the entire space, then ft ⇒

t→t0

f on R
m.

Corollary If g is a bounded function continuous at zero, then
∫

Rm

g(y)ωt (y) dy −→
t→t0

g(0).

Proof This is a particular case of the statement of the theorem where x0 = 0, f (x)=
g(−x) and L= g(0). �

The corollary reinforces our motivation to introduce approximate identities. It
follows from the corollary that the measures νt with densities ωt converge to the
measure δ0 generated by the unit load concentrated at zero in the sense that, for
every bounded continuous function g, we have

∫

Rm

g(x) dνt (x)−→
t→t0

g(0)=
∫

Rm

g(x) dδ0(x).

If we also assume that ωt are functions with compact supports contracting to zero,
then this statement is valid for every (possibly unbounded) continuous function (see
Exercise 2).

7.6.4 We consider an important application of approximate identities and prove
Weierstrass’ famous approximation theorem stating that every continuous function
on a closed bounded interval can be approximated by a polynomial as closely as
desired. The method of proof we use here is that we first replace the given function,
with small error, by the convolution with some “nice” function, and then construct a
polynomial approximation for the convolution. This method works equally well for
functions of one variable and for functions of several variables.13

Following Weierstrass, we will consider the convolutions of a given function and
functions of the form

Wt(x)= 1

tm
e
−π

‖x‖2
t2

(
x ∈R

m, t > 0
)
.

This family is an approximate identity as t → +0. Condition (a) of the defini-
tion of an approximate identity is obviously fulfilled; using the value of the multi-
dimensional Euler integral found in Sect. 5.4.2, we can easily verify condition (b).
We leave the verification of the localization property to the reader.

13A brief and clear account of the idea of the method (as well as a clever parody of a formal and
pseudo-scientific style of exposition) can be found in the remarkable book [Li], Sect. 11.
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Theorem 1 (Weierstrass approximation theorem) Let f ∈ C(Rm). Then for any
R > 0 and ε > 0 there exists a polynomial P in m variables such that

∣
∣f (x)− P(x)

∣
∣ < ε for all x in B(R).

Proof First we assume that the support of f is a compact set lying in the ball
B ≡ B(R) (otherwise we can increase the radius R). We put ft = f ∗Wt . As pointed
out in the remark to Theorem 7.6.3, ft ⇒ f as t→ 0. We fix a t such that

∣
∣f (x)− ft (x)

∣
∣ < ε for each x in R

m. (2)

Now we show that every function ft can be uniformly approximated by a poly-
nomial in the ball B . Since f is zero outside B , we obtain

ft (x)=
∫

B(R)

f (y)Wt(x − y)dy.

We assume that x ∈ B , which implies that x − y ∈ B(2R) in the last integral.
The next idea is to find a good polynomial approximation for the function Wt

in the ball B(2R) and use the fact that the convolution of a function with compact
support and a polynomial is again a polynomial. To verify the last assertion, we con-
sider an arbitrary polynomial Q. It is clear that Q(x− y) is also a polynomial in the
coordinates of x with coefficients dependent on y. After multiplying by the func-
tion f (y) with compact support, we obtain that the coefficients become summable.
Integrating them, we obtain certain numbers, and, therefore, the convolution is a
polynomial.

Now we turn our attention to approximating the function Wt by a polynomial.
By Taylor’s formula (with the Lagrange form of the remainder) we obtain e−u =
Tn−1(u)+rn(u), where Tn−1 is a polynomial of degree n−1, rn(u)= 1

n!e
−θu(−u)n,

0 < θ < 1. It is clear that |rn(u)| � un/n! for u � 0. By the definition of Wt , we
obtain

Wt(x)= 1

tm
Tn−1

(

π
‖x‖2

t2

)

+ 1

tm
rn

(

π
‖x‖2

t2

)

= Pn(x)+ ρn(x),

where Pn is a polynomial (as the composition of Tn−1 and the polynomial π ‖x‖
2

t2 )
and ρn satisfies the estimate

∣
∣ρn(x)

∣
∣=

∣
∣
∣
∣

1

tm
rn

(

π
‖x‖2

t2

)∣
∣
∣
∣ �

1

tmn!
(

π
‖x‖2

t2

)n

� 1

tmn!
(

4πR2

t2

)n

(3)

for ‖x‖� 2R. Since f (x)= 0 outside the ball B , we see that the convolution f ∗ρn

satisfies the inequality

∣
∣(f ∗ ρn)(x)

∣
∣=

∣
∣
∣
∣

∫

B(R)

f (y)ρn(x − y)dy

∣
∣
∣
∣ �M

∫

B(R)

∣
∣ρn(x − y)

∣
∣dy,
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where M =maxx |f (x)|. Since the inequality ‖x − y‖� 2R is valid for ‖x‖� R,
we can use (3) to estimate the integral on the right-hand side of the above inequality.
We obtain

∣
∣(f ∗ ρn)(x)

∣
∣ �Mv(R)

1

tmn!
(

4πR2

t2

)n

,

where v(R) is the m-dimensional volume of the ball B(R). Now we fix an n so that
the right-hand side of the last inequality is less than ε. Then we obviously obtain

∣
∣ft (x)− (f ∗ Pn)(x)

∣
∣= ∣

∣(f ∗ ρn)(x)
∣
∣ < ε (4)

for ‖x‖�R. This inequality together with (2) shows that |f (x)− (f ∗Pn)(x)|< 2ε
for x ∈ B . This completes the proof of the theorem for a function with compact
support because, as noted above, the convolution f ∗ Pn is a polynomial.

In the general case, it is sufficient to replace f by a continuous function f1 that
has a compact support and coincides with f in the ball B . Constructing a polynomial
that approximates f1 in B , we also find an approximation for f . �

Corollary 1 Let f be a continuous function on a compact set K ⊂ R
m. Then for

every ε > 0 there exists a polynomial P such that |f (x)− P(x)|< ε for all x ∈K .

Proof By the Tietze–Urysohn theorem (see Sect. 13.2.2), every continuous function
on a closed subset of the space Rm can be extended to a continuous function defined
on the entire space. Therefore, it is sufficient to apply the theorem to the extended
function, assuming that R is so large that K ⊂ B(R). �

We shall mention one more consequence of the Weierstrass approximation theo-
rem.

Corollary 2 Let f be a continuous function on R
m. Assume that f has a compact

support. Then, for every ε > 0, there exists an infinitely differentiable function g

with a compact support such that |f (x)− g(x)|< ε for all x ∈R
m.

Proof Assume that f vanishes outside the ball B(R), and let P be a polynomial
approximating f with accuracy ε in the ball B(R + 1). We obtain the required
function g if we multiply P by a function ϕ of class C∞ such that 0 � ϕ � 1,
ϕ(x)= 1 for x ∈ B(R), and ϕ vanishes outside B(R + 1). �

Remark If the function f in Corollary 2 is non-negative, then we may assume that
the function g is also non-negative.

Indeed, otherwise, the function g can be replaced by ϕ ·(g+ε), which, obviously,
is non-negative and approximates f with accuracy 2ε.

Generalizing Theorem 1, we prove that a smooth function together with its
derivatives can be approximated by a polynomial. In the next theorem, the letter
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k denotes a multi-index (k ∈ Z
m+), and the symbol Dkf , where k = (k1, . . . , km),

denotes the derivative of f of order |k| = k1+ · · · + km such that the differentiation
with respect to the j th coordinate is carried out kj times.

Theorem 2 Let f ∈ Cr(Rm) (r ∈N). Then, for all R > 0 and ε > 0, there exists a
polynomial P in m variables such that

∣
∣Dkf (x)−DkP (x)

∣
∣ < ε for all x in B(R) and all k, 0 � |k|� r.

Proof As in Theorem 1, we may assume without loss of generality that supp(f )⊂
B(R). Since, by properties of convolution, we have Dk(ft )= (Dkf ) ∗Wt , we can
choose the parameter t > 0 so that inequality (2) and similar inequalities for Dkf

are valid for |k| � r and all x ∈ R
m. We put M = maxx,|k|�r |Dkf (x)|. Then, for

an appropriate choice of n, inequality (4) turns out to be valid not only for the
function f , but also for all its derivatives up to order r inclusive. �

7.6.5 Here, relying on the concept of the convolution of periodic functions (see
Sect. 7.5.5), we define a periodic approximate identity and prove Weierstrass’ theo-
rem on approximation by trigonometric polynomials. We can easily change a period
by contraction. Therefore, we may assume without loss of generality that all func-
tions considered in the present section are 2π -periodic with respect to each variable
(and only such functions will be called periodic).

For the case of periodic functions, the definition of an approximate identity from
Sect. 7.6.1 can easily be modified as follows (below, Q = [−π,π]m): a family of
periodic functions {ωt }t∈T is called a periodic approximate identity (as t→ t0) if:

(a) ωt � 0,

(b)
∫

Q

ωt(x) dx = 1,

(c)
∫

Q\B(δ)

ωt (x) dx −→
t→t0

0 for each δ ∈ (0,π).

We also introduce the following strong version of the localization property:

(c′) ωt (x) dx ⇒
t→t0

0 on Q \B(δ) for each δ ∈ (0,π).

An almost verbatim repetition of the proof of Theorem 7.6.3 verifies the follow-
ing approximative properties for the periodic convolution ft = f ∗ωt .

Theorem Let a periodic function f be measurable and bounded on the cube Q.
Then:

(a) if the limit L = limx→x0 f (x) exists and is finite at a point x0, x0 ∈ R
m, then

ft (x0)−→
t→t0

L;

(b) if f ∈ C(Rm), then ft ⇒
t→t0

f on R
m.
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Remark If an approximate identity satisfies condition (c′), then assertion (a) re-
mains valid for every periodic function summable on Q. For the proof, we replace
inequality (1) by the inequality

∣
∣ft (x0)−L

∣
∣ �

∫

Q

∣
∣f (x0 − y)−L

∣
∣ωt(y) dy =

∫

B(δ)

· · · +
∫

Q\B(δ)

· · ·

� sup
y∈B(δ)

∣
∣f (x0 − y)−L

∣
∣+ sup

y∈Q\B(δ)

ωt (y)

∫

Q

∣
∣f (x0 − y)−L

∣
∣dy,

after which the proof can be completed as in Theorem 7.6.3: first, by a choice of δ,
we make the first summand on the right-hand side of the inequality small, and then
make the second summand small with the help of condition (c′).

Leaning on the last theorem, we now obtain a periodic version of the Weierstrass
approximation theorem (see Sect. 7.6.4). Since the convolution of a summable func-
tion with a trigonometric polynomial is again a trigonometric polynomial, it is suf-
ficient for us to construct an approximate identity consisting of such polynomials.

We begin with the one-dimensional case and consider the trigonometric polyno-
mial

�n(x)= 1

cn
cos2n x

2
= 1

cn

(
1+ cosx

2

)n

,

where the coefficient cn is such that
∫ π

−π
�n(x)dx = 1, i.e., cn =

∫ π

−π
cos2n x

2 dx.
These integrals were calculated in Example of Sect. 4.6.2, but in what follows it is
important only that they tend to zero not too fast,

cn = 4
∫ π

2

0
cos2n y dy � 4

∫ π
2

0
siny cos2n y dy = 4

2n+ 1
>

1

n
.

It follows that the sequence of functions �n have the strong localization prop-
erty (c′) stated at the beginning of the present section,

sup
δ<|x|<π

�n(x)� n cos2n δ

2
−→
n→∞ 0 for each δ ∈ (0,π).

Using the periodic approximate identity �n of one variable constructed above,
we can easily construct its multi-dimensional counterpart,

ωn(x)=�n(x1) · · ·�n(xm) for x = (x1, . . . , xm) ∈R
m.

This sequence of trigonometric polynomials satisfies conditions (a)–(c) and, there-
fore, the theorem is valid for the sequence with T = N and t0 = +∞. Since
fn = f ∗ ωn is a trigonometric polynomial, we come to a periodic version of the
Weierstrass approximation theorem 7.6.4.

Corollary (Weierstrass) Let f be everywhere continuous periodic function. Then
there exists a sequence of trigonometric polynomials converging to f uniformly
on R

m.
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EXERCISES

1. Prove that there is no identity for convolution, i.e., there is no locally summable
function g such that f ∗ g = f for each continuous function f with compact
support.

2. Let the supports of the functions ωt forming an approximate identity in R
m “con-

tract to zero” as t → 0, i.e., satisfy the condition supp(ωt ) ⊂ B(rt ), rt → 0 as
t → 0. Prove that f ∗ ωt −→

t→0
f pointwise for every continuous function f on

R
m and that the convergence is uniform on each compact set.

3. Prove that the first assertion of Theorem 7.6.3 also remains valid in the case
where L=+∞.

4. Supplement the first assertion of Theorem 7.6.3 in the one-dimensional case by
proving that if all functions ωt are even, then the relation

(f ∗ωt)(x0)−→
t→t0

f (x0 − 0)+ f (x0 + 0)

2

holds for every bounded function f having finite one-sided limits f (x0− 0) and
f (x0 + 0) at a point x0.

5. On the real line find an approximate identity {ωt }t>0 such that (f ∗ωt)(x0)−→
t→0

f (x0 + 0) if the one-sided limit f (x0 + 0) exists.
6. Supplementing Corollary 2 of Sect. 7.6.4, prove that every continuous function

on R
m can be approximated by a function of class C∞ uniformly on R

m.
7. Prove that assertion (a) of Theorem 7.6.5 is not valid for an approximate identity

violating condition (c′).



Chapter 8
Surface Integrals

In this chapter, our main aim is to give an exact meaning to the notion of the area of
a smooth surface and to develop a means of its calculation. Undoubtedly, everybody
has an intuitive idea of the area of a curved surface that one uses in everyday life
(for instance, when one estimates the amount of paint consumption). At the same
time, the evaluation of a curved surface area is quite a difficult problem compared
with the analogous problem in the case of a plane figure. It is possible to reduce
the first problem to the second one by elementary means only in the cases of conic
and cylindrical surfaces: it is sufficient to “unroll” them. At school, one adds to this
the calculation of the area of a sphere or its parts as a result of some unobvious
argumentation.

Before we proceed to the computational side of the problem, it is necessary to
overcome the principal difficulty, that is, to define the area of a surface.

We do not restrict ourselves to two-dimensional surfaces, so in what follows
we discuss the construction of the measure (surface area) on smooth manifolds of
arbitrary dimension.1 For this purpose, we need some results from the theory of
smooth maps. For the convenience of the reader, the required material is collected
in the auxiliary first section of the chapter.

8.1 Auxiliary Notions

Here we remind the reader of the principal notions and facts of the theory of smooth
manifolds and fix the related notation and terminology.

We denote by the symbol Cr(O,Rm) (1 � r � +∞) the set of r times contin-
uously differentiable maps defined on the set O ⊂ R

k , which is always assumed to
be open, taking values in R

m. We call C1-maps smooth maps. If we talk about a
map which is smooth on an arbitrary (non-open) set, we will always mean that it is

1The reader familiar with the theory of manifolds will note that, except in the case of dimension
one, we consider only manifolds without a boundary.
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defined and continuously differentiable on some neighborhood of this set, i.e., on a
wider open set.

We denote by da� the differential of the map � ∈ C1(O,Rm) at a point a ∈O,
and by �′(a) the corresponding matrix (in the canonical bases of the spaces R

k

and R
m), i.e., the Jacobian matrix. This m× k matrix (with m rows and k columns)

is formed, as is well known, by the partial derivatives
∂ϕj

∂ti
(1 � j �m, 1 � i � k)

of the coordinate functions ϕ1, . . . , ϕm of the map �. If m = k, then the Jacobian
matrix is square. Its determinant det‖ ∂ϕj

∂ti
‖ (called the Jacobian of the map �) is

also denoted by D(ϕ1,...,ϕk)
D(t1,...,tk)

.

8.1.1 We introduce a concept that is essential in what follows.

Definition A set M , M ⊂ R
m, is called a simple k-dimensional manifold if it

is homeomorphic to an open subset O of the set R
k (k � m). The homeomor-

phism � : O on−→M is called a parametrization of the manifold M . If for some
r = 1,2, . . . ,+∞

� ∈ Cr
(
O,Rm

)
and rankda�= k at every point a ∈O,

then the parametrization � is said to be smooth of class Cr . A simple manifold that
has such a parametrization is also called smooth (of class Cr ).

We emphasize that, by definition, the domain of the parametrization is always an
open set.

Since the position of a point p =�(t) on a manifold is uniquely determined by
the parameter t , its coordinates t1, . . . , tk are often called the curvilinear coordinates
of the point p. In particular cases they often have a simple geometrical meaning that
simplifies the solution of the problem.

The simplest example of a k-dimensional manifold is a k-dimensional vector
subspace. Its parametrization can be obtained, for example, in the following way.
Fix an arbitrary basis τ1, . . . , τk in the subspace and set

�(t)= t1τ1 + · · · + tkτk
(
t = (t1, . . . , tk) ∈R

k
)
.

Clearly, the map � satisfies all the requirements. The “curvilinear coordinates” of a
vector in the subspace are simply its coordinates in the basis τ1, . . . , τk .

Definition (The first definition of a smooth manifold) A set M , M ⊂R
m, is called a

k-dimensional manifold of class Cr if every point p from M has a neighborhood U

such that the intersection U ∩M is a simple k-dimensional manifold of class Cr . Its
parametrization is called a local parametrization of the manifold M in the vicinity
of the point p.

A k-dimensional manifold of class C0 is defined in an analogous way: it is a set
M which is, locally, a simple k-dimensional manifold (without any smoothness con-
ditions). Each of its points has a neighborhood U such that the intersection U ∩M
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is a simple k-dimensional manifold. The number k is called the dimension of the
manifold M and is denoted by the symbol dimM . The difference m − dimM is
called the codimension of the manifold. A manifold of codimension 1 is called a
surface.

Contrary to local parametrization, a parametrization of a simple manifold is also
called a global parametrization.

If the value of the parameter r � 1 is not important (in most cases, it is sufficient
to take r = 1), we call the set M a smooth k-dimensional manifold, or a smooth
manifold, and sometimes simply a manifold since otherwise the character of the
manifold is indicated explicitly.

If a point p belongs to a manifold M ⊂ R
m, then by its M-neighborhood, or

relative neighborhood, we mean the intersection of the neighborhood of p in R
m

with the manifold M . It is clear that every point of the manifold has a base of M-
neighborhoods whose closures lie in M . A coordinate neighborhood is a relative
neighborhood which is a simple manifold, i.e., it admits a parametrization (and,
consequently, curvilinear coordinates can be introduced).

In simple and important cases we come across examples of “almost smooth”
manifolds (consider, for example, the boundary of a square, or a cube, etc.). There-
fore, we expand the definition of a smooth manifold as follows: a piecewise smooth
k-dimensional manifold is a union of a smooth k-dimensional manifold (possibly
non-connected) and a set of zero k-dimensional Hausdorff measure. It is clear that
the boundaries of polyhedral bodies are piecewise smooth surfaces according to this
definition.

Speaking formally, when we consider a smooth manifold in R
m, we do not ex-

clude the possibility that dimM equals m. In this case, as follows from the defini-
tion, M is simply an open subset of Rm. The problem of the definition of a measure
on such a set has been resolved in Chap. 2, where the Lebesgue measure has been
constructed. Therefore, in what follows, we consider only manifolds whose dimen-
sion is less than the dimension of the enveloping space unless otherwise stated. At
the same time, we admit the possibility that dimM = 1. In this case we use the term
“curve” instead of the term “manifold”. A connected simple curve is also called a
simple arc.

Another definition of a smooth manifold will be of use (it is equivalent to the first
definition, as is proved in Sect. 13.7.7).

Definition (The second definition of a smooth manifold) A set M ⊂ R
m is called

a k-dimensional (1 � k < m) manifold of class Cr if for every point p ∈M there
exist a neighborhood U and functions F1, . . . ,Fm−k of class Cr defined on it such
that:

(1) x ∈M ∩U if and only if

F1(x)= 0, . . . , Fm−k(x)= 0, (1)

and
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(2) the vectors

gradF1(p), . . . , gradFm−k(p) (2)

are linearly independent.

In particular, a smooth surface (a manifold of codimension 1) is locally a level
set of some smooth function with non-zero gradient. As is seen from the latter defi-
nition, locally every manifold lies in some surface.

8.1.2 Related to the notion of a smooth manifold are the important notions of tan-
gent vector and tangent space. Recall that a path (in R

m) is any continuous map
from some segment into R

m. A path is called smooth if its coordinate functions are
smooth, and piecewise smooth if it is defined on a union

⋃n−1
j=0[cj , cj+1] and its

restrictions to the segments [cj , cj+1] are smooth paths.

Definition Let M be a smooth manifold in R
m. A vector τ ∈R

m is called a tangent
vector to M at a point p, p ∈M , if there exists a smooth path γ : [a, b] �→ R

m

such that γ (t) ∈M for t ∈ [a, b], and for some c ∈ (a, b) we have γ (c) = p and
γ ′(c)= τ .

If some M-neighborhood of a point p = γ (c) lies in a level set of a smooth func-
tion F , then F(γ (t)) ≡ const for t close to c. Therefore, 〈gradF(p),

γ ′(c)〉 = 0, i.e., the tangent vector at the point p is orthogonal to the vector
gradF(p).

Let � be a local parametrization of the manifold M in the vicinity of a point
p =�(a). “Freezing” all coordinates of a point a = (a1, . . . , ak), except the j -th
one, and making the latter change in the vicinity of aj , we get a path that
parametrizes the curve that passes through the point p. This curve is called a co-
ordinate line. The vector tangent to this curve at the point p that corresponds to
the mentioned parametrization is the j -th column of the matrix �′(a); we denote it
by Dj�(a) or τj = τj (a). Since rankda� = k, the vectors τ1, . . . , τk are linearly
independent. It is clear that τj (a)= da�(ej ) (where the vectors e1, . . . , ek form the
canonical basis in R

k). We call them the canonical tangent vectors related to the
parametrization �. The set of all vectors tangent to the manifold M at the point p
is called the tangent space and is denoted by Tp(M), or Tp for short. Note that this
term needs validation, that is, one must check that Tp is actually a vector space.

Lemma Tp is a k-dimensional subspace of the space R
m.

In the case where k =m− 1, we also call the subspace Tp a tangent plane.

Proof Assume that in the vicinity of the point p the manifold M is given by the
Eqs. (1) and that the vectors (2) are linearly independent.

We check that, along with any two vectors τ1, τ2, the set Tp contains their linear
combination τ = α1τ1 + α2τ2. We may assume that τ �= 0, otherwise it suffices to
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take a constant path. Augmenting the vector system (2), which is orthogonal to the
vector τ , with vectors h1, . . . , hk−1 to a basis in the orthogonal complement to τ ,
we consider the system of equations

F1(x)= 0, . . . , Fm−k(x)= 0, 〈x − p,h1〉 = 0, . . . ,

〈x − p,hk−1〉 = 0.
(3)

According to the second definition of a smooth manifold, this system defines a
smooth one-dimensional manifold in the vicinity of the point p, i.e., a smooth curve
that obviously lies in M and passes through p.

Let γ be some parametrization of this curve in the vicinity of the point p. With-
out loss of generality, we may assume that p = γ (0). Then the (non-zero!) vector
γ ′(0) is orthogonal to the gradients (at the point p) of all functions appearing in
system (3). Therefore, it is proportional to the vector τ .

For an appropriate choice of the coefficient θ , the vector tangent to the path
γ̃ (t)= γ (θt), |t |� δ, at t = 0 coincides with τ , i.e., τ ∈ Tp .

Thus, we have proved that Tp is a vector subspace of the space Rm. Its dimension
does not exceed k since all vectors in it are orthogonal to the vectors of system (2).
Moreover, it contains k linearly independent vectors that are tangent to the coordi-
nate lines. Therefore, dimTp = k. �

Remark If the surface M is defined by the equation F(x)= 0 in the vicinity of the
point p and gradF(p) �= 0, then, as noted before the lemma, the vectors tangent to
it at the point p are orthogonal to the vector gradF(p). Therefore, the tangent space
to M at the point p is the plane that consists of the vectors orthogonal to gradF(p),
i.e., it is defined by the equation 〈x,gradF(p)〉 = 0.

We note that since the canonical tangent vectors corresponding to the parametri-
zation � of the manifold M are linearly independent, they form a basis in the tangent
space. The linearity of the map da� : Rk → R

m implies that for every vector t =
(t1, . . . , tk) in R

k the equality

da�(t)=
k∑

j=1

tj τj

holds. Therefore, the differential of the parametrization maps R
k onto the tangent

space isomorphically.

Sometimes it is more geometrically clear to consider the affine tangent space Lp

instead of the tangent space Tp; it is the shift of Tp by the vector p : Lp = p+ Tp .
Since p+ d�a(t − a) ∈ Lp , where p =�(a), and

�(t)= p+ d�a(t − a)+ o
(‖t − a‖) as t→ a,

the point x =�(t) satisfies the relation

dist(x,Lp) = dist
(
�(t),Lp

)
�

∥
∥�(t)− (

p+ d�a(t − a)
)∥
∥

= o
(‖t − a‖) as t→ a.
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By Corollary 1 from Sect. 8.1.4, the map �−1 satisfies the Lipschitz condition

‖t − a‖ = ∥
∥�−1(x)−�−1(p)

∥
∥ � C‖x − p‖

in the vicinity of the point p, and therefore

dist(x,Lp)= o
(‖x − p‖) as x→ p, x ∈M.

Thus, when we substitute points in the subspace Lp for points in the manifold,
the relative error tends to zero, i.e., the manifold M is “almost flat” in the small.
The latter relation is a formalization of our intuitive idea of the tangent space as the
space “tight-fitting” to the manifold. It can be proved that this property of the affine
tangent space uniquely determines it (see Exercise 2).

8.1.3 We give some examples.

Example 1 An important example of a surface is the graph of a smooth function f

defined on an open subset of the space Rm−1. By definition of the graph, it is the set

�f =
{
(x1, . . . , xm−1, y) ∈R

m | (x1, . . . , xm−1) ∈O, y = f (x1, . . . , xm−1)
}
.

The map

O " x = (x1, . . . , xm−1) �→�(x)= (
x1, . . . , xm−1, f (x)

)

is, obviously, a global parametrization of the graph. We call this parametrization
canonical.

The graph of the function f may be considered as a zero level set of the function
F(x1, . . . , xm−1, y)= y−f (x1, . . . , xm−1) defined on the set O′ =O×R. We note
that gradF �= 0 everywhere in the set O′ and, in particular, in �f . As follows from
the remark after the proof of Lemma 8.1.2, the affine tangent plane at the point
p = (a1, . . . , am−1, f (a)), where a = (a1, . . . , am−1) ∈O, is given by the equation

y − f (a)= 〈
gradf (a), x − a

〉=
m−1∑

j=1

f ′xj (a)(xj − aj ).

A set that can be obtained from the graph by changing the order of coordinates
(so that the “dependent” coordinate does not occur in the last position) is also called
a graph, or, more precisely, a graph in a wider sense. Clearly, a set M ⊂ R

m such
that M ∩U is a graph (in this wide sense) for some neighborhood U of each of its
points is a surface.

Using the implicit function theorem (see Sect. 13.7.6), one can prove the reverse:
every surface in R

m is (locally) a graph of a smooth function (see Exercise 4).
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Example 2 Consider the sphere

S(R)= {
(x1, . . . , xm) ∈R

m |x2
1 + · · · + x2

m =R2}

in R
m. We check that it is a surface. For every point p = (p1, . . . , pm) in

S(R), at least one coordinate is non-zero. Assume, for the sake of definite-
ness, that pm > 0. Then the point p belongs to the upper hemisphere S+(R) =
{x ∈ S(R) |xm > 0} which is simply the graph of the function f (x1, . . . , xm−1) =√
R2 − x2

1 − · · · − x2
m−1 defined in a ball of the space R

m−1. This function is of

class C∞. Therefore, the hemisphere S+(R), and thus all the sphere S(R), are C∞-
surfaces.

It is intuitively clear that the sphere has no global parametrization. At the same
time, one can easily give a map that parametrizes almost all of the sphere. We re-
strict ourselves to the most obvious particular case of the two-dimensional sphere
in R

3 (see the discussion of the general case in Exercise 5). Recall the geographical
coordinates, the longitude ϕ and the latitude θ of a point on the surface of the Earth.
For ϕ ∈ [−π,π] and θ ∈ [−π

2 ,
π
2 ], we set

�(ϕ, θ)= (R cosϕ cos θ,R sinϕ cos θ,R sin θ) (4)

(the corresponding coordinate lines are parallels and meridians; the eastern hemi-
sphere corresponds to the positive values of ϕ, the western to the negative values,
the northern hemisphere is determined by the inequality θ > 0, whereas the south-
ern hemisphere corresponds to θ < 0). In the given example we deal with a rather
typical situation. Speaking formally, the map � is defined for any ϕ and θ , but we
are interested only in its restrictions to some subsets that are convenient for our
considerations. It is clear that � is an infinitely differentiable map, but it is not bi-
jective since �(ϕ,±π

2 ) = (0,0,±R) for all values of ϕ (there is no natural way
to ascribe a longitude to the north or south pole). Moreover, for any θ we lose in-
jectivity for ϕ = ±π since the angles ϕ = π and ϕ = −π correspond to the same
point on the sphere. These values of the parameter ϕ correspond to the meridian on
the Earth, called the International Date Line, where the date changes as a ship or
aeroplane travels east or west across it.2 Deleting it (together with the poles), we get
the “cut sphere”, i.e., the C∞-surface that has a global parametrization (4) defined
on an open rectangle |ϕ| < π , |θ | < π

2 . The condition rankd� ≡ 2, i.e., the linear
independence of the tangent vectors

τ1 =D1�(ϕ, θ)= (−R sinϕ cos θ,R cosϕ cos θ,0),

τ2 =D2�(ϕ, θ)= (−R cosϕ sin θ,−R sinϕ sin θ,R cos θ)

is a consequence of their orthogonality (τ1 is tangent to a parallel and τ2 to a merid-
ian), since ‖τ1‖ =R cos θ �= 0 and ‖τ2‖ =R.

2In reality, the International Date Line is determined by special agreements and does not coincide
with this meridian completely.
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As we will see later, the deletion of a meridian is inessential when one integrates
over a sphere.

It should also be noted that in analysis the angle θ ′ between the radius vector and
the positive direction of the OZ axis is often used instead of the latitude. It varies
in the interval [0,π] and is related to the latitude θ by the relation θ + θ ′ = π/2.

Example 3 Consider the torus, the surface in R
3 created by rotating the circle

(R−x)2+z2 = r2 (0 < r < R) around the axis OZ. As can easily be seen, the torus
may be defined by the equation (R−√

x2 + y2)2+ z2 = r2. No global parametriza-
tion of the torus exists (we do not dwell on the proof of this fact). The position of
a point on this surface is determined by two angles ϕ and θ (the analogs of the
longitude and the latitude on the sphere) by the relations

x = (R + r cos θ) cosϕ, y = (R + r cos θ) sinϕ, z= r sin θ.

The infinitely differentiable map (defined in R
2)

�(ϕ, θ)= (
(R + r cos θ) cosϕ, (R + r cos θ) sinϕ, r sin θ

)

maps the square [−π,π]2 onto the torus. It is not bijective due to the 2π -periodicity
of trigonometric functions. Deleting two circles corresponding to the angles ϕ =±π

and θ = ±π , we obtain “the torus with two cuts”, a surface of the class C∞, for
which the restriction of � to the square (−π,π)2 is a global parametrization. The
condition rankd�≡ 2 is fulfilled because the tangent vectors

τ1 =D1�(ϕ, θ)= (−(R+ r cos θ) sinϕ, (R + r cos θ) cosϕ,0
)
,

τ2 =D2�(ϕ, θ)= (−r cosϕ sin θ,−r sinϕ sin θ, r cos θ)

are linearly independent: they are orthogonal and ‖τ1‖ = R + r cos θ > 0,
‖τ2‖ = r > 0.

In order to check that not only the torus with the cuts, but also the torus in the
whole, is a smooth surface, we need to show that every point p =�(ϕ0, θ0) has a
neighborhood in the torus that admits a global parametrization. This parametrization
can be obtained if we change the definition domain of the mapping �. We leave it
to the reader to check that the square (ϕ0 − π,ϕ0 + π)× (θ0 − π, θ0 + π) may be
regarded as such a domain. The corresponding neighborhood of the point p on the
torus is the torus with the cuts along the circles ϕ = ϕ0 ± π and θ = θ0 ± π .

We note that in the limit case where r = R, we rotate the circle (R − x)2 +
z2 =R2 around the OZ-axis. The set M thus obtained is not a smooth surface since
there is no M-neighborhood of the origin that is a simple surface. The reader can
check however that the set M \ {0} is a smooth surface of class C∞, and so M is a
piecewise smooth surface.

Example 4 Consider a manifold of minimal dimension, i.e., a curve. Its parametri-
zation in a vicinity of an arbitrary point is a smooth vector function defined on an
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interval of a real line. It is a homeomorphism with non-zero derivative. It is clear
that the graph of a function of one variable defined on an interval is a smooth flat
curve, i.e., a curve in R

2.
Another well-known curve is a circle. To get a more general example, recall that

according to the second definition of a smooth manifold, the level set of a smooth
function of two variables with non-zero gradient is a smooth curve. The example of
the lemniscate of Bernoulli, a plane set consisting of the points (x, y) such that

(
x2 + y2)2 − (

x2 − y2)= 0,

demonstrates that the hypothesis about the gradient is important: the point (0,0),
where the gradient of the function F(x, y) = (x2 + y2)2 − (x2 − y2) is equal to
zero, has no relative neighborhood which is homeomorphic to an interval. Near
the origin, the lemniscate may be viewed as a union of two graphs, i.e., “a self-
intersecting curve”. Note that if we delete the origin from this set, we get a (discon-
nected) smooth curve. This shows that the lemniscate is a piecewise smooth curve.

Example 5 Consider the group O(n) of orthogonal n× n matrices. We regard it as
a subset of the n2-dimensional Euclidean space which we identify with the set of
all n× n matrices U = {ui,j }ni,j=1 with elements uij . This subset is defined by the
system of equations

u2
i,1 + · · · + u2

i,n = 1, 1 � i � n,

ui,1uk,1 + · · · + ui,nuk,n = 0, 1 � i < k � n.

The gradients of the functions Fi(U) = u2
i,1 + · · · + u2

i,n and Fik(U) = ui,1uk,1 +
· · · + ui,nuk,n evaluated at the points of O(n) are linearly independent. To convince
ourselves that this is true, represent these gradients as the matrices made up of the
derivatives over ui,j placed at the intersection of the ith row and the j th column.
Then each row of a matrix which represents a linear combination of the gradients
contains only a linear combination of (pairwise orthogonal) rows of the matrix U ,
whence the needed property easily follows. Thus, O(n) is a smooth manifold of di-
mension n2− n− n(n− 1)/2= n(n− 1)/2. It is natural to call the map U �→U0U

(or U �→ UU0), where U ∈ R
n2

and U0 is a certain element in O(n), the left (cor-
respondingly, the right) shift in the set of all matrices. The shift preserves the Eu-
clidean distance between matrices since, as is easily seen, the Euclidean norms of
the matrices U and U0U (UU0), considered as elements of the space R

n2
, are the

same. Therefore, the shift in O(n) is an isometry relative to the metric in O(n)

induced from the enveloping n2-dimensional space.

8.1.4 In what follows, it is important that a parametrization of a k-dimensional
manifold in R

m can be viewed, locally, as a restriction to the subspace R
k of a

diffeomorphism defined on an open subspace of the space R
m. More precisely, we

can consider a canonical embedding of R
k in R

m where the vectors (x1, . . . , xk)

in R
k are identified with the vectors (x1, . . . , xk,0, . . . ,0) in R

m. Then the following
statement about the extension of a parametrization to a diffeomorphism is true.



404 8 Surface Integrals

Lemma Let O be an open subset of the space R
k and a be a point in O. For a

smooth parametrization � of the set �(O) ⊂ R
m, a neighborhood V ⊂ R

m of the
point a = (a1, . . . , ak,0, . . . ,0) and a diffeomorphism F defined on it can be given
such that � and F coincide on V ∩R

k .

Proof Since the rank of the Jacobian matrix �′(a) is k, it has a k×k non-zero minor.
Without loss of generality, we can assume that it is formed by the first rows of the
matrix. Then D(ϕ1,...,ϕk)

D(t1,...,tk)
(a) �= 0, where ϕ1, . . . , ϕk are the coordinate functions of

the map �.
We consider the map � from O×R

m−k to R
m defined by the formula

�(t1, . . . , tk, tk+1, . . . , tm)=�(t1, . . . , tk)+ (0, . . . ,0, tk+1, . . . , tm),

where (t1, . . . , tk) ∈ O and (tk+1, . . . , tm) ∈ R
m−k . It is clear that � is a smooth

map and extends � to O × R
m−k . Moreover, rankda� = m since det�′(a) =

D(ϕ1,...,ϕk)
D(t1,...,tk)

(a) �= 0.
By the local invertibility theorem, the restriction of � to a (sufficiently small)

neighborhood V of the point a is a diffeomorphism (see Sect. 13.7.5). This restric-
tion should be taken for F . �

If � is a local parametrization of a k-dimensional manifold M in the vicinity of
a point p and F is the diffeomorphism described in the above lemma, then �−1 and
F−1 coincide on some M-neighborhood of the point p, more precisely, on the set
�(V0), where V0 = V ∩R

k . Thus, the next two statements follow from this lemma.

Corollary 1 In a sufficiently small M-neighborhood of a point p, the map �−1

satisfies the Lipschitz condition, i.e.,
∥
∥�−1(x)−�−1(y)

∥
∥ � C‖x − y‖ for x, y ∈M

and some C.

To prove the result, it suffices to note that the smooth map F−1 satisfies the Lips-
chitz condition in every closed ball in the domain of the map (see Theorem 13.7.2).

Corollary 2 Let O and O′ be open sets in R
k and � ∈ C1(O,Rm) be a

parametrization of the manifold M , M ⊂R
m. If � ∈ C1(O′,Rm) and �(O′)⊂M ,

then the composition �−1 ◦� is a smooth map.

Indeed, for any point t0 ∈O′ the map �−1 coincides with the smooth map F−1 in
some M-neighborhood of the point �(t0). Therefore, in a sufficiently small neigh-
borhood of the point t0, the map �−1 ◦� = F−1 ◦� is a composition of smooth
maps.

8.1.5 We will use a simple geometrical fact based upon the following observation.
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Every open subset G of the space R
m is a union of balls in G for which the radii

and the coordinates of the centers are rational numbers.

Since every point x of the set G may be regarded as the center of a ball B(x, r)

in G, it suffices to note that x ∈ B(y,ρ)⊂ B(x, r) for 0 < ρ < r/2 and ‖x−y‖< ρ.
Clearly, the number ρ and the coordinates of the vector y may be chosen to be
rational.

Theorem (Lindelöf3) For any family {Gα}α∈A of sets that are open in R
m there

exists an at most countable subfamily {Gα}α∈A0 (the set A0, A0 ⊂ A, is at most
countable) with the same union:

⋃

α∈A
Gα =

⋃

α∈A0

Gα.

Proof Consider arbitrary balls, with rational radii and rational center coordinates,
that are contained in at least one of the sets Gα . The collection of such balls is
countable. Let {Bn}n∈N be an enumeration of this collection. By the choice of these
balls, for any n ∈ N there exists an index αn ∈ A such that Bn ⊂ Gαn . Moreover,
each set Gα is exhausted by the balls chosen this way:

Gα ⊂
⋃

n∈N
Bn for any index α ∈A.

Consequently,
⋃

α∈A
Gα ⊂

⋃

n∈N
Bn ⊂

⋃

n∈N
Gαn.

Due to the evident inclusion
⋃

n∈NGαn ⊂
⋃

α∈AGα , one can take the set A0 as the
set of indices αn. �

Corollary 1 A smooth manifold can be represented as a union of an at most count-
able family of simple manifolds.

Since the range of curvilinear coordinates is a countable union of compact sets,
the following statement is true.

Corollary 2 A smooth manifold is an at most countable union of compact sets such
that each such set is a subset of a simple manifold.

The following corollary is an immediate consequence of the preceding one.

Corollary 3 A smooth manifold in R
m is a Borel subset of this space.

3Ernest Leonhard Lindelöf (1870–1946)—Finnish mathematician.
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Since a smooth surface is locally a graph (in the broad sense) of a smooth func-
tion, we also have the following.

Corollary 4 A smooth surface is an at most countable union of graphs of smooth
functions.

8.1.6 Now we prove a useful fact that allows us to represent a smooth function as
a sum of smooth functions with small supports. It often leads to important technical
simplifications due to the “localization” of the problem (see Sect. 8.6.5). Recall
that the support of a function ϕ : Rm → R, denoted by the symbol supp(ϕ), is the
closure of the set {x |ϕ(x) �= 0}.

Theorem (On a smooth partition of unity) For every ε > 0 there exists a non-
negative function ϕε of class C∞(Rm) such that supp(ϕε)= [−ε, ε]m and

∑

n∈Zm

ϕε(x − εn)= 1 for any x in R
m.

Note that the number of non-zero summands of this sum is finite near every
point a ∈ R

m. More precisely, if x ∈ a + (−ε, ε)m and ϕε(x − εn) �= 0, then n ∈
1
ε
a + (−2,2)m.

Proof We use the following well-known example of a function of class C∞(R):

�(t)=
{

0 if t � 0,

e−1/t if t > 0.

The existence of its derivatives of all orders is evident for non-zero t , and at zero is
a consequence of the easy-to-check representation of �(n)(t), for t > 0, in the form
�(n)(t)= Pn(1/t)e−1/t , where Pn is a polynomial.

Set ψ(x) = ∏m
k=1 �(1 − x2

k ) where x = (x1, . . . , xm). Clearly, ψ is a class
C∞(Rm) function which is positive in the cube (−1,1)m and equal to zero outside it.
Therefore, each function x �→ψ(x− n) is positive in the shifted cube n+ (−1,1)m

(n ∈ Z
m). Since every point x belongs to at least one such cube, the sum

�(x)=
∑

n∈Zm

ψ(x − n)

is positive. It is the sum of only a finite number of infinitely-differentiable func-
tions (see the remark that follows the statement of the theorem). Consequently,
� ∈ C∞(Rm). Take ϕ1(x)= ψ(x)

�(x)
. It is clear that this function satisfies the hypothe-

sis of the theorem for ε = 1. To construct the function ϕε for arbitrary ε, it suffices,
via a scaling, to set ϕε(x)= ϕ1(

1
ε
x). �

8.1.7 We show how one can construct a smooth approximation of characteristic
functions using a partition of unity. It is intuitively clear that outside the set E,
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the values of its characteristic function can be altered gradually, without sudden
jumps, decreasing to zero. It is also plausible that such a “descent” can be effec-
tuated in the vicinity of E, without overstepping the limits of its arbitrarily small
ε-neighborhood. Recall that the ε-neighborhood of the set E is the set

Eε =
{
y ∈R

m | dist(y,E) < ε
}=

⋃

x∈E
B(x, ε).

We also show that this smoothing can be made without a steep drop of the
smoothing function, i.e., we can control the norm of its gradient so that, under the
circumstances considered, it is of the smallest possible order.

Theorem (On a smooth descent) For every set E ⊂R
m and every ε > 0 there exists

a function θε of class C∞(Rm) such that:

(a) 0 � θε � 1 on R
m;

(b) θε(x)= 1 if x ∈E;
(c) θε(x)= 0 outside Eε;
(d) ‖grad θε‖ � cm

ε
on R

m, where cm is a coefficient that depends only on the di-
mension.

Proof Take δ = ε/(2
√
m) and let ϕδ be the function constructed in Theorem 8.1.6,

Q= (−1,1)m. We keep only those summands in the sum
∑

n∈Zm

ϕδ(x − δn)= 1

for which the cube δ(n+Q) intersects E, and set

θε(x)=
∑

n∈Zm:
δ(n+Q)∩E �=∅

ϕδ(x − δn).

It is clear that 0 � θε(x) � 1 everywhere and θε(x) = 1 if x ∈ E. Moreover, since
diam(Q)= 2

√
m, we have θε(x)= 0 outside Eε . Therefore, the function θε satisfies

conditions (a)–(c). Now we check the condition (d). Since the sum that defines θε
consists of a finite number of summands near every point (as was mentioned after
the statement of Theorem 8.1.6), it can be differentiated termwise. It is clear that

∥
∥grad θε(x)

∥
∥ �

∑

n∈Zm

∥
∥gradϕδ(x − δn)

∥
∥.

Since every point x belongs to at most 2m cubes δ(n+Q), it follows that

∥
∥grad θε(x)

∥
∥ � 2m max

x

∥
∥gradϕδ(x)

∥
∥= 2m

δ
max
x

∥
∥
∥
∥gradϕ1

(
1

δ
x

)∥
∥
∥
∥

= 2m

δ
L= 2m+1√m

ε
L,

where L=maxy ‖gradϕ1(y)‖ does not depend on ε (but does depend on m). �
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8.1.8 We conclude this section with a modification of the theorem on the partition
of unity. First, we prove a useful geometric fact.

Lemma Let K be a compact set in the space Rm and let {Gα}α∈A be its open cover.
Then there exists a number δ > 0 such that every set e that intersects K and has the
property diam(e) < δ is contained in at least one set belonging to the cover.

Proof Assume that the statement of the lemma is false. Then for every n ∈N there
exists a set en that is not contained in any set Gα and at the same time

en ∩K �=∅, diam(en) <
1

n
.

Fix a point xn in each en ∩ K . Without loss of generality, one can consider that
xn → x0 for some x0 ∈ K (otherwise, one may pass to a subsequence). The point
x0 belongs to some set in the family Gα , say, to Gα0 . Therefore, B(x0, r)⊂Gα0 for
some r > 0. If n is large enough, then ‖xn−x0‖< r/2 and diam(en) < r/2, whence
en ⊂ B(x0, r)⊂Gα0 . This shows that the sets en with large indices are contained in
the set Gα0 , contrary to the choice of en. �

It is convenient to use the following theorem in those situations where one needs
to replace an arbitrary function by functions with supports lying in the prescribed
sets (see, for instance, Theorems 8.4.2 and 8.6.5).

Theorem (On a partition of unity subordinate to a cover) Let K be a compact subset
of the space R

m and let {Gα}α∈A be its open cover. Then there exists a finite family
of non-negative finitary functions ψ1, . . . ,ψN of class C∞(Rm) such that

N∑

j=1

ψj � 1 on R
m,

N∑

j=1

ψj (x)= 1 if x ∈K

and the support of ψj is contained in one of the sets that make up the cover for all j .

The family of functions ψ1, . . . ,ψN is called a partition of unity for K subordi-
nate to the cover {Gα}α∈A.

Proof Let δ be a number from the lemma above corresponding to the given
cover. Consider the partition of unity 1=∑

n∈Zm ϕε(x − εn) constructed in Theo-
rem 8.1.6 taking ε so small that diam(supp(ϕε)) < δ. Keeping only those summands
ϕε(x − εn) in the partition of unity whose supports intersect K , we obviously get a
finite family, as required, and it only remains to enumerate it. �
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EXERCISES

1. Let M = {(x, y,u, v) ∈R
4 |x2 + y2 = 1, u2 + v2 = 1}. Prove that:

(a) M is a two-dimensional C∞-smooth compact manifold homeomorphic to a
Cartesian product of two circles;

(b) the mapping (x, y,u, v) �→ ((R+ru)x, (R+ru)y, rv) is a homeomorphism
of M and the torus considered in Example 3 of Sect. 8.1.3.

2. Let p be a point of a smooth manifold M . Prove that the tangent subspace is
a unique among affine subspaces L (dim(L) = dim(M)) that pass through the
point p and satisfy the property

dist(x,L)= o
(‖x − p‖) as x→ p, x ∈M.

3. Let S2 be a two-dimensional sphere in R
3 with center at zero and N = (0,0,1)

its north pole. Consider a mapping of the set S2 \ {N} to the equatorial plane
defined as follows: a point p in the sphere maps to the point where the equatorial
plane intersects the line through p and N . This map is called the stereographic
projection. Prove that:

(a) the stereographic projection is a one-to-one mapping of the set S2 \ {N} to
the plane;

(b) the map that is the inverse to the stereographic projection is a C∞-smooth
parametrization of the set S2 \ {N};

(c) the angle between two intersecting curves on the sphere S2 is the same as the
angle between their images under the stereographic projection (this property
is called the conformality of the stereographic projection).

4. Prove that every smooth surface in R
m is, locally, the graph of a smooth function.

5. Let R > 0. Consider the map � that sends each point ϕ = (ϕ1, . . . , ϕm−1) in
R

m−1 (m� 3) to the vector x = (x1, . . . , xm) in R
m according to the rule

x1 =R cosϕ1,

x2 =R sinϕ1 cosϕ2,

x3 =R sinϕ1 sinϕ2 cosϕ3,

...

xm−1 =R sinϕ1 sinϕ2 · · · sinϕm−2 cosϕm−1,

xm =R sinϕ1 sinϕ2 · · · sinϕm−2 sinϕm−1.

Prove that � sends the rectangular parallelepiped [0,π]m−2 × [0,2π] onto the
sphere of radius R (with center at zero) and the restriction of � to the open
parallelepiped (0,π)m−2 × (0,2π) maps the latter in a one-to-one manner onto
the “cut sphere” (this cut is a compact subset of an m− 2-dimensional sphere).
The numbers ϕ1, . . . , ϕm−1 are called the spherical coordinates of a point in the
boundary of a ball.
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6. Let Tp be the tangent space to a smooth manifold M at a point p and let P be
the orthogonal projection to Tp . Prove that for any ε > 0, in a sufficiently small
M-neighborhood U of the point p the following inequality holds:

(1− ε)‖x − y‖� ∥
∥P(x)− P(y)

∥
∥ � ‖x − y‖ (x, y ∈U).

7. It follows from the solution of the preceding problem that the restriction of the
projection P to a sufficiently small M-neighborhood U of the point p is invert-
ible. Prove that (P |U)−1 is a smooth map.

8. Let M ⊂ R
m be a smooth manifold with dimM < m. Using the fact that the

graph of a smooth function has zero measure (see Corollary 2.3.1), prove that
λm(M)= 0.

8.2 Surface Area

8.2.1 By a k-dimensional area in R
m (1 � k �m) we will understand a Borel mea-

sure (see Sect. 2.2.3) satisfying properties similar to the properties of the Lebesgue
measure λk . In particular, on subsets of k-dimensional affine subspaces, this mea-
sure must coincide with the Lebesgue measure. This allows us to speak about the
area of sets consisting of planar parts, in particular, in the case k =m− 1, the faces
of polyhedra. However, this does not, of course, suffice for a reasonable definition
of the area of “curvilinear figures”, and we must specify some property of area that
would allow us to compare its values on non-planar sets (i.e., sets that do not lie
in k-dimensional affine subspaces). In our approach, the role of such a condition
is played by the following intuitively clear requirement: the area does not increase
under a weak contraction (see Sect. 2.6.2, Property (6)). Since the image of a Borel
set under a weak contraction (and even under a projection) may not be a Borel set,
we will assume that the latter condition applies only to compact sets. So, we adopt
the following definition.

Definition Let k,m ∈ N, 1 � k � m. A measure σk defined on the σ -algebra Bm

of all Borel subsets of Rm is called a k-dimensional area (in R
m) if it satisfies the

following two axioms:

(I) on every k-dimensional affine subspace L of Rm, the measure σk coincides with
the restriction of the Lebesgue measure λk to the σ -algebra of Borel subsets
of L;

(II) on compact sets, σk does not increase under weak contractions: if � is a weak
contraction of a compact set Q, then

σk

(
�(Q)

)
� σk(Q).

We have agreed to call manifolds of codimension 1 surfaces. Hence it is natural
to call an (m− 1)-dimensional area a surface area. However, by abuse of language,
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we will use this term for a k-dimensional area for arbitrary k. As we will soon see,
a k-dimensional area in R

m exists for all k = 1, . . . ,m.
As for every Borel measure, a surface area enjoys the regularity property stated

in Corollary 2.2.3:

if σk(E) <+∞, then σk(E)= sup
{
σk(Q) |Q is a compact set, Q⊂E

}
. (1)

By axiom (I), σm coincides with the Lebesgue measure λm (more precisely,
with its restriction to Bm). Property (II) holds for the Lebesgue measure by Corol-
lary 2.6.4.

Note that axiom (II) and condition (1) imply that a surface area is invariant under
any isometry, since both an isometry and the map inverse to an isometry are weak
contractions. In particular, it is invariant under translations and rotations, so that
the areas of congruent sets are equal. Under an orthogonal projection (which is,
obviously, a weak contraction), the area of a compact set does not increase.

Let us establish another important property of σk .

Theorem The area of a Borel set of finite area does not decrease under an expand-
ing map.

Proof Let E ⊂ R
m be a Borel set of finite area and � be an expanding map on E.

By Proposition 2.3.3, the image E′ =�(E) is again a Borel set. If E is a compact
set, we can apply axiom (II) to the map �−1 (since it is a weak contraction), whence
σk(E)� σk(E

′). In the general case, use condition (1). �

We complement the theorem with a simple, but important result. It provides a
two-sided bound on the area of a set that has a Lipschitz parametrization. This prop-
erty will be repeatedly used in what follows.

Lemma Let E ⊂R
m be a Borel set and � be a map from E to R

k . If there exists a
C > 1 such that

1

C
‖x − y‖� ∥

∥�(x)−�(y)
∥
∥ � C ‖x − y‖ for x, y ∈E,

then

1

Ck
λk

(
�(E)

)
� σk(E)� Ckλk

(
�(E)

)
.

Proof Obviously, it suffices to prove the desired inequality for bounded sets. Thus
we assume that the set E and, consequently, its image E′ are bounded. It follows
from the assumptions of the lemma that H = C� and � : u �→ �−1(Cu) are ex-
panding maps on E and 1

C
E′, respectively. As we have established in Proposi-

tion 2.3.3, each of these maps sends a Borel set to a Borel set. Since the weak
contraction H−1 is uniformly continuous, we may assume that it is defined on the
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compact set Q= CE′, whose area (coinciding with the Lebesgue measure) is finite.
Therefore,

σk(E)= σk

(
H−1(

CE′
))

� σk

(
H−1(Q)

)
� σk(Q)= λk(Q) <+∞.

This allows us to apply the theorem to the expanding map H and obtain the required
upper bound:

σk(E)� σk

(
H(E)

)= λk

(
C�(E)

)= Ck λk

(
�(E)

)
.

On the other hand,

σk(E)= σk

(

�

(
1

C
�(E)

))

� σk

(
1

C
�(E)

)

= λk

(
1

C
�(E)

)

= 1

Ck
λk

(
�(E)

)
,

which yields the lower bound. �

Remark As can be seen from the proof, the lemma remains valid if the codomain of
� is not Rk , but a k-dimensional (linear or affine) subspace of a space of arbitrary
dimension, where a k-dimensional area coincides with the Lebesgue measure by
axiom (I).

8.2.2 The question of the existence of a surface area has been essentially solved. In-
deed, the Hausdorff measure μk satisfies axiom (II) (see Property (6) in Sect. 2.6.2)
and is proportional to the Lebesgue measure on k-dimensional subspaces. As we
have established in Sect. 2.6.5, the proportionality coefficient is equal to the volume
αk of the unit ball in R

k . Therefore, the function αkμk regarded on all Borel subsets
of Rm is a k-dimensional area. Thus the following theorem holds.

Theorem For every positive integer k, 1 � k � m, there is a k-dimensional area
in R

m.

One can show (see [F]) that a Borel measure satisfying conditions (I) and (II)
is not unique. The discussion of related subtle results is beyond the scope of this
book. Note, however, that the non-uniqueness of area may manifest itself only on
quite complicated sets. We will soon see that the area of Borel sets satisfying some
natural geometric conditions is uniquely determined.

8.2.3 Now we turn to the one-dimensional case and consider the problem of com-
puting the measure σ1 on simple arcs, i.e., homeomorphic images of intervals. For
brevity, we will also use the term “arc” as a synonym. Of course, it is natural to call
σ1(L) the length of an arc L. However, using this term now may cause a certain
ambiguity. Indeed, way back in school the reader learned, in the example of a circle,
the definition of the length of a curve as the limit of the lengths of inscribed polygo-
nal chains. A natural generalization of this definition leads to the classical definition
of arc length. Thus it is desirable to ensure that the measure σ1 agrees with this
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definition. Before proceeding to the solution of this problem, we first introduce the
notion of the length of a path.

Consider an arbitrary path γ : [a, b] → R
m. Given a partition τ of the interval

[a, b] formed by points t0 = a < t1 < · · ·< tn = b, set

Sτ =
n−1∑

i=0

∥
∥γ (ti+1)− γ (ti)

∥
∥.

By definition, the length of γ is equal to s(γ )= supτ Sτ . A path is called rectifiable
if it has finite length. Note that s(γ ) � ‖γ (b)− γ (a)‖, since Sτ � ‖γ (b)− γ (a)‖
by the triangle inequality.

If ϕ1, . . . , ϕm are the coordinate functions of γ , then, obviously, for any i =
1, . . . ,m and k = 1, . . . , n,

∣
∣ϕi(tk+1)− ϕi(tk)

∣
∣ �

∥
∥γ (tk+1)− γ (tk)

∥
∥ �

m∑

j=1

∣
∣ϕj (tk+1)− ϕj (tk)

∣
∣.

Hence, the variations of the functions ϕk (see definition in Sect. 4.11.1) satisfy the
inequality

Vb
a(ϕi)� s(γ )�

m∑

j=1

Vb
a(ϕj ). (1)

Thus a path is rectifiable if and only if all its coordinate functions are of bounded
variation. Reproducing the proof of Theorem 4.11.1, one can see that the path length
is additive, i.e., s(γ ) = s(γ1)+ s(γ2), where γ1, γ2 are the restrictions of γ to the
intervals [a, c] and [c, b], respectively (a < c < b).

To define the classical arc length, we need an easy auxiliary result. For a path,
which is a homeomorphism of a line segment onto an arc, we keep the term
“parametrization”, even though it is defined not on an open interval, as it should
be according to Definition 8.1.1, but on a closed interval.

Lemma The lengths of two parametrizations of a simple arc coincide.

Proof Let γ : [a, b] → R
m, γ1 : [p,q] → R

m be two parametrizations of a sim-
ple arc L. Set ω(x) = γ−1

1 (γ (x)) (a � x � b). Then the function ω is continu-
ous, one-to-one, and, consequently, strictly monotone. Therefore, every partition
τ = {x0, . . . , xn} of the interval [a, b] gives rise to a partition of the interval [p,q],
which is formed by the points ω(x0), . . . ,ω(xn) if ω is increasing, and by the points
ω(xn), . . . ,ω(x0) if ω is decreasing. Furthermore, γ (x)= γ1(ω(x)). Hence

Sτ =
n−1∑

k=0

∥
∥γ (xk+1)− γ (xk)

∥
∥=

n−1∑

k=0

∥
∥γ1

(
ω(xk+1)

)− γ1
(
ω(xk)

)∥
∥ � s(γ1).
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But τ is arbitrary, whence s(γ ) � s(γ1). Since the parametrizations γ and γ1 are
interchangeable, this means that s(γ )= s(γ1). �

Let us define the length of an arc as the common value of the lengths of all its
parametrizations. The length of an arc L will be denoted by s(L). Thus s(L)= s(γ )

if γ is a parametrization of L (using the symbol s both for the length of an arc and
the length of its parametrization does not lead to a contradiction). An arc is called
rectifiable if it has finite length. Since the length of a path is not less than the distance
between its endpoints, the arc length satisfies the clear geometric principle “a line
segment is the shortest arc connecting two given points”:

s(L)� ‖B −A‖ if L contains A and B. (2)

It follows from axiom (II) that this principle can be extended to (any) measure σ1:

σ1(L)� ‖B −A‖ if L contains A and B (2′)

(since the projection of L to the line passing through A and B contains the whole
segment connecting them).

Note also that if a path γ is rectifiable, then the function x �→ θ(x)= s(γ |[a,x])
is continuous. Indeed, if a � x < y � b, then, in view of (1) (hereafter ϕ1, . . . , ϕm

are the coordinate functions of the parametrization γ ),

∣
∣θ(y)− θ(x)

∣
∣= s(γ |[x,y])�

m∑

j=1

Vy
x(ϕj ),

where Vy
x(ϕj )→ 0 as x − y→ 0 by Theorem 4.11.2.

The continuity of θ allows us to introduce a new parametrization of a rec-
tifiable arc L. Since the set of values of θ coincides with [0, S] where S =
s(L), the map u �→ δ(u) = γ (θ−1(u)) is defined on [0, S], continuous, one-to-
one, and satisfies δ([0, S]) ⊂ L. The reader can easily check that δ([0, S]) = L.
Thus δ is a parametrization of L. It follows from the definition of θ that for
0 � u � S we always have s(δ([0, u])) = u. Furthermore, by the additivity of
length, this parametrization also has the following property: if 0 � u1 < u2 � S,
then s(δ([u1, u2])) = u2 − u1. Thus the parameter u in δ has a simple geomet-
ric interpretation: the difference of two values u1, u2 (where u1 < u2) is equal
to the length of the arc corresponding to the interval [u1, u2]. This parametriza-
tion of a simple arc is called natural. It is a weak contraction on [0, S], since
u2 − u1 = s(δ([u1, u2]))� ‖δ(u2)− δ(u1)‖ by (2).

Theorem For every simple arc L, σ1(L)= s(L).

Proof First we check that s(L) � σ1(L). Let γ be a parametrization of L defined
on [a, b]. Consider an arbitrary partition τ of [a, b] formed by points t0 = a < t1 <
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· · · < tn = b and set Lk = γ ([tk, tk+1]) (0 � k < n). Since ‖γ (tk+1) − γ (tk)‖ �
σ1(Lk) by (2′), it follows that

Sτ ≡
n−1∑

k=0

∥
∥γ (tk+1)− γ (tk)

∥
∥ �

n−1∑

k=0

σ1(Lk)= σ1(L).

But τ is arbitrary, whence s(L)� σ1(L).
When proving the reverse inequality, we may assume that L is rectifiable, i.e.,

S = s(L) <+∞. As we have already noticed, the natural parametrization of L is a
weak contraction on [0, S]. Hence σ1(L)� σ1([0, S])= S = s(L). �

This theorem allows us to call σ1 the length.

8.2.4 As we have seen in the previous subsection, the σ1 measure of any simple
arc L is equal to the supremum of the lengths of polygonal chains inscribed into L.
“Common sense” suggests that in order to compute the area of a curved surface M ,
we should apply a similar procedure: consider polyhedral surfaces with vertices on
M (polyhedra inscribed in M), compute the sum of the areas of their faces, and then
take the limit as the faces get smaller and smaller. However, simple analysis shows
that this approach cannot lead to a reasonable result even for a cylinder. We briefly
sketch the construction of the corresponding classical counterexample, the so-called
“Schwarz4 lantern”.

Consider a right circular cylinder of radius R and height H and inscribe into
it a polyhedral surface constructed as follows. Cut the cylinder into m equal small
cylinders by planes perpendicular to its axis. Into the top and the bottom of each
small cylinder inscribe a regular n-gon so that the vertices of the top polygon lie
above the middles of the arcs subtended by the sides of the bottom polygon. In
other words, the top polygon is rotated by π

n
with respect to the bottom one. Join

each vertex of each polygon with the closest vertices of the polygons one level up
or down by line segments. The pair of such segments going from a given vertex to
a neighboring polygon, along with the corresponding side of this polygon, forms an
isosceles triangle. These triangles together form a polyhedral surface that resembles
a Chinese lantern (see Fig. 8.1).

Between two neighboring cross sections there are 2n triangular faces (half of
them are based on the bottom n-gon, and the other half, on the top n-gon). Thus our
polyhedral surface consists of 2mn equal triangular faces. Clearly, the lengths of the
sides of these faces tend to zero as m,n→∞. Observe that the planes of the faces
are almost perpendicular to the axis of the cylinder provided that the height of the
levels is small compared to the side length of the polygons.

The area smn of each face is easy to compute:

smn =R sin
π

n

√(

2R sin2 π

2n

)2

+
(
H

m

)2

.

4Karl Hermann Amandus Schwarz (1843–1921)—German mathematician.
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Fig. 8.1 “Schwarz lantern”

Discarding the second term under the square root sign, we have (taking into account
that sinϕ � 2

π
ϕ for ϕ ∈ [0, 2

π
])

smn �R sin
π

n
· 2R sin2 π

2n
� 4R2

n3
.

Hence the total area of the polyhedral surface, i.e., 2mnsmn, is not less than 8R2 m

n2 .
Therefore, we can inscribe into the cylinder a polyhedral surface of arbitrarily large
area (taking m# n2), though its faces are triangles with arbitrarily small sides. Note
that the limit is equal to the area of the cylinder, i.e., 2πRH , only if m

n2 → 0.
The above construction makes it clear why the approach which is effective when

computing arc lengths fails if we need to compute areas. The reason is simple: the
segments of a polygonal chain inscribed into a smooth curve are almost tangent
to the curve provided that their lengths are sufficiently small. For surfaces, the sit-
uation is quite different: arbitrarily small faces of a polyhedron inscribed into a
curved surface may be almost orthogonal to the surface (the inscribed surface may
be “rugged”). Thus, when computing the area of a surface, we should abandon the
naive approach related to inscribed polyhedra.

EXERCISES

1. Show that any two parametrizations of a simple arc can be obtained from each
other by a strictly monotone change of variables. Deduce (without using The-
orem 8.2.3) that the classical length of a simple arc does not depend on the
parametrization.

2. Using only the definition of the classical length, but not Theorem 8.2.3, show
that the length is additive: s(L)= s(L1)+ s(L2), where L is a simple arc, L1 =
γ ([a, c]), L2 = γ ([c, b]), a < c < b, and γ is an arbitrary parametrization of L.

3. Let L be a smooth simple arc and denote by Lx,y the subarc of L with endpoints
x, y. Show that for every point p ∈ L,

lim
x,y→p

s(Lx,y)

‖x − y‖ = 1,
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i.e., the length of an arc shrinking to a point is equivalent to the length of the
corresponding chord.

4. Show that the length of the boundary of a planar domain is not less than the
length of the boundary of its convex hull. Does a similar result hold in the three-
dimensional case?

5. Show that σ1 is uniquely determined on Borel subsets of rectifiable arcs.
6. Let f ∈ C([a, b]). Prove that if f is monotone, then the length of its graph does

not exceed b− a + |f (b)− f (a)|. Show that the inequality is strict if f (where
f �≡ const) satisfies the Lipschitz condition.

7. What is the length of the graph of the Cantor function?
8. Show that the interval [0,1), regarded as a measure space with Lebesgue mea-

sure, is isomorphic (for the definition, see Exercise 11 of Sect. 4.10) to the unit
circle with measure 1

2π σ1.

8.3 Properties of the Surface Area of a Smooth Manifold

In this section, all manifolds and parametrizations are assumed smooth by default.
Manifolds of codimension one are called surfaces.

8.3.1 Our immediate goal is to obtain a formula for computing the area of Borel
subsets of a simple smooth k-dimensional manifold. Then, by the countable addi-
tivity of the area, we will be able to compute the areas of countable unions of such
sets, in particular, the areas of subsets of arbitrary smooth manifolds.

Let us discuss geometric considerations that suggest what form the desired for-
mula should have. Let � ∈ C1(O,Rm) be a parametrization of a simple mani-
fold M with dimM = k, and let �̃(t) = �(a) + da�(t − a) be the linearization
of � at a point a ∈ O. The set of values of �̃ is the k-dimensional affine tan-
gent space, on which the Lebesgue measure λk is defined. Consider a cubic cell
Qh ⊂O with a vertex at a and edge length h. Its image under � is a “curved par-
allelotope” Rh = �(Qh). For small h, it is almost isometric to the corresponding
“scale” R̃h, the image of Qh under the linearized map �̃ (see the lemma in the
next section). Hence we should expect that the area of the “curved parallelotope”
Rh is close to the Lebesgue measure of the set R̃h. It can be obtained by a trans-
lation from the parallelotope da�([0, h)k) lying in the tangent space. Therefore,
λk(R̃h)= λk(da�([0, h)k))= hkλk(da�([0,1)k)). We will call Ca = da�([0,1)k)
the accompanying parallelotope. Thus σk(Rh) must be close to hkλk(Ca), in the
sense that their ratio tends to one as h decreases. This suggests that the surface area
of a simple smooth manifold M is just a weighted image (see Sect. 6.1.1) of the k-
dimensional Lebesgue measure5 under �, with the weight ω� : t �→ λk(Ct ) equal
to the volume of the accompanying parallelotope.

5More precisely, of its restriction to Bk .
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8.3.2 In order to verify that our heuristic considerations are correct, we first prove a
two-sided bound on the deviation of a point of a manifold from the tangent subspace.
One of the possible “straightening” maps, which is of a simple geometric nature,
could be obtained by orthogonally projecting a sufficiently small neighborhood of
the tangency point to the tangent space (see Exercise 6 in Sect. 8.1). However, it
is technically more convenient to associate a separate straightening map (close to a
projection) with every parametrization.

Lemma Let � ∈ C1(O,Rm) be a local parametrization of a manifold M and
�̃(t)=�(a)+ da�(t − a) be its linearization at a point a ∈O. Then:

(1) the map � = �̃ ◦�−1 is almost isometric in the vicinity of the point p =�(a):
for every C > 1, in a sufficiently small M-neighborhood U of p,

1

C
‖x − y‖� ∥

∥�(x)−�(y)
∥
∥ � C‖x − y‖ (x, y ∈U);

(2) for every set A ∈Ak ,

λk

(
�̃(A)

)= ω�(a)λk(A). (1)

Proof It suffices to check that in the vicinity of p the inequality

∥
∥(x − y)− (

�(x)−�(y)
)∥
∥ �

(

1− 1

C

)

‖x − y‖

holds. Since the map �−1 locally satisfies the Lipschitz condition (see Corollary 1
in Sect. 8.1.4), it suffices to check that for every ε > 0 there exists a small M-
neighborhood U of the point p such that

∥
∥(x − y)− (

�(x)−�(y)
)∥
∥ � ε

∥
∥�−1(x)−�−1(y)

∥
∥ (x, y ∈U).

Setting s =�−1(x) and t =�−1(y), we see that this inequality is equivalent to the
condition

∥
∥(

�(s)−�(t)
)− da�(s − t)

∥
∥ � ε‖s − t‖ in the vicinity of a. (2)

The latter follows from the smoothness of �. Indeed, let r be so small that ‖du�−
da�‖� ε for every u from the k-dimensional ball B(a, r). Then, by Corollary from
Lagrange’s inequality (see Sect. 13.7.2),

∥
∥

(
�(s)−�(t)

)− da�(s − t)
∥
∥ � sup

u∈B(a,r)

‖du�− da�‖‖s − t‖,

which implies (2). Thus, as a desired M-neighborhood U of p, we can take
�(B(a, r)) provided that the radius r is sufficiently small.

To prove (1), observe that the measure A �→ λk(�̃(A)) is translation-invariant
and hence (see Sect. 2.4.2) proportional to λk . Since λk(�̃([0,1)k)) = λk(Ca) =
ω�(a), the proportionality coefficient is equal to ω�(a). �
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Now we are in a position to prove a formula for computing the area of a set lying
on a smooth manifold. The idea of the proof is the same as in Theorem 6.2.1.

Theorem For every Borel set E contained in a simple smooth manifold M ,

σk(E)=
∫

�−1(E)

ω�(t) dt, (3)

where � is an arbitrary smooth parametrization of M .

As we mentioned in Sect. 8.2.2, the axioms of area do not uniquely determine it
on all Borel sets. In contrast, the above theorem shows that on sufficiently “good”
sets—smooth manifolds and their Borel subsets—all areas coincide. In Sect. 8.8 it is
shown that the same is true for subsets of Lipschitz (in particular, convex) surfaces.
Thus the difference between various areas may manifest itself only on Borel sets of
quite a complicated nature.

Proof Let O be the open set on which the parametrization � is defined, and consider
the measure ν(A)= σk(�(A)) on Borel subsets of O. We will verify that it satisfies
the condition

inf
A

ω� λk(A)� ν(A)� sup
A

ω�λk(A). (4)

As established in Theorem 6.1.2, this implies that ν(A) = ∫
A
ω�(t) dt , which is

equivalent to the desired assertion.
If these inequalities hold for sets forming an increasing sequence, then they ob-

viously hold for the union of these sets. Hence it suffices to prove (4) assuming that
A is a bounded set whose closure is contained in O. Both inequalities (4) are proved
in the same way, so we will prove only the upper bound, leaving the reader to carry
out a similar argument for the lower bound.

If the right inequality in (4) is false, then for some C0 > 1 we have

ν(A) > C0 sup
A

ω�λk(A). (5)

Divide A into finitely many parts with the diameter of each part at most diam(A)/2.
Then (5) must hold for one of these parts, which we denote by A1. Replacing A

by A1 and repeating the argument, we obtain a set A2, etc. By induction, we will
construct a sequence of nested sets An with diameters tending to zero. Take a point
a in the intersection

⋂∞
n=1 An. By the construction of the sets An, they satisfy (5):

ν(An) > C0 sup
An

ω�λk(An). (6)

Let us show that this leads to a contradiction. By the lemma, for every C > 1 (to be
specified later) there exists a neighborhood V of a such that for x, y ∈ U =�(V )
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we have
1

C
‖x − y‖� ∥

∥�(x)−�(y)
∥
∥ � C‖x − y‖,

where, as in the lemma, � = �̃ ◦ �−1 and �̃ is the linearization of � (i.e.,
�̃(t)=�(a)+ da�(t − a)). If n is so large that An ⊂ V , then �(An)⊂U . Hence,
by Lemma 8.2.1, for the set En =�(An) we have σk(En)� Ckλk(�(En)). Since
�(En)= �̃(An) and, according to (1), λk(�̃(An))= ω�(a)λk(An), it follows that

ν(An) = σk

(
�(An)

)= σk(En)� Ckλk

(
�(En)

)= Ckλk

(
�̃(An)

)

� Ck sup
An

ω�λk(An).

From (6) and the last inequality we see that 1 < C0 � Ck . However, this is not
possible if C is chosen sufficiently close to 1. Therefore, our assumption is false,
and the theorem follows. �

A special case of this result (for k =m) is Theorem 6.2.1 on the behavior of the
Lebesgue measure under a diffeomorphism, since in this case ω� = J� ≡ |det(�′)|.
The proofs of these theorems are similar, but here we have used the properties of
area, which has allowed us not to keep track of the measures of the images of small
cubic cells.

8.3.3 Here we will discuss the basic properties of the area σk in the space R
m,

always assuming that k < m. For brevity, we will call it just the area, omitting the
reference to the dimension.

It is clear that the properties of σk substantially differ in some respects
from the familiar properties of the Lebesgue measure. For example, since ev-
ery m-dimensional cube contains a continuum of congruent pairwise disjoint k-
dimensional cubes, in R

m there are compact sets of infinite area. It is also clear that
every non-empty open set has infinite area. This fact immediately implies that the
area is not σ -finite and cannot be a regular measure. Thus, when studying the prop-
erties of σk in more detail, we will rather consider not the area “as a whole”, but its
restrictions to subsets contained in a fixed manifold. To be more precise, we intro-
duce the following notation related to a smooth k-dimensional manifold M ⊂ R

m

(with k < m). By BM we denote the system of all Borel sets contained in M , and
by σM the restriction of the k-dimensional area to BM . Since M itself is a Borel
set, BM is a σ -algebra and σM is a measure.

Formula (3) allows us to compute the area of a Borel subset of a simple manifold.
It is obviously valid also for subsets of a coordinate neighborhood of an arbitrary, not
necessarily simple, manifold provided that � is the corresponding parametrization.

Let us establish several important properties of the area.

(1) The area of a compact subset of a smooth manifold is finite.

For a compact subset of a coordinate neighborhood, this follows from (3), since
its inverse image under every parametrization is a compact set and the weight ω�
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is continuous. An arbitrary compact subset of a manifold can be covered by finitely
many coordinate neighborhoods of finite area.

(2) The measure σM is σ -finite.

This property follows from the previous one and Corollary 2 from Sect. 8.1.5.
Since Borel sets of zero measure may have non-Borel subsets, the measure σM is

not complete. To obtain a complete measure, we should consider its Carathéodory
extension. The σ -algebra on which it is defined will be denoted by AM , and the
elements of AM will be called Lebesgue measurable or, in short, measurable. By
Theorem 1.5.1, the extension of σM to AM is unique. For this extension we keep the
old notation σM and still call it the area (of the manifold M). By Corollary 1.5.2,
every measurable set can be approximated from the inside and from the outside by
Borel sets of the same measure.

If � is a parametrization of a simple manifold M and E ⊂ M is an arbitrary
Lebesgue measurable set, then formula (3), established for Borel sets, remains valid.
Thus:

(3) the measure σM on a simple k-dimensional manifold M is a weighted image of
the k-dimensional Lebesgue measure with respect to an arbitrary parametriza-
tion �. A subset of a simple manifold is measurable if and only if its inverse
image is measurable.

Indeed, a measurable set E can be written in the form E = A ∪ e, where A is
a Borel set and σM(e) = 0. Besides, e ⊂ e′, where e′ is a Borel set of zero area.
Hence �−1(e) ⊂�−1(e′) and, moreover, λk(�

−1(e′))= 0. The latter holds, since
0= σM(e′)= ∫

�−1(e′) ω�(t) dt and ω� > 0. By the completeness of the Lebesgue

measure, the set �−1(e) is measurable (and has zero measure). Therefore,

σM(E)= σM(A)=
∫

�−1(A)

ω�(t) dt =
∫

�−1(E)

ω�(t) dt.

In a similar way one can show that the measurability of �−1(E) implies the mea-
surability of E.

(4) The measure σM is regular, i.e. (see Sect. 2.2.2),

σM(E)= inf
E⊂G⊂M

G is open in M

σM(G)= sup
E⊃F

F is compact set

σM(F)

for every measurable set E, E ⊂M .

If M is a simple manifold, then this property is an immediate consequence of the
regularity of the Lebesgue measure and formula (3). We leave the reader to prove it
in the case of an arbitrary manifold.

(5) Let L be an arbitrary smooth manifold, dimL< k. Then σk(L)= 0.
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Let us show that every point from L has a neighborhood U such that the inter-
section L∩U has zero area (this suffices because, by Lindelöf’s theorem, L can be
covered by countably many such neighborhoods).

According to the second definition of a smooth manifold, U can be chosen in
such a way that L∩U is contained in a simple smooth manifold M of dimension k.
Moreover, we may assume without loss of generality that dimL= k − 1.

Let � be a parametrization of M . Then �−1(L) is a smooth surface in R
k , which

can be written as a countable union of graphs of smooth functions (see Corollary 4
in Sect. 8.1.5). Since the k-dimensional volume of every such graph vanishes by
Corollary 2.3.1, we have λk(�

−1(L))= 0. Thus σk(L)= ∫
�−1(L)

ω�(t) dt = 0.

It follows, for example, that when computing the area of a subset of a sphere, we
may discard manifolds of smaller dimension. This allows us to assume without loss
of generality that the set under consideration is contained in the “cut” sphere and
use the corresponding parametrization and formula (3).

(6) Under the homothety with ratio a > 0, the measure of a set contained in a
k-dimensional manifold M is multiplied by ak : σk(aE)= ak σk(E) if E ∈AM .

Indeed, the area is proportional to the Hausdorff measure, which has the desired
property (see Property (8) in Sect. 2.6.2).

Note that in the case of an arbitrary linear transformation of a manifold M , the
measures on M and on its image do not have such a simple relation. To see this, it
suffices to consider compressing a circle: a simple calculation shows that the length
of an arc of an ellipse with eccentricity ε �= 1 can be expressed via the elliptic inte-

gral
∫ ϕ

0

√
1− ε2 sin2 t dt , which is not an elementary function.

In conclusion, we state the property of the area mentioned immediately after
Definition 8.2.1.

(7) The area is invariant under isometries.

In particular, the area on a sphere is rotation-invariant.

8.3.4 In order to compute the areas of manifolds via formula (3), we need explicit
expressions for the weight ω�(t) equal to the measure of the accompanying par-
allelotope Ct . For k = 1, Ct is just the line segment with endpoints 0 and �′(t).
Hence ω�(t) = λ1(Ct ) = ‖�′(t)‖, so that, in order to compute, for example, the
length of an arc L=�([a, b]), we should integrate the length of the tangent vector:
σ1(L)= ∫ b

a
‖�′(t)‖dt .

In the general case, the parallelotope Ct is spanned by the canonical tangent
vectors τ1 = τ1(t), . . . , τk = τk(t) corresponding to the parametrization �. Since
they are linearly independent, the volume of Ct is positive, i.e., we always have
ω�(t) > 0. The value ω�(t) can be computed via the Gram determinant (see
Sect. 2.5.3):

ω�(t) = λk(Ct )=
√
�(τ1, . . . , τk)=

√

det
((〈τi, τj 〉

)k
i,j=1

)

=
√

det
[(
�′(t)

)T
�′(t)

]
.
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It follows from the Binet–Cauchy formula that

ω2
�(t)= det

[(
�′(t)

)T
�′(t)

]=
∑

j1<j2<···<jk

(
D(ϕj1 , ϕj2 , . . . , ϕjk )

D(t1, t2, . . . , tk)
(t)

)2

,

where ϕ1, ϕ2, . . . , ϕm are the coordinate functions of �.
For a surface, i.e., in the case k =m− 1, the expression for ω�(t) provided by

the Binet–Cauchy formula simplifies:

ω2
�(t)=

m∑

j=1

(
D(ϕ1, . . . , ϕ̂j , . . . , ϕm)

D(t1, . . . , tm−1)
(t)

)2

(the symbol ̂ indicates that the corresponding function is omitted).
The right-hand side has a simple geometric interpretation. Let e1, . . . , em be the

canonical basis in R
m. Consider the vector

N�(t)=
m∑

j=1

(−1)j+1 D(ϕ1, . . . , ϕ̂j , . . . , ϕm)

D(t1, . . . , tm−1)
(t) · ej .

It can be written via the symbolic determinant

N�(t)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

e1 e2 . . . em
∂ϕ1(t)
∂t1

∂ϕ2(t)
∂t1

. . .
∂ϕm(t)
∂t1

∂ϕ1(t)
∂t2

∂ϕ2(t)
∂t2

. . .
∂ϕm(t)
∂t2

...
...

. . .
...

∂ϕ1(t)
∂tm−1

∂ϕ2(t)
∂tm−1

. . .
∂ϕm(t)
∂tm−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

whose rows, except for the first one, consist of tangent vectors.
The vector N�(t) is orthogonal to each tangent vector τj (t), since the inner prod-

uct 〈N�(t), τj (t)〉 can be written as a determinant with two equal rows. Thus N�(t)

is a normal to M at the point �(t). It will be called the normal corresponding to the
parametrization �. Obviously, the length of N�(t) is equal to ω�(t).

For m= 3, k = 2, we see that N�(t) is simply the vector product of the tangent
vectors: N�(t)= τ1(t)× τ2(t). Clearly,

ω2
� =

∣
∣
∣
∣
〈τ1, τ1〉 〈τ1, τ2〉
〈τ2, τ1〉 〈τ2, τ2〉

∣
∣
∣
∣=EG− F 2,

where E,F,G are the coefficients of the first fundamental form of the surface, i.e.,
E = ‖τ1‖2, G= ‖τ2‖2 and F = 〈τ1, τ2〉. If the tangent vectors τ1 and τ2 are orthog-
onal, then ω� = ‖τ1‖ · ‖τ2‖.

If M = �f is the graph of a function f from C1(O,R), then the map

O " x = (x1, . . . , xm−1) �→�(x)= (
x,f (x)

)
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is its canonical parametrization, and

D(ϕ1, . . . , ϕ̂j , . . . , ϕm)

D(x1, . . . , xm−1)
(x)= (−1)m+j+1 ∂f

∂xj
(x)

for 1 � j �m− 1. If j =m, then this determinant is equal to one. Hence N�(x)=
(−1)m(f ′x1

(x), . . . , f ′xm−1
(x),−1) and ω�(x)=√

1+ ‖gradf (x)‖2.
The density ω� corresponding to the canonical parametrization can easily be

computed directly from geometric considerations, without using the general for-
mula. Indeed, the tangent vectors corresponding to the canonical parametrization of
the graph are τj = (0, . . . ,0,1,0, . . . ,0, f ′xj (x)). The projection to R

m−1 sends the

accompanying parallelotope Cx spanned by these vectors to the unit cube [0,1]m−1.
Hence (see Sect. 2.4.6) λm−1(Cx) = 1

|cos θ(x)| , where θ(x) is the angle between
the last coordinate axis and an arbitrary normal to the tangent plane T(x,f (x)).
As is well known (see Example 1 in Sect. 8.1.3), one such normal is the vector
ν(x)= (−f ′x1

(x), . . . ,−f ′xm−1
(x),1) (observe that the normals N�(x) and ν(x) co-

incide for odd m and are opposite for even m). Therefore,

∣
∣cos θ(x)

∣
∣= 〈ν(x), em〉

‖ν(x)‖‖em‖ =
1

‖ν(x)‖ .

Hence

ω�(x)= λm−1(Cx)= 1

|cos θ(x)| =
∥
∥ν(x)

∥
∥=

√
1+ ∥

∥gradf (x)
∥
∥2

.

Thus the area of every set E contained in the graph �f can be computed by the
formula

σ�f
(E)=

∫

�−1(E)

dx

|cos θ(x)| =
∫

P(E)

√
1+ ∥

∥gradf (x)
∥
∥2

dx, (7)

where P(E) is the orthogonal projection of E to R
m−1.

In particular, if f (x) = √
R2 − ‖x‖2 for x ∈ Bm−1(R), then �f is the upper

hemisphere Sm−1+ (R). Since the radius vector of a point on the sphere Sm−1(R) is a
normal to Sm−1(R), we have cos θ = f (x)/R. Hence for the area of a measurable
set E lying on the hemisphere Sm−1+ (R) we obtain the formula

σ�f
(E)=

∫

P(E)

1

|cos θ(x)| dx =
∫

P(E)

R
√
R2 − ‖x‖2

dx, (7′)

which we already used in Sect. 6.5 for R = 1.

8.3.5 Now we consider several examples.

Example 1 (The area of subsets of a two-dimensional sphere) According to Prop-
erty (5) from Sect. 8.3.3, when computing the areas of subsets of the sphere
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S2(R) = {(x, y, z) |x2 + y2 + z2 = R2}, one may discard smooth curves. We in-
troduce spherical coordinates ϕ, θ , i.e., consider the map

(ϕ, θ) �→�(ϕ, θ)= (R cosϕ cos θ,R sinϕ cos θ,R sin θ) ∈ S2

(

|ϕ|< π, |θ |< π

2

)

.

It provides a parametrization of the sphere cut along the meridian ϕ = ±π . The
coordinate lines for this parametrization are meridians and parallels. This allows
one to easily compute the approximate area of the small quadrilateral bounded by
the coordinate lines corresponding to the angles ϕ, ϕ+h and θ , θ+h (h > 0). Since
the meridians and the parallels are orthogonal, the accompanying parallelotope is a
rectangle whose side lengths for small h are almost equal to the lengths of the arcs
bounding the curved quadrilateral. The latter are circular arcs of radius R (along
the meridian) and R cos θ (along the parallel). Hence the area of the accompanying
parallelogram is approximately equal to (R2 cos θ)h2. This suggests that the weight
ω� corresponding to the parametrization in question is equal to R2 cos θ . We leave
the reader to check that the obtained result is correct by finding the tangent vectors
and computing the corresponding Gram determinant.

Knowing the weight, one can easily find the area of a set lying on the sphere. For
simplicity, consider a spherical quadrilateral Q bounded by parallels and meridians:

Q=
{

�(ϕ, θ)

∣
∣
∣−π � α1 < ϕ < α2 � π,−π

2
� β1 < θ < β2 �

π

2

}

.

Obviously,

σ2(Q)=
∫ α2

α1

∫ β2

β1

R2 cos θ dϕ dθ =R2(sin β2 − sin β1)(α2 − α1).

For the extreme values of α1, α2, β1, β2, we obtain the area of the whole sphere:
σ2(S

2(R))= 4π R2.

Example 2 (The area of subsets of a two-dimensional torus) According to Prop-
erty (5) from Sect. 8.3.3, when computing the areas of subsets of the torus T 2 =
{(x, y, z) | (R−√

x2 + y2)2 + z2 = r2}, we may discard smooth curves. Let us find
the weight corresponding to the parametrization of the cut torus considered in Ex-
ample 3 from Sect. 8.1.3. Recall that this parametrization � is as follows:

�(ϕ, θ)= (
(R + r cos θ) cosϕ, (R + r cos θ) sinϕ, r sin θ

)
,

where ϕ, θ ∈ (−π,π).
As in the case of a sphere, the coordinate lines (the analogs of parallels and

meridians) form two families of orthogonal circles. Computing, as in Example 1,
the area of a small curved quadrilateral bounded by coordinate lines, we arrive at
the plausible conclusion that the weight corresponding to the chosen parametrization
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has the form ω�(ϕ, θ)= r(R+ r cos θ). The reader can easily perform all necessary
formal calculations.

It is clear that the area of the curved quadrilateral on the torus bounded by “merid-
ians” ϕ = α1, ϕ = α2 and “parallels” θ = β1, θ = β2 is equal to

∫ α2

α1

∫ β2

β1

r(R + r cos θ) dϕ dθ = r
(
R(β2 − β1)+ r(sinβ2 − sinβ1)

)
(α2 − α1).

For the extreme values of α1, α2, β1, β2, we obtain the area of the whole torus:
σ2(T

2)= 4π2rR.

Example 3 (The area of subsets of a conic surface) Let us find out how the area of
a set E lying on the conic surface {(x, y) |x ∈ R

m−1, y = c‖x‖} is related to the
area of its projection P(E) to the plane y = 0. If 0 /∈ E, then E lies on a smooth
surface, the graph of the function f (x) = c‖x‖ defined on R

m−1 \ {0}. One can
easily see that ‖gradf (x)‖ = |c| everywhere (the angle between the tangent plane
and the plane y = 0 is constant). Hence

σm−1(E)=
∫

P(E)

√
1+ ∥

∥gradf (x)
∥
∥2

dx =
√

1+ c2 λm−1
(
P(E)

)
.

We now consider several examples related to the multi-dimensional sphere.

Example 4 (The area of a multi-dimensional sphere) To compute the area of a
sphere Sm−1(R) of arbitrary radius, it suffices to compute the area of the unit sphere
Sm−1, since Sm−1(R)=RSm−1 and, consequently (see Property (6) in Sect. 8.3.3),
σm−1(S

m−1(R))=Rm−1σm−1(S
m−1). The area of the unit sphere has already been

computed in Sect. 6.5.1 using the fact that it consists of two hemispheres each of
which is the graph of a smooth function. We will not reproduce these calculations,
but only write down the formula they lead to:

σm−1
(
Sm−1(R)

)= 2πm/2

�(m/2)
Rm−1.

The right-hand side is equal to mαmRm−1 = (αmRm)′R . Hence the area of a sphere is
equal to the derivative (with respect to the radius) of the volume of the corresponding
ball. Later (see Remark (3) in Sect. 8.4.3 and Theorem 13.4.7) we will discuss this
question in more detail.

Let us also compute the area of the spherical “cap” cut from the sphere Sm−1(R)

by a plane at distance H (0 �H < R) from its center (for H = 0, we thus obtain a
hemisphere). Since the area is rotation-invariant, we may say that the set in question
is

SH (R)= {
(x, y)= (x1, . . . , xm−1, y) ∈ Sm−1(R) |y >H

}
.
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It is obviously the part of the graph of the function x �→ f (x)=√
R2 − ‖x‖2 that

lies above the ball Bm−1(
√
R2 −H 2). Formula (7′) yields

σm−1
(
SH (R)

)=
∫

Bm−1(
√

R2−H 2)

R
√
R2 − ‖x‖2

dx.

Now we use the formula for computing the integral of a radial function (see Exam-
ple 1 in Sect. 6.4.2 or Corollary 3 in Section 6.5.3 in which m should be replaced
by m− 1):

σm−1
(
SH (R)

)= (m− 1)αm−1R

∫ √R2−H 2

0

um−2 du√
R2 − u2

= (m− 1)αm−1R
m−1

∫ √R2−H 2/R

0

vm−2 dv√
1− v2

. (8)

Here αm−1 = λm−1(B
m−1) = π(m−1)/2/�((m + 1)/2). Setting H = δR, we can

rewrite (8) as

σm−1
(
SδR(R)

) = (m− 1)αm−1R
m−1

∫ √1−δ2

0

vm−2 dv√
1− v2

= (m− 1)αm−1R
m−1

∫ π/2

arcsinδ
cosm−2 t dt.

Now we find out what part of the multi-dimensional sphere falls into the spheri-
cal cap as the dimension m increases indefinitely while the distance from the plane
cutting off the cap to the center of the sphere remains constant (to simplify the for-
mulas, we consider spheres in R

m+1 rather than in R
m). It is particularly instructive

to consider this question in the two cases where the sphere radius is equal to one (in
all dimensions) and where it is proportional to

√
m.

First, we consider the case of the unit sphere.

Example 5 In a space of large dimension, we have the “concentration of measure”
phenomenon: almost all of the area of a sphere is concentrated in an arbitrarily
narrow zone near the “equator”. More precisely, for the caps Sδ = Sδ(1), the ratio
σm(Sδ)/σm(S0) decays rapidly as the dimension grows:

σm(Sδ)

σm(S0)
=

∫ π/2
arcsinδ cosm−1 t dt
∫ π/2

0 cosm−1 t dt
< 3e−

mδ2
2 . (9)

One of the consequences of this surprising phenomenon is described in Exercise 7.
To prove (9), let us first estimate the denominator. As is well known (see Exam-

ple 1 in Sect. 4.6.2),

Wm ≡
∫ π/2

0
cosm t dt = (m− 1)!!

m!! vm,
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where vm is equal to 1 or π/2 depending on the parity of m. Hence WmWm+1 =
π

2m+2 . Since the integrals Wm decrease, it follows that

√
π

2m+ 2
<Wm <

√
π

2m
.

To estimate the numerator, apply the inequalities δ � arcsin δ and cos t � e−t2/2:

Wm(δ) ≡
∫ π/2

arcsinδ
cosm t dt �

∫ π/2

δ

e−
m
2 t2

dt <

∫ ∞

0
e−

m
2 (t+δ)2

dt

�
√

π

2m
e−

m
2 δ2

.

Thus for m> 1 we have

σm(Sδ)

σm(S0)
= Wm−1(δ)

Wm−1
<

√
m

m− 1
e−

m−1
2 δ2 �

√
me

m− 1
e−

m
2 δ2

< 3e−
mδ2

2 .

Observe that, having replaced arcsin δ with δ, we have estimated the area of the
cap determined by the inequality y � sin δ, which is a little larger than Sδ . Such a set
appears naturally if we replace the Euclidean metric on the sphere by the stronger
geodesic metric. In the latter metric, the distance between two points of the sphere is
equal to the angle between their radius vectors. It is clear that the larger cap consists
of the points for which the deviation from the equator (the intersection of the sphere
with the plane y = 0) is at least δ in the geodesic metric.

Example 6 Now let us discuss the second of the questions posed above: as m grows,
how does the ratio of the area of the cap SH (R) to the area of the ambient sphere
Sm(R) behave under the condition that R =Rm = θ

√
m, where θ > 0. Set Pm(H)=

σm(SH (R))/σm(Sm(R)). This value may be regarded as the probability that a point
“picked at random” from the sphere falls into the cap. One may also say that Pm(H)

is the probability that the last coordinate of a point picked at random from the sphere
is greater than H .

It follows from (8) (with m replaced by m+ 1) that

Pm(H)= mαm

(m+ 1)αm+1

∫ √1−H 2/(mθ2)

0

tm−1 dt√
1− t2

.

Since �(x + 1
2 )∼

√
x �(x) as x→+∞ (see formula (4) in Sect. 7.2.2), we have

mαm

(m+ 1)αm+1
= m

m+ 1

πm/2

�(m+2
2 )

�(m+3
2 )

π
m+1

2

∼
m→∞

√
m

2π
,

whence

Pm(H) ∼
m→∞

√
m

2π

∫ √1−H 2/(mθ2)

0

tm−1

√
1− t2

dt.
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Let us see how the last integral behaves, setting for brevity δ = H/θ . Making the
substitution v =√m

√
1− t2, we obtain

√
m

∫ √1−δ2/m

0

tm−1

√
1− t2

dt =
∫ √

m

δ

(

1− v2

m

)m−2
2

dv −→
m→∞

∫ ∞

δ

e−v2/2 dv.

The passage to the limit can be justified in exactly the same way as in Example 2
from Sect. 4.8.4. Therefore,

Pm(H) −→
m→∞

1√
2π

∫ ∞

H/θ

e−v2/2 dv = 1

θ
√

2π

∫ ∞

H

e−t2/(2θ2) dt.

This limit may be interpreted as the probability that the Gaussian random variable
with density 1

θ
√

2π
e−t2/(2θ2) takes a value greater than H . This result, sometimes

called Poincaré’s or Maxwell’s6 lemma, means that with respect to the normalized
surface area of the m-dimensional sphere of radius θ

√
m, the distribution of the

coordinates is “almost Gaussian”.

8.3.6 Now we are going to discuss a more special question, namely, the behavior
of the area under a bending. By a bending of a manifold M one usually means a
transformation under which the lengths of curves lying on M do not change. For
our purposes, this sense is too wide, since under such a map a smooth manifold may
transform into a set that is not a manifold. For instance, an interval of the real axis
can be bent into a “figure-of-eight” (the continuous map t �→ ((1−cos t) sign t, sin t)

transforms the interval (−2π,2π) into a pair of touching circles; it is one-to-one, but
not homeomorphic). In addition, we continue to restrict ourselves to smooth maps.
Thus it would be wise to impose additional conditions on bending transformations.

Definition A bending of a smooth manifold M lying in R
m is a smooth map

� :M→R
d satisfying the following conditions:

(1) � is a homeomorphism between M and �(M);
(2) � preserves the lengths of smooth curves: σ1(L)= σ1(�(L)) for every smooth

curve L contained in M .

Recall that the smoothness of � on M means that this map is smooth on an open
set containing M .

It is intuitively clear that a bending does not change the area of a set lying on the
surface. This observation underlies, for example, the computation of the areas of a
cone and a cylinder known from school. Let us discuss the first of these examples in
more detail (for the second one, see Exercise 5).

6James Clerk Maxwell (1831–1879)—Scottish physicist.
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Example Consider a cone K in R
3 formed by rays starting at the origin (the vertex

of the cone). Such a cone is uniquely determined by its intersection with the unit
sphere, i.e., the set � = K ∩ S2. Obviously, the smoothness of the surface K \ {0}
means that � is a smooth curve. Adopting this assumption, we also assume that the
length � of � is finite and � is the natural parametrization defined on (0,�). Let us
“unfold” the cone in such a way that the curve � turns into an arc of the unit circle of
the same length; more precisely, a point �(s) maps to z(s)= (cos s, sin s), and the
ray passing through �(s) maps to the ray passing through z(s) (all rays are assumed
to start at the origin). We also assume that � < 2π (otherwise � should be divided
into several parts).

To formally verify that the described map is a bending, it is convenient to use
the inverse map �. We will assume that it is defined in an angle C with the vertex
at the origin whose points are determined by their polar angles lying in the interval
(0,�). To obtain an analytic expression for �, consider the smooth map P : C→
(0,�)× (0,+∞) that associates with each point z of C its polar coordinates ϕ(z)

and r(z). Then �(z)= r(z)�(ϕ(z)). Let us check that � is indeed a bending.
Let γ (t) (t ∈ (a, b)) be a parametrization of a smooth curve L lying in C. It gen-

erates the parametrization �=�◦γ of the curve �(L)⊂K . We must show that the
lengths σ1(L) and σ1(�(L)) of these curves coincide. Set P(γ (t))= (ω(t), ρ(t)).
Note that σ1(L) = ∫ b

a

√
(ρ′(t))2 + ρ2(t) · (ω′(t))2 dt . Since �(t) = ρ(t)�(ω(t)),

the tangent vector �′ breaks into two terms: �′ = ρ′� + ρ ω′� ′. Since ‖�‖ =
‖� ′‖ = 1 and � ′ ⊥� , it follows that ‖�′‖2 = (ρ′)2 + ρ2 · (ω′)2. Hence

σ1
(
�(L)

)=
∫ b

a

∥
∥�′(t)

∥
∥dt =

∫ b

a

√(
ρ′(t)

)2 + ρ2(t) · (ω′(t))2
dt = σ1(L),

as required.
Thus � is a bending. By Theorem 8.3.6 (see below), it preserves the area. In

particular, the area of the part of the cone K lying in the ball of radius R centered at
the vertex of the cone is equal to the area of the circular sector C ∩B(0,R).

Now let us study under what conditions a smooth map is a bending.

Lemma Let M ⊂R
m be a smooth manifold and � :M→R

d be a smooth homeo-
morphism. It preserves the lengths of curves lying in M if and only if for every point
p in M , the map dp� is an isometry of the tangent space Tp(M) onto R

d .

Proof Let L (L⊂M) be a smooth curve passing through a point p, and let t �→ γ (t)

(t ∈ (α,β)) be a (smooth) parametrization of L with p = γ (t0). Then δ =� ◦ γ is
a parametrization of the curve L̃=�(L). It is clear that δ′(t)= dγ (t)�(γ ′(t)), and
the lengths of the arcs �= γ ((t0, t)), �̃= δ((t0, t)) are given by the formulas

σ1(�)=
∫ t

t0

∥
∥γ ′(u)

∥
∥du, σ1(�̃)=

∫ t

t0

∥
∥δ′(u)

∥
∥du. (10)
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If � is a bending, then these lengths are equal. Differentiating with respect to t ,
we see that ‖δ′(t0)‖ = ‖γ ′(t0)‖. This means that ‖dp�(γ ′(t0))‖ = ‖γ ′(t0)‖, i.e.,
‖dp�(x)‖ = ‖x‖ for every vector x that can be written in the form x = γ ′(t0).
By the definition of the tangent space, every vector from Tp(M) can be written
in this form. Thus it follows from the preservation of the lengths of curves that
‖dp�(x)‖ = ‖x‖ for x ∈ Tp(M), i.e., dp� is an isometry on the tangent space
Tp(M). If this condition is satisfied for every p ∈M , then ‖δ′(t)‖ = ‖γ ′(t)‖ for
every t , so that the right-hand sides of equalities (10) coincide, which implies that
� is a bending. �

It follows from the lemma that if � is a bending, then rank�′ = dimM and,
consequently, the set M̃ =�(M) is a smooth manifold of the same dimension as M .

Now we can easily prove that a bending preserves the area.

Theorem Let M be a smooth k-dimensional manifold, � be a bending of M , and
M̃ =�(M). Then for every set E ∈AM , its image Ẽ =�(E) has the same area:

σk(E)= σk(Ẽ).

Proof Obviously, it suffices to prove the assertion of the theorem for a set lying
in some coordinate neighborhood U ⊂M . Let � be a parametrization of U and
�̃=� ◦�. The differential d�(t)� is an isometry of the accompanying parallelo-
tope corresponding to � onto the parallelotope corresponding to �̃. Since isome-
tries preserve Lebesgue measure, the measures of these parallelotopes coincide, i.e.,
the weights ω� and ω�̃ are equal. Hence the areas of sets contained in U do not
change. �

Note that a bending may also be an expanding map; for instance, the “straighten-
ing” of a circular arc, the “unfolding” of a cylinder into a plane, etc. These examples
show that under an expanding map that strictly increases the distance between some
points, the length and the area do not always strictly increase.

8.3.7 We have already observed that the area of a sphere is rotation-invariant (see
Property (7) in Sect. 8.3.3). Let us discuss another example of an invariant measure.
Consider the measure σ = σn(n−1)/2 on the group O(n) of orthogonal n×n matrices

with the metric induced from R
n2

(see Sect. 8.1.3, Example 5). Since this set is
compact, the measure σ is finite. As we have established in Sect. 8.1.3, a translation
on the group O(n) (the multiplication on the left or on the right by a fixed element
U0 from O(n)) maps O(n) isometrically onto itself. Since the area is invariant under
isometries, the measure σ is invariant under translations on O(n). In particular, for
every summable function f on O(n) and every V in O(n), we have (see formula (2′)
from Sect. 6.1.2)

∫

O(n)

f (UV )dσ(U)=
∫

O(n)

f (VU)dσ(U)=
∫

O(n)

f (U)dσ(U). (11)
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Using the existence of an invariant measure on the group O(n), one can prove both
the uniqueness of such a measure and the uniqueness of a rotation-invariant measure
on the sphere. More precisely, the following theorem holds.

Theorem

(1) A finite Borel rotation-invariant measure on Sm−1 is unique up to a multiplica-
tive constant.

(2) A finite Borel measure on O(n) invariant under an arbitrary right or left trans-
lation (i.e., under left or right multiplication by an element of the group O(n))
is unique up to a multiplicative constant.

Proof (1) Let ν be a Borel rotation-invariant measure on Sm−1 and σ be the area
on O(m), which we know to be translation-invariant. Assume that ν(Sm−1) =
σm−1(S

m−1); we are going to prove that the measures ν and σm−1 coincide.
Consider the measure μ on O(m) obtained by normalizing the measure σ (i.e.,

μ = 1
σ(O(m))

σ ), and let E be a Borel subset of the sphere Sm−1. First let us show
that the value

∫
O(m)

χE(Ux0) dμ(U) does not depend on the choice of a point x0

from Sm−1. Indeed, for every vector x ∈ Sm−1 there is an orthogonal transformation
V such that x = V x0. Hence, by (11) with f (U)= χE(Ux0),

∫

O(m)

χE(Ux)dμ(U)=
∫

O(m)

χE(UV x0) dμ(U)=
∫

O(m)

χE(Ux0) dμ(U),

as required. Since, by the invariance of ν,

ν(E)=
∫

Sm−1
χE(x)dν(x)=

∫

Sm−1
χ(Ux)dν(x)

for every U in O(m), integrating this equality with respect to the (normalized) mea-
sure μ and changing the order of integration yields

ν(E)=
∫

O(m)

ν(E)dμ(U)=
∫

O(m)

(∫

Sm−1
χE(Ux)dν(x)

)

dμ(U)

=
∫

Sm−1

(∫

O(m)

χE(Ux)dμ(U)

)

dν(x)= ν
(
Sm−1)

∫

O(m)

χE(Ux)dμ(U),

where the right-hand side, as we have established above, does not depend on x.
Obviously, a similar equality can be written with ν replaced by σm−1. The right-
hand sides of these equalities are equal. Therefore, the left-hand sides also coincide,
as required.

When changing the order of integration (and, consequently, using Tonelli’s the-
orem), we have assumed that the function (x,U) �→ ϕ(x,U)≡ χE(Ux) is measur-
able on Sm−1×O(m). This is indeed the case, since ϕ is the characteristic function
of the set {(x,U) |Ux ∈ E} =�−1(E), where �(x,U)= Ux. Since the map � is
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obviously continuous and E is a Borel set, its inverse image �−1(E) is also a Borel
set (see Corollary 2 in Sect. 1.6.2).

The proof of Claim (2) is completely analogous. �

EXERCISES

1. What fraction of the area of a sphere centered at the origin is occupied by points
(x, y, z) satisfying the inequalities 0 � y �

√
3x and 0 � z�

√
2x?

2. Find the area of the surface obtained by rotating about the OX axis the graph
of a smooth function defined on an interval (a, b). Prove Guldin’s theorem: for
a function of fixed sign, this area is equal to the product of the length of the
graph and the length of the circle described by its center of mass (under the
assumption that the mass is distributed over the graph with constant density).

3. Consider the bounded part of the right circular cone with an angle 2α at the
apex cut off by a plane making an angle β (0 < β � π/2) to the axis of the cone.
Show that the ratio of the area of this part to the area of the ellipse obtained in
the cross section is equal to sin β/ sin α.

4. Find the three-dimensional area of the “bodily torus” M :

M = {
(x, y,u, v) ∈R

4 |x2 + y2 = r2, u2 + v2 <R2}
.

5. Show that the cylindric surface C = � × R ⊂ R
3, where � ⊂ R

2 is a simple
smooth curve of finite length S (it is called the directrix of C), can be obtained
by bending the strip (0, S)×R.

6. Refine the result of Lemma 8.3.6 by proving that the differential of a smooth
expanding map � on a smooth manifold M expands the tangent subspace Tp at
an arbitrary point p ∈M , i.e., ‖dp�(x)‖� ‖x‖ for all x ∈ Tp .

7. Using (9), show that as m→∞, the sphere Sm is almost entirely (with respect
to the area) contained in an infinitesimal cube: the area of the set-theoretic dif-

ference Sm \ (−δ, δ)m+1 for δ = δm = 2
√

lnm
m

is less than 6
m
σm(Sm).

8. To what result does the argument from Example 6 of Sect. 8.3.5 lead in the case
of spheres of unit area?

9. Using only the invariance of the area under rotations, show that the mean values
of the functions x2

j , x4
j , x2

j x
2
k (here j, k = 1, . . . ,m, j �= k) on the sphere Sm−1

are equal to 1
m

, 3
m(m+2) and 1

m(m+2) , respectively. Hint. One can obtain simple

equations relating the mean values x4
j and x2

j x
2
k by integrating the functions

((xj + xk)/
√

2)4 and (x2
1 + · · · + x2

m)2 over the sphere.
10. For m = m1 +m2, identify R

m with R
m1 × R

m2 . Let M1 and M2 be smooth
manifolds in R

m1 and R
m2 , respectively, and M = M1 ×M2. Show that the

measure σM is the product of the measures σM1 and σM2 .
11. The Grassmanian Gk

m is the set of all k-dimensional subspaces of Rm. The dis-
tance between two elements L1 and L2 of Gk

m is defined as the norm ‖P1−P2‖,
where P1 and P2 are the orthogonal projections from R

m to L1 and L2, respec-
tively. The group O(m) of orthogonal matrices can be canonically mapped onto
Gk

m by associating with every such matrix U the linear hull of the first k rows
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of U . We define a measure on Gk
m as the image of the area in O(m) under this

map. Show that the measure on Gk
m obtained in this way is “invariant under ro-

tations”, i.e., under transformations of the form Gk
m " L �→ U(L), where U is

an arbitrary element of O(m), and that a finite Borel measure on Gk
m invariant

under rotations is unique up to a multiplicative constant.
12. Denote by σ̃n the n-dimensional area normalized so that σ̃n(S

n)= 1. Using the
uniqueness of a rotation-invariant measure, show that for 1 < k <m

∫

Sm−1
f (x)dσ̃m−1(x)=

∫

Gk
m

(∫

L∩Sm−1
f (x)dσ̃k−1(x)

)

dν(L),

where f ∈ C(Sm−1) and ν is the normalized measure on the manifold Gk
m con-

structed in Exercise 11.

8.4 Integration over a Smooth Manifold

8.4.1 The computation of an integral with respect to the surface area of a smooth
manifold, or, in short, of a surface integral, can be reduced to the computation of
a multiple integral with respect to the Lebesgue measure. This transition does not
require additional efforts, since, by Property (3) from Sect. 8.3.3, the area of a simple
manifold is a weighted image of the Lebesgue measure. Hence we may apply the
general Theorem 6.1.1 on the computation of an integral with respect to a weighted
image of a measure, which in the case under consideration leads to the following
result.

Theorem Let M be a simple smooth manifold in R
m, dimM = k, and f be a non-

negative measurable function on M . Then

∫

M

f (x)dσk(x)=
∫

�−1(M)

f
(
�(t)

)
ω�(t) dt

for every parametrization � of M .
This formula also holds for every summable function on M .

Recall that ω�(t) has a simple geometric interpretation: this is the volume of the
accompanying parallelotope. For k = 1, it is equal to the length of the tangent vector
�′(t), and for k = m− 1, to the length of the normal N�(t) corresponding to the
parametrization � (see Sect. 8.3.4).

As in the general situation (see Corollary 6.1.1), a similar formula holds for func-
tions defined not on the whole manifold M , but only on a measurable subset of M . If
the manifold M is not simple, then an integral over M can be computed by consid-
ering a partition of M into at most countably many sets each of which is contained
in a coordinate neighborhood.
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In the case dimM =m, the assertion of the theorem is just the change of variables
formula for a diffeomorphism (see Sect. 6.2.2).

Observe the important special case when the manifold is the graph of a
smooth function ϕ defined on an open subset O of R

m−1. Consider the canoni-
cal parametrization of the graph O " x �→�(x)= (x,ϕ(x)). Then (see Sect. 8.3.4)
ω�(x)=√

1+ ‖gradϕ(x)‖2 and �−1(E)= P(E), where P is the orthogonal pro-
jection to R

m−1. Hence for every measurable set E ⊂M = �ϕ ,

∫

E

f dσm−1 =
∫

P(E)

f
(
x,ϕ(x)

)√
1+ ∥

∥gradϕ(x)
∥
∥2

dx. (1)

Example 1 Let �m = Sm−1 ∩R
m+ be the part of the unit sphere Sm−1 of Rm lying

in the “first octant”. Assuming that the sphere is homogeneous, we are going to find
the center of mass C of the surface �m. By symmetry, all coordinates of this vector
are equal: C = (c, . . . , c). As we have established in Sect. 6.3.3, they are given by
the formula

c= 1

σm−1(�m)

∫

�m

xm dσm−1(x)= 2m

mαm

∫

�m

xm dσm−1(x).

To compute this integral, observe that �m is a subset of the graph of the function
ϕ(t) =√

1− ‖t‖2 defined on the unit ball Bm−1 and the projection �m coincides
with the intersection A= Bm−1 ∩R

m−1+ . Applying (1) with f (x)= xm, we obtain

c= 2m

mαm

∫

A

ϕ(t)

√
1+ ∥

∥gradϕ(t)
∥
∥2

dt = 2m

mαm

∫

A

1dt = 2m

mαm

λm−1(A)

= 2αm−1

mαm

= �(m2 )√
π �(m+1

2 )
.

In particular,

‖C‖ =
√
m�(m2 )√

π�(m+1
2 )

.

As m→∞, these norms tend to
√

2
π

. One can show that they decrease. Note that

the center of mass C′ of the part of the unit ball lying in R
m+ (see Sect. 6.3.3) has the

coordinates c′ = 1√
π

�(m2 )

�(m+1
2 )

m
m+1 = m

m+1c and ‖C′‖ tends to the same limit as ‖C‖,

but increases rather than decreases.

Example 2 Let M be a smooth k-dimensional manifold in R
m, σk(M) <+∞, and

x0 ∈M . Let us find out for which p > 0 the integral

I0 =
∫

M

dσk(x)

‖x − x0‖p
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is finite. First we will find a necessary condition. Consider a parametrization � of
an M-neighborhood of the point x0 =�(a). In some ball B(a,ρ)⊂R

k , � satisfies
the Lipschitz condition: ‖�(t) − �(a)‖ � L‖t − a‖, where L is a fixed positive
number. If ρ is sufficiently small, then ω�(t)� 1

2ω�(a) for t ∈ B(a,ρ). Hence

I0 �
∫

B(a,ρ)

ω�(t) dt

‖�(t)−�(a)‖p � ω�(a)

2Lp

∫

B(a,ρ)

dt

‖t − a‖p .

If I0 is finite, then the integral on the right-hand side is also finite, which is possible
only for p < k (see Theorem 4.7.1).

Now we will show that the condition p < k is not only necessary, but also suf-
ficient for I0 to be finite. In order to prove at once a somewhat stronger result, we
introduce the integral

I (y)=
∫

M

dσk(x)

‖x − y‖p
(
y ∈R

m
)
.

Obviously, I0 = I (x0). We will prove that for p < k, the integral I is bounded in
the vicinity of x0. Note that in general the condition y /∈M is not sufficient for I (y)
to be finite if y ∈M \M (see Exercise 2).

We still assume that � is a parametrization of an M-neighborhood of x0 and
x0 =�(a). Recall that in the vicinity of a the parametrization � is the restriction of
some diffeomorphism P (see Lemma 8.1.4; we assume that the space R

k , on a sub-
set of which � is defined, is canonically embedded into R

m). In a sufficiently small
ball B(x0, r), the map F−1 satisfies the Lipschitz condition with some constant C:

∥
∥F−1(x)− F−1(y)

∥
∥ � C‖x − y‖ for x, y ∈ B(x0, r). (2)

Assuming that r is so small that ω�(�−1(x)) � 2ω�(a) for all x in Mr =
M ∩B(x0, r), we will prove that the integral I is bounded on the ball B(x0, r).

Taking an arbitrary point y from this ball, write the integral I (y) in the form

I (y)=
∫

Mr

dσk(x)

‖x − y‖p +
∫

M\Mr

dσk(x)

‖x − y‖p = I1(y)+ I2(y).

It is clear that

I2(y)�
1

rp

∫

M\Mr

dσk(x)�
1

rp
σk(M) <+∞.

It remains to estimate the integral I1(y) over the simple manifold Mr :

I1(y)=
∫

�−1(Mr )

ω�(t) dt

‖�(t)− y‖p � 2ω�(a)

∫

�−1(Mr )

dt

‖�(t)− y‖p .

Let us estimate the norm ‖�(t)− y‖ from below. Let x =�(t) and s = F−1(y). It
follows from (2) that for x, y ∈ B(x0, r),

∥
∥�(t)− y

∥
∥= ‖x − y‖� 1

C
‖t − s‖� 1

C
‖t − u‖,
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where u is the projection of s to R
k . Since the points x =�(t) and y lie in the ball

B(x0, r), we have ‖�(t)− y‖< 2r and, consequently, ‖t − u‖� C‖�(t)− y‖<
2Cr . Hence

∫

�−1(Mr )

dt

‖�(t)− y‖p �
∫

‖t−u‖<2Cr

(
C

‖t − u‖
)p

dt = Cp

∫

‖v‖<2Cr

dv

‖v‖p

= Cp kαk

k − p
(2Cr)k−p.

So, for y ∈ B(x0, r),

I (y)� 2Ckω�(a)
kαk

k − p
(2r)k−p + 1

rp
σk(M)

(the parameters C and r depend on the manifold M and the point x0, but not on the
exponent p).

Example 3 (Integrals similar to a simple-layer potential) Let M be a smooth
k-dimensional manifold in R

m, E be a compact subset of M , and w ∈ C(E). Let us
check that for p < k, the function

y �→ I (y)=
∫

E

w(x)

‖x − y‖p dσk(x)
(
y ∈R

m
)

is continuous in the whole space and infinitely differentiable in R
m \E.

The smoothness of I outside E follows from the fact that for y0 /∈ E the norm
‖y − x‖ is bounded away from zero if x ∈ E and y lies in a sufficiently small
neighborhood of y0. Hence the integrand, as well as all its partial derivatives with
respect to the coordinates y1, . . . , ym, are bounded in the vicinity of y0. Thus at y0

the condition (Lloc) is satisfied and we can apply the Leibniz rule.
To prove that I is continuous at a point y0 ∈E, we use Theorem 2 of Sect. 7.1.2.

Fix a number s > 1 such that sp < k and put C =maxE |w|. As we have established
in the previous example, the integral Ĩ (y) = ∫

E
C dσk(x)‖x−y‖sp is bounded in the vicinity

of y0, and this, by Theorem 2 of Sect. 7.1.2, suffices for I to be continuous at this
point.

8.4.2 In this section we will obtain a generalization of Fubini’s theorem to the case
where an open subset of Rm (m � 2) stratifies not into affine subspaces, but into
the level surfaces of a smooth function. In the special case where the level surfaces
are concentric spheres, we have essentially solved this problem in Theorem 6.5.2.
Indeed, in this theorem it is proved that for every function f summable in the ball
B(0, r)⊂R

m,

∫

B(0,r)
f (x) dx =

∫ r

0
tm−1

(∫

Sm−1
f (tξ) dσm−1(ξ)

)

dt.
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Since both the area σm−1 and the volume λm are translation-invariant, we may con-
sider spheres with arbitrary center. Furthermore, using the equality σm−1(tE) =
tm−1σm−1(E) for t > 0 (see Property (6) in Sect. 8.3.3) and the change of variables
theorem 6.1.1, we can rewrite the assertion of Theorem 6.5.2 as follows:

∫

B(a,r)

f (x) dx =
∫ r

0

(∫

S(a,t)

f (x) dσm−1(x)

)

dt. (3)

The theorem we are going to consider next is a far-reaching generalization of this
result.

Theorem (Kronrod7–Federer8) Let O be an open subset of Rm, F ∈ C1(O) and
gradF �= 0 in O. Then for every function f summable in O,

∫

O
f (x)dx =

∫ ∞

−∞

(∫

M(t)

f (x)

‖gradF(x)‖ dσm−1(x)

)

dt, (4)

where M(t)= {x ∈O |F(x)= t}.

Proof Let us first prove a local version of this theorem: every point x0 ∈ O has a
small neighborhood U such that (4) holds for every function f vanishing outside U .

We assume without loss of generality that F(x0)= 0. Moreover, applying if nec-
essary a translation and an orthogonal transformation, we may assume that x0 = 0
and that the tangent plane to M(0) at the origin coincides with the coordinate sub-
space xm = 0. To simplify formulas, denote by u the projection of x to this sub-
space, and let v be the last coordinate xm, so that x = (u, v), u= (u1, . . . , um−1) ∈
R

m−1, v ∈ R. Then F ′uk
(0) = 0 for 1 � k < m and F ′v(0) �= 0. Consider the map

T :O→ R
m that “straightens” the level surfaces: T (x) = (u,F (x)). It transforms

the level surfaces into planes parallel to the subspace Rm−1. The Jacobian JT of this
map at x = 0 does not vanish, since JT (0)= F ′v(0) �= 0. Hence the restriction of T

to some neighborhood U of the origin is a diffeomorphism. Let us assume that U is
projected into a ball of radius δ and lies between level surfaces M(−ε) and M(ε),
i.e.,

U = {
x = (u, v) | ‖u‖< δ,

∣
∣F(x)

∣
∣ < ε

}
,

where δ and ε are sufficiently small positive numbers. Then for |t | < ε the set
T (M(t) ∩ U) is contained in the affine subspace v = t , and T (U) coincides with
the Cartesian product W = Bm−1(0, δ) × (−ε, ε). Clearly, the map � inverse to
the restriction of T to U , as well as T itself, affects only the last coordinate of the
argument, so that it has the form

�(u, t)= (
u,ϕ(u, t)

)
, where ‖u‖< δ, |t |< ε

(ϕ is the last coordinate function of the map �, ϕ ∈ C1(W)).

7Alexandr Semenovich Kronrod (1921–1986)—Russian mathematician.
8Herbert Federer (1920–2010)—American mathematician.
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Thus, for |t | < ε, the part of M(t) lying in U is just the graph of the smooth
function u �→ ϕt (u)≡ ϕ(u, t). Since F(u,ϕt (u))≡ t , it is easy to establish a relation
between the gradients of the functions ϕt and F :

F ′uj

(
u,ϕt (u)

)+ F ′v
(
u,ϕt (u)

)∂ϕ(u, t)

∂uj

≡ 0 for 1 � j < m.

Hence

1

|F ′v|
=

√
1+ ‖gradϕt‖2

‖gradF‖ . (5)

Moreover, using the identity F ′v(u,ϕ(u, t))
∂ϕ(u,t)

∂t
≡ 1, we can compute the Jaco-

bian of �:

J�(u, t)= ∂ϕ(u, t)

∂t
= 1

F ′v(�(u, t))
.

Assuming that f vanishes outside U , we obtain, making a substitution, that
∫

U

f (x)dx =
∫

W

f (�(u, t))

|F ′v(�(u, t))| dudt =
∫ ε

−ε

(∫

‖u‖<δ

f (�(u, t))

|F ′v(�(u, t))| du
)

dt.

Let us write the inner integral as an integral over the graph of ϕt (see (1)). In view
of (5), we have

∫

‖u‖<δ

f (�(u, t))

|F ′v(�(u, t))| du=
∫

‖u‖<δ

f (u,ϕt (u))

‖gradF(u,ϕt (u))‖
√

1+ ∥
∥gradϕt (u)

∥
∥2

du

=
∫

M ′(t)

f (x)

‖gradF(x)‖ dσm−1(x), (6)

where M ′(t) is the graph of ϕt , i.e., the part of M(t) contained in U . Thus
∫

U

f (x)dx =
∫ ε

−ε

(∫

M(t)∩U
f (x)

‖gradF(x)‖ dσm−1(x)

)

dt

=
∫ ∞

−∞

(∫

M(t)∩U
f (x)

‖gradF(x)‖ dσm−1(x)

)

dt.

Since f = 0 outside U , it follows that (4) holds for functions that do not vanish only
in a sufficiently small neighborhood of x0.

It follows from the obtained local version of the theorem that (4) holds for a
summable function f supported by a compact subset of O. Indeed, for each point
x ∈O choose a neighborhood Ux ⊂O such that (4) holds for functions vanishing
outside Ux . By Theorem 8.1.8, there exists a partition of unity ϕ1, . . . , ϕN on the set
supp(f ) subordinate to the family {Ux}x∈O . Write (4) for f ϕk :

∫

O
f (x)ϕk(x) dx =

∫ ∞

−∞

(∫

M(t)

f (x)ϕk(x) dσm−1(x)

)

dt.
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Adding these equalities, we obtain the desired result for compactly supported func-
tions. To prove it for a non-negative function with arbitrary support (obviously, this
suffices for proving the theorem in full strength), we should exhaust the set O by an
increasing sequence of compact subsets Kn and apply Levi’s theorem to both sides
of (4) with f replaced by f χKn . �

Remark If f is continuous, then the function

t �→
∫

M(t)

f (x)

‖gradF(x)‖ dσm−1(x)

is also continuous. If the support of f is small, this follows from (6). The general
case can be proved using a partition of unity.

Observe also that the theorem remains valid if the smoothness of F is violated at
a closed set E satisfying the conditions

λm(E)= 0, σm−1
(
M(t)∩E

)= 0 for every t.

To prove this, it suffices to apply the theorem to O\E replacing M(t) with M(t)\E.
A deeper generalization of Theorem 8.4.2 can be found in [F] or [EG].

8.4.3 We now make a few more remarks about the obtained result.

(1) Obviously, formula (3) follows from the above theorem with O = R
m \ {a}

and F(x) = ‖x − a‖ (note that ‖gradF(x)‖ ≡ 1). We encourage the reader to
compare the proof of the theorem with the arguments from Sect. 6.5.2, where,
due to the special form of F , we did not need local considerations.

(2) Replacing f with f ‖gradF‖, we can rewrite (4) in the form

∫

O
f (x)

∥
∥gradF(x)

∥
∥dx =

∫ ∞

−∞

(∫

M(t)

f (x) dσm−1(x)

)

dt. (4′)

If F is sufficiently smooth, the condition gradF �= 0 can be dropped, since, by
Sard’s theorem 13.5.2, the set of critical values of the function F ∈ Cm(O) has
zero measure. Indeed, let Õ = {x ∈ O | gradF(x) �= 0}, and let E ⊂ R be the
set of critical values of F , so that λ1(E)= 0. If t /∈E, then F does not take the
value t on O \ Õ, and, consequently, M(t)∩ Õ =M(t). Thus we can obtain the
desired result by applying (4′) to Õ.

(3) Let V (u) = λm(O(F < u)) (u ∈ R). Assuming that V (u) < +∞, f ≡ 1 and
applying (4) to O(F < u), we have (taking into account that M(t) = ∅ for
t > u)

V (u)=
∫ u

−∞

(∫

M(t)

dσm−1(x)

‖gradF(x)‖
)

dt.
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Since the function t �→ ∫
M(t)

dσm−1(x)

‖gradF(x)‖ is continuous (see Remark 8.4.2), dif-
ferentiating the last equality, we arrive at the following result:

V ′(u)=
∫

M(u)

dσm−1(x)

‖gradF(x)‖ . (7)

In the special case where F(x)= ‖x‖ (and, correspondingly, ‖gradF(x)‖ ≡ 1),
the obtained formula leads to the equality (λm(B(u)))′ = σm−1(S

m−1(u)),
which we have already encountered (see Sect. 8.3.5, Example 4).

8.4.4 Now we use formula (7) to relate the area of a surface and its Minkowski
area (see Sect. 2.8.2). One can prove that for a compact set A contained in a smooth
surface S ⊂R

m,

σm−1(A)= lim
ε→0

λm(Aε \A)

2ε
,

where Aε is the ε-neighborhood of A (see [F, Theorem 3.2.39]). We will prove a
similar formula not for an arbitrary compact subset of a smooth surface, but for the
boundary of a compact Lebesgue set of a smooth function.

Theorem Let O be an open subset of R
m, F ∈ C2(O), K = O(F � C) and

M = ∂K . If the set K is compact and gradF �= 0 on M , then the area of M co-
incides with the Minkowski area, i.e.,

σm−1(M)= lim
ε→0

λm(Kε \K)

ε
.

Proof First assume that ‖gradF‖ ≡ 1 on M ; we may also assume without loss
of generality that C = 0. Fix δ > 0 such that Kδ ⊂ O. Let ω be the modulus of
continuity of the map x �→ gradF(x) on the set Kδ \ K . We will assume that δ

is so small that ω(δ) < 1/2. Let us show that for small ε > 0 the sets V (ε) =
{x ∈ Kδ |F(x) � ε} are close to the ε-neighborhoods of K . For this, keeping the
above notation, we will show that the following lemma holds.

Lemma Let ε < δ/2, ε′ = ε(1−ω(2ε)) and ε′′ = ε(1+ω(2ε)); then

V
(
ε′

)⊂Kε ⊂ V
(
ε′′

)
.

Proof of the lemma If x ∈Kδ \K and x0 is the point of M that is closest to x, then

F(x) = F(x)− F(x0)� max
z∈[x,x0]

∥
∥gradf (z)

∥
∥‖x − x0‖

�
(
1+ω

(‖x − x0‖
))‖x − x0‖.

Hence for every point x in Kε , for ε < δ we have F(x) � (1 + ω(ε))ε � ε′′ and,
consequently, Kε ⊂ V (ε′′).
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Now we will prove that V (ε′) ⊂ Kε . Let x ∈ V (ε) \K , and let x0 be the point
of M that is closest to x. By the definition of V (ε), we have ‖x − x0‖ < δ. One
can easily see that the vectors x − x0 and gradF(x0) are proportional: x − x0 =
‖x − x0‖ gradF(x0). Hence for some z ∈ [x0, x] we have

ε � F(x)− F(x0)=
〈
gradF(z), x − x0

〉= 〈
gradF(x0), x − x0

〉

+ 〈
gradF(z)− gradF(x0), x − x0

〉

� ‖x − x0‖ −ω
(‖x − x0‖

)‖x − x0‖. (8)

Since ‖x − x0‖< δ, we obtain ω(‖x − x0‖)� ω(δ)� 1/2, whence ‖x − x0‖� 2ε.
Returning to (8), we see that

ε � ‖x − x0‖ −ω
(‖x − x0‖

)‖x − x0‖� ‖x − x0‖ −ω(2ε)‖x − x0‖,
i.e., ‖x− x0‖� t = ε/(1−ω(2ε)). It follows that V (ε)⊂Kt . Since t > ε, we have
ω(2ε)� ω(2t), whence ε = t (1−ω(2ε)) > t(1−ω(2t)). Therefore,

V
(
t
(
1−ω(2t)

))⊂ V (ε)⊂Kt,

which, replacing t by ε, can be rewritten in the form

V
(
ε′

)= V
(
ε
(
1−ω(2ε)

))⊂Kε. �

Let us return to the proof of the theorem. It follows from the lemma that

(
1−ω(2ε)

)λm(V (ε′) \K)

ε′
� λm(Kε \K)

ε
�

(
1+ω(2ε)

)λm(V (ε′′) \K)

ε′′
.

By (7), as ε → 0, the outermost parts of this inequality tend to
∫
M

dσm−1(x)

‖gradF(x)‖ =
σm−1(M), which completes the proof of the theorem under the additional assump-
tion made above. Note that at this stage of the proof, we haven’t yet used the C2-
smoothness of F , but have used only the C1-smoothness.

In the general case (still assuming that C = 0), we introduce an auxiliary function
H by the formula

H(x)= F(x)
√‖gradF(x)‖2 + F 2(x)

.

It is obvious that H ∈ C1(O), K =O(H � 0), and

gradH(x)= gradF(x)
√‖gradF(x)‖2 + F 2(x)

+ F(x)grad
1

√‖gradF(x)‖2 + F 2(x)
.

Hence ‖gradH(x)‖ = 1 for x ∈M , and the desired equality holds by the first part
of the proof. �
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8.4.5 Using the isoperimetric inequality (see Sect. 2.8.2) and Theorem 8.4.4, we
can obtain the main special case of the Gagliardo–Nirenberg–Sobolev inequality.
For p = 1, it takes the form (see Sect. 5.4.4)

(∫

Rm

∣
∣F(x)

∣
∣

m
m−1 dx

)m−1
m

� 1

2

∫

Rm

∥
∥gradF(x)

∥
∥dx,

where F ∈ C1
0(R

m). We will prove it and, in passing, reduce the coefficient on
the right-hand side. Since every smooth function, along with all its derivatives,
can be uniformly approximated by functions of the class C∞0 (see Theorem 2 in
Sect. 7.6.4), in what follows we assume that F ∈ C∞0 (Rm). Then formula (4′) with
f ≡ 1 yields

∫

Rm

∥
∥gradF(x)

∥
∥dx =

∫ ∞

−∞
σm−1

(
M(t)

)
dt, (9)

where M(t) is the boundary of the set V (t)= {x ∈R
m |F(x)� t}. Since, by Sard’s

theorem 13.5.2, the set of critical values of the function F has zero measure, this
equality obviously remains valid if we integrate ‖gradF(x)‖ not over the whole
space R

m, but only over the set O = {x ∈ R
m |F(x) �= 0, gradF(x) �= 0}. In this

case we may assume that F � 0, since otherwise F can be replaced by |F |.
By Theorem 8.4.4, for non-critical values t ∈R,

σm−1
(
M(t)

)= lim
ε→0

1

ε
λm

((
V (t)

)
ε
\ V (t)

);

by the isoperimetric inequality, the right-hand side is not less than mα
1
m
m λ

m−1
m

m (V (t)),
where αm is the volume of the unit ball. Thus (9) implies that

∫

Rm

∥
∥gradF(x)

∥
∥dx �mα

1
m
m

∫ ∞

0
λ

m−1
m

m

(
V (t)

)
dt. (10)

To estimate the last integral, we need the following lemma.

Lemma If a non-negative function ψ does not increase on [0,+∞), then for any
r > 1 and s > 0,

(∫ s

0
ψr(t) dtr

) 1
r

�
∫ s

0
ψ(t) dt.

Proof of the lemma Denote the left- and right-hand sides of the inequality by
I (s) and J (s), respectively. Since the function ψ does not increase, I (s) �
ψ(s)(

∫ s

0 dtr )
1
r = sψ(s). Hence for almost all s > 0 we have

I ′(s)= 1

r
I 1−r (s) r sr−1ψr(s)�

(
sψ(s)

)1−r
sr−1ψr(s)=ψ(s)= J ′(s).



444 8 Surface Integrals

The lemma follows, since the functions I, J are absolutely continuous and I (0)=
J (0) (= 0). �

Applying the lemma to the function ψ(t)= λ
1
r
m(V (t)), we obtain

∫ ∞

0
λ

1
r
m

(
V (t)

)
dt �

(

r

∫ ∞

0
t r−1λm

(
V (t)

)
dt

) 1
r =

(∫

Rm

∣
∣F(x)

∣
∣r dx

) 1
r

(at the end, we have used Proposition 6.4.3). For r = m
m−1 , this inequality together

with (10) yields the desired bound:
(∫

Rm

∣
∣F(x)

∣
∣

m
m−1 dx

)m−1
m

� 1

mα
1/m
m

∫

Rm

∥
∥ gradF(x)

∥
∥dx.

Note that mα
1/m
m � 2

√
m, because

α
1
m
m = λ

1
m
m

(
B(1)

)
� λ

1
m
m

((

− 1√
m

,
1√
m

)m)

= 2√
m

.

EXERCISES

1. Let M = {(u, v,w) ∈ R
3 |u2 + v2 + w2 = R2, u2 + v2 > R|u|} be the part of

the sphere S2(R) lying outside the cylinders u2+ v2 =±Ru. For which α is the
integral

∫
M

dσ2(x)‖x−x0‖α , where x0 = (0,0,R), finite?

2. Show that for α < 1, the graph of the function ϕ(x) = x sin 1
xα (x ∈ (0,1)) is a

rectifiable curve. For which p is the integral
∫
�ϕ

dσ1(x)‖x‖p finite?
3. Let E be a compact subset of a smooth k-dimensional manifold and w ∈ C(E).

Show that the function I (y) = ∫
E
w(x) ln‖x − y‖dσk(x) is infinitely differen-

tiable on R
m \E and has (k − 1) continuous derivatives on E (cf. Example 3 in

Sect. 8.4.1).
4. Let f ∈ C(B(a,2r)). Set g(x) = ∫

B(r)
f (x + y)dy for x ∈ B(a, r). Then g ∈

C1(B(a, r)) and

∂g

∂e
(x)= 1

r

∫

S(r)

f (x + y)〈y, e〉dσ(y) for every vector e �= 0.

5. Let f ∈ C([−1,1]) and e be a unit vector in R
m (m > 1). Prove Poisson’s for-

mula
∫

Sm−1
f

(〈x, e〉)dσm−1(x)= 2(m− 1)
π

m−1
2

�(m−1
2 )

∫ 1

−1
f (t)

(
1− t2)m−3

2 dt.

6. Let f be a positive continuous function on R
m such that f (tx) = tmf (x) for

t > 0. Show that for every non-degenerate linear transformation A in R
m,

∫

Sm−1

1

f (A(x))
dσm−1(x)= 1

|det(A)|
∫

Sm−1

1

f (x)
dσm−1(x).

Hint. Use formula (4′) from Sect. 6.5.3.
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7. Let v ∈ R
m, A : Rm → R

m be a non-degenerate linear transformation and
F ∈ C(R). Show that

∫

Sm−1
F

( 〈x, v〉
‖A(x)‖

)
dσm−1(x)

‖A(x)‖m = sm−1

|det(A)|
∫ 1

−1
F(ct)

(
1− t2)m− 3

2 dt,

where c= ‖(A−1)∗(v)‖ and sm−1 is the area of the unit sphere.
8. Let θ be the angle between non-zero vectors a, b ∈R

m (0 � θ � π ). Show that

∫

Sm−1
sign

(〈a, x〉) sign
(〈b, x〉)dσm−1(x)=

(

1− 2

π
θ

)

sm−1

(where sm−1 is the area of the unit sphere).

8.5 Integration of Vector Fields

8.5.1 In problems of mechanics and physics, one often encounters integrals of the
form

∫

M

〈
V (x), θ(x)

〉
dσ(x),

where M is a smooth manifold, V (x) are vectors corresponding to the problem
under consideration, θ(x) is a unit vector related only to M , and σ is the surface
area of M . Note that for the integrand to be summable it suffices that all coordi-
nates of the vector V (x) be summable on M , which is equivalent to the condition∫
M
‖V (x)‖dσ(x) < +∞. In what follows, we assume that this condition is satis-

fied.
We will restrict ourselves to the discussion of two extreme cases, which are of

special interest.

(I) M is a one-dimensional manifold and θ(x) is a unit tangent vector to M at x.
(II) M is a manifold of codimension 1 (surface) and θ(x) is a unit normal to M

at x.

We introduce several terms that will allow us to clarify the physical interpretation
of the arising integrals.

Let us regard a continuous map V : E → R
m, where E ⊂ R

m, as the family
of vectors {V (x)}x∈E and call it a vector field on E. As a rule, we assume that
the set E is open and the field is smooth (the latter means that the map V is
C1-smooth).

We can interpret V (x) as the force applied at the point x and speak about a force
field. We may also imagine that in the set E there is a steady-state flow of mat-
ter (fluid or gas) such that the velocity of the particle that at time t is at position
x ∈ E does not depend on the time and is equal to V (x). In this case, one says that
in E there is a stationary flow and V is its velocity field. We will abide by these
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mechanical interpretations. However, one should bear in mind that in applications
an important role is also played by vector fields of another nature, for instance, the
electric or magnetic fields appearing in Maxwell’s equations.

8.5.2 Integration over an Oriented Curve. Let us first discuss case I. For simplicity,
we assume that the vector field V is defined in a domain O ⊂ R

m. It makes sense
to change the notation, in order to emphasize the one-dimensional nature of the
problem under consideration. A one-dimensional manifold will be called a curve
and denoted by L. The measure σ = σ1 will be called the length, as usual.

Denote a unit tangent vector to L at a point x by τ(x). Clearly, there exist only
two such vectors: τ(x) and−τ(x). An orientation on a smooth curve L is a continu-
ous family of unit tangent vectors defined on L. In other words, a continuous family
τ = {τ(x)}x∈L is an orientation on L if ‖τ(x)‖ = 1 and τ(x) is a tangent vector to
L at x for all x ∈ L. A curve equipped with an orientation, i.e., the pair (L, τ), is
called an oriented curve.

Using the coordinate functions V1, . . . , Vm of the field V , the line integral of
〈V, τ 〉 can be written in the form

∫

L

〈
V (x), τ (x)

〉
dσ(x)=

∫

(L,τ)

V1(x) dx1 + · · · + Vm(x)dxm. (1)

It is also denoted by
∫
L
V1(x) dx1 + · · · + Vm(x)dxm; the latter notation does not

explicitly indicate the orientation (which is assumed to be given).
Clearly, reversing the orientation from τ = {τ(x)}x∈L to {−τ(x)}x∈L changes the

sign of the line integral.
On a connected curve there are only two opposite orientations. Indeed, if

{̃τ(x)}x∈L is an orientation on L, then the function x �→ 〈τ(x), τ̃ (x)〉 is continuous
on L and takes only the values ±1. By the connectedness, this function is constant
on L, which implies that τ̃ coincides either with τ or with the opposite orientation.
Note that in order to define an orientation on a connected curve, it suffices to define
a tangent vector only at one point.

Using a smooth parametrization γ : (a, b) �→ R
m of a simple curve L, one can

easily construct an orientation on L which we will call the orientation correspond-
ing to γ . It is defined by the formula

τ(x)= γ ′(γ−1(x))

‖γ ′(γ−1(x))‖ (x ∈ L).

This implies (see Theorem 8.4.1) a formula for computing the integral (1):

∫

(L,τ)

V1(x) dx1 + · · · + Vm(x)dxm =
∫ b

a

〈
V

(
γ (t)

)
, γ ′(t)

〉
dt.

This leads to a useful generalization. Let γ be a piecewise smooth path in O defined
on [a, b]. The integral over γ of a vector field V is the integral on the right-hand
side of the last formula. It is denoted by

∫
γ
V1(x) dx1 + · · · + Vm(x)dxm.
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Now we will explain how one can interpret the integral (1) over an oriented curve
(L, τ). Assume that V is a force field and L is a curve contained in O. Consider
a small L-neighborhood U of a point x ∈ L. In view of the smallness of U , we
may assume that this piece of the curve is almost straight and the field V is almost
constant on it. Hence the work done by the force V along U must be approximately
equal to the work done by the constant force V (x) in moving the particle by the
vector σ(U)τ(x). The latter work is equal to 〈V (x), τ (x)〉σ(U). Thus it is natural
to assume that the work A(e, τ ) done by the force V along an arbitrary segment e
of the oriented curve satisfies the estimates

inf
x∈e

〈
V (x), τ (x)

〉
σ(e)�A(e, τ )� sup

x∈e
〈
V (x), τ (x)

〉
σ(e).

In addition, A(e, τ ) depends additively on e. Under these assumptions, using the
general scheme considered in Sect. 6.3, we see that the work done by the force V

in moving a particle along the oriented curve (L, τ) is given by the integral (1).
It is clear that the integral over a piecewise smooth path lying in O has the same
interpretation.

Definition A vector field V = (V1, . . . , Vm) defined in a domain O is called po-
tential if there exists a smooth function F on O (a potential of V ) such that
V (x)= gradF(x) for all points x ∈O.

In the case of a potential field, the integral
∫
γ
V1(x) dx1+· · ·+Vm(x)dxm satis-

fies the so-called gradient theorem, or the fundamental theorem of calculus for line
integrals.

Proposition 1 Let F be a potential of a vector field V = (V1, . . . , Vm) defined in
a domain O, and let γ be a piecewise smooth path in O starting at A and ending
at B . Then

∫

γ

V1(x) dx1 + · · · + Vm(x)dxm = F(B)− F(A).

Proof It suffices to prove the assertion only for a smooth path γ . We assume that it
is defined on an interval [a, b], so that A= γ (a) and B = γ (b). It is easy to check
that 〈V (γ ), γ ′〉 = (F (γ ))′. Hence

∫

γ

V1(x) dx1 + · · · + Vm(x)dxm =
∫ b

a

〈
V

(
γ (t)

)
, γ ′(t)

〉
dt =

∫ b

a

(
F

(
γ (t)

))′
dt

= F
(
γ (b)

)− F
(
γ (a)

)= F(B)− F(A). �

Thus the work done by a potential field along a path depends only on the values
of the potential at its endpoints and is equal to the increment of the potential. In this
case, one says that the integral is path-independent. Crucially, the converse is also
true.
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Proposition 2 If a line integral is path-independent, then the corresponding vector
field is potential.

Proof Note that any two points A and B of a domain O can be joined by a piecewise
smooth path lying in O. Let V be a vector field in O for which all integrals along
such paths coincide. Denote their common value by

∫ B

A
V1(z) dz1+· · ·+Vm(z) dzm.

Fixing a point A ∈O, consider the “integral with variable upper limit”

F(x)=
∫ x

A

V1(z) dz1 + · · · + Vm(z) dzm (x ∈O).

It is easy to see that F(y)−F(x)= ∫ y

x
V1(z) dz1 + · · · + Vm(z) dzm (to check this,

write F(y) as the integral over a path passing through x). Let us show that F is a
potential of V . Fix x and consider an arbitrary vector ej of the canonical basis. For
a sufficiently small real t , we have

F(x + tej )− F(x)=
∫ x+tej

x

V1(z) dz1 + · · · + Vm(z) dzm

=
∫ t

0

〈
V (x + sej ), ej

〉
ds

=
∫ t

0
Vj (x + sej ) ds

= t

∫ 1

0
Vj (x + tuej ) du.

Therefore, F(x + tej )−F(x)= t (Vj (x)+ o(1)) as t→ 0, i.e., ∂F
∂xj

(x)= Vj (x). �

In the case of path-independence, the integral over a closed path vanishes (recall
that a path is called closed if both its endpoints coincide). However, in the general
case, this is not true.

Example Consider the force field V (x, y)= (− y

x2+y2 ,
x

x2+y2 ) defined in the “punc-

tured” plane R
2 \ {0}. Let us compute its work A along a circle, or, more precisely,

along the closed path γ (t)= (cos t, sin t), where t ∈ [0,2π]:

A=
∫

γ

− y

x2 + y2
dx + x

x2 + y2
dy =

∫ 2π

0
dt = 2π.

This example shows that the work done by a non-potential field along a closed path
may be non-zero. Note that the restriction of the field under consideration to every
half-plane that does not contain the origin is potential. In particular, its restriction to
the half-plane x > 0 is the gradient field of the function F(x, y)= arctan y

x
.
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For smooth fields, one can easily establish a simple and important necessary con-
dition for potentiality. Indeed, if F is a potential of a smooth field V = (V1, . . . , Vm)

in a domain O, then, by the mixed derivatives (or Clairaut’s) theorem, we have

∂Vk

∂xj
(x)= ∂2F

∂xj ∂xk
(x)= ∂2F

∂xk∂xj
(x)= ∂Vj

∂xk
(x).

Thus the equalities

∂Vk

∂xj
(x)= ∂Vj

∂xk
(x) (x ∈O, j, k = 1, . . . ,m) (2)

are necessary conditions for the field V to be potential. As the above example shows,
in the general case, these conditions are not sufficient. However, in “good” domains,
they are. Leaving aside the thorough investigation of this problem, we restrict our-
selves to a special case of the result known as the Poincaré lemma.

Proposition 3 A smooth field V = (V1, . . . , Vm) defined in a convex domain O and
satisfying condition (2) is potential.

Proof To simplify formulas, we assume that O contains the origin. Then for every
point x = (x1, . . . , xm) in O, the straight path γx(t) = tx, t ∈ [0,1], lies in O. Set
F(x) = ∫

γx
V1(z) dz1 + · · · + Vm(z) dzm; we will show that F is a potential of V .

Indeed,

F(x)=
∫ 1

0

〈
V

(
γx(t)

)
, γ ′x(t)

〉
dt =

m∑

k=1

xk

∫ 1

0
Vk(tx) dt.

Differentiating with respect to xj and using (2), we obtain

∂F

∂xj
(x)=

∫ 1

0
Vj (tx) dt +

m∑

k=1

xk

∫ 1

0
t
∂Vk

∂xj
(tx) dt

=
∫ 1

0

(

Vj (tx)+ t

m∑

k=1

xk
∂Vj

∂xk
(tx)

)

dt

=
∫ 1

0

(
tVj (tx)

)′
t
dt = Vj (x). �

Remark The proof does not use the convexity of the domain in full strength. In
particular, it remains valid for star domains (O is a star domain if there is a point
x0 ∈ O such that the line segment {x0 + t (x − x0) | t ∈ [0,1]} lies in O for every
x ∈O).

We will say that a vector field defined in a domain O is locally potential if every
point of O has a neighborhood in which the field has a potential. Proposition 3
implies an obvious but useful corollary.
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Corollary A smooth field is locally potential if and only if it satisfies condition (2).

The above example shows that a locally potential field may not be globally poten-
tial, and the integral of a locally potential field over a closed path may be non-zero.
Later, in Sect. 8.6.7, we will return to this question.

8.5.3 Side of a Surface and the Flow of a Vector Field. Now we proceed to case II.
Consider integrals of the form

∫
M
〈V (x), ν(x)〉dσ(x), which often appear in prob-

lems of physics and mechanics. Here M is a smooth surface, ν(x) is a unit normal
to M at a point x, and V (x) is a vector corresponding to the problem under investi-
gation.

Recall that a normal to a smooth surface M ⊂R
m at a point x ∈M is a non-zero

vector orthogonal to the tangent space Tx . A unit normal is a normal of unit length.
At every point of a surface there exist only two (opposite) normals.

A side of a smooth surface M is a continuous family of unit normals defined
on M . In other words, a continuous family {ν(x)}x∈M is a side of M if ‖ν(x)‖ = 1
and ν(x) is a normal to M at x for every x ∈M .

Using our intuitive notion of the surface area as a value proportional to the
amount of paint needed to paint it (as mentioned at the beginning of this chapter), we
may now say that a side of a surface may be thought of as the surface together with
a coat of paint, or as the collection of all positions of the paintbrush. There is also
a more widely used everyday interpretation, that of the “visible side”. This is deter-
mined by the part of the surface that is “visible” to an observer, or, more exactly,
by the part on which the normals are oriented “towards” the visual ray (making an
obtuse angle with it).

Now we proceed from an informal discussion to necessary elaborations related
to the notion of a side of a surface. If ν = {ν(x)}x∈M is a side of a surface M , then,
obviously, the opposite family {−ν(x)}x∈M is also a side of M . On a connected
surface, there are no other sides (to prove this, it suffices to reproduce almost lit-
erally the argument used when considering an orientation on a curve). With this in
mind, surfaces on which there is a side are called two-sided. To indicate a side of a
connected surface, it suffices to define a normal at least at one point.

Clearly, if a smooth surface M has a global parametrization �, then one can
easily construct a side of M using the vector N� (see Sect. 8.3.4):

ν(x)= N�(�−1(x))

‖N�(�−1(x))‖ (x ∈M).

We say that this side is generated by �, or corresponds to �.
The graph �ϕ of a smooth function ϕ is a two-sided surface. Its canonical

parametrization generates the side

x = (
u,ϕ(u)

) �→ ν(x)= (−gradϕ(u),1)
√

1+ ‖gradϕ(u)‖2
. (3)

Note that all vectors of this side make acute angles with the xm axis. Hence we will
say that it is the upper side of the graph and the opposite side is the lower side.
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Another important example of a two-sided surface, the boundary of a “suffi-
ciently good” compact set, will be considered in the next section.

We see from the above that every sufficiently small M-neighborhood of every
point of a smooth surface M has a side. However, this does not mean that the whole
surface M also has a side. A counterexample is the surface called the Möbius9

strip, which can be obtained by “giving a half-twist” to a rectangle and then “gluing
together” its opposite sides. Speaking more formally, given a rectangle [−a, a] ×
(−b, b), we identify the centrally symmetric points lying at the vertical sides (note
that by identifying the points symmetric with respect to the y axis, we will obtain an
ordinary cylindric surface, which is obviously two-sided). It can be proved that one
cannot define a side on the Möbius strip. We encourage the reader to experiment by
painting the surface obtained by gluing a twisted narrow rectangular strip of paper.
Smooth surfaces on which one cannot define a side are called one-sided.

Having chosen a side {ν(x)}x∈M of a two-sided surface lying in a domain where
a vector field V is defined, we can consider the surface integral

∫

M

〈
V (x), ν(x)

〉
dσ(x) (4)

(reversing the side obviously changes the sign of the integral). If the chosen side
is generated by a parametrization � ∈ C1(G), then the computation of this integral
reduces to the computation of a multiple integral (see Theorem 8.4.1 and the formula
for N� in Sect. 8.3.4):

∫

M

〈
V (x), ν(x)

〉
dσ(x) =

∫

G

〈
V

(
�(u)

)
,N�(u)

〉
du

=
∫

G

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V1(�(u)) . . . Vm(�(u))
∂ϕ1(u)
∂u1

. . .
∂ϕm(u)
∂u1

...
. . .

...
∂ϕ1(u)
∂um−1

. . .
∂ϕm(u)
∂um−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

du.

Now we turn to a physical problem leading to the integral (4). Assume that in a
domain O ⊂ R

m there is a vector field V , which we regard as the velocity field of
a stationary fluid flow. How can one compute the amount of fluid flowing through
a smooth two-sided surface M ⊂O per unit time? When solving this problem, one
should bear in mind that particles of fluid can traverse the surface in different direc-
tions “moving from one side to the other”. If the surface bounds a body, this means
that the fluid may flow out of it as well as into it. Hence, to make our problem more
definite, we fix a side {ν(x)}x∈M of M .

Consider a small M-neighborhood U of a point x ∈M . Then we may assume
that this piece of the surface is almost planar and the velocity V is almost constant
on it. Hence the fluid flowing through U per unit time fills a curved parallelotope

9August Ferdinand Möbius (1790–1868)—German mathematician.
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Fig. 8.2 The parallelotope with base U and edges equal to V (x)

close to the parallelotope with base U and edges equal to V (x). The volume of the
latter is equal to σ(U)|〈V (x), ν(x)〉| (see Fig. 8.2).

The inner product 〈V (x), ν(x)〉 is positive if the vectors V (x) and ν(x) make
an acute angle, i.e., if the fluid traverses M “in the direction ν(x)”, and is negative
otherwise. Hence the absolute value of the integral

∫
U
〈V (x), ν(x)〉dσ(x) is equal to

the amount of fluid flowing through U per unit time. Its sign depends on the choice
of a side of the surface and characterizes the direction of the fluid motion. In view of
these considerations, the integral (4) is called the flow of the vector field V through
M in the given direction.10

Example Let f be a smooth function on a domain O ⊂ R
m that has no critical

points. Set

ν(x)= 1

‖gradf (x)‖ gradf (x), V (x)= 1

‖gradf (x)‖ν(x) (x ∈O).

It is clear that the family {ν(x)}x∈MC
is a side of the level surface MC =

{x ∈ O |f (x) = C}. The flow of ν in this direction is just the area of MC . The
flow of V through MC also has a simple geometric interpretation: it is the deriva-
tive at u= C of the volume of the set Ou = {x ∈O|f (x)� u} (see Remark (3) in
Sect. 8.4.3).

8.5.4 Having discussed integration of vector fields over manifolds of minimal
(Sect. 8.5.2) and maximal (Sect. 8.5.3) dimension, a few words are in order regard-
ing integration over plane curves. In this situation, the maximal and the minimal
dimensions coincide (both are equal to 1). Hence a plane curve L has not only a
direction, but also a side. Formally, we obtain two types of line integrals of a vector
field V = (V1,V2) over L. First, the integral over an oriented curve

∫

(L,τ)

V1(x, y) dx + V2(x, y) dy =
∫

L

〈
V (x, y), τ (x, y)

〉
dσ1(x, y);

10We leave the reader to deduce this formula using the intuitively clear properties of the flow and
the general scheme considered in Sect. 6.3.



8.6 The Gauss–Ostrogradski Formula 453

second, the integral over L corresponding to a side ν = {ν(x, y)}(x,y)∈L:
∫

L

〈
V (x, y), ν(x, y)

〉
dσ1(x, y).

One can easily see that there is a close relation between these two integrals. To make
it precise, consider the orthogonal transformation z= (x, y) �→U(z)= (−y, x) that
rotates a vector z by π/2 “counterclockwise” (identifying R

2 with the set of com-
plex numbers C, we can write it simply as U(z)= iz). Since by rotating a normal by
a right angle we obtain a tangent vector, every side ν of L gives rise to an orientation
τ = U(ν). Conversely, every orientation τ on L gives rise to the side ν = U−1(τ ).
Given an orientation and a side related by the formula τ = U(ν), we say that they
agree with each other. Obviously, 〈V,ν〉 = 〈V , τ 〉, where V =U(V ), and hence the
flow of V in the direction ν is equal to the integral of the field V = U(V ) over the
oriented curve (L, τ), where τ =U(ν):

∫

L

〈V,ν〉dσ1 =
∫

L

〈V , τ 〉dσ1.

This equality can be rewritten in the form
∫

L

〈V,ν〉dσ1 =
∫

(L,τ)

−V2(x, y) dx + V1(x, y) dy. (5)

We will use this in the next section when discussing Green’s formula (Sect. 8.6.7).

EXERCISES

1. Find a potential F of the vector field V (x)=− x
‖x‖m defined in R

m \ {0}. In the
three-dimensional case, V is proportional to the gravitational field created by a
point mass at the origin. Hence F is called the Newton potential. What is the
work done by V along a path that starts at a point x �= 0 and moves away to
infinity?

2. A vector field V is called central if there exists a continuous function f on
(0,+∞) such that V (x) = f (‖x‖)x for x �= 0. Show that such a field is po-
tential. What is its potential?

3. Let M be the part of the boundary of the ellipsoid
x2

1
a2

1
+ · · · + x2

m

a2
m
< 1 lying in the

“first octant” R
m+. Find the flow of the vector field V (x)= ( c1

x1
, . . . , cm

xm
) through

the side of M invisible from the origin (i.e., the upper side).

8.6 The Gauss–Ostrogradski Formula

8.6.1 The classical integral calculus is based on the Newton–Leibniz formula

∫ b

a

f ′(x) dx = f (b)− f (a),
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which expresses the integral of the derivative in terms of the values of the function
at the endpoints of the interval of integration.

What is an analog of this formula in the multi-dimensional case? It is natural to
assume that, for a function of several variables, one should replace f ′ by a partial
derivative, the interval by a compact set K , and consider the integral

∫
K

∂f
∂xj

dλm.
Is it possible to express it by a formula including the values of f on the boundary
of the integration domain only? The goal of this section is to show that the answer
to this question is affirmative under very wide assumptions on the structure of the
boundary of the set K .

The simplest version of the formula we seek can be obtained using Fubini’s the-
orem. Integrating the partial derivative ∂f

∂xm
of the function f that is smooth on the

parallelepiped P =Q× [a, b], where Q⊂R
m−1, we get

∫

P

∂f

∂xm
(x)dx =

∫

Q

(∫ b

a

∂f

∂xm
(u, v) dv

)

du=
∫

Q

f (u, b) du−
∫

Q

f (u, a) du

(we identify a point x from P with the pair (u, v), u ∈Q, v ∈ [a, b]). The integrals
on the right-hand side are simply the integrals of f over the top and the bottom
bases of the parallelepiped P . Denoting these parts of the boundary of P by the
symbols ∂P+ and ∂P−, one can, obviously, write

∫

P

∂f

∂xm
(x)dx =

∫

∂P+
f (x)dσm−1(x)−

∫

∂P−
f (x)dσm−1(x). (1)

The next step is crucial for our argument. In the situation that arose above, one
should ponder over the fact that we have to consider the difference and not, say,
the sum of the integrals over ∂P+ and ∂P−. It is desirable to find an explanation of
this phenomenon that would allow one to get rid of the “asymmetry” between the
integrals over ∂P+ and ∂P−. This can be done using the notion of the outer normal,
which will enable us to rewrite the right-hand side of the equality (1) as an integral
over the boundary of the parallelepiped P .

To do this, consider the outer normal ν on ∂P . We postpone the precise definition
of this notion until the next subsection. Still, using intuitive considerations, one can
say that the outer normal coincides with the vector em on ∂P+, coincides with (−em)

on ∂P−, and is orthogonal to em on the rest of ∂P . Thus, the formula (1) can be
rewritten as
∫

P

∂f

∂xm
(x)dx =

∫

∂P+
f (x)

〈
ν(x), em

〉
dσm−1(x)+

∫

∂P−
f (x)

〈
ν(x), em

〉
dσm−1(x)

=
∫

∂P+∪∂P−
f (x)

〈
ν(x), em

〉
dσm−1(x)

=
∫

∂P

f (x)
〈
ν(x), em

〉
dσm−1(x).
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Taking into account that the partial derivative ∂f
∂xm

is the directional derivative in the
direction em, it is useful to transform this equality into

∫

P

∂f

∂em
(x)dx =

∫

∂P

f (x)
〈
ν(x), em

〉
dσm−1(x), (2)

emphasizing the connection of the integrand on the right with the direction of the
differentiation on the left.

Thus, we have obtained the simplest version of the classical Gauss–Ostrogradski11

formula, which is precisely the generalization of the Newton–Leibniz formula we
are aiming at.

Note that in the one-dimensional case, the Newton–Leibniz formula can be in-
terpreted as a special case of the formula (2) if one considers the interval [a, b] as
a parallelepiped P , and defines the measure σ0 on its boundary as the sum of two
unit point masses at the points a and b and the “unit normals” at these points as the
vectors −e and e correspondingly where e is the unit vector on the real line.

Even now, the reader can easily check that in the equality (2), one can replace
∂f
∂em

by the partial derivative with respect to any other coordinate or, more generally,
the directional derivative in any direction. It is much harder to prove that the formula
we obtained is valid not only for parallelepipeds, but also for more general compact
sets. The description of such sets together with the verification of the corresponding
equality are the main topics of this section. The final result will be obtained as the
outcome of the process of the gradual extension of the class of admissible sets.

Everywhere in this section, we assume that m > 1. The surface area and the
Lebesgue measure λm will be denoted by the letters σ and λ respectively without
specifying the dimension explicitly.

8.6.2 Let A ⊂ R
m and let p ∈ ∂A. If near the point p the boundary ∂A coincides

with a smooth surface M , then a normal N(p) to M at the point p is called a normal
to the boundary of A.

The normal N(p) is called an outer normal to ∂A at the point p if p+ tN(p) /∈A

and p− tN(p) ∈ IntA for all sufficiently small positive t . The side of M consisting
of outer normals is called the outer side of M , and the opposite side is called the
inner side. In the case when the set A can be defined by an inequality near the
point p ∈ ∂A, i.e., A ∩ B(p, δ) = {x ∈ B(p, δ) |F(x) � 0} where F is a function
smooth in the ball B(p, δ) with non-vanishing gradient, the corresponding part of
the boundary ∂A is nothing but the zero level set of the function F . In this case
gradF(p) is an outer normal to ∂A because the function F strictly increases in the
direction of the gradient.

Later we shall need some special sets closely related to the subgraph of a smooth
function. To define them, we will identify the space R

m with the Cartesian product
R

m−1 × R and will write a point x from R
m as x = (u, v) where u ∈ R

m−1 and

11Mikhail Vasil’evich Ostrogradski (1801–1862)—Russian mathematician.
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v ∈R. Let ϕ be a function smooth on the closed cube Q⊂R
m−1. The sets

{
(u, v) |u ∈Q, c� v � ϕ(u)

}
and

{
(u, v) |u ∈Q, ϕ(u)� v � d

}
,

where c < ϕ and, respectively, ϕ < d , will be called the lower and the upper beams.
The sets obtained from them by reenumerations of the coordinates will be called
beams.

The points (u, v) of the graph of the function ϕ whose projections u lie in the in-
terior of the cube Q form the non-trivial part of the beam boundary. The remaining
points on the boundary form its trivial part (for the lower beam, this is contained in
the boundary of the infinite parallelepiped Q× [c,+∞)).

If the function ϕ is not constant, the non-trivial part of the beam boundary is
determined uniquely. Otherwise the non-trivial part should be specified explicitly
(for example, every face of a cubic beam can be its non-trivial part).

It is clear that the beam boundary consists of finitely many compact subsets of
smooth surfaces. The outer normal ν(x) to the boundary exists at every point x of
smoothness, i.e., almost everywhere with respect to σ .

Completing the definition from Sect. 8.5.3, we will call the family of outer nor-
mals {ν(x)}x∈∂B the outer side of the boundary of the beam B. Note that, according
to this definition, the outer side is defined not everywhere but only almost every-
where on ∂B. Also, for every vector e ∈R

m, the function x �→ 〈ν(x), e〉 is continu-
ous almost everywhere on ∂B and, therefore, is measurable.

Since, near each point of the non-trivial part of the boundary, the lower beam
is described by the inequality F(u, v)= v − ϕ(u)� 0, the gradient gradF(u, v)=
(−gradϕ(u),1) is an outer normal. In other words, the outer side of the non-trivial
part of the lower beam is the upper side of the graph �ϕ , and the unit outer normal
at the point x = (u,ϕ(u)) belonging to this part of the boundary is equal to

ν(x)= (−gradϕ(u),1)
√

1+ ‖gradϕ(u)‖2
. (3)

The outer side of the non-trivial part of the boundary of the upper beam is the lower
side of the graph consisting of the opposite normals.

8.6.3 The next theorem constitutes the first step in the generalization of the for-
mula (2). The symbol ν will denote the outer side of the beam boundary.

Theorem Assume that a function f smooth on the beam B ⊂ R
m vanishes on the

trivial part of its boundary. Then for every unit vector e ∈R
m, the equality

∫

B

∂f

∂e
(x) dx =

∫

∂B
f (x)

〈
ν(x), e

〉
dσ(x) (4)

holds.

Proof Changing the enumeration of the coordinates, if necessary, we may assume
that B is either a lower beam, or an upper one. Since the arguments are essentially
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the same in these two cases, we will restrict ourselves to the consideration of the
lower beam. By definition, it is a set of the form

B = {
(u, v) |u ∈Q,c� v � ϕ(u)

}
,

where ϕ is a smooth function on the closed cube Q⊂R
m−1 satisfying the condition

ϕ > c. Note that, since the directional derivative is a linear combination of partial
derivatives, it suffices to prove the equality (4) for the case when e is one of the
vectors e1, . . . , em in the canonical basis of Rm.

First, consider the case e= em. By Fubini’s theorem, we have

∫

B

∂f

∂em
(x)dx =

∫

Q

(∫ ϕ(u)

c

∂f

∂v
(u, v) dv

)

du=
∫

Q

(
f

(
u,ϕ(u)

)− f (u, c)
)
du.

In addition, f (u, c) = 0 because the function f vanishes on the trivial part of the
beam boundary. Therefore,

∫

B

∂f

∂em
(x)dx =

∫

Q

f
(
u,ϕ(u)

)
du

=
∫

Q

f (u,ϕ(u))
√

1+ ‖gradϕ(u)‖2

√
1+ ∥

∥gradϕ(u)
∥
∥2

du.

In view of equality (3), this means that
∫

B

∂f

∂em
(x)dx =

∫

�ϕ

f (x)
〈
ν(x), em

〉
dσ(x)=

∫

∂B
f (x)

〈
ν(x), em

〉
dσ(x)

(in the last equality, we again used the assumption f ≡ 0 on ∂B \ �ϕ).
Let now e = ek , 1 � k < m. The proof is the same for all such k, so we may

consider k =m− 1 only. We may assume that m� 3. In the two-dimensional case,
the argument, which the reader can easily check himself, is much simpler.

Represent the cube Q as the product Q=R×[a, b], where R is a cube in R
m−2.

We will write a point u from Q as u= (s, t) where s ∈ R and a � t � b. Using this
notation, we get

∫

B

∂f

∂em−1
(x) dx =

∫

R

(∫ b

a

(∫ ϕ(s,t)

c

∂f

∂t
(s, t, v) dv

)

dt

)

ds (5)

by Fubini’s theorem. To transform the inner integral (to swap the integration with
respect to v and the differentiation with respect to t), we shall need a generalization
of the Leibniz rule for differentiation of an integral depending on a parameter. This
generalization is given by the following lemma.

Lemma Let ψ ∈ C1([a, b]) and c < ψ(t) for a � t � b. If the function f is smooth
in a neighborhood of the curvilinear trapezoid

T = {
(t, v) ∈R

2 | t ∈ [a, b], c� v �ψ(t)
}
,
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then
∫ ψ(t)

c

∂f

∂t
(t, v) dv = d

dt

(∫ ψ(t)

c

f (t, v) dv

)

− f
(
t,ψ(t)

)
ψ ′(t).

Proof of Lemma Put F(t, θ)= ∫ θ

c
f (t, v) dv for (t, θ) in a sufficiently small neigh-

borhood of the trapezoid T . Since F ′θ (t, θ) = f (t, θ) and, by the Leibniz rule,

F ′t (t, θ)=
∫ θ

c
f ′t (t, v) dv, we can differentiate the composition F(t,ψ(t)) to get

d

dt

(∫ ψ(t)

c

f (t, v) dv

)

= (
F

(
t,ψ(t)

))′
t
= F ′t

(
t,ψ(t)

)+ F ′θ
(
t,ψ(t)

)
ψ ′(t)

=
∫ ψ(t)

c

∂f

∂t
(t, v) dv+ f

(
t,ψ(t)

)
ψ ′(t),

which is equivalent to the equality we sought to prove. �

Let us return to the proof of the theorem. Take ψ(t) = ϕ(s, t) and apply the
lemma to the inner integral on the right-hand side of Eq. (5):

∫ ϕ(s,t)

c

∂f

∂t
(s, t, v) dv = ∂

∂t

(∫ ϕ(s,t)

c

f (s, t, v) dv

)

− f
(
s, t, ϕ(s, t)

) ∂ϕ

∂t
(s, t).

Integrating this equality with respect to t , we obtain

∫ b

a

(∫ ϕ(s,t)

c

∂f

∂t
(s, t, v) dv

)

dt

=
∫ ϕ(s,t)

c

f (s, t, v) dv

∣
∣
∣
t=b

t=a
−

∫ b

a

f
(
s, t, ϕ(s, t)

)∂ϕ

∂t
(s, t) dt.

Since the points (s, a, v) and (s, b, v) belong to the trivial part of the beam boundary
on which f ≡ 0, the substitution term vanishes. This allows us to rewrite Eq. (5) as

∫

B

∂f

∂em−1
(x) dx =−

∫

R

(∫ b

a

f
(
s, t, ϕ(s, t)

)∂ϕ

∂t
(s, t) dt

)

ds

=
∫

Q

f
(
u,ϕ(u)

) 〈(−gradϕ(u),1
)
, em−1

〉
du.

Taking Eq. (3) into account, we can represent the resulting integral as an integral
with respect to the measure σ :

∫

B

∂f

∂em−1
(x) dx =

∫

Q

f
(
u,ϕ(u)

)〈
ν

(
u,ϕ(u)

)
, em−1

〉√
1+ ‖gradϕ(u)‖2 du

=
∫

�ϕ

f (x)
〈
ν(x), em−1

〉
dσ(x)=

∫

∂B
f (x)

〈
ν(x), em−1

〉
dσ(x)
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(here we used the condition f ≡ 0 on ∂B \�ϕ again). Thus, the Gauss–Ostrogradski
formula for the beam B and the unit vectors e1, . . . , em−1 is proved, which also
proves Eq. (4). �

The assumption that f ≡ 0 on the trivial part of ∂B is, of course, superfluous. It
has been made only to simplify the proof of the preliminary version of the Gauss–
Ostrogradski formula. The final version (see Sect. 8.6.5) contains no such assump-
tion.

8.6.4 Standard Compact Sets. We will now introduce the compact sets that will be
used in the general Gauss–Ostrogradski formula. We shall obtain the formula for
compacts sets with smooth boundary without using the results of this subsection
(see the first stage of the proof of Theorem 8.6.5). Since our goal is to prove the
Gauss–Ostrogradski formula for more general compact sets, not only for compact
sets with smooth boundaries (on which all notions of surface area coincide), we will
now abandon the consideration of arbitrary surface areas and instead use only the
area proportional to the Hausdorff measure μm−1. This area will still be denoted by
the letter σ .

Definition A compact set K ⊂R
m is called a standard compact set if its boundary

can be represented as ∂K =M ∪E where:

(a) for every point p ∈M , there exists a ball Bp centered at p and a function F ∈
C1(Bp) such that F > 0 on Bp \K , F � 0 on Bp ∩K , and gradF(p) �= 0;

(b) σ(M) <+∞;
(c) E is a compact set and σ(E)= 0.

Condition (a) implies that M is a smooth surface. We shall call M the regular
part of the boundary of the compactum K , and E its singular part. Condition (c)
allows us to ignore the integral over the singular part when integrating over ∂K

because it vanishes.
It is obvious that a beam is a standard compact set. As a rule (see, however,

Exercise 10), compacta bounded by one or several smooth surfaces (e.g., a ball,
a torus, or an m-dimensional annulus) are also standard compact sets. All bounded
domains studied in school geometry (a polyhedron, a truncated cone, etc.) are also
standard compact sets.

It is clear that the function F from condition (a) of the definition vanishes on
Bp ∩M . As has already been pointed out in Sect. 8.6.2, gradF(p) is an outer nor-
mal to ∂K at the point p ∈M . Therefore an outer normal exists at every point of M .
The mapping that sends an arbitrary point of M to the unit outer normal at that point
is continuous on M because, locally in a neighborhood of a point p ∈M , the unit
outer normals coincide with the normalized gradients of the function F . Thus, the
family of unit outer normals forms a side of the surface M , which, according to
the definition of Sect. 8.6.2, is an outer side of M . Since in a neighborhood of the
point p, the level set F(x)= 0 coincides with the graph of some smooth function,
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there exists a sufficiently small open parallelepiped P ⊂ Bp containing p for which
the intersection P ∩K = Bp is a beam. Obviously, the non-trivial part of its bound-
ary coincides with M ∩ P , and on this part, the outer normals to M are also outer
normals to ∂Bp .

It is important to have some sufficiently simple conditions that would allow us to
check the equality σ(E)= 0 in condition (c). In particular, this is so if E is a subset
of a smooth manifold L of codimension greater than 1 because, by property (5) from
Sect. 8.3.3, we have σ(L)= 0. In what follows, we shall also use another condition
that ensures the equality σ(E) = 0. To state it, let us remind the reader that the ε-
neighborhood of a set E is the open set Eε =⋃

x∈E B(x, ε) (it consists of all points
y ∈R

m for which dist(y,E) < ε).

Definition A set E ⊂ R
m is called negligible in R

m if the volume of its ε-
neighborhood Eε satisfies λ(Eε)= o(ε) as ε→ 0.

It is obvious that every negligible set is bounded. Since a set and its closure have
the same ε-neighborhoods, the closure of every negligible set is negligible.

On the line, only the empty set is negligible. On the plane every finite set is
negligible, but not every discrete set (see Example 6). The reader can easily check
that the union of a finite family of negligible sets is negligible. In the space R

m,
m� 3, every bounded subset of an affine subspace L is negligible if dimL�m−2.
The next proposition is useful when verifying condition (c) in the definition of a
standard compact set.

Proposition Every negligible subset of the space R
m has zero area.

Proof Let E ⊂R
m be a negligible set. As we have already mentioned, it is bounded.

Let us check that σ(E)= αm−1μm−1(E)= 0.
Fix an arbitrary ε > 0. We will call the points x and y ε-distinguishable if

‖x − y‖ � ε. Obviously, a bounded set can contain only finitely many pairwise
ε-distinguishable points. Consider a set A consisting of the maximal possible num-
ber of ε-distinguishable points belonging to E. We have

E ⊂
⋃

x∈A
B(x, ε)

because otherwise the set A could be augmented by a point from E \⋃
x∈A B(x, ε),

which would contradict its maximality. Furthermore, the balls B(x, ε/2) and
B(y, ε/2) centered at two different points of A are disjoint because the points in
this set have distances at least ε between them. Since the balls B(x, ε) (x ∈A) form
a cover of the set E, according to the definition of μm−1(E, ε) (see Sect. 2.6.1), we
get
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μm−1(E, ε)�
∑

x∈A
εm−1 = 2m

αmε

∑

x∈A
λ

(
B(x, ε/2)

)= 2m

αmε
λ

(⋃

x∈A
B(x, ε/2)

)

� 2m

αmε
λ(Eε)−→

ε→0
0.

Hence μm−1(E)= limε→0 μm−1(E, ε)= 0. �

For compact subsets of smooth surfaces, the converse statement also holds.

Lemma If a compact subset E of a smooth surface M has zero area, it is negligible.

Proof Every point of the surface has an M-neighborhood whose closure is con-
tained in the graph of some smooth function. It is clear that the set E can be covered
by finitely many such neighborhoods Un: E ⊂⋃N

n=1 Un. Put

En =E ∩Un (n= 1, . . . ,N).

Obviously, the sets En are compact and E = ⋃N
n=1 En. Therefore, it suffices to

prove the statement of the lemma for the sets En, which allows us to assume in
what follows that M is the graph of a smooth function ϕ ∈ C1(G) where G is an
open subset of the space R

m−1.
As before, we will represent a point x of the space R

m as x = (u, v) where
u ∈R

m−1, v ∈R, identifying R
m−1 with the plane v = 0. Let H be the projection of

the set E to R
m−1. By the δ-neighborhood of H , we will mean the δ-neighborhood

in the space R
m−1, preserving the notation Hδ for it. Choose δ > 0 so small that Hδ

is contained in G together with its closure Hδ , and put L=maxu∈Hδ
‖gradϕ(u)‖.

Since the canonical parametrization � of the graph �ϕ is an expansion and
E =�(H), we have λm−1(H)� σ(�(H))= σ(E)= 0. Therefore, λm−1(H)= 0.
Since

⋂
ε>0 Hε =H , the upper semicontinuity of measure implies that

λm−1(Hε)−→
ε→0

0. (6)

Consider the layer

A(ε)= {
(u, v) ∈R

m |u ∈Hε,
∣
∣v− ϕ(u)

∣
∣ < (L+ 1)ε

}

around the graph of ϕ over Hε with 0 < ε < δ. Since λ(A(ε))= 2(L+1)ελm−1(Hε),
by (6), we have λ(A(ε)) = o(ε) as ε → 0. Hence, to prove that E is negligi-
ble, it suffices to show that Eε ⊂ A(ε). Let x = (u, v) ∈ Eε . Let us check that
x ∈ A(ε), that is, that u ∈ Hε and |v − ϕ(u)| < (L+ 1)ε. By the definition of the
ε-neighborhood, there exists a point x′ = (u′, v′) ∈E ⊂ �ϕ such that ‖x − x′‖< ε.
Since ‖u − u′‖ � ‖x − x′‖ < ε and u′ ∈ H , we have u ∈ Hε . Furthermore,
v′ = ϕ(u′) and |v − v′|� ‖x − x′‖. Thus

∣
∣v− ϕ(u)

∣
∣ �

∣
∣v − v′

∣
∣+ ∣

∣ϕ
(
u′

)− ϕ(u)
∣
∣ �

∥
∥x − x′

∥
∥+L

∥
∥u− u′

∥
∥ < (L+ 1)ε,

whence x ∈A(ε). �
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Note that one cannot relax the conditions of the lemma by replacing compactness
with boundedness (see Exercise 7). The lemma also fails if one assumes that E is
contained not in one but in the union of two smooth surfaces (see Exercise 8).

We will now present a simple but useful corollary to this lemma.

Corollary A compact subset E of a smooth manifold of codimension greater than 1
is negligible.

Proof Indeed, the area of such a manifold equals zero (see property (5) in
Sect. 8.3.3). Moreover, locally it is contained in a manifold of codimension 1, i.e.,
in a surface (see the end of Sect. 8.1.1). Thus E can be covered by finitely many
compact sets, each of which is contained in a smooth surface and has zero area. It
remains to use the lemma. �

8.6.5 In this subsection, we will generalize the preliminary version of the Gauss–
Ostrogradski formula obtained in Sect. 8.6.3 replacing beams by an arbitrary stan-
dard compact set. We will also call the outer side ν of the surface M the outer side
of ∂K . Thus, the outer side is defined and continuous almost everywhere on ∂K .
Fixing an arbitrary vector e ∈ R

m, we conclude that the function x �→ 〈ν(x), e〉 is
continuous almost everywhere on ∂K (with respect to the measure σ ) and, thereby,
measurable.

Theorem (The Gauss–Ostrogradski formula) Let f be a function smooth on a stan-
dard compact set K ⊂R

m. Then for every unit vector e ∈R
m, one has

∫

K

∂f

∂e
(x) dx =

∫

∂K

f (x)
〈
ν(x), e

〉
dσ(x).

Before we start the proof, let us note that it will be carried out in three stages.
For compacta with smooth boundaries (a ball, a torus, etc.) the result that will be
obtained at the first stage is enough. If the boundary of the compactum contains a
singular part, in most cases, it is a negligible set (as it is for a polyhedron, a half-ball,
a cone, etc.). This case will be covered at the second stage of the proof.

Proof By the definition of a standard compact set, ∂K = E ∪M , where M is the
regular part of ∂K , and μm−1(E)= 0.

(I) Assume that f ≡ 0 on an open set G containing E (this assumption on the
function f is vacuous in the smooth boundary case, i.e., when E =∅). We will con-
struct a cover of K of a special form. For each point x ∈ IntK , choose an open cube
Qx ⊂ IntK centered at x. For each point p ∈M , choose an open parallelepiped Rp

containing p such that the intersection Rp ∩ K is a beam lying in the interior of
K except for the closure of the non-trivial part of its boundary, which is contained
in M . Such a parallelepiped exists by the definition of a standard compact set.

The sets G, {Qx}x∈IntK and {Rp}p∈M form an open cover of the compactum K .
Let G, Qx1 , . . . ,QxJ and Rp1 , . . . ,RpN

be a finite subcover. Consider the partition
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of unity subordinate to this subcover (see Theorem 8.1.8). It consist of the smooth
functions ω, ψ1, . . . ,ψJ and θ1, . . . , θN (ω≡ 0 outside G, ψj ≡ 0 outside Qxj and
θn ≡ 0 outside Rpn for j = 1, . . . , J , n= 1, . . . ,N ). We have

1= ω(x)+
J∑

j=1

ψj (x)+
N∑

n=1

θn(x) for all x ∈K.

Due to the condition f ≡ 0 on G, it follows that

f (x)=
J∑

j=1

ψj (x)f (x)+
N∑

n=1

θn(x)f (x) for all x ∈K. (7)

Hence
∫

K

∂f

∂e
(x) dx =

J∑

j=1

∫

K

∂(ψjf )

∂e
(x) dx +

N∑

n=1

∫

K

∂(θnf )

∂e
(x) dx.

Taking into account that ψj ≡ 0 outside Qxj and θn ≡ 0 outside Rpn , we obtain
∫

K

∂f

∂e
(x) dx =

J∑

j=1

∫

Qxj

∂(ψjf )

∂e
(x) dx +

N∑

n=1

∫

K∩Rpn

∂(θnf )

∂e
(x) dx. (8)

By Theorem 8.6.3, all terms in the first sum are equal to zero (because ψj ≡ 0 on
the entire boundary of the cube Qxj ). Let us transform the integrals in the second
sum. To this end, note that θn ≡ 0 on ∂Rpn and, therefore, the function θnf vanishes
on the trivial part of the boundary of the beam K ∩ Rpn . Thus we can apply the
Gauss–Ostrogradski formula for beams to these integrals too (see Theorem 8.6.3):

∫

K∩Rpn

∂(θnf )

∂e
(x) dx =

∫

∂(K∩Rpn)

θn(x)f (x)
〈
νn(x), e

〉
dσ(x)

where νn is the unit outer normal to ∂(K ∩Rpn). Since θn(x) �= 0 only on the non-
trivial part of the boundary of the beam K ∩ Rpn , i.e., on M ∩ Rpn , and since on
that part νn coincides with the unit outer normal ν to M , we have

∫

K∩Rpn

∂(θnf )

∂e
(x) dx =

∫

M∩Rpn

θn(x)f (x)
〈
νn(x), e

〉
dσ(x)

=
∫

M

θn(x)f (x)
〈
ν(x), e

〉
dσ(x)

(in the end, we have taken into account that θn ≡ 0 outside Rpn ). Thus, Eq. (8)
implies that

∫

K

∂f

∂e
(x) dx =

N∑

n=1

∫

M

θn(x)f (x)
〈
ν(x), e

〉
dσ(x)

=
∫

M

f (x)

N∑

n=1

θn(x)
〈
ν(x), e

〉
dσ(x).
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Since the functions ψ1, . . . ,ψJ vanish on M , if follows from Eq. (7) that
f (x)

∑N
n=1 θn(x)= f (x) for x ∈M . Thus,
∫

K

∂f

∂e
(x) dx =

∫

M

f (x)
〈
ν(x), e

〉
dσ(x)=

∫

∂K

f (x)
〈
ν(x), e

〉
dσ(x).

(II) Let us now turn to the case where the singular part E is negligible. We will
verify that the difference

�=
∫

K

∂f

∂e
(x) dx −

∫

∂K

f (x)
〈
ν(x), e

〉
dσ(x)

between the left- and the right-hand sides of the formula we wish to prove is arbi-
trarily small. To this end, fix an arbitrary positive number ε and apply Theorem 8.1.7
on a smooth descent to the set Eε (it is easy to see that its ε-neighborhood coincides
with E2ε). We conclude that there exists a function θ ∈ C∞(Rm) such that:

(a) 0 � θ � 1 on the entire space R
m;

(b) θ = 1 on Eε;
(c) θ = 0 outside E2ε;
(d) ‖grad θ‖� C

ε
everywhere on R

m, where C is some constant depending only on
the dimension m.

Put L0 =maxK |f | and L1 =maxK | ∂f∂e |.
Since the function (1−θ)f vanishes on Eε , we can apply to it the already proven

part of the theorem. Therefore
∫

K

∂f

∂e
(x) dx =

∫

K

∂(θf )

∂e
(x) dx +

∫

K

∂(f − θf )

∂e
(x) dx

=
∫

K

∂(θf )

∂e
(x) dx +

∫

∂K

(
1− θ(x)

)
f (x)

〈
ν(x), e

〉
dσ(x).

Hence,

�=
∫

K

∂(θf )

∂e
(x) dx −

∫

∂K

θ(x)f (x)
〈
ν(x), e

〉
dσ(x).

Due to property (c), one can reduce the sets of integration in both integrals to their
intersections with E2ε . This gives us the inequality

|�|�
∫

K∩E2ε

(∣
∣
∣
∣
∂θ

∂e
(x)

∣
∣
∣
∣
∣
∣f (x)

∣
∣+ ∣

∣θ(x)
∣
∣
∣
∣
∣
∣
∂f

∂e
(x)

∣
∣
∣
∣

)

dx +
∫

E2ε∩∂K
∣
∣θ(x)f (x)

∣
∣dσ(x).

So,

|�|�
∫

K∩E2ε

(
C

ε
L0 +L1

)

dx +
∫

E2ε∩∂K
L0 dσ(x)

�
(
C

ε
L0 +L1

)

λ(E2ε)+L0σ(E2ε ∩ ∂K).
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Since E is a negligible set, the term (C
ε
L0 + L1)λ(E2ε) gets arbitrarily small as

ε→ 0. The same can be said about the second term. Indeed,

σ(E2ε ∩ ∂K)→ σ(E) as ε→ 0

due to the upper semicontinuity of the measure σ (it is here that we use the finiteness
of the area of the boundary of a standard compact set). It remains to recall that
σ(E)= 0. Thus, |�| = 0.

(III) Consider now the general case. We will carry out the proof as followings.
We will start by improving the set K somewhat by expanding it and applying the
Gauss–Ostrogradski formula to the expanded set, and then we will pass to the limit
contracting the auxiliary set back to K .

Since μm−1(E) = 0, one can fix an arbitrarily small positive number ε and
choose the balls Bj = B(xj , rj ) so that

E ⊂
∞⋃

j=1

Bj ,

∞∑

j=1

rm−1
j < εm−1.

We will assume ε to be so small that the function f is continuously differentiable
in K2ε . Taking into account the compactness of the set E, one can assume that
E ⊂⋃N

j=1 Bj ⊂E2ε . Note also that, when intersecting a surface of finite area with
concentric spheres, we will get sets of zero areas except, perhaps, for a countable
set of radii because the family {σ(M ∩ ∂B(a, r))}r>0 is summable (see Sect. 1.2.2).
Thus, without loss of generality, we may assume that

σ(M ∩ ∂Bj )= 0 (j = 1, . . . ,N).

Now, introduce the set K(ε) = K ∪⋃N
j=1 Bj . Obviously, its boundary is disjoint

with E and consists only of points belonging to the regular part of ∂K or to the
spheres ∂B1, . . . , ∂BN . The boundary of K(ε) can lose its smoothness only on the
intersections of spheres or on the intersection of the set M with the spheres. There-
fore the area of the singular part of the boundary of K(ε) equals zero. This part con-
sists of finitely many compact sets, each of which is negligible (by Lemma 8.6.4).
Thus, their union is negligible too. Therefore, the set K(ε) is a standard compact set
whose boundary has a negligible singular part, so the Gauss–Ostrogradski formula
is valid for this set:

∫

K(ε)

∂f

∂e
(x) dx =

∫

∂K(ε)

f (x)
〈
ν(x), e

〉
dσ(x). (9)

Putting

M ′(ε)= ∂K \
N⋃

j=1

Bj , M ′′(ε)= ∂K(ε) \M ′(ε),
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and separating the integrals over K and M in Eq. (9) from the rest, we can rewrite
it in the following form:

∫

K

∂f

∂e
(x) dx +

∫

K(ε)\K
∂f

∂e
(x) dx

=
∫

M ′(ε)
f (x)

〈
ν(x), e

〉
dσ(x)+

∫

M ′′(ε)
f (x)

〈
ν(x), e

〉
dσ(x)

=
∫

M

· · · −
∫

M\M ′(ε)
· · · +

∫

M ′′(ε)
· · · . (10)

Since K(ε) \K ⊂E2ε and M \M ′(ε)⊂M ∩E2ε , we have

λm

(
K(ε) \K)

� λm(E2ε), σ
(
M \M ′(ε)

)
� σ(M ∩E2ε).

Furthermore,

σ
(
M ′′(ε)

)
�

N∑

j=1

σ(∂Bj )=mαm

N∑

j=1

rm−1
j < mαmεm−1.

The right-hand sides of these three inequalities tend to zero as ε→ 0. Thus, passing
to the limit as ε→ 0 in Eq. (10), we obtain the desired formula. �

Note that the theorem proved admits various generalizations in the direction of
extending the class of standard compact sets (see Sect. 8.8.4) as well as in the direc-
tion of relaxing the smoothness properties of the function f (see Sect. 9.3.5).

Example The Gauss–Ostrogradski formula allows one to express the volume of a
body as an integral over its boundary. For instance, applying this formula to the
function f (x)= 〈x, e〉, we get

λ(K)=
∫

∂K

〈x, e〉〈e, ν(x)〉dσ(x).

In other words, the volume of the body K is equal to the flux of the vector field
V (x)= 〈x, e〉e through its boundary “outwards”.

This result can be generalized as follows. Let L be a subspace of Rm, and let
P be the orthogonal projection to L. Then dimL · λ(K)= ∫

∂K
〈P(x), ν(x)〉dσ(x),

i.e., the flux of the projection P through the outer side is proportional to the vol-
ume of the compactum, the proportionality coefficient being equal to the dimen-
sion of the subspace to which one projects. In particular, for L = R

m, we get
λ(K)= 1

m

∫
∂K
〈x, ν(x)〉dσ(x).

8.6.6 Let us transform the Gauss–Ostrogradski formula to clarify its physical mean-
ing.
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Let O be an open set in R
m. Let {V (x)}x∈O be a smooth vector field with the

coordinate functions V1, . . . , Vm. According to the Gauss–Ostrogradski formula,

∫

∂K

〈
V (x), ν(x)

〉
dσ(x)=

m∑

j=1

∫

∂K

Vj (x)
〈
ej , ν(x)

〉
dσ(x)

=
m∑

j=1

∫

K

∂Vj

∂xj
(x) dx =

∫

K

(
m∑

j=1

∂Vj

∂xj
(x)

)

dx,

where ν is the outer side of the standard compact set K ⊂O. The left-hand side of
this equation is the flux of the vector field V through the outer side of the boundary
∂K . The integrand

∑m
j=1

∂Vj

∂xj
on the right-hand side is called the divergence of

the vector field V and denoted divV . Using this notation, the obtained formula
can be rewritten in the following form (the so-called “vector form” of the Gauss–
Ostrogradski formula, or the divergence formula):

∫

K

divV (x)dx =
∫

∂K

〈
V (x), ν(x)

〉
dσ(x). (11)

Note that divV (x) is simply the trace of the Jacobian matrix (
∂Vj

∂xk
(x))mj,k=1, i.e.,

the trace of the operator dxV . Since the trace does not depend on the choice of
the basis, when computing the divergence, one can use any orthonormal coordinate
system, not only the canonical one.

The last result can also be established in another way. According to the mean
value theorem, for every a ∈O and for every sufficiently small ε > 0, one has

1

αmεm

∫

B(a,ε)

divV (x)dx = divV (xε), where xε ∈ B(a, ε).

Therefore,

divV (a) = lim
ε→0

1

αmεm

∫

B(a,ε)

divV (x)dx

= lim
ε→0

1

αmεm

∫

‖x−a‖=ε

〈
V (x), ν(x)

〉
dσ(x).

It can be seen from this that the value divV (a) does not depend on the choice of the
coordinate system.

If one views V as an incompressible fluid velocity field, then the flux through the
boundary of a body can be non-zero only if the body contains some sources (if the
flux is positive) or sinks (if the flux is negative). The quantity 1

αmεm

∫
‖x−a‖=ε

〈V (x),

ν(x)〉dσ(x) on the right-hand side of the last equality characterizes the average
intensity of the sources (sinks) in the ball B(a, ε), and its limit divV (a) can be
interpreted as the intensity of the source (sink) at the point a.
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Example (The law of Archimedes) Let us show how the Gauss–Ostrogradski for-
mula can be used to derive the law of Archimedes from Pascal’s law.12 Let us remind
the reader that, according to Pascal’s law, the pressure a liquid exerts on a submersed
flat area is directed along the normal to the area and is equal to the weight of the
pillar of the liquid whose base is congruent to the submersed area and whose height
is the submersion depth. Let us compute the Archimedes force acting on a body
K ⊂ R

3 submersed into a liquid. To this end, introduce the Cartesian coordinates
for which the OXY -plane coincides with the liquid surface and the axis OZ is
directed downward. At each point (x, y, z) ∈ ∂K , the body K is subjected to the
pressure force F(x, y, z) = −gρ zν(x, y, z), where ν(x, y, z) is the unit outer nor-
mal to ∂K , ρ is liquid density and g is acceleration of gravity. The resultant, i.e.,
the Archimedean force

∫∫
∂K

(−gρ z)ν(x, y, z) dσ (x, y, z) has the coordinates

Fx =−gρ

∫∫

∂K

z
〈
ν(x, y, z), e1

〉
dσ(x, y, z),

Fy =−gρ

∫∫

∂K

z
〈
ν(x, y, z), e2

〉
dσ(x, y, z),

Fz =−gρ

∫∫

∂K

z
〈
ν(x, y, z), e3

〉
dσ(x, y, z).

Rewriting the first of these equalities as Fx =
∫∫

∂K
〈V,ν〉dσ , where V (x, y, z) =

(−gρ z,0,0), and, using the Gauss–Ostrogradski formula, we obtain

Fx =
∫∫∫

K

divV (x, y, z) dx dy dz=
∫∫∫

K

0dx dy dz= 0.

Similarly, it can be shown that Fy = 0. The vertical component of the Archimedean
force can be expressed in terms of the divergence of the vector field Ṽ (x, y, z) =
(0,0,−gρ z), so it equals

Fz =
∫∫

∂K

〈
Ṽ (x, y, z), ν(x, y, z)

〉
dσ(x, y, z)=

∫∫∫

K

div Ṽ (x, y, z) dx dy dz

=
∫∫∫

K

(−gρ)dx dy dz=−gρλ3(K).

Thus, a buoyancy force numerically equal to the weight of the fluid forced out by
the body acts on this body in a vertical direction.

8.6.7 Green’s Formula. Let us single out the two-dimensional case of the Gauss–
Ostrogradski formula. Let K be a standard compact set in R

2 and let ν be its outer
side. On the regular part L of the boundary ∂K , the side ν agrees with the direction
τ =U(ν) (see Sect. 8.5.4). The pair (∂K, τ) will be called an oriented boundary of
the planar standard compact set K and denoted by the symbol ∂+K .

12Blaise Pascal (1623–1662)—French philosopher, mathematician, and physicist.
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For a vector field V = (V1,V2) that is smooth in some neighborhood of the com-
pactum K , the vector form (11) of the Gauss–Ostrogradski formula yields

∫∫

K

divV (x, y) dx dy =
∫

∂K

〈
V (x, y), ν(x, y)

〉
dσ1(x, y).

By Eq. (5) from Sect. 8.5.4, this equality can be rewritten as

∫∫

K

(
∂V1

∂x
(x, y)+ ∂V2

∂y
(x, y)

)

dx dy =
∫

∂+K
−V2(x, y) dx + V1(x, y) dy.

Putting P =−V2 and Q= V1, we arrive at an important result known as Green’s13

formula:
∫∫

K

(
∂Q

∂x
− ∂P

∂y

)

dx dy =
∫

∂+K
P (x, y) dx +Q(x,y)dy.

In particular, Green’s formula allows one to express the area of a standard
compact set as an integral over its boundary: taking the functions P(x, y) ≡ 0,
Q(x,y)≡ x or P(x, y)≡−y, Q(x,y)≡ 0, we obtain

λ2(K)=
∫

∂+K
x dy =−

∫

∂+K
y dx = 1

2

∫

∂+K
−y dx + x dy.

In Sect. 8.5, it was noted (for an example, see Sect. 8.5.2) that the integral of a
locally potential field over a closed oriented curve can be non-zero. On the other
hand, it is obvious that Green’s formula implies the following.

Corollary 1 Let V = (P,Q) be a locally potential vector field that is smooth in
some domain O ⊂ R

2. Let K ⊂O be a standard compact set with oriented bound-
ary. Then

∫

∂+K
P (x, y) dx +Q(x,y)dy = 0.

This corollary gives a simple geometric condition for the integral of a locally
potential vector field over a closed curve to vanish. This is the case if the curve
“bounds a set in O”, i.e., coincides with the boundary of some standard compact set
contained in O. Otherwise (for example, if the curve “surrounds” a point that does
not belong to the domain) it is easy to find a smooth locally potential vector field
in O that has a non-zero integral over this curve (for an example, see Sect. 8.5.2).

Let us point out one important special case of Corollary 1 related to holomorphic
functions. Let L ⊂ C be a piecewise smooth oriented curve that lies in the do-
main of a continuous complex-valued function f . Let g = Re f and h = Imf .
Guided by the formal multiplication identity f (z) dz = (g + ih)(dx + i dy) =

13George Green (1793–1841)—English mathematician and physicist.
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(g dx − hdy) + i(hdx + g dy), we define the integral
∫
L
f (z) dz as the sum

∫
L
g dx−hdy+i

∫
L
hdx+g dy. It is easy to see that

∫
L
f (z) dz= ∫ b

a
f (γ (t))γ ′(t) dt

for every smooth parametrization γ that agrees with the orientation of the curve L.

Corollary 2 (The Cauchy theorem) If a function f has a continuous derivative df
dz

in a domain O ⊂C and K ⊂O is a standard compact set, then
∫
∂+K f (z) dz= 0.

Proof By our assumptions, the functions g = Re f and h = Imf belong to the
class C1(O). Moreover, the Cauchy–Riemann conditions g′x = h′y , h′x =−g′y hold,
which ensures that the vector fields (g,−h) and (h, g) are locally potential (see
Sect. 8.5.2, the corollary to Proposition 3). Thus, the equalities

∫

∂+K
g dx − hdy = 0 and

∫

∂+K
hdx + g dy = 0

follow from Corollary 1. �

EXERCISES Let K be a standard compact set in R
m and let ν be the outer side

of its boundary.

1. Prove that
∫
∂K

ν(x) dσ (x)= 0 (this equality should be understood coordinate-
wise).

2. As noted in the example in Sect. 8.6.5, λ(K)= 1
m

∫
∂K
〈x, ν(x)〉dσ(x). Gener-

alizing this result, prove that
∫

∂K

L
(
x, ν(x)

)
dσ(x)= λ(K)

m∑

j=1

L(ej , ej )

for every bilinear form L defined in R
m × R

m. In particular, for m = 3, this
implies the equality

∫
∂K

x × ν(x) dσ (x) = 0 (the symbol x × y denotes the
vector (cross) product of the vectors x and y).

3. Prove the following version of the integration by parts formula for functions of
several variables:

∫

K

∂f

∂e
(x) · g(x)dx =

∫

∂K

f (x)g(x)
〈
ν(x), e

〉
dσ(x)−

∫

K

f (x) · ∂g
∂e

(x) dx

(here the functions f and g are continuously differentiable in some neighbor-
hood of K and e is an arbitrary unit vector in R

m).
4. Let f be continuously differentiable in some neighborhood of K and let

y ∈R
m. Prove that

∫

K

f (x)ei〈x,y〉 dx = 1

i‖y‖2

(∫

∂K

f (x)
〈
ν(x), y

〉
ei〈x,y〉 dσ(x)

−
∫

K

〈
gradf (x), y

〉
ei〈x,y〉 dx

)

.

In particular, it follows that
∫
K
f (x)ei〈x,y〉dx =O( 1

1+‖y‖ ).
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5. A submersible that has the shape of an ellipsoid whose vertical semi-axis equals
c is lowered to the bottom of a sea of depth H > 2c. If it partially sinks into
the sea floor, the sunk part of the surface of the submersible is not subjected to
the water pressure. Therefore, the expelling force reduces (a submersible that
is half-sunk in the sea floor is no longer expelled from the water but, on the
contrary, is pushed by the water towards the sea bottom). Assuming that the
average density θ of the submersible is less than 1 (water density), estimate the
sinking depth h for which the submersible loses its floatability. Show that this
depth is almost inversely proportional to the sea depth. More precisely, prove

that 2
3 (1− θ) c

2

H
< h< 2

3 (1− θ) c2

H−c
.

6. Prove that the discrete set consisting of the points ( 1
n
, sin

√
n) (n ∈ N), is not

negligible on the plane.
7. Give an example of a smooth curve in R

3 that is bounded but not negligible.
8. Prove that the conclusion of Lemma 8.6.4 may fail if K is contained in the

union of two smooth curves. Hint. Consider in the plane R
2 the union of the

y-axis L and the graph of the function x �→ f (x) = sin 1
x

(x > 0). Let K =
([0,1] × C) ∩ (L ∪ �f ), where C is the Cantor set. Verify that the set K is not
negligible despite σ1(K)= 0.

9. Prove that a curve of finite length in R
3 is negligible if it is connected and that

one cannot drop the connectedness assumption in general.
10. Show that the subgraph of a function infinitely smooth on an interval may fail to

be a standard compact set. Hint. Consider a non-negative function that vanishes
on a set of Cantor type of positive measure.

8.7 �Harmonic Functions

Everywhere in this section, O is a domain in R
m, K is a standard compact set

contained in O and ν is the outer side of its boundary. As in the previous section,
σ is the surface area proportional to the Hausdorff measure μm−1. The symbols
B(a, r) and S(a, r) stand respectively for the open ball and the sphere in R

m of
radius r centered at a (for brevity, we do not specify the dimension explicitly).
Lastly, put

B = B(0,1), S = S(0,1), s(r)= σ
(
S(0, r)

)
, v(r)= λm

(
B(0, r)

)
.

8.7.1 The mapping U �→∑m
k=1

∂2U

∂x2
k

, defined on C2(O) is denoted by the symbol �

and is called the Laplace operator. It is clear that �U = div gradU .
Since the Laplace operator is a composition of the gradient and the divergence

operators, it does not depend on the choice of the coordinate system (contrary to the
first impression that one can get looking at its definition). We can also prove this in
the following way.
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Let U ∈ C2(O), B(a,R)⊂O. According to the Taylor formula,

U(x)=U(a)+ daU(x − a)+ 1

2
d2
aU(x − a)+ o

(‖x − a‖2)
.

Integrate this equality over the sphere S(a, r) with 0 < r < R. Since

∫

S(a,r)

(xj − aj ) dσ (x)= 0 and

∫

S(a,r)

(xj − aj )(xk − ak) dσ (x)= 0 for all j, k, j �= k,

we obtain

∫

S(a,r)

U(x) dσ (x)= s(r)U(a)+ 1

2

m∑

j=1

U ′′
x2
j

(a)

∫

S(a,r)

(xj − aj )
2 dσ(x)+ o

(
rm+1)

.

Since

∫

S(a,r)

(xj − aj )
2 dσ(x)= 1

m

∫

S(a,r)

‖x − a‖2 dσ(x)= r2

m
s(r),

we have

1

s(r)

∫

S(a,r)

U(x) dσ (x)=U(a)+ r2

2m
�U(a)+ o

(
r2)

and, therefore, the value of �U at the point a can be found from the average values
of the function over the spheres centered at this point:

�U(a)= lim
r→0

2m

r2

(
1

s(r)

∫

S(a,r)

U(x) dσ (x)−U(a)

)

.

Definition A function U , U ∈ C2(O), is called harmonic on O if �U(x) = 0 for
all x ∈O.

We will consider real-valued harmonic functions only because the real and the
complex parts of a complex-valued harmonic function are again harmonic.

Obviously, the functions harmonic on O form a vector space. In the one-
dimensional case, it is just the set of all linear polynomials. So we will assume
that m > 1. In this case, the class of harmonic functions is very wide and plays an
important role in mathematics as well as in its applications. For instance, the station-
ary temperature of a body that has no parts emitting or absorbing heat is a harmonic
function. If the velocity field of a homogeneous incompressible fluid is a gradient
of some function, it follows from the Gauss–Ostrogradski formula that this function
must be harmonic.
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Our first example of a harmonic function is the point mass potential at a point a.
This function, which will be denoted by Na , is defined in a space of three or more
dimensions as follows:

Na(x)= 1

‖x − a‖m−2

(
x ∈R

m, x �= a
)
.

In the two-dimensional case, instead of Na one uses the logarithmic potential:
x �→ ln 1

‖x−a‖ . The reader can easily verify that these potentials are indeed harmonic
functions.

The point mass potentials, their linear combinations, and, especially the convo-
lutions of these potentials and their partial derivatives with various measures play
an extremely important role in many problems related to harmonic functions. One
particular example is the integral

∫
E

dμ(y)

‖x−y‖m−2 , which is called the Newton potential
corresponding to the measure μ concentrated on the set E.

Let us mention the identity

gradNa(x)=−(m− 2)
x − a

‖x − a‖m , (1)

which will be useful to us later. For m = 3, it shows that the vector gradNa coin-
cides, up to a constant factor, with the intensity of the gravitational or the electro-
static field generated by a mass or a charge concentrated at the point a.

If L is a rigid motion or a homothety in R
m, then it is easy to check that, for

every harmonic function U , the composition U ◦L is also harmonic (this is not true
for an arbitrary linear transformation).

8.7.2 Here we will derive some important corollaries of the Gauss–Ostrogradski
formula that are valid for all functions in the class C2. As we shall see, applying
them to harmonic functions, one can obtain remarkable results. The first of these
corollaries is also known as Green’s theorem (just as the formula in Sect. 8.6.7 is).

Below, we denote by ∂U
∂ν

(x) the quantity 〈gradU(x), ν(x)〉, i.e., the directional
derivative of the function U at the point x ∈ ∂K in the direction of the outer normal
ν(x).

Theorem 1 (Green) Let U,V ∈ C2(O). Then
∫

K

(
U(x)�V (x)− V (x)�U(x)

)
dx

=
∫

∂K

(

U(x)
∂V

∂ν
(x)− V (x)

∂U

∂ν
(x)

)

dσ(x). (2)

Taking V ≡ 1, we get a useful equality
∫

K

�U(x)dx =
∫

∂K

∂U

∂ν
(x) dσ (x). (2′)
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Proof It suffices to apply the Gauss–Ostrogradski formula (see Eq. (11) in
Sect. 8.6.6) to the vector field U gradV − V gradU , whose divergence coincides
with U�V − V�U . �

The next formula, being valid for all m� 2, gives nothing new for m= 2 because
in this case it reduces to Eq. (2′). Its meaningful analog in the two-dimensional case
can be obtained if one replaces the point mass potential by the logarithmic one (see
Exercise 3).

Theorem 2 Let U ∈ C2(O). Then, for every point x ∈ Int(K) the equality

(m− 2)s(1)U(x)=−
∫

K

�U(y)

‖y − x‖m−2
dy +

∫

∂K

∂U

∂ν
(y)

dσ (y)

‖y − x‖m−2

+ (m− 2)
∫

∂K

U(y)
〈y − x, ν(y)〉
‖y − x‖m dσ(y) (3)

holds.

Remark In mathematical physics, integrals of the form
∫

K

ω(y)dy

‖y − x‖m−2
,

∫

∂K

ω(y)dσ (y)

‖y − x‖m−2
and

∫

∂K

ω(y)
〈y − x, ν(y)〉
‖y − x‖m dσ(y)

play an important role. They are called the volume potential, the single layer poten-
tial and the double layer potential respectively.

Proof To apply formula (2) to the function V = Nx , we shall modify the com-
pactum K a little. Since x is an interior point, one has B(x, r) ⊂ Int(K) for suf-
ficiently small r > 0. The set Kr = K \ B(x, r) is also a standard compact set.
Its boundary is the union of ∂K and the sphere S(x, r) = ∂B(x, r). Note that at
each point y on that sphere, the unit outer normal ν(y) to ∂Kr is opposite to the
outer normal to the ball B(x, r), which, obviously, coincides with (y− x)/‖y− x‖.
Hence, on the sphere S(x, r), the directional derivative of Nx with respect to the
outer normal to Kr coincides with (m − 2)/‖y − x‖m−1 (see (1)). Applying for-
mula (2) to the compactum Kr and using the harmonicity of the function Nx , we
get

−
∫

Kr

�U(y)

‖y − x‖m−2
dy

=
∫

∂K

(

U(y)
∂Nx

∂ν
(y)−Nx(y)

∂U

∂ν
(y)

)

dσ(y)

+
∫

S(x,r)

(

U(y)
m− 2

‖y − x‖m−1
− 1

‖y − x‖m−2

∂U

∂ν
(y)

)

dσ(y)
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=
∫

∂K

(

U(y)
∂Nx

∂ν
(y)−Nx(y)

∂U

∂ν
(y)

)

dσ(y)

+ m− 2

rm−1

∫

S(x,r)

U(y) dσ (y)− 1

rm−2

∫

S(x,r)

∂U

∂ν
(y) dσ (y).

As r → 0, the last term is, obviously, O(r), and the middle term tends to
(m − 2)s(1)U(x) by the mean value theorem (see Sect. 4.7.2). On the other
hand, the integral over Kr on the left-hand side of this equality tends to the
integral over the whole compactum K . So, passing to the limit as r → 0, we
get

−
∫

K

�U(y)

‖y − x‖m−2
dy =

∫

∂K

(

U(y)
∂Nx

∂ν
(y)−Nx(y)

∂U

∂ν
(y)

)

dσ(y)

+ (m− 2)s(1)U(x),

which, in view of (1), is equivalent to Eq. (3). �

8.7.3 Let us point out several corollaries related to harmonic functions that directly
follow from Theorems 1 and 2 of preceding subsection.

Note, first of all, a necessary condition for harmonicity that is a special case of
Eq. (2′): if a function U is harmonic on O, then

∫

∂K

∂U

∂ν
(y) dσ (y)= 0 (2′′)

for every standard compact set K ⊂ O. It turns out that this condition is not only
necessary but also sufficient for the harmonicity of a C2-smooth function, even in a
relaxed form.

Proposition A function U ∈ C2(O) is harmonic on O if
∫
∂B

∂U
∂ν

(y) dσ (y)= 0 for
every closed ball B contained in O.

In other words, a function is harmonic if the “outward” flux of its gradient van-
ishes for every ball contained in O.

Proof Equation (2′) implies that the function �U has zero integral over every
ball B(x, r) ⊂ O. Hence, �U(yr) = 0 for some point yr in B(x, r). Therefore,
�U(x) = limr→0 �U(yr) = 0, which completes the proof due to the arbitrary
choice of the point x. �

The next theorem is devoted to a remarkable property of harmonic functions.
It turns out that one can determine their values at interior points from their values
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at points near the boundary. This result, also known as the integral representation
of harmonic functions, plays the fundamental role in the theory of harmonic func-
tions.

Theorem If a function U is harmonic on O, then

1

s(1)

∫

∂K

(

U(y)
〈y − x, ν(y)〉
‖y − x‖m + 1

m− 2

∂U(y)

∂ν

1

‖y − x‖m−2

)

dσ(y)

=
{
U(x), if x ∈ Int(K),

0, if x /∈K.
(4)

Proof For interior points x, this is a direct corollary of (3), and for outer points it
follows from Eq. (2) applied to the harmonic function V = Nx if one notes that
∂Nx

∂ν
(y)=−(m− 2) 〈y−x,ν(y)〉

‖y−x‖m by (1). �

The functions x �→ 〈y − x, ν(y)〉/‖y − x‖m and x �→ 1/‖y − x‖m−2 are differ-
entiable infinitely many times in Int(K) for all y ∈ ∂K . This leads to an important
conclusion.

Corollary Every harmonic function is differentiable infinitely many times.

Proof Since differentiability is a local property, to prove this statement, it suffices
to consider an arbitrary point a ∈ O and to apply formula (4) to the closed ball
K = B(a, r). The differentiability of the integral in the ball (and, thereby, the infinite
smoothness) follows from Theorem 7.1.5 and the remark to it. �

Let us point out an interesting special case of formula (4). Taking U ≡ 1, we
obtain an integral allowing one to compute the area of a sphere:

∫

∂K

〈y − x, ν(y)〉
‖y − x‖m dσ(y)=

{
s(1), if x ∈ Int(K),

0, if x /∈K.
(4′)

The formulae (4) and (4′) have two-dimensional analogs in which the potential
Nx is replaced by the logarithmic potential (see Exercise 3).

Remark The integral representation (4) allows one to complement Eq. (4′) in the
following way (see Exercise 5): if C is a cone with the vertex at the origin whose
boundary is so good that K ∩C is a standard compact set, then

∫

C∩∂K
〈y, ν(y)〉
‖y‖m dσ(y)=

{
σ(S ∩C), if 0 ∈ Int(K),

0, if 0 /∈K.
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Fig. 8.3 Parts of boundary seen under acute and obtuse angles

Thus, the integral on the left-hand side of this equation equals the aperture of
the solid angle at which the part of the boundary of the compactum K contained
in C is seen from the origin. This was considered by Gauss in his study of surface
curvature. Speaking of apertures of solid angles, one has to keep in mind that the
area of the central projection of a part of the boundary is taken with the plus sign if it
is the inner part of the boundary, which is seen from the origin (i.e., if the vision rays
form acute angles with the outer normals to ∂K), and with the minus sign otherwise
(see Fig. 8.3 corresponding to the two-dimensional case).

8.7.4 For harmonic functions the important theorem of uniqueness is valid.

Theorem If two functions harmonic on a domain coincide on some ball, then they
coincide everywhere.

The proof of this theorem is based on the real analyticity of harmonic functions.
It follows from the Poisson formula (14) proved in Sect. 8.7.10. Here we will restrict
ourselves to proving a weaker version of this property which is still sufficient for our
purposes, the real analyticity of harmonic functions “along line segments”.

Lemma If a function U is harmonic on O, then, for every point a ∈ O and for
every vector e ∈ R

m, the function ϕ : t �→ U(a + te) can be decomposed into a
power series on a sufficiently small interval (−δ, δ)⊂R.

Proof Let K ⊂ O be a standard compact set (e.g., a ball) for which a is an inte-
rior point. To simplify the formulae, we will assume that a = 0. Then the integral
representation (4) implies the equality

ϕ(t)= 1

s(1)

∫

∂K

(

U(y)
〈y − te, ν(y)〉
‖y − te‖m + 1

m− 2

∂U(y)

∂ν

1

‖y − te‖m−2

)

dσ(y).
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For every y ∈ ∂K , the functions t �→ 〈y−te,ν(y)〉
‖y−te‖m and t �→ 1

‖y−te‖m−2 can be expanded
into power series in powers of t . Moreover, their radii of convergence are at least
‖y‖/‖e‖, so they are bounded away from zero by some positive quantity. Thus, the
result we need can be obtained by the termwise integration of these series. �

Proof of the theorem Without loss of generality, one may assume that one of these
functions is identically zero (otherwise just consider their difference). Thus we need
to prove that if a harmonic function U vanishes near a point a, then U(x) = 0 for
every x in the domain. Since every pair of points of the domain can be connected by
a piecewise linear path contained in the domain, it suffices to prove that the function
vanishes in some neighborhood of the segment [a, b] ⊂ O if it vanishes near the
point a. For every point x sufficiently close to [a, b] the line segment with endpoints
a and x is contained in O. By the lemma, the function ϕ(t) = U(a + t (x − a)) is
real analytic on [0,1]. Since it vanishes for small t , the uniqueness theorem for real
analytic functions yields ϕ ≡ 0. In particular, U(x)= ϕ(1)= 0. �

8.7.5 As it follows from the integral representation, the values of a harmonic func-
tion at the interior points of a standard compact set are determined by the values
of the function and the values of its normal derivative on the compactum boundary.
This implies several fundamental properties of harmonic functions. The first of them
is given by the following theorem.

Theorem (Mean value theorem for harmonic functions) Assume that a function
U is harmonic on O. Then it has the mean value property: for every closed ball
B(x, r), contained in O, the equality

U(x)= 1

s(r)

∫

S(x,r)

U(y) dσ (y) (5)

holds.

Proof Apply formula (4) to the ball B(x, r) (in the two-dimensional case, one
should use the result of Exercise 3 instead of (4)). Then ‖y − x‖ = r and ν(y) =
(y − x)/r . Hence

U(x)= 1

s(1)

∫

S(x,r)

(

U(y)
〈y − x, (y − x)/r〉

rm
+ 1

m− 2

∂U(y)

∂ν

1

rm−2

)

dσ(y).

Since the integral of the normal derivative vanishes (see (2′′)), it follows that

U(x)= 1

s(1)

∫

S(x,r)

U(y)
dσ (y)

rm−1
= 1

s(r)

∫

S(x,r)

U(y) dσ (y). �

Corollary Under the assumptions of the lemma, the equality

U(x)= 1

v(r)

∫

B(x,r)

U(y) dy (5′)

holds.
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Proof For the proof, it suffices to note that s(ρ)U(x) = ∫
S(x,ρ)

U(z) dσ (z) for
0 < ρ < r and, thereby,

v(r)U(x)=
∫ r

0
s(ρ)U(x)dρ =

∫ r

0

(∫

S(x,ρ)

U(z) dσ (z)

)

dρ =
∫

B(x,r)

U(z) dz

(the last equality holds according to formula (3) of Sect. 8.4.2). �

Let us point out one important property of functions harmonic on the entire space,
which is known as Liouville’s theorem.

Theorem If a harmonic function U on R
m is bounded, then it is constant.

Proof Let us show that U(x)=U(0) for all x ∈R
m. Let C = sup |U |. By the corol-

lary to the mean value theorem, for every r > 0, we have

U(0)= 1

v(r)

∫

B(0,r)
U(y) dy, U(x)= 1

v(r)

∫

B(x,r)

U(y) dy.

Hence,

∣
∣U(0)−U(x)

∣
∣ � 1

v(r)

∫

Er

∣
∣U(y)

∣
∣dy � C

λm(Er)

v(r)
,

where Er is the set of all points contained in exactly one of the balls B(0, r) and
B(x, r). Er is contained in the annulus {y | r − ‖x‖� ‖y‖� r + ‖x‖}, whose vol-
ume is O(rm−1). Therefore, λm(Er) = O(rm−1) and |U(0) − U(x)| = O( 1

r
) as

r→+∞. Thus, U(x)=U(0). �

As a matter of fact, we have proved a bit more than what was claimed in the state-
ment of the theorem: a harmonic on R

m function U is constant if U(x) = o(‖x‖)
as ‖x‖→+∞. The example of a linear function shows that the condition U(x)=
o(‖x‖) cannot be relaxed to U(x)=O(‖x‖). One can prove (see Exercise 11) that
among all harmonic functions on R

m, only polynomials satisfy the power growth
bound U(x)=O(‖x‖p) as ‖x‖→+∞.

The boundedness assumption of the theorem can be relaxed to the one-sided
boundedness (see Corollary 8.7.11).

8.7.6 It turns out that the mean value property completely characterizes harmonic
functions. More precisely, the following theorem holds.

Theorem If a function U locally summable in O satisfies Eq. (5′) for every closed
ball B(x, r)⊂O, then it is infinitely smooth and harmonic on O.

Note that we shall prove the infinite smoothness of the function under consider-
ation without using the integral representation (4).
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Proof The harmonicity of a C2-smooth function satisfying Eq. (5′) is easy to prove.
Indeed, in this case, repeated differentiation of the equality

U(x)= 1

v(1)

∫

B

U(x + ry) dy

with respect to r yields:

0=
∫

B

m∑

j,k=1

∂2U(x + ry)

∂xj ∂xk
yjyk dy.

Passing to the limit as r→ 0, we obtain

0=
m∑

j,k=1

∂2U(x)

∂xj ∂xk

∫

B

yjyk dy =
m∑

k=1

∂2U(x)

∂x2
k

∫

B

y2
k dy.

The integrals
∫
B
y2
k dy are, obviously, equal. Hence �U(x) = 0 at every point

x ∈O.
Now let us prove the smoothness of the function U . To this end, we will use the

standard trick for such problems of mollifying U by a convolution with a compactly
supported smooth function.

Since the smoothness is a local property, we may assume in the proof that U is
locally summable in the entire space (otherwise one can replace O by a sufficiently
small ball and extend U by zero outside that ball).

We will use the infinite smoothness of the convolution U ∗ ϕ for ϕ ∈ C∞0 (Rm)

(see Corollary 7.5.4). Choose a function ϕ of radial type: ϕ(y) = ψ(‖y‖) where
ψ ∈ C∞([0,∞)) and ψ(t)= 0 for all t � r . Assume that a ∈O and B(a,2r)⊂O.
Then for x ∈ B(a, r), Fubini’s theorem and Eq. (5′) imply

U ∗ ϕ(x)=
∫

Rm

U(x − y)ψ
(‖y‖)dy =−

∫

Rm

(∫ ∞

‖y‖
U(x − y)ψ ′(t) dt

)

dy

=−
∫ r

0
ψ ′(t)

(∫

‖y‖<t

U(x − y)dy

)

dt =−U(x)

∫ r

0
ψ ′(t)v(t) dt.

If ψ is non-increasing on (0, r), then
∫ r

0 ψ ′(t)v(t) dt �= 0. Thus the function U is
proportional to the infinitely smooth convolution U ∗ ϕ on B(a, r). �

Corollary If a sequence of functions harmonic on the domain O converges to a
function U uniformly on every compact set contained in O, then U is a harmonic
function.

Proof Indeed, the function U is continuous and has the mean value property. �

8.7.7 An important property of harmonic functions follows from the mean value
theorem.
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Theorem (Maximum principle for harmonic functions) If a function harmonic on
a domain is not constant, then it has no local extrema.

It follows from here immediately that a harmonic function is constant if its abso-
lute value attains its maximum.

Proof Obviously, it suffices to consider the case when a function U harmonic on a
domain has a local maximum. Then there exists a closed ball centered at the point a
such that U(a)� U(y) for all y in that ball. The average value of U over it equals
U(a) by the corollary to the mean value theorem. This is possible only if U(y) ≡
U(a) in the entire ball. But then the uniqueness theorem implies that U(y)≡ U(a)

in the whole domain, which contradicts our assumptions. �

Corollary Q be a compact set and U ∈ C(Q). If the function U is harmonic on
Int(Q), then

max
x∈Q U(x)= max

x∈∂QU(x) and min
x∈QU(x)= min

x∈∂QU(x).

Proof It suffices to prove the first of these equalities only assuming that the set
Int(Q) is connected. If U is not constant in Int(Q), then, according to the maximum
principle, it cannot attain its maximal value there. The remaining case U ≡ const is
obvious. �

Note that if one interprets a harmonic function as the stationary temperature in
a body that contains no parts emitting or absorbing heat, then, from a physicist’s
standpoint, the maximum principle is completely obvious. Indeed, if under these
assumptions the temperature had a local maximum at some point, then the heat
would flow away from a neighborhood of that point to the nearby regions lowering
the temperature at the point, which contradicts the stationarity assumption.

8.7.8 Until this point, when talking of harmonic functions, as a rule, we consid-
ered the case m > 2, leaving the derivation of the analogous results for the two-
dimensional case to the reader (see Exercises 2, 3 and 6).

However, the two-dimensional case has one specific feature, which we will dis-
cuss now. Namely, we will talk about the notion of a harmonic conjugate function.

Definition Let U be a function that is harmonic on a domain O ⊂R
2. The function

V ∈ C2(O) is called a harmonic conjugate of U if U ′x = V ′y and U ′y =−V ′x .

By definition, the gradients of the functions U and V are orthogonal at every
point of O, so that the level sets of U and V are mutually orthogonal at their inter-
section points. In the class of harmonic functions vanishing at some fixed point, the
harmonic conjugate function is unique and repeated conjugation leads, as one can
easily see, to the function −U . Note that every harmonic conjugate function is har-
monic itself, because �V =−(U ′y)′x + (U ′x)′y = 0. A reader familiar with complex
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analysis will notice that a function V is a harmonic conjugate of a function U if and
only if the function U + iV is holomorphic.

Proposition Each function U harmonic on a convex planar domain has a harmonic
conjugate function.

Proof Consider the vector field (−U ′y,U ′x). Since ∂
∂x

(U ′x) = − ∂
∂y

(U ′y) by the har-
monicity of U , the Poincaré lemma (see Sect. 8.5.2) implies that this field is a po-
tential one. The corresponding potential is a harmonic conjugate function to U . �

If the domain is not convex, a harmonic conjugate function may fail to exist
(even though the proposition implies that it exists locally). This can be seen if one
considers the harmonic function U(x,y)= ln(x2+ y2) in R

2 \ {0} (see the example
in Sect. 8.5.2).

8.7.9 The Dirichlet Problem. This classical problem about harmonic functions is
as follows. One needs to find a function that is continuous in the closure of a given
domain O and harmonic on O with the prescribed values on the boundary of the
domain. In other words, one needs to find a function U ∈ C(O)∩C2(O), satisfying
the following conditions:

(1) �U(x)= 0 when x ∈O

(this equation is called the Laplace equation) and

(2) U(x)= f (x) when x ∈ ∂O,

where f is a given function defined and continuous on ∂O. This function is called
the boundary function.

We will restrict ourselves to the case m� 3 here. The corollary to the maximum
principle implies that in a bounded domain, the solution of the Dirichlet problem is
unique. To outline an approach that can lead to finding the solution, assume that the
closure O is a standard compact set. If U is a solution of the Dirichlet problem that
is smooth in some neighborhood of O, then, according to the integral representation
formula (see Theorem 8.7.3), for every x ∈O, one has

U(x)= 1

s(1)

∫

∂O

(

f (y)
〈y − x, ν(y)〉
‖x − y‖m + 1

m− 2
Nx(y)

∂U

∂ν
(y)

)

dσ(y). (6)

The right-hand side of this formula contains an unknown function ∂U
∂ν

. To eliminate
it, we will do the following. Fix a point x ∈O and consider a function Wx harmonic
on O whose boundary values are the same as those of the potential Nx . If such
a function exists and is sufficiently smooth in a neighborhood of the set O, then
Green’s formula (2) applied to V =Wx yields

0= 1

s(1)

∫

∂O

(

f (y)
∂Wx

∂ν
(y)−Nx(y)

∂U

∂ν
(y)

)

dσ(y).
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Dividing this equality by (m− 2) and adding the result to (6), we obtain

U(x)= 1

s(1)

∫

∂O

( 〈y − x, ν(y)〉
‖x − y‖m + 1

m− 2

∂Wx

∂ν
(y)

)

f (y)dσ (y). (7)

Thus, the solution to the Dirichlet problem with a given boundary function f can be
expressed in terms of this boundary function using the function

1

s(1)

( 〈y − x, ν(y)〉
‖x − y‖m + 1

m− 2

∂Wx

∂ν
(y)

)

= ∂G

∂ν
(x, y) (x ∈O, y ∈O, x �= y),

where

G(x,y)= 1

(m− 2)s(1)

(

Wx(y)− 1

‖x − y‖m−2

)

. (8)

The function G is called the Green function for the domain O. When using the
symbol ∂G

∂ν
, we will always mean the derivative with respect to the second argument.

Using the normal derivative of the Green function, Eq. (7) can be rewritten as

U(x)=
∫

∂O

∂G

∂ν
(x, y)f (y) dσ (y). (7′)

The reader can find the proof of the existence of Green’s function and the inves-
tigation of its properties for a wide class of domains in Sect. 29 of the book [V].
We will restrict ourselves to the most important special cases: the construction of
Green’s function and the solution of the Dirichlet problem for a ball and for a half-
space.

8.7.10 The Dirichlet Problem for a Ball. Since the harmonicity property is trans-
lation and dilation invariant, it suffices to construct the solution for the unit ball
centered at the origin. In this case, Green’s function can be obtained using the so-
called spherically symmetric points. The heuristics leading to its construction comes
from the following theorem of Kelvin.

Definition Let x �= 0. The point x′ lying on the same ray as x and satisfying the
condition ‖x‖ · ‖x′‖ = 1 (i.e., the point x′ = x

‖x‖2 ) is called the spherically symmet-
ric point to the point x.

It is clear that the spherically symmetric point to the point x′ is x. The points on
the unit sphere are spherically symmetric to themselves. If x /∈ S, then the points
x and x′ are separated by the sphere S. The spherically symmetric points have one
useful geometric property: their distances to the points on the sphere S are propor-
tional. More precisely,

‖x‖ · ∥∥y − x′
∥
∥= ‖y − x‖, when ‖y‖ = 1. (9)
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Indeed,

‖x‖ · ∥∥y − x′
∥
∥=

∥
∥
∥
∥‖x‖y −

x

‖x‖
∥
∥
∥
∥=

√
‖x‖2 − 2〈y, x〉 + 1= ‖x − y‖.

Theorem (Kelvin14) Assume that the function U is harmonic on the domain O,
0 /∈O. Let O′ be the domain spherically symmetric to O with respect to the sphere S.
Then the function V defined by the equality V (x) = 1

‖x‖m−2 U( x

‖x‖2 ) is harmonic

on O′.

Since we will never refer to this theorem formally, we leave its proof (the techni-
cal details of which are rather cumbersome) to the reader (see Exercise 9).

Now, we shall turn to the construction of Green’s function for the unit ball B .
Assume that ‖x‖< 1. To obtain a function harmonic on B and taking at the points
y ∈ S the values Nx(y)= 1

‖x−y‖m−2 , we will use the harmonicity of the function Nx

outside B and “transplant” it to B using the spherical symmetry. More precisely, put

W(x,y)=
{

1
‖x‖m−2

1
‖y−x′‖m−2 if x �= 0, ‖x‖‖y‖< 1,

1 if x = 0, y ∈R
m.

The harmonicity of the function W as a function of x (for x �= 0) follows
from Kelvin’s theorem. However we will establish this fact directly. Obviously,
W(x,y)= (1−2〈x, y〉+‖x‖2‖y‖2)(2−m)/2 when ‖x‖‖y‖< 1 and, therefore, W is
a symmetric function of its arguments. For a fixed x �= 0, the function y �→W(x,y)

is proportional to the point mass potential at the point x′, so it is harmonic. Due to
the symmetry, the function x �→W(x,y) is harmonic for every fixed y as well. In
particular, if ‖y‖ = 1, then this function is harmonic on the unit ball. This allows us
to avoid referring to Kelvin’s theorem.

Now, take Wx(y)=W(x,y). Motivated by the formula (8), put

G(x,y)= 1

(m− 2)s(1)

(

W(x,y)− 1

‖x − y‖m−2

)

for ‖x‖< 1 and ‖y‖ = 1.
Since the unit outer normal to the sphere at a point y ∈ S is y, (1) and (9) imply

that, for any fixed x ∈ B , one has

∂W

∂ν
(x, y)= (m− 2)

〈x, y〉 − ‖x‖2

‖x − y‖m for all y ∈ S.

Therefore, for all y ∈ S, we have

∂G

∂ν
(x, y)= 1

s(1)

1− ‖x‖2

‖x − y‖m .

14William Thomson, Lord Kelvin (1824–1907)—English physicist and mathematician.
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In our case, formula (7′) shows that the solution of the Dirichlet problem for the unit
ball with the boundary function f should be of the form

U(x)=
∫

S

f (y)
∂G

∂ν
(x, y) dσ (y)= 1

s(1)

∫

S

1− ‖x‖2

‖x − y‖m f (y)dσ (y)
(‖x‖< 1

)
.

Let us check that this formula does indeed give a solution of the Dirichlet problem.
Put

P(x, y)= ∂G

∂ν
(x, y)= 1

s(1)

1− ‖x‖2

‖x − y‖m for (x, y) ∈ B × S, (10)

where the derivative is taken with respect to the outer normal to the unit sphere at
the point y. This function is called the Poisson kernel (for the ball). Let us now
establish its main properties.

Lemma

(1) The Poisson kernel is positive and, for any fixed y ∈ S, is harmonic on B as a
function of x.

(2) For every x in B , we have
∫

S

P (x, y) dσ (y)= 1. (11)

(3) If a ∈ S, x ∈ B and ‖x − a‖< δ, then
∫

S\B(a,δ)

P (x, y) dσ (y)� 2‖x − a‖
(δ − ‖x − a‖)m .

Proof (1) The inequality P > 0 is obvious. As has already been mentioned, for
‖y‖ = 1, the function x �→ W(x,y) is harmonic on the unit ball, so the function
x �→G(x,y) is harmonic as well. Since the partial derivatives of a harmonic func-
tion are again harmonic, it remains to refer to Eq. (10).

(2) Since for x = 0, the equality (11) is obvious, we may assume that
0 < ‖x‖< 1. Write the Gauss formula (4′) with K = B for the interior point x

and for the exterior point x′. In the first case, we have

1= 1

s(1)

∫

S

〈y − x, y〉
‖y − x‖m dσ(y). (12)

In the second case,

0= 1

s(1)

∫

S

〈y − x′, y〉
‖y − x′‖m dσ(y).

By (9), it follows that

0= 1

s(1)

∫

S

〈y − x′, y〉
‖y − x‖m dσ(y).
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Multiplying this equality by ‖x‖2 and subtracting it from (12), we obtain

1= 1

s(1)

∫

S

〈
y − x − ‖x‖2(

y − x′
)
, y

〉 dσ(y)

‖y − x‖m .

To arrive at the final result, it remains just to transform the scalar product:
〈
y − x − ‖x‖2(

y − x′
)
, y

〉= 〈(
1− ‖x‖2)

y, y
〉= 1− ‖x‖2.

(3) This inequality follows from (10) because 1−‖x‖2 < 2(1−‖x‖)� 2‖x−a‖
and ‖x − y‖> δ − ‖x − a‖ for y /∈ B(a, δ). �

Now we are ready to consider the Dirichlet problem for the ball. For its solution,
it is important that, as one can see from the lemma just proved, the Poisson kernel
has properties analogous to those of an approximate identity. The only difference
is that instead of integration with respect to Lebesgue measure we use integration
with respect to the area measure on the sphere. The formula (13) shows that one can
obtain a solution of the Dirichlet problem considering the generalized convolution
of the boundary function and the Poisson kernel.

Theorem The solution of the Dirichlet problem in the ball B with a boundary func-
tion f ∈ C(S) exists and is unique. For x ∈ B this solution U is given by

U(x)=
∫

S

P (x, y)f (y) dσ (y). (13)

Proof As already mentioned, the uniqueness follows from the maximum principle.
The harmonicity of the function U in the ball B follows from the harmonicity of
the Poisson kernel and the validity of differentiating under the integral sign. Put
U(x) = f (x) at the points x ∈ S. To finish the proof of the theorem, it remains to
check that the function U is continuous at the boundary points of the ball. To this
end, estimate the difference U(x)−U(a) between the values at the points a ∈ S and
x ∈ B . Multiplying the equality (11) by f (a) and subtracting the result from (13),
we see that

U(x)−U(a)=
∫

S

(
f (y)− f (a)

)
P(x, y) dσ (y).

Let ω be the modulus of continuity of f . Let C = maxS |f |. For every δ > 0 and
x ∈ B with ‖x − a‖< δ, the lemma implies

∣
∣U(x)−U(a)

∣
∣ �

∫

S

∣
∣f (y)− f (a)

∣
∣P(x, y) dσ (y)=

∫

S∩B(a,δ)

· · · +
∫

S\B(a,δ)

· · ·

�
∫

S∩B(a,δ)

ω(δ)P (x, y) dσ (y)+
∫

S\B(a,δ)

2CP(x, y) dσ (y)

� ω(δ)+ 4C
‖x − a‖

(δ − ‖x − a‖)m .
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Now we can make the term ω(δ) as small as we wish by choosing a sufficiently
small δ, after which the second term can also be made small by taking the point x
sufficiently close to a. �

A simple computation shows that the solution of the Dirichlet problem in an
arbitrary ball B(a,R) is given by

U(x)= 1

s(1)R

∫

S(a,R)

R2 − ‖x − a‖2

‖y − x‖m f (y)dσ (y)
(
x ∈ B(a,R)

)
. (14)

In particular, if the function U is harmonic on some domain containing B(a,R),
or, at least, is continuous in B(a,R) and harmonic on B(a,R), then, due to the
uniqueness of the solution of the Dirichlet problem, for every ‖x− a‖<R, one has
the Poisson formula

U(x)= 1

s(1)R

∫

S(a,R)

R2 − ‖x − a‖2

‖y − x‖m U(y)dσ(y).

8.7.11 The Poisson formula allows one to complement the mean value theorem for
a harmonic function and to estimate the deviations of its values in the ball from its
value at the center. We shall state the corresponding result for a ball centered at the
origin.

Theorem (Harnack’s15 inequality) Assume that a non-negative function U is har-
monic on the m-dimensional ball B(0,R). Then, at every point x with ‖x‖<R, the
two-sided inequality

(

1− ‖x‖
R

)(
R

R+ ‖x‖
)m−1

U(0)�U(x)�
(

1+ ‖x‖
R

)(
R

R − ‖x‖
)m−1

U(0)

holds.

Proof Take a number r in the interval (‖x‖,R). According to the Poisson formula,
we have

U(x)= 1

s(1)r

∫

S(0,r)

r2 − ‖x‖2

‖y − x‖m U(y)dσ(y).

Hence

U(x)� r2 − ‖x‖2

r(r − ‖x‖)m
1

s(1)

∫

S(0,r)
U(y) dσ (y)= (r + ‖x‖)rm−2

(r − ‖x‖)m−1
U(0).

Passing to the limit as r → R, we get the upper bound for U(x). The lower bound
is proved similarly. �

15Carl Gustav Axel Harnack (1851–1888)—German mathematician.
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Using Harnack’s inequality, one can easily obtain a refinement of Liouville’s
theorem (Sect. 8.7.5) (some other implications of this inequality are mentioned in
Exercises 12–15).

Corollary If a harmonic function U on R
m is bounded either from above, or from

below, then it is constant.

Proof Without loss of generality, we may assume that U � 0. Passing to the limit as
R→+∞ in Harnack’s inequality, we obtain that U(0) � U(x) � U(0) for every
point x ∈R

m. �

The Poisson formula implies yet another important estimate. It turns out that
the size of the gradient of a function harmonic on a ball can be estimated by the
maximum of the function itself on the ball boundary (cf. Exercise 17).

Theorem Assume that a function U is continuous in B(0,R) and harmonic on
B(0,R). Then, at every point x ∈ B(0,R), the inequality

∥
∥gradU(x)

∥
∥ �

√
m

R − ‖x‖ max‖y‖=R

∣
∣U(y)

∣
∣

holds.

Proof Put C =max‖y‖=R |U(y)|. It suffices to check that | ∂U
∂e

(x)|� C
√
m

R−‖x‖ for ev-
ery unit vector e ∈R

m. By the Poisson formula,

U(x)= 1

s(1)R

∫

S(0,R)

R2 − ‖x‖2

‖y − x‖m U(y)dσ(y).

Let us first estimate the derivative at the center of the ball. Differentiating under the
integral sign and making the change of variable y =Ru, we obtain

∂U

∂e
(0) = 1

s(1)R

∫

S(0,R)

mR2 〈y, e〉
‖y‖m+2

U(y)dσ(y)

= m

s(1)R

∫

S

〈u, e〉U(Ru)dσ(u).

Hence

∣
∣
∣
∣
∂U

∂e
(0)

∣
∣
∣
∣ �

mC

R

1

s(1)

∫

S

∣
∣〈u, e〉∣∣dσ(u)� mC

R

√
1

s(1)

∫

S

∣
∣〈u, e〉∣∣2

dσ(u)

(in the second inequality, we used the Cauchy–Bunyakovsky inequality, see
Sect. 4.4.5). It is clear that

∫

S

∣
∣〈u, e〉∣∣2

dσ(u)=
∫

S

u2
1 dσ(u)=

∫

S

u2
1 + · · · + u2

m

m
dσ(u)= s(1)

m
.
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Thus, | ∂U
∂e

(0)|� C
√
m

R
. Obviously, the estimate obtained is valid for a ball centered

at an arbitrary point. When 0 < ‖x‖ < R, one just needs to apply it to the ball
B(x,R−‖x‖) and to use the fact that, on the boundary of that ball, the function does
not exceed C in absolute value due to the maximum principle (see Sect. 8.7.7). �

8.7.12 The solvability of the Dirichlet problem and the uniqueness of the solution
allow us to obtain an important “singularity removal principle”. It is natural to ask
under what conditions one can guarantee the harmonicity of a function on the entire
domain O if it is known that it is harmonic on O outside some “small” set. If that set
has no interior points, then, obviously, the C2-smoothness of the function implies
its harmonicity everywhere in O. To what extent can this smoothness assumption
be relaxed? The example of the function x �→ |xm|, which is harmonic for xm �= 0
but not in the entire space Rm, shows that the continuity on the exceptional set alone
is, generally speaking, not enough. However, if the exceptional set is contained in
some hyperplane, one can give a useful and easy to verify condition that is formally
not related to the differentiation but still ensures the harmonicity of the function on
the entire domain.

Since the harmonicity is preserved under rigid motions, we shall assume that the
set where the harmonicity may be violated is contained in the hyperplane xm = 0.
Let us introduce some notation. For an arbitrary domain O, put

O+ =O ∩ {
x = (x1, . . . , xm) |xm > 0

}
,

O− =O ∩ {
x = (x1, . . . , xm) |xm < 0

}
,

O0 =O ∩ {
x = (x1, . . . , xm) |xm = 0

}
.

It turns out that if a continuous function is odd with respect to the last coordinate,
then the singularity removal occurs automatically without any additional smooth-
ness assumptions. Some other singularity removal conditions can be derived from
this result (see Exercises 18 and 19).

Theorem (The symmetry principle) Assume that a function V is continuous in a
domain O symmetric with respect to the hyperplane xm = 0, and is odd with re-
spect to the last coordinate, i.e., V (x1, . . . , xm−1,−xm) = −V (x1, . . . , xm−1, xm)

whenever x = (x1, . . . , xm) ∈O. If V is harmonic on O+, then it is harmonic on the
entire domain O.

Proof It is obvious that V is harmonic on O− as well. Thus it remains to prove that
it is harmonic on a neighborhood of every point in O0. Let a ∈O0, B(a,R)⊂O,
and let f be the restriction of V to S(a,R). It is obvious that the function f is
continuous and odd with respect to the last coordinate. Let U be the solution of the
Dirichlet problem in the ball B(a,R) with the boundary function f . At the interior
points of the ball, this solution is given by formula (14), which immediately implies
(we leave it to the reader to check this step) that U is odd with respect to the last
coordinate. The function U , like V , vanishes on the set O0 ∩ B(a,R). Thus, the
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functions V and U coincide on the boundary of the upper half-ball O+ ∩ B(a,R)

and, thereby, coincide on the entire half-ball due to the uniqueness of the solution
of the Dirichlet problem. The same can be said about the lower half of the ball
B(a,R). Thus the function V coincides with the harmonic function U on the entire
ball, proving the statement. �

8.7.13 In conclusion, let us discuss the Dirichlet problem in an unbounded domain.
We shall restrict ourselves to the case when this domain is the “upper” half-space.
For technical reasons, we will consider the (m+ 1)-dimensional half-space R

m+1+
consisting of all points of the kind ξ = (x1, . . . , xm, t), where t > 0. In this case the
solution is, generally speaking, not unique. For example, the Dirichlet problem with
zero boundary function has, beside the trivial solution (U ≡ 0), another solution
U(ξ)= t . However one can restore uniqueness if one narrows the class of consid-
ered functions by demanding that they possess some additional properties. For the
half-space, such an additional property ensuring uniqueness is the boundedness of
the solution. More precisely, the following theorem holds.

Proposition Let U and V be two continuous bounded functions on the upper half-

space R
m+1+ that are harmonic on R

m+1+ . If they coincide on ∂Rm+1+ , then they are
identical.

Proof Obviously, the function F = U − V is bounded and vanishes on the hyper-
plane ∂Rm+1+ . Extend it to the whole space as an odd function with respect to the last
variable by putting F(x1, . . . , xm,−t)=−F(x1, . . . , xm, t) for t > 0. It is clear that
this extension satisfies all the assumptions of the symmetry principle and, thereby, is
harmonic on the entire space. Since it is bounded, it must be constant by Liouville’s
theorem (see Sect. 8.7.5), whence it is identically zero. �

Now let us turn to the proof of the existence of the solution of the Dirichlet
problem for the half-space in the case when the boundary function is continuous
and bounded. Following the general scheme, fix a point ξ = (x1, . . . , xm, t) ∈R

m+1+
and construct a harmonic function Wξ on R

m+1+ that has the same boundary values
as Nξ . Obviously, one can take Wξ =Nξ ′ where ξ ′ = (x1, . . . , xm,−t). Therefore,
the Green function for the half-space must be of the form

G(ξ,η)= 1

(m− 1)σ (1)

(
1

‖ξ ′ − η‖m−1
− 1

‖ξ − η‖m−1

)

,

where σ(1) is the area of the unit sphere in R
m+1 and η = (y1, . . . , ym, τ ). Since

in the case under consideration, one has ν = −em+1, we get ∂
∂ν
= − ∂

∂τ
, whence,

according to (7′), the solution of the Dirichlet problem with boundary function f

must be of the form

U(ξ)=−
∫

Rm

f (η)
∂G

∂τ
(ξ, η) dη.
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Let us check that this formula does indeed yield a solution of the Dirichlet problem.
Obviously,

−∂G

∂τ
(ξ, η)= 1

σ(1)

(
t + τ

‖ξ ′ − η‖m+1
+ t − τ

‖ξ − η‖m+1

)

.

Since ‖ξ ′ − η‖ = ‖ξ − η‖ for τ = 0, we get

−∂G

∂τ
(ξ, η)= 1

σ(1)

2t

‖ξ − η‖m+1

for all η ∈ ∂Rm+1+ .
Put

Pt (x)= 1

σ(1)

2t

‖ξ‖m+1
= 1

σ(1)

2t

(‖x‖2 + t2)
m+1

2

(
ξ = (x, t), x ∈R

m, t > 0
)
.

The function x �→ Pt(x) is called the Poisson kernel (for the half-space). We will
also use this definition for the case m= 1.

According to the general scheme, the solution of the Dirichlet problem for the
half-space R

m+1+ with boundary function f should be of the form

U(x, t)=
∫

Rm

f (y)Pt (x − y)dy.

In other words the solution of the Dirichlet problem can be represented as the convo-
lution of the boundary function with the Poisson kernel. To prove it, let us establish
the main properties of the Poisson kernel.

Lemma

(1) The Poisson kernel for the half-space is positive and harmonic on R
m+1+ (i.e.,

as a function of the point ξ = (x, t), x ∈R
m, t > 0).

(2) For every t > 0, one has
∫

Rm

Pt (x) dx = 1. (16)

(3) For every δ > 0, one has
∫

‖x‖>δ

Pt (x) dx −→
t→0

0.

This lemma is valid for every m, starting with m= 1. In particular, it shows that
the family {Pt }t>0 is an approximate identity in R

m as t→ 0 (see Sect. 7.6.1).

Proof (1) It is obvious that Pt (x) is positive. For m > 1, its harmonicity follows
from the fact that, up to a constant factor, the Poisson kernel is the derivative of a
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point mass potential Pt(x)= 1
s(1)

∂N0
∂t

(ξ), where ξ = (x, t). For m= 1, one should
replace the potential N0 by the logarithmic potential.

(2) Equation (16) can be verified by the direct computation

∫

Rm

2t

(‖x‖2 + t2)
m+1

2

dx =mαm

∫ ∞

0

2trm−1

(r2 + t2)
m+1

2

dr =mαm

∫ ∞

0

u
m
2 −1

(u+ 1)
m+1

2

du

(in the second equality, we made the change of variable u= r2/t2). Now the desired
result follows from the formula

∫ ∞

0

ua−1

(u+ 1)a+b
du= B(a, b)= �(a)�(b)

�(a + b)

in Example 4 of Sect. 4.6.3 and the equality σ(1)= (m+ 1)αm+1:

∫

Rm

Pt (x) dx = 1

σ(1)

∫

Rm

2t

(‖x‖2 + t2)
m+1

2

dx = mαm

(m+ 1)αm+1

�(m2 )�( 1
2 )

�(m+1
2 )

= 1.

(3) It suffices to use the obvious inequality Pt (x)� const
‖x‖m+1 t . �

Theorem A bounded solution of the Dirichlet problem in the half-space Rm+1+ with
a bounded boundary function f ∈ C(Rm) exists and is unique. For ξ = (x, t) ∈
R

m+1+ , this solution U is given by

U(ξ)=
∫

Rm

Pt (x − y)f (y) dy. (17)

Proof The uniqueness has already been established in the proposition in the begin-
ning of this section. Let us prove the existence. Put C = supy∈Rm |f (y)|. Let us
check, first of all, that the function U is bounded. Indeed, for every ξ = (x, t) ∈
R

m+1+ , we have

∣
∣U(ξ)

∣
∣ � C

∫

Rm

Pt (x − y)dy = C.

The harmonicity of U follows from the first statement of the lemma and the Leibniz
rule.

Defining U(ξ) = f (ξ) for ξ ∈ ∂Rm+1+ , let us check the continuity of U at an
arbitrary boundary point ξ0 = (a,0) ∈ ∂Rm+1+ . Since U(ξ)= (Pt ∗ f )(x), we have
∣
∣U(ξ)−U(ξ0)

∣
∣= ∣

∣(Pt ∗ f )(x)− f (a)
∣
∣ �

∣
∣(Pt ∗ f )(x)− f (x)

∣
∣+ ∣

∣f (x)− f (a)
∣
∣.

It is clear that the quantity |f (x)− f (a)| becomes arbitrarily small if x is restricted
to a sufficiently small ball B(a, δ). By Theorem 7.6.3, (Pt ∗f )(x) ⇒

t→0
f (x) on every

bounded set. Thus, t can be chosen to be so small that the first term on the right-
hand side of the last inequality is as small as we wish for all x ∈ B(a, δ). Therefore,
U(ξ)→U(ξ0) as ξ → ξ0, which is exactly what we need. �
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EXERCISES

1. Prove that if U,V ∈ C2(O), then
∫

K

〈gradU,gradV 〉dx +
∫

K

V�U dx =
∫

∂K

V
∂U

∂ν
dσ.

In particular, for every function U harmonic on O, we have

∫

K

∥
∥gradU(x)

∥
∥2

dx =
∫

∂K

U
∂U

∂ν
dσ.

2. For every compactly supported function ϕ ∈ C2(Rm) (m� 3) the equality

(N0 ∗�ϕ)(x)=
∫

Rm

N0(x − y)�ϕ(y)dy =−(m− 2)s(1)ϕ(x)

holds. Thus, using the convolution with N0, one can recover a compactly sup-
ported function from its Laplacian. This fact provides the grounds for calling
− 1

(m−2)s(1)N0 the fundamental solution of the Laplace equation.
Replacing the potential N0 by the logarithmic potential, obtain an analogous
result for functions of two variables.

3. Prove the two-dimensional analogs of Eqs. (3) and (4) (Theorems 8.7.2
and 8.7.3), replacing the potential Nx by the logarithmic potential.

4. Complementing the Gauss formula (see formula (4′) for x = 0), prove that

∫

∂K

〈y, ν(x)〉
‖y‖m dσ(y)= 1

2
s(1),

provided that the origin belongs to the regular part of ∂K .
5. Prove the statement of Remark 8.7.3. Hint. Use the equality 〈x, ν(x)〉 = 0 for

the points x lying on the boundary of the cone C.
6.

(a) Prove the mean value theorem for harmonic functions of two variables (see
Sect. 8.7.5).

(b) By the mean value theorem, calculate the integral over the circle

∫

|z|=r

ln

∣
∣
∣
∣
1− z2

2

∣
∣
∣
∣ds(z) for r < 1.

Justify the passage to the limit as r → 1 and use it to calculate the Euler
integral

∫ 2π
0 ln |sin t |dt .

7. For f ∈ C2(O) and a ∈O put F(r)= 1
s(r)

∫
S(a,r)

f (x) dσ (x), when r > 0 and

B(a, r) ⊂ O, and put F(0) = f (a). Prove that F ∈ C2([0,R)) and F ′′(0) =
1
m
�f (a).
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8. Using Theorem 8.7.6, prove that in Proposition 8.7.3, the condition U ∈ C2(O)

can be relaxed to the assumption that U is merely continuously differentiable.
Based on this, prove the following “singularity removal principle”: if a func-
tion from C1(O) is harmonic on O \L where L is some hyperplane, then it is
harmonic on O.

9. Prove Kelvin’s theorem: if a function U is harmonic on some domain, then
the function V (x)= 1

‖x‖m−2 U( x

‖x‖2 ) is also harmonic (in the corresponding do-
main). Hint. Since the harmonicity of a function is preserved under rotations, it
is enough to compute �V at the points of the form (t,0, . . . ,0).

10. Prove that a homogeneous sphere in R
3 attracts an outer point as if the entire

mass of the sphere were concentrated at its center, and that the interior points
are in zero gravity. Generalize these results to the m-dimensional case assuming
that the gravitational attraction force between two point masses is proportional
to 1

rm−1 , where r is the distance between the points. Hint. When computing the
arising integrals, argue similarly to the proof of Eq. (11).

11. Assume that for some p > 0, a harmonic function U on R
m satisfies the

condition |U(x)| = O(‖x‖p) as ‖x‖ → +∞. Using the gradient bound (see
Sect. 8.7.11), prove that U is a polynomial of degree at most [p].

12. Assume that a sequence of functions continuous in a closed ball and harmonic
on its interior is uniformly bounded and converges pointwise on the boundary
sphere. Prove that it also converges pointwise inside the ball and the limit func-
tion is harmonic.

13. Assume that a sequence of functions harmonic on a domain O converges point-
wise to some function. Using Harnack’s inequality, prove that if this sequence
is monotone, then the limiting function is harmonic on O (Harnack’s theorem).

14. Prove that if a series of non-negative functions harmonic on some domain con-
verges at some point, then it converges uniformly on any compact set contained
in the domain.

15. Using Harnack’s inequality, prove that if a non-constant function harmonic on a
ball and continuous in its closure attains its extremum at some boundary point,
then it cannot happen that the normal derivative at that point is zero.

16. Prove that for every non-negative function U harmonic on the m-dimensional
ball B(a,R), the inequality ‖gradU(a)‖� m

R
U(a) holds.

17. Refine the gradient bound obtained in Sect. 8.7.11 by proving that

∥
∥gradU(x)

∥
∥ � cm

R − ‖x‖ max‖y‖=R

∣
∣U(y)

∣
∣, where cm = 2

αm−1

αm

.

Prove that the coefficient cm cannot be improved.
18. Prove that the symmetry principle remains valid for a function U ∈ C(O) that is

even with respect to the last coordinate under the assumption that U ′xm ∈ C(O).
Hint. Apply the symmetry principle to the derivative U ′xm .

19. Using the result of the previous exercise, prove the following refinement of the
“singularity removal principle” (Exercise 8): if a function from C(O) is contin-
uously differentiable in O with respect to the last coordinate and is harmonic
for xm �= 0, then it is harmonic on O.
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20. Prove the following point singularity removal principle for harmonic functions.
If a function U is harmonic on the punctured m-dimensional (m � 3) ball
B(a, r) \ {a} and U(x) = o( 1

‖x−a‖m−2 ) as x → a, then one can assign some
value to this function at the point a so that the resulting function is harmonic on
the entire ball B(a, r). What is the two-dimensional analog of this statement?

21. Find the dimension of the linear space of all degree n homogeneous harmonic
polynomials of two variables.

22. Present a basis for the linear space of all degree four homogeneous harmonic
polynomials of three variables.

8.8 �Area on Lipschitz Manifolds

8.8.1 In this section, by area, we understand a k-dimensional area in the sense
of Definition 8.2.1 (we do not assume that it is generated by the Hausdorff mea-
sure μk). We will denote this area by the letter σ , and the k-dimensional Lebesgue
measure by the letter λ (without specifying the dimension explicitly).

Let us remind the reader that Theorem 8.3.2 answers the question about the
uniqueness of the area on the (Borel) subsets of smooth manifolds. Our goal is to
generalize this result. Let us mention in this connection that Lebesgue himself was
interested in the definition and the properties of the area on non-smooth surfaces
and, moreover, devoted one of his first works to this topic. Denjoy in his memoirs
mentions that Lebesgue, explaining his interest in this problem, pointed at a crum-
pled napkin as an example of a non-smooth surface for which the existence and the
uniqueness of the area are as much beyond doubt as for a smooth one. We will show
here that the area is unique not only on smooth manifolds but also on the much
wider class of so-called Lipschitz manifolds. Let us give the rigorous definition of
this notion.

A homeomorphism � is called a bi-Lipschitz mapping if the Lipschitz condition
is satisfied for � as well as for �−1. A simple Lipschitz manifold is a manifold that
has a bi-Lipschitz parametrization (defined on some open subset of the space R

k

where k is the dimension of the manifold). If one can find such a parametrization
near every point of a manifold, the manifold is called Lipschitz. In particular, this
terminology applies to surfaces (manifolds of codimension 1).

It is obvious that the canonical parametrization of the graph of a function is a bi-
Lipschitz mapping if and only if the function itself is Lipschitz (see also Exercise 1).
However, in contrast to smooth surfaces, Lipschitz manifolds do not need to be
graphs of Lipschitz functions even locally (see Exercise 2).

Beyond the σ -algebra generated by the Borel subsets of k-dimensional Lipschitz
manifolds, the area is not defined uniquely. We will not discuss this issue, which is
outside the scope of this book. We note only that the condition that a set belongs
to this σ -algebra is not only sufficient, but also in a certain sense necessary for the
area to be uniquely defined on this set. The reader can find additional information in
[F, Sect. 3.3], and [BZ, Sect. III.2].
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In the derivation of the formula for the area on a simple Lipschitz manifold,
a crucial role is played by the Rademacher theorem 11.4.2, according to which
the functions satisfying the Lipschitz condition are differentiable almost every-
where. It implies that the coordinate functions of a Lipschitz parametrization
� are differentiable almost everywhere. Hence, the accompanying parallelepiped
Ct = dt�([0,1)k) and the density ω�(t) = λ(Ct ) are defined almost everywhere.
The next theorem, whose proof is given in Sect. 8.8.3, extends the result of Theo-
rem 8.3.2 to Lipschitz manifolds.

Theorem For every Borel set E contained in a simple Lipschitz manifold M , one
has

σ(E)=
∫

�−1(E)

ω�(t) dt,

where � is an arbitrary bi-Lipschitz parametrization of M .

In particular, the theorem remains valid if the dimension of the manifold coin-
cides with the dimension of the ambient Euclidean space. In this case we obtain a
generalization of Theorem 6.2.1 with a bi-Lipschitz homeomorphism in place of a
diffeomorphism.

As we shall see in Appendix 13.4, the almost everywhere differentiability of
convex functions can be established without referring to the Rademacher theorem.
Therefore the Rademacher theorem is not needed for the proof of the uniqueness of
the area on convex surfaces.

This theorem immediately implies the following corollary that will be used later.

Corollary Let f be Lipschitz on an open subset O of the space R
m. Then for every

Borel set E contained in the graph of the function f , the equality

σ(E)=
∫

P(E)

√
1+ ∥

∥gradf (x)
∥
∥2

dx

holds.

Here P(E) denotes the orthogonal projection of the set E to R
m.

8.8.2 Before proving the theorem, we will state and prove the following lemma,
which is an improvement upon Lemma 8.2.1 and gives estimates for the area of a
subset of an “almost affine” manifold.

Lemma Let � be a bi-Lipschitz parametrization of a simple manifold M (M ⊂R
m)

defined on an open set O ⊂ R
k , and let κ be the Lipschitz constant for �−1. Let,

further, A⊂O be a Borel set, and let L :Rk →R
m be a linear mapping. If for some

ε ∈ (0,1/κ), the inequality
∥
∥�(t)−�(s)−L(t − s)

∥
∥ � ε‖t − s‖ holds for all t, s ∈A, (1)
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then

(1−κε)k λ
(
L(A)

)
� σ

(
�(A)

)
� 1

(1−κε)k
λ

(
L(A)

)
.

Proof Taking x, y ∈ E = �(A) and putting s = �−1(x), t = �−1(y), we obtain
from (1) that the “straightening” mapping � = L ◦�−1 satisfies the inequality

∥
∥y − x − (

�(y)−�(x)
)∥
∥ � ε‖t − s‖� εκ‖y − x‖.

Hence � is an almost isometry for small ε:

(1− εκ)‖y − x‖� ∥
∥�(y)−�(x)

∥
∥ � (1+ εκ)‖y − x‖ for x, y ∈E.

Applying Lemma 8.2.1 with C = (1 − εκ)−1 and taking into account the remark
after that lemma, we get the two-sided estimate

(1− εκ)kλ
(
�(E)

)
� σ(E)� 1

(1− εκ)k
λ

(
�(E)

)
,

which is equivalent to the inequality we sought to prove, because �(E)= L(A). �

8.8.3 Proof of Theorem 8.8.1. Without loss of generality, we may assume that the
parametrization � is defined on an open set O ⊂R

k of finite measure. Consider the
measure ν(A) = σ(�(A)) on Borel sets A⊂O. We will check that it satisfies the
condition

inf
t∈Aω�(t)λ(A)� ν(A)� sup

t∈A
ω�(t)λ(A). (2)

As was established in Theorem 6.1.2, it follows that ν(A)= ∫
A
ω�(t) dt , which is

equivalent to the statement of the theorem.
Since both the parametrization � and the inverse mapping �−1 are Lipschitz, we

conclude that ν(A)= 0 if and only if λ(A)= 0 (see Lemma 8.2.1). This allows us
to neglect zero measure subsets of the set A when establishing the inequalities (2).

Let D be the set of points in O for which all coordinate functions of the map-
ping � are differentiable. By the Rademacher theorem λ(O \ D) = 0. Replac-
ing, if needed, the set D by a Borel subset of the same measure (see Corollary 5
in Sect. 2.2.2), we may assume without loss of generality that D is Borel. Since
ν(O \D)= λ(O \D)= 0, it suffices to prove the inequalities (2) for all sets con-
tained in D, to which we will restrict our attention from now on.

Both inequalities (2) are established in the same way. We will prove the upper
bound only, leaving the analogous argument for the lower bound to the reader.

Suppose that the right inequality (2) fails for a set A⊂D. Then, for some C > 1,
we have

ν(A) > C sup
t∈A

ω�(t)λ(A). (3)
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Note that, if the inequality (3) were violated for either an increasing sequence of
sets whose union equals A, or for sets forming a countable partition of A, then it
would also be violated for A itself.

Now fix a positive number ε to be chosen later, and consider, for every r > 0, the
sets

Dr = {
s ∈D |B(s, r)⊂O and

∥
∥�(t)−�(s)− ds�(t − s)

∥
∥ � ε ‖t − s‖

for all t ∈ B(s, r)
}
.

Obviously, they expand and exhaust the entire set D as r decreases to 0. Thus,
the inequality (3) is valid for some set A ∩ Dr as well. Replacing A by such an
intersection if needed, we may assume that A ⊂ Dr for some r > 0. If we split
the set A into countably many parts of diameter less than r , the inequality (3) will
hold for at least one of them. So, we may assume without loss of generality that
diam(A) < r . In this case, on the set A, we have the inequality

∥
∥�(t)−�(s)− ds�(t − s)

∥
∥ � ε ‖t − s‖ (s, t ∈A). (4)

Since the partial derivatives of the coordinate functions of the mapping � are mea-
surable and bounded, the set A can be partitioned into finitely many (Borel) parts
so that on each part the oscillations of all these partial derivatives will be arbitrarily
small. Then, obviously, the oscillation of the differential mapping of the mapping �

will be arbitrarily small as well. Construct this partition in such a way that for each
of its elements A′, the inequality

‖ds�− dt�‖< ε for s, t ∈A′ (5)

holds. The inequality (3) will hold for at least one element of this partition. Replac-
ing A by that element, if needed, we may assume without loss of generality that the
set A satisfies both conditions (4) and (5). Thus, defining the linear mapping L as
the differential of � at some point a ∈ A, we will conclude that the mapping � is
almost affine:

∥
∥�(t)−�(s)−L(t − s)

∥
∥

�
∥
∥�(t)−�(s)− ds�(t − s)

∥
∥+ ∥

∥ds�(t − s)− da�(t − s)
∥
∥ � 2ε‖t − s‖

for all t, s in A. So, condition (1) of Lemma 8.8.2 is satisfied (with 2ε in place
of ε). Assuming that ε < 1/(2κ) where κ is the Lipschitz constant for the inverse
mapping �−1, we obtain the inequality

ν(A)= σ
(
�(A)

)
� λ(L(A))

(1− 2εκ)k
= ω�(a)λ(A)

(1− 2εκ)k
� 1

(1− 2εκ)k
sup
t∈A

ω�(t)λ(A).

Together with (3), this implies

C sup
t∈A

ω�(t)λ(A) < ν(A)� 1

(1− 2εκ)k
sup
t∈A

ω�(t)λ(A).
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Hence,

1 <C � 1

(1− 2εκ)k
.

This gives the contradiction sought if ε is chosen small enough. Thus, our initial
assumption was false. The theorem is proved.

Corollary The restriction of a k-dimensional area to the σ -algebra of Borel subsets
of a k-dimensional Lipschitz manifold is a regular measure finite on compact sets.

This follows from the formula proved in the theorem if one takes into account
the boundedness of the function ω� and the regularity of the Lebesgue measure.

8.8.4 Once we are able to compute the area on Lipschitz surfaces, we can expand
the class of compact sets for which the Gauss–Ostrogradski formula (Sect. 8.6.5)
is valid. To this end, replace the smooth function in the definition of a beam
(Sect. 8.6.2) with a Lipschitz function ϕ. Since it is differentiable almost every-
where, the outer normal is defined almost everywhere on the non-trivial part of the
beam boundary. Moreover, the area of a set contained in the graph of a Lipschitz
function is computed in the same way as in the case of a smooth function (see
Corollary 8.8.1). Since the increment of a Lipschitz function over each coordinate
can be represented as the integral of the corresponding partial derivative (see Theo-
rem 11.4.1), both the statement and the proof of Theorem 8.6.3 remain the same for
this more general case.

Moreover, Theorem 8.6.3 remains valid not only for beams corresponding to
Lipschitz functions, but also for sets obtained from them by a rigid motion (provided
that the integrand vanishes on the image of the trivial part of the beam boundary),
which we leave the reader to verify (using the invariance of the Lebesgue measure
and the surface area).

Generalizing the notion of a standard compact set (Definition 8.6.4), we shall
assume, as before, that ∂K =M ∪ E, where M and E satisfy the conditions (b)
and (c) of that definition, replacing the condition (a) by the following one:

(a′) for every point p ∈M there exist a rigid motion W and an open parallelepiped
Rp such that p =W(p) ∈Rp and the intersection W(K)∩Rp is a beam corre-
sponding to a Lipschitz function which lies in the interior of W(K) except for
the closure of the non-trivial part of its boundary lying in W(M).

Repeating the proof of the Gauss–Ostrogradski theorem, we see that it is valid for
such compacts sets. In particular, it is valid for every convex set, since condition (a′)
is satisfied at each point of its boundary. The latter follows from the fact that a
sufficiently small part of the boundary of a convex body coincides, up to a rotation,
with the graph of a convex function (see Proposition 13.4.5).

For a further weakening of the conditions under which the Gauss–Ostrogradski
theorem is valid, see [EG].
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Fig. 8.4 Approximation of curves by polygonal lines

8.8.5 Let us now discuss the question of whether the areas of “close” sets are close,
or, in other words whether the area is continuous. To formalize the notion of close-
ness, we will introduce a numeric quantity characterizing the deviation of two sets
from each other. Let us remind the reader (see Sect. 8.1.7) that the symbol Eε stands
for the ε-neighborhood of the set E. For bounded sets A and B , put

ρ(A,B)= inf{ε > 0 |A⊂ Bε, B ⊂Aε}.
Obviously, thus defined the function ρ is non-negative and symmetric. Moreover,
ρ(A,B)= 0 if and only if A= B . We leave it to the reader to check that the function
ρ satisfies the triangle inequality and, therefore, is a metric (or, more precisely,
pseudometric). It is called the Hausdorff metric. On the class of compact sets, it is a
true metric. If ρ(A,B) < ε, the sets A,B are ε-close in the sense that A⊂ Bε and
B ⊂Aε . Conversely, if A,B are ε-close, then ρ(A,B)� ε.

If L is a simple planar arc and the number ε > 0 is small, then every curve L′ that
is ε-close to L lies in the ε-neighborhood of the curve L and “mainly” follows its
bends (see Fig. 8.4(a)). As Fig. 8.4(b) demonstrates, the length of the curve L′ can
be arbitrarily large for an arbitrarily small ε. It is also easy to construct a sequence
of piecewise linear paths (see Fig. 8.4(c)) approximating the hypotenuse of a right
triangle such that the length of each path is equal to the sum of the leg lengths.

Thus, already in the two-dimensional case, there is no hope that the length would
be continuous with respect to the Hausdorff metric even if one only considers
smooth curves. However, the examples leading to this negative conclusion also al-
low us to make an important observation. Indeed, the length of the curve L′ can
differ from the length of the curve L as much as one wants but only by being much
larger! The pictures we have considered show that the curve L′ cannot be much
shorter than the curve L (for not only does L′ lie in the ε-neighborhood of L, but L
also lies in the ε-neighborhood of L′). It is this property, which is called the lower
semicontinuity of the length, that we shall discuss. It is, of course, very important
that the curve L is approximated by curves and not just by arbitrary sets. It is clear
that we can always construct a countable set ε-close to L. The length of this set
is zero (due to its countability). So, beyond the set of curves, even the semiconti-
nuity of the length fails. The phenomenon that we have just discovered for curves
also occurs for surfaces. This, in particular, is illustrated by the Schwartz example
in which the area of the approximating polyhedral surfaces can noticeably differ
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Fig. 8.5 Approximation of a square by a figure of small area

from the area of the cylinder only by being much larger. However, the situation for
surfaces is more complicated than that for the curves. It turns out that (unlike what
we have observed for curves) the ε-closeness of two surfaces does not imply that
the approximating surface has a sufficiently large area. This can be seen in Fig. 8.5
where the approximated surface is just the unit square and the approximating one is
a narrow snakelike strip that passes very close to each point in the square. Although
this strip is ε-close to the square, its area can be arbitrarily small.

The way out is that in the multi-dimensional case, in addition to the ε-closeness
of the surfaces themselves, one should also assume the ε-closeness of their bound-
aries. For general manifolds, this requires the introduction of a rigorous notion of
a boundary and leads to additional topological difficulties to overcome (see [Bol,
pp. 88–141]). To avoid this, we will consider below only the graphs of continuous
functions instead of dealing with arbitrary manifolds.

Let us make the notion of semicontinuity more precise for this case. Recall that
the symbol �f stands for the graph of the function f . All considered functions are
assumed to be defined in some fixed bounded open set O ⊂ R

m. Below, the letters
σ and λ will stand for an arbitrary m-dimensional area (in R

m+1) and the Lebesgue
measure on R

m respectively. The points of the space R
m+1 will be written as (x, y)

where x ∈R
m and y ∈R.

Definition Assume that the function f ∈ C(O) is bounded and that σ(�f ) <+∞.
We will say that the area is lower semicontinuous on �f if for every number ε > 0,
there exists a number δ > 0 such that σ(�g) > σ(�f )− ε whenever g ∈ C(O) and
ρ(�f ,�g) < δ.

This definition can be restated as follows: the area is lower semicontinuous on �f

if for every sequence of functions fn continuous in O, the convergence �fn −→n→∞ �f

in the Hausdorff metric implies that limn→∞ σ(�fn)� σ(�f ).
Note that the uniform convergence of fn to f on O implies the convergence of

the corresponding graphs in the Hausdorff metric. These types of convergence are
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not equivalent (see Exercise 3). However, if the limit function is Lipschitz, then the
convergence of the graphs in the Hausdorff metric implies the uniform convergence
of the functions. This follows from the inequality

∣
∣f (x)− g(x)

∣
∣ � (C + 1)ρ(�f ,�g) (x ∈O), (6)

which is valid if at least one of the functions, say f , satisfies the Lipschitz condition
with the constant C. Indeed, let r > ρ(�f ,�g), x ∈ O. Since (x, g(x)) ∈ �g ⊂
(�f )r , there exists a point (x0, f (x0)) ∈ �f such that ‖(x, g(x))−(x0, f (x0))‖< r .
Then ‖x − x0‖< r and |g(x)− f (x0)|< r . So,
∣
∣g(x)− f (x)

∣
∣ �

∣
∣g(x)− f (x0)

∣
∣+ ∣

∣f (x0)− f (x)
∣
∣ < r +C‖x − x0‖< (C + 1)r.

This implies the required result because r can be taken arbitrarily close to
ρ(�f ,�g).

8.8.6 Before turning to the proof of the lower semicontinuity of the area, let us
establish one auxiliary result.

Lemma Let a function f be continuous in the ball B(a, r). Assume that for some ε,
0 < ε < r , its graph �f is contained in the ε-neighborhood of a plane L. Then the
orthogonal projection of the graph to this plane contains all its points lying above
the ball B(a, r − ε), i.e., all points of L of the form (x, y) where x ∈ B(a, r − ε).

Proof It is clear that L is not parallel to the last coordinate axis. Fix a point p =
(x, y) ∈ L lying above B(a, r−ε) and check that the line �= {p+ tν | t ∈R}, where
ν = (ν′, α) is the unit normal to L, crosses �f . By our assumption, α �= 0. Assume
for definiteness that α > 0. The line � crosses the boundary of the ε-neighborhood
of L at the points p± εν = (x± εν′, y± εα). Moreover, x± εν′ ∈ B(a, r) because
x ∈ B(a, r − ε) and ‖εν′‖ � ‖εν‖ = ε. Since �f lies in the ε-neighborhood of L,
we have f (x + εν′) < y + εα and f (x − εν′) > y − εα. Hence the difference
(y + tα)− f (x + tν′) takes values of opposite signs at the endpoints of the interval
[−ε, ε]. Therefore, f (x + τν′) = y + τα for some τ ∈ (−ε, ε). Thus, the point
p+ τν = (x + τν′, f (x + τν′)) belongs to �f and is mapped to the point p under
the orthogonal projection to L because ν is a normal to L. �

Now we are ready to turn to the main result of this section and to present a
condition guaranteeing the lower semicontinuity of the area in the sense of Defini-
tion 8.8.5.

Theorem The area is lower semicontinuous on the graph of a Lipschitz function.

Proof Let the function f satisfy the Lipschitz condition with constant C on a
bounded open set O ⊂ R

m and let D be the set of points at which f is differ-
entiable. Obviously, ‖gradf (x)‖ � C on D. Put ω(x) = √

1+ ‖gradf (x)‖2 and
�=√1+C2, so that ω(x)�� and σ(�f )��λ(O) <+∞.
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Fix an arbitrary number ε ∈ (0,1). It is clear that the set D is exhausted by the
sets

Dt =
{

a ∈D |B(a, t)⊂O and
∣
∣f (x)− f (a)− 〈

gradf (a), x − a
〉∣∣ � ε

3
‖x − a‖

for x ∈ B(a, t)

}

,

which expand as t decreases. Since, by Rademacher’s theorem, λ(O \D)= 0, we
can fix a t > 0 so small that λ(O \ Dt) < ε. Let us construct balls whose union
almost coincides with Dt . To this end, note that by the corollary to Vitali’s theorem
(see Corollary 1 in Sect. 2.7.3), almost every point of Dt is its density point. Let Et

be the set of such points:

Et =
{

x ∈Dt

∣
∣
∣ lim
r→0

λ(Dt ∩B(x, r))

λ(B(x, r))
= 1

}

.

Then λ(Et ∩ B(x, r)) = λ(Dt ∩ B(x, r)) > (1− ε)λ(B(x, r)) for x ∈ Et and 0 <

r < r(x), so

λ
(
B(x, r) \Et

)
< ελ

(
B(x, r)

)
. (7)

We may assume that r(x) < t/2 for x ∈ Et . The collection of the balls B(x, r)

where x ∈ Et and 0 < r < r(x) is a Vitali cover of the set Et . By Vitali’s theorem,
we can find a subcollection of pairwise disjoint balls Bi such that λ(Et \⋃

i Bi)= 0.
Let B be one of the balls Bi , and let r be its radius. Choose a point a in B ∩Et

so that ω(a) + ε� � supB∩Et ω. Since, according to (7), λ(B \ Et) < ελ(B), the
area of the graph of f over B satisfies the estimate

σ
(
�(f,B)

)=
∫

B

ω(x)dx =
∫

B∩Et

· · · +
∫

B\Et

· · ·

�
(
ω(a)+ ε�

)
λ

(
B ∩Et

)+�λ
(
B \Et

)
�

(
ω(a)+ 2ε�

)
λ(B). (8)

(By �(f,B), we denote the part of the graph of the function f lying above the
set B .)

The inequality (8) allows one to compare σ(�(f,B)) with the area of the graph
of a function close to f in the ball B . Indeed, let g ∈ C(O) and |f (x)− g(x)| <
ε
3 r for all x ∈ B . Consider the equation y = h(x) = f (a)+ 〈x − a,gradf (a)〉 of
the affine tangent plane L to the graph �f at the point (a, f (a)). Since a ∈ B ,
we have ‖x − a‖ < 2r < t for every point x in this ball. Taking into account the
inclusion a ∈Dt , we obtain the inequality |f (x)−h(x)|� ε

3‖x− a‖< 2
3εr . Hence

|g(x)− h(x)|< η = εr and, thereby, the graph �(g,B) lies in the η-neighborhood
of the plane L. To use the lemma, consider the set Bη = {x ∈ B |B(x,η) ⊂ B}.
Clearly, it is a ball of radius r − η = (1− ε)r . Therefore λ(Bη)= (1− ε)mλ(B) >

(1 − mε)λ(B). By the lemma, the orthogonal projection �′ of the graph �(g,B)
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to L contains the graph �(h,Bη). Since the areas of compact sets do not increase
under an orthogonal projection and since �(g,B) is a countable union of compact
sets, we have σ(�(g,B))� σ(�′), so σ(�(g,B))� σ(�(h,Bη)). Hence,

σ
(
�(g,B)

)
� σ

(
�

(
h,Bη

))= ω(a)λ
(
Bη

)
� (1−mε)ω(a)λ(B)

�
(
ω(a)−m�ε

)
λ(B).

Together with inequality (8), this yields

σ
(
�(f,B)

)
� σ

(
�(g,B)

)+ (m+ 2)ε�λ(B), (9)

provided that |f (x)− g(x)|< ε
3 r for all x ∈ B .

To conclude the proof, we will estimate the area of �g from below assuming that
ρ(�f ,�g) < δ and δ is small enough. Fix an index N so large that λ(

⋃
i>N Bi) < ε.

Put δ = ε
3(C+1) min1�i�N ri where ri is the radius of the ball Bi . If ρ(�f ,�g) < δ,

then |f (x)− g(x)|< (C + 1)δ for all x ∈O due to the inequality (6), and, thereby,
|f (x)−g(x)|< ε

3 ri in the ball Bi for every i = 1, . . . ,N . Hence, the inequalities (9)
are valid for B = Bi , i = 1, . . . ,N . Adding them, we obtain

σ

(

�

(

f,

N⋃

i=1

Bi

))

=
N∑

i=1

σ
(
�(f,Bi)

)
� σ

(

�

(

g,

N⋃

i=1

Bi

))

+ �̃ε � σ(�g)+ �̃ε,

where �̃= (m+ 2)�λ(O). Thus,

σ(�g) �
∫

⋃N
i=1 Bi

ω(x) dx − �̃ε =
∫

⋃∞
i=1 Bi

· · · −
∫

⋃
i>N Bi

· · · − �̃ε

>

∫

Dt

ω(x)dx − (�+ �̃)ε >

∫

O
ω(x)dx −�ε− (�+ �̃)ε

= σ(�f )− (2�+ �̃)ε.

Since ε was arbitrary, this proves the lower semicontinuity of the area of the
graph �f . �

Corollary If the function f is Lipschitz and a sequence of continuous functions gn

converges to f uniformly, then

σ(�f )� lim
n→∞

σ(�gn).

To prove this, it suffices to note that ρ(�gn,�f ) � supO |gn − f | −→
n→∞ 0, and,

therefore, for ε > 0, the inequality σ(�gn) < σ(�f )− ε may hold only for a finite
number of indices n.

This corollary can be generalized somewhat by replacing the uniform conver-
gence in its assumption by convergence almost everywhere or in measure. Let us
show that it holds for convergence almost everywhere.
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Indeed, let fn −→
n→∞ f almost everywhere on a (bounded) set O. Fix an arbitrarily

small number ε > 0 and, applying Egorov’s theorem 3.3.6, find a subset e⊂O such
that

fn ⇒ f on O \ e and λ(e) < ε.

Put tn = supO\e |fn − f | and correct the functions fn, “truncating” them at places
where they differ from f “too much”. To this end, introduce the functions

gn(x)=

⎧
⎪⎨

⎪⎩

f (x)+ tn, when fn(x)� f (x)+ tn,

f (x)− tn, when fn(x)� f (x)− tn,

fn(x), when |fn(x)− f (x)|< tn.

They are continuous and converge to f uniformly on O because |f − gn| �
tn −→

n→∞ 0. Note that the graph of gn above the set En =O(|gn−f |� tn) consists of

two parts lying on the graphs of the Lipschitz functions f ± tn. Also, if tn < ε, then
the set En is contained in e. Thus, for all sufficiently large indices, we have (recall
that ω�

√
1+C2 =�)

σ(�fn)� σ
(
�(fn,O \En)

)= σ
(
�(gn,O \En)

)

= σ(�gn)−
∫

En

ω(x)dx � σ(�gn)−�λ(e) > σ(�gn)−�ε.

Passing to the lower limit in this inequality, we obtain

lim
n→∞

σ(�fn)� lim
n→∞

σ(�gn)−�ε.

Since ε was arbitrary and since limn→∞ σ(�gn)� σ(�f ) according to the corollary,
we arrive at the required result.

The case of convergence in measure can be reduced to the one just considered
using Riesz’s theorem 3.3.4.

EXERCISES

1. Show by example that the graph of a function can be a Lipschitz manifold even
when the function does not satisfy the Lipschitz condition on any (non-empty)
interval. Hint. Consider an increasing expanding map whose derivative is un-
bounded on every interval.

2. Let L0 be the graph of the function f (x)= 2x2 sin 2π
x

for 0 < x < 1/2, f (0)= 0,
and let L be the union of L0 and the set obtained from it by a π/2 rotation.
Prove that the curve L admits a bi-Lipschitz parametrization but its intersection
with every neighborhood of the point (0,0) is not congruent to the graph of any
function.

3. Assume that continuous bounded functions f,fn (n= 1,2, . . .) are defined on a
bounded set O. Prove that:
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(a) if fn ⇒ f on O, then ρ(�fn,�f ) −→
n→∞ 0;

(b) if ρ(�fn,�f ) −→
n→∞ 0, then fn −→

n→∞ f pointwise in O;

(c) if ρ(�fn,�f ) −→
n→∞ 0 and the function f is uniformly continuous, then

fn ⇒ f on O.

Give an example showing that statement (c) fails without the assumption that f
is uniformly continuous.



Chapter 9
Approximation and Convolution
in the Spaces LLL p

9.1 The Spaces LLL p

In the solution of various problems, it is important to be able to approximate the
functions of a certain class by functions with better properties. For example, mea-
surable functions can be approximated by simple functions (see Theorem 3.2.2) and
continuous functions can be approximated by smooth functions. Here the way we
understand the closeness between two functions, or what is taken as a “dissimilarity”
measure, is of great importance. The reader is probably familiar with the uniform,
or Chebyshev, deviation. We recall that the uniform deviation of a function f from
a function g on a set X is defined as supX |f − g|. It is clear that the Chebyshev
deviation of fn from g tends to zero if and only if fn ⇒ g on X. If functions are
defined on a measure space, then as well as the classical uniform deviation it is also
useful to consider its modification, the uniform deviation on a set of full measure.
For functions f and g, this is defined by the notion of essential supremum (see
Sect. 4.4.5) as esssupX |f − g|.

However, the conditions of the problem under consideration often exclude in ad-
vance the possibility of uniform approximation. This happens, in particular, when
approximating unbounded functions by bounded functions or, which is especially
important, when approximating discontinuous functions by continuous functions.
In such cases, it is necessary to use other characteristics of the deviation between
functions. For summable functions f and g, this can be done by the so-called devi-
ation in mean, by which we mean the integral

∫
X
|f − g|dμ. If X is a subset of the

space Rm and μ is the m-dimensional Lebesgue measure, then the deviation in mean
has a simple geometric meaning, namely, it is the (m+ 1)-dimensional volume of
the set confined between the graphs of the functions in question. The deviation in
mean is essentially different from the uniform deviation. The latter is already large
when the functions differ greatly at a single point, but the deviation in mean takes
into account the behavior of the functions on the entire set of integration. It is easy
find examples for which the deviation in mean can be arbitrarily small even if the
Chebyshev deviation is arbitrarily large.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_9, © Springer-Verlag London 2013
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It is natural to consider the deviation in mean on the set L (X,μ) of all summable
functions, whereas the modified uniform deviation is naturally defined for the func-
tions in the set

L∞(X,μ)= {
f ∈L 0(X,μ)

∣
∣ esssup

X

|f |<+∞}
.

To increase the number of possible applications, it is also useful to introduce sets
“intermediate” between L (X,μ) and L∞(X,μ).

9.1.1 In what follows, we will use the usual notation (X,A,μ) for a space X with
an arbitrary (non-zero) measure μ, and L 0(X,μ) for the set of measurable (real
or complex) functions that are finite almost everywhere on X. In what follows, all
functions will be taken from this set.

We fix an arbitrary number p, 1 <p <+∞, and put

L p(X,μ)=
{

f ∈L 0(X,μ)

∣
∣
∣

∫

X

|f |p dμ <+∞
}

.

For uniformity, we will assume that L 1(X,μ)=L (X,μ) (the set of all summable
functions). Since

|f + g|p �
(|f | + |g|)p �

(
2 max

{|f |, |g|})p = 2p max
{|f |p, |g|p}

� 2p
(|f |p + |g|p)

,

we see that, along with arbitrary functions f and g, the set L p(X,μ) also contains
their sum and, consequently their linear combinations. Thus, L p(X,μ) is a vector
space. The set L p(X,μ) is often called the set of pth power summable functions.
More precisely, these are functions for which the pth power of the absolute value is
summable. It may happen that the function itself is not summable. For example, the
function x �→ 1

x+1 is not summable with respect to Lebesgue measure λ on R+ but

belongs to L 2(R+, λ) or, in other words, is square-summable on (0,+∞).
However, if the measure μ is finite, then L p(X,μ) ⊂L 1(X,μ). Moreover, if

1 � r < p � +∞, then L p(X,μ) ⊂L r (X,μ). This is obvious for p = +∞. If
p <+∞, then, putting s = p/r , 1/s + 1/s′ = 1, and applying Hölder’s inequality
with exponent s to the functions |f |r and 1, where f ∈L p(X,μ), we see that

∫

X

|f |r dμ=
∫

X

|f |r · 1dμ�
(∫

X

|f |rs dμ
) r

p (
μ(X)

) 1
s′

=
(∫

X

|f |p dμ

) r
p (

μ(X)
) 1

s′ <+∞. (1)

Thus, in the case of a finite measure, the sets L p(X,μ) decrease when p increases.
In particular, L 1(X,μ) is the largest among them and L∞(X,μ) is the smallest.

It is convenient to introduce a generalized deviation in mean by using a norm.
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Definition Let f ∈L p(X,μ), 1 � p �+∞. The norm1 (more precisely, the L p-
norm) of a function f is defined by the equation

‖f ‖p =
{
(
∫
X
|f |p dμ)1/p if 1 � p <+∞;

esssupX |f | if p =+∞.

If μ(X) = 1, then it can be seen from (1) that the L p-norm increases with p.
Moreover, it can be proved (see Exercise 5) that ‖f ‖p −→

p→+∞ ‖f ‖∞ for f in

L∞(X,μ). This limit relation can serve as an extra motivation of the notation
‖f ‖∞ for esssupX |f |.

We note the basic properties of a norm,

(1) ‖f ‖p � 0;
(2) ‖af ‖p = |a|‖f ‖p;
(3) ‖f + g‖p � ‖f ‖p + ‖g‖p
for all f,g ∈L p(X,μ) and every scalar a. Properties (1)–(2) are obvious. We also
remark that ‖f − g‖p = 0 if and only if the functions f and g are equivalent, i.e.,
coincide almost everywhere. Inequality (3) is called the triangle inequality. For fi-
nite p this is simply the Minkowski inequality established in Sect. 4.4.6. We leave
it to the reader to verify that the inequality is valid in the case where p =+∞.

The triangle inequality implies the following useful inequality:
∣
∣‖f ‖p − ‖g‖p

∣
∣ � ‖f − g‖p.

Indeed, ‖f ‖p = ‖g+(f −g)‖p � ‖g‖p+‖f −g‖p , i.e., ‖f ‖p−‖g‖p � ‖f −g‖p .
By the symmetry of the functions f and g, this gives the required inequality.

Obviously, the deviation in mean of f from g is just the L 1-norm of their dif-
ference. Therefore, if ‖fn − f ‖1 −→

n→∞ 0, then we say that the sequence {fn}n�1

converges to f in mean. If p � 1, then, by abuse of language, we will also say
that fn converges to f in mean, more precisely, in mean with exponent p if
‖fn − f ‖p −→

n→∞ 0 (the convergence in L p-norm). Using the triangle inequality,

one can easily prove that, with respect to convergence in the Lp-norm, the limit is
unique up to equivalence. Indeed, if ‖fn− f ‖p −→

n→∞ 0 and ‖fn− g‖p −→
n→∞ 0, then

‖f − g‖p � ‖f − fn‖p + ‖fn − g‖p −→
n→∞ 0,

and so ‖f − g‖p = 0.
The L p-norm is continuous with respect to convergence in mean, i.e.,

if ‖fn − f ‖p −→
n→∞ 0, then ‖fn‖p −→

n→∞ ‖f ‖p.

This follows from the inequality | ‖fn‖p − ‖f ‖p|� ‖fn − f ‖p just proved.

1This terminology is not in full agreement with the conventional terminology; usually, a function
satisfying the properties (1)–(3) listed below is called a seminorm.
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The definitions of the set L p and the L p-norm given above can be extended
to the case where 0 < p < 1. However, in this case, the “norm” does not satisfy
the triangle inequality (see Exercise 14), and the set L p(R) contains not only non-
summable but also locally non-summable functions (see Exercise 15), which nar-
rows down the range of possible applications considerably. Therefore, we confine
ourselves to the study of the properties of L p only for p � 1. In the sequel, we will
tacitly assume that this condition holds.

9.1.2 Let us discuss the necessary conditions as well as the sufficient conditions for
convergence in the L p-norm.

Theorem Let 1 � p <+∞ and fn ∈L p(X,μ) for all n ∈N.

(a) If f ∈L p(X,μ) and ‖fn − f ‖p −→
n→∞ 0, then fn −→

n→∞ f in measure.

(b) If fn −→
n→∞ f in measure or almost everywhere and |fn(x)| � g(x) almost ev-

erywhere for all n, where g ∈L p(X,μ), then f ∈L p(X,μ) and ‖f − fn‖p
−→
n→∞ 0.

Proof (a) We fix an arbitrary positive number ε and put

Xn(ε)=
{
x ∈X | ∣∣f (x)− fn(x)

∣
∣ � ε

}
.

Then

μ
(
Xn(ε)

)
� 1

εp

∫

Xn(ε)

|f − fn|p dμ� 1

εp
‖f − fn‖pp −→

n→∞ 0,

as required.
(b) Since |fn|� g, we have |f |� g (in the case of convergence in measure, this is

established in Corollary 2 of Sect. 3.3.5) and |fn−f |p � (2g)p ∈L 1(X,μ). There-
fore, ‖fn−f ‖pp =

∫
X
|fn−f |p dμ −→

n→∞ 0 by Lebesgue’s theorem (see Sects. 4.8.3–

4.8.4). �

Remark It can easily be seen that the convergence of a sequence in the space
L∞(X,μ) is equivalent to the uniform convergence of this sequence on a subset of
full measure.

9.1.3 Here we establish an important property of the space L p(X,μ).

Definition A sequence {fn}n�1 ⊂L Lp(X,μ) is called fundamental in L p(X,μ)

if ‖fn − fk‖p → 0 for k,n→∞, i.e.,

∀ε > 0 ∃N : ‖fn − fk‖p < ε for k,n > N.

Every convergent sequence is fundamental because if fn −→
n→∞ f , then

‖fn − fk‖p � ‖fn − f ‖p + ‖f − fk‖p −→
k,n→∞ 0
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by the triangle inequality. It turns out that the converse is also true. Now we prove
this property, called the completeness of the space L p .

Theorem Every sequence fundamental in the L p-norm (1 � p � +∞), has a
limit.

Proof We leave it to the reader to consider the case p =+∞ (it reduces to the com-
pleteness of the space of bounded functions with respect to uniform convergence).
In the sequel, we assume that p <+∞.

First, we show that every fundamental sequence {fn}n�1 has a subsequence that
converges almost everywhere. For this, we use the fact that the sequence {fn}n�1 is
fundamental and extract from it a subsequence {fnj

}j�1 such that

∞∑

j=1

‖fnj+1 − fnj
‖p � 1.

We verify that the sequence {fnj
}j�1 converges almost everywhere. We consider

the series

∞∑

j=1

|fnj+1 − fnj
|. (2)

Let S and Sk be its sum and its kth partial sum, respectively. By the triangle inequal-
ity, we obtain ‖Sk‖p �

∑∞
j=1 ‖fnj+1 − fnj

‖p � 1, and, therefore,

∫

X

S
p
k dμ� 1 for all k.

Since Sk −→
k→∞ S pointwise, Fatou’s theorem implies that

∫
X
Sp dμ� 1. Since Sp is

summable, we obtain that S(x) < +∞ almost everywhere, which just means that
series (2) converges almost everywhere. Now, we consider the series

fn1 +
∞∑

j=1

(fnj+1 − fnj
).

Like (2), it converges almost everywhere and its partial sums are the functions fnk
.

Thus, fnk
(x) −→

k→∞ f (x) almost everywhere, where f is the sum of the last series.

Now, we prove that f is the limit of the sequence {fn}n�1 in the sense of conver-
gence in mean, i.e., that f ∈L p(X,μ) and ‖fn − f ‖p −→

n→∞ 0. We fix an arbitrary

number ε > 0 and, by the definition of a fundamental sequence, we find an N such
that

∫

X

|fn − fl |p dμ < εp for l, n > N.
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Substituting l = nk > N in this inequality, we see that

∫

X

|fn − fnk
|p dμ < εp.

Passing to the limit with respect to k (for a fixed n >N ) in this inequality and using
Fatou’s theorem, we obtain

∫

X

|fn − f |p dμ� εp.

Thus, the function fn − f , and along with it the function f (since f = (f − fn)+
fn), belongs to L p(X,μ), and the last inequality can be represented in the form

‖fn − f ‖p � ε for n >N. �

9.1.4 In conclusion of this section, we discuss a generalization of the important esti-
mate of the maximal function obtained in Theorem 4.9.1. First of all, we generalize
the concept of the maximal function, dropping the summability requirement.

In the sequel, we will denote the space L p(Rm,λm) by L p(Rm). It is clear that
L p(Rm)⊂Lloc(R

m) (for the definition of Lloc(R
m), see Sect. 4.9.2).

Definition Let f ∈Lloc(R
m). The function Mf defined by the formula

Mf (x)= sup
r>0

1

v(r)

∫

B(x,r)

∣
∣f (y)

∣
∣dy

(
x ∈R

m
)

is called the maximal function (for f ).
Here, as in Sect. 4.9, v(r) is the volume of a ball of radius r .

Repeating the argument given in Sect. 4.9.1, we can convince ourselves that the
maximal function is measurable. We mention two more obvious properties of the
maximal function (in the sequel, they will be used without any special reference),

Mf+g �Mf +Mg; if |f |� C, then Mf � C.

If f ∈ Lloc(R
m) and |f (x)| increases unboundedly as ‖x‖ → +∞, the max-

imal function has the value +∞ everywhere. If the function f is summable, as
proved in Theorem 4.9.1, the maximal function is finite almost everywhere. More-
over, in this theorem, we obtained the estimate F(t) � 5m

t
‖f ‖1, where F(t) =

λm({x ∈ R
m |Mf (x) > t}) is the decreasing distribution function for Mf . How-

ever, the summability may not be preserved when passing to the maximal function
(see Exercise 1, Sect. 4.9). In contrast to this, if some function belongs to a class
L p(Rm), where p > 1, then its maximal function belongs to the same class. To
prove this result, we first sharpen somewhat the estimate obtained in Theorem 4.9.1
for a summable function.
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Lemma Let f ∈L 1(Rm), Et = {x ∈R
m | |f (x)|> t}, and let F be the decreasing

distribution function for Mf . Then

F(t)� 2
5m

t

∫

Et/2

∣
∣f (x)

∣
∣dx (3)

for all t > 0.

Proof To estimate F(t), we represent f in the form of the sum of two functions the
choice of which depends on t . This important idea was first used by Marcinkiewicz2

in the proof of his interpolation theorem, a particular case of which is the theorem
proved below. Thus, we put g = f · χEt/2 and h = f − g = f · (1− χEt/2). Then
‖g‖1 =

∫
Et/2

|f |dμ and |h|� t/2. Since f = g + h, we have Mf �Mg +Mh. We
estimate F in terms of the distribution functions Mg and Mh, which we denote by
G and H , respectively. Obviously,

{
x ∈R

m |Mf (x) > t
}⊂ {

x ∈R
m |Mg(x) > t/2

}∪ {
x ∈R

m |Mh(x) > t/2
}
,

and, therefore, F(t) � G(t/2) + H(t/2). By Theorem 4.9.1, we have G(t) �
5m

t
‖g‖1. Since |h|� t/2, we have also Mh � t/2, and so H(t/2)= 0. Consequently,

F(t)�G(t/2)� 5m

t/2
‖g‖1 = 2

5m

t

∫

Et/2

∣
∣f (x)

∣
∣dx. �

Now, we proceed to the main result of this section.

Theorem If 1 <p <+∞ and f ∈L p(Rm), then Mf ∈L p(Rm) and

‖Mf ‖p � 2

(
p

p− 1

) 1
p

5
m
p ‖f ‖p.

Proof Let F be the decreasing distribution function for Mf . By Proposition 6.4.3,
we have

I ≡
∫

Rm

M
p
f (x) dx = p

∫ ∞

0
tp−1F(t) dt.

Estimating F(t) by inequality (3), we obtain

I � 2p5m

∫ ∞

0
tp−2

(∫

Et/2

∣
∣f (x)

∣
∣dx

)

dt

= 2p5m

∫ ∞

0
tp−2

(∫

Rm

∣
∣f (x)

∣
∣χ+

(∣
∣f (x)

∣
∣− t/2

)
dx

)

dt,

2Józef Marcinkiewicz (1910–1940)—Polish mathematician.
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where χ+ is the characteristic function of the semi-axis (0,+∞). Changing the
order of integration (the verification that the integrand is measurable jointly in the
variables x, t is left to the reader), we obtain

I � 2p5m

∫

Rm

∣
∣f (x)

∣
∣
(∫ ∞

0
tp−2χ+

(∣
∣f (x)

∣
∣− t/2

)
dt

)

dx

= 2p5m

∫

Rm

∣
∣f (x)

∣
∣
(∫ 2|f (x)|

0
tp−2 dt

)

dx

= 2p5m

∫

Rm

∣
∣f (x)

∣
∣ 1

p− 1

∣
∣2f (x)

∣
∣p−1

dx = 2p5m p

p− 1
‖f ‖pp,

which is equivalent to the assertion of the theorem. �

EXERCISES

1. Verify that neither of the sets L 1(R), L 2(R) is contained in the other. Give an
example of a function in L 2(R) that does not belong to any space L p(R) for
p �= 2.

2. Verify that L∞([0,1], λ) �=⋂
p<+∞L p([0,1], λ) (λ is Lebesgue measure).

3. Prove that the inclusion

L p(X,μ) ⊂L 1(X,μ)+L∞(X,μ)

≡ {
f + g |f ∈L 1(X,μ), g ∈L∞(X,μ)

}

holds for 1 <p <+∞.
4. Let μ(X) <+∞, fn ∈L p(X,μ) (n ∈ N), and fn ⇒ f on X. Prove that f ∈

L p(X,μ) and ‖fn − f ‖p −→
n→∞ 0.

5. Prove that, for 0 < r < p < s �+∞, the intersection L r (X,μ)∩L s(X,μ) is
contained in L p(X,μ). Moreover, ‖f ‖∞ = limp→+∞ ‖f ‖p for each function
f in L r (X,μ)∩L∞(X,μ).

6. Let f be a measurable function and I (p)= ∫
X
|f |p dμ > 0. Prove that the set

{p > 0 | I (p) <+∞} is an interval. Verify that if the interval is non-degenerate,
then the function p �→ I (p) is logarithmically convex.

7. Verify that if 0 < r < p < s �+∞ and ‖f ‖s � C‖f ‖p , then ‖f ‖p �K‖f ‖r ,
where K depends on C and on p, r , and s but not on f . Use this result to prove
the following supplement to the Khintchine inequality (see Sect. 6.4.5):

Bp

(
a2

1 + · · · + a2
n

)1/2 �
(∫ 1

0

∣
∣a1r1(t)+ · · · + anrn(t)

∣
∣p dt

)1/p

for all p > 0, n ∈N and a1, . . . , an ∈R, where r1, . . . , rn are Rademacher func-
tions and Bp > 0 is a constant depending only on p.

8. Prove that the set B = {f ∈L p(X,μ) | ‖f ‖p �R} is closed in L p(X,μ) with
respect to convergence in measure: if {fn}n�1 ⊂ B and fn −→

n→∞ f in measure,

then f ∈ B .
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9. Verify that the convergence of the series
∑∞

n=1 ‖fn − f ‖p implies the conver-
gence of the functions fn to f almost everywhere.

10. Describe the measures for which

(a) L 1(X,μ)=L 2(X,μ);
(b) L 1(X,μ) �⊂L 2(X,μ) and L 2(X,μ) �⊂L 1(X,μ).

11. Find a sequence of functions fn in L 1([0,1], λ) that converges in mean to zero
and is such that limn→∞ fn(x)=+∞ and limn→∞ fn(x)=−∞ everywhere.

12. Let L p(X,μ)= {f ∈L 0(X,μ) | ‖f ‖p <+∞}, 0 <p < 1. Prove that this set
is a vector space and verify that

‖f + g‖pp � ‖f ‖pp + ‖g‖pp and ‖f + g‖p � 2
1
p
−1(‖f ‖p + ‖g‖p

)
.

In particular, the function ρ(f,g) = ‖f − g‖pp is a metric in L p(X,μ) (with
the proviso that the equation ρ(f,g) = 0 implies that f and g coincide only
almost everywhere).

13. Verify that the theorems of the present section are valid for all p > 0.
14. Verify by example that if 0 < p < 1, then the triangle inequality fails for

‖f ‖p = (
∫
X
|f |p dμ)1/p .

15. Give an example of a function f such that
∫ 1

0

√|f (x)|dx < +∞ and
∫ b

a
|f (x)|dx =+∞ for all a, b, 0 � a < b� 1.

9.2 �Approximation in the Spaces LLL p

Beginning from Sect. 9.2.2, X is a Lebesgue measurable subset of the space R
m

and L p(X) is a shorthand for L p(X,λm), p � 1. As usual, χE is the characteristic
function of a set E.

9.2.1 Our first result forms the basis for subsequent theorems on the approximation
of functions with respect to the L p-norm. It says that simple functions are densely
scattered everywhere in the space L p(X,μ) just as the rational numbers are every-
where dense in the real numbers (a special case of this statement is established in
Lemma 4.9.2). Since we do not confine ourselves to consideration of real functions
only, by a simple function we mean a measurable function with a finite number of
values (real or complex), i.e., a complex linear combination of the characteristic
functions of measurable sets.

Theorem Let (X,A,μ) be an arbitrary measure space. For every function f in
L p(X,μ), 1 � p � +∞, and every ε > 0, there is a simple function g such that
‖f − g‖p < ε.

Proof Without loss of generality, we will assume that f is real. For p =+∞, the as-
sertion of the theorem is established in the corollary to Theorem 3.2.2. Let p <+∞.
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By the same corollary, there exist simple functions gn (n= 1,2, . . .) such that

gn(x) −→
n→∞ f (x) and

∣
∣gn(x)

∣
∣ �

∣
∣f (x)

∣
∣ for all x ∈X and n ∈N.

Consequently, we have ‖f − gn‖p −→
n→∞ 0 by Theorem 9.1.2. Thus, as the required

function g, we can take an arbitrary function gn with sufficiently large index n. �

9.2.2 One of our goals is to show that the functions in L p(X) can be approximated
(in L p-norm) as closely as desired by smooth functions. We begin with approxi-
mation by simple functions of a special form.

Definition A linear combination of the characteristic functions of cells is called a
step function.

It is clear that each step function belongs to L p(Rm) for every p.

Theorem For 1 � p <+∞, every function f in L p(X) can be approximated (in
the L p-norm) as closely as desired by a step function.

Proof Extending f by zero outside X, we assume that X = R
m. We fix an arbi-

trary ε > 0. Now we divide the proof into several steps, gradually complicating the
function f .

(1) Let f = χE be the characteristic function of a set E of finite measure. By the
definition of Lebesgue measure, we have

λm(E)= inf

{ ∞∑

k=1

λm(Pk)

∣
∣
∣E ⊂

∞⋃

k=1

Pk, Pk ∈Pm for k = 1,2, . . .

}

.

Let {Pk}k�1 be a sequence of cells such that

E ⊂
∞⋃

k=1

Pk,

∞∑

k=1

λm(Pk) < λm(E)+ ε.

We fix a number N so large that
∑

k>N λm(Pk) < ε and put

A=
∞⋃

k=1

Pk, B =
N⋃

k=1

Pk.

By the theorem on the properties of semirings, the set B can be represented as the
union of pairwise disjoint cells. Without loss of generality, we will assume that the
sets P1, . . . ,PN are pairwise disjoint. Then χB = χP1 +· · ·+χPN

and, thus, g = χB

is a step function. We estimate ‖f − g‖p . By the triangle inequality, we obtain

‖f − g‖p = ‖χE − χB‖p � ‖χE − χA‖p + ‖χA − χB‖p.
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We consider each summand separately. It is obvious that

‖χE − χA‖pp =
∫

Rm

(χA − χE)p dλm =
∫

A\E
1dλm

= λm(A)− λm(E)�
∞∑

k=1

λm(Pk)− λm(E) < ε

(the last inequality is valid by the choice of the sequence {Pk}). Further,

‖χA − χB‖pp =
∫

A\B
1dλm = λm(A \B)� λm

( ⋃

k>N

Pk

)

�
∑

k>N

λm(Pk) < ε

(the last inequality is valid by the choice of N ). Consequently, ‖χE − g‖p � 2ε1/p .
We see that the function χE can be approximated as closely as desired by a step
function.

(2) If f is a simple function, i.e., a linear combination of the characteristic func-
tions of sets Ek of finite measure, then the assertion of the theorem is valid since, by
what was just proved, each function χEk

can be approximated as closely as desired.
(3) In the general case, we use Theorem 9.2.1 to approximate a function f by

simple functions h so that ‖f − h‖p < ε. By what has been proved, we can find a
step function g such that ‖h− g‖p < ε. Then ‖f − g‖p � ‖f − h‖p +‖h− g‖p <

2ε, which completes the proof. �

The theorem just proved is valid not only for Lebesgue measure but also for many
other σ -finite measures (see Exercise 2).

9.2.3 Now we turn to the problem of approximation of summable functions by
smooth functions. We recall that the closure of the set {x ∈R

m |ϕ(x) �= 0} is called
the support of ϕ and is denoted by supp(ϕ), and a function with compact support
is called a compactly supported function. In what follows, C∞0 (Rm) is the class of
infinitely differentiable compactly supported functions on R

m.
Our goal is to prove that, for a finite p, every function in L p(X) can be approx-

imated in mean as closely as desired by a function in C∞0 (Rm). We note that not all
functions in L∞(X) admit such approximations (see Exercise 1).

Theorem For 1 � p <+∞, every function f in L p(X) can be approximated (in
the L p-norm) as closely as desired by a function in C∞0 (Rm).

Proof As in the proof of Theorem 9.2.2, we will assume that X = R
m. By this

theorem, every function in L p(Rm) can be approximated as closely as desired by
step functions. Therefore, it is sufficient to prove the theorem for the characteristic
functions of cells. For this, we use the theorem on a smooth descent (see Sect. 8.1.7),
which says that, for an arbitrary cell P and every positive ε, there is a function ϕ in
C∞0 (Rm) such that

0 � ϕ � 1, supp(ϕ)⊂ Pε, and ϕ(x)= 1 for x ∈ P,

where Pε is an ε-neighborhood of P .
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Since χP − ϕ = 0 on P and outside Pε , we have

‖χP − ϕ‖pp =
∫

Pε\P
ϕp dλm � λm(Pε \ P).

Obviously, the right-hand side of this inequality is arbitrarily small along with ε.
Thus, the existence of the required approximation for χP has been proved, which
completes the proof of the theorem. �

Corollary Let X ⊂ R
m be a bounded measurable set, 1 � p < +∞, and f ∈

L p(X). For every ε > 0, there is a polynomial P such that ‖f − P ‖p < ε.

Proof By the theorem, there exist a function ϕ ∈ C∞0 (Rm) such that ‖f − ϕ‖p < ε.
By the Weierstrass approximation theorem (see Corollary 1 of Sect. 7.6.4), the func-
tion ϕ can be uniformly approximated by a polynomial P on the closure of X, and
so |ϕ(x)− P(x)|< ε on X. Then

‖f − P ‖p � ‖f − ϕ‖p + ‖ϕ − P ‖p < ε+ ε
(
λm(X)

)1/p
.

Thus, the function f can be approximated in the L p-norm as closely as desired by
a polynomial. �

9.2.4 Here we establish one unexpected and interesting feature of the functions in
L p(Rm) with finite p. Although such functions can be discontinuous everywhere,
some characteristics of their global behavior make it possible to speak of “continuity
in mean”. For the precise formulation of this statement, we need the concept of a
shift of a function.

Definition Let f ∈L 0(Rm) and h ∈R
m. By the shift of a function f by a vector h,

we mean the function fh defined by the formula

fh(x)= f (x − h)
(
x ∈R

m
)
.

Since Lebesgue measure is shift invariant, it is clear that fh ∈L p(Rm) along
with f , and ‖fh‖p = ‖f ‖p .

Theorem (On continuity in the mean) Let 1 � p <+∞ and f ∈L p(Rm). Then

‖f − fh‖p =
(∫

Rm

∣
∣f (x)− f (x − h)

∣
∣p dx

)1/p

−→
h→0

0.

Thus, the map h �→ fh from R
m to L p(Rm) is continuous.

Proof By Theorem 9.2.2, the function f can be approximated in L p(Rm) as
closely as desired by a step function g. Obviously,

‖f − fh‖p � ‖f − g‖p + ‖g− gh‖p + ‖fh − gh‖p = 2‖f − g‖p + ‖g− gh‖p.
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Therefore, it is sufficient to prove the theorem for step functions. Since every such
function is a linear combination of the characteristic functions of cells, it remains
for us to verify the assertion of the theorem for an arbitrary function f of the form
f = χP , where P is a cell. As the reader can easily verify, this assertion follows
from Lebesgue’s theorem. However, it is possible to dispense with the reference to
this theorem. It is clear that fh is simply the characteristic function of the shifted
cell Ph = {x+ h |x ∈ P }. Since |f − fh| = 0 outside the union (P \Ph)∪ (Ph \P)

and |f − fh| = 1 on (P \ Ph)∪ (Ph \ P), we see that

‖f − fh‖pp =
∫

P \Ph

1dλm +
∫

Ph\P
1dλm = λm(P \ Ph)+ λm(Ph \ P).

The right-hand side of this equation tends to zero as h→ 0. �

As the example of the function f = χ(0,1) shows, the theorem is valid only for
finite p.

We also point out the following statement concerning the continuity in mean of
periodic functions.

Corollary Let 1 � p < +∞, and let f be a measurable function defined on R
m

and 2π -periodic in each variable. If
∫
(−π,π)m

|f (x)|p dx <+∞, then

∫

(−π,π)m

∣
∣f (x)− f (x − h)

∣
∣p dx −→

h→0
0.

Proof Let g coincide with f on the cube (−2π,2π)m and equal zero outside the
cube. Then g ∈L p(Rm) and f (x)−f (x−h)= g(x)−g(x−h) for x ∈ (−π,π)m

and ‖h‖< π . Therefore,
∫

(−π,π)m

∣
∣f (x)− f (x − h)

∣
∣p dx =

∫

(−π,π)m

∣
∣g(x)− g(x − h)

∣
∣p dx

� ‖g− gh‖pp −→
h→0

0. �

9.2.5 Now, we use approximation to establish a result which plays an important role
in harmonic analysis.

Theorem (Riemann–Lebesgue) Let X ⊂R
m and f ∈L 1(X). Then

If (y)=
∫

X

f (x)ei〈x,y〉 dx −→‖y‖→+∞ 0

(the symbol 〈x, y〉 denotes the scalar product of vectors x and y in R
m).

If f is a function summable on a finite interval [a, b], then the theorem says that
∫ b

a

f (x)eixy dx −→|y|→+∞ 0.
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The reason the integral converges to zero, of course, is that, for large y, the real
and imaginary parts of eixy oscillate rapidly near zero. If f is continuous, then the
result to be proved is intuitively absolutely clear: the integral over [a, b] can be split
into a sum of integrals over intervals of length 2π/|y|. For large |y|, the function
f is almost constant on each such interval, and on the left and right halves of each
interval the oscillating factor eixy assumes values of opposite sign. Therefore, the in-
tegrals over these intervals “almost cancel each other out”, which leads to the result
to be proved. It is surprising, however, that If (y) −→|y|→+∞ 0 not only for continuous

functions but for all summable functions, which may not have points of continuity
at all.

We give two proofs of the Riemann–Lebesgue theorem. In these proofs, despite
the intuitive clearness of the reasoning, we do not use the concept of continuity. It
turns out that it is technically more convenient to rely on the result proved above
that each summable function can be approximated by step functions. In the second
proof, we establish not only the purely qualitative result formulated in the theorem
but also obtain an estimate for the integral If (y).

Proof I As in the proof of Theorems 9.2.2 and 9.2.3, we can extend f by zero
outside X. Therefore, without loss of generality, we will assume that X =R

m.
We divide the proof into several steps, gradually complicating the function f .
(1) Let f be the characteristic function of a cell P of the form P = [a1, b1)×

· · · × [am,bm). Then, for a vector y = (y1, . . . , ym) in R
m, we have

If (y)=
m∏

k=1

∫ bk

ak

eixkyk dxk =
m∏

k=1

exp(ibkyk)− exp(iakyk)

iyk
.

It is clear that all factors on the right are bounded, and if ‖y‖→+∞, then the right-
hand side of this equation tends to zero since the absolute value of at least one of
the denominators is not less than ‖y‖/m. Thus, the assertion has been proved for
characteristic functions of cells.

(2) Let f be a step function. In this case, the statement is obvious since such an
f is a linear combination of the characteristic functions of cells.

(3) Now, let f be an arbitrary function in L 1(Rm). Since If (y) = Ig(y) +
If−g(y) and |If−g(y)|� ‖f − g‖1 for every function g, we obtain

∣
∣If (y)

∣
∣ �

∣
∣Ig(y)

∣
∣+ ∣

∣If−g(y)
∣
∣ �

∣
∣Ig(y)

∣
∣+ ‖f − g‖1.

By Theorem 9.2.2, the summand ‖f − g‖1 can be made arbitrarily small by the
choice of a step function g. Then, fixing g, we can make the summand |Ig(y)|
arbitrarily small for all vectors y with a sufficiently large norm. �

Since the shift in the space L 1(Rm) is continuous, we can give one more (very
short but somewhat formal) proof of the Riemann–Lebesgue theorem. This proof is
based on a method often used in harmonic analysis.
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Proof II We assume that X = R
m. Let h = πy/‖y‖2. It is clear that ‖h‖ =

π/‖y‖→ 0 as ‖y‖→+∞. After the change of variable x �→ x − h, we obtain
∫

Rm

f (x)ei〈x,y〉 dx =
∫

Rm

f (x − h)e−iπ+i〈x,y〉 dx =−
∫

Rm

fh(x)e
i〈x,y〉 dx.

Consequently,

2
∫

Rm

f (x)ei〈x,y〉 dx =
∫

Rm

(
f (x)− fh(x)

)
ei〈x,y〉 dx.

Therefore,

2

∣
∣
∣
∣

∫

Rm

f (x)ei〈x,y〉 dx
∣
∣
∣
∣ �

∫

Rm

∣
∣f (x)− fh(x)

∣
∣dx.

The integral on the right-hand side of this inequality tends to zero as h→ 0 since
the function f is continuous in mean. �

From the second proof of the theorem, it is clear that the fast convergence to zero
of the norm ‖f − fh‖1 as h→ 0 implies the fast decrease of the integral If (y)

as ‖y‖→+∞. For a smooth function f with compact support we, obviously, have
‖f −fh‖1 =O(‖h‖) and so If (y)=O(1/‖y‖). In the one-dimensional case where
X = [a, b], the estimate If (y)=O(1/|y|) is valid not only for a smooth but also for
an absolutely continuous function f , which can easily be verified by integration by
parts. However, in some problems (see Example 2 of Sect. 10.5.2) we need estimates
for If valid under less restrictive assumptions. In the following example, we obtain
one such result.

Example Let us find the rate at which the integral If (y) tends to zero as y→+∞ if
the function f is defined on the interval X = [0,1) and has the form f (x)= F(x)√

1−x2
,

where F ∈ C1([0,1]).
We represent f in the form f (x)= F(1)√

2(1−x)
+ g(x), where the function g(x)=

1√
1−x

(
F (x)√

1+x
− F(1)√

2
) is absolutely continuous on [0,1). Therefore, Ig(y)=O(1/y),

and we obtain that

If (y)= F(1)√
2

∫ 1

0

eiyx√
1− x

dx +O

(
1

y

)

= F(1)√
2

∫ 1

0
eiy(1−t) dt√

t
+O

(
1

y

)

= F(1)√
2y

eiy
∫ y

0
e−iu du√

u
+O

(
1

y

)

.

Since the integral
∫ y

0 e−iu du√
u

tends to the Fresnel integral
∫∞

0 e−iu du√
u

as y→+∞,

which is equal to (1− i)
√

π
2 (see Example 1 of Sect. 7.4.8), we have

If (y)= F(1)√
2y

eiy
(

(1− i)

√
π

2
−

∫ ∞

y

e−iu du√
u

)

+O

(
1

y

)
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= F(1)

2
eiy(1− i)

√
π

y
+O

(
1

y

)

. (1)

We use this formula to find the asymptotic of the integrals

C(y)=
∫ 1

−1

e−iyx

√
1− x2

dx and S(y)=
∫ 1

−1

√
1− x2e−iyx dx.

Obviously,

C(y)= 2
∫ 1

0

cosxy√
1− x2

dx = 2Re

∫ 1

0

eixy√
1− x2

dx,

S(y)=− 1

iy

∫ 1

−1

x√
1− x2

e−ixy = 2

y
Im

∫ 1

0

x√
1− x2

eixy dx.

Applying formula (1) (in both cases F(1)= 1), we obtain by direct calculation that

C(y)=
√

π

y
(siny + cosy)+O

(
1

y

)

,

S(y)= 1

y

√
π

y
(siny − cosy)+O

(
1

y2

)

as y→+∞.

EXERCISES

1. Verify that the condition p < +∞ in Theorems 9.2.2 and 9.2.3 cannot be
dropped.
In problems 2–6, we assume that 1 � p <+∞.

2. Prove that Theorems 9.2.2 and 9.2.3 remain valid for every Borel measure finite
on the cells.

3. Let μ be the standard extension of a measure from a semiring P of subsets of a
set X. Repeating the reasoning in the proof of Theorem 9.2.2, prove that every
function in L p(X,μ) can be approximated in mean as closely as desired by
linear combinations of the characteristic functions of sets belonging to P .

4. Let (X,A,μ) and (Y,B, ν) be spaces with σ -finite measures. Use the previous
exercise to prove that every function in L p(X×Y,μ×ν) can be approximated
as closely as desired by linear combinations of products of the form ϕ(x)ψ(y),
where ϕ ∈L p(X,μ) and ψ ∈L p(Y, ν).

5. Prove that every function in L p(Rm,μ), where μ is an arbitrary Borel measure
finite on the cells, can be approximated as closely as desired by linear combina-
tions of products of the form ψ1(x1) · · ·ψm(xm), where ψ1, . . . ,ψm ∈ C∞0 (R).

6. Prove that every function in L p(Rm) can be approximated as closely as desired
by rational functions (i.e., by quotients of the form P/Q, where P and Q are
algebraic polynomials in m variables and Q �= 0).
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7. Prove that 1
uv
+ 1

u−v
( 1
u
eiu − 1

v
eiv)→ 0 as u2 + v2 →+∞. Hint. Apply the

Riemann–Lebesgue theorem to the characteristic function of the triangle with
vertices (0,0), (1,0) and (0,1).

8. Let f be a function in L 0(Rm) such that the norms ‖fh − f ‖p (h ∈ R
m) are

bounded for some p ∈ [1,+∞). Prove that f can be represented in the form
f = ϕ + const, where ϕ ∈L p(Rm). Hint. Verifying that f ∈Lloc(R

m), prove
that the mean value limR→+∞ 1

(2R)m

∫
[−R,R]m f (x) dx exists and is finite.

9. Let 0 <p < 1, F ∈ C1([0,1]). By analogy with Example 9.2.5, find the asymp-
totics of the integral

∫ 1
0

F(x)

(1−x2)p
eixy dx.

10. Let f ∈L 1(X), X ⊂R
m. Show that

∫
X
f (x)eit‖x‖ dx→ 0 as t→±∞.

9.3 �Convolution and Approximate Identities in the Spaces LLL p

In this section, we supplement the information on convolution obtained in Sects. 7.5–
7.6. All functions under consideration are assumed to be measurable (and, in gen-
eral, complex-valued).

In the periodic and non-periodic cases, the properties of convolution are similar.
Therefore, we consider only the non-periodic case in detail. In the periodic case,
we confine ourselves to the statements of results, which we give for convenience of
reference.

9.3.1 First, we generalize Theorem 7.5.2 on the existence of the convolution of two
summable functions.

Theorem Let f ∈L p(Rm) and g ∈L 1(Rm), 1 � p �+∞. Then the convolution
f ∗ g exists, belongs to L p(Rm), and

‖f ∗ g‖p � ‖g‖1 · ‖f ‖p.

Proof Following the scheme of the proof of Theorem 7.5.2, we first prove the ex-
istence of the convolution, i.e., that the function H(x) = ∫

Rm |f (x − y)g(y)|dy is
almost everywhere finite. Moreover, we verify that H ∈L p(Rm).

This is obvious for p =+∞ since

H(x)� ‖f ‖∞
∫

Rm

∣
∣g(y)

∣
∣dx = ‖f ‖∞‖g‖1.

If 1 < p <+∞, then, assuming that 1
p
+ 1

q
= 1, we obtain by Hölder’s inequality

that

H(x) =
∫

Rm

(∣
∣f (x − y)

∣
∣
∣
∣g(y)

∣
∣

1
p

)∣
∣g(y)

∣
∣

1
q dy

�
(∫

Rm

∣
∣f (x − y)

∣
∣p

∣
∣g(y)

∣
∣dy

) 1
p

(∫

Rm

∣
∣g(y)

∣
∣dy

) 1
q
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(for p = 1 and q =+∞, this inequality becomes equality). Consequently,

Hp(x)� ‖g‖p/q

1

∫

Rm

∣
∣f (x − y)

∣
∣p

∣
∣g(y)

∣
∣dy = ‖g‖p/q

1

(|f |p ∗ |g|)(x).

Thus, the function Hp is dominated (with the coefficient ‖g‖p/q

1 ) by the convolu-
tion of the summable functions |f |p and |g|. By Theorem 7.5.2, this function is
summable and the following estimate is valid:

∫

Rm

Hp(x)dx � ‖g‖p/q

1

∥
∥ |f |p∥

∥
1‖g‖1 = ‖g‖1+p/q

1 ‖f ‖pp.

In particular, it follows that H(x) < +∞ almost everywhere, and so the existence
of the convolution is proved. Moreover, since |(f ∗ g)(x)|�H(x), we have f ∗ g ∈
L p(Rm) and ‖f ∗ g‖p � ‖H‖p � ‖g‖

1
p
+ 1

q

1 · ‖f ‖p = ‖g‖1 · ‖f ‖p , which is what
was to be proved. �

9.3.2 As we saw in Chap. 7, the degree of smoothness of a function can only in-
crease under convolution. Now, we use the theorem on continuity in the mean to
supplement this result and to prove that, in a wide range of cases, (in general) the
convolution of discontinuous functions is continuous.

Theorem Let f ∈ L p(Rm) and g ∈ L q(Rm), where 1 � p,q � +∞ and
1
p
+ 1

q
= 1. Then the convolution f ∗ g exists, is uniformly continuous on R

m,
and the inequality

∣
∣(f ∗ g)(x)∣∣ � ‖f ‖p ‖g‖q (1)

holds for every x in R
m.

Proof By the symmetry of f and g, we may assume that p <+∞. To verify that
the convolution exists, we prove that the integral H(x) is finite (this notation was
introduced in the proof of Theorem 9.3.1). For 1 < p < +∞, Hölder’s inequality
yields

H(x) �
(∫

Rm

∣
∣f (x − y)

∣
∣p dy

) 1
p

(∫

Rm

∣
∣g(y)

∣
∣q dy

) 1
q

=
(∫

Rm

∣
∣f (y)

∣
∣p dy

) 1
p

(∫

Rm

∣
∣g(y)

∣
∣q dy

) 1
q ;

for p = 1, this inequality takes the form H(x) � ‖f ‖1 esssup |g|. Thus, H(x) �
‖f ‖p ‖g‖q < +∞, which proves that the convolution exists. Since |(f ∗ g)(x)| �
H(x), we obtain inequality (1). It remains to verify that the function u = f ∗ g
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is uniformly continuous. For this, we estimate the difference u(x − h) − u(x) =
uh(x)− u(x)= (fh − f ) ∗ g(x) by means of inequality (1) as follows:

∣
∣u(x − h)− u(x)

∣
∣= ∣

∣(fh − f ) ∗ g(x)∣∣ � ‖fh − f ‖p‖g‖q .
The right-hand side of this inequality does not depend on x and tends to zero as
h→ 0, since the function f is continuous in mean. �

Corollary If f ∈ Lloc(R
m) and the function g is bounded and compactly sup-

ported, then the convolution f ∗ g is continuous.

Proof If f is summable, then the continuity of the convolution is established in the
theorem. In the general case, the continuity of f ∗ g in an arbitrary ball B(0,R)

follows from the fact that the convolutions f ∗ g and f1 ∗ g coincide in this ball.
Here, f1 is the function equal to zero outside the ball B(0,2R) and coinciding with
f in this ball (see the truncation lemma of Sect. 7.5.4). �

Theorems 9.3.1 and 9.3.2 are the main special cases of a more general statement
known as Young’s inequality.3 It consists of the following.

Let f ∈L p(Rm) and g ∈L q(Rm), where p,q � 1. We assume that 1
p
+ 1

q
� 1

and consider an r , 1 � r �+∞, such that

1

p
+ 1

q
= 1+ 1

r
.

Then the convolution f ∗q exists and ‖f ∗g‖r � ‖f ‖p ·‖g‖q (see also Exercise 10).
It follows from 1

p
+ 1

q
= 1 + 1

r
that p,q � r . We assume that 1 < p,

q < r <∞ (the remaining cases correspond to Theorems 9.3.1 and 9.3.2). In addi-
tion, we assume that the functions f and g are non-negative since otherwise they
can be replaced by |f | and |g|.

The idea of the remaining calculation is to majorize the convolution f ∗ g (the
existence of which has to be proved) by the convolution of the summable functions
F = f p and G = gq . To this end, we represent the product f (y)g(x − y) as a
product of three factors,

f (y)g(x − y)= (
F(y)G(x − y)

) 1
r · F 1

p
− 1

r (y) ·G 1
q
− 1

r (x − y),

and integrate this identity for a fixed x. Since 1
r
+ ( 1

p
− 1

r
)+ ( 1

q
− 1

r
) = 1 by the

definition of r , Hölder’s inequality for three functions (see Corollary 2, Sect. 4.4.5)
with exponents r , ( 1

p
− 1

r
)−1 and ( 1

q
− 1

r
)−1 gives us the following estimate from

above:
∫

Rm

f (y)g(x − y)dy �
(
(F ∗G)(x)

) 1
r · ‖F‖

1
p
− 1

r

1 · ‖G‖
1
q
− 1

r

1 .

3William Henry Young (1863–1942)—English mathematician.
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Since the functions F and G are summable, their convolution is finite almost ev-
erywhere by Theorem 9.3.1. Therefore, the left-hand side of the latter inequality
is finite for almost all x, proving the existence of the convolution f ∗ g. The con-
volution is measurable by Lemma 7.5.2, and, as we have just proved, satisfies the
inequality

0 � (f ∗ g)(x)� ‖F‖
1
p
− 1

r

1 · ‖G‖
1
q
− 1

r

1 · ((F ∗G)(x)
) 1

r .

Consequently,

‖f ∗ g‖rr � ‖F‖
r
p
−1

1 · ‖G‖
r
q
−1

1 ‖F ∗G‖1 � ‖F‖
r
p
−1

1 · ‖G‖
r
q
−1

1 · ‖F‖1‖G‖1

= ‖F‖
r
p

1 · ‖G‖
r
q

1

(here we applied the inequality from Theorem 9.3.1). Thus,

‖f ∗ g‖r � ‖F‖
1
p

1 · ‖G‖
1
q

1 = ‖f ‖p · ‖g‖q .

9.3.3 In this section, we consider the properties of the convolution of a function
in L p(Rm) with an approximate identity. We recall (see Sect. 7.6.1) that an ap-
proximate identity in R

m (as t → t0) is a family of functions {ωt }t>0 satisfying the
following conditions:

(a) ωt � 0,

(b)
∫

Rm

ωt (x) dx = 1,

(c)
∫

‖x‖>δ

ωt (x) dx −→
t→t0

0 for every δ > 0.

From Theorem 7.6.3 it follows, in particular, that if a bounded function f is
continuous on R

m, then the convolutions f ∗ ωt converge pointwise to f as t → t0
(the convergence is uniform if the function f is uniformly continuous on R

m). For
the functions in L p(Rm), this statement is modified as follows:

Theorem Let {ωt }t>0 be an approximate identity in R
m as t → t0 and let f ∈

L p(Rm), 1 � p <+∞. Then the functions ft = f ∗ωt converge to f as t→ t0 in
the L p-norm.

Proof It is clear that

∣
∣ft (x)− f (x)

∣
∣ �

∫

Rm

∣
∣f (x − y)− f (x)

∣
∣ωt(y) dy

=
∫

Rm

∣
∣f (x − y)− f (x)

∣
∣ω

1
p

t (y)ω
1
q

t (y) dy.
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By Hölder’s inequality, we obtain

∣
∣ft (x)− f (x)

∣
∣ �

(∫

Rm

∣
∣f (x − y)− f (x)

∣
∣pωt (y) dy

) 1
p

(∫

Rm

ωt (y) dy

) 1
q

=
(∫

Rm

∣
∣f (x − y)− f (x)

∣
∣pωt (y) dy

) 1
p

.

Raising to the pth power and changing the order of integration, we obtain
∫

Rm

∣
∣ft (x)− f (x)

∣
∣p dx �

∫

Rm

(∫

Rm

∣
∣f (x − y)− f (x)

∣
∣pωt (y) dy

)

dx

=
∫

Rm

ωt (y)

∫

Rm

∣
∣f (x − y)− f (x)

∣
∣p dx dy

=
∫

Rm

g(y)ωt (y) dy,

where g(y)= ∫
Rm |f (x − y)− f (x)|p dx −→

y→0
0 since f is continuous in mean. By

the Corollary of Theorem 7.6.3, the right-hand side of the last inequality tends to
zero as t→ t0. �

The result obtained allows us to give one more proof of the important Theo-
rem 9.2.3.

Corollary Let 1 � p < +∞, f ∈L p(Rm), and ε > 0. Then there is a function
ϕ ∈ C∞0 (Rm) such that ‖f − ϕ‖p < ε.

Proof Let {ωt }t>0 be a Sobolev approximate identity in R
m. By the corollary of

Theorem 7.5.4, the convolution f ∗ ωt is infinitely differentiable. By the theorem
just proved, we have ‖f −f ∗ωt‖p −→

t→t0
0. We fix a t such that ‖f −f ∗ωt‖p < ε/2

and put g = f ∗ωt .
To complete the proof, it remains to approximate g by a function of class

C∞0 (Rm) within ε/2. This can be done by multiplying g by a function obtained
by smoothing the characteristic function of a ball of sufficiently large radius. We
leave it to the reader to fill in the details. �

9.3.4 Here, we supplement the results of the previous section by the study of the
convergence of the convolutions ft = f ∗ωt to the function f in L p(Rm) not with
respect to the norm of this space but almost everywhere. To obtain the required
result, we have to impose an additional restriction on the approximate identity and
require that the functions ωt have sufficiently a nice (“hump-shaped”) majorant.
More precisely, we assume that the estimates

ωt(x)�ψt

(‖x‖),
∫

Rm

ψt

(‖x‖)dx � C, (2)
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where ψt are decreasing functions on (0,+∞) and C is a constant, are valid for all
t > 0. In particular, if ψt has the form ψt(r)= t−m�(r/t), where � is a decreasing
function on (0,+∞), then the second condition in (2) reduces to the inequality∫∞

0 rm−1�(r)dr <+∞.

Theorem Let {ωt }t>0 be an approximate identity in R
m as t → t0 satisfying con-

dition (2). Then if f ∈ Lp(Rm), 1 � p � +∞, then the convolutions ft = f ∗ ωt

converge to f as t → t0 at each Lebesgue point of f , and, consequently, almost
everywhere.

Proof For the characteristic function of a ball, the assertion of the theorem follows
immediately from properties (b) and (c) of an approximate identity. Therefore, we
may assume, without loss of generality, that x is a Lebesgue point of f and f (x)= 0
(otherwise, it is necessary to replace the function f by the difference f − f (x)χ ,
where χ is the characteristic function of an arbitrary ball centered at x). Thus, we
will prove that ft (x)→ 0 as t→ t0 if

1

rm

∫

B(r)

∣
∣f (x − y)

∣
∣dy −→

r→0
0 (3)

(as usual, B(r) is the ball with radius r and center zero).
Since ft (x)=

∫
Rm f (x − y)ωt (y) dy, we have

∣
∣ft (x)

∣
∣ �

∫

Rm

∣
∣f (x − y)

∣
∣ωt(y) dy =

∫

B(ε)

· · · +
∫

Rm\B(ε)

· · · = I (ε)+ J (ε)

for every ε > 0 (the freedom in the choice of this parameter will be used later).
We estimate the integrals I (ε) and J (ε) separately. We represent the first inte-
gral as the sum of integrals over the spherical layers Sj = B(εj−1) \ B(εj ), where
εj = ε/2j for j ∈N and ε0 = ε. We note that λm(Sj )= βmεmj , where the coefficient
βm depends only on m. Since ωt(y)�ψt(‖y‖)�ψt(εj ) on the layer Sj , we obtain

∫

Sj

∣
∣f (x − y)

∣
∣ωt(y) dy �ψt(εj )

∫

B(εj−1)

∣
∣f (x − y)

∣
∣dy.

We put

�(ε)= sup
r�ε

1

rm

∫

B(r)

∣
∣f (x − y)

∣
∣dy.

Then
∫

Sj

∣
∣f (x − y)

∣
∣ωt(y) dy � εmj−1�(εj−1)ψt (εj )� (4εj+1)

m�(ε)ψt (εj )

� 4m

βm

�(ε)

∫

Sj+1

ψt

(‖y‖)dy.
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Adding these inequalities and taking into account (2), we obtain

I (ε)=
∞∑

j=1

∫

Sj

∣
∣f (x − y)

∣
∣ωt(y) dy � 4m

βm

�(ε)

∫

B(ε)

ψt

(‖y‖)dy � 4m

βm

C�(ε).

It follows from relation (3) that �(ε), and along with it I (ε), tends to zero as ε→ 0.
Now we estimate the integral J (ε). If p =+∞, then everything is very simple:

J (ε)� ‖f ‖∞
∫
Rm\B(ε)

ωt (y) dy and, therefore,

∣
∣ft (x)

∣
∣ � I (ε)+ J (ε)� 4m

βm

C�(ε)+ ‖f ‖∞
∫

Rm\B(ε)

ωt (y) dy.

The first summand can be made arbitrarily small by an appropriate choice of ε.
For a fixed ε, the second summand tends to zero as t → t0 by property (c) of an
approximate identity.

It is harder to estimate the integral J (ε) if 1 � p < +∞ because the values of
|f (x − y)| can be arbitrarily large on some part of the set Rm \ B(ε). We con-
sider this part and put ER = {y ∈ R

m | |f (x − y)|> R}, where R is a large numer-
ical parameter. From Chebyshev’s inequality (see Sect. 4.4.4), it follows that the
measure of ER is infinitesimal as R →+∞. By absolute continuity, the integral∫
ER
|f (x − y)|p dy is also small. From the first inequality in (2) and the definition

of the set ER with R > 1, we obtain the estimate

∣
∣f (x − y)

∣
∣ωt(y)�

{
ψt(ε)|f (x − y)|p for y ∈ER, ‖y‖> ε,

Rωt(y) for y /∈ER.

Moreover, by the second inequality in (2), we have

C �
∫

B(ε)

ψt

(‖y‖)dy �ψt(ε)λm

(
B(ε)

)

and, consequently, ψt(ε)�A(ε)= C/λm(B(ε)) for all t . Therefore,

J (ε)�A(ε)

∫

ER

∣
∣f (x − y)

∣
∣p dy +R

∫

Rm\B(ε)

ωt (y) dy.

Thus,
∣
∣ft (x)

∣
∣ � I (ε)+ J (ε)

� 4m

βm

C�(ε)+A(ε)

∫

ER

∣
∣f (x − y)

∣
∣p dy +R

∫

Rm\B(ε)

ωt (y) dy.

Now, we can make the first summand arbitrarily small by the choice of a small ε.
Then, for a fixed ε, we can make the second summand small by the choice of an R.
It remains to observe that, for fixed R and ε, the third summand tends to zero as
t→ t0 by property (c) of an approximate identity. �
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Remark The assertion of the theorem is not valid for an arbitrary approximate iden-
tity (see Exercise 4). At the same time, the assumptions concerning the functions ψt

can be weakened somewhat. It can be seen from the proof that the second inequal-
ity in (2) can be replaced by the following less restrictive requirement: for some
positive C and ρ and all t > 0, the inequality

∫
B(ρ)

ψt (‖x‖) dx � C is valid.

9.3.5 In this section and the next, we consider two results in the proofs of which we
use approximate identities. In both cases, the idea of the proof is that the required
statement is obtained by a passage to the limit, based on the fact that the statement
is valid for a “smoothed” function constructed by a convolution. The first of these
results is connected to the Gauss–Ostrogradski formula (see Sect. 8.6.5). Without
striving for maximal generality, we will assume that the function being integrated
satisfies the Lipschitz condition. Here, as in Sect. 8.6.5, by the (m− 1)-dimensional
area σ we mean an area proportional to the Hausdorff measure μm−1.

Theorem Let f be a function defined on a standard compact set K ⊂ R
m and

satisfying the Lipschitz condition. Then, for every unit vector e ∈R
m, we have

∫

K

∂f

∂e
(x) dx =

∫

∂K

f (x)
〈
ν(x), e

〉
dσ(x)

(here ν is the outer normal to ∂K).

Proof Without loss of generality, we may assume that f is bounded and satisfies the
Lipschitz condition on the entire space Rm (see Theorem 13.2.3). As will be proved
in Sect. 11.4, a function f satisfying the Lipschitz condition is differentiable almost
everywhere, and, for every smooth function ϕ, the following equality is valid:

∫

Rm

f ′xj (x)ϕ(x) dx =−
∫

Rm

f (x)ϕ′xj (x) dx (4)

(see Eq. (1) in Sect. 11.4.2).
We consider the convolution ft of the function f with a Sobolev approxi-

mate identity. It follows from Eq. (4) that (ft )
′
xj
= (f ′xj )t . Moreover,

∫
K
|f ′xj −

(f ′xj )t |dx −→t→0
0 by Theorem 9.3.3, and ft (x) −→

t→0
f (x) for every x by Theo-

rem 7.6.3. Since |ft | � ‖f ‖∞, we obtain by Lebesgue’s theorem that
∫
∂K
|ft −

f |dσ −→
t→0

0. Thus, to complete the proof, it remains to use the Gauss–Ostrogradski

formula for ft and pass to the limit as t→ 0. �

9.3.6 We give one more application of Theorem 9.3.3. The following statement,
known as Lagrange’s lemma,4 plays an important role in the theory of generalized
functions and in the calculus of variations.

4Joseph Louis Lagrange (1736–1813)—French mathematician.
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Theorem (Lagrange) Let O be an open subset of the space R
m, and let f be a

function defined on O and summable on each compact set lying in O. If

∫

O
f (x)ϕ(x) dx = 0 for every function ϕ ∈ C∞0

(
R

m
)

such that supp(ϕ)⊂O,

then f (x)= 0 for almost all x in O.

Proof We divide the proof into several steps. Without loss of generality, we will
assume that f is real.

(1) First, let O = R
m, and let the function f be continuous. If we suppose that

f (x0) �= 0, then f (x) �= 0 in a ball B(x0, r). We consider a non-negative function
ϕ �≡ 0 in C∞0 (Rm) such that supp(ϕ)⊂ B(x0, r). Then f ϕ preserves the sign, and,
therefore,

∫
Rm f (x)ϕ(x) dx �= 0, which contradicts the condition of the theorem.

(2) Now, we assume, as in the previous step, that O = R
m and that the function

f is summable on R
m, and use the convolutions of f with the even functions ωt

forming a Sobolev approximate identity. If ft = f ∗ωt and ϕ ∈ C∞0 (Rm), then

∫

Rm

ft (x)ϕ(x) dx =
∫

Rm

ϕ(x)

(∫

Rm

f (y)ωt (x − y)dy

)

dx

=
∫

Rm

f (y)

(∫

Rm

ϕ(x)ωt (x − y)dx

)

dy =
∫

Rm

f (y)ϕt (y) dy,

where ϕt = ϕ ∗ ωt . By Corollaries 7.5.3 and 7.5.4, we have ϕt ∈ C∞0 (Rm). There-
fore,

∫

Rm

ft (x)ϕ(x) dx =
∫

Rm

f (y)ϕt (y) dy = 0.

Since this equation is valid for an arbitrary function ϕ in C∞0 (Rm) and ft is contin-
uous, we know from the previous step that ft ≡ 0. At the same time, ft −→

t→0
f in

mean, and, therefore, ‖f ‖1 = ‖f − ft‖1 −→
t→0

0. Thus, ‖f ‖1 =
∫
Rm |f (x)|dx = 0,

which is equivalent to the conclusion of the theorem.
(3) Turning to the general situation, we note that since O can be represented

as the union of a sequence of compact sets, it is sufficient to verify that f (x) = 0
is valid almost everywhere on each compact set K ⊂ O. Fixing such a set K , we
consider a function ϕ0 ∈ C∞0 (Rm) with the properties

ϕ0 = 1 on K, supp(ϕ0)⊂O, and 0 � ϕ0 � 1

(see Theorem 8.1.7 on a smooth descent). Let f1 be the function equal to f ϕ0 in O
and equal to zero outside O. This function is summable on R

m since

∫

Rm

∣
∣f1(x)

∣
∣dx =

∫

supp(ϕ0)

∣
∣f (x)

∣
∣ϕ0(x) dx �

∫

supp(ϕ0)

∣
∣f (x)

∣
∣dx <+∞.



532 9 Approximation and Convolution in the Spaces L p

We note also that supp(ϕ0ϕ) ⊂ supp(ϕ0) ⊂ O for every function ϕ in C∞0 (Rm).
Therefore,

∫

Rm

f1(x)ϕ(x) dx =
∫

O
f (x)

(
ϕ0(x)ϕ(x)

)
dx = 0.

By what was proved in the previous step, we have f1(x) = 0 almost everywhere
on R

m, and, in particular, almost everywhere on K where f1 coincides with f .
Thus, f (x)= 0 almost everywhere on K , as required. �

9.3.7 In conclusion of this section, we turn to the properties of the convolution
in the periodic case. Here, by a periodic function (of several variables), we mean
a function that is 2π -periodic in each variable. By L̃ p(Rm) (1 � p < +∞), we
denote the space of periodic functions summable on the cube Q = (−π,π)m with
degree p � 1. As p increases, these spaces, obviously, decrease. By ‖f ‖p , where
f ∈ L̃ p(Rm), we mean the L p-norm of the restriction of f to the cube Q.

As mentioned in Sect. 7.5.5, the convolution of periodic measurable functions f

and g on R
m is defined by the formula

(f ∗ g)(x)=
∫

Q

f (x − y)g(y) dy
(
x ∈R

m
)
.

It exists and is summable if the functions f and g are summable. Thus, in the pe-
riodic case, the convolution of f and g belonging to L̃ p(Rm) and L̃ q(Rm) exists
since these spaces consist of summable functions. Analogs of Theorems 9.3.1–9.3.4
are valid for a periodic approximate identity (see the definition in Sect. 7.6.5). Their
proofs differ from the proofs in the non-periodic case only in the replacement of the
integration over the entire space R

m by integration over the cube Q.
We present some statements for convenience of reference.

Theorem 1 If f ∈ L̃ p(Rm) and g ∈ L̃ 1(Rm), then the convolution f ∗ g exists,
belongs to L̃ p(Rm), and ‖f ∗ g‖p � ‖f ‖p‖g‖1.

Theorem 2 Let {ωt }t>0 be a periodic approximate identity in R
m as t → t0, and

let f ∈ ˜̃L
p
(Rm), 1 � p < +∞. Then the functions ft = f ∗ ωt converge to f as

t→ t0 in the L p-norm.

Theorem 3 Let {ωt }t>0 be a periodic approximate identity R
m as t→ t0 such that

the functions ψt(x)= sup‖x‖�‖y‖�ρ ωt (y) satisfy the condition

sup
t>0

∫

B(ρ)

ψt (x) dx <+∞

for some ρ, 0 < ρ � π . Then, for every function f in L̃ p(Rm), 1 � p �+∞, the
convolutions ft = f ∗ωt converge to f as t→ t0 almost everywhere.
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By Theorem 2, it is easy to obtain a periodic analog of Corollary 9.2.3 on poly-
nomial approximation with respect to the L p-norm.

Theorem 4 Let 1 � p < +∞, f ∈ L̃ p(Rm) and ε > 0. Then there is a trigono-
metric polynomial T such that ‖f − T ‖p < ε.

Proof We consider the approximate identity �n constructed in the proof of Corol-
lary 7.6.5. It consists of trigonometric polynomials, and, therefore, the convolutions
f ∗�n are also trigonometric polynomials. Since ‖f ∗�n − f ‖p −→

n→∞ 0 by Theo-

rem 2, we see that every convolution f ∗�n with a sufficiently large index n can be
taken as T . �

EXERCISES

1. Let fE be the averaging of a function f ∈ L p(Rm) over a set E ⊂ R
m

of positive measure, fE(x) = 1
λm(E)

∫
E
f (x + y)dy (x ∈ R

m). Prove that
‖fE‖p � ‖f ‖p .

2. Verify that the Poisson kernel for a half-space, i.e., the family of the functions
{Pt }t>0, where

Pt (x)= C
t

(t2 + ‖x‖2)
m+1

2

, C = π−
m+1

2 �

(
m+ 1

2

)
(
x ∈R

m
)
,

forms an approximate identity as t → +0 satisfying condition (2) (use
Lemma 8.7.13).

3. Prove that if f ∈L p(Rm) and U(x, t) = (f ∗ Pt )(x), then the function U is
harmonic on the half-space t > 0 and is a solution of the Dirichlet problem for
the half-space in the sense that ‖U(·, t)−f ‖p → 0 and U(x, t)→ f (x) almost
everywhere as t→+0.

4. Let �n = ( 1
n
, 1
n
+ 1

n2 ) and ωn = n2χ�n . Prove that the functions ωn form an
approximate identity for which the assertion of Theorem 9.3.4 is not valid. Hint.
Verify that 0 is a Lebesgue point of the function f (x) = χ

E
(−x), where E =⋃∞

k=1 �2k , however, (f ∗ωn)(0) �→ f (0).
5. Let f and g be locally summable functions on R

m. The function g is called a
generalized derivative of f with respect to the kth coordinate if

∫

Rm

g(x)ϕ(x) dx =−
∫

Rm

f ϕ′xk (x) dx

for every function ϕ of the class C∞0 . Use Lagrange’s theorem (see Sect. 9.3.6)
to prove that the generalized derivative is unique up to equivalence.

6. Let p � 1, and let f and g be functions in L p(Rm) such that
∫

Rm

∣
∣
∣
∣
f (x + tek)− f (x)

t
− g(x)

∣
∣
∣
∣

p

dx −→
t→0

0,

where ek is a vector of the canonical basis of Rm. Prove that g is the generalized
derivative of f with respect to the kth coordinate.
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7. Consider the function defined on the space R
m by the formula x �→ fα(x) =

1
‖x‖m−α , where α > 0 (this function does not belong to any space L p(Rm) for
p > 0). Prove that if α+β <m, then the convolution fα ∗fβ exists and is equal
to Cfα+β . Calculate the coefficient C. Verify that, for an appropriate choice of
the coefficient Cα , the function gα = Cαfα has the property gα ∗ gβ = gα+β

(α > 0, β > 0, α + β <m). Hint. To calculate C, use the formula

�(p/2)

‖x‖p =
∫ ∞

0
t
p
2−1e−‖x‖2t dt.

8. Let Q = [−π,π]m and let μ be a finite Borel measure on Q. Prove that, for
finite p, trigonometric polynomials are dense in the space L p(Q,μ) if one of
the possible products of half-open intervals with endpoints ±π (for example,
the cell [−π,π)m) has full measure. In the one-dimensional case, this condition
is not only sufficient but also necessary. For necessary and sufficient conditions
in the multi-dimensional case, see Exercise 7 of Sect. 11.2.

9. Prove a periodic analog of Theorem 9.3.2.
10. As a supplement to Young’s inequality (see Sect. 9.3.2) show by example that

the convolution of functions f ∈L p(R) and g ∈L q(R) may not exist if the
condition 1

p
+ 1

q
� 1 is violated (the integral

∫∞
−∞ f (y)g(x − y)dy can identi-

cally be equal to +∞).



Chapter 10
Fourier Series and the Fourier Transform

10.1 Orthogonal Systems in the Space LLL 2(X,μ)

In the present section, we consider only the norm in the space L 2(X,μ). For
brevity, we denote it by ‖ · ‖ without index.

10.1.1 The norm in the space L 2(X,μ) has an important specific feature: just like
a norm in a finite dimensional Euclidean space, it is generated by a scalar product.
The scalar product of functions f and g belonging to the (in general, complex) space
L 2(X,μ) is defined by the formula

〈f,g〉 =
∫

X

f g dμ

(the product f g is summable since 2|f g|� |f |2 + |g|2).
Obviously, 〈g,f 〉 = 〈f,g〉 and 〈f,f 〉 = ‖f ‖2. Moreover, by the Cauchy–

Bunyakovsky inequality, we have |〈f,g〉|� ‖f ‖‖g‖, which implies the continuity
of the scalar product with respect to convergence in norm. Indeed, if fn −→

n→∞ f and

gn −→
n→∞ g, then

∣
∣〈fn, gn〉 − 〈f,g〉

∣
∣ �

∣
∣〈fn − f,gn〉

∣
∣+ ∣

∣〈f,gn − g〉∣∣
�

∥
∥fn − f

∥
∥‖gn‖ + ‖f ‖‖gn − g‖ −→

n→∞ 0.

From the continuity of the scalar product, it follows that the scalar multiplica-
tion of a series convergent in norm by a function can be carried out termwise,
〈∑∞

n=1 fn, g〉 =∑∞
n=1〈fn, g〉. To verify this, it is sufficient to pass to the limit in

the equation 〈∑k
n=1 fn, g〉 = ∑k

n=1〈fn, g〉 (the limit on the left-hand side of the
equation exists since the series converges and the scalar product is continuous).

We point out one more property of the norm in L 2(X,μ), the so-called parallel-
ogram identity

‖f + g‖2 + ‖f − g‖2 = 2
(‖f ‖2 + ‖g‖2) (

f,g ∈L 2(X,μ)
)
,

which is connected with the fact that the norm is generated by a scalar product.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_10, © Springer-Verlag London 2013
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The reader can easily verify that if a measure is non-degenerate (more pre-
cisely, if there exist two disjoint sets of positive finite measure), then in each space
L p(X,μ) with p �= 2 the parallelogram identity is violated.

10.1.2 In the presence of a scalar product, as in a finite-dimensional Euclidean
space, we can introduce the notion of the angle between vectors. We are not going
to do this in the general setting, instead restricting ourselves to the most important
case where the angle is π/2. We introduce the following definition.

Definition Functions f,g ∈L 2(X,μ) are called orthogonal if 〈f,g〉 = 0.

We remark that if 〈f,g〉 = 0, then also 〈g,f 〉 = 〈g,f 〉 = 0, and so the orthogo-
nality relation is symmetric. We denote it by f ⊥ g. A function that is zero almost
everywhere is orthogonal to every function in L 2(X,μ) and, obviously, the con-
verse is also true. For orthogonal functions the Pythagorean1 theorem is valid: if
f ⊥ g, then ‖f + g‖2 = ‖f ‖2 + ‖g‖2. This result remains valid for an arbitrary
number of pairwise orthogonal summands: if fj ⊥ fk for j �= k (j, k = 1, . . . , n),
then

‖f1 + · · · + fn‖2 = ‖f1‖2 + · · · + ‖fn‖2. (1)

Indeed, since 〈fj , fk〉 = 0 for j �= k, we have

‖f1 + · · · + fn‖2 = 〈f1 + · · · + fn,f1 + · · · + fn〉 =
n∑

j,k=1

〈fj , fk〉 =
n∑

k=1

‖fk‖2.

The Pythagorean theorem is also valid for an “infinite number of summands”. If
functions f1, f2, . . . are pairwise orthogonal and the series

∑∞
k=1 fk converges, then

∥
∥
∥
∥
∥

∞∑

k=1

fk

∥
∥
∥
∥
∥

2

=
∞∑

k=1

‖fk‖2. (1′)

For the proof, it remains only to pass to the limit in Eq. (1).
Due to the scalar product, every n-dimensional space L contained in L 2(X,μ) is

isomorphic (as a Euclidean space) to R
n or Cn (depending on the field of scalars un-

der consideration). Therefore, we can speak of the orthogonal projection of a func-
tion f onto a subspace L. In particular, the projection of f onto the one-dimensional
subspace generated by the unit vector e, is 〈f, e〉e.

In the space L 2(X,μ), the families of pairwise orthogonal functions play a role
similar to that of the orthogonal bases in finite dimensional Euclidean spaces.

1Pythagoras (!υϑαγ óρας ) (circa 570–500 BC)—Greek philosopher and mathematician.
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Definition A family of functions {eα}α∈A is called an orthogonal system (briefly,
OS) if eα ⊥ eα′ for α �= α′ and ‖eα‖ �= 0 for every α ∈ A. An orthogonal system is
called orthonormal if ‖eα‖ = 1 for every α ∈A.

It follows immediately from the Pythagorean theorem (1) that the functions from
an OS are linearly independent. Obviously, dividing each element of an orthogonal
system by its norm, we obtain an orthonormal system.

Let the functions e1, . . . , en form an OS, and let L be the subspace generated by
e1, . . . , en (i.e., the set of all linear combinations of these functions). It is important
to know how to find the best approximation to a given function f by elements of L.
The following theorem gives a solution of this extremal problem.

Theorem The minimum value of the norm ‖f −∑n
k=1 akek‖ is attained if and only

if ak = ck(f ), where

ck(f )= 〈f, ek〉‖ek‖2
(k = 1, . . . , n). (2)

The function f −∑n
k=1 ck(f )ek is orthogonal to every element of L.

Thus, the function
∑n

k=1 ck(f )ek is the best approximation for f in the set L.
The above-stated theorem can be regarded as a generalization of the following well-
known fact of school geometry: “the perpendicular dropped from a point f to L”,
i.e., the difference f −∑n

k=1 ck(f )ek , is shorter than any “slant” f −∑n
k=1 akek .

Proof We begin with the second assertion of the theorem. We put Sn =∑n
k=1 ck(f )ek and verify that f − Sn ⊥ ∑n

k=1 akek . It is sufficient to prove that
f − Sn ⊥ em for all m= 1, . . . , n. Indeed,

〈f − Sn, em〉 = 〈f, em〉 − 〈Sn, em〉 = 〈f, em〉 −
n∑

k=1

ck(f )〈ek, em〉

= 〈f, em〉 − cm(f )‖em‖2 = 0.

The last equality holds by the definition of cm(f ).
Now, the extremal property of the sum Sn follows from the Pythagorean theo-

rem. Indeed, if g = ∑n
k=1 akek is an arbitrary function L, then Sn − g ∈ L, and,

consequently, f − Sn ⊥ Sn − g. Therefore, by the Pythagorean theorem, we obtain

‖f − g‖2 = ∥
∥(f − Sn)+ (Sn − g)

∥
∥2 = ‖f − Sn‖2 + ‖Sn − g‖2

= ‖f − Sn‖2 +
n∑

k=1

∣
∣ak − ck(f )

∣
∣2‖ek‖2. (3)
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From this it follows that
∥
∥
∥
∥
∥
f −

n∑

k=1

akek

∥
∥
∥
∥
∥

2

�
∥
∥
∥
∥
∥
f −

n∑

k=1

ck(f )ek

∥
∥
∥
∥
∥

2

,

and the equality holds only in the case where ak = ck(f ) for all k. �

For g = 0 Eq. (3) takes the form

‖f ‖2 =
∥
∥
∥
∥
∥
f −

n∑

k=1

ck(f )ek

∥
∥
∥
∥
∥

2

+
n∑

k=1

∣
∣ck(f )

∣
∣2‖ek‖2,

and, therefore, the Bessel2 inequality

n∑

k=1

∣
∣ck(f )

∣
∣2‖ek‖2 � ‖f ‖2 (4)

holds.

10.1.3 Let {en}n∈N be an OS in the space L 2(X,μ). Obviously, there are func-
tions in L 2(X,μ) that cannot be represented as linear combinations of functions en.
Therefore, the question naturally arises, what are the conditions under which a func-
tion f ∈L 2(X,μ) is the sum of a series of the form

∑∞
n=1 anen. From the theorem

proved above it follows that such a series can converge to f only if it coincides with
the series

∑∞
n=1 cn(f )en whose coefficients are calculated by formula (2). Indeed,

Eq. (3) shows that if am �= cm(f ) and n�m, then
∥
∥
∥
∥
∥
f −

n∑

k=1

akek

∥
∥
∥
∥
∥
�

∣
∣am − cm(f )

∣
∣‖em‖2 > 0,

and, therefore, the series
∑∞

n=1 akek cannot converge to f .
The series with coefficients calculated by formula (2) play an important role,

which justifies the following definition.

Definition Let {en}n∈N be an orthogonal system, and let f ∈L 2(X,μ). The num-
bers cn(f ) obtained by formula (2) are called the Fourier3 coefficients, and the series∑∞

n=1 cn(f )en is called the Fourier series of f with respect to the given OS.

As we will see, the Fourier series of an arbitrary function f ∈L 2(X,μ) con-
verges in the norm ‖ · ‖ (but not necessarily to f ).

2Friedrich Wilhelm Bessel (1784–1846)—German mathematician.
3Jean Baptiste Joseph Fourier (1768–1830)—French mathematician.
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In the case of an orthonormal system, formula (2) becomes simpler and takes the
form cn(f )= 〈f, en〉. If an orthogonal system {en}n∈N is not orthonormal, then we
can pass to the system ẽn = en/‖en‖ (to “normalize” the given system). The Fourier
coefficients, obviously, can change, but the terms of the Fourier series do not change
as the following relation shows:

cn(f )en =
〈

f,
en

‖en‖
〉

en

‖en‖ = 〈f, ẽn〉̃en.

Thus, the terms of the Fourier series of a function f are simply the projections of f
onto the lines generated by the elements of the orthogonal system.

Passing to the limit in Bessel inequality (4) as n→∞, we obtain the estimate

∞∑

k=1

∣
∣ck(f )

∣
∣2‖ek‖2 � ‖f ‖2 (4′)

also called Bessel’s inequality. As follows from (1′), inequality (4′) becomes an
equality if f =∑∞

n=1 cn(f )en.

10.1.4 We do not yet know whether a Fourier series converges or, in the case of
convergence, what its sum is. The following important theorem establishes that the
sum of a Fourier series always exists. As a preliminary, we prove the following
lemma.

Lemma Let {en}n∈N be an orthogonal system. A series

∞∑

n=1

anen (5)

converges in norm if and only if

∞∑

n=1

|an|2‖en‖2 <+∞. (5′)

In the case of convergence, series (5) is the Fourier series of its sum.

Proof Let Sn and Tn be the partial sums of series (5) and (5′), respectively. Then,
for all n,p ∈N, we have

‖Sn+p − Sn‖2 =
∥
∥
∥
∥
∥

n+p∑

k=n+1

akek

∥
∥
∥
∥
∥

2

=
n+p∑

k=n+1

|ak|2‖ek‖2 = Tn+p − Tn.

It follows that the partial sums of series (5) and (5′) are fundamental simultaneously.
Since the space L 2(X,μ) is complete (see Theorem 9.1.3), we obtain the first as-
sertion of the lemma. The concluding assertion follows from the fact that scalar
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multiplication of a convergent series by a function can be performed termwise, i.e.,
if S is the sum of series (5), then the relation

〈S, em〉 =
∞∑

n=1

an〈en, em〉 = am‖em‖2

is valid for every m ∈ N. Thus, am = cm(S) for all m, i.e., series (5) is the Fourier
series of its sum. �

Theorem (Riesz–Fischer4) For every orthogonal system {en}n∈N, the Fourier series
of a function f ∈L 2(X,μ) converges in norm and

f =
∞∑

n=1

cn(f )en + h, where h⊥ en for all n ∈N. (6)

Proof By Bessel’s inequality, we obtain
∑∞

n=1 |cn(f )|2‖en‖2 � ‖f ‖2 < +∞, and
so the series

∑∞
n=1 cn(f )en converges by the lemma. Let S be its sum. By the second

assertion of the lemma, we have cn(f )≡ cn(S). Therefore, the Fourier coefficients
of the difference h= f − S are zero, i.e., h⊥ en for all n. �

10.1.5 Obviously, the sum of the Fourier series may not coincide with the function
generating this series. For example, if we replace an OS e1, e2, . . . by the system
e2, e3, . . . obtained by deleting the first vector, then the Fourier coefficients of the
function e1 with respect to the new system are zeros, and e1 is not equal to the sum
of its Fourier series (with respect to the new system).

Definition An orthogonal system {en}n∈N is called a basis if every function in
L 2(X,μ) coincides with the sum of its Fourier series almost everywhere.

If {en}n∈N is a basis, then, by (1′), the relation f =∑∞
n=1 cn(f )en implies that

‖f ‖2 =∑∞
n=1 |cn(f )|2‖en‖2. Thus, for a basis, the Bessel inequality becomes an

equality. We will prove that this property characterizes a basis.
We remark that if {en}n∈N is a basis, then the scalar product of two functions can

be calculated by their Fourier coefficients since

〈f,g〉 =
〈 ∞∑

n=1

cn(f )en, g

〉

=
∞∑

n=1

cn(f )〈en, g〉 =
∞∑

n=1

cn(f )cn(g)‖en‖2.

This relation (as well as the special case where g = f ) is called Parseval’s5 identity.
We introduce one more important property which, like Parseval’s identity, is char-

acteristic for a basis.

4Ernest Sigismund Fisher (1875–1954)—German mathematician.
5Marc-Antoine Parseval (1755–1836)—French mathematician.



10.1 Orthogonal Systems in the Space L 2(X,μ) 541

Definition A family of functions {fα}α∈A in L 2(X,μ) is called complete if the
condition

f ∈L 2(X,μ) and f ⊥ fα for every α ∈A

implies that f = 0 almost everywhere, i.e., ‖f ‖ = 0.

Lemma A family {fα}α∈A is complete if the set of all linear combinations of
functions contained in this family is everywhere dense, i.e., if, for every function
f ∈L 2(X,μ) and every ε > 0, there exists a linear combination g =∑n

k=1 ckfαk

such that ‖f − g‖< ε.

Proof Let f ⊥ fα for each α. If ‖f ‖ �= 0, then there is a function g =∑n
k=1 ckfαk

such that ‖f − g‖< ‖f ‖. Since f ⊥ g, we obtain a contradiction:

‖f ‖2 > ‖f − g‖2 = ‖f ‖2 + ‖g‖2 � ‖f ‖2. �

Theorem (On the characterization of bases) Let {en}n∈N be an orthogonal system.
The following conditions are equivalent:

(1) the system {en}n∈N is a basis;
(2) for every function f ∈ L 2(X,μ), Parseval’s identity

∑∞
n=1 |cn(f )|2‖en‖2 =

‖f ‖2 holds;
(3) the system {en}n∈N is complete.

Proof We prove the chain of implications (1)⇒ (2)⇒ (3)⇒ (1).
(1)⇒ (2) This implication was proved just after the definition of a basis.
(2)⇒ (3) Assume that f ⊥ en, i.e., cn(f )= 0 for all n= 1,2, . . . . By hypothe-

sis, ‖f ‖2 =∑∞
n=1 |cn(f )|2‖en‖2 = 0, which means that the system {en}n∈N is com-

plete.
(3)⇒ (1) Let f ∈L 2(X,μ). By the Riesz–Fischer theorem, f = g + h, where

g =∑∞
n=1 cn(f )en and h ⊥ en for all n. Since the system is complete, we obtain

that h = 0 almost everywhere. Taking account of the arbitrariness of f , we obtain
that the OS in question is a basis. �

Comparing the theorem with the preceding lemma, we see that the following
statement is valid.

Corollary An orthogonal system {en}n∈N is complete if and only if the set of all
linear combinations of the functions contained in this system is everywhere dense.

10.1.6 We will see in the next section (see also Sect. 10.2) that it is often convenient
to label naturally arising orthogonal systems not by positive integers but by some
other indices. Therefore, it is useful to generalize the definition of the Fourier series
and coefficients. Let {eα}α∈A be an arbitrary OS in the space L 2(X,μ), and let
f ∈ L 2(X,μ). As above, the numbers cα(f ) = 〈f,eα〉

‖eα‖2 will be called the Fourier
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coefficients of the function f with respect to the given OS. Since Bessel’s inequality∑n
k=1 |cαk

(f )|2‖eαk
‖2 � ‖f ‖2 is valid for every finite set of indices α1, . . . , αn, the

family {|cα(f )|2‖eα‖2}α∈A is summable (see Sect. 1.2.2). Therefore, the set Af of
indices of the non-zero coefficients cα(f ) is at most countable (see Sect. 1.2.2),
which, after enumeration, can be written in the form {α1, α2, . . .}. By the Riesz–
Fischer theorem, the series

∑∞
k=1 cαk

(f )eαk
converges, and its sum will also be

called the sum of the Fourier series of f with respect to {eα}α∈A. To verify that the
sum is well-defined, we must prove that different enumerations of the set Af give
the same sum. A change of enumeration of the set Af results in a series obtained
by rearranging the terms of the series

∑∞
k=1 cαk

(f )eαk
. Therefore, it is sufficient to

prove the following auxiliary statement.

Lemma Let {en}n∈N be an orthogonal system and ω : N→N be a bijection. Then
the series

(a)
∞∑

n=1

anen and

(b)
∞∑

k=1

aω(k)eω(k)

converge simultaneously and, in the case of convergence, their sums are equal.

Proof As established in Lemma 10.1.4, series (a) and (b) converge simultaneously
with the series

∑∞
n=1 |an|2‖en‖2 and

∑∞
k=1 |aω(k)|2‖eω(k)‖2, respectively. The last

two series converge simultaneously because the sum of a positive series is indepen-
dent of any rearrangement of the terms. This proves that series (a) and (b) converge
simultaneously. Now, let series (a) and (b) converge and Sn be a partial sum of (a).
By the Pythagorean theorem (see Eq. (1′)), we obtain

∥
∥
∥
∥
∥

∞∑

k=1

aω(k)eω(k) − Sn

∥
∥
∥
∥
∥

2

=
∞∑

ω(k)>n

|aω(k)|2‖eω(k)‖2 =
∞∑

j=n+1

|aj |2‖ej‖2 −→
n→∞ 0,

which implies that the sums of series (a) and (b) coincide. �

As in the case of sequences, a family {eα}α∈A is called a basis if every function
is the sum of its Fourier series. It can easily be seen that the theorem on the char-
acterization of bases and its corollary remain valid in the more general setting in
question.

10.1.7 Let {ek}k∈N and {gn}n∈N be orthogonal systems in the spaces L 2(X,μ)

and L 2(Y, ν), respectively. We use these systems to construct an OS {hk,n}k,n∈N in
the space L 2(X× Y,μ× ν) by putting

hk,n(x, y)= ek(x)gn(y) (x ∈X,y ∈ Y).
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Using Fubini’s theorem, we can easily verify that the functions hk,n are square-
summable and pairwise orthogonal. We will prove that the above construction pre-
serves completeness.

Theorem If orthogonal systems {ek}k∈N and {gn}n∈N are complete, then the system
{hk,n}k,n∈N is also complete.

Proof Let f ⊥ hk,n for all k,n ∈N. This means that
∫

X×Y

f (x, y)ek(x)gn(y) d(μ× ν)(x, y)

=
∫

X

(∫

Y

f (x, y)gn(y) dν(y)

)

ek(x) dμ(x)= 0 (7)

for all k,n ∈N. We fix an arbitrary n and consider the function

x �→ ϕn(x)=
∫

Y

f (x, y)gn(y) dν(y).

This function is measurable by Corollary 2 to Tonelli’s theorem. Moreover, ϕn ∈
L 2(X,μ) since

∣
∣ϕn(x)

∣
∣ �

(∫

Y

∣
∣f (x, y)

∣
∣2

dν(y)

)1/2

‖gn‖,

and, therefore,
∫

X

∣
∣ϕn(x)

∣
∣2

dμ(x)�
∫

X

(∫

Y

∣
∣f (x, y)

∣
∣2

dν(y)

)

dμ(x)‖gn‖2 <+∞.

Equation (7) means that the Fourier coefficients of ϕn with respect to the system
{ek}k∈N are zero. Since the system is complete, we have ϕn(x) = 0 almost every-
where. Since this is true for all indices n, we have

∞∑

n=1

∣
∣ϕn(x)

∣
∣2 = 0 almost everywhere on X. (8)

Since
∫
X

∫
Y
|f (x, y)|2 dν(y) dμ(x) < +∞, Fubini’s theorem implies that∫

Y
|f (x, y)|2 dν(y) < +∞ almost everywhere. In other words, the function y �→

fx(y)= f (x, y) is square-summable for almost all x. The numbers ϕn(x) are sim-
ply the Fourier coefficients of this function with respect to the system {gn}n∈N.
Since the system {gn}n∈N is complete, Eq. (8) means that

∫

Y

∣
∣f (x, y)

∣
∣2

dν(y)= ‖fx‖2 =
∞∑

n=1

∣
∣ϕn(x)

∣
∣2 = 0 almost everywhere on X.
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Integrating the above equation over X, we obtain

0=
∫

X

∫

Y

∣
∣f (x, y)

∣
∣2

dν(y) dμ(x)= ‖f ‖2.

Consequently, f = 0 almost everywhere, which proves that the system {hk,n}k,n∈N
is complete. �

By induction, the statement just proved can obviously be carried over to the case
of more than two orthogonal systems.

10.1.8 Lemma 10.1.4 shows that, for a given orthonormal system, an arbitrary se-
quence {an}n�1 satisfying the condition

∑∞
n=1 |an|2 < +∞ can serve as the se-

quence of Fourier coefficients of a square-summable function. It is natural to assume
that the smaller the class of functions in question, the greater, in general, the rate of
decrease of the Fourier coefficients. In Sect. 10.3, we will find more evidence for
this conjecture. However, if, instead of square-summable functions, we consider ar-
bitrary bounded functions (assuming, naturally, that they belong to L 2(X,μ), i.e.,
that the measure μ is finite) then our conjecture is false: the Fourier coefficients of
bounded functions tend to zero “no faster” than the Fourier coefficients of arbitrary
functions from L 2. A more precise formulation of this result of F.L. Nazarov6 [Na]
is as follows.

Theorem Let {en}n∈N be an orthonormal system in L 2(X,μ), μ(X) <+∞, such
that

∫
X
|en|dμ � β > 0, where β does not depend on n. Then, for every series

∑∞
n=1 a

2
n = 1 (an > 0), there exists a measurable function Fa such that |Fa| � 1

and |cn(Fa)|� θ an for all n (the coefficient θ > 0 depends only on μ(X) and β).

We note that the condition
∫
X
|en|dμ � β > 0 is certainly fulfilled if the or-

thogonal system consists of uniformly bounded functions since 1 = ∫
X
|en|2 dμ �

‖en‖∞
∫
X
|en|dμ.

Proof We consider only the real case, leaving the complex case to the reader (see
Exercises 6 and 7).

For an arbitrary sequence of signs ε = {εn}, where εn = ±1, we construct the
sum

fε =
∞∑

n=1

εnanen

(the series on the right-hand side converges by Lemma 10.1.4). Let A be the set
formed by all functions fε . This set is compact as a continuous image of the
Cantor set (the reader can verify independently the continuity of the mapping

6Fedor L’vovich Nazarov (born 1967)—Russian mathematician.
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that takes a number
∑∞

n=1 tn3−n (tn = 0 or 2) from the Cantor set to the point∑∞
n=1(tn − 1)anen of the set A).
Now, we consider the function � of class C2(R) such that |�′|, |�′′| � 1 (the

choice of � will be specified later). Since |�(u)|� |�(0)| + |u| and the measure is
finite, the integral I (f ) = ∫

X
�(f )dμ is finite for every function f ∈L 2(X,μ).

Obviously, the integral continuously depends on f and so, by the Weierstrass ex-
treme value theorem, it assumes its maximum value on A: there exists a sequence
of signs ε = {εn} such that I (fε)� I (f ) for every function f in A. We show that
the required function has the form Fa = �′(fε) for an appropriate choice of �.
Since |Fa |� sup |�′|� 1, it only remains for us to estimate the Fourier coefficients
cn(Fa). To this end, we use the fact that the replacement of εn by −εn leaves a
function in the class A and, therefore, does not increase the integral I ,

∫

X

(
�(fε)−�(fε − 2εnanen)

)
dμ� 0.

The application of the Taylor formula to the integrand leads to the inequality
∫

X

(

2εnanen�
′(fε)− 1

2
(2εnanen)

2�′′(gn)

)

dμ� 0, (9)

where gn is a function whose values lie between fε and fε − 2εnanen.
Dividing both sides of inequality (9) by 2an, we obtain the required estimate for

the Fourier coefficients of the function Fa =�′(fε),

∣
∣cn(Fa)

∣
∣ � εn

∫

X

en�
′(fε) dμ� an

∫

X

e2
n�

′′(gn) dμ.

Now, it is necessary to choose � so that the integrals Jn =
∫
X
e2
n�

′′(gn) dμ be sep-
arated from zero. If we take an antiderivative of 2

π
arctanu as �, then

Jn = 2

π

∫

X

e2
n

1+ g2
n

dμ.

To estimate this integral, we use the Cauchy–Bunyakovsky inequality,

β �
∫

X

|en|dμ=
∫

X

|en|√
1+ g2

n

·
√

1+ g2
n dμ�

√
π

2
Jn ·

√∫

X

(
1+ g2

n

)
dμ.

Since |gn| � |fε| + |fε − 2εnanen|, we obtain
∫
X
g2
n dμ � 2(‖fε‖2 + ‖fε −

2εnanen‖2)= 4. Therefore, Jn � θ = 2β2

π(μ(X)+4) and |cn(Fa)|� θ an for all n. �

EXERCISES

1. Supplement Lemma 10.1.4 by the following statement: if a system (in general,
nonorthogonal) {en}n∈N is such that the inequality ‖a1e1+· · ·+anen‖2 � |a1|2+
· · · + |an|2 is valid for all n and all scalars a1, . . . , an, then the series

∑∞
n=1 anen

converges as soon as
∑∞

n=1 |an|2 <+∞.
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2. Let an orthonormal system {en}n∈N in L 2(X,μ) be uniformly bounded. Prove
that

∫
X
f en dμ −→

n→∞ 0 for every function f not only from L 2(X,μ) but also

from L 1(X,μ).
3. Let {en}n∈N be an orthonormal basis in L 2(X,μ), and let E ⊂ X be such that

0 <μ(E) <+∞. Prove that
∑∞

n=1

∫
E
|en|2 dμ� 1.

4. Supplement the previous exercise by proving that
∑∞

n=1 |en(x)|2 =+∞ is valid
almost everywhere if the σ -finite measure μ is such that every set of positive
measure can be partitioned into two sets of positive measure. Can this additional
condition be dropped?

5. Let {ϕn} be an orthonormal basis. Prove that the system of functions {ψn} is
complete if

∑
n ‖ϕn − ψn‖2 < 1. If, in addition, we know that {ψn} is an or-

thonormal system, then it is complete if
∑

n ‖ϕn − ψn‖2 < 2. Hint. Assuming
that a function f =∑

cnϕn is orthogonal to all functions ψn, estimate the norm
of the difference f −∑

n cnψn from above and from below.
6. Verify that Theorem 10.1.8 remains valid in the real case if the orthonormality

condition is replaced by the condition from Exercise 1 (the quantities 〈Fa, en〉
are estimated instead of the Fourier coefficients).

7. Generalize the result of the previous exercise to complex systems.

10.2 �Examples of Orthogonal Systems

Throughout this section, we consider the convergence of Fourier series only with
respect to the L 2-norm, which is denoted by ‖ · ‖. Instead of L 2(X,λm), where
X ⊂R

m, we will write briefly L 2(X), omitting the indication of a measure.

10.2.1 Trigonometric Systems. The most important orthogonal systems are the fol-
lowing real and complex trigonometric systems in the space L 2((a, a + 2�)):

1, cos
πx

�
, sin

πx

�
, . . . , cos

πnx

�
, sin

πnx

�
, . . . and

{
e

πinx
�

}
n∈Z.

We leave the simple verification of the orthogonality to the reader. The Fourier series
with respect to these systems have, respectively, the form

A(f )+
∞∑

n=1

(

an(f ) cos
πnx

�
+ bn(f ) sin

πnx

�

)

and
∞∑

n=−∞
cn(f )e

πinx
� ,

where the Fourier coefficients are calculated by the formulas

A(f ) = 1

2�

∫ a+2�

a

f (x) dx,

an(f ) = 1

�

∫ a+2�

a

f (x) cos
πnx

�
dx,
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bn(f ) = 1

�

∫ a+2�

a

f (x) sin
πnx

�
dx (n ∈N);

cn(f ) = 1

2�

∫ a+2�

a

f (x)e−
πinx
� dx (n ∈ Z).

In the study of Fourier series, we may assume that the functions are defined on
the intervals of the form (0,2�), because the general case can be reduced to the case
a = 0 by a translation. It is often convenient to use a symmetric interval (−�, �).

The study of Fourier series with respect to a trigonometric system with some pe-
riod can be reduced to the study of Fourier series with a different period. Following
tradition, we will consider (with rare exceptions) only the Fourier series

A(f )+
∞∑

n=1

(
an(f ) cosnx + bn(f ) sinnx

)
and

∞∑

n=−∞
cn(f )einx

with respect to more natural and convenient 2π -periodic systems

1, cosx, sinx, . . . , cosnx, sinnx, . . . and
{
einx

}
n∈Z. (T)

In this case, the Fourier coefficient cn(f ) will also be denoted by the symbol f̂ (n).
Thus,

f̂ (n)= 1

2π

∫ 2π

0
f (x)e−inx dx (n ∈ Z).

The transition from the expansion in one system to the expansion in a different
system proceeds as follows. For a function f ∈L 2((0,2�)), we define a function
g by putting g(y) = f ( �

π
y), where y ∈ (0,2π). It is clear that g ∈L 2((0,2π)).

There is an obvious relation connecting the Fourier coefficients of these functions
(with respect to the corresponding systems):

ck(f )= 1

2�

∫ 2�

0
f (x)e−

πikx
� dx = 1

2π

∫ 2π

0
f

(
�

π
y

)

e−iky dy = ĝ(k)

for each k ∈ Z. Consequently,

∑

|k|�n

ck(f )e
πikx
� =

∑

|k|�n

ĝ(k)e
πikx
� =

∑

|k|�n

ĝ(k)eiky,

i.e., the partial sums of the Fourier series of the functions f and g at the correspond-
ing points coincide. From this, it follows, in particular, that both series converge si-
multaneously and their sums coincide (or do not coincide) simultaneously with the
values of the functions f and g. Thus, the transition from f to g makes it possible
to reduce the study of a Fourier series in a system with an arbitrary period to the
study of a Fourier series in the 2π -periodic system.
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By Euler’s formula, the systems (T) are tightly connected with each other: their
linear spans coincide (the functions from these spans are called trigonometric poly-
nomials), and the Fourier coefficients in one system are expressed in terms of the
Fourier coefficients in the other one by the following formula:

f̂ (±n)= 1

2π

∫ 2π

0
f (x)(cosnx ∓ i sinnx)dx = an(f )∓ ibn(f )

2
(n ∈N)

and

an(f )= f̂ (n)+ f̂ (−n) and bn(f )= i
(
f̂ (n)− f̂ (−n)

)
(n ∈N).

It follows that the Fourier series in systems (T) essentially coincide. More precisely,
the relation

A(f )+
n∑

k=1

(
ak(f ) coskx + bk(f ) sin kx

)=
n∑

k=−n

f̂ (k)eikx,

showing that the partial sums of the Fourier series in the real system (T) coincides
with symmetric partial sums of the Fourier series in the complex system, is valid for
each n.

In the following theorem, we establish one of the most important properties of
the systems (T).

Theorem The real and complex trigonometric systems form bases in L 2((0,2π)).

Proof The assertion of the theorem follows immediately from Corollary 10.1.5 the
assumptions of which are fulfilled by Theorem 4 of Sect. 9.3.7. �

Since each of the systems (T) is a basis, it satisfies Parseval’s identity: if f,g ∈
L 2((0,2π)), then

1

2π

∫ 2π

0
f (x)g(x) dx = A(f )A(g)+ 1

2

∞∑

n=1

(
an(f )an(g)+ bn(f )bn(g)

)

=
∞∑

n=−∞
f̂ (n)ĝ(n)

in particular, every function f in L 2((0,2π)) satisfies the equation

1

2π

∫ 2π

0

∣
∣f (x)

∣
∣2

dx = ∣
∣A(f )

∣
∣2 + 1

2

∞∑

n=1

(∣
∣an(f )

∣
∣2 + ∣

∣bn(f )
∣
∣2)=

∞∑

n=−∞

∣
∣f̂ (n)

∣
∣2
,

which is often called the closeness relation. As we have already noted, in these
formulas and in the theorem, the interval (0,2π) can be replaced by an arbitrary
interval of length 2π , in particular, by (−π,π).

We will now give several examples that illustrate the importance of this formula.
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Example 1 Let f (x) = x for x ∈ (−π,π). The Fourier series of this function has
the form

∑∞
n=1(−1)n−1 2

n
sinnx. By Parseval’s identity, we have

1

π

∫ π

−π

x2 dx =
∞∑

n=1

∣
∣bn(f )

∣
∣2 = 4

∞∑

n=1

1

n2
.

Thereby we have arrived at the following result first obtained by Euler:
∑∞

n=1
1
n2 =

π2

6 . The same reasoning applied to the function f (x)= x2 (|x|� π ) gives another

result of Euler’s:
∑∞

n=1
1
n4 = π4

90 .

Example 2 As we have seen (see Corollary 9.2.4), 2π -periodic functions in L̃ 2,
i.e., square integrable functions on (−π,π) are continuous in mean. By the close-
ness equation, we can obtain an exact value for the deviation of a function from its
translation.

We will assume that a function f ∈ L 2((−π,π)) is extended by periodicity
from [−π,π] to R. Let h ∈ R, and let fh be the corresponding translation of f ,
i.e., fh(x)= f (x − h) for x ∈ R. It can easily be verified that f̂h(k)= e−ikhf̂ (k).
Therefore, by Parseval’s identity, we obtain

‖fh − f ‖2 = 2π
∞∑

k=−∞

∣
∣f̂ (k)

∣
∣2∣

∣e−ikh − 1
∣
∣2 = 8π

∞∑

k=−∞

∣
∣f̂ (k)

∣
∣2 sin2 kh

2
.

From this formula, the continuity in the mean, fh −→
h→0

f , follows directly.

Example 3 We apply Parseval’s identity to prove an elegant inequality (see [EF]),
which, in some cases, makes it possible to estimate from above the mean value of a
function on an interval by its mean value on a smaller interval.

Let the Fourier coefficients of a function ϕ in L 2((−π,π)) be non-negative.
Then the inequality

1

2π

∫ π

−π

∣
∣ϕ(t)

∣
∣2

dt � 3

2α

∫ α

−α

∣
∣ϕ(t)

∣
∣2

dt

is valid for every α ∈ (0,π).
Since the function h(t) = (1 − |t |

α
)+ does not exceed 1, it is sufficient for us

to estimate the integral I = ∫ π

−π
|ϕ(t)h(t)|2 dt from below. The product f = ϕh,

obviously, belongs to L 2((−π,π)). We calculate its Fourier coefficients (in what
follows, en(t)= eint ),

f̂ (n)= 1

2π
〈ϕh, en〉 = 1

2π
〈ϕ,hen〉 = 1

2π

∞∑

k=−∞
ϕ̂(k)〈ek, hen〉

=
∞∑

k=−∞
ϕ̂(k) ĥ(n− k)=

∑

k+j=n

ϕ̂(k) ĥ(j).
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Now, by Parseval’s identity we obtain

I = 2π
∞∑

n=−∞

∣
∣f̂ (n)

∣
∣2 = 2π

∞∑

n=−∞

∣
∣
∣
∣

∑

k+j=n

ϕ̂(k) ĥ(j)

∣
∣
∣
∣

2

.

A direct calculation shows that ĥ(j)� 0 for all j ∈ Z (this also follows from the re-
sult of Example 2 of Sect. 4.6.6 since the function h is convex on (0,π)). Therefore,
replacing the square of the sum by the sum of squares (here we use the inequalities
ϕ̂(k)� 0), we obtain

I � 2π
∞∑

n=−∞

∑

k+j=n

ϕ̂2(k) ĥ2(j)= 2π
∞∑

k=−∞
ϕ̂2(k)

∞∑

j=−∞
ĥ2(j)

= 1

2π

∫ π

−π

∣
∣ϕ(t)

∣
∣2

dt

∫ π

−π

h2(t) dt = α

3π

∫ π

−π

∣
∣ϕ(t)

∣
∣2

dt.

Thus,
∫ α

−α

∣
∣ϕ(t)

∣
∣2
dt � I � α

3π

∫ π

−π

∣
∣ϕ(t)

∣
∣2

dt.

Example 4 Hurwitz7 found an unexpected application of trigonometric series. It
turns out that they can be used to obtain a very simple proof of the classical isoperi-
metric inequality connected with the problem of determining a closed plane curve
that has a given circumference L and bounds a figure of the largest area. This in-
equality has the form

4πS � L2,

where S is the area of the figure. The equality is attained only in the case where
the curve is a circle (the multi-dimensional case of the isoperimetric inequality is
considered in Sects. 2.8.2 and 13.4.7).

The proof given by Hurwitz is analytic. It uses only the closeness equation and
the formula for the area in terms of a curvilinear integral.

Let K ⊂R
2 be a compact set whose boundary is a closed smooth curve. Without

loss of generality, we may assume that the length of the curve is 2π . Let z(t) =
(x(t), y(t)), 0 � t � 2π be the natural parametrization (see Sect. 8.2.3) of the curve
∂K . Then z(0)= z(2π) because the curve ∂K is closed and |z′(t)| ≡ 1 because the
parametrization is natural.

Using the closeness equation and the identity |z′(t)| ≡ 1, we can represent the
relation L= 2π in the form

L2 = 2π
∫ 2π

0

∣
∣z′(t)

∣
∣2

dt = 4π2
∑

n∈Z

∣
∣̂z′(n)

∣
∣2
. (1)

7Adolf Hurwitz (1859–1919)—German mathematician.
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To calculate the area S = λ2(K), we apply the relation

S = 1

2

∫

∂+K
(−y dx + x dy)= 1

2

∫ 2π

0

(
x(t)y′(t)− y(t)x′(t)

)
dt,

which follows from Green’s formula with P(x, y) = −y and Q(x,y) = x (see
Sect. 8.6.7). Since x(t)y′(t)−y(t)x′(t)= Im(z′(t)z(t)) and

∫ 2π
0 Re(z′(t)z(t)) dt =

∫ 2π
0 (x2(t)+ y2(t))′ dt = 0, we have

S = 1

2i

∫ 2π

0
z′(t)z(t) dt.

Transforming the integral by Parseval’s identity, we obtain

S =−πi
∑

n∈Z
ẑ′(n)̂z(n). (2)

Now, we eliminate the Fourier coefficients of the derivative from Eqs. (1) and (2),
expressing them in terms of the Fourier coefficients of the function z. Integrating by
parts and taking into account that z(0)= z(2π), we have

ẑ′(n)= 1

2π

∫ 2π

0
z′(t)e−int dt = 1

2π
z(t)e−int

∣
∣
∣
2π

t=0
+ in

2π

∫ 2π

0
z(t)e−int dt = in̂z(n).

Substituting the resulting expressions for ẑ′(n) in (1) and (2), we obtain

L2 = 4π2
∑

n∈Z
n2

∣
∣̂z(n)

∣
∣2 and S = π

∑

n∈Z
n

∣
∣̂z(n)

∣
∣2
.

Consequently,

L2 − 4πS = 4π2
∑

n∈Z

(
n2 − n

)∣
∣̂z(n)

∣
∣2 � 0,

which proves the isoperimetric inequality. Moreover, the last formula implies that
the equality holds only if ẑ(n) = 0 for n �= 0,1, i.e., only if z(t) = ẑ(0)+ ẑ(1)eit .
We have |̂z(1)| = 1, since |z′(t)| ≡ 1. Thus, the curve of length 2π for which the
isoperimetric inequality becomes an equality is the unit circle |z− ẑ(0)| = 1.

10.2.2 Considering the product of m copies of the complex trigonometric system
(see Sect. 10.1.7), we obtain its multi-dimensional analog in the space L 2(Q),
where Q = (−π,π)m (a multi-dimensional version of the real trigonometric sys-
tem is quite cumbersome and we do not consider it). The new system consists of the
complex exponential functions en numbered by multi-indices n= (n1, . . . , nm):

en(x)= ei〈n,x〉, where x ∈Q, n ∈ Z
m.
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The Fourier coefficients of a function f ∈L 2(Q) in this system are calculated by
the formulas

f̂ (n)= 〈f, en〉‖en‖2
= 1

(2π)m

∫

Q

f (x)e−i〈n,x〉 dx
(
n ∈ Z

m
)
.

From Theorem 10.1.7, it follows that the system {ei〈n,x〉}n∈Zm is complete, which
implies Parseval’s identity

∫

Q

f (x)g(x) dx = (2π)m
∑

n∈Zm

f̂ (n) · ĝ(n), f, g ∈L 2(Q).

Of course, the cube Q = (−π,π)m in the two last formulas can be replaced by a
shifted cube.

Example Let 0 < ρ � π . We consider the function f ∈L 2((−π,π)3) that is equal
to 1/‖x‖ for ‖x‖< ρ and vanishes on (−π,π)3 \B(0, ρ). Its norm is easily calcu-
lated in spherical coordinates,

‖f ‖2 =
∫

B(0,ρ)

1

‖x‖2
dx = 4π

∫ ρ

0

1

r2
r2 dr = 4πρ.

To calculate the Fourier coefficients, we use the formula obtained in the example of
Sect. 6.2.5 with f0(r)= 1/r on (0, ρ), f0(r)= 0 for r � ρ and y = n/2π :

f̂ (n) = 1

(2π)3

∫

B(0,ρ)

1

‖x‖e
−i〈n,x〉 dx = 1

2π2‖n‖
∫ ρ

0

1

r
r sin

(‖n‖r)
dr

=
(

sin ρ
2 ‖n‖

π‖n‖
)2

if n �= 0 and f̂ (0)= ρ2/4π2. By Parseval’s identity for the function f , we obtain

4πρ = (2π)3
∑

n∈Z3

(
sin ρ

2 ‖n‖
π‖n‖

)4

.

Thus, the identity

π2

t3
=

∑

n∈Z3

(
sin‖n‖t
‖n‖t

)4

is valid for t = ρ
2 ∈ (0, π

2 ] (the summand for n= 0 is equal to 1).

10.2.3 The trigonometric system is closely connected with the orthogonal system
{zn}n∈Z in the space L 2(S1, σ ), where S1 = {z ∈ C | |z| = 1} is the unit circle
and σ is the arc length. Knowing that the trigonometric system is complete in
L 2((−π,π)), we use the change of variable z = eix (−π < x < π) and easily
verify that the system {zn}n∈Z is complete in L 2(S1, σ ). Therefore, every function
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f in this space is the sum of the series
∑

n∈Z cnz
n, where cn = 1

2π

∫
S1 f (z)zn dσ (z).

The reader familiar with the theory of holomorphic functions will see that this for-
mula coincides with the formula for the nth coefficient of the Laurent expansion of
f in the annulus r < |z|<R, where r < 1 <R. Therefore, the Fourier series in the
system {zn}n∈Z can be regarded as the limit form of the Laurent series, when the
annulus degenerates to a circle.

We consider an example connected with the system {zn}n∈Z. Let T : S1 → S1

be a rotation of the circle, i.e., the map z �→ T (z) = ζz, where ζ ∈ S1 is a fixed
number. We now address the question of how much the points of the circle “mix”
under the iterations of T . Does there exist an invariant subset of the circle, that is,
a set which retains all of its points after rotation? More precisely, a set E ⊂ S1 is
called invariant if it differs from its image only on a set of measure zero, i.e., if
χE = χT (E) almost everywhere. Of course, such sets exist: the circle S1 and the
set {ζ n}n∈Z are examples. It is easy to construct more examples of invariant sets of
measure 2π or zero. Therefore, we are interested in the question of whether there
are non-trivial invariant sets, i.e., sets satisfying the condition 0 < σ(E) < 2π . If
ζm = 1 for some m, then the map T is repeated after m iterations (T m+1 = T ), and
a non-trivial invariant subspace can easily be constructed. We leave this construction
to the reader. However, if ζ is not a root of unity, then the map T has no non-trivial
invariant sets (such maps are called ergodic). Let us prove this.

Let E ⊂ S1 be an invariant set. Then χE = χT (E) almost everywhere, and
therefore, cn(χT (E)) = cn(χE). At the same time, by a change of variable (Corol-
lary 6.1.1), we obtain

cn(χT (E))= 1

2π

∫

T (E)

zn dσ (z)= 1

2π

∫

E

(ζz)
n
dσ (z)= ζ−ncn(χE).

Thus, cn(χE)(1 − ζ−n) = 0 for all n ∈ Z. Since 1 − ζ−n �= 0 for n �= 0, it fol-
lows that all Fourier coefficients of χE , except, possibly, c0(χE), are zero. Since the
system {zn}n∈Z is complete, the function χE coincides with the sum of its Fourier
series almost everywhere. Therefore, χE is a constant almost everywhere. Conse-
quently, either χE(x)= 0 almost everywhere (the invariant set has measure zero) or
χE(x)= 1 almost everywhere (the invariant set is a set of full measure).

10.2.4 We will now give other examples of orthogonal systems. Let Pn(x) =
((x2 − 1)n)(n), n = 0,1, . . . . The polynomials Pn are called the Legendre polyno-
mials. Obviously, degPn = n, and so every polynomial is a linear combination of
Legendre polynomials, which form an orthogonal system in the space L 2((−1,1)).
Indeed, for m< n, we have

〈Pm,Pn〉 =
∫ 1

−1
Pm(x)

((
x2 − 1

)n)(n)
dx

= Pm(x)
((
x2 − 1

)n)(n−1)
∣
∣
∣
∣

1

−1
−

∫ 1

−1
P ′m(x)

((
x2 − 1

)n)(n−1)
dx

=−
∫ 1

−1
P ′m(x)

((
x2 − 1

)n)(n−1)
dx.
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Integrating by parts n times, we arrive at the equation

〈Pm,Pn〉 = (−1)n
∫ 1

−1
P (n)
m (x)

(
x2 − 1

)n
dx,

where P
(n)
m (x)≡ 0, since degPm < n. Thus, 〈Pm,Pn〉 = 0 for m �= n.

Theorem The Legendre polynomials form a basis in the space L 2((−1,1)).

Proof As in the proof of Theorem 10.2.1, we use Corollary 10.1.5. We must verify
that every function in L 2((−1,1)) can be approximated arbitrarily closely (in the
L 2-norm) by linear combinations of polynomials Pn, i.e., by arbitrary algebraic
polynomials. This, however, has already been established in Corollary 9.2.3. �

We mention one more useful orthogonal system. In the space L 2(R), we con-
sider the Hermite8 functions

hn(x)= ex
2/2(

e−x2)(n)
, n= 0,1, . . . .

It is easy to verify that hn(x)=Hn(x)e
−x2/2, where Hn is an nth degree polynomial

called a Hermite polynomial. The orthogonality of the Hermite functions can be
established by integrating by parts the equation

〈hm,hn〉 =
∫ ∞

−∞
Hm(x)

(
e−x2)(n)

dx

in the same way as in the proof of the orthogonality of the Legendre polynomi-
als. It is obvious that the orthogonality of the Hermite functions in L 2(R) im-
plies the orthogonality of the Hermite polynomials in L 2(R,μ) with measure
dμ(x)= e−x2

dx.
Later on (see the corollary in Sect. 10.5.6) we prove that the system of functions

hn is complete in L 2(R) or, equivalently, the system of polynomials Hn is complete
in L 2(R,μ).

10.2.5 In the applications of probability theory in analysis, the sequence of
Rademacher functions rn defined in Sect. 6.4.5 plays an important role. As has al-
ready been proved, these functions are independent in the sense of Definition 4.4.4.
Since, in addition,

∫ 1
0 rn(x) dx = 0, we see that the relation

∫ 1

0
rn1(x)rn2(x) · · · rnm(x) dx =

m∏

k=1

∫ 1

0
rnk

(x) dx = 0 (1)

holds for 1 � n1 < n2 < · · ·< nm.

8Charles Hermite (1822–1901)—French mathematician.
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In particular, the Rademacher functions form an orthonormal system in the space
L 2((0,1)). Of course, this system is not complete: for example, the pairwise prod-
ucts rj rk are orthogonal to all Rademacher functions. To obtain a complete system
containing the Rademacher functions, we proceed as follows. For every non-empty
finite set A ⊂ N, we consider the function wA = ∏

n∈A rn. Furthermore, we will
assume, by definition, that w∅ ≡ 1. The functions wA are called the Walsh9 func-
tions. The Rademacher functions are the Walsh functions corresponding to the one-
element sets. By Eq. (1), the functions wA are pairwise orthogonal. The system of
Walsh functions is complete in L 2((0,1)). To prove this, we need the following
lemma.

Lemma Let n ∈ N. The set of linear combinations of the functions wA such that
A⊂ {1,2,3, . . . ,2n} coincides with the set of linear combinations of the character-
istic functions of the intervals �n,k = (k2−n, (k + 1)2−n) for k = 0,1, . . . ,2n − 1.

Proof Let L1 and L2 be the linear spans of the first and second systems, respec-
tively. Since the functions r1, . . . , rn are constant on the intervals �n,k , the Walsh
functions in question are also constant on these intervals. Therefore, L1 ⊂ L2. At
the same time, the dimensions of L1 and L2 are, obviously, equal (to 2n). Hence it
follows that L1 = L2. �

Theorem The system of Walsh functions is complete in the space L 2((0,1)).

Proof We use Corollary to Theorem 10.1.5 on the characterization of bases. We
will prove that every function f in L 2((0,1)) can be approximated arbitrarily
closely in norm by linear combinations of Walsh functions. If f is the character-
istic function of an interval (p, q)⊂ (0,1), then, for a given ε, we can find a large
n such that p and q can be approximated by the points j/2n and k/2n within ε.
Then ‖f − χ�‖2 < 2ε, where χ� is the characteristic function of the interval
(j/2n, k/2n), which almost everywhere coincides with the sum

∑k−1
s=j χ�n,s equal,

by the lemma, to a certain linear combination of Walsh functions. Being able to
approximate the characteristic functions of the intervals, we can also approximate
their linear combinations, i.e., the step functions. Now, we consider the general case.
By Theorem 9.2.2, for each ε, we can find a step function g such that ‖f − g‖< ε.
Approximating g within ε by a linear combination h of Walsh functions, we ob-
tain ‖f − h‖� ‖f − g‖ + ‖g − h‖< 2ε. Since ε was arbitrary, this completes the
proof. �

10.2.6 From the viewpoint of probability theory, the Rademacher functions give
an example of a sequence of independent trials with two equiprobable outcomes
(the simplest “Bernoulli scheme”). Here, a “simple” random event is a roll of a
number x ∈ (0,1), and the probability that a point will fall in the interval (p, q) is

9Joseph Leonard Walsh (1895–1973)—American mathematician.
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the length of the interval. A “trial” consists of the calculation of the values of the
Rademacher functions: the first trial is the calculation of r1(x), the second trial is
the calculation of r2(x), etc. Taking into account the connection between the values
of a Rademacher function at a given point and the binary digits of the point, we can
replace rn(x) by εn(x) (the binary digits of x).

One of the first results of probability theory is Bernoulli’s law of large numbers,
which says that in the scheme described above the frequency of occurrence of 0 or
1 becomes close to 1/2 with probability arbitrarily close to 1. In the language of
measure theory, this result means that, on the interval (0,1), the arithmetic mean
1
n
(ε1(x) + · · · + εn(x)) (the frequency of occurrence of the digit 1 in the binary

expansion of a point x) tends to 1/2 in measure. Returning to the Rademacher func-
tions, we can say that

r1(x)+ · · · + rn(x)

n
−→
n→∞ 0 in measure.

This assertion follows from the fact that

1

n
‖r1 + · · · + rn‖ = 1√

n
−→
n→∞ 0,

and the convergence in norm implies the convergence in measure.
Two centuries after Bernoulli, Borel proved a stronger statement.

Theorem (Strong law of large numbers)

r1(x)+ · · · + rn(x)

n
−→
n→∞ 0 almost everywhere on (0,1).

Proof We put Sn(x) = r1(x) + · · · + rn(x) and estimate the integral
∫ 1

0 S4
n(x) dx.

Obviously,

S2
n(x)=

n∑

k=1

r2
k (x)+ 2

∑

1�j<k�n

rj (x)rk(x)= n+ 2
∑

1�j<k�n

w{j,k}(x).

Since the Walsh functions w{j,k} form an orthonormal system, the Pythagorean the-
orem implies

∫ 1

0
S4
n(x) dx =

∥
∥
∥
∥nw∅ + 2

∑

1�j<k�n

w{j,k}
∥
∥
∥
∥

2

= n2 + 4
∑

1�j<k�n

1 < 3n2.

Consequently,
∑∞

n=1

∫ 1
0 ( 1

n
Sn(x))

4 <
∑∞

n=1
3
n2 < +∞, and, therefore, the series

∑∞
n=1(

1
n
Sn(x))

4 converges almost everywhere (see Corollary 2 of Sect. 4.8.2). This
implies the assertion of the theorem since the terms of a convergent series tend to
zero. �
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10.2.7 The theorem just proved admits various generalizations also called the strong
laws of large numbers. The statements concerning sequences of independent func-
tions with zero mean values (obviously, these functions form an orthogonal system)
are of most interest. Before passing to this question, we consider an inequality play-
ing a decisive role in the study of series of such functions.

Throughout this section, we consider real functions in the space L 2(X,μ), as-
suming that the measure μ is normalized (μ(X)= 1).

Theorem (Kolmogorov’s10 inequality) Let f1, . . . , fn in L 2(X,μ) be independent
and have zero means,

∫
X
f1 dμ= · · · =

∫
X
fn dμ= 0. Then the inequality

μ
({

x ∈X | max
1�k�n

∣
∣f1(x)+ · · · + fk(x)

∣
∣ � t

})
� 1

t2

n∑

k=1

∫

X

f 2
k dμ

holds for every t > 0.

Proof We put Sk = f1+ · · · + fk , S∗k =max1�j�k |Sj | and Rk = Sn− Sk . We need
to estimate the measure of the set E = {x ∈X |S∗n(x)� t}. To this end, we divide the
set into disjoint parts Ek = {x ∈X |S∗k−1(x) < t � S∗k (x)} (we assume that S∗0 ≡ 0).
Then

n∑

k=1

∫

X

f 2
k dμ=

∫

X

S2
n dμ�

∫

E

S2
n dμ=

n∑

k=1

∫

Ek

(Sk +Rk)
2 dμ

=
n∑

k=1

(∫

Ek

S2
k dμ+ 2

∫

Ek

SkRk dμ+
∫

Ek

R2
k dμ

)

�
n∑

k=1

∫

Ek

S2
k dμ+ 2

n∑

k=1

∫

Ek

SkRk dμ.

By the corollary to Lemma 6.4.4, the functions SkχEk
and Rk are independent.

Therefore,
∫

Ek

SkRk dμ=
∫

X

SkχEk
Rk dμ=

∫

X

SkχEk
dμ ·

∫

X

Rk dμ= 0.

Since |Sk| = S∗k � t on the set Ek , we obtain the required inequality,

n∑

k=1

∫

X

f 2
k dμ�

n∑

k=1

∫

Ek

S2
k dμ�

n∑

k=1

t2μ(Ek)= t2μ(E).
�

10Andrei Nikolaevich Kolmogorov (1903–1987)—Russian mathematician.
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We supplement the theorem (preserving the notation) and verify that, for a se-
quence of independent functions fn satisfying the assumptions of the theorem, the
following statement is true.

Corollary If A2 =∑∞
n=1

∫
X
f 2
n dμ < +∞, then the function S∗ = supk�1 |Sk| =

supk�1 S
∗
k is summable and

∫
X
S∗ dμ� 2A.

Proof For every t > 0, the set X(S∗ � t) is exhausted by the expanding sequence of
sets X(S∗k � t). By the theorem, the measure of each of these sets does not exceed
A2/t2. Consequently, μ(X(S∗ � t))�A2/t2. Thus, F(t)�A2/t2, where F is the
decreasing distribution function for S∗. Using the formula of Proposition 6.4.3 with
p = 1, we see that

∫

X

S∗ dμ =
∫ ∞

0
F(t) dt =

∫ A

0
· · · +

∫ ∞

A

· · ·

� AF(0)+
∫ ∞

A

A2

t2
dt �A+A= 2A. �

10.2.8 The estimate for the integral of the function S∗ established in the previous
corollary leads to an important result concerning the behavior of the series

∑∞
n=1 fn,

which, in turn, implies a generalization of Borel’s theorem.

Theorem 1 Let {fn}∞n=1 be a sequence of independent functions with zero means.
If

∑∞
n=1

∫
X
f 2
n dμ <+∞, then the series

∑∞
n=1 fn converges almost everywhere.

Proof We put

Sn = f1 + · · · + fn and Rn = sup
p�1

|Sn+p − Sn|.

Since |Sn+p − Sn| � 2Rm for n � m and all m and p, we must verify only
that infn Rn = 0 almost everywhere. For this, it is sufficient to verify the relation∫
X
Rn dμ −→

n→∞ 0, which follows immediately from Corollary 10.2.7,

∫

X

Rn dμ� 2

( ∞∑

k=n+1

∫

X

f 2
k dμ

)1/2

−→
n→∞ 0.

�

Corollary Let {fn}∞n=1 be a sequence of independent functions with zero means. If
∑∞

n=1
1
n2

∫
X
f 2
n dμ <+∞, then σn = 1

n

∑n
k=1 fk −→

n→∞ 0 almost everywhere.

Proof By the theorem, the sums Tn =∑n
k=1

1
k
fk have a finite limit almost every-

where. The quantities θn = 1
n+1 (T1 + · · · + Tn) have the same limit. Therefore, the
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difference Tn − θn tends to zero almost everywhere. At the same time, it is easy to
verify that Tn − θn = 1

n+1 (f1 + · · · + fn), which completes the proof. �

A similar statement can be obtained for an arbitrary orthogonal system if we drop
the independence requirement and strengthen the restriction on the quantities ‖fn‖
(see Exercise 11).

If we impose quite natural additional restrictions on the independent func-
tions fn, then the condition

∑∞
n=1

∫
X
f 2
n dμ < +∞ will turn out to be not only

sufficient but also necessary for the convergence of the series
∑∞

n=1 fn almost ev-
erywhere (or, equivalently by the zero-one law, on a set of positive measure).

Theorem 2 Let {fk}∞k=1 be a sequence of independent bounded functions with zero
means. If the series

∑∞
k=1 fk converges almost everywhere, then

∑∞
k=1

∫
X
f 2
k dμ <

+∞.

Proof We put S =∑∞
k=1 fk and Sn =∑n

k=1 fk (n = 1,2, . . .). Since the sum S is
finite almost everywhere, the sequences {Sn(x)}n are bounded for almost all x. They
are uniformly bounded on some set of positive measure. Therefore, for a sufficiently
large t , the intersection E =⋂∞

n=1 En of the sets En = {x ∈X | |Sk(x)|� t for k =
1, . . . , n} has a positive measure. We find a recurrence estimate for the integrals

In =
∫

En

S2
n dμ.

For this, we use the independence of the functions fn+1 and SnχEn (see the corollary
of Lemma 6.4.4). This gives us the relations

∫

En

Snfn+1 dμ=
∫

X

χEnSn dμ ·
∫

X

fn+1 dμ= 0

and
∫

En

f 2
n+1 dμ=

∫

X

χEnf
2
n+1 dμ= μ(En)

∫

X

f 2
n+1 dμ� μ(E)

∫

X

f 2
n+1 dμ.

Therefore, putting Fn =En \En+1, we arrive at the inequality

In+1 =
∫

En

(Sn+fn+1)
2 dμ−

∫

Fn

S2
n+1 dμ� In+μ(E)

∫

X

f 2
n+1 dμ−

∫

Fn

S2
n+1 dμ.

By assumption, there is a number c such that, for all n, the inequality |fn|� c holds
almost everywhere. Then

∣
∣Sn+1(x)

∣
∣ �

∣
∣Sn(x)

∣
∣+ ∣

∣fn+1(x)
∣
∣ � t + c for almost all x in En.

Thus,

In+1 − In + (t + c)2μ(Fn)� μ(E)

∫

X

f 2
n+1 dμ.
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Since
∑n

k=1(Ik+1 − Ik)� In+1 � t2 and
∑n

k=1 μ(Fk)� 1, it follows that the series∑
k μ(E)

∫
X
f 2
k+1 dμ converges, which is equivalent to the assertion of the theorem

since μ(E) > 0. �

EXERCISES

1. Prove that the systems 1, cos x, cos 2x, . . . and sin x, sin 2x, . . . are complete
in the space L 2((0,π)).

2. Let μ be a measure on the interval (−1,1) having density 1√
1−x2

with respect

to Lebesgue measure. Prove that the functions Tn(x) = cos(n arccosx) (n =
0,1,2, . . .) form an orthogonal basis in the space L 2((−1,1),μ). Verify that
Tn is an algebraic polynomial of degree n (a Chebyshev polynomial).

3. Prove that the functions x �→ ex/2(xne−x)(n) (n = 0,1, . . .), called the La-
guerre11 functions, form an orthogonal system in the space L 2((0,+∞)).

4. Let m be one of the digits 0,1, . . . ,9, and let cm(x)= 1 if the decimal expansion
of the fractional part of x has the form 0.m . . . and cm(x)= 0 otherwise. Verify
that

1

n

∑

0�k<n

cm
(
10kx

) −→
n→∞

1

10
almost everywhere on (0,1).

5. Generalize the result of the previous exercise by proving that almost all numbers
x ∈ (0,1) are normal, i.e., for each p ∈N, the p-ary expansion of x contains all
digits (the numbers 0,1, . . . , p− 1) “equally often”.

In Exercises 6–9, by r1, r2, . . . , rn . . . we denote the Rademacher functions.

6. Use the Khintchine inequality to supplement Theorem 10.2.6 by proving that

r1(x)+ · · · + rn(x)

np
−→
n→∞ 0 almost everywhere on (0,1)

for p > 1/2.
7. Verify that the result of the previous exercise is false for p = 1/2. Hint. Find

the limits of the integrals
∫ 1

0 eiσn(x)dx, where σn(x)= r1(x)+···+rn(x)√
n

.

8. Show that if the sum of the series
∑∞

n=1 anrn is bounded almost everywhere on
some non-degenerate interval, then

∑∞
n=1 |an|<+∞.

9. Let fn(x, y) = ∑n
j=1 rj (x)rj (y). Show that | ∫∫

A×B
fn(x, y) dx dy| � 1 for

any measurable sets A,B ⊂ (0,1), but nevertheless
∫∫

(0,1)2 |fn(x, y)|dx dy→
+∞. Hint. Use Bessel’s inequality and the inequality from Exercise 7 of
Sect. 9.1 with p = 1.

10. Refine the assertion of Corollary 10.2.8 by proving that the functions σn are
dominated by a summable function.

11Edmond Nicolas Laguerre (1834–1886)—French mathematician.
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11. Let {fn}∞n=1 be an orthogonal system in L 2(X,μ) such that
∑∞

n=1
‖fn‖2

n3/2 <

+∞. Prove that 1
n
(f1 + · · · + fn) −→

n→∞ 0 almost everywhere on X and the

function supn
1
n
|f1 + · · · + fn| belongs to L 2(X,μ).

12. Verify that the assumptions of Theorem 2 of Sect. 10.2.8 can be weakened
by replacing the convergence of the series

∑∞
k=1 fk almost everywhere by the

boundedness of its partial sums at the points of a set of positive measure.

10.3 Trigonometric Fourier Series

The present and following sections are devoted to harmonic analysis. Without striv-
ing to expose this important and vast subject in its entirety, we restrict ourselves to
the exposition of selected topics the choice of which is motivated only by the desire
to demonstrate the methods developed above.

In Sect. 10.1, we established important properties of Fourier series in arbitrary
orthogonal systems. Now, we consider the properties of Fourier series in trigono-
metric systems in more detail. This is historically the first example of an orthogonal
system, and the problem of the representability of a function as the sum of a trigono-
metric series was one of the central problems in mathematics for nearly two hundred
years.

Suffice to say that the lively discussion in the 18th century devoted to this prob-
lem provided an important impetus for the formulation of the modern concept of
function. Riemann introduced his definition of an integral in connection with the
study of trigonometric series, and Cantor, studying the uniqueness of the expansion
of a function as a trigonometric series, came up with his foundation of set theory.

10.3.1 We recall that, according to the general definition 10.2.1, the Fourier series
of a function f ∈L 2((0,2π)) in the systems

1, cosx, sinx, . . . , cosnx, sinnx, . . . , and
{
einx

}
n∈Z

have, respectively, the forms

A(f )+
∞∑

n=1

(
an(f ) cosnx + bn(f ) sinnx

)
(1)

and

∞∑

n=−∞
f̂ (n)einx, (1′)

where the Fourier coefficients are calculated by the formulas

A(f )= 1

2π

∫ 2π

0
f (x)dx,
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an(f )= 1

π

∫ 2π

0
f (x) cosnx dx, (2)

bn(f )= 1

π

∫ 2π

0
f (x) sinnx dx (n ∈N);

f̂ (n)= 1

2π

∫ 2π

0
f (x)e−inxdx (n ∈ Z). (2′)

Unlike the previous section, where we considered only functions of class L 2,
here we will deal with arbitrary functions summable on (0,2π). It is obvious that,
in this case, the integrands in formulas (2) and (2′) will also be summable. Therefore,
we keep the terminology introduced above (a Fourier coefficient, a Fourier series)
for the functions in L 1((0,2π)). We are now interested not in convergence in the
L 2-norm, but in other types of convergence, and first of all, pointwise convergence.
Here, by the sum of the series (1′), we always mean the limit of the symmetric partial
sums

Sn(f, x)=
∑

|k|�n

f̂ (k)eikx, (3)

which are also called the Fourier sums of the function f . As noted in Sect. 10.2.1,
the partial sums of series (1) and (1′) are equal. Thus, all results obtained for one
of the series are valid for the other one. In the sequel, we will mainly consider
series (1′) because this leads to some technical simplifications.

In conclusion, we touch on a question that may arise when solving the problem
of the expansion of a function as a trigonometric series. Up to now, the choice of its
coefficients have been dictated by geometric considerations presented in Sect. 10.1
and has led to formulas (2) and (2′). Can it happen that, for a different mode
of convergence (e.g., pointwise or in measure) the coefficients of the trigonomet-
ric series must be chosen in a different way? It is easy to verify, however, that,
under mild additional assumptions, there is essentially no freedom in the choice
of the coefficients. Indeed, if, for example, a trigonometric series

∑∞
k=−∞ cke

ikx

converges to a function f almost everywhere or in measure and its partial sums
Sn(x)=∑

|k|�n cke
ikx have a summable majorant, i.e., a function g ∈L 1((0,2π))

such that |Sn(x)| � g(x) for all x ∈ (0,2π) and n ∈ N, then the coefficients of the
series coincide with the Fourier coefficients of the function f , ck ≡ f̂ (k). Indeed,
by Lebesgue’s theorem, the integral f̂ (k) = 1

2π

∫ 2π
0 f (x)e−ikx dx is the limit (as

n→∞) of the integrals 1
2π

∫ 2π
0 Sn(x)e

−ikx dx, each of which is equal to ck for
n� |k|.

10.3.2 Instead of functions defined only on the interval (0,2π), it will be more
convenient for us to deal with 2π -periodic functions. Since every function defined
on (0,2π) can be extended to a periodic function, we will assume in what fol-
lows that all functions in question are periodic (in the sequel, periodicity means
2π -periodicity). Being summable on an interval of length 2π , such functions are
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summable on each finite interval. We will repeatedly use the fact that the integral∫ a+2π
a

f (x) dx does not depend on the parameter a (the reader is invited to prove
this independently). Often, especially when dealing with odd and even functions, it
is more convenient to integrate over the interval (−π,π) in formulas (2) and (2′).
By C̃ and C̃r (1 � r � +∞), we denote the classes of periodic functions that are
continuous and, respectively, r times continuously differentiable on R; by L̃ p , we
denote the class of periodic functions summable on (−π,π) with power p � 1. For
a function f ∈ L̃ p , by ‖f ‖p we mean the L p-norm of its restriction to (−π,π).

We note the following elementary properties of the Fourier coefficients.

(a) |f̂ (n)|� 1
2π ‖f ‖1 (see formula (2′)).

(b) f̂ (n) −→|n|→+∞ 0 (see the Riemann–Lebesgue theorem).

This qualitative result can be supplemented by an estimate connected with the con-
tinuity in the mean (see Exercise 1).

The properties connecting Fourier coefficients with translation, differentiation,
and convolution play an important role. We recall that the translation fh of a func-
tion f ∈ L̃ 1 corresponding to a number h is defined by the formula fh(x) =
f (x− h). Making the change of variable x− h �→ x in the integral

∫ 2π
0 f (x− h)×

e−inx dx, we arrive at the formula

(c) f̂h(n)= e−inhf̂ (n).
(d) If a periodic function f is absolutely continuous on R (in particular, if it is

piecewise differentiable), then

f̂ ′(n)= inf̂ (n) (n ∈ Z)

(for the proof, it is sufficient to integrate by parts). In particular, f̂ (n)= o(1/n).
We note a weak version of this estimate for a function of bounded variation.

(d′) If f is a function of bounded variation on the interval [0,2π], then f̂ (n) =
O(1/n). Indeed, integrating by parts (see Sect. 4.11.4), we obtain

2πf̂ (n) =
∫ 2π

0
f (x)e−inx dx = f (x)

e−inx

−in

∣
∣
∣
∣

2π

0
+ 1

in

∫ 2π

0
e−inx df (x)

= O

(
1

n

)

.

(e) Let f,g ∈ L̃ 1. Then

f̂ ∗ g(n)= 2πf̂ (n) · ĝ(n) for all n ∈ Z

(for the definition of the convolution of periodic functions, see Sect. 7.5.5).
The proof is obtained by direct calculation using the change of the order of



564 10 Fourier Series and the Fourier Transform

integration,

f̂ ∗ g(n)= 1

2π

∫ π

−π

(f ∗ g)(x)e−inx dx

= 1

2π

∫ π

−π

(∫ π

−π

f (x − t)g(t) dt

)

e−inx dx

= 1

2π

∫ π

−π

g(t)e−int

(∫ π

−π

f (x − t)e−in(x−t)dx

)

dt

= 1

2π

∫ π

−π

g(t)e−int

(∫ π

−π

f (u)e−inudu

)

dt = 2πĝ(n) · f̂ (n).

10.3.3 The problem of the Fourier series expansion of a function is rather compli-
cated and has a long history. The famous work “The analytical theory of heat” by
Fourier, in which the series that were later named after him were first studied and
used systematically, did not contain an explicit formulation of a condition providing
the expandability of a function as a Fourier series. Such criteria arose later. Still later
it became clear that the Fourier series of a continuous function can diverge at some
points, and, as Kolmogorov proved, the Fourier series of a summable function can
diverge everywhere.

So far, even knowing that a Fourier series of a differentiable function converges
at a point, we cannot be sure that its sum coincides with the value of the function.

At the moment, we know (see Sect. 10.2.1) that if f is a square-summable func-
tion, then series (1′) converges in the L 2-norm and its sum is equal to f . If a
function f is only assumed to be summable, the question of the convergence of a
Fourier series (pointwise, in an L p-norm, or in some other sense) remains open for
the time being.

We begin the investigation of a Fourier series’ convergence with the derivation
of an important formula for its partial sums discovered by Dirichlet. Relying on
formula (2′), we transform Eq. (3) as follows:

Sn(f, x)=
∑

|k|�n

(
1

2π

∫ π

−π

f (t)e−ikt dt

)

eikx = 1

2π

∫ π

−π

f (t)
∑

|k|�n

eik(x−t) dt.

The function

Dn(u)= 1

2π

∑

|k|�n

eiku = 1

2π
+ 1

π

n∑

k=1

cosku (4)

is called the nth Dirichlet kernel. Obviously, the Dirichlet kernel is even and peri-
odic. Summing the geometric sequence

∑
|k|�n e

iku, we obtain

Dn(u)= sin(n+ 1
2 )u

2π sin u
2

for u /∈ 2πZ. (4′)
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Fig. 10.1 Graph of the Dirichlet kernel

From this, we see that the function Dn is strongly oscillating for large n, and, in a
neighborhood of zero, it takes extreme values with alternating signs and absolute
values comparable with maxDn =Dn(0)= 1

π
(n+ 1

2 ) (see Fig. 10.1).
It follows directly from the definition that the sum of the Fourier series is the

convolution of the function and the Dirichlet kernel,

Sn(f, x)=
∫ π

−π

f (t)Dn(x − t) dt = (f ∗Dn)(x).

Since the integrands are periodic, we can also represent the above equation in the
form

Sn(f, x)=
∫ π

−π

f (x − u)Dn(u)du. (5)

Considering periodic approximate identities, we have encountered similar for-
mulas (see Sect. 7.6.5). The Dirichlet kernels satisfy conditions (b) and (c) of the
definition of a periodic approximate identity; it immediately follows from Eq. (4)
that

∫ π

−π

Dn(u)du= 1.

Moreover, we have

∫

δ<|u|<π

Dn(u)du=
∫

δ<|u|<π

sin(n+ 1
2 )u

2π sin u
2

du −→
n→∞ 0

for each δ ∈ (0,π) (the passage to the limit can be justified by integration by parts
or by referring to the Riemann–Lebesgue theorem).

However, Dn does not satisfy the most important property of an approximate
identity, namely, the positivity. Moreover, the Dirichlet kernels do not satisfy the pe-
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riodic analog of condition (a′) of Sect. 7.6.1, i.e., they have unbounded L 1-norms.
Indeed,

∫ π

−π

∣
∣Dn(u)

∣
∣du=

∫ π

0

|sin(n+ 1
2 )u|

π sin u
2

du� 2

π

∫ π

0

|sin(n+ 1
2 )u|

u
du

= 2

π

∫ π(n+ 1
2 )

0

|sinv|
v

dv � 2

π

n∑

k=1

∫ kπ

(k−1)π

|sinv|
kπ

dv = 4

π2

n∑

k=1

1

k
.

Since
∑n

k=1
1
k
�

∫ n

1
1
x
dx = lnn, we have ‖Dn‖1 � 4

π2 lnn (see also Exercise 11).
Thus, the general theorems connected with the use of approximate identities can-

not be applied here. This is the cause of considerable difficulties in the study of the
convergence of Fourier series. Here, we meet not just technical questions, but those
of a fundamental nature. We will see later that the proofs of Theorems 2 and 3 of
Sect. 9.3.7 cannot be carried over to convolutions with Dirichlet kernels.

At the same time, in many problems, it is essential that the norms ‖Dn‖1 increase
quite slowly. Indeed, the estimate from above for ‖Dn‖1 just obtained is exact in
order,

‖Dn‖1 =
∫ π

0

|sin(n+ 1
2 )u|

π sin u
2

du�
∫ π

0

|sin(n+ 1
2 )u|

u
du=

∫ π(n+ 1
2 )

0

|sinv|
v

dv.

Consequently, ‖Dn‖1 � 1+ ∫ π(n+ 1
2 )

1
dv
v

, and, therefore, ‖Dn‖1 � 2 lnn for n� 10.
Since Sn(f )= f ∗Dn, we obtain the following estimate for the Fourier sums of a
bounded function (n� 10):

∥
∥Sn(f )

∥
∥∞ � ‖f ‖∞‖Dn‖1 � 2‖f ‖∞ lnn. (6)

The partial sums of the Fourier series are calculated by formula (5), and so de-
pend on the values of the function on an interval of length 2π . It is all the more sur-
prising that, as we will now verify, the convergence of the Fourier series at a point x
and the value of its sum are local properties of the function, i.e., they are preserved
under an arbitrary change of the function outside an arbitrarily small neighborhood
of the point. More formally, we have the following.

Theorem (Riemann’s localization principle) If functions f1, f2 ∈ L̃ 1 coincide in a
neighborhood of a point x, then their Fourier series have the same behavior at x,
Sn(f1, x)− Sn(f2, x)→ 0 as n→∞.

Proof From the assumptions it follows that the function ϕx(u) = f1(x+u)−f2(x−u)
sin(u/2)

(equal to zero in a neighborhood of the point u= 0) is summable on (−π,π). Since

Sn(f1, x)− Sn(f2, x)= 1

2π

∫ π

−π

ϕx(u) sin

(

n+ 1

2

)

udu
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by Eq. (5), it remains to refer to the Riemann–Lebesgue theorem according to which
the integral on the right-hand side of this equation tends to zero. �

10.3.4 Among a great variety of convergence tests for Fourier series, we mention
only two of the most applicable ones, the Dini12 test and the Dirichlet–Jordan13 test.
They supplement each other and can be applied to a wide range of cases.

First, we establish a useful property of the Dirichlet kernel.

Lemma Let n ∈N. Then:

(a) Dn(u)= sinnu

πu
+ 1

2π

(
cosnu+�(u) sinnu

)
,

where � is a function independent of n and |�(u)|< 1 for |u|� π ;

(b)

∣
∣
∣
∣

∫ x

0
Dn(u)du

∣
∣
∣
∣ � 2 for |x|� 2π.

Proof (a) It is clear that

Dn(u)= sinnu

2π tan u
2

+ 1

2π
cosnu= sinnu

πu
+ 1

2π

(

cosnu+
(

1

tan u
2

− 2

u

)

sinnu

)

.

It remains to observe that the difference �(u)= 1
tan u

2
− 2

u
(�(0)= 0) decreases on

[−π,π], and, therefore, |�(u)|� |�(π)| = 2
π
< 1.

(b) It is sufficient to consider the case where x ∈ (0,2π). First let x ∈ (0,π].
Then assertion (a) proved above implies the inequality

∣
∣
∣
∣

∫ x

0
Dn(u)du−

∫ x

0

sinnu

πu
du

∣
∣
∣
∣ �

1

2π

∫ x

0
2du� 1.

Now, we prove that the integral

Jn(x)=
∫ x

0

sinnu

πu
du=

∫ nx

0

sinv

πv
dv,

lies between 0 and 1. To verify this, we divide the interval of integration [0, nx] into
parts on which sinv preserves its sign. Then the integral Jn(x) splits into the alter-
nating sum of terms whose absolute values decrease since 1

v
decreases. Therefore,

0 � Jn(x)�
∫ π

0

sinv

πv
dv �

∫ π

0

dv

π
= 1.

Thus, the integral
∫ x

0 Dn(u)du lies between −1 and 2 provided 0 < x � π .

12Ulisse Dini (1845–1918)—Italian mathematician.
13Marie Ennemond Camille Jordan (1838–1922)—French mathematician.
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For x ∈ (π,2π), we use the easily verifiable relation
∫ x

0
Dn(u)du= 1−

∫ 2π−x

0
Dn(u)du

from which it follows that the inequality −1 �
∫ x

0 Dn(u)du � 2 also holds in this
case. �

Using the first assertion of the lemma, we can represent Eq. (5) in the following
form:

Sn(f, x)=
∫ π

−π

f (x − u)
sinnu

πu
du+ εn, (5′)

where the quantity εn = 1
2π

∫ π

−π
f (x−u)(cosnu+�(u) sinnu)du tends to zero by

the Riemann–Lebesgue theorem.
In particular, if f ≡ 1, then

1=
∫ π

−π

sinnu

πu
du+ o(1). (5′′)

Making the change of variable nu= t and passing to the limit as n→∞, we once
again obtain the equality

∫∞
0

sin t
t

dt = π
2 established in Sect. 7.1.6 by a different

method.

Theorem (Dini test) If a function f ∈ L̃ 1 satisfies the Dini condition
∫ π

0

∣
∣
∣
∣
f (x + u)+ f (x − u)

2
−C

∣
∣
∣
∣
du

u
<+∞

at a point x ∈ R for some C ∈ C, then its Fourier series converges to C at the
point x.

In particular, if f is differentiable at x, then the Dini condition is fulfilled with
C = f (x), and so the sum of the Fourier series is equal to f (x). However, if only
the one-sided limits f (x ± 0) exist and

∣
∣f (x ± u)− f (x ± 0)

∣
∣=O

(
uα

)
as u→+0

for some α > 0, then the Fourier series of f at x converges to the average
f (x−0)+f (x+0)

2 .

Proof From (5′), it follows that

Sn(f, x)=
∫ π

−π

f (x − u)
sinnu

πu
du+ o(1)=

∫ π

−π

f (x + u)
sinnu

πu
du+ o(1)

as n→∞. Thus,

Sn(f, x)=
∫ π

−π

f (x − u)+ f (x + u)

2

sinnu

πu
du+ o(1).
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Subtracting Eq. (5′′) multiplied by C from the above equation, we see that

Sn(f, x)−C =
∫ π

−π

(
f (x − u)+ f (x + u)

2
−C

)
sinnu

πu
du+ o(1)

= 2

π

∫ π

0
gx(u) sinnudu+ o(1),

where gx(u)= f (x−u)+f (x+u)−2C
2u . Since the function gx is summable on (0,π) by

the assumptions of the theorem, the integral on the right-hand side of this equation
tends to zero by the Riemann–Lebesgue theorem. �

Theorem (Dirichlet–Jordan test) If a periodic function f has bounded variation on
the interval [−π,π], then, for each x ∈ R, the Fourier series of f converges to the
average (f (x + 0)+ f (x − 0))/2. Moreover, |Sn(f, x)|� supR |f | + 2Vπ−π(f ).

We remark that the convergence of a Fourier series at a point x is preserved by
the localization principle if we assume that f has bounded variation only locally, in
a neighborhood of this point.

Proof By Eq. (5′), we must find the limit of the integrals

In =
∫ π

−π

f (x − u)
sinnu

πu
du=

∫ π

0
ϕ(u)

sinnu

πu
du,

where ϕ(u)= f (x − u)+ f (x + u). This function has bounded variation on [0,π],
and so can be represented as the difference of decreasing functions. Therefore, it
is sufficient for us to find the limit of the integrals In under the assumption that
the function ϕ is non-negative and decreases on the interval [0,π]. To this end, we
represent In in the form

In =
∫ ∞

0
�(u)

sinnu

πu
du=

∫ ∞

0
�

(
t

n

)
sin t

πt
dt,

where �(u)= ϕ(u)χ(0,π)(u). By Corollary 2 of Sect. 7.4.7, the integral on the right-
hand side of the above equation tends to ϕ(+0)/2= (f (x − 0)+ f (x + 0))/2.

To obtain a uniform estimate for the sums Sn(f ), we put Hn(u)=
∫ u

0 Dn(t) dt .
Then

Sn(f, x) =
∫ π

−π

f (x − u)Dn(u)du

= Hn(u)f (x − u)

∣
∣
∣
π

u=−π
−

∫ π

−π

Hn(u)df (x − u).

Since Hn(±π) = ± 1
2 , the first summand is equal to (f (x − π) + f (x + π))/2.

Furthermore, |Hn(u)|� 2 by the lemma, and so
∣
∣
∣
∣

∫ π

−π

Hn(u)df (x − u)

∣
∣
∣
∣ � 2Vx+π

x−π (f )= 2Vπ−π (f ),

hence the required estimate for the sums Sn(f, x) follows. �
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In conclusion, we prove the Dini test in a different way, without using Dirichlet
kernels (see [Ch]). The Dini condition means that the function

g(u)=
(
f (x + u)+ f (x − u)

2
−C

)
1

eiu − 1
(u /∈ 2πZ)

belongs to the class L̃ 1. Multiplying both sides of the equation

f (x + u)+ f (x − u)

2
−C = (

eiu − 1
)
g(u)

by 1
2π e−iku and then integrating with respect to u ∈ (−π,π), we obtain

1

2

(
f̂ (k)eikx + f̂ (−k)e−ikx

) = ĝ(k − 1)− ĝ(k), if k �= 0,

f̂ (0)−C = ĝ(−1)− ĝ(0), if k = 0.

It remains to sum all these equations for |k|� n,

Sn(f, x)−C =
n∑

k=−n

f̂ (k)eikx −C = ĝ(−n− 1)− ĝ(n) −→
n→+∞ 0.

If we sum them for k = 0,1, . . . , n and for k = −1, . . . ,−n separately, it be-
comes clear that the Dini condition implies the convergence of not only the sym-
metric sums

∑n
k=−n f̂ (k)eikx , but also the “one-sided” sums

∑n
k=0 f̂ (k)eikx and

∑−1
k=−n f̂ (k)eikx . In other words, the Dini condition ensures the convergence of

each of the series
∑∞

k=0 f̂ (k)eikx and
∑−1

k=−∞ f̂ (k)eikx . In particular, it ensures the

convergence of the series
∑

n∈Z sign(n)f̂ (n)einx called the conjugate to series (1′).

10.3.5 We give some examples of Fourier series expansions.

Example 1 We supplement Example 1 of Sect. 10.2.1 as follows: since the periodic
function equal x on (−π,π) is differentiable at all points distinct from (2k + 1)π
(k ∈ Z), its Fourier series converges not only in the L 2-norm, but also pointwise,

x = 2
∞∑

n=1

(−1)n−1

n
sinnx for x ∈ (−π,π).

At the points (2k+1)π , the sum of the series is equal to the average of the one-sided
limits of the function. At x = π

2 , the Fourier series expansion yields the relations

π

4
=

∞∑

m=0

(−1)m
1

2m+ 1
.
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Considering the Fourier series expansion of the function equal to x2 on [−π,π]
at the point π , we again obtain the Euler identity

∑∞
n=1

1
n2 = π2

6 (see Example 1 of
Sect. 10.2.1 or Example 2 of Sect. 4.6.2).

Example 2 Let w ∈ C \ Z. We consider the periodic function equal to coswx on
the interval [−π,π]. This function has finite one-sided derivatives everywhere on
R and, therefore, can be expanded in a Fourier series. After elementary transforma-
tions, we obtain that the equation

coswx = sinπw

πw
+ 2

π
w sinπw

∞∑

n=1

(−1)n

w2 − n2
cosnx

holds for all |x|� π .
For x = π and x = 0, the equation implies the following expansions of cotangent

and cosecant as sums of partial fractions:

cotπw = 1

πw
+ 2w

π

∞∑

n=1

1

w2 − n2
= 1

π

∞∑

n=−∞

1

w− n
,

1

sinπw
= 1

πw
+ 2w

π

∞∑

n=1

(−1)n

w2 − n2
= 1

π

∞∑

n=−∞

(−1)n

w− n
.

Example 3 Here, we verify the existence of a convergent non-zero numerical series∑∞
n=1 an with the unusual property

∑∞
m=1 akm = 0 for every k. In the construction,

we follow F.L. Nazarov who suggested the use of Fourier series for this purpose.
We consider periodic functions equal to zero in a neighborhood of each point of the
form πt , t ∈Q. Among them, we can, obviously, find an even function f satisfying
the conditions f̂ (0)= 1

2π

∫ π

−π
f (x) dx = 0 and 0 <

∫ π

−π
|f (x)|2 dx <+∞. We take

the required series equal to
∑∞

n=1 f̂ (n). This is a non-zero series since

0 <

∫ π

−π

∣
∣f (x)

∣
∣2

dx = 1

2π

∞∑

n=−∞

∣
∣f̂ (n)

∣
∣2 = 1

π

∞∑

n=1

∣
∣f̂ (n)

∣
∣2

(here we have used Parseval’s identity).
At each point x = 2π j

k
(j ∈ Z, k ∈N), the function f satisfies the Dini condition

and, therefore,
∞∑

n=1

f̂ (n) cos

(

2π
j

k
n

)

= 0.

Summing these equations for j = 0,1, . . . , k − 1, we obtain

∞∑

n=1

f̂ (n)

k−1∑

j=0

cos

(

2π
j

k
n

)

= 0.
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If the index n is divisible by k, then the inner sum is equal to k, since otherwise this
sum is obviously zero. Consequently,

k

∞∑

m=1

f̂ (km)= 0 for all k ∈N.

We remark that the series just constructed does not converge absolutely. It can be
proved (see [PS], Part 1, Problem 129) that it is impossible to construct an absolutely
convergent series with the property in question.

10.3.6 As we have already noted, the Fourier series of a summable, or even of a
continuous, function may diverge (see also Sect. 10.3.9). However, such a series has
the remarkable property that it can be integrated termwise over an arbitrary finite
interval without worrying about convergence.

Theorem 1 Let f ∈ L̃ 1. Then the equation

∫ b

a

f (x) dx =
∞∑

n=−∞
f̂ (n)

∫ b

a

einx dx

(where the sum is regarded as the limit of the symmetric partial sums) is valid for
all a, b ∈R.

Proof Taking into account the periodicity, we restrict ourselves, without loss of
generality, to the case where −π � a < b � π . Let χ be the characteristic function
of the interval (a, b). Then a partial sum of the series on the right-hand side of the
required equation can be represented in the form

n∑

k=−n

f̂ (k)

∫ b

a

eikx dx =
n∑

k=−n

(
1

2π

∫ π

−π

f (t)e−ikt dt

)

2πχ̂(−k)

=
∫ π

−π

f (t)Sn(χ, t) dt. (7)

By Dini’s test, we have Sn(χ, t) −→
n→∞ χ(t) for t ∈ (−π,π) and t �= a, b. Moreover,

Sn(χ, t) =
∫ b

a

Dn(x − t) dx =
∫ b−t

a−t

Dn(u)du

=
∫ b−t

0
Dn(u)du−

∫ a−t

0
Dn(u)du.

Therefore, Lemma 10.3.4 gives use the uniform estimate |Sn(χ, t)| � 4. By
Lebesgue’s theorem, we can pass to the limit on the right-hand side of Eq. (7)
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and obtain

n∑

k=−n

f̂ (k)

∫ b

a

eikxdx =
∫ π

−π

f (t)Sn(χ, t) dt −→
n→∞

∫ π

−π

f (t)χ(t) dt =
∫ b

a

f (t) dt.
�

Theorem 1 allows us to considerably strengthen the assertion on the complete-
ness of the trigonometric system, according to which two functions of the class L̃ 2

that have the same Fourier coefficients coincide almost everywhere. Now, we can
extend this result to the class L̃ 1.

Corollary 1 Functions f,g ∈ L̃ 1 having the same Fourier coefficients coincide
almost everywhere on R.

Proof By the theorem, the integrals of f and g are equal on every finite interval.
Therefore, (see Corollary 4.5.4) f and g coincide almost everywhere. �

Corollary 2 For every function f ∈ L̃ 1, the series
∑∞

n=1 bn(f )/n converges.

We recall that bn(f )= 1
π

∫ π

−π
f (x) sinnx dx = i(f̂ (n)− f̂ (−n)) is the Fourier

sine coefficient of f .

Proof As established in the theorem, the equation

∫ u

0
f (x)dx =

∞∑

n=−∞
f̂ (n)

∫ u

0
einx dx

holds for all u. From (7) and the estimate |Sn(χ, t)|� 4, it follows that the symmet-
ric partial sums of this series are uniformly bounded for u ∈ [−π,π]. Therefore, we
can integrate the series termwise,

∫ π

−π

(∫ u

0
f (x)dx

)

du=
∞∑

n=−∞
f̂ (n)

∫ π

−π

(∫ u

0
einx dx

)

du=−2π
∑

n�=0

f̂ (n)

in
.

The convergence of the symmetric partial sums of the series
∑

n�=0
f̂ (n)
n

is equivalent
to the required statement. �

Corollary 2 gives a necessary condition for a trigonometric series∑∞
n=1(an cosnx + bn sinnx) to be a Fourier series. The everywhere convergent

series
∑∞

n=2(sinnx)/ lnn does not satisfy this condition and, therefore, cannot be
the Fourier series of a summable function. It is interesting to note that, in contrast to
the sine coefficients, the cosine coefficients can tend to zero arbitrarily slowly. For
example, the series

∑∞
n=2(cosnx)/ lnn is the Fourier series of a summable function

(see Theorem 10.4.2).
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The relation obtained in Theorem 1 can be regarded as a new version of Parseval’s
identity in which the assumption about one function is weakened (it belongs to L̃ 1

but not to L̃ 2) and the assumption concerning the other is strengthened considerably
(it is the characteristic function of an interval). At the same time, the proof of the
theorem uses the properties of the function χ only partially. This makes it possible
to extend considerably the applicability conditions of Parseval’s identity.

Theorem 2 Let f ∈ L̃ 1, and let g be a bounded (measurable and periodic) func-
tion whose Fourier sums Sn(g, x) are uniformly bounded (with respect to x and n).
Then the following Parseval identity is valid:

∫ π

−π

f (x)g(x) dx = 2π
∞∑

n=−∞
f̂ (n)ĝ(n).

The class of functions with uniformly bounded partial sums of Fourier series
is sufficiently wide. In particular, it contains all smooth functions on [−π,π]. As
follows from the Dirichlet–Jordan test, this class also contains all functions with
finite variation on [−π,π] (see also Exercises 9 and 10).

The assumption that the function g is bounded is superfluous (see Exercise 8 or
Fejér’s theorem in Sect. 10.4).

Proof Since g ∈ L̃ 2, the sums Sn(g) converge to g in the L 2-norm and, a fortiori,
in measure. This implies, as one can easily verify, that

f (x)Sn(g, x)→ f (x)g(x) in measure.

Therefore, we can use Lebesgue’s theorem and pass to the limit on the right-hand
side of the equation

∫ π

−π

f (x)Sn(g, x) dx = 2π
∑

|k|�n

f̂ (k)ĝ(k),

as required. �

10.3.7 To obtain a further generalization of the uniqueness theorem for Fourier se-
ries, (see Corollary 1 of the previous section), we introduce the notion of Fourier
coefficients and Fourier series for a measure.

Definition Let μ be a finite Borel measure on the interval [−π,π]. The Fourier
coefficients of μ are defined by the formula

μ̂(n)= 1

2π

∫

[−π,π]
e−inx dμ(x) (n ∈ Z).

The series
∑∞

n=−∞ μ̂(n)einx is called the Fourier series of μ.
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If a measure μ has density f with respect to Lebesgue measure, then μ̂(n) =
f̂ (n) for all n ∈ Z and, consequently, the Fourier series of the measure μ and of
the function f coincide. As in the case of Fourier series, it follows directly from
definition that the nth (symmetric) partial sum of the Fourier series of a measure,
which will be denoted by Sn(μ,x), is the convolution of this measure and a Dirichlet
kernel,

Sn(μ,x)=
∫

[−π,π]
Dn(x − t) dμ(t)= (Dn ∗μ)(x).

Extending Corollary 1 to measures, we must take into account the relation

μ̂(n)= (−1)n

2π

(
μ

({−π})+μ
({π}))+ 1

2π

∫

(−π,π)

e−inx dμ(x).

Thus, the Fourier coefficients do not change under redistribution of the loads (pre-
serving their sum) at the points ±π . This will be the case when we replace these
loads by, for example, μ({−π})+μ({π}) (at the point−π ) and by 0 (at the point π ).
Therefore, it makes sense to pose the question of whether a measure is uniquely de-
termined by its Fourier coefficients only if we fix the load at one of the points ±π .
For definiteness, we will consider only the measures that have zero load at the
point π .

Theorem Let μ and ν be finite Borel measures on the interval [−π,π] satisfying
the condition μ({π}) = ν({π}) = 0. If the Fourier coefficients of these measures
coincide, then the measures also coincide.

Proof First, we verify that the Fourier series of a measure, as well as the Fourier
series of a function, can be integrated termwise, i.e., if μ({a})= μ({b})= 0, then

∞∑

n=−∞
μ̂(n)

∫ b

a

einx dx = μ
([a, b)) (8)

for [a, b)⊂ [−π,π). Indeed, let χ = χ[a,b). Then

∑

|k|�n

μ̂(k)

∫ b

a

eikx dx =
∑

|k|�n

χ̂(−k)

∫

[−π,π]
e−ikxdμ(x)

=
∫

[−π,π]
Sn(χ, x) dμ(x). (9)

In the proof of Theorem 1 of Sect. 10.3.6, we have established that |Sn(χ, t)|� 4.
Moreover, Sn(χ, t) −→

n→∞ χ(t) for t �= a, b and, consequently, μ-almost everywhere.

Therefore, we can use Lebesgue’s theorem and pass to the limit on the right-hand
side of Eq. (9), which leads to Eq. (8). Thus, if measures μ and ν have the same
Fourier coefficients, then μ([a, b)) = ν([a, b)) for every interval [a, b) ⊂ [−π,π)
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satisfying the condition μ({a}) = μ({b}) = ν({a}) = ν({b}) = 0. Since the set of
points of non-zero measure is at most countable (see Sect. 1.2.2), this condition is
fulfilled on a dense subset of (−π,π). Hence it follows (see Remark 1.1.7) that
the measures μ and ν coincide on all Borel subsets of the interval (−π,π). At
the same time, μ({π})= ν({π})= 0 and μ([−π,π])= μ̂(0)= ν̂(0)= ν([−π,π])
by assumption. Consequently, the measures μ and ν have the same loads at the
point −π , which completes the proof of the theorem. �

Generalizations of this theorem are given in Sects. 10.4.7, 11.1.9, and 12.3.3.

10.3.8 Considering Fourier series with coefficients that tend to zero sufficiently fast,
we must take into account that if the Fourier series of a function f converges uni-
formly, then its sum coincides with f almost everywhere by the uniqueness theo-
rem. Therefore, if the Fourier series of a continuous function converges uniformly,
then its sum coincides with the function. Taking this into account, we consider only
continuous functions in the theorems of this section. Lifting the assumption of con-
tinuity, we must replace the equality of a function and its Fourier series by their
equivalence.

The Fourier coefficients of smooth functions tend to zero sufficiently fast. For
example, if a function satisfies the Lipschitz condition of order α, then f̂ (n) =
O(|n|−α). Indeed, if h= π

n
, then property (c) of Sect. 10.3.2 implies that f̂ π

n
(n)=

−f̂ (n). Consequently, 2f̂ (n)= 1
2π

∫ 2π
0 (f (x)−f (x− π

n
))e−inx dx, and, therefore,

2
∣
∣f̂ (n)

∣
∣ � 1

2π

∫ 2π

0

∣
∣
∣
∣f (x)− f

(

x − π

n

)∣
∣
∣
∣dx � L

∣
∣
∣
∣
π

n

∣
∣
∣
∣

α

,

where L is a Lipschitz constant for f .
The repeated application of the relation f̂ ′(n) = inf̂ (n) (see property (d) of

Sect. 10.3.2) shows that the Fourier coefficients of a function f of class C̃r sat-
isfy the relation f̂ (n) = o(|n|−r ) as |n| → +∞. The converse is “almost true”: if
f̂ (n)=O(|n|−r−2) for some r ∈N, then the continuous function f coincides with
a function of class C̃r . Indeed, the series

∑
n f̂ (n)einx converges uniformly, and,

by the above remark, its sum coincides with f . Moreover, since the coefficients
decrease fast, the Fourier series admits r-fold differentiation, which implies that
f ∈ C̃r . For infinitely smooth functions, this gives a complete description.

Theorem 1 In order that a function f ∈ C̃ be infinitely differentiable it is necessary
and sufficient that the limit relation nr f̂ (n)→ 0 as |n| →+∞ be fulfilled for every
r ∈N.

The smaller class of holomorphic periodic functions can also be well described
in terms of the Fourier coefficients: these coefficients must tend to zero not slower
that a geometric sequence. We note that a periodic function f is analytic at all
points of the line R if and only if, on R, the function f coincides with a function
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holomorphic in some horizontal strip {z ∈ C | |Imz| < L}. In the proof of the fol-
lowing theorem, we use some elementary properties of holomorphic functions (see,
for example, [Ca]).

Theorem 2 Let f ∈ C̃. The following two statements are equivalent:

(a) there is a function F holomorphic in a strip |Imz|< L and coinciding with f

on the real axis;
(b) the relation f̂ (n)=O(e−a|n|) as |n| →+∞ holds for every a ∈ (0,L).

Proof (a)⇒(b). Assuming that n > 0 and 0 < a < L, we consider the integral∫
C
F(z)e−inz dz, where C is the boundary of the rectangle P with vertices at the

points ±π , ±π − ai lying in the strip |Imz| < L. Since the function F is holo-
morphic in a neighborhood of P , this integral is equal to zero. Moreover, F has
period 2π , and, therefore, the sum of the integrals over the vertical sides of P are
equal to zero. Consequently,

f̂ (n)= 1

2π

∫ π

−π

f (x)e−inx dx = 1

2π

∫ π−ai

−π−ai

F (z)e−inz dz.

Therefore,

∣
∣f̂ (n)

∣
∣ � max

x∈R
∣
∣F(x − ai)

∣
∣
∣
∣e−in(x−ai)

∣
∣= e−an max

x∈R
∣
∣F(x − ai)

∣
∣= Cae

−an.

The coefficients with negative indices can be estimated in the same way, only in
this case the rectangle is replaced by a rectangle symmetric with respect to the real
axis.

(b)⇒(a). The series
∑∞

n=−∞ f̂ (n)einz converges uniformly in the strip |Imz|�
a if 0 < a < L. By Weierstrass’s theorem the sum of the series is holomorphic in
the strip |Imz|<L and coincides with the function f on the real axis. �

10.3.9 As we have already mentioned, the Fourier series of a periodic continuous
function may diverge (compare this with the result of Exercise 5). There are sev-
eral such examples. We give here a slight modification of an example suggested by
Schwartz. We define an even function f ∈ C̃ whose oscillation frequency increases
rapidly when approaching zero. More precisely, we will assume that

f (0)= 0 and f (t)= 1√
k

sinnkt for t ∈ [tk, tk−1], k = 2,3, . . . ,

where nk = 2k!, tk = 2π/nk for k ∈N (see Fig. 10.2).
We prove that the sums Sn(f,0) tend to infinity along the indices nk . Since

Sn(f,0)= 2

π

∫ π

0

sinnt

t
f (t) dt + o(1),
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Fig. 10.2 Sketch of the graph of f

by (5′), it is sufficient to prove that the integrals

Ik =
∫ π

0

sinnkt

t
f (t) dt =

∫ tk

0
· · · +

∫ tk−1

tk

· · · +
∫ π

tk−1

· · · = Fk + Jk +Hk

tend to infinity. We verify that the main contribution comes from the integral Jk .
Indeed, since |sinnkt |� nkt and |f (t)|< 1√

k
on (0, tk), we have

|Fk| =
∣
∣
∣
∣

∫ tk

0
· · ·

∣
∣
∣
∣ �

nk√
k
tk = 2π√

k
→ 0.

Since the absolute value of the integrand does not exceed 1/t , we have

|Hk|�
∫ π

tk−1

1

t
dt = lnπ/tk−1 = ln

nk−1

2
< (k − 1)! ln 2.

Now, we calculate the integral over the middle interval,

Jk =
∫ tk−1

tk

sinnkt

t
f (t) dt = 1√

k

∫ tk−1

tk

sin2 nkt

t
dt = 1√

k

∫ Ak

2π

sin2 u

u
du,

where Ak = nktk−1 = 2πnk/nk−1. Consequently, for sufficiently large k, we have

Jk = 1

2
√
k

∫ Ak

2π

1− cos 2u

u
du= lnAk +O(1)

2
√
k

>
k! ln 2

3
√
k

.

Thus,

Ik = Fk + Jk +Hk �
k! ln 2

3
√
k
− (k − 1)! ln 2+ o(1)→+∞,

and, therefore, Snk
(f,0)= 2

π
Ik + o(1)→+∞.
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In the above example, we could select a subsequence {Snk
(f,0)} that tends to

+∞. As we will see in Sect. 10.4.1, it is impossible to construct a continuous func-
tion for which Sn(f,0) −→

n→∞+∞. We also remark that, in the above example, esti-

mate (6) for the Fourier sums is almost attained (in order) on the sequence {nk} (see
also Exercise 13).

By a slightly more complicated construction it is possible to give an example of
a continuous function whose Fourier series diverges on a countable set. Must this
series converge almost everywhere? This famous problem was open for more than
half a century. It was answered in the affirmative only in 1966 by L. Carleson.14 It
turned out that the Fourier series of an arbitrary function of class L̃ 2 (for example a
continuous function) converges to the function almost everywhere (see [C]). Since
that time, several modifications and strengthenings of the original proof have been
obtained, but all of them are quite difficult and lie far beyond the scope of this book.

10.3.10 Using the Riemann–Lebesgue theorem, we can obtain an important result
concerning arbitrary trigonometric series, i.e., series of the form

A+
∞∑

n=1

(an cosnx + bn sinnx) (A,an, bn ∈C). (10)

As we know, (see Sect. 10.3.6) even an everywhere convergent trigonometric series
may not be a Fourier series. At the same time, the following statement holds:

Theorem (Denjoy15–Luzin) If series (10) converges absolutely on a set of positive
measure, then

∞∑

n=1

(|an| + |bn|
)
<+∞. (11)

In particular, if a trigonometric series converges absolutely on a set of positive
measure, then it converges uniformly on R, and, therefore, is the Fourier series of
its sum.

Proof Without loss of generality, we may assume that the coefficients an and bn are
real. We put ϕn(x)= |an cosnx+bn sinnx|. Since the series

∑∞
n=1 ϕn converges on

a set of positive measure, its sum is bounded on a smaller set X of positive measure,

∞∑

n=1

ϕn(x)� C for all x ∈X.

14Lennart Axel Edvard Carleson (born 1928)—Swedish mathematician.
15Arnaud Denjoy (1884–1974)—French mathematician.
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Consequently (in what follows, λ is the one-dimensional Lebesgue measure),

∞∑

n=1

∫

X

ϕn(x) dx � Cλ(X).

We represent the functions ϕn in the form ϕn(x) = cn|sin(nx + θn)|, where
cn =

√
a2
n + b2

n and θn ∈ R. Using the obvious inequality |sin t | � sin2 t and the
Lebesgue–Riemann theorem, we see that

∫

X

1

cn
ϕn(x) dx �

∫

X

sin2(nx + θn) dx =
∫

X

1− cos 2(nx + θn)

2
dx −→

n→∞
λ(X)

2
.

Therefore,

0 <
λ(X)

3
�

∫

X

1

cn
ϕn(x) dx for n�N

for some N , and, consequently,

∞∑

n=N

λ(X)

3
cn �

∞∑

n=N

∫

X

ϕn(x) dx � Cλ(X).

Thus, the following estimate is valid for the remainder of series (11):

∞∑

n=N

(|an| + |bn|
)
� 2

∞∑

n=N

√
a2
n + b2

n = 2
∞∑

n=N

cn � 6C.
�

EXERCISES

1. Let f ∈ L̃ 1(Rm). By the method used in the second proof of the Lebesgue–
Riemann theorem, prove that |f̂ (n)|� 1

2‖f − fτ‖1, where fτ is the translation
of the function f by the vector τ = πn/‖n‖2.

2. Prove that the Fourier sums of the function f (x)=∑∞
k=1 2−k coskx provide al-

most the best uniform approximations for f , more precisely, ‖f − Sn(f )‖∞ �
3‖f − T ‖∞ for every trigonometric polynomial T of order n.

3. Show by example that an absolutely continuous function may not satisfy Dini’s
condition.

4. Verify by examples that neither of the Dini and Dirichlet tests implies the other.
5. Prove (see [HR], Sect. 6.7) that

1

2

(

Sn

(

f,x + π

2n

)

+ Sn

(

f,x − π

2n

))

−→
n→∞ f (x)

if the function f in L̃ 1 is continuous at x. Hint. Verify that the functions
1
2 (Dn(x + π

2n )+Dn(x − π
2n )) form a periodic approximate identity.

6. Verify that f ∈ L̃ 1 belongs to the class L̃ 2 if and only if the series∑∞
n=−∞ |f̂ (n)|2 converges.
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7. Prove that a function f ∈ C̃ is the restriction of an entire function to R if and
only if n

√
|f̂ (±n)| → 0 as n→∞.

8. Prove that if the sequence of partial sums of a Fourier series is uniformly
bounded, then the function belongs to L̃∞.

9. Let g,h ∈ L̃ . Prove that the Fourier sums Sn(hg, x) of the product hg are
uniformly bounded (with respect to n and x) if the function g has the same
property and the function h satisfies the Dini condition uniformly:

∫ π

−π

∣
∣
∣
∣
h(u)− h(x)

u− x

∣
∣
∣
∣du� const for all x.

10. Assume that a function f (possibly discontinuous) is such that the interval
[−π,π] can be divided into a finite number of intervals inside each of which
the function f satisfies the Lipschitz condition of order α > 0. Prove that the
Fourier sums Sn(f, x) are uniformly bounded with respect to x and n.

11. Prove that
∫ π

−π
|Dn(u)|du= 4

π2 lnn+O(1).
12. Supplement inequality (6) by proving that ‖f − Sn(f )‖∞ = o(lnn) as n→∞

if f ∈ C̃. Verify that, for bounded functions, this refinement is, generally, false.
Hint. Modify the Schwartz example by putting f (t) = sinnkt on the interval
[tk, tk−1].

13. Modifying the Schwartz example, verify that the result of the previous exercise
is precise, i.e., that for every sequence εn ↓ 0, there is a function f ∈ C̃ such
that Sn(f,0)� εn lnn along some sequence of indices nk →∞.

14. Show that the convergence of a Fourier series of a function f ∈ C̃ does not
imply the convergence of the Fourier series of the function f 2. Hint. Modifying
the Schwartz example, construct a non-negative even function F ∈ C̃, F(0)=
F(±π)= 0, with Fourier series divergent at zero and consider an odd function
f equal to

√
F on [0,π].

15. Prove that an, bn −→
n→∞ 0 if the sums an cosnx+ bn sinnx converge to zero on a

set of positive measure.
16. Find a set E ⊂ (0,2π) of the cardinality of the continuum and a sequence

nk →+∞ such that sinnkx ⇒ 0 on the set E.
17. Consider the series

∑∞
n=1 sin(n!πx).

(a) Prove that the series converges at the points x = sin 1, x = cos 1, x = 2
e
, and

their multiples and converges at the points ke (k ∈N) only for odd k. Is the
convergence absolute?

(b) Prove that the given series diverges at the points x = sinh 1 and x =
1
2 cosh 1.

(c) Find a set of the cardinality of the continuum at all points of which the given
series converges.

18. Prove that 1
n
S′n(f, x) −→n→∞

1
π
(f (x + 0)− f (x − 0)) if the periodic function f

has a bounded variation on the interval [−π,π].
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10.4 �Trigonometric Fourier Series (Continued)

10.4.1 The fact that a Fourier series may diverge, even at points of continu-
ity, suggests that we might obtain information on its behavior if we consider a
weaker definition of convergence than the classical one. One of the possible ap-
proaches is to investigate the convergence of the arithmetic means of the partial
sums rather than the partial sums themselves. The limit of a sequence {an} in the
sense of arithmetic means or in the sense of Cesaro16 is, by definition, the limit
limn→∞ 1

n
(a0 + · · · + an−1). It can exist even in the case where the sequence it-

self diverges, for example, if an = (−1)n. At the same time, if an −→
n→∞ a, then also

1
n
(a0+· · ·+an−1) −→

n→∞ a (the permanence of the method of arithmetic means). For

numerical series, this approach leads to the concept of a generalized sum of a series.
We say that a series Cesaro converges to a number C if the limit of the partial sums
of the series in the sense of Cesaro is equal to C.

Based on these considerations, we put

σn(f, x)= 1

n

(
S0(f, x)+ · · · + Sn−1(f, x)

)
,

where S0(f, x), . . . , Sn−1(f, x) are partial sums of the Fourier series of f . The sums
σn are called the Fejér17 sums. From Eq. (5) of Sect. 10.3.3, it follows that

σn(f, x)=
(

f ∗ 1

n

n−1∑

j=0

Dj

)

(x)= 1

2πn

∫ π

−π

f (x − u)

sin u
2

n−1∑

j=0

sin

(

j + 1

2

)

udu. (1)

The trigonometric identity

sin
u

2
+ sin

3

2
u+ · · · + sin

(

n− 1

2

)

u= 1− cosnu

2 sin u
2

= sin2 n
2u

sin u
2

(u /∈ 2πZ),

the verification of which is left to the reader, allows one to represent the right-hand
side of Eq. (1) in the form

σn(f, x)= 1

2πn

∫ π

−π

f (x − u)

(
sin n

2u

sin u
2

)2

du.

Thus, a Fejér sum can be represented as the convolution of f and the function

�n(u)= D0(u)+ · · · +Dn−1(u)

n
= 1

2πn

(
sin n

2u

sin u
2

)2

, (2)

16Ernesto Cesaro (1859–1906)—Italian mathematician.
17Lipót Fejér (1880–1959)—Hungarian mathematician.
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which is called the nth Fejér kernel. We advise the reader to sketch the graph of �n

and compare it with the graph of the Dirichlet kernel.
The Fejér kernel can be represented in the form

�n(u)= 1

n

n−1∑

j=0

Dj(u)= 1

2πn

n−1∑

j=0

∑

|k|�j

eiku = 1

2π

∑

|k|<n

(

1− |k|
n

)

eiku,

and, therefore,

�̂n(k)=
{

1
2π (1− |k|

n
) for |k|< n,

0 for |k|� n.
(3)

We verify that the sequence {�n} is an approximate identity. It follows from
Eq. (2) that the Fejér kernels are non-negative and periodic. Since

∫ π

−π
Dj (u)du= 1

for all j , we have
∫ π

−π

�n(u)du= 1

n

(∫ π

−π

D0(u) du+ · · · +
∫ π

−π

Dn−1(u) du

)

= 1.

Finally, the Fejér kernels have a strong form of the localization property (see condi-
tion (c′)) of Sect. 7.6.5), namely, Eq. (2) implies that

�n(u)= 1

2πn

(
sin n

2u

sin u
2

)2

� 1

2πn sin2 δ
2

= Cδ

n

for δ < |u| < π . Now, we are ready to state the main result of this section, which
plays an important role in harmonic analysis.

Theorem (Fejér) Let f ∈ L̃ 1 and x ∈R. Then:

(a) if the limits L± = limt→x±0 f (t) exist and are finite, then σn(f, x) −→
n→∞

L++L−
2 ;

(b) if f ∈ C̃, then σn(f ) ⇒
n→∞

f on R;

(c) if f ∈ L̃ p for some p ∈ [1,+∞), then ‖σn(f )− f ‖p −→
n→∞ 0;

(d) σn(f ) −→
n→∞ f almost everywhere.

Proof In the case where the limit limt→x f (t) exists and is finite, both assertions (a)
and (b) are special cases of Theorem 7.6.5 (in view of the remarks to it) for m= 1,
T = N and t0 = +∞. If the one-sided limits are distinct, then we must use the
fact that the Fejér kernels are even and apply the result obtained to the function
f0(u)= (f (x + u)+ f (x − u))/2, which tends to (L+ +L−)/2 as u→ 0.

Assertion (c) is already known. It is a special case of Theorem 2 of Sect. 9.3.7.
To prove the last assertion, we estimate the “hump-shaped” majorant of a Fe-

jér kernel ψn(x) = sup|x|�y�π �n(y). Since �n(y) � �n(0) = n
2π and �n(y) �
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1
2πn sin2 y

2
� π

2ny2 , we see that ψn(x) � 1
2π min{n, π2

nx2 }. From this, it immediately

follows that
∫ π

−π

ψn(x) dx � 2 for all n ∈N.

Thus, the assumptions of Theorem 3 of Sect. 9.3.7 are fulfilled and, therefore,
σn(f ) −→

n→∞ f almost everywhere. �

By statement (a) of the theorem and the permanence of the method of arithmetic
means, we are now able to answer the question we posed before taking up the inves-
tigation of the convergence of Fourier series (see Sect. 10.3.3): if the Fourier series
of a summable function f converges at a point of continuity of f , then the sum of
the Fourier series is necessarily equal to the value of f at this point.

Since the convolution f ∗�n is a trigonometric polynomial, the Fejér theorem
supplements the Weierstrass theorem (see Corollary 7.6.5) by providing specific
approximating polynomials.

Remark The third and, obviously, the fourth statements of the theorem give new
proofs of the uniqueness theorem. Indeed, if functions f,g ∈ L̃ 1 have the same
Fourier coefficients, then σn(f ) = σn(g) for all n. Therefore, statement (c) of the
theorem for p = 1 implies the relation

‖f − g‖1 = lim
n→∞

∥
∥σn(f )− σn(g)

∥
∥

1 = 0.

Consequently, the functions f and g are equal almost everywhere.

As we have verified, the Fejér sums σn(f ) have the obvious advantage over
the partial sums Sn(f ) of the Fourier series that they approximate an arbitrary
summable function in the integral metric and converge uniformly to f if f is contin-
uous. It should be mentioned, however, that there is a price to pay for the universal-
ity of the Fejér sums: they cannot converge to the function rapidly (see Exercise 2).
Therefore, if a Fourier series converges rapidly, then the Fejér sums are a poorer
approximation of the function than the Fourier sums (see Exercise 2, Sect. 10.3).

In some cases, Fejér sums allow one to obtain an additional information concern-
ing the behavior of Fourier sums.

Corollary 1 The Fourier series of an absolutely continuous periodic function f

converges to f uniformly on R.

Proof By the second statement of the Fejér theorem, it is sufficient to verify that the
difference Sn(f )− σn(f ) converges uniformly to zero. It is clear that

∣
∣Sn(f, x)− σn(f, x)

∣
∣=

∣
∣
∣
∣
∣

n∑

k=−n

|k|
n

f̂ (k)eikx

∣
∣
∣
∣
∣
� 1

n

n∑

k=−n

|k|∣∣f̂ (k)
∣
∣.
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By assumption, we have f (x)= f (0)+ ∫ x

0 g(t) dt , where g = f ′ ∈ L̃ 1, and, there-

fore (see property (d) of Sect. 10.3.2) |kf̂ (k)| = |f̂ ′(k)|. It remains to use the per-
manence of the method of arithmetic means: since f̂ ′(k) −→|k|→+∞ 0, we have

max
x∈R

∣
∣Sn(f, x)− σn(f, x)

∣
∣ � 1

n

n∑

k=−n

∣
∣f̂ ′(k)

∣
∣ −→
n→∞ 0.

�

Corollary 2 Let f be a periodic function satisfying the Lipschitz condition of or-
der α, 0 < α < 1, i.e.,

there exists a number L such that |f (x)− f (y)|� L|x − y|α for all x, y ∈R.

Then the Fourier series of f converges uniformly on R and

∣
∣Sn(f, x)− f (x)

∣
∣ � CαL

lnn

nα
for all x ∈R.

The coefficient Cα depends only on α (for the case α = 1, see Exercise 3).

Proof First, we estimate the deviation of the Fejér sums. Since

σn(f, x)− f (x)=
∫ π

−π

(
f (x − t)− f (x)

)
�n(t) dt,

we obtain

∣
∣σn(f, x)− f (x)

∣
∣ �

∫ π

−π

∣
∣f (x − t)− f (x)

∣
∣�n(t) dt �

L

πn

∫ π

0
tα

(
sin n

2 t

sin t
2

)2

dt

� πL

n

∫ π

0

sin2 n
2 t

t2−α
dt = πL

n

(
n

2

)1−α ∫ πn/2

0

sin2 u

u2−α
du.

Thus, ‖σn(f )− f ‖∞ � C̃αL/nα , where C̃α = π2α−1
∫∞

0
sin2 u

u2−α du.
To estimate the deviation of the Fourier sums, we observe that Sn(f ) − f =

Sn(ϕn)−ϕn, where ϕn = f −σn(f ), since Sn(σn(f ))= σn(f ). Therefore, inequal-
ity (6) of Sect. 10.3.3 implies

∣
∣Sn(f, x)− f (x)

∣
∣ �

∣
∣Sn(ϕn, x)

∣
∣+ ∣

∣ϕn(x)
∣
∣ � 3‖ϕn‖∞ lnn� 3C̃αL

lnn

nα
. �

10.4.2 The non-negativity of the Fejér kernels yields interesting properties of the
Fourier series. For example, if the coefficients of the Fourier series of a function are
non-negative, then the Fourier series converges absolutely if the function is bounded
in a neighborhood of zero. Indeed, let a function f ∈ L̃ 1 be such that f̂ (k)� 0 for
all k ∈ Z and |f (x)| � C if |x| < δ. Since 0 � �n(x) � Cδ for δ � |x| � π , we
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obtain

∣
∣σn(f,0)

∣
∣ =

∣
∣
∣
∣

∫ π

−π

f (x)�n(x) dx

∣
∣
∣
∣ �

∫ δ

−δ

C�n(x)dx +
∫

δ�|x|�π

Cδ

∣
∣f (x)

∣
∣dx

� C +Cδ‖f ‖1.

Therefore,

∑

|k|<n
2

f̂ (k)� 2
∑

|k|<n

(

1− |k|
n

)

f̂ (k)= 2σn(f,0)� 2
(
C +Cδ‖f ‖1

)
.

Since this inequality is fulfilled for all n, the series
∑∞

k=−∞ f̂ (k) converges.

Now, we consider an arbitrary trigonometric series of the form

1

2
c0 +

∞∑

n=1

cn cosnx, (4)

where the coefficients form a convex sequence tending to zero (the convexity of
a sequence {cn}n�0 means that cn � 1

2 (cn−1 + cn+1) for all n ∈ N). The fact that
series (4) converges pointwise for x /∈ 2πZ can easily be verified by the Dirichlet
test.

Before passing to the study of the sum of series (4), we prove a lemma on nu-
merical series.

Lemma Let {cn}n�0 be a convex sequence tending to zero. Then:

(1) cn−1 � cn � 0 for all n ∈N;
(2)

∑∞
k=1 k(ck−1 − 2ck + ck+1)= c0.

Proof We put bn = cn−1 − cn. The convexity implies that bn � bn+1, and, conse-
quently, bn � 0 (because bn −→

n→∞ 0), which proves the first statement.

It is obvious that the series
∑∞

k=1 bk converges and its sum is equal to c0. Since

nbn � 2
∑

n/2�k�n

bk � 2
∑

k�n/2

bk,

we see that nbn −→
n→∞ 0 together with the remainder of a convergent series. This

relation and the equality ck−1−2ck+ck+1 = bk−bk+1 allow us to prove the second
statement,

n∑

k=1

k(ck−1 − 2ck + ck+1) =
n∑

k=1

k(bk − bk+1)=
n∑

k=1

kbk −
n+1∑

k=2

(k − 1)bk

=
n∑

k=1

bk − nbn+1 −→
n→∞ c0.

�
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Theorem Let the coefficients of series (4) form a convex sequence tending to zero.
Then the sum f of the series is non-negative and summable on (−π,π) and se-
ries (4) is the Fourier series of f .

Proof We transform a partial sum Sn(x) of series (4). Using the relation coskx =
π(Dk(x)−Dk−1(x)), we obtain

1

π
Sn(x) = c0D0(x)+

n∑

k=1

ck
(
Dk(x)−Dk−1(x)

)

= cnDn(x)+
n−1∑

k=0

(ck − ck+1)Dk(x).

Since Dk(x) = (k + 1)�k+1(x) − k�k(x), after elementary transformations, we
arrive at the relation

1

π
Sn(x)= cn Dn(x)+ (cn−1 − cn)n�n(x)+

n−1∑

k=1

(ck−1 − 2ck + ck+1)k�k(x).

We observe that ck−1 − 2ck + ck+1 � 0 since the sequence {ck}k�0 is convex. Be-
cause the sequences {Dn(x)}n�1 and {n�n(x)}n�1 are bounded for x �= 0 (see for-
mula (4′) of Sect. 10.3.3 and (2) above) and cn −→

n→∞ 0, the first two terms on the

right-hand side of the last equation tend to zero. Therefore, passing to the limit in
this equation as n→∞, we see that

f (x)= π

∞∑

k=1

(ck−1 − 2ck + ck+1)k�k(x)= 1

2

∞∑

k=1

(ck−1 − 2ck + ck+1)

(
sin k

2x

sin x
2

)2

.

(5)

This proves that the function f is non-negative. Because non-negative series can be
integrated termwise (see Corollary 1 of Sect. 4.8.2), we obtain

∫ π

−π

f (x) dx = π

∞∑

k=1

(ck−1 − 2ck + ck+1)k

∫ π

−π

�k(x) dx

= π

∞∑

k=1

(ck−1 − 2ck + ck+1)k = πc0

(the last equation is valid by statement (2) of the lemma). Thus,
∫ π

−π
f (x) dx <+∞.

Now, we verify that series (4) is the Fourier series of the function f . Obviously,
the function f remains a majorant of the partial sums after multiplication of se-
ries (5) by cos jx. Therefore, the series obtained by multiplication can be integrated
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termwise, which leads to the following relation for the Fourier cosine coefficients

aj (f )= π

∞∑

k=1

(ck−1 − 2ck + ck+1)kaj (�k).

Since aj (�k)= �̂k(j)+ �̂k(−j), we obtain by Eq. (3) that

aj (f )=
∞∑

k=j+1

(ck−1 − 2ck + ck+1)(k − j)=
∞∑

k=1

(ck+j−1 − 2ck+j + ck+j+1)k

for j ∈ N. The numbers c̃k = ck+j (k = 0,1,2 . . .) obviously form a convex se-
quence. Applying statement (2) of the lemma to this sequence, we see that the
sum of the last series is equal to c̃0. Therefore, aj (f ) = c̃0 = cj . The relation
A(f ) = 1

2π

∫ π

−π
f (x) dx = 1

2c0 has already been obtained in the proof that f is
summable. �

A sequence of coefficients satisfying the conditions of the theorem can tend to
zero arbitrarily slow (see Exercise 4). For example, since the sequence {1/ lnn}n�2
is convex, the theorem we have just proved implies that the sum of the series∑∞

n=2
cosnx

lnn
belongs to L̃ 1 and the series itself is the Fourier series of its sum.

In this connection, we recall that the everywhere convergent series
∑∞

n=2
sinnx
lnn

is
not a Fourier series, as established in Sect. 10.3.6.

10.4.3 The Fejér method is based on Cesaro’s generalization of the sum of a nu-
merical series. Other generalizations of the concept of the sum of a series are also
possible. One of them is based on the following well-known Abel theorem for nu-
merical series: if a series

∑∞
n=1 cn converges to the sum S, then the sum of the series∑∞

n=1 e
−εncn tends to S as ε→+0. This limit can exist also for a divergent series,

and, therefore, can be regarded as a generalized sum of the series in question.
With a view to applications to Fourier series, it is natural to replace the sum-

mation over N by a summation over Z and use the symmetric partial sums Sj =∑
|k|�j ck . In this case, we should assume that, by Cesaro’s method, to each numer-

ical series
∑

n∈Z cn (convergent or not), we must assign the sequence of sums

σn = 1

n
(S0 + · · · + Sn−1)= 1

n

n−1∑

j=0

( ∑

|k|�j

ck

)

=
∑

|k|<n

(

1− |k|
n

)

ck

and, by Abel’s method, we must assign the function

A(ε)=
∑

n∈Z
e−ε|n|cn

(to simplify the exposition, we will consider only bounded sequences {cn}n∈Z; for
Fourier series, this condition is always fulfilled). In the first case, we calculate the
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limit limn→∞ σn, and, in the second case, the limit limε→+0 A(ε). It can be proved
that if the first limit exists (i.e., the series converges in the sense of Cesaro), then
the second limit also exists (i.e., the series converges in the sense of Abel) and the
limits are equal. In this sense, Abel’s method is stronger that the method of Cesaro.
We will not dwell on the comparison of these methods. Instead, we show that both
methods are special cases of the following general scheme.

Let M be a decreasing function summable on [0,+∞), and let M(0) =
limu→0 M(u) = 1. It is clear that M � 0 and the series

∑
n∈ZM(ε|n|) converges

for every ε > 0.
To an arbitrary numerical series

∑
n∈Z cn with bounded terms, we assign the

absolutely convergent series

SM(ε)=
∞∑

n=−∞
M

(
ε|n|)cn,

which converges uniformly with respect to ε > 0, provided the initial series con-
verges. Under this assumption limε→+0 SM(ε)=∑

n∈Z cn. The limit limε→+0 SM(ε),
if it exists, is called the generalized sum of the given series. We have M(u) =
(1 − u)+ and M(u) = e−u for the Cesaro and the Abel method, respectively. We
obtain the usual sum of a series if we take M(u)= χ[0,1](u).

Turning to Fourier series, we see that, to each function f ∈ L̃ 1, we must assign
the sums

SM,ε(f, x)=
∞∑

n=−∞
M

(
ε|n|)f̂ (n)einx (x ∈R).

To find integral representations for them, we use property (e) of Sect. 10.3.2,
f̂ ∗ g(n)= 2πf̂ (n) · ĝ(n), which allows us to regard SM,ε(f ) as the sum of Fourier
series of the convolution f ∗ωε , where

ωε(x)= 1

2π

∞∑

n=−∞
M

(
ε|n|)einx = 1

2π
+ 1

π

∞∑

n=1

M(εn) cosnx (x ∈R).

By the uniqueness theorem (Corollary 1 of Sect. 10.3.6), the functions f ∗ ωε and
SM,ε(f ) coincide almost everywhere. Since the functions are continuous, they co-
incide everywhere.

To study the behavior of the sums SM,ε(f ) as ε→+0, we impose an additional
constraint on the function M . We will assume that it is convex on [0,+∞). Then,
the sequence {M(εn)}n�0 is convex and ωε(x)� 0 by Theorem 10.4.2.

Lemma Let M be a continuous function convex on [0,+∞), tending to zero at
infinity, and let M(0) = 1. Then the functions ωε form a periodic approximate
identity with the strong localization property as ε → +0. Moreover, there exist
even functions �ε that decrease on [0,π], majorize ωε , and satisfy the inequality∫ π

−π
�ε(x) dx � 2.
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For the definition of the strong localization property, see Sect. 7.6.5.

Proof Obviously,
∫ π

−π
ωε(x) dx = 1 and, as mentioned above, the function ωε is

non-negative. We verify that it has the localization property. For this, we use Eq. (5)
with f = πωε and cn = M(εn), which implies that, for δ < |x| < π and Cδ =
1/(2π sin2 δ/2),

ωε(x)=
∞∑

n=1

(
M(nε− ε)− 2M(nε)+M(nε+ ε)

)
n�n(x)

� Cδ

∞∑

n=1

(
M(nε− ε)− 2M(nε)+M(nε+ ε)

)

= Cδ

(
M(0)−M(ε)

) −→
ε→+0

0.

To prove the last statement of the lemma, we use the previous equation one more
time. Replacing the Fejér kernel �n in it by the majorant ψn constructed in the proof
of Theorem 10.4.1, we obtain

ωε(x)�
∞∑

n=1

(
M(nε− ε)− 2M(nε)+M(nε+ ε)

)
nψn(x)≡�ε(x).

As established in the same proof,
∫ π

−π
ψn(x) dx � 2, and, therefore,

∫ π

−π

�ε(x) dx =
∞∑

n=1

(
M(nε− ε)− 2M(nε)+M(nε+ ε)

)
n

∫ π

−π

ψn(x) dx

� 2
∞∑

n=1

(
M(nε− ε)− 2M(nε)+M(nε+ ε)

)
n= 2M(0)

(the last equality is valid by the second statement of Lemma 10.4.2). �

Now, we are able to study the behavior of the sums SM,ε(f, x).

Theorem Let f ∈ L̃ 1, x ∈ R, and let the function M be summable on [0,+∞)

and satisfy the conditions of the lemma. Then:

(a) if the limits L± = limt→x±0 f (t) exist and are finite, then SM,ε(f, x) −→
ε→0

L++L−
2 ;

(b) if f ∈ C̃, then SM,ε(f ) ⇒
ε→0

f on R;

(c) if f ∈ L̃ p for some p ∈ [1,+∞), then ‖SM,ε(f )− f ‖p −→
ε→0

0;

(d) SM,ε(f, x)−→
ε→0

f (x) almost everywhere.
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Proof The proof can be obtained by repeating verbatim the proof of the Fejér the-
orem. Indeed, the proof of the Fejér theorem uses only the fact that the sum σn(f )

is the convolution of the function f and an even approximate identity satisfying
the strong localization property and having a hump-shaped majorant, which, by the
lemma, is also valid for the sum SM,ε(f ). �

In conclusion, we note that, applying Abel’s method to a Fourier series, i.e.,
taking M(u)= e−u, we obtain the sums

Sε(f, x)=
∞∑

n=−∞
e−ε|n|f̂ (n)einx

called the Abel–Poisson sums. We have already encountered the corresponding ap-
proximate identity ωε . Indeed, let r = e−ε and z= reix . Then

2πωε(x) = 1+ 2
∞∑

n=1

rn cosnx =Re

(

1+ 2
∞∑

n=1

zn

)

=Re
1+ z

1− z
= 1− r2

1− 2r cosx + r2
.

Thus, in the case in question, the function ωε is nothing but the Poisson kernel for
the disc (for the definition, see Sect. 8.7.10).

10.4.4 The rest of the section is devoted to multiple trigonometric Fourier series, i.e.,
to series in the system {ei〈n,x〉}n∈Zm . As was mentioned in Sect. 10.2.2, this system
is an orthogonal basis in the space L 2((−π,π)m). Therefore, the L 2-theory of
multiple Fourier series is a special case of the general theory where the convergence
of these series is in the L 2-norm, and we will not touch on this here. The situation is
completely different in regard to other forms of convergence. The problems arising
here are connected with the fact that there is no preferred definition of the sum of a
multiple series. It is possible to find the limit of the partial sums over unboundedly
expanding balls, cubes, parallelepipeds, etc. It turns out that the answers to most
problems depend essentially on the choice of the definition of a partial sum. We will
not dwell on this topic, instead confining ourselves to partial sums over rectangles.
Even in this case, for m > 1, there are phenomena that did not occur in the one-
dimensional situation.

We introduce the necessary notation. When speaking of periodic functions in R
m,

we will always mean 2π -periodicity with respect to each variable. By C̃(Rm) and
C̃r (Rm) (r ∈N), we denote the classes of periodic continuous and periodic smooth
functions, respectively, defined on R

m; by L̃ p(Rm) (1 � p �+∞), we denote the
class of periodic pth power summable functions on the cube Q= (−π,π)m. For a
function f in L̃ p(Rm), we denote the L̃ p-norm of its restriction to Q by ‖f ‖p .
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For a function f ∈ L̃ 1(Rm) and a multi-index n ∈ Z
m,

f̂ (n)= 1

(2π)m

∫

Q

f (x)e−i〈n,x〉 dx

is the nth Fourier coefficient of f .
When solving the problem of expanding a periodic function in the Fourier se-

ries
∑

n∈Zm cne
i〈n,x〉, as in the one-dimensional case, there is no freedom in the

choice of coefficients. The reasoning used at the end of Sect. 10.3.1 also remains
also in the case in question. More precisely, let Sj (x)=∑

n∈Aj
cne

i〈n,x〉 be the par-
tial sums of this series corresponding to expanding bounded sets Aj ⊂R

m such that⋃∞
j=1 Aj = R

m. If Sj −→
j→∞ S almost everywhere or in measure, then the function

S can be called the sum of the series. If, in addition, the partial sums Sj are dom-
inated by some function g in L̃ 1(Rm), then the coefficients of the given trigono-
metric series are determined uniquely. Indeed, as follows from Lebesgue’s theorem,
Ŝ(n)= limj→∞ Ŝj (n)= cn. Therefore, under the present hypothesis, the expansion
of a function in a multiple Fourier series is unique.

For absolutely convergent Fourier series, all definitions of partial sums give the
same result because, in this case, the terms of the Fourier series form a summable
family. Moreover, an absolutely convergent trigonometric series is, obviously, the
Fourier series of its sum. Since the trigonometric system is complete (see Theo-
rem 10.2.2) the sum of an absolutely convergent Fourier series coincides with the
function almost everywhere, and if the function is continuous, it converges ev-
erywhere (in the one-dimensional case, this has been noted at the beginning of
Sect. 10.3.8). As we will soon verify, the Fourier series of smooth functions con-
verge absolutely.

In the multi-dimensional case, all basic properties of the coefficients of a Fourier
series, as well as their proofs, are preserved (in what follows, n = (n1, . . . , nm) ∈
Z

m):

(a) |f̂ (n)|� 1
(2π)m

‖f ‖1;

(b) |f̂ (n)| → 0 as ‖n‖→+∞;
(c) the Fourier coefficients of a translation fh (h ∈R

m), i.e., of the function fh(x)=
f (x − h), are connected with the Fourier coefficients of f by the formulas
f̂h(n)= e−i〈n,h〉f̂ (n);

(d) if f ∈ C̃r (Rm) and g = ∂rf
∂xj1 ...∂xjr

, then ĝ(n)= irnj1 · · ·njr ĝ(n);

(e) f̂ ∗ g(n)= (2π)mf̂ (n) · ĝ(n) for all functions f and g in L̃ 1(Rm).

By property (d), it is easy to show that the functions of class C̃(m+1)(Rm) have
absolutely convergent Fourier series. The following theorem shows that the smooth-
ness requirement can be weakened considerably.

Theorem If f ∈ C̃r (Rm) and r > m/2, then
∑

n∈Zm |f̂ (n)|<+∞, and, therefore,
f (x)=∑

n∈Zm f̂ (n)ei〈n,x〉 for all x.
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Proof Indeed, by property (d), we have |nk|r |f̂ (n)| = |̂gk(n)|, where n =
(n1, . . . , nm) ∈ Z

m+ and gk = ∂rf
∂xr

k
, k = 1, . . . ,m. We put

cn =
∣
∣̂g1(n)

∣
∣+ · · · + ∣

∣̂gm(n)
∣
∣= (|n1|r + · · · + |nm|r

)∣
∣f̂ (n)

∣
∣.

Since ‖n‖r �mr/2 max{|n1|r , . . . , |nm|r }�mr/2(|n1|r + · · · + |nm|r ), we obtain

∣
∣f̂ (n)

∣
∣= cn

|n1|r + · · · + |nm|r � const
cn

‖n‖r
for all n �= 0. It is clear that

∑

n∈Zm

c2
n =

∑

n∈Zm

(∣
∣̂g1(n)

∣
∣+ · · · + ∣

∣̂gm(n)
∣
∣
)2

� m
∑

n∈Zm

(∣
∣̂g1(n)

∣
∣2 + · · · + ∣

∣̂gm(n)
∣
∣2)

<+∞

by Bessel’s inequality. Consequently,

∑

n�=0

∣
∣f̂ (n)

∣
∣ � const

∑

n�=0

cn

‖n‖r � const

2

∑

n�=0

(
1

‖n‖2r
+ c2

n

)

<+∞

(the series
∑

n�=0
1

‖n‖2r converges since 2r > m). �

10.4.5 Now, we turn to the problem of the Fourier series representation of func-
tions from a wider class. As already mentioned, we confine ourselves to partial
sums of multiple series over rectangles. Here, we will use the notation introduced
in Sect. 1.1.6. For vectors a = (a1, . . . , am) and b = (b1, . . . , bm), the inequalities
a � b and a < b mean that a1 � b1, . . . , am � bm and a1 < b1, . . . , am < bm, re-
spectively. By |a|, we denote the vector (|a1|, . . . , |am|).

For a function f ∈ L̃ 1(Rm) and a multi-index n= (n1, . . . , nm) ∈ Z
m+, we con-

sider the partial sum

Sn(f, x)=
∑

|k|�n

f̂ (k)ei〈k,x〉

of the Fourier series over the corresponding “rectangle”. Reasoning as in Sect. 10.3.3,
we can easily verify that this sum is the convolution of f and a multi-dimensional
Dirichlet kernel equal to the product to the product of one-dimensional Dirichlet
kernels, Sn(f )= f ∗Dn, where

Dn(u)=Dn1(u1) · · ·Dnm(um)
(
u= (u1, . . . , um)

)
.

As in the one-dimensional case, the kernel Dn satisfies the equation (below, Q =
(−π,π)m)

∫

Q

Dn(u)du= 1. (6)
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It was noted in Sect. 10.3.3 that the L 1-norms of one-dimensional Dirichlet
kernels have logarithmic rate of growth. The same is also true for the Dirichlet
kernels corresponding to rectangles,

‖Dn‖1 =
∫

Q

∣
∣Dn(u)

∣
∣du=

m∏

j=1

∫ π

−π

∣
∣Dnj

(uj )
∣
∣duj  

m∏

j=1

lnnj .

Hence it follows that the following estimate is valid for periodic bounded (in partic-
ular, continuous) functions and n1, . . . , nm > 1:

∥
∥Sn(f )

∥
∥∞ � Cm

(
m∏

j=1

lnnj

)

‖f ‖∞. (7)

The following theorem shows that the class of functions with uniformly conver-
gent Fourier series is rather wide.

Theorem Assume that a periodic function f satisfies the Lipschitz condition of
order α, 0 < α � 1, i.e., there is an L such that |f (x) − f (y)| � L‖x − y‖α for
all x, y ∈R

m. Then the sums Sn(f ) converge uniformly to f as min{n1, . . . , nm}→
+∞.

Proof It is sufficient to consider the case where α < 1. In addition, we will as-
sume that m = 2 because no new ideas are required for the proof in the gen-
eral case. Subtracting Eq. (6) multiplied by f (x) from Sn(f, x) = (f ∗Dn)(x) =∫
Q
f (x − u)Dn(u)du, we obtain

�= Sn(f, x)− f (x)=
∫

Q

(
f (x − u)− f (x)

)
Dn(u)du.

To simplify the subsequent formulas, we change the notation as follows:
n= (j, k), x = (a, b) and u= (s, t). Estimating the difference �, we may assume,
without loss of generality, that the first coordinate of the vector n does not exceed
its second coordinate, i.e., j � k.

We represent the increment of the function f as the sum of the increments in
each coordinate,

f (x − u)− f (x)= f (a − s, b− t)− f (a − s, b)+ f (a − s, b)− f (a, b).

Therefore, the difference � splits into the sum of the integrals I and J , where

I =
∫

Q

(
f (a − s, b− t)− f (a − s, b)

)
Dj(s)Dk(t) ds dt

and

J =
∫

Q

(
f (a − s, b)− f (a, b)

)
Dj(s)Dk(t) ds dt

=
∫ π

−π

(
f (a − s, b)− f (a, b)

)
Dj(s) ds.
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The integral J is small by Corollary 2 of Fejér’s theorem, |J |� CαL(ln j)/jα . The
same corollary makes it possible to estimate the integral I ,

|I | �
∫ π

−π

∣
∣
∣
∣

∫ π

−π

(
f (a − s, b− t)− f (a − s, b)

)
Dk(t) dt

∣
∣
∣
∣
∣
∣Dj(s)

∣
∣ds

� Cα L
ln k

kα

∫ π

−π

∣
∣Dj(s)

∣
∣ds.

Since
∫ π

−π
|Dj(s)|ds � 2 ln j for j � 10 (see inequality (6) of Sect. 10.3.3), we

obtain

|I |� 2CαL
ln k

kα
ln j � 2CαL

ln2 k

kα
.

Thus, the inequality

∣
∣Sn(f, x)− f (x)

∣
∣= |�|� |I | + |J |� CαL

(
ln j

jα
+ 2

ln2 k

kα

)

holds for all x. �

10.4.6 Here, we present two negative results illustrating some phenomena that may
occur in the behavior of the double Fourier series and which are impossible in the
one-dimensional case.

The first of them is connected with the Riemann localization principle (see Theo-
rem 10.3.3). It turns out that this principle is not true for sums over rectangles: there
is a function f ∈ C̃ equal to zero in a neighborhood of the origin and such that the
partial sums (over rectangles) of its Fourier series are unbounded at the origin. To
verify this, consider a function f of the form f (s, t)= ϕ(s)ψ(t), where ϕ,ψ ∈ C̃.
It is easy to find a function ϕ equal to zero in the vicinity of the origin and such that
Sj (ϕ,0) �= 0 for an infinite number of indices j . We take a function ψ for which
the sequence {Sk(ψ,0)}k∈N is unbounded as the second factor (see the Schwartz
example in Sect. 10.3.9). Then the product f (s, t)= ϕ(s)ψ(t) is equal to zero not
only in the vicinity of the origin, but also in a vertical strip containing the second
coordinate axis. Moreover, Sj,k(f, (0,0))= Sj (ϕ,0)Sk(ψ,0). Taking an arbitrarily
large j for which Sj (ϕ,0) �= 0, we can choose a k such that the sum Sj,k(f, (0,0))
is larger than every preassigned number.

It can be proved that the localization principle is preserved if the usual neighbor-
hoods of a point (a, b) are replaced by “cross neighborhoods”, i.e., by sets of the
form {(s, t) |min(|s − a|, |t − b|) < δ}.

The second fact that we want to mention is connected with Carleson’s theorem
(see the end of Sect. 10.3.9) and is considerably harder. C.L. Fefferman18 observed
that this theorem cannot be carried over to functions of several variables: there is a
periodic function of two variables that is uniformly bounded in the square (0,2π)2

18Charles Louis Fefferman (born 1949)—American mathematician.
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and whose Fourier sums over rectangles are unbounded at every point of this square.
The “divergence phenomenon” manifests itself on the functions fN equal to eiNst

for 0 < s, t < 2π (N is a large parameter). It turns out that, despite the fact that
|fN | = 1, for every N > 1 and every point (s, t), there are numbers j and k such
that the quantity |Sj,k(fN , (s, t))| is comparable with lnN . We will not discuss the
Fefferman’s example in detail, but refer the reader to Exercise 10.

10.4.7 As in the one-dimensional case, one can use the Fejér sums to approximate a
function of several variables by trigonometric polynomials. In the multi-dimensional
case, these sums, as well as their partial sums, can be defined in different ways. We
define the m-dimensional Fejér sums by the equation (in what follows, n, j ∈ Z

m+
and k ∈ Z

m)

σn(f, x)= 1

n1 · · ·nm

∑

0�j<n

Sj (f, x)=
∑

|k|<n

(

1− |k1|
n1

)

· · ·
(

1− |km|
nm

)

f̂ (k)ei〈k,x〉.

Since Sj (f, x)= (f ∗Dj)(x), we obtain σn(f, x)= (f ∗�n)(x), where

�n(y)= 1

n1 · · ·nm

∑

0�j<n

Dj (y)=�n1(y1) · · ·�nm(ym).

It is natural to call the function �n the m-dimensional Fejér kernel. The properties
of the one-dimensional Fejér kernel established in Sect. 10.4.1 imply immediately
that:

(a) �n(y)� 0;
(b)

∫
Q
�n(y)dy = 1;

(c)
∫
Q\B(δ)

�n(y) dy � Cδ

min{n1,...,nm} for every δ ∈ (0,π).

Thus, we can regard the functions {�n}n∈Zm+ as an approximate identity with
the proviso that it is now parametrized by an integer vector n and the localization
property is valid as min{n1, . . . , nm} → +∞. Therefore, the following analogs of
statements (b) and (c) of Theorem 10.4.1 are valid for the sums σn(f, x).

Theorem

(1) If f ∈ C̃(Rm), then σn(f )⇒ f on R
m as min{n1, . . . , nm}→+∞.

(2) If f ∈ L̃ p([−π,π]m) for some p ∈ [1,+∞), then ‖σn(f ) − f ‖p → 0 as
min{n1, . . . , nm}→+∞.

As in the one-dimensional case (see the Remark in Sect. 10.4.1), the convergence
of the Fejér sums in mean implies, in particular, the uniqueness theorem for multiple
Fourier series:

Corollary Functions in L̃ 1(Rm) coincide almost everywhere if they have the same
Fourier coefficients.
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(For more general results, see Sects. 11.1.9 and 12.3.3.)
In the multi-dimensional case, however, the Fejér kernels do not satisfy the strong

localization property. Therefore, an analog of statement (a) of Theorem 10.4.1 can
be obtained for them only under the additional assumption that the function f is
bounded (see Theorem 7.6.5). This restriction cannot be lifted as can be shown
by modifying the example from the previous section. Indeed, we preserve the first
factor ϕ in the example and change the second factor, rejecting the continuity (which
now is not needed), as follows:

ψ(t)= cos t + 1

2
cos 2t + 1

3
cos 3t + · · · .

Since Sk(ψ,0) −→
k→∞+∞, the same is also valid for the Fejér sums, σk(ψ,0) −→

k→∞+∞. Furthermore, there are infinitely many non-zero sums σj (ϕ,0) because
the Fourier sums Sj (ϕ,0) have the same property. Consequently, the sums
σj,k(f, (0,0))= σj (ϕ,0)σk(ψ,0) are unbounded, and so do not tend to zero, even
though the function f is zero in a strip containing the second coordinate axis.

If f belongs to the class L̃ p(Rm) for some p > 1, then the sums σn(f ) con-
verge almost everywhere. Although this assumption can be weakened somewhat, it
is impossible to drop it completely.

The difficulties arising in the study of the multi-dimensional Fejér method occur
also in the “coordinatewise” generalizations of other methods, for example, of the
Abel–Poisson method. We will not discuss this question in detail, instead referring
the reader to the literature [Zy], vol. II, Chap. XVII.

10.4.8 In conclusion, we note that, for m > 1, there are different natural ways of
constructing partial sums of a multiple Fourier series and their averages. For ex-
ample, instead of sums over rectangles, we could consider only sums over cubes
centered at the origin and their arithmetic means. Although the corresponding ker-
nels will not preserve sign, it can be proved that they define a generalized approxi-
mate identity satisfying the assumption (a′), less restrictive than assumption (a) (see
Sect. 7.6.1).

Even more difficulties arise for another natural definition of the partial sums of
a Fourier series, namely, when the summation is performed over balls. In this case,
we form “ball” partial sums, putting

SR(f, x)=
∑

‖k‖<R

f̂ (k)ei〈k,x〉

for an R > 0. This partial sum can, of course, be represented as the convolution
with the corresponding “ball Dirichlet kernel” DR(y)= (2π)−m

∑
‖k‖<R ei〈k,y〉 for

which, unfortunately, no compact expression is known. The sums SR(f ) have the
important property that they do not satisfy a “logarithmic” estimate similar to in-
equality (7). This is due to the fast growth of the norms ‖DR‖1. It turns out that, as
R→+∞, the norms ‖DR‖1 grow (in order) as R(m−1)/2 (see [AIN1, AIN2]). We
will return to this unexpected result at the end of the next section.
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In the two-dimensional case, the arithmetic means of the “disc” Fourier sums
of a periodic continuous function f converge to f uniformly (and if f ∈ L̃ p(R2)

for p <+∞, then in the L p-norm), but this is not the case for a larger number of
variables.

EXERCISES

1. Let T (x) = ∑n
k=−n cke

ikx be a trigonometric series of order n, and let p ∈
[1,+∞]. Prove the Bernstein19 inequality ‖T ′‖p � 2n‖T ‖p . Hint. Verify that
T ′ = −2nT ∗�n, where �n(x)=�n(x) sinnx and �n is a Fejér kernel.

2. Prove that the Fejér sums cannot converge rapidly: either there is a δ > 0 such
that ‖f − σn(f )‖1 � δ

n
> 0 for all n ∈ N, or f ≡ const almost everywhere.

Hint. Calculate the Fourier coefficients of the difference f − σn(f ) and apply
inequality (a) of Sect. 10.3.2.

3. Supplement the result of Corollary 2 of Sect. 10.4.1 by proving that ‖Sn(f )−
f ‖∞ � CL lnn

n
for α = 1. Hint. To estimate the integral Sn(f, x) − f (x) =∫ π

−π
(f (x − u) − f (x))Dn(u)du, replace the difference f (x − u) − f (x) on

each interval [ 2k−1
n+1/2π,

2k+1
n+1/2π] by its value at the midpoint of this interval and

then verify that the integral of the Dirichlet kernel over the interval admits an
estimate O(1/k2).

4. Prove that the Fourier cosine coefficients can tend to zero arbitrarily slowly, i.e.,
for every sequence {cn}n�1 decreasing to zero, there is a function f ∈ L̃ 1 such
that cn � an(f ) for all n ∈ N. Hint. Dominate {cn}n�1 by a convex sequence
and apply Theorem 10.4.2.

5. Let the sequence of coefficients of a series
∑∞

n=1 cn cosnx be convex. Prove
that the L 1-norms of the partial sums are bounded if and only if cn =
O(1/ lnn); prove that the given series converges in L̃ 1 if and only if cn =
o(1/ lnn) as n→∞.

6. Let S(x) =∑∞
n=1 cn sinnx where cn ↓ 0. Prove that the boundedness and the

continuity of the function S is equivalent to the relation cn = O( 1
n
) and cn =

o( 1
n
), respectively.

7. Prove that the following version of Parseval’s identity is valid for func-
tions f ∈ L̃ 1 and g ∈ L̃∞: the series

∑
n∈Z f̂ (n)ĝ(n) Cesaro converges to

1
2π

∫ π

−π
f (x)g(x) dx.

8. Prove that the Fourier series of every function f in L̃ 1(Rm) can be integrated
termwise over every rectangular parallelepiped P ,

∫

P

f (x) dx =
∑

n∈Zm

f̂ (n)

∫

P

ei〈n,x〉 dx

(the sum of the series on the right-hand side of the equation is regarded as the
limit of the partial sums over rectangles).

19Sergei Natanovich Bernstein (1880–1968)—Russian mathematician.
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9. Let a function f ∈ L̃ 1(Rm) be such that f̂ (n)� 0 for all n ∈ Z
m. Prove that if

f is bounded and continuous at the origin, then its Fourier series converges ab-
solutely (therefore, f coincides with a function of class C̃ almost everywhere).
Hint. Use the fact that the sums σn(f,0) are bounded.

10. To construct a continuous function of two variables for which the Fourier series
diverges everywhere in the square (0,2π)2 (see Sect. 10.4.6), prove that the
Fourier sums Sj,k(fN) of the function fN(s, t)= eiNst (N � 1, 0 < s, t < 2π )
over the rectangles [−j, j ] × [−k, k] satisfy the following inequalities at each
point of the given square (the constants at the O-terms depend only on s and t):

(a) |Sj,k(fN ; s, t)| =O(ln j);
(b) if k > 2πN , then |Sj,k(fN ; s, t)| =O(1+ ln j

k−2πN
);

(c) |Sj,k(fN ; s, t)|� 1
2π lnN +O(1) for j = [Ns] and k = [Nt].

Conclude from this that, for a sufficiently small r > 0 and Nn = en!, the Fourier
series of the function F(s, t)=∑∞

n=1 r
neiNnst diverges unboundedly (the sums

Sj,k(F ) are unbounded) at each point of the square (0,2π)2.

10.5 The Fourier Transform

10.5.1 We introduce one of the main concepts of this chapter.

Definition The Fourier transform f̂ of a function f in L 1(Rm) is defined by the
formula

f̂ (y)=
∫

Rm

f (x)e−2πi〈y,x〉 dx
(
y ∈R

m
)

(here, as before, 〈y, x〉 is the scalar product of vectors y and x).

Theorem 7.1.3 on the continuity of an integral depending on a parameter implies
that the function f̂ is continuous. This function is bounded since

∣
∣f̂ (y)

∣
∣ � ‖f ‖1 for all y ∈R

m.

Moreover, by the Riemann–Lebesgue theorem, we have f̂ (y)→ 0 as ‖y‖→+∞.
We recall that the translation fh of a function f by a fixed vector h ∈ R

m is
defined by the equation fh(x)= f (x−h). An easy calculation shows that f̂ and f̂h

are related as follows (see also Exercise 1):

f̂h(y)=
∫

Rm

f (x − h)e−2πi〈y,x〉 dx =
∫

Rm

f (t)e−2πi〈y,t+h〉 dt = e−2πi〈y,h〉 f̂ (y).

Another operation with the argument of a function, a contraction, is also con-
nected with the Fourier transform: if a ∈R \ {0} and g(x)= f (ax), then

ĝ(y)=
∫

Rm

f (ax)e−2πi〈y,x〉 dx = 1

|a|m
∫

Rm

f (t)e−2πi 1
a
〈y,t〉 dt = 1

|a|m f̂

(
y

a

)

.
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An important property of the Fourier transform relates the operations of convo-
lution and multiplication.

Theorem If f,g ∈ L 1(Rm), then f̂ ∗ g(y) = f̂ (y) ĝ(y) (y ∈ R
m). Moreover,∫

Rm f̂ (y)g(y) dy = ∫
Rm f (y) ĝ(y) dy.

Proof The proof is an almost verbatim repetition of the corresponding reasoning for
Fourier coefficients (see property (e)) of Sect. 10.3.2),

f̂ ∗ g(y)=
∫

Rm

(∫

Rm

f (u)g(x − u)du

)

e−2πi〈y,x〉 dx

=
∫

Rm

f (u)e−2πi〈y,u〉
(∫

Rm

g(x − u)e−2πi〈y,x−u〉 dx
)

du

=
∫

Rm

f (u)e−2πi〈y,u〉
(∫

Rm

g(v)e−2πi〈y,v〉 dv
)

du= f̂ (y)ĝ(y).

The second relation is proved similarly. �

We consider some examples.

Example 1 The Fourier transform of the characteristic function χ of the interval
(−1,1) is calculated very simply:

χ̂ (y)=
∫ ∞

−∞
χ(x)e−2πiyx dx =

∫ 1

−1
e−2πiyx dx = sin 2πy

πy
.

We remark that χ̂ /∈L 1(R) (this is established in Example 1 of Sect. 4.6.6).

Example 2 We consider the function ft (x) = e−πt2x2
(x ∈ R, t > 0). Its Fourier

transform is actually calculated in Example 1 of Sect. 7.1.6:

f̂t (y)=
∫ ∞

−∞
e−πt2x2

e−2πiyx dx = 2
∫ ∞

0
e−πt2x2

cos 2πyx dx = 1

t
e
− π

t2
y2

. (1)

It is interesting to note that f̂t = 1
t
f 1

t
and, in particular, f̂1 = f1.

From Eq. (1), we immediately obtain its multi-dimensional counterpart,
∫

Rm

e−πt2‖x‖2
e−2πi〈y,x〉 dx = 1

tm
e
− π

t2
‖y‖2

. (1′)

Example 3 Let f (x)= e−|x| (x ∈R). Then

f̂ (y) =
∫ ∞

−∞
e−|x|e−2πiyx dx

= 2Re

(∫ ∞

0
e−(1+2πiy)x dx

)

=Re
2

1+ 2πiy
= 2

1+ (2πy)2
.
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Example 4 It is considerably harder to obtain a multi-dimensional generalization
of Example 3, i.e., to calculate the Fourier transform of the function f (x)= e−‖x‖
(x ∈ R

m) because, in this case, it is impossible to use separation of variables. The
complication can be overcome by an artificial trick based on an integral representa-
tion of the function e−‖x‖. We need the formula

e−t = 2√
π

∫ ∞

0
e
−u2− t2

4u2 du for every t > 0.

To obtain it, we must represent the integral on the right-hand side in the form
e−t

∫∞
0 e−(u− t

2u )
2
du. After the change of variables v = u− t

2u , this integral reduces

to the Euler–Poisson integral
∫∞
−∞ e−v2

dv =√π .
Now, we use the relation established above to calculate f̂ ,

f̂ (y)=
∫

Rm

e−‖x‖e−2πi〈y,x〉 dx = 2√
π

∫

Rm

(∫ ∞

0
e
−u2−‖x‖2

4u2 du

)

e−2πi〈y,x〉 dx.

Changing the order of integration and applying Eq. (1′) with t = 1
2
√
πu

, we obtain

f̂ (y)= 2√
π

∫ ∞

0
e−u2

(∫

Rm

e
−‖x‖2

4u2 e−2πi〈y,x〉 dx
)

du

= 2√
π

∫ ∞

0
e−u2

(2
√
πu)me−4π2u2‖y‖2

du

= 2m+1π
m−1

2

∫ ∞

0
ume−(1+4π2‖y‖2)u2

du.

Now, the change of variables v = (1 + 4π2‖y‖2)u2 allows us to express the last
integral in terms of the Gamma function, and we obtain the required result

f̂ (y)= 2mπ
m−1

2
�(m+1

2 )

(1+ 4π2‖y‖2)
m+1

2

.

Example 5 Let a,u > 0, and let f (x) = xa−1e−ux for x > 0 and f (x) = 0 for
x < 0. Then f̂ (y)= �(a)

(u+2πiy)a
(we use the branch of the power function za equal to

1 at z= 1). This was established in Example 1 of Sect. 7.1.7.

Before passing to a more detailed study of the properties of the Fourier transform,
we show the usefulness of this notion by one more example.

Example 6 Let f be a function in L 1(R) equal to zero outside (−π,π), and let f0

be its 2π -extension from this interval to R (f0 ∈ L̃ 1). The Fourier coefficients of
f0 can easily be expressed in terms of the Fourier transform of f , namely, f̂0(n)=
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1
2π f̂ ( n

2π ) for all n ∈ Z. We also consider the function g(x)= eitx for x ∈ (−π,π),
where t is a fixed number. Since the Fourier coefficients of g are equal to

ĝ(n)= 1

2π

∫ π

−π

ei(t−n)x dx = sinπ(t − n)

π(t − n)
,

we obtain by Parseval’s generalized identity (see Theorem 2 of Sect. 10.3.6)

f̂

(
t

2π

)

=
∫ π

−π

f0(x)g(x) dx = 2π
∞∑

n=−∞
f̂0(n)ĝ(n)

=
∞∑

n=−∞
f̂

(
n

2π

)
sinπ(t − n)

π(t − n)
.

Thus, the following sampling formula is valid for the function F(t)= f̂ (t/2π):

F(t)=
∞∑

n=−∞
F(n)

sinπ(t − n)

π(t − n)
= sinπt

π

∞∑

n=−∞

(−1)n

t − n
F(n).

This formula allows one to recover the value of a function F at an arbitrary point t
knowing the values of F on the integer lattice. This fact plays a fundamental role
in optics and radio engineering because it is easier to deal with a discrete system of
values than with a continuously varying signal. A multi-dimensional version of the
sampling formula is given in Exercise 3.

10.5.2 We establish elementary relations between differentiation and the Fourier
transform.

Theorem Let f ∈L 1(Rm). Then:

(1) if the partial derivative g = ∂f
∂xk

is summable and continuous for some k =
1, . . . ,m, then

ĝ(y)= 2πiykf̂ (y)
(
y ∈R

m
);

(2) if the product ‖x‖f (x) is summable, then f̂ ∈ C1(Rm) and the equation

∂f̂ (y)

∂yk
=−2πif̂k(y), where fk(x)= xkf (x)

(
x ∈R

m
)
,

holds for all y ∈R
m and k = 1, . . . ,m

Proof (1) Without loss of generality, we will assume that k =m. We identify a point
x = (x1, . . . , xm−1, t) with the pair (u, t), where u= (x1, . . . , xm−1) ∈R

m−1. First,
we verify that f (u, t)→ 0 as t →±∞ for almost all points u ∈ R

m−1. Indeed,
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since the derivative f ′t = g is continuous, we have

f (u, t)− f (u,0)=
∫ t

0
g(u, s) ds.

From Fubini’s theorem, it follows that the function t �→ g(u, t) is summable for
almost all u, and, therefore,

f (u, t)− f (u,0)=
∫ t

0
g(u, s) ds −→

t→±∞

∫ ±∞

0
g(u, s) ds.

Thus, the limits limt→±∞ f (u, t) exist and are finite for almost all u ∈R
m−1. How-

ever, since (again, by Fubini’s theorem) the function t �→ f (u, t) is summable for
almost all u, we see that the limits are zero for such u and, therefore,
∫ ∞

−∞
g(u, t)e−2πiymt dt = f (u, t)e−2πiymt

∣
∣
∣
∞
−∞ − (−2πiym)

∫ ∞

−∞
f (u, t)e−2πiymt dt

= 2πiym

∫ ∞

−∞
f (u, t)e−2πiymt dt.

To obtain the required result, it only remains to multiply both sides of this equation
by e−2πi(y1x1+···+ym−1xm−1) and integrate with respect to u.

To obtain the equation of (2), we must apply the Leibnitz rule (see Sect. 7.1.5).
The functions f1, . . . , fm are summable by assumption. Therefore, their Fourier
transforms and the first order partial derivatives of f̂ are continuous everywhere.
Consequently, f̂ ∈ C1(Rm). �

Corollary If f ∈L 1(Rm) is a compactly supported function, then f̂ ∈ C∞(Rm);
if f ∈ C∞0 (Rm), then the product ‖y‖pf̂ (y) is summable in R

m for every p > 0.

Proof The fact that f̂ is infinitely differentiable follows directly from the second as-
sertion of the theorem because the product ‖x‖nf (x) is summable for every n ∈N.

If f ∈ C∞0 (Rm), then the derivatives of all orders of f are summable and the
relation

(
∂nf

∂yn
k

)
̂(y)= (2πiyk)

nf̂ (y)

is fulfilled for all k = 1, . . . ,m and n ∈ N. Since the functions (
∂nf

∂yn
k
)̂(y) are

bounded, we obtain the estimate

∣
∣f̂ (y)

∣
∣ � const · (1+ |y1|n + · · · + |ym|n

)−1

providing (if we take sufficiently large n) the summability of ‖y‖pf̂ (y). �

In many problems, it is important to know the rate of decrease of the Fourier
transform at infinity. The theorem proved above shows that a fast decrease can be
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provided by the smoothness of the function in question. How accurate are these con-
ditions? What can be expected if smoothness fails on a “small” set? The following
examples are devoted to such results.

Example 1 Supplementing Examples 2 and 3 of Sect. 10.5.1, we investigate the
asymptotic behavior of the Fourier transform of the function f (x)= e−|x|p at infin-
ity for 0 <p < 2. After integrating by parts, we see that

f̂ (y)= 2
∫ ∞

0
e−xp

cos(2πxy)dx = p

πy

∫ ∞

0
e−xp

xp−1 sin(2πxy)dx, (2)

which implies the crude estimate f̂ (y)= o(1/y) as y→+∞. We study the behav-
ior of f̂ (y) for large y in detail. If 0 < p < 1, then the change 2πxy = u leads to
the equation

f̂ (y)= 2p

(2πy)p+1

∫ ∞

0
e
−( u

2πy
)p sinu

u1−p
du.

The integral
∫∞

0
sinu

u1−p du of the limit function (as y→+∞) converges, and Corol-
lary 2 of Sect. 7.4.7 justifies the passage to the limit,

∫ ∞

0
e
−( u

2πy
)p sinu

u1−p
du −→

y→+∞

∫ ∞

0

sinu

u1−p
du= �(p) sin

πp

2

(the equality was established in Example 1 of Sect. 7.4.8). Consequently, the esti-
mate

f̂ (y)∼ Cp

yp+1
as y→+∞ (3)

is valid for 0 <p < 1 with constant Cp = 2�(p+1)
(2π)p+1 sin πp

2 . This, in particular, implies

that the function f̂ is summable.
Now, let 1 < p < 2 (the case where p = 1 was considered in Example 3 of

Sect. 10.5.1). Integrating the right-hand side of (2) one more time, we arrive at the
equation

f̂ (y) = p

2(πy)2

(

(p− 1)
∫ ∞

0
xp−2e−xp

cos(2πyx)dx

− p

∫ ∞

0
x2(p−1)e−xp

cos(2πyx)dx

)

.

Here, the second integral admits the estimate o(1/y) as y→+∞, but the first in-
tegral tends to zero more slowly. Indeed, by an almost verbatim repetition of the
reasoning given in the case where 0 <p < 1, we obtain

∫ ∞

0
xp−2e−xp

cos(2πyx)dx ∼
y→+∞

1

(2πy)p−1
�(p− 1) sin

πp

2
.
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Thus, we again come to relation (3), which is also valid for p = 1; for p = 2, the co-
efficient Cp vanishes, and the asymptotic of f̂ changes completely (see Examples 2
and 3 of Sect. 10.5.1).

It can be proved that f̂ (y) > 0 for 0 < p � 2 (for 0 < p � 1, this follows from
the result of Example 2 of Sect. 4.6.6 and the fact that the function e−xp

is convex).

Example 2 Let us determine how fast the Fourier transform of the characteristic
function of the unit ball

χ̂B(y)=
∫

B

e−2πi〈y,x〉 dx =
∫

B

e−2πi‖y‖x1 dx = αm−1

∫ 1

−1

(
1− t2)m−1

2 e−2πi‖y‖t dt

decreases at infinity (αm−1 is the volume of the unit ball in R
m−1). For odd m the

“integral can be calculated” and χ̂B can be expressed explicitly in terms of ‖y‖. In
particular, in the one-dimensional case, we have B = (−1,1) and χ̂B(y)= sin 2πy

πy
.

For m= 3, we have χ̂B(y)= 1
π‖y‖2 (

sin 2π‖y‖
2π‖y‖ − cos 2π‖y‖) (this also follows from

the result of the Example in Sect. 6.2.5 with f0 = χ(0,1)).
For even m, the situation is more complicated. In this case, χB can be expressed

in terms of the Bessel function. However, an exact formula for χ̂B(y) is not our
main concern here. We want to study the asymptotic behavior of this function as
‖y‖→+∞. To this end, we put r = 2π‖y‖ and consider the integrals

Im(r)=
∫ 1

−1

(
1− t2)m−1

2 e−irt dt (m= 0,1,2, . . .).

The larger m is, the more derivatives of the function (1− t2)
m−1

2 vanish at the end-
points of the interval of integration. Therefore, as m increases, the rate at which the
integrals Im(r) tend to zero as r →+∞ also increases. To describe this in more
detail, we use the recurrence formula

Im(r)= m− 1

r2

(
(m− 2)Im−2(r)− (m− 3)Im−4(r)

)
(m� 4),

which can easily be obtained by twofold integration by parts. From this relation, we
see that, to obtain the asymptotic of the integral Im(r), it is sufficient to know only
the asymptotics of the integrals I0(r) and I2(r) or of I1(r) and I3(r), depending on
the parity of m. The integrals I1(r) and I3(r) can easily be calculated,

I1(r)= 2
sin r

r
, I3(r)= 4

r2

(
sin r

r
− cos r

)

.

The integrals I0(r) and I2(r) coincide with the integrals C(r) and S(r), respectively,
considered in the example of Sect. 9.2.5:
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I0(r) = C(r)=
√

π

r
(sin r + cos r)+O

(
1

r

)

,

I2(r) = S(r)=
√
π

r3/2
(sin r − cos r)+O

(
1

r2

)

.

The last four formulas can be written uniformly as follows:

Im(r)= γm

r
m+1

2

cos(r − ϕm)+O

(
1

r
m
2 +1

)

(r→+∞),

where m = 0,1,2,3, ϕm = π
4 (m + 1), and γm is a positive coefficient depending

only on m. The recurrence formula allows us to extend this relation to all positive
integers m.

Returning to the Fourier transform of the function χB , we see that

χ̂B(y)= αm−1Im
(
2π‖y‖)= Cm

‖y‖m+1
2

cos
(
2π‖y‖ − ϕm

)+O

(
1

‖y‖m
2 +1

)

.

It can be verified that Cm = 1/π for all m.
It is interesting to compare χ̂B with the function χ̂Q, where Q= (−1,1)m. It is

clear that

χ̂Q(y)=
m∏

j=1

sin 2πyj

πyj
.

If the angles between the vector y and the coordinate axes are non-zero, then this
function admits the estimate O(‖y‖−m). Thus, for most directions, the function
decreases considerably faster than χ̂B . One possible sharpening of this assertion is
as follows: the integrals LB(R)= ∫

‖y‖<R
|χ̂B(y)|dy grow considerably faster than

the integrals LQ(R)= ∫
‖y‖<R

|χ̂Q(y)|dy as R→+∞. Indeed,

LQ(R) �
∫

[−R,R]m
∣
∣χ̂Q(y)

∣
∣dy =

m∏

j=1

∫ R

−R

∣
∣
∣
∣
sin 2πyj

πyj

∣
∣
∣
∣dyj

=
(

2

π

∫ 2πR

0

|sin t |
t

dt

)m

.

It follows that LQ(R)=O(lnmR) as R→+∞. At the same time

LB(R)= αm

∫ R

0

∣
∣
∣
∣
Cm

r
m+1

2

cos(2πr − ϕm)+O

(
1

r
m
2 +1

)∣
∣
∣
∣ r

m−1 dr

= αmCm

∫ R

0
r

m−3
2

∣
∣ cos(2πr − ϕm)

∣
∣dr +O

(
R

m
2 −1)
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for m > 2 (for m= 2, the remainder term has order O(lnR)). Therefore, LB(R)=
O(R

m−1
2 ), and the estimate is exact by order,

LB(R)� αmCm

∫ R

R/2
r

m−3
2 cos2(2πr − ϕm)dr +O

(
R

m
2 −1)

� constR
m−3

2

∫ R

R/2

(
1+ cos 2(2πr − ϕm)

)
dr +O

(
R

m
2 −1)

= const

2
R

m−1
2 +O

(
R

m
2 −1)

.

Example 3 It follows from the theorem that the condition f (x) = O(‖x‖−p) as
‖x‖→+∞ implies the smoothness of the Fourier transform for p >m+1. It turns
out that this restriction cannot be weakened essentially. To verify this, we show that
if f (x)∼ ‖x‖−p as ‖x‖→+∞, then the differentiability of f̂ at zero implies the
inequality p >m+ 1.

Without loss of generality, we may assume that f � 0. Indeed, we know that
f (x) � 0 for large ‖x‖, but changing the function on an arbitrary ball (for exam-
ple, putting f (x)= 0 inside the ball), we change the Fourier transform of f by an
infinity differentiable function.

Assuming that f � 0, we study the mean value of the difference f̂ (0) − f̂ in
the vicinity of zero (in what follows, B is the unit ball centered at zero and v is the
volume of B). We put

I (r)= 1

v

∫

B

(
f̂ (0)− f̂ (ry)

)
dy.

Since f̂ is differentiable at zero, we obtain that I (r) = o(r) as r →+0. Now, we
estimate the integral I (r) from below. Since

f̂ (0)− f̂ (ry)=
∫

Rm

f (x)
(
1− e−2πir〈y,x〉)dx,

we obtain, by Fubini’s theorem, that

I (r)=
∫

Rm

f (x)

(

1− 1

v

∫

B

e−2πirs〈y,x〉 dy
)

dx =
∫

Rm

f (x)

(

1− 1

v
χ̂(rx)

)

dx,

where χ is the characteristic function of B . Obviously, χ̂(x) ∈ R and |χ̂ (x)| � v,
and the Riemann–Lebesgue theorem implies that χ̂ (x)→ 0 as ‖x‖ → +∞. We
take a sufficiently large radius R so that f (x) > 1

2‖x‖p and |χ̂ (x)|< v
2 for ‖x‖>R.

Then, since f � 0, we have

I (r) �
∫

‖x‖>R/r

f (x)

(

1− 1

v
χ̂(rx)

)

dx

� 1

4

∫

‖x‖>R/r

dx

‖x‖p =
σ(Sm−1)

4

∫

R/r

dt

tp−m+1
.

Thus, I (r)� const rp−m. Since I (r)= o(r) for r→ 0, we obtain that p >m+ 1.
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10.5.3 In the one-dimensional case, for a function f differentiable at a point x, there
is an important formula allowing one to find the value of f (x) from f̂ . This formula
is called the inversion formula and has the following form:

f (x)=
∫ ∞

−∞
f̂ (y)e2πixy dy.

The integral on the right-hand side of this equation is called the Fourier integral
of f . In general, this is an improper integral because the Fourier transform can be
non-summable on R (see Sect. 10.5.1). We will say that the integral converges if
there exists a limit of the partial integrals

IA(f, x)=
∫ A

−A

f̂ (y)e2πixy dy

as A→+∞.
There is an obvious analogy between the expansion of a periodic function in a

Fourier series and the Fourier integral representation of a non-periodic function. The
following theorem shows that these two problems share not only some superficial
analogies but are connected in essence. To show this, we need the following easy
lemma.

Lemma Let f ∈L 1(R) and x ∈R. Then the following holds for every A> 0

IA(f, x)=
∫ A

−A

f̂ (y)e2πixy dy =
∫ ∞

−∞
f (x − t)

sin 2πAt

πt
dt.

Proof It is clear that

IA(f, x)=
∫ A

−A

(∫ ∞

−∞
f (u)e2πi(x−u)y du

)

dy.

Since the function (y,u) �→ f (u)e2πi(x−u)y is summable in the strip (−A,A)×R,
we may use Fubini’s theorem,

IA(f, x)=
∫ ∞

−∞

(∫ A

−A

f (u)e2πi(x−u)y dy

)

du=
∫ ∞

−∞
f (u)

sin 2πA(x − u)

π(x − u)
du.

It remains to change the integration variable t = x − u. �

By the Riemann–Lebesgue theorem, the integral
∫
|t |�δ

f (x − t) sin 2πAt
πt

dt tends
to zero as A→+∞ for every δ > 0. Therefore, the lemma implies the asymptotic
relation

IA(f, x)=
∫ δ

−δ

f (x − t)
sin 2πAt

πt
dt + o(1) as A→+∞ (4)
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(we already know a similar result for the partial sums of Fourier series; see Eq. (5′)
of Sect. 10.3.4). Thus, the behavior of the integrals IA(f, x) as A→+∞ is deter-
mined only by the values of f in the vicinity of x. In other words, we have the same
localization principle for Fourier integrals as for Fourier series. Furthermore, it is
easy to prove the equiconvergence of the expansions in the Fourier series and the
Fourier integral. More precisely, the following statement holds.

Theorem If functions f ∈L 1(R) and f0 ∈ L̃ 1 coincide in a neighborhood of a
point x, then the convergence of the Fourier integral of f at x is equivalent to the
convergence of the Fourier series of f0 at x, and, in the case of convergence, the
following holds:

∫ ∞

−∞
f̂ (y)e2πixy dy =

∞∑

n=−∞
f̂0(n)e

inx.

From the theorem, it obviously follows that the convergence tests for Fourier
series, obtained in Sect. 10.3.4, can be carried over to the Fourier integrals. In par-
ticular, the inversion formula is valid at a point x if Dini’s condition is fulfilled at x
with C = f (x). We leave it to the reader to state an analog of the Dirichlet–Jordan
test.

Proof We show that the following holds:

IA(f, x)− S[2πA](f0, x) −→
A→+∞ 0,

where [u], as usual, is the integer part of u.
Let f (x − t)= f0(x − t) for |t |< δ, where 0 < δ < π . By Eq. (4) and Eq. (5′)

of Sect. 10.3.4, we have

IA(f, x)=
∫ δ

−δ

f (x − t)
sin 2πAt

πt
dt + o(1)=

∫ δ

−δ

f0(x − t)
sin 2πAt

πt
dt + o(1),

Sn(f0, x)=
∫ π

−π

f0(x − t)
sinnt

πt
dt + o(1)=

∫ δ

−δ

f0(x − t)
sinnt

πt
dt + o(1)

as A,n→+∞. If 2πA = n ∈ N, then we immediately obtain the required rela-
tion. If 2πA is not integer, then we have n < 2πA < n + 1 for n = [2πA], and,
therefore,

∣
∣IA(f, x)− In/2π (f, x)

∣
∣ �

∫ A

A− 1
2π

∣
∣f̂ (y)

∣
∣dy +

∫ −A+ 1
2π

−A

∣
∣f̂ (y)

∣
∣dy

� 2 max
|y|�A−1

∣
∣f̂ (y)

∣
∣ −→
A→+∞ 0.
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Thus,

IA(f, x)− Sn(f0, x)=
(
IA(f, x)− In/2π (f, x)

)+ (
In/2π (f, x)− Sn(f0, x)

)
,

where each of the two differences on the right-hand side tend to zero as A→+∞. �

Now, we once again turn to Examples 2 and 3 considered in Sect. 10.5.1.

Example 1 From the theorem, it follows that the inversion formula is valid for the
function ft (x)= e−πt2x2

(x ∈R, t > 0). However, this already follows from the re-
lation f̂t = 1

t
f 1

t
established in Example 2 of Sect. 10.5.1. Indeed, since the function

f̂t is even and summable, we have

∫ ∞

−∞
f̂t (y)e

2πixy dy = (f̂t )
̂(x)= 1

t
(f 1

t
)̂(x)= ft (x).

Example 2 The function f (x) = e−|x| (x ∈ R) satisfies Dini’s condition at every
point (in particular, at zero). The Fourier transform of f was calculated in Example 3
of Sect. 10.5.1. By the inversion formula, we obtain

e−|x| =
∫ ∞

−∞
f̂ (y)e2πiyx dy =

∫ ∞

−∞
2e2πiyx

1+ 4π2y2
dy

=
∫ ∞

0

4 cos 2πyx

1+ 4π2y2
dy = 2

π

∫ ∞

0

cosxt

1+ t2
dt.

Thus, we again obtain the value of the Laplace integral

∫ ∞

0

cosxt

1+ t2
dt = π

2
e−|x|,

which was calculated in a different way in Example 2 of Sect. 7.4.8.

10.5.4 Generalizing the inversion formula to functions of several variables, we con-
fine ourselves to the most important case where the Fourier transform is summable.
In this connection, we note that Dini’s condition providing the validity of the inver-
sion formula in the one-dimensional case is a local property of a summable function,
whereas the summability of the Fourier transform is a global property.

In contrast to the one-dimensional setting, now, when deriving the inversion
formula, we cannot use the equiconvergence of the expansions in the Fourier se-
ries or Fourier integral since Theorem 10.5.3 cannot be carried over to the multi-
dimensional case (see Exercise 6).

The transformation that assigns the function qg defined by the formula

qg(x)=
∫

Rm

g(y)e2πi〈x,y〉 dy
(
x ∈R

m
)
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to g ∈L 1(Rm) is called the inverse transform. Obviously, qg(x) = ĝ(−x), and so
the properties of the Fourier transform can easily be carried over to the inverse trans-
form. Using the inverse transform, we can represent the inversion formula proved in
the one-dimensional case in the following form:

f (x)= (f̂ )q(x). (5)

This justifies the choice of the term “inverse transform”.

Theorem Let f ∈L 1(Rm). If f̂ ∈L 1(Rm), then inversion formula (5) is valid for
almost all x in R

m.

We remark that the right-hand side of Eq. (5) continuously depends on x since
f̂ is summable. Therefore, the condition of the theorem (the summability of f̂ ) can
be fulfilled only if the function f is equivalent to a continuous function. Moreover,
Eq. (5) is valid at all points where f is continuous because it is valid on a set of full
measure. In particular, if f is continuous and its Fourier transform is summable,
then f (x)= (f̂ )q(x) for all x ∈R

m.

Proof We use the approximate identity Wt , which played an important role in the

proof of the Weierstrass theorem in Sect. 7.6.4. We recall that Wt(x)= 1
tm

e
− π

t2
‖x‖2

(x ∈R
m, t > 0). Our proof of the theorem is based on inversion formula (1′) for this

function,

Wt(x)=
∫

Rm

e−πt2‖y‖2
e2πi〈x,y〉 dy. (6)

First, for the smoothened function f ∗Wt , we obtain an equation close to (5). Then,
we obtain the statement of the theorem by passage to the limit.

Using Eq. (6) and changing the order of integration, we obtain, for every t > 0
that

(f ∗Wt)(x)=
∫

Rm

f (y)Wt(x − y)dy

=
∫

Rm

f (y)

(∫

Rm

e−πt2‖u‖2
e2πi〈x−y,u〉 du

)

dy

=
∫

Rm

e−πt2‖u‖2
e2πi〈x,u〉

(∫

Rm

f (y)e−2πi〈y,u〉 dy
)

du.

Thus, we have established the required relation,

(f ∗Wt)(x)=
∫

Rm

e−πt2‖u‖2
e2πi〈x,u〉f̂ (u) du. (7)

Since the absolute value of the integrand in the last integral does not exceed |f̂ |, we
obtain, by Lebesgue’s theorem, that, for every x, this integrals tends to (f̂ )q(x) as
t→+0.
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Now, we can finish the proof, referring to Theorem 10.3.4, from which it follows
that the limit on the left-hand side of Eq. (7) coincides with f (x) almost everywhere.
However, it is possible to dispense with the use of the theorem based on the notion
of a Lebesgue point and on Theorem 4.9.2 on differentiation of an integral with
respect to a set. We show that the left-hand side of Eq. (7) tends to f (x) almost
everywhere as t tends to zero along a sequence.

Indeed, let {tn} be a sequence such that tn −→
n→∞ 0. Theorem 9.3.3 implies that

f ∗Wtn −→n→∞ f in mean, and, consequently, in measure (see Theorem 9.1.2). By

Riesz’s theorem (see Sect. 3.3.4), there is a subsequence {tnk
} of {tn} such that,

almost everywhere f ∗ Wtnk
→ f as k →∞. Replacing t by tnk

in Eq. (7) and
passing to the limit, we obtain the required result. �

Example We give the inversion formula for the function f (x) = e−‖x‖ (x ∈ R
m)

whose Fourier transform is calculated in Example 4 of Sect. 10.5.1,

e−‖x‖ = 2mπ
m−1

2 �

(
m+ 1

2

) ∫

Rm

e2πi〈x,y〉 dy
(1+ 4π2‖y‖2)

m+1
2

= �(m+1
2 )

π
m+1

2

∫

Rm

cos〈x, t〉dt
(1+ ‖t‖2)

m+1
2

.

In the one-dimensional case, this formula was obtained in Example 2 of Sect. 10.5.3.

The summability of the Fourier transform is important in many problems (see,
for example, Sect. 10.6.4). The result of Exercise 7 shows that this condition is nec-
essarily fulfilled if f̂ � 0 and the function f is continuous (or at least bounded in a
neighborhood of zero). In this connection, we recall (see Example 2 of Sect. 4.6.6)
that f̂ � 0 if f is an even function summable on R and convex on (0,+∞). To-
gether with the inversion formula, this proves the following statement.

Corollary If an even continuous function f is summable on the real line and is
convex on the positive semi-axis, then f is the Fourier transform of a non-negative
summable function.

The fact just proved remains valid even if, instead of the summability of f , we
assume only that f (x) −→

x→+∞ 0, but, in this case, the proof invokes a subtler reason-

ing (see [Luk], Pólya’s theorem).

10.5.5 Here, we discuss one more important property of the Fourier transform, its
injectivity on the entire set of summable functions. Of course, there is no injectivity
in the literal sense because distinct equivalent (i.e., coinciding almost everywhere)
functions have the same Fourier transform. However, Theorem 10.5.4 shows that the
injectivity holds up to equivalence on the set of functions with summable Fourier
transform. To strengthen this result, we generalize Definition 10.5.1 somewhat.
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Definition Let μ be a finite Borel measure on R
m. The function y �→ μ̂(y) ≡∫

Rm e−2πi〈y,x〉 dμ(x) is called the Fourier transform of μ.

If a measure μ has a density f with respect to Lebesgue measure, then μ̂= f̂ .
Now, we establish an important result connected with the injectivity of the

Fourier transform of a measure.

Theorem If two finite Borel measures μ and ν have the same Fourier transform,
then the measures coincide.

Proof Let Hj(t)= {(x1, . . . , xm) |xj = t} be a plane perpendicular to the j th coor-
dinate axis, and let

E = {
t ∈R |μ(

Hj(t)
)= ν

(
Hj(t)

)= 0 for every j = 1, . . . ,m
}
.

The set E is everywhere dense because the set {t ∈ R |μ(Hj (t)) > 0} is at most
countable for each j (see Sect. 1.2.2). Therefore, the Borel hull of the semiring
Pm

E consisting of the cells whose vertices have coordinates belonging to E coin-
cides with the σ -algebra of Borel subsets of the space R

m (see the remark after
Theorem 1.1.6). We express the measure of the cell P =∏m

j=1 �j in terms of μ̂,
assuming that P ∈Pm

E .
Obviously, χP (x) = ∏m

j=1 χ�j
(xj ), where x1, . . . , xm are the coordinates of a

vector x. By Fubini’s theorem, χ̂P (y) =∏m
j=1 χ̂�j

(yj ) for y = (y1, . . . , ym), and,
therefore,

IA(χ�,x)=
∫

(−A,A)m
χ̂P (y)e2πi〈x,y〉 dy =

m∏

j=1

∫ A

−A

χ̂�j
(yj )e

2πixj yj dyj .

The characteristic function of an interval satisfies Dini’s condition everywhere ex-
cept the endpoints of the interval. Therefore, we have

∫ A

−A

χ̂�j
(yj )e

2πixj yj dyj −→
A→+∞ χ�j

(xj )

for all j = 1, . . . ,m, provided that xj is distinct from the endpoints of the interval
�j . Since P ∈ Pm

E , we see that IA(χ�,x) −→
A→+∞ χP (x) μ-almost everywhere.

Moreover, putting �j = [aj , bj ), we obtain (see Lemma 10.5.3) that

∫ A

−A

χ̂�j
(yj )e

2πixj yj dyj =
∫ ∞

−∞
χ�j

(xj− t)
sin 2πAt

t
dt =

∫ A(xj−aj )

A(xj−bj )

sin 2πu

u
du.

All these integrals are bounded (since the integral
∫∞

0
sin 2πu

u
du converges), and

so, the integral IA(χ�,x) is also bounded (uniformly with respect to x and A).



614 10 Fourier Series and the Fourier Transform

Therefore, we can use Lebesgue’s theorem on passing to the limit under the integral
sign,

μ(P )=
∫

Rm

χP (x) dμ(x)= lim
A→+∞

∫

Rm

IA(χ�,x) dμ(x)

= lim
A→+∞

∫

Rm

(∫

(−A,A)m
χ̂P (y)e2πi〈x,y〉 dy

)

dμ(x).

Changing the order of integration, we obtain

μ(P ) = lim
A→+∞

∫

(−A,A)m
χ̂P (y)

(∫

Rm

e2πi〈x,y〉 dμ(x)

)

dy

= lim
A→+∞

∫

(−A,A)m
χ̂P (y)μ̂(−y)dy.

This relation shows that the values of the measure on the cells belonging to Pm
E can

be expressed in terms of its Fourier transform. Since the measures μ and ν have the
same Fourier transform, they coincide on the semiring Pm

E , and, consequently, (by
the uniqueness theorem) on all Borel sets. �

It follows from the above theorem that the Fourier transform is injective up to
equivalence on the set of summable functions.

Corollary 1 If two summable functions f and g have the same Fourier transform,
they coincide almost everywhere.

Proof It is clear that the Fourier transform of the functions f and g also coincide.
Consequently, the functions Re f = (f + f )/2 and Re g = (g + g)/2, as well as
the imaginary parts of the functions f and g, have the same Fourier transform.
Therefore, we may assume that the functions f and g are real.

If they are non-negative, the theorem just proved implies that the measures with
the densities f and g coincide. It was proved in Sect. 4.5.4 that, in this case, the
densities coincide almost everywhere.

In the general case, we represent f and g in the form f = f+ − f− and g =
g+ − g−, where f±, g± � 0. Then

f̂ = f̂+ − f̂− = ĝ = ĝ+ − ĝ−.

Consequently, the non-negative functions f+ + g− and f− + g+ have the same
Fourier transform, and, therefore, they coincide almost everywhere, which is equiv-
alent to the assertion of the corollary. �

Corollary 2 If finite Borel measures μ and ν have the same values on all half-
spaces (in R

m), then they coincide.
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Proof By the theorem, it is sufficient to verify that μ̂(y) = ν̂(y) for all y ∈ R
m.

For y = 0, the equality holds since μ̂(0) = μ(Rm) and ν̂(0) = ν(Rm), and if two
measures coincide on half-spaces, they coincide on the entire space. For y �= 0, we
consider the half-spaces

Ht =
{
x ∈R

m | 〈x, y〉< t
}

(t ∈R)

and put g(t)= μ(Ht)= ν(Ht ) and �(x)= 〈x, y〉. The function g increases, and the
Stieltjes measure μg is the �-image of the measures μ and ν since �−1((−∞, t))=
Ht . It remains to use Theorem 6.1.1 on integration with respect to a weighted image
of a measure,

μ̂(y) =
∫

Rm

e−2πi〈x,y〉 dμ(x)=
∫

R

e−2πit dg(t)

=
∫

Rm

e−2πi〈x,y〉 dν(x)= ν̂(y). �

10.5.6 Using the results of the previous section, we will prove here that the system of
Hermite polynomials is complete. The method we use enables us to consider a more
general situation and prove that the family of monomials in m variables, i.e., the
products xn = x

n1
1 · · ·xnm

m , where x = (x1, . . . , xm) ∈ R
m and n = (n1, . . . , nm) ∈

Z
m+, is complete in L 2(Rm,μ) for a wider class of measures.

Theorem If a Borel measure μ on R
m satisfies the condition

∫
Rm ea‖x‖ dμ(x) <

+∞ for some a > 0, then the family of all monomials is complete in the space
L 2(Rm,μ).

Proof Let a function f in L 2(Rm,μ) be orthogonal to all monomials. Obviously,
f ⊥ P for every polynomial P in m variables. We put

F(y)=
∫

Rm

f (x)ei〈y,x〉 dμ(x).

Since |ei〈y,x〉| ≡ 1 and all polynomials are summable with respect to μ, the function
F is infinitely differentiable and, for each y, the derivatives of F can be found by
the Leibnitz rule.

We prove that F ≡ 0. If ‖y‖ < a/2, then expanding the exponential factor in a
Taylor series and integrating termwise, we obtain that F(y)= 0. The legitimacy of
termwise integration follows from the fact that the partial sums of the series have a
summable majorant, namely, |f (x)|e‖x‖‖y‖ (this function is summable because the
functions |f | and e‖x‖‖y‖ belong to L 2(Rm,μ)). To prove that F ≡ 0, we show
that the interior G of the set where F(y) = 0 coincides with R

m. Since G �= ∅

(because it contains a neighborhood of zero), it is sufficient to verify that the set G
is closed, in which case the equality G = R

m will follow from the fact that the
space R

m is connected. Let y ∈G. The function F and all its derivatives vanish at
y by continuity. Calculating the derivatives by Leibnitz’s rule, we see that

0= F (n)(y)=
∫

Rm

f (x)(ix)nei〈x,y〉 dμ(x)
(
n ∈R

m+
)
.
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Thus, the function f1(x) = f (x)ei〈x,y〉 is orthogonal to all monomials. Replacing
f by f1, we may assert by what has just been proved that the function F1(η) =∫
Rm f1(x)e

i〈x,η〉 dμ(x) assumes only zero values in a neighborhood of zero. How-
ever, F1(η) is nothing but F(y + η). Therefore, F ≡ 0 in a neighborhood of y, i.e.,
y ∈ G. Thus, G = G = R

m and, consequently, F ≡ 0. Now, we can easily com-
plete the proof. Indeed, without loss of generality, we may assume that the function
f is real. The identity F ≡ 0 means that the measures f+ dμ and f− dμ have the
same Fourier transform. Consequently, these measures coincide by Theorem 10.5.5,
which implies (by Theorem 4.5.4) that the functions f+ and f− coincide almost ev-
erywhere with respect to μ. �

Corollary The Hermite polynomials are complete in L 2(R,μ) with dμ(x) =
e−x2

dx.

This is a special case of the theorem for m= 1. We also remark that the theorem
implies that the Laguerre functions are complete (for the definition, see Exercise 3
of Sect. 10.2).

The following example shows that the result obtained in the theorem is quite
sharp.

Example We verify that the polynomials are not complete in the space L 2(R,μ)

with measure μ having density e−|x|p (0 < p < 1) with respect to the one-
dimensional Lebesgue measure (for p � 1 this effect is ruled out by the theorem
just proved).

We will need the following formula from Example 1 of Sect. 7.1.7: if a > 0
and z = eiθ , where θ ∈ (0, π

2 ), then z−a�(a) = ∫∞
0 ta−1e−zt dt . Comparing the

imaginary parts and using the substitution t = xp/ cos θ , we obtain

�(a) sinaθ =
∫ ∞

0
ta−1e−t cos θ sin(t sin θ) dt

= p

cosa θ

∫ ∞

0
xap−1e−xp

sin
(
xptan θ

)
dx.

Now, we use the freedom in the choice of the parameters a and θ . Putting θ = π
2 p

and a = 2
p
(n+ 1), we obtain

∫ ∞

0
x2n+1e−xp

sin

(

xptan
π

2
p

)

dx = 0 for n= 0,1,2 . . . .

This means that the odd function equal to sin(xptan π
2 p) for x � 0 is orthogonal to

all polynomials in the space L 2(R,μ) with measure dμ(x)= e−|x|p dx.
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10.5.7 The present and two following sections are devoted to an important theorem,
due to Plancherel,20 and its corollaries. The traditional formulation of the theorem
would require us to invoke some concepts from functional analysis and operator
theory. To avoid this, we first establish an analytic fact constituting the core of the
theorem.

Theorem (Plancherel) If f ∈L 1(Rm)∩L 2(Rm), then f̂ ∈L 2(Rm) and ‖f̂ ‖2 =
‖f ‖2.

Proof Let {ωt }t>0 be a Sobolev approximate identity in R
m (see Sect. 7.6.2) and

ft = f ∗ωt .
First, we prove the assertion of the theorem for the smoothened function ft . By

properties of convolution, we have ft ∈L 1(Rm) ∩L 2(Rm). By Theorem 10.5.1,
we obtain f̂t = f̂ ω̂t . This product is summable since the function f̂ is bounded and
ω̂t ∈L 1(Rm) by Corollary 10.5.2. Using Fubini’s theorem and inversion formula
(5), we obtain
∫

Rm

f̂t (y)f̂t (y) dy =
∫

Rm

f̂t (y)

(∫

Rm

ft (x)e−2πi〈y,x〉 dx
)

dy

=
∫

Rm

f̂t (y)

(∫

Rm

ft (x)e
2πi〈y,x〉 dx

)

dy

=
∫

Rm

ft (x)

(∫

Rm

f̂t (y)e
2πi〈y,x〉 dy

)

dx =
∫

Rm

ft (x)ft (x) dx.

Thus,

‖f̂t‖2
2 = ‖ft‖2

2. (8)

It remains to verify that we can pass to the limit in this equation as t→ 0.
Since ft −→

t→0
f in the L 2-norm, the continuity of the norm implies ‖ft‖2 −→

t→0

‖f ‖2. We verify that f̂ ∈L 2(Rm) and ‖f̂t‖2 −→
t→0

‖f̂ ‖2. To this end, we write the

left-hand side of Eq. (8) in more detail,

‖f̂t‖2
2 =

∫

Rm

∣
∣f̂t (y)

∣
∣2

dy =
∫

Rm

∣
∣f̂ (y)

∣
∣2∣

∣ω̂t (y)
∣
∣2

dy. (9)

Since ω̂t (y)−→
t→0

1 (see Corollary 7.6.3 with t0 = 0 and g(x)= e−2πi〈y,x〉), Fatou’s

theorem and Eq. (8) imply
∫

Rm

∣
∣f̂ (y)

∣
∣2

dy � lim
t→0

∫

Rm

∣
∣f̂ (y)

∣
∣2∣

∣ω̂t (y)
∣
∣2

dy = lim
t→0

‖f̂t‖2
2 = lim

t→0
‖ft‖2

2 = ‖f ‖2
2

< +∞.

20Michel Plancherel (1885–1967)—Swiss mathematician.
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Thus, f̂ ∈L 2(Rm). Returning to Eq. (9), we see that the integrand in the integral
on the right has a summable majorant, namely, |f̂ |2. Therefore, we can pass to the
limit in this integral by Lebesgue’s theorem,

∫

Rm

∣
∣f̂ (y)

∣
∣2∣

∣ω̂t (y)
∣
∣2

dy −→
t→0

∫

Rm

∣
∣f̂ (y)

∣
∣2

dy.

Now, the passage to the limit in Eq. (8) leads to the required result. �

The concluding part of the proof can be somewhat shortened. Indeed, since
|ω̂t | �

∫
Rm ω(x)dx = 1, we have |f̂t | � |f̂ |. Since f̂t −→

t→0
f̂ , we can pass to the

limit on the right-hand side of Eq. (8) by the generalization of B. Levi’s theorem
given in Exercise 4 of Sect. 4.8.

10.5.8 We show how Plancherel’s theorem can be used to generalize the concept of
the Fourier transform to functions in L 2(Rm).

Lemma Let f ∈ L 2(Rm). If {fn}n�1 is a sequence of functions in L 1(Rm) ∩
L 2(Rm) convergent to f in the L 2-norm, then the sequence {f̂n}n�1 also con-
verges in the L 2-norm. Its limit does not depend (up to equivalence) on the choice
of the sequence {fn}n�1.

Proof From Plancherel’s theorem, it follows that the sequence {f̂n}n�1 is funda-
mental,

‖f̂n − f̂k‖2 = ‖f̂n − fk‖2 = ‖fn − fk‖2 −→
n,k→∞ 0.

The limit exists because the space L 2(Rm) is complete (see Theorem 9.1.3). If
{gn}n�1 is another sequence of functions in L 1(Rm) ∩L 2(Rm) convergent to f

in the L 2-norm, then the sequence f1, g1, f2, g2, . . . obtained by “shuffling” the
sequences {fn}n�1 and {gn}n�1 converges to f . By what has just been proved,
the sequence f̂1, ĝ1, f̂2, ĝ2, . . . has a limit, which is unique up to equivalence and
coincides with the limits of its subsequences. �

The lemma just proved allows us to extend the definition of the Fourier transform
to the functions in L 2(Rm).

Definition By the Fourier transform of a function f ∈L 2(Rm), we mean the limit
in the L 2-norm of the functions f̂n, where {fn}n�1 is an arbitrary sequence of
functions in L 1(Rm)∩L 2(Rm) such that ‖fn − f ‖2 −→

n→∞ 0.

Thus, the Fourier transform of a function in L 2(Rm) is also square-summable.
As before, we will denote the Fourier transform of f by f̂ . However, one must keep
in mind that now the Fourier transform is defined up to equivalence and the symbol
f̂ refers to many functions. If f is summable, then, among these functions, is the
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Fourier transform defined in Sect. 10.5.1. For definiteness, the latter is sometimes
called the classical Fourier transform. What has just been said also applies to the
inverse transform, which, as before, is denoted by qf .

Elementary properties of the Fourier transform of square-summable functions
can be obtained from the properties of the classical Fourier transform by a passage
to the limit.

Theorem Let f ∈L 2(Rm). Then:

(1) ‖f̂ ‖2 = ‖f ‖2;
(2) if fn ∈L 2(Rm) and ‖fn − f ‖2 −→

n→∞ 0, then ‖f̂n − f̂ ‖2 −→
n→∞ 0, and a similar

statement holds for the inverse transform;
(3) we have(f̂ )q= ( qf )̂ = f ;
(4) 〈f̂ , ĝ〉 = 〈f,g〉 for every function g ∈L 2(Rm). In particular, the Fourier trans-

form preserves orthogonality: if f ⊥ g, then f̂ ⊥ ĝ.

Proof Let {ϕn}n�1 ∈ C∞0 (Rm) be a sequence of functions converging to f in the
L 2-norm. It is obvious that these functions and their Fourier transforms belong to
L 1(Rm)∩L 2(Rm).

(1) It is clear that ‖ϕ̂n − f̂ ‖2 −→
n→∞ 0 by the definition of f̂ . By Plancherel’s the-

orem, we have ‖ϕ̂n‖2 = ‖ϕn‖2. Therefore, it is sufficient for us to use the continuity
of the norm and pass to the limit in this equation.

(2) Obviously, ‖f̂n − f̂ ‖2 = ‖f̂n − f ‖2 = ‖fn − f ‖2 −→
n→∞ 0.

(3) We will prove only the equality (f̂ )q= f (the other one is proved similarly).
Since ϕn −→

n→∞ f , we obtain by definition that ϕ̂n −→
n→∞ f̂ , and, by property 2) applied

to the inverse transform, we have (ϕ̂n)q−→
n→∞ (f̂ )q. At the same time, (ϕ̂n)q= ϕn by

Theorem 10.5.4. Thus, it only remains to pass to the limit (in the L 2-norm) in the
last equality.

(4) For the proof, we must use the identity 4f g = |f + g|2 + |f + ig|2 −
|f − g|2 − |f − ig|2 and apply relation (1) to the functions f ± g and f ± ig. �

10.5.9 Plancherel’s theorem implies an inequality known as the uncertainty princi-
ple. Without touching on its physical meaning (the impossibility of simultaneously
determining the exact values of the coordinates and impulse of a quantum object),
we mention only its consequence: if f �= 0 only in the vicinity of the origin, then the
quantity |f̂ | is not small at some remote points (the Fourier transform “blurs”). In
the one-dimensional case, the reader can see this effect in the example of functions
1
2t χ(−t,t) forming an approximate identity.

In the precise formulation of the uncertainty principle, we confine ourselves to
infinitely differentiable compactly supported functions of one variable (more gen-
eral statements are given in Exercises 10 and 11).
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Theorem If f ∈ C∞0 (R) and ‖f ‖2 = 1, then

∫ ∞

−∞
x2

∣
∣f (x)

∣
∣2

dx ·
∫ ∞

−∞
x2

∣
∣f̂ (x)

∣
∣2

dx � 1

16π2
.

Proof Since

∫ ∞

−∞
x

(∣
∣f (x)

∣
∣2)′

dx = x
∣
∣f (x)

∣
∣2

∣
∣
∣
∞
−∞ −

∫ ∞

−∞
∣
∣f (x)

∣
∣2

dx =−1,

the Cauchy–Bunyakovsky inequality implies

1=
∣
∣
∣
∣

∫ ∞

−∞
x

(∣
∣f (x)

∣
∣2)′

dx

∣
∣
∣
∣ � 2

∫ ∞

−∞
∣
∣xf (x)

∣
∣ · ∣∣f ′(x)∣∣dx � 2‖g‖2‖f ′‖2,

where g(x)= |x f (x)|. By Plancherel’s theorem, we have ‖f ′‖2 = ‖f̂ ′‖2, and, by
Theorem 10.5.2, we obtain f̂ ′(y)= 2πiyf̂ (y). Consequently,

1 � 4‖g‖2
2

∥
∥f ′

∥
∥2

2 = 4‖g‖2
2

∥
∥f̂ ′

∥
∥2

2 = 4
∫ ∞

−∞
x2

∣
∣f (x)

∣
∣2

dx · 4π2
∫ ∞

−∞
y2

∣
∣f̂ (y)

∣
∣2

dy. �

10.5.10 In the conclusion of this section, we apply the Fourier transform to estimate
the Dirichlet kernels for a ball (see Sect. 10.4.8)

DR(x)= 1

(2π)m

∑

‖k‖<R

e−i〈k,x〉 (
x ∈R

m
)

(the summation is taken over the points k of the integer lattice Z
m). We show that,

in the case where m > 1, their L 1-norms (in contrast to the norms of the Dirichlet
kernels for cubes (−R,R)m) have not a logarithmic, but a power order of growth as
R→+∞,

‖DR‖1 = 1

(2π)m

∫

[−π,π]m

∣
∣
∣
∣

∑

‖k‖<R

e−i〈k,x〉
∣
∣
∣
∣dx  R

m−1
2 .

Being unable to represent the kernel DR in a compact form, we obtain for DR an
approximate integral representation, replacing the sum over the ball B(R) by an
integral over a set close to B(R). For this, we use the fact that the mean value of
the exponential function e−iat on the interval (a − 1/2, a + 1/2) differs from the
function itself only by a factor independent of a,

e−iat = t/2

sin t/2

∫ a+1/2

a−1/2
e−ist ds.
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Therefore, in the multiple integral for the shifted unit cube Qk = k + [− 1
2 ,

1
2 ]m at

the point x = (x1, . . . , xm), we have

e−i〈k,x〉 = θ(x)

∫

Qk

e−i〈y,x〉 dy, where θ(x)=
m∏

j=1

xj /2

sinxj/2
.

Putting T (R)=⋃
‖k‖<R Qk , we arrive at the equation

DR(x)= θ(x)

(2π)m

∫

T (R)

e−i〈y,x〉 dy.

Thus,

‖DR‖1 = 1

(2π)m

∫

[−π,π]m
θ(x)

∣
∣
∣
∣

∫

T (R)

e−i〈y,x〉 dy
∣
∣
∣
∣dx.

Since 1 � t
sin t

� π
2 for t ∈ [−π

2 ,
π
2 ], we obtain 1 � θ(x) � (π2 )

m in this integral,
and, therefore,

‖DR‖1  
∫

[−π,π]m

∣
∣
∣
∣

∫

T (R)

e−i〈y,x〉 dy
∣
∣
∣
∣dx = (2π)m

∫

[− 1
2 ,

1
2 ]m

∣
∣χ̂T (R)(u)

∣
∣du.

We show that, for m > 1, the integral on the right-hand side of this relation grows

as R
m−1

2 . It is more convenient to deal with the integral over a ball rather than over
a cube. Therefore, we consider the integral

IR(ρ)=
∫

B(ρ)

∣
∣χ̂T (R)(u)

∣
∣du.

Since

IR

(
1

2

)

�
∫

[− 1
2 ,

1
2 ]m

∣
∣χ̂T (R)(u)

∣
∣du� IR

(√
m

2

)

,

it is sufficient to verify that IR(ρ) R
m−1

2 as R→+∞ for every fixed ρ > 0.
For large R, the set T (R) is close to the ball B(R). Therefore, it is natural to

replace χ̂T (R) with χ̂B(R) and compare the integral IR(ρ) with a “similar” integral

JR(ρ)=
∫

B(ρ)

∣
∣χ̂B(R)(u)

∣
∣du.

The rate of its growth was essentially found in Example 2 of Sect. 10.5.2. Indeed,
since

χ̂B(R)(u)=
∫

‖x‖<R

e−2πi〈u,x〉 dx =Rm

∫

‖x‖<1
e−2πiR〈u,x〉 dx =Rmχ̂B(Ru),
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the integral JR(ρ) can be reduced to the integral LB(R)= ∫
‖y‖<R

|χ̂B(y)|dy con-
sidered in this Example,

JR(ρ)=
∫

B(ρ)

∣
∣Rmχ̂B(Ru)

∣
∣du=

∫

B(ρR)

∣
∣χ̂B(y)

∣
∣dy = LB(ρR) (ρR)

m−1
2 .

Therefore,

0 <Cm(ρ R)
m−1

2 � JR(ρ)� C′m(ρR)
m−1

2 . (10)

To estimate the difference IR(ρ) − JR(ρ), we introduce the function ηR =
χB(R) − χT (R). It is clear that

∣
∣IR(ρ)−JR(ρ)

∣
∣ �

∫

B(ρ)

∣
∣̂ηR(u)

∣
∣du�

√

αmρm

∫

B(ρ)

∣
∣̂ηR(u)

∣
∣2

du�
√
αmρm‖η̂R‖2.

The next step is possible due to Plancherel’s theorem allowing us to pass from the
norm η̂R to the norm ηR , which can easily be estimated (since |ηR| � 1 and the
function ηR differs from zero only in the spherical layer R−√m� ‖x‖�R+√m),

‖η̂R‖2 = ‖ηR‖2 �
√
αm

(
(R +√m)m − (R −√m)m

)
.

Therefore, we obtain for R > 1

∣
∣IR(ρ)− JR(ρ)

∣
∣ � αmρ

m
2

√

2m
3
2 (R +√m)

m−1
2 �Amρ

m
2 R

m−1
2 , (11)

where Am is a coefficient depending only on the dimension m. Taking into account

inequality (10), we obtain the following estimate from above: IR(ρ)=O(R
m−1

2 ) as
R→+∞.

Because the integrals IR(ρ) grow with the growth of ρ, it is sufficient to establish
an estimate from below for small ρ. For this, we again use inequalities (10) and (11),

IR(ρ) � JR(ρ)−
∣
∣IR(ρ)− JR(ρ)

∣
∣ � Cm(ρR)

m−1
2 −Amρ

m
2 R

m−1
2

= (Cm −Am
√
ρ)(ρR)

m−1
2 .

We obtain the required result if we take, for example, ρ = C2
m/(2Am)2.

EXERCISES

1. Find the Fourier transform of the product e2πi〈h,x〉f (x), where f ∈L 1(Rm)

and h ∈R
m.

2. Let f ∈L 1(Rm) and fE(x)= 1
λm(E)

∫
E
f (x + t) dt , where E ⊂R

m is a set of

finite positive measure. Prove that |f̂E |� |f̂ |.
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3. Let a function f in L 1(Rm) vanish outside the cube (−π,π)m, and let F(t)=
f̂ (t/2π). Prove that

F(t)=
∑

n∈Zm

F (n)

m∏

j=1

sinπ(tj − nj )

π(tj − nj )

(the sum on the right-hand side of the equation is understood as the limit of the
partial sums over rectangles).

4. A function f defined on R
m is called positive definite if

∑

1�j,k�n

f (xj − xk)zj zk � 0

for all n ∈ N, xj ∈ R
m and zj ∈ C. Prove that the Fourier transform of a finite

Borel measure μ is a positive definite function.
5. Prove that if g is the generalized derivative of f with respect to the kth co-

ordinate (see Exercise 5 of Sect. 9.3), then the relation ĝ(y) = 2πiykf̂ (y) of
statement (1) of Theorem 10.5.2 remains valid.

6. Verify that, in general, the equiconvergence of the expansions in Fourier series
and Fourier integrals does not take place in the multi-dimensional case. Hint.
Use the same idea as in the first part of Sect. 10.4.6.

7. Let a function f ∈ L 1(Rm) be bounded in a neighborhood of zero. Prove
that if f̂ � 0, then f̂ ∈ L 1(Rm). Hint. By Eq. (7), prove that the integrals
∫
Rm e−πt2‖u‖2

f̂ (u) du are bounded for t > 0 and apply Fatou’s theorem.
8. Let a measure μ on R

m be such that
∫
Rm ea‖x‖ dμ(x) < +∞ for some

a > 0. Generalizing Theorem 10.5.6, prove that, for p > 1, every function
f ∈L p(Rm,μ) satisfying the condition

∫

Rm

f (x)xn dμ(x)= 0 for all n ∈ Z
m+

is equal to zero μ-almost everywhere.
9. Let ϕ1, ϕ2, . . . be functions in L 2(Rm). Prove that the systems {ϕn}n∈N and

{ϕ̂n}n∈N are complete or not simultaneously.
10. Let f ∈L 2(Rm) and ‖f ‖2 = 1. Prove that the inequality

∫

Rm

‖x − a‖2
∣
∣f (x)

∣
∣2

dx ·
∫

Rm

‖y − b‖2
∣
∣f̂ (y)

∣
∣2

dy � m2

16π2

is valid for all a, b ∈R
m.

11. Assume that the values of a function f ∈ L 2(Rm) are small outside a ball
B(a, r) in the sense that

∫

Rm\B(a,r)

‖x − a‖2
∣
∣f (x)

∣
∣2

dx <
1

2

∫

Rm

‖x − a‖2
∣
∣f (x)

∣
∣2

dx,
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and the values of f̂ are small (in the same sense) outside a ball B(b,R). Prove
that rR > m

8π .
12. Supplement the result of Example 3 of Sect. 10.5.2 by proving that if

f (x) ∼‖x‖→+∞ ‖x‖
−p−m, as ‖x‖ → +∞ for some p ∈ (0,2) and the function

f is even, then f̂ (0)− f̂ (y) ∼
y→0

Cp‖y‖p; for p = 2, this relation must be re-

placed by f̂ (0)− f̂ (y) ∼
y→0

C‖y‖2 ln 1
‖y‖ . The coefficients Cp and C depending

on the dimension can be expressed in terms of the gamma function.
13. Let P , Q be algebraic polynomials with degQ> degP . Show that the Fourier

transform of the fraction f = P
Q

vanishes on the negative half-axis (f̂ (y) = 0
for y � 0) if all roots of the denominator Q lie in the lower half-plane (i.e., their
imaginary parts are negative).

10.6 �The Poisson Summation Formula

In this section, by the periodicity of a function of several variables, we mean 1-
periodicity with respect to each variable. Speaking of the Fourier series of a peri-
odic function summable on the cube (− 1

2 ,
1
2 )

m, we mean a series in the system of
exponential functions {e2πi〈n,x〉}n∈Zm .

10.6.1 As we have already seen, the properties of the Fourier transform of a
summable function f can be far from the properties of f . A smooth function can
have a non-smooth Fourier transform, which can be non-summable, and the order
of decrease of f̂ can be distinct from that of f , etc. However, remarkably it turns
out that, under quite mild assumptions, there is a characteristic that does not change
when passing from f to f̂ . Confining ourselves to the functions of one variable and
not touching now the problem of convergence of the series in question, we can say
that the required characteristic is the sum of the values of a function at the integer
points. In other words, we are talking about the relation

∞∑

n=−∞
f (n)=

∞∑

k=−∞
f̂ (k), (1)

known as the Poisson summation formula. Generalizing Eq. (1) somewhat, we can
represent it in the form

√
t

∞∑

n=−∞
f (tn)=√s

∞∑

k=−∞
f̂ (sk), (1′)

where st = 1 (s > 0, t > 0). Thus, the sum of the values of f at the equidistant
lattice points tn (t > 0) is proportional to a similar sum for f̂ , provided that the
values of f̂ are calculated at compatible lattice points. Equation (1′) can be obtained
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by applying Eq. (1) to the function g obtained from f by the similarity (g(x) =
f (tx)).

Our goal is to justify Poisson’s formula and give examples of its application. As
often happens, to solve a problem, one must generalize it. We will study not the sum∑∞

n=−∞ f (n) itself, but the function S defined by the formula

S(x)=
∞∑

n=−∞
f (x + n) (x ∈R). (2)

Thus, to study a non-periodic function, we assign to it a periodic function and study
the properties of the latter, using, in particular, the machinery of Fourier series de-
veloped in Sects. 10.3 and 10.4.

We need the following statement.

Lemma Let a function f be summable on R. Then:

(a) series (2) converges absolutely for almost all x;
(b) its sum S is a 1-periodic function; this function is summable on (− 1

2 ,
1
2 ), and

Eq. (2) can be integrated termwise;
(c) the Fourier coefficients of the function S are equal to the values of f̂ at the

integer points,

∫ 1
2

− 1
2

S(x)e−2πinx dx = f̂ (n) (n ∈ Z).

Proof We consider the non-negative measurable function

F(x)=
∞∑

n=−∞

∣
∣f (x + n)

∣
∣ (x ∈R).

Since a positive series can be integrated termwise, we have

∫ 1
2

− 1
2

F(x)dx =
∞∑

n=−∞

∫ 1
2

− 1
2

∣
∣f (x + n)

∣
∣dx =

∫

R

∣
∣f (x)

∣
∣dx

(the second equation is valid since the integral is countably additive). Therefore,
the function F is summable on (− 1

2 ,
1
2 ) and, therefore, F is almost everywhere

finite, which proves the fact that the series
∑∞

n=−∞ |f (x + n)| converges almost
everywhere and so statement (a) holds.

Since the 1-periodicity of the function S is obvious, statement (b) follows from
the inequality |S| � F . Since F also dominates all partial sums of series (2), the
series can be integrated termwise.
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To complete the proof, we multiply Eq. (2) by e−2πikx and integrate termwise
over (− 1

2 ,
1
2 ),

∫ 1
2

− 1
2

S(x)e−2πikx dx =
∞∑

n=−∞

∫ 1
2

− 1
2

f (x + n)e−2πikx dx

=
∫

R

f (x)e−2πikx dx = f̂ (k).

The termwise integration here is allowed since F is also a summable majorant of
the partial sums of the series

∑∞
n=−∞ f (x + n)e−2πikx . �

As established in the lemma, the series
∑∞

k=−∞ f̂ (k)e2πikx is the Fourier series
of the function S. Therefore, the relation

∞∑

n=−∞
f (x + n)=

∞∑

k=−∞
f̂ (k)e2πikx (3)

(also called the Poisson summation formula) means simply that, at a point x, the
function S is the sum of its Fourier series. In particular, if S is continuous at x,
then Eq. (3) holds only under the assumption that the series on the right-hand side
converges.

Example 1 Let f (x) = e−π(tx)2
(where t is a positive parameter). As estab-

lished in Example 2 of Sect. 10.5.1, f̂ (y) = 1
t
e−π(y/t)2

. Obviously, the sum
∑∞

n=−∞ e−πt2(x+n)2
is a smooth function. Therefore, formula (3) is valid for f

everywhere,

∞∑

n=−∞
e−πt2(x+n)2 = 1

t

∞∑

n=−∞
e−π(n/t)2

e2πinx = 1

t

(

1+ 2
∞∑

n=1

e−π(n/t)2
cos 2πnx

)

.

For x = 0, the left-hand side of this equation is the so-called θ -function

θ(t)=
∞∑

n=−∞
e−π(tn)2

.

From this equation, it follows that the θ -function satisfies the Jacobi identity θ(t)=
1
t
θ( 1

t
), which plays an important role in heat transfer theory and in the theory of

elliptic functions.

Example 2 Let g(x)= (1− |x|)+ for x ∈R. Obviously,

ĝ(y)=
∫ 1

−1

(
1− |x|)e−2πixy dx = 2

∫ 1

0
(1− x) cos 2πxy dx =

(
sinπy

πy

)2

.
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We apply formula (3) to the function f = ĝ. It can easily be verified that the sum
S(x)=∑∞

n=−∞ f (x + n) is everywhere continuous and f̂ = qf , and so, the inver-
sion formula implies f̂ = g. Therefore, by (3), we obtain

∞∑

n=−∞

(
sinπ(x + n)

π(x + n)

)2

=
∞∑

n=−∞
f (x + n)=

∞∑

k=−∞
f̂ (k)e2πikx = f̂ (0)= 1.

Since sin2 π(x+ n)= sin2 πx for all n ∈ Z, we obtain the following partial fraction
expansion of 1

sin2 πx
:

π2

sin2 πx
=

∞∑

n=−∞

1

(x + n)2
(x ∈R \Z).

For x = 1
2 , this leads to the equality π2 = 4

∑∞
n=−∞ 1

(2n+1)2 = 8
∑∞

n=0
1

(2n+1)2 from

which the well-known result π2

6 =
∑∞

n=1
1
n2 follows easily. Differentiating the ex-

pansion obtained termwise an even number of times, one can calculate the sums of
the series

∑∞
n=1

1
n2k (k ∈N) first found by Euler.

Example 3 Let a > 1 and u > 0. Let f (x) = xa−1e−ux for x > 0 and f (x) =
0 for x � 0. This function is continuous everywhere and the series S(x) =∑∞

n=−∞ f (x + n) converges uniformly on every finite interval. Since f̂ (y) =
�(a)

(u+2πiy)a
(see Example 5 of Sect. 10.5.1), we see that the Fourier series of S con-

verges absolutely. Consequently, Eq. (3) is valid everywhere. In particular, it takes
the following form for x = 0:

∞∑

n=1

na−1e−nu =
∞∑

n=−∞

�(a)

(u+ 2πin)a
.

Hence, we see that the sum on the right-hand side of the equation is exponentially
small as u→+∞. For u = 1, the sum on the left-hand side can be regarded as a
discrete analog of the integral �(a)= ∫∞

0 ta−1e−t dt . The formula obtained yields
the following interesting relation:

∑∞
n=1 n

a−1e−n = �(a)
∑∞

n=−∞(1+ 2πin)−a .

Without any assumptions on the function f (except the summability), Eq. (3)
is valid in the following “weak” sense: after integrating both sides of the equation
over an arbitrary interval, we obtain convergent series with equal sums. This follows
immediately from our ability to integrate Fourier series termwise (Theorem 1 of
Sect. 10.3.6).

We also remark that not only does (1) follow from (3), but also (3) can be re-
garded as Eq. (1) for the shift f−x of the function f since f̂−x(n) = f̂ (n)e2πinx

(see the beginning of Sect. 10.5.1).
To derive Eq. (1) from (3), we must be sure that the latter is valid for x = 0. For

this, it is not sufficient, for example, that series (3) converges almost everywhere.
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Therefore, of particular interest to us is to find conditions under which the function
S has a Fourier series expansion everywhere. One such conditions is given in Exer-
cise 2. Other versions of sufficient conditions for functions of several variables will
be established in the next section.

10.6.2 Here, we discuss the following multi-dimensional version of the Poisson
summation formula for a function f in L 1(Rm):

∑

n∈Zm

f (n)=
∑

k∈Zm

f̂ (k), (4)

or, in a more general form,

∑

n∈Zm

f (x + n)=
∑

k∈Zm

f̂ (k)e2πi〈k,x〉. (5)

Their derivation is based on an obvious modification of the lemma of Sect. 10.6.1,
in which the one-dimensional lattice Z is replaced by the multi-dimensional lat-
tice and the interval of integration (− 1

2 ,
1
2 ) is replaced by the cube (− 1

2 ,
1
2 )

m.
Thus, the series on the right-hand side of (5) is the Fourier series of the function
S(x)=∑

n∈Zm f (x + n). Therefore, as in the one-dimensional case, Eq. (5) for the
continuous function S means that S has a Fourier series expansion.

Formula (4) can be modified by a linear change of variables (cf. Eq. (1′)),
√|det(T )|

∑

n∈Zm

f
(
T (n)

)=√|det(S)|
∑

n∈Zm

f̂
(
S(n)

)
,

where T is an arbitrary non-degenerate linear transformation, S = (T ∗)−1 (here T ∗
is the adjoint mapping).

We give two types of conditions under which Eq. (5) is valid.

Theorem 1 Let f be a continuous function on R
m such that f (x) = O(‖x‖−p)

and f̂ (x)=O(‖x‖−p) as ‖x‖→+∞ for some p >m. Then Eq. (5) is valid for all
x ∈R

m.

Proof First, we observe that f ∈ L 1(Rm) since the summability on an arbitrary
ball follows from the continuity of f and the summability outside the ball follows
from the estimate f (x)=O(‖x‖−p).

Under our assumptions, the series on both sides of Eq. (5) converge absolutely
and uniformly on every ball, and, since their terms are continuous, the sums of the
series are also continuous. Thus, the right-hand side of (5) is a uniformly convergent
Fourier series of the sum on the left-hand side of (5). �

It is not difficult to give an interpretation of the sum of a multiple series in the
case of absolute convergence. Otherwise, it is necessary to clarify the definition
of this sum. First of all, this concerns the series on the right-hand side of Eq. (5)
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(the series on the left-hand side of (5) converges absolutely for almost all x). The
following theorem enables us to consider the situation in which the series on the
right-hand side of (5) does not converge absolutely (see also Exercises 3 and 4).

Theorem 2 Let a function f satisfy the Lipschitz condition with exponent α in R
m,

i.e., there is a positive L such that |f (x)− f (x′)|� L‖x − x′‖α for all x, x′ ∈R
m.

We assume, in addition, that the function decreases rapidly at infinity, i.e., f (x)=
O(‖x‖−p) as ‖x‖→+∞ for some p >m. Then Eq. (5) is valid for all x ∈R

m (the
sum on the right-hand side of (5) is understood as the limit of rectangular partial
sums).

Proof As in the previous theorem, f ∈L 1(Rm). It is sufficient to verify that the
function S satisfies the Lipschitz condition with an exponent β (in this case, the
rectangular partial sums converge uniformly to S by Theorem 10.4.5). Estimating
the difference S(x + h)− S(x), we will assume that x ∈ [0,1]m and ‖h‖� 1. It is
clear that

∣
∣S(x + h)− S(x)

∣
∣ �

∑

n∈Zm

∣
∣f (x + h+ n)− f (x + n)

∣
∣. (6)

Now, fixing a large parameter R (its choice will be specified later), we partition
the terms of the series obtained into two sets depending on whether ‖n‖ � R or
‖n‖> R. Using the Lipschitz condition |f (x + h+ n)− f (x + n)| � L‖h‖α , we
estimate the terms of the first set (the number of them has order Rm). In the second
case, we apply the following estimate for f at infinity:

∣
∣f (x + h+ n)− f (x + n)

∣
∣ �

∣
∣f (x + h+ n)

∣
∣+ ∣

∣f (x + n)
∣
∣=O

(‖n‖−p
)
.

Substituting these estimates into inequality (6), we obtain

∣
∣S(x + h)− S(x)

∣
∣ � const

(

Rm‖h‖α +
∑

‖n‖>R

‖n‖−p

)

=O
(
Rm‖h‖α +Rm−p

)
.

Now, we use the freedom in the choice of R and equate the terms Rm‖h‖α and
Rm−p and, for R = ‖h‖−α/p , we obtain that |S(x + h) − S(x)| = O(‖h‖β) with
β = α(1−m/p). �

Corollary If a function f having bounded first order derivatives satisfies the con-
dition f (x) = O(‖x‖−p) as ‖x‖ → +∞ for some p > m, then Eq. (5) holds for
every point x (the sum on the right-hand side of the equation is understood as the
limit over rectangular partial sums).

10.6.3 The Poisson summation formula has proved to be an effective tool for solving
various problems (see Sects. 10.6.4 and 10.6.5). However, before passing to these
technically more involved applications, we use the summation formula to supple-
ment the uncertainty principle established in Sect. 10.5.9, according to which the
functions f and f̂ cannot be concentrated on “small sets” simultaneously (see also
Exercises 10 and 11 of Sect. 10.5). The following statement is valid (see [B]).
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Theorem Let a summable function f on R
m be such that the sets A =

{x ∈ R
m|f (x) �= 0} and B = {y ∈ R

m| f̂ (y) �= 0} have finite measures, then
f (x)= 0 almost everywhere.

Proof We will assume that λm(A) < 1 (this can be achieved by the change of vari-
ables x �→ cx). Let Q= [− 1

2 ,
1
2 )

m. Since

∑

k∈Zm

∫

Q

χB(y + k) dy =
∫

Rm

χB(y)dy = λm(B) <+∞,

the series
∑

k∈Zm χB(y + k) converges for almost all y. Consequently,
χB(y + k) �= 0, i.e., f̂ (y+k) �= 0 only for a finite number of multi-indices k. There-
fore, for almost all y, the function fy(x)= f (x)e−2πi〈y,x〉 is such that only a finite
number of the values f̂y(k) (k ∈ Z

m) are distinct from zero.
Since the kth Fourier coefficient of the function Sy is equal to f̂y(k) (see state-

ment (c)) of Lemma 10.6.1), we obtain that Sy coincides with a trigonometric
polynomial almost everywhere. The set Ey = {x ∈ Q |Sy(x) �= 0} is contained
in the union

⋃
n(−n + A) ∩ Q, and, therefore, λm(Ey) � λm(A) < 1 = λm(Q).

Since a non-zero trigonometric polynomial does not vanish almost everywhere,
we obtain that Sy(x) = 0 almost everywhere. Consequently, 0 = Ŝy(0) = f̂y(0) =∫
Rm fy(x) dx = f̂ (y) for almost all y. By the uniqueness theorem, f = 0 almost

everywhere. �

We remark that the proof of the theorem does not use Eq. (5). It is based only on
statement (c) of Lemma 10.6.1 (more precisely, on its m-dimensional modification).

10.6.4 Generalizing the reasoning of Sect. 10.4.3 to multiple Fourier series, we
consider a summation method generated by a function M (M(0) = 1) continuous
and summable on R

m. The method is as follows: for each ε > 0 and each 1-periodic
function f summable on the cube Q= [− 1

2 ,
1
2 )

m, we consider the sum

SM,ε(f, x)=
∑

n∈Zm

M(εn)f̂ (n)e2πi〈n,x〉

and study its limit as ε→ 0.
To simplify the exposition, we will assume that M tends to zero at infinity so fast

that
∑

n∈Zm

∣
∣M(εn)

∣
∣ <+∞ for every ε > 0

(this condition is necessarily fulfilled if M is a compactly supported function).
It is clear that SM,ε(f )= f ∗ωε , where

ωε(x)=
∑

n∈Zm

M(εn)e2πi〈n,x〉.
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If it turns out that the functions ωε form an approximate identity as ε→ 0, then our
problem simplifies considerably: it will be possible to use general theorems 7.6.5
and 9.3.7 in the study of the sums SM,ε(f, x).

When is the family {ωε}ε>0 an approximate identity as ε→ 0? In Sect. 10.4.3, we
obtained a sufficient condition. Now, using the Poisson summation formula, we can
a give much more complete answer to this question. It turns out that it is sufficient
that the Fourier transform M̂ be summable (as follows from the result of Exercise 6,
this condition is also necessary).

We verify the conditions characterizing a periodic approximate identity (see
Sect. 7.6.5). The equality

∫
Rm ωε(x) dx = 1 is valid because the series defining the

function ωε converges absolutely, and we can integrate it termwise over the cube Q,
∫

Q

ωε(x) dx =
∑

n∈Zm

M(εn)

∫

Q

e2πi〈n,x〉 =M(0)= 1.

We will show below that the functions ωε are non-negative if M̂ � 0. However,
regardless of this condition, the integrals

∫
Q
|ωε(x)|dx are bounded. To verify this,

we put N(x) = M̂(−x) and Nε(x) = ε−mN(x/ε). Then the inversion formula for
the Fourier transform (see Theorem 10.5.4) implies

M(εn)=
∫

Rm

M̂(y)e2πi〈εn,y〉 dy = ε−m

∫

Rm

N

(

−u

ε

)

e2πi〈n,u〉 du= N̂ε(n),

and, by the Poisson summation formula, we obtain

ωε(x)=
∑

n∈Zm

N̂ε(n)e
2πi〈n,x〉 =

∑

n∈Zm

Nε(x + n). (7)

Therefore, ωε � 0 if N � 0, i.e., M̂ � 0, and
∫

Q

∣
∣ωε(x)

∣
∣dx �

∫

Q

∑

n∈Zm

∣
∣Nε(x + n)

∣
∣dx =

∫

Rm

∣
∣Nε(x)

∣
∣dx = ‖N‖1 = ‖M̂‖1

in the general case. Thus, the L 1-norm (on the cube Q) of each function ωε does
not exceed the L 1-norm (on R

m) of the Fourier transform M̂ .
By refining this argument a little, we can establish a localization property. Indeed,

for every δ ∈ (0, 1
2 ), we have

∫

Q\B(δ)

∣
∣ωε(x)

∣
∣dx �

∫

‖x‖�δ

∣
∣Nε(x)

∣
∣dx =

∫

‖y‖�δ/ε

∣
∣M̂(y)

∣
∣dy −→

ε→0
0.

Thus, {ωε}ε>0 is a periodic approximate identity, and, consequently, statements (a)
and (b) of Theorem 7.6.5 are valid for it.

Example The function M(u) = e−‖u‖ generates the “radial” Abel–Poisson sum-
mation method for multiple Fourier series, where, to each 1-periodic function f
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summable on the cube Q, we assign the sums

Sε(f, x)=
∑

n∈Zm

e−ε‖n‖f̂ (n)e2πi〈n,x〉.

The Fourier transform of M was calculated in Example 4 of Sect. 10.5.1, M̂(y)=
Cm(1+ 4π2‖y‖2)−m+1

2 . It, obviously, is summable. The corresponding kernel has
the form (see formula (7))

ωε(x)=
∑

n∈Zm

e−ε‖n‖e2πi〈n,x〉 =
∑

n∈Zm

Cmε

(ε2 + 4π2‖n+ x‖2)
m+1

2

.

As follows from the result of Exercise 7, not only does this kernel have the strong
localization property, but it is also dominated by a summable “hump-shaped” ma-
jorant (see Sect. 9.3.4). Therefore, the theorems of Sects. 7.6.5 and 9.3.7 can be
applied to the sums Sε(f ) = f ∗ ωε . Consequently, Sε(f ) ⇒

ε→0
f if the 1-periodic

function f is continuous, and
∫
Q
|Sε(f, x)−f (x)|p dx −→

ε→0
0 if f ∈L p(Q), where

p � 1. Moreover, Sε(f, x)−→
ε→0

L if f (x + t)−→
t→0

L, and Sε(f, x)−→
ε→0

f (x) almost

everywhere.

10.6.5 An interesting application of the Poisson identity is in one of the solutions
to the Gauss problem on determining the number Nm(R) of points of the integer
lattice Z

m that lie in the closed ball of a large radius R. The number Nm(R) is close
to the volume of the ball, Nm(R)− λm(B(R))=O(Rm−1) as R→+∞. This can
easily be verified by considering the unit cubes centered at the lattice points, i.e.,
the cubes n+ [− 1

2 ,
1
2 ]m, n ∈ Z

m. Since, for n ∈ B(R), their union contains the ball
B(R−√m) and is contained in the ball B(R+√m), we see that the number Nm(R),
being equal to the volume of the union of these cubes, lies between λm(B(R−√m))

and λm(B(R +√m)). In other words, αm(R −√m)m �Nm(R)� αm(R+√m)m,
where αm is the volume of the unit cube in R

m.
Much greater efforts are needed to sharpen this elementary estimate. However,

we first observe that the exponent θ in the relation Nm(R)= αmRm+O(Rθ) cannot
be less than m− 2. Indeed, the function R �→Nm(R) makes a jump at R2 ∈N, the
value of which is equal to the number of lattice points on the sphere of radius R.
Since the principal term αmRm of the asymptotic depends continuously on R, the
exponent θ must be so large that the number of points on the sphere of radius R be
dominated by a summand proportional to Rθ . The number of lattice points in the
spherical layer R < ‖x‖ < 2R is of order Rm. The number of spheres containing
these points is at most 3R2 (every such sphere is defined by the equation ‖x‖2 = t

with an integer parameter t lying between R2 and (2R)2). At least one of the spheres
contains at least constRm−2 points. Therefore, necessarily θ �m− 2.

It is clear that (in what follows, n ∈ Z
m)

Nm(R)=
∑

‖n‖�R

1=
∑

n∈Zm

χ

(
n

R

)

, (8)
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where χ is the characteristic function of the unit ball B . To calculate the sum on
the right-hand side of (8), we apply the Poisson summation formula. Unfortunately,
this cannot be done directly because the function χ is discontinuous. Therefore,
we smoothen it and estimate Nm(R), applying the Poisson formula to smooth com-
pactly supported functions χ+ and χ− approximating χ from above and from below.
It is desired, of course, that the functions χ± be as close as possible to χ .

To construct them, we take a non-negative function ψ ∈ C∞0 (Rm) with the prop-
erties supp(ψ)⊂ B and

∫
Rm ψ(x)dx = 1 and put ψε(x)= ε−mψ(x/ε), where ε is

a small positive parameter the choice of which will be specified later. The infinitely
differentiable function χε = χ ∗ ψε (see Corollary 7.5.4) is, obviously, equal to
1 in the ball B(1 − ε) and to zero outside the ball B(1 + ε). Consequently, the
functions χ−(x) = χε((1 + ε)x) and χ+(x) = χε((1 − ε)x) satisfy the inequality
χ− � χ � χ+. Thus,

∑

n∈Zm

χε

(

(1+ ε)
n

R

)

�Nm(R)�
∑

n∈Zm

χε

(

(1− ε)
n

R

)

,

i.e.,

Sε

(
R

1+ ε

)

�Nm(R)� Sε

(
R

1− ε

)

, (9)

where Sε(r)=∑
n∈Zm χε(n/r).

To apply the Poisson summation formula (4) to the function f (x)= χε(x/r), we
observe that

f̂ (y)= rmχ̂ε(ry)= rmχ̂(ry)ψ̂ε(ry)= rmχ̂(ry)ψ̂(rεy);
in particular, f̂ (0)= αmrm.

Since the function ψ belongs to the class C∞0 (Rm), its Fourier transform (and, con-
sequently, also f̂ ) rapidly decreases at infinity. Thus, the conditions of Theorem 1
of Sect. 10.6.2 are fulfilled, and we obtain

Sε(r)=
∑

n∈Zm

χε

(
n

r

)

=
∑

n∈Zm

f (n)=
∑

n∈Zm

f̂ (n)= rm
∑

n∈Zm

χ̂(rn)ψ̂(rεn)

= rmαm + rm
∑

n�=0

χ̂ (rn)ψ̂(rεn).

Therefore,
∣
∣Sε(r)− αmrm

∣
∣ � rm

∑

n�=0

∣
∣χ̂ (rn)

∣
∣ · ∣∣ψ̂(rεn)

∣
∣.
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Using the estimates ψ̂(y)=O((1+‖y‖)−m) and χ̂ (y)=O(‖y‖−m+1
2 ) (see Exam-

ple 2 of Sect. 10.5.2), we obtain

∣
∣Sε(r)− αmrm

∣
∣ �

∑

n�=0

Crm

‖rn‖m+1
2 (1+ ‖rεn‖)m

= Cε−
m−1

2
∑

n�=0

(rε)m

‖rεn‖m+1
2 (1+ ‖rεn‖)m

.

Since the estimate ‖x‖� ‖rεn‖ +
√
m

2 rε � (1+
√
m

2 )‖rεn‖ is valid for each point
x in the cube of edge length rε and center at rεn, n �= 0, we see that the last sum is
dominated (with a coefficient depending only on the dimension) by the integral

∫

Rm

dx

‖x‖m+1
2 (1+ ‖x‖)m

= αm

∫ ∞

0

t
m−3

2 dt

(1+ t)m
<+∞.

Therefore,
∣
∣Sε(r)− αmrm

∣
∣=O

(
ε−

m−1
2

)
.

For r = R
1±ε

and 0 < ε < 1
2 , we have rm =Rm(1+O(ε)), so |Sε(

R
1±ε

)− αmRm| =
O(εRm + ε−m−1

2 ). Taking into account (9), we see that

∣
∣Nm(R)− αmRm

∣
∣=O

(
εRm + ε−

m−1
2

)
.

The sum εRm + ε−m−1
2 has a minimal order of growth if εRm = ε−m−1

2 , i.e., if

ε =R−
2m
m+1 . Choosing this value of ε, we arrive at the relation

Nm(R)= αmRm +O
(
Rθ

)
as R→+∞ (10)

with θ =mm−1
m+1 <m− 1.

10.6.6 What can be said about the exactness of formula (10)? Since θ = m− 2+
2

m+1 , we see that, for large m, its error is close to the minimum possible value

O(Rm−2). As we know, for m > 4, the best estimate is achieved, namely, rela-
tion (10) is valid with θ =m− 2 (for m= 4, this relation is valid for every θ > 2).
For m= 3 the minimum value of the exponent θ is still unknown. As we have ver-
ified in the previous section, it does not exceed 3

2 and is not less than 1. There is a
conjecture stating that the exponent θ can be taken arbitrarily close to 1, but it has
only been proved that θ � 29/22. For the history of the problem, see the paper [CI]
or the book [LK].

We consider the two-dimensional case in more detail. We have proved that, for
m= 2, formula (10) is valid with θ = 2/3. In the study of the Gauss problem, this
is the first non-trivial result, which was obtained by Sierpiński in 1906 and has been
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sharpened several times since then. More sophisticated methods made it possible to
decrease the exponent θ to 131

208 , but it is still unknown whether the value of θ can be
taken arbitrarily close to 1

2 . This bound cannot be lowered. As Hardy and Landau21

proved independently in 1915, the relation N2(R)= πR2 +O(Rθ) holds only for
θ � 1

2 . We give the proof of this result, based on the paper [EF] (see also Exercise 9).
Let N(R) = N2(R) = card{n ∈ Z

2 | ‖n‖ � R} and �(R) = N(R) − πR2. We
will need the function f (z)=∑∞

k=−∞ zk
2

(|z|< 1) tightly connected with the quan-
tities N(R) and �(R). Indeed,

f 2(z)=
∞∑

k=−∞
zk

2
∞∑

j=−∞
zj

2 =
∑

(k,j)∈Z2

zk
2+j2 =

∞∑

k=0

ν(m)zm,

where ν(m) is equal to the number of points (k, j) lying on the circle of radius
√
m.

Since ν(0)= 1 and ν(m)=N(
√
m)−N(

√
m− 1) for m� 1, we obtain

f 2(z)=
∞∑

m=0

N(
√
m)zm −

∞∑

m=1

N(
√
m− 1)zm = (1− z)

∞∑

m=0

N(
√
m)zm.

Since N(
√
m)= πm+�(

√
m), we see that

f 2(z)= πz

1− z
+ (1− z)

∞∑

m=0

�(
√
m)zm. (11)

The required inequality θ � 1
2 can be obtained by comparing estimates from above

and from below for the integrals

I (r)=
∫ π

−π

∣
∣f 2(

reit
)∣
∣dt

(
1

2
< r < 1

)

.

Let us estimate the integral from below. Since f (reit ) = 1 + 2
∑∞

k=1 r
k2
eik

2t ,
Parseval’s identity implies

I (r) = 2π

(

1+ 4
∞∑

k=1

r2k2

)

� 2π
∞∑

k=0

r2k2 � 2π
∞∑

k=0

∫ k+1

k

r2t2
dt

= 2π
∫ ∞

0
r2t2

dt = π
3
2

√
2 ln 1

r

.

Therefore,

I (r)� C1√
1− r

(here and below, C1,C2, . . . are positive coefficients independent of r).

21Edmund Georg Hermann Landau (1877–1938)—German mathematician.
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Now, we obtain an estimate from above. Applying the result established in Ex-
ample 3 of Sect. 10.2.1 to the function ϕ(t)= f (reit ), we obtain that the inequality

I (r)� 3π

α

∫ α

−α

∣
∣f 2(

reit
)∣
∣dt

is valid for α ∈ (0,π) (the choice of this parameter will be specified later). Denoting
the sum on the right-hand side of Eq. (11) by S(z), we obtain

I (r)� 3π

α

(∫ α

−α

πdt

|1− reit | +
∫ α

−α

∣
∣1− reit

∣
∣
∣
∣S

(
reit

)∣
∣dt

)

= 3π

α
(I1 + I2).

By the inequality

∣
∣1− reit

∣
∣=

√

(1− r)2 + 4r sin2 t

2
�

(1− r)+ |sin t
2 |

2
� (1− r)+ |t |

2π
,

it is easy to verify that

I1 � C2
∣
∣ln(1− r)

∣
∣.

Since |1− reit |� (1− r)+ r|t |� (1− r)+ α, we obtain the following inequality
for α � 1− r :

I2 � 2α
∫ α

−α

∣
∣S

(
reit

)∣
∣dt � 2α

√

2α
∫ π

−π

∣
∣S

(
reit

)∣
∣2

dt

= (2α)
3
2

√√
√
√2π

∞∑

m=0

�2(
√
m)r2m.

Therefore, if �(R)=O(Rθ) as R→+∞ for some θ > 0, then

I2 � C3α
3
2

√√
√
√1+

∞∑

m=1

mθr2m � C3α
3
2

√√
√
√1+

∞∑

m=1

∫ m+1

m

tθ r2(t−1)dt

� 2C3α
3
2

√

1+
∫ ∞

0
tθ r2t dt = 2C3α

3
2

√

1+ �(1+ θ)

ln1+θ 1
r2

� C4
α

3
2

(1− r)
1+θ

2

.

Thus, for α > 1− r > 0, we obtain the double inequality

C1√
1− r

� I (r)� C5

α

(∣
∣ln(1− r)

∣
∣+ α

3
2

(1− r)
1+θ

2

)

,

and, consequently,

0 <C6 �
1

α

√
1− r

∣
∣ln(1− r)

∣
∣+

√
α

(1− r)
θ
2

.
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Now, using the freedom in the choice of the parameter α, we decrease the right-
hand side, which is minimal (in order) if the summands are equal, i.e., if α =
(1 − r)

1+θ
3 |ln(1 − r)| 2

3 . Taking this value of α, we obtain that, for all r ∈ ( 1
2 ,1),

the inequality

0 <C6 �
2

α

√
1− r

∣
∣ ln(1− r)

∣
∣= 2(1− r)

1−2θ
6

∣
∣ln(1− r)

∣
∣

1
3

is valid, which is possible only if θ � 1
2 .

10.6.7 It is clear that the number of points of the integer lattice Zm lying in a shifted
ball B(t,R) of a large radius R is asymptotically equal to the volume of the ball. As
we have already verified, it is not easy to obtain a good estimate for the difference

�R(t)= card
{
n ∈ Z

m | ‖n− t‖�R
}− αmRm

as R→+∞ at a fixed point t . However, it is considerably easier to estimate the
mean value (with respect to t) of the error �R(t). As established in [Ke],

∫

[0,1]m
∣
∣�R(t)

∣
∣2

dt � CmRm−1. (12)

To verify this, we find the Fourier coefficients of the function

f (t)=�R(t)+ αmRm = card
{
n ∈ Z

m | ‖n− t‖�R
}

(obviously, this function has period 1 with respect to each variable). Let χ be
the characteristic function of the closed unit ball centered at zero. Then f (t) =∑

n∈Zm χ(n−t
R

). For Q= [0,1)m and each k ∈ Z
m, we obtain

f̂ (k)=
∫

Q

f (t)e−2πi〈k,t〉 dt =
∑

n∈Zm

∫

Q

χ

(
n− t

R

)

e−2πi〈k,t〉 dt

=
∑

n∈Zm

∫

n+Q

χ

(
t

R

)

e−2πi〈k,t〉 dt =
∫

Rm

χ

(
t

R

)

e−2πi〈k,t〉 dt =Rmχ̂(Rk).

Therefore, �̂R(k) = f̂ (k) = Rmχ̂B(Rk) for k �= 0 and �̂R(0) = f̂ (0) − αmRm =
(χ̂B(0)− αm)Rm = 0. By Parseval’s identity, we have

∫

[0,1]m
∣
∣�R(t)

∣
∣2

dt =
∑

k∈Zm

∣
∣�̂R(k)

∣
∣2 =R2m

∑

k �=0

∣
∣χ̂B(Rk)

∣
∣2
.

Now, inequality (12) follows from the estimate χ̂B(y)=O(‖y‖−m+1
2 ) that follows

from the asymptotic formula for χ̂B(y) (see Example 2 of Sect. 10.5.2).
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It is interesting to note that, for m �= 1 (mod 4), the above-mentioned asymptotic
formula for χ̂B(y) enables us to obtain the inequality

∫

[0,1]m
∣
∣�R(t)

∣
∣2

dt � C̃mRm−1 > 0. (12′)

In particular, for m= 2, we obtain that, in the problem in question, the typical error
for the shifted discs B(t,R) has order of growth

√
R.

However, if m = 4l + 1, then the superior limit of the quotient 1
Rm−1 ×∫

[0,1]m |�R(t)|2 dt as R→+∞ is positive and the inferior limit is zero.

EXERCISES

1. Supplement the statement of Lemma 10.6.1 by proving that the series∑
n∈Z f (x+n) converges to S(x) not only almost everywhere, but also in mean.

2. Let an absolutely continuous function f and its derivative be summable on R.
Prove that Eq. (3) is valid for all x ∈R.

3. Verify that, in Theorem 2 of Sect. 10.6.2, the Lipschitz condition can be weak-
ened to the assumption that the inequality |f (x + h)− f (x)|� Rq‖h‖α , where
‖h‖� 1 and ‖x‖� R (here, q is a fixed non-negative number), holds for every
R > 1.

4. Using the result of the previous exercise, show that, in Corollary 10.6.2, the as-
sumption that the derivatives are bounded can be replaced by the requirement
that they are dominated by a polynomial.

5. Let f ∈L 1(Rm) ∩C(Rm) and f̂ � 0 everywhere. Prove that Eq. (5) is valid at
every point x ∈R

m (the series on the right-hand side of (5) converges absolutely).
6. Prove that the condition M̂ ∈L 1(Rm) is not only sufficient but also necessary

for the boundedness of the L 1-norms of the sums ωε (see formula (7)).
7. Prove that the function ωε in the example of Sect. 10.6.4 admits the estimate

ωε(x) = O(ε)(1 + (ε2 + 4π2‖x‖2)−m+1
2 ) (the constant in the O-term depends

only on the dimension) and, therefore, ωε is dominated by a summable “hump-
shaped” majorant.

8. Prove that, as ε→ 0, the functions ωε(x)=∑
n∈Zm e−ε‖n‖2

e2πi〈n,x〉 form an ap-
proximate identity having the strong localization property and a “hump-shaped”
majorant.

9. Verify that the reasoning of Sect. 10.6.6 can be used to obtain the following

stronger result (see [EF]): the fraction �(R)/

√
R

lnR
does not tend to zero as

R→+∞.



Chapter 11
Charges. The Radon–Nikodym Theorem

11.1 Charges; Integration with Respect to a Charge

In what follows, we consider an arbitrary set X and a fixed σ -algebra A of its
subsets. We assume that all sets in question are measurable, i.e., belong to the
σ -algebra A. We recall that the union of pairwise disjoint sets Eα is denoted by∨

α∈AEα .

11.1.1 We define the main subject of the following paragraph.

Definition A function ϕ : A −→ C is called a (complex) charge if it is countably
additive, i.e., if, for every sequence of pairwise disjoint (measurable) sets Ak , the
series

∑∞
k=1 ϕ(Ak) converges and the equation

ϕ

( ∞∨

k=1

Ak

)

=
∞∑

k=1

ϕ(Ak)

holds. A charge whose values belong to the set R is called real.

An example of a charge is, obviously, the difference of finite measures. Below,
we will see that the converse is also true (see Corollary 11.1.5).

Just as a measure can be imagined as a mass distributed on a set, a real count-
ably additive function (more precisely, its value on a given set) can naturally be
interpreted as the total electric charge of positively and negatively charged particles
fixed in this set. The term “charge” corresponds to this interpretation.

We note some elementary properties of charges. The symbol ϕ denotes an arbi-
trary charge.

(1) ϕ(∅)= 0.
This follows from countable additivity with all Ak equal to the empty set.

(2) A charge is an additive set function, ϕ(A∨B)= ϕ(A)+ ϕ(B).
To verify this, it is sufficient to put A1 = A, A2 = B and Ak =∅ for k > 2

and use property (1) and the countable additivity of a charge.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_11, © Springer-Verlag London 2013
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Hence it follows that a charge is a finite additive function,

ϕ

(
n∨

k=1

Ak

)

=
n∑

k=1

ϕ(Ak).

(3) If B ⊂A, then ϕ(A \B)= ϕ(A)− ϕ(B).
Indeed, A = B ∨ (A \ B). Therefore, by additivity, we obtain ϕ(A) =

ϕ(B)+ ϕ(A \B).

11.1.2 Like finite measures, charges are continuous from above and from below.

Theorem Let ϕ be an arbitrary charge. Then ϕ(A)= limn→∞ ϕ(An) if A1 ⊂A2 ⊂
· · · , A=⋃∞

n=1 An (continuity from below) or if A1 ⊃A2 ⊃ . . . ,A=⋂∞
n=1 An (con-

tinuity from above).

Proof The continuity from below follows easily from the relation A =∨∞
n=1(An \An−1) (here A0 =∅), by which we obtain

ϕ(A)=
∞∑

n=1

ϕ(An \An−1)=
∞∑

n=1

(
ϕ(An)− ϕ(An−1)

)= lim
n→∞ϕ(An).

Similarly, using the relation A1 =A∨∨∞
n=2(An−1 \An), we can prove the con-

tinuity from above. We leave it to the reader to fill in the details. �

11.1.3 It turns out that the following analog of the Weierstrass extreme value theo-
rem is valid for real charges: every charge attains its maximum and minimum values.
Before turning to the proof of this important theorem, we establish an auxiliary fact.

Definition A set A is called a set of positivity of a charge ϕ if ϕ(E)� 0 for every
set E lying in A.

Lemma

(1) A countable union of sets of positivity is a set of positivity.
(2) Every set A contains a set of positivity B such that ϕ(B)� ϕ(A).

Proof The first statement of the lemma follows directly from the countable additiv-
ity of ϕ.

Let us prove the second statement. If ϕ(A)� 0, then we can put B =∅. We will
assume that ϕ(A) > 0.

First, we verify that the second statement “is fulfilled up to ε”. Let ε > 0. We say
that a set A is a set of ε-positivity if ϕ(E) >−ε for every set E lying in A.

We prove that, for every ε > 0, the set A contains a set C of ε-positivity such
that ϕ(C) � ϕ(A). Indeed, if the set A itself is not a set of ε-positivity, then there
is a subset e1 of A such that ϕ(e1) � −ε. We put A1 = A \ e1. It is clear that
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ϕ(A1) > ϕ(A). Now, we can repeat our reasoning with A replaced by A1, etc. This
process must terminate since otherwise we would obtain an infinite sequence of
pairwise disjoint sets {en}n�1 such that ϕ(en) � −ε. However, this is impossible
since ϕ(

∨∞
n=1 en)=

∑∞
n=1 ϕ(en) by countable additivity, and the series on the right-

hand side diverges. If the construction of en cannot be continued after the N th step,
then, obviously, the difference AN =AN−1 \ eN is the required set of ε-positivity.

Now, step by step, we choose sets Cn of 1/n-positivity such that

C1 ⊂A, ϕ(C1)� ϕ(A); . . . Cn+1 ⊂ Cn, ϕ(Cn+1)� ϕ(Cn) for n ∈N.

Indeed, first we find a set C1 of 1-positivity in A such that ϕ(C1)� ϕ(A). Then
we find a set C2 of 1/2-positivity in C1 such that ϕ(C2)� ϕ(C1), etc. Since a part
of a set of ε-positivity is again a set of ε-positivity, the set B =⋂∞

n=1 Cn is a set
of ε-positivity for every ε > 0, i.e., a set of positivity and ϕ(B)= limn→∞ ϕ(Cn)�
ϕ(A). �

Theorem Every real charge ϕ attains its maximum and minimum values, i.e., there
are sets C and C′ such that

ϕ(C)= sup
{
ϕ(E) |E ∈A

}
and ϕ

(
C′

)= inf
{
ϕ(E) |E ∈A

}
.

Proof We prove only that ϕ attains its maximum value (applying this to the charge
−ϕ, we obtain the second statement). Let H = sup{ϕ(A) |A ∈ A}. Obviously,
0 �H �+∞ (we do not exclude the case H =+∞). From the lemma, it follows
that

H = sup
{
ϕ(B) |B is a set of positivity

}
.

Now, we consider sets of positivity Bn such that ϕ(Bn) −→
n→∞H . Their union C is a

set with the required property since

H � ϕ(C)� ϕ(Bn) for every n. �

Corollary Every charge is bounded, i.e., for every charge ϕ, there is a number L

such that |ϕ(A)|� L for each A ∈A.

Proof It is sufficient to consider real charges. In this case, the boundedness follows
directly from the theorem since, by definition, a charge assumes only finite values. �

11.1.4 Now, we introduce an important characteristic of a charge (real or complex).

Definition The variation of a charge ϕ on a set A is the quantity

|ϕ|(A)= sup

{
n∑

k=1

∣
∣ϕ(Ek)

∣
∣
∣
∣
∣
∣

n∨

k=1

Ek ⊂A, n ∈N

}

.
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The traditional notation |ϕ| requires some caution: |ϕ|(A) should not be confused
with |ϕ(A)|.

We list several elementary properties of variation, the first four of which follow
directly from the definition.

(1) |ϕ(A)|� |ϕ|(A).
(2) If B ⊂A, then |ϕ|(B)� |ϕ|(A) (the monotonicity of variation).
(3) The variation of a finite measure coincides with the measure itself.
(4) If ϕ = aϕ1 + bϕ2, then |ϕ|(A)� |a||ϕ1|(A)+ |b||ϕ2|(A).
(4′) ||ϕ1|(A)− |ϕ2|(A)|� |ϕ1 − ϕ2|(A).
(5) If ϕ is a real charge, then

|ϕ|(A)= sup
{
ϕ(B)− ϕ(C) |B ∨C ⊂A

}

= sup
{
ϕ(B)− ϕ(C) |B,C ⊂A

}
. (1)

To prove the first equality in (1), we put

S = sup
{
ϕ(B)− ϕ(C) |B ∨C ⊂A

}
.

It is clear that S � |ϕ|(A). On the other hand, if E1 ∨ · · · ∨ En ⊂ A, then we can
divide these sets into two groups as follows: the sets Ek for which ϕ(Ek) � 0 are
assigned to the first group and the sets for which ϕ(Ek) < 0 are assigned to the
second group. Let B and C be the unions of the sets of the first and the second
group, respectively. Then

n∑

k=1

∣
∣ϕ(Ek)

∣
∣=

∑

ϕ(Ek)�0

ϕ(Ek)−
∑

ϕ(Ek)<0

ϕ(Ek)= ϕ(B)− ϕ(C)� S.

Since this is true for each family of pairwise disjoint subsets E1, . . . ,En of A, we
obtain by the definition of variation that |ϕ|(A) � S, which, along with the oppo-
site inequality mentioned above, gives the first equality in (1). To prove the second
equality, we observe that if B,C ⊂A and E = B ∩C, then (B \E)∩ (C \E)=∅

and

ϕ(B)−ϕ(C)= ϕ(B \E)+ϕ(E)− (
ϕ(C \E)+ϕ(E)

)= ϕ(B \E)−ϕ(C \E)� S.

Therefore, the right-hand side of Eq. (1) does not exceed S. The opposite inequality
is obvious.

11.1.5 We establish the main property of the variation.

Theorem The variation of an arbitrary charge ϕ is a finite measure.

Proof We verify that the variation of ϕ is a measure. Let A =∨∞
k=1 Ak . We must

prove that

|ϕ|(A)=
∞∑

k=1

|ϕ|(Ak).
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First, we verify that the inequality

|ϕ|(A)�
∞∑

k=1

|ϕ|(Ak) (2)

holds. Let E1 ∨ · · · ∨En ⊂A. Then

ϕ(Ej )=
∞∑

k=1

ϕ(Ej ∩Ak)

for every j = 1, . . . , n, and

n∑

j=1

∣
∣ϕ(Ej )

∣
∣=

n∑

j=1

∣
∣
∣
∣
∣

∞∑

k=1

ϕ(Ej ∩Ak)

∣
∣
∣
∣
∣
�

∞∑

k=1

n∑

j=1

∣
∣ϕ(Ej ∩Ak)

∣
∣ �

∞∑

k=1

|ϕ|(Ak).

Passing to the supremum on the left-hand side of the last inequality, we obtain (2).
Now, we turn to the proof of the opposite inequality. First, we prove that

|ϕ|(A∨B)� |ϕ|(A)+|ϕ|(B) for all disjoint sets A and B . Indeed, if
∨n

j=1 Ej ⊂A

and
∨m

k=1 E
′
k ⊂ B , then E1 ∨ · · · ∨En ∨E′1 ∨ · · · ∨E′m ⊂A∨B , and, therefore,

|ϕ|(A∨B)�
n∑

j=1

∣
∣ϕ(Ej )

∣
∣+

m∑

k=1

∣
∣ϕ

(
E′k

)∣
∣.

First, we pass to the supremum over all sets E1, . . . ,En and then over the sets
E′1, . . . ,E′m. We obtain that |ϕ|(A∨B)� |ϕ|(A)+ |ϕ|(B). This inequality can eas-
ily be generalized by induction as follows: |ϕ|(A1 ∨ · · · ∨ AN) � |ϕ|(A1)+ · · · +
|ϕ|(AN). Taking into account the monotonicity of variation, we see that

|ϕ|
( ∞∨

k=1

Ak

)

� |ϕ|
(

N∨

k=1

Ak

)

�
N∑

k=1

|ϕ|(Ak).

Since N is arbitrary, this implies the inequality opposite to (2), and, consequently,
the countable additivity of the variation.

Since the variation is monotone, to prove that it is finite, it is sufficient to verify
that |ϕ|(X) < +∞. Since the real and imaginary parts of a complex charge are
charges, we can use property (4) of variation and assume that the charge ϕ is real.
By Corollary 11.1.3, ϕ is bounded. Therefore, for some L> 0 and every A, we have
|ϕ(A)|� L. By property (5), we obtain

|ϕ|(X)= sup
{
ϕ(B)− ϕ(C) |B,C ⊂X

}
� 2L. �

Corollary A real charge is the difference of finite measures. A complex charge ϕ

can be represented in the form ϕ = μ1 − μ2 + i(μ3 − μ4), where μ1, . . . ,μ4 are
finite measures.
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Proof If ϕ is a real charge, then the difference μ= |ϕ| − ϕ is also a charge. By the
first property of variation, this charge is non-negative and, therefore, is a measure
(obviously, finite). At the same time, it is clear that ϕ = |ϕ| −μ.

For a complex charge, we can apply the representation of the real charges Re ϕ

and Imϕ obtained above. �

11.1.6 We are looking for a formula to calculate the variation of a charge with
density.

Theorem Let (X,A,μ) be an arbitrary measure space, let f ∈L 1(X,μ), and let
ϕ be the charge defined by the equation

ϕ(A)=
∫

A

f dμ (A ∈A).

Then

|ϕ|(A)=
∫

A

|f |dμ (A ∈A). (3)

Remark Under the assumptions of the theorem, the function f is called the density
of ϕ (with respect to the measure μ). We will also say that the charge ϕ is gen-
erated by the function f and write this symbolically as follows: dϕ = f dμ. We
remark that the density is determined by the charge uniquely up to equivalence (see
Theorem 4.5.4).

Proof Let A1 ∨ · · · ∨AN ⊂A. Then

N∑

k=1

∣
∣ϕ(Ak)

∣
∣=

N∑

k=1

∣
∣
∣
∣

∫

Ak

f dμ

∣
∣
∣
∣ �

N∑

k=1

∫

Ak

|f |dμ=
∫

A1∨···∨AN

|f |dμ�
∫

A

|f |dμ.

On the left-hand side of the last inequality, we pass to the supremum over all possible
collections of sets Ak satisfying the conditions mentioned above and obtain

|ϕ|(A)�
∫

A

|f |dμ. (4)

Now, we prove that the opposite inequality is also valid. First, we consider the
case where the function f is simple. Let E1,E2, . . . ,EN be pairwise disjoint sets
and f =∑N

k=1 akχEk
, where ak is a scalar and χEk

, as usual, is the characteristic
function of Ek . Then

|ϕ|(A) �
N∑

k=1

|ϕ|(A∩Ek)�
N∑

k=1

∣
∣ϕ(A∩Ek)

∣
∣=

N∑

k=1

∣
∣
∣
∣

∫

A∩Ek

f dμ

∣
∣
∣
∣

=
N∑

k=1

|ak|μ(A∩Ek)=
∫

A

|f |dμ.

Using (4), we obtain Eq. (3).
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Now, we consider the case of an arbitrary summable function f and prove first
that the inequality opposite to (4) is valid with an arbitrary small error.

We fix an arbitrary positive number ε and a simple function g such that its
deviation in mean from f , i.e., the quantity

∫
X
|f − g|dμ, is less than ε (see

Lemma 4.9.2). Let ψ be a charge generated by g, i.e., ψ(A)= ∫
A
g dμ for A ∈ A.

Then, using property (4′) of the variation, inequality (4), and the fact that Eq. (3)
has already been proved for simple functions, we obtain

|ϕ|(A)= ∣
∣ψ − (ψ − ϕ)

∣
∣(A)� |ψ |(A)− |ϕ −ψ |(A)�

∫

A

|g|dμ−
∫

A

|f − g|dμ

�
∫

A

|f |dμ− 2
∫

A

|f − g|dμ�
∫

A

|f | − 2
∫

X

|f − g|dμ

�
∫

A

|f |dμ− 2ε.

Since ε is arbitrary, the last inequality implies that |ϕ|(A)�
∫
A
|f |dμ. Taking into

account inequality (4), we obtain Eq. (3). �

11.1.7 Now, we establish an important property of real charges, which shows once
again that the above-mentioned interpretation of a real countably additive function
as a “measure of the quantity of electricity” contained in the positively and nega-
tively charged particles distributed on the set is quite natural: the set is divided into
two parts such that one of the parts contains only positively charged particles and
the other one contains only negatively charged particles.

Theorem Let ϕ be a real charge defined on a σ -algebra A of subsets of a set X.
Then X can be divided into two subsets X+ and X− such that

ϕ(A∩X+)� 0 and ϕ(A∩X−)� 0 for every set A in A. (5)

The representation X = X+ ∨X− with the property indicated in the theorem is
called a Hahn1 decomposition of the charge ϕ.

Proof Let X+ be the set on which the charge ϕ attains its maximum value (see
Theorem 11.1.3). This set cannot contain subsets E for which ϕ(E) < 0 since oth-
erwise, removing E from X+, we obtain a set on which the value of the charge is
larger than its maximum value.

Similarly, if E ∩X+ =∅, then the charge cannot assume a positive value on E

(otherwise, appending E to X+, we obtain a set on which the charge assumes too
large values).

To obtain the required decomposition, it remains to put X− =X \X+. �

1Hans Hahn (1879–1934)—Austrian mathematician.
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The Hahn decomposition X =X+ ∨X− is not unique in general. Indeed, if, for
example, E ⊂X+, E �=∅, |ϕ|(E)= 0, then, removing E from X+ and appending
it to X−, we obtain a new Hahn decomposition.

Corollary For a real charge ϕ, we put

ϕ+(A)= sup
{
ϕ(B) |B ⊂A

}
and ϕ−(A)= sup

{−ϕ(B) |B ⊂A
}

(A ∈A).

Then ϕ+ and ϕ− are finite measures and

ϕ = ϕ+ − ϕ−, |ϕ| = ϕ+ + ϕ−. (6)

The measures ϕ+ and ϕ− are called, respectively, the positive and negative varia-
tions of the charge ϕ, and the representation (6) is called the Jordan decomposition.
It is clear that ϕ− = (−ϕ)+ and ϕ+ = (−ϕ)−.

Proof Let X =X+ ∪X− be a Hahn decomposition of ϕ. We verify that

ϕ+(A)= ϕ(A∩X+), ϕ−(A)=−ϕ(A∩X−), (7)

which immediately implies relations (6). It is sufficient to verify only the first rela-
tion in (7). Moreover, since the inequality ϕ(A ∩X+)� ϕ+(A) is obvious, it only
remains for us to verify the opposite inequality, which is very easy: if B ⊂A, then

ϕ(B)= ϕ(B ∩X+)+ ϕ(B ∩X−)� ϕ(B ∩X+)� ϕ(A∩X+),

and, therefore,

ϕ+(A)= sup
{
ϕ(B) |B ⊂A

}
� ϕ(A∩X+). �

11.1.8 Using the fact that every real charge is the difference of finite measures, we
define the integral with respect to a charge.

Definition Let ϕ be a real charge defined on a σ -algebra of subsets of a set X, and
let f be a bounded function measurable on X. The integral

∫
X
f dϕ of the function

f with respect to the charge ϕ is the difference
∫

X

f dϕ =
∫

X

f dμ1 −
∫

X

f dμ2, (8)

where μ1 and μ2 are arbitrary finite measures such that ϕ = μ1 −μ2.
If ϕ is a complex charge, then we put

∫

X

f dϕ =
∫

X

f dϕ1 + i

∫

X

f dϕ2, (8′)

where ϕ1 =Re ϕ and ϕ2 = Imϕ.
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Remark We point out that the above integral is well defined. Indeed, if ϕ =
μ1 − μ2 = μ′1 − μ′2, then μ1 + μ′2 = μ′1 + μ2. Therefore, by the additivity of the
integral with respect to a measure (see Sect. 4.4.2, property (9)), we obtain

∫

X

f dμ1 +
∫

X

f dμ′2 =
∫

X

f dμ′1 +
∫

X

f dμ2,

and, consequently (all these integrals are finite since the function f is bounded),

∫

X

f dμ1 −
∫

X

f dμ2 =
∫

X

f dμ′1 −
∫

X

f dμ′2.

In particular, using the Jordan decomposition, we see that

∫

X

f dϕ =
∫

X

f dϕ+ −
∫

X

f dϕ−.

The latter equation could be taken as the definition of the integral (in this case,
it would not be necessary to prove that the integral is well defined) and could even
be used to generalize the definition to the case where f is not bounded but only
summable with respect to the variation ϕ. In this case, however, Eq. (8) would be
valid for unbounded functions only if f were summable with respect to μ1 and μ2.
To avoid this additional restriction, we consider only bounded functions in the defi-
nition of the integral (see Exercise 3).

The integral with respect to a charge is linear with respect to the function as
well as with respect to the charge, i.e., if a, b ∈C, then, for all bounded measurable
functions f and g, we have

∫

X

(af + bg)dϕ = a

∫

X

f dϕ + b

∫

X

g dϕ,

and, for all charges ϕ and ψ defined on a common σ -algebra, we have

∫

X

f d(aϕ + bψ)= a

∫

X

f dϕ + b

∫

X

f dψ.

The proof, which is sufficient to conduct only for real charges, is left to the reader.
We also note the following useful property:

∫

X

f dϕ =
∫

X

f dϕ, (9)

where, by ϕ, we mean the charge Re ϕ − i Imϕ. This relation can be verified by
direct calculation using formula (8′).

Theorem Let ϕ be a charge defined on a σ -algebra of subsets of a set X. Then:
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(1) if a sequence of measurable functions {fn}n�1 on X is uniformly bounded and
pointwise converges to f , then

∫

X

fn dϕ −→
n→∞

∫

X

f dϕ;

(2) if a charge ϕ has a density ω with respect to the measure μ, then
∫
X
f dϕ =∫

X
fωdμ for every bounded measurable function f ;

(3) if a measurable function f is bounded on X, then | ∫
X
f dϕ|� supX |f | · |ϕ|(X).

Proof Assertion (1) follows from Lebesgue’s dominant convergence theorem (The-
orem 4.8.4).

Assertions (2) and (3) are obvious for characteristic functions, and, consequently,
for simple functions. The general case is exhausted by the passage to the limit based
on assertion (1), since the function f can be approximated pointwise (and even
uniformly) by a bounded sequence of simple functions (see Corollary 3.2.2). �

11.1.9 Introducing the definition of the integral with respect to a charge, we can
give a natural generalization of the concepts of the Fourier coefficients and Fourier
series, having confined ourselves for the time being to the charges defined on subsets
of an interval.

Definition Let ϕ be a charge defined on the σ -algebra of Borel subsets of the inter-
val [−π,π]. The numbers

ϕ̂(n)= 1

2π

∫

[−π,π]
e−inx dϕ(x) (n ∈ Z)

are called the Fourier coefficients of the charge ϕ, and the series
∑∞

n=−∞ ϕ̂(n)einx

is called the Fourier series of ϕ.

We verify that, under a mild restriction, the charges, as well as the measures, are
uniquely determined by their Fourier coefficients (see Theorem 10.3.7).

Theorem If charges defined on the σ -algebra of Borel subsets of the interval
[−π,π] have zero load at the point π , then the charges coincide if their Fourier
coefficients coincide.

Proof It is sufficient to prove that a charge ϕ satisfying the condition ϕ({π}) = 0
and having zero Fourier coefficients is equal to zero. First, we assume that ϕ is
a real charge. In this case, we have the Jordan decomposition ϕ = ϕ+ − ϕ−. It is
clear that the measures ϕ± do not have loads at the point π . Since ϕ̂(n) = 0 for
all n, these measures have the same Fourier coefficients. Therefore, we can apply
Theorem 10.3.7, by which ϕ+ = ϕ−, and, consequently, ϕ = ϕ+ − ϕ− = 0.
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Now, we consider the general case ϕ = ψ + iθ , where ψ and θ are real charges
(they do not have loads at the point π ). By Eq. (9), we have

ϕ̂(n)= 1

2π

∫

[−π,π]
einx d ϕ(x)= ϕ̂(−n).

Therefore, the charge ϕ, as well as ϕ, has zero Fourier coefficients. In other words,
for all n, we obtain

ψ̂(n)+ iθ̂ (n)= ϕ̂(n)= 0 and ψ̂(n)− iθ̂ (n)= ϕ̂(n)= 0.

Hence it follows that the real charges ψ and θ also have zero Fourier coefficients,
and, consequently, are equal to zero. �

A multi-dimensional version of the theorem just proved is considered in
Sect. 12.3.3.

EXERCISES

1. Prove that if the range of a charge is infinite, then it contains arbitrarily small
non-zero values.

2. Verify that the range of a charge is a closed set.
3. Prove that a function measurable with respect to a σ -algebra A is bounded if it

is summable with respect to every finite measure defined on A.
4. Supplement assertion (3) of Theorem 11.1.8 by proving that | ∫

X
f dϕ| �∫

X
|f |d|ϕ|.

11.2 The Radon–Nikodym Theorem

11.2.1 We have already seen in Sect. 4.5.3 that the calculation of an integral with
respect to a measure ν having a density p with respect to a measure μ can be reduced
to the calculation of an integral with respect to μ (we recall that, in this case, we
write dν = p dμ). Such a reduction is often useful, and, therefore, it is desirable to
have a criterion for determining whether a given measure has a density with respect
to μ. It turns out that, in a wide range of cases, an obvious necessary condition is
also sufficient.

We state the necessary definition.

Definition Let μ and ν be measures defined on the same σ -algebra. We say that the
measure ν is absolutely continuous with respect to the measure μ (or is subordinate
to μ) if ν(E)= 0 whenever μ(E)= 0.

The absolute continuity of ν with respect to μ is denoted by ν ≺ μ.

Every measure having a density with respect to a measure μ is, obviously, sub-
ordinate to μ. It turns out that, for σ -finite measures, the converse is also true. We
prove this, assuming first that the subordinate measure is finite.
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Theorem (Radon2–Nikodym3) Let μ and ν be measures defined on a σ -algebra
A of subsets of a set X, and let μ be σ -finite and ν be finite. If ν is absolutely
continuous with respect to μ, then it has a summable density with respect to μ. This
density is unique up to equivalence.

Proof First, we find the maximum possible density generating a measure not ex-
ceeding ν and then prove that the measure with this density coincides with ν. Let P
be the set of all such densities,

P =
{

p ∈L 0(X,μ)

∣
∣
∣p � 0,

∫

E

p dμ� ν(E) for every E in A

}

.

It is essential that P contains the maximum of an arbitrary pair of functions be-
longing to P . Indeed, let f,g ∈ P and h = max{f,g}. We consider the partition
X = X′ ∨ X′′, where X′ = X(f � g) and X′′ = X(f < g). Then, for every set E
in A, we obtain

∫

E

hdμ=
∫

E∩X′
f dμ+

∫

E∩X′′
g dμ� ν

(
E ∩X′

)+ ν
(
E ∩X′′

)= ν(E),

which implies that h ∈ P .
It is easy to prove by induction that P contains the maximum of every finite

family of functions belonging to P .
Let I = sup{∫

X
p dμ |p ∈ P }, and let fn be a sequence of functions in P such

that
∫
X
fn dμ → I . It is clear that I � ν(X) < +∞. Without loss of genera-

lity, we may assume that the sequence {fn}n�1 increases (otherwise, we replace
fn by max{f1, . . . , fn}). We put f = limn→∞ fn. By Levi’s theorem, we have∫
E
f dμ = limn→∞

∫
E
fn dμ � ν(E) for every E in A. Therefore, f ∈ P and∫

X
f dμ= limn→∞

∫
X
fn dμ= I .

Now, we prove that f is the density of ν. Assume the contrary. Then there is a
set E0 such that

ν(E0) >

∫

E0

f dμ. (1)

It is clear that μ(E0) > 0 since otherwise both sides of the inequality are equal to
zero. Since the measure μ is σ -finite, we may assume, without loss of generality,
that μ(E0) < +∞. Indeed, otherwise the set E0 can be represented as the union
E0 =⋃∞

n=1 En, where En ⊂ En+1 and μ(En) <+∞ for every n ∈ N. By the con-
tinuity from below, we obtain

ν(En)−
∫

En

f dμ −→
n→∞ ν(E0)−

∫

E0

f dμ> 0,

2Johann Radon (1887–1956)—Austrian mathematician.
3Otton Marcin Nikodým (1887–1974)—Polish mathematician.
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and, therefore, inequality (1) is preserved if we replace E0 by En for a sufficiently
large n.

Thus, we will assume that μ(E0) < +∞. We choose a positive number a so
small that ν(E0) −

∫
E0

f dμ > aμ(E0) and consider the charge ϕ(E) = ν(E) −
∫
E
f dμ− aμ(E ∩E0). Since ϕ(E0) > 0, Lemma 11.1.3 implies that there is a set

of positivity B of the charge ϕ in E0 such that ϕ(B)� ϕ(E0) > 0. We remark that
also ν(B)� ϕ(B) > 0.

Now, we verify that f + aχB ∈ P . Indeed, for every E in A, we have
∫

E

(f + aχB)dμ=
∫

E\B
f dμ+

∫

E∩B
f dμ+ aμ(E ∩B)

=
∫

E\B
f dμ+ ν(E ∩B)− ϕ(E ∩B)

� ν(E \B)+ ν(E ∩B)− ϕ(E ∩B)

= ν(E)− ϕ(E ∩B)� ν(E).

At the same time, we have μ(B) > 0 since ν(B) > 0 and ν ≺ μ. Consequently,
∫

X

(f + aχB)dμ= I + aμ(B) > I,

which contradicts the definition of I . The uniqueness of the density (up to equiva-
lence) is established in Theorem 4.5.4. �

Remark If the measure ν in the theorem is not finite but σ -finite, then the density ex-
ists but is not summable. We verify this by representing X as the union of expanding
sets Xn (n = 1, . . .) such that ν(Xn) < +∞. For every n, there exists a summable
density fn of the measure obtained by restricting ν to the induced σ -algebra A∩Xn

(see Sect. 1.1.2). Since the density is unique, we have fn(x)= fn+1(x) almost ev-
erywhere on Xn. Therefore, we may assume that fn+1 is an extension of fn to Xn+1.
Putting f (x)= fn(x) for x ∈Xn, we can easily verify that the function obtained is
the density of ν with respect to μ. This function is, obviously, summable on each
set Xn.

If ν is the Borel measure on an open subset O of the space R
m, ν is finite on the

compact sets, μ= λm is Lebesgue measure, and ν ≺ λm, then the density of ν with
respect to λm is locally summable in O.

11.2.2 Now, we extend the Radon–Nikodym theorem to charges by extending to
them the concept of absolute continuity.

Definition Let a measure μ and a charge ϕ be defined on the same σ -algebra. We
will say that the charge ϕ is absolutely continuous with respect to the measure (or is
subordinate to the measure) μ if ϕ(e)= 0 for every set of μ-measure zero.
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As in the case of a measure, we will denote the absolute continuity of ϕ with
respect to μ by ϕ ≺ μ.

An example of a charge subordinate to a measure is any charge generated by a
density. It turns out that, as in the case where ϕ is a measure, there are no other
charges subordinate to a “good” measure.

Theorem Let ϕ be a charge and μ be a σ -finite measure defined on the same
σ -algebra A of subsets of a set X. The following conditions are equivalent:

(1) the charge ϕ is subordinate to the measure μ;
(2) the variation of the charge ϕ is subordinate to the measure μ;
(3) the charge ϕ is generated by a summable function (which is real in the case of

real ϕ).

Proof We show that (1)⇒ (2)⇒ (3)⇒ (1). The last implication is trivial. We
remark also that, by property (1) of the variation (see Sect. 11.1.4) the implication
(2)⇒ (1) is also obvious.

(1)⇒ (2). If μ(e)= 0, then, for every set A lying in e, we have μ(A)= 0, and
so, ϕ(A)= 0. Therefore,

|ϕ|(e)� sup

{
N∑

k=1

∣
∣ϕ(Ak)

∣
∣
∣
∣
∣Ak ⊂ e

}

= 0.

(2)⇒ (3). If the charge ϕ is real, then it can be represented as the difference of
finite measures ϕ = μ1 − μ2, where μ1 = |ϕ| and μ2 = |ϕ| − ϕ (see Corollary of
Theorem 11.1.7). It is obvious that the measures μ1 and μ2 are subordinate to the
measure μ. Therefore, by the Radon–Nikodym theorem for measures, there exist
non-negative summable functions f1 and f2 such that

μ1(A)=
∫

A

f1 dμ and μ2(A)=
∫

A

f2 dμ (A ∈A).

It is clear that ϕ(A)= ∫
A
f dμ for f = f1− f2 and every set A, where the function

f is real.
If the charge is complex, then its real and imaginary parts are, obviously, sub-

ordinate to the measure μ. From what was just proved, they have densities, which
implies that the given charge has a density. �

Corollary The absolute value of the density of the charge ϕ with respect to its
variation is equal to 1 almost everywhere.

Proof It is clear that a charge is absolutely continuous with respect to its variation.
Let ω be the corresponding density. Then, by Theorem 11.1.6, we obtain |ϕ|(A)=∫
A
|ω|d|ϕ|. At the same time, |ϕ|(A)= ∫

A
1d|ϕ|. Since the density is unique (up to

equivalence) by Theorem 4.5.4, we obtain |ω| = 1 almost everywhere with respect
to |ϕ|. �
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Remark The theorem just proved allows us to introduce a new notion which is ex-
tremely important in probability theory. We consider a measure space (X,A,μ) and
a function f measurable on X. We will assume that μ(X)= 1. In probability theory,
the measurable sets are called events, the measure of an event is called the probabil-
ity of the event, and the function f is called a random variable. If f is summable,
then the integral

∫
X
f dμ is called the expectation of the random variable. Fixing

an event E (μ(E) > 0) and considering the quantity M(f,E)= 1
μ(E)

∫
E
f dμ, we

obtain the “conditional expectation of the random variable f ” (under the condition
that the “event E occurs”). If E1, . . . ,EN is a “complete system of pairwise incom-
patible events”, i.e., a finite partition of X into measurable sets of positive measure,
then the simple function g =∑N

k=1 M(f,Ek)χEk
is called the conditional expecta-

tion of f with respect to the given partition and also with respect to the σ -algebra
A0 consisting of all possible unions of the elements of the partition. It is important
to generalize this definition to the case where A0 is an arbitrary σ -algebra contained
in A. The main landmark in this generalization will be the fact that the function g

satisfies the equation
∫

A

g dμ=
∫

A

f dμ for A in A0. (2)

This property is the basis of the definition of the conditional expectation of a random
variable f with respect to A0. With a given summable function f , we connect a
charge with density f and consider its restriction ϕ to the σ -algebra A0. Thus,

ϕ(A)=
∫

A

f dμ for A ∈A0.

It is clear that ϕ ≺ μ (more precisely, the charge ϕ is subordinate to the restriction
of μ to A0). Therefore, by the Radon–Nikodym theorem for charges, there exists
a function g summable with respect to A0 and such that ϕ(A)= ∫

A
g dμ for every

A ∈A0. This means that g satisfies Eq. (2). The function g just obtained is called the
expectation of f with respect to the σ -algebra A0. We emphasize that, in the class
of functions measurable with respect to A0, the conditional expectation is defined
uniquely up to equivalence.

11.2.3 In conclusion, we consider the question of extracting the maximal absolutely
continuous part from a measure.

Definition Let μ and ν be measures defined on the same σ -algebra of subsets of a
set X. The measures are called mutually singular if there is a partition X = A ∨ B

such that μ(B) = ν(A) = 0. We will use the symbol μ ⊥ ν to denote the fact that
the measures μ and ν are mutually singular.

Theorem (Lebesgue’s decomposition theorem) Let μ and ν be measures defined
on the same σ -algebra A. If the measure ν is σ -finite, then it can be represented as
the sum of measures ν = νa + νs , where νa ≺ μ and νs ⊥ μ. Such a representation
is unique.
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The representation ν = νa + νs will be called the Lebesgue decomposition.

Proof First, we verify that the representation is unique. Let ν = νa + νs =
ν′a + ν′s , where the measures νa and ν′a are absolutely continuous with respect to
μ and each of the measures νs and ν′s is mutually singular with μ. Then the set X
can be represented in the form X =A∨B =A′ ∨B ′ such that

μ(B)= νs(A)= 0 and μ
(
B ′

)= ν′s
(
A′

)= 0.

We put B0 = B ∪ B ′. Then μ(B0) = 0, and, consequently, νa(B0) = 0. Moreover,
for every set E in A, we have

νs(E)= νs(E ∩B)� νs(E ∩B0)� νs(E).

Therefore,

νs(E)= νs(E ∩B0)= ν(E ∩B0)− νa(E ∩B0)= ν(E ∩B0).

Thus, νs(E) = ν(E ∩ B0) for every E in A. The relation ν′s(E) = ν(E ∩ B0) is
proved similarly. Thus, we have proved that νs = ν′s , and, consequently, νa = ν′a .

Now, we turn to the proof of the existence of the required representation. First,
we assume that the measure ν is finite.

Let N be a system of sets on which the measure μ vanishes, N = {e ∈ A |
μ(e) = 0}. We verify that ν attains its maximum value on N . Let C = sup{ν(e) |
e ∈N }. Then there exist sets en ∈N such that ν(en) −→

n→∞ C. We put B =⋃
n�1 en.

It is clear that μ(B)= 0, i.e., B ∈N . Moreover, C � ν(B)� ν(en) −→
n→∞ C. Conse-

quently, ν(B)= C. Now, we put

νa(E)= ν(E \B) and νs(E)= ν(E ∩B) for E ∈A.

Obviously, ν = νa + νs and νs ⊥ μ. We verify that the measure νa is subordinate
to μ. Indeed, let μ(e0)= 0. Then B ∪ e0 ∈N and

C � ν(B ∪ e0)= ν(B)+ ν(e0 \B)= C + νa(e0).

It follows that νa(e0)= 0, as required. This completes the proof in the case where
the measure ν is finite.

If ν(X)=+∞, then we consider a partition of X into subsets Xn of finite mea-
sure (n ∈ N). We put ν(n)(E)= ν(E ∩Xn). Then ν =∑∞

n=1 ν
(n), ν(n)(X) <+∞,

and, from what was just proved, it follows that

ν(n) = ν(n)
a + ν(n)

s , where ν(n)
a ≺ μ, ν(n)

s ⊥ μ.

It is easy to verify that, putting νa =∑∞
n=1 ν

(n)
a and νs =∑∞

n=1 ν
(n)
s , we obtain the

required decomposition. �
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EXERCISES

1. Let μ and ν be finite measures defined on the same σ -algebra. Prove that ν ≺ μ

if and only if ν(e)→ 0 as μ(e)→ 0, i.e., if

∀ε > 0 ∃δ > 0 : if μ(e) < δ, then ν(e) < ε.

2. Prove that the function f constructed in the proof of the Radon–Nikodym theo-
rem is maximal in the set P in the following sense: if p ∈ P , then p � f almost
everywhere on X (with respect to the measure μ).

3. Preserving the notation of the remark of Sect. 11.2.2, prove Eq. (2) for the func-
tion g =∑N

k=1 M(f,Ek)χEk
.

4. Let a function f be summable on the square [0,1] × [0,1] with respect to
Lebesgue measure. Find the conditional expectation of f with respect to the
σ -algebra consisting of the sets of the form E × [0,1], where E ∈ A1 (“the
striped algebra”).

5. Let μ and ν be measures defined on the same σ -algebra. Prove that the measures
are mutually singular if and only if there exist sets En such that μ(En) −→

n→∞ 0

and ν(X \En) −→
n→∞ 0.

6. Supplement the result of Exercise 7 of Sect. 6.1 by proving that the measure μg

is singular. Hint. Use the hint to Exercise 7 of Sect. 6.1. Consider the intervals
�k for which the number of ones in the ternary expansion of k is not less than√
n lnn.

7. Let Qm = [−π,π]m, let μ be a finite Borel measure on Qm, and let μ±j be mea-
sures in Qm−1 obtained by the restriction of μ to the faces of the cube that lie
in the planes xj =±π (j = 1, . . . ,m). Prove that if p is finite, then the trigono-
metric polynomials are everywhere dense in the space L p(Qm,μ) if and only
if the measures μ+j and μ−j are mutually singular for each j (cf. Exercise 8 of
Sect. 9.3).

11.3 �Differentiation of Measures

11.3.1 In this section, we generalize Lebesgue’s theorem 4.9.2 on the differentiation
of an integral to a wide class of Borel measures in R

m (see Definition 2.2.3). We will
consider only the Borel measures that assume finite values on the bounded sets and
will call such measures Radon measures. The reader can easily verify that this ter-
minology agrees with the general definition of a Radon measure (see Sect. 12.2.2).
As proved in Theorem 2.2.3, the Radon measures are regular.

In what follows, let λ be the m-dimensional Lebesgue measure, let V (r) be the
volume of the ball B(x, r), and let Bm be the σ -algebra of Borel subsets of the
space R

m.
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Definition Let ν be a Radon measure on R
m. If there exists a (finite or infinite)

limit

ν′(x)= lim
r→0

ν(B(x, r))

V (r)
,

then it is called the derivative of the measure ν at the point x ∈R
m.

We recall that similar limits were considered in Sects. 4.9.2 and 6.2.1. Now, we
prove that every Radon measure has a locally summable derivative almost every-
where.

As a preliminary, we establish a useful auxiliary statement in the proof of which
Vitali’s theorem 2.7.2 will be the main tool.

Lemma Let ν be a Radon measure on R
m, E ∈Bm. Then:

(1) if ν′(x)= 0 for all x in E, then ν(E)= 0;
(2) if ν(E) = 0, then ν′(x) = 0 for almost all (with respect to Lebesgue measure)

x in E.

Proof We may and will assume that the set E is bounded. Let E be contained in a
ball B(0,R).

(1) Let us fix an arbitrary positive number ε. By the assumptions, for each x ∈E,
we have the inequality ν(B(x,5r))/V (5r) < ε if r is sufficiently small (we will
assume that r < 1). The family of balls B(x, r) with such small radii and centers
x ∈ E form a Vitali cover of the set E. By Vitali’s theorem, there exist pairwise
disjoint balls B(xk, rk) (k ∈ N) such that E ⊂⋃∞

k=1 B(xk,5rk). Since xk ∈ E and
rk < 1 (k ∈N), all balls B(xk, rk) are contained in B(0,R+ 1). Taking into account
the inequalities ν(B(xk,5rk)) < εV (5rk), we obtain

ν(E) �
∞∑

k=1

ν
(
B(xk,5rk)

)
< ε

∞∑

k=1

V (5rk)= ε5m

∞∑

k=1

λ
(
B(xk, rk)

)

� ε5mλ
(
B(0,R + 1)

)
.

Since ε is arbitrary, we obtain that ν(E)= 0.
(2) It is necessary to verify that the set {x ∈ E | limr→0

ν(B(x,r))
V (r)

> 0} has
Lebesgue measure zero. Since this set is exhausted by a sequence of sets of the
form Eδ = {x ∈E | limr→0

ν(B(x,r))
V (r)

> δ}, it is sufficient to show that λ(Eδ)= 0 for
every positive δ. We fix a δ. Since the measure ν is regular, for every positive ε,
there is an open set G such that

G⊃E, ν(G) < εδ.

By the definition of the set Eδ , the inequality ν(B(x, r)) > δV (r) holds for arbitrar-
ily small radii r at each point of Eδ . The corresponding balls B(x, r) contained in
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the set G form a Vitali cover of E. Therefore, there is a subsequence of pairwise
disjoint balls B(xk, rk) such that

Eδ ⊂
∞⋃

k=1

B(xk,5rk) and ν
(
B(xk, rk)

)
� δV (rk) for all k.

We estimate the measure of the union
⋃∞

k=1 B(xk,5rk), which covers the set Eδ ,

λ

( ∞⋃

k=1

B(xk,5rk)

)

�
∞∑

k=1

λ
(
B(xk,5rk)

)= 5m

∞∑

k=1

λ
(
B(xk, rk)

)

� 5m

δ

∞∑

k=1

ν
(
B(xk, rk)

)= 5m

δ
ν

( ∞⋃

k=1

B(xk, rk)

)

� 5m

δ
ν(G) < 5mε.

Thus, the set Eδ is a subset of a set with arbitrarily small Lebesgue measure, which
is equivalent to the equality λ(Eδ)= 0. �

Remark The second assertion of the lemma can be generalized as follows: If
{En(x)}x∈E,n∈N is an arbitrary regular cover of E (see Definition 2.7.4) and
ν(E)= 0, then

lim
n→∞

ν(En(x))

λ(En(x))
= 0

almost everywhere with respect to Lebesgue measure on E.
Indeed, by the regularity of the cover, we obtain

En(x)⊂ B
(
x, rn(x)

)
, θ(x)= inf

n

λ(En(x))

V (rn(x))
> 0, rn(x) −→

n→∞ 0.

Therefore, almost everywhere on E with respect to Lebesgue measure, we have

ν(En(x))

λ(En(x))
� V (rn(x))

λ(En(x))
· ν(B(x, rn(x)))

V (rn(x))
� 1

θ(x)
· ν(B(x, rn(x)))

V (rn(x))
−→
n→∞ 0.

The first assertion of the lemma can be generalized similarly.

11.3.2 We are now ready to check whether a Radon measure has derivative.

Theorem Let ν be a Radon measure on R
m. Then:

(1) the derivative ν′(x) exists almost everywhere with respect to Lebesgue measure;
(2) the derivative is locally summable (and, in particular, is finite almost every-

where);
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(3) the measure ν is singular (ν ⊥ λ) if and only if ν′ = 0 almost everywhere with
respect to Lebesgue measure.

Proof By Lebesgue’s decomposition theorem (see Sect. 11.2.3), the measure ν can
be represented in the form ν = νa + νs , where the measure νa is subordinate to λ

and the measure νs is mutually singular with λ. By Remark 11.2.1, the measure νa
has a locally summable density f with respect to λ. By the definition of mutual
singularity, there is a Borel set E such that νs(E) = λ(Rm \ E)= 0. Applying the
lemma to the measure νs and to the set E, we see that ν′s = 0 almost everywhere
on E, i.e., almost everywhere on R

m. At the same time, ν′a = f almost everywhere
on R

m by Theorem 4.9.2. Thus, the derivative ν′ exists almost everywhere and (al-
most everywhere) coincides with ν′a = f , which proves all three assertions of the
theorem. �

Remark 1 For an arbitrary set E of Lebesgue measure zero, there exists a Radon
measure ν, whose derivative ν′ is equal to +∞ everywhere on E (see Exercise 1).

Remark 2 If {En(x)}x∈E,n∈N is a regular cover of a set E ⊂ R
m, then the relation

ν′(x)= limn→∞ ν(En(x))
λ(En(x))

holds for almost all x in E.

This follows from Corollary 4.9.4 and the remark to Lemma 11.3.1.

11.3.3 We note another fact related to the derivation of Radon measures.

Theorem (Fubini) Let νn (n ∈N) be Radon measures in R
m, and

ν(A)=
∞∑

n=1

νn(A)
(
A ∈B

m
)
. (1)

If series (1) converges for every compact set A, then ν is a Radon measure and

ν′(x)=
∞∑

n=1

ν′n(x) (2)

almost everywhere with respect Lebesgue measure.

Proof As the reader can verify independently, Eq. (1) indeed defines a measure
finite on compact sets, i.e., a Radon measure. Therefore, by Theorem 11.3.2, we
have ν′(x) <∞ for almost all x.

Now, we prove that the general term of series (2) tends to zero almost every-
where. Dividing both sides of the inequality

n∑

k=1

νk
(
B(x, r)

)
� ν

(
B(x, r)

)
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(valid for all n) by V (r) and passing to the limit in the inequality obtained,
we see that

∑n
k=1 ν

′
k(x) � ν′(x) almost everywhere. Consequently,

∑∞
k=1 ν

′
k(x) �

ν′(x) <∞. Thus, series (2) converges almost everywhere, and, therefore, we have

ν′n(x) −→n→∞ 0 (3)

almost everywhere.
Since the series

∑∞
k=1 ν

′
k(x) is positive, we prove relation (2) if we verify that

some subsequence of partial sums of this series converges to ν′(x). Let Sn =∑n
k=1 νk . We construct the required subsequence as follows. For each j ∈ N, we

find a number nj such that

∑

k>nj

νk
(
B(0, j)

)
< 2−j

and put ν̃j = ν − Snj
= ∑

k>nj
νk . If the set A is contained in B(0,R), then

ν̃j (A) < 2−j for j > R. Therefore, the series
∑∞

j=1 ν̃j (A) converges for every
bounded Borel set A and, consequently, satisfies the same conditions as the given
series (1). From what was just proved, the series in question satisfies relation (3),
i.e.,

ν̃′j (x)= ν′(x)− S′nj
(x) −→

j→∞ 0

almost everywhere. Thus, the subsequence {S′nj
}j�1 of partial sums of series (2)

does indeed converge to ν′ almost everywhere. �

Remark A measure that is defined on the Borel subsets of an open set O ⊂R
m and

is finite on the compact subsets of O, in other words, a Radon measure on O, may
not be the restriction of a Radon measure on R

m. However, locally (more precisely,
on the subsets of a ball whose closure lies in O) it coincides with the restriction of
a Radon measure on R

m. Therefore, Theorems 11.3.2 and 11.3.3 are carried over to
the Radon measures on open subsets of a Euclidean space.

11.3.4 The question of the existence of the derivative of an “arbitrary” function had
been addressed at least since the beginning of the 19th century and a complete an-
swer had eluded mathematicians for a long time. It might seem that the answer was
given by the Weierstrass example of a nowhere differentiable continuous function.
However, as often happens with meaningful problems, Weierstrass’ negative answer
was only an intermediate step in its solution. The concept of “almost everywhere”
introduced by Lebesgue, as well as other measure theoretic notions, made it possi-
ble to completely modify the statement of the problem, which has led to extremely
general positive results. It turned out that the Ampère4 conjecture that an arbitrary
function has a derivative everywhere aside from some “exceptional and isolated”

4André-Marie Ampère (1775–1836)—French physicist and mathematician.
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values of the argument was true for every monotone function under the assumption
that “exceptional values” of the argument form a set of measure zero. This theorem
proved by Lebesgue almost a hundred years after Ampère’s work can be proved
by extremely beautiful and quite elementary but very subtle reasoning (see [RN],
Chap. I, Sect. 1). However, we obtain it as a consequence of Theorem 11.3.2 on the
differentiation of Radon measures.

We will need the concept of a Lebesgue–Stieltjes measure μg generated by a
non-decreasing function g (see Sect. 4.10).

Theorem (Lebesgue) Every function g increasing on an interval � is differentiable
almost everywhere on �. Moreover, g′(x)= μ′g(x) for almost all x ∈�.

Proof Without loss of generality, we will assume that the interval � is open. First,
we prove that the function g has a right derivative almost everywhere. We recall that
the set of points of discontinuity of g is at most countable.

Let {[x, x + h)}x∈�,0<h<hx be a family of intervals, where the positive num-
bers hx are so small that [x − hx, x + hx] ⊂�. This family, as well as the family
{[x, x+h]}x∈�,0<h<hx , form a regular Vitali cover for �. Since the measure μg is a
Radon measure on the interval �, we apply Remark 2 to Theorem 11.3.2 and obtain
that

μg([x, x + h))

h
−→
h→0

μ′g(x),
μg([x, x + h])

h
−→
h→0

μ′g(x) (4)

almost everywhere. If x is a point of continuity of g and 0 < h< hx , then

μg([x, x + h))

h
= g((x + h)− 0)− g(x)

h
� g(x + h)− g(x)

h

� g((x + h)+ 0)− g(x)

h
= μg([x, x + h])

h
.

Together with relations (4), these inequalities show that, for almost all x ∈ �, the
right derivative g′+(x) exists and is equal to μ′g(x).

Considering the covers {(x − h,x]}x∈�,0<h<hx and {[x − h,x]}x∈�,0<h<hx , we
verify similarly that the left derivative also exist almost everywhere and is equal
to μ′g(x). �

11.3.5 The following statement is a particular case of Theorem 11.3.3.

Theorem (Fubini) A convergent series of increasing functions can be differentiated
termwise almost everywhere.

Proof Let g be the sum of a pointwise convergent series
∑∞

n=1 gn, where each gn

is a non-decreasing function. By Theorem 11.3.3, the equation

μ′g(x)=
∞∑

n=1

μ′gn(x) (5)
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is valid almost everywhere. At the same time, as proved in Theorem 11.3.4, we
have μ′g(x)= g′(x) and μ′gn(x)= g′n(x) (n ∈N) almost everywhere. Therefore, re-
lation (5) remains valid almost everywhere if we replace the derivatives of measures
by the derivatives of functions. �

11.3.6 We illustrate the results obtained in the present and previous sections by
an example closely connected with the Cantor function ϕ. As we know (see
Sect. 2.3.2), this function is continuous and increases on R (we assume that ϕ(x)= 0
for x � 0 and ϕ(x) = 1 for x � 1). By construction, ϕ is constant on any interval
in the complement of the Cantor set and, therefore, its derivative is zero on these
intervals. Since the Lebesgue measure of the Cantor set is zero, the Cantor function
is singular, i.e., its derivative is zero almost everywhere. Does there exist a singu-
lar function that strictly increases on some interval? An affirmative answer to this
question can be obtained in different ways. To construct such an example, we use
the convolution of the Cantor function and the measure generated by this function,
i.e., the function g defined as follows:

g(x)=
∫ 1

0
ϕ(x − t) dϕ(t) (x ∈R).

Obviously, the function g is continuous, non-decreasing, and g(x)= 0 for x � 0 and
g(x)= 1 for x � 2. Soon we will see that g strictly increases on [0,2]. It is known
that the function g is singular (see [JW]). In other words, the Stieltjes measure μg

generated by g is mutually singular with one-dimensional Lebesgue measure. This
result can be supplemented if we compare the measure μg with the Hausdorff mea-
sures μp for 0 <p � 1 (see Sect. 2.6). It turns out that μg is mutually singular also
with some measures μp for p < 1. In contrast to the Lebesgue and Hausdorff mea-
sures, the measure μg is not translation invariant. To emphasize this distinction, we
will also call μg a mass.

The connection between the measure μg and the measure μϕ×μϕ (the Cartesian
square of the measure μϕ generated by the Cantor function) will play an essential
role for us.

Lemma 1 Let F and G be continuous bounded increasing functions defined on R,
and let μF and μG be the corresponding Stieltjes measures. Then the Stieltjes mea-
sure μH generated by the function H defined by the equation

H(x)=
∫

R

F(x − y)dG(y) (x ∈R)

is the image of the measure μF ×μG under the map (x, y) �→ P(x, y)= x+ y, i.e.,
for every Borel set E ⊂R, the following holds:

μH(E)= (μF ×μG)
(
P−1(E)

)
. (6)

Proof It is clear that the function H is continuous and increasing. By the uniqueness
Theorem 1.5.1, it is sufficient to verify Eq. (6) in the case where E = [a, b). Then
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the set P−1(E) is the strip {(x, y) ∈ R
2 |a � x + y < b}, and Eq. (6) follows from

the generalized Cavalieri principle (see Theorem 5.2.2). Indeed, the cross section
(P−1(E))y is nothing but the interval [a − y, b− y), and, therefore,

(μF ×μG)
(
P−1(E)

)=
∫

R

μF

((
P−1(E)

)y)
dμG(y)

=
∫

R

μF

([a − y, b− y)
)
dμG(y)

=
∫

R

(
F(b− y)− F(a − y)

)
dG(y)=H(b)−H(a)

= μH

([a, b)). �

We also need the following estimate of binomial coefficients, the proof of which
is left to the reader as an easy exercise using Stirling’s formula (see Sect. 7.2.6,
formula (8)).

Lemma 2 Let n ∈N and |t |� 1
4 . Then

C
[( 1

2+t)n]
n � A√

n
2ne−2t2n,

where A is an absolute constant. In particular (for t =−n−1/3 and n� 43),

C
[ n2−n2/3]
n � A√

n
2ne−2n1/3

.

This inequality implies that

1

2n

∑

m� n
2−n2/3

Cm
n −→

n→∞ 1 (7)

since

0 � 1− 1

2n

∑

m� n
2−n2/3

Cm
n =

1

2n

∑

m<n
2−n2/3

Cm
n

<
1

2n

n

2
C
[ n2−n2/3]
n �A

√
ne−2n1/3 = o(1).

Before passing to the statement of the required result, we will carry out some
preparatory work.

Let us fix an arbitrary positive integer n and divide the interval [0,2] into intervals
Dk = [2 k

3n ,2 k+1
3n ] (0 � k < 3n), which will be called the segments of rank n. We

also consider the segments �ε of rank n obtained in the construction of the Cantor
set, where ε = (ε1, . . . , εn), εj = 0,1 (see Sect. 2.1.4). The left endpoint of the
interval �ε is the point aε = 2

∑n
j=1 εj3−j . The increment of the Cantor function
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on a segment of rank n is equal to 2−n. Therefore, the measure μϕ × μϕ of every
square of the form

�ε ×�ε′ (8)

is equal to 4−n. The projection P maps this square to some interval Dk whose left
endpoint is aε + aε′ . In this case,

k

3n
=

n∑

j=1

εj + ε′j
3j

(
where εj , ε

′
j = 0,1

)
. (9)

It is clear that each fraction k
3n can be represented in this form, and, therefore, ev-

ery interval Dk is the image of a square of the form (8). Hence, in particular, we
obtain that every segment of rank n has a positive mass. Since n is arbitrary, this is
equivalent to the fact that g strongly increases. In what follows, a key point is the cal-
culation of the number of squares of the form (8) whose projection is an interval Dk .
Let Eq. (9) be valid and let k

3n =∑n
j=1

σj

3j , where σj = 0,1 or 2. Then σj = εj + ε′j ,
and the non-uniqueness in this representation is possible only if σj = 1. In the latter
case, we have two representations, εj = 1, ε′j = 0 and εj = 0, ε′j = 1. If the ternary

expansion of the fraction k
3n (or, which is the same, the ternary expansion of the

number k) contains m ones, then we have exactly 2m squares of the form (8) whose
image under the projection is the interval Dk . In this case, the mass of the inter-
val is 2m4−n. For m = n, we obtain, in particular, that the increment of g on the
corresponding “heavy” interval (whose length is 2 · 3−n) is equal to 2−n. This sug-
gests that the Lipschitz exponent of the function g does not exceed that of ϕ, and,
consequently, is equal to log3 2.

Let Em ≡ Em(n) be the set of all intervals Dk for which the ternary expansion
of k has exactly m ones and let Am(n) be their union. The increment of g on each
interval in Em is equal to 2m4−n. It can easily be seen that card(Em(n)) (the number
of such intervals) is Cm

n 2n−m. Therefore, the mass concentrated on Am(n) is equal
to 4−n · 2m ·Cm

n 2n−m = 2−nCm
n .

We prove that the mass is mutually singular not only with one-dimensional
Lebesgue but also with the Hausdorff measures μp for sufficiently large p.

Theorem The measure μg is mutually singular with the measure μp for σ � p � 1,
where σ = 3

2 log3 2 = 0.946393 . . . . In particular, μg is singular with respect to
Lebesgue measure. For 0 < p < σ , the measure μg is absolutely continuous with
respect to μp .

Proof To simplify the reasoning, we prove the first part of the theorem only in the
case where p > σ .

Joining “sufficiently heavy” intervals, we put

Bn =
⋃

m� n
2−n2/3

Am(n).
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It is clear that

μg(Bn) =
∑

m� n
2−n2/3

μg

(
Am(n)

)=
∑

m� n
2−n2/3

Cm
n 2n−m · 2m 4−n

= 1

2n

∑

m� n
2−n2/3

Cm
n .

Therefore, by (7), we have μg(Bn) −→
n→∞ 1.

Let Es =⋃∞
n=s Bn and E =⋂

s�2 Es . Obviously, μg(E)= 1.
We prove that μp(E)= 0 for p > σ . By the definition of a Hausdorff measure, it

is sufficient to verify that, for every ε > 0, the set E can be covered by a sequence of
intervals δj such that

∑∞
j=1 |δj |p < ε, where |δ| denotes the length of the interval δ.

Fixing an arbitrary s, we use the intervals Dk (of all ranks) of which the set Es is
composed. Then we obtain that

Ts ≡
∞∑

n=s

∑

m� n
2−n2/3

∑

Dk∈Em(n)

|Dk|p =
∞∑

n=s

∑

m� n
2−n2/3

card
(
Em(n)

)
(

2

3n

)p

= 2p
∞∑

n=s

1

3np

∑

m� n
2−n2/3

Cm
n 2n−m � 2p

∞∑

n=s

2
n
2+n2/3

3np

∑

m� n
2−n2/3

Cm
n

� 2p
∞∑

n=s

(
2

3
2+n−1/3

3p

)n

.

Since p > 3
2 log3 2= log3 2

3
2 , we obtain that, for large n, the fraction 2

3
2+n−1/3

3p is less

than 1 and is even separated from 1, 2
3
2+n−1/3

3p � q < 1. Therefore, for sufficiently
large s, we have the estimate

Ts � 2p
∞∑

n=s

qn = 2p qs

1− q
−→
s→∞ 0,

from which it follows that μp(E)= 0.
To prove the second statement of the theorem, we put p = ( 3

2 − t) log3 2. Since
the Hausdorff measures are non-increasing as the parameter increases, we may as-
sume that 0 < t < 1

4 . We split the intervals of rank n into “light” and “heavy” inter-
vals. We say that an interval of rank n is light if the increment of g on this interval

does not exceed 2( 1
2+t)n

4n , i.e., if the interval belongs to Em(n) for m � ( 1
2 + t)n;

otherwise, the interval is heavy.
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Now, let μp(e)= 0, and let the set e be covered by a sequence of intervals δj of
small length almost realizing a Hausdorff measure, i.e.,

e⊂
∞⋃

j=1

δj ,

∞∑

j=1

|δj |p < ε,

where ε > 0 is an arbitrarily small number. It is clear that each interval δj satisfying
the condition 3−(n+1) < |δj |� 3−n touches at most two intervals of rank n. Let

Jn =
{
j ∈N |3−(n+1) < |δj |� 3−n, δj touches a light interval of rank n

}
.

We note that if Jn �=∅, then n� n(ε) and n(ε)−→
ε→0

+∞ (it is easy to see that n(ε)

is not less than | ln ε| in order). We put

el =
⋃

n�n(ε)

⋃

j∈Jn
δj , e0 = e \ el.

Then e0 is contained in the union of all possible heavy intervals of rank � n(ε) that
are increased three times, i.e.,

e0 ⊂ eh ≡
⋃

n�n(ε)

⋃

m>( 1
2+t)n

⋃

Dk∈Em(n)

D̃k,

where D̃k is the union Dk−1 ∪Dk ∪Dk+1.
Let us estimate the mass of the set el . Let δ∗j , where j ∈ Jn, be the union of (at

most two) intervals of rank n touching δj (at least one of them is light). We observe
that the number of ones in the ternary expansion of the index of an interval of rank
n changes by 1 when passing from the interval to the neighboring interval, and,
therefore, the increment of g can increase by a factor of no more than two. Since the

increment of g on a light interval of rank n does not exceed 2( 1
2+t)n 4−n = 3−pn, we

see that

μg

(
δ∗j

)
� 3−pn + 2 · 3−pn < 9|δj |p

for j ∈ Jn. Therefore,

μg(el)�
∑

n�n(ε)

∑

j∈Jn
μg(δj )�

∑

n�n(ε)

∑

j∈Jn
μg

(
δ∗j

)
�

∑

n�n(ε)

∑

j∈Jn
9|δj |p < 9ε. (10)

Using the inequality μg(D̃k)� 5μg(Dk), we can estimate the mass of eh as follows:

μg(eh)�
∑

n�n(ε)

∑

m>( 1
2+t)n

Cm
n 2n−m5 · 2m4−n

= 5
∑

n�n(ε)

2−n
∑

m>( 1
2+t)n

Cm
n � 5

∑

n�n(ε)

2−n n

2
C
[( 1

2+t)n]
n .
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From this and Lemma 2, we obtain

μg(eh)�
5

2
A

∑

n�n(ε)

√
ne−t2n.

Since the right-hand side of the inequality is a remainder of a convergent series and
n(ε)→+∞ as ε→ 0, the left-hand side is arbitrarily small for sufficiently small ε.
This fact together with estimate (10) completes the proof of the theorem. �

EXERCISES

1. Prove that, for every set e ⊂ R
m of Lebesgue measure zero, there is a Radon

measure whose derivative is infinite on e.
2. Let ν0 be a measure defined on the two-point set {0,1} and generated by the

loads 1
2 at the points 0 and 1. Let ν = ν0 × ν0 × · · · be an infinite product of the

measures ν0 on the set of binary sequences E = {0,1}N. Fix an arbitrary sequence
R = {rn}∞n=1 of positive numbers rn satisfying the condition

∑∞
n=1 rn <+∞ and

consider the image νR of the measure ν under the map �R : E→ R defined by
the formula �R(ε)=∑∞

n=1 rnεn, where ε = {εn}∞n=1 ∈ E .
Find the Fourier transform of the measure νR . Find the measure νR for R =
{ 1

2n }∞n=1 and R = { 2
3n }∞n=1. Which sequence corresponds to the convolution of

measures νR1 ∗ νR2 (by definition, νR1 ∗ νR2(E)= ∫
R
νR1(E − x)dνR2(x) for a

Borel set E ⊂R)?
3. Use the zero-one law to prove that, for the measure νR described in the previous

exercise and for each p ∈ (0,1), the following alternative holds: either νR is
absolutely continuous or it is singular with respect to the Hausdorff measure μp .

11.4 �Differentiability of Lipschitz Functions

11.4.1 First, we consider functions of one variable. The fact that a function f sat-
isfying the Lipschitz condition on some interval is differentiable almost everywhere
follows from Lebesgue’s theorem on differentiability of a monotone function. In-
deed, if L is a Lipschitz constant for f , then f can be represented as the difference
of increasing functions g and h, where g(x) = Lx and h(x) = Lx − f (x). We,
however, will use another theorem of Lebesgue and not only establish that f is dif-
ferentiable almost everywhere but verify that f can be recovered from its derivative
by integration.

Theorem A function f satisfying the Lipschitz condition on an interval � is abso-
lutely continuous on �. In particular, f is differentiable almost everywhere.

Proof As one can see from the reasoning given just before the statement of the
theorem, we may assume, without loss of generality, that f increases. So let us
assume that f increases and consider the Lebesgue–Stieltjes measure μf generated
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by f . We verify that f is absolutely continuous with respect to Lebesgue measure λ.
Indeed, if e ⊂� and λ(e) = 0, then, for every number ε > 0, there is a system of
intervals �k = [ak, bk] ⊂� such that

e⊂
∞⋃

k=1

�k,

∞∑

k=1

λ(�k) < ε.

In this case,

∞∑

k=1

μf (�k)=
∞∑

k=1

(
f (bk)− f (ak)

)
�

∞∑

k=1

L(bk − ak) < Lε.

Thus, the set e is a subset of a set whose measure μf is arbitrarily small. Since
the measure μf is complete, this means that μf (e)= 0. Thus, we have proved that
the measure μf is absolutely continuous with respect to λ. By the Radon–Nikodym
theorem, μf has a density ω with respect to λ. In particular, for each interval [a, b]
lying in �, the equality

μf

([a, b])=
∫ b

a

ω dλ

holds. Since the measure μf is finite on every compact interval lying in �,
the function ω is locally summable in �. Fixing a point c ∈ �, we obtain that
f (x)−f (c)= ∫ x

c
ω dλ for every x ∈�, which, by definition, means that f is abso-

lutely continuous. The fact that an absolutely continuous function is differentiable
almost everywhere is proved by Lebesgue’s theorem 4.9.3. �

If L is a Lipschitz constant for f , then |f (x)−f (y)|/|x−y|� L, and, therefore,
|ω(x)| = |f ′(x)|� L almost everywhere. Thus, the derivative of a function satisfy-
ing the Lipschitz condition is bounded almost everywhere. Obviously, the converse
is also true: if the derivative of an absolutely continuous function is bounded, then
the function satisfies the Lipschitz condition.

11.4.2 This section is devoted to the differentiability of functions of several vari-
ables satisfying the Lipschitz condition.

Theorem (Rademacher) A function f satisfying the Lipschitz condition on a set
E ⊂R

m is differentiable on E almost everywhere.

Proof (1) Since every function satisfying the Lipschitz condition can be extended
to the entire space with preservation of this condition (see Sect. 13.2.4), we will
assume that f is defined on the entire space R

m. For all x, y ∈ R
m, the function

t �→ Fx,y(t) = f (x + ty) satisfies the Lipschitz condition on the line. Therefore,
by Theorem 11.4.1, this function is differentiable for almost all t ∈ R. Let A⊂ R

m

be the set where the (finite) partial derivative f ′xm exists. This set is measurable,
and, for each z ∈ R

m−1, its cross section is the set of points t ∈ R at which the
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function Fz,em is differentiable. The set of such points is a set of full measure. By
Cavalieri’s principle, A is also a set of full measure. Since Lebesgue measure is
rotation invariant, we obtain that, for every y �= 0, the directional derivative ∂f

∂y
exists

almost everywhere in R
m.

In particular, the partial derivatives f ′x1
, . . . , f ′xm exist almost everywhere.

(2) We verify that, for every y �= 0, the directional derivative ∂f
∂y

(x) coincides
with 〈y,gradf (x)〉 almost everywhere. First, we establish that this equality is valid
in the “weak sense”. We consider an arbitrary function ϕ ∈ C∞0 (Rm). Changing the
variable, we can easily verify that

∫

Rm

(
f (x + ty)− f (x)

)
ϕ(x)dx =

∫

Rm

f (x)
(
ϕ(x − ty)− ϕ(x)

)
dx.

Therefore, for t �= 0, we obtain
∫

Rm

f (x + ty)− f (x)

t
ϕ(x) dx =−

∫

Rm

f (x)
ϕ(x − ty)− ϕ(x)

−t
dx.

Since the directional derivative exists almost everywhere and the integrands are
bounded and have compact supports, we can pass to the limit as t → 0 by
Lebesgue’s theorem and obtain that

∫

Rm

∂f

∂y
(x)ϕ(x) dx =−

∫

Rm

f (x)
∂ϕ

∂y
(x) dx. (1)

Further,

−
∫

Rm

f (x)
∂ϕ

∂y
(x) dx = −

∫

Rm

f (x)
〈
y,gradϕ(x)

〉
dx

= −
m∑

k=1

yk

∫

Rm

f (x)ϕ′xk (x) dx.

Since
∫
Rm f (x)ϕ′xk (x) dx =−

∫
Rm f ′xk (x)ϕ(x) dx by Eq. (1) (for y = ek), we obtain

∫

Rm

∂f

∂y
(x)ϕ(x) dx =

m∑

k=1

yk

∫

Rm

f ′xk (x)ϕ(x) dx =
∫

Rm

〈
y,gradf (x)

〉
ϕ(x)dx.

Since the above relation is valid for every function ϕ ∈ C∞0 (Rm), Lagrange’s

lemma 9.3.6 implies that ∂f
∂y

(x)= 〈y,gradf (x)〉 almost everywhere.

(3) Now, we turn to the final step of the proof. Let H ⊂ Sm−1 be a countable set
containing all unit vectors of the canonical basis and everywhere dense in the unit
sphere Sm−1, and let A0 be the set of points x at which directional derivatives exist
along all directions y ∈H and are calculated by the formula ∂f

∂y
(x)= 〈y,gradf (x)〉.

Since the set H is countable, A0 is a set of full measure. We verify that the function
f is differentiable at each point of A0.
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Let L be a Lipschitz constant for the function f, x ∈A0, and C = ‖gradf (x)‖.
We fix an arbitrary number ε > 0 and find vectors h1, . . . , hN in H forming an ε-net
for Sm−1. Now, we choose a δ > 0 such that, for |t |< δ, the inequalities

∣
∣f (x + thj )− f (x)− 〈

thj ,gradf (x)
〉∣
∣ � ε|t | (2)

are valid for every j = 1, . . . ,N .
For an arbitrary vector z �= 0, we put y = z/‖z‖, t = ‖z‖ and find a vector hj ∈H

such that ‖y − hj‖ < ε. Then, using the Lipschitz condition and estimate (2) for
‖z‖ = t < δ, we obtain

∣
∣f (x + z)− f (x)− 〈

z,gradf (x)
〉∣
∣

�
∣
∣f (x + thj )− f (x)− 〈

thj ,gradf (x)
〉∣
∣+ ∣

∣f (x + ty)− f (x + thj )
∣
∣

+ ∣
∣
〈
z,gradf (x)

〉− 〈
thj ,gradf (x)

〉∣
∣

� εt +L‖ty − thj‖ +C‖ty − thj‖� ε‖z‖(1+L+C),

which proves that the function f is differentiable at x. �

EXERCISES

1. Let f be an absolutely continuous function on an interval �, and let the deriva-
tive of f be summable on �. Prove that, in this case, the function f has the
following property:

∀ε > 0 ∃δ > 0 ∀n:

if
n∨

k=1

(ak, bk)⊂�,

n∑

k=1

(bk − ak) < δ, then
n∑

k=1

∣
∣f (bk)− f (ak)

∣
∣ < ε. (AC)

2. Prove that if a function satisfies condition (AC) on a finite interval, then it has a
bounded variation that also satisfies condition (AC) on this interval.

3. Reasoning as in the proof of Theorem 11.4.1, verify that condition (AC) is not
only necessary but also sufficient for a function defined on a finite interval to be
absolutely continuous on the interval and to have a summable derivative.



Chapter 12
Integral Representation of Linear Functionals

12.1 �Order Continuous Functionals in Spaces of Measurable
Functions

In this section, (X,A,μ) will denote a space with a σ -finite measure μ. We will
consider only measurable sets (i.e., belonging to A) and measurable almost every-
where finite real or complex functions. The set of these functions will be denoted
by L 0(X,μ). As usual, we denote by f+ and f−, respectively, the positive and the
negative part of a real function f , f± =max{±f,0}.

We recall the concept of a linear functional known to the reader from a course in
algebra.

Definition Let L be a vector space. A map � from L to the field of scalars is called
a linear functional on L if

�(f + g)=�(f )+�(g) and �(af )= a�(f )

for all vectors f and g in L and every scalar a.

12.1.1 Let E ⊂L 0(X,μ) be the set of functions satisfying the following condi-
tions:

(1) if f,g ∈E, then af + bg ∈E for all a and b (the linearity of the set E);
(2) if f ∈E and |g(x)|� |f (x)| almost everywhere, then g ∈E;
(3) there is a strictly positive function ω0 in E;
(4) there is a strictly positive function ω1 such that the product fω1 is summable

for every function f in E.

Definition A set E with properties (1)–(4) is called a space of measurable func-
tions.

It follows from property (2) that, for each f ∈ E, the set E also contains the
function |f |, and if f is real, E also contains the functions f±.

B. Makarov, A. Podkorytov, Real Analysis: Measures, Integrals and Applications,
Universitext, DOI 10.1007/978-1-4471-5122-7_12, © Springer-Verlag London 2013
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An example of a space of measurable functions is the set L p(X,μ) for
1 � p �+∞ (see Sect. 9.1). We leave it to the reader to verify (using the fact that
the measure μ is σ -finite) that this set has properties (1)–(4).

In a space of measurable functions, one can naturally define an order relation and
convergence. Namely, for real functions f and g in E, we will write f � g (g � f )

if f � g almost everywhere on X. In the present section, we write fn −→
n→∞ f if

fn(x) −→
n→∞ f (x) for almost all x ∈ X, and use the notation fn ↑ f (fn ↓ f ) if

fn −→
n→∞ f and fn � fn+1 (respectively, fn � fn+1) for all n ∈N.

Together with a space of measurable functions E, it is natural to also consider
the space E′ called the dual to E. This space is defined as follows:

E′ = {
g ∈L 0(X,μ) | , fg ∈L 1(X,μ) for every function f in E

}
.

Condition (4) of the definition of a space of measurable functions guarantees that
the dual space contains positive functions. Obviously, the dual space is a space of
measurable functions in the sense of the above definition.

Let us find the dual space in a particularly important special case.

Theorem Let 1 � p � +∞, 1
p
+ 1

q
= 1. Then the space L q(X,μ) is dual to

L p(X,μ).

Proof Obviously, L q(X,μ)⊂ (L p(X,μ))′ by Hölder’s inequality. We verify that
the above inclusion is actually an equality.

This is obvious if p =+∞, since every function g belonging to the dual space is
summable. Indeed, it is sufficient to observe that the function f0 = signg belongs to
L∞(X,μ) (by definition, we have sign z= z/|z| for z ∈C, z �= 0, and sign 0= 0).
Therefore,

∫
X
|g|dμ= ∫

X
f0g dμ<+∞.

In the sequel, we consider only finite p.
Let g ∈ (L p(X,μ))′. It is clear that this space also contains the function |g|.

Therefore, verifying that g ∈L q(X,μ), we may assume without loss of generality
that g is non-negative. First, we prove that

C = sup
‖f ‖p�1

∣
∣
∣
∣

∫

X

fg dμ

∣
∣
∣
∣ <+∞.

Assume the contrary. Then there are non-negative functions fn in L p(X,μ) such
that ‖fn‖p � 1 and | ∫

X
fng dμ|� 4n for very n ∈ N. We put f =∑∞

n=1
1
2n fn and

Sn = ∑n
k=1

1
2k fk . The triangle inequality implies ‖Sn‖p �

∑n
k=1

1
2k < 1. There-

fore,
∫
X
f p dμ = limn→∞‖Sn‖pp � 1 by Fatou’s theorem, and, consequently, f ∈

L p(X,μ). At the same time,
∫

X

fg dμ�
∫

X

1

2n
fng dμ� 2n

for all n, and so
∫
X
fg dμ=+∞, which contradicts the choice of g. Thus, we have

proved that C is finite.
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The rest of the proof will be divided into two parts. First, we consider the case
where 1 <p <+∞.

We represent X in the form X =⋃∞
n=1 An, where the sets An satisfy the condi-

tions

An ⊂An+1, μ(An) <+∞ and g(x)� n for x ∈An,

and put hn = gq/pχ
An

. Obviously, hn ∈L p(X,μ). Moreover,

∫

X

hng dμ= ‖hn‖p
∫

X

hn

‖hn‖p g dμ� C‖hn‖p.

Since hng = gq on An, the last inequality means that

∫

An

gq dμ� C

(∫

An

gq dμ

)1/p

,

i.e.,
∫

An

gq dμ� Cq. (1)

Since the sets An form an expanding sequence exhausting X, we obtain g ∈
L q(X,μ).

Now, let p = 1. We prove (assuming, as before, that the function g non-negative)
that g � C almost everywhere. Assume the contrary. Then the measure of the set
Y = X (g > C) is positive. Since the measure μ is σ -finite, we may assume that
μ(Y ) < +∞ (otherwise, Y can be partitioned into a countable number of sets of
finite measure). We put f0 = 1

μ(Y )
χY . Then ‖f0‖1 = 1 and, at the same time,

∫

X

f0g dμ= 1

μ(Y )

∫

Y

g dμ >
1

μ(Y )

∫

Y

C dμ= C,

which contradicts the definition of C. �

Remark From the proof of the theorem, it is clear (see inequality (1)) that if
g ∈L q(X,μ) = (L p(X,μ))′, then ‖g‖q � sup‖f ‖p�1 |

∫
X
fg dμ|. The opposite

inequality follows from Hölder’s inequality. Thus,

‖g‖q = sup
‖f ‖p�1

∣
∣
∣
∣

∫

X

fg dμ

∣
∣
∣
∣. (1′)

12.1.2 Now, let us turn to our main concern in the present section, the study of linear
functionals in spaces of measurable functions. An example of a linear functional on
E is the functional �

�(f )=
∫

X

fg dμ (f ∈E)
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corresponding to a function g belonging to the dual space. By Lebesgue’s theo-
rem 4.8.4, the functional just defined has the following property:

if fn ↓ 0, then �(fn) −→
n→∞ 0. (2)

This property will serve as a basis for the following definition.

Definition A linear functional � satisfying property (2) is called continuous or,
more precisely, order continuous.

We note a simple but important property of order continuous functionals.

Lemma

(1) A linear functional � defined on a space E of measurable functions is order
continuous if and only if the conditions f ∈ E and 0 � fn ↑ f imply that
�(fn) −→

n→∞�(f ).

(2) A continuous functional � vanishes on functions that are zero almost every-
where.

Proof Obviously, fn ∈E by condition (2) of the definition of a space of measurable
functions. Since f − fn ↓ 0, the first assertion of the lemma is just a reformulation
of the definition of continuity. To prove the second assertion, we note that if a real
function f is zero almost everywhere, then the stationary sequence {gn}n�1, where
gn = f+, converges to zero almost everywhere. By the definition of continuity, we
have �(f+)=�(gn) −→

n→∞ 0, i.e., �(f+)= 0. Similarly, �(f−)= 0, and, therefore,

�(f )=�(f+)−�(f−)= 0. �

12.1.3 It turns out that every order continuous functional has an integral represen-
tation. More precisely, the following holds.

Theorem Let � be an order continuous linear functional on a space of measurable
functions E. Then there is a function h in the dual space E′ such that

�(f )=
∫

X

f hdμ for all f in E. (3)

Proof First, we assume that the space E is real and the measure μ is finite and put

ϕ(A)=�(χA) for A ∈A.

We verify that the function ϕ is countably additive, i.e., is a (real) charge. Indeed,
let A =∨∞

n=1 An. Then χA =∑∞
n=1 χAn . If Sk is a partial sum of this series, then

Sk ↑ χA, and so �(Sk)→�(χA)= ϕ(A). Consequently,

ϕ(A)= lim
k→∞�(Sk)= lim

k→∞

k∑

n=1

�(χAn)= lim
k→∞

k∑

n=1

ϕ(An)=
∞∑

n=1

ϕ(An).
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The second assertion of the lemma implies that the charge ϕ is absolutely contin-
uous with respect to μ. Therefore, by the Radon–Nikodym theorem, there is a real
summable function h such that ϕ(A)= ∫

A
hdμ for each set A. Taking into account

the definition of ϕ, we can represent this equation in the form �(χA)=
∫
X
χAhdμ.

Since the functional is linear, the latter relation is also preserved for linear combina-
tions of characteristic functions, i.e., �(f )= ∫

X
f hdμ for each simple function f .

Thus, we have verified that Eq. (3) is valid for simple functions. Now, we show
that it is valid not only for simple but for all functions in E. In the proof, we may,
obviously, consider only non-negative functions f .

Let {gn}n�1 be an increasing sequence of non-negative simple functions con-
verging to the function f ∈ E (see Theorem 3.2.2), and let A+ = X(h � 0). Then
0 � gnχA+ ↑ fχA+ and 0 � gnχA+h = gnh+ ↑ f h+. Passing to the limit in the
equation

�(gnχA+)=
∫

X

gnh+ dμ, (4)

we see that

�(f χA+)=
∫

X

f h+ dμ. (5)

The passage to the limit on the left-hand side of Eq. (4) is performed by the conti-
nuity of �, and, on the right-hand side, by Levi’s theorem. In particular, we obtain
that

∫
X
f h+ dμ = �(f χA+) < +∞, and so the function f h+ is summable. Re-

placing A+ by the set A− = X(h < 0) and � by −�, we can similarly prove that
the function f h− is summable and the equation

−�(f χA−)=
∫

X

f h− dμ (5′)

is valid. Since f = f χA+ + f χA− and f h= f h+ − f h−, Eqs. (5) and (5′) imply,
obviously, that f h is summable and that Eq. (3) is valid.

Now, let μ(X) = +∞. We consider the functions ω0 and ω1 in conditions (3)
and (4) of the definition of a space of measurable functions. We put ω = ω0ω1 and
consider the measure ν with density ω with respect to μ. Since the function ω is
summable, the measure ν is finite. Since ω > 0, the measures ν and μ are mutually
absolutely continuous. Therefore, L 0(X,μ)=L 0(X, ν).

Now, we introduce a new functional space E0, putting

E0 =
{

f

ω0

∣
∣
∣f ∈E

}

,

and regard E0 as a space of measurable functions lying in L 0(X, ν). In E0, we
define the functional �0 by the equation

�0(g)=�(gω0) (g ∈E0).
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We leave to the reader the standard verification that this functional is continuous and
linear.

By what has been proved, there is a function h0 such that the product gh0 is
summable with respect to ν for all g in E0 and the equation �0(g)=

∫
X
gh0 dν is

valid. The rest is simple. Indeed, for f ∈E, we have

�(f )=�0

(
f

ω0

)

=
∫

X

f

ω0
h0 dν =

∫

X

f

ω0
h0ωdμ=

∫

X

f h0ω1 dμ.

It remains to put h= h0ω1.
If the space E is complex, then we represent the functional � as the sum, �=

�1 + i�2, where �1 =Re� and �2 = Im�. Considering the functionals �1 and
�2 only on the set of real functions belonging to E and applying the part of the
theorem already proved, we obtain the required representation. �

By Theorem 12.1.1, we obtain

Corollary Let � be an order continuous linear functional on the space L p(X,μ),
1/p+ 1/q = 1. Then there is a function h in L q(X,μ) such that

�(f )=
∫

X

f hdμ for all f in L p(X,μ).

From (1′), it follows that sup‖f ‖p�1 |�(f )| = ‖h‖q .

12.2 �Positive Functionals in Spaces of Continuous Functions

In the present section, we will use the concepts of a topological and, in particular,
of a compact space. However, the facts established below are quite non-trivial al-
ready in the case where the topological space under consideration is R

m or even a
compact subset of Rm. Therefore, the reader that does not have a sufficient mathe-
matical background will not lose much in understanding the basic ideas by assuming
that the space in question is R

m. In this case, it is easy to observe that, instead of
Theorem 12.2.1, we could use Theorem 8.1.7 on a smooth descent or Lemma 2 of
Sect. 13.2.1 on functional separability.

Our goal is to describe positive functionals on the set C(X) of all continuous real
functions defined on a locally compact space X and also positive functionals on the
subset C0(X) of compactly supported functions in C(X). Our main attention will
be directed to functionals on C0(X), the description of which plays a decisive role.

12.2.1 We recall some facts from topology. A topological space X is called locally
compact if each point in X has a neighborhood whose closure is compact set. For a
function f defined on X, the closure of the set {x ∈X |f (x) �= 0} is called the sup-
port of f and is denoted by supp(f ). A function defined on X is called a compactly
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supported function if its support is compact set. Here, we will consider only real
functions. In this case, the sets C0(X) and C(X) are, obviously, real vector spaces.

A locally compact space has “sufficiently many” continuous compactly sup-
ported functions. In particular, there are functions “smoothing” characteristic func-
tions of compact sets. More precisely, this means that the following statement holds.

Theorem Let X be a locally compact space, K be a compact subset of X, and G be
an open set containing K . Then there is a continuous compactly supported function
ϕ such that

0 � ϕ � 1, ϕ(x)= 1 for x ∈K, supp(ϕ)⊂G.

For the proof of this theorem see, e.g., the book [B-I], Chap. 2, Sects. 12, 13. The
proof is very simple if X is metrizable, see Lemma 2 of Sect. 13.2.1.

12.2.2 Now we introduce the concepts of a positive functional and Radon measure,
which are fundamental to the following material.

Definition 1 A linear functional � : C0(X)→R is called positive if �(f )� 0 for
every non-negative function f in C0(X).

We note an important property of positive functionals, namely, their monotonic-
ity,

if f,g ∈ C0(X) and f � g, then �(f )��(g).

The proof is obvious: �(g)−�(f )=�(g − f )� 0 since g − f � 0.
Every function in C0(X) is summable with respect to any Borel measure that

assumes finite values on compact sets, and, obviously, the integral with respect to
such a measure is a positive functional. Our goal is to prove that the converse is also
true. It even turns out that, for the representation of a functional as an integral, it is
not always necessary to consider all Borel measures, which in some cases can be
too “bad”. For what follows, it is sufficient to confine ourselves to Borel measures
satisfying certain conditions close to regularity.

Definition 2 Let X be a locally compact topological space, and let μ be a measure
defined on the σ -algebra BX of its Borel subsets. The measure μ is called a Radon
measure if

I. μ(A)= inf{μ(G) |G⊃E, G is an open set} for every Borel set A;
II. μ(G)= sup{μ(K) |K ⊂G, K is a compact set} for every open set G;

III. μ(K) <+∞ for every compact set K .

If the space X is compact, then, obviously, a finite Borel measure is a Radon
measure if and only if it is regular. In particular, every finite Borel measure on a
metrizable compact space, being regular (see Sect. 13.3.2, Corollary 1), is a Radon
measure. Every Borel measure on R

m that assumes finite values on bounded sets is
a Radon measure (see Sect. 2.2.3).
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A Radon measure is uniquely determined by the integrals of the continuous com-
pactly supported functions. To state the result more precisely, we put

I (G)= {
f ∈ C0(X) |0 � f � 1, supp(f )⊂G

}
, (1)

where G is an open subset of the space X.
In the sequel, the following statement will serve, in particular, as a motivation of

Definition 12.2.4.

Proposition Let μ be a Radon measure on a locally compact space X. Then, for
every open set G, we have

μ(G)= sup

{∫

X

f dμ

∣
∣
∣f ∈ I (G)

}

. (2)

Proof Let K be an arbitrary compact set lying in G. By Theorem 12.2.1, there is a
function f0 in I (G) such that f0(x)= 1 on K . Then

μ(K)�
∫

X

f0 dμ�
∫

X

χG dμ= μ(G).

Consequently,

sup
{
μ(K) |K ⊂G, K is a compact set

}
� sup

{∫

X

f dμ

∣
∣
∣f ∈ I (G)

}

� μ(G).

This proves (2) since the left-hand side of this inequality coincides with μ(G) by
the definition of a Radon measure. �

Corollary Radon measures μ and ν coincide if
∫
X
f dμ= ∫

X
f dν for every func-

tion f in C0(X).

Proof The fact that the measures μ and ν coincide on open sets follows from
Eq. (2), and item I of the definition of a Radon measure implies that they coincide
on arbitrary Borel sets. �

As we have already pointed out, our goal is to prove the following statement.

Theorem (Riesz–Kakutani1) Let X be a locally compact space and � be a positive
linear functional on the space C0(X). Then there exists a unique Radon measure μ

such that

�(f )=
∫

X

f dμ for all f ∈ C0(X).

1Shizuo Kakutani (1911–2004)—Japanese mathematician.
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The uniqueness of μ follows directly from Corollary 12.2.2.

12.2.3 Before turning to the proof of the existence of a measure μ representing the
functional �, we will do some preliminary work. We begin with a statement on
the partition of unity in a topological space. A similar statement was established in
Sect. 8.1.8 for the space R

m. Of course, now in a more general situation, we lift the
smoothness condition and require only the continuity of the functions forming the
partition.

Lemma Let G1, . . . ,GN be an open cover of a compact subset K of a locally
compact space X. Then there exist non-negative functions ϕ1, . . . , ϕN in C0(X) such
that

ϕ1 + · · · + ϕN = 1 on K, supp(ϕn)⊂Gn for n= 1, . . . ,N.

Such a family {ϕ1, . . . , ϕN } is called a partition of unity for K , subordinate to
the given cover.

Proof From Theorem 12.2.1 it follows that each point of the set K can be assigned
a non-negative function in C0(X) that is positive at this point and has a “small sup-
port” (it is contained in one of the sets G1, . . . ,GN ). The interiors of the supports
form a cover of K . Since K is compact set, there exists a finite subcover. We con-
sider the corresponding finite set of given compactly supported functions. Let ψn

be the sum of those functions whose supports are contained in Gn. It is clear that
supp(ψn) ⊂ Gn for n = 1, . . . ,N and θ ≡ ψ1 + · · · + ψN > 0 on K . Using The-
orem 12.2.1 one more time, we take a function ω in C0(X) such that 0 � ω � 1,
ω(x)= 1 for x ∈K and supp(ω)⊂ {x ∈X | θ(x) > 0}. Then 1− ω(x)+ θ(x) > 0
everywhere on X, and we can put ϕn =ψn/(1−ω+ θ) (n= 1, . . . ,N ). �

12.2.4 Now, we can proceed to the proof of the Riesz–Kakutani theorem. The con-
struction of the required measure is performed in three steps. First, we use the func-
tional � to construct an auxiliary outer measure. Then, we verify that the measure
generated by the outer measure is a Radon measure. Finally, we show that the mea-
sure obtained represents the functional �.

Definition For an open set G⊂X and an arbitrary set A⊂X, we put

μ0(G)= sup
{
�(f ) |f ∈ I (G)

}
,

μ∗(A)= inf
{
μ0

(
G′

) |G′ ⊃A, G′ is an open set
}
.

We note that

μ0(∅)= 0 and μ0(G)� μ0
(
G′

)
if G⊂G′. (3)

Theorem The function μ∗ is an outer measure and μ∗(G)= μ0(G) for every open
set G.
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As already mentioned, we want to use μ∗ to construct the required Radon mea-
sure. Taking into account Proposition 12.2.2, we see that the definition given above
is actually the only possible one. If we want to obtain a measure representing the
functional, then the definition of μ0 is dictated by Eq. (2), and the definition of μ∗
is dictated by condition I of the definition of a Radon measure.

Proof The inequality μ∗(G) � μ0(G) follows directly from the definition of μ∗,
and the opposite inequality follows from the fact that the function μ0 is monotone
(see inequality (3)). It is also obvious that μ∗(A)� μ∗(B) if A⊂ B .

By the definition of an outer measure, we must verify that the function μ∗ is
countably subadditive and μ∗(∅)= 0. The latter follows immediately from the def-
inition of μ∗ and the relation μ0(∅)= 0.

Now, we prove that the function μ∗ is countably semiadditive, i.e., that

μ∗(A)�
∞∑

n=1

μ∗(An) if A⊂
∞⋃

n=1

An. (4)

Of course, we may and will assume that the sum on the right-hand side is finite,
since otherwise the inequality is trivial. First, we assume that all sets An are open.
Let G=⋃∞

n=1 An, and let f belong to I (G) (see (1)). We put K = supp(f ). Since
K is a compact set, there is an N such that K ⊂ A1 ∪ · · · ∪ AN . Let {ϕn}Nn=1 be a
partition of unity for K , subordinate to the cover {An}Nn=1. Then

f =
N∑

n=1

f ϕn and supp(f ϕn)⊂An for n= 1, . . . ,N.

Therefore, �(f ϕn)� μ0(An)= μ∗(An) and

�(f )=
N∑

n=1

�(f ϕn)�
N∑

n=1

μ∗(An)�
∞∑

n=1

μ∗(An).

Since this inequality is valid for every function f in I (G), we pass to the supremum
on its right-hand side and obtain

μ∗(G)= μ0(G)�
∞∑

n=1

μ∗(An) and, consequently,

μ∗(A)� μ∗(G)�
∞∑

n=1

μ∗(An),

which proves inequality (4) if the sets An are open. In the case of arbitrary sets, we
first prove inequality (4) within ε > 0. For this, we choose open sets Gn such that

Gn ⊃An and μ∗(Gn) < μ∗(An)+ ε/2n for all n� 1.
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Then A⊂⋃∞
n=1 Gn, and, by what was just proved,

μ∗(A)� μ∗
( ∞⋃

n=1

Gn

)

�
∞∑

n=1

μ∗(Gn)�
∞∑

n=1

(

μ∗(An)+ ε

2n

)

=
∞∑

n=1

μ∗(An)+ ε.

Since ε is arbitrary, we obtain (4). �

12.2.5 As is known, the restriction of an arbitrary outer measure to the σ -algebra
of measurable sets is a measure. We recall (see Sect. 1.4.2) that a set A ⊂ X is
measurable with respect to an outer measure μ∗ defined on subsets of X if

μ∗(E)� μ∗(E ∩A)+μ∗(E \A) (5)

for every set E ⊂ X. The measurable sets form a σ -algebra. We verify that, in our
case, the measure corresponding to μ∗ is defined on all Borel sets. As a preliminary,
we establish a simple inequality.

Lemma Let f ∈ C0(X), 0 � f � 1, H = supp(f ), and H1 = {x ∈ X |f (x) = 1}.
Then

μ∗(H1)��(f )� μ∗(H). (6)

Proof To prove the right inequality in (6), we consider an arbitrary open set G

containing H . Since f ∈ I (G) (for the definition of I (G), see (1)), we have �(f )�
μ0(G). Consequently,

�(f )� inf
{
μ0(G) |G⊃H, G is an open set

}= μ∗(H).

To prove the left inequality in (6), we fix an arbitrary number ε, 0 < ε < 1, and
put Gε = {x ∈X |f (x) > 1− ε}. It is clear that H1 ⊂Gε . If g ∈ I (Gε), then

g � f

1− ε
and �(g)� �(f )

1− ε
.

Therefore,

μ∗(H1)� μ0(Gε)= sup
{
�(g) |g ∈ I (Gε)

}
� �(f )

1− ε
,

which completes the proof since ε is arbitrary. �

Corollary For every open set G

μ∗(G)= sup
{
μ∗(K) |K is a compact set, K ⊂G

}
. (7)

Proof Let ν(G) be the right-hand side of (7). Obviously, ν(G) � μ∗(G). On the
other hand, if f ∈ I (G), then �(f ) � μ∗(supp(f )) � ν(G) by the lemma. Pass-
ing to the supremum on the left-hand side of the last inequality, we see that
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μ∗(G)� ν(G). Together with the opposite estimate just obtained, this gives us re-
lation (7). �

12.2.6 Now, we are ready to pass to the next step.

Theorem Every Borel subset of the space X is measurable with respect to the outer
measure μ∗. The restriction μ of μ∗ to the σ -algebra BX of Borel subsets is a
Radon measure.

Proof Since the measurable sets form a σ -algebra, we prove the first assertion of
the theorem if we verify that all open sets are measurable. Thus, we must prove that,
for every open set A and an arbitrary set E, inequality (5) is valid. First, we assume
that E = G is an open set. Let f be an arbitrary function in I (A ∩ G), and let
H = supp(f ). We also consider a function f0 in I (G \H). Since the supports of f
and f0 are disjoint, we have f +f0 � 1. Moreover, it is obvious that f +f0 ∈ I (G).
Therefore,

μ∗(G)��(f + f0)=�(f )+�(f0).

Passing to the supremum over all f0 in I (G \ H) on the right-hand side of this
inequality, we see that

μ∗(G)��(f )+μ∗(G \H)��(f )+μ∗(G \A).

Again, passing to the supremum over all f in I (G ∩ A) on the right-hand side of
the last inequality, we obtain that μ∗(G)� μ∗(G ∩A)+ μ∗(G \A), which is just
inequality (5) for E =G.

In the case of an arbitrary set E, we may assume that μ∗(E) <+∞, since other-
wise inequality (5) is obvious. We fix a number ε > 0 and find an open set G such
that G⊃E and μ∗(G) < μ∗(E)+ ε. Then

μ∗(E)� μ∗(G)− ε � μ∗(G∩A)+μ∗(G \A)− ε � μ∗(E ∩A)+μ∗(E \A)− ε.

This implies (5) since ε is arbitrary.
Thus, BX is contained in the σ -algebra of all measurable sets, and, therefore, μ,

being a restriction of the measure generated by μ∗, is a measure.
It remains to conduct an easy verification that μ has all the properties of a Radon

measure.
The measure μ has property I by definition and property II by Eq. (7). In conclu-

sion, we verify that μ also has property III. Indeed, let K ⊂X be a compact set. We
consider a non-negative compactly supported function g equal to 1 on K . Then, by
the lemma, we have μ(K)��(g) <+∞. �

12.2.7 Let us turn to the concluding part of our reasoning, which will complete
the proof of the Riesz–Kakutani theorem. It remains to verify that the measure μ

constructed above indeed allows us to obtain an integral representation of the func-
tional �.
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Theorem The measure μ constructed in Theorem 12.2.6 satisfies the relation

�(f )=
∫

X

f dμ for every f in C0(X). (8)

Proof An essential part of our reasoning will be the approximation of f by a linear
combination of characteristic functions and a subsequent “smoothening”. By this
method, we establish that Eq. (8) is valid up to a small error, which is sufficient for
the proof of (8). Since both parts of (8) depend linearly on f , we, obviously, may
and will assume that 0 � f < 1.

We fix an arbitrary positive integer N and for k = 1,2, . . . ,N − 1 consider the
sets

Hk =
{

x ∈X

∣
∣
∣f (x)� k

N

}

, Gk =
{

x ∈X

∣
∣
∣f (x) >

k− 1

N

}

.

Let H0 = supp(f ), G0 =X. It is clear that the sets Hk are compact and

H0 ⊃G1 ⊃H1 ⊃ · · · ⊃GN−1 ⊃HN−1.

Hence it follows that

1

N

N−1∑

k=1

χHk
(x)� f (x)� 1

N

N−1∑

k=0

χHk
(x). (9)

Indeed, if x /∈H0 or x ∈HN−1, then (9) is obvious. If x ∈Hj \Hj+1 for 0 � j <

N − 1, then j/N � f (x) < (j + 1)/N , and, therefore,

1

N

N−1∑

k=1

χHk
(x)= j

N
� f (x) <

j + 1

N
= 1

N

N−1∑

k=0

χHk
(x).

We consider continuous compactly supported functions fk that smoothen the
functions χHk

. More precisely, assume that the function fk belongs to I (Gk) and is
equal to 1 on Hk for k = 0,1, . . . ,N − 1. We also put fN ≡ 0. Then

fk+1 � χHk
� fk for k = 0,1, . . . ,N − 1. (10)

From (10) and Lemma 12.2.5, it follows that

�(fk+1)� μ
(
supp(fk+1)

)
� μ(Hk)��(fk) for k = 0,1, . . . ,N − 1. (11)

Integrating inequality (9), we obtain

1

N

N−1∑

k=1

μ(Hk)�
∫

X

f dμ� 1

N

N−1∑

k=0

μ(Hk).
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Applying (11), we obtain

1

N

N−1∑

k=1

�(fk+1)�
∫

X

f dμ� 1

N

N−1∑

k=0

�(fk). (12)

On the other hand, it follows from (9) and (10) that

1

N

N−1∑

k=1

fk+1(x)� f (x)� 1

N

N−1∑

k=0

fk(x).

Applying the functional � to all sides of the last inequality, we obtain

1

N

N−1∑

k=1

�(fk+1)��(f )� 1

N

N−1∑

k=0

�(fk). (13)

Taking into account (12), we see that

−�(f0)+�(f1)

N
��(f )−

∫

X

f dμ� �(f0)+�(f1)

N
.

Since N is arbitrary, we obtain that (8) is valid. �

12.2.8 In this section, we consider positive functionals on the set C∞0 (Rm) of in-
finitely differentiable compactly supported functions. As in the case of functionals
on C0(R

m), a linear functional � defined on C∞0 (Rm) is called positive if �(f )� 0
for every non-negative function f in C∞0 (Rm).

Theorem Every positive functional on C∞0 (Rm) has an integral representation by
a Radon measure.

Proof For brevity, we put L = C∞0 (Rm) and verify that a positive functional �

defined on L can be extended to a positive functional defined on C0(R
m). For this,

we use the fact that every function in C0(R
m) can be uniformly approximated on

R
m by functions in L (see Corollary 2 of Sect. 7.6.4).
Let f ∈ C0(R

m) and f � 0, and let fn ∈ L+ = {f ∈ L |f � 0} and fn ⇒ f

on R
m. We consider a function ϕ ∈ L+ such that ϕ = 1 on K = supp(f ) and put

gn = ϕ · fn. Obviously,

gn ⇒ f on R
m gn ∈ L+, supp(gn)⊂Q for n= 1,2, . . . , (14)

where Q⊂R
m is an appropriate compact set (we can take, e.g., Q= supp(ϕ)). Let

h be a function in L+ such that h= 1 on Q. It is clear that |f − gn|� cnh, where
cn =maxx∈Rm |f (x)− gn(x)| −→

n→∞ 0. Then

−(cn + cm)h� gn − gm = (gn − f )+ (f − gm)� (cn + cm)h
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and, consequently,

∣
∣�(gn)−�(gm)

∣
∣= ∣

∣�(gn − gm)
∣
∣ � (cn + cm)�(h)

since the functional � is monotone. Thus, the sequence {�(gn)} is fundamental,
and, therefore, the limit limn→∞�(gn) exists and is finite. We leave it to the reader
to verify that the limit does not depend on the choice of a sequence {gn}n�1 satis-
fying conditions (14). Putting �̃(f )= limn→∞�(gn), we, obviously, obtain a pos-
itive functional defined on C0(R

m) and extending �. By the Riesz–Kakutani the-
orem, it has an integral representation. Therefore, its restriction, the functional �,
also has an integral representation. �

12.2.9 Now, we turn to the description of the functionals on the space C(X) of all
continuous functions. As in the case of functionals on C0(X), a linear functional �
defined on C(X) is called positive if �(f )� 0 for every non-negative function f in
C(X). An example of such a functional can be constructed as follows. Let us fix an
arbitrary Radon measure μ concentrated on a compact set K , i.e., a measure such
that μ(X \K) = 0. This measure is finite since μ(X) = μ(K) < +∞. We define
the functional � by putting

�(f )=
∫

X

f dμ
(
f ∈ C(X)

)

(the function f is summable since it is bounded on K and the measure μ is finite).
We prove that all positive functionals on C(X) have this form provided that the

space X is σ -compact, i.e., can be represented as the union of a sequence of compact
subsets.

In the proof, we will use Dini’s theorem on uniform convergence of a monotone
sequence of continuous functions, which says that

if K is a compact set, fn ∈ C(K), and fn(x) ↓ 0 for all x ∈K,

then fn ⇒ 0 on K .

Theorem Let X be a locally compact and σ -compact space, and let � be a pos-
itive functional on C(X). Then there exists a Radon measure μ concentrated on a
compact set and such that

�(f )=
∫

X

f dμ for every function f in C(X). (15)

The assumption that the space X is σ -compact is essential. It can be proved that
the conclusion of the theorem is false if this assumption is dropped.

Proof We consider the restriction of � to C0(X). By the Riesz–Kakutani theorem,
there is a Radon measure μ such that Eq. (15) is valid for all functions in C0(X).
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To complete the proof, we show that, approximating continuous functions by com-
pactly supported ones and passing to the limit, we can prove Eq. (15) in its en-
tirety. To this end, we, obviously, may assume that the function f is non-negative.
By assumption, there exist compact sets Kn (n ∈ N) such that X =⋃∞

n=1 Kn. Let
Gn = Int(Kn). Since the space X is locally compact, every compact set in X is con-
tained in an open set with compact closure. Therefore, we may assume without loss
of generality that Kn ⊂Gn+1 for every n.

First of all, we verify that the functional � is continuous in the following sense:

if fn ∈ C(X) and fn(x) ↓ 0 for all x ∈X, then �(fn) −→
n→∞ 0.

Indeed, assume that �(fn) �→ 0. Then �(fn)� ε for some ε > 0 and all n. Since,
by Dini’s theorem, fn ⇒ 0 on each compact set K ⊂ X, we may assume, passing,
if necessary, from the sequence {fn}n�1 to its subsequence that fn < 2−n on the set
Kn. We put g =∑∞

n=1 nfn. Since
⋃∞

n=1 Gn =X and this series converges uniformly
on each set Gn ⊂Kn, the function g is continuous on X. Since g � nfn for every n,
we obtain

�(g)��(nfn)� nε,

which, however, is impossible because n is arbitrary. Thus, we have established that
�(fn) −→

n→∞ 0, and so � is continuous.

Now, we consider functions gn ∈ C0(X) such that

0 � gn � 1, gn(x)= 1 for x ∈Kn, and supp(gn)⊂Gn+1.

Such functions exist by Theorem 12.2.1. Obviously, gn ↑ 1 for all n. Hence,
fn = f − fgn ↓ 0, and by what was just proved, �(f )−�(fgn)=�(fn) −→

n→∞ 0.

Therefore, we can pass to the limit in the equation

�(fgn)=
∫

X

fgn dμ

(by the continuity of � on the left-hand side and by Levi’s theorem on the right-hand
side). Passing to the limit, we obtain Eq. (15).

It remains to verify that the measure μ is concentrated on a compact set. Assume
the contrary. In this case, μ(X \Kn) > 0 for each n, and, passing, if necessary, from
the sequence {Kn}n�1 to its subsequence, we may assume that μ(Gn+1 \Kn) > 0.
By the definition of a Radon measure, there exist compact sets Qn such that

Qn ⊂Gn+1 \Kn, μ(Qn) > 0

for each n ∈N. We consider continuous functions hn such that

0 � hn � 1, hn(x)= 1 for x ∈Qn, supp(hn)⊂Gn+1 \Kn.

It is clear that the supports of the functions hn are pairwise disjoint and supp(hn+1)

lies outside Kn. Therefore, for all cn > 0, the series
∑∞

n=1 cnhn converges uniformly
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on each set Kj , and its sum g̃, being continuous on every Gj , is also continuous on
their union. Consequently, g̃ ∈ C(X) and

�(g̃)��(cnhn)= cn

∫

X

hn dμ� cnμ(Qn)

for all n. Choosing cn such that cnμ(Qn) −→
n→∞ +∞, we come to a contradiction,

which completes the proof of the theorem. �

12.3 �Bounded Functionals

12.3.1 In the present section, we denote by E either the space L p(X,μ), where
μ is a σ -finite measure on X, or the space C(K) of continuous functions on a
compact space K . On the space E, we define a natural norm as follows: ‖f ‖p =
(
∫
X
|f |p dμ)1/p if E =L p(X,μ), and ‖f ‖ =maxK |f | if E = C(K).

We introduce one more definition.

Definition A linear functional � defined on E is called bounded if there is a number
C such that

∣
∣�(f )

∣
∣ � C‖f ‖ for all f ∈E. (1)

The number ‖�‖ = sup{|�(f )| |f ∈ E,‖f ‖ � 1} is called the norm of the func-
tional �.

It is clear that ‖�‖ is the least C for which inequality (1) holds.
Let E =L p(X,μ), 1/p+ 1/q = 1, and h ∈L q(X,μ). The equation

�(f )=
∫

X

f hdμ (2)

defines a linear functional on the space L p(X,μ). This functional is bounded and
‖�‖ = ‖h‖q (see Remark 12.1.1).

It was noted in the corollary to Theorem 12.1.3 that every order continuous func-
tional on the space L p(X,μ) can be represented in the form (2).

For a finite p, every functional bounded on L p(X,μ) is order continuous.
Indeed, if fn ↓ 0, then ‖fn‖p −→

n→∞ 0, and, therefore, inequality (1) implies that

�(fn) −→
n→∞ 0. Thus, Corollary 12.1.3 yields the following description of bounded

functionals on L p(X,μ).

Theorem Let 1 � p < +∞ and 1/p + 1/q = 1. Every functional � bounded on
the space L p(X,μ) can be represented in the form (2). The function h ∈L q(X,μ)

is determined uniquely up to equivalence, and ‖�‖ = ‖h‖q .
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12.3.2 In a compact topological space K , every Borel charge ϕ is assigned the
linear functional on C(K) defined by the equation

�(f )=
∫

K

f dϕ
(
f ∈ C(K)

)
.

This functional is bounded since, by the properties of an integral with respect to a
charge, we have |�(f )|� |ϕ|(K)‖f ‖ for every function f in C(K).

We calculate the norm of this functional, considering, for simplicity, the case
where the space K is metrizable. This allows us not to worry about the regularity
of the measures in question since, by Theorem 13.3.2, in a metrizable space, every
finite Borel measure is regular. The charges under consideration can be real as well
as complex.

Theorem Let K be a compact metrizable space, and let � be a functional on C(K)

corresponding to a Borel charge ϕ. Then ‖�‖ = |ϕ|(K).

Proof The estimate of the functional from above,

‖�‖� |ϕ|(K), (3)

follows directly from the inequality |�(f )|� |ϕ|(K)‖f ‖ mentioned above.
To obtain the opposite estimate, we consider the density ω of the charge ϕ with

respect to its variation, which will be denoted by μ. By Theorem 11.1.8,

�(f )=
∫

K

f dϕ =
∫

K

fωdμ

for every f in C(K). By Corollary 11.2.2, |ω| = 1 almost everywhere with respect
to μ.

If the function ω were continuous, then, calculating �(ω), we would immedi-
ately obtain the required estimate from below for ‖�‖. Indeed, in this case ‖ω‖ = 1
and

‖�‖��(ω)=
∫

K

|ω|2 dμ=
∫

K

1dμ= |ϕ|(K).

However, in general, the function ω is discontinuous and the functional � is not
defined at ω. Therefore, we use functions approximating ω.

We consider continuous functions gn converging to ω with respect to the L1-
norm (see Theorem 13.3.3). The convergence in the L 1-norm implies the conver-
gence in measure. Therefore, passing to a subsequence, if necessary, we may assume
that

gn(x) −→
n→∞ ω(x) almost everywhere with respect to μ.

The functions gn cannot be used to estimate ‖�‖ since we know nothing about the
maxima of their absolute values. Therefore, we “adjust” them by redefining their
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values at the points where the values are large. For this, we introduce the function

ψ(z)=
{
z for |z|� 1,

z/|z| for |z|� 1

and put fn =ψ ◦gn. Obviously, the functions fn are continuous and |fn|� 1. There-
fore,

‖�‖� ∣
∣�(fn)

∣
∣=

∣
∣
∣
∣

∫

K

fnωdμ

∣
∣
∣
∣. (4)

At the same time,

fn(x)=ψ
(
gn(x)

) −→
n→∞ψ

(
ω(x)

)= ω(x)

almost everywhere with respect to μ, and, consequently,
∫

K

fnωdμ −→
n→∞

∫

K

|ω|2 dμ=
∫

K

1dμ= |ϕ|(K).

Passing to the limit in inequality (4), we obtain the estimate opposite to (3). �

Remark We supplement the theorem, considering the periodic case. Let K =
[−π,π]m, and let the functional � be defined, as in the theorem, by the equation
�(f ) = ∫

K
f dϕ, but only on the set of 2π -periodic continuous functions, which

will be denoted, as usual, by C̃(Rm). If the charge ϕ is concentrated on the cell
[−π,π)m, then its variation, as before, coincides with the norm of the functional,
i.e.,

|ϕ|([−π,π]m)= sup
{∣
∣�(f )

∣
∣ |f ∈ C̃

(
R

m
)
, ‖f ‖� 1

}
.

To verify this, it is sufficient to repeat the proof of the theorem, observing that the
functions gn may be assumed to be (see Exercise 8, Sect. 9.3) 2π -periodic.

12.3.3 We use the last remark to generalize Theorems 10.3.7 and 11.1.9 on the
uniqueness of measures and charges with given Fourier coefficients.

Definition Let ϕ be a Borel charge on the cube Q = [−π,π]m. We define the
Fourier coefficients ϕ̂(n) of the charge ϕ by the formula

ϕ̂(n)= 1

(2π)m

∫

Q

e−i〈x,n〉 dϕ(x)
(
n ∈ Z

m
)
.

It turns out that if ϕ is concentrated on the cell P = [−π,π)m (i.e., if
|ϕ|(Q \ P)= 0), then it is completely determined by the Fourier coefficients.

Theorem Borel charges on [−π,π)m with the same Fourier coefficients coincide.



690 12 Integral Representation of Linear Functionals

Proof It is sufficient to prove that a charge with zero Fourier coefficients is equal
to zero. Let ϕ̂(n) = 0 for each n ∈ Z

m. On C̃(Rm), we define the functional �

by the formula �(f ) = ∫
Q
f dϕ. By assumption, the functional � vanishes at all

exponents ei〈x,n〉, and, therefore, at all trigonometric polynomials. By the Weier-
strass theorem (see Corollary 7.6.5), for every function f ∈ C̃(Rm) and every
ε > 0, there is a trigonometric polynomial g such that ‖f − g‖ < ε. Therefore,
|�(f )| = |�(f − g)|� ‖�‖‖f − g‖� ε‖�‖. Since ε is arbitrary, this means that
�(f )= 0, i.e., that the functional � is zero. By the remark to Theorem 12.3.2, we
have |ϕ|(Q)= ‖�‖ = 0. Thus, the charge ϕ is equal to zero. �

12.3.4 Now, we pass to the description of the general form of the bounded func-
tionals on the space of continuous functions.

It is easy to verify that every positive functional (see Definition 12.2.9) defined on
a real space C(K) is bounded. Obviously, the difference of two positive functionals
is also a bounded functional. Our next goal is to prove that the converse is also true,
namely, that the following statement holds.

Theorem Every bounded functional defined on a real space C(K) is the difference
of positive functionals.

As a preliminary, we prove the following statement.

Lemma Let f,g ∈ C(K), f,g � 0, and h = f + g. If w ∈ C(K) and |w| � f ,
then the function w can be represented in the form w = u+ v, where u,v ∈ C(K),
|u|� f , |v|� g.

Proof of the lemma We put

u(x)=
{

0 if h(x)= 0,
w(x)
h(x)

· f (x) if h(x) �= 0
and v(x)=

{
0 if h(x)= 0,
w(x)
h(x)

· g(x) if h(x) �= 0.

The relations |u|� f , |v|� g and u+ v =w are obvious. The continuity of u at x0,
where h(x0)= 0 (the case where h(x0) �= 0 is trivial), follows from the fact that

∣
∣u(x)− u(x0)

∣
∣= ∣

∣u(x)
∣
∣ � f (x)→ f (x0)= 0 as x→ x0.

The continuity of v is proved in the same way. �

Proof of the theorem Let � be an order bounded functional defined on C(K). For
a non-negative function f ∈ C(K), we put

F0(f )= sup
{
�(u) |u ∈ If

}
, where If =

{
u ∈ C(K) | |u|� f

}
.

Since the functional � is bounded, we have F0(f ) < +∞. From the definition
of F0, it follows immediately that:
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(1) F0(f )� 0, F0(0)= 0;
(2) |�(f )| =max{�(f ),�(−f )}� F0(f ).

We verify that the functional F0 is additive on the cone of non-negative functions,
i.e., that

F0(f + g)= F0(f )+ F0(g) if f,g ∈ C(K), f,g � 0.

It follows from the lemma that If+g = {u+ v |u ∈ If , v ∈ Ig}. Therefore,

F0(f + g)= sup
{
�(u+ v) |u ∈ If , v ∈ Ig

}= sup
{
�(u)+�(v) |u ∈ If , v ∈ Ig

}

= sup
{
�(u) |u ∈ If

}+ sup
{
�(v) |v ∈ Ig

}= F0(f )+ F0(g).

The fact that F0(af )= a F0(f ) for f � 0 and a � 0 is proved similarly.
Now, we extend the functional F0 to C(K), putting (in what follows, as usual,

f± =max{±f,0})
F(f )= F0(f+)− F0(f−).

Since f+ = f and f− = 0 for f � 0, we see that F coincides with F0 on the set of
non-negative functions.

We verify that F(f + g) = F(f ) + F(g) for all f,g ∈ C(K). Let h = f + g.
Then

h+ − h− = f+ − f− + g+ − g−, i.e., h+ + f− + g− = h− + f+ + g+.

Consequently, F0(h+ + f− + g−)= F0(h− + f+ + g+). Since F0 is additive on the
cone of non-negative functions, we obtain

F0(h+)+ F0(f−)+ F0(g−)= F0(h−)+ F0(f+)+ F0(g+).

Representing this equation in the form

F0(h+)− F0(h−)= F0(f+)− F0(f−)+ F0(g+)− F0(g−),

we obtain the required result. The fact that F(af ) = aF(f ) for all f ∈ C(K) and
a ∈R is proved similarly.

Thus, F is a linear functional extending F0. This functional is positive by prop-
erty (1). Now, we put H = F −�. Then, for f � 0, we obtain

H(f )= F(f )−�(f )� F(f )− ∣
∣�(f )

∣
∣= F0(f )− ∣

∣�(f )
∣
∣ � 0.

The last inequality is valid by property (2). Thus, the functional H is positive, and
the theorem is proved since �= F −H . �

12.3.5 Now, we are able to describe all bounded functionals on the space C(K).
For simplicity, we assume that the space K is metrizable.

We already noted that, fixing a Borel charge ϕ and defining a functional � on
C(K) by the formula �(f )= ∫

K
f dϕ, we obtain a bounded functional. We verify
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that every bounded functional can be obtain in this way and that the correspondence
between the charges and the bounded functionals is one-to-one.

Theorem Let K be a compact metrizable space. Every bounded functional � on
the space C(K) has an integral representation by a charge, i.e.,

�(f )=
∫

K

f dϕ for all f ∈ C(K), (5)

where ϕ is a charge defined on the σ -algebra of Borel sets. A charge satisfying
Eq. (5) is uniquely determined.

Proof First, we assume that the space in question is real. By Theorem 12.3.4, the
functional � can be represented in the form �= F−H , where F and H are positive
functionals. By the Riesz–Kakutani theorem, each of the functionals has an integral
representation,

F(f )=
∫

K

f dμ, H(f )=
∫

K

f dν
(
f ∈ C(K)

)
,

where μ and ν are Radon measures. Therefore, μ(K) < +∞ and ν(K) < +∞.
To obtain Eq. (5), it remains to put ϕ = μ− ν. In the complex case, we introduce
real functionals � =Re� and �= Im� and consider them only on the space of
continuous real functions. Since these functionals are bounded, we obtain by what
was just proved that

�(f )=
∫

K

f dψ, �(f )=
∫

K

f dθ

where ψ and θ are some real Borel charges. Consequently, for a real function f , we
have

�(f )=�(f )+ i�(f )=
∫

K

f d(ψ + iθ).

Since both sides of this equation are linear, the equation is valid not only for real,
but also for complex functions, which gives representation (5) with ϕ =ψ + iθ .

Now, we prove that the charge providing representation (5) is unique. Let ϕ and
ϕ̃ be Borel charges such that

�(f )=
∫

K

f dϕ and �(f )=
∫

K

f dϕ̃ for all f ∈ C(K).

Subtracting the second equation from the first one, we see that

0=
∫

K

f d(ϕ − ϕ̃) for all f ∈ C(K).

In other words, the charge ϕ− ϕ̃ generates the zero functional. By Theorem 12.3.2,
we obtain |ϕ − ϕ̃|(K)= ‖0‖ = 0. Thus, we have proved that ϕ = ϕ̃. �
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12.3.6 In Sects. 12.3.1 and 12.3.5 we obtained theorems on the general form of
bounded functionals. Now, we will use them to describe the Fourier series of func-
tions and charges by the Cesàro means (see also Exercises 3–5).

Theorem Let
∑∞

k=−∞ cke
ikx be a trigonometric series, and let σn be the arithmetic

means of its (symmetric) partial sums. This series is a Fourier series:

(1) of a function in L p([−π,π]) for 1 < p �+∞ if and only if the norms ‖σn‖p
are bounded;

(2) of a summable function if and only if the sequence {σn}n�1 converges in L 1-
norm;

(3) of a charge if and only if the norms ‖σn‖1 are bounded;
(4) of a measure if and only if σn(x)� 0 for all x and n.

Proof To verify that condition (1) is necessary, we use the representation σn(f )=
f ∗�n, where �n is the nth Fejér kernel (see Sect. 10.4.1). Since ‖�n‖1 = 1, The-
orem 1 of Sect. 9.3.7 on the properties of convolution implies the required estimate
‖σn(f )‖p � ‖f ‖p .

The necessity of condition (2) is established in Fejér’s theorem.
The necessity of conditions (3) and (4) follows from the integral representation

of the sum σn by the Fejér kernel,

σn(x)= 1

2π

∑

|k|<n

(

1− |k|
n

) ∫

[−π,π]
eik(x−t) dϕ(t)=

∫

[−π,π]
�n(x − t) dϕ(t).

Since �n � 0, we obtain that the sums σn are non-negative if ϕ is a measure. If ϕ is
a charge, then

∣
∣σn(x)

∣
∣ �

∫

[−π,π]
�n(x − t) d|ϕ|(t).

Integrating this inequality over the interval [−π,π] and changing the order of inte-
gration, we obtain the inequality ‖σn‖1 � |ϕ|([−π,π]).

Passing to the proof of sufficiency, we note first that the Fourier coefficients of
the functions σn have limits as n→∞. Indeed, σn(x)=∑

|k|<n(1− |k|
n
)cke

ikx , and,
therefore, for n > |k|, we obtain

σ̂n(k)=
(

1− |k|
n

)

ck −→
n→∞ ck. (6)

(1) Let q the exponent conjugate to p, i.e., 1
p
+ 1

q
= 1 (we note that q <∞). We

introduce the functionals Hn on L q([−π,π]), putting Hn(f )= ∫ π

−π
f (x)σn(x) dx

(f ∈L q([−π,π])). We remark that, for every n, we have
∣
∣Hn(f )

∣
∣ � ‖σn‖p‖f ‖q � C ‖f ‖q, (7)

where C = supn ‖σn‖p . We verify that, for each function f ∈ L q([−π,π]), the
limit limn→∞Hn(f ) exists and is finite. Indeed, by (6), this limit exists if f is a
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trigonometric polynomial. To prove that the limit always exists, we convince our-
selves that the sequence {Hn(f )}n�1 is fundamental. We fix an arbitrary ε > 0 and
find a trigonometric polynomial T such that ‖f − T ‖q < ε. Then
∣
∣Hn(f )−Hm(f )

∣
∣ �

∣
∣Hn(f − T )

∣
∣+ ∣

∣Hn(T )−Hm(T )
∣
∣+ ∣

∣Hm(f − T )
∣
∣

� Cε+ ∣
∣Hn(T )−Hm(T )

∣
∣+Cε = 2Cε+ ∣

∣Hn(T )−Hm(T )
∣
∣

for all n,m ∈ N. Since the sequence {Hn(T )}n�1 converges, we have |Hn(T ) −
Hm(T )| < ε for sufficiently large m and n, which proves that the sequence
{Hn(f )}n�1 is fundamental, and, therefore, converges.

We put H(f ) = limn→∞Hn(f ). Obviously, H is a linear functional on
L q([−π,π]). From inequality (7), it follows that the functional is bounded. There-
fore, it is generated by a function g in L p([−π,π]),

H(f )=
∫ π

−π

f (x)g(x) dx
(
f ∈L q

([−π,π]))
.

Putting f = ek , where ek(x)= e−ikx , we obtain

ĝ(k)= 1

2π
H(ek)= 1

2π
lim

n→∞Hn(ek)= lim
n→∞ σ̂n(k)= ck. (8)

Thus, g is the required function.
(2) The case where the sequence {σn}n�1 converges in the L 1-norm is left to the

reader as an exercise.
(3) Let the L1 norms of the functions σn be bounded. Now, we will assume that

the functionals Hn are defined not on L q([−π,π]) but on the space C([−π,π]).
Arguing as above and using the Weierstrass theorem stating that the set of trigono-
metric polynomials is dense in the space C̃ of 2π -periodic continuous functions, we
obtain that the limit limn→∞Hn(f ) exists for every continuous 2π -periodic func-
tion f . For the function g0(x) = x, the sequence {Hn(g0)}∞n=1 is bounded since
|Hn(g0)| � ‖g0‖

∫ π

−π
|σn(x)|dx. Therefore, it is possible to extract a convergent

subsequence {Hnk
(g0)}∞k=1 of this sequence. Since every continuous function f de-

fined on [−π,π] can be uniquely represented in the form f = g+ag0, where g ∈ C̃

and a = (f (π)−f (−π))/(2π), the functional H can be defined on the entire space
C([−π,π]) as the limit limk→∞Hnk

(f ). Moreover,

∣
∣H(f )

∣
∣ � sup

n

∣
∣Hn(f )

∣
∣ � sup

n

∫ π

−π

∣
∣σn(x)

∣
∣dx ‖f ‖,

and, therefore, the functional H is bounded. By Theorem 12.3.5, the functional is
generated by a charge. By an equation similar to (8), one can verify that ck are the
Fourier coefficients of this charge.

(4) Let σn � 0 for all n. Since
∫ π

−π

∣
∣σn(x)

∣
∣dx =

∫ π

−π

σn(x) dx = c0,
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the condition of the previous step of the proof is fulfilled, and, therefore, the func-
tional H is generated by a charge ϕ whose coefficients coincide with ck . Since the
σn are positive, the functionals Hn are positive along with the functional H . There-
fore, the charge generating H is a measure. �

EXERCISES

1. We call a linear functional � on the space E of measurable functions order
bounded if sup{|�(g)| |g ∈E, |g|� |f |}<+∞ for every function f in E. Gen-
eralizing Theorem 12.3.4, prove that, in the real space of measurable functions,
every order bounded functional is the difference of positive functionals.

2. Let � be an order continuous linear functional on the real space of measurable
functions. Without using the integral representation prove that:

(a) � is order bounded;
(b) the positive part of � (the functional F constructed in the proof of Theo-

rem 12.3.4) is also order continuous.

Assuming that the integral representation of � is known, find the integral repre-
sentation of F .

3. Use Theorem 10.4.7 and the Cesàro means of a multiple trigonometric series to
generalize Theorem 12.3.6.

4. Generalize Theorem 12.3.6, replacing the sums σn by sums of the form

SM,ε(x)=
∞∑

n=−∞
M

(
ε|n|)cneinx,

where M is a convex continuous function summable on [0,+∞).
5. Prove that a trigonometric series

∑∞
n=−∞ cne

inx is a Fourier series of a func-
tion of class L 1 if and only if its Cesàro means σn satisfy the condition
supn |

∫
e
σn(x) dx| −→

λ(e)→0
0 on the interval [−π,π].



Chapter 13
Appendices

13.1 An Axiomatic Definition of the Integral over an Interval

13.1.1 Just as the notion of the derivative is related to the tangent line problem,
the notion of the integral is related to another classical geometric problem, that of
computing the area. There are many ways to introduce the integral. In the simplest
case, where we want to define the integral of a continuous function over an interval,
we can directly rely on the notion of area. This is especially appropriate if, for
some reason or other, the notion of area is assumed known. To emphasize the link
between integration and the tangent line problem, one may define the integral as the
increment of an antiderivative. Aiming to extend the class of integrable functions,
one may define the integral as the limit of Riemann sums (the Riemann integral).
In all these cases, we will obtain definitions which are almost, but not completely,
equivalent, while retaining the main motivation, the geometric interpretation of the
integral.

Our aim in this appendix is to consider one of the possible definitions of the
integral over an interval, which could, at the initial stage of learning, precede the
measure-theoretic construction. We will describe an axiomatic approach in which
the integral is interpreted as a map that associates a certain number with an inter-
val and a continuous function on this interval. This map is subject to two restric-
tions (axioms) motivated by clear geometric considerations. Our definition can also
be extended to more general classes of functions; however, aiming to avoid minor
technical issues and to keep the basic idea as clear as possible, we abandon these
generalizations, which, in our opinion, are inessential.

13.1.2 In what follows, we consider only real-valued continuous functions on closed
finite intervals. A pair (f, [a, b]), where f is a function and [a, b] is an interval
(possibly, degenerated into a single point) contained in its domain, will be called
admissible.

Definition An integral is a function J defined on the set of admissible pairs and
satisfying the following properties:
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(I) If (f, [a, b]) is an admissible pair, then for every c ∈ [a, b],
J

(
f, [a, b])= J

(
f, [a, c])+ J

(
f, [c, b])

(interval additivity);
(II) if (f, [a, b]) is an admissible pair and A� f (x)� B for all x ∈ [a, b], then

A(b− a)� J
(
f, [a, b]) � B(b− a).

In particular, the integral over a degenerate interval vanishes.

These axioms become especially natural if, assuming that the notion of area is
clear, one interprets the integral J (f, [a, b]) for a non-negative function f as the
area of the region under the graph of f on the interval [a, b], i.e., the area of the set

{
(x, y) ∈R

2|x ∈ [a, b], 0 � y � f (x)
}
.

To justify this interpretation, divide the interval [a, b] into n equal parts �1, . . . ,�n

of length hn = b−a
n

, and let mk and Mk be the smallest and the largest value of f

on �k , respectively. Then, by Axiom (II), mkhn � J (f,�k)�Mkhn. Adding these
inequalities, we see that

sn =
n∑

k=1

mkhn � J
(
f, [a, b]) � Sn =

n∑

k=1

Mkhn.

The sums sn and Sn have a simple geometric interpretation: these are the areas of
the polygonal regions composed of the rectangles with bases �k and heights mk and
Mk , respectively. The first of them is contained in the region under the graph of f ,
and the second one contains it. As n grows, the sums sn and Sn approach each other
arbitrarily closely, since

0 � Sn − sn = hn

n∑

k=1

(Mk −mk)� hnnωf (hn)= (b− a)ωf (hn) −→
n→∞ 0

(here ωf is the modulus of continuity of f ). By the monotonicity, the area of the
region under the graph of f (with any reasonable definition of this area) lies between
sn and Sn. Hence it must coincide with J (f, [a, b]).

Under this interpretation, Axiom (I) simply means that if we divide the region
under the graph of f into two parts by a vertical line, then the area of the whole
region equals the sum of the areas of these two parts. The second axiom is just as
geometrically clear.

It follows immediately from Axiom (II) that if f takes the same value C at all
points of [a, b], then J (C, [a, b]) = C(b − a). Here is another important property
of an integral, which is also an immediate consequence of Axiom (II).

Mean Value Theorem If f is a continuous function on [a, b], then there exists a
point c ∈ [a, b] such that J (f, [a, b])= f (c)(b− a).
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Proof Let m=min[a,b] f , M =max[a,b] f . Since m� f (x)�M for all x ∈ [a, b],
it follows from Axiom (II) that

m� 1

b− a
J

(
f, [a, b]) �M.

It remains to observe that a continuous function takes all values between m

and M . �

Leaving aside the problem of the existence of an integral, we establish a fun-
damental link between this notion and differential calculus, which opens the way
for computing the integral in a huge variety of concrete cases. To obtain this re-
sult, with every function f continuous on [a, b] we associate another function, the
integral “with a variable upper limit”. More precisely, we consider the function �

defined by the formula

�(x)= J
(
f, [a, x]) for a � x � b. (1)

The following theorem is essentially due to Barrow, who stated it in a more com-
plicated geometric form.

Theorem The function � is differentiable at every point x of the interval [a, b], and
�′(x)= f (x).

Proof With every point y ∈ [a, b] we associate the interval �y with endpoints x

and y. If y > x, the additivity of the integral immediately implies that
�(y)−�(x)= J (f,�y). Using the mean value theorem, we can rewrite this equa-
tion in the form

�(y)−�(x)

y − x
= f (y ),

where y is a point lying between x and y. Interchanging the roles of x and y, we
see that this equation also remains valid in the case where y < x. By continuity,
f (y)→ f (x) as y→ x, which completes the proof. �

13.1.3 It is useful to slightly reformulate the result obtained in the last theorem. For
this we need to introduce a new notion.

Definition Let f and F be functions defined at least on an interval �. The func-
tion F is called an antiderivative of f on � if it is differentiable on � and

F ′(x)= f (x) for every x in �.

If F1 and F2 are two antiderivatives of f on �, then their difference is constant,
since (F1 − F2)

′ = 0.
Using the notion of an antiderivative, we can reformulate Barrow’s theorem

(keeping the notation introduced in its statement) as follows.
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Theorem The function � is an antiderivative of f on the interval [a, b].

Barrow’s theorem has also a very important corollary, which states the link be-
tween integration and differentiation established above in a more convenient form.

Corollary (Fundamental theorem of calculus) If f is a continuous function on an
interval [a, b] and F is an arbitrary antiderivative of f , then

J
(
f, [a, b])= F(b)− F(a).

The difference F(b)− F(a) is denoted by F(x)|x=b
x=a or, in short, F |ba .

Proof Let � be the antiderivative of f defined by (1). Since F =�+ C where C

is a constant, we have

J
(
f, [a, b]) = �(b)=�(b)−�(a)

= (
F(b)−C

)− (
F(a)−C

)= F(b)− F(a). �

It follows from the fundamental theorem of calculus that the value of an integral
of f over a given interval is uniquely determined by any antiderivative of f ; hence
there may exist at most one function J satisfying Axioms (I)–(II). Thus we have
proved the uniqueness of the integral.

The uniqueness of the integral lays the ground for introducing a special no-
tation. From now on, instead of J (f, [a, b]) we will use the generally accepted
symbol

∫ b

a
f (x) dx (for a discussion of the term “integral” and the symbol

∫
, see

Sect. 4.1.2). The function f is called the integrand; a and b are called the lower and
upper limits of integration, respectively; and [a, b] is called the interval of integra-
tion.

From a formal point of view, the notation
∫ b

a
f (x) dx is not entirely blameless.

It contains a “dummy” letter x (sometimes called the variable of integration), which
denotes nothing and can be replaced by any other letter:

∫ b

a
f (x) dx = ∫ b

a
f (z) dz=

∫ b

a
f (ℵ) dℵ. With this in mind, we should prefer the notation

∫ b

a
f . However, the

traditional notation has a number of advantages which manifest themselves when
solving concrete problems. In particular, this becomes evident if f is defined by a
formula involving various letters (parameters). For example, if f (x)= xt (x > 0),
the notation

∫ 2
1 xt dx shows that we mean the integral of the (power) function f

rather than the integral
∫ 2

1 xt dt of the (exponential) function t �→ g(t) = xt . This
notation is also convenient when one uses important methods of integration (see
Sect. 4.6.2, Propositions 1 and 2 on integration by parts and by substitution).

13.1.4 The established link between integration and differentiation allows us to eas-
ily obtain further important properties of the integral: linearity and monotonicity.
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Theorem Let f and g be continuous functions on an interval [a, b] and α ∈ R.
Then

∫ b

a

(
f (x)+ g(x)

)
dx =

∫ b

a

f (x) dx +
∫ b

a

g(x) dx,

∫ b

a

(
αf (x)

)
dx = α

∫ b

a

f (x) dx.

This implies the linearity of the integral:

∫ b

a

(
αf (x)+ βg(x)

)
dx = α

∫ b

a

f (x) dx + β

∫ b

a

g(x) dx;

in particular,
∫ b

a
(f (x)− g(x)) dx = ∫ b

a
f (x) dx − ∫ b

a
g(x) dx. Applying the latter

equation to the difference f = f+ − f− (where f± = max{±f,0} are the positive
and negative parts of f , respectively), we see that the integral

∫ b

a
f (x) dx is equal

to the difference of the areas under the graphs of f+ and f−.

Proof Let F and G be antiderivatives of f and g, respectively. Then F +G and αF

are antiderivatives of f +g and αf . Hence, by the fundamental theorem of calculus,
we have

∫ b

a

(
f (x)+ g(x)

)
dx = (F +G)

∣
∣
∣
b

a
= F

∣
∣
∣
b

a
+G

∣
∣
∣
b

a
=

∫ b

a

f (x) dx +
∫ b

a

g(x) dx.

The homogeneity of the integral can be established in a similar way. �

Corollary 1 If f and g are continuous functions on [a, b] and f (x)� g(x) for all
x ∈ [a, b], then

∫ b

a
f (x) dx �

∫ b

a
g(x) dx.

Proof Indeed, since g − f � 0, by Axiom (II) we have
∫ b

a
(g(x) − f (x)) dx � 0.

Therefore,

0 �
∫ b

a

(
g(x)− f (x)

)
dx =

∫ b

a

g(x) dx −
∫ b

a

f (x) dx. �

The monotonicity of the integral implies an important estimate.

Corollary 2 If f is a continuous function on [a, b], then | ∫ b

a
f (x) dx| �

∫ b

a
|f (x)|dx.

Proof To prove this, it suffices to observe that −|f (x)| � f (x) � |f (x)| and use
the monotonicity of the integral. �

Now, further properties of the integral of a continuous function over an interval
(in particular, Propositions 1 and 2 of Sect. 4.6.2 and Theorem 4.7.3 on the limit
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of Riemann sums) can be obtained in exactly the same way as in Chap. 4, with the
only condition that all intervals under consideration should be assumed closed.

Note that considering Proposition 2 of Sect. 4.6.2, it is convenient to use an
agreement slightly generalizing the notion of the integral. By definition, the in-
tegral

∫ b

a
f (x) dx makes sense only for a � b. This restriction may sometimes

lead to technical problems; to avoid them, for a > b we assume by definition that∫ b

a
f (x) dx =− ∫ a

b
f (x) dx. Obviously, this agreement does not violate the funda-

mental theorem of calculus.

13.2 Extension of Continuous Functions

Here we consider the following important question: given a function f0 continuous
on a subset A of a metrizable space X, when is it the restriction of a continuous
function on the whole space? Or, as one says, when can f0 be extended to a func-
tion continuous on X? Clearly, in general this is not possible. Simple counterex-
amples are the functions x �→ 1

x
and x �→ sin 1

x
on the set A= (0,1]. They cannot

be extended to functions continuous at the origin, even though the second function
is bounded. A condition under which a function can be extended from a set to its
closure is given in Exercise 1.

13.2.1 First we establish some auxiliary facts. Recall that C(X) stands for the set of
all functions continuous on X.

We will need the notion of the distance from a point to a set. In the particular
case where X =R

m, this was introduced in Sect. 3.4.1.

Definition Let (X,ρ) be a metric space and A⊂X. Put

dist(x,A)= inf
{
ρ(x, y) |y ∈A

}
(x ∈X).

The value dist(x,A) is called the distance from x to A.

Lemma 1 The function x �→ dist(x,A) is continuous on X. If A is closed, then
dist(x,A)= 0 if and only if x ∈A.

Proof Let y ∈A and x, x′ ∈X. Then

dist(x,A)� ρ(x, y)� ρ
(
x′, y

)+ ρ
(
x′, x

)
.

Taking the infimum of the right-hand side over y, we see that dist(x,A) �
dist(x′,A)+ ρ(x, x′), i.e.,

dist(x,A)− dist
(
x′,A

)
� ρ

(
x, x′

)
.

Since x and x′ are interchangeable, we have
∣
∣dist(x,A)− dist

(
x′,A

)∣
∣ � ρ

(
x, x′

)
,

and the required continuity follows.
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The equality dist(x,A)= 0 for x ∈ A is obvious. If A is closed and x /∈ A, then
there exists an ε > 0 such that the ball B(x, ε) has an empty intersection with A.
This means that ρ(y, x) � ε for every y ∈ A, and, consequently, dist(x,A) �
ε > 0. �

Lemma 2 Closed disjoint subsets of a metrizable space X are functionally sepa-
rated, i.e., for any two such subsets F and F0 there exists a function ϕ continuous
in X such that

ϕ = 1 on F, ϕ = 0 on F0, 0 � ϕ � 1 on X.

Proof Fix a metric in the space X that induces its topology; this allows us to con-
sider the distance from a point to a set. Define a function ϕ by the formula

ϕ(x)= dist(x,F0)

dist(x,F )+ dist(x,F0)
(x ∈X).

Since F and F0 are disjoint, the denominator does not vanish. We leave it to the
reader to check that the function ϕ has all the required properties. �

Corollary Let a, b ∈ R with a < b. If F and F0 are disjoint closed subsets of a
metrizable space X, then there exists a function ψ ∈ C(X) such that

ψ = a on F, ψ = b on F0, a �ψ � b on X.

Proof Let ϕ be a function separating F and F0. Clearly, the function ψ = b −
(b− a)ϕ has all the required properties. �

13.2.2 Now we are ready to approach the main problem of this appendix.

Theorem (Tietze1–Urysohn2) Every function f0 continuous on a closed subset of a
metrizable space X is the restriction of a function from C(X). If |f0|� C, one may
assume that the extended function also satisfies this inequality.

Proof Let F be the closed set on which f0 is defined (and continuous).

I. First consider the case where f0 is real-valued and bounded: |f0| � C. Be-
fore proving the existence of a continuous extension, we verify that f0 admits a
sufficiently good approximation by functions from C(X).

Let

F− =
{

x ∈ F

∣
∣
∣f0(x)�−C

3

}

, F+ =
{

x ∈ F

∣
∣
∣f0(x)�

C

3

}

.

1Heinrich Franz Friedrich Tietze (1880–1964)—German mathematician.
2Pavel Samuilovich Urysohn (1898–1924)—Russian mathematician.
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If both these sets are non-empty, then, by the corollary of Lemma 2, there exists a
function g0 ∈ C(X) such that

g0 =−C

3
on F−, g0 = C

3
on F+, |g0|� C

3
on X.

If F− (say) is empty, we set g0 ≡ C
3 .

For x ∈ F \ (F− ∪ F+), we have

∣
∣f0(x)− g0(x)

∣
∣ �

∣
∣f0(x)

∣
∣+ ∣

∣g0(x)
∣
∣ � C

3
+ C

3
= 2

3
C.

This inequality remains valid on the union F− ∪ F+; indeed, on this set we have
|g0| � |f0|, and the values of g0 have the same sign as the values of f0, so that
|f0 − g0| = |f0| − |g0|� C − C

3 = 2
3C. Thus

|g0|� 1

3
C on X, and

∣
∣f0(x)− g0(x)

∣
∣ � 2

3
C for all x ∈ F. (1)

The function g0, which is continuous on the whole space X, is a desired approx-
imation for f0. Now, taking g0 as the initial approximation and iterating the esti-
mates (1), we successively construct more and more accurate approximations of f0

by functions continuous on X. Replacing f0 with f1 = f0 − g0 and C with 2
3C, we

can find a function g1 continuous on X such that

|g1|� 1

3
· 2

3
C on X,

∣
∣f1(x)− g1(x)

∣
∣ �

(
2

3

)2

C for x ∈ F.

Continuing by induction, we construct functions gn continuous on X and functions
fn = fn−1 − gn−1 continuous on F such that for all n ∈N,

|gn|� 1

3

(
2

3

)n

C on X,
∣
∣fn(x)

∣
∣ �

(
2

3

)n

C for x ∈ F. (2)

Adding the equalities

f1 = f0 − g0,

f2 = f1 − g1,

...

fn+1 = fn − gn,

we obtain

fn+1(x)= f0(x)− Sn(x) for x ∈ F, (3)
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where Sn is the nth partial sum of the series
∑∞

k=0 gk . By the first inequality (2), this
series uniformly converges on X, and, consequently, its sum S is continuous on X.
Furthermore, for all x ∈X,

∣
∣S(x)

∣
∣ �

∞∑

k=0

∣
∣gk(x)

∣
∣ �

∞∑

k=0

1

3

(
2

3

)n

C = C.

Meanwhile, again by (2), fn(x) −→
n→∞ 0 for x ∈ F . Hence, passing to the limit in (3),

we see that f0(x)= S(x) for all x ∈ F . Thus S is a desired extension.

II. Now let f0 still be real-valued, but not necessarily bounded. We define an
auxiliary function h0 by the formula

h0(x)= f0(x)

1+ |f0(x)| (x ∈ F).

Clearly, h0 is continuous and |h0| < 1 on F . One can easily verify that f0(x) =
h0(x)

1−|h0(x)| . We will first extend the function h0, and then, using the last formula,
construct an extension of f0.

Let h be a continuous extension of h0 to X such that |h|� 1. Unfortunately, we
cannot directly construct an extension of f0 to X by the formula f = h

1−|h| , since,
unlike |h0|, the function |h| may take the value 1. Thus we need to slightly “im-
prove” h. Let F0 = {x ∈X | |h(x)| = 1}. Clearly, the set F0 is closed and F0∩F =∅

(since |h(x)| = |h0(x)|< 1 for x ∈ F ). Let ϕ be a function that separates F and F0
and vanishes on F0. Put H = hϕ. Since |H(x)|< 1 on X and H coincides with h0
on F , the function H

1−|H | , which is continuous on X, is, obviously, an extension
of f0.

III. If f0 takes complex values, we can extend it by extending its real and
imaginary parts separately (and keeping the estimates on Re f and Imf if f0 is
bounded). Unfortunately, under such an extension, the maximum absolute value of
f0 (if it is bounded) may increase. Hence in this case we should “improve” the ex-
tended function f . To this end, we define an auxiliary function ψ on the complex
plane by the following formula:

ψ(w)=
{
w if |w|� 1,
w
|w| if |w|� 1.

Obviously, ψ is continuous and |ψ |� 1. To obtain the desired extension, put

f̃ (x)= Cψ

(
f (x)

C

)

for x ∈X. �

Remark The proof does not exploit the metrizability of X in full strength, but relies
only on Lemma 2. Hence the Tietze–Urysohn theorem holds for all spaces in which
closed disjoint sets are functionally separated. In particular, this is the case for all
compact spaces (see [B-I], Chap. 2, Sect. 13, Theorem 3).
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13.2.3 Given a function (or, more generally, a map) defined on a subset of a metric
space, under what conditions is it the restriction of a continuous function defined on
a wider set? In other words, when can it be continuously extended? By the theorem
just proved, for a function defined on a closed set such an extension always exists,
so it is interesting to consider this question for a function defined on an arbitrary
domain. A sufficient condition for a function to have an extension to a closed set
(which is also necessary in the case of a compact space), is that it is uniformly
continuous (see Exercise 1). However, if we require that the ambient set is only
Borel, but not necessarily closed, such an extension of a continuous function does
always exist. More precisely, the following result holds.

Theorem Let X,Y be metric spaces, A be a subset of X, and f : A→ Y be a
continuous map. If the space Y is complete, then f can be continuously extended to
a Gδ set Ã containing A.

Recall that a Gδ set is an intersection of countably many open sets.

Proof First observe that we can (continuously) extend f to a point x from
the closure A only if f does not change much in the vicinity of x. Hence it
makes sense to consider the “oscillation” of the map f at the point x: ω(x) =
limr→0 diam(f (B(x, r)∩A)). Let

Aε =
{
x ∈A |ω(x) < ε

}
for ε > 0.

Let us verify that the set Aε is open in A. Indeed, if x ∈Aε , then

diam
(
f

(
B(x, r)∩A

))
< ε for some r > 0.

Hence diam(f (B(y,ρ) ∩ A)) < ε for every point y from B(x, r) ∩ A and every
ball B(y,ρ) contained in B(x, r). Therefore, ω(y) < ε, i.e., y ∈ Aε . Since y is an
arbitrary point of B(x, r)∩A, this means that B(x, r)∩A⊂Aε . Thus x is an interior
point of the set Aε in the subspace A. So, the set Aε is relatively open in A. Hence
there exists a set Oε open in X such that Aε = A ∩Oε . Since the closed set A is a
Gδ set, the intersection A∩Oε , i.e., the set Aε , is also a Gδ set.

Along with Aε , the intersection Ã = ⋂∞
n=1 A1/n is also a Gδ set. Since f is

continuous, it follows that Aε ⊃A, and hence Ã⊃A.
Now we construct an extension of f to Ã. If x ∈ Ã, then

diam
(
f

(
B(x, r)∩A

))→ 0 as r→ 0.

The same is true for the diameters of the closures of the sets f (B(x, r) ∩A) (since
taking the closure does not change the diameter of a set). Since the space Y is
complete, the intersection

⋂

r>0

f
(
B(x, r)∩A

)
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is not empty and consists of a single point, say w. If x ∈ A, then w = f (x); oth-
erwise w = limy→x f (y). Thus the set Ã is obtained from A by adding the points
from A at which f has a limit. Associating with an arbitrary point x ∈ Ã the point
from

⋂
r>0 f (B(x, r)∩A), we obtain a map f̃ that is an extension of f to Ã.

It remains to verify that f̃ is continuous on Ã. Let x0 ∈ Ã and ε > 0. Fix a radius
r such that diam(f (B(x0, r) ∩ A)) < ε, and let x ∈ Ã such that x ∈ B(x0, r/2).
Since B(x, r/2)⊂ B(x0, r), we have

f̃ (x) ∈ f
(
B(x, r/2)∩A

)⊂ f
(
B(x0, r)∩A

)
.

At the same time, f̃ (x0) ∈ f (B(x0, r)∩A). Thus, if x ∈ B(x0, r/2)∩ Ã, then

ρY

(
f̃ (x), f̃ (x0)

)
� diam

(
f

(
B(x0, r)∩A

))
< ε,

where ρY is the metric in Y . This proves that f̃ is continuous at x0, and the theorem
follows. �

It is clear that the set Ã constructed in the proof is the largest subset of A to
which f can be continuously extended.

13.2.4 It is natural to ask whether one can extend a continuous function preserving
not only the continuity but also some additional properties. The answer is posi-
tive for functions satisfying the Lipschitz condition. But it turns out that the real-
valuedness of the function is an essential condition. More precisely, the following
theorem holds.

Theorem Let E be an arbitrary subset of a metric space (X,ρ). If a real function
f defined on E satisfies the Lipschitz condition, i.e.,

∣
∣f (x)− f (y)

∣
∣ � Lρ(x, y) for x, y ∈E,

then there exists an extension g of f to X satisfying the Lipschitz condition with the
same constant:

∣
∣g(x)− g(y)

∣
∣ � Lρ(x, y) for x, y ∈X.

If f is bounded, then, using the same trick as in the last step of the proof of the
Tietze–Urysohn theorem, one can ensure the boundedness of the extended function.

Proof For every x in X, let

g(x)= inf
{
f (y)+Lρ(x, y) |y ∈E

}
.

We will verify that g has the desired properties.
First we show that g is an extension of f . Indeed, if x, y ∈E, then f (x)−f (y)�

Lρ(x, y), whence f (x)� g(x). The reverse inequality is obvious.
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Now we verify that g(x) >−∞ for all x. Indeed, fix an arbitrary point y0 ∈ E.
Then |f (y0)− f (y)|� Lρ(y, y0) for every y ∈E. Hence for x ∈X we have

f (y0)� f (y)+Lρ(y, y0)� f (y)+Lρ(y, x)+Lρ(x, y0),

i.e., f (y0) − Lρ(x, y0) � f (y) + Lρ(x, y), which implies that g(x) � f (y0) −
Lρ(x, y0).

Finally, we prove that g satisfies the Lipschitz condition. Let x, x′ ∈ X. Fix an
arbitrary ε > 0 and choose y ∈E such that g(x) > f (y)+Lρ(x, y)− ε. We have

g
(
x′

)
� f (y)+Lρ

(
x′, y

)
� f (y)+Lρ

(
x′, x

)+Lρ(x, y).

Subtracting the previous inequality from this one, we see that

g
(
x′

)− g(x)� Lρ
(
x′, x

)+ ε.

Since ε is arbitrary and x, x′ are interchangeable, this yields the desired result. �

Remark It follows from the above theorem that a map f : E→ R
n satisfying the

Lipschitz condition can be extended to a map defined on X and also satisfying the
Lipschitz condition but with a larger constant. However, if X =R

m, there exists an
extension having the same Lipschitz constant as f (see [F, Theorem 2.10.43]).

EXERCISES

1. Show that a function uniformly continuous on a subset A of a metric space can
be extended to the closure A preserving the uniform continuity.

2. Let T0 : F → A, where F is a closed subset of a metrizable space X and A is
a convex closed set in R

m with Int(A) �=∅. Show that there exists a continuous
extension of T0 to X whose values also belong to A. Hint. Use the fact that
bounded set A is homeomorphic to the cube [−1,1]m.

3. Let � ⊂ R be an arbitrary interval and F be a closed subset of a metrizable
space X. Show that every continuous function from F to � has a continuous
extension whose values at all points of X \ F belong to the interior of �.

13.3 Regular Measures

13.3.1 Among all the measures defined on a σ -algebra of subsets of a topological
space, it is natural to single out a class of measures whose properties agree, in some
way or other, with the topology. We encountered examples of such an agreement
when studying the Lebesgue measure (approximation of measurable functions by
continuous functions, etc.).

The first step in this direction is the assumption that the measure under consid-
eration is defined on all open sets; however, this does not suffice. In the general
case, the most natural form of agreement between the properties of a measure and
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the topology of the space is regularity. The definition of regularity reproduces the
property of the Lebesgue measure proved in Corollary 2 in Sect. 2.2.2.

We will establish such an agreement for finite Borel measures in metrizable
spaces. Note that if one has to consider non-σ -finite measures, there are other pos-
sible interpretations of agreement between a measure and a topology (see, for ex-
ample, the definition of a Radon measure in Sect. 12.2.2).

Recall that a Borel set is an element of the σ -algebra generated by all open sets;
a measure defined on this σ -algebra is called a Borel measure.

Definition Let X be a topological space. A measure μ defined on a σ -algebra of
subsets of X containing all open sets is called regular if for every measurable set E:

(a) μ(E)= inf{μ(G) |G⊃E, G is an open set};
(b) μ(E)= sup{μ(F) |F ⊂E, F is a closed set}.

Properties (a) and (b) are called the outer and the inner regularity of μ, respec-
tively. The reader can easily check that for a finite measure they are equivalent. Now
we will show that in a wide class of cases, outer regularity implies inner regularity.

Proposition Let A be a σ -algebra of subsets of a topological space X containing
all open sets. If a measure μ defined on A is σ -finite and outer regular, then it is
regular.

Proof The proof of this result is based on a “duality argument”. Here we mean the
duality between open and closed sets: the complement of a closed set is open, and
the complement of an open set is closed. More precisely, in order to approximate a
given set by a closed set, we approximate its complement with an open set and then
take the complement.

Let E ∈ A and E′ = X \ E. Since the measure μ is σ -finite, the set E′ can be
presented in the form E′ =⋃∞

n=1 En, where μ(En) <+∞ for all n. Fix an arbitrary
ε > 0 and, using the outer regularity of μ, find open sets Gn such that

Gn ⊃En, μ(Gn) < μ(En)+ ε

2n
(n ∈N).

Put G =⋃∞
n=1 Gn, F = X \ G. We will verify that μ(E \ F) < ε. Indeed, since

E \ F =G \E′, we have

μ(E \ F)= μ
(
G \E′)= μ

( ∞⋃

n=1

(
Gn \E′

)
)

�
∞∑

n=1

μ(Gn \En) <

∞∑

n=1

ε

2n
= ε.

Therefore, μ(E) = μ(F) + μ(E \ F) � μ(F) + ε. Since ε is arbitrary, the latter
inequality implies the inner regularity of μ. �

13.3.2 Now we turn to the main result of this appendix.
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Theorem Let X be a metrizable topological space and μ be a Borel measure on X.
Let μ satisfy the following condition: there exists a sequence of open sets Un such
that

X =
∞⋃

n=1

Un and μ(Un) <+∞ for all n. (1)

Then μ is regular.

Condition (1) is a strengthening of the σ -finiteness condition for μ. As one can
easily see, it is necessary for a σ -finite measure to be regular. We have to impose
this condition, since, as one can see from examples, the σ -finiteness alone is not
sufficient for the theorem to be true (see Exercise 1).

Proof We will say that an arbitrary set E ⊂X is regular (with respect to μ) if

inf
{
μ(G) |G⊃E, G is an open set

}= sup
{
μ(F) |F ⊂E, F is a closed set

}
.

Our aim is to prove that all Borel sets are regular. The proof is divided into two
steps.

I. First assume that the measure μ is finite. It will be convenient to employ the
following reformulation of the definition of a regular set.

A set E is regular if for every positive ε there exist an open set G and a closed
set F such that

F ⊂E ⊂G and μ(G)−μ(F) < ε.

We say that such sets ε-approximate E, or form an ε-approximation of E.
In a metrizable space, every closed set is the intersection of a sequence of open

sets, and every open set is the union of a sequence of closed sets. Since a measure
is continuous from above and from below, we see that open and closed subsets of a
metrizable space are regular.

Let us verify that the system of all regular sets is a σ -algebra. This will imply
that along with all open sets it also contains all Borel sets, which means precisely
that the measure μ is regular.

As we know, in order to prove that the system of regular sets is a σ -algebra, it
suffices to check that it has the following two properties (see Proposition 1.1.1 and
Definition 1.1.2):

(1) the complement of every regular set is regular;
(2) the union of a sequence of regular sets is a regular set.

To prove (1), we apply, as in the proof of Proposition 13.3.1, a “duality argu-
ment”. Let E be a regular set and E′ =X \E. Fix an arbitrary ε > 0 and find sets
F and G that ε-approximate E. Put G̃=X \ F and F̃ =X \G. Clearly, the set G̃
is open, the set F̃ is closed, and G̃ \ F̃ =G \ F . Furthermore,

F̃ ⊂E′ ⊂ G̃, μ(G̃)−μ(F̃ )= μ(G)−μ(F) < ε.
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Thus the sets F̃ and G̃ form an ε-approximation of E′, which shows that E′ is
regular.

To establish property (2), consider a sequence of regular sets En and put E =⋃∞
n=1 En. We will construct sets F and G that ε-approximate E.
Let Fn, Gn be sets that ε

2n -approximate the sets En (n = 1,2, . . .). Put
G = ⋃∞

n=1 Gn and A = ⋃∞
n=1 Fn. Clearly, the set G is open, the set A is Borel,

A⊂E ⊂G, and

μ(G \A)= μ

( ∞⋃

n=1

(Gn \A)

)

� μ

( ∞⋃

n=1

(Gn \ Fn)

)

�
∞∑

n=1

(
μ(Gn)−μ(Fn)

)
<

∞∑

n=1

ε

2n
= ε. (2)

We have constructed two sets approximating E from inside and from outside. The
set G is open, but the set A may be not closed. Hence we approximate it from inside
by the union of a sufficiently large (but finite!) family of sets Fn. Consider the closed
sets Hn = F1∪· · ·∪Fn. Since μ(Hn) −→

n→∞ μ(A) by the continuity of μ from below,

we have μ(A)−μ(Hn) < ε for sufficiently large n. Hence, in view of (2), we obtain
the inequality

μ(G)−μ(Hn)= μ(G)−μ(A)+μ(A)−μ(Hn)

= μ(G \A)+μ(A)−μ(Hn) < ε+ ε = 2ε. (3)

Thus the sets Hn and G form a 2ε-approximation of E. Since ε is arbitrary, this
means that E is regular.

II. Now consider the case where the measure μ is infinite. We will prove that
every Borel set is regular (this precisely that μ is regular). Introduce finite measures
μn (n= 1,2, . . .) by the formula

μn(B)= μ(B ∩Un) (B is a Borel set).

Note that the measures μ and μn coincide on Borel subsets of Un.
Given an arbitrary Borel set E, write it in the form

E =
∞⋃

n=1

En, where En =E ∩Un (n= 1,2, . . .).

Since the measures μn are finite, it follows from above that for every set En and
arbitrary ε > 0, we can choose open sets Gn and closed sets Fn such that

Fn ⊂En ⊂Gn, μn(Gn)−μn(Fn) <
ε

2n
. (4)

We will assume that Gn ⊂ Un (otherwise replace Gn by its intersection with Un,
which is also open; this is the only point where the openness of Un is used). Hence,
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replacing μn by μ, we can rewrite inequality (4) as follows: μ(Gn)−μ(Fn) <
ε

2n .
Now the proof can be completed in exactly the same way as at the previous step. Put
G =⋃∞

n=1 Gn, A =⋃∞
n=1 Fn. Clearly, G is open. Repeating the calculations (2),

we see that μ(G \A) < ε. As at the first step of the proof, consider the closed sets
Hn = F1∪· · ·∪Fn. By the continuity of μ from below, μ(Hn) −→

n→∞ μ(A). Now two

cases are possible. If μ(A) <+∞, then μ(A)−μ(Hn) < ε for sufficiently large n,
and thus (3) holds. So, the sets Hn and G form a 2ε-approximation of E. Since ε is
arbitrary, this implies the regularity of E.

If μ(A)=+∞, then the regularity of E is obvious, since

+∞= μ(A)= sup
n

μ(Hn)� μ(E)� μ(G)�+∞. �

Corollary 1 A finite Borel measure on a metrizable space is regular.

Corollary 2 If a Borel measure μ in a Euclidean space is finite on compact sub-
sets, then it is regular. Moreover, in this case, condition (2) from the definition of
regularity holds in a strengthened form:

μ(E)= sup
{
μ(K) |K ⊂E, K is a compact set

}
. (2′)

Equality (2′) immediately follows from (2), since every closed subset of a Eu-
clidean space is the union of a sequence of compact sets.

One can easily check that regularity is preserved under the Carathéodory exten-
sion. Thus the above theorem implies, in particular, the regularity of the Lebesgue
measure, as well as any measure obtained by the Carathéodory extension from the
semiring of cells and finite on compact subsets of Rm.

13.3.3 The regularity of a measure allows one to approximate measurable functions
by continuous functions in the L p norm.

Theorem Let X be a metrizable or locally compact space and μ be a regular
measure on X. Then for 1 � p < +∞, the set of continuous functions is dense
in L p(X,μ).

Proof Since the set of simple functions is dense in L p(X,μ) (see Theorem 9.2.1),
it suffices to show that continuous functions approximate every characteristic func-
tion from L p(X,μ), i.e., the characteristic function of an arbitrary set of finite
measure. Let E be such a set. Fix an arbitrary ε > 0 and, using the regularity of μ,
find an open set G and a closed set F such that

F ⊂E ⊂G, μ(G \ F) < ε.

By Lemma 2 of Sect. 13.2.1 in the case where X is metrizable, and by Theo-
rem 12.2.1 in the case where X is locally compact, there exists a continuous function
ϕ satisfying the conditions

0 � ϕ � 1, ϕ(x)= 1 for x ∈ F, ϕ(x)= 0 for x /∈G.
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Hence

‖χE − ϕ‖pp =
∫

G

|χE − ϕ|p dμ�
∫

G\F
1dμ= μ(G \ F) < ε.

Thus χE can be approximated by a continuous function with an arbitrary accu-
racy. �

EXERCISES

1. Show that the Borel measure on the interval [0,1] generated by the unit masses
at the points 1

n
(n ∈N) is inner regular but not regular.

13.4 Convexity

13.4.1 Convex Sets. A subset A of Rm is called convex if for any two points p and q

in A, the line segment [p,q] = {(1− t)p + tq |0 � t � 1} also lies in A. One can
easily show by induction that for any points x1, . . . , xn in A, a convex combination
of these points, i.e., a point of the form c1x1+ · · · + cnxn where c1, . . . , cn are non-
negative numbers with c1 + · · · + cn = 1, also lies in A. Note also that the image of
a convex set under an affine map is again convex.

It is clear that the intersection of any family of convex sets is convex. In particu-
lar, for every set A⊂R

m, the intersection of all convex sets containing A is convex.
This is the smallest convex set containing A. It is called the convex hull of A and
is denoted by conv(A). The reader can easily check that this set consists of all con-
vex combinations of points of A. The convex hull of a finite set is called a convex
polyhedron. A compact convex set with non-empty interior is called a convex body.

The ray with vertex p and direction vector ν, ν �= 0, is the set �p(ν) =
{p + tν | t � 0}. The union K of an arbitrary family of rays with common vertex
p is called a cone with vertex p. The set K \ {p} will also be called a cone.

Now we consider some geometrically clear properties of convex sets.

(1) The line segment connecting an interior point of a convex set A with a point x0
of its closure consists (apart from x0) of interior points of A.

Indeed, let x1 be an interior point of A and B(x1, r)⊂ Int(A). If x0 ∈ A, then it
is easy to check that every point xt = (1− t)x0+ tx1, 0 < t < 1, of the line segment
[x0, x1] is contained in A along with the ball B(xt , tr). If x0 is a boundary point,
then, replacing it with a sufficiently close point of A, we see that A contains the ball
B(xt , ρ) for ρ < tr .

(2) Every ray with vertex at an interior point of a convex set intersects its boundary
at one point at most.

Indeed, if such a ray contains two boundary points, then whichever of these points
lies closer to the vertex is an interior point, a contradiction.

(3) The interior of a convex set A is convex. If Int(A) �=∅, then A= Int(A).
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Recall that an affine subspace of R
m is a subset obtained by a translation of

a linear subspace. We do not exclude the case where an affine subspace consists
of a single point. The other extreme case is a (proper) affine subspace of maxi-
mal dimension. In short, such a subspace, i.e., a translation of a linear subspace of
codimension 1, will be called a plane. In other words, a plane is a set of the form
H = {x ∈R

m | 〈x, ν〉 = C}, where C is a fixed number and ν �= 0 is a vector (a nor-
mal to the plane). Every plane gives rise to two open half-spaces H− and H+, whose
points x satisfy the inequalities 〈x, ν〉< C and 〈x, ν〉> C, respectively. Replacing
the strict inequalities by weak ones, we obtain the closed half-spaces H− and H+.
Half-spaces (open or closed) are the simplest examples of convex sets.

We say that a set lies to one side of a plane H if it is contained in one of the half-
spaces H±. A plane H separates two sets if they lie in different (closed) half-spaces
associated with H .

A ball cannot lie to one side of a plane passing through its center. Hence an open
set lying to one side of a plane has no common points with this plane. If an open set
A is convex, then the absence of common points with a plane H is also sufficient
for A to lie to one side of H .

In conclusion of our brief survey, we mention several geometrically clear prop-
erties of convex sets (which nevertheless sometimes require non-trivial proofs). We
will deduce them from the Hahn–Banach theorem, which will also be used later
when studying the differentiability of convex functions. The theorem below is a
very special case of the classical result which plays a fundamental role in functional
analysis.

Theorem (Hahn–Banach) Let O �=∅ be a convex open set in R
m, m� 2, and L be

an affine subspace in R
m. If O ∩L=∅, then there exists a plane H such that

H ∩O =∅, H ⊃ L.

Proof Applying, if necessary, a translation, we may assume without loss of gener-
ality that L is a linear subspace, i.e., 0 ∈ L.

First we consider the zero-dimensional case and prove a weaker assertion:

if 0 /∈O, then there exists a line passing through 0 that has an empty intersection
with O.

To prove this, consider the set K =⋃
t>0 tO. Clearly, K is a convex open cone

with vertex at the origin. Since 0 /∈K , we see that K is contained in the punctured
space R = R

m \ {0}, but does not coincide with it (by the convexity of K). The set
R is connected (since m� 2), and hence the cone K is not closed in R. Therefore,
there exists a point x ∈ R such that x ∈ ∂K . Then x /∈ K , since K is open. Let
us verify that tx /∈ K for t ∈ R. This is obvious for t > 0, since K is a cone. If
tx ∈ K for some t � 0, then, by Property 1), all points of the line segment [tx, x]
(apart from x) belong to K . In particular, 0 ∈ K , a contradiction. Thus the whole
line {tx | t ∈R} has no common points with K , and hence with O, as required.

We now proceed to proving the theorem in full strength and consider all linear
subspaces containing L and disjoint with O. Their dimensions do not exceed m−1.
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Choose a subspace H of maximal dimension among them. We will show that it is
a required plane, i.e., dimH = m− 1. Assume that this is not the case, and let M
be the subspace complementary to H (that is, M ∩H = {0}, M +H = R

m). Then
dimM � 2. Project O into M along H , and let G be the image of O in M . Clearly,
the image of H in M coincides with the origin. Since H ∩O = ∅, it follows that
0 /∈G. Obviously, the set G is convex and open in M . Thus G satisfies the assump-
tions of the claim we have proved above. Hence in M there is a line passing through
the origin and disjoint with G. Its inverse image H ′ under the projection onto M has
no common points with O and contains H , but does not coincide with H . Hence
dimH ′ > dimH , contradicting the choice of H . �

Definition A supporting plane to a set A at a point p is a plane H such that p ∈
A∩H and A lies to one side of H .

Clearly, a supporting plane to A has an empty intersection with the interior of A.

Corollary 1 For every boundary point p of a convex set A there is a supporting
plane to A passing through p.

Proof Indeed, if A has a non-empty interior, then it suffices to apply the Hahn–
Banach theorem to the set O = Int(A) with L= {p}. If Int(A)=∅, then the whole
set A is contained in some plane, which is, obviously, a supporting plane. �

Corollary 2 If A is a closed convex set and x0 /∈A, then x0 can be strictly separated
from A (i.e., there exists a plane H such that A and x0 lie in different open half-
spaces H±).

Corollary 3 Every convex body is an intersection of closed half-spaces.

By an outer normal to a convex body A at a point p ∈ ∂A we mean the normal
ν to a supporting plane at p that points into the half-space that does not contain A.
Formally, this means that 〈x − p,ν〉� 0 on A. Here we do not assume the unique-
ness of a supporting plane (cf. the definition of an outer normal in Sect. 8.6.2).

Remark Rays with vertices at different points x and y of the boundary of a convex
body and corresponding to outer normals do not intersect. Indeed, such rays, be-
ing perpendicular to the supporting planes, cannot make acute angles with the line
segment [x, y] (if ν is an outer normal at x, then 〈y − x, ν〉� 0). If the rays had a
common point z, then the triangle with vertices x, y, z would have two non-acute
angles, a contradiction.

In conclusion of this section, we show that every convex body can be approxi-
mated by polyhedra.

Proposition Let A and Ã be convex bodies, A⊂ Int(Ã). Then there exists a poly-
hedron C such that A⊂ C ⊂ Ã.
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In particular, if 0 ∈ Int(A), then, putting Ã= (1+ ε)A (ε > 0), we see that there
exists a polyhedron C “arbitrarily close” to A: A⊂ C ⊂ (1+ ε)A.

Proof Let δ > 0 be a number such that ‖x− y‖� δ for x ∈A and y ∈ ∂Ã. Cover A
by finitely many cells whose diameters do not exceed δ. If such a cell has at least
one common point with A, it is contained in Int(Ã). Hence, in order to obtain a
required polyhedron, it suffices to take the convex hull of the vertices of all cells
touching A. �

13.4.2 Metric Projection. Recall that the distance from a point x ∈R
m to a non-

empty subset A of Rm is defined as dist(x,A) = infa∈A ‖x − a‖. If there exists a
point ax such that

ax ∈A and ‖x − ax‖ = dist(x,A),

then it is called a best approximation to x in A. If A is a closed set, then, as follows
from the Weierstrass theorem, every point has a best approximation in A.

Lemma 1 Given a closed convex set A, every point x ∈ R
m has a unique best ap-

proximation in A.

Proof The existence of a best approximation has already been mentioned above.
To prove the uniqueness, assume that x /∈ A, i.e., dist(x,A) = r > 0. Let ax and
ãx be best approximations to x in A: ‖x − ax‖ = ‖x − ãx‖ = r . Consider the point
a = 1

2 (ax + ãx). It belongs to the set A, since it is convex and ax , ãx ∈A. Hence
‖x − a‖� r . On the other hand, the triangle inequality implies that

‖x − a‖ =
∥
∥
∥
∥

1

2
(x − ax)+ 1

2
(x − ãx)

∥
∥
∥
∥ � 1

2
r + 1

2
r = r.

Thus ‖x − a‖ = r , i.e., the points ax, ãx , and a = 1
2 (ax + ãx) lie on the sphere

S(x, r), which is possible only if ax = ãx . �

Lemma 1 allows us to introduce an important map.

Definition Let A be a closed convex set in R
m. Let �A be the map in R

m that sends
each point x of Rm to the (unique!) best approximation to x in A. This map will be
called the metric projection onto A.

Obviously, �A(x) = x if x ∈ A, and, consequently, �A(�A(x)) = �A(x) for
every x. Thus �A, just as an ordinary projection, satisfies the equation �2

A =�A.
Furthermore, if x /∈A, then �A(x) ∈ ∂A.

The metric projection is continuous and even satisfies the Lipschitz condition.
More precisely, the following assertion holds.
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Lemma 2 Let A⊂R
m be a closed convex set. Then

∥
∥�A(v)−�A(u)

∥
∥ � ‖v− u‖ for all v, u in R

m.

Proof We may assume without loss of generality that the line segment � connect-
ing the points �A(u) and �A(v) lies at the first coordinate axis. Let �A(u) =
(s,0, . . . ,0), �A(v) = (t,0, . . . ,0), s � t . The first coordinate u1 of u does not
exceed s, since otherwise the point (s,0, . . . ,0) would not be the best approxima-
tion to u in � and, a fortiori, in A. For the same reasons, the first coordinate v1 of
v is not less than t . Hence ‖v− u‖� v1 − u1 � t − s = ‖�A(v)−�A(u)‖. �

Lemma 3 A necessary and sufficient condition for a unit vector ν to be an outer
normal to a convex body A at a point p ∈ ∂A is the following: �A(x) = p for all
points x of the ray �p(ν) (or for some point x �= p of this ray).

Proof Let ν be an outer normal to A at p and x = p + rν (r > 0) be an arbitrary
point of the ray �p(ν). Then the closed ball B(x, r) contains p and does not contain
any other point of A, since these sets are separated by the supporting plane. Hence
p is the best approximation to x in A.

Now assume that p =�A(x) for some point x �= p of the ray �p(ν). Consider the
plane H passing through p and orthogonal to ν. If it is not supporting for A, then in
the open half-space containing x there is a point y belonging to A. Clearly, the angle
between the vectors y − p and x − p is acute. Hence the line segment [p,y] ⊂ A

contains points that are closer to x than p, which leads to a contradiction. The details
are left to the reader; we recommend to consider the plane cross section containing
the vectors x − p and y − p. �

The lemma immediately implies the following corollary.

Corollary If a supporting plane to A at a point p is unique, then �A(x)= p if and
only if x lies on the ray �p(ν), where ν is the outer normal at p.

13.4.3 Convex Functions. Here we briefly discuss the main properties of convex
functions of several variables. Mostly they are natural generalizations of results of
the classical one-dimensional analysis that have a clear geometric interpretation.

Definition Let O be a convex subset of Rm. A function f :O �→R is called convex
if

f
(
(1− t)x0 + tx1

)
� (1− t)f (x0)+ tf (x1)

for any points x0, x1 ∈O and t ∈ [0,1].
This inequality becomes an equality for x0 = x1, and also for t = 0 or t = 1. If it

is strict in all other cases, f is called strictly convex. A function f is called concave
if (−f ) is a convex function.
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Note that the domain of definition of a convex function is always assumed to
be convex. Since we are interested in differential properties of convex functions, in
most cases we assume that it is open.

It follows immediately from the definition that the convexity of a function
f is equivalent to the convexity of its epigraph �+f = {(x, y) ∈ R

m+1 |x ∈ O,

y � f (x)}. The graph �f = {(x, y) ∈ R
m+1 |x ∈O, y = f (x)} is contained in the

boundary of �+f , and the interior of �+f is non-empty if Int (O) �= ∅. By Corol-
lary 1 of the Hahn–Banach theorem, for every point (x0, f (x0)) of the graph,
there is a supporting plane to the epigraph passing through it. If x0 ∈ Int (O), then
this plane is “not vertical”. In other words, its points (x, y) satisfy the equation
y = f (x0)+ 〈ν, x − x0〉, where ν is a vector from R

m depending on x0 (as follows
from Theorem 13.4.4, if f is differentiable, then ν = gradf (x0)). The epigraph lies
above this plane, since it consists of the vertical rays �p(em+1), p ∈ �f . In particu-
lar, the whole graph �f lies above this plane, i.e.,

f (x0)+ 〈ν, x − x0〉� f (x) for every point x ∈O. (1)

If the set O is open, then a convex combination x0 = c1x1 + · · · + cnxn
of points of O is an interior point, so that inequality (1) holds. In particular,
f (x0)+ 〈ν, xj − x0〉� f (xj ) for j = 1, . . . , n. Multiplying this inequality by cj
and adding up all the obtained inequalities, we arrive at Jensen’s inequality3

f (c1x1 + · · · + cnxn)� c1f (x1)+ · · · + cnf (xn).

One can easily check that it holds without the assumption that O is open. Note that
Jensen’s inequality can also be proved by induction without using supporting planes.

Many differential properties of convex functions rely on a simple geometric fact
describing the behavior of the slope of the chord connecting two points of the graph.

Three Chords Lemma Let ϕ be a function defined on an interval I ⊂ R. If ϕ is
convex, then for any points x0 < x < x1 in I ,

ϕ(x)− ϕ(x0)

x − x0
� ϕ(x1)− ϕ(x0)

x1 − x0
� ϕ(x1)− ϕ(x)

x1 − x
.

Proof To prove this inequality, it suffices to write x in the form x = (1− t)x0+ tx1,
0 < t < 1, and use the definition of a convex function. �

It follows from this lemma that for every x ∈ I , the difference quotient ϕ(x)−ϕ(u)
x−u

grows with u ∈ I (u �= x), and hence a convex function ϕ on an interval has finite
one-sided derivatives ϕ′−(x),ϕ′+(x), which are increasing and satisfy the inequality
ϕ′−(x)� ϕ′+(x)� ϕ′−(̃x) for x < x̃. It is clear that ϕ′+(x)= ϕ′−(x) if both derivatives
ϕ′± are continuous at x. Hence

3Johan Ludwig William Valdemar Jensen (1859–1925)—Danish mathematician.
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a convex function ϕ is differentiable at all but at most countably many points x at
which ϕ′−(x) < ϕ′+(x).

Since the function u �→ ϕ(x)−ϕ(u)
x−u

increases on I \ {x} and its right and left limits
at x are equal to ϕ′+(x) and ϕ′−(x), respectively, we have

ϕ(x)+ (u− x)ϕ′+(x)� ϕ(u) for u� x and

ϕ(x)+ (u− x)ϕ′−(x)� ϕ(u) for u� x.

Hence the lines passing through the point px = (x,ϕ(x)) with slopes ϕ′±(x) are
supporting to the graph. Moreover, it follows from these inequalities that any line
passing through px is supporting if its slope lies in the interval between ϕ′−(x) and
ϕ′+(x). These are all supporting lines to the graph passing through px : if ϕ(x) +
θ · (u− x)� ϕ(u) for all u ∈ I , then θ � ϕ(u)−ϕ(x)

u−x
for u > x, whence θ � ϕ′+(x).

The inequality θ � ϕ′−(x) can be proved in a similar way. It follows from this de-
scription of supporting lines that

a supporting line at x is unique if and only if ϕ′−(x)= ϕ′+(x), i.e., ϕ is differen-
tiable.

To prove the main result of this section, it is convenient to use an inequality
following from the three chords lemma: if ϕ is a convex function that satisfies the
inequality |ϕ|�� on [−h,h], then

∣
∣
∣
∣
ϕ(x)− ϕ(̃x)

x − x̃

∣
∣
∣
∣ � 4

�

h
for |x|, |̃x|� h

2
. (2)

In the next theorem we show that a convex function is locally Lipschitz and
almost everywhere has partial derivatives with respect to all coordinates. The latter
result follows from Rademacher’s theorem 11.4.2, but for convex functions it can
be proved much more easily than in the general case, so we present an independent
proof of this fact.

Theorem Let f be a convex function defined on an open (convex) set O ⊂ R
m.

Then:

(1) f is locally Lipschitz;
(2) almost everywhere f has partial derivatives with respect to all coordinates.

It follows from the theorem that a function that is convex on an arbitrary (convex)
set is continuous at all interior points of this set. At boundary points, there may be
no continuity.

Proof To prove the first assertion, it suffices to consider the case where 0 ∈O and
verify that f satisfies the Lipschitz condition in a neighborhood of the origin. First
we show that f is bounded near the origin. Take a sufficiently small positive number
h such that the cube [−h,h]m is contained in O. Since every point x in this cube is
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a convex combination of its vertices v1, . . . , vn (n = 2m), it follows from Jensen’s
inequality that f is bounded from above: f (x) � C = max1�j�n f (vj ). It also
follows that f is bounded from below, because 1

2 (f (x)+ f (−x))� f (0), whence
f (x) � 2f (0) − C. Now (2) immediately implies that in the cube [−h

2 ,
h
2 ]m the

function f satisfies the Lipschitz condition in each coordinate, which is equivalent
to the desired assertion.

Now we proceed to the proof of the second assertion. It suffices to verify
that almost everywhere f has a finite partial derivative with respect to the last
coordinate. Obviously, for every x = (x1, . . . , xm−1, xm) ∈ O, the function u �→
f (x1, . . . , xm−1, u) is defined and convex on some interval containing xm. Hence
the limits

g±(x)= lim
u→±0

f (x1, . . . , xm + u)− f (x1, . . . , xm)

u

exist and are finite. The set of non-differentiable points of a convex function on an
interval is at most countable, hence for any x1, . . . , xm−1, the set of xm such that
x = (x1, . . . , xm−1, xm) ∈ O and g−(x) �= g+(x) is at most countable. Since the
functions g± are measurable, the set E on which they do not coincide is measur-
able. As we have seen, for every point x′ ∈ R

m−1, the cross section Ex′ = {t ∈ R |
(x′, t) ∈ E} of E is at most countable and, consequently, has zero measure. By
Cavalieri’s principle, the measure of E vanishes, i.e., g+ and g− coincide almost
everywhere in O. Hence almost everywhere in O the function f has a finite partial
derivative ∂f

∂xm
. �

13.4.4 Differentiability of Convex Functions. As is well known, the existence of
finite partial derivatives is only necessary for a function of several variables to be
differentiable. However, for convex functions, this condition is also sufficient. Fur-
thermore, the differentiability of a convex function can be described in geometric
terms, using only the notion of a supporting plane.

Theorem Let f be a convex function defined in an open (convex) set O ⊂ R
m and

a ∈O. The following conditions are equivalent:

(1) f is differentiable at a;
(2) the partial derivatives f ′x1

(a), . . . , f ′xm(a) exist (and are finite);
(3) the epigraph �+f has a unique supporting plane at the point pa = (a, f (a)).

If these conditions are satisfied, then the supporting plane at pa coincides with
the tangent plane.

Proof We will show that (1)⇒ (2)⇒ (3)⇒ (1). The first implication being obvi-
ous, we now prove the other ones.

(2)⇒ (3). Assume that a supporting plane to �+f at pa is given by the equa-
tion y = f (a) + 〈ν, x − a〉 (the existence of such a plane was established in the
previous section). Then for every vector ej of the canonical basis in R

m and ev-
ery number t with sufficiently small absolute value, f (a + tej )� f (a)+ t〈ν, ej 〉.
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Therefore, 〈ν, ej 〉 is the slope of a supporting line to the epigraph of the convex
function t �→ f (a + tej ) at the point (0, f (a)). The derivative of this function at
t = 0 is equal to f ′xj (a). As we have established in the previous section, for a dif-
ferentiable function of one variable, the tangent line is the only supporting line to
the epigraph. Hence 〈ν, ej 〉 = f ′xj (a) for all j . This shows that a supporting plane is
unique and coincides with the tangent plane if f is differentiable.

(3) ⇒ (1). To simplify calculations, we will assume that a = 0. Let y =
f (0)+ 〈ν, x〉 be the equation of the supporting plane to the epigraph at the origin.
Then f (x)� f (0)+ 〈ν, x〉 for all x ∈O. The differentiability of f is equivalent to
the differentiability of g(x)= f (x)− f (0)− 〈ν, x〉. Clearly, g(0)= 0, g � 0 on O,
and at the origin �+g has a unique supporting plane H0, which consists of the points
of the form (x,0), x ∈R

m.
Before proving the differentiability of the (convex) function g at the origin, we

show that at the origin it has a derivative in every direction e and ∂g
∂e

(0)= 0.
Consider the function t �→ ϕ(t) = g(te), where |t | is sufficiently small. If the

derivative ∂g
∂e

(0) does not exist, then at least one of the one-sided derivatives ϕ′−(0),
ϕ′+(0) does not vanish. For definiteness, let ϕ′+(0) �= 0. Then the line L passing
through the points 0 and (e,ϕ′+(0)) does not lie in the plane H0. Obviously, L cannot
touch the interior of �+g . By the Hahn–Banach theorem, there exists a supporting
plane H to �+g that contains L. The plane H does not coincide with H0, hence at
the origin �+g has two different supporting planes, which contradicts the assumption.

Thus the derivative ∂g
∂e

(0) exists for every direction e and is equal to zero. In
particular, g(tej )= o(t) as t→ 0 (j = 1, . . . ,m). Now we prove that g is differen-
tiable at the origin. Since this function is non-negative, it suffices to estimate it from
above. Every vector x is the arithmetic mean of the vectors mx1e1, . . . ,mxmem, so
it follows from Jensen’s inequality that g(x)� maxj g(mxj ej )= o(‖x‖) as x→ 0.
Therefore, the function g, and hence f , is differentiable at the origin.

So, all three conditions stated in the theorem are equivalent. The fact that the
supporting plane coincides with the tangent plane was established in the proof of
the implication (2)⇒ (3). �

Corollary 1 A convex function on an open set is differentiable almost everywhere.

Proof To prove this, it suffices to compare conditions (1) and (2) of Theorem 13.4.4
and condition (2) of Theorem 13.4.3. �

Corollary 2 Let f be a convex function defined on an open set O. Then its partial
derivatives are continuous on the same set where it is differentiable. In particular, if
f is differentiable at all points of O, then it is continuously differentiable in O.

Proof Let E be the set of points where f is differentiable. Assume to the contrary
that one of the partial derivatives is not continuous at a point x0 ∈ E. Then there
exists a sequence of points x(n) ∈ E converging to x0 such that gradf (x(n)) �→
gradf (x0). Since f is locally Lipschitz, the sequence {gradf (x(n))}n�1 is bounded,
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so that we can pass to a convergent subsequence. We will assume without loss
of generality that gradf (x(n))→ ν �= gradf (x0). Clearly, the plane with normal
(ν,−1) passing through (x0, f (x0)) is supporting to �+f , since it is the limiting

position of the tangent planes to �+f at the points (x(n), f (x(n))). But it does not co-
incide with the tangent plane, which is also supporting. Thus our assumption leads
to a contradiction with condition (3) of the theorem. �

13.4.5 The Area of Convex Surfaces. This and the next sections are devoted to study-
ing the properties of the area on convex surfaces. By convex surfaces we mean the
boundaries of convex bodies in R

m, and by the area, the (m− 1)-dimensional area
in the sense of Definition 8.2.1. We denote it by σ , and the m-dimensional Lebesgue
measure by λ, without indicating the dimension.

First of all, we show that a convex surface is a Lipschitz manifold.

Proposition Locally, the boundary of a convex body A coincides, up to a rigid
motion, with the graph of a convex function and, consequently, admits a bi-Lipschitz
parametrization.

Proof Let p ∈ ∂A. We will assume without loss of generality that 0 is an interior
point of A and p = (0, . . . ,0, c), where c < 0. Let B(0, r) ⊂ A. Consider a point
x ∈ B(0, r) of the form x = (x1, . . . , xm−1,0). Every ray with vertex x and direction
vector (0, . . . ,0,−1)=−em intersects ∂A only once. This means that we can define
a function on the (m − 1)-dimensional ball Bm−1(0, r) whose graph is contained
in ∂A. This function is convex, since, by the convexity of A, every chord connecting
two points of the graph belongs to A and, consequently, lies above the graph. By
Theorem 13.4.3, the canonical parametrization of the graph of a convex function
is a locally Lipschitz map. The inverse map is also Lipschitz, since it is a weak
contraction. �

Since an area on Lipschitz surfaces is unique (see Theorem 8.8.1), on convex
surfaces it is also unique. In particular, under a similarity transformation with ratio
a > 0, the area of a convex surface (being proportional to the Hausdorff measure) is
multiplied by am−1.

The area of a subset of a graph vanishes with the Lebesgue measure of its projec-
tion, hence the existence of a tangent plane for λ-almost all points from the domain
of definition of a function f is equivalent to the existence of a tangent plane for
σ -almost all points of the graph of f . By the above proposition, a convex surface
has a tangent plane at σ -almost all points. Therefore, a convex body has a unique
supporting plane at almost all points of its boundary.

The following important theorem allows one to compare the surface areas of
convex bodies.

Theorem Let A and B be convex bodies. If A⊂ B , then σ(∂A)� σ(∂B).

In particular, taking B to be a sufficiently large cube, we see that the boundary
of a convex body has finite area.
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Proof The proof is quite simple in the case where A is a polyhedron. Indeed, let � be
one of the (m− 1)-dimensional faces of A, and let ν be its outer normal. Consider
the right prism with base � lying outside A, i.e., the set !� = {p + tν |p ∈ �,

t � 0}. It cuts out a “window” S� = ∂B ∩!� in the boundary of B . Since � is the
image of this set under the orthogonal projection to the plane of �, which is a weak
contraction, we have σ(�)� σ(S�). By Remark 13.4.1, the sets S� corresponding
to different faces are disjoint. Hence

σ(∂A)=
∑

�

σ(�)�
∑

�

σ(S�)= σ

(⋃

�

S�

)

� σ(∂B),

as required.
In the general case, we use the metric projection � : Rm→ A. Consider a point

p ∈ ∂A and the ray �p that is perpendicular to a supporting plane passing through
p and lies to the other side of this plane from A. Assume that it intersects ∂B at a
point xp . Then, by Lemma 3 of Sect. 13.4.2, p is the best approximation to xp in A,
whence �(xp)= p. Thus ∂A is the image of ∂B under the weak contraction � (see
Lemma 2 in Sect. 13.4.2), and hence σ(∂A)� σ(∂B). �

Corollary Let B ⊂R
m be an arbitrary convex body. Then

σ(∂B)= sup
A⊂B

σ(∂A)= inf
A⊃B

σ(∂A),

where A stands for a convex polyhedron.

Proof It follows from the theorem that S ≡ sup σ(∂A)� σ(∂B). Furthermore, we
know (see Proposition 13.4.1) that for every ε > 0 there exists a convex polyhedron
A such that A ⊂ B ⊂ (1 + ε)A (we assume without loss of generality that 0 ∈
Int(B)). Therefore,

σ(∂B)� σ
(
∂(1+ ε)A

)= (1+ ε)m−1σ(∂A)� (1+ ε)m−1S.

Since ε is arbitrary, we obtain the first equality in question. The second one can be
proved in a similar way. �

13.4.6 Continuity of the Area. Recall the definition of the Hausdorff metric (see
Sect. 8.8.5), which we need in the next proposition. It relies on the notion of the
ε-neighborhood Aε =⋃

x∈A B(x, ε)=A+B(0, ε) of a set A (as usual, by the sum
X + Y of sets X and Y we mean the set {x + y |x ∈X, y ∈ Y }). For bounded sets
A and A′, the Hausdorff distance ρ is defined by the formula

ρ
(
A,A′

)= inf
{
ε > 0 |A′ ⊂Aε,A⊂A′ε

}
.

Discussing Schwartz’s example in Sect. 8.2.4, we observed that the area of a sur-
face (even a cylindrical one) cannot be defined as the limit of the areas of inscribed
polyhedral surfaces. However, the situation changes if the approximating surfaces
are convex. More precisely, the following result holds.
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Proposition Let A be a convex body in R
m. If the Hausdorff distance ρ(∂A, ∂A′)

between ∂A and the boundary of a convex body A′ is sufficiently small, then the
areas of ∂A and ∂A′ are arbitrarily close.

Proof We assume without loss of generality that A contains the closed ball B(0,2r).
Let us show that B(0, r)⊂A′ if ρ(∂A, ∂A′) < r . Assume to the contrary that a point
x of the ball B(0, r) does not lie in A′. Let y be the closest point to x in A′. The
ray with vertex y passing through x intersects the boundary of the ball B(0,2r) at a
point z. Since the set A′ is convex, y is the closest point to z in A′. Furthermore,

‖z− y‖ = ‖z− x‖ + ‖x − y‖> ‖z− x‖� ‖z‖ − ‖x‖ = 2r − ‖x‖> r.

Hence B(z, r) has an empty intersection with A′, and, consequently, z /∈A′r . On the
other hand, since ∂A⊂ (∂A′)r , we have A⊂A′r , and, consequently, z ∈ B(0,2r)⊂
A⊂A′r . The obtained contradiction shows that B(0, r)⊂A′.

Let ε be an arbitrary number in the interval (0, r), and let ρ(∂A, ∂A′) < ε. Then
∂A′ ⊂ (∂A)ε , and, consequently,

A′ = conv
(
∂A′

)⊂ conv
(
(∂A)ε

)=Aε =A+ ε

r
B(0, r)⊂A+ ε

r
A=

(

1+ ε

r

)

A

(we have used the fact that B(0, r) ⊂ A). By Theorem 13.4.5, the inclusion A′ ⊂
(1+ ε

r
)A allows us to estimate σ(∂A′) from above:

σ
(
∂A′

)
� σ

((

1+ ε

r

)

∂A

)

=
(

1+ ε

r

)m−1

σ(∂A).

Interchanging A and A′, we obtain

σ(∂A)�
(

1+ ε

r

)m−1

σ
(
∂A′

)
.

Thus

∣
∣σ

(
∂A′

)− σ(∂A)
∣
∣ �

(

1+ ε

r

)m−1((

1+ ε

r

)m−1

− 1

)

σ(∂A)−→
ε→0

0. �

13.4.7 The Area of the Boundary as the Derivative of the Volume. In Example 4
of Sect. 8.3.5, we observed that the surface area of the sphere coincides with the
derivative of the volume of the ball bounded by it (with respect to the radius). This
fact has a far-reaching generalization: the surface area of the boundary of the convex
body coincides with the Minkowski area (see Sect. 2.8.2). A crucial role in the proof
of this result is played by the following lemma.

Lemma Let C ⊂R
m be a convex polyhedron, B(0, r)⊂ C and ε > 0. Then

λ(Cε \C)� ε

(

1+ ε

r

)m−1

σ(∂C). (3)
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If A is a convex body containing C, then

εσ (∂C)� λ(Aε \A). (4)

Proof First we prove inequality (3). Let

C =
N⋂

i=1

{
x ∈R

m | 〈x, νi〉� θi
}
, where ‖νi‖ = 1.

Obviously, θi � r > 0. Let �i be the face of C contained in the plane Hi given
by the equation 〈x, νi〉 = θi . Consider the planes H ′

i parallel to Hi given by the
equations 〈x, νi〉 = θi + ε. Let �′i be the central projection of the face �i to H ′

i . An
easy calculation shows that �′i = τi�i , where τi = θi+ε

θi
� 1+ ε

r
. Hence

σ
(
�′i

)= σ(τi�i)�
(

1+ ε

r

)m−1

σ(�i).

Let Qi be the cone with vertex at the origin formed by the rays passing through the
face �i . Obviously, these cones have no common interior points and

⋃N
i=1 Qi =R

m.
Let Ki and K ′

i be the intersections of Qi with the half-spaces {x | 〈x, νi〉� θi} and

{x | 〈x, νi〉 � θi + ε}, respectively. Clearly, K ′
i = τiKi and

⋃N
i=1 Ki = C. We will

show that Cε ⊂ C′ =⋃N
i=1 K

′
i (in general, the set C′ is not convex; draw a picture).

Let x ∈ Cε . Then x ∈Qi for some i. We also have x = y+z, where y ∈ C, ‖z‖< ε.
Therefore,

〈x, νi〉 = 〈y, νi〉 + 〈z, νi〉� θi + ‖z‖< θi + ε.

By the definition of K ′
i , this means that x ∈K ′

i ⊂ C′. Thus Cε ⊂ C′, whence

Cε \C ⊂ C′ \C =
N⋃

i=1

K ′
i \Ki.

The height of the conical frustum K ′
i \Ki equals ε, and the areas of the cross sections

parallel to the base do not exceed the area of �′i . Hence

λ
(
K ′

i \Ki

)
� εσ

(
�′i

)
.

Thus

λ(Cε \C)�
N∑

i=1

εσ
(
�′i

)
� ε

(

1+ ε

r

)m−1 N∑

i=1

σ(�i)= ε

(

1+ ε

r

)m−1

σ(∂C),

as required.
Now we proceed to the proof of inequality (4). It is simpler than that of (3).

Indeed, let � be one of the (m− 1)-dimensional faces of C. Put �(ε) = {x + tν |
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x ∈ �, 0 < t < ε}, where ν is the unit outer normal to � and C(ε) = ⋃
� �(ε).

By Remark 13.4.1, the sets �(ε) corresponding to different faces have no common
points. Hence

λ
(
C(ε)

)=
∑

�

λ
(
�(ε)

)= ε
∑

�

σ(�)= εσ (∂C). (5)

Since every ray perpendicular to the face � intersects Aε \ A in a line segment of
length at least ε, it follows from Cavalieri’s principle that λ(C(ε)) � λ(Aε \ A).
Hence (5) implies that

εσ (∂C)= λ
(
C(ε)

)
� λ(Aε \A). �

Theorem The surface area of the boundary of the convex body A⊂ R
m coincides

with its Minkowski area, i.e.,

lim
ε→0

λ(Aε \A)

ε
= σ(∂A).

Proof We will assume that B(0, r)⊂ Int(A)⊂ B(0,R).
Let us show that for every ε, 0 < ε < 1,

1

(1+ ε)m−1
σ(∂A)� 1

ε
λ(Aε \A)� α(ε)σ (∂A), (6)

where α(ε)→ 1 as ε→+0. Clearly, this double inequality implies the required
assertion.

Consider a polyhedron C such that B(0, r) ⊂ C ⊂ A ⊂ (1 + ε2)C. By Theo-
rem 13.4.5,

σ(∂A)� σ
(
∂

(
1+ ε2)

C
)= (

1+ ε2)m−1
σ(∂C).

This implies the left inequality in (6):

1

(1+ ε2)m−1
σ(∂A)� σ(∂C)� 1

ε
λ(Aε \A)

(at the end, we have used inequality (4)).
Now we will prove the right inequality. Clearly, Aε ⊂ ((1+ε2)C)ε . As the reader

can easily check, ((1+ ε2)C)ε ⊂ Cε+Rε2 . Hence

Aε \A⊂ Cε+Rε2 \C.

Using inequality (3) with ε+Rε2 in place of ε, we see that

λ(Aε \A)� λ(Cε+Rε2 \C)

�
(
ε+Rε2)

(

1+ ε+Rε2

r

)m−1

σ(∂C)� εα(ε)σ (∂A), (7)

where α(ε)= (1+Rε)(1+ (R+1)ε
r

)m−1. This proves the right inequality in (6). �
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This theorem allows us to reformulate the isoperimetric inequality (see
Sect. 2.8.2) for convex sets with the area σ instead of the Minkowski area.

Corollary For every convex body A⊂R
m,

σ(∂A)�mα
1
m
m λ

m−1
m (A).

Since for a ball this inequality becomes an equality, it follows that among all
convex bodies of given boundary area, the ball has the greatest volume, and among
all convex bodies of given volume, the ball has the smallest boundary surface area.

13.4.8 Let A⊂ R
m be an arbitrary convex body and At be its t-neighborhood. Set

V (t)= λ(At ) for t � 0, assuming that A0 = A. Together with V , also consider the
function S(t) = σ(∂At ). Obviously, the function V is continuous and increasing.
The function S has the same properties: it is increasing by Theorem 13.4.5, and it
is continuous by Proposition 13.4.6. Replacing Aε with At and A with At−ε in (6)
and (7), we see that for t > 0 the function V is differentiable not only from the right,
but also from the left, both one-sided derivatives being equal to S(t).

Since V ′(t)= S(t) and the function S is increasing, it follows that the function V

is convex, which allows us to complement the Brunn–Minkowski inequality. Indeed,
for 0 � α � 1, we have V (αs + (1− α)t)� αV (s)+ (1− α)V (t). This inequality
can be rewritten as follows:

λ(Aαs+(1−α)t )� αλ(As)+ (1− α)λ(At );

on the other hand, by the Brunn–Minkowski inequality,

λ
1
m (Aαs+(1−α)t )� αλ

1
m (As)+ (1− α)λ

1
m (At ).

Thus we obtain a two-sided bound on the volumes of neighborhoods of the set A:

(
αλ

1
m (As)+ (1− α)λ

1
m (At )

)m � λ(Aαs+(1−α)t )� αλ(As)+ (1− α)λ(At ).

The differentiability of V allows us to modify Theorem 13.4.5 and, so to speak,
obtain its prelimit version.

Theorem Let A and B be convex bodies. If A⊂ B , then λ(Aε \A)� λ(Bε \B) for
every ε > 0.

Proof Let F(t) = λ(Bt ) − λ(At ) (t � 0), where A0 = A and B0 = B . Since
At ⊂ Bt , we have F ′(t) = σ(∂(Bt )) − σ(∂(At )) � 0, and hence the function F

is increasing. In particular, F(ε) � F(0), which is equivalent to the desired asser-
tion. �
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EXERCISES

1. Let f be a convex function on an interval [a, b] satisfying the Lipschitz condition
of order α, 0 < α � 1. Show that

∫ b

a
(f ′′(x))p dx <+∞ for every p ∈ [0, 1

2−α
)

(the function f (x) = −xα on [0,1] shows that the bound on p is sharp for
α �= 1).

2. Let A be a convex body and a ∈ Int(A). Show that the spherical parametriza-
tion of the boundary of A (the positive function r on the unit sphere such that
a + r(ξ)ξ ∈ ∂A for ‖ξ‖ = 1) satisfies the Lipschitz condition.

3. Show that the boundary of the ε-neighborhood of an arbitrary convex body is a
smooth surface. Hint. Use Theorem 13.4.4 and Corollary 2 of this theorem.

4. Show that the volume of convex bodies is continuous in the Hausdorff metric.
5. Show that convex functions enjoy the following property which makes them akin

to smooth functions: if a convex function f is differentiable at a point a, then for
every ε > 0 there exists a neighborhood U of a such that

∣
∣f (y)− f (x)− 〈

gradf (a), y − x
〉∣∣ � ε ‖y − x‖ for all x, y ∈U.

This property is called strict differentiability. The function x �→ f (x)= x2 sin2 π
x

(x �= 0), f (0)= 0 shows that strict differentiability does not follow from differ-
entiability.

13.5 Sard’s Theorem

We will prove two particular cases of a theorem dealing with the measure of the set
of critical values of a smooth map. First we introduce several necessary definitions.

Definition Let O be an open subset of R
m and � ∈ C1(O,Rd), where d � m.

A point x0 ∈O is called a critical point of � if rank(�′(x0)) < d . The image of a
critical point x0, i.e., �(x0), is called a critical value of �.

The result we are interested in, which is known as Sard’s4 theorem, states that
for d � m, the set of critical values of a map � ∈ Ck(O,Rd) has zero measure if
k > m− d . We will prove this assertion in the extreme particular cases d =m and
d = 1.

As one can easily check, the set of critical values of a smooth map is closed
in O. Therefore, it can be presented as the union of an at most countable family of
compact sets. Hence both this set itself and its image, i.e., the set of critical values,
are measurable. Of course, this also follows from Theorem 2.3.1. Recall that the
σ -neighborhood Aσ of a set A⊂R

m is the union
⋃

x∈A B(x,σ ).

4Arthur Sard (1909–1980)—American mathematician.
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13.5.1 In this section, by the measure we mean the Lebesgue measure on R
m, which

we denote by λ. We need an auxiliary result.

Lemma Let A be a subset of a proper affine subspace in R
m contained in a ball of

radius R. Then λ(Aσ )� 2m(R + σ)m−1σ .

Proof Since a rigid motion preserves both the distance between points and the
measure of a set, we may assume without loss of generality that the center of
the ball coincides with the origin and the subspace consists of the points whose
last coordinate vanishes. Then, identifying the space R

m with the Cartesian prod-
uct Rm−1 × R in the canonical way, we see that A ⊂ [−R,R]m−1 × {0}. Hence
Aσ ⊂ [−R − σ,R + σ ]m−1 × [−σ,σ ], which immediately implies the desired in-
equality. �

Now we are in a position to establish the first of the results we are interested in.

Theorem Let O be an open subset of Rm and � ∈ C1(O,Rm). Then the set of
critical values of � has zero measure.

Proof Let N be the set of critical points of �. We will show that �(N ) is contained
in a set of arbitrarily small measure. First consider only a part of N , the intersection
of N with a cell Q whose closure is contained in O.

By Corollary (for A=�′(x)) of Lagrange’s inequality (see Sect. 13.7.2),
∥
∥�(x)−�(x0)−�′(x0)(x−x0)

∥
∥ � sup

y∈Q
∥
∥�′(y)−�′(x0)

∥
∥‖x−x0‖ for x, x0 ∈Q.

Fix a positive ε and, using the uniform continuity of �′ on Q, find δ > 0 such that
∥
∥�′(y)−�′(x0)

∥
∥ � ε if y, x0 ∈Q and ‖y − x0‖< δ.

Together with the previous inequality, this yields
∥
∥�(x)−�(x0)−�′(x0)(x − x0)

∥
∥ � ε‖x − x0‖ if x, x0 ∈Q and ‖x − x0‖< δ.

(1)

Let H = diam (Q) and M = supx∈Q ‖�′(x)‖. Divide Q into Nm congruent

cells Qj , j = 1,2, . . . ,Nm, taking N sufficiently large so that diam(Qj )= H
N

< δ.
Let us estimate the measure of �(E), where E = Qj ∩ N �= ∅. Fix a point

x0 ∈ E and consider the auxiliary affine map �(x)=�(x0)+�′(x0)(x − x0). On
the set Qj , the maps � and � are close: if x, x0 ∈Qj , it follows from (1) that

∥
∥�(x)−�(x)

∥
∥ � ε‖x − x0‖< ε diam(Qj )= ε

H

N
≡ σ.

Since E ⊂Qj , we see that �(E) is contained in the σ -neighborhood of �(E). On
the other hand, since det�′(x0)= 0, we see that �(E) is a subset of a proper affine
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subspace. Furthermore, it is contained in a ball of radius R = MH
N

, because

∥
∥�(x)−�(x0)

∥
∥= ∥

∥�′(x0)(x − x0)
∥
∥ �

∥
∥�′(x0)

∥
∥‖x − x0‖�M

H

N
.

By the lemma,

λ
(
�(E)

)
� λ

((
�(E)

)
σ

)
� 2m(R + σ)m−1σ.

Therefore,

λ
(
�(N ∩Q)

)=
Nm
∑

j=1

λ
(
�(N ∩Qj)

)
�Nm2m(R+σ)m−1σ = ε (2H)m(M+ε)m−1.

Since ε is arbitrary, this means that λ(�(N ∩Q))= 0.
To complete the proof, it remains to observe that O can be presented as the union

of a sequence of cells Pk whose closures are contained in O (see Theorem 1.1.7).
Hence

λ
(
�(N )

)
�

∞∑

k=1

λ
(
�(N ∩ Pk)

)= 0. �

13.5.2 Now we proceed to the second particular case of Sard’s theorem. In this
section, λ stands for the one-dimensional Lebesgue measure and dk

xf for the kth
differential of a function f at a point x.

Theorem Let O be an open subset of Rm and f ∈ Cm(O). Then the set of critical
values of f has zero measure.

Proof We will prove this theorem not in full strength, but only for infinitely differ-
entiable functions, by induction on the dimension. The induction base, i.e., the case
m= 1, follows from the previous theorem. Assume that the desired assertion holds
for infinitely differentiable functions of m− 1 variables; we will show that it holds
for infinitely differentiable functions of m variables.

Let N1 be the set of critical points of f ,

Nk =
{
x ∈O |dxf = · · · = dk

xf = 0
}
, Ek =Nk \Nk+1 (k ∈N).

First we will prove that each of the sets f (Ek) has zero measure. By Lindelöf’s
theorem 8.1.5, which states that every open cover has an at most countable subcover,
it suffices to prove a local assertion: every point x ∈Ek has a neighborhood U such
that λ(f (Ek ∩ U)) = 0. To verify this, we will show that if a neighborhood U is
sufficiently small, then f (Ek ∩ U) is contained in the set of critical values of a
function of m− 1 variables.

Let x0 ∈ Ek . Since x0 /∈ Nk+1, at least one of the partial derivatives of f of
order k, denote it by g, has a non-zero differential at x0. Let U be a neighbor-
hood of x0 such that dxg �= 0 in U . Then the set M = {x ∈U |g(x)= 0} is a C∞-
smooth surface, and Ek ∩U ⊂M . Narrowing the neighborhood U if necessary, we
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may assume that the surface M is simple. Let � be an arbitrary infinitely differ-
entiable parametrization of M defined in a domain G ⊂ R

m−1. Consider the aux-
iliary function h = f ◦ �, and let A be the set of its critical points. Obviously,
h ∈ C∞(G) and, since dth = d�(t)f ◦ dt�, we have �−1(Ek ∩ U) ⊂ A. Hence
f (Ek ∩ U) = h(�−1(Ek ∩ U)) ⊂ h(A). Therefore, λ(f (Ek ∩ U)) = 0, because
λ(h(A))= 0 by the induction hypothesis.

To complete the proof, we write the set N1 as

N1 =E1 ∪ · · · ∪Em−1 ∪Nm

and prove that λ(f (Nm))= 0. Clearly, it suffices to prove the latter for the intersec-
tion of Nm with an arbitrary compact set contained in O.

Fix such a set K and a δ-neighborhood Kδ of K such that all derivatives of f

of order m+ 1 are bounded in Kδ . Then, by Taylor’s formula, for some C > 0 and
x ∈K with ‖x − y‖< δ, the inequality

∣
∣f (x)− f (y)

∣
∣ � C‖x − y‖m+1 (2)

holds. Take an arbitrary ε, 0 < ε < δ, and cover Nm ∩K by pairwise disjoint con-
gruent cubic cells Qj of diameter ε. Obviously, we may assume that K ∩Qj �=∅

and, consequently, Qj ⊂Kδ for all j . It follows from (2) that λ(f (Qj ))� Cεm+1 =
CLmελm(Qj ), where the coefficient Lm depends only on the dimension. Hence

λ
(
f (Nm ∩K)

)
�

∑

j

λ
(
f (Qj )

)
� CLmε

∑

j

λm(Qj )� CLmελm(Kδ),

which implies, since ε is arbitrary, that λ(f (Nm ∩K))= 0. �

13.6 Integration of Vector-Valued Functions

In this appendix, we assume that the reader is familiar with the definition and basic
properties of Banach spaces. Our aim is to extend the notion of the integral to maps
with values in a Banach space. In what follows, such maps are called vector-valued
functions, or vector functions. The method of constructing the integral described
in Chap. 4 heavily relies on the fact that the set of real numbers is ordered: the
definition of a measurable function already involves sets determined by inequalities.
However, the approximation theorem (along with Lebesgue’s theorem 4.8.4) shows
that there is another approach: a measurable function can be defined as the pointwise
limit of a sequence of simple functions, and the integral of such a function, as the
limit of the integrals of simple functions satisfying some natural requirements. This
approach to the definition of the integral does not rely on the ordering of the real
line as heavily as that adopted in Chap. 4 and admits various generalizations. We
will consider the generalization of the integral to vector-valued functions suggested
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by Bochner.5 Within this approach, according to the scheme described above, one
first introduces simple vector functions and defines the integral for them, and then
extends the class of integrable functions by a limiting procedure. The properties
of the integral defined in this way (except those related to the ordering) are quite
similar to the properties of the integral of scalar summable functions. Verifying
most of them (first for simple vector functions, and then via a limiting argument)
presents no difficulties. In such cases, we confine ourselves to minor hints or say
nothing at all.

In what follows, we always assume that there is a fixed space (X,A,μ) with a
σ -finite measure and a Banach space E with norm denoted by ‖ · ‖; all (scalar or
vector-valued) functions under consideration are defined at least almost everywhere
on X. Unless otherwise stated, the values of vector-valued functions belong to E.
To denote vector-valued functions, we use the symbol � .

13.6.1 Simple and Measurable Functions. Recall that a partition of X is a finite
family of sets {ek}Nk=1, called the elements of the partition, satisfying the following
conditions:

X =
N⋃

k=1

ek, ek ∩ ej =∅ for k �= j, 1 � k, j �N.

As before, we will consider only partitions with measurable elements. The following
definition is an obvious generalization of Definition 3.2.1.

Definition A vector-valued function �f is called simple if there exists a partition of
X such that �f is constant on its elements. Such a partition is called admissible for �f .

It is clear that any two simple functions have a common admissible partition.
Furthermore, if �f is simple, then the function x �→ ‖ �f (x)‖ is also a simple (real-
valued) function.

Definition A vector-valued function �f is called measurable (synonyms: strongly
measurable, Bochner measurable) if there exists a sequence of simple functions
{ �fn}n�1 such that

�fn(x) −→
n→∞

�f (x) almost everywhere on X, i.e.,

∥
∥ �fn(x)− �f (x)

∥
∥ −→

n→∞ 0 for almost all x ∈X.

Since the definition involves not a pointwise approximation, but an approxima-
tion in the sense of almost everywhere convergence, modifying the values of a func-
tion on a set of zero measure does not affect its measurability.

5Salomon Bochner (1899–1982)—American mathematician.
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In the scalar case, where the Banach space coincides with R, the latter definition
is equivalent to Definition 3.1.1 by the corollary of the approximation theorem 3.2.2.

13.6.2 Properties of Measurable Vector Functions.

(1) If �f :X→E is a measurable vector function, then the function x �→ ‖ �f (x)‖ is
also measurable.

(2) Approximation with a Bound. If �f is a measurable vector-valued function, then
there exists a sequence of simple functions �fn such that

�fn(x) −→
n→∞

�f (x) almost everywhere on X and

∥
∥ �fn(x)

∥
∥ �

∥
∥ �f (x)

∥
∥ for x ∈X, n� 1.

Proof Indeed, let { �ϕn}n�1 be an arbitrary sequence of simple vector-valued func-

tions that converges to �f almost everywhere. Consider the “cut-off function”

ω(v)=
{
v if ‖v‖� 1,
v
‖v‖ if ‖v‖� 1

(v ∈E).

Also consider a sequence of scalar simple functions gn satisfying the conditions

0 � gn � gn+1, gn(x) −→
n→∞

∥
∥ �f (x)

∥
∥ everywhere on X (1)

(see Theorem 3.2.2). Now let

�fn(x)=
{

0 if gn(x)= 0,

gn(x)ω(
�ϕn(x)
gn(x)

) if gn(x) �= 0.

Since the functions gn, �ϕn have a common admissible partition, we see that �fn is a
simple function and, obviously, ‖ �fn(x)‖ � gn(x) � ‖ �f (x)‖. If �f (x) = 0, then the
functions �fn(x) converge to �f (x) for trivial reasons, because gn(x)= 0 for all n in
view of (1). If �f (x) �= 0 and �ϕn(x)→ �f (x), then for sufficiently large n we have
gn(x) �= 0 and, consequently,

�fn(x)= gn(x)ω

( �ϕn(x)

gn(x)

)

−→
n→∞

∥
∥ �f (x)

∥
∥ω

( �f (x)

‖ �f (x)‖
)

= �f (x),

because �ϕn(x) −→
n→∞

�f (x). Thus �fn(x) −→
n→∞

�f (x) almost everywhere on X. �

(3) If g is a scalar measurable function and �f is a vector-valued measurable func-
tion, then the vector function x �→ g(x) �f (x) is also measurable. In particular,
the vector function x �→ g(x)v0, where v0 ∈E, is measurable.

(4) Let X = [a, b] and μ be the Lebesgue measure on X. A continuous function
�f : [a, b]→E is measurable.
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Proof The proof relies on the uniform continuity of �f . For every ε > 0 there are
points x1, . . . , xn such that a = x0 < x1 < · · ·< xn < xn+1 = b and

∥
∥ �f (x)− �f (xk)

∥
∥ < ε for xk � x � xk+1, 0 � k < n.

Hence �f is uniformly approximated up to ε by the simple functions that take the
values �f (xk) on the intervals [xk, xk+1) (k = 0,1, . . . , n). �

In a similar way one can prove that every continuous vector function on a com-
pact space is measurable with respect to every Borel measure.

(5) The limit of a sequence of measurable vector-valued functions is again measur-
able.

Proof Let { �fn}n�1 be a sequence of measurable functions, �f :X→E be a vector-
valued function, and �fn(x) −→

n→∞
�f (x) almost everywhere on X. Let us prove that �f

is measurable. Consider simple functions �fn,k that approximate �fn. This means that
�fn,k(x) −→

k→∞
�fn(x) almost everywhere on X for every n. Consider also the scalar

functions ϕn,k = ‖ �fn − �fn,k‖. Applying the diagonal sequence theorem 3.3.7 to the
functions ϕn,k with gn = h= 0, we see that ϕn,kn(x) −→n→∞ 0 almost everywhere for

a sequence {kn}n�1. Hence

�fn,kn(x)=
( �fn,kn(x)− �fn(x)

)+ �fn(x) −→
n→∞

�f (x) almost everywhere.

Since the functions �fn,kn are simple, this means precisely that �f is measurable. �

Here are two more simple facts; their proofs are left to the reader.

(6) If �f is a measurable vector-valued function and � is an arbitrary continuous
map from E to a Banach space F , then the composition � ◦ �f is also measur-
able.

(7) The set of measurable functions is linear, i.e., a linear combination of any two
elements also belongs to this set.

In conclusion, we prove that a measurable function �f : X→ E taking values
in a closed subspace F ⊂ E is measurable regarded as an F -valued function. For
technical reasons, we state this property in a slightly more general form.

(8) Let �f : X → E be a measurable function such that almost all its values lie
in a set A ⊂ E. Then there exists a sequence of simple functions �gn with the
following properties:

�gn(x) ∈A, �gn(x) −→
n→∞

�f (x) for almost all x ∈X.

Proof Obviously, we may assume that �f (x) ∈ A for all x ∈ X. Let { �fn}n�1 be a
sequence of simple functions that converges to �f almost everywhere. In general,
the values of �fn may not lie in A, so we have to slightly “improve” them.
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Let {enk }1�k�mn
be an admissible partition for �fn, and let vn

k be the value of �fn

on enk . Choose a vector wn
k ∈A such that

∥
∥wn

k − vn
k

∥
∥ � 2 dist

(
vn
k ,A

)
for 1 � k �mn, n ∈N

and put

�gn(x)=wn
k for x ∈ enk .

Clearly, for every x ∈X,

∥
∥�gn(x)− �fn(x)

∥
∥ � 2 dist

( �fn(x),A
)
� 2

∥
∥ �fn(x)− �f (x)

∥
∥.

Hence almost everywhere on X we have

∥
∥�gn(x)− �f (x)

∥
∥ �

∥
∥�gn(x)− �fn(x)

∥
∥+ ∥

∥ �fn(x)− �f (x)
∥
∥

� 3
∥
∥ �fn(x)− �f (x)

∥
∥ −→

n→∞ 0. (2)

�

Remark If the functions �fn satisfy the bound ‖ �fn(x)‖� h(x) for almost all x ∈X,
then, using (2), we obtain

∥
∥�gn(x)

∥
∥ �

∥
∥�gn(x)− �f (x)

∥
∥+ ∥

∥ �f (x)
∥
∥

� 3
∥
∥ �fn(x)− �f (x)

∥
∥+ h(x)

� 3
∥
∥ �fn(x)

∥
∥+ 3

∥
∥ �f (x)

∥
∥+ h(x)� 7h(x).

13.6.3 Summable Vector-Valued Functions. We proceed to the problem of integra-
tion of vector-valued functions.

Definition 1 A measurable vector-valued function �f is called summable if the func-
tion ‖ �f ‖ is summable, i.e.,

∫
X
‖ �f ‖dμ <+∞.

If the measure is finite, then every bounded measurable function is summable.
In particular, a continuous vector function defined on a compact subset of R

m is
summable with respect to the Lebesgue measure.

Definition 2 Let �f be a summable simple function, {ek}Nk=1 be an admissible par-
tition for �f , and vk be the value of �f on ek . The integral of �f (over the set X with
respect to the measure μ) is the sum

∑N
k=1 μ(ek)vk .

The measure of ek may be infinite, but on such a set a summable vector function
vanishes. We keep to the standard convention and assume that+∞·0= 0. Thus the
sum in the definition of the integral always makes sense. Just as in the scalar case,
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it is easy to check that its value does not depend on the choice of an admissible
partition. The integral of a function �f will, as usual, be denoted by

∫

X

�f (x)dμ(x) or
∫

X

�f dμ.

Here are some obvious properties of summable simple functions.

(a) The set of summable functions and the set of summable simple functions are
linear.

(b) On the set of summable simple functions, the integral is linear.
(c) For every summable simple function �f ,

∥
∥
∥
∥

∫

X

�f dμ

∥
∥
∥
∥ �

∫

X

‖ �f ‖dμ.

Before proceeding to the definition of the integral of an arbitrary summable
vector-valued function, we prove an auxiliary result.

Lemma Let �f :X→E be a vector-valued function. If there exist simple functions
�fn : X→E such that

(a) �fn(x) −→
n→∞

�f (x) almost everywhere;

(b) there exists a scalar summable function h : X→ R such that ‖ �fn(x)‖� h(x)

almost everywhere for all n ∈N;

then the limit limn→∞
∫
X
�fn dμ exists.

Furthermore, this limit does not depend on the choice of sequence {fn} satisfying
conditions (a)–(b).

Proof It is clear that the functions �fn are summable and the function �f is measur-
able. Conditions (a)–(b) imply that ‖ �f ‖� h almost everywhere. Let In =

∫
X
�fn dμ.

We will prove that {In}n�1 is a fundamental sequence. Indeed,

‖In − Im‖ =
∥
∥
∥
∥

∫

X

( �fn − �fm)dμ

∥
∥
∥
∥ �

∫

X

‖ �fn − �fm‖dμ

�
∫

X

‖ �fn − �f ‖dμ+
∫

X

‖ �f − �fm‖dμ −→
n,m→∞ 0.

The convergence to zero follows from Lebesgue’s theorem, since the integrands
in both integrals converge to zero almost everywhere and are dominated by a
summable function (‖ �fn − �f ‖� 2h). Thus the limit limn→∞ In exists.

Now we prove that this limit does not depend on the choice of a sequence {fn}.
Let gn be functions satisfying conditions (a)–(b). Then
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∥
∥
∥
∥In −

∫

X

�gn dμ

∥
∥
∥
∥ �

∫

X

‖ �fn − �gn‖dμ

�
∫

X

‖ �fn − �f ‖dμ+
∫

X

‖ �f − �gn‖dμ −→
n→∞ 0. �

Remark If �f is a summable function, then, as follows from Property (2) from
Sect. 13.6.2 (approximation with a bound), there exists a sequence of simple func-
tions satisfying the conditions of the lemma, with h= ‖ �f ‖.

Now we are ready to give the main definition.

Definition The integral of a vector-valued summable function �f is the limit
limn→∞

∫
X
�fn dμ, where �fn are simple functions satisfying the conditions of the

lemma.

It follows from the lemma that this notion is well defined.

13.6.4 Basic Properties of the Integral of Summable Vector Functions.

(1) Linearity. If �f and �g are summable functions, then a linear combination
α �f + β �g is also summable and

∫

X

(α �f + β �g)dμ= α

∫

X

�f dμ+ β

∫

X

�g dμ.

Proof Indeed, for simple functions, this property is already known (see Property (b)
above). In the general case, it can be obtained by a limiting argument. �

(1′) Factoring Out a Vector Function. Let g be a scalar summable function on X,
v be an arbitrary vector in E, and �f (x)= g(x)v for x ∈ X. Then the vector-
valued function �f is summable and

∫

X

�f dμ=
∫

X

(gv)dμ=
(∫

X

g dμ

)

v.

(2) Estimate on the Norm of an Integral. For every summable function �f , the in-
equality ‖ ∫

X
�f dμ‖� ∫

X
‖ �f ‖dμ holds.

(3) Interchange of Limits and Integration. If �f , �fn are measurable functions sat-
isfying conditions (a)–(b) of the lemma from the previous section, then they are
summable and

∫
X
�fn dμ −→

n→∞
∫
X
�f dμ.

Proof The summability of �fn follows from condition (b) of the lemma, and the
summability of �f follows from the estimate ‖ �f ‖ � h obtained by a limiting ar-
gument. Using Properties (1), (2) and Lebesgue’s theorem for the scalar case, we
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have
∥
∥
∥
∥

∫

X

�fn dμ−
∫

X

�f dμ

∥
∥
∥
∥ �

∫

X

‖ �fn − �f ‖dμ −→
n→∞ 0,

since 2h� ‖ �fn − �f ‖ −→
n→∞ 0 almost everywhere. �

(4) Let �f : X→ E be a summable function and U be a linear map from E to a
Banach space F . Then the function �g = U ◦ �f is summable and

∫
X
�g dμ =

U(
∫
X
�f dμ).

Proof Indeed, if �f is a simple function, then the required formula follows from the
linearity of U and the definition of the integral of a simple summable function. In
the general case, consider a sequence of simple functions �fn converging to �f almost
everywhere with norms dominated by a summable function h. Let �gn = U ◦ �fn.
Clearly, the functions �gn are simple and

�gn(x)=U
( �fn(x)

) −→
n→∞U

( �f (x)
)= �g(x) almost everywhere on X.

Furthermore, ‖�gn‖ � ‖U‖‖ �fn‖ � ‖U‖h. Hence the function �g is summable and,
by definition,

∫

X

�g dμ= lim
n→∞

∫

X

�gn dμ= lim
n→∞U

(∫

X

�fn dμ

)

=U

(∫

X

�f dμ

)

. �

Note the following special case of Property (4).

(4′) If �f is a summable function and ϕ is a linear continuous functional in E, then
ϕ(

∫
X
�f dμ)= ∫

X
ϕ( �f )dμ, where the right-hand side is the integral of a scalar

summable function.

The next property can be proved similarly to Property (4), as the reader can easily
verify.

(5) Let E = L(H,H1) be the space of linear continuous operators acting from a
Banach space H to a Banach space H1, and let Ux :X→ L(H,H1) be an
operator-valued summable function. Then for every v ∈ H , the function x �→
Ux(v) ∈H1 is also summable and

∫

X

Ux(v) dμ(x)=
(∫

X

Ux dμ(x)

)

(v).

(6) Let L be a closed linear subset of E and �f :X→ E be a summable function.
If �f (x) ∈ L for almost all x ∈ X, then

∫
X
�f dμ ∈ L. If μ(X) = 1, then the

assertion remains valid for every closed convex set L.

Proof Consider a sequence of simple functions �fn satisfying conditions (a)–(b) of
the lemma from the previous section. By Property (8) from Sect. 13.6.2 and the
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remark after it, we may assume without loss of generality that the values of �fn lie
in L. Therefore,

∫

X

�fn dμ ∈ L and
∫

X

�f dμ= lim
n→∞

∫

X

�fn dμ ∈ L.

If μ(X)= 1, then the first of these inclusions holds not only for linear, but also
for convex L, because

∫
X
�fn dμ is a convex combination of the values of �fn (they

all lie in L). �

(7) Lebesgue Points of Vector Functions. Let X = R
m and μ be m-dimensional

Lebesgue measure. As we know (see Sect. 4.9.2), for a locally summable func-
tion f , almost all points are Lebesgue points of f . This result is also valid in
a more general setting: if a measurable vector function �f : Rm → E is locally
summable (i.e.,

∫
B(r)

‖ �f (x)‖dx <+∞ for every r > 0), then

1

rm

∫

B(x,r)

∥
∥ �f (y)− �f (x)

∥
∥dy −→

r→0
0 for almost all x ∈R

m.

For a simple function, i.e., a function of the form �f = v1χe1 + · · · + vnχen ,
where v1, . . . , vn are points of E and e1, . . . , en are Lebesgue measurable sub-
sets of Rm, this follows from the obvious inequality

1

rm

∫

B(x,r)

∥
∥ �f (y)− �f (x)

∥
∥dy �

n∑

k=1

‖vk‖
rm

∫

B(x,r)

∣
∣χek (y)− χek (x)

∣
∣dy,

whose right-hand side tends to zero as r → 0 almost everywhere, since almost
all points x are Lebesgue points of the functions χek .

To prove the general case, one can literally reproduce the argument from
Sect. 4.9.2 (replacing the absolute value of a real-valued function by the norm of
a vector-valued function).

13.6.5 Let the space X × Y be endowed with the product μ× ν of σ -finite mea-
sures μ and ν, and let f be a measurable function on X×Y that satisfies, for some p,
1 � p <+∞, the condition

∫
Y
|f (x, y)|p dν(y) <+∞ for almost all x ∈ X. This

gives rise to a vector-valued function �g : X→L p(Y, ν), which is defined by the
formula �g(x) = f (x, ·) (in Sect. 5.3, it was denoted by fx ). It is natural to ask
whether the function �g is Bochner measurable. The answer is given by the follow-
ing proposition.

Proposition 1 Under the above assumptions, the function �g is Bochner measurable.

Proof First assume that
∫∫

X×Y
|f (x, y)|p dμ(x)dν(y) < +∞. Since the measure

μ× ν is obtained by the Carathéodory extension from the semiring of generalized
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rectangles, it follows (see Exercise 3 of Sect. 9.2) that the set of simple functions of
the form

n∑

k=1

ckχAk
χBk

, where Ak ⊂X, Bk ⊂ Y, ck are scalars, (3)

is dense in L p(X × Y,μ × ν). Hence there exists a sequence of functions fn of
the form (3) that converges to f in this space. Obviously, the vector functions �ξn
corresponding to fn (i.e., the functions �ξn(x)= fn(x, ·)) are simple and

∫

X

‖�g− �ξn‖pL p(Y,ν)
dμ=

∫∫

X×Y

∣
∣f (x, y)− fn(x, y)

∣
∣p dμ(x)dν(y) −→

n→∞ 0.

Therefore, ‖�g− �ξn‖pL p(Y,ν)
−→
n→∞ 0 in measure, and, by Riesz’ theorem, there exists

a subsequence {�ξnk
}k�1 such that ‖�g− �ξnk

‖pL p(Y,ν)
−→
k→∞ 0 almost everywhere. This

shows that �g is measurable.
In the general case, represent X as the union of a sequence of expanding sets Xn

of finite measure and put En = {x ∈Xn |
∫
Y
|f (x, y)|p dν(y)� n}. Note that the set

En is measurable, since, by Tonelli’s theorem, the function x �→ ∫
Y
|f (x, y)|p dν(y)

is measurable. We leave it to the reader to check that
⋃∞

n=1 En is a set of full mea-
sure. Put fn = f · χEn . Obviously,

∫∫

X×Y

∣
∣fn(x, y)

∣
∣p dμ(x)dν(y) =

∫∫

En×Y

∣
∣f (x, y)

∣
∣p dμ(x)dν(y)

� nμ(Xn) <+∞.

As we have established at the first step of the proof, the vector functions �gn

corresponding to the functions fn are Bochner measurable. Furthermore,
∫

X

‖�g− �gn‖pL p(Y,ν)
dμ=

∫

(X\En)×Y

∣
∣f (x, y)

∣
∣p dμ(x)dν(y) −→

n→∞ 0.

Hence there exists a subsequence {nk} such that
∥
∥�g(x)− �gnk

(x)
∥
∥

L p(Y,ν)
−→
k→∞ 0 μ-almost everywhere.

Thus the vector function �g is measurable as the limit of measurable functions. �

As we have established, a measurable function of two variables gives rise to
a measurable vector function. Is the converse true? In more detail, if �g : X →
L p(Y, ν) is a measurable vector function, can we assert that the formula

f (x, y)= (�g(x))(y) (4)

defines a measurable function of two variables? Without exhibiting corresponding
counterexamples, we note that the answer to this question is negative. However, we



13.6 Integration of Vector-Valued Functions 741

will prove that f can be made measurable by modifying the function �g(x) for every
x on a set of zero measure (which, obviously, does not affect its measurability).

Proposition 2 Let �g :X→L p(Y, ν) be a measurable vector function. Then there
exists a function h measurable on X × Y such that for almost all x, the equality
h(x, y)= (�g(x))(y) holds almost everywhere on Y .

Proof We confine ourselves to the case where the measures μ and ν are finite and
the function �g is summable, leaving it to the reader to handle the general case.
Approximate �g by simple functions �gn:

∥
∥�g(x)− �gn(x)

∥
∥

L p(Y,ν)
−→
n→∞ 0 for almost all x ∈X.

We may assume without loss of generality that ‖�gn(x)‖L p(Y,ν) � ‖�g(x)‖L p(Y,ν)

almost everywhere. Then, by Lebesgue’s theorem, In ≡∫
X
‖�g − �gn‖L p(Y,ν) dμ −→

n→∞ 0. Every function �gn generates a function fn of two

variables by formula (4); obviously, fn is measurable on X× Y . We will show that
{fn}n�1 is a fundamental sequence in the space L 1(X× Y,μ× ν). Indeed,

‖fn − fm‖L 1(X×Y,μ×ν) =
∫

X

(∫

Y

∣
∣fn(x, y)− fm(x, y)

∣
∣dν(y)

)

dμ(x)

�
∫

X

ν(Y )
1
p′

(∫

Y

∣
∣fn(x, y)− fm(x, y)

∣
∣p dν(y)

) 1
p

dμ(x)

= ν(Y )
1
p′

∫

X

‖�gn − �gm‖L p(Y,ν) dμ→ 0 as m,n→∞

(here p′ is the conjugate exponent to p). Since the space L 1(X× Y,μ× ν) is com-
plete, the sequence {fn}n�1 has a limit h. Passing, if necessary, to a subsequence,
we may assume that

fn(x, y) −→
n→∞ h(x, y) almost everywhere on X× Y. (5)

Let us verify that h is a required function. Since ‖�g(x)− �gn(x)‖L p(Y,ν) −→
n→∞ 0 and

μ(X) < +∞ almost everywhere on X, it follows from Egorov’s theorem that for
every j ∈N we can find a set ej ⊂X such that

μ(ej ) <
1

j
and

∥
∥�g(x)− �gn(x)

∥
∥

L p(Y,ν)
⇒

n→∞
0 on Ej =X \ ej .

Therefore, �gn(x) −→
n→∞ �g(x) in measure for every x ∈ Ej . Together with (5) this

shows that for almost every x ∈ Ej , the equality h(x, y) = (�g(x))(y) holds al-
most everywhere on Y . Since j is arbitrary, this is also true for almost every x

in
⋃∞

j=1 Ej , i.e., for almost all x in X. �
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Example Let f be a measurable function on X × Y satisfying, for some p � 1,

the condition
∫
X
(
∫
Y
|f (x, y)|p dν(y))

1
p dμ(x) <+∞. Then the corresponding vec-

tor function �g (with values in L p(Y, ν)) is summable, and
∫
X
f (x, y) dμ(x) =

(
∫
X
�g dμ)(y) for almost all y ∈ Y .

We will prove this under the assumption that ν(Y ) <+∞. Denote by ‖�g(x)‖ the
norm ‖�g(x)‖L p(Y,ν). Let �g be the vector function related to f by (4). If f is simple,
then the required assertion is obvious.

The summability of �g is ensured by the above assumption:

∫

X

∥
∥�g(x)∥∥dμ(x)=

∫

X

(∫

Y

∣
∣f (x, y)

∣
∣p dν(y)

) 1
p

dμ(x) <+∞.

It also follows that f is summable on X× Y :

∫

X

∫

Y

∣
∣f (x, y)

∣
∣dμ(x)dν(y)� ν

1
p′ (Y )

∫

X

(∫

Y

∣
∣f (x, y)

∣
∣p dν(y)

) 1
p

dμ(x) <+∞.

Hence, by Fubini’s theorem, f is summable on X for almost all y ∈ Y . Consider a
sequence of simple vector functions �gn satisfying the conditions

∥
∥�gn(x)− �g(x)

∥
∥ −→

n→∞ 0,
∥
∥�gn(x)

∥
∥ �

∥
∥�g(x)∥∥ for almost all x ∈X.

By the definition of the integral,
∫
X
�gn dμ −→

n→∞
∫
X
�g dμ in the L p norm and, con-

sequently, in measure. Consider the functions fn generated by the vector functions
�gn according to (4). We have

∫

Y

∣
∣
∣
∣

∫

X

fn(x, y) dμ(x)−
∫

X

f (x, y) dμ(x)

∣
∣
∣
∣dν(y)

�
∫∫

X×Y

∣
∣fn(x, y)− f (x, y)

∣
∣dμ(x)dν(y)� ν

1
p′ (Y )

∫

X

‖�gn − �g‖dμ −→
n→∞ 0

(the convergence to zero follows from Lebesgue’s theorem). Then
∫

X

fn(x, y) dμ(x) −→
n→∞

∫

X

f (x, y) dμ(x) in measure ν.

Thus the sequence of functions
∫
X
�gn dμ=

∫
X
fn(x, ·) dμ(x) converges in measure

to
∫
X
f (x, ·) dμ(x) and almost everywhere to

∫
X
�g dμ; hence the integrals

∫
X
�g dμ

and
∫
X
f (x, ·) dμ(x) coincide almost everywhere.

Corollary Let 1 � r < s < +∞, and let f be a function measurable on X × Y .
Then

(∫

Y

(∫

X

∣
∣f (x, y)

∣
∣r dμ(x)

) s
r

dν(y)

) 1
s

�
(∫

X

(∫

Y

∣
∣f (x, y)

∣
∣s dν(y)

) r
s

dμ(x)

) 1
r

.
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Proof To prove this, it suffices to apply the result obtained in the above example
with p = s

r
to the function |f |r and use the inequality ‖ ∫

X
�g dμ‖� ∫

X
‖�g‖dμ. �

13.6.6 Weak and Strong Measurability. Let E∗ be the dual of a Banach space E,
i.e., the space of all linear continuous functionals defined on E.

Definition 1 A vector-valued function �f : X→ E is called weakly measurable if
for every functional ϕ ∈E∗, the scalar function x �→ ϕ( �f (x)) is measurable on X.

Property (6) of measurable functions (see Sect. 13.6.2) implies that every mea-
surable function is weakly measurable. The converse is not true. A corresponding
counterexample will be considered in the next section.

We will establish a simple sufficient condition under which a weakly measurable
function is strongly measurable. For this we need the notion of a separable space.
Recall that a metric space is called separable if it contains a countable dense subset
(which is the case if and only if it is second countable).

Lemma If E is a separable normed space, then there exists a sequence of function-
als {ϕn}n�1 ⊂E∗ such that

‖v‖ = sup
n�1

∣
∣ϕn(v)

∣
∣ for all v from E.

Proof Let {v1, v2, . . .} be a countable dense subset of E. By the theorem that guar-
antees the existence of sufficiently many functionals on a normed vector space, there
exist functionals ϕn such that ‖ϕn‖ = 1 and ϕn(vn)= ‖vn‖ for every n ∈N. We will
show that the sequence {ϕn}n�1 chosen in this way satisfies the required properties.
Indeed, if v ∈E and vnk

−→
k→∞ v, then

‖v‖� sup
n�1

∣
∣ϕn(v)

∣
∣ � lim

k→∞
∣
∣ϕnk

(v)
∣
∣

� lim
k→∞

(∣
∣ϕnk

(vnk
)
∣
∣− ∣

∣ϕnk
(vnk

− v)
∣
∣
)

� lim
k→∞

(‖vnk
‖ − ‖vnk

− v‖)= ‖v‖. �

To state the main theorem, we need to introduce another notion.

Definition 2 A vector-valued function is called essentially separably valued if the
set of values it takes on a set of full measure is separable.

Theorem A vector-valued function �f : X→ E is measurable if and only if it is
weakly measurable and essentially separably valued.

Proof If �f is measurable, then it is weakly measurable (as observed after Defini-
tion 1). To prove that it is essentially separably valued, consider an arbitrary se-
quence of simple functions { �fn}n�1 that converges to �f almost everywhere. Let L
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be the closed linear hull of the union of the sets of values of �fn. Since the set of val-
ues of every simple function is finite, the subspace L is separable. Since it is closed
and contains all values of �fn, it contains also all points �f (x)= limn→∞ �fn(x). Thus
�f (x) ∈ L for almost all x ∈X, which means precisely that �f is essentially separably

valued.
Now let �f be weakly measurable and essentially separably valued. First of all,

we may assume without loss of generality that the set of its values is separable
(otherwise modify the function at a set of zero measure, which does not affect the
measurability). Hence we may (and will) assume that the set E is also separable,
replacing it if necessary by the closure of the linear hull of �f (X). Note also that for
every a ∈E, the function ha(x)= ‖f (x)− a‖ (x ∈X) is measurable. This follows
from the formula

∥
∥ �f (x)− a

∥
∥= sup

n�1

∣
∣ϕn

( �f (x)− a
)∣
∣

established in the above lemma (here ϕn are the functionals from this lemma), which
shows that the function ha is an upper bound for the sequence of measurable func-
tions x �→ |ϕn( �f (x))− ϕn(a)|.

To prove that �f is measurable, we will show that it is the limit of a sequence of
measurable functions. For this it obviously suffices to check that �f can be uniformly
approximated by measurable functions.

Fix an arbitrary ε > 0 and, using the separability of the set �f (X), cover it by a
sequence of balls B(vn, ε). Consider the sets

Xn =
{
x ∈X |∥∥ �f (x)− vn

∥
∥ < ε

}
, Y1 =X1, Yn =Xn \

n−1⋃

k=1

Xk for n > 1.

Since
⋃

n�1 B(vn, ε)⊃ �f (X), we have
⋃

n�1 Xn =X. The sets Xn, and hence Yn,
are measurable, in view of the measurability of ha observed above. Furthermore,
the sets Yn are, obviously, pairwise disjoint, and

⋃
n�1 Yn =⋃

n�1 Xn = X. Now
put �g(x) = vn if x ∈ Yn. Clearly, the function �g is measurable as the sum of the
pointwise convergent series

∑∞
n=1 χYn · vn of the simple functions χYn · vn. Finally,

if x is an arbitrary point of X, for some n we have x ∈ Yn ⊂ Xn. In this case,
�f (x) ∈ B(vn, ε) and

∥
∥ �f (x)− �g(x)∥∥= ∥

∥ �f (x)− vn
∥
∥ < ε.

Thus we have proved that �f can be uniformly approximated by measurable func-
tions. �

Example Let K be a compact metrizable space. Consider a function h :Rm×K→
C satisfying the following conditions:

(a) for almost all x ∈R
m, h is continuous in the second variable;

(b) for all values u ∈K , h is measurable in the first variable.
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Such functions, called Carathéodory functions, are used in some variational prob-
lems. We will show that the vector function �f : Rm → C(K) associated with a
Carathéodory function by the formula �f (t)= h(t, ·) is Bochner measurable. Since
the space C(K) is separable, it follows from the above theorem that it suffices to
prove that �f is weakly measurable. Taking into account the form of a generic func-
tional in C(K), it suffices to verify that if μ is an arbitrary finite Borel measure
on K , then the function

x �→ ϕ(x)=
∫

K

h(x,u)dμ(u)
(
x ∈R

m
)

is measurable. This would follow from Fubini’s theorem if we could guarantee that
h is measurable as a function of two variables. However, it is easy to prove the
measurability of ϕ in another way. Indeed, it follows from the fact that for every
x ∈ R

m, the integral
∫
K
h(x,u)dμ(u) is the limit of a sequence of Riemann sums

of the form

n∑

j=1

h(x,uj )μ(ej ),

which are measurable on R
m by condition (b).

If the function x �→ ‖ �f (x)‖ = maxu∈K |h(x,u)| is locally summable, then, in
view of Property (7) from Sect. 13.6.4, we may assert that almost every point x ∈R

m

is a Lebesgue point of the vector function �f . Thus in the case under consideration,
a Carathéodory function satisfies the following property:

1

rm

∫

B(x,r)

sup
u∈K

∣
∣h(y,u)− h(y, x)

∣
∣dy −→

r→0
0 almost everywhere.

13.6.7 In conclusion, we give an example of a function that is weakly measurable,
but not strongly measurable.

Let E be the space c0([0,1]) consisting of all functions v : [0,1] → R such that
the sets {x ∈ [0,1] | |v(x)|> ε} are finite for every ε > 0. Obviously, all such func-
tions are bounded. Endow E with the uniform norm: ‖v‖ = sup[0,1] |v|. We leave
it to the reader to check that the space E with this norm is complete, and its dual
E∗ can be identified with the space l1([0,1]) of all summable families of numbers
defined on [0,1]. Recall that if ϕ = {ϕx}x∈[0,1] is a summable family, then the set
{x ∈X |ϕx �= 0} is at most countable. The norm in l1([0,1]) and the duality between
c0([0,1]) and l1([0,1]) are defined by the following formulas:

‖ϕ‖ =
∑

x∈[0,1]
|ϕx |, ϕ(v)=

∑

x∈[0,1]
ϕxv(x),

where v ∈ c0
([0,1]), ϕ ∈ l1

([0,1]).



746 13 Appendices

Let μ be the Lebesgue measure on the interval [0,1], and let χ{x} denote the
characteristic function of the one-point set {x}. Put

f0(x)= χ{x} ∈ c0
([0,1]) for x ∈ [0,1].

Then for every ϕ from l1([0,1]), the scalar function x �→ ϕ(f0(x))= ϕx is measur-
able, since the set of x such that ϕx �= 0 is at most countable. Thus the function f0
is weakly measurable. But it is not Bochner measurable. To prove this, it suffices,
by Theorem 13.6.6, to verify that it is not essentially separably valued. We leave it
to the reader to prove the following stronger assertion:

under the map f0, the image of every uncountable subset of [0,1] is not separable

(since it contains uncountably many points at distance one from each other).

EXERCISES

1. Let (X,A,μ) be a measure space and E be a Banach space. Show that a neces-
sary condition for a vector-valued function �f : X→ E to be measurable is that
the inverse image under �f of every open set is measurable; if E is separable,
this condition is also sufficient. Verify that the separability assumption cannot be
removed.

2. Let �f :X→E be a strongly measurable function satisfying the condition

esssup
x∈X

∣
∣ϕ

( �f (x)
)∣
∣ <+∞ for every functional ϕ from E∗.

Show that

(a) sup‖ϕ‖�1 esssupx∈X |ϕ( �f (x))|<+∞;

(b) esssupx∈X ‖ �f (x)‖<+∞
(for the notation esssupx∈X ‖ �f (x)‖, see Sect. 4.4.5).

3. Assume that a strongly measurable function �f : X→ E is weakly summable,
i.e., satisfies the condition ϕ ◦ �f ∈L 1(X,μ) for every functional ϕ from E∗.
Show that sup‖ϕ‖�1

∫
X
|ϕ ◦ �f |dμ < +∞. Show by example that the function

‖ �f ‖ may be not summable.
4. Let X be the interval [0,1] with the Lebesgue measure μ, and let rn (n ∈ N) be

the Rademacher functions (see Sect. 6.4.5). Show that the function �R : [0,1] →
l∞ defined by the formula �R(x)= {rn(x)}n�1 is not essentially separably valued
(here l∞ is the space of bounded numerical sequences v = {vn}n�1 with the
norm ‖v‖ = supn�1 |vn|).

13.7 Smooth Maps

In this appendix, we give a summary of the basic properties of smooth maps used in
the book. We assume that the reader is familiar with the notion of a partial derivative,
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differentiable function, and the theorem on the differentiability of a function having
continuous partial derivatives.

In what follows, O always stands for an open subset of Rm. As above, the inner
product of vectors x, y ∈ R

m is denoted by 〈x, y〉. A linear map A : Rm → R
n is

identified with its matrix in the canonical basis. Its norm ‖A‖ (or the norm of the
corresponding matrix) is defined as sup‖x‖�1 ‖A(x)‖.

13.7.1 Generalizing the notion of differentiable function, we introduce the following
definition.

Definition A map T : O→ R
n is called differentiable at a point a ∈ O if there

exists a linear map A :Rm→R
n such that

T (a + h)− T (a)=A(h)+ α(h),

where α(h)= o(h) as h→ 0, i.e., α(h)
‖h‖ −→h→0

0.

One can easily check that A is uniquely determined; it is called the differential
of the map T at the point a and denoted by daT ; its matrix in the canonical basis is
denoted by T ′(a). Note that the differential of a linear map coincides with the map
itself.

If f1, . . . , fn are the coordinate functions of a map T , then the differentiability
of T is equivalent to the differentiability of f1, . . . , fn. The matrix T ′ is just the
rectangular matrix

⎛

⎜
⎜
⎜
⎜
⎝

∂f1
∂x1

. . .
∂f1
∂xm

∂f2
∂x1

. . .
∂f2
∂xm

...
. . .

...
∂fn

∂x1
. . .

∂fn

∂xm

⎞

⎟
⎟
⎟
⎟
⎠

.

It is called the Jacobi matrix of the system of functions f1, . . . , fn.

The following result shows that the usual rule for differentiating a composite
function can be naturally extended to maps.

Proposition Let R be the composition of maps T and S: R = S ◦ T . If T is differen-
tiable at a point a and S is differentiable at the point b= T (a), then R is differential
at a and

R′(a)= S′(b) · T ′(a). (1)

Proof Let A and B be the differentials of the maps T and S at the points a and b,
respectively. Then for sufficiently small h and η, we have

T (a + h)− T (a)=A(h)+ ‖h‖ω(h), where ω(h)−→
h→0

0,

S(b+ η)− S(b)= B(η)+ ‖η‖ ω̃(η), where ω̃(η)−→
η→0

0.
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Assuming that ω̃(0) = 0, substitute η = T (a + h) − T (a) into the last equation.
Then

R(a + h)−R(a)= B
(
T (a + h)− T (a)

)

+ ∥
∥T (a + h)− T (a)

∥
∥ω̃

(
T (a + h)− T (a)

)

= B ◦A(h)+ γ (h),

where γ (h)= ‖h‖B(ω(h))+‖T (a+h)−T (a)‖ ω̃(T (a+h)−T (a)). To complete
the proof, it remains to show that γ (h) is an infinitesimal of higher order than h.
Indeed,

‖γ (h)‖
‖h‖ � ‖B‖∥∥ω(h)

∥
∥+ ‖T (a + h)− T (a)‖

‖h‖
∥
∥ω̃

(
T (a + h)− T (a)

)∥
∥.

Since ‖T (a + h)− T (a)‖ =O(‖h‖) as h→ 0 and ω̃(T (a + h)− T (a))−→
h→0

0, we

see that γ (h)
‖h‖ −→

h→0
0. �

A map T is called Cr -smooth in O (r ∈N) if its coordinate functions have con-
tinuous partial derivatives up to order r in O. A map whose coordinate functions
have continuous partial derivatives of all orders is called C∞-smooth. The set of
Cr -smooth maps from O to R

n is denoted by Cr(O,Rn) (r = 1,2, . . . ,+∞).
The above proposition easily implies by induction the following corollary.

Corollary The composition of maps of class Cr (r = 1,2, . . . ,+∞) is again a map
of the same class.

13.7.2 We will prove a result generalizing the classical Lagrange mean value theo-
rem on increments of a differentiable function.

Theorem (Lagrange’s inequality) If a map T is differentiable at all points of an
interval [x, y] = {(1− t)x + ty |0 � t � 1}, then

∥
∥T (y)− T (x)

∥
∥ � sup

z∈[x,y]
∥
∥T ′(z)

∥
∥‖y − x‖.

Proof Let �= T (y)−T (x). To estimate the length of this vector, we introduce the
auxiliary function ϕ(t) = 〈T (x + t (y − x)),�〉 (t ∈ [0,1]). It is clear that ϕ(0) =
〈T (x),�〉, ϕ(1)= 〈T (y),�〉 and, consequently,

‖�‖2 = 〈
T (y)− T (x), �

〉= ϕ(1)− ϕ(0).

By Proposition 13.7.1, the function ϕ is differentiable and

ϕ′(t)= 〈
T ′

(
x + t (y − x)

)
(y − x),�

〉
.
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By the mean value theorem, there exists a c ∈ (0,1) such that ϕ(1)− ϕ(0)= ϕ′(c).
Hence

‖�‖2 = ϕ(1)− ϕ(0)= ϕ′(c)= 〈
T ′

(
x + c(y − x)

)
(y − x),�

〉

�
∥
∥T ′

(
x + c(y − x)

)
(y − x)

∥
∥‖�‖� ∥

∥T ′
(
x + c(y − x)

)∥
∥‖y − x‖‖�‖,

which obviously implies the desired assertion. �

Corollary If a map T : O → R
n is differentiable at all points of an interval

[x0, x0 + h], then for every linear map A :Rm→R
n,

∥
∥T (x0 + h)− T (x0)−A(h)

∥
∥ � sup

z∈[x0,x0+h]
∥
∥T ′(z)−A

∥
∥‖h‖. (2)

For A= T ′(x0), this implies an efficient estimate on the deviation of the differ-
ential from the increment of the map:

∥
∥T (x0 + h)− T (x0)− T ′(x0)(h)

∥
∥ � sup

z∈[x0,x0+h]
∥
∥T ′(z)− T ′(x0)

∥
∥‖h‖.

To prove (2), it suffices to apply the theorem to the map T − A, using the fact
that the differential of a linear map coincides with the map itself.

13.7.3 Now we turn to the study of the invertibility of smooth maps. A smooth map
T : O→ R

m (O ⊂ R
m) whose inverse is also smooth is called a diffeomorphism.

A necessary condition for T to be a diffeomorphism is that the matrix T ′(x) is
invertible for all x ∈O. Indeed, if T is a diffeomorphism, then T −1(T (x))≡ x. By
rule (1) for differentiating a composite function, (T −1)′(T (x)) · T ′(x)= id. Hence

det
(
T ′(x)

) �= 0 for all x ∈O. (3)

However, the invertibility of T ′(x) does not imply that T is one-to-one; consider,
for example, the map T (u, v)= (u2 − v2,2uv), where (u, v) ∈O =R

2 \ 0.
Before proceeding to the theorem on the smoothness of the inverse map, we will

show that if condition (3) is satisfied, then the map T is open, i.e., sends open sets
to open sets. First we obtain a technical result.

Lemma Let T :O→R
m. If T is differentiable at a point x0 ∈O and the derivative

T ′(x0) is invertible, then there exist numbers c > 0 and δ > 0 such that B(x0, δ)⊂O
and ‖T (x)− T (x0)‖� c‖x − x0‖ for ‖x − x0‖< δ.

Proof If T is linear, then it is invertible, because T ′ = T . Since ‖T −1(y)‖ �
‖T −1‖‖y‖, for y = T (x) we have ‖x‖ � ‖T −1‖‖T (x)‖, which proves the lemma
with c= 1

‖T −1‖ .
In the general case, T (x) − T (x0) = A(x − x0) + ‖x − x0‖ω(x), where A =

T ′(x0) and ω(x)→ 0 as x→ x0. Therefore,
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∥
∥T (x)− T (x0)

∥
∥ �

∥
∥A(x − x0)

∥
∥− ‖x − x0‖

∥
∥ω(x)

∥
∥

�
(

1

‖A−1‖ −
∥
∥ω(x)

∥
∥

)

‖x − x0‖.

This proves the lemma with c = 1
2‖A−1‖ , since ‖ω(x)‖ < 1

2‖A−1‖ for x sufficiently
close to x0. �

Theorem (Open map theorem) If a map T ∈ C1(O,Rm) satisfies condition (3),
then the set O′ = T (O) is open.

Proof We will prove that every point y0 ∈ O′ is an interior point of O′. Let y0 =
T (x0), A= T ′(x0), and let c > 0 and δ > 0 be as in the lemma:

∥
∥T (x0 + h)− T (x0)

∥
∥ � c‖h‖ for ‖h‖< δ.

Shrinking δ if necessary, we may assume that B(x0, δ) ⊂ O. Then T (x0 + h) �=
T (x0) for ‖h‖ = δ. Hence y0 = T (x0) /∈Q = T (K), where K = ∂(B(x0, δ)). Let
dist(y0,Q)= 2r . We will show that B(y0, r)⊂O′. Note that for y ∈ B(y0, r) and
x ∈K , the inequality ‖T (x)− y‖� r holds. Now we fix an arbitrary point y from
B(y0, r) and show that it is a value of T . For this we introduce the auxiliary function
F(x) = ‖T (x)− y‖2 (x ∈O). Obviously, T takes the value y in the ball B(x0, δ)

if and only if the smallest value of F in this ball is equal to zero. Let us check that
this is indeed the case. Obviously, F(x0) < r2 and F(x)� r2 for x ∈K . Hence the
smallest value of F is attained at an interior point x of the ball B(x0, δ). There-
fore, at this point all partial derivatives of F vanish. To write this condition in
more detail, consider the coordinate functions f1, . . . , fm of T and assume that
y = (y1, . . . , ym). Then F(x)=∑m

k=1(fk(x)− yk)
2 and, consequently,

∂F

∂xj
(x)= 2

m∑

k=1

∂fk

∂xj
(x)

(
fk(x)− yk

)= 0 for j = 1, . . . ,m.

The matrix of this homogeneous system is precisely the transposed matrix T ′(x).
Since det(T ′(x)) �= 0, the system has only the trivial solution, which is equivalent
to the formula T (x)= y. Thus y ∈ T (B(x0, δ))⊂O′. Since the point y ∈ B(y0, r)

is arbitrary, this means that B(y0, r)⊂O′ and, consequently, y0 is an interior point
of O′. �

Remark If O is a domain (a connected open set), then, obviously, O′ = T (O) is
also a domain. That is why the above theorem is sometimes called the theorem on
preservation of domain.

13.7.4 Let GL(m) be the set of invertible m×m matrices. We will regard GL(m) as
a subset of Rm2

.
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Lemma The set GL(m) is open, and the map A �→ A−1 is infinitely smooth on
GL(m).

Proof The first claim holds because the function A �→ det(A) is continuous and the
set GL(m) coincides with the set of m×m matrices with non-zero determinant.

The infinite differentiability of the map A �→A−1 follows from the fact that each
coordinate function of this map is the ratio of a cofactor of A to its determinant and,
consequently, is a rational function of its elements. �

Theorem (Diffeomorphism theorem) Let T ∈ Cr(O,Rm) (r = 1,2, . . . ,+∞). If T
is invertible and satisfies condition (3), then T −1 is a smooth map of class Cr .

As we have already mentioned, (3) is a necessary condition for the inverse map
to be smooth.

Proof First we prove the theorem in the case r = 1.
The open mapping theorem implies that the set O′ = T (O) is open. By the same

theorem, the image of every open set U ⊂ O is open. Putting S = T −1, we can
rewrite the equation V = T (U) in the form V = S−1(U). Thus the inverse image of
every open set under S is open, which implies that S is continuous. We will show
that it is differentiable at an arbitrary point y0 ∈O′. Let y0 = T (x0) and A= T ′(x0).
Then

T (x)− T (x0)=A(x − x0)+ ‖x − x0‖ω(x), (4)

where ω(x)→ 0 as x→ x0 and ω(x0)= 0. Note that
∥
∥T (x)− T (x0)

∥
∥ � c‖x − x0‖ for x ∈ B(x0, δ), (5)

where c and δ are the numbers from Lemma 13.7.3. Consider an arbitrary point
y ∈O′ and set x = S(y). Substituting x = S(y) and x0 = S(y0) into (4), we obtain

y − y0 =A
(
S(y)− S(y0)

)+ ∥
∥S(y)− S(y0)

∥
∥ω

(
S(y)

)
,

that is,

S(y)− S(y0)=A−1(y − y0)−
∥
∥S(y)− S(y0)

∥
∥A−1(

ω
(
S(y)

))
.

It remains to prove that as y→ y0, the value β(y)=−‖S(y)−S(y0)‖A−1(ω(S(y)))

is an infinitesimal of higher order than ‖y − y0‖. By the continuity of S, we may
assume that y is so close to y0 that ‖x − x0‖ = ‖S(y)− S(y0)‖< δ. This allows us
to employ inequality (5) to estimate ‖β(y)‖:

∥
∥β(y)

∥
∥ = ‖x − x0‖

∥
∥A−1(

ω
(
S(y)

))∥
∥ � 1

c

∥
∥T (x)− T (x0)

∥
∥

∥
∥A−1

∥
∥

∥
∥ω

(
S(y)

)∥
∥

= ‖A
−1‖
c

‖y − y0‖
∥
∥ω

(
S(y)

)∥
∥.
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Since x = S(y) → x0, we have ω(S(y)) → 0 as y → y0, and hence β(y) =
o(‖y − y0‖) as y → y0, which completes the proof of the differentiability of S

at y0. Moreover, by the definition of differentiability, S′(y0)=A−1 = (T ′(x0))
−1.

So, the map S = T −1 is differentiable at every point, and

S′(y)= (
T ′

(
T −1(y)

))−1
.

(Note that our proof, as well as the proof of the open mapping theorem, has thus far
used only the differentiability of T rather than its smoothness.)

Now we will prove that S is smooth. The passage from y to S′(y) can be written
as the composition

y �→ T −1(y)= x �→ T ′(x)=A �→A−1 = S′(y).

Each of the three maps in this chain is continuous, which implies the continuity of
S′(y), i.e., the C1-smoothness of S.

To prove the smoothness for an arbitrary r , we proceed by induction (keeping
in mind that, by the lemma, the operation of taking the inverse of a matrix is an
infinitely smooth map). �

13.7.5 As we have already mentioned, condition (3) does not imply that T is in-
vertible. However, one can ensure the invertibility by considering the map “in the
small”.

Theorem (Local invertibility theorem) Let T ∈ C1(O,Rm) and x0 ∈O. If the ma-
trix T ′(x0) is invertible, then there exists a neighborhood U ⊂O of x0 such that the
restriction of T to U is a diffeomorphism.

Proof We must prove that the restriction of T to a neighborhood of x0 is invertible
and satisfies condition (3).

Since the matrix A = T ′(x0) is invertible, we have ‖A(h)‖ � c ‖h‖ for some
c > 0 and all h ∈R

m. Fix a ball B(x0, r)⊂O such that

det
(
T ′(x)

) �= 0 and
∥
∥T ′(x)−A

∥
∥ <

c

2
for x ∈ B(x0, r). (6)

We will prove that U = B(x0, r) is a desired neighborhood. By the previous the-
orem, it suffices to show that the restriction of T to U is invertible, i.e., that T is
one-to-one on U . Let x, y ∈U and h= y − x. Obviously,

T (y)− T (x)= T (x + h)− T (x)−A(h)+A(h).

Using inequalities (2) and (6), we see that
∥
∥T (y)− T (x)

∥
∥ �

∥
∥A(h)

∥
∥− ∥

∥T (x + h)− T (x)−A(h)
∥
∥

� c‖h‖ − sup
z∈[x,y]

∥
∥T ′(z)−A

∥
∥‖h‖� c‖h‖ − c

2
‖h‖ = c

2
‖y − x‖.

Thus the restriction of T to U is one-to-one, and the theorem follows. �
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13.7.6 Here we consider a smooth map F :G→R
n defined on an open subset G of

the space R
m+n. This space is identified with the Cartesian product Rm ×R

n, and
a point z ∈ R

m+n is identified with the pair (x, y), where x = (x1, . . . , xm) ∈ R
m,

y = (y1, . . . , yn) ∈R
n.

Let F1, . . . ,Fn be the coordinate functions of F . The matrix F ′ has the form
⎛

⎜
⎜
⎝

∂F1
∂x1

. . . ∂F1
∂xm

∂F1
∂y1

. . . ∂F1
∂yn

...
...

...
...

∂Fn

∂x1
. . . ∂Fn

∂xm

∂Fn

∂y1
. . . ∂Fn

∂yn

⎞

⎟
⎟
⎠ .

The left and right parts of this matrix,
⎛

⎜
⎜
⎝

∂F1
∂x1

. . . ∂F1
∂xm

...
...

∂Fn

∂x1
. . . ∂Fn

∂xm

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

∂F1
∂y1

. . . ∂F1
∂yn

...
...

∂Fn

∂y1
. . . ∂Fn

∂yn

⎞

⎟
⎟
⎠ ,

will be denoted by F ′x and F ′y , respectively. Note that F ′y is a square n× n matrix.
We will study the solvability of the equation

F(x, y)= 0 (7)

with respect to y. To make the problem more precise, we introduce the following
definition.

Definition Let P and Q be open parallelepipeds in R
m and R

n, respectively,
P ×Q⊂G. We say that Eq. (7) defines an implicit map in P ×Q if there exists a
map f : P →Q such that

F
(
x,f (x)

)= 0 for all x ∈ P.

Note that Eq. (7) defines a unique implicit map in P ×Q if and only if for every
x ∈ P there exists a unique point y ∈Q satisfying (7).

Theorem (The implicit function theorem) Let G be an open subset of R
m+n,

F ∈ Cr(G,Rn) (r = 1,2, . . . ,+∞) and (a, b) ∈G. If F(a, b) = 0 and the matrix
F ′y(a, b) is invertible, then there exist open cubes P ⊂R

m and Q⊂R
n centered at

the points a and b, respectively, such that P ×Q⊂G and Eq. (7) defines a unique
implicit map f in P ×Q. This map is Cr -smooth, and for all x ∈ P ,

f ′(x)=−[
F ′y

(
x,f (x)

)]−1
F ′x

(
x,f (x)

)
. (8)

It follows from the theorem that if at a point z0 ∈G the matrix F ′ is of maximal
rank (equal to n), then the level set {z ∈G |F(z) = F(z0)} near z0 is a simple m-
dimensional manifold of class Cr , which is parametrized by the implicit function
defined by the equation F(z)− F(z0)= 0.
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Fig. 13.1 The image of a small neighborhood of (a, b)

Proof Define an auxiliary map � :G→R
m+n by the formula

�(x,y)= (
x,F (x, y)

) (
(x, y) ∈G

)
.

Obviously, � ∈ Cr(G,Rm+n), �(a,b)= (a,0), and

�′ =
(

I 0
F ′x F ′y

)

,

where I is the unit m×m matrix. The map � transforms points satisfying Eq. (7)
into points lying in the subspace R

m × {0}, which will be identified with R
m. Since

det(�′(x, y))= det(F ′y(x, y)) �= 0 in a neighborhood of (a, b), the local invertibility
theorem implies that there exists a cube Q0 =Q′ ×Q contained in G and centered
at this point such that the restriction of � to this cube is a diffeomorphism. The
set G0 = �(Q0) is open and contains the point �(a,b) = (a,0). Denote by �

the map defined in G0 as the inverse to the restriction of � to Q0. Since � does
not change the first m coordinates, the inverse map has the same property. Hence
�(u,v) = (u,H(u, v)), where H : G0 → R

n. The intersection G0 ∩ R
m is open

in R
m. Hence there exists a cube P ⊂R

m centered at a such that P ⊂G0 ∩R
m (see

Fig. 13.1).
Given x ∈ P , we set f (x) = H(x,0) and show that P , Q and f satisfy the

assumptions of the theorem. First of all, it is clear that f (P ) ⊂ Q, since �(P ×
{0}) ⊂ �(G0) = Q0. Furthermore, f ∈ Cr(P,Rn), since � ∈ Cr(G0,R

m+n) by
Theorem 13.7.4. Finally, for x ∈ P and y = f (x), we have

(
x,F (x, y)

)=�(x,y)=�
(
�(x,0)

)= (x,0),

whence F(x,f (x))= 0. Differentiating this equation yields, by Proposition 13.7.1,
(

I 0
F ′x F ′y

)

·
(

I

f ′(x)

)

=
(
I

0

)

,
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where the left-hand side is evaluated at y = f (x). In particular, this implies that

F ′x
(
x,f (x)

)+ F ′y
(
x,f (x)

)
f ′(x)= 0.

Multiplying this equation on the left by [F ′y(x, f (x))]−1, we obtain (8).
It remains to verify that in P × Q Eq. (7) defines a unique implicit function.

Indeed, if x ∈ P , y ∈ Q, and F(x, y) = 0, then �(x,y) = (x,0). Acting on this
equation by � , we obtain

(x, y)=�
(
�(x,y)

)=�(x,0)= (
x,H(x,0)

)= (
x,f (x)

)
,

whence y = f (x). �

Note that the local invertibility theorem can in turn be derived from the implicit
function theorem. For this, given a smooth map T :O→ R

m satisfying the condi-
tion det(T ′(x0)) �= 0, it suffices to do the following: for (x, y) ∈ R

m ×O, consider
the map F(x, y) = T (y) − x and apply to it the implicit function theorem at the
point (a, b), where a = T (x0) and b= x0.

13.7.7 Now we apply the obtained result to prove the equivalence of the two defini-
tions of a smooth manifold (see Sect. 8.1.1).

Theorem Let M ⊂R
m, 1 � k <m and 1 � r �+∞. Then for every point p in M ,

the following two assertions are equivalent:

(I) there exists a neighborhood U ⊂ R
m of p such that the intersection M ∩U is

a simple k-dimensional manifold of class Cr ;
(II) there exist a neighborhood Ũ ⊂ R

m of p and functions F1, . . . ,Fm−k of class
Cr defined in Ũ such that x ∈M ∩ Ũ if and only if

F1(x)= · · · = Fm−k(x)= 0, (9)

and the vectors gradF1(p), . . . , gradFm−k(p) are linearly independent.

Proof (I)⇒(II). Let � ∈ Cr(O,Rm) be a parametrization of the intersection
M ∩U , ϕ1, . . . , ϕm be its coordinate functions, and p =�(t0). By the definition of
a parametrization (see Sect. 8.1.1), � is a homeomorphism between O and M ∩U ,
with rankdt0� = k. Changing, if necessary, the order of the coordinates, we may
assume that the first k rows of the Jacobi matrix are linearly independent. In this
case, �= D(ϕ1,...,ϕk)

D(t1,...,tk)
(t0) �= 0. Identify the space R

m with the product Rk × R
m−k ,

and let L be the canonical projection of Rm onto R
k .

First we will prove that near p the manifold M coincides with the graph of a
smooth map defined in a neighborhood of L(p).

Since the Jacobian of the composition L ◦� at the point t0 is equal to � and,
consequently, does not vanish, we may use the local invertibility theorem 13.7.5:
the composition L ◦� is a diffeomorphism between some neighborhoods W and



756 13 Appendices

Fig. 13.2 Schematic construction of the map f

V of the points t0 and L(p). Therefore, the restriction of L to �(W) is one-to-one,
and hence every point x in �(W) is determined by its first k coordinates, i.e., by the
vector x′ = L(x) lying in V (see Fig. 13.2).

In other words, �(W) is the graph of a map f : V → R
m−k . To prove that f is

smooth, consider the map � : V →W inverse to the restriction of L ◦� to W (this
is a map of class Cr ). Since x′ = L ◦�(�(x′)) for x′ ∈ V and x′ = L(x′, f (x′)),
we have (x′, f (x′))=�(�(x′)). Hence f ∈ Cr(V,Rm−k), by the r-smoothness of
� and � . So, �(W) is the graph of a map of class Cr .

Now we will prove that �(W) is the intersection of m− k zero level surfaces of
smooth functions defined in a neighborhood of p. Indeed, since �(W) is relatively
open in M , there exists an open set Ũ ⊂ R

m such that �(W) =M ∩ Ũ . We may
assume without loss of generality that Ũ ⊂ V ×R

m−k (otherwise take the intersec-
tion of these sets). For j = 1, . . . ,m− k, we define functions (of class Cr ) in Ũ by
the formula Fj (x) = fj (L(x)) − xk+j , where the fj are the coordinate functions
of f . Then the inclusion x ∈M ∩ Ũ =�(W) means that x ∈ �f and, consequently,
is equivalent to (9). Furthermore, the gradients of the functions F1, . . . ,Fm−k are
linearly independent, since the rank of the matrix

⎛

⎜
⎝

gradF1
...

gradFm−k

⎞

⎟
⎠=

⎛

⎜
⎜
⎝

∂F1
∂x1

· · · ∂F1
∂xk

−1 · · · 0
...

...
...

. . .
...

∂Fm−k

∂x1
. . .

∂Fm−k

∂xk
0 . . . −1

⎞

⎟
⎟
⎠

is obviously equal to m− k.
Thus a smooth manifold in the sense of the first definition is a smooth manifold

of the same class in the sense of the second definition too.
Now we prove that the converse is also true: (II)⇒(I).
Since at p the gradients of the functions F1, . . . , Fm−k are linearly inde-

pendent, we may (and will) assume that, up to the order of the coordinates,
D(F1,...,Fm−k)
D(xk+1,...,xm)

(p) �= 0. Assuming, as before, that Rm = R
k × R

m−k , we identify a
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point x ∈ R
m with a pair (u, v), where u ∈ R

k , v ∈ R
m−k , and the point p with a

pair (a, b). By the implicit function theorem 13.7.6, there exist open cubes P ⊂R
k

and Q⊂R
m−k centered at a and b, respectively, and a map f ∈ Cr(P,Rm−k) such

that

U = P ×Q⊂ Ũ , f (P )⊂Q,

and x = (u, v) ∈ M ∩ U if and only if v = f (u). Hence the map u �→ �(u) =
(u,f (u)), where u ∈ P , is a parametrization of the M-neighborhood M ∩U of p.
Obviously, � ∈ Cr(P,Rm) and the rank of the Jacobi matrix �′ is equal to k at
all points of P . Thus U is a neighborhood of p satisfying the assertion I of the
theorem. �

13.7.8 In conclusion of this appendix, we will obtain a useful result on the local
structure of a smooth function. It turns out that its graph in a neighborhood of a
non-singular critical point coincides, up to a diffeomorphism arbitrarily close to a
rigid motion, with the graph of a quadratic form.

First we establish an algebraic lemma, which is a formulation of the well-known
algorithm for bringing a quadratic form to a diagonal form convenient for our pur-
poses. A square m×m matrix will be identified with a point of Rm2

. The Cartesian
coordinates of a point x ∈ R

m will be denoted by the same letter with the corre-
sponding subscript: x = (x1, . . . , xm).

Lemma 1 For every invertible diagonal m×m matrix A there exist a neighborhood
U of A and an infinitely smooth map ω : U �→ R

m2
such that the linear change of

variables x = ω(B)(y) brings the quadratic form 〈B(x), x〉 to a diagonal form.
More precisely,

〈
B(x), x

〉= 〈
A(y), y

〉
for x = ω(B)(y), y ∈R

m. (10)

Furthermore, ω(A) is the unit matrix.

Proof We proceed by induction on the dimension. For m= 1, the claim is obvious:
we can identify the matrices A and B with numbers a (a �= 0) and b, respectively,
and take the interval (a − |a|, a + |a|) as U . In this case, the map ω defined by the

formula ω(B)=
√ |b|
|a| has all the required properties. In particular, ω(A)= 1.

Now we assume that our claim is true for (m− 1)× (m− 1) matrices and prove
it for m×m matrices. Denote the diagonal elements of A by a1, . . . , am. The vec-
tor obtained from x by deleting the last coordinate and the matrix obtained from A

by deleting the last row and the last column will be denoted by x̃ and Ã, respec-
tively. The neighborhood corresponding to Ã by the induction hypothesis and the
corresponding map will be denoted by Ũ and ω̃.

Let Q(x) = 〈B(x), x〉 be the quadratic form corresponding to a matrix B with
entries bjk (j, k = 1, . . . ,m). To simplify the formulas, we assume that B is sym-
metric (otherwise replace it with the matrix 1

2 (B + BT ); the quadratic form will
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remain the same). If bmm �= 0, we write down Q(x) completing the square in the
last coordinate:

Q(x)= bmmx2
m + 2xm

∑

k<m

bmkxk +
∑

j,k<m

bjkxjxk

= bmm

(

xm + 1

bmm

∑

k<m

bmkxk

)2

− 1

bmm

(∑

k<m

bmkxkm

)2

+
∑

j,k<m

bjkxj xk.

If |am − bmm| < |am|, then the sign of bmm coincides with that of am. This allows
us to write Q(x) in the form

Q(x)= Q̃(̃x)+ amy2
m, (11)

where

Q̃(̃x)=
∑

j,k<m

bjkxj xk − 1

bmm

(∑

k<m

bmkxk

)2

,

ym =
√
|bmm|
|am|

(

xm + 1

bmm

∑

k<m

bmkxk

)

.

Let C be the symmetric matrix corresponding to the quadratic form Q̃. It depends
continuously on the elements of B and is arbitrarily close to Ã if B is sufficiently
close to A. Fix a neighborhood U of A such that for B ∈ U , the matrix C lies in Ũ

and |am − bmm|< |am|. It remains to put

ω(B)(x)= (
ω̃(C)(̃x), ym

)
.

Then, by the induction hypothesis, Q̃(̃x)= 〈Ã(ỹ), ỹ〉 =∑
k<m aky

2
k , and hence (11)

yields

Q(x)= Q̃(̃x)+ amy2
m =

∑

k<m

aky
2
k + amy2

m =
〈
A(y), y

〉
.

It follows from the construction that the map ω is infinitely smooth (since, by the
induction hypothesis, ω̃ is infinitely smooth). If B = A, then ym = xm and, by the
induction hypothesis, ω̃(Ã) is the unit matrix. Hence the matrix ω(A) is also unit. �

Equation (10) means that 〈B(ω(B)(y)), ω(B)(y)〉 = 〈A(y), y〉 for all y ∈ R
m,

i.e., that ω(B)T ◦ B ◦ ω(B) = A. Since det(A) �= 0, the matrix ω(B) is always
invertible.

Lemma 2 (Hadamard) Let O ⊂ R
m be a convex neighborhood of the origin,

f ∈ Cr(O), r = 1,2, . . . ,∞. Then there exist functions g1, . . . , gm ∈ Cr−1(O) such
that

f (x)− f (0)= g1(x)x1 + · · · + gm(x)xm for every x ∈O.
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If f is compactly supported and f (0)= 0, then the functions gk can also be assumed
to be compactly supported.

Proof Fix x ∈O and set h(t)= f (tx) for t ∈ [0,1]. Clearly,

h(1)= f (x), h(0)= f (0), and h′(t)=
m∑

k=1

xk
∂f

∂xk
(tx).

Integrating the last equation, we see that

f (x)− f (0)=
∫ 1

0
h′(t) dt =

m∑

k=1

xk

∫ 1

0

∂f

∂xk
(tx) dt.

By Theorem 7.1.5, the functions x �→ ∫ 1
0

∂f
∂xk

(tx) dt belong to Cr−1(Rm). However,
they may not be compactly supported, even if f is. To obtain the desired functions
in this case, provided that f (0)= 0, put gk(x)=ψ(x)

∫ 1
0

∂f
∂xk

(tx) dt , where ψ is an
infinitely differentiable compactly supported function equal to one on suppf . �

The main result we want to prove, which is sometimes called Morse’s lemma,
shows that by replacing a linear transformation with a diffeomorphism, one can
obtain a local analog of Lemma 1 for any sufficiently smooth function in a neigh-
borhood of a non-degenerate critical point.

Recall that a critical point of a function f is a point at which the gradient of f

vanishes. It is called non-degenerate if the Hessian matrix (the matrix of the second-
order partial derivatives) of f at this point is invertible.

Theorem (Morse6) Let O ⊂ R
m and f ∈ Cr(O) (r = 3,4, . . . ,∞). If p ∈O is a

non-degenerate critical point of f , then there exists a neighborhood V of this point,
V ⊂ O, and a diffeomorphism � of class Cr−2 defined in V such that J�(p) = 1
and for x ∈ V , y = (y1, . . . , ym)=�(x)− p,

f (x)− f (p)=
m∑

k=1

aky
2
k ,

where 2ak are the eigenvalues of the Hessian matrix of f computed at p.

Removing the condition J�(p)= 1 and setting zj =
√|aj |yj (j = 1, . . . ,m), we

can (up to the order of the coordinates) write the increment of f in a neighborhood
of p in the form f (x) − f (p) = ∑r

j=1 z
2
j −

∑s
j=1 z

2
r+j , where r and s are the

number of positive and negative eigenvalues of the Hessian matrix at p, respectively.

6Harold Calvin Marston Morse (1892–1977)—American mathematician.
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Proof We will assume that the set O is convex and p = 0. By Hadamard’s lemma,
there exist functions g1, . . . , gm ∈ Cr−1(O) such that

f (x)− f (0)= x1g1(x)+ · · · + xmgm(x)

in O and gk(0) = f ′xk (0) = 0. Again applying Hadamard’s lemma, we see that for
x ∈O and every j = 1, . . . ,m,

gj (x)= x1hj1(x)+ · · · + xmhjm(x),

where hjk ∈ Cr−2(O). Substituting the obtained expansions of gj into the formula
for the increment of f , we obtain

f (x)− f (0)=
m∑

j,k=1

hjk(x)xj xk =
m∑

j,k=1

hjk(0)xj xk + o
(‖x‖2)

. (12)

By Taylor’s formula, the quadratic form on the right-hand side of this equation is
half the second differential, so that twice the matrix A= (hjk(0))mj,k=1 is precisely
the Hessian matrix of f at 0.

Making, if necessary, an appropriate orthogonal change of variables, we can
bring the matrix A to a diagonal form. Hence in what follows we assume that the
quadratic form 〈A(x), x〉 has the form

∑n
k=1 akx

2
k . Setting Ax = (hjk(x))

m
j,k=1, we

can rewrite (12) as

f (x)− f (0)= 〈
Ax(x), x

〉
. (13)

Note that Ax →A0 =A as x→ 0; hence for x sufficiently close to zero, the matrix
Ax lies in the neighborhood U from Lemma 1. Therefore, for such x,

〈
Ax(t), t

〉= 〈
A(s), s

〉
, where t ∈R

m, s = (
ω(Ax)

)−1
(t),

and ω is the diffeomorphism constructed in Lemma 1. For t = x, this allows us to
rewrite (13) in the form

f (x)− f (0)= 〈
A(y), y

〉
,

where y = (ω(Ax))
−1(x) = �(x) (as we mentioned after Lemma 1, the matrix

ω(B) is invertible for B ∈ U ). The map � is the composition of the map x �→ Ax ,
the map ω, the operation of inverting the matrix, and a bilinear map, of which
the first one is of class Cr−2 and the remaining ones are of class C∞. Hence
� ∈ Cr−2(V ,Rm). Let us show that J�(0)= 1. Indeed, since ω(A0)= ω(A)= I is
the unit matrix, we have ω(Ax)= I +�(x), where �(x)→ 0 as x→ 0. Therefore,

�(x)= (
I +�(x)

)−1
(x)= x + o(x) as x→ 0,

i.e., �′(0)= I . By the local invertibility theorem, � is a diffeomorphism in a neigh-
borhood of the origin, which is the neighborhood V that we sought. �
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Charge (real, complex), 11.1.1
Chebyshev’s inequality, 4.4.4
Codimension of a manifold, 8.1.1
Compactly supported function, 7.5.3, 12.2.1
Complete family of functions, 10.1.5

measure, 1.4.3
Concave function, 13.4.3
Condition existence convolution, 7.5.1
Continuity in the mean, 9.2.4
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Continuity in the mean (cont.)
of a measure, from above, from below,

1.3.3, 1.3.4
conditional, 1.3.4

of a charge, from above, from below, 11.1.2
Convergence almost everywhere, 3.3.1

uniform, 3.3.6
in measure, 3.3.1
in the mean, 9.1.1
pointwise, 3.1.4
uniform, of an improper integral, 7.4.2

Convex body, 2.5.5 13.4.1
function, 13.4.3
hull, 13.4.1
polyhedron, 13.4.1
set, 13.4.1

Convolution of functions, 7.5.1
Coordinate line, 6.2.3, 8.1.2

neighborhood, 8.1.1
Countable additivity, 1.3.1, 11.1.1

subadditivity, 1.3.2, 1.4.2
Counting measure, 1.3.1
Cross sections of a set, 5.2.1
Curve, 8.1.1
Cylinder set, 5.6.1

D
Decomposition Jordan, 11.1.7

Hahn, 11.1.7
Lebesgue, 11.2.3

Density of a measure, 4.5.3
of a charge with respect to a measure,

11.1.6
of an additive function, 6.3.1
point, 2.7.3

Derivative of a measure, 11.3.1
Deviation in the mean, 9.1
Diagonal sequence theorem, 3.3.7
Diameter of a set, 1.1.6
Diffeomorphism, 6.2 13.7.3

theorem, 13.7.4
Differential of a map, 13.7.1
Dimension of a manifold, 8.1.1
Dini’s test, 10.3.4
Dirichlet–Jordan test, 10.3.4
Dirichlet kernel, 10.3.3, 10.4.5, 10.4.8

problem, 8.7.9, 8.7.10, 8.7.13
test, 4.6.6, 7.4.6

Discrete measure, 1.3.1
Disjoint decomposition lemma, 1.1.4

union, 1.1.1
Distance from a point to a set, 3.4.1, 13.2.1
Distribution function (increasing, decreasing),

6.4.1, 6.4.3

Divergence, 8.6.6
Dual space, 12.1.1

E
Eσ (Eδ) set, 1.5.2
Egorov’s theorem, 3.3.6
Epigraph of a function, 13.4.3
ε-cover of a set, 2.6.1
ε-neighborhood of a set, 2.6.3
Equivalent functions, 4.3.2
Ergodic map, 10.2.3
Essential supremum, 4.4.5
Essentially separably valued function, 13.6.6
Euler–Gauss formula, 7.2.3
Euler–Poisson integral, 4.6.3, 5.3.2, 6.2.4,

6.4.2
Euler’s constant, 7.2.3

reflection formula, 7.2.5
Expanding map, 2.6.2

F
Fσ set, 1.1.3
Fatou’s theorem, 4.8.6
Fejér kernel, 10.4.1 10.4.7

sums, 10.4.1, 10.4.7
theorem, 10.4.1

Filter, 1.1 (Ex. 12)
Finite additivity, 1.2.1

subadditivity, 1.2.3, 1.4.2
volume, 1.2.2

Fixed point, 6.6.3
Flow of a vector field, 8.5.3
Fourier coefficients of a function, 10.1.3,

10.1.6, 10.2.1
of a measure, 10.3.7
of a charge, 11.1.9, 12.3.3
integral, 10.5.3
inversion formula, 10.5.3, 10.5.4
series of a function, 10.1.3, 10.1.6, 10.2.1,

10.3.1
of a measure, 10.3.7
of a charge, 11.1.9

sums, 10.3.1
transform, of a function, 6.2.5, 10.5.1,

10.5.8
of a measure, 10.5.5

Fréchet’s theorem, 3.4.2
Fresnel integral, 4.6.4, 7.4.8
Fubini’s theorem, 5.3.3, 11.3.3, 11.3.5
Function of bounded variation, 4.11.1

almost surely separably valued, 13.6.6
Functional, 4.2.5

bounded, 12.3.1
linear, 12.1
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Functional (cont.)
order continuous, 12.1.2
positive, 12.2.2

Fundamental theorem of calculus, 4.6.1, 8.5.2,
13.1.3

G
Gδ set, 1.1.3
Gagliardo–Nirenberg–Sobolev inequality,

5.4.4, 8.4.5
Gamma function, 4.6.3, 5.3.2, 7.2.1–7.2.8,

7.3.2–7.3.8
Gauss–Ostrogradsky theorem, 8.6.5
Global parametrization, 8.1.1
Gram determinant, 2.5.3

matrix, 2.5.3
Graph of a function, 5.2.3
Green’s function, 8.7.9

identity, 8.6.7
theorem, 8.7.2

H
Hadamard’s inequality, 2.5.4

lemma, 13.7.8
Hahn–Banach theorem, 13.6.1
Hahn decomposition, 11.1.7
Harmonic conjugate, 8.7.8

function, 8.7.1
Harnack’s inequality, 8.7.11
Hausdorff dimension, 2.6.6

measure, 2.6.3
metric, 8.8.5

Hermite functions, 10.2.4, 10.5.6
polynomials, 10.2.4

Hessian matrix, 7.3.7
Hölder’s inequality, 4.4.5
Homothety, 2.5.2

I
Image of a measure, 6.1.1

weighted, 6.1.1
Implicit function theorem, 13.7.6
Improper integral, 4.6.4

convergent (divergent), 4.6.4
absolutely, conditionally, 4.6.5

Independent functions, 6.4.4
Induced algebra of sets, 1.1.2
Inner measure, 2.2.2
Integrable function, 4.1.3
Integral, 4.1.2, 4.1.3, 13.1.2, 13.6.3

Euler–Poisson, 4.6.3, 5.3.2, 6.2.4, 6.4.2
Fourier, 10.5.3
Fresnel, 4.6.4, 7.4.8
improper, 4.6.4

over a path, 8.5.2
with respect to a function of bounded

variation, 4.11.4
with respect to a charge, 11.1.8

Inverse transform, 10.5.4
Isodiametric inequality, 2.8.3
Isoperimetric inequality, 2.8.2, 10.2.1, 13.4.7

J
Jacobi matrix, 13.7.1

of a map, 6.2.1, 8.1.1
Jacobian, 6.2, 8.1
Jensen’s inequality, 13.4.3
John’s theorem, 2.5.5
Joint distribution of functions, 6.4.4
Jordan decomposition, 11.1.7
Jump function, 4.10.4

K
k-dimensional area, 8.2.1

manifold, 8.2.1
Khintchine’s inequality, 6.4.5
Kolmogorov’s inequality, 10.2.7
Kronrod–Federer theorem, 8.4.2

L
Lloc condition, 7.1.2
L p norm, 9.1.1
Lagrange’s inequality, 13.7.2

lemma, 9.3.6
Laguerre functions, 10.2 (Ex. 3)
Laplace asymptotic formula, 7.3.2

equation, 8.7.9
operator, 8.7.1

Lebesgue condition (L), 4.8.3
decomposition, 11.2.3
differentiation theorem, 4.9.2, 4.9.3, 11.3.4
dominated convergence theorem, 3.3.2,

4.8.3, 4.8.4
measurable set, 2.1.2, 8.3
measure, 2.1.2

outer, inner, 2.6.2
point, 4.9.2
sets 1st-4th kind, 3.1.1

Legendre duplication formula, 7.2.4
polynomials, 10.2.4

Leibniz rule, 7.1.5, 7.4.5
Length of a path, 8.2.3

of an arc, 8.2.3
Levi’s theorem, 4.2.2, 4.8.2
Lindelöf’s theorem, 8.1.5
Linear functional, 12.1
Liouville’s theorem, 8.7.5
Lipschitz condition, 2.3.1

of order α, 2.3 (Ex. 6), 10.4.5
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Lipschitz condition (cont.)
constant, 2.3.1
manifold, 8.8.1

Local parametrization, 8.1.1
Localization principle, 10.3.3

property, 7.6.1
Locally compact space, 12.2.1

potential vector field, 8.5.2
summable function, 4.9.2, 7.5.3

Logarithmic potential, 8.7.1
Logarithmically convex function, 7.2.8
Lower semicontinuity of the area, 8.8.5
Luzin–Denjoy theorem, 10.3.10
Luzin’s theorem, 3.4.3

M
M-neighborhood, 8.1.1
Manifold, 8.1.1

piecewise smooth, 8.1.1
simple, 8.1

Lipschitz, 8.8.1
smooth, 8.1.1

Map bi-Lipschitz, 8.8.1
differentiable, 13.7.1
ergodic, 10.2.3
expanding, 2.6.2

Maximal function, 4.9.1, 9.1.4
Maximum principle, 8.7.7
Mean value theorem, 4.7.2, 13.1.2

for harmonic functions, 8.7.5
Measurable function, 3.1.2

rectangle, 5.1.1
set, 1.3.4
space, 3.1

Measure, 1.3.1
absolutely continuous, 11.2.1
Borel, 2.2.3
Borel–Stieltjes, 4.10.3
complete, 1.4.3
counting, 1.3.1
discrete, 1.3.1
finite, see volume, finite,
Hausdorff, 2.6.3
inner, 2.2.2
Lebesgue, 2.1.2
Lebesgue–Stieltjes, 4.10.3
outer, 1.4.2

Hausdorff, 2.6.1
Radon, 12.2.2
regular, 2.2.3, 13.3.1
σ -finite, see volume, σ -finite,
space, 1.3.4

Measures, mutually singular, 11.2.3
Mesh of a partition, 4.7.3

Metric projection, 13.4.2
Minkowski area, 2.8.2

inequality, 4.4.6
Monotone class of sets, 1.6.3
Monotonicity of a volume, 1.2.3

of an outer measure, 1.4.2
Morse’s theorem, 13.7.8

N
Natural parametrization, 8.2.3
Negligible set, 8.6.4
Neighborhood of a point on a manifold, 8.1.1
Non-trivial part of the boundary of a beam,

8.6.2
Norm Euclidean, 1.1.6

of a function, 9.1.1
of a functional, 12.3.1

Normal, outer, 8.6.2, 13.4.1
corresponding to a parametrization, 8.3.4

O
Open mapping theorem, 13.7.3
Order continuous functional, 12.1.2
Ordinary volume, 1.2.2
Orientation corresponding to a

parametrization, 8.5.2
on a smooth curve, 8.5.2

Oriented boundary of a planar standard
compactum, 8.6.7

curve, 8.5.2
Orthogonal basis, 10.1.5

functions, 10.1.2
system, 10.1.2

Orthonormal system, 10.1.2
Outer measure, 1.4.2

generated by a measure, 1.4.3
p-dimensional Hausdorff, 2.6.1
normal, 8.6.2, 13.4.1
side of the boundary, 8.6.2, 8.6.5

P
Parallelepiped, 1.1.6, 2.5.3

accompanying, 8.3.1
rectangular, 1.1.6, 2.5.3

Parametrization canonical, 8.1.3
global, local, 8.1.1
natural, 8.2.3
smooth, 8.1.1

Parseval’s identity, 10.1.5, 10.2.1
Partition admissible, 3.2.1, 13.6.1

canonical, 1.1.3
of a set, 1.1.1
of unity, 8.1.6, 12.2.3

subordinate to a cover, 8.1.8, 12.2.3
tagged, 4.7.3
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Path rectifiable, 8.2.3
smooth, piecewise smooth, 8.1.2

Periodic approximate identity, 7.6.5
Piecewise smooth manifold, 8.1.1

path, 8.1.2
Plane, 2.1.3, 13.4.1

supporting, 13.4.1
tangent, 8.1.2

Point mass potential, 8.7.1
Pointwise convergence, 3.1.4
Poisson formula, 8.7.10

kernel, for the ball, 8.7.10
for the half-space, 8.7.13

summation formula, 10.6.1, 10.6.2
Polar coordinates, 6.2.4, 6.2.5
Polynomials Hermite, 10.2.4

Legendre, 10.2.4
Positive functional, 12.2.2
Positivity set, 11.1.3
Potential vector field, 8.5.2
Product of measure spaces, 5.1.3

measure, 5.1.3
infinite, 5.6.1

of semirings, 1.1.5
of volumes, 1.2.4

R
Rademacher functions, 6.4.5, 10.2.6

theorem, 11.4.2
Radon measure, 12.2.2
Radon–Nikodym theorem, 11.2.1
Ray, 13.4.1
Recurrence theorem, 6.1.3
Rectangular parallelepiped, 1.1.6, 2.5.3
Rectifiable arc, 8.2.3

path, 8.2.3
Regular cover, 2.7.4, 4.9.4

measure, 2.2.3, 13.3.1
part of the boundary, 8.6.4

Regularity of a measure, 2.2.2, 2.2.3
outer, inner, 13.3.1
of the Lebesgue measure, 2.2.2

Retraction theorem, 6.6.2
Riemann–Lebesgue theorem, 9.2.5
Riemann sum, 4.7.3
Riesz–Fischer theorem, 10.1.4
Riesz–Kakutani theorem, 12.2.2
Riesz’s theorem, 3.3.4
Rigid motion in R

m, 2.4.1
Ring of sets, 1.1.2

S
Sampling formula, 10.5.1
Sard’s theorem, 13.5.1, 13.5.2

Semiring of cells, 1.1.6
of sets, 1.1.4

Separated sets, 2.6.2
Set of full measure, 4.3.1

measurable with respect to an outer
measure, 1.4.2

negligible, 8.6.4
Side of a smooth surface, 8.5.3

corresponding to a parametrization, 8.5.3
of a graph (upper, lower), 8.5.3

σ -algebra of sets, 1.1.2
σ -compact space, 12.2.9
σ -finite volume, 1.2.2
Simple arc, 8.2.3

function, 3.2.1, 13.6.1
Lipschitz manifold, 8.8.1
manifold, 8.1

Smooth manifold, 8.1.1
parametrization, 8.1.1
path, 8.1.2

Sobolev approximate identity, 7.6.2
Space dual, 12.1.1

locally compact, 12.2.1
measurable, 1.3.4, 3.1.1
measure, see measure space,
of measurable functions, 12.1.1
σ -compact, 12.2.9

Spherical coordinates, 6.2.4, 6.2.5
Standard compact set, 8.6.4
Step function, 9.2.2
Stirling’s formula, 7.2.6
Strong monotonicity of a volume, 1.2.3
Strongly measurable function, 13.6.1
Subadditivity countable, 1.3.2, 1.4.2

finite, 1.2.3, 1.4.2
Subgraph of non-negative function, 5.2.3
Subspace affine, 13.4.1

tangent, 8.1.2
affine, 8.1.2

Sum of a family of numbers, 1.2.2
Summable family, 1.2.2

function, 4.1.3, 13.6.3
Support of a function, 7.5.3, 12.2.1
Supporting plane, 13.4.1
Surface, 8.1.1

two-sided, 8.5.3
Symmetric system of sets, 1.1.1
Symmetry principle, 8.7.12

T
Tagged partition, 4.7.3
Tangent plane, 8.1.2

subspace, 8.1.2
vector, 8.1.2
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Theorem on a monotone class, 1.6.3
on a partition of unity subordinate to

a cover, 8.1.8
on a smooth descent, 8.1.7

partition of unity, 8.1.6
on approximation by simple functions,

3.2.2
on characterization of bases, 10.1.5
on continuity in the mean, 9.2.4
on the limit of the Riemann sums, 4.7.3,

4.8.5
on the local invertibility, 13.7.5
on the measure of the subgraph, 5.2.3
on the uniqueness of an extension of a

measure, 1.5.1
Three chords lemma, 13.4.3
Tietze–Urysohn theorem, 13.2.2
Tonelli’s theorem, 5.3.1
Total variation of a function, 4.11.1

of a charge, 11.1.4
Translation, 2.4.1

of a function, 9.2.4
Triangle inequality, 9.1.1
Trigonometric polynomials, 10.2.1

system, 10.2.1, 10.2.2
Trivial part of the boundary of a beam, 8.6.2
Two-sided surface, 8.5.3

U
Uncertainty principle, 10.5.9
Uniform convergence, of an improper integral,

7.4.2

V
De la Vallée Poussin’s theorem, 4.8.7
Variation of a charge, 11.1.4

positive, negative, 11.1.7
of a function, 4.11.1

Vector field, 6.6.4, 8.5.1
locally potential, 8.5.2
potential, 8.5.2

Vitali cover, 2.7.2
theorem, 2.7.2, 4.8.7

Volume, 1.2.2
continuous from above, from below, 1.3.4
countably additive, 1.3.1

subadditive, 1.3.2
finite, 1.2.2
of a ball, 5.4.2
ordinary, 1.2.2
σ -finite, 1.2.2

W
Walsh functions, 10.2.5
Weak contraction, 2.6.2
Weakly measurable function, 13.6.6
Weierstrass approximation theorem, 7.6.4,

7.6.5
formula, 7.2.3

Weight (function), 4.5.3, 6.1.1
Weighted image of a measure, 6.1.1
Wide-sense measurable function, 4.3.3

Y
Young’s inequality, 9.3.2

Z
Zero-one law, 6.4.4
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