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Preface

This book originated from the notes I kept while teaching the graduate
course Analysis on Lebesgue’s theory of integration and differentiation at
San Francisco State University (SFSU). This course was rightly considered
by many students as a difficult one, mainly because some ideas and proofs
were presented in their textbooks in unnatural and counterintuitive ways,
albeit rigorous ones. These students also had problems connecting the mate-
rial they learned in undergraduate real analysis classes with this course. The
Mathematics Department of SFSU is a master’s mathematics department.
Most students who received a MS degree from our department do not pursue
a higher degree. When teaching this course I wanted my students to get a feel
for the theory, appreciate its importance, and be ready to learn more about
it, should the need arise. Consequently, my goal in writing this book was to
present Lebesgue’s theory in the most elementary way possible by sacrificing
the generality of the theory. For this, the theory is built constructively for
measures and integrals over bounded sets only. However, the reader will find
all main theorems of the theory here, of course not in their ultimate generality.

The first chapter presents selected topics from the real analysis that I
felt are needed to review in order to fill the gaps between what the reader
probably learned some time ago or missed completely and what is required
to master the material presented in the rest of the book. For instance, one
can hardly find properties of summable families (Sect. 1.4) in textbooks on
real analysis. Several conventions that are used throughout the book are also
found in Chap. 1.

The Lebesgue measure of a bounded set and measurable functions are
the subject of the second chapter. Because bounded open and closed sets
have relatively simple structures, their measures are introduced first. Then the
outer and inner measures of a bounded set are introduced by approximating
the set by open and closed sets, respectively. A measurable set is defined as
a bounded set for which its inner and outer measures are equal; its Lebesgue
measure is the common value of these two measures. We proceed then by
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VIII Preface

establishing standard properties of the Lebesgue measure and measurable sets.
Lebesgue measurable functions and their convergence properties are covered
in the last two sections of Chap. 2. Undoubtedly, the highest point of this
chapter is Egorov’s Theorem, which is important in establishing convergence
properties of integrals in Chap. 3.

I follow most expositions in Chap. 3 where main elements of the theory
of Lebesgue integral are presented. Again the theory is developed for func-
tions over bounded sets only. However, the main convergence theorems—the
Bounded Convergence Theorem, the Monotone Convergence Theorem, and
Dominated Convergence Theorem—are proved in this chapter, establishing
the “passage of the limit under the integral sign.”

The main topics of Chap. 4 are Lebesgue’s theorem about differentiability
of monotone functions and his versions of the fundamental theorems of cal-
culus. I chose to present functions of bounded variations (BV-functions) and
their properties first and then prove the Lebesgue theorem for BV-functions.
The proof is elementary albeit a nontrivial one. To make it more accessible,
I dissect the proof into a number of lemmas and two theorems. The last two
sections of Chap. 4 cover absolutely continuous functions and the fundamental
theorems of calculus due to Lebesgue.

A distinguished feature of this book is that it limits attention in Chaps. 2
and 3 to bounded subsets of the real line. In the Appendix, I present a way
to remedy this limitation.

There are 187 exercises in the book (there is an exercise section at the end
of each chapter). Most exercises are “proof” problems, that is, the reader is
invited to prove a statement in the exercise.

I have received help from many people in the process of working on the
drafts of this book. First and foremost, I am greatly indebted to my students
for correcting several errors in the lecture notes from which this text was de-
rived and providing other valuable feedback. I wish to thank my colleague
Eric Hayashi and an anonymous referee for reading parts of the manuscript
carefully and suggesting many mathematical and stylistic corrections. My spe-
cial thanks go to Sheldon Axler for his endorsement of this project and many
comments which materially improved the original draft of the book. Last but
not least, I wish to thank my Springer editor Kaitlin Leach for her support
throughout the preparation of this book.

Berkeley, CA, USA Sergei Ovchinnikov
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1

Preliminaries

Real analysis is a standard prerequisite for a course on Lebesgue’s theories
of measure, integration, and derivative. The goal of this chapter is to bring
readers with different backgrounds in real analysis to a common starting point.
In no way the material here is a substitute for a systematic course in real
analysis. Our intention is to fill the gaps between what some readers may
have learned before and what is required to fully understand the material
presented in the consequent chapters.

1.1 Sets and Functions

We write x ∈ A to denote the membership of an element x in a set A. If x
does not belong to the set A, then we write x /∈ A. Two sets A and B are
equal, A = B, if they contain the same elements, that is,

x ∈ A if and only if x ∈ B, for all x.

A set B is a subset of a set A, denoted by A ⊆ B (equivalently, by B ⊇ A), if

x ∈ B implies x ∈ A, for all x.

Braces are frequently used to describe sets, so

{x : statement about x}
denotes the set of all elements x for which the statement is true. For instance,
the two element set {1, 2} can be also described as

{x ∈ R : x2 − 3x+ 2 = 0}.
The operations of intersection, union, and (relative) complement are

defined by

S. Ovchinnikov, Measure, Integral, Derivative: A Course on Lebesgue’s Theory,
Universitext, DOI 10.1007/978-1-4614-7196-7 1,
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2 1 Preliminaries

A ∩B = {x : x ∈ A and x ∈ B},
A ∪B = {x : x ∈ A or x ∈ B},
�AB = A \B = {x : x ∈ A and x /∈ B},

respectively, where A \B is the difference between sets A and B.
There is a unique set ∅, the empty set, such that x /∈ ∅ for any element x.

The empty set is a subset of any set. A set consisting of a single element is
called a singleton.

The Cartesian product A×B of two sets A and B is the set of all ordered
pairs (a, b) where a ∈ A and b ∈ B. Two ordered pairs (a, b) and (a′, b′) are
equal if and only if a′ = a and b′ = b.

For two sets A and B, a subset f ⊆ A × B is said to be a function from
A to B if for any element a ∈ A there is a unique element b ∈ B such that
(a, b) ∈ f . We frequently write b = f(a) if (a, b) ∈ f and use the notation
f : A → B for the function f . The sets A and B are called the domain and
codomain of the function f , respectively. For a subset A′ ⊆ A the set

f(A′) = {b ∈ B : b = f(a), for some a ∈ A′}

is the image of A′ under f . The set f(A) is called the range of the function
f . The inverse image f−1(B′) of a subset B′ ⊆ B under f is defined by

f−1(B′) = {a ∈ A : f(a) ∈ B′}.

If f(A) = B, the function f is said to be onto. If for each b ∈ f(A) there is
exactly one a ∈ A such that b = f(a), the function f is said to be one-to-one.
A function f : A → B is called a bijection if it is one-to-one and onto. In this
case, we also say that f establishes a one-to-one correspondence between sets
A and B. Given a bijection f : A → B, for each element b ∈ B there is a
unique element a ∈ A for which f(a) = b. Thus the function

f−1 = {(b, a) ∈ B ×A : b = f(a)}

is well defined. We call this function, f−1 : B → A, the inverse of f .
If A and B are sets of real numbers, then a function f : A → B is called

a real function. Real functions are the main object of study in real analysis.
For given sets A and J , a family {ai}i∈J of elements of A indexed by the

set J (the index set) is a function a : J → A, that is, ai = a(i) for i ∈ J . The
set {ai : i ∈ J} is the range of the function a. For F = {ai}i∈J and a ∈ A, we
write a ∈ F if a = ai for some i ∈ J . If J ′ is a subset of the index set J , then
the family {ai}i∈J′ is called a subfamily of the family {ai}i∈J .

If the index set J is the set of natural numbers N = {1, 2, . . .}, a family
{an}n∈N is called a sequence of elements of the set A. It is customary to denote
a sequence by (an) or write it as

a1, a2, . . . , an, . . .
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The element an corresponding to the index n is called the nth term of the
sequence. A sequence is an instance of a family. However, the former has a
distinguished feature—its index set N is an ordered set. Thus the terms of a
sequence (an) are linearly ordered by their indices.

Let F = {Xi}i∈J be a family of sets, that is, each Xi is a set. The inter-
section and union of F are defined by

⋂

i∈J

Xi = {x : x ∈ Xi for all i ∈ J}

and ⋃

i∈J

Xi = {x : x ∈ Xi for some i ∈ J},

respectively. Notations ∩F, ∩X∈FX and ∪F, ∪X∈FX are also common for
these operations.

The following identities are known as De Morgan’s laws:

�X
[ ⋂

i∈J

Xi

]
=
⋃

i∈J

[
�XXi

]
and �X

[ ⋃

i∈J

Xi

]
=
⋂

i∈J

[
�XXi

]
,

that is, the complement of the intersection is the union of the complements,
and the complement of the union is the intersection of the complements
(cf. Exercises 1.2 d and 1.5 b).

A (binary) relation R on a set A is a subset of the Cartesian product of
the set A by itself, R ⊆ A × A. An equivalence relation on A is a relation R
satisfying properties:

(a, a) ∈ R reflexivity

(a, b) ∈ R implies (b, a) ∈ R symmetry

(a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R transitivity

for all a, b, c ∈ A. If R is an equivalence relation on A and a ∈ A, then the set

[a] = {b ∈ A : (b, a) ∈ R}

is called the equivalence class of R containing a.

Theorem 1.1. Let R be an equivalence relation on a set A. Then:

(i) Any two equivalence classes of R are either identical or disjoint.
(ii) The set of equivalence classes partitions the set A, that is, every element

of A belongs to one and only one (distinct) equivalence class.
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Proof.

(i) Suppose that [a] ∩ [b] �= ∅ and let c be an element of this intersection.
Then (c, a) ∈ R and, by symmetry, (a, c) ∈ R. For any x ∈ [a], we have

(x, a) ∈ R, (a, c) ∈ R, and (c, b) ∈ R.

By transitivity, (x, b) ∈ R, that is, x ∈ [b]. Hence, [a] ⊆ [b]. By reversing
the roles of [a] and [b], we obtain [b] ⊆ [a]. Therefore, [a]=[b] if [a] ∩ [b]�=∅.

(ii) Every element a of A is in the equivalence class [a]. This equivalence class
is unique by part (i). �
A family of nonempty subsets {Ai}i∈J of a set A is said to be a partition

of A if ⋃

i∈J

Ai = A and Ai ∩ Aj = ∅, for all i �= j in J .

For a given partition {Ai}i∈J of A, we define a binary relation R on A by

(a, b) ∈ R if and only if a, b ∈ Ai, for some i ∈ J .

It can be readily verified that the relation R is an equivalence relation on A
(cf. Exercise 1.14).

1.2 Sets and Sequences of Real Numbers

Throughout the book the symbols R and Q denote the sets of real and rational
numbers, respectively.

Let a and b be real numbers. A bounded open interval (a, b) is the set
(a, b) = {x : a < x < b}. The sets [a, b) = {x : a ≤ x < b} and (a, b] = {x :
a < x ≤ b} are called half-open intervals. For a ≤ b, a bounded closed interval
is the set [a, b] = {x : a ≤ x ≤ b}. The following sets are unbounded intervals:

(a,+∞) = {x : x > a}, (−∞, a) = {x : x < a} (open),

[a,+∞) = {x : x ≥ a}, (−∞, a] = {x : x ≤ a} (closed),

(−∞,+∞) = R (both).

An interval is any set defined in the foregoing paragraph. The points a
and b are called the endpoints of the respective intervals.

If a > b, then all bounded intervals (a, b), [a, b), (a, b], and [a, b] are the
empty set. If b = a, the intervals (a, a), [a, a), and (a, a] are the empty set,
while [a, a] = {a}. These intervals are called degenerate. In the book, we
mostly restrict our analysis to nondegenerate intervals.



1.2 Sets and Sequences of Real Numbers 5

The symbols −∞ and +∞ are not elements of R. Sometimes it is con-
venient to add these symbols to R and then call the resulting set R ∪
{−∞,+∞} the extended real numbers. We extend the inequality relation <
to R ∪ {−∞,+∞} by setting −∞ < a and a < ∞ for any a ∈ R.

A nonempty set E of real numbers is said to be bounded above if there is
a real number b, which is called an upper bound for E, such that x ≤ b for all
x ∈ E. Note that if E has an upper bound b then any b′ such that b < b′ is
also an upper bound for E. If a number c is not an upper bound for E, then
there is x ∈ E such that x > c (cf. Exercise 1.16).

The following completeness property is one of the fundamental properties
of the set of real numbers.

The Completeness Property. Let E be a nonempty set of real numbers
that is bounded above. Then among the upper bounds for E there is a least
upper bound.

It is not difficult to show that there can be only one least upper bound
for a bounded set E, the existence of which is asserted by the completeness
property (cf. Exercise 1.17). This least upper bound is called the supremum
of E and denoted by supE.

Similarly, we say that a nonempty set E ⊆ R is bounded below if there is
b ∈ R such that x ≥ b for all x ∈ E. Then the number b is called lower bound
for E. It follows from the completeness property that a nonempty set E of
real numbers that is bounded below has the greatest lower bound which is
called the infimum of E and denoted by inf E (cf. Exercise 1.18).

The concepts introduced above are illustrated by the drawing in Fig. 1.1.

sup Einf E

upper bounds for Elower bounds for E

set E

Figure 1.1. Infimum and supremum of E

A nonempty set of real numbers is said to be bounded if it is both bounded
above and below. Otherwise, the set is called unbounded.

One should distinguish the supremum and the infimum of a bounded
nonempty set from its maximum and minimum that are the greatest and
the least numbers in the set, respectively (cf. Exercise 1.24).

A function f : A → R is said to be bounded if its range f(A) is bounded.
We will write supE = +∞ for a set E that is not bounded above. Similarly,

we will write inf E = −∞ if the set E is not bounded below.
Let E be a set of real numbers that is bounded above. It is clear that an

upper bound u for E is not the supremum of E if and only if there is an upper
bound v for E such that v < u, or equivalently, by letting ε = u − v > 0,
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an upper bound u for E is not the supremum of E if and only if there is
ε > 0 such that x ≤ u− ε for all x ∈ E. We reformulate the last biconditional
statement as follows:

Approximation Property of Supremum. An upper bound u for a set
E is the supremum of E if and only if for each ε > 0 there exists x ∈ E such
that x > u− ε (see the drawing in Fig. 1.2).

u

set E

xu−ε

Figure 1.2. u = supE

As an immediate application of the approximation property, we establish
an important property of closed intervals in the number line.

A family {Ii}i∈J of open intervals is said to be a cover of a set E provided
that E ⊆ ⋃i∈J Ii. By a subcover of a cover of E we mean a subfamily of the
cover that itself also is a cover of E. We use the result of the following theorem
in Chap. 2.

Theorem 1.2. (Heine–Borel Theorem) Every cover of a closed interval by
open intervals contains a finite subcover.

Proof. Let F = {Ii}i∈J be a cover of [a, b] by open intervals. Let us define E to
be the set of points x ∈ [a, b] such that the interval [a, x] is covered by a finite
number of intervals in F. This set is not empty since a ∈ E. Let c = supE.
Because F covers [a, b], the point c belongs to some interval Ik (see Fig. 1.3).

a bcx y

Ik

Figure 1.3. Heine–Borel theorem

By the approximation property of supremum, there is x ∈ E such that
x ∈ Ik. Since [a, c] ⊆ [a, x] ∪ Ik, the interval [a, c] is covered by a finite
subfamily of F. If c = b, then we are done. Suppose that c < b. Then there is
y ∈ Ik such that c < y < b. Hence, the interval [a, y] ⊆ [a, c] ∪ Ik is covered
by a finite subfamily of F. This contradicts our choice of c = supE. It follows
that [a, b] is covered by a finite subfamily of F. �

Now we recall the definition of a convergent sequence of real numbers.
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Definition 1.1. A number a is said to be a limit of a sequence (an) provided
that for any ε > 0 there exists N ∈ N such that

|a− an| < ε, for all n ≥ N

or equivalently
a− ε < an < a+ ε, for all n ≥ N .

Then the sequence (an) is said to converge to the number a and the conver-
gence of (an) is denoted by

an → a or lim an = a.

Note that this definition employs the natural order on the set N.
A sequence of real numbers (an) is said to be bounded above (below) if the

set {an : n ∈ N} is bounded above (below). We will use notations supn an and
infn an for the supremum and infimum of the set {an : n ∈ N}, respectively.

A sequence (an) is said to be increasing (decreasing) provided that an ≤
an+1 (an ≥ an+1) for all n:

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · increasing sequence,

a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ · · · decreasing sequence.

Clearly, an increasing (decreasing) sequence is bounded below (above). A se-
quence is said to be monotone provided it is either increasing or decreasing.

Theorem 1.3. A monotone sequence converges if and only if it is bounded.
A bounded increasing sequence converges to its supremum, whereas a bounded
decreasing sequence converges to its infimum.

Proof. We consider the case when the sequence is increasing. The proof for a
decreasing sequence is similar.

(Necessity.) Suppose an → a. Then, for ε = 1, there is only finite number
of terms an’s that lie outside the interval (a−1, a+1). Thus, (an) is bounded.

(Sufficiency.) Let a = supn an. By the approximation property of supre-
mum, for a given ε > 0 there is N such that aN > a− ε. Because (an) is an
increasing sequence, we have an > a− ε for every n ≥ N . Hence, a− an < ε
for n ≥ N ; that is, lim an = supn an. �

Now let (an) be an arbitrary bounded sequence. Let us define bn =
supk≥n ak = sup{ak : k ≥ n} for n ∈ N. Because

sup
k≥n+1

ak ≤ sup
k≥n

ak

(cf. Exercise 1.25), (bn) is a bounded decreasing sequence. By Theorem 1.3,
the sequence (bn) is convergent. Its limit is called the limit superior of the
sequence (an) and denoted by lim sup an (or by lim an). Thus,
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lim sup an = lim(sup{ak : k ≥ n}). (1.1)

Similarly, the sequence cn = infk≥n ak is a bounded increasing sequence.
Its limit is denoted by lim inf an (or by liman) and called limit inferior of the
sequence (an).

Theorem 1.4. Let (an) be a bounded sequence of real numbers. Then
lim sup an = a if and only if for each ε > 0, there are infinitely many in-
dices n for which an > a − ε and at most finitely many indices n for which
an > a+ ε (cf. Fig. 1.4).

a−ε a+εa

infinitely  many  terms

finitely  many  terms

Figure 1.4. Theorem 1.4

Proof. (Necessity.) Let lim sup an = a. Then, for a given ε > 0, there is N
such that (cf. (1.1))

a− ε < sup
k≥n

ak < a+ ε, for all n ≥ N . (1.2)

Suppose that there are only finitely many indices n for which an > a − ε
and let m be the greatest of these indices. Then an ≤ a− ε for all n > m. Let
n be an index greater than both m and N . Then supk≥n ak ≤ a − ε, which
contradicts the left inequality in (1.2). Hence there are infinitely many indices
n for which an > a− ε.

By the right inequality in (1.2), supk≥N ak < a+ ε. Therefore, ak < a+ ε
for all k ≥ N . It follows that there are only finitely many indices n for which
an > a+ ε.

(Sufficiency.) Let ε > 0 be a given number. There are only finitely many
indices n for which an > a + ε/2, therefore there is an index N such that
an ≤ a+ ε/2 for all n ≥ N . Hence,

sup
k≥n

ak ≤ a+ ε/2 < a+ ε, for all n ≥ N .

Because there are infinitely many indices n for which an > a− ε, for any
n ≥ N there is k ≥ n such that ak > a− ε. Therefore,

a− ε < sup
k≥n

ak, for all n ≥ N .

It follows that for every ε > 0 there is N such that

a− ε < sup
k≥n

ak < a+ ε, for all n ≥ N ,

that is, lim sup an = a (cf. (1.1)). �

A similar criterion holds for the limit inferior of a bounded sequence; see
Exercise 1.29.
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Example 1.1. Since the set of rational numbers in the interval [0, 1] is
countable, it can be enumerated into a sequence r1, r2, . . . , rn . . .. For any
given ε > 0, there are infinitely many rn’s greater than 1 − ε, and none are
greater than 1 + ε. Thus, lim sup rn = 1. Similarly, lim inf rn = 0.

The result of the next theorem follows almost immediately from the criteria
in Theorem 1.4 and Exercise 1.29 (cf. Exercise 1.32).

Theorem 1.5. A bounded sequence (an) is convergent if and only if
lim inf an = lim sup an. In this case,

lim an = lim inf an = lim sup an.

1.3 Open and Closed Sets of Real Numbers

Definition 1.2. A set G of real numbers is called open provided that for each
point x ∈ G there is an open interval containing x which is contained in G.

All open intervals, including R itself, are open sets. Since the empty set ∅
contains no points, it is vacuously open.

Theorem 1.6. The union of an arbitrary family of open sets is open. The
intersection of a finite family of open sets is open.

Proof. The first claim is obvious. Suppose G =
⋂n

i=1 Gi is a finite intersection
of open sets. If G= ∅, we are done. Suppose that G �= ∅ and let x ∈ G.
Then x ∈ Gi for all 1 ≤ i ≤ n. Because the sets Gi’s are open, there are
open intervals (ai, bi) such that x ∈ (ai, bi) and (ai, bi) ⊆ Gi for 1 ≤ i ≤ n.
It remains to note that the open interval (a, b) with a = max{ai : 1 ≤ i ≤ n}
and b = min{ai : 1 ≤ i ≤ n} is a subset of G =

⋂n
i=1 Gi containing x

(cf. Exercise 1.38). �

Theorem 1.7. Every nonempty open set G is the union of a finite or count-
able family of pairwise disjoint open intervals. These open intervals are called
component intervals of G.

Proof. Let x be a point in a nonempty open set G. There is an open interval
(y, z) such that x ∈ (y, z) ⊆ G. Then, (y, x) ⊆ G and (x, z) ⊆ G. We define
(possibly extended) numbers ax and bx by

ax = inf{y : (y, x) ⊆ G} and bx = sup{z : (x, z) ⊆ G}.

It is clear that x ∈ Ix = (ax, bx). We claim that Ix ⊆ G but ax /∈ G, bx /∈ G
and prove this assertion in the next two paragraphs.
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wxy zax bx

Ix

Figure 1.5. Proof of Theorem 1.7

First we prove that Ix ⊆ G (cf. Fig. 1.5). Let w ∈ Ix and assume that
w > x. (The case when w < x is treated similarly.) By the definition of bx,
there is z > w such that (x, z) ⊆ G. Then w ∈ (x, z) ⊆ G. It follows that
Ix ⊆ G.

Now suppose that bx ∈ G. Then there is an interval (u, v) ⊆ G with
u < bx < v. Clearly, (x, bx)∩ (u, v) �= ∅. We obtain a desired contradiction by
noting that (x, v) ⊆ G (cf. Fig. 1.6). A similar argument shows that ax /∈ Ix.

uxax bx

Ix

v

Figure 1.6. Proof of Theorem 1.7

Inasmuch as each x ∈ G is an element of Ix and each Ix is contained
in G, we have G =

⋃
x∈G Ix. Suppose that two distinct intervals Ix and Iy

intersect. Then one of the endpoints of one of these intervals belongs to the
other interval—a contradiction, since endpoints of the intervals do not belong
to G. Thus G is a union of a family of pairwise disjoint intervals. Because
each of these intervals contains a rational number, G is a union of a finite or
countable family of pairwise disjoint intervals (cf. Exercise 1.37). �

Corollary 1.1. If a nonempty open set G1 is a subset of an open set G2,
then each component interval of G1 is a subset of a unique component interval
of G2.

Proof. Let (a, b) be a component interval of G1 and x be a point in (a, b). By
the definition of the component interval Ix = (ax, bx) of the set G2 (cf. the
proof of Theorem 1.7), we have

ax ≤ a < b ≤ bx.

Thus (a, b) ⊆ Ix. Because the component intervals of G2 are pairwise disjoint,
the interval Ix is a unique component interval of G2 containing (a, b). �

Theorem 1.8. If an open set G is the union of a family {Gi}i∈J of pairwise
disjoint open sets, then each component interval of G is a component inter-
val of one of the sets Gi’s and the component intervals of the sets Gi’s are
component intervals of G.
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Proof. Because G =
⋃

i∈J Gi and each set Gi is the union of its component
intervals, the component intervals of G are component intervals of the sets
Gi’s (cf. Exercise 1.39).

Let (a, b) be a component interval of some set Gk. By Corollary 1.1, the
interval (a, b) is contained in some component interval (x, y) of the set G.
The endpoint b does not belong to the set G, for otherwise it would belong to
a component interval of a set Gi with i �= k, which contradicts our assumption
that the sets Gi’s are pairwise disjoint. Likewise, a does not belong to G.
It follows that (a, b) = (x, y); that is, the component intervals of the sets Gi’s
are component intervals of the set G. �

Definition 1.3. A set F of real numbers is said to be closed if its complement
�RF is open.

In what follows, we denote by �X the complement of a set X in R, so
�X = �RX = R \X .

By De Morgan’s laws

�
⋃

i∈J

Xi =
⋂

i∈J

�Xi and �
⋂

i∈J

Xi =
⋃

i∈J

�Xi .

Therefore, Theorem 1.6 may be reformulated in terms of closed sets as follows.

Theorem 1.9. The empty set ∅ and R are closed sets. The union of a finite
family of closed sets is closed. The intersection of an arbitrary family of closed
sets is closed.

We need the results of the following three theorems in Chap. 2.

Theorem 1.10. Let F be a nonempty bounded closed set. Then points a =
inf F and b = supF belong to the set F and the set �[a,b]F = [a, b]\F is open.

Proof. Inasmuch as a is the infimum of F , every open interval containing a
must intersect the set F . Hence a cannot belong to the open set �F . It follows
that a ∈ F . Similar argument shows that b ∈ F . Clearly, F ⊆ [a, b]. Since

a, b ∈ F , we have

[a, b] \ F = (a, b) \ F = (a, b) ∩ �F,

which is an open set because the set F is closed. �
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Theorem 1.11. The only subsets of R that are both open and closed are ∅

and R.

Proof. The proof is by contradiction. Suppose that X is a subset of R which
is both open and closed and distinct from ∅ and R. Then at least one of
the component intervals of X has an endpoint a /∈ X . Any open interval
containing a intersects X . Therefore, �X is not an open set which contradicts
our assumption that X is closed. �

Theorem 1.12. Let F1 and F2 be two disjoint closed subsets of R. There are
open sets G1 and G2 such that F1 ⊆ G1, F2 ⊆ G2, and G1 ∩G2 = ∅.

Proof. For x ∈ F1, we define

ρx = inf{|x− y| : y ∈ F2}.

Because �F2 is an open set containing x, there is δ > 0 such that

(x− δ, x+ δ) ⊆ �F2.

Hence, ρx > δ > 0. Similarly, for y ∈ F2, we define

ρy = inf{|y − x| : x ∈ F1}

with ρy > 0.
Let open intervals Ix and Iy be defined by

Ix = (x− ρx

2 , x+ ρx

2 ), Iy = (y − ρy

2 , y +
ρy

2 ).

Consider the open sets

G1 =
⋃

x∈F1

Ix, G2 =
⋃

y∈F2

Iy.

Clearly, F1 ⊆ G1 and F2 ⊆ G2. Suppose that there is z ∈ G1∩G2. Then there
are x ∈ F1 and y ∈ F2 such that z ∈ Ix and z ∈ Iy . Hence, |x − z| < ρx

2 and
|y − z| < ρy

2 , and

|x− y| ≤ |x− z|+ |y − z| < ρx+ρy

2 .

By symmetry, we may assume that ρx ≥ ρy. Then
ρx+ρy

2 ≤ ρx. From the pre-
vious displayed inequality we have |x−y| < ρx. This contradicts the definition
of ρx. It follows that G1 ∩G2 = ∅. �

Despite their simple descriptions, open and closed sets of real numbers
may be quite complex, as the following example demonstrates.
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Example 1.2. (The Cantor set) The Cantor set can be described by removing
a sequence of open intervals from the interval I = [0, 1]. First, we remove the
open interval

(
1
3 ,

2
3

)
from I to obtain the set

C1 =
[
0,

1

3

]
∪
[2
3
, 1
]

(see Fig. 1.7).
Second, we remove the open middle third of each of the two closed intervals

in C1 to obtain the set

C2 =
[
0,

1

9

]
∪
[2
9
,
1

3

]
∪
[2
3
,
7

9

]
∪
[8
9
, 1
]
.

0 1
C1

C2

C3

Figure 1.7. Construction of the Cantor set

Note that C2 is the union of 4 = 22 closed intervals, each of which has length
1
9 = 1

32 . By continuing in this way, we construct the set Ck which is the union
of 2k closed intervals of the form

[
m
3k
, m+1

3k

]
. The next set Ck+1 is obtained

by removing the open middle third from each of these intervals. This process
can be described by the recurrence equation

Ck+1 = 1
3Ck ∪ ( 23 + 1

3Ck

)
(1.3)

(cf. Exercise 1.44).
By definition, the Cantor set C is the intersection of the closed sets Ck:

C =

∞⋂

k=1

Ck,

and therefore itself is a closed set. This set contains all of the endpoints of
the removed open intervals. Therefore, the Cantor set contains infinitely many
points. The complement �IC = I\C is the union of all removed open intervals
and therefore is an open set (cf. Theorem 1.10).

Note that the total length of the removed intervals is 1, since

1

3
+

2

32
+ · · ·+ 2n

3n+1
+ · · · = 1.

Thus C is a subset of the unit interval I whose complement in I has “total
length” 1.
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Let us enumerate intervals in the sets Ck as follows. We denote I0 and I1
the left and the right intervals in the set C1, respectively. The left and right
subintervals of I0 that belong to C2 are denoted by I00 and I01, and the left
and right subintervals of I1 are denoted by I10 and I11 (cf. Fig. 1.8). If Ii1...ik
is an interval in the set Ck, then its left and right subintervals in the set
Ck+1 are Ii1...ik0 and Ii1...ik1, respectively. Note that by this way of denoting
subintervals of the sets Ck, they are enumerated from left to right by binary
numbers from 0 to 2k − 1.

Any number x in the Cantor set C belongs to one and only one of the
subintervals of each set Ck, k ∈ N. Therefore, elements of C are in one-to-one
correspondence with the nested sequences of intervals

Ii1 ⊃ Ii1i2 ⊃ · · · ⊃ Ii1i2...ik ⊃ · · · ,
and therefore in one-to-one correspondence with the sequences (ik), where
ik ∈ {0, 1} for k ∈ N. It follows that the cardinality of the Cantor set is 2ℵ0 ,
that is, the cardinality c of the continuum R.

I0
C1

C2

C3

I1

I00 I01 I10 I11

I000 I001 I010 I011 I100 I101 I110 I111

Figure 1.8. Intervals in the sets C1–C3

1.4 Summation on Infinite Sets

We begin by recalling the definition of a convergent series.

Definition 1.4. If (an) is a sequence of real numbers and

sn =
n∑

i=1

ai,

then the sequence (sn) is called a series and the terms of (an) are called the
terms of the series. The series (sn) is denoted by

∑
ai. If the series

∑
ai

converges to some number S, we say that S is the sum of the series and write∑∞
i=1 ai = S (or

∑
i∈N

ai = S, or simply
∑

i ai = S).

Note that this definition utilizes the order of the set of natural numbers N.
For an arbitrary family of real numbers {ai}i∈J (without any assumption

made about the index set J), we adopt the following definition.
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Definition 1.5. Let {ai}i∈J be a family of real numbers. With each finite
subset K of J we associate the number SK =

∑
i∈K ai and call it the finite

partial sum of the family {ai}i∈J , corresponding to the set K. The family
{ai}i∈J is summable and its sum is S if, for each ε > 0, there is a finite subset
J0 of J such that for each finite subset K ⊇ J0 of J we have |S − SK | < ε.
In this case we also say that the family {ai}i∈J is summable to S and write∑

i∈J ai = S.

If a sequence (an) is summable to S, then the series
∑

ai converges to
S. Indeed, for a given ε > 0, let J0 be the set from Definition 1.5 and let
N = max J0. Then, by the definition of J0, we have

∣∣∣S −
n∑

i=1

ai

∣∣∣ < ε, for all n > N ,

so
∑∞

i=1 ai = S. Note that the converse is not true; see Exercise 1.50.
Because the definition of a summable family does not involve any ordering

of the index set J , we may say that the notion of a sum enjoys the commuta-
tivity property. More precisely, we have the following theorem.

Theorem 1.13. Let {ai}i∈J be a summable family and let f : J → J be a
bijection (a permutation of J). We define bi = af(i) for all i ∈ J . Then the
family {bi}i∈J is summable and has the same sum as {ai}i∈J .

Proof. Let S be the sum of {ai}i∈J . Then for each ε > 0 there is a finite set
J0 ⊆ J such that |S − SK | < ε for any finite subset K of J containing J0.
Consider an arbitrary finite subset L of J containing the finite set f−1(J0);
that is, L ⊇ f−1(J0). Then

∑

i∈L

bi =
∑

i∈L

af(i) =
∑

f−1(j)∈L

aj =
∑

j∈f(L)

aj .

Since f(L) ⊇ J0, we have |S −∑i∈L bi| < ε, and the result follows. �

In the case of a countable index set J we may assume that J = N. Then the
family {ai}i∈J is a sequence (an) and Theorem 1.13 tells us that the terms of
the series

∑
i∈N

ai can be arbitrary rearranged without changing summability
of the series and its sum.

If the terms of a family {ai}i∈J are nonnegative numbers, we have the
following criterion for summability of the family.

Theorem 1.14. A family of nonnegative numbers {ai}i∈J is summable if and
only if the set of its finite partial sums is bounded above. If so, the supremum
of this set is the sum of the family {ai}i∈J .

Proof. (Necessity.) Suppose that
∑

i∈J ai = S. First, we show that S is an
upper bound for the finite partial sums. Suppose to the contrary that there is
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a finite set L ⊆ J such that SL > S and let ε = SL − S. Because the family
{ai}i∈J is summable, there is a finite set J0 ⊆ J such that, for any finite
subset K of J containing J0, we have

S − ε < SK < S + ε.

For K = J0∪L, we have SK ≥ SL, because the numbers ai’s are nonnegative.
By the definition of ε, we have SL = S+ε, which contradicts the last displayed
inequality. Hence, S is an upper bound for the finite partial sums.

Now, for a given ε > 0, let J0 be the finite set from Definition 1.5. Then
|S − SJ0 | < ε, that is, S − ε < SJ0 . By the approximation property of supre-
mum, S is the supremum of the family of all finite partial sums.

(Sufficiency.) Let S be the supremum of the family of all finite partial sums
and let ε be a positive number. By the approximation property of supremum,
there is a finite set of indices J0 such that S − ε < SJ0 ≤ S. For any finite set
K ⊇ J0, we have SJ0 ≤ SK , for the numbers ai are nonnegative. Therefore

S − ε < SJ0 ≤ SK ≤ S,

so, according to Definition 1.5, the family {ai}i∈J is summable and its sum
is S. �

Corollary 1.2. Every subfamily of a summable family of nonnegative num-
bers is summable. Furthermore, the sum of the subfamily is not greater than
the sum of the family.

In fact, the result of Corollary 1.2 holds for an arbitrary summable family
of real numbers. We omit the proof of this claim and, in what follows, consider
only families of nonnegative numbers.

Theorem 1.15. (Principle of comparison) Let {ai}i∈J and {bi}i∈J be two
families of real numbers such that 0 ≤ ai ≤ bi for all i ∈ J . If the family
{bi}i∈J is summable then so is {ai}i∈J and we have

∑

i∈J

ai ≤
∑

i∈J

bi.

Theorem 1.15 provides the most commonly used criterion for deciding
whether or not a sequence of nonnegative real numbers is summable. The
proof is left to the reader as Exercise 1.52.

When dealing with a finite sum of numbers, we can associate its sum-
mands arbitrarily into groups, add the numbers in each group, and then add
the resulting sums to obtain the total sum. This property is known as the
associativity property of addition. We show that any summable family of non-
negative real numbers enjoys the same property.
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Let {ai}i∈J be a summable family of nonnegative real numbers and let

J =
⋃

λ∈Λ

Jλ

be a partition of J into a family of subsets {Jλ}λ∈Λ. Thus, we assume that
Jλ �= ∅ and Jλ∩Jλ′ = ∅ for all λ �= λ′ in Λ. By Corollary 1.2, each subfamily
{ai}i∈Jλ

is summable. Let us denote its sum by Sλ.

Theorem 1.16. The family {Sλ}λ∈Λ is summable and has the same sum as
the family {ai}i∈J , that is,

∑

λ∈Λ

( ∑

i∈Jλ

ai

)
=
∑

i∈J

ai.

Proof. Let S =
∑

i∈J ai. We need to show that for each ε > 0, there is a finite
set Λ0 ⊆ Λ such that |S −∑λ∈Φ Sλ| < ε for any finite set Φ ⊆ Λ containing
Λ0.

Let ε be a given positive number. Because {ai}i∈J is summable to S, there
is a finite set J0 ⊆ J such that |S−∑i∈K ai| < ε/2 for any finite set K ⊇ J0.
We define Λ0 as the set of all indices λ such that Iλ = Jλ ∩ J0 �= ∅ and show
that Λ0 is the desired set. Clearly, the set Λ0 is finite.

Let Φ be a finite subset of Λ, containing Λ0, and let n = |Φ| be the number
of elements in Φ. By the definition of Sλ, for each λ there is a finite subset
Hλ of Jλ, containing Iλ and such that

∣∣∣Sλ −
∑

i∈Hλ

ai

∣∣∣ <
ε

2n

(cf. Exercise 1.48). We have

∣∣∣
∑

λ∈Φ

Sλ −
∑

λ∈Φ

( ∑

i∈Hλ

ai

)∣∣∣ ≤
∑

λ∈Φ

∣∣∣Sλ −
∑

i∈Hλ

ai

∣∣∣ <
ε

2
.

The set H =
⋃

λ∈Φ Hλ is finite and contains J0. By the associativity of finite

sums,
∑

λ∈Φ

(∑
i∈Hλ

ai
)
=
∑

i∈H ai. Hence the last displayed inequality can
be written as

∣∣∣
∑

λ∈Φ

Sλ −
∑

i∈H

ai

∣∣∣ <
ε

2
.

By the definition of S, we have

∣∣∣S −
∑

i∈H

ai

∣∣∣ <
ε

2
,
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because H ⊇ J0. Therefore,

∣∣∣S −
∑

λ∈Φ

Sλ

∣∣∣ =
∣∣∣
(
S −

∑

i∈H

ai

)
−
(∑

λ∈Φ

Sλ −
∑

i∈H

ai

)∣∣∣

≤
∣∣∣S −

∑

i∈H

ai

∣∣∣+
∣∣∣
∑

λ∈Φ

Sλ −
∑

i∈H

ai

∣∣∣ < ε,

as desired. �

The converse of Theorem 1.16 holds in the following form.

Theorem 1.17. Let {ai}i∈J be a family of nonnegative numbers and let
J =

⋃
λ∈Λ Jλ be a partition of J . If each family {ai}i∈Jλ

is summable with
the sum Sλ, and the family {Sλ}λ∈Λ is summable with the sum S, then the
family {ai}i∈J is summable and

∑

i∈J

ai =
∑

λ∈Λ

( ∑

i∈Jλ

ai

)
.

Proof. Let K be an arbitrary finite subset of J and let Kλ = K ∩ Jλ. It is
clear that Kλ �= ∅ for a finite number of elements λ ∈ Λ. We have

∑

i∈K

ai =
∑

λ∈Λ
Kλ �=∅

( ∑

i∈Kλ

ai

)
≤
∑

λ∈Λ
Kλ �=∅

Sλ ≤ S.

By Theorem 1.14, the family {ai}i∈J is summable. The desired result follows
from Theorem 1.16. �

Let us apply the result of Theorem 1.16 to the case when the index set is
a Cartesian product J = P ×Q and the family of real numbers is a summable
“double” family {apq}(p,q)∈P×Q. Then, for the partition

P ×Q =
⋃

p∈P

{(p, q) : q ∈ Q},

Theorem 1.16 yields

∑

p∈P

(∑

q∈Q

apq

)
=

∑

(p,q)∈P×Q

apq.

Similarly, for the partition P ×Q =
⋃

q∈Q{(p, q) : p ∈ P}, we have

∑

q∈Q

(∑

p∈P

apq

)
=

∑

(p,q)∈P×Q

apq.

In summary, we obtained the following result.
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Theorem 1.18. (Fubini’s theorem for sums) If {apq}(p,q)∈P×Q is a summable
double family of nonnegative real numbers, then

∑

(p,q)∈P×Q

apq =
∑

p∈P

(∑

q∈Q

apq

)
=
∑

q∈Q

(∑

p∈P

apq

)
. (1.4)

For a double family, Theorem 1.17 yields another form of Fubini’s theorem.

Theorem 1.19. Let {apq}(p,q)∈P×Q be a double family of nonnegative real
numbers such that the family {apq}q∈Q is summable for every p in P with
the sum Sp and the family {Sp}p∈P is summable. Then the double family
{apq}(p,q)∈P×Q is summable. Accordingly, the equalities in (1.4) hold.

If P = Q = N, we have a convergent double sequence (apq) which terms
form an infinite matrix. This matrix and its row and column sums are shown
in the diagram below.

a11 a12 · · · a1q · · · ∑q a1q
a21 a22 · · · a2q · · · ∑q a2q
...

...
...

...
ap1 ap2 · · · apq · · · ∑q apq
...

...
...

...∑
p ap1

∑
p ap2 · · · ∑p apq · · · ∑p,q apq

Notes

The section on sets and functions (Sect. 1.1) serves two purposes. First, it
introduces terminology and notation that will be used in the text. Second, it
is supplemented by large number of exercises that can be used as warm-up
problems at the beginning of the course. The book “Naive Set Theory” [Hal74]
by Paul Halmos is an excellent informal introduction to the basic set-theoretic
facts.

Sections 1.2 and 1.3 constitute a self-contained (we prove all claims) pre-
sentation of very basic facts from real analysis concerning sets and sequences
of real numbers and topology of the real line. There are many good books on
real analysis; we recommend an elementary introduction [BS11] and a more
advanced book [Tao09].

For a general theory of summable families, the reader is referred to [Bou66,
III, 5]. The result of Theorem 1.18 holds for absolutely convergent series
[Tao09, Sects. 7.4 and 8.2] (see also Exercises 1.53 and 1.54). In the rest of the
book, all families of real numbers are at most countable. However, summation
over uncountable sets can be found in analysis.
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Exercises

1.1. Prove that two sets A and B are equal if and only if

A ⊆ B and B ⊆ A.

1.2. Prove identities:

(a) A ∩B = B ∩ A, A ∪B = B ∪ A.
(b) A ∩ (B ∩ C) = (A ∩B) ∩ C, A ∪ (B ∪C) = (A ∪B) ∪ C.
(c) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(d) �X(A ∩B) =

(
�XA

) ∪ (�XB
)
, �X(A ∪B) =

(
�XA

) ∩ (�XB
)
.

1.3. Prove identities:

(a) (A \B) ∩ C = (A ∩C) \ (B ∩ C).
(b) (A ∪B) \ C = (A \ C) ∪ (B \ C).
(c) (A ∩B) \ C = (A \ C) ∩ (B \ C).
(d) (A \B) \ C = (A \ C) \ (B \C).

1.4. True or false: (A \B) \ C = A \ (B \ C).

1.5. Prove identities:

(a) A ∩ (⋃i∈J Bi

)
=
⋃

i∈J(A ∩Bi), A ∪ (⋂i∈J Bi

)
=
⋂

i∈J(A ∪Bi).

(b) �X
[⋂

i∈J Xi

]
=
⋃

i∈J

[
�XXi

]
, �X

[⋃
i∈J Xi

]
=
⋂

i∈J

[
�XXi

]
.

(c)
(⋂

i∈I Ai

) ∪ (⋂j∈J Bj

)
=
⋂

(i,j)∈I×J (Ai ∪Bj).

(d)
(⋃

i∈I Ai

) ∩ (⋃j∈J Bj

)
=
⋃

(i,j)∈I×J (Ai ∩Bj).

1.6. Let {Aij}(i,j)∈N×N be a double indexed family of sets. Prove that

⋃

i∈N

( ⋂

j∈N

Aij

)
⊆
⋂

j∈N

( ⋃

i∈N

Aij

)
.

Show that the inclusion relation ⊆ cannot be replaced by equality in the above
formula. Hint: consider the family of intervals

Aij = [j(i− 1), ji], i, j ∈ N.

1.7. The operation of symmetric difference of two sets A and B is defined by

AB = (A \B) ∪ (B \A).

Show that

(a) (AB) \ C = (A \ C) (B \ C).
(b) AB = (A ∪B) \ (A ∩B).
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(c) (AB) C = A (B  C).
(d) C = AB implies B = A C.

1.8. Let f : X → Y be a function. Show that

(a) A ⊆ B ⊆ X implies f(A) ⊆ f(B).
(b) A ⊆ B ⊆ Y implies f−1(A) ⊆ f−1(B).

1.9. Let f : X → Y be a function. Show that the following identities hold for
arbitrary sets A,B ⊆ X and A1, B1 ⊆ Y :

(a) f(A ∩B) ⊆ f(A) ∩ f(B).
(b) f(A ∪B) = f(A) ∪ f(B).
(c) f−1(A1 ∩B1) = f−1(A1) ∩ f−1(B1).
(d) f−1(A1 ∪B1) = f−1(A1) ∪ f−1(B1).
(e) f−1(�Y A1) = �Xf−1(A1).
(f) A ⊆ f−1(f(A)) and f(f−1(A1) ⊆ A1.

1.10. Let X be a set and f : X → X be a function. Let a sequence (An) of
subsets of X be defined recursively by

A1 = X, An = f(An−1), for n > 1,

and let A =
⋂

n∈N
An.

(a) Show that f(A) ⊆ A.
(b) Show that the inclusion relation ⊆ in part (a) cannot be replaced by

equality.

1.11. Let X be a finite set and f : X → X be a one-to-one function. Prove
that f is a bijection.

1.12. Prove that for a function f : X → Y the following statements are
equivalent:

(a) f is one-to-one.
(b) f−1(f(A)) = A, for all A ⊆ X .
(c) f(A ∩B) = f(A) ∩ f(B), for all A,B ⊆ X .
(d) f(A \B) = f(A) \ f(B), for all A,B ⊆ X such that B ⊆ A.

1.13. Let f be a function from A×B into B ×A defined by

f((a, b)) = (b, a).

Prove that f is a bijection.

1.14. Let {Ai}i∈J be a partition of a set A.

(a) Show that the relation R given by

(a, b) ∈ R if and only if a, b ∈ Ai for some j ∈ J ,

is an equivalence relation on A.
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(b) Show that equivalence classes of R from part (a) are exactly elements of
the set {Ai : i ∈ J}.

1.15. Let a and b be real numbers. Show that

(a) a ≤ b if and only if a < b+ ε for every ε > 0,
(b) a ≥ b if and only if a > b− ε for every ε > 0.

1.16. Let b be an upper bound of a nonempty set E. Show that

(a) Any b′ > b is an upper bound for E.
(b) If c is not an upper bound for E, then there is x ∈ E such that x > c.

1.17. Prove that a nonempty set of real numbers bounded above has a unique
least upper bound.

1.18. Let E be a nonempty set bounded below. Show that the set −E =
{−x : x ∈ E} is bounded above and

− sup(−E) = inf E.

1.19. Let E be a bounded nonempty set. Show that, for a given number c,

(a) supE ≤ c if and only if x ≤ c for all x ∈ E.
(b) inf E ≥ c if and only if x ≥ c for all x ∈ E.

1.20. Prove that a number u is the upper bound of a nonempty set E ⊆ R if
and only if the condition t > u implies that t /∈ E.

1.21. Prove that a number u is the supremum of a nonempty set E if and
only if u satisfies the two conditions:

(i) x ≤ u for all x ∈ E.
(ii) if v < u, then there is an x ∈ E such that v < x.

1.22. Let A and B be arbitrary sets of real numbers. Prove that if for any
x ∈ A there is y ∈ B such that x ≤ y, and for any y ∈ B there is x ∈ A such
that y ≤ x, then supA = supB.

Show that the converse is not true.

1.23. Find infimum and supremum of each of the following sets:

(a) E = {3, 4, 2, 1, 6, 5, 7, 8}.
(b) E = {x ∈ R : x3 − x = 0}.
(c) E = [a, b), where a < b.
(d) E = {p/q ∈ Q : p2 < 2q2, p, q > 0}.
(e) E = {1/n : n ∈ N}.
(f) E = {1− (−1)n : n ∈ N}.
(g) E = {1 + (−1)n/n : n ∈ N}.
Justify your answers.



1.4 Summation on Infinite Sets 23

1.24. For all the sets in Exercise 1.23 find their maximum and minimum
elements or show that these elements do not exist.

1.25. Let E0 be a nonempty subset of a bounded set E. Show that

inf E ≤ inf E0 ≤ supE0 ≤ supE.

1.26. Let E ⊆ R be a bounded set and a ∈ R. We define

a+ E = {a+ x : x ∈ E} and aE = {ax : x ∈ E}.

Show that

(a) sup(a+ E) = a+ supE, inf(a+ E) = a+ inf E.
(b) If a > 0, then sup(aE) = a supE, inf(aE) = a inf E.
(c) If a < 0, then sup(aE) = a inf E, inf(aE) = a supE.

1.27. Prove Theorem 1.5.

1.28. Let A and B be bounded nonempty sets of real numbers. Prove that

sup(A+B) = supA+ supB and inf(A+B) = inf A+ inf B,

where A+B = {a+ b : a ∈ A, b ∈ B}.
1.29. Let (an) be a bounded sequence.

(a) Prove that lim inf an = − lim sup(−an).
(b) Prove that lim inf an ≤ lim sup an.
(c) Prove that lim inf an = a if and only if for each ε > 0, there are infinitely

many indices n for which an < a+ ε and only finitely many indices n for
which an < a− ε.

1.30. Let (an) be a convergent sequence. Prove that

lim
n→∞ an = lim

n→∞ lim
k→∞

max{an, an+1, . . . , an+k}.

1.31. Prove that for a bounded sequence (an),

lim inf an ≤ lim supan.

1.32. Prove Theorem 1.5.

1.33. Let (an) and (bn) be two bounded sequences such that an ≤ bn for all
n ∈ N. Show that

lim sup an ≤ lim sup bn and lim inf an ≤ lim inf bn.
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1.34. Find limit inferior and limit superior of each of the following sequences:

(a) an = 2− (−1)n.
(b) an = sin(nπ/2).
(c) an = (−1)n + (−1)n+1/n.

(d) an = n2

1+n2 cos
2nπ
3 .

(e) an =
n
√
1 + 2(−1)nn.

(f) an = bn/n, where (bn) is a bounded sequence.

Justify your answers.

1.35. Let (an) and (bn) be two bounded sequences. Prove that

lim inf an + lim inf bn ≤ lim inf(an + bn)

≤ lim sup(an + bn) ≤ lim sup an + lim sup bn.

Show that none of the inequality symbols can be replaced by equality.

1.36. For each of the following sets in R, state whether the set is open, closed,
or neither.

(a) Q.
(b) R \Q.
(c)
⋃∞

k=1

(
1
2k ,

1
2k−1

)
. The set of all rational numbers with denominators that

are less than 106.
(d)
⋃∞

k=1

[
1
2k ,

1
2k−1

]
. The set of all rational numbers with denominators that

are powers of 2.

1.37. Show that Iy = Ix for any y ∈ Ix (cf. proof of Theorem 1.7).

1.38. Let {(ai, bi) : 1 ≤ i ≤ n} be a finite collection of open intervals that all
have a common point x ∈ ⋂n

i=1(ai, bi). Show that the union of these intervals
is an open interval containing x.

1.39. Let {Ii}i∈J be a family of pairwise disjoint open intervals. Show that
these intervals are the component intervals of the union

⋃
i∈J Ii.

1.40. Let G be an open subset of the interval I = (a, b), and let (a′, b′) be a
subinterval of (a, b) such that a < a′ < b′ < b. Show that

I \ [G ∪ (a, a′) ∪ (b′, b)] = [a′, b′] ∩ �G.

1.41. Show that every closed set is the intersection of a countable family of
open sets.

1.42. Show that an open interval (a, b) cannot be represented as the union of
a countable family of mutually disjoint closed sets [Knu76].
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1.43. Show that the set of irrational points in [0, 1] cannot be represented as
the union of a countable family of closed sets.
(Hint: use Baire’s Category Theorem [Kre78, p. 247].)

1.44. Prove formula (1.3) (cf. Exercise 1.26).

1.45. Show that the Cantor set contains no open interval.

1.46. Show that the number 1
4 is in the Cantor set.

1.47. Let {ai}i∈J be an unbounded family of nonnegative numbers. Show
that this family is not summable. Give an example of a bounded family of
nonnegative numbers which is not summable.

1.48. Let S be the sum of a summable family {ai}i∈J . Show that for any given
ε > 0 and a finite subset A of J , there is a finite subset A(ε) of J containing
A such that |S − SA(ε)| < ε.

1.49. Let {ai}i∈J be a countable family of nonnegative real numbers and let
f : N → J be a bijection. Prove that the series

∑∞
i=1 af(i) converges to S if

and only if the family {ai}i∈J is summable to S.

1.50. Show that the series
∑ (−1)n

n is convergent, but the sequence
( (−1)n

n

)

is not summable.

1.51. Let
∑

i,j∈N
aij be a convergent double series with nonnegative terms.

Prove that the series
∑

i,j∈N
aji converges to the same sum S =

∑
i,j∈N

aij .
(Hint: use the result of Exercise 1.13.)

1.52. Prove Theorem 1.15.

1.53. Use the power series expansion of ln(1 + x) to show that

1− 1

2︸ ︷︷ ︸
+

1

3
− 1

4︸ ︷︷ ︸
+ · · ·+ 1

2k − 1
− 1

2k︸ ︷︷ ︸
+ · · · = ln 2.

Let us rearrange terms of this conditionally convergent series, so two negative
terms follow each positive term:

1− 1

2
− 1

4︸ ︷︷ ︸
+

1

3
− 1

6
− 1

8︸ ︷︷ ︸
+ · · ·+ 1

2k − 1
− 1

4k − 2
− 1

4k︸ ︷︷ ︸
+ · · · .

Show that the sum of the new series is one-half of the sum of the original
series. (Hint: 1

2k−1 − 1
4k−2 − 1

4k = 1
2

(
1

2k−1 − 1
2k

)
.)
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1.54. Let (aij) for i, j ∈ N be a double sequence given by the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
0 0 0 −1 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Show that ∞∑

i=1

( ∞∑

j=1

aij

)
�=

∞∑

j=1

( ∞∑

i=1

aij

)
.

1.55. Compute the double sum

∑

k>1
n>1

1

nk
.

1.56. Let a and b be two numbers such that 0 ≤ a < 1, 0 ≤ b < 1. Show that
the double sequence {ambn}(m,n)∈N×N is summable.

1.57. Show that for each p > 1, the sequence (n−p) is summable. (Hint: Show
that S2n+1 − S2n < 2n(2n)−p, and therefore, by adding these inequalities,

S2n <
1

1− 21−p
.)
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Lebesgue Measure

In this chapter we present elements of Lebesgue’s theory of measure and
measurable functions.

The notion of measure of a set of real numbers generalizes the concept of
length of an interval. Because open sets have a very simple structure—they are
at most countable unions of open intervals—we begin by defining the measure
of a bounded open set in Sect. 2.1. Closed sets are complements of open sets,
therefore it is possible to extend the concept of measure to bounded closed
sets as it is presented in Sect. 2.2. For an arbitrary bounded set of real num-
bers, we define its outer and inner measures by “approximating” the set by,
respectively, open sets containing the set and closed sets that are contained
in the set. These measures are investigated in Sect. 2.3. The set is called mea-
surable if its outer and inner measures are equal. The common value of these
two measures is the Lebesgue measure of a measurable set. Main properties
of measurable sets and measure are introduced in Sect. 2.4. In particular, it is
shown there that the set of measurable sets is closed under countable unions
and intersections and that measure is a countably additive function on the set
of measurable sets. Another important property of measure, its translation
invariance, is established in Sect. 2.5. An example of a nonmeasurable set is
given in Sect. 2.6, where some general properties of the class of measurable
sets are discussed.

The concept of a measurable function plays a vital role in real analysis.
These functions are introduced and their basic properties are investigated in
Sect. 2.7. Various types of convergence of sequences of measurable functions
are discussed in Sect. 2.8.

Occasionally, we consider unbounded families of nonnegative numbers.
If {ai}i∈J is such a family, then we set

∑
i∈J ai = ∞ (cf. Exercise 1.47)

and assume that a < ∞ for all a ∈ R (see conventions in Sect. 1.2). Here and
in the rest of the book, we write ∞ for +∞.

S. Ovchinnikov, Measure, Integral, Derivative: A Course on Lebesgue’s Theory,
Universitext, DOI 10.1007/978-1-4614-7196-7 2,
© Springer Science+Business Media New York 2013

27
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2.1 The Measure of a Bounded Open Set

Definition 2.1. The measure of an open interval I = (a, b) is its length,

m(I) = b− a.

Recall (cf. Theorem 1.7) that an open set is the union of a family of
pairwise disjoint open intervals. The following theorem is instrumental.

Theorem 2.1. Let {Ii}i∈J be a family of pairwise disjoint open intervals that
are contained in an open interval I = (a, b). If J is a finite or countable set,
then the family {m(Ii)}i∈J is summable and

∑
i∈J m(Ii) ≤ m(I).

Note that the set of indexes J is at most countable, because the intervals
Ii are pairwise disjoint.
Proof. First, suppose that J is a finite set and let n = |J |. We number the
intervals Ii from left to right, so Ii = (ai, bi), 1 ≤ i ≤ n, and

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b

(cf. Fig. 2.1).

a ba1 a2 anb1 b2 bn

( ( (( ))))

Figure 2.1. Proof of Theorem 2.1

Clearly,

(b1 − a1) + (b2 − a2) + · · ·+ (bn − an)

≤ (a1 − a) + (b1 − a1) + (a2 − b1) + · · ·+ (bn − an) + (b − bn)

= b− a.

Hence,
∑

i∈J m(Ii) ≤ m(I).
The claim follows immediately from Theorem 1.14, if J is a countable set.

�

The result of Theorem 2.1 justifies the following definition.

Definition 2.2. Let G be a nonempty bounded open set and let {Ii}i∈J be the
family of its component intervals. The measure m(G) of the set G is the sum
of measures of its component intervals:

m(G) =
∑

i∈J

m(Ii). (2.1)

We also set m(∅) = 0.
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Thus, m is a real-valued function on the family of all bounded open subsets
of R. In the rest of the section we establish some useful properties of this
function.

Theorem 2.2. If an open set G1 is a subset of a bounded open set G2, then
m(G1) ≤ m(G2). In words, measure is a monotone function on the set of
bounded open subsets of real numbers.

Proof. Let {Ii}i∈J be the family of component intervals of the set G1.
By Corollary 1.1, each Ii is contained in a unique component interval of the
set G2. Let us partition the set J into a family of subsets {Jλ}λ∈Λ in such a
way that indices i and j are in the same set Jλ if and only if the intervals Ii
and Ij are subsets of the same component interval I ′λ of G2. By Theorem 1.16
(the associativity property of addition),

m(G1) =
∑

i∈J

m(Ii) =
∑

λ∈Λ

( ∑

i∈Jλ

m(Ii)
)
,

and, by Theorem 2.1, ∑

i∈Jλ

m(Ii) ≤ m(I ′λ).

Hence,

m(G1) =
∑

λ∈Λ

( ∑

i∈Jλ

m(Ii)
)
≤
∑

λ∈Λ

m(I ′λ).

By Corollary 1.2, we have

∑

λ∈Λ

m(I ′λ) ≤ m(G2),

inasmuch as the family {I ′λ}λ∈Λ is a subfamily of the family of component
intervals of G2. Thus, m(G1) ≤ m(G2). �

The next theorem asserts that measure is a countably additive function
on bounded open sets (cf. (2.1)).

Theorem 2.3. Let a bounded open set G be the union of a finite or countable
family of pairwise disjoint open sets {Gi}i∈J . Then

m(G) =
∑

i∈J

m(Gi).

Proof. For a given i ∈ J , let Gi =
⋃

j∈Ji
I
(i)
j , where {I(i)j }j∈Ji is the family

of component intervals of the set Gi. By Theorem 1.8, the intervals I
(i)
j for

j ∈ Ji, i ∈ J , are precisely the component intervals of the set G. By the
associativity property of summable families, we have
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m(G) =
∑

j∈Ji

i∈J

m
(
I
(i)
j

)
=
∑

i∈J

(∑

j∈Ji

m
(
I
(i)
j

))
=
∑

i∈J

m(Gi)

(cf. Theorem 1.16). �

If we drop the assumption that the sets in the family {Gi}i∈J in Theo-
rem 2.3 are pairwise disjoint, then we have a weaker property of measure:

m(G) ≤
∑

i∈J

m(Gi). (2.2)

(Recall that we set
∑

i∈J m(Gi) = ∞ if the family {m(Gi)}i∈J is unbounded.)
In order to prove this claim, we need two lemmas.

Lemma 2.1. If a closed bounded interval [a, b] is contained in the finite union
of open intervals, then the length of [a, b] is less than the sum of lengths of the
open intervals.

Proof. The proof is by induction on the number n of open intervals. The
claim is trivial if n = 1. Let us assume that it holds for some n, and let
{(ai, bi)}1≤i≤n+1 be a family of n+1 open intervals such that their union con-
tains [a, b]. Without loss of generality, we may assume that b ∈ (an+1, bn+1).
If an+1 < a, we are done. Otherwise,

[a, an+1] ⊆
n⋃

i=1

(ai, bi).

By the induction hypothesis,

an+1 − a <
n∑

i=1

(bi − ai).

Therefore,

b− a = (b − an+1) + (an+1 − a)

< (bn+1 − an+1) +

n∑

i=1

(bi − ai) =

n+1∑

i=1

(bi − ai),

and the result follows. �

Lemma 2.2. If an open interval I = (a, b) is the union of a finite or countable
family of open sets {Gi}i∈J , then

m(I) ≤
∑

i∈J

m(Gi).
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Proof. The result is trivial if
∑

i∈J m(Gi) = ∞, so we assume that the family
{m(Gi}i∈J is summable.

For a given i ∈ J , let {I(i)k }k∈Ji be the family of component intervals of
the set Gi. Let us select 0 < ε < (b − a) and consider the closed interval
[a+ ε/2, b− ε/2]. The family of open intervals

{I(i)k : k ∈ Ji, i ∈ J}

covers this interval. By Heine–Borel theorem (Theorem 1.2), this family con-
tains a finite subfamily

{I(is)ks
: ks ∈ Jis , is ∈ J, s = 1, . . . , n}

covering the same interval (cf. Fig. 2.2). By Lemma 2.1,

b− a− ε <
n∑

s=1

m(I
(is)
ks

).

It is clear that the families {m(I
(i)
k )}k∈Ji , i ∈ J are summable. Therefore,

b− a− ε <

n∑

s=1

m(I
(is)
ks

) =
∑

is∈J

( ∑

ks∈Jis

m(I
(is)
ks

)
)

≤
∑

i∈J

( ∑

k∈Ji

m(I
(i)
k )
)
=
∑

i∈J

m(Gi).

Because this inequality holds for an arbitrary small number ε > 0, we obtained
the desired result. �

The drawing in Fig. 2.2 illustrates the proof of Lemma 2.2.

s=2
G1 ( ( ( )))) (

s=4

G2 (( ))
s=1

s=3
G3 ( ( () ) (

s=5

)(

) )

( ) ( )

Figure 2.2. Proof of Lemma 2.2

In this example, J = {1, 2, 3} and

J1 = {1, 2, 3, 4}, J2 = {1, 2, 3, 4, 5}, J3 = {1, 2, 3, 4}.
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There are n = 5 selected intervals labeled by the values of the variable s in
Fig. 2.2. It can be easily seen that

(is) = (2, 1, 3, 1, 3) and (ks) = (2, 1, 1, 2, 3).

Now we prove (2.2).

Theorem 2.4. If a bounded open set G is the union of a finite or countable
family of open sets {Gi}i∈J , then

m(G) ≤
∑

i∈J

m(Gi).

Proof. The result is trivial if
∑

i∈J m(Gi) = ∞, so we assume that the family
{m(Gi}i∈J is summable.

We denote by {Ik}k∈K the family of component intervals of the set G and
consider open sets

Eik = Gi ∩ Ik, i ∈ J, k ∈ K.

By Theorem 2.2, we havem(Eik) ≤ m(Gi) for any given i ∈ J , k ∈ K. Because
the family {m(Gi}i∈J is summable, the family {m(Eik)}i∈J is summable for
any k ∈ K. By Lemma 2.2, we have

m(Ik) ≤
∑

i∈J

m(Eik), for every k ∈ K. (2.3)

Furthermore, for i ∈ J ,

Gi = Gi ∩
( ⋃

k∈K

Ik

)
=
⋃

k∈K

(Gi ∩ Ik) =
⋃

k∈K

Eik,

where the open sets in the right union are pairwise disjoint. By Theorem 2.3,

m(Gi) =
∑

k∈K

m(Eik), for every i ∈ J . (2.4)

By Theorem 1.19,

∑

k∈K

(∑

i∈J

m(Eik)
)
=
∑

i∈J

(∑

k∈K

m(Eik)
)
.

By (2.3) and (2.4), we have

m(G) =
∑

k∈K

m(Ik) ≤
∑

k∈K

(∑

i∈J

m(Eik)
)

=
∑

i∈J

(∑

k∈K

m(Eik)
)
=
∑

i∈J

m(Gi),

which yields the desired result. �
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2.2 The Measure of a Bounded Closed Set

The result of Theorem 1.10 justifies the following definition.

Definition 2.3. Let F be a nonempty bounded closed set and let a = inf F ,
b = supF . The measure of F is given by

m(F ) = (b − a)−m([a, b] \ F ).

By Theorem 1.11, the class of nonempty proper closed subsets of R is
disjoint from the class of open subsets. Definition 2.3 extends the function m
from the class of bounded open sets to the class of bounded nonempty closed
sets. We denote this extended function by the same symbol m.

By Theorem 2.1, the measure of the open set [a, b] \ F is less than the
length of the interval [a, b]. Hence, the function m is nonnegative on bounded
open and closed sets.

Example 2.1. Let F = [a, b], so [a, b] \ F = ∅. Therefore,

m([a, b]) = b− a.

In particular, the measure of a singleton is zero.

The following lemma is instrumental. The result of this lemma will be used
implicitly in the rest of this section.

Lemma 2.3. Let I = (A,B) be an open interval containing a closed set F .
Then

m(F ) = m(I)−m(I \ F ).

Note that I \ F = I ∩ �F is a bounded open set. Thus m(I \ F ) is well
defined.
Proof. As before, let a = inf F , b = supF . The sets [a, b] \ F and I \ [a, b] are
open and disjoint (cf. Fig. 2.3).

a b

F

A B
( )

Figure 2.3. Proof of Lemma 2.3

Furthermore (cf. Exercise 2.3),

I \ F = ([a, b] \ F ) ∪ (I \ [a, b]).

By Theorem 2.3 and Definition 2.3,
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m(I \ F ) = m([a, b] \ F ) +m(I \ [a, b])
= [(b− a)−m(F )] + [(B −A)− (b− a)]

= (B −A)−m(F ),

and the desired result follows. �

Example 2.2. Let F =
⋃

i∈J [ai, bi] be the union of a finite family of pairwise
disjoint closed intervals (see Fig. 2.4). We may assume that the intervals are

a1 bnA B
( )

b1
a2 b2 an

Figure 2.4. Example 2.2

numerated in such a way that a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn, where
n = |J | is the cardinality of J . Let I = (A,B) be an open interval containing
F . It is clear that

I \ F = (A, a1) ∪ (b1, a2) ∪ · · · ∪ (bk, ak+1) ∪ · · · ∪ (bn, B).

Hence, by Theorem 2.3,

m(I \ F ) = (a1 −A) + (a2 − b1) + · · ·+ (an − bn−1) + (B − bn)

= (B −A)− (b1 − a1)− · · · − (bn − an)

= m(I)−
n∑

i=1

m([ai, bi]).

Hence, m(F ) =
∑n

i=1 m([ai, bi]).

By Theorem 2.2, the function m is monotone on the set of bounded open
sets of real numbers. The following three lemmas demonstrate that the ex-
tended function m is also monotone.

Lemma 2.4. Let a closed set F1 be a subset of a bounded closed set F2. Then

m(F1) ≤ m(F2).

Proof. Let I = (A,B) be an open interval such that F1 ⊆ F2 ⊆ I. The sets
I \ Fi = I ∩ �Fi, i ∈ {1, 2}, are open and bounded. Clearly, I \ F2 ⊆ I \ F1.
By Theorem 2.2,

m(I \ F2) ≤ m(I \ F1),

that is,
m(I)−m(F2) ≤ m(I)−m(F1).

Therefore, m(F1) ≤ m(F2). �
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Lemma 2.5. Let F be a closed subset of a bounded open set G. Then

m(F ) ≤ m(G).

Proof. Let I = (A,B) be an open interval containing G. Then

I = G ∪ (I \ F )

(cf. Exercise 2.6), where the sets G and I \ F = I ∩ �F are open. By
Theorem 2.4,

m(I) ≤ m(G) +m(I \ F ),

that is,
B −A ≤ m(G) + (B −A)−m(F ).

Hence, m(F ) ≤ m(G). �

Lemma 2.6. Let G be an open subset of a bounded closed set F . Then

m(G) ≤ m(F ).

Proof. Let a = inf F and b = supF . The sets G and [a, b] \ F are open and
disjoint. It is clear that

G ∪ ([a, b] \ F ) ⊆ (a, b).

Therefore, by Theorems 2.3 and 2.2,

m(G) +m([a, b] \ F ) ≤ b− a,

that is, by the definition of m(F ),

m(G) + (b− a)−m(F ) ≤ b− a,

and the result follows. �

In summary, we have the following theorem.

Theorem 2.5. Let U and V be bounded sets of real numbers such that each
of these two sets is either open or closed. Then

U ⊆ V implies m(U) ≤ m(V ).

It follows immediately from Theorem 2.2 that the measure of a bounded
open set G is the greatest lower bound of measures of bounded open sets
containing G:

m(G) = inf{m(G′) : G ⊆ G′, G′ is open and bounded }.
Similar results are established in the next three theorems.
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Theorem 2.6. Let G be a bounded open set. Then

m(G) = sup{m(F ) : F ⊆ G, F is closed }.
Proof. By Theorem 2.5, m(F ) ≤ m(G) for any closed subset F of the set
G. According to the approximation property of supremum (cf. Sect. 1.2), we
need to show that for a given ε > 0 there is a closed set F ⊆ G such that
m(F ) > m(G)− ε.

The set G is the union of at most countable family of its component
intervals, G =

⋃
i∈J (ai, bi), and the measure of G is the sum of lengths of

these intervals,

m(G) =
∑

i∈J

(bi − ai).

Therefore there is a finite set J0 ⊆ J such that

∑

i∈J0

(bi − ai) > m(G)− ε/2.

Let n = |J0| be the cardinality of the set J0. For every i ∈ J0, we choose an
interval [a′i, b

′
i] so that

[a′i, b
′
i] ⊆ (ai, bi) and (b′i − a′i) > (bi − ai)− ε

2n

(cf. Exercise 2.7) and define a closed set F by

F =
⋃

i∈J0

[a′i, b
′
i].

We have (cf. Example 2.2),

m(F ) =
∑

i∈J0

(b′i − a′i) >
[∑

i∈J0

(bi − ai)
]
− ε/2 > m(G)− ε,

which is the desired result. �

Theorem 2.7. Let F be a bounded closed set. Then

m(F ) = inf{m(G) : F ⊆ G, G is open and bounded }.
Proof. Let I = (A,B) be an open interval containing the set F . The set I \F
is open and bounded. By Theorem 2.6, for a given ε > 0, there is a closed set
F0 ⊆ I \ F such that

m(F0) > m(I \ F )− ε = (B −A)−m(F )− ε.

The set G0 = I \ F0 is open and contains the set F . Therefore, by the above
inequality,
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m(G0) = m(I \ F0) = (B −A)−m(F0)

< (B −A)− (B −A) +m(F ) + ε = m(F ) + ε.

By Theorem 2.5, m(G0) ≥ m(F ). Now the result follows from the approxi-
mation property of infimum. �

From Lemma 2.4 we immediately obtain the following result.

Theorem 2.8. Let F be a bounded closed set. Then

m(F ) = sup{m(F ′) : F ′ ⊆ F, F ′ is closed }.
We summarize these results in the following theorem which justifies defi-

nitions of the inner and outer measures in Sect. 2.3.

Theorem 2.9. Let U be a bounded open or closed set. Then

m(U) = inf{m(G) : U ⊆ G, G is open and bounded }
= sup{m(F ) : F ⊆ U, F is closed }.

By Theorem 2.3, the function m is countably additive on the class of
bounded open sets. For closed sets, we need only the finite additivity property
in Sect. 2.3.

Theorem 2.10. Let {F1, . . . , Fn} be a finite collection of pairwise disjoint
bounded closed sets and let F =

⋃n
i=1 Fi. Then

m(F ) =

n∑

i=1

m(Fi).

Proof. The proof is by induction. For n = 2 we have two bounded closed sets
F1 and F2 with F1 ∩ F2 = ∅.

By Theorem 2.7, for a given ε > 0, there is an open set G containing F
such that

m(F ) > m(G)− ε.

By Theorem 1.12, there are open sets G1 ⊇ F1 and G2 ⊇ F2 such that
G1 ∩G2 = ∅. Clearly, Fi ⊆ G ∩Gi for i ∈ {1, 2} and

(G1 ∩G) ∩ (G2 ∩G) = ∅, (G1 ∩G) ∪ (G2 ∩G) ⊆ G.

Therefore, by Theorem 2.5,

m(F1) +m(F2) ≤ m(G ∩G1) +m(G ∩G2)

= m((G1 ∩G) ∪ (G2 ∩G)) ≤ m(G) < m(F ) + ε.

Because ε is an arbitrary positive number, we have

m(F1) +m(F2) ≤ m(F ).
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To prove the opposite inequality, we consider open sets Gi ⊇ Fi such that
m(Fi) > m(Gi)− ε

2 , for i ∈ {1, 2}. These sets exist by Theorem 2.7. Then we
have

m(F1) +m(F2) > m(G1) +m(G2)− ε.

From this inequality we obtain, by applying Theorems 2.5 and 2.4,

m(F1 ∪ F2) ≤ m(G1 ∪G2) ≤ m(G1) +m(G2)

< m(F1) +m(F2) + ε.

Hence, m(F ) ≤ m(F1) +m(F2), and we obtain the desired result:

m(F ) = m(F1) +m(F2).

For the induction step, let {F1, . . . , Fn} be a finite collection of mutually
disjoint bounded closed sets and let F =

⋃n
i=1 Fi. By the induction hypothesis,

for F ′ =
⋃n−1

i=1 Fi, we have

m(F ′) =
n−1∑

i=1

m(Fi).

Clearly, F = F ′ ∪ Fn and F ′ ∩ Fn = ∅. As we proved before,

m(F ) = m(F ′) +m(Fn).

This implies

m(F ) =

n∑

i=1

m(Fi),

which completes the proof. �

2.3 Inner and Outer Measures

Definition 2.4. Let E be a bounded set.

(i) The outer measure m∗(E) of E is the greatest lower bound of measures of
all bounded open sets G containing the set E:

m∗(E) = inf{m(G) : G ⊇ E, G is open and bounded}.

(ii) The inner measure m∗(E) of E is the least upper bound of measures of
closed sets F contained in the set E:

m∗(E) = sup{m(F ) : F ⊆ E, F is closed}.
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It is clear that

0 ≤ m∗(E) < ∞ and 0 ≤ m∗(E) < ∞

for any bounded set E. By Theorem 2.9,

m∗(G) = m∗(G) = m(G) and m∗(F ) = m∗(F ) = m(F ),

for any bounded open set G and any bounded closed set F .

Theorem 2.11. For every bounded set E,

m∗(E) ≤ m∗(E).

Proof. Let G be a bounded open set containing E. For any closed subset F of
the set E, we have F ⊆ E ⊆ G. Therefore, by Theorem 2.5, m(F ) ≤ m(G),
that is, m(G) is an upper bound of the family {m(F )}F⊆G. Hence,

m∗(E) = sup
F⊆E

{m(F )} ≤ sup
F⊆G

{m(F )} = m(G).

It follows that m∗(E) is a lower bound for the measures of bounded open sets
containing E. Thus,

m∗(E) ≤ inf
G⊇E

{m(G)} = m∗(E),

which proves the claim. �

The monotonicity property of inner and outer measures is established in
the next theorem.

Theorem 2.12. Let U and V be bounded sets. If U ⊆ V , then

m∗(U) ≤ m∗(V ) and m∗(U) ≤ m∗(V ).

Proof. We prove the first inequality leaving the second one as an exercise
(cf. Exercise 2.8).

Let us consider sets of real numbers:

A = {m(F ) : F is a closed subset of U},
B = {m(F ) : F is a closed subset of V }.

Clearly, A ⊆ B. Therefore, m∗(U) = supA ≤ supB = m∗(V ) (cf. Exercise
1.25). �

We obtain a generalization of Theorem 2.4 as the result of the following
theorem (countable subadditivity of the outer measure).
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Theorem 2.13. If a bounded set E is the union of a finite or countable family
of sets {Ei}i∈J ,

E =
⋃

i∈J

Ei,

then
m∗(E) ≤

∑

i∈J

m∗(Ei).

Proof. First, we consider the case when J is a countable set. The result is
trivial if

∑
i∈J m∗(Ei) = ∞, so we assume that the family {m∗(Ei)}i∈J is

summable.
Let ε > 0 be a given number and f : J → N be a bijection. By the

definition of the outer measure, for each i ∈ J there is an open set Gi ⊇ Ei

such that
m(Gi) < m∗(Ei) +

ε

2f(i)
.

Let (a, b) be an open interval containing the set E. The set

(a, b) ∩
⋃

i∈J

Gi =
⋃

i∈J

[(a, b) ∩Gi]

is open and contains E. Therefore, by Theorems 2.12, 2.4, and 2.2,

m∗(E) ≤ m
( ⋃

i∈J

[
(a, b) ∩Gi]

)
≤
∑

i∈J

m
[
(a, b) ∩Gi

]

≤
∑

i∈J

m(Gi) ≤
∑

i∈J

(
m∗(Ei) +

ε

2f(i)

)
=
∑

i∈J

m∗(Ei) + ε.

(cf. Exercise 1.49). Because ε is an arbitrary positive number, we have

m∗(E) ≤
∑

i∈J

m∗(Ei).

The case when J is a finite set is reduced to the previous one by adding
countably many empty sets to the family {Ei)}i∈J . �

For the inner measure, we have a weaker result.

Theorem 2.14. If a bounded set E is the union of a finite or countable family
of pairwise disjoint sets {Ei}i∈J ,

E =
⋃

i∈J

Ei, Ei ∩ Ej = ∅ for i �= j,

then
m∗(E) ≥

∑

ı∈J

m∗(Ei).
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Proof. As in the proof of the previous theorem, it suffices to consider the case
when J is a countable set.

Let J0 be a finite subset of J of cardinality n, and let ε > 0 be a given
number. By the definition of the inner measure, for each i ∈ J0, there is a
closed set Fi ⊆ Ei such that

m(Fi) > m∗(Ei)− ε

n
.

It is clear that the sets Fi are pairwise disjoint and their union
⋃

i∈J0
Fi

is a closed subset of the set E. By the definition of the inner measure and
Theorems 2.12 and 2.10,

m∗(E) ≥ m
( ⋃

i∈J0

Fi

)
=
∑

i∈J0

m(Fi)

>
∑

i∈J0

(
m∗(Ei)− ε

n

)
=
∑

i∈J0

m∗(Ei)− ε.

Because ε is an arbitrary positive number, it follows that

∑

i∈J0

m∗(Ei) ≤ m∗(E).

By Theorem 1.14, the family {m∗(Ei)}i∈J is summable and

∑

i∈J

m∗(Ei) ≤ m∗(E),

which proves the assertion of the theorem. �

Note that, unlike in the case of the outer measure, the claim of the previous
theorem fails to hold if the sets Ei’s are not pairwise disjoint. Indeed, let
E1 = [0, 1] and E2 = [0, 2]. Then

m∗(E1 ∪ E2) = 2 < 3 = m∗(E1) +m∗(E2).

The last theorem of this section establishes an important property of inner
and outer measures which is used several times in the rest of this chapter.

Theorem 2.15. Let E be a bounded set and I = (a, b) be an open interval
containing E. Then

m∗(E) +m∗(I \ E) = m(I).

Proof. By the definition of the outer measure, for a given ε > 0, there is an
open set G0 ⊇ E such that m(G0) < m∗(E) + ε. Let (a′, b′) be a subinterval
of (a, b) such that 0 < a′ − a < ε, 0 < b− b′ < ε, and let

G = (I ∩G0) ∪ (a, a′) ∪ (b′, b).
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By Theorems 2.4 and 2.2,

m(G) ≤ m(I ∩G0) + (a′ − a) + (b− b′)
≤ m(G0) + (a′ − a) + (b− b′) < m∗(E) + 3 ε.

The set F = I \G is closed, because

F = [a′, b′] ∩ �G

(cf. Exercise 1.40). Since E ⊆ G, we have F = I \G ⊆ I \ E. Hence,

m∗(I \ E) ≥ m(F ) = m(I)−m(G) > m(I)−m∗(E)− 3 ε.

Because ε is an arbitrary positive number, we have the inequality

m∗(E) +m∗(I \ E) ≥ m(I).

In order to obtain the reverse inequality,

m∗(E) +m∗(I \ E) ≤ m(I),

let us select a closed set F such that F ⊆ I \ E and

m(F ) > m∗(I \ E)− ε,

where ε > 0 is a given number. The set G = I \ F is a bounded open set
containing the set E. Therefore,

m∗(E) ≤ m(G) = m(I)−m(F ) < m(I)−m∗(I \ E) + ε,

which yields the desired inequality, because ε is an arbitrary positive number.
�

2.4 Measurable Sets

Definition 2.5. A bounded set E is said to be measurable if its outer and
inner measures are equal. The measure m(E) of a measurable set E is the
common value of its outer and inner measures:

m(E) = m∗(E) = m∗(E).

The following theorem justifies the notation m in the above definition.

Theorem 2.16. (i) A bounded open set is measurable and its measure is the
same as defined in Sect. 2.1.

(ii) A bounded closed set is measurable and its measure is the same as defined
in Sect. 2.2.
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Proof. The claims follow immediately from Theorem 2.9 (cf. the second
paragraph in Sect. 2.3). �

Theorem 2.17. Let E be a subset of an open bounded interval I. Then E is
measurable if and only if the set I \ E is measurable. Furthermore,

m(E) +m(I \ E) = m(I),

provided that one of the sets E and I \ E is measurable.

Proof. By Theorem 2.15,

m∗(E) +m∗(I \ E) = m(I).

By replacing the set E with the set I \ E in the above equality, we obtain

m∗(E) +m∗(I \ E) = m(I).

Therefore,

m∗(E) −m∗(E) = m∗(I \ E)−m∗(I \ E).

Both claims of the theorem follow immediately from the displayed equalities.
�

The property of the Lebesgue measure m known as its countable additivity
or σ-additivity is the result of the next theorem.

Theorem 2.18. Let a bounded set E be the union of a finite or countable
family of pairwise disjoint measurable sets,

E =
⋃

i∈J

Ei.

Then the set E is measurable and

m(E) =
∑

i∈J

m(Ei).

Proof. By Theorem 2.14, the family {m∗(Ei)}i∈J is summable and

m∗(E) ≥
∑

i∈J

m∗(Ei) =
∑

i∈J

m(Ei),

and by Theorem 2.13,

m∗(E) ≤
∑

i∈J

m∗(Ei) =
∑

i∈J

m(Ei).
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Because m∗(E) ≤ m∗(E) (cf. Theorem 2.11), we have

∑

i∈J

m(Ei) ≤ m∗(E) ≤ m∗(E) ≤
∑

i∈J

m(Ei),

and the result follows. �

The next two theorems assert that the set of measurable sets of real num-
bers is closed under finite unions and intersections.

Theorem 2.19. The union of a finite family of measurable sets is measurable.

Proof. Let E =
⋃

i∈J Ei, where J is a finite set of cardinality n and the sets
Ei, i ∈ J are measurable.

For a given i ∈ J and an arbitrary ε > 0, there is a bounded open set
Gi ⊇ Ei and a closed set Fi ⊆ Ei such that (cf. Exercises 2.13 and 2.14)

m(Ei) = m∗(Ei) > m(Gi)− ε

2n

and
m(Ei) = m∗(Ei) < m(Fi) +

ε

2n
,

that is,

m(Gi)−m(Fi) <
ε

n
, for all i ∈ J . (2.5)

The sets Fi and Gi \ Fi are disjoint and their union is the set Gi. These sets
are measurable because Fi is closed and Gi \ Fi = Gi ∩ �Fi is open. Hence,
by Theorem 2.18,

m(Gi \ Fi) = m(Gi)−m(Fi). (2.6)

Let F =
⋃

i∈J Fi and G =
⋃

i∈J Gi. Clearly, F is a closed set, G is an
open set, and both sets are bounded. Arguing as in the previous paragraph,
we obtain

m(G \ F ) = m(G)−m(F ). (2.7)

Because
G \ F =

( ⋃

i∈J

Gi

)
\ F =

⋃

i∈J

(Gi \ F ) ⊆
⋃

i∈J

(Gi \ Fi),

where all sets on the right and left sides are open, we have by Theorems 2.2
and 2.4

m(G \ F ) ≤
∑

i∈J

m(Gi \ Fi).

Because F ⊆ E ⊆ G, we have

m(F ) ≤ m∗(E) ≤ m∗(E) ≤ m(G).

Therefore, by (2.5)–(2.7),
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m∗(E)−m∗(E) ≤ m(G)−m(F ) = m(G \ F )

≤
∑

i∈J

m(Gi \ Fi) =
∑

i∈J

[m(Gi)−m(Fi)] < ε.

The desired result follows, because ε > 0 is arbitrary small. �

Theorem 2.20. The intersection of a finite family of measurable sets is mea-
surable.

Proof. Let E =
⋂

i∈J Ei, where J is a finite set and the sets Ei, i ∈ J , are
measurable, and let I be an open interval containing the set E,

E =
⋂

i∈J

Ei ⊆ I.

We have (cf. Exercise 1.5b)

I \
( ⋂

i∈J

Ei

)
=
⋃

i∈J

(I \ Ei).

By Theorems 2.17 and 2.19, the set on the right side is measurable. Therefore,
the set I \ (

⋂
i∈J Ei) is measurable. By Theorem 2.17, the set

⋂
i∈J Ei is

measurable. �

More algebraic properties (with respect to set theoretic operations) of the
set of measurable sets of real numbers are established in the following theorem.

Theorem 2.21. Let E1 and E2 be two measurable sets. Then

(i) The difference E1 \ E2 is measurable.
(ii) The symmetric difference E1 E2 is measurable.

In addition:
(iii) If E2 ⊆ E1 and E = E1 \ E2, then m(E) = m(E1)−m(E2).

Proof.

(i) Let I be an open interval containing the union E1 ∪ E2. We have
(cf. Exercise 1.3a)

E1 \ E2 = E1 ∩ (I \ E2).

By Theorems 2.17 and 2.20, the set E1 \ E2 is measurable.
(ii) Since

E1 E2 = (E1 \ E2) ∪ (E2 \ E1)

and the sets E1\E2 and E2\E1 are disjoint, the set E1E2 is measurable
(cf. Theorem 2.18).
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(iii) By Theorem 2.18, we have

m(E1) = m(E2) +m(E),

because sets E2 and E are disjoint and their union is the set E1. �

The set of measurable sets of real numbers is also closed under countable
unions and intersections. To prove these assertions we need a lemma.

Lemma 2.7. Let (En) be a sequence of sets and E =
⋃∞

i=1 Ei. Then the sets

A1 = E1, A2 = E2 \A1, . . . , An = En \
n−1⋃

i=1

Ai, . . .

are pairwise disjoint and their union is the set E,

∞⋃

i=1

Ai = E.

Proof. For any m < n, we have

Am ∩ An = Am ∩
(
En \

n−1⋃

i=1

Ai

)
= Am ∩

( n−1⋂

i=1

(En \Ai)

)
= ∅,

because Am ∩ (En \Am) = ∅. Hence the sets An are pairwise disjoint.
Clearly,

∞⋃

i=1

Ai ⊆
∞⋃

i=1

Ei = E.

Conversely, for a given x ∈ E, let n be the least index i such that x ∈ Ei.
Then x ∈ An ⊆ ⋃∞

i=1 Ai, and the result follows. �

Theorem 2.22. Let a bounded set E be the union of a countable family of
measurable sets {Ei}i∈J ,

E =
⋃

i∈J

Ei.

Then the set E is measurable.

Proof. We may assume that J = N. Let (An) be the sequence of sets
from Lemma 2.7. A straightforward inductive argument using Theorems 2.19
and 2.21 shows that the sets An’s are measurable. By Lemma 2.7 and
Theorem 2.18, the set E is measurable. �
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Theorem 2.23. The intersection of a countable family of measurable sets is
measurable.

Proof. Let E =
⋂∞

i=1 Ei, where Ei’s are measurable sets, and let I be an open
interval containing the set E,

E =
⋂

i∈J

Ei ⊆ I.

We have (cf. Exercise 1.5b)

I \
( ⋂

i∈J

Ei

)
=
⋃

i∈J

(I \ Ei).

By Theorems 2.17 and 2.22, the set on the right side is measurable. Therefore,
the set I \ (

⋂
i∈J Ei) is measurable. By Theorem 2.17, the set

⋂
i∈J Ei is

measurable. �

The last two theorems of this section establish “continuity” properties of
Lebesgue’s measure.

Theorem 2.24. Let (En) be a sequence of measurable sets such that

E1 ⊆ E2 ⊆ · · · ⊆ En ⊆ · · ·

and the set E =
⋃∞

i=1 Ei is bounded. Then

m(E) = limm(En).

Proof. By Theorem 2.22, the set E is measurable. It is clear that

E = E1 ∪ (E2 \ E1) ∪ · · · ∪ (Ei+1 \ Ei) ∪ · · · ,

where the sets on the right side are pairwise disjoint. Hence, by Theorems 2.18
and 2.21(iii),

m(E) = m(E1) +

∞∑

i=1

[m(Ei+1)−m(Ei)].

The partial sum of the series on the right side is

m(E1) +

n−1∑

i=1

[m(Ei+1)−m(Ei)] = m(En).

Therefore, m(E) = limn→∞ m(En). �
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Theorem 2.25. Let (En) be a sequence of measurable sets such that

E1 ⊇ E2 ⊇ · · · ⊇ En ⊇ · · ·
and let E =

⋂∞
i=1 Ei. Then

m(E) = limm(En).

Proof. Let I be an open interval containing the set E1. Then

(I \ E1) ⊆ (I \ E2) ⊆ · · · ⊆ (I \ En) ⊆ · · ·
and

I \ E =

∞⋃

i=1

(I \ Ei).

By Theorem 2.24,
m(I \ E) = lim

n→∞m(I \ En),

or equivalently,

m(I)−m(E) = lim
n→∞[m(I)−m(En)].

The result follows. �

2.5 Translation Invariance of Measure

For any given real number a ∈ R the transformation ϕa : R → R given by
ϕa(x) = x + a is said to be a translation of R. The image of a set E under
translation ϕa will be denoted by E + a, so

E + a = {x+ a : x ∈ E}.
The following theorem lists properties of translations that can be readily

verified (cf. Exercise 2.31):

Theorem 2.26. Let ϕa be a translation of R. Then

(i) ϕa is a continuous bijection from R onto R.
(ii) The image of an open set under ϕa is an open set.
(iii) Let G be an open set. The component intervals of G + a are exactly the

images of the component intervals of the set G under translation ϕa.

The goal of this section is to establish the following result.

Theorem 2.27. The image of a measurable set E under the translation ϕa

is measurable and
m(E + a) = m(E).
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In words: the measurability property of sets is invariant under translations
and the measure of a measurable set is translation invariant.

We give the proof of Theorem 2.27 as a sequence of lemmas.

Lemma 2.8. Let I be a bounded open interval. Then

m(I + a) = m(I),

for any translation ϕa.

Proof. Clearly, the translate of a bounded open interval is an open interval of
the same length. �

Lemma 2.9. Let G be a bounded open set and ϕa be a translation of R. Then
the set G+ a is measurable and

m(G+ a) = m(G).

Proof. It is clear that the set G + a is bounded. It is measurable by
Theorem 2.26(ii). Let {I}i∈J be the family of component intervals of G. By
the previous lemma,

m(Ii + a) = m(Ii), i ∈ J.

Hence, by Theorem 2.26(iii),

m(G+ a) =
∑

i∈J

m(Ii + a) =
∑

i∈J

m(Ii) = m(G),

and the result follows. �

Lemma 2.10. Let E be a bounded set and ϕa be a translation of R. Then

(i) m∗(E + a) = m∗(E),
(ii) m∗(E + a) = m∗(E).

Proof.

(i) For a given ε > 0, let G be an open set containing E such that

m(G) < m∗(E) + ε

(cf. Exercise 2.13). Inasmuch as E + a ⊆ G+ a, we have, by the previous
lemma,

m∗(E + a) ≤ m∗(G+ a) = m(G+ a) = m(G) < m∗(E) + ε.

Because ε is an arbitrary positive number,
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m∗(E + a) ≤ m∗(E), for any a ∈ R.

By this inequality (replacing E by E + a and a by −a),

m∗(E) = m∗((E + a)− a) ≤ m∗(E + a).

Hence, m∗(E + a) = m∗(E).
(ii) Let I be a bounded open interval containing the set E. Then E+a ⊆ I+a

and (I \E)+ a = (I + a) \ (E + a) (cf. Exercise 1.12d). By Theorem 2.15,

m∗((I + a) \ (E + a)) +m∗(E + a) = m(I + a) = m(I).

By the result of part (i),

m∗((I + a) \ (E + a)) = m∗((I \ E) + a) = m∗(I \ E).

From the last two displayed equalities and Theorem 2.15, we obtain

m∗(E + a) = m(I)−m∗((I + a) \ (E + a))

= m(I)−m∗(I \ E) = m∗(E),

which is the desired result. �

Let E be a measurable set. By the previous lemma, we have

m∗(ϕa(E)) = m∗(E) = m∗(E) = m∗(ϕa(E))

for any translation ϕa. It follows that ϕa(E) is a measurable set which has
the same measure as E,

m(ϕa(E)) = m(E).

This completes the proof of Theorem 2.27.

2.6 The Class of Measurable Sets

The class of all measurable sets includes all open and all closed bounded sets.
By Theorems 2.22 and 2.23, bounded countable unions of closed sets and
countable intersections of bounded open sets are measurable.

Any bounded countable set E is measurable and its measure is zero.
Indeed, E is a countable union of the family of its singletons. Since every
singleton is measurable with measure zero, the claim follows from Theo-
rem 2.18. The Cantor set C (cf. Example 1.2) shows that the converse is
false (cf. Exercise 2.4).

By Exercise 2.17, any subset of the Cantor set C is measurable. Inasmuch
as the cardinality of C is the same as the cardinality of the set of all real
numbers (cf. Example 1.2), we conclude that the cardinality of the set of all
measurable subsets of R is the same as the cardinality of all subsets of R.
In words, there are as many measurable sets as arbitrary sets of real numbers.
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A collection of subsets of a given set E is called a σ-algebra provided it
contains E and is closed with respect to the formation of relative complements
and countable unions. By the results of Sect. 2.4, the set of all measurable
subsets of a measurable set E is a σ-algebra.

Are there bounded nonmeasurable sets? We conclude this section by con-
structing an example of such a set.

We say that two real numbers are (rationally) equivalent if their difference
is a rational number. The reader should verify that this relation is indeed an
equivalence relation (cf. Exercise 2.32a). Since the set of rational numbers is
dense in R, each equivalence class of the relation intersects the open interval
(0, 1) (cf. Exercise 2.32b). From each equivalence class, we select precisely one
number in (0, 1) and call the resulting set N.

We will show that N is a nonmeasurable set. First, we establish two prop-
erties of the set N.

Lemma 2.11. If p and q are two distinct rational numbers, then

(N + p) ∩ (N + q) = ∅.

Proof. Suppose x ∈ (N + p) ∩ (N + q). Then

x = α+ p = β + q, for some α, β ∈ N.

Hence, α − β = q − p is a rational number. Therefore, the numbers α and
β are distinct and belong to the same equivalence class. This contradicts the
definition of the set N. �

Lemma 2.12.
(0, 1) ⊆

⋃

p∈Q∩(−1,1)

(N + p) ⊆ (−1, 2).

Proof. For a given x ∈ (0, 1), let y be a unique element in N that is rationally
equivalent to x, and let p = x− y. Since both x and y belong to the interval
(0, 1), their difference p belongs to the interval (−1, 1). Hence, x ∈ N + p for
p ∈ (−1, 1). This proves the first inclusion.

The second inclusion holds because N is a subset of (0, 1). �

Theorem 2.28. The set N is not measurable.

Proof. Suppose N is measurable and let γ = m(N).
By Lemma 2.11, the sets N+ p, p ∈ Q∩ (−1, 1), are pairwise disjoint and,

by Theorem 2.27, are measurable with the same measure m(N + p) = γ. By
Lemma 2.12, the set
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A =
⋃

p∈Q∩(−1,1)

(N + p)

is bounded. Therefore, by Theorem 2.18, the set A is measurable and

m(A) = γ + γ + · · · ,

which is possible only if m(A) = γ = 0. On the other hand, by Lemma 2.12,
(0, 1) ⊆ A, which implies 1 ≤ m(A) = 0. This contradiction completes the
proof. �

By Theorem 2.18, the measure of a bounded set enjoys the countable
additivity property:

m
( ⋃

i∈J

Ei

)
=
∑

i∈J

m(Ei), J is a countable set,

provided that the sets Ei’s are pairwise disjoint measurable sets with a
bounded union. The construction from Theorem 2.28 shows that the outer
measure is not even finitely additive. Indeed, by Theorems 2.12 and 2.13 and
by Lemma 2.10, we have

1 = m∗(0, 1) ≤ m∗(A) ≤
∑

p∈Q∩(−1,1)

m∗(N + p) =
∑

p∈Q∩(−1,1)

m∗(N).

It follows that m∗(N) > 0. Let n be a natural number such that m∗(N) > 1/
n and let J be a finite subset of Q ∩ (−1, 1) of cardinality 3n. If the outer
measure m∗ was finitely additive, we would have

m∗( ⋃

p∈J

(N + p)
)
=
∑

p∈J

m∗(N + p) =
∑

p∈J

m∗(N) > 3n
1

n
= 3,

which contradicts

⋃

p∈J

(N + p) ⊆
⋃

p∈Q∩(−1,1)

(N + p) ⊆ (−1, 2).

Hence, m∗ is not finitely additive.

2.7 Lebesgue Measurable Functions

Theorem 2.29. Let E be a measurable set and f be a real-valued function
f : E → R. The following statements are equivalent:

(i) For each c ∈ R, the set {x ∈ E : f(x) > c} is measurable.
(ii) For each c ∈ R, the set {x ∈ E : f(x) ≥ c} is measurable.
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(iii) For each c ∈ R, the set {x ∈ E : f(x) < c} is measurable.
(iv) For each c ∈ R, the set {x ∈ E : f(x) ≤ c} is measurable.

Each of these properties implies that the following sets are measurable:

(a) For each c ∈ R, the set {x ∈ E : f(x) = c} is measurable.
(b) For any real numbers c < d, the set {x ∈ E : c ≤ f(x) < d} is measurable.

Proof. Because

{x ∈ E : f(x) ≤ c} = E \ {x ∈ E : f(x) > c}

and
{x ∈ E : f(x) ≥ c} = E \ {x ∈ E : f(x) < c},

(i) and (iv) are equivalent, as are (ii) and (iii). Now, (i) implies (ii), because

{x ∈ E : f(x) ≥ c} =

∞⋂

k=1

{x ∈ E : f(x) > c− 1
k}

and the right side is measurable by Theorem 2.23. Similarly, (ii) implies (i),
because

{x ∈ E : f(x) > c} =

∞⋃

k=1

{x ∈ E : f(x) ≥ c+ 1
k}

and the right side is measurable by Theorem 2.22. It follows that statements
(i)–(iv) are equivalent. Assuming that one, and hence all, of them holds, we
conclude that the set

{x ∈ E : f(x) = c} = {x ∈ E : f(x) ≥ c} ∩ {x ∈ E : f(x) ≤ c}

is measurable. Similarly, the set

{x ∈ E : c ≤ f(x) < d} = {x ∈ E : f(x) ≥ c} ∩ {x ∈ E : f(x) < d}

is measurable. �

Note that condition (a) of the theorem does not imply any of the conditions
(i)–(iv) (cf. Exercise 2.41), whereas (b) is equivalent to any of these conditions
(cf. Exercise 2.42).

Definition 2.6. A real-valued function on a set E is said to be measurable
provided its domain E is measurable and it satisfies one of the four statements
(i)–(iv) of Theorem 2.29.

Theorem 2.30. If f and g are measurable functions on a set E and k is an
arbitrary constant, then kf , f2, f +g, and fg are measurable functions on E.



54 2 Lebesgue Measure

Proof. If k = 0, then kf is a constant function, and hence is measurable
(cf. Exercise 2.36). If k > 0, then

{x ∈ E : kf(x) > c} = {x ∈ E : f(x) > c/k},
and if k < 0, then

{x ∈ E : kf(x) > c} = {x ∈ E : f(x) < c/k},
so kf is measurable for any k.

If c < 0, then
{x ∈ E : f2(x) > c} = E,

and if c ≥ 0, then

{x ∈ E : f2(x) > c} = {x ∈ E : f(x) < −√
c} ∪ {x ∈ E : f(x) >

√
c}.

Therefore, f2 is measurable on E.
Now we show that the function f +g is measurable. For q ∈ Q and a given

c ∈ R, let us consider sets

Aq = {x ∈ E : f(x) < q} and Bq = {x ∈ E : g(x) < c− q}.
Because functions f and g are measurable, the sets Aq and Bq are measurable
for every q ∈ Q. We have

{x ∈ E : f(x) + g(x) < c} =
⋃

q∈Q

Aq ∩Bq. (2.8)

Indeed, if f(x)+ g(x) < c for some x ∈ E, then f(x) < c− g(x). Then there is
a rational number q such that f(x) < q < c−g(x). It follows that x ∈ Aq∩Bq.
On the other hand, if x ∈ ⋃q∈Q

Aq ∩Bq, then there is q ∈ Q such that x ∈ Aq

and x ∈ Bq, so f(x) + g(x) < c. Thus, (2.8) holds. The function f + g is
measurable, since the right side of (2.8) is a measurable set.

Inasmuch as
fg = 1

4 [(f + g)2 − (f − g)2],

the function fg is measurable. �

We gave a detailed proof of (2.8) because this kind of construction is quite
typical (cf. proof of Theorem 4.6).

For a finite set {f1, . . . , fn} of measurable functions with common domain
E, we define the function min{f1, . . . , fn} by

min{f1, . . . , fn}(x) = min{f1(x), . . . , fn(x)}, for x ∈ E.

The function max{f1, . . . , fn} is defined the same way.

Theorem 2.31. For a finite family {fi}ni=1 of measurable functions on a set
E, the functions min{f1, . . . , fn} and max{f1, . . . , fn} are also measurable.
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Proof. For any given c ∈ R, we have

{x ∈ E : min{f1, . . . , fn}(x) > c} =

n⋂

i=1

{x ∈ E : fi(x) > c},

so this set is measurable as a finite intersection of measurable sets. Hence, the
function min{f1, . . . , fn} is measurable. A similar argument shows that the
function max{f1, . . . , fn} also is measurable. �

Corollary 2.1. If f is a measurable function on a set E, then |f | is also
measurable on E.

Proof. The claim follows immediately from

|f |(x) = max{f(x),−f(x)}
and Theorems 2.30 and 2.31. �

2.8 Sequences of Measurable Functions

For notation convenience, we often write “f ≤ g on E” for “f(x) ≤ g(x) for
all x ∈ E” (similarly, “f < g on E” for “f(x) < g(x) for all x ∈ E”) and use
the same convention for equalities.

Definition 2.7. Let (fn) be a sequence of functions with a common domain
E, f be a function on E, and A be a subset of E. We say that

(i) The sequence (fn) converges to f pointwise on A if

lim fn(x) = f(x) for all x ∈ A.

(ii) The sequence (fn) converges to f pointwise almost everywhere on A pro-
vided it converges to f pointwise on A \B, where m(B) = 0.

(iii) The sequence (fn) converges to f uniformly on A provided for each ε > 0
there is an index N such that

|f − fn| < ε, for all n ≥ N .

Observe that uniform convergence of a sequence (fn) implies its pointwise
convergence.

In measure theory, we say that a property holds almost everywhere (ab-
breviated a.e.) on a measurable set E provided it holds on E \E0, where E0 is
a subset of E of measure zero. Definition 2.7(ii) accounts for situations when
we might have a few values of x ∈ E at which the sequence (fn(x)) does not
converge or converges to a number different from f(x).
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Example 2.3. (The Cantor function). Let f be an increasing linear function
that maps the interval [a, b] onto the interval [c, d]. If m denotes the slope of
the graph of f , that is, m = (d− c)/(b− a), then

f(x) = mx+ (c−ma) on [a, b].

Let us define a new function Tf by

(Tf)(x) =

⎧
⎪⎨

⎪⎩

3
2mx− (c− 3

2ma), if a ≤ x ≤ 2
3a+

1
3 b,

1
2c+

1
2d, if 2

3a+ 1
3b < x ≤ 1

3a+ 2
3b,

3
2mx+ (d− 3

2mb), if 1
3a+ 2

3b < x ≤ b.

Graphs of functions f0(x) = x on [0, 1] and f1 = Tf0 on the same interval
are shown in Fig. 2.5 left.

Now we apply the transformation T to two linear “pieces” of the function
f1 that have slope 3/2 to obtain function f2 whose graph is shown in Fig. 2.5
right. Observe that f2 is again a piecewise linear function on [0, 1] and that
the slopes of all non-horizontal “pieces” are (3/2)2.

x

y

1

1

0 1/3 2/3

1/2

x

y

1

1

0 1/3 2/3

1/2

1/9

1/4

3/4

7/9 8/92/9

Figure 2.5. Functions f1(x) (left) and f2(x) (right)

By continuing this process, we define a piecewise linear function fk on
[0, 1] that has “pieces” with nonzero slopes over the set Ck (cf. Example 1.2)

and assumes constant values 1
2k
, . . . , 2k−1

2k
on the component intervals of the

open set [0, 1] \ Ck.
It is not difficult to show that the sequence (fn) converges to a nondecreas-

ing function c(x) that maps the interval [0, 1] onto itself (cf. Exercise 2.48).
The function c(x) is called the Cantor function.

Inasmuch as each function fk is piecewise linear, it has the left-hand deriva-
tive D−fk on (0, 1]. We have

D−fk(x) =

{
(3/2)k, if x ∈ Ck \ {0},
0, if x ∈ [0, 1] \ Ck.
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Because the measure of the Cantor set is zero, the sequence (D−fn) converges
to zero almost everywhere. Moreover, c′(x) = 0 a.e. on [0, 1].

Theorem 2.32. Let (fn) be a sequence of measurable functions on E that
converges pointwise to the function f . Then f is measurable.

Proof. By Theorem 1.5,

f(x) = lim sup fn(x) = lim gn(x),

where
gn(x) = sup{fk(x) : k ≥ n}.

For any given x, the sequence (fn(x)) is bounded (because it is convergent),
so the functions gn’s are well defined.

For given c ∈ R and x ∈ E,

gn(x) ≤ c if and only if fk(x) ≤ c for all k ≥ n

(cf. Exercise 1.19). Therefore,

{x ∈ E : gn(x) ≤ c} =
⋂

k≥n

{x ∈ E : fk(x) ≤ c}.

Because the functions fn’s are measurable, the set on the right side is mea-
surable. It follows that functions gn, n ∈ N, are measurable.

By Theorem 1.3,
f(x) = inf{gn(x) : n ∈ N},

inasmuch as (gn(x)) is clearly a decreasing sequence for any x ∈ E. We have

f(x) ≥ c if and only if gn(x) ≥ c for all n ∈ N.

for any given c ∈ R and x ∈ E (cf. Exercise 1.19). Therefore,

{x ∈ E : f(x) ≥ c} =
⋂

n∈N

{x ∈ E : gn(x) ≥ c},

that is, f is a measurable function on E. �

Theorem 2.33. Let (fn) be a sequence of measurable functions on E that
converges pointwise a.e. to the function f . Then f is measurable.

Proof. Let us denote by E0 the set of points x ∈ E for which

lim fn(x) = f(x)

does not hold. The function f is measurable on E0 since m(E0) = 0 (cf. Ex-
ercise 2.35). By Theorem 2.32, f is measurable on E \ E0. Clearly,
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{x ∈ E : f(x) > c} = {x ∈ E0 : f(x) > c} ∪ {x ∈ E \ E0 : f(x) > c}.

Thus f is measurable on E. �

We conclude this chapter by proving a remarkable result known as Egorov’s
Theorem. Informally, it states that “every convergent sequence of measurable
functions is nearly uniformly convergent.”

Theorem 2.34. (Egorov’s Theorem) Let (fn) be a sequence of measurable
functions on E that converges pointwise to the function f . Then for each
δ > 0, there is a measurable set Eδ ⊆ E such that m(Eδ) < δ and (fn)
converges uniformly to f on E \ Eδ.

Proof. By Theorem 2.32, f is a measurable function. For a given σ > 0 we
define two sequences of measurable sets

An(σ) = {x ∈ E : |fn(x) − f(x)| ≥ σ}

and
Bn(σ) =

⋃

k≥n

Ak(σ).

It is clear that (Bn(σ)) is a decreasing family of sets, that is,

B1(σ) ⊇ B2(σ) ⊇ · · · ⊇ Bn(σ) ⊇ · · · .

Moreover,
∞⋂

n=1

Bn(σ) = ∅.

Indeed, since (fn(x)) converges to f(x) for a given x ∈ E, there is an index
N such that |fn(x) − f(x)| < σ for all n ≥ N , that is, x /∈ An(σ) for n ≥ N .
It follows that for any given x ∈ E, there is N such that x /∈ BN (σ). Hence,
the intersection

⋂∞
n=1 Bn(σ) is empty.

By Theorem 2.25, limm(Bn(σ)) = 0. Therefore, for each k ∈ N, there is
nk such that

m(Bnk
(1/k)) <

δ

2k
,

where δ > 0 is a given number. We define

Eδ =

∞⋃

k=1

Bnk
(1/k).

Then

m(Eδ) ≤
∞∑

k=1

m(Bnk
(1/k)) <

∞∑

k=1

δ

2k
= δ.
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Let ε > 0 be a given number and let us choose k so 1/k < ε. For every
x ∈ E \ Eδ, we have x /∈ Bnk

(1/k) and hence

x /∈
⋃

n≥nk

An(1/k),

which implies
|fn(x) − f(x)| < 1/k < ε for n ≥ nk,

for all x ∈ E \ Eδ. Hence, (fn) converges uniformly to f over the set E \ Eδ.
�

Notes

The following passage from Lebesgue’s book Leçons sur l’integration et la
recherche des fonctions primitives is worth quoting in its entirety:

Nous nous proposons d’attacher à chaque ensemble E borné, formé de
points de ox, un nombre positif ou nul, m(E), que nous appelons la mesure
de E et qui satisfait aux conditions suivantes:

1. Deux ensembles ėgaux ont même mesure
2. L’ensemble somme d’un nombre fini ou d’une infinitė dėnombrable

d’ensembles, sans point commun deux à deux, a pour measure la somme
des mesures

3. La measure de l’ensemble de tous les points de (0, 1) est 1

[Leb28, p. 110]
Here is its translation:
“We propose to attach to each bounded set E, made up of points of the

x-axis, a nonnegative number m(E), that we call the measure of E and that
satisfies the following conditions:

1. Two equal sets have same measure
2. The measure of the sum of a finite or countably infinite number of sets,

without common points between any two sets, is the sum of the measures
3. The measure of the set made up of all points of (0, 1) is 1”

The reader can recognize Lebesgue’s property (1) as the translation in-
variance property (cf. Sect. 2.5). Property (2) is the countable additivity of
Lebesgue’s measure (cf. Theorem 2.18).

In his book [Leb28], Lebesgue proceeds by introducing the outer measure
as we present it in this chapter. Then he defines the inner measure of a set E
which is a subset of an interval I = (a, b) as

m∗(E) = m(I)−m∗(I \ E)
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(cf. Theorem 2.15) and a measurable set as a set such that its outer and inner
measures are equal. Our exposition of this subject is similar to the one found
in the classical text [Nat55].

Egorov’s Theorem (Theorem 2.34) is a nontrivial result in this chapter.
This theorem is of great importance in the studies of convergence of integrals
in Chap. 3.

Note that the result of Egorov’s Theorem cannot be strengthened to in-
clude, in some sense, the case of δ = 0 (cf. Exercise 2.50). In this connection,
see Theorem A.8.

Exercises

2.1. Show that the set
⋃∞

k=1(
1

k+1 ,
1
k ) is open and find its measure.

2.2. Show that the set
⋃∞

k=1(
1
2k ,

1
2k−1 ) is open and find its measure. (Hint:

cf. Exercise 1.53.)

2.3. Let X ⊆ Y ⊆ Z be three sets. Show that the sets Z \ Y and Y \X are
disjoint, and

Z \X = (Z \ Y ) ∪ (Y \X),

2.4. Show that measure of the Cantor set C is zero.

2.5. Let us define C(n) as the set that remains after removing from [0, 1] an
open interval of length 1/n centered at 1/2, then an open interval of length 1/
n2 from the center of each of the two remaining intervals, then open intervals
of length 1/n3 from the centers of each of the remaining four intervals, and
so on. Note that C(3) = C, the Cantor set.

Show that C(n) is a closed set and

m(C(n)) =
n− 3

n− 2
.

2.6. For sets A ⊆ B ⊆ C show that

C = B ∪ (C \A).
2.7. Let I = (a, b) be an open interval. Show that for every positive δ < b− a
there is a closed interval [a′, b′] ⊆ (a, b) such that

m([a′, b′]) > m(I)− δ.

2.8. Prove the second inequality in Theorem 2.12.

2.9. Let E and S be bounded sets. Prove that if m∗(E) = 0 then m∗(E∪S) =
m∗(S).
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2.10. Find the outer and inner measures of the following sets:

(a) Q ∩ [0, 1].
(b) [0, 1] \Q.

2.11. Show that the outer measure of a singleton is zero. Deduce that the set
[0, 1] is not countable.

2.12. Let A and B be bounded sets for which there is an ε > 0 such that
|a− b| ≥ ε for all a ∈ A, b ∈ B. Prove that

m∗(A ∪B) = m∗(A) +m∗(B).

2.13. Prove that for any bounded set E and any ε > 0, there is an open set
G ⊇ E such that

m(G) < m∗(E) + ε.

2.14. Prove that for any bounded set E and any ε > 0, there exists a closed
set F ⊆ E such that

m(F ) > m∗(E)− ε.

2.15. Prove that for any bounded set E, there is a bounded set A that is a
countable intersection of open sets for which E ⊆ A and

m∗(E) = m∗(A).

2.16. Prove that for any bounded set E, there exists a setB that is a countable
union of closed sets for which E ⊇ B and

m∗(E) = m∗(B).

2.17. Let E be a set of measure zero. Prove that any subset of E is measurable
and its measure is zero.

2.18. Show that if E and E′ are measurable sets, then

m(E ∪E′) +m(E ∩ E′) = m(E) +m(E′).

2.19. Let E be a bounded set. Show that if there is a measurable subset
E′ ⊆ E such that m(E′) = m∗(E), then E is measurable.

2.20. Prove that a bounded set E is measurable if and only if for every ε > 0
there exists a closed set F ⊆ E such that m∗(E \ F ) < ε.
(de la Vallée Poussin Criterion).

2.21. Let A and B be two measurable disjoint sets. Show that for any set E

m∗[E ∩ (A ∪B)] = m∗(E ∩ A) +m∗(E ∩B)

and
m∗[E ∩ (A ∪B)] = m∗(E ∩ A) +m∗(E ∩B).
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2.22. Prove that a bounded set E is measurable if and only if for every
bounded set A we have

m∗(A) = m∗(A ∩ E) +m∗(A \ E).

(Carathéodory Criterion).

2.23. Show that for any bounded set E, the following statements are equiva-
lent:

(a) E is measurable.
(b) Given any ε > 0, there is an open set G ⊇ E such that

m∗(G \ E) < ε.

(c) Given any ε > 0, there is a closed set F ⊆ E such that

m∗(E \ F ) < ε.

2.24. Show that a set E is measurable if and only if for each ε > 0, there is
a closed set F and open set G for which F ⊆ E ⊆ G and m∗(G \ F ) < ε.

2.25. Let E be a measurable set and ε > 0. Show that E is a union of a
finite family of pairwise disjoint measurable sets, each of which has measure
at most ε.

2.26. Let E be a measurable set. Show that for each ε > 0 there is a finite
family of pairwise disjoint open intervals {Ii}i∈J such that

m(E G) < ε,

where G =
⋃

i∈J Ii.

2.27. Show that a bounded set E is measurable if and only if for each open
interval I = (a, b),

b − a = m∗(I ∩ E) +m∗(I \ E).

2.28. Let {Ei}i∈J be a countable family of measurable pairwise disjoint sets.
Prove that for any bounded set A

m∗
(
A ∩

⋃

i∈J

Ei

)
=
∑

i∈J

m∗(A ∩ Ei).

2.29. Let E be a measurable set of real numbers. Show that the function

f(x) = m(E ∩ (−∞, x])

is continuous.
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2.30. Let A be a measurable subset of the interval (0, 1) such that m(A) = 1.
Show that inf A = 0 and supA = 1.

2.31. Prove Theorem 2.26.

2.32. Define a binary relation R on R by

R = {(x, y) ∈ R
2 : x− y ∈ Q}.

(a) Show that R is an equivalence relation (cf. Sect. 1.1) on R.
(b) Show that each equivalence class of R has a nonempty intersection with

(0, 1).

2.33. Define a binary relation R on R by

R = {(x, y) ∈ R
2 : x− y ∈ R \Q}.

Show that R is symmetric but not reflexive and not transitive binary relation
on R.

2.34. Show that any measurable set with positive measure contains a
nonmeasurable subset.

2.35. Show that any function on a set of measure zero is measurable.

2.36. Show that any constant function on a measurable set is measurable.

2.37. A function f on a closed interval [a, b] is said to be a step function if
there is a sequence of points

c0 = a < c1 < c2 < · · · < cn = b

such that f is constant on each open interval (ck, ck+1), 0 ≤ k < n. Prove
that a step function is measurable.

2.38. If |f | is measurable, does it necessarily follow that f is measurable?

2.39. Prove that a function f on [a, b] is measurable if and only if f−1(U) is
measurable for any open set U ⊆ R.

2.40. Prove that any continuous function on [a, b] is measurable.

2.41. Suppose that f is a function on [a, b] such that

{x ∈ [a, b] : f(x) = c}

is measurable for each number c. Is f necessarily measurable?
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2.42. Suppose that f is a function on E such that the set

{x ∈ E : c ≤ f(x) < d}

is measurable for any c < d. Show that f is measurable.

2.43. If (f(x))n is measurable for some n ∈ N, does it necessarily follow that
f is measurable?

2.44. Prove that if f is measurable on E and g = f a.e. on E, then g is
measurable.

2.45. Let f and g be continuous functions on [a, b]. Show that if f = g a.e.
on [a, b], then, in fact, f = g on [a, b].

2.46. Show that an increasing function f on the closed interval [a, b] is mea-
surable. (Hint: consider first the strictly increasing function f(x) + x/n for a
given n ∈ N.)

2.47. Let (fn) be a sequence of measurable functions on E that converges
pointwise to f . Show that for any ε > 0, there is a closed set F ⊆ E for which
(fn) converges uniformly on F and m(E \ F ) < ε.

2.48. Show that the Cantor function c(x) (cf. Example 2.3)

(a) is a continuous nondecreasing function from [0, 1] onto [0, 1].
(b) maps the Cantor set C onto the interval [0, 1].

2.49. Let (fn) be a sequence of measurable functions on E. Show that the set
A of points at which this sequence converges is measurable.

2.50. Give an example of a piecewise convergent sequence of measurable func-
tions on a measurable set E that does not converge uniformly almost every-
where on E.
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Lebesgue Integration

We define the Lebesgue integral in three stages. First, we define the integral
of a bounded function over a measurable set E by following the original
Lebesgue’s method. Then, for a nonnegative measurable function f on E,
the integral

∫
E f is defined as the supremum of the integrals of lower approx-

imations of f by bounded functions, and the function f is called integrable
over E if

∫
E
f is finite. Finally, a general measurable function f is said to be

integrable over E if its positive and negative parts f+ and f− are integrable
over E. Then

∫
E
f is defined as

∫
E
f+ − ∫

E
f−.

For a fixed measurable set E, the integral
∫
E
f is a function on the set

of integrable functions f on E. We prove that this function is linear and
monotone. On the other hand, for a fixed integrable function f on E, the
integral

∫
A f is a function on measurable subsets A of E. We show that this

function enjoys additivity properties.
A distinguished feature of the Lebesgue integral is that it allows for

the “passage of the limit under the integral sign,” that is, lim
∫
E fn =∫

E
(lim fn), under some quite general assumptions about converging sequences

of functions. By relying on the power of Egorov’s Theorem (Theorem 2.34), we
establish such classical results as the bounded convergence theorem
(Theorem 3.10), the monotone convergence theorem (Theorem 3.17),and the
dominated convergence theorem (Theorem 3.25).

3.1 Integration of Bounded Measurable Functions

We begin our exposition by recalling the concept of a partition from real
analysis.

Let I be an arbitrary nontrivial bounded interval with inf I = a, sup I = b
(so a < b). A partition of I is a set of points

P = {y0, y1, . . . yn}, n > 1,

S. Ovchinnikov, Measure, Integral, Derivative: A Course on Lebesgue’s Theory,
Universitext, DOI 10.1007/978-1-4614-7196-7 3,
© Springer Science+Business Media New York 2013
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such that
a = y0 < y1 < · · · < yn = b.

The norm of a partition P = {y0, y1, . . . yn} is the number

‖P‖ = max{yi − yi−1 : 1 ≤ i ≤ n}.
If P and Q are two partitions of (A,B) such that P ⊆ Q, then we say that Q
is finer than P .

Let f be a bounded measurable function on a set E and let (A,B) be
an arbitrary open interval containing all values of the function f , that is,
f(E) ⊆ (A,B). For a partition P = {y0, y1, . . . , yn} of (A,B), we define
subsets Ek(f, P ) of E by

Ek(f, P ) = {x ∈ E : yk ≤ f(x) < yk+1}, for k = 0, 1, . . . , n− 1.

Each set Ek(f, P ), 0 ≤ k < n, is the inverse image of the half-open interval
[yk, yk+1) under the mapping f : E → R. It is easy to verify the following
properties of these sets:

1. The sets Ek(f, P ) are pairwise disjoint.
2. The sets Ek(f, P ) are measurable.

3. E =
⋃n−1

k=0 Ek(f, P ).

4. m(E) =
∑n−1

k=0 m(Ek(f, P )).

The lower and upper Lebesgue sums are defined by

s(f, P ) =

n−1∑

k=0

ykm(Ek(f, P )), S(f, P ) =

n−1∑

k=0

yk+1m(Ek(f, P )).

Note that these sums depend also on the choice of the interval (A,B).
It is evident that s(f, P ) ≤ S(f, P ). For λ = ‖P‖, we have

n−1∑

k=0

(yk+1 − yk)m(Ek(f, P )) ≤ λm(E).

Hence,
0 ≤ S(f, P )− s(f, P ) ≤ λm(E).

Clearly, we can make λ as small as we wish by choosing a sufficiently fine
partition of (A,B).

Lemma 3.1. Let s(f, P ) and S(f, P ) be the Lebesgue sums for a partition
P = {y0, y1, . . . , yn} of the interval (A,B). If we add a new point, y′, to this
set, and compute the Lebesgue sums s(f, P ′) and S(f, P ′) for the partition
P ′ = P ∪ {y′}, then we obtain

s(f, P ) ≤ s(f, P ′), S(f, P ′) ≤ S(f, P ).
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In words, by adding new division points we do not decrease the lower sums
and do not increase the upper sums.
Proof. Suppose that yk < y′ < yk+1. Each term yim(Ei(f, P

′)) with i �= k
of the new lower sum s(f, P ′) is also a term of the sum s(f, P ). The term
ykm(Ek(f, P )) of the sum s(f, P ) is replaced by two new terms, ykm(E′

k)
and y′m(E′′

k ), where sets E′
k and E′′

k are inverse images of the half-open in-
tervals [yk, y

′) and [y′, yk+1), respectively. Because Ek(f, P ) = E′
k ∪ E′′

k and
E′

k ∩ E′′
k = ∅, we have

ykm(Ek(f, P )) = ykm(E′
k) + ykm(E′′

k ) ≤ ykm(E′
k) + y′m(E′′

k ).

Hence, s(f, P ) ≤ s(f, P ′).
A similar argument shows that S(f, P ′) ≤ S(f, P ). �

Lemma 3.2. s(f, P ) ≤ S(f,Q), for all partitions P and Q of the interval
(A,B).

Proof. Let s(f, P ), s(f,Q) and S(f, P ), S(f,Q) be the lower and upper sums
corresponding to two partitions of the interval (A,B). Let us join the points of
these two partitions and compute the new lower and upper sums s(f, P ∪Q)
and S(f, P ∪ Q), respectively. By Lemma 3.1, s(f, P ) ≤ s(f, P ∪ Q) and
S(f, P ∪Q) ≤ S(f,Q). Inasmuch as s(f, P ∪Q) ≤ S(f, P ∪Q), we obtain the
desired result, s(f, P ) ≤ S(f,Q). �

Theorem 3.1. For a bounded measurable function f : E → R, the supremum
and infimum, U(f) and V (f), of the sets of Lebesgue lower and upper sums,
respectively, are well defined and equal,

U(f) = V (f).

Note that the supremum and infimum in the theorem are taken over par-
titions of the interval (A,B).
Proof. By Lemma 3.2, the sets of lower and upper sums are bounded above
and below, respectively. Therefore, quantities U(f) and V (f) are well defined.
By the same lemma, U(f) ≤ V (f). For every partition P of (A,B) we clearly
have

s(f, P ) ≤ U(f) ≤ V (f) ≤ S(f, P ).

As we noted before, S(f, P )−s(f, P ) ≤ λm(E), where λ = ‖P‖, and therefore

0 ≤ V (f)− U(f) ≤ λm(E).

Because λ can be made arbitrary small, we obtain U(f) = V (f). �
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Definition 3.1. Let f be a bounded measurable function on a set E. The
common value of numbers U(f) and V (f) is called the Lebesgue integral of f
and is denoted by the symbol

∫

E

f.

We write (L)
∫
E f if it is desirable to distinguish the Lebesgue integral

from a different type of integral such as the Riemann integral (cf. Sect. 3.6).
If E is a closed interval [a, b], the symbols

(L)

∫ b

a

f,

∫ b

a

f, and

∫ b

a

f(x) dx

are also used.
We show now that the value of the Lebesgue integral does not depend on

the choice of the interval (A,B). Suppose, for instance, that

A < f(x) < B < B′, for all x ∈ E.

Let {A, y1, . . . , yn−1, B} be a partition of (A,B) defining the lower sum s.
Then {A, y1, . . . , yn−1, B

′} is a partition of (A,B′) defining the same lower
sum s. On the other hand, it is clear that any partition of (A,B′) defining the
lower sum s defines exactly the same lower sum s when restricted to (A,B).
Therefore the sets of lower sums obtained from intervals (A,B) and (A,B′)
are the same and hence they give the same value for the Lebesgue integral.
The same result also holds for the lower end of the interval (A,B).

We conclude that
∫

E

f = sup{s : s is a Lebesgue lower sum} (3.1)

= inf{S : S is a Lebesgue upper sum}, (3.2)

where the lower and upper sums are taken for an arbitrary interval (A,B)
containing the range of the function f .

3.2 Properties of the Integral

The following theorem establishes an important property of the Lebesgue
integral which is used frequently in this chapter.

Theorem 3.2. Let f be a measurable function on a set E. If

a ≤ f(x) ≤ b, for all x ∈ E,

then

a ·m(E) ≤
∫

E

f ≤ b ·m(E).
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Proof. For a given ε > 0, we define A = a− ε and B = b+ ε. Then

A < f(x) < B, for all x ∈ E.

Let P = {y0, y1, . . . , yn} be a partition of the interval (A,B). We have

A

n−1∑

k=0

m(Ek(f, P )) ≤
n−1∑

k=0

ykm(Ek(f, P )) ≤ B

n−1∑

k=0

m(Ek(f, P )),

that is,
A ·m(E) ≤ s(f, P ) ≤ B ·m(E).

By (3.1),

(a− ε)m(E) ≤
∫

E

f ≤ (b+ ε)m(E).

We obtain the desired result by taking ε → 0. �

The quantity 1
m(E)

∫
E
f is called the “mean value” of f over the set E,

provided thatm(E) �= 0. Theorem 3.2 states that the mean value of a bounded
measurable function lies between its lower and upper bounds. For this reason
Theorem 3.2 is sometimes called the “first law of the mean for integrals.”

Lemma 3.3. Let f be a bounded measurable function on E. If

E =

n⋃

k=1

Ak,

where the sets Ak are measurable and pairwise disjoint, then
∫

E

f =

n∑

k=1

∫

Ak

f.

Proof. We prove the lemma by induction on n. The claim is trivial for n = 1.
Suppose that n > 1 and let E′ =

⋃n−1
k=1 Ak, E

′′ = An. Then, E = E′ ∪E′′

and E′ ∩ E′′ = ∅.
Let us partition an arbitrary open interval containing the set f(E) by

points y0 < y1 < · · · < ym and consider sets

Ei = {x ∈ E : yi ≤ f(x) < yi+1},
E′

i = {x ∈ E′ : yi ≤ f(x) < yi+1},
E′′

i = {x ∈ E′′ : yi ≤ f(x) < yi+1},
for 0 ≤ i < m. Evidently, Ei = E′

i ∪E′′
i and E′

i ∩ E′′
i = ∅. Therefore,

m−1∑

i=0

yim(Ei) =

m−1∑

i=0

yim(E′
i) +

m−1∑

i=0

yim(E′′
i ),
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that is,
s = s′ + s′′,

where s, s′, and s′′ are the lower sums for the function f over sets E, E′, and
E′′, respectively, defined by the partition {y0, y1, . . . , yn}. By (3.1),

s′ ≤
∫

E′
f and s′′ ≤

∫

E′′
f,

so

s = s′ + s′′ ≤
∫

E′
f +

∫

E′′
f.

By (3.1) again, ∫

E

f ≤
∫

E′
f +

∫

E′′
f.

To prove the opposite inequality, we consider the relation between the upper
sums

S = S′ + S′′.

By applying (3.2), we obtain

S = S′ + S′′ ≥
∫

E′
f +

∫

E′′
f,

which implies ∫

E

f ≥
∫

E′
f +

∫

E′′
f.

Thus ∫

E

f =

∫

E′
f +

∫

E′′
f =

∫

E′
f +

∫

An

f.

By the induction hypothesis,

∫

E′
f =

n−1∑

k=1

∫

Ak

f,

which yields the desired result. �

The next theorem extends the result of Lemma 3.3 to countable families
of pairwise disjoint sets. The proof illustrates the power of the “first law of
the means.”

Theorem 3.3. Let f be a bounded measurable function on E. If

E =
⋃

i∈J

Ai,
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where {Ai}i∈J is at most countable family of pairwise disjoint measurable sets,
then ∫

E

f =
∑

i∈J

∫

Ai

f.

Proof. By Lemma 3.3, it suffices to consider the case of a countable set J .
The assertion obviously holds for the zero function on E, so we assume

that f is not the zero function. Suppose that f(E) ⊆ [a, b] and let ε be a given
positive number. By Theorem 2.18, the family {m(Ai)}i∈J is summable with
the sum

m(E) =
∑

i∈J

m(Ai).

Therefore there is a finite set J0 ⊂ J such that

∣∣∣m(E)−
∑

i∈J0

m(Ai)
∣∣∣ <

ε

c
,

where c = max{|a|, |b|}. Note that c �= 0 because we assumed that f is not
the zero function. Let

B =
⋃

i∈J\J0

Ai,

so
E = B ∪

⋃

i∈J0

Ai and m(B) < ε/c.

By Lemma 3.3, ∫

E

f =
∑

i∈J0

∫

Ai

f +

∫

B

f,

and, by Theorem 3.2,

a ·m(B) ≤
∫

B

f ≤ b ·m(B).

Hence, ∣∣∣∣
∫

E

f −
∑

i∈J0

∫

Ai

f

∣∣∣∣ =
∣∣∣∣
∫

B

f

∣∣∣∣ <
ε

c
·max{|a|, |b|} = ε

(cf. Exercise 3.2). It follows that the family {∫
Ai

f}i∈J is summable with the

sum
∫
E
f . �

Two important corollaries follow from Theorem 3.3.
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Corollary 3.1. If bounded measurable functions f and g are equal a.e. on E,
then ∫

E

f =

∫

E

g.

The proof is left as Exercise 3.3.

Example 3.1. (Dirichlet’s function) We define

f(x) =

{
1, if x is a rational number,

0, otherwise,
x ∈ [0, 1].

Because the set of rational numbers in [0, 1] is countable, its measure is zero.
Thus, f equals the zero function a.e. on [0, 1]. It follows that f is Lebesgue
integrable with zero integral. However, it is not difficult to show that f is not
Riemann integrable (cf. Exercise 3.4).

The second corollary is another application of Theorem 3.2.

Corollary 3.2. Let f be a bounded nonnegative measurable function on E.
If
∫
E
f = 0, then f(x) = 0 a.e. on E.

Proof. First we observe that

{x ∈ E : f(x) > 0} =

∞⋃

k=1

{x ∈ E : f(x) > 1/k}.

Suppose that f(x) �= 0 on a set of positive measure. Then, because f is a
nonnegative function, we must have m({x ∈ E : f(x) > 0}) > 0. Therefore,
there is n such that

σ = m({x ∈ E : f(x) > 1/n}) > 0.

Let A = {x ∈ E : f(x) > 1/n}, B = E \A. By Theorem 3.2,
∫

A

f ≥ σ/n and

∫

B

f ≥ 0.

By Theorem 3.3, ∫

E

f =

∫

A

f +

∫

B

f ≥ σ/n,

contradicting our assumption that
∫
E
f = 0. �

Now we turn our attention to the linearity properties of the Lebesgue
integral.

Theorem 3.4. Let f and g be bounded measurable functions with a common
domain E. Then ∫

E

(f + g) =

∫

E

f +

∫

E

g.
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Proof. Let (A,B) and (C,D) be open intervals such that

A < f(x) < B, C < g(x) < D,

and let

A = y0 < y1 < · · · < yn = B and C = z0 < z1 < · · · < zm = D

be points defining partitions P and Q of intervals (A,B) and (C,D), respec-
tively.

Let us consider sets

Ei(f, P ) = {x ∈ E : yi ≤ f(x) < yi+1}, 0 ≤ i < n,

Ek(g,Q) = {x ∈ E : zk ≤ g(x) < zk+1}, 0 ≤ k < m,

and
Tik = Ei(f, P ) ∩ Ek(g,Q), 0 ≤ i < n, 0 ≤ k < m.

It is easy to see that the sets Tik are pairwise disjoint and

Ei(f, P ) =

m−1⋃

k=1

Tik, Ek(g,Q) =

n−1⋃

i=1

Tik.

We have
yi + zk ≤ f(x) + g(x) < yi+1 + zk+1, for x ∈ Tik.

By Theorem 3.2,

(yi + zk)m(Tik) ≤
∫

Tik

(f + g) ≤ (yi+1 + zk+1)m(Tik).

If we add all the above inequalities, we obtain, by Theorem 3.3,

∑

i,k

(yi + zk)m(Tik) ≤
∫

E

(f + g) ≤
∑

i,k

(yi+1 + zk+1)m(Tik).

We have
∑

i,k

yim(Tik) =
∑

i

yi
∑

k

m(Tik) =
∑

i

yim(Ei(f, P )) = s(f, P ),

∑

i,k

zkm(Tik) =
∑

k

zk
∑

i

m(Tik) =
∑

k

zkm(Ek(g,Q)) = s(g,Q).

Similarly,

∑

i,k

yi+1m(Tik) = S(f, P ) and
∑

i,k

zk+1m(Tik) = S(g,Q).
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Therefore,

s(f, P ) + s(g,Q) ≤
∫

E

(f + g) ≤ S(f, P ) + S(g,Q).

By (3.1), we have ∫

E

f +

∫

E

g ≤
∫

E

(f + g),

and by (3.2), ∫

E

(f + g) ≤
∫

E

f +

∫

E

g.

The desired result follows from the last two displayed inequalities. �

Theorem 3.5. Let f be a bounded measurable function on E. Then

∫

E

(cf) = c

∫

E

f,

for an arbitrary constant c.

Proof. The assertion is trivial for c = 0. Suppose that c > 0 and let y0 < y1 <
· · · < yn be points defining a partition P of an interval containing the range
of f . As before, let

Ek(f, P ) = {x ∈ E : yk ≤ f(x) < yk+1}, 0 ≤ k < n.

Clearly,
c yk ≤ cf(x) < c yk+1, for x ∈ Ek(f, P ).

By Theorem 3.2,

c ykm(Ek(f, P )) ≤
∫

Ek

(cf) ≤ c yk+1m(Ek(f, P )),

and by Theorem 3.3

c · s(f, P ) ≤
∫

E

(cf) ≤ c · S(f, P ).

By (3.1) and (3.2), we have

c

∫

E

f ≤
∫

E

(cf) ≤ c

∫

E

f,

that is,
∫
E(cf) = c

∫
E f .
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For c < 0 we have, by Theorem 3.4 and the previous case,

0 =

∫

E

(cf + (−c)f) =

∫

E

(cf) + (−c)

∫

E

f,

and the result follows. �

The results of the last two theorems often combined into the linearity
property of integration:

Theorem 3.6. Let f and g be bounded measurable functions on E and α and
β be arbitrary constants. Then

∫

E

(αf + βg) = α

∫

E

f + β

∫

E

g.

Another important property of the Lebesgue integral is its monotonicity.

Theorem 3.7. If f and g are bounded measurable functions on E and

f(x) ≤ g(x), x ∈ E,

then ∫

E

f ≤
∫

E

g.

Proof. It suffices to note that g(x)− f(x) ≥ 0, for all x ∈ E, and apply
Theorem 3.6 and the result of Exercise 3.1b. �

The last theorem of this section is an analog of the triangle inequality for
real numbers, |α+ β| ≤ |α|+ |β|.
Theorem 3.8. If f is a bounded measurable function on E, then

∣∣∣
∫

E

f
∣∣∣ ≤
∫

E

|f |.

Proof. By Corollary 2.1, |f | is a measurable function. Because

−|f(x)| ≤ f(x) ≤ |f(x)|, for x ∈ E,

we have, by the linearity and monotonicity of the Lebesgue integral,

−
∫

E

|f | ≤
∫

E

f ≤
∫

E

|f |,

and the result follows. �
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3.3 Convergence

Let (fn) be a uniformly convergent sequence of bounded measurable functions
with the same domain E and let f = lim fn. By the definition of uniform
convergence (cf. Definition 2.7(iii)), for ε = 1 there is N such that

|f − fn| < 1, for n ≥ N .

Therefore,
fN − 1 < f < fN + 1,

that is, f is a bounded function. By Theorem 2.32, f is a measurable function.
The next theorem establishes the “passage of the limit under the integral sign”
for the uniform convergence.

Theorem 3.9. If (fn) is a sequence of bounded measurable functions on E
that converges uniformly with

lim fn = f,

then

lim

∫

E

fn =

∫

E

f.

Proof. The assertion is trivial if m(E) = 0 (cf. Exercise 3.1c), so we assume
that m(E) > 0. Let ε > 0 and choose N for which

|f − fn| < ε/m(E), for all n ≥ N .

By the results from Sect. 3.2,
∣∣∣
∫

E

f −
∫

E

fn

∣∣∣ =
∣∣∣
∫

E

(f − fn)
∣∣∣ ≤
∫

E

|f − fn| ≤ ε

m(E)
·m(E) = ε.

Therefore, lim
∫
E
fn =

∫
E
f . �

The claim of Theorem 3.9 does not hold in general for sequences that
converge only pointwise as the following example demonstrates.

Example 3.2. Let (fn), n > 2, be a sequence of functions on [0, 1] defined by

fn(x) =

⎧
⎪⎨

⎪⎩

n2x, if 0 ≤ x ≤ 1/n,

−n2x+ 2n, if 1/n < x ≤ 2/n,

0, if 2/n < x ≤ 1

(see Fig. 3.1).
It is not difficult to verify that lim fn(x) = 0 for all x ∈ [0, 1] and that∫ 1

0 fn = 1 (cf. Exercise 3.10). Thus, (fn) converges to the zero function on

[0, 1], whereas lim
∫ 1

0
fn = 1. Hence,

1 = lim

∫ 1

0

fn �=
∫ 1

0

lim fn = 0.
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0 1
x

y

n

2/n

fn(x)

1/n

Figure 3.1. Sequence (fn)

The result of the next theorem shows that the “passage of the limit under
the integral sign” can be saved by assuming the uniform boundedness of the
sequence under consideration.

Theorem 3.10. (The Bounded Convergence Theorem) Let (fn) be a sequence
of measurable functions on E. Suppose that (fn) is uniformly bounded on E,
that is, there is M ≥ 0 such that

|fn| ≤ M, for all n.

If (fn) converges pointwise to f , then

lim

∫

E

fn =

∫

E

f.

Proof. As in the proof of Theorem 3.9, we may assume that E is a set of
positive measure.

By Theorem 2.32, f is a measurable function. It is clear that |f | ≤ M . Let
A be a measurable subset of E and n ∈ N. Then

∫

E

fn −
∫

E

f =

∫

E

(fn − f) =

∫

A

(fn − f) +

∫

E\A
fn +

∫

E\A
(−f).

Observe that, by Theorems 3.8 and 3.2,
∣∣∣
∫

E\A
fn

∣∣∣ ≤
∫

E\A
|fn| ≤ M ·m(E \A)

and ∣∣∣
∫

E\A
(−f)

∣∣∣ ≤
∫

E\A
|f | ≤ M ·m(E \A).

Therefore,
∣∣∣
∫

E

fn −
∫

E

f
∣∣∣ ≤
∣∣∣
∫

A

(fn − f)
∣∣∣+
∣∣∣
∫

E\A
fn

∣∣∣+
∣∣∣
∫

E\A
(−f)

∣∣∣ (3.3)

≤
∫

A

|fn − f |+ 2M ·m(E \A).
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Our goal is to choose a subset A of E such that the right side of the above
inequality is less than a given positive number for all sufficiently large n.

Let ε > 0. By Egorov’s Theorem 2.34, there is a measurable subset A of
E such that (fn) converges uniformly on A to f and m(E \ A) < ε/4M . By
uniform convergence, there is N such that

|fn − f | < ε

2m(E)
, on A for all n ≥ N .

Therefore, by (3.3) and Theorem 3.2,

∣∣∣
∫

E

fn −
∫

E

f
∣∣∣ <

ε

2m(E)
m(A) + 2M

ε

4M
≤ ε,

for all n ≥ N . It follows that lim
∫
E fn =

∫
E f . �

The following example shows that the assertion of the bounded conver-
gence theorem does not hold for the Riemann integral.

Example 3.3. For x ∈ [0, 1], let us define

fn(x) =

{
1, if x = p/q,

0, otherwise,
where q ≤ n, p, q, n ∈ N.

Each fn is discontinuous on a finite set of points, so each fn is Riemann inte-
grable. However, the sequence (fn) converges pointwise to Dirichlet’s function
which is not Riemann integrable (cf. Exercise 3.4).

3.4 Integration of Nonnegative Measurable Functions

As the first step towards extension of the Lebesgue integral to unbounded
measurable functions, we consider nonnegative measurable functions on a
measurable set.

For a given nonnegative measurable function f on E, we denote by Hf

the set of bounded measurable functions h on E satisfying inequalities

0 ≤ h ≤ f on E.

Definition 3.2. Let f be a nonnegative measurable function on E. We define
∫

E

f = sup
{∫

E

h : h ∈ Hf
}

and say that f is integrable if
∫
E f < ∞.

We begin by establishing the linearity and monotonicity properties of the
integral (cf. Theorems 3.6 and 3.7).
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Theorem 3.11. If f is a nonnegative measurable function on E and c is a
positive constant, then ∫

E

(cf) = c

∫

E

f.

Proof. It is clear that h ∈ Hcf if and only if h/c ∈ Hf . Therefore

∫

E

(cf) = sup
{∫

E

h : h ∈ Hcf
}
= sup

{∫

E

c · (h/c) : h/c ∈ Hf
}

= c · sup
{∫

E

h/c : h/c ∈ Hf
}
= c

∫

E

f,

because c > 0. �

Note that the result of this theorem does not hold in general if c = 0.
Indeed, if

∫
E f = ∞, then the left integral is zero, whereas the right side is

indeterminate expression 0 · ∞. However, the result holds for an integrable f
(that is,

∫
E f < ∞), if c = 0.

Theorem 3.12. Let f and g be nonnegative measurable functions on E. Then

∫

E

(f + g) =

∫

E

f +

∫

E

g.

Proof. For h ∈ Hf and k ∈ Hg, we have h + k ∈ Hf+g. Therefore, by
Theorem 3.6, ∫

E

h+

∫

E

k =

∫

E

(h+ k) ≤
∫

E

(f + g).

By taking the supremum over h ∈ Hf , k ∈ Hg on the left side, we obtain

∫

E

f +

∫

E

g ≤
∫

E

(f + g).

To prove the opposite inequality, we first observe that for any function � ∈
Hf+g, there are functions h ∈ Hf and k ∈ Hg such that

� = h+ k.

Indeed let h = min{f, �}. This function is measurable and bounded. Clearly,
0 ≤ h ≤ f , so h ∈ Hf . Consider the function

k = �− h = �−min{f, �} = max{�− f, 0}.

Because � ≤ f + g, we have k ≤ g. Therefore, k ∈ Hg. We have

∫

E

� =

∫

E

h+

∫

E

k ≤
∫

E

f +

∫

E

g.
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By taking the supremum on the left side over all � ∈ Hf+g, we obtain the
desired inequality ∫

E

(f + g) ≤
∫

E

f +

∫

E

g.

The result follows. �

In summary we have the following linearity property of integration for
nonnegative measurable functions.

Theorem 3.13. Let f and g be nonnegative measurable functions on E and
α and β be arbitrary positive constants. Then

∫

E

(αf + βg) = α

∫

E

f + β

∫

E

g.

The next theorem establishes monotonicity of the integral.

Theorem 3.14. If f and g are nonnegative measurable functions on E such
that f ≤ g on E. Then ∫

E

f ≤
∫

E

g.

Proof. Hf ⊆ Hg, inasmuch as f ≤ g. Therefore, for any h ∈ Hf ,
∫

E

h ≤ sup
{∫

E

k : k ∈ Hg
}
=

∫

E

g.

By taking the supremum on the left side over all h ∈ Hf , we obtain the
desired inequality. �

The result of Lemma 3.3 can be extended as the additivity property over
domains of integration as follows:

Theorem 3.15. Let f be a nonnegative integrable function on E. If

E =

n⋃

k=1

Ak,

where the sets Ak are measurable and pairwise disjoint, then

∫

E

f =

n∑

k=1

∫

Ak

f.

The proof is straightforward and left to the reader (cf. Exercise 3.13 and
Theorem 3.18).

We establish now two important convergence properties of the integral of
a nonnegative measurable function.
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Theorem 3.16. (Fatou’s Lemma) Let (fn) be a sequence of nonnegative mea-
surable functions on E. If (fn) converges pointwise to f a.e. on E, then

∫

E

f ≤ lim inf

∫

E

fn.

Proof. Let E0 be the subset of E where (fn) does not converge to f . Then
m(E0) = 0 and, by Theorem 3.15,

∫
E fn =

∫
E\E0

fn and
∫
E f =

∫
E\E0

f .

Note that (fn) converges to f everywhere on E \ E0. Thus, without loss of
generality, we may assume in our proof that (fn) converges everywhere to f .

First we note that, by Theorem 2.32, f is measurable and that f ≥ 0. Let
h ∈ Hf ; that is, h is bounded, h ≤ M for some M > 0, and 0 ≤ h ≤ f . Let us
consider a sequence of functions defined by

hn = min{h, fn} on E.

The functions hn are uniformly bounded by M ,

hn ≤ M on E, for all n ∈ N,

and
lim hn = min{h, lim fn} = min{h, f} = h on E.

By the bounded convergence theorem (Theorem 3.10),

lim

∫

E

hn =

∫

E

h.

We have hn ∈ Hfn , because hn ≤ fn. Therefore, by the definition of
∫
E
fn,

∫

E

hn ≤
∫

E

fn.

Hence, ∫

E

h = lim

∫

E

hn = lim inf

∫

E

hn ≤ lim inf

∫

E

fn

(cf. Exercise 3.12). By taking the supremum on the left side over all h ∈ Hf ,
we obtain

∫
E
f ≤ lim inf

∫
E
fn. �

The inequality in Fatou’s Lemma may be strict as illustrated by Exam-
ple 3.2. However, we have the equality in Fatou’s Lemma if the sequence (fn)
is increasing.

Theorem 3.17. (The Monotone Convergence Theorem) Let (fn) be an in-
creasing sequence of nonnegative measurable functions on E. If (fn) converges
pointwise to f a.e. on E, then

lim

∫

E

fn =

∫

E

f.
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Proof. As in the proof of Fatou’s Lemma, we may assume that the convergence
is on all of E.

Because fn ≤ f on E, we have, by the monotonicity of integration,

∫

E

fn ≤
∫

E

f.

Therefore,

lim sup

∫

E

fn ≤
∫

E

f.

On the other hand, by Fatou’s Lemma,

∫

E

f ≤ lim inf

∫

E

fn.

From the last two inequalities,

lim sup

∫

E

fn ≤
∫

E

f ≤ lim inf

∫

E

fn.

The result follows from Exercise 1.31 and Theorem 1.5. �

Corollary 3.3. Let (un) be a sequence of nonnegative measurable functions
on E. If

f =

∞∑

n=1

un,

a.e. on E, then ∫

E

f =

∞∑

n=1

∫

E

un.

Proof. It suffices to apply the monotone convergence theorem to the sequence
fn =

∑n
k=1 uk. �

As an application of Corollary 3.3, we establish the countable additivity of
the integral (cf. Theorem 3.3).

Theorem 3.18. Let f be a nonnegative measurable function on E. If

E =
⋃

i∈J

Ai,

where {Ai}i∈J is a finite or countable family of pairwise disjoint measurable
sets, then ∫

E

f =
∑

i∈J

∫

Ai

f.
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Proof. Let us define

ui(x) =

{
f(x), if x ∈ Ai,

0, if x ∈ E \Ai.

Then we have

f =
∑

i∈J

ui on E.

By Corollary 3.3, ∫

E

f =
∑

i∈J

∫

E

ui.

It remains to be shown that

∫

E

ui =

∫

Ai

f, for all i ∈ J .

For a given i ∈ J , let hi be a bounded measurable function such that

0 ≤ hi ≤ ui on E.

It is clear that hi = 0 on E \Ai. By Lemma 3.3,

∫

E

hi =

∫

Ai

hi +

∫

E\Ai

hi =

∫

Ai

hi.

The supremum of the integral on the left side of the above identity is
∫
E ui,

whereas the supremum of the right side integral is
∫
Ai

f , because hi is an
arbitrary bounded measurable function such that

0 ≤ hi ≤ f on Ai.

Therefore,
∫
E
ui =

∫
Ai

f , and the result follows. �

The last theorem of this section establishes an important “absolute conti-
nuity” of the Lebesgue integral (cf. Exercise 3.35).

Theorem 3.19. Let f be a nonnegative function which is integrable over a
set E. Then given ε > 0 there is δ > 0 such that for every measurable subset
A of E with m(A) < δ we have

∫

A

f < ε.
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Proof. Let ε > 0. We define a sequence of functions on E by

fn(x) = min{f(x), n}, for n ∈ N.

Then (fn) is an increasing sequence of nonnegative measurable functions that
converges pointwise to f . By the monotone convergence theorem (Theorem
3.17), the sequence (

∫
E
fn) converges to

∫
E
f . Therefore, there is N such that

∫

E

fN >

∫

E

f − ε

2
.

For δ = ε/(2N) and a measurable set A ⊆ E with m(A) < δ, we have

∫

A

f =

∫

A

(f − fN ) +

∫

A

fN ≤
∫

E

(f − fN) +Nm(A)

<
ε

2
+Nm(A) < ε

(cf. Exercise 3.21 and Theorem 3.2.) �

3.5 General Lebesgue Integral

For an arbitrary real-valued function f on E, we define its positive and neg-
ative parts by

f+(x) = max{f(x), 0} for all x ∈ E

and

f−(x) = max{−f(x), 0} for all x ∈ E,

respectively. Then f+ and f− are nonnegative functions and

f = f+ − f−, |f | = f+ + f− on E

(cf. Fig. 3.2).
Observe that f is measurable if and only if both f+ and f− are measurable

(cf. Exercise 3.23).

Definition 3.3. A measurable function f on E is said to be integrable over
E provided that the functions f+ and f− are integrable over E. When this is
so, the integral of f over E is defined by

∫

E

f =

∫

E

f+ −
∫

E

f−.
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Figure 3.2. Graphs of functions f , f+, |f |, and f−

Theorem 3.20. A measurable function f is integrable over E if and only if
the function |f | is integrable over E. In this case,

∣∣∣
∫

E

f
∣∣∣ ≤
∫

E

|f |.

(cf. Theorem 3.8)

Proof. (Necessity.) If f is integrable, then |f | = f+ + f− is integrable, by the
linearity property of integration for nonnegative functions.

(Sufficiency.) Suppose that |f | is integrable over E. Because 0 ≤ f+ ≤
|f | and 0 ≤ f− ≤ |f |, the functions f+, f− are integrable over E, by the
monotonicity property of integration for nonnegative functions. Hence, f is
integrable over E.

Finally,

∣∣∣
∫

E

f
∣∣∣ =
∣∣∣
∫

E

f+ −
∫

E

f−
∣∣∣ ≤
∫

E

f+ +

∫

E

f− =

∫

E

|f |,

by the triangle inequality for real numbers and the linearity of integration for
nonnegative functions. �

Now we extend the linearity and monotonicity properties of integration to
arbitrary integrable functions.
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Theorem 3.21. Let f be an integrable function over E. Then for an arbitrary
constant c, the function cf is integrable over E and

∫

E

(cf) = c

∫

E

f.

Proof. For c ≥ 0,

(cf)+(x) = max{cf(x), 0} = cmax{f(x), 0} = cf+(x),

(cf)−(x) = max{−cf(x), 0} = cmax{−f(x), 0} = cf−(x).

Because f+ and f− are integrable, so are the functions (cf)+ and (cf)−, by
Theorem 3.11. Therefore,

∫

E

(cf) =

∫

E

(cf)+ −
∫

E

(cf)− =

∫

E

cf+ −
∫

E

cf− = c

∫

E

f,

by Theorem 3.12.
For c < 0,

(cf)+(x) = max{cf(x), 0} = −cmax{−f(x), 0} = −cf−(x),

(cf)−(x) = max{−cf(x), 0} = −cmax{f(x), 0} = −cf+(x),

and a similar argument shows that in this case again

∫

E

(cf) =

∫

E

(cf)+ −
∫

E

(cf)− =

∫

E

(−c)f− −
∫

E

(−c)f+ = c

∫

E

f.

Hence,
∫
E
(cf) = c

∫
E
f for any constant c. �

Theorem 3.22. Let f and g be integrable functions over E. Then the function
f + g is integrable over E and

∫

E

(f + g) =

∫

E

f +

∫

E

g.

Proof. By the linearity of integration for nonnegative functions and Theo-
rem 3.20, |f | + |g| is integrable over E. Because |f + g| ≤ |f | + |g|, Theo-
rem 3.14 tells us that the function |f + g| is integrable and hence is f + g, by
Theorem 3.20.

We have

(f + g)+ − (f + g)− = f + g = (f+ − f−) + (g+ − g−).

Therefore,
(f + g)+ + f− + g− = (f + g)− + f+ + g+.
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By the linearity of integration for nonnegative functions, we obtain
∫

E

(f + g)+ +

∫

E

f− +

∫

E

g− =

∫

E

(f + g)− +

∫

E

f+ +

∫

E

g+,

or, equivalently,
∫

E

(f + g)+ −
∫

E

(f + g)− =
(∫

E

f+ −
∫

E

f−
)
+
(∫

E

g+ −
∫

E

g−
)
.

Hence,
∫
E(f + g) =

∫
E f +

∫
E g. �

As in Sect. 3.2 (cf. Theorem 3.6) we formulate these results as the linearity
property of integration.

Theorem 3.23. Let f and g be integrable functions on E and α and β be
arbitrary constants. Then αf + βg is integrable and

∫

E

(αf + βg) = α

∫

E

f + β

∫

E

g.

The next theorem establishes the monotonicity property of the general
Lebesgue integral.

Theorem 3.24. Let the functions f and g be integrable over E and

f ≤ g on E.

Then ∫

E

f ≤
∫

E

g.

Proof. Let us define h = g − f . Observe that h is a nonnegative measurable
function on E which is integrable by Theorem 3.23. By the same theorem and
monotonicity of integration for nonnegative functions,

∫

E

g −
∫

E

f =

∫

E

(g − f) =

∫

E

h ≥ 0.

The result follows. �

We conclude this section by proving the following generalization of the
bounded convergence theorem (Theorem 3.10).

Theorem 3.25. (The Dominated Convergence Theorem) Let (fn) be a se-
quence of measurable functions on E. Suppose that there is an integrable func-
tion g on E that dominates (fn) on E in the sense that

|fn| ≤ g on E for all n.

If (fn) converges pointwise to f a.e. on E, then

lim

∫

E

fn =

∫

E

f.
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Proof. As before, we may assume that the convergence takes place over all
of E.

We have |f | ≤ g, inasmuch as fn → f pointwise on E and |fn| ≤ g on
E for all n. By the monotonicity of integration for nonnegative functions and
Theorem 3.20, |f | ≤ g implies integrability of f .

Observe that −g ≤ fn ≤ g on E for all n, that is,

g − fn ≥ 0 and g + fn ≥ 0 on E for all n.

Because g − fn ≥ 0 on E for all n and (g − fn) → (g − f) pointwise on E,
we have, by the linearity property of integration and Fatou’s Lemma,

∫

E

g −
∫

E

f =

∫

E

(g − f) ≤ lim inf

∫

E

(g − fn) =

∫

E

g + lim inf

∫

E

(−fn).

Hence, ∫

E

f ≥ lim sup

∫

E

fn

(cf. Exercise 1.29a).
By the same reasoning, g + fn ≥ 0 and (g + fn) → (g + f) imply

∫

E

f ≤ lim inf

∫

E

fn.

By Exercise 1.29b,

∫

E

f ≤ lim inf

∫

E

fn ≤ lim sup

∫
fn ≤

∫

E

f.

Now Theorem 1.5 tells us that lim
∫
E
fn =

∫
E
f . �

3.6 Comparison of Riemann and Lebesgue Integrals

We begin by recalling some basic definitions and facts about the Riemann
integral.

Let f be a bounded function on the closed interval [a, b] and

P = {x0, x1, . . . , xn}, where x0 = a and xn = b,

be a partition of this interval (cf. Sect. 3.1). We set xi = xi − xi−1 for
i = 1, 2, . . . , n.

The lower Riemann sum of f over P is the number

L(f, P ) =

n∑

i=1

mi(f) xi,
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where
mi = inf{f(x) : x ∈ [xi−1, xi]}.

Similarly, the upper Riemann sum of f over P is the number

U(f, P ) =
n∑

i=1

Mi(f) xi,

where
Mi = sup{f(x) : x ∈ [xi−1, xi]}.

Note that both numbers are well defined because f is a bounded function.
The function f is said to be Riemann integrable on [a, b] if

lim
‖P‖→0

L(f, P ) = lim
‖P‖→0

U(f, P ).

In this case, the common value of these two limits is the Riemann integral of

f over [a, b], (R)
∫ b

a
f .

For a given partition P = {x0, x1, . . . , xn} of [a, b], we define functions m
and M on [a, b] by

lP (x) = mi(f), if x ∈ [xi−1, xi), 1 ≤ i ≤ n, (3.4)

and
uP (x) = Mi(f), if x ∈ [xi−1, xi), 1 ≤ i ≤ n, (3.5)

respectively, set lP (b) = uP (b) = f(b), and observe that these functions are
bounded and measurable, and their Lebesgue integrals are

(L)

∫ b

a

lP = L(f, P ) and (L)

∫ b

a

uP = U(f, P ). (3.6)

In the rest of this section, we prove that a Riemann integrable function f
on [a, b] is Lebesgue integrable over the same interval and that its respective
integrals are equal,

(R)

∫ b

a

f = (L)

∫ b

a

f.

Let f be a Riemann integrable function on [a, b] and

P1 ⊆ P2 ⊆ · · · ⊆ Pk ⊆ · · ·
be a nested family of partitions of the interval [a, b] such that the sequence
(‖Pk‖) converges to zero. For a given k ∈ N, we denote by lk and uk the func-
tions lP and uP defined for the partition Pk by (3.4) and (3.5), respectively.
Then we have

(L)

∫ b

a

lk = Lk, (L)

∫ b

a

uk = Uk,
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where Lk and Uk are the lower and upper Riemann sums corresponding to
Pk (cf. (3.6)). Inasmuch as the sequence (Pk) is nested, the sequence (lk)
is increasing and the sequence (uk) is decreasing. Therefore each of these
sequences converges pointwise to some bounded measurable functions, say l
and u, respectively. We have

l ≤ f ≤ u, (3.7)

because lk ≤ f ≤ uk. By the bounded convergence theorem (Theorem 3.10),

Lk → (L)

∫ b

a

l and Uk → (L)

∫ b

a

u. (3.8)

Since f is Riemann integrable, both (Lk) and (Uk) converge to (R)
∫ b

a f . It fol-
lows that

(R)

∫ b

a

f = (L)

∫ b

a

l = (L)

∫ b

a

u.

In particular, (L)
∫ b

a (u − l) = 0. Because u − l ≥ 0, Corollary 3.2 and (3.7)
imply that l = f = u a.e. on [a, b]. Therefore, f is measurable and, by (3.8),

(R)

∫ b

a

f = (L)

∫ b

a

f,

which completes the proof.
We proved that every Riemann integrable function is also Lebesgue

integrable. However, the converse is not true. Indeed, Dirichlet’s function
(cf. Example 3.1) is Lebesgue integrable but not Riemann integrable
(cf. Exercise 3.4). Thus the Lebesgue integral is a true generalization of the
Riemann integral.

Notes

The notion of “partition” introduced in Sect. 3.1 differs from the one found in
Sect. 1.1. It is always clear from the context which one is used.

The following passage is an excerpt from the talk “The development of the
integral concept” given by Lebesgue at the Copenhagen Mathematical Society
[Leb66, Part 2]. This informal motivation for the new concept of the integral
appears in many later texts.

“One could say that, according to Riemann’s procedure, one tried to add
the indivisibles by taken them in the order in which they are furnished by
the variation in x, like an unsystematic merchant who counts coins and bills
at random in the order in which they come to hand, while we operate like a
methodical merchant who says:

I have m(E1) pennies which are worth 1 ·m(E1),
I have m(E2) nickels worth 5 ·m(E2),
I have m(E3) dimes worth 10 ·m(E3), etc.
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Altogether then I have

S = 1 ·m(E1) + 5 ·m(E2) + 10 ·m(E3) + · · · .
The two procedures will certainly lead the merchant to the same result

because no matter how much money he has there is only a finite number
of coins or bills to count. But for us who must add an infinite number of
indivisibles the difference between the two methods is of capital importance.”

Exercises

3.1. Let f be a bounded measurable function on a set E. Show that

(a) If f(x) = c for all x ∈ E, then
∫

E

f = c ·m(E).

(b) If f(x) ≥ 0 on E, then
∫
E f ≥ 0.

(c) If m(E) = 0, then
∫
E
f = 0.

3.2. Show that μ ≤ λ ≤ ν implies

|λ| ≤ max{|μ|, |ν|}.
3.3. Let f and g be two bounded measurable functions on a set E. Prove that
if f(x) = g(x) a.e. on E, then

∫

E

f =

∫

E

g.

Show that the converse statement does not hold.

3.4. Show that Dirichlet’s function (Example 3.1) is not Riemann integrable.

3.5. Show that Dirichlet’s function (Example 3.1) can be defined as the double
limit

lim
m→∞ lim

n→∞ cos2n(m!πx).

3.6. Show that an increasing function on a closed interval is integrable and
its integral is the same as the Riemann integral of the function.

3.7. Let A be a subset of a set E. The characteristic function of A, χA, is the
function on E defined by

χA(x) =

{
1, if x ∈ A,

0, if x ∈ E \A.
Let f be a bounded measurable function on E. For a measurable subset A of
E, show that

∫
A f =

∫
E(f · χA).
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3.8. Show that Theorem 3.9 follows from Theorem 3.10.

3.9. Let f be a bounded measurable function on [a, b]. Suppose that
∫ c

a
f = 0

for every c ∈ [a, b]. Prove that f(x) = 0 a.e. on [a, b].

3.10. Show that a linear function on a closed interval is integrable and its
integral is the same as the Riemann integral of the function. Establish the
same result for a piecewise linear function on a closed interval.

3.11. Let f be a function on [0, 1] defined by

f(x) =

{
x, if x ∈ Q ∩ [0, 1],

−x, if x ∈ [0, 1] \Q.

(Recall that Q is the set of rational numbers.) Is this function Riemann inte-
grable? Lebesgue integrable?

3.12. Let (an) and (bn) be two sequences of nonnegative numbers such that
an ≤ bn for all n ∈ N. Prove that

lim inf an ≤ lim inf bn

(cf. Exercise 1.33).

3.13. Prove Theorem 3.15.

3.14. Show that the inequality in Fatou’s Lemma is strict for the sequence

fn(x) = (n+ 1)xn, x ∈ [0, 1]

(cf. Exercise 3.6).

3.15. Let (fn) be a sequence of functions on [0, 1] defined by

f2k+1(x) =

{
0, if x ∈ [0, 1/3],

1, otherwise,
f2k(x) =

{
1, if x ∈ [0, 1/3],

0, otherwise,

k = 0, 1, 2, . . . . Show that

∫ 1

0

lim inf fn < lim inf

∫ 1

0

fn < lim sup

∫ 1

0

fn <

∫ 1

0

lim sup fn.

3.16. (Chebychesv’s Inequality) Let f be a nonnegative measurable function
on a set E. Prove that, for any c > 0,

m{x ∈ E : f(x) ≥ c} ≤ 1

c

∫

E

f.
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3.17. Let f be a nonnegative measurable function on E such that
∫
E f = 0.

Show that f = 0 a.e. on E.

3.18. Show that if f is integrable on E and if

En = {x ∈ E : |f(x)| ≥ n},
then lim[n ·m(En)] = 0 (cf. Exercise 3.16).

3.19. Let f be a nonnegative measurable function on E. Prove that f is
integrable if and only if the family {m(En)}n∈N is summable, where

En = {x ∈ E : f(x) ≥ n}.
3.20. Let (fn) be a sequence of nonnegative measurable functions on E that
converges pointwise on E to an integrable function f . If fn ≤ f on E for each
n, show that

lim

∫

E

fn =

∫

E

f.

3.21. Let f be a nonnegative measurable function on E and let A be a mea-
surable subset of E. Prove that

∫

A

f ≤
∫

E

f.

3.22. Give an example of a measurable function f for which f+ is integrable
and f− is not.

3.23. Prove that a function on a measurable set is measurable if and only if
its positive and negative parts are both measurable.

3.24. Let f be integrable over E and A be a measurable subset of E. Show
that ∫

A

f =

∫

E

(f · χA)

(cf. Exercise 3.7).

3.25. Suppose that
∫
A
f = 0 for every measurable subset A of E. Show that

f(x) = 0 a.e. on E.

3.26. Let f be a function defined by

f(x) = (−1)nn, x ∈ En,

where

En =
( 1

n+ 1
,
1

n

]
, n = 1, 2, . . . .

Is this function integrable on E =
⋃∞

n=1 En?
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3.27. Let f be a function defined by

f(x) =
√
n, x ∈ En,

where

En =
( 1

n+ 1
,
1

n

]
, n = 1, 2, . . . .

Is this function integrable on E =
⋃∞

n=1 En?

3.28. Let f be a function defined by

f(x) = (−1)n, x ∈ En,

where

En =
( 1

2n+1
,
1

2n

]
, n = 0, 1, 2, . . . .

Evaluate
∫
E
f , where E =

⋃∞
n=1 En.

3.29. Let (fn) be a sequence of integrable functions and let f be an integrable
function such that

lim

∫ b

a

|fn(x)− f(x)| dx = 0.

Show that if (fn(x)) converges a.e. on [a, b], then (fn(x)) converges to f(x)
a.e. on [a, b].

3.30. Let fn(x) = nxn−1 − (n+ 1)xn, 0 < x < 1. Show that

∫ 1

0

( ∞∑

n=1

fn(x)

)
dx �=

∞∑

n=1

(∫ 1

0

fn(x) dx

)

and
∞∑

n=1

(∫ 1

0

|fn(x)| dx
)

= ∞.

3.31. Let (fn) be a sequence of measurable functions on E such that

∞∑

n=1

(∫ 1

0

|fn(x)| dx
)

< ∞.

Show that
∑∞

n=1 fn is integrable and

∫

E

( ∞∑

n=1

fn(x)

)
dx =

∞∑

n=1

(∫

E

fn(x) dx

)
.

3.32. Let f be a bounded measurable function. True or false: |f |p is integrable
for any p > 0?
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3.33. Let f be an integrable function. True or false: |f |p is integrable for any
p > 0? (Cf. Exercise 3.32.)

3.34. Show that if f is integrable on E and

∣∣∣∣
∫

E

f

∣∣∣∣ =
∫

E

|f |,

then either f ≥ 0 a.e. on E or f ≤ 0 a.e. on E.

3.35. Prove that a measurable function on E is integrable over E if and only
if for each ε > 0 there is δ > 0 such that for every measurable subset A of E
with m(A) < δ we have

∫
A |f | < ε.
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Differentiation and Integration

In the first three sections of this chapter, we investigate differentiability prop-
erties of functions of bounded variation. We begin by introducing the upper
and lower derivatives of a function defined on a closed bounded interval [a, b]
in Sect. 4.1, where important properties of these derivatives are established
(cf. Lemma 4.1). Functions of bounded variation are introduced and their
properties are investigated in Sect. 4.2. The main result (Theorem 4.8) of
Sect. 4.3 asserts that a function of a bounded variation on [a, b] is differen-
tiable almost everywhere on this interval.

In the remaining two sections, we present Lebesgue’s versions
(Theorems 4.10 and 4.14) of the two classical fundamental theorems of calcu-
lus (FTC):

FTC 1. If f is continuous on [a, b] and F (x) =
∫ x

a f(t) dt, then F is contin-
uously differentiable on [a, b] and

d

dx

∫ x

a

f(t) dt = f(x)

for each x ∈ [a, b].
FTC 2. If f is differentiable on [a, b] and f ′ is integrable on [a, b], then

∫ x

a

f ′(t) dt = f(x)− f(a)

for each x ∈ [a, b].

We set
∫ a

b
f = − ∫ b

a
f for an integrable function f over the interval [a, b].

S. Ovchinnikov, Measure, Integral, Derivative: A Course on Lebesgue’s Theory,
Universitext, DOI 10.1007/978-1-4614-7196-7 4,
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4.1 Upper and Lower Derivatives

Let x be an inner point of a closed interval [a, b] and let ε be a positive number.
The set

B′
ε = {y ∈ [a, b] : y ∈ (x− ε, x) ∪ (x, x + ε)}

is called a punctured ball (of radius ε, centered at x) in [a, b]. For a function
f on [a, b] \ {x}, we define functions

Mε = sup{f(y) : y ∈ B′
ε} and mε = inf{f(y) : y ∈ B′

ε}.
It is clear that Mε is an increasing function of ε, whereas mε is a decreasing
function of ε. Recall (cf. Sect. 1.2) that we set Mε = ∞ if f is not bounded
above on B′

ε and mε = −∞ if f is not bounded below on B′
ε.

The upper limit of the function f as y tends to x is defined by

lim
y→x

f(y) = inf{Mε : ε > 0} = inf
ε>0

sup
0<|y−x|<ε

f(y)

and its lower limit by

lim
y→x

f(y) = sup{mε : ε > 0} = sup
ε>0

inf
0<|y−x|<ε

f(y).

Inasmuch as mε ≤ Mε for all ε > 0, we have

lim
y→x

f(y) ≤ lim
y→x

f(y).

In the following four examples, the interval is [−1, 1] and its inner point is
0 ∈ (−1, 1).

Example 4.1. For

f(x) =

{
−1, if x ∈ [−1, 0),

1, if x ∈ (0, 1],

we have Mε = 1 and mε = −1 for every ε > 0. Hence,

lim
y→0

f(y) = −1, lim
y→0

f(y) = 1.

Example 4.2. Let f(x) = 1/x on [−1, 1] \ {0}. Then Mε = ∞ and mε = −∞
for every ε > 0. Therefore,

lim
y→0

f(y) = −∞, lim
y→0

f(y) = ∞.

Example 4.3. Let f(x) = 1/|x| on [−1, 1] \ {0}. Then Mε = ∞ and mε = 1/ε
for every ε > 0. Therefore,

lim
y→0

f(y) = lim
y→0

f(y) = ∞.
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Example 4.4. Let f(x) = x on [−1, 1] \ {0}. Then Mε = ε and mε = −ε for
every ε > 0. Therefore,

lim
y→0

f(y) = lim
y→0

f(y) = 0.

Theorem 4.1. A function f on [a, b] \ {x} has a limit at x if and only if
limy→x f(y) and limy→x f(y) are finite and equal. Then

lim
y→x

f(y) = lim
y→x

f(y) = lim
y→x

f(y).

Proof. (Necessity.) Suppose that limy→x f(y) = L, that is, for any given ε > 0
there is δ > 0 such that

L− ε < f(y) < L+ ε, for all y ∈ B′
δ.

It follows that
L− ε < Mδ′ ≤ L+ ε,

for any δ′ < δ. Inasmuch as Mδ is an increasing function,

L− ε < lim
y→x

f(y) = inf
0<δ′<δ

Mδ′ ≤ L+ ε.

Because ε is an arbitrary positive number, limy→x f(y) = L.
A similar argument shows that limy→x f(y) = L.
(Sufficiency.) Suppose that the upper and lower limits are finite and equal.

Then there is a real number L such that

lim
y→x

f(y) = lim
y→x

f(y) = L,

that is,
inf{Mδ : δ > 0} = L and sup{mδ : δ > 0} = L.

Therefore, for a given ε > 0, there is δ′ > 0 such that

L ≤ Mδ′ < L+ ε

and δ′′ > 0 such that
L− ε < mδ′′ ≤ L.

Let δ = min{δ′, δ′′}. Then, by the monotonicity of functions mδ and Mδ,

L− ε < mδ ≤ Mδ < L+ ε.

Hence,
L− ε < f(y) < L+ ε, for all y ∈ B′

δ,

that is, limy→x f(y) = L. �
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Now, let f be a function defined on the entire interval [a, b] and let x be a
fixed inner point of [a, b]. Then the function

f(y)− f(x)

y − x

(as a function of y) is defined on [a, b] \ {x}. The (possibly extended) number

Df(x) = lim
y→x

f(y)− f(x)

y − x

is called the upper derivative of f at x. Similarly, the lower derivative of f at
x is the number

Df(x) = lim
y→x

f(y)− f(x)

y − x
.

If the limit

lim
y→x

f(y)− f(x)

y − x

exists, it is called the derivative of f at x and denoted by f ′(x) or Df(x). In
this case the function f is said to be differentiable at x. The following theorem
follows immediately from Theorem 4.1.

Theorem 4.2. A function f on [a, b] is differentiable at x ∈ (a, b) if and only
if its lower and upper derivatives at x are equal finite numbers. Then

Df(x) = Df(x) = Df(x).

Note that we always have Df(x) ≤ Df(x).
The results of the next lemma are weak forms of the mean value theorem

for the derivative in analysis. They are essential in proving the main theorem
of Sect. 4.3.

Lemma 4.1. Let f be a function on [a, b] which is continuous at a point
x ∈ (a, b), and let A be a positive constant, A > 0.

(i) If Df(x) > A, then there are numbers ax, bx such that

a < ax < x < bx < b

and
f(bx)− f(ax)

bx − ax
> A.

(ii) If Df(x) < −A, then there are numbers ax, bx such that

a < ax < x < bx < b

and
f(bx)− f(ax)

bx − ax
< −A.

(iii) Continuity of f at x is a necessary condition for assertions (i) and (ii).
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Proof.

(i) Because

Df(x) = inf
ε>0

sup
0<|y−x|<ε

f(y)− f(x)

y − x
> A,

we have

sup
0<|y−x|<ε

f(y)− f(x)

y − x
> A, for all ε > 0.

Therefore, for ε = min{x− a, b− x}, there is y �= x in (a, b) such that

f(y)− f(x)

y − x
> A. (4.1)

If y < x, we define ax = y. Otherwise, we define bx = y. Because the
arguments in both cases are similar, we consider the latter case only.
Inasmuch as f is continuous at x, we have, by (4.1),

lim
z→x−

f(bx)− f(z)

bx − z
=

f(bx)− f(x)

bx − x
> A,

where z < x < bx. Therefore, there is z = ax such that

f(bx)− f(ax)

bx − ax
> A.

(ii) Because Df(x) < −A is equivalent to D[−f(x)] > A (cf. Exercise 4.2),
we have, by part (i),

−f(bx) + f(ax)

bx − ax
> A,

which is equivalent to

f(bx)− f(ax)

bx − ax
< −A.

(iii) Let f be a function on [−1, 1] defined by

f(x) =

{
x+ 1, if −1 ≤ x ≤ 0,

−1, if 0 < x ≤ 1.

Observe that f is discontinuous at x = 0. Then

f(y)− f(0)

y − 0
=

f(y)− 1

y
=

{
1, if −1 ≤ y < 0,

−1/y, if 0 < y ≤ 1.
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Hence,

Df(0) = inf
ε>0

sup
0<|y|<ε

f(y)− f(0)

y − 0
= 1.

On the other hand, for any −1 ≤ z < 0, 0 < y ≤ 1, we have

f(y)− f(z)

y − z
=

−2− z

y − z
< 0.

Thus (i) does not hold for f if, say, A = 1/2. Similarly, (ii) does not hold
for −f and A = −1/2. �

4.2 Functions of Bounded Variation

Let f be a function on [a, b]. Observe that over a subinterval [c, d] of [a, b] the
values of the function f “change” or “vary” from f(c) to f(d), so the “change”
in values is |f(d)− f(c)|. This observation motivates the following definition.

Definition 4.1. Let f be a function on the interval [a, b] and let P =
{x0, x1, . . . , xn} be a partition of this interval, that is,

a = x0 < x1 < · · · < xn = b

(cf. Sect. 3.1). The variation of f on [a, b] with respect to P is given by

V b
a (P, f) =

n∑

k=1

|f(xk)− f(xk−1)|.

If there is a constant C such that V b
a (P, f) < C for every partition P of [a, b],

then we say that f is a function of bounded variation, a BV-function for short,
on [a, b] and write

V b
a (f) = sup

P
V b
a (P, f).

In this case, the quantity V b
a (f) is called the total variation of f over the

interval [a, b].

Example 4.5. Consider the continuous function

f(x) =

{
x cos 1

x , if x �= 0,

0, if x = 0,
on [0, 1/π].

For the partition

P =
{
0,

1

nπ
,

1

(n− 1)π
, . . . ,

1

2π
,
1

π

}
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we have

V
1/π
0 (P, f) =

1

nπ
+

n−1∑

k=1

(
1

(n− k + 1)π
+

1

(n− k)π

)

=
2

π

(
1 +

1

2
+ · · ·+ 1

n

)
− 1

π
.

Inasmuch as the harmonic series diverges, the function f is not of a bounded
variation.

Example 4.6. Let

f(x) =

{
x2 sin 1

x , if x �= 0,

0, if x = 0,
on [−1, 1].

It is easy to verify that f is differentiable over the interval [−1, 1] with |f ′(x)| ≤
3 for x ∈ (−1, 1). Therefore,

n∑

k=1

|f(xk)− f(xk−1)| ≤ 3

n∑

k=1

|xk − xk−1| = 3(b− a),

for any partition P = {x0, x1, . . . , xn} of [a, b]. Thus f is a BV-function.

Example 4.7. Let f be an increasing function on [a, b]. Then

V b
a (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| = f(b)− f(a),

for any partition of [a, b]. It follows that V b
a (f) = f(b) − f(a). If f is a de-

creasing function, then V b
a (f) = f(a)− f(b). Thus

V b
a (f) = |f(b)− f(a)|

for any monotone function on [a, b].

The triangle inequality implies that for an arbitrary function f on [a, b],

n∑

k=1

|f(xk)− f(xk−1)| ≥ |f(b)− f(a)|.

Thus V b
a (P, f) ≥ |f(b) − f(a)| for any partition P of [a, b]. The following

lemma gives a better estimate for the lower bound of a variation.

Lemma 4.2. Let f be a function on [a, b], P = {x0, x1, . . . , xn} be a partition
of [a, b], S be a nonempty subset of {1, 2, . . . , n}, and A be a positive number.
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(i) If f(a) ≥ f(b) and

f(xk)− f(xk−1)

xk − xk−1
> A, for each k ∈ S,

then

V b
a (P, f) =

n∑

k=1

|f(xk)− f(xk−1)| > |f(b)− f(a)|+A · L,

where L =
∑

k∈S(xk − xk−1).
(ii) The same inequality holds if f(a) ≤ f(b) and

f(xk)− f(xk−1)

xk − xk−1
< −A, for each k ∈ S,

Proof.

(i) We have

|f(b)− f(a)| = f(a)− f(b) =

n∑

k=1

(f(xk−1)− f(xk))

= −
∑

k∈S

(f(xk)− f(xk−1)) +
∑

k/∈S

(f(xk−1)− f(xk))

< −A · L+
∑

k/∈S

(f(xk−1)− f(xk))

≤ −A · L+

n∑

k=1

|f(xk−1)− f(xk)| = −A · L+ V b
a (P, f).

The desired inequality follows.
(ii) We obtain the result by applying the assertion in (i) to the function −f .

�
Note that if f is a BV-function on [a, b], then it is a BV-function on any

closed subinterval of [a, b] (cf. Exercise 4.4).

Theorem 4.3. Let f be a BV-function over [a, b] and let c be an inner point
of [a, b]. Then

V b
a (f) = V c

a (f) + V b
c (f).

Proof. Let P ′ be a partition of [a, c] and P ′′ be a partition of [c, b]. Then
P ′ ∪ P ′′ is a partition of [a, b] and

V c
a (P

′, f) + V b
c (P

′′, f) = V b
a (P

′ ∪ P ′′, f) ≤ V b
a (f).
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By taking the supremum over P ′ and P ′′ separately, we obtain

V c
a (f) + V b

c (f) ≤ V b
a (f).

To obtain an opposite inequality, let P be an arbitrary partition of [a, b].
Then c ∈ [xk−1, xk] for some 1 ≤ k ≤ n. Because

|f(c)− f(xk−1)|+ |f(xk)− f(c)| ≥ |f(xk)− f(xk−1)|,
we have

V b
a (P ∪ {c}, f) ≥ V b

a (P, f).

Let P ′ and P ′′ be restrictions of P ∪ {c} to the intervals [a, c] and [c, b],
respectively. Then

V b
a (P, f) ≤ V b

a (P ∪ {c}, f) = V c
a (P

′, f) + V b
c (P

′′, f)

≤ V c
a (f) + V b

c (f).

Therefore,
V b
a (f) ≤ V c

a (f) + V b
c (f)

and the result follows. �

Corollary 4.1. V x
a (f) is an increasing function on [a, b].

Proof. For u < v in [a, b] we have, by Theorem 4.3,

V v
a (f) = V u

a (f) + V v
u (f).

Because V v
u (f) ≥ 0, we have V u

a (f) ≤ V v
a (f). �

Theorem 4.4. (Jordan Decomposition Theorem) A function f is a BV-
function on [a, b] if and only if it is the difference of two increasing functions
on [a, b].

Proof. (Necessity.) Let us define g(x) = V x
a (f). By Corollary 4.1, g(x) is an

increasing function on [a, b]. Because f = g − (g − f), it suffices to show that
h = g − f is an increasing function. For

a ≤ u < v ≤ b

we have

h(v)− h(u) = g(v)− g(u)− (f(v)− f(u))

= V v
u (f)− (f(v)− f(u)) ≥ 0,

because V v
u (f) ≥ |f(v)− f(u)|. (Recall that V v

u (P, f) ≥ |f(v)− f(u)| for any
partition P of [u, v].) Hence h is an increasing function.
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(Sufficiency.) Suppose that f = g−h where g and h are increasing functions
on [a, b]. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By the triangle
inequality and telescoping, we have

V b
a (P, f) =

n∑

k=1

|f(xk)− f(xk−1)|

≤
n∑

k=1

|g(xk)− g(xk−1)|+
n∑

k=1

|h(xk)− h(xk−1)|

= [g(b)− g(a)] + [h(b)− h(a)].

Hence, f is a BV-function. �

Corollary 4.2. Let f be a BV-function on [a, b]. Then f has the following
explicit expression as the difference of two increasing functions on [a, b]:

f = V x
a (f)− [V x

a (f)− f ].

Theorem 4.5. A BV-function on [a, b] is continuous except possibly at a finite
or countable number of points in [a, b].

Proof. By the Jordan Decomposition Theorem, it suffices to prove the claim
for an increasing function f on [a, b]. Because f is increasing, it has a limit
from the left and from the right at any given point x ∈ (a, b). We define

f(x−) = lim
y→x−

f(y) = sup{f(y) : a < y < x}

and
f(x+) = lim

y→x+
f(y) = inf{f(y) : x < y < b}.

Because f is increasing, f(x−) ≤ f(x+). The function f is discontinuous at
x if and only if f(x−) < f(x+), in which case we define the open “jump”
interval

J(x) = {y : f(x−) < y < f(x+)}.
The jump intervals are pairwise disjoint. Inasmuch as each jump interval
contains a rational number, we can have no more than a countable set of
these intervals. It follows that f cannot have more than a countable set of
discontinuities. �

4.3 Differentiability of BV-Functions

We begin by establishing some auxiliary results about open sets and families
of intervals.
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Lemma 4.3. (Lindelöf Property) Let {Gi}i∈J be an infinite family of open
sets. Then there is a countable subfamily {Gi}i∈J0 (J0 is a countable subset
of J) such that ⋃

i∈J

Gi =
⋃

i∈J0

Gi.

Proof. Let G =
⋃

i∈J Gi and x ∈ G. Then x ∈ Gi for some i in J . Inasmuch
as Gi is open, there is an open interval Ix such that x ∈ Ix ⊆ Gi. We may
assume that the endpoints of Ix are rational numbers (cf. Exercise 4.18).
Thus we obtained a countable family of open intervals with the union G. For
each interval Ix, we select an open set in {Gi}i∈J that contains it. The result
follows. �

Lemma 4.4. Let E be a subset of [a, b] and {Ii}i∈J be a family of subintervals
of [a, b] such that

E ⊆
⋃

i∈J

Ii.

Then there is a nonempty finite subfamily {Ii}i∈J0 of {Ii}i∈J such that

1

2
m∗(E) ≤

∑

i∈J0

m(Ii).

Proof. The assertion is trivial if m∗(E) = 0, so we assume that m∗(E) > 0.
By Lemma 4.3, we may assume that the set J is at most countable. By

Theorems 2.12 and 2.13,

m∗(E) ≤ m∗
( ⋃

i∈J

Ii

)
≤
∑

i∈J

m(Ii).

If {m(Ii)}i∈J is not summable, then there is a finite subset J0 ⊆ J such that

∑

i∈J0

m(Ii) > m∗(E)

and the result follows immediately. Otherwise, for

ε =
1

2
m∗(E) > 0

there is a finite set J0 ⊆ J such that

∣∣∣
∑

i∈J

m(Ii)−
∑

i∈J0

m(Ii)
∣∣∣ < ε =

1

2
m∗(E).

Therefore,
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∑

i∈J0

m(Ii) >
∑

i∈J

m(Ii)− 1

2
m∗(E)

≥ m∗(E)− 1

2
m∗(E) =

1

2
m∗(E),

which is the desired result. �

Note that we can replace 1/2 in Lemma 4.4 by any number 0 < λ < 1.
However, we cannot choose λ = 1 as the following example illustrates.

Example 4.8. Let E = (0, 1] be a subset of [0, 1] and let

E =
⋃

i∈N

( 1

i+ 1
,
1

i

]
.

Clearly, for any finite subset J0 of N, we have

m∗(E) >
∑

i∈J0

m
( 1

i+ 1
,
1

i

]
.

Lemma 4.5. Let {I1, . . . , In} be a set of bounded intervals. There is a
nonempty subset S ⊆ {1, . . . , n} such that the intervals Ii with i ∈ S are
pairwise disjoint and

∑

i∈S

m(Ii) ≥ 1

3
m
( n⋃

i=1

Ii

)
.

Proof. The proof is by induction on n. The claim is trivial for n = 1.
Let n > 1 and suppose that the assertion holds for all integers less than

n. We may assume that I1 is the interval of maximum length. Let

T = {i ∈ {1, . . . , n} : Ii ∩ I1 �= ∅}

and T ′ = {1, . . . , n} \ T . Note that 1 ∈ T , so the set T is not empty.
If T = {1, . . . , n}, then ⋃n

i=1 Ii is an interval containing I1 and

m(I1) ≥ 1

3
m
( n⋃

i=1

Ii

)

inasmuch as I1 is of maximum length (cf. Exercise 4.19). Thus the claim holds
for S = {1}.

If T �= {1, . . . , n}, then ⋃i∈T Ii is an interval containing I1 and

m(I1) ≥ 1

3
m
( ⋃

i∈T

Ii

)
.

(cf. Exercise 4.19).
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The set {Ii : i ∈ T ′} is not empty and consists of intervals that are disjoint
from I1. By the induction hypothesis, there is a nonempty subset S′ of T ′ such
that the intervals in {Ii : i ∈ S′} are pairwise disjoint and

∑

i∈S′
m(Ii) ≥ 1

3
m
( ⋃

i∈T ′
Ii

)
.

Let S = S′ ∪ {1}. By adding the last two displayed inequalities we obtain

∑

i∈S

m(Ii) ≥ 1

3

[
m
( ⋃

i∈T

Ii

)
+m

( ⋃

i∈T ′
Ii

)]
≥ 1

3
m
( n⋃

i=1

Ii

)
.

The result follows by induction. �

Lemma 4.6. Let a bounded set E be the union of an at most countable family
of sets {Ei}i∈J ,

E =
⋃

i∈J

Ei.

Then E is a set of measure zero if and only if each set Ei is of measure zero.

Proof. (Necessity.) Suppose that m(E) = 0 and there is i ∈ J such that Ei is
not of measure zero. Then m∗(Ei) > 0 (cf. Exercise 4.20). Because Ei ⊆ E,
we have

0 < m∗(Ei) ≤ m∗(E),

contradicting our assumption that E is a set of measure zero (cf. Exercise 4.20).
(Sufficiency.) If m(Ei) = 0 for all i ∈ J , then, by Theorem 2.13,

m∗(E) ≤
∑

i∈J

m∗(Ei) = 0.

Inasmuch as 0 ≤ m∗(E) ≤ m∗(E) ≤ 0, we have m(E) = 0. �

Theorem 4.6. Let f be a BV-function on [a, b] and

E = {x ∈ (a, b) : Df(x) �= Df(x)}.

Then E is a set of measure zero.

Proof. Because Df(x) ≥ Df(x) on (a, b), we have

E = {x ∈ (a, b) : Df(x) > Df(x)}.

Let
Ec = {x ∈ (a, b) : f is continuous at x}.
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By Theorem 4.5, (a, b) \Ec is at most countable. Therefore it suffices to show
that the set

E′ = {x ∈ Ec : Df(x) > Df(x)}
is of measure zero (cf. Exercise 4.21).

For rational numbers A > 0 and B, we define

EA,B = {x ∈ Ec : Df(x) > B +A > B −A > Df(x)}.

Then
E′ =

⋃

A,B

EA,B

(cf. proof of Theorem 2.30). By Lemma 4.6, to show that E′ is a set of measure
zero it suffices to show that all sets EA,B are of measure zero. We do it by
contradiction.

Suppose that there are two rational numbers A > 0 and B such that
EA,B is not a set of measure zero and let G = EA,B. Thus we assume that
m∗(G) > 0 (cf. Exercise 4.20). In what follows, we show that this condition
contradicts our assumption that f is a BV-function on [a, b].

Because f is a BV-function, the function g(x) = f(x) − Bx is also a BV-
function (cf. Exercise 4.6). Note that the set Ec is the set of points in (a, b)
where the function g is continuous. We have

Dg(x) = Df(x)−B and Dg(x) = Df(x)−B.

Therefore,
G = {x ∈ Ec : Dg(x) > A > −A > Dg(x)}.

Let P = {x0, x1, . . . , xn}, where

a = x0 < x1 < · · · < xn = b,

be a partition of [a, b] such that

V b
a (P, g) =

n∑

i=1

|g(xi)− g(xi−1| > V b
a (g)−A · 1

6
m∗(G). (4.2)

By the definition of the total variation V b
a (g), such a partition exists, because

A > 0 and m∗(G) > 0. For a given x ∈ G \ P , we have x ∈ (xi−1, xi) for some
1 ≤ i ≤ n. Observe that g is continuous at x and Dg(x) > A, Dg(x) < −A.
By Lemma 4.1, we can choose ax, bx such that

xi−1 < ax < x < bx < xi (4.3)
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and

g(bx)− g(ax)

bx − ax
> A, if g(xi) ≤ g(xi−1),

g(bx)− g(ax)

bx − ax
< −A, if g(xi) ≥ g(xi−1).

It is clear that
G \ P ⊆

⋃

x∈G\P
(ax, bx).

By Lemma 4.4, there is a nonempty family of intervals {(ax, bx)}x∈U , where
U is a finite subset of E \ P , such that

1

2
m∗(G) =

1

2
m∗(G \ P ) ≤

∑

x∈U

(bx − ax).

By Lemma 4.5, there is a nonempty subset V ⊆ U such that the intervals
(ax, bx) with x ∈ V are pairwise disjoint and

∑

x∈V

(bx − ax) ≥ 1

3

∑

x∈U

bx − ax) ≥ 1

6
m∗(G). (4.4)

Let Q be the set of endpoints of the intervals (ax, bx) with x ∈ V and let
Qi = (P ∪Q)∩ [xi−1 , xi] for 1 ≤ i ≤ n. Let [xi−1, xi] be an interval containing
at least one of the intervals (ax, bx) with x ∈ V (cf. (4.3)). By applying the
results of Lemma 4.2 to the function g over [xi−1, xi] and the partition Qi, we
obtain

V xi
xi−1

(Qi, g) > |g(xi)− g(xi−1)|+A · Li,

where Li is the total length of intervals {(ax, bx)}x∈Qi . On the other hand, for
an interval [xi−1, xi] that does not contain any of the intervals (ax, bx) with
x ∈ V , we have

V xi
xi−1

(Qi, g) ≥ |g(xi)− g(xi−1)|.
By adding the last two displayed inequalities for 1 ≤ i ≤ n, we obtain

V b
a (P ∪Q, g) =

n∑

i=1

V xi
xi−1

(Qi, g) > V b
a (P, g) +A ·

∑

x∈V

(bx − ax)

>
[
V b
a (g)−A · 1

6
m∗(E)

]
+A · 1

6
m∗(E) = V b

a (g),

by (4.2) and (4.4). This inequality is the desired contradiction. �

Theorem 4.7. Let f be a BV-function on [a, b] and let E be the set of all
points in (a, b) where the upper derivative is not finite. Then E is a set of
measure zero.
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Proof. We prove the claim for the case when

E = {x ∈ (a, b) : Df(x) = ∞}.
The proof is similar for the other possible case.

Again, let Ec be the set of all points in (a, b) at which f is continuous. We
need to prove that the set

E′ = {x ∈ Ec : Df(x) = ∞}
is of measure zero. The proof is by contradiction, so we suppose that
m∗(E′)>0.

Let A be an arbitrary positive number and x be a point in the set E′.
Then Df(x) > A. By Lemma 4.1, we can choose ax, bx such that

a < ax < x < bx < b

and

g(bx)− g(ax)

bx − ax
> A, if g(b) ≤ g(a),

g(bx)− g(ax)

bx − ax
< −A, if g(b) ≥ g(a).

It is clear that
E′ ⊆

⋃

x∈E′
(ax, bx).

By Lemma 4.4, there is a family of intervals {(ax, bx)}x∈U , where U is a finite
subset of E′, such that

1

2
m∗(E′) ≤

∑

x∈U

(bx − ax).

By Lemma 4.5, there is a subset V ⊆ U such that the intervals (ax, bx) with
x ∈ V are pairwise disjoint and

∑

x∈V

(bx − ax) ≥ 1

3

∑

x∈U

(bx − ax) ≥ 1

6
m∗(E′).

Let P be a partition of [a, b] that includes the endpoints a, b and all endpoints
of the intervals (ax, bx) with x ∈ V . By Lemma 4.2,

V b
a (P, f) > |f(b)− f(a)|+A ·

∑

x∈V

(bx − ax) ≥ A · 1
6
m∗(E′).

Because A is an arbitrary positive number and m∗(E′) > 0, this contradicts
our assumption that f is a BV-function. �

By combining the results of Theorems 4.6 and 4.7 we obtain the following
theorem.
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Theorem 4.8. A BV-function on a closed bounded interval is differentiable
almost everywhere.

The converse is not true. For instance, the function defined by f(x) = 1/x
for x ∈ (0, 1] and f(0) = 0 is differentiable over (0, 1] but is not of the bounded
variation over [0, 1].

Corollary 4.3. A monotone function on a closed interval is differentiable a.e.
on the interval because it is a BV-function (cf. Example 4.7).

Theorem 4.9. If f is an increasing function on [a, b], then its derivative f ′

is measurable and ∫ b

a

f ′ ≤ f(b)− f(a),

so that f ′ is integrable.

Compare this result with the fundamental theorem of calculus, FTC 2 (see
the preamble to this chapter).
Proof. Let us set

f(x) = f(b) for x ∈ (b, b+ 1].

At every point x ∈ [a, b] where the derivative exists, we have

f ′(x) = lim
f(x+ 1

n )− f(x)
1
n

= limn
[
f
(
x+

1

n

)
− f(x)

]
.

Recall that an increasing function on [a, b] is measurable (cf. Exercise 2.46).
Thus f ′ is the limit of a sequence of measurable functions converging a.e. By
Theorem 2.33, f ′ is a measurable function. It is clear that it is nonnegative.
Inasmuch as f is an increasing function, the integral

∫ b

a

f
(
x+

1

n

)
dx

can be taken in the Riemann sense (cf. Exercise 3.6). Therefore the change of
variable can be used to obtain

∫ b

a

f
(
x+

1

n

)
dx =

∫ b+1/n

a+1/n

f(x) dx.

By Fatou’s Lemma (Theorem 3.16),
∫ b

a

f ′(x) dx ≤ lim inf

∫ b

a

n
[
f
(
x+

1

n

)
− f(x)

]
dx

= lim inf
[
n

∫ b

a

f
(
x+

1

n

)
dx− n

∫ b

a

f(x) dx
]

= lim inf
[
n

∫ b+1/n

a+1/n

f − n

∫ b

a

f
]

= lim inf
[
n

∫ b+1/n

b

f − n

∫ a+1/n

a

f
]
.
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We have f(x) = f(b) over the intervals [b, b + 1/n] and f(x) ≥ f(a) over the
intervals [a, 1/n]. Therefore,

n

∫ b+1/n

b

f = f(b) and n

∫ a+1/n

a

f ≥ f(a),

so
∫ b

a
f ′(x) dx ≤ f(b)− f(a), which is the desired result. �

Example 4.9. Let c(x) be the Cantor function on [0, 1]. Then c′(x) = 0 a.e. on
[0, 1] (cf. Example 2.3), so we have the strict inequality

0 =

∫ 1

0

c′ < c(1)− c(0) = 1

in Theorem 4.9.

4.4 Differentiation of an Indefinite Integral

Let f be an integrable function on the closed interval [a, b]. The indefinite
integral of f is the function F defined on [a, b] by

F (x) =

∫ x

a

f + C,

for every choice of the constant C. It is clear that F (a) = C, so we can write

F (x) =

∫ x

a

f + F (a)

for any particular indefinite integral F of f .
In this section we prove the following theorem which is a version of the

fundamental theorem of calculus, FTC 1 (cf. the preamble to this chapter):

Theorem 4.10. Let f be an integrable function on [a, b] and us suppose that

F (x) =

∫ x

a

f + F (a).

Then F ′(x) = f(x) for almost all x in [a, b].

Before establishing the claim of this theorem, we prove several lemmas.

Lemma 4.7. The indefinite integral F of an integrable function f on the in-
terval [a, b] is a continuous function on this interval.
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Proof. By Theorem 3.19, given ε > 0, there is δ1 > 0 such that
∫
A |f | < ε for

any subset A of [a, b] with m(A) < δ1. (Recall (cf. Theorem 3.20) that |f | is
integrable if and only if f is integrable.) For a given x ∈ [a, b], we choose

A = (x − δ1/3, x+ δ1/3) ∩ [a, b].

Clearly, m(A) < δ1. Therefore,

|F (y)− F (x)| =
∣∣∣∣
∫ y

x

f

∣∣∣∣ ≤
∣∣∣∣
∫ y

x

|f |
∣∣∣∣ ≤
∫

A

|f | < ε,

for any y ∈ [a, b] such that |y−x| < δ = δ1/3. Thus, F is continuous at x. �

Lemma 4.8. The indefinite integral F of an integrable function f on the in-
terval [a, b] is a BV-function on this interval.

Proof. For a partition

a = x0 < x1 · · · < xn = b,

we have

n∑

i=1

|F (xi)− F (xi−1)| =
n∑

i=1

∣∣∣∣
∫ xi

xi−1

f

∣∣∣∣ ≤
n∑

i=1

∫ xi

xi−1

|f | =
∫ b

a

|f |.

Therefore, V b
a (F ) ≤ ∫ b

a |f | < ∞. �

Lemma 4.9. Let f be a positive measurable function on a bounded set E of
positive measure. Then ∫

E

f > 0.

Proof. Let En = {x ∈ E : f(x) > 1/n}. Then

E1 ⊆ E2 ⊆ · · · ⊆ En · · · ⊆ E and E =

∞⋃

i=1

Ei.

By Theorem 2.24,
limm(En) = m(E) > 0.

Hence, there is n such that m(En) > 0. Then, by Theorem 3.2, we have

∫

E

f =

∫

En

f +

∫

E\En

f ≥
∫

En

f ≥ 1

n
m(En) > 0,

which is the desired result. �
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Lemma 4.10. (Cf. Exercise 3.9.) Let f be an integrable function on [a, b]. If
∫ x

a

f = 0 for all x ∈ [a, b],

then f(x) = 0 a.e. on [a, b].

Proof. The proof is by contradiction. Let us represent the set

{x ∈ [a, b] : f(x) �= 0}
as the union

{x ∈ [a, b] : f(x) > 0} ∪ {x ∈ [a, b] : f(x) < 0}
and assume that m(E) > 0, where

E = {x ∈ [a, b] : f(x) > 0}
(otherwise, consider the set where f is negative). Then m∗(E) > 0 and, by
the definition of inner measure, there is a closed set F ⊆ E with m(F ) > 0.
By Lemma 4.9, ∫

F

f > 0.

The set G = (a, b) \ F is open and therefore is the union of an at most
countable family of pairwise disjoint open intervals,

G =
⋃

i∈J

(ai, bi).

We have ∫

G

f =

∫ b

a

f −
∫

F

f = −
∫

F

f �= 0.

Inasmuch as ∫

G

f =
∑

i∈J

∫ bi

ai

f,

there is i ∈ J such that
∫ bi
ai

f �= 0. On the other hand,

∫ bi

ai

f =

∫ bi

a

f −
∫ ai

a

f = 0.

This contradiction completes the proof. �

Lemma 4.11. Let f be a bounded measurable function on [a, b], and let

F (x) =

∫ x

a

f + F (a).

Then F ′(x) = f(x) for almost all x ∈ [a, b].
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Proof. By Lemma 4.8 and Theorem 4.8, the derivative F ′(x) exists a.e. on
[a, b]. Let us set

f(x) = f(b) for x ∈ (b, b+ 1]

and define (cf. proof of Theorem 4.9)

fn(x) =
F (x+ 1

n )− F (x)
1
n

= n

[∫ x+1/n

a

f −
∫ x

a

f

]
= n

∫ x+1/n

x

f.

Because f is bounded, there is M > 0 such that |f | ≤ M on [a, b]. It follows
that

|fn(x)| = n

∣∣∣∣
∫ x+1/n

x

f

∣∣∣∣ ≤ n

∫ x+1/n

x

|f | ≤ M, for all x ∈ [a, b].

Because fn(x) converges to F ′(x) pointwise a.e. on [a, b], the bounded con-
vergence theorem (Theorem 3.10) implies

∫ c

a

F ′ = lim

∫ c

a

fn = limn

∫ c

a

[
F
(
x+

1

n

)
− F (x)

]
dx

= limn

[∫ c

a

F
(
x+

1

n

)
dx −

∫ c

a

F (x) dx

]

= limn

[∫ c+1/n

a+1/n

F −
∫ c

a

F

]

= lim

[
n

∫ c+1/n

c

F − n

∫ a+1/n

a

F

]
= F (c)− F (a) =

∫ c

a

f,

for every c ∈ [a, b]. The middle equality in the last line holds by continuity of
F (cf. Lemma 4.7). Therefore,

∫ c

a

(F ′ − f) = 0, for all c ∈ [a, b].

By Lemma 4.10, F ′ = f a.e. on [a, b]. �

Lemma 4.12. Let f be a nonnegative integrable function on [a, b], and let

F (x) =

∫ x

a

f.

Then F ′(x) = f(x) for almost all x ∈ [a, b].

Proof. Let n be a fixed natural number. We define

fn(x) = min{f(x), n}, for x ∈ [a, b].
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Because f(x)− fn(x) ≥ 0 on [a, b], the function

Gn(x) =

∫ x

a

(f − fn)

is an increasing function of x. By Theorem 4.8, G′
n exists a.e. on [a, b]. It is

clear that G′
n(x) ≥ 0 for all points x where it is defined, because Gn is an

increasing function. By Lemma 4.11,

d

dx

∫ x

a

fn = fn(x) a.e. on [a, b].

Therefore,

F ′(x) =
d

dx

∫ x

a

f =
d

dx

[
Gn(x) +

∫ x

a

fn

]
≥ fn(x) a.e. on [a, b].

Because n is an arbitrary natural number, F ′(x) ≥ f(x) a.e. on [a, b]. Conse-
quently, ∫ b

a

F ′ ≥
∫ b

a

f = F (b)− F (a).

Observe that F is an increasing function, for f(x) ≥ 0 on [a, b]. By
Theorem 4.9, ∫ b

a

F ′ ≤ F (b)− F (a).

Hence, ∫ b

a

F ′ = F (b)− F (a) =

∫ b

a

f,

so
∫ b

a
(F ′ − f) = 0. Inasmuch as F ′(x) ≥ f(x), by Lemma 4.11, we have

F ′(x) = f(x) a.e. on [a, b]. �

Let f be an integrable function on [a, b]. By Lemma 4.12, the indefinite
integrals of the functions f+ and f− are differentiable a.e. and their deriva-
tives equal to the respective functions f+ and f−. This proves the claim of
Theorem 4.10.

4.5 Absolutely Continuous Functions

Definition 4.2. A real-valued function f defined on [a, b] is said to be abso-
lutely continuous on [a, b] if, given ε > 0, there is δ > 0 such that

n∑

i=1

|f(bi)− f(ai)| < ε
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for every finite set {(ai, bi) : 1 ≤ i ≤ n} of pairwise disjoint intervals with

n∑

i=1

(bi − ai) < δ.

An absolutely continuous function is also continuous; just take n = 1 in
the above definition. However, the converse does not hold. For instance, the
Cantor function c (cf. Example 2.3) is continuous but not absolutely continu-
ous. Indeed, in the kth step of the construction of the Cantor set, we obtained
the set Ck which is the union of 2k closed intervals (ai, bi), 1 ≤ i ≤ 2k, each
of which has length (1/3)k (cf. Example 1.2). We have

2k∑

i=1

(bi − ai) = (2/3)k, while

2k∑

i=1

[c(bi)− c(ai)] = 1,

because the Cantor function is constant on each of the intervals that comprise
the relative complement [0, 1]\Ck. Therefore, for ε = 1, we must have δ < (2/
3)k for all k ∈ N which is impossible.

It is not difficult to show that linear combinations of absolutely continuous
functions are absolutely continuous (cf. Exercise 4.22).

Let f be a BV-function on a closed interval [α, β], and let P be a partition
of [α, β] defined by the sequence of points

γ0 = α < γ1 < · · · < γn = β.

Consider the family of open intervals {(γi, γi−1)}1≤i≤n. Then

n∑

i=1

|f(γi)− f(γi−1)| = V β
α (P, f)

and
n∑

i=1

(γi − γi−1) = β − α.

We will use this observation implicitly in the rest of this section.

Theorem 4.11. An absolutely continuous function f on [a, b] is of bounded
variation.

Proof. Let δ > 0 be the response to the ε = 1 challenge in Definition 4.2. Let
us partition the interval [a, b] into N intervals by points

a = x0 < x1 < · · · < xN = b

in such a way that the length of each interval is less than δ. By the definition
of absolute continuity, V xi

xi−1
(f) ≤ 1, for 1 ≤ i ≤ N . The additivity property

of the total variation (cf. Theorem 4.3) implies
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V b
a (f) =

N∑

i=1

V xi
xi−1

(f) ≤ N.

Therefore f is a BV-function. �

Theorem 4.12. A function f is absolutely continuous if and only if it is equal
to the difference of two increasing absolutely continuous functions.

Proof. (Necessity.) Suppose that f is an absolutely continuous function on the
interval [a, b]. By Theorem 4.11, f is a BV-function. By Corollary 4.2,

f = V x
a (f)− (V x

a (f)− f),

where functions V x
a (f) and f − V x

a (f) are both increasing functions on [a, b].
Thus, it suffices to show that the function V x

a (f) is absolutely continuous.
Given ε > 0, let δ > 0 be the response to ε/2 according to Definition 4.2

for the function f , and let {(ai, bi) : 1 ≤ i ≤ n} be a family of pairwise disjoint
subintervals of [a, b] with

∑n
i=1(bi − ai) < δ. We have

n∑

i=1

|V bi
a (f)− V ai

a (f)| =
n∑

i=1

V bi
ai
(f) = sup

n∑

i=1

V bi
ai
(Pi, f),

where the supremum is taken over partitions Pi of the intervals (ai, bi) for all
1 ≤ i ≤ n. The set

⋃n
i=1 Pi defines a partition of the union

⋃n
i=1(ai, bi) into

subintervals of total length less than δ. Therefore,

n∑

i=1

V bi
ai
(Pi, f) <

ε

2
,

by our choice of δ. By taking the supremum on the left side, we obtain

n∑

i=1

|V bi
a (f)− V ai

a (f)| = sup

n∑

i=1

V bi
ai
(Pi, f) ≤ ε

2
< ε.

It follows that V x
a (f) is an absolutely continuous function.

(Sufficiency.) The proof is left as Exercise 4.22. �

Theorem 4.13. The indefinite integral F of an integrable function f on [a, b],

F (x) =

∫ x

a

f + F (a),

is an absolutely continuous function on [a, b].
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Proof. Let {(ai, bi) : 1 ≤ i ≤ n} be a set of pairwise disjoint subintervals of
[a, b], and let G =

⋃n
i=1(ai, bi). Then

n∑

i=1

|F (bi)− F (ai)| =
n∑

i=1

∣∣∣∣
∫ bi

ai

f

∣∣∣∣ ≤
n∑

i=1

∫ bi

ai

|f | =
∫

G

|f |.

By Theorem 3.19, for a given ε > 0 there is δ > 0 such that
∫
G |f | < ε

provided that m(G) =
∑n

i=1(bi − ai) < δ. It follows that F is an absolutely
continuous function. �

In the rest of this section we prove Lebesgue’s version of the fundamental
theorem of calculus, FTC 2 (Theorem 4.14). First, we prove four lemmas.

Let g be a continuous function on [a, b]. A point x ∈ [a, b] is called a shadow
point of g if there is a point z > x in [a, b] such that g(z) > g(x). This concept
is illustrated by the drawing in Fig. 4.1. The shadow points correspond to
points in the “valleys” of the graph. Arrows are rays of light coming from the
“sun rising in the east.”

Figure 4.1. Shadow points

Lemma 4.13. The set E of shadow points of g in (a, b) is open.

Proof. We may assume that E �= ∅. Let x be a shadow point in (a, b) so
g(z) > g(x) for some z ∈ (x, b]. Inasmuch as g is a continuous function, for
ε = g(z)− g(x), there is δ > 0 such that

|g(y)− g(x)| < ε, for y ∈ [a, b] such that |y − x| < δ.

Therefore,

g(y) < g(x) + ε = g(z), for y ∈ (x− δ, x+ δ) ∩ (a, b),

that is, all points in the interval (x − δ, x + δ) ∩ (a, b) are shadow points. It
follows that E is an open set. �
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Lemma 4.14. Suppose that the set E of shadow points of g in (a, b) is not
empty and let (c, d) be a component interval of E. Then

g(c) ≤ g(d).

Proof. We will show that g(x) ≤ g(d) for all x ∈ (c, d). Then the desired result
follows from the continuity of g.

For a given x ∈ (c, d), we define

γ = sup{y ∈ [x, d] : g(y) ≥ g(x)}.
Note that γ is well defined because x ∈ {y ∈ [x, d] : g(y) ≥ g(x)}. Because g
is continuous, g(γ) ≥ g(x). Hence, if γ = d, we are done.

Suppose that γ < d. Then

g(d) < g(x),

because otherwise, d ∈ {y ∈ [x, d] : g(y) ≥ g(x)}, which is false by the
definition of γ.

Inasmuch as γ ∈ (c, d) ⊆ E, there is z > γ such that g(z) > g(γ). There
are two possible cases:

1. γ < z ≤ d. Then
g(z) > g(γ) ≥ g(x),

which contradicts our choice of γ, because

z > γ = sup{y ∈ [x, d] : g(y) ≥ g(x)}.
2. z > d. Then

g(z) > g(γ) ≥ g(x) > g(d).

It follows that d is a shadow point which is false because d /∈ E.

These contradictions show that γ = d and hence g(x) ≤ g(d) for all x ∈
(c, d). �

Lemma 4.15. Let f be an increasing absolutely continuous function on [a, b].
If Z is a subset of [a, b] of measure zero, then f(Z) is also a set of measure
zero.

Proof. It is not difficult to see that we may assume that Z is a subset of the
open interval (a, b).

Given ε > 0, let δ > 0 be as in Definition 4.2. Because m(Z) = 0, there is
an open set G′ ⊇ Z with m(G′) < δ. Consider the open set G = G′ ∩ (a, b).
The set G is the union of its component intervals,

G =
⋃

i∈J

(ai, bi),
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so
∑

i∈J (bi−ai) < δ, because G ⊆ G′. Inasmuch as f is an increasing function,

f(G) =
⋃

i∈J

(f(ai), f(bi)) ⊆ (f(a), f(b)),

where {(f(ai), f(bi))}i∈J is a family of pairwise disjoint intervals.
We have

m(f(G)) =
∑

i∈J

(f(bi)− f(ai)) < ε

(cf. Exercise 4.26). Therefore, m(f(G)) = 0, because ε is an arbitrary positive
number. Since f(Z) ⊆ f(G), we have m(f(Z)) = 0. �

Lemma 4.16. If f is an increasing absolutely continuous function on [a, b]
with f ′(x) = 0 a.e. on (a, b), then f is a constant function.

Proof. Let E = {x ∈ (a, b) : f ′(x) = 0}. Because f ′(x) = 0 a.e. on (a, b), the
set Z = [a, b] \ E is of measure zero. We have

f([a, b]) = [f(a), f(b)],

because f is an increasing function. Therefore,

f(b)− f(a) = m(f(Z)) +m(f(E)) = m(f(E)),

by Lemma 4.15. To prove the claim of the lemma, it suffices to show that
m(f(E)) = 0.

Let ε be a positive number. For each x ∈ E, select z > x in E such that

f(z)− f(x)

z − x
< ε,

or, equivalently,
εx− f(x) < εz − f(z).

Thus the set E is a subset of the set F of shadow points of the function
g(x) = εx − f(x). We may assume that E �= ∅. (Otherwise, m(f(E)) = 0.)
Then, by Lemma 4.13, the set F is the union of open intervals

F =
⋃

i∈J

(ci, di).

By Lemma 4.14, g(ci) ≤ g(di) for i ∈ J . Therefore,

f(di)− f(ci) ≤ ε(di − ci), for i ∈ J .

Because f is an increasing function, f(F ) is the union of pairwise disjoint
intervals (f(di), f(ci)) (here, we assume that (α, α) = ∅) and hence
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m(f(F )) =
∑

i∈J

(f(di)− f(ci)) ≤ ε
∑

i∈J

(di − ci) ≤ ε(b− a).

Since ε is an arbitrary positive number, f(F ) is a set of measure zero. Because
E ⊆ F , the set f(E) is also of measure zero. �

Theorem 4.14. The derivative f = F ′ of an absolutely continuous function
F on [a, b] is integrable on [a, b] and

∫ x

a

f = F (x)− F (a).

Proof. By Theorem 4.12, we may assume that F is an increasing function. By
Theorem 4.9, f is integrable and

∫ v

u

f ≤ F (u)− F (v) for all a ≤ u < v ≤ b.

The function G(x) = F (x)− ∫ x

a
f is also increasing because

G(v)−G(u) = F (v)− F (v)−
∫ v

u

f ≥ 0.

for a ≤ u < v ≤ b. Moreover, the function G is absolutely continuous as
the difference of two absolutely continuous functions (cf. Theorem 4.13). By
Theorem 4.10, we have

G′(x) = F ′(x)− f(x) = 0 a.e. on [a, b].

Hence, by Lemma 4.16, G is a constant function, G(x) = C on [a, b]. Thus,

C = F (x)−
∫ x

a

f,

and for x = a, we obtain the desired result. �

Notes

In 1872, Karl Weierstrass presented to the Berlin Academy an example of
continuous but nowhere differentiable function:

∞∑

k=0

bk cos(akπx),

where 0 < b < 1 and a is an odd integer for which ab > 1 + 3π/2. He be-
lieved that it was a matter of time before someone found an example of a
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monotonic function with these properties. However, in 1904 Henri Lebesgue
proved that any continuous monotonic function is differentiable almost ev-
erywhere. In 1910, George Faber demonstrated that continuity is not neces-
sary, thus extending Lebesgue’s result to the functions of bounded variation
(cf. Theorem 4.8). It is a common belief that Lebesgue’s theorem is “one of
the most striking and most important in real variable theory,” as Frigyes Riesz
and Béla Sz.-Nagy remark in their book [RSN90]. In our exposition of this
topic we follow an approach presented in [Aus65] and [Bot03].

Lemma 4.13 is known as Riesz’s Rising Sun Lemma in the pertinent liter-
ature. It also has applications in functional and harmonic analyses.

Exercises

4.1. Describe the punctured balls B′
0.1, B

′
1.0, B

′
1.1, B

′
2.0, and B′

137 centered at
x = 1 in the interval [0, 3].

4.2. Prove that Df(x) = −D[−f(x)].

4.3. Show that the function

f(x) =

{
x2 sin 1

x2 , if x �= 0,

0, if x = 0

is not of a bounded variation over the interval [−1, 1].

4.4. Show that the function

f(x) =

{
x2 cos 1

x , if x �= 0,

0, if x = 0

is a BV-function over the interval [0, 1].

4.5. Let f be a BV-function on [a, b] and [c, d] be a nontrivial subinterval of
[a, b]. Show that the restriction of f to [c, d] is a BV-function over [c, d].

4.6. Show that the sum, difference, and product of two BV-functions is a
BV-function.

4.7. Let f and g be two BV-functions on [a, b]. Show that f/g is a BV-function
provided that g(x) ≥ σ > 0 on [a, b].

4.8. Show that Dirichlet’s function

f(x) =

{
1, if x is a rational number,

0, otherwise
on [0, 1]

is not of a bounded variation.
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4.9. Show that if f has a bounded derivative on [a, b], then f is of bounded
variation.

4.10. Show that V b
a (f) = f(b)− f(a) if and only if f is an increasing function

on [a, b].

4.11. Show that a BV-function is bounded.

4.12. Show that if f is a BV-function on [a, b], then so is |f |p, p ≥ 1.

4.13. Let F be a closed subset of [a, b]. Show that there is a continuous func-
tion f on [a, b] such that {x ∈ [a, b] : f(x) = 0} = F .

4.14. Prove that if f is a continuous function on [a, b] and |f | is of bounded
variation on [a, b], then so is f . Show that continuity is an essential assumption.

4.15. If f and g are BV-functions on [a, b], then so is

h(x) = max{f(x), g(x)}.
4.16. Let f and g be BV-functions and c be an arbitrary constant. Show that

V b
a (f + g) ≤ V b

a (f) + V b
a (g) and V b

a (cf) = |c|V b
a (f).

Find f and g for which the first inequality is strict.

4.17. Let f be a BV-function. Show that if G(x) = V x
a (f) is continuous, then

so is f .

4.18. Let x be a point in the open interval I. Show that there is an open
interval J ⊆ I with rational endpoints that contains x.

4.19. Let {I1, . . . , In} be a set of bounded intervals such that m(I1) ≥ m(Ii)
and Ii ∩ I1 �= ∅ for all 1 ≤ i ≤ n. Show that

(a)
⋃n

i=1 Ii is a bounded interval.

(b) m(I1) ≥ 1
3m
(⋃n

i=1 Ii

)
.

4.20. Show that a bounded set E that is not of measure zero has a positive
outer measure, m∗(E) > 0.

4.21. Let A be a finite or countable subset of a bounded set E. Show that E
is a set of measure zero if and only if E \A is a set of measure zero.

4.22. Let f and g be absolutely continuous functions on (a, b) and k be an
arbitrary constant. Prove that the functions f + g, kf , and fg are absolutely
continuous.

4.23. Give an example of a continuous function g on [a, b] for which we have
a strict inequality for a component interval in Lemma 4.14.
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4.24. Give an example of a continuous increasing function f on [0, 1] such
that m(f(Z)) �= 0 for some set Z ⊆ [0, 1] of measure zero.

4.25. Prove that the function f defined by

f(x) =

{
x cos π

x , if x ∈ (0, 1],

0, if x = 0,

is continuous but not absolutely continuous.

4.26. Let f be an absolutely continuous function on [a, b]. Prove that for every
ε > 0 there is δ > 0 such that

∞∑

i=1

|f(bi)− f(ai)| < ε

for any countable set of pairwise disjoint intervals {(ai, bi) : i ∈ N} with the
total length less that δ.

4.27. Let f and g be integrable functions on [a, b], and let

F (x) = F (a) +

∫ x

a

f, G(x) = G(a) +

∫ x

a

g.

Prove that

∫ b

a

(G · f) +
∫ b

a

(g · F ) = F (b)G(b)− F (a)G(a).

4.28. (Integration by parts) If f and g are absolutely continuous functions on
[a, b], then ∫ b

a

(f · g′) +
∫ b

a

(f ′ · g) = f(b)g(b)− f(a)g(a).



A

Measure and Integral over Unbounded Sets

As presented in Chaps. 2 and 3, Lebesgue’s theory of measure and integral is
limited to functions defined over bounded sets. There are several ways of in-
troducing the theory for arbitrary domains (and even for functions with values
in the set of extended reals). However, instead of developing a general theory
from scratch, in this Appendix we lay out an approach utilizing properties of
measure and integral that were established in the main text for functions over
bounded domains.

A.1 The Measure of an Arbitrary Set

In this section we extend the concept of measurability from bounded to arbi-
trary sets of real numbers.

Definition A.1. A set E of real numbers is said to be measurable if all the
sets

E ∩ [−n, n], n ∈ N

are measurable in the sense of Definition 2.5.

It is clear that a bounded set is measurable in the sense of Definition 2.5
if and only if it is measurable in the sense of Definition A.1.

Another possible way of introducing the concept of measurability is to
define a set E to be measurable if the intersection E ∩ A of this set with an
arbitrary bounded measurable set A is measurable. However, this approach
produces the same class of measurable sets as defined above.

Theorem A.1. A set E is measurable in the sense of Definition A.1 if and
only if, for any bounded measurable set A, the set E ∩A is measurable in the
sense of Definition 2.5.

S. Ovchinnikov, Measure, Integral, Derivative: A Course on Lebesgue’s Theory,
Universitext, DOI 10.1007/978-1-4614-7196-7,
© Springer Science+Business Media New York 2013
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Proof. Because the sufficiency part is trivial, we proceed with the necessity
part. Let us assume that the set E is measurable in the sense of Definition A.1
and let A be a bounded measurable set of real numbers. Inasmuch as A is
bounded, there is n ∈ N such that A ⊆ [−n, n]. Then

E ∩ A = (E ∩ [−n, n]) \ ([−n, n] \A).
The sets E ∩ [−n, n], [−n, n], and A are bounded and measurable. It follows
that the set E ∩ A is bounded and measurable. �

Definition A.2. Let E be a measurable set of real numbers. The measure
m(E) is defined by

m(E) = sup{m(E ∩ [−n, n]) : n ∈ N}.
Because

E ∩ [−1, 1] ⊆ E ∩ [−2, 2] ⊆ · · · ⊆ E ∩ [−n, n] ⊆ · · · ,
the sequence of numbers (m(E ∩ [−n, n])) is increasing. If it is bounded, then
it is convergent (cf. Theorem 1.3) and

m(E) = limm(E ∩ [−n, n]).

Otherwise, we set m(E) = ∞ (see conventions in Sect. 1.2). Thus m(E) is
defined for every measurable set and assumes its values in the set of extended
real numbers (recall that ∞ stands for +∞). By convention, a+∞ = ∞ and
a ≤ ∞ for all extended real numbers a. We also make the convention that
lim an = ∞ if (an) is an increasing sequence of extended real numbers with
ak = ∞ for some k ∈ N.

Example A.1. 1. Let I be an unbounded interval. By choosing a sufficiently
large n, we can make the length of the interval I ∩ [−n, n] larger than any
given number. Therefore, m(I) = ∞. In particular, m(R) = ∞.

2. Let E be a finite or countable set of points. Then

m(E ∩ [−n, n]) = 0, for every n ∈ N.

It follows that m(E) = 0.
3. Let

E =

∞⋃

k=2

[
k − 1

k
, k +

1

k

]
.

Then

m(E) = limm(E ∩ [−n, n]) = lim

( n−1∑

k=2

2

k
+

1

n

)
= ∞.
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4. Let E = ∪∞
k=1[k − 2−k, k + 2−k]. It is easy to verify that m(E) =∑∞

k=1 2
−k+1 = 2.

In what follows we present generalizations of the following properties of
bounded measurable sets:

1. Open and closed sets are measurable (Theorem 2.16).
2. Countable additivity (Theorem 2.18).
3. The union and intersection of a countable family of measurable sets is

measurable (Theorems 2.22 and 2.23).
4. The “continuity” properties of Lebesgue’s measure (Theorems 2.24 and

2.25).

Some other properties are found in Exercises A.2–A.5.

Theorem A.2. Any open or closed set of real numbers is measurable.

Proof. Let E be an open subset of R. Because E is a union of an at most
countable family of pairwise disjoint open intervals (cf. Theorem 1.7), its
intersection with any interval [−n, n], n ∈ N, is the union of an at most
countable family of pairwise disjoint intervals. The latter set is measurable by
Theorem 2.18.

Now let E be a closed subset of R. Then, for every n ∈ N, the intersection
E ∩ [−n, n] is a bounded closed set and therefore is measurable. �

We establish the additivity property of measure separately for finite and
countable families of sets.

Theorem A.3. Let {Ei}i∈J be a finite family of pairwise disjoint measurable
sets. Then

m
( ⋃

i∈J

Ei

)
=
∑

i∈J

m(Ei).

Proof. By Definition A.2 and Theorem 2.18, we have

m
( ⋃

i∈J

Ei

)
= limm

(( ⋃

i∈J

Ei

)
∩ [−n, n]

)

= limm
( ⋃

i∈J

(
Ei ∩ [−n, n]

))

= lim
∑

i∈J

m(Ei ∩ [−n, n])

=
∑

i∈J

limm(Ei ∩ [−n, n])

=
∑

i∈J

m(Ei),

because J is a finite set (cf. Exercise A.1). �
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Theorem A.4. Let {Ei}i∈J be a countable family of pairwise disjoint mea-
surable sets. Then

m
( ⋃

i∈J

Ei

)
=
∑

i∈J

m(Ei).

Proof. First, we assume that {m(Ei)}i∈J is a summable family. Then, given
ε > 0, there is a finite set J0 ⊆ J such that

∑

i∈J0

m(Ei) >
∑

i∈J

m(Ei)− ε.

Inasmuch as ⋃

i∈J

Ei =
( ⋃

i∈J0

Ei

)
∪
( ⋃

i∈J\J0

Ei

)

we have, by Theorem A.3,

m
( ⋃

i∈J

Ei

)
=
∑

i∈J0

m(Ei) +m
( ⋃

i∈J\J0

Ei

)
.

Hence,

m
( ⋃

i∈J

Ei

)
>
∑

i∈J

m(Ei)− ε+m
( ⋃

i∈J\J0

Ei

)
.

Because ε is an arbitrary positive number, we conclude that

m
( ⋃

i∈J

Ei

)
≥
∑

i∈J

m(Ei).

To prove the reverse inequality, we observe that, by the definition of m,

m(Ei ∩ [−n, n]) ≤ m(Ei),

for every i, n ∈ N. Because {m(Ei)}i∈J is a summable family, we have, by
Theorem 1.15, ∑

i∈J

m(Ei ∩ [−n, n]) ≤
∑

i∈J

m(Ei).

By Theorem 2.18,

m
(( ⋃

i∈J

Ei

)
∩ [−n, n]

)
=
∑

i∈J

m(Ei ∩ [−n, n]).

It follows that
m
(( ⋃

i∈J

Ei

)
∩ [−n, n]

)
≤
∑

i∈J

m(Ei).

By taking the limit as n → ∞, we obtain the desired inequality:

m
( ⋃

i∈J

Ei

)
≤
∑

i∈J

m(Ei).
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It remains to consider the case when
∑

i∈J m(Ei) = ∞. Then, for any
given real number M , there is a finite subset J0 ⊆ J such that

∑

i∈J0

m(Ei) ≥ M.

By Theorem A.3,

m
( ⋃

i∈J

Ei

)
=
∑

i∈J0

m(Ei) +m
( ⋃

i∈J\J0

Ei

)
≥ M.

It follows that m
(⋃

i∈J Ei

)
= ∞ =

∑
i∈J m(Ei). �

The proof of the following theorem is straightforward and left as an exercise
(cf. Exercise A.6).

Theorem A.5. Let {Ei}i∈J be a finite or countable family of measurable sets.
Then

(i) The union
⋃

i∈J Ei is measurable.
(ii) The intersection

⋂
i∈J Ei is measurable.

Finally, we establish two “continuity” properties of the extended measure.

Theorem A.6. Let (En) be a sequence of measurable sets such that

E1 ⊆ E2 ⊆ · · · ⊆ En ⊆ · · ·

and let E =
⋃∞

i=1 Ei. Then

m(E) = limm(En).

Proof. By Theorem A.5, the set E is measurable. We consider two possible
cases.

1. There is k such that m(Ek) = ∞. Because Ek ⊆ E, we have m(E) = ∞
(cf. Exercise A.3) and the result follows.

2. m(Ek) < ∞ for all k ∈ N. Since

Ek+1 = Ek ∪ (Ek+1 \ Ek), k ∈ N,

we have, by Theorem A.3,

m(Ek+1 \ Ek) = m(Ek+1)−m(Ek).

Furthermore,

E = E1 ∪ (E2 \ E1) ∪ · · · ∪ (Ek+1 \ Ek) ∪ · · ·
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with pairwise disjoint sets on the right side. By Theorem A.4,

m(E) = m(E1) +

∞∑

i=1

[m(Ek+1)−m(Ek)].

The nth partial sum of the series on the right side is

m(E1) +

n−1∑

k=1

[m(Ek+1)−m(Ek)] = m(En).

Therefore, m(E) = limm(En). �

Theorem A.7. Let (En) be a sequence of measurable sets such that

E1 ⊇ E2 ⊇ · · · ⊇ En ⊇ · · · .

If m(E1) < ∞, then

m
( ∞⋂

k=1

Ek

)
= limm(En).

Proof. Let E =
⋂∞

k=1 Ek. We have

En = E ∪
∞⋃

k=n

(Ek \ Ek+1).

By Theorem A.4,

m(En) = m(E) +

∞∑

k=n

m(Ek \ Ek+1). (A.1)

In particular,

m(E1) = m(E) +

∞∑

k=1

m(Ek \ Ek+1).

Because m(E1) < ∞, the series on the right side converges, that is,

lim
∞∑

k=n

m(Ek \ Ek+1) = 0.

The result follows from (A.1). �
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A.2 Measurable Functions over Arbitrary Sets

It is not difficult to verify that the statements of Theorem 2.29 hold for
arbitrary measurable sets which were introduced in Sect.A.1. Therefore we
use the same definition of measurable functions as in Definition 2.6. The only
difference is that the measurable sets under consideration are allowed to be
unbounded. Almost all statements in Sects. 2.7 and 2.8 are immediately seen
to hold for this extended class of measurable functions (cf. Exercise A.8).
The only exception is Egorov’s Theorem 2.34 as evidenced by the following
counterexample.

Let (fn) be a sequence of functions on R defined by

fn(x) =

{
0, if x ≤ n,

1, if x > n,
for all x ∈ R and n ∈ N.

The terms of this sequence are measurable functions and the sequence con-
verges pointwise to the zero function on R. Suppose that the statement of
Theorem 2.34 holds for this sequence and let δ = 1 in the theorem. According
to this theorem, there is a measurable set E1 such that m(E1) < 1 and (fn)
converges uniformly to the zero function on the set E = R \ E1. Then, for
ε = 1, there is N such that

|fn(x)− 0| < 1, for all x ∈ E and n ≥ N .

In particular, fN (x) = 0 on the set E. However, this is impossible because the
set E is not bounded above (cf. Exercise A.9).

We conclude this section by proving a theorem which is an analog of
Egorov’s Theorem 2.34 for arbitrary measurable subsets of R.

Theorem A.8. Let E be an arbitrary measurable set of real numbers, and let
(fn) be a sequence of measurable functions on E converging pointwise to a
function f . Then E can be written as the union

E = A ∪
∞⋃

k=1

Bk,

where the sets A, B1, B2 . . . are measurable, m(A) = 0, and (fn) converges
uniformly on each of the sets B1, B2 . . ..

Proof. First, we consider the case of a bounded set E. By Theorem 2.34, for
every n ∈ N there is a measurable set En such that m(En) < 1/n and (fn)
converges uniformly on Bn = E \ En. We have

m
(
E \

n⋃

k=1

Bk

)
= m

( n⋂

k=1

Ek

)
≤ m(En) <

1

n
.
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Let

A = E \
∞⋃

k=1

Bk,

so

E = A ∪
∞⋃

k=1

Bk.

Because

A = E \
∞⋃

k=1

Bk ⊆ E \
n⋃

k=1

Bk,

for every n ∈ N, and

m
(
E \

n⋃

k=1

Bk

)
<

1

n
,

we have m(A) = 0, and the result follows.
Now suppose that E is unbounded. We can represent E as the union of

pairwise disjoint bounded sets

E = {0} ∪
∞⋃

k=1

(
E ∩ ([−k,−k + 1) ∪ (k − 1, k])

)
.

By applying the result of the theorem for each bounded set in the above
countable union, we obtain the desired representation. �

A.3 Integration over Arbitrary Sets

As in Chap. 3, we begin by defining the integral of a nonnegative measurable
function on a measurable set E (bounded or not).

Definition A.3. Let f be a nonnegative measurable function on an arbitrary
measurable set E. We define

∫

E

f = sup
{∫

E∩[−n,n]

f : n ∈ N

}
.

Each of the integrals on the right side is well defined though it may be equal
to ∞ (cf. Definition 3.2). According to our conventions, we set

∫
E f = ∞ if

one of the integrals on the right side is infinite. If
∫
E
f < ∞, we say that the

function f is integrable over E.

Inasmuch as
∫

E∩[−n,n]

f ≤
∫

E∩[−m,m]

f, for n ≤ m,
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for a nonnegative function f , we can write

∫

E

f = lim
( ∫

E∩[−n,n]

f
)
.

The following theorem provides for a partial justification for the above
definition (cf. the definition of a measurable set in Sect. A.1 and the subsequent
theorem there).

Theorem A.9. For a nonnegative measurable function f on E we have

sup
{∫

E∩A

f : A is a bounded measurable set
}
=

∫

E

f.

Proof. We denote

S = sup
{∫

E∩A

f : A is a bounded measurable set
}
.

If
∫
E∩A

f = ∞ for some bounded set A, then S = ∞. Then
∫
E
f = ∞

because there is n such that A ⊆ [−n, n].
Suppose that

∫
E∩A f < ∞ for all bounded sets A. Because for any n ∈ N,

the interval [−n, n] is a bounded set, we have S ≥ ∫
E
f . On the other hand,

for any bounded set A there is n such that A ⊆ [−n, n]. Hence, S ≤ ∫E f , and
the result follows. �

For a function f of arbitrary sign, we use its positive and negative parts,
f+ and f−, to define the integral

∫
E
f (cf. Sect. 3.5).

Definition A.4. Let f be a measurable function on an arbitrary measurable
set E. We define ∫

E

f =

∫

E

f+ −
∫

E

f−,

provided that at least one of the integrals on the right side is finite. Otherwise,
the integral

∫
E f is undefined. If

∫
E f exists and is finite, then the function f

is said to be integrable over E.

Thus a function f is integrable on an arbitrary measurable set if and only
if both nonnegative functions f+ and f− are integrable.

Theorem A.10. If f is an integrable function over a set E, then

lim

∫

E∩[−n,n]

f =

∫

E

f.
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Proof. Inasmuch as f is integrable, the integrals
∫
E f+ and

∫
E f− exist and

are finite. Hence we have

lim

∫

E∩[−n,n]

f+ =

∫

E

f+ and lim

∫

E∩[−n,n]

f− =

∫

E

f−.

Therefore,

lim

∫

E∩[−n,n]

f = lim

(∫

E∩[−n,n]

f+ −
∫

E∩[−n,n]

f−
)

= lim

∫

E∩[−n,n]

f+ − lim

∫

E∩[−n,n]

f−

=

∫

E

f+ −
∫

E

f− =

∫

E

f,

and the result follows. �

However, the existence of the limit lim
∫
E∩[−n,n]

f does not imply Lebesgue’s

integrability of the function f as the following two examples demonstrate.

Example A.2. Let f(x) = x on R. Then

∫

R

f+ =

∫

R

max{x, 0} = ∞ and

∫

R

f− =

∫

R

max{−x, 0} = ∞.

Hence, the function x is not Lebesgue integrable over R. However,
∫ n

−n
f = 0

for all n ∈ N, so the limit lim
∫ n

−n
f exists and equals zero.

The limit lim
∫ n

−n
f may exist even for a bounded function over R which

is not Lebesgue integrable as the next example shows.

Example A.3. We define

f(x) =

⎧
⎨

⎩

sinx

x
, if x �= 0,

1, for x = 0,
x ∈ R.

It can be shown that the limit of the sequence (
∫ n

−n
f) exists (and equals π),

but both Lebesgue integrals
∫
R
f+ and

∫
R
f− are infinite (cf. Exercise A.11),

so f is not Lebesgue integrable.

Many properties of the integral over an arbitrary measurable domain can
be easily established as consequences of properties already established in the
case of bounded domains (cf. Exercises A.10–A.15). However, some arguments
are subtle. As an example, we give a proof of Fatou’s Lemma (cf. Theo-
rem 3.16).



A.3 Integration over Arbitrary Sets 139

Theorem A.11. (Fatou’s Lemma) Let (f1, . . . , fk, . . .) be a sequence of non-
negative measurable functions converging pointwise to a function f a.e. on E.
Then ∫

E

f ≤ lim inf

∫

E

fk.

Proof. As in the proof of Theorem 3.16, we may assume that convergence
takes place over the entire set E.

For any given m,n ∈ N we have

inf
{∫

E∩[−n,n]

fk : k ≥ m
}
≤
∫

E∩[−n,n]

fp, for all p ≥ m.

It follows that

lim
n→∞ inf

{∫

E∩[−n,n]

fk : k ≥ m
}
≤
∫

E

fp, for all p ≥ m. (A.2)

By Theorem 3.16,

∫

E∩[−n,n]

f ≤ lim
m→∞

(
inf
{∫

E∩[−n,n]

fk : k ≥ m
})

.

By taking the limits as n → ∞ on both sides, we obtain

∫

E

f ≤ lim
n→∞ lim

m→∞

(
inf
{∫

E∩[−n,n]

fk : k ≥ m
})

= lim
m→∞ lim

n→∞

(
inf
{∫

E∩[−n,n]

fk : k ≥ m
})

≤ lim inf

∫

E

fk.

Here, the two repeated limits are equal by Exercise A.16, and the last inequal-
ity follows from (A.2). �

The next two theorems can be proven by repeating verbatim the arguments
used in the proofs of Theorems 3.17 and 3.25. The proofs are left to the reader
as exercises (cf. Exercise A.17).

Theorem A.12 (The Monotone Convergence Theorem). Let (fn) be
an increasing sequence of nonnegative measurable functions on E. If (fn)
converges pointwise to f a.e. on E, then

lim

∫

E

fn =

∫

E

f.
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Theorem A.13. (The Dominated Convergence Theorem) Let (fn) be a se-
quence of measurable functions on E. Suppose that there is an integrable func-
tion g on E that dominates (fn) on E in the sense that

|fn| ≤ g on E for all n.

If (fn) converges pointwise to f a.e. on E, then

lim

∫

E

fn =

∫

E

f.

Notes

The classes of measurable sets and integrable functions introduced in the
Appendix are the same as obtained by more conventional methods. Of course,
we cannot prove it here.

Theorem A.8 is known as Lusin’s version of Egorov’s Theorem (Theo-
rem 2.34) for unbounded domains. Egorov’s Theorem also holds in the follow-
ing form for unbounded sets:

Theorem A.14. (Egorov’s Theorem) Let (fn) be a sequence of measurable
functions on a set E of finite measure that converges pointwise a.e. on E to a
function f . Then for each δ > 0, there is a measurable set Eδ ⊆ E such that
m(Eδ) < δ and (fn) converges uniformly to f on E \ Eδ.

The following theorem is an important result which is also due to Lusin.

Theorem A.15. (Lusin’s Theorem) Let f be a measurable function on a set
E. Then for each ε > 0, there is a continuous function g on R and a closed
set F ⊆ E for which

f = g on F and m(E \ F ) < ε.

The function f in Example A.3 has an improper Riemann integral

∫ ∞

−∞

sinx

x
dx = π.

On the other hand, this function is not Lebesgue integrable over the set of
reals R [cf. Apo74, Exercise 10.9]. In this connection, see Exercise A.12 below.

As we observed in Chap. 3, Riemann integrable functions over a bounded
interval form a proper subset of the set of Lebesgue integrable functions
over the same interval. The situation in the case of unbounded intervals is
different—the corresponding classes are incomparable in this case. In other
words, there are functions which are Riemann (improper) integrable, say,
over R, but not Lebesgue integrable over that set (cf. f from the previous
paragraph). On the other hand, the Dirichlet function,
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f(x) =

{
1, if x ∈ Q,

0, if x /∈ Q,
x ∈ R,

is not Riemann integrable over any bounded interval, whereas it is Lebesgue
integrable with

∫
R
f = 0.

Note that we exchanged order of limits in the proof of Theorem A.11
(cf. Exercise A.16). For a general result see Sect. 8.20 in [Apo74].

Exercises

A.1. (i) Let (an) and (bn) be two increasing sequences of real numbers. Prove
that

lim(an + bn) = lim an + lim bn.

(ii) Extend the result of part (i) to finite sums of increasing sequences.

A.2. Let E be a measurable set of real numbers. Prove that the set �E = R\E
is also measurable.

A.3. Prove that if E and F are measurable sets and E⊆F , then m(E)≤m(F ).

A.4. Let E be a measurable set. Show that

(a) If m(E) < ∞ and ε > 0, then there exist an open set G and a bounded
closed set F , such that F ⊆ E ⊆ G and

m(G)−m(E) < ε, m(E)−m(F ) < ε.

(b) If m(E) = ∞, then for any M > 0, there exists a bounded closed set
F ⊆ E such that m(F ) > M .

A.5. Prove that the image of a measurable set E under the translation x �→
x+ a is measurable with m(E + a) = m(E).

A.6. Prove Theorem A.5.

A.7. Let E1 and E2 be measurable sets. Show that

(a) The set E1 \ E2 is measurable.
(b) The set E1 E2 is measurable.

A.8. Show that the statements of Theorems 2.30, 2.31, Corollary 2.1, and
Theorems 2.32, 2.33 hold for measurable functions over arbitrary sets.

A.9. Let A be a subset of R such that m(A) < ∞. Show that

sup(R \A) = ∞.
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A.10. Show that a measurable function f is integrable over E if and only if
the function |f | is integrable over E and that

∣∣∣
∫

E

f
∣∣∣ ≤
∫

E

|f |

in this case (cf. Theorem 3.20).

A.11. Let f be the function from Example A.3. Show that

(a) lim
∫ n

−n
f exists.

(b)
∫
R
f+ =

∫
R
f− = ∞.

(cf. [Apo74, Exercise 10.9]).

A.12. Let f : [0,∞) → R be Riemann integrable on every bounded subinter-
val of [0,∞). Prove that f is Lebesgue integrable over [0,∞) if and only if the
limit (the improper Riemann integral)

lim

∫ n

0

|f | =
∫ ∞

0

|f |

exists. Show also that in this case

(L)

∫ ∞

0

f = (R)

∫ ∞

0

f.

A.13. Establish the linearity and monotonicity properties of the integral over
arbitrary measurable sets (cf. Theorems 3.23 and 3.24).

A.14. Let f be an integrable function over the finite union E =
⋃n

k=1 Ek of
pairwise disjoint measurable sets. Show that

∫

E

f =

n∑

k=1

∫

Ek

f.

A.15. Let E be a set of measure zero and f be a function on E. Show that f
is measurable with

∫
E f = 0.

A.16. Let (amn) be a double sequence of nonnegative real numbers such that
amn ≥ apq for all m ≥ p, n ≥ q. Show that

lim
m,n→∞ amn = lim

n→∞ lim
m→∞ amn = lim

m→∞ lim
n→∞ amn.

A.17. Prove Theorems A.12 and A.13.
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index set, 2
infimum, 5
integrable function, 78, 136, 137
integral

indefinite, 114
Lebesgue, 67
Riemann, 89

intersection, 1
of family, 3

interval, 4
closed, 4
degenerate, 4
half-open, 4
open, 4
unbounded, 4

inverse function, 2
inverse image, 2

Lebesgue
integral, 67
sum, 66

limit, 7
inferior, 8
lower, 98
superior, 7
upper, 98

lower bound, 5

measurable
function, 53
set, 42, 129

measure, 42, 130
inner, 38
outer, 38

one-to-one correspondence, 2
open set, 9

partial sum, 14
partition

norm of, 65
of interval, 65
of set, 4

punctured ball, 98

range, 2
relation, 3

equivalence, 3
reflexive, 3
symmetric, 3
transitive, 3

Riemann integral, 89
Riemann sum

lower, 88
upper, 89

sequence, 2
bounded, 7
convergent, 7
decreasing, 7
increasing, 7
monotone, 7

series, 14
set

bounded, 5
bounded above, 5
bounded below, 5
closed, 11
empty, 2
measurable, 42, 129
open, 9
unbounded, 5

shadow point, 121
singleton, 2
subcover, 6
subfamily, 2
subset, 1
sum, 14

partial, 14
summable, 14
supremum, 5

term
of sequence, 2
of series, 14

translation, 48

union, 1
of family, 3

upper bound, 5

variation, 102
total, 102
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