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CLASS 1. ALGEBRAIC STRUCTURES, SUBSTRUCTURES, AUTOMORPHISMS. ORDERS

(OCTOBER 4, 2018)

Literature: [BS, Chap.I,§1, Chap.II,§§1,2]; [B, §§1.1,1.2,2.1]; [M, §§1.4,1.5,2.2,2.3].

The basic structures in mathematics are: algebraic, topological, and ordered structures. Com-

binations of these leads to various branches of mathematics.

Definition of an algebraic structure. Notion of a substructure of an algebraic structure.

Definition of order; partial and total (= linear) orders.

Examples: (N,≤), (Z,≤), P(X ) (set of subsets of the given set X ). The latter order is total if an

only if |X | ≤ 1.

Cartesian product of orders: if (X i,≤) are orders, i = 1, . . . ,n, then the order X1 × ·· · × Xn is

defined as (x1, . . . , xn) ≤ (y1, . . . , yn) iff xi ≤ yi for any i = 1, . . . ,n. This order is not total except

degenerate cases (|X i| ≤ 1). For example, complex numbers, considered as pairs of real numbers,

may be ordered this way.

Examples of algebraic structures:

(i) (N, 7→), where 7→ is the unary function n 7→ n+1. All substructures are of the form

{n,n+1,n+2, . . . } for some n.

(ii) A dynamical system: (X , f ), for unary f : X → X .

(iii) (C∞(R), d
d x

,+, ·), where + and · are pointwise addition and multiplication of functions. Exam-

ples of substructures: polynomials; functions of the form a1eb1x+·· ·+anebnx, where ai,bi ∈R.

(iv) (Mn(R), t), where t(A,B,C)= ABC.

(v) A “circular” variant of (i): ({1,2,3,4}, 7→), where 1 7→ 2 7→ 3 7→ 4 7→ 1. There are no proper

substructures.

(vi) Small structures with operations of small arity can be given by “multiplication” tables.

Theorem 1.1. The intersection of any number of substructures of an algebraic structure is a

substructure.

Notions of homomorphism, isomorphism, automorphism.

Example of isomorphism: (R,+)≃ (R>0, ·), where isomorphism is provided by x 7→ ex.

Theorem 1.2. Automorphisms of an algebraic system form a group.

Example: automorphisms of the structure from Example (v) form the cyclic group Z/4Z.

CLASS 2. CONGRUENCES. HOMOMORPHISM THEOREMS (OCTOBER 11, 2018)

Literature: [BS, Chap.II, §§5,6]; [B, §§1.5,3.1]; [M, §§2.4,3.3,4.1].

Refresher: equivalence relation, equivalence classes.

Definition of congruence. Congruences for groups amount to normal subgroups, and congru-

ences for rings amount to ideals.

Any algebraic structure X has trivial congruences: the minimal one – the diagonal ∆(X ) =

{(x, x) | x ∈ X }, and the maximal one – the whole Cartesian product X × X .
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Definition 2.1. If ϕ : X →Y is a homomorphism of algebraic structures (of the same signature),

then its kernel, denoted by Kerϕ, is defined as {(a,b) ∈ X |ϕ(a)=ϕ(b)}.

Theorem 2.1. A kernel of homomorphism is a congruence.

Example. The only nontrivial congruence of the structure (v) from Class 1 is:

∆(x)∪ {(1,3), (3,1), (2,4), (4,2)}.

The First Homomorphism Theorem. If ϕ : X → Y is a surjective homomorphism of algebraic

structures, then X /Kerϕ≃Y .

Definition 2.2. If α⊆β are congruences on an algebraic structure X , then

β/α
d f
= {(x/α, y/α) ∈ X /α× X /α | (x, y) ∈β}.

Lemma 2.1. β/α is a congruence on X /α.

The Second Homomorphism Theorem. If α⊆β are congruences on an algebraic structure X ,

then (X /α)/(β/α)≃ X /β.

Proof. Establish a map X /α→ X /β, and use the First Homomorphism Theorem. �

Lemma 2.2. If X is a substructure of, and α is a congruence on an algebraic structure Y , then

α∩ (X × X ) is a congruence on X .

The Third Homomorphism Theorem. If X is a substructure of, and α is a congruence on an

algebraic structure Y , then X /(α∩ (X × X )) is isomorphic to a substructure of Y /α.

Proof. Establish a map X /(α∩ (X × X ))→Y /α, prove that it is injective, and use the First Homo-

morphism Theorem. �

CLASS 3. LATTICES (OCTOBER 18, 2018)

Literature: [BS, Chap.I,§1, Chap.II,§5]; [B, §§1.4,2.1]; [M, §§2.3,5.1]; Wikipedia: Lattice (order).

Notions of supremum and infimum of a subset of an ordered set.

Definition 3.1. A lattice is an ordered set in which any two elements have supremum and infi-

mum (called join and meet, respectively).

Definition 3.2. A lattice is an algebraic structure of the form (X ,∧,∨), where ∧ and ∨ are binary

operations satisfying the following axioms:

(1) both ∧ and ∨ are commutative and associative;

(2) (absorption) a∨ (a∧b)= a, a∧ (a∨b)= a.

Equivalence of these two definitions: 1 ⇒ 2: a∨b = sup(a,b), a∧b = inf (a,b).

2 ⇒ 1: a ≤ b iff a = a∨b iff b = a∧b.

Idempotency in lattices: a∧ a = a, a∨ a = a. Follows from absorption, for example: a∨ a =

a∨ (a∧ (a∨a))= a.

Intersection of congruences on an algebraic structure is a congruence (had to be earlier, when

talking about congruences).

Notions of substructure of and congruence on algebraic structure generated by a subset (had to

be earlier, when talking about substructures and congruences in arbitrary algebraic structures).

Examples: in an arbitrary lattice, every element generates an one-element sublattice. Ev-

ery two element generate either two-element totally ordered sublattice, or 4-element “diamond”

sublattice D4, depending whether they are comparable or not.

Any lattice consisting of ≤ 4 elements isomorphic to one of the 5 lattices: a linear order L1, L2,

L3, L4 (consisting of 1, 2, 3, 4 elements respectively), or D4.
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Hasse diagram of a lattice.

Examples: P(X ) (the set of all subsets of a set X ) forms a lattice; for any A ⊆ X , P(A) is

a sublattice. The lattice (N, |) (| means “divides”) is isomorphic (through the prime numbers

decomposition) to the countable direct power of the lattice (N,≤).

Substructures of and congruences on a given algebraic structure form lattices.

Example: the lattice of substructures of the “circular” structure from Class 1, Example (v) is

isomorphic to the one-element lattice L1, and the lattice of its congruences is isomorphic to L3.

Lattice of congruences of a totally ordered set.

CLASS 4. DISTRIBUTIVE AND MODULAR LATTICES (OCTOBER 25, 2018)

Literature: [BS, Chap.I,§3]; [B, §2.2]; [M, §5.2].

Exercise: Find lattices of sublattices of and congruences on the 4-element diamond lattice D4.

Answer: Sublattices form a certain 12-element lattice, Con(D4)≃ D4.

The question about congruences on the lattice P(X ) (for arbitrary X ) is a difficult one.

Dual lattice.

Definition 4.1. A lattice L is called distributive if one of the following three equivalent condition

holds:

(i) Distributivity of ∨ with respect to ∧: x∧ (y∨ z)= (x∧ y)∨ (x∧ z) for any x, y, z ∈ L;

(ii) Distributivity of ∧ with respect to ∨: x∨ (y∧ z)= (x∨ y)∧ (x∨ z) for any x, y, z ∈ L;

(iii) x∧ (y∨ z)≤ (x∧ y)∨ (x∧ z) for any x, y, z ∈ L;

(iv) x∨ (y∧ z)≥ (x∨ y)∧ (x∨ z) for any x, y, z ∈ L.

Lemma 4.1. In any lattice L, the following holds for any x, y, z ∈ L:

(i) (x∧ y)∨ (x∧ z)≤ x∧ (y∨ z)

(ii) (x∨ y)∧ (x∨ z)≥ x∨ (y∧ z)

Proof. (i) Since x∧ y ≤ x, we have (x∧ y)∨ (x∧ z) ≤ x∨ (x∧ z) = x (by absorption). Since x∧ y ≤ y

and x∧ z ≤ z, we have (x∧ y)∨ (x∧ z)≤ y∨ z. Hence (x∧ y)∨ (x∧ z)≤ x∧ (y∨ z), as required.

(ii) By duality. �

Proof of equivalences in Definition 4.1. (i) ⇒ (ii)

x∨ (y∧ z)= (x∨ (x∧ z))∨ (y∧ z) (by absorption)

= x∨ ((x∧ z)∨ (y∧ z)) (by associativity)

= x∨ ((z∧ x)∨ (z∧ y)) (by commutativity)

= x∨ (z∧ (x∨ y)) (by (i))

= x∨ ((x∨ y)∧ z) (by commutativity)

= (x∧ (x∨ y))∨ ((x∨ y)∧ z) (by absorption)

= ((x∨ y)∧ x)∨ ((x∨ y)∧ z) (by commutativity)

= (x∨ y)∧ (x∨ z) (by (i)).

(ii) ⇒ (i) By duality.

(i) ⇔ (iii) follows from Fact 4.1(i).

(ii) ⇔ (iv) follows from Fact 4.1(ii) (or by duality). �

Example of distributive lattices: linear orders, P(X ).

Example of non-distributive lattice: M5.

Definition 4.2. A lattice is called modular if one of the following equivalent conditions holds:

(i) x ≤ y⇒ y∧ (x∨ z)= x∨ (y∧ z);

(ii) (x∧ y)∨ (z∧ y)= ((x∧ y)∨ z)∧ y.
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Proof of equivalence in this definition. (i) ⇒ (ii) We have x∧ y≤ y, hence y∧ ((x∧ y)∨ z)= (x∧ y)∨

(y∧ z), what, up to commutativity, is (ii).

(ii) ⇒ (i) If x ≤ y, then x = x∧ y, and the identity (ii) becomes x∨ (z∧ y) = ((x∨ z)∧ y, what, up

to commutativity, is implication in (i). �

Theorem 4.1. Any distributive lattice is modular.

Proof. If x ≤ y, then x∨ y= y, and y∧ (x∨ z)= (x∨ y)∧ (x∨ z)= x∨ (y∧ z) (by distributivity). �

When checking a lattice for distributivity or modularity, it is enough to consider triples of

elements which are all different, and not contain 0 and 1 (the minimal and maximal elements),

if they exist.

Exercise: check that the lattice M5 is modular, and N5 is not distributive and not modular.

Theorem 4.2. Let V be a vector space. Then the lattice of subspaces of V is modular.

Question: whether it is distributive?

CLASS 5. DISTRIBUTIVE AND MODULAR LATTICES (CONT.). COMPLEMENTED LATTICES.

BOOLEAN ALGEBRAS (NOVEMBER 1, 2018)

Literature: [BS, Chap.I,§3, Chap.IV,§1]; [B, §2.2]; [M, §5.2].

Theorem 5.1. Let V be a vector space. Then the lattice of subspaces of V is distributive iff

dimV = 0 or 1.

Proof. The cases of dimV = 0 or 1 are obvious. Assume dimV ≥ 2.

Case 1. The characteristic of the ground field is 6= 2. Choose two linearly independent vectors u

and v. Then the three one-dimensional vector spaces 〈u〉, 〈u+v〉, 〈u−v〉 provide counterexample

to the distributivity:

(〈u−v〉+〈u+v〉)∩〈u〉 = 〈u,v〉∩〈u〉 = 〈u〉,

but

〈u−v〉∩〈u〉+〈u+v〉∩〈u〉 = 0+0= 0.

Case 2. The characteristic of the ground field is 2. Over GF(2), the lattices of subspaces of a 2-

dimensional space is isomorphic to M5 which is not distributive. Since enlargement of the vector

space, and enlargement of the ground field lead to a bigger lattice, it will be also not distributive,

and we are done. �

Dedekind’s and Birkhoff ’s theorems about characterization of modular and distributive lattices

in terms of (not) containment of N5 and M5.

Proof of the Dedekind theorem.

Another proof of Theorem 4.2 using the Dedekind theorem.

Complemented lattices: definition.

Exercise: Which of the following lattices are complemented: P(X ), total order, M5, N5. (the

latter two lattices show that complement does not have to be unique).

Definition 5.1. A Boolean algebra is a distributive complemented lattice.

Definition 5.2. A Boolean algebra is an algebraic system with two binary operations ∨ and ∧,

one unary operation ¬, and two distinguished elements 0 and 1, satisfying the (highly redundant)

system of axioms:

(1) ¬0= 1, ¬1= 0;

(2) ¬¬x = x;

(3) 0∨ x = x, 0∧ x = 0, 1∨ x = 1, 1∧ x = x;

(4) x∧ x = x, x∨ x = x;

(5) ∧ and ∨ are commutative, associative, and distributive with respect to each other;
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(6) (de Morgan laws) ¬(x∧ y)= (¬x)∨ (¬y), ¬(x∨ y)= (¬x)∧ (¬y).

Equivalence of two definitions of Boolean algebras (in a complemented distributive lattice,

complements are unique).

Significance of Boolean algebras.

CLASS 6. BOOLEAN ALGEBRAS (CONT). DIRECT PRODUCT (NOVEMBER 8, 2018)

Literature: [BS, Chap.II,§7, Chap.IV,§1]; [B, §§1.3,3.2]; [M, §2.5].

Examples of Boolean algebras: two-element Boolean algebra 2, P(X).

Exercise: find a 3-element Boolean algebra.

Answer: such Boolean algebras do not exist, because each 3-element lattice is a total order,

and

Proposition 6.1. A Boolean algebra is a total order iff it is isomorphic to 2.

Direct product of algebraic systems. In general, unlike in the group case, factors are not nec-

essary subsystems in their direct product. Properties of direct product: commutativity and asso-

ciativity.

Direct product of linear orders is not a linear order. Direct product of Boolean algebras is a

Boolean algebra.

Homomorphism of direct product to factors.

Notion of directly indecomposable algebraic system.

Examples: 4-element “diamond” decomposes as 2×2; linear orders are directly indecompos-

able; simple algebraic systems are directly indecomposable.

P(X )≃ 2X .

Notion of restriction B|a for a Boolean algebra B and a ∈ B.

Homomorphism B → B|a.

Lemma 6.1. For any Boolean algebra B, and any a ∈ B, B ≃ B|a×B|¬a.

CLASS 7. THE STONE THEOREMS. SUBDIRECT IRREDUCIBILITY (NOVEMBER 15, 2018)

Literature: [BS, Chap.II,§§7,8, Chap.IV,§1]; [B, §3.3]; [M, §5.2].

Corollary 7.1. A Boolean algebra is directly indecomposable iff it is isomorphic to 2.

Theorem 7.1 (“The Little Stone Theorem”). Any finite Boolean algebra is isomorphic to P(X ) for

a finite set X .

Proof is by induction, using Corollary 7.1 and the fact that P(X )≃ 2X .

Corollary 7.2. For two finite Boolean algebras B1 and B2, B1 ≃ B2 iff |B1| = |B2|.

Theorem 7.2 (“The Big Stone Theorem”). Any Boolean algebra is a subalgebra of P(X ) for some

set X .

An example of an (infinite) Boolean algebra not isomorphic to P(X ): the set of all finite and all

cofinite subsets of an infinite set X (to finish the proof is a Homework).

Notion of subdirect product.

An equivalent formulation of the Big Stone Theorem: any Boolean algebra is a subdirect power

of 2.

Notion of subdirect irreducibility of an algebraic structure.

Examples of subdirectly irreducible algebraic structures: 2-element structures, simple struc-

tures.

A vector space is subdirectly irreducible iff it is of dimension 0 or 1.

A finite abelian group is subdirectly irreducible iff it is isomorphic to a cyclic group of a prime

power order.
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CLASS 8. PROOF OF THE BIG STONE THEOREM. BOOLEAN RINGS

Literature: [BS, Chap.II,§§6,8, Chap.IV,§§1,2]; [B, §§2.1,3.1,3.3,3.4].

Notion of the interval [a,b] in a lattice.

Theorem: for any algebraic structure A, and any θ ∈ Con(A), [θ,∇A] ≃ Con(A/θ). Corollary: a

quotient of an algebraic structure by a maximal proper congruence is simple.

Criterion of subdirect irreducibility: an algebraic structure A is subdirectly irreducible iff there

is a smallest element in Con(A)\{∆A}. Corollary: any simple algebraic structure is subdirectly

irreducible.

Theorem 8.1 (Birkhoff). Any algebraic structure is a substructure of a direct product of subdi-

rectly irreducible structures.

Zorn’s lemma.

Finish of the proof of the Stone theorem.

Boolean rings. Correspondence Boolean rings ↔ Boolean algebras.

Exercise: Which Boolean rings are fields? Answer: GL(2).

Finite Boolean rings are direct sums of copies of GF(2) (follows from Stone’s theorem).

CLASS 9. IDEALS, FILTERS AND ULTRAFILTERS IN BOOLEAN ALGEBRAS

Literature: [BS, Chap.IV,§3], [M, §8.1].

Ideals in Boolean rings lead to ideals in Boolean algebras.

Definition of ideal and filter in a Boolean algebra, their duality.

Examples of filters: cofinite filter in P(X ), principal ultrafilter.

Ultrafilters as maximal proper filters.

A filter F in a Boolean algebra B is an ultrafilter iff for any a ∈ B, either a ∈ F, or ¬a ∈ F.

Description of filters on finite Boolean algebras.

CLASS 10. STONE’S DUALITY

Literature: [BS, Chap.IV,§4].

Discussion of homeworks.

Homework 6: to prove that the lattice of normal subgroups of a group is modular is more-

or-less routine task, but to describe groups for which this lattice is distributive, is more like a

research problem (for example, for a group which is a direct product of n simple groups this

lattice is isomorphic to lattice of subsets of an n-element set and hence is distributive).

Boolean (= Stone) topological spaces. Correspondence between Boolean algebras and Boolean

spaces.

Lemma 10.1. Let B be a Boolean algebra, X a subset of B. Then the ideal of B generated by X (=

the minimal ideal of B containing X ) coincides with

{b ∈B |b ≤ x1 ∨·· ·∨ xn, x1, . . . , xn ∈ X }∪ {0}.

For an (easy) proof, see [BS, Chap. IV, Lemma 3.9(a)].

Proof that for a Boolean algebra B, B∗ is compact. Let {Na |a ∈ X } be a cover of B∗. Consider the

set I of all proper ideals of B containing X .

Case 1. I = ∅. Then the ideal generated by X coincides with B, and by Lemma 10.1, 1 =

x1 ∨·· ·∨ xn for some x1, . . . , xn ∈ X . Let U ∈ B∗ (i.e., U is an ultrafilter of B). Since 1 ∈U , we have

xi ∈U for some 1≤ i ≤ n, i.e. U ∈ Nxi
. Hence Nx1

, . . . , Nxn
is a finite (sub)cover of B∗.

Case 2. I 6=∅. Then by Zorn’s lemma, X contained in some maximal ideal I of B. Then U =¬I

is an ultrafilter, and U ∩ I =∅. But then for any a ∈ X , we have a ∈ I, hence a ∉U , and U ∉ Na, a

contradiction with the fact that {Na |a ∈ X } is a cover of B∗
�
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Proof that the map B → B∗∗, b 7→ Nb, is injective. Let a,b ∈ B, a 6= b. Then (a∨ b)∧¬(a∧ b) 6= 0,

and there is an ultrafilter U on B such that (a∨b)∧¬(a∧b) ∈U . But since a∨b ≥ (a∨b)∧¬(a∧b),

and a∨ b ∈U , and hence a ∈U or b ∈U . Similarly, ¬(a∧ b) =¬a∨¬b ∈U , and ¬a ∈U or ¬b ∈U ,

what is equivalent to a ∉U or b ∉U . Thus, exactly one of a, b belongs to U , i.e. U lies in exactly

one of Na, Nb, so Na 6= Nb. �

Proof that the map B → B∗∗, b 7→ Nb, is surjective. Let N be a clopen subset of B∗. Then N is a

union of a number of Na’s. But since N is a closed subset of a compact space, N is compact, and

hence is a union of a finite number of Na’s, say, N = Na1
∪ ·· · ∪ Nan

= Na1∨···∨an
(by the lemma

proved at the previous class). �
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