ORDERED ALGEBRAIC STRUCTURES SYNOPSIS OF A COURSE AT OU, WINTER SEMESTERS 2017/2018 AND 2018/2019

PASHA ZUSMANOVICH

CLASS 1. ALGEBRAIC STRUCTURES, SUBSTRUCTURES, AUTOMORPHISMS. ORDERS (OCTOBER 4, 2018)

Literature: [\[BS,](#page-6-0) Chap.I,§1, Chap.II,§§1,2]; [\[B,](#page-6-1) §§1.1,1.2,2.1]; [\[M,](#page-6-2) §§1.4,1.5,2.2,2.3].

The basic structures in mathematics are: algebraic, topological, and ordered structures. Combinations of these leads to various branches of mathematics.

Definition of an algebraic structure. Notion of a substructure of an algebraic structure. Definition of order; partial and total (= linear) orders.

Examples: $(\mathbb{N}, \leq), (\mathbb{Z}, \leq), P(X)$ (set of subsets of the given set X). The latter order is total if an only if $|X| \leq 1$.

Cartesian product of orders: if (X_i, \leq) are orders, $i = 1, ..., n$, then the order $X_1 \times \cdots \times X_n$ is defined as $(x_1,...,x_n) \leq (y_1,...,y_n)$ iff $x_i \leq y_i$ for any $i = 1,...,n$. This order is not total except degenerate cases ($|X_i| \leq 1$). For example, complex numbers, considered as pairs of real numbers, may be ordered this way.

Examples of algebraic structures:

- (i) $(\mathbb{N}, \rightarrow)$, where \rightarrow is the unary function $n \rightarrow n+1$. All substructures are of the form ${n, n+1, n+2,...}$ for some n.
- (ii) A dynamical system: (X, f) , for unary $f: X \to X$.
- (iii) $(C^{\infty}(\mathbb{R}), \frac{d}{dx}, +, \cdot)$, where + and · are pointwise addition and multiplication of functions. Examples of substructures: polynomials; functions of the form $a_1e^{b_1x}+\cdots+a_ne^{b_nx}$, where $a_i,b_i\in\mathbb{R}.$
- (iv) $(M_n(\mathbb{R}), t)$, where $t(A, B, C) = ABC$.
- (v) A "circular" variant of (i): $({1, 2, 3, 4}, \rightarrow)$, where $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$. There are no proper substructures.
- (vi) Small structures with operations of small arity can be given by "multiplication" tables.

Theorem 1.1. *The intersection of any number of substructures of an algebraic structure is a substructure.*

Notions of homomorphism, isomorphism, automorphism. Example of isomorphism: $(\mathbb{R}, +) \simeq (\mathbb{R}_{>0}, \cdot)$, where isomorphism is provided by $x \mapsto e^x$.

Theorem 1.2. *Automorphisms of an algebraic system form a group.*

Example: automorphisms of the structure from Example (v) form the cyclic group $\mathbb{Z}/4\mathbb{Z}$.

CLASS 2. CONGRUENCES. HOMOMORPHISM THEOREMS (OCTOBER 11, 2018)

Literature: [\[BS,](#page-6-0) Chap.II, §§5,6]; [\[B,](#page-6-1) §§1.5,3.1]; [\[M,](#page-6-2) §§2.4,3.3,4.1].

Refresher: equivalence relation, equivalence classes.

Definition of congruence. Congruences for groups amount to normal subgroups, and congruences for rings amount to ideals.

Any algebraic structure *X* has trivial congruences: the minimal one – the diagonal $\Delta(X)$ = $\{(x, x) | x \in X\}$, and the maximal one – the whole Cartesian product $X \times X$.

Date: last modified December 28, 2018.

Definition 2.1. If $\varphi: X \to Y$ is a homomorphism of algebraic structures (of the same signature), then its kernel, denoted by Ker φ , is defined as $\{(a, b) \in X \mid \varphi(a) = \varphi(b)\}.$

Theorem 2.1. *A kernel of homomorphism is a congruence.*

Example. The only nontrivial congruence of the structure (v) from Class [1](#page-0-0) is: ∆(*x*)∪{(1,3),(3,1),(2,4),(4,2)}.

The First Homomorphism Theorem. *If* φ : $X \to Y$ *is a surjective homomorphism of algebraic structures, then* $X/Ker\varphi \simeq Y$ *.*

Definition 2.2. If $\alpha \subseteq \beta$ are congruences on an algebraic structure *X*, then

 $\beta/\alpha \stackrel{df}{=} \{(x/\alpha, y/\alpha) \in X/\alpha \times X/\alpha \mid (x, y) \in \beta\}.$

Lemma 2.1. *β*/*α is a congruence on X*/*α.*

The Second Homomorphism Theorem. *If* $\alpha \subseteq \beta$ *are congruences on an algebraic structure X, then* $(X/\alpha)/(\beta/\alpha) \simeq X/\beta$ *.*

Proof. Establish a map $X/\alpha \rightarrow X/\beta$, and use the First Homomorphism Theorem.

Lemma 2.2. *If X is a substructure of, and α is a congruence on an algebraic structure Y, then* $\alpha \cap (X \times X)$ *is a congruence on X.*

The Third Homomorphism Theorem. *If X is a substructure of, and α is a congruence on an algebraic structure Y*, then $X/(\alpha \cap (X \times X))$ *is isomorphic to a substructure of* Y/α *.*

Proof. Establish a map $X/(\alpha \cap (X \times X)) \to Y/\alpha$, prove that it is injective, and use the First Homomorphism Theorem.

CLASS 3. LATTICES (OCTOBER 18, 2018)

Literature: [\[BS,](#page-6-0) Chap.I,§1, Chap.II,§5]; [\[B,](#page-6-1) §§1.4,2.1]; [\[M,](#page-6-2) §§2.3,5.1]; Wikipedia: *Lattice (order)*.

Notions of supremum and infimum of a subset of an ordered set.

Definition 3.1. A lattice is an ordered set in which any two elements have supremum and infimum (called join and meet, respectively).

Definition 3.2. A lattice is an algebraic structure of the form (X, \land, \lor) , where \land and \lor are binary operations satisfying the following axioms:

- (1) both \land and \lor are commutative and associative;
- (2) (absorption) $a \vee (a \wedge b) = a$, $a \wedge (a \vee b) = a$.

Equivalence of these two definitions: $1 \Rightarrow 2$: $a \vee b = \sup(a, b)$, $a \wedge b = \inf(a, b)$. 2 ⇒ 1: $a \le b$ iff $a = a \vee b$ iff $b = a \wedge b$.

Idempotency in lattices: $a \wedge a = a$, $a \vee a = a$. Follows from absorption, for example: $a \vee a = a$ $a \vee (a \wedge (a \vee a)) = a$.

Intersection of congruences on an algebraic structure is a congruence (had to be earlier, when talking about congruences).

Notions of substructure of and congruence on algebraic structure generated by a subset (had to be earlier, when talking about substructures and congruences in arbitrary algebraic structures).

Examples: in an arbitrary lattice, every element generates an one-element sublattice. Every two element generate either two-element totally ordered sublattice, or 4-element "diamond" sublattice D_4 , depending whether they are comparable or not.

Any lattice consisting of \leq 4 elements isomorphic to one of the 5 lattices: a linear order L_1, L_2 , L_3, L_4 (consisting of 1, 2, 3, 4 elements respectively), or D_4 .

Hasse diagram of a lattice.

Examples: $P(X)$ (the set of all subsets of a set *X*) forms a lattice; for any $A \subseteq X$, $P(A)$ is a sublattice. The lattice (N, g) (means "divides") is isomorphic (through the prime numbers decomposition) to the countable direct power of the lattice (N, \leq) .

Substructures of and congruences on a given algebraic structure form lattices.

Example: the lattice of substructures of the "circular" structure from Class [1,](#page-0-0) Example (v) is isomorphic to the one-element lattice L_1 , and the lattice of its congruences is isomorphic to L_3 . Lattice of congruences of a totally ordered set.

CLASS 4. DISTRIBUTIVE AND MODULAR LATTICES (OCTOBER 25, 2018)

Literature: [\[BS,](#page-6-0) Chap.I,§3]; [\[B,](#page-6-1) §2.2]; [\[M,](#page-6-2) §5.2].

Exercise: Find lattices of sublattices of and congruences on the 4-element diamond lattice *D*4. Answer: Sublattices form a certain 12-element lattice, $Con(D_4) \simeq D_4$.

The question about congruences on the lattice $P(X)$ (for arbitrary X) is a difficult one. Dual lattice.

Definition 4.1. A lattice *L* is called distributive if one of the following three equivalent condition holds:

- (i) Distributivity of \vee with respect to \wedge : $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ for any $x, y, z \in L$;
- (ii) Distributivity of \wedge with respect to \vee : $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ for any $x, y, z \in L$;
- (iii) $x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$ for any $x, y, z \in L$;
- (iv) $x \vee (y \wedge z) \ge (x \vee y) \wedge (x \vee z)$ for any $x, y, z \in L$.

Lemma 4.1. *In any lattice* L *, the following holds for any* $x, y, z \in L$ *:*

(i) (*x* ∧ *y*)∨(*x* ∧ *z*) ≤ *x* ∧(*y*∨ *z*) (ii) (*x* ∨ *y*)∧(*x* ∨ *z*) ≥ *x* ∨(*y*∧ *z*)

Proof. (i) Since $x \wedge y \le x$, we have $(x \wedge y) \vee (x \wedge z) \le x \vee (x \wedge z) = x$ (by absorption). Since $x \wedge y \le y$ and $x \wedge z \leq z$, we have $(x \wedge y) \vee (x \wedge z) \leq y \vee z$. Hence $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$, as required. (ii) By duality. \square

Proof of equivalences in Definition [4.1.](#page-2-0) (i) \Rightarrow (ii)

$$
x \lor (y \land z) = (x \lor (x \land z)) \lor (y \land z)
$$
 (by absorption)
\n
$$
= x \lor ((x \land z) \lor (y \land z))
$$
 (by associativity)
\n
$$
= x \lor ((z \land x) \lor (z \land y))
$$
 (by commutativity)
\n
$$
= x \lor (z \land (x \lor y))
$$
 (by (i))
\n
$$
= x \lor ((x \lor y) \land z)
$$
 (by commutativity)
\n
$$
= (x \land (x \lor y) \land x) \lor ((x \lor y) \land z)
$$
 (by absorption)
\n
$$
= ((x \lor y) \land x) \lor ((x \lor y) \land z)
$$
 (by commutativity)
\n
$$
= (x \lor y) \land (x \lor z)
$$
 (by (i)).

 $(ii) \Rightarrow (i) By duality.$

 (i) ⇔ (iii) follows from Fact [4.1\(](#page-2-1)i).

(ii) \Leftrightarrow (iv) follows from Fact [4.1\(](#page-2-1)ii) (or by duality). $□$

Example of distributive lattices: linear orders, *P*(*X*). Example of non-distributive lattice: *M*5.

Definition 4.2. A lattice is called modular if one of the following equivalent conditions holds:

(i) $x \le y \Rightarrow y \wedge (x \vee z) = x \vee (y \wedge z)$; (ii) $(x \wedge y) \vee (z \wedge y) = ((x \wedge y) \vee z) \wedge y$.

Proof of equivalence in this definition. (i) \Rightarrow (ii) We have $x \wedge y \leq y$, hence $y \wedge ((x \wedge y) \vee z) = (x \wedge y) \vee z$ $(y \land z)$, what, up to commutativity, is (ii).

(ii) ⇒ (i) If $x \le y$, then $x = x \land y$, and the identity (ii) becomes $x \lor (z \land y) = ((x \lor z) \land y$, what, up to commutativity, is implication in (i).

Theorem 4.1. *Any distributive lattice is modular.*

Proof. If $x \leq y$, then $x \vee y = y$, and $y \wedge (x \vee z) = (x \vee y) \wedge (x \vee z) = x \vee (y \wedge z)$ (by distributivity).

When checking a lattice for distributivity or modularity, it is enough to consider triples of elements which are all different, and not contain 0 and 1 (the minimal and maximal elements), if they exist.

Exercise: check that the lattice M_5 is modular, and N_5 is not distributive and not modular.

Theorem 4.2. *Let V be a vector space. Then the lattice of subspaces of V is modular.*

Question: whether it is distributive?

CLASS 5. DISTRIBUTIVE AND MODULAR LATTICES (CONT.). COMPLEMENTED LATTICES. BOOLEAN ALGEBRAS (NOVEMBER 1, 2018)

Literature: [\[BS,](#page-6-0) Chap.I,§3, Chap.IV,§1]; [\[B,](#page-6-1) §2.2]; [\[M,](#page-6-2) §5.2].

Theorem 5.1. *Let V be a vector space. Then the lattice of subspaces of V is distributive iff* $dim V = 0$ *or* 1.

Proof. The cases of dim $V = 0$ or 1 are obvious. Assume dim $V \ge 2$.

Case 1. The characteristic of the ground field is $\neq 2$. Choose two linearly independent vectors *u* and *v*. Then the three one-dimensional vector spaces $\langle u \rangle$, $\langle u + v \rangle$, $\langle u - v \rangle$ provide counterexample to the distributivity:

but

$$
(\langle u-v\rangle + \langle u+v\rangle) \cap \langle u\rangle = \langle u,v\rangle \cap \langle u\rangle = \langle u\rangle,
$$

$$
\langle u - v \rangle \cap \langle u \rangle + \langle u + v \rangle \cap \langle u \rangle = 0 + 0 = 0.
$$

Case 2. The characteristic of the ground field is 2. Over *GF*(2), the lattices of subspaces of a 2 dimensional space is isomorphic to M_5 which is not distributive. Since enlargement of the vector space, and enlargement of the ground field lead to a bigger lattice, it will be also not distributive, and we are done. \Box

Dedekind's and Birkhoff's theorems about characterization of modular and distributive lattices in terms of (not) containment of N_5 and M_5 .

Proof of the Dedekind theorem.

Another proof of Theorem [4.2](#page-3-0) using the Dedekind theorem.

Complemented lattices: definition.

Exercise: Which of the following lattices are complemented: $P(X)$, total order, M_5 , N_5 . (the latter two lattices show that complement does not have to be unique).

Definition 5.1. A Boolean algebra is a distributive complemented lattice.

Definition 5.2. A Boolean algebra is an algebraic system with two binary operations ∨ and ∧, one unary operation \neg , and two distinguished elements 0 and 1, satisfying the (highly redundant) system of axioms:

$$
(1) \ \neg 0 = 1, \ \neg 1 = 0;
$$

 $(2) \neg \neg x = x;$

(3)
$$
0 \vee x = x
$$
, $0 \wedge x = 0$, $1 \vee x = 1$, $1 \wedge x = x$;

$$
(4) x \wedge x = x, x \vee x = x;
$$

(5) ∧ and ∨ are commutative, associative, and distributive with respect to each other;

(6) (de Morgan laws) ¬(*x* ∧ *y*) = (¬*x*)∨(¬*y*), ¬(*x* ∨ *y*) = (¬*x*)∧(¬*y*).

Equivalence of two definitions of Boolean algebras (in a complemented distributive lattice, complements are unique).

Significance of Boolean algebras.

CLASS 6. BOOLEAN ALGEBRAS (CONT). DIRECT PRODUCT (NOVEMBER 8, 2018)

Literature: [\[BS,](#page-6-0) Chap.II,§7, Chap.IV,§1]; [\[B,](#page-6-1) §§1.3,3.2]; [\[M,](#page-6-2) §2.5].

Examples of Boolean algebras: two-element Boolean algebra **2**, P(X).

Exercise: find a 3-element Boolean algebra.

Answer: such Boolean algebras do not exist, because each 3-element lattice is a total order, and

Proposition 6.1. *A Boolean algebra is a total order iff it is isomorphic to* **2***.*

Direct product of algebraic systems. In general, unlike in the group case, factors are not necessary subsystems in their direct product. Properties of direct product: commutativity and associativity.

Direct product of linear orders is not a linear order. Direct product of Boolean algebras is a Boolean algebra.

Homomorphism of direct product to factors.

Notion of directly indecomposable algebraic system.

Examples: 4-element "diamond" decomposes as 2×2 ; linear orders are directly indecomposable; simple algebraic systems are directly indecomposable.

 $P(X) \approx 2^X$.

Notion of restriction $B|a$ for a Boolean algebra B and $a \in B$. Homomorphism $B \to B|a$.

Lemma 6.1. *For any Boolean algebra B, and any* $a \in B$, $B \simeq B|a \times B| \neg a$ *.*

CLASS 7. THE STONE THEOREMS. SUBDIRECT IRREDUCIBILITY (NOVEMBER 15, 2018)

Literature: [\[BS,](#page-6-0) Chap.II,§§7,8, Chap.IV,§1]; [\[B,](#page-6-1) §3.3]; [\[M,](#page-6-2) §5.2].

Corollary 7.1. *A Boolean algebra is directly indecomposable iff it is isomorphic to* **2***.*

Theorem 7.1 ("The Little Stone Theorem")**.** *Any finite Boolean algebra is isomorphic to P*(*X*) *for a finite set X.*

Proof is by induction, using Corollary [7.1](#page-4-0) and the fact that $P(X) \simeq 2^X$.

Corollary 7.2. For two finite Boolean algebras B_1 and B_2 , $B_1 \simeq B_2$ *iff* $|B_1| = |B_2|$ *.*

Theorem 7.2 ("The Big Stone Theorem")**.** *Any Boolean algebra is a subalgebra of P*(*X*) *for some set X.*

An example of an (infinite) Boolean algebra not isomorphic to *P*(*X*): the set of all finite and all cofinite subsets of an infinite set *X* (to finish the proof is a Homework).

Notion of subdirect product.

An equivalent formulation of the Big Stone Theorem: any Boolean algebra is a subdirect power of **2**.

Notion of subdirect irreducibility of an algebraic structure.

Examples of subdirectly irreducible algebraic structures: 2-element structures, simple structures.

A vector space is subdirectly irreducible iff it is of dimension 0 or 1.

A finite abelian group is subdirectly irreducible iff it is isomorphic to a cyclic group of a prime power order.

CLASS 8. PROOF OF THE BIG STONE THEOREM. BOOLEAN RINGS

Literature: [\[BS,](#page-6-0) Chap.II,§§6,8, Chap.IV,§§1,2]; [\[B,](#page-6-1) §§2.1,3.1,3.3,3.4].

Notion of the interval $[a, b]$ in a lattice.

Theorem: for any algebraic structure *A*, and any $\theta \in Con(A)$, $[\theta, \nabla_A] \simeq Con(A/\theta)$. Corollary: a quotient of an algebraic structure by a maximal proper congruence is simple.

Criterion of subdirect irreducibility: an algebraic structure *A* is subdirectly irreducible iff there is a smallest element in $Con(A) \setminus {\Delta_A}$. Corollary: any simple algebraic structure is subdirectly irreducible.

Theorem 8.1 (Birkhoff)**.** *Any algebraic structure is a substructure of a direct product of subdirectly irreducible structures.*

Zorn's lemma.

Finish of the proof of the Stone theorem.

Boolean rings. Correspondence Boolean rings \leftrightarrow Boolean algebras. Exercise: Which Boolean rings are fields? Answer: *GL*(2). Finite Boolean rings are direct sums of copies of *GF*(2) (follows from Stone's theorem).

CLASS 9. IDEALS, FILTERS AND ULTRAFILTERS IN BOOLEAN ALGEBRAS

Literature: [\[BS,](#page-6-0) Chap.IV,§3], [\[M,](#page-6-2) §8.1].

Ideals in Boolean rings lead to ideals in Boolean algebras.

Definition of ideal and filter in a Boolean algebra, their duality.

Examples of filters: cofinite filter in $P(X)$, principal ultrafilter.

Ultrafilters as maximal proper filters.

A filter *F* in a Boolean algebra *B* is an ultrafilter iff for any $a \in B$, either $a \in F$, or $\neg a \in F$. Description of filters on finite Boolean algebras.

CLASS 10. STONE'S DUALITY

Literature: [\[BS,](#page-6-0) Chap.IV,§4].

Discussion of homeworks.

Homework 6: to prove that the lattice of normal subgroups of a group is modular is moreor-less routine task, but to describe groups for which this lattice is distributive, is more like a research problem (for example, for a group which is a direct product of *n* simple groups this lattice is isomorphic to lattice of subsets of an *n*-element set and hence is distributive).

Boolean (= Stone) topological spaces. Correspondence between Boolean algebras and Boolean spaces.

Lemma 10.1. *Let B be a Boolean algebra, X a subset of B. Then the ideal of B generated by X (= the minimal ideal of B containing X) coincides with*

$$
\{b\in B\mid b\leq x_1\vee\cdots\vee x_n,x_1,\ldots,x_n\in X\}\cup\{0\}.
$$

For an (easy) proof, see [\[BS,](#page-6-0) Chap. IV, Lemma 3.9(a)].

Proof that for a Boolean algebra B, B^{*} *is compact.* Let $\{N_a \mid a \in X\}$ be a cover of B^* . Consider the set $\mathscr I$ of all proper ideals of *B* containing *X*.

Case 1. $\mathscr{I} = \emptyset$. Then the ideal generated by *X* coincides with *B*, and by Lemma [10.1,](#page-5-0) 1 = *x*₁ ∨ … ∨ *x_n* for some *x*₁,…, *x_n* ∈ *X*. Let *U* ∈ *B*^{*} (i.e., *U* is an ultrafilter of *B*). Since 1 ∈ *U*, we have $x_i \in U$ for some $1 \le i \le n$, i.e. $U \in N_{x_i}$. Hence N_{x_1}, \ldots, N_{x_n} is a finite (sub)cover of B^* .

Case 2. $\mathcal{I} \neq \emptyset$. Then by Zorn's lemma, *X* contained in some maximal ideal *I* of *B*. Then $U = \neg I$ is an ultrafilter, and $U \cap I = \emptyset$. But then for any $a \in X$, we have $a \in I$, hence $a \notin U$, and $U \notin N_a$, a contradiction with the fact that $\{N_a \mid a \in X\}$ is a cover of B^* [∗]

Proof that the map $B \to B^{**}$, $b \to N_b$, *is injective.* Let $a, b \in B$, $a \neq b$. Then $(a \vee b) \wedge \neg(a \wedge b) \neq 0$, and there is an ultrafilter *U* on *B* such that $(a \lor b) \land \neg(a \land b) \in U$. But since $a \lor b \geq (a \lor b) \land \neg(a \land b)$, and $a \lor b \in U$, and hence $a \in U$ or $b \in U$. Similarly, $\neg(a \land b) = \neg a \lor \neg b \in U$, and $\neg a \in U$ or $\neg b \in U$, what is equivalent to $a \notin U$ or $b \notin U$. Thus, exactly one of a, b belongs to U, i.e. U lies in exactly one of N_a , N_b , so $N_a \neq N_b$.

Proof that the map $B \to B^{**}$, $b \to N_b$, *is surjective*. Let *N* be a clopen subset of B^* . Then *N* is a union of a number of N_a 's. But since N is a closed subset of a compact space, N is compact, and hence is a union of a finite number of N_a 's, say, $N = N_{a_1} \cup \cdots \cup N_{a_n} = N_{a_1 \vee \cdots \vee a_n}$ (by the lemma proved at the previous class).

REFERENCES

- [B] C. Bergman, *Universal Algebra*, CRC Press, 2012.
- [BS] S. Burris and H.P. Sankappanavar, *A Course in Universal Algebra*, The Millennium Edition.
- [M] A.I. Mal'cev, *Algebraic Systems*, Springer, 1973.

Email address: pasha.zusmanovich@gmail.com