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Each lecture lasted 1.5 hours.

LECTURE 1. BASIC COMBINATORICS

Literature:

(1) Wikipedia: Binomial coefficient, Pascal’s triangle, Permutation.
(2) R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley,

1994, Chapter 5.1.
(3) N.Ya. Vilenkin, Combinatorics, Academic Press, 1971.

A subject of probability and statistics.
To compute probabilities, we have to count, be it counting of discrete sets, like in combina-

torics, or counting of areas of geometric figures, like in mathematical analysis.

Theorem 1.1. The number of permutations of n elements is equal to n!.

Proof. By induction. �

Variation without repetition = a way to choose k elements out of n elements, taking into
account the order of elements.

Theorem 1.2. The number of variations without repetition is equal to n!
(n−k)!

.

Variation with repetition = a way to choose k elements out of n elements, taking into account
the order of elements, and with possible repetitions of elements.

Theorem 1.3. The number variations with repetition is equal to nk.

Combination = a way to choose k elements out of n elements, without taking into account
order of elements (and not allowing repetitions).

Theorem 1.4. The number of combinations is equal to
(

n

k

)

.

Proof. This is the same as doing variation without repetitions, but without accounting for dif-
ferent permutations of elements, i.e. the number in Theorem 1.2 should be divided by the num-
ber of permutations of k elements, which, according to Theorem 1.1, is equal to k!: n!

k!(n−k)!
. �

These numbers are binomial coefficients, occurring in the binomial formula:
(a+ b)n =

∑n

k=0

(

n

k

)

akbn−k.

Properties of binomial coefficients:
(

n

k

)

=
(

n−1
k

)

+
(

n−1
k−1

)

,
(

n

k

)

=
(

n

n−k

)

.
Pascal’s triangle.
A combinatorial meaning of the particular case of the binomial formula 2n =

∑n

k=0

(

n

k

)

:
all possible ways to choose elements out of n elements, i.e., the number of n-length binary
sequences (like 0110 . . . , etc.)
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Inclusion-exclusion principle:

|A1 ∪ · · · ∪ An| =

|A1|+ · · ·+ |An|

−|A1 ∩ A2| − |A1 ∩ A3| − · · · − |An−1 ∩ An|

+|A1 ∩ A2 ∩ A3|+ · · ·+ |An−2 ∩ An−1 ∩ An|

− · · ·+

+(−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.

LECTURE 2. PROBABILITY FUNCTION

Literature: [DKLM, Chapter 2].

Notions of sample space, event, elementary event.
Dictionary between set-theoretic and logical terms (∪ = &, ∩ = ∧, complement = ¬).
Definition of probability function on finite and infinite sample space.

Claim 2.1. If P is a probability function on a sample space Ω, then P (∅) = 0.

Proof. Follows from P (A1 ∪ A2) = P (A1) + P (A2) for A1 ∩ A2 = ∅ (take A2 = ∅). �

Claim 2.2. If P is a probability function on a sample space Ω, then for any A ⊆ Ω, P (Ω\A) = 1−P (A).

Proof. Follows from P (A1 ∪ A2) = P (A1) + P (A2) for A1 ∩ A2 = ∅, and from P (Ω) = 1 (take
A1 = A, A2 = Ω\A). �

Example: we are tossing an unbiased coin till the fist head. Our sample space is Ω =
{1, 2, 3, . . . , n, . . . }, where n signifies that the first head occurs at nth toss. Then P (n) = 1

2n
,

and

P (1) + P (2) + P (3) + · · · =
1

2
+

1

4
+

1

8
+ · · · = 1,

as expected.
For arbitrary events A1, A2, . . . , An, not necessary disjoint, we have

P (A1 ∪ · · · ∪ An) =

P (A1) + · · ·+ P (An)

−P (A1 ∩ A2)− P (A1 ∩ A3)− · · · − P (An−1 ∩ An)

+P (A1 ∩ A2 ∩ A3) + · · ·+ P (An−2 ∩ An−1 ∩ An)

− · · ·+

+(−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An),

what is exactly the inclusion-exclusion principle.

LECTURE 3. CONDITIONAL PROBABILITY, BAYES’ FORMULA, INDEPENDENT EVENTS

Literature:

(1) [DKLM, Chapter 3]
(2) Wikipedia: Independence (probability theory)

Definition and meaning of conditional probability.

Theorem 3.1. Let Ω be a sample space, and B an event. Then Q : P(Ω) → [0, 1] defined as Q(A) =
P (A|B) is a probability function on Ω.

Relationship between P (A|B) and P (B|A), Bayes’ formula.
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Theorem 3.2. Let Ω be a sample space, B1, . . . , Bn events such that B1 ∪ . . . Bn = Ω, and Bi’s are
pairwise disjoint. Then

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + · · ·+ P (A|Bn)P (Bn)
.

Proof. Using (several times) additivity of the conditional probability (what follows from The-
orem 3.1), and Bayes’ formula. �

Definition 3.1. Two events A and B are called independent, if one of the following six equiv-
alent condition holds:

(i) P (A|B) = P (A)
(ii) P (B|A) = P (B)

(iii) P (A ∩ B) = P (A)P (B)

and the same conditions (i)-(iii) with A and B being replaced by A and B (complements),
respectively.

Generalization of this definition to the case of several events is not as straightforward as one
might think at the first glance:

Definition 3.2. Events A1, . . . , An are called independent, if

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) . . . P (Aik)

for any {i1, . . . , ik} ⊆ {1, . . . , n}.

An alternative definition of independent events: events A1, . . . An are called independent, if

P (B1 ∩ · · · ∩ Bn) = P (B1) . . . P (Bn)

where each Bi’s is either Ai or Ai.
Equivalence of this definition with the definition from the previous lecture.
When events A and A are independent? Answer: if and only if P (A) = 0 or 1.

LECTURE 4. DISCRETE AND CONTINOUS RANDOM VARIABLES. DISTRIBUTION FUNCTION

Literature:

(1) [DKLM, Chapter 4, §5.1]
(2) Wikipedia: Probability distribution, Probability mass function.

Notion of discrete random variable, mass function, and distribution function. Example with
“tossing two coins” with 0 and 1 (so Ω = {0, 1} × {0, 1}).

Properties of discrete distribution functions: piecewise constant, non-decreasing, limx→−∞ FX(x) =
0, limx→+∞ FX(x) = 1.

Interplay between discrete and continuous. Continuous random variable as a limiting pro-
cess of discrete random variables.

Continuous distribution function, density function, its properties. Density is not a probabil-
ity!

Example: picking a point at a circle of radius R, the random variable X(r) is the probability
that the point will lie in a circle with radius r, 0 ≤ r ≤ R.

LECTURE 5. EXPECTATION, QUANTILES

Literature: [DKLM, §§5.6, 7.1, 7.3].

Expectation of discrete and continuous random variables. Physical meaning of expectation
as center of masses.

Formula for E[g(X)].
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Theorem 5.1. E[aX + b] = aE[X] + b.

Quantiles, median.

LECTURE 6. VARIANCE. UNIFORM DISTRIBUTION

Literature:

(1) [DKLM, §§5.2, 7.4]
(2) Wikipedia: Discrete uniform distribution, Uniform distribution (continuous).

Definition and meaning of variance.

Theorem 6.1. V ar(X) = E[X2]− E[X]2.

Proof goes separately for discrete and continuous distributions.

Theorem 6.2. V ar(aX + b) = a2V ar(X).

Proof using definition of variance and Theorem 5.1.
Standard deviation.
Discrete and continuous uniform distributions, their expectation and variance.

LECTURE 7. BINOMIAL, GEOMETRIC, EXPONENTIAL DISTRIBUTIONS

Literature:

(1) [DKLM, §§4.3, 4.4, 5.3]
(2) Wikipedia: Binomial distribution, Geometric distribution, Exponential distribution.

Binomial distribution, its expectation and variance.

Geometric distributuon: the mass function is fX(k) = (1− p)k−1p.
E[X] =

∑

∞

k=0(1− p)k−1pk = 1
p
.

V ar(X) = E[X2]− E[X]2.

E[X2] =
∞
∑

k=0

(1−p)k−1pk2 =
∞
∑

k=1

(1−p)k−1pk2 = p

∞
∑

k=1

(−k
d

dp
((1−p)k)) = −p

d

dp

(

∞
∑

k=1

k(1−p)k
)

= −p
d

dp

(1− p

p

∞
∑

k=0

(1− p)k−1pk
)

= −p
d

dp

(1− p

p
E[X]

)

= −p
d

dp

(1− p

p2

)

= −p
d

dp

( 1

p2
−

1

p

)

= −p(−
2

p3
+

1

p2
) =

2

p2
−

1

p
.

V ar(X) = 2
p2

− 1
p
− 1

p2
= 1−p

p2
.

(Continuous) exponential distribution, its utility, expectation, and variance.

LECTURE 8. POISSON AND NORMAL DISTRIBUTIONS. SUM OF RANDOM VARIABLES

Literature:

(1) [DKLM, §§5.5, 10.1, 12.2]
(2) Wikipedia: Poisson distribution, Normal distribution.

(Discrete) Poisson distribition, its utility, expectation, and variance.
Normal distribution, its significance. Central limit theorem (imprecise, on an empirical

level).

E[X + Y ] = E[X] + E[Y ].
E[a1X1 + · · ·+ anXn + b] = a1E[X1] + · · ·+ anE[Xn] + b.
Application of this formula: a short derivation of the formula E[X] = pn for a binomial

distribution with parameters p, n, without evaluating of the corresponding sums.
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LECTURE 9. COVARIANCE, CORRELATION

Literature:

(1) [DKLM, Chapter 10]
(2) Wikipedia: Covariance, Correlation and dependence.

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).
If X and Y are independent random variables, then E[XY ] = E[X]E[Y ]. The opposite is

not true: an example.
Property of correlation: −1 ≤ Cor(X, Y ) ≤ 1. Correlation vs. dependence.

LECTURE 10. DATA ANALYSIS. STATISTICAL MODELS

Literature: [DKLM, §§15.2, 15.5, 16.1, 16.2, 16.3, 17.4, 22.1].

Graphical representation of datasets: histogram, scatterplot.
Numerical characteristics of datasets: mean, median, quantiles, variance.
Statistical models. Linear model (= linear regression). Method of least squares.

LECTURE 11. HYPOTHESES TESTING. DECEMBER 18, 2017

Literature: [DKLM, §25].

Hypotheses testing. Null and alternative hypotheses. Test statistic. p-values. Type I and
type II errors.

REFERENCES

[DKLM] F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester, A Modern Introduction to Probability and
Statistics, Springer, 2005.

Email address: pasha.zusmanovich@gmail.com
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