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PASHA ZUSMANOVICH

Each class lasted 1.5 hours. Stuff typed in italic was not covered during summer semester 2018/2019 .

Class 1. (February 14, 2019)

Subject of statistics.
Interesting applications of statistics: detection election frauds ([KSP], [KYHT]), patterns in

citations [SR].
Types of data: numerical and categorical. Statistical data always contains errors and is incom-

plete.
Bar charts and histograms.
Average, standard deviation, their meaning. Assuming x̄ = (x1, . . . , xn),

m(x̄) =
x1 + · · ·+ xn

n

σ(x̄) =

√

(

x1 −m(x̄)
)2

+ · · ·+
(

xn −m(x̄)
)2

n
.

Median, quantiles (generalization of median).
A glimpse into R: installation, usage as calculator, assignments, 1-dimensional arrays, func-

tions. help(), example(), mean(), sd(), median(), quantile(), plot(), barplot(). Drawing
histograms in different ways.

A toy example: plot and linear regression of air pollution against temperature for a 24 hour
period in Ostrava.

Class 2. (February 21, 2019)

Mode.
Discrete vs. continuous distributions.
Density function of the normal distribution:

fm,σ(x) =
1

σ
√
2π

e−
1

2
(x−m

σ
)2 .

Its importance, its properties: symmetry, maximum (by calculating derivative). Central Limit
Theorem.

Density function of the logistic distribution:

fm,s(x) =
e−

x−m

s

s(1 + e−
x−m

s )2
.

Its standard deviation: σ = πs
√

3
.

Density function of the Laplace distribution:

fm,b(x) =
1

2b
e−

|x−m|
b .

Its standard deviation: σ = b
√
2.
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These distributions have, roughly, the same properties as a normal distribution: the same “bell-
shaped” form, attain one maximum “in the middle” (average), and are symmetric, but logistic
distribution is “heavier on tails”, and Laplace distribution has a sharp peak in the middle.

Fitting in R real data to normal, Laplace and logictic distributions.

Class 3. (February 28, 2019)

Demonstration in R of the central limit theorem. (An alternative demonstration, using a
different R code, can be found in [Cr1, §7.3.2]).

Skewness and kurtosis, their meaning (according to [Cr2, pp. 84–87]) and Wikipedia ([Skw],
[Kw]).

skewness(x) =
3rd moment(x)

σ(x)3
=

1
n

∑n

i=1(xi −m(x))3

(

1
n

∑n

i=1(xi −m(x))2
)

3

2

;

kurtosis(x) =
4th moment(x)

σ(x)4
− 3 =

1
n

∑n

i=1(xi −m(x))4
(

1
n

∑n

i=1(xi −m(x))2
)2 − 3 .

Kurtosis of a normal distribution is equal to 0.
“Paradoxes” in statistics (according to [T, §6.5]).
Weighted mean. weighted.mean() in R. The usual mean of a discrete statistical distribution

(x1, . . . , xn) can be interpreted as a weighted mean, if we assume that all xi’s are pairwise distinct,
and each appears with a frequency (probability) pi. Then

m(x) = p1x1 + · · ·+ pnxn =
p1x1 + · · ·+ pnxn

p1 + · · ·+ pn

(as p1 + · · ·+ pn = 1).
Computation of weighted population density: if the whole area is divided to n regions with

population x1, . . . , xn and areas s1, . . . , sn, then the weighted population density is the weighted
mean of densities per region, with weights given by population:

x1
x1

s1
+ · · ·+ xn

xn
sn

x1 + · · ·+ xn

.

Simpson’s paradox (according to [Siw]). UC Berkeley suitcase.

men men admitted women women admitted
Department 1 m1 λ1m1 w1 µ1w1

Department 2 m2 λ2m2 w2 µ2w2

It could be that λ1 < µ1 and λ2 < µ2, but

λ1m1 + λ2m2

m1 +m2

>
µ1w1 + µ2w2

w1 + w2

.

Another example of Simpson’s paradox often occurs in US election system, see, e.g. [W].

Class 4. (March 7, 2019)

Discussion of homeworks 1-2.

Confidence intervals for normal distribution. Standard error. (According to [D, pp. 63-64] and
[Cw]).

Using confidence intervals to determine sample size.

Margin error =
σ√
n
N1− 1−α

2

,
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where α is confidence interval (say, α = 0.95), and N are quantiles for the normal distribution.
Q-Q plot of one data against another.
Tests for normality: normal scores, Q-Q plots (according to [CC, pp. 220–223]).

Class 5. (March 21, 2019)

Discussion of homework 3.

Correlation:

cov(x, y) =
n

∑

i=1

(

xi −m(x)
)(

yi −m(y)
)

cor(x, y) =
cov(x, y)

√

cov(x, x)cov(y, y)
.

Properties of correlation:

cor(x, x) = 1

cor(x, y) = cor(y, x)

−1 ≤ cor(x, y) ≤ 1.

The latter one follows from the Cauchy–Schwarz inequality:

(

n
∑

i=1

aibi

)2

≤
(

n
∑

i=1

a2i

)(

n
∑

i=1

b2i

)

.

Correlation between linearly dependent datasets is equal to 1 or −1.
Example of two datasets with correlation zero: let x be any vector of even length whose

alternating sum is zero, for example, x1 = x2, x3 = x4, . . . , x2n−1 = x2n, and y is oscillating, say,
yi = 1 for i odd and yi = 0 for i even. Then m(y) = 1

2
, and

cov(x, y) =
∑

i=1,3,...,2n−1

(

xi −m(x)
)

(1− 1

2
) +

∑

i=2,4,...,2n

(

xi −m(x)
)

(0− 1

2
)

=
1

2
(x1 − x2 + x3 − x4 + · · ·+ x2n−1 − x2n) = 0,

and hence cor(x, y) = 0.
Use and misuse of correlation. “Correlation is not causation”.
Correlation matrix, its properties (symmetric, 1’s on the main diagonal).

Class 6.

Discussion of homework 6 (R code demonstrating Central Limit Theorem for any distribution).

Iterative correlation matrices (according to [Ch]).
The case of 2× 2 matrices:

(

1 a

a 1

)

7→
(

1 t(a)
t(a) 1

)

where

t(a) = cor((1, a), (a, 1)) =
(1− 1+a

2
)(a− 1+a

2
) + (a− 1+a

2
)(1− 1+a

2
)

√

((1− 1+a
2
)2 + (a− 1+a

2
)2)((a− 1+a

2
)2 + (1− 1+a

2
)2)

= −1

unless a 6= 1.
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Class 7.

Descriptive and inferential statistics.
Statistical models. Linear regression. Explanatory and response variables.

Y = α + βX + ε.

Y - response vaiable, X - predictor, ε - error term.

ε ∼ N(0, σ2).

Simple (one predictor) and multiple (several predictors) regressions (according to [AR, Chapter
7]).

Least squares. Derivation of coefficents for simple linear regression via least squares:

β = cor(x, y)
σ(y)

σ(x)

α = m(y)− βm(x).

Residuals. Standard deviation of residuals and test of residuals for normality as criteria for
“goodness” of a linear model.

Class 8.

Generalized additive models (according to [Cr2, pp. 146–148]).

Class 9.

Clustering: Hirearchical, K-means, gravitational algorithms.
Examples: genetic analysis; transportation, traffic.

Class 10.

Null and alternative hypotheses. Hypotheses testing, p-values (according to Pruim, pp. 71
onwards).
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