VYBRANÉ APLIKACE MATEMATICKÉ STATISTIKY. SYNOPSIS OF COURSE AT OU, WINTER SEMESTERS 2015/2016, 2016/2017, SUMMER SEMESTER 2018/2019

PASHA ZUSMANOVICH

Each class lasted 1.5 hours. Stuff typed in italic was not covered during summer semester 2018/2019.
Class 1. (February 14, 2019)
Subject of statistics.
Interesting applications of statistics: detection election frauds (KSP, [KYHT]), patterns in citations [SR].
Types of data: numerical and categorical. Statistical data always contains errors and is incomplete.

Bar charts and histograms.
Average, standard deviation, their meaning. Assuming $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
m(\bar{x}) & =\frac{x_{1}+\cdots+x_{n}}{n} \\
\sigma(\bar{x}) & =\sqrt{\frac{\left(x_{1}-m(\bar{x})\right)^{2}+\cdots+\left(x_{n}-m(\bar{x})\right)^{2}}{n}}
\end{aligned}
$$

Median, quantiles (generalization of median).
A glimpse into R: installation, usage as calculator, assignments, 1-dimensional arrays, functions. help(), example(), mean(), sd(), median(), quantile(), plot(), barplot(). Drawing histograms in different ways.

A toy example: plot and linear regression of air pollution against temperature for a 24 hour period in Ostrava.

Class 2. (February 21, 2019)

Mode.
Discrete vs. continuous distributions.
Density function of the normal distribution:

$$
f_{m, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}} .
$$

Its importance, its properties: symmetry, maximum (by calculating derivative). Central Limit Theorem.

Density function of the logistic distribution:

$$
f_{m, s}(x)=\frac{e^{-\frac{x-m}{s}}}{s\left(1+e^{-\frac{x-m}{s}}\right)^{2}}
$$

Its standard deviation: $\sigma=\frac{\pi s}{\sqrt{3}}$.
Density function of the Laplace distribution:

$$
f_{m, b}(x)=\frac{1}{2 b} e^{-\frac{|x-m|}{b}} .
$$

Its standard deviation: $\sigma=b \sqrt{2}$.
Date: last modified May 9, 2019.

These distributions have, roughly, the same properties as a normal distribution: the same "bellshaped" form, attain one maximum "in the middle" (average), and are symmetric, but logistic distribution is "heavier on tails", and Laplace distribution has a sharp peak in the middle.

Fitting in R real data to normal, Laplace and logictic distributions.
Class 3. (February 28, 2019)
Demonstration in R of the central limit theorem. (An alternative demonstration, using a different R code, can be found in [Cr1, §7.3.2]).

Skewness and kurtosis, their meaning (according to [Cr2, pp. 84-87]) and Wikipedia ($\left[\mathrm{Sk}_{\mathrm{w}}\right.$, K_{w}).

$$
\begin{gathered}
\operatorname{skewness}(\bar{x})=\frac{3 \operatorname{rd} \operatorname{moment}(\bar{x})}{\sigma(\bar{x})^{3}}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m(\bar{x})\right)^{3}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m(\bar{x})\right)^{2}\right)^{\frac{3}{2}}} ; \\
\operatorname{kurtosis}(\bar{x})=\frac{4 \operatorname{th} \operatorname{moment}(\bar{x})}{\sigma(\bar{x})^{4}}-3=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m(\bar{x})\right)^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m(\bar{x})\right)^{2}\right)^{2}}-3 .
\end{gathered}
$$

Kurtosis of a normal distribution is equal to 0 .
"Paradoxes" in statistics (according to [T, §6.5]).
Weighted mean. weighted.mean() in R. The usual mean of a discrete statistical distribution $\left(x_{1}, \ldots, x_{n}\right)$ can be interpreted as a weighted mean, if we assume that all x_{i} 's are pairwise distinct, and each appears with a frequency (probability) p_{i}. Then

$$
m(\bar{x})=p_{1} x_{1}+\cdots+p_{n} x_{n}=\frac{p_{1} x_{1}+\cdots+p_{n} x_{n}}{p_{1}+\cdots+p_{n}}
$$

(as $p_{1}+\cdots+p_{n}=1$).
Computation of weighted population density: if the whole area is divided to n regions with population x_{1}, \ldots, x_{n} and areas s_{1}, \ldots, s_{n}, then the weighted population density is the weighted mean of densities per region, with weights given by population:

$$
\frac{x_{1} \frac{x_{1}}{s_{1}}+\cdots+x_{n} \frac{x n}{s_{n}}}{x_{1}+\cdots+x_{n}}
$$

Simpson's paradox (according to $\left.\mathrm{Si}_{\mathrm{w}}\right]$). UC Berkeley suitcase.

	men	men admitted	women	women admitted
Department 1	m_{1}	$\lambda_{1} m_{1}$	w_{1}	$\mu_{1} w_{1}$
Department 2	m_{2}	$\lambda_{2} m_{2}$	w_{2}	$\mu_{2} w_{2}$

It could be that $\lambda_{1}<\mu_{1}$ and $\lambda_{2}<\mu_{2}$, but

$$
\frac{\lambda_{1} m_{1}+\lambda_{2} m_{2}}{m_{1}+m_{2}}>\frac{\mu_{1} w_{1}+\mu_{2} w_{2}}{w_{1}+w_{2}} .
$$

Another example of Simpson's paradox often occurs in US election system, see, e.g. W].

> Class 4. (March 7, 2019)

Discussion of homeworks 1-2.
Confidence intervals for normal distribution. Standard error. (According to [D, pp. 63-64] and C_{w}).

Using confidence intervals to determine sample size.

$$
\text { Margin error }=\frac{\sigma}{\sqrt{n}} N_{1-\frac{1-\alpha}{2}}
$$

where α is confidence interval (say, $\alpha=0.95$), and N are quantiles for the normal distribution.
Q-Q plot of one data against another.
Tests for normality: normal scores, Q-Q plots (according to [CC, pp. 220-223]).
Class 5. (March 21, 2019)
Discussion of homework 3.
Correlation:

$$
\begin{gathered}
\operatorname{cov}(\bar{x}, \bar{y})=\sum_{i=1}^{n}\left(x_{i}-m(\bar{x})\right)\left(y_{i}-m(\bar{y})\right) \\
\operatorname{cor}(\bar{x}, \bar{y})=\frac{\operatorname{cov}(\bar{x}, \bar{y})}{\sqrt{\operatorname{cov}(\bar{x}, \bar{x}) \operatorname{cov}(\bar{y}, \bar{y})}} .
\end{gathered}
$$

Properties of correlation:

$$
\begin{gathered}
\operatorname{cor}(\bar{x}, \bar{x})=1 \\
\operatorname{cor}(\bar{x}, \bar{y})=\operatorname{cor}(\bar{y}, \bar{x}) \\
-1 \leq \operatorname{cor}(\bar{x}, \bar{y}) \leq 1
\end{gathered}
$$

The latter one follows from the Cauchy-Schwarz inequality:

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Correlation between linearly dependent datasets is equal to 1 or -1 .
Example of two datasets with correlation zero: let \bar{x} be any vector of even length whose alternating sum is zero, for example, $x_{1}=x_{2}, x_{3}=x_{4}, \ldots, x_{2 n-1}=x_{2 n}$, and \bar{y} is oscillating, say, $y_{i}=1$ for i odd and $y_{i}=0$ for i even. Then $m(\bar{y})=\frac{1}{2}$, and

$$
\begin{aligned}
\operatorname{cov}(\bar{x}, \bar{y})=\sum_{i=1,3, \ldots, 2 n-1}\left(x_{i}-m(\bar{x})\right)\left(1-\frac{1}{2}\right) & +\sum_{i=2,4, \ldots, 2 n}\left(x_{i}-m(\bar{x})\right)\left(0-\frac{1}{2}\right) \\
& =\frac{1}{2}\left(x_{1}-x_{2}+x_{3}-x_{4}+\cdots+x_{2 n-1}-x_{2 n}\right)=0
\end{aligned}
$$

and hence $\operatorname{cor}(\bar{x}, \bar{y})=0$.
Use and misuse of correlation. "Correlation is not causation".
Correlation matrix, its properties (symmetric, 1's on the main diagonal).

Class 6.

Discussion of homework 6 (R code demonstrating Central Limit Theorem for any distribution).
Iterative correlation matrices (according to [Ch]).
The case of 2×2 matrices:

$$
\left(\begin{array}{cc}
1 & a \\
a & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & t(a) \\
t(a) & 1
\end{array}\right)
$$

where

$$
t(a)=\operatorname{cor}((1, a),(a, 1))=\frac{\left(1-\frac{1+a}{2}\right)\left(a-\frac{1+a}{2}\right)+\left(a-\frac{1+a}{2}\right)\left(1-\frac{1+a}{2}\right)}{\sqrt{\left(\left(1-\frac{1+a}{2}\right)^{2}+\left(a-\frac{1+a}{2}\right)^{2}\right)\left(\left(a-\frac{1+a}{2}\right)^{2}+\left(1-\frac{1+a}{2}\right)^{2}\right)}}=-1
$$

unless $a \neq 1$.

Class 7.

Descriptive and inferential statistics.
Statistical models. Linear regression. Explanatory and response variables.

$$
Y=\alpha+\beta X+\varepsilon .
$$

Y - response vaiable, X - predictor, ε - error term.

$$
\varepsilon \sim N\left(0, \sigma^{2}\right)
$$

Simple (one predictor) and multiple (several predictors) regressions (according to AR, Chapter 7]).

Least squares. Derivation of coefficents for simple linear regression via least squares:

$$
\begin{aligned}
\beta & =\operatorname{cor}(\bar{x}, \bar{y}) \frac{\sigma(\bar{y})}{\sigma(\bar{x})} \\
\alpha & =m(\bar{y})-\beta m(\bar{x}) .
\end{aligned}
$$

Residuals. Standard deviation of residuals and test of residuals for normality as criteria for "goodness" of a linear model.

Class 8.
Generalized additive models (according to [Cr2, pp. 146-148]).

Class 9.

Clustering: Hirearchical, K-means, gravitational algorithms.
Examples: genetic analysis; transportation, traffic.

Class 10.

Null and alternative hypotheses. Hypotheses testing, p-values (according to Pruim, pp. 71 onwards).

References

[AR] J. Albert and M. Rizzo, R by Example, Springer, 2012.
[Ch] C.-H. Chen, Generalized association plots: information visualization via iterative generated correlation matrices, Statistica Sinica 12 (2002), 7-29.
[CC] Y. Cohen and J.Y. Cohen, Statistics and Data with R, Wiley, 2008.
[Cr1] M.J. Crawley, The R Book, 2nd ed., Wiley, 2013.
[Cr2] , Statistics: An Introduction Using R, 2nd ed., Wiley, 2014.
[D] P. Dalgaard, Introductory Statistics with R, 2nd ed., Springer, 2008.
[KYHT] P. Klimek, Y. Yegorov, R. Hanel, and S. Thurnera, Statistical detection of systematic election irregularities, Proc. Nat. Acad. Sci. USA 109 (2012), 16469-16473.
[KSP] D. Kobak, S. Shpilkin, and M.S. Pshenichnikov, Statistical anomalies in 2011-2012 Russian elections revealed by 2D correlation analysis, arXiv:1205.0741v2.
[SR] M.V. Simkin and V.P. Roychowdhury, An introduction to the theory of citing, Significance 3 (2006), $\mathcal{N} 4$, 179-181; arXiv:math/0701086.
[T] T. Tao, Compactness and Contradiction, AMS, 2013.
[W] S. Wang, The great gerrymander of 2012, The New York Times, February 2, 2013.

Wikipedia articles

[$\left.\mathrm{C}_{\mathrm{w}}\right]$ Confidence interval.
$\left[\mathrm{K}_{\mathrm{w}}\right]$ Kurtosis.
[Si_{w}] Simpson's paradox.
$\left[\mathrm{Sk}_{\mathrm{w}}\right]$ Skewness.

Email address: pasha.zusmanovich@gmail.com

