
Category Theory

University of Ostrava

Version of November 14, 2020



1/56

Literature
I J. Adamek, H. Herrlich, and G.E. Strecker, Abstract and

Concrete Categories. The Joy of Cats, Online edition, 2004
(referred as Adamek et al.)

I G.M. Bergman, An Invitation to General Algebra and
Universal Constructions, 2nd ed., Springer, 2015
(referred as Bergman)

I S. Mac Lane, Categories for the Working Mathematician,
2nd ed., Springer, 1978.
(referred as Mac Lane)

I S. Mac Lane and G. Birkhoff, Algebra, 3rd ed., AMS Chelsea,
1999
(referred as Mac Lane–Birkhoff)

I I.R. Shafarevich, Basic Notions of Algebra, Springer, 1990
(referred as Shafarevich)

(All images are courtesy of Wikipedia)



2/56

1.
Definition of category,

motivation. Examples of
categories



3/56

Motivation
From the previous courses you (suppose to) know that:

I A linear map is a map between two vector spaces which
preserves linearity.

I A group homomorphism is a map between two groups which
preserves the group multiplication, the neutral element, and
the inverse operation.

I A (commutative) ring homomorphism is a map between two
(commutative) rings which is additive and preserves the ring
multiplication.

I A continuous map is a map between two topological spaces
which preserves the topological structure (i.e., open sets).

Do you see the pattern?

Moreover, many statements about those maps (for example,
composition of homomorphisms is a homomorphism) are
formulated and proved exactly in the same way in all these cases.
(For more such examples, see Bergman, pp. 213–217,
Mac Lane, pp. 1–5, and Shafarevich, pp. 202–204).
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Definition
A category C consists of a class Obj(C) whose elements are called
objects, and a class hom(C) whose elements are called morphisms
(or arrows), such that there is a map

hom : Obj(C)× Obj(C)→ subsets of hom(C)

satisfying the following axioms:

(i) (Existence of composition) For any X ,Y ,Z ∈ Obj(C), there is
a map ◦, called a composition

◦ : hom(Y ,Z )× hom(X ,Y )→ hom(X ,Z )

(ii) (Associativity) If X ,Y ,Z ,W ∈ Obj(C), and h ∈ hom(Z ,W ),
g ∈ hom(Y ,Z ), f ∈ hom(X ,Y ), then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

(iii) (Existence of identity) For any Y ∈ Obj(C), there exists a
morphism 1Y ∈ hom(Y ,Y ) such that 1Y ◦ f = f for any
f ∈ hom(X ,Y ), and g ◦ 1Y = g for any g ∈ hom(Y ,Z ).
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Examples of categories

Examples

I All sets (objects) and maps between them (morphisms) form
the category of sets Set.

I The classes mentioned at the first slide form respectively: the
category of vector spaces Vect, the category of groups Group,
the category of rings Ring, the category of commutative rings
CommRing, and the category of topological spaces Top.

For more examples, see Adamek at al., pp. 22–24,
Bergman, pp. 221–226, Mac Lane, pp. 10–12,
Mac Lane–Birkhoff, pp. 496,498,
Shafarevich, pp. 205–206. See also an impressive list of all
categories mentioned in Adamek et al., pp. 475–479.

Exercise
Why in the definition of category we are speaking about a “class”
of objects and not about a set of objects?
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Dual category

Definition
For a category C, the dual (or opposite) category Cop is the
category having the same objects as C, and for which
homCop(X ,Y ) = homC(Y ,X ), and f ◦op g = g ◦ f .

Informally, the dual category has the same morphisms, but in the
“opposite” directions.

Example

If C is the category of ordered sets with the relation ≤, then Cop is
the category of ordered sets with the relation ≥.



7/56

Subcategories

Informally, a subcategory of a category C a subclass of objects of
C, “closed” with respect to composition of morphisms.

Exercise
Give the precise definition of a subcategory of a category.

Hint: see Mac Lane–Birkhoff, p. 498.

Examples

I Category of abelian groups AbGroup is a subcategory in
Group.

I CommRing, and the category of fields are subcategories in
Ring.
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Product of categories

The notion of cartesian product of two sets is readily extended to
the case of categories.

Definition
A product of two categories B and C, denoted by B× C, is defined
as a category whose objects are Obj(B)× Obj(C), and whose
arrows are hom(B)× hom(C), and composition of arrows is
performed component-wise:

(f , g) ◦ (f ′, g ′) = (f ◦ f ′, g ◦ g ′)

for suitable f , f ′ ∈ hom(B) and g , g ′ ∈ hom(C).
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A bit of history
Category theory was created by Samuel Eilenberg (1913–1998) and
Saunders Mac Lane (1909–2005) around 1942–1945.

“The devious and sophisticated European versus the innocent but honest
American?” (D. Eisenbud, from the preface to “A Mathematical
Autobiography” by Saunders Mac Lane).
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2.
Functors
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Covariant functor

A functor is, an essence, a morphism (i.e., a map “preserving the
structure”) of categories.

Definition
A covariant functor (or just functor) from a category C to a
category D consists of two maps (denoted by abuse of notation by
the same letter), F : Obj(C)→ Obj(D) and
F : hom(X ,Y )→ hom(F (X ),F (Y )) for any X ,Y ∈ Obj(C)
satisfying the axioms:

(i) F (1X ) = 1F (X ) for any X ∈ Obj(C).

(ii) F (f ◦ g) = F (f ) ◦ F (g) for any morphisms f , g whenever
f ◦ g is defined.
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Contravariant functor, bifunctor

Definition
A contravariant functor from a category C to a category D is
obtained from the previous definition by replacing the second F by
F : hom(X ,Y )→ hom(F (Y ),F (X )), and the second axiom by:

(ii) F (f ◦ g) = F (g) ◦ F (f ).

Exercise
Rewrite the definitions of covariant and contravariant functor in
terms of commutative diagrams.

Hint: see Mac Lane–Birkhoff, pp. 131–132,504–505.

Definition
A bifunctor from a pair of categories B, C to a category D is a
functor from B× C to D.
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Examples

I The map assigning to a vector space its n-fold tensor product,
is a covariant functor from Vect to itself. (Prove this!)

I The map assigning to a commutative ring A a group (say)
SLn(A) is a functor from CommRing to Group.

I Forgetful functors, where a part of the structure of the objects
is “forgotten”, for example, the functor from Group to Set,
sending a group to the underlying set.

I The cartesian product of two sets is a bifunctor
Set× Set→ Set.

I The map sending a vector space to its adjoint is a
contravariant functor.

For more examples, see Adamek at al., pp. 30–32,
Bergman, pp. 239–241, Mac Lane, pp. 13–14,35,
Mac Lane–Birkhoff, pp. 131–133,501–503,505–506,
Shafarevich, pp. 208–213.
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3.
Equivalence of categories
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Isomorphism of categories

Definition
Two categories C and D are said isomorphic, if there exists a
functor F : C→ D, called isomorphism, such that there is an
“inverse” functor F−1 : D→ C: F−1 ◦ F = idC and F ◦ F−1 = idD.

Example

I The category of Boolean algebras is isomorphic to the
category of Boolean rings.

I The category of left R-modules over a commutative ring R is
isomorphic to the category of right R-modules.

For more examples of isomorphic categories, see Adamek et al.,
pp. 33–34.
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Faithful and full functors
Isomorphic categories are, essentially, “the same”, and the concept
of isomorphism of categories is very restrictive. The less weaker
concept of equivalence of categories turns out to be more
meaningful.

Let C, D be two categories, and F : C→ D a functor between
them. For any two objects X ,Y ∈ Obj(C), consider the hom-set
restriction

F : homC(X ,Y )→ homD(F (X ),F (Y )).

Definition

1. A functor is called embedding if it is injective on morphisms.

2. A functor is called faithful if all its hom-set restriction are
injective.

3. A functor is called full if all its hom-set restrictions are
surjective.
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Examples

The forgetful functor Vect→ Set is faithful, but is neither full nor
an embedding.

For further examples of embeddings, faithful, and full functors, see
Adamek et al., pp. 34–35, and Bergman, p. 244.
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Equivalence of categories

Definition
Two categories C and D are called equivalent, if there is a functor
F : C→ D which is faithful and full, and for any object
Z ∈ Obj(D), there is an object X ∈ Obj(C), such that F (X ) ' Z .

Examples

I The category of matrices is equivalent of the category of Vect,
but not isomorphic to it.

I The category of finite-dimensional real vector space is
equivalent to its dual (each vector space is mapped to its
adjoint).

For details and more examples of isomorphic and equivalent
categories, see Adamek et al., pp. 36,38.
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4.
Small and large categories,

concrete categories
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Small categories

Definition
A category is called small if the class of its objects is a set, and
large otherwise.

Lemma
The class of morphisms in a small category is a set too.

Examples

I The category of matrices is small.

I The category of (all) monoids is large.

Exercise
Which of the categories considered so far are small?

For more examples of small and large categories, see
Adamek et al., p. 39 and Mac Lane, pp. 24–26.
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The category Cat

Lemma
All small categories form a category Cat. The morphisms are
functors between categories.

Exercise 1
Is Cat small?

Exercise 2
Can we speak about category of all (not necessarily small)
categories?

Hint: see Adamek et al., p. 39.
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Concrete categories

If we consider categories comprised of “concrete” objects, like
vector or topological spaces, we loose some information, as the
emphasis in “abstract” categories is not on objects themselves, but
on relationship between them. The notion of concrete category
aims to rectify this deficiency.

Definition
A category C is called concrete if there is a faithful functor (called
the forgetful functor) C→ Set.

Exercise
Which of the categories considered so far are concrete?

Theorem
Every small category can be turned into a concrete one, i.e. admits
a faithful functor to the category of small sets.

For more examples of concrete categories, see Adamek et al.,
p. 62, and Mac Lane–Birkhoff, pp. 142–143,497.



23/56

Concrete functors

Definition
Let C and D be two concrete categories, with the corresponding
forgetful functors U : C→ Set and V : D→ Set. A functor
F : C→ D is called concrete, if U = V ◦ F .

Lemma
Every concrete functor is faithful.

Example

The forgetful functor from the concrete category of rings to the
concrete category of abelian groups which “forgets multiplication”,
is concrete.

For more examples, see Adamek et al., p. 66.
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5.
Natural transformations
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Natural transformations
The same way as functor provides a “morphism” between
categories, natural transformation provides “morphism” between
functors.

Definition
A natural transformation between two functors F ,G from a
category C to a category D, is a map τ : Obj(C)→ hom(D),
X 7→ τX , such that for any X ,Y ∈ Obj(C), and any arrow
f ∈ hom(X ,Y ), the following diagram

F (X )
τX−−−−→ G (X )

F (f )

y yG(f )

F (Y )
τY−−−−→ G (Y )

is commutative.
If each τX is invertible, then τ is called a natural equivalence.
The set of all natural transformations between F and G is denoted
by [F ,G ].
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Examples of natural transformations

1. The determinant, considered as a map det : GLn → ()∗, is a
natural transformation between two functors from CommRing
to Group.

2. Abelianization of a group, i.e. the natural projection
G → G/[G ,G ] for a group G , is a natural transformation
between two functors from Group to Group.

For details and further examples, see Adamek et al., pp. 83–85,
Bergman, p. 280, Mac Lane, pp. 16–18, and
Mac Lane–Birkhoff, pp. 507–508.
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6.
Universal constructions, limits,

colimits
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Universal arrow

Definition
If S : D→ C is a functor between two categories D and C, and
c ∈ Obj(C), a universal arrow from c to S is a pair (r , u)
consisting of an object r ∈ Obj(D), and an arrow u : c → S(r) of
C, such that to every pair (d , f ) with d ∈ Obj(D) and
f : c → S(d) an arrow of C, there is a unique arrow f ′ : r → d of
D with S(f ′) ◦ u = f .

Examples

I A map sending an element of a base of a vector space,
considered as a set, to the same vector space, considered as
an element of Vect.

I A map sending an integral domain to its field of quotients.

For details and other examples, see Bergman, pp. 295–296,
Mac Lane, pp. 56–57, and Mac Lane–Birkhoff,
pp. 130–131.
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Universal element

An important particular case of an universal arrow is universal
element.

Definition
If D is a category and H : D→ Set a functor, a universal element
of the functor H is a pair (r , e) consisting of an object r ∈ D and
an element e ∈ H(r) such that for every pair (d , x) with
d ∈ Obj(D) and x ∈ H(d), there is a unique arrow f : r → d of D
with (H(f ))(e) = x .

Examples

Partition of a set into equivalence classes, quotients of a group by
a normal subgroup, and tensor products can be expressed in terms
of a universal element in appropriate categories. For details and
other examples, see Mac Lane, pp. 57–58.
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Limit
Important instances of universal constructions are limits and
colimits.

Definition
Let F : D→ C be a functor between two categories D, C. A limit
of F , denoted by lim←−F , is an object L ∈ Obj(C) such that for every
X ∈ Obj(D) there is a morphism p(X ) : L→ F (X ) satisfying the
following property: for f ∈ homD(X ,Y ), one has
p(Y ) = F (f )p(X ). Moreover, p is universal for this property, i.e.,
given any object M ∈ Obj(C), and family of morphisms
m(X ) : M → F (X ), which similarly make commuting triangles
with the morphisms F (f ), there exists a unique morphism
h : M → L such that for all X , m(X ) = p(X ) ◦ h.

Examples of constructions described in terms of limits

I p-adic numbers, see Bergman, pp. 317–323 or Mac Lane,
pp. 110-111.

I Formal power series.
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Colimit
Reversing arrows, we get the dual notion:

Definition
Let F : D→ C be a functor between two categories D, C. A
colimit of F , denoted by lim−→F , is an object L ∈ Obj(C) such that
for every X ∈ Obj(D) there is a morphism q(X ) : F (X )→ L
satisfying the following property: for f ∈ homD(X ,Y ), one has
q(X ) = q(Y )F (f ). Moreover, q is universal for this property, i.e.,
given any object M ∈ Obj(C), and family of morphisms
m(X ) : F (X )→ M, which similarly make commuting triangles
with the morphisms F (f ), there exists a unique morphism
h : L→ M such that for all X , m(X ) = h ◦ q(X ).

Warning: limits and colimits not always exist!

One of the main questions related to limits and colimits is when
that or another functor preserves them. See Adamek et al.,
pp. 223–226, Bergman et al., pp. 347–348,352 or Mac Lane,
pp. 116–118 for details.
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Direct and inverse limits

Important particular cases of limit and colimit are inverse and
direct limit, respectively.

inverse limit: · · · ← Cn−1 ← Cn ← Cn+1 ← . . .

direct limit: · · · → Cn−1 → Cn → Cn+1 → . . .

An example of inverse limit: direct product
∏

i∈I Ai .
An example of direct limit: direct sum

⊕
i∈I Ai .

A well known theological concept is that of the transcendental
divine consciousness as a limit of restricted human
consciousnesses. In this setup, optimist would say that this limit is
a direct limit, while pessimist would say that this is an inverse one.
(As seen somewhere on mathoverflow).

https://mathoverflow.net/
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Exercise

Rewrite all definitions from this section in terms of commutative
diagrams.

Hint: See Mac Lane, p. 55.



34/56

7.
The Yoneda Lemma
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The Yoneda Lemma

Lemma
Let C be a category, F : C→ Set a functor, and X ∈ Obj(C).
Then the map

[hom(X ,−),F ]→ F (X )

σ 7→ σX (idX )

is a bijection.

Nobuo Yoneda (1930–1996)
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The Yoneda Lemma (cont.)

Roughly, the Yoneda Lemma says that an object in a category is
determined by the functor that records morphisms from each of the
objects of the category (or, the object is best understood in the
context of a category surrounding it).

The proof if the Yoneda Lemma uses the concept of universal
arrows, see Mac Lane, pp. 59–61 for details.

Exercise
The Yoneda Lemma is formulated for covariant functor F .
Formulate and prove the version of the Lemma for contravariant
functor.

Hint: see Bergman, pp. 300–301.
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The category of functors

Notation
For two categories C, D, denote by [C,D] the set of all functors
from C to D.

Theorem
If C and D are small, then [C,D] forms a category, with functors
being natural transformations between functors.

Exercise
Does [C,D] forms a category in the similar way for arbitrary, not
necessarily small C and D?
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An embedding theorem

Theorem
For any category C, the functor E : C→ [Cop, Set], defined by

E (X
f→ Y ) = hom(−,X )

σf→ hom(−,Y ),

where σf (g) = f ◦ g , is a full embedding.

Proof: This is an (easy) corollary of the Yoneda Lemma.

This theorem is a vast generalization of the theorem from group
theory about embedding of any group in a symmetric group, and
similar results.
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8.
Adjoint functors
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Adjoint functors

Definition
Let C, D be two categories, and F : C→ D, G : D→ C two
functors in opposite directions between them. The functor F is
called a left adjoint to G , and G is called a right adjoint to F , if
for any objects X ∈ Obj(C) and Y ∈ Obj(D), there is a bijection
of sets

hom(F (X ),Y ) ' hom(X ,G (Y )),

natural in the arguments X and Y .

Exercise
Rewrite this definition using the notions of universal arrows or
universal elements.

Hint: See Adamek et al., p. 305, or Bergman, p. 309, or
Mac Lane, pp. 81–82.

Warning

Left/right adjoint functors not always exist!
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Examples of adjoint functors

Examples

I Tensor product and Hom in the category of modules over a
(commutative) ring.

I The functor Set→ Top supplying each set with the discrete
topology, and the forgetful functor Top→ Set.

I The forgetful functor Group→ Set, and the functor
Set→ Group assigning to a set X the free group freely
generated by X .

For details and other examples, see Adamek et al., pp. 305,319,
Bergman, pp. 311–312, Mac Lane, pp. 87,123–125, and
Mac Lane–Birkhoff, p. 519.
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Properties of adjoint functors

Theorem 1
Any two left(right)-adjoints of a given functor are naturally
isomorphic.

Theorem 2
The composition of adjoint functors is adjoint.

Theorem 3
Adjoint functors preserve limits.
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9.
Monoidal categories
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Definition of a monoidal category

A monoidal category is a category C equipped with bifunctor
⊗ : C× C→ C, and an object I ∈ C, called the unit (or identity)
object satisfying the following conditions:

1. (Associativity) There is a natural (in three arguments A, B,
C ) isomorphism αA,B,C : (A⊗ B)⊗⊗C ' A⊗ (B ⊗ C ).

2. (Identity) There are two natural isomorphisms λA : E ⊗ A ' A
and ρA : A⊗ E ' A.

3. (Coherence) For any A,B,C ,D ∈ Obj(C), the pentagonal
diagram

((A ⊗ B) ⊗ C) ⊗ D

αA⊗B,C,D

��

αA,B,C⊗1D// (A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D // A ⊗ ((B ⊗ C) ⊗ D)

1A⊗αB,C,D

��
(A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D

// A ⊗ (B ⊗ (C ⊗ D))

commutes.

to be continued ...
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Definition of a monoidal category (cont.)

5. (Coherence) For any A,B,C ∈ Obj(C), the triangle diagram

(A⊗ I )⊗ B

ρA⊗1B $$

αA,I ,B // A⊗ (I ⊗ B)

1A⊗λBzz
A⊗ B

commutes.
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Examples of monoidal categories

Informally, a category is monoidal if it is equipped with a
“product” which is associative up to isomorphism.

Examples

1. Set with respect to cartesian product.

2. Vect, and, more generally, the category of modules over a
fixed commutative ring, with respect to tensor product.

3. The category of associative algebras with respect to tensor
product.

4. Top with respect to the product of topological spaces.

5. Cat with respect to the product of categories.

Exercise
What will serve as a unit in each of these examples?
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10.
Categorification
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Categorification
Categorification is a process of replacing set-theoretic concepts and
statements by their category-theoretic analogues. It allows to
reveal hidden structures in mathematics, and bring them to a
newer level of understanding.

set-theoretic notion category-theoretic counterpart
set category

elements objects

function functor

equation natural transformation

Examples

I Natural numbers  Cardinalities of finite sets.

I Symmetric functions  Representations of the symmetric
group.

I Monoid (a set with an associative binary operation and a unit)
 Monoidal category.
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Another (historical) example
One of the earlier examples of categorification is the replacement
of Betti numbers by (co)homology groups (whose ranks are Betti
numbers), done by Emmy Noether in 1920s-1930s. This gave birth
to the homological algebra.

bi = rkHi (X ,Q)

b0, b1, b2, · · ·  H0,H1,H2, . . .
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11.
Applications in computer

science (functional
programming, database design)
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Applications in functional programming

Category theory, due its generality and flexibility, is vastly
applicable in computer science. Below are just a few examples.

A central concept in Haskell and other functional programming
languages, used in sequential computations, is that of monad
which comes from category theory. Roughly, a monad is a
categorical generalization of a closure operator on a partially
ordered set. Monad is a functor from a category to itself, equipped
with two natural transformations, which give it a monoid-like
structure. For an exact definition, see Mac Lane, pp. 137–138.
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Applications in database design

1. Databases, and, more generally, knowledge bases, can be
represented as a special kind of automata: a database query
brings the automaton to another state, producing the answer
to the query. One of important and complicated question in
the theory of databases is whether two databases are,
essentially, the “same”, i.e. produce the same answers to the
same queries. This question may be approached using the
representation above, considering the category of all databases
as a subcategory of the category of automata, and employing
the notion of equivalence of categories.

2. Alternatively, database schemas may be represented as
categories, with functors representing migration from one
schema to another (a task frequently needed to be performed
on practice).

3. For finite state machines, “minimal realization” and
“behavior” could be considered as adjoint functors. See
Mac Lane, p. 89 for details.
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12.
2-categories and applications in

physics (string theory,
topological quantum field

theory)
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Braided categories in physics

A braided category is a monoidal category equipped with braiding,
i.e. the commutativity natural isomorphism γA,B : A⊗ B → B ⊗ A
satisfying additional identities which are satisfied in the braid
group.

In string theory, particles are represented as strings weaving around
each other, so the concepts of braids and of braided category are
applicable. See Mac Lane, pp. 260–266 for details.
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2-categories

An ordinary category has objects and morphisms (1-morphisms). A
2-category extends this by including “morphisms between
morphisms” (2-morphisms). Thus, in a sense, 2-categories are
categorifications of ordinary categories. See Mac Lane,
pp. 272–279 for details.

Example

Cat is actually a 2-category.

2-categories is another categorical concept used in string theory.
Transformations of strings, which can be considered as morphisms
in an appropriate category, as they move along surfaces in
spacetime, can be considered as 2-morphisms:

• •
""
<<��
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The End


