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Preface to the Second Edition

This second edition of “Categories Work” adds two new chapters on
topics of active interest. One is on symmetric monoidal categories and
braided monoidal categories and the coherence theorems for them—items
of interest in their own right and also in view of their use in string theory in
quantum field theory. The second new chapter describes 2-categories and
the higher-dimensional categories that have recently come into promi-
nence. In addition, the bibliography has been expanded to cover some of
the many other recent advances concerning categories.

The earlier 10 chapters have been lightly revised, clarifying a number
of points, in many cases due to helpful suggestions from George Janelidze.
In Chapter III, T have added a description of the colimits of representable
functors, while Chapter IV now includes a brief description of character-
istic functions of subsets and of the elementary topoi.

Dune Acres, March 27, 1997 Saunders Mac Lane
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Preface to the First Edition

Category theory has developed rapidly. This book aims to present those
ideas and methods that can now be effectively used by mathematicians
working in a variety of other fields of mathematical research. This occurs
at several levels. On the first level, categories provide a convenient con-
ceptual language, based on the notions of category, functor, natural
transformation, contravariance, and functor category. These notions are
presented, with appropriate examples, in Chapters I and II. Next comes
the fundamental idea of an adjoint pair of functors. This appears in many
substantially equivalent forms: that of universal construction, that of direct
and inverse limit, and that of pairs of functors with a natural isomorphism
between corresponding sets of arrows. All of these forms, with their inter-
relations, are examined in Chapters III to V. The slogan is “Adjoint func-
tors arise everywhere.”

Alternatively, the fundamental notion of category theory is that of
a monoid—a set with a binary operation of multiplication that is associa-
tive and that has a unit; a category itself can be regarded as a sort of
generalized monoid. Chapters VI and VII explore this notion and its gen-
eralizations. Its close connection to pairs of adjoint functors illuminates
the ideas of universal algebra and culminates in Beck’s theorem char-
acterizing categories of algebras; on the other hand, categories with a
monoidal structure (given by a tensor product) lead inter alia to the study
of more convenient categories of topological spaces.

Since a category consists of arrows, our subject could also be described
as learning how to live without elements, using arrows instead. This line of
thought, present from the start, comes to a focus in Chapter VIII, which
covers the elementary theory of abelian categories and the means to prove
all of the diagram lemmas without ever chasing an element around a
diagram.

Finally, the basic notions of category theory are assembled in the
last two chapters: more exigent properties of limits, especially of filtered
limits; a calculus of “ends”; and the notion of Kan extensions. This is the
deeper form of the basic constructions of adjoints. We end with the obser-
vations that all concepts of category theory are Kan extensions (§7 of
Chapter X).

vii



viii Preface to the First Edition

I have had many opportunities to lecture on the materials of these
chapters: at Chicago; at Boulder, in a series of colloquium lectures to the
American Mathematical Society; at St. Andrews, thanks to the Edinburgh
Mathematical Society; at Zurich, thanks to Beno Eckmann and the For-
schungsinstitut fiir Mathematik; at London, thanks to A. Fréhlich and
Kings and Queens Colleges; at Heidelberg, thanks to H. Seifert and
Albrecht Dold; at Canberra, thanks to Neumann, Neumann, and a Ful-
bright grant; at Bowdoin, thanks to Dan Christie and the National Science
Foundation; at Tulane, thanks to Paul Mostert and the Ford Foundation;
and again at Chicago, thanks ultimately to Robert Maynard Hutchins and
Marshall Harvey Stone.

Many colleagues have helped my studies. I have profited much from a
succession of visitors to Chicago (made possible by effective support from
the Air Force Office of Scientific Research, the Office of Naval Research,
and the National Science Foundation): M. André, J. Bénabou, E. Dubuc,
F.W. Lawvere, and F.E.J. Linton. I have had good counsel from Michael
Barr, John Gray, Myles Tierney, and Fritz Ulmer, and sage advice from
Brian Abrahamson, Ronald Brown, W.H. Cockcroft, and Paul Halmos.
Daniel Feigin and Geoffrey Phillips both managed to bring some of
my lectures into effective written form. My old friend, A.H. Clifford,
and others at Tulane were of great assistance. John MacDonald and
Ross Street gave pertinent advice on several chapters; Spencer Dickson,
S.A. Huq, and Miguel La Plaza gave a critical reading of other material.
Peter May’s trenchant advice vitally improved the emphasis and arrange-
ment, and Max Kelly’s eagle eye caught many soft spots in the final
manuscript. I am grateful to Dorothy Mac Lane and Tere Shuman for
typing, to Dorothy Mac Lane for preparing the index, and to M.K.
Kwong for careful proofreading—but the errors that remain, and the
choice of emphasis and arrangement, are mine.

Dune Acres, March 27, 1971 Saunders Mac Lane
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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f: X — Y represents a function;
that is, a set X, a set Y, and a rule x+—f x which assigns to each element
xe X an element fxe Y; whenever possible we write fx and not f(x),
omitting unnecessary parentheses. A typical diagram of sets and func-

tions 1s
Y
7N
3 Z;

X

it is commutative when h is h=g- f, where g- f is the usual composite
function g- f : X —Z, defined by x+—g(fx). The same diagrams apply
in other mathematical contexts; thus in the “category” of all topological
spaces, the letters X, Y, and Z represent topological spaces while f, g, and
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g. and h for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product
X x Yoftwo sets, consisting as usual of all ordered pairs {x, y) of elements
xe X and ye Y. The projections {x, y)>+x, {x, y>+>y of the product
on its “axes” X and Y are functions p: X X Y—X, g: X xY—Y. Any
function h: W— X x Y from a third set W is uniquely determined by its
composites poh and goh. Conversely, given W and two functions
fand g as in the diagram below, there is a unique function h which makes
the diagram commute; namely, Aw = {f w,gw) for each w in W

w
i)

T

X XxY Y.

P q

—_
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Thus, given X and Y, {p, ¢) is “universal” among pairs of functions from
some set to X and Y, because any other such pair { f, g) factors uniquely
(via h) through the pair {p,q>. This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in
the category of topological spaces or of groups, describes uniquely the
cartesian product of spaces or the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W, X) for the set of all functions f: W—X and
hom({U, V>, (X, Y>) for the set of all pairs of functions f:U—X,
g:V—Y, the correspondence h—{ph,qh)>=<{f,g> indicated in the
diagram above is a bijection

hom(W, X x Y)=hom({W, W), (X, Y}).

This bijection is “natural” in the sense (to be made more precise later)
that it is defined in “the same way” for all sets W and for all pairs of sets
(X, Y> (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction W— W, W which sends each set to the diagonal
pair AW = (W, W), and the construction (X, Y)+— X x Y which sends
each pair of sets to its cartesian product. Given the bijection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them; two functions
k:X—X"and t: Y— Y’ have a function k x f as their cartesian product:

kxt: XxY—>X'xY, <{xyy—=dkxty).

Observe also that the one-point set 1 = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

IxX5HXE&EXx1 (1)

given by <0, x> =x, g<{x,0)> = x.

The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-
gether with two functions

wMxM—-M, n:1-M 2)
such that the following two diagrams in x and # commute:
MxMxM-—L43MxM IxM2L M x M2 Ml

N S A A

MxM £ M, M = M = M
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here 1 in 1 x u is the identity function M-— M, and 1 in 1 x M is the one-
point set 1= {0}, while 1 and g are the bijections of (1)} above. To say
that these diagrams commute means that the following composites are
equal:

po(Ixpw)y=po(ux1), po(mx1)=24, po(lxn)=e.

These diagrams may be rewritten with elements, writing the function u
(say) as a product u(x,y) = xy for x,y € M and replacing the function #
on the one-point set 1 = {0} by its (only) value, an element (0)=ue M.
The diagrams above then become

Xy, pF—— X%, yz) 0, x)—<u, xy  {x,up—ix,0)
{xy,o—(xy)z=x(y2), X = ux, xXu = x.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an element u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities;
for example, one may describe a group as a monoid M equipped with
a function {: M—M (of course, the function x+>x~!) such that the
following diagram commutes:

M2 MxMESMxM  x—(x, xD)—{x, x>

| - [,

1 M O—— u = xx !,

here 6: M—M x M is the diagonal function x+—<{x,x)> for xeM,
while the unnamed vertical arrow M — 1 = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x € M an element
x~! which is a right inverse to x.

This definition of a group by arrows p, n, and { in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation y of multi-
plication which is continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group
axioms. Again, if the letter M stands for a differentiable manifold (of
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class C®) while 1 is the one-point manifold and the arrows g, #, and {
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets, of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map §:M—M x M to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the isomorphisms (1). We can then speak of a monoid in the system
(C. [, 1), where C is the category, [] is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual additive group of
integers; then (1) is replaced by the familiar isomorphism

Z®X>2X>~X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism p: M®M—M is, by the definition of ®, just a function
M xM—M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphism #: Z—M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication yu in the abelian group M
is associative and has u as left and right unit — in other words, that M
is indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
bydiagrams. If (M, u, n) and (M, ', "> are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f: M— M’ such that the following diagrams
commute:

M MxM-—E5M 11— 5 M

R

M!, M! x M! ' M,, 1 3 M/.

In terms of elements, this asserts that f(xy)=(fx)(fy) and fu=u
with u and u’ the unit elements; thus a homomorphism is, as usual, just
a function preserving composite and units. If M and M’ are monoids
in (Ab, ®,Z), that is, rings, then a homomorphism f as here defined is
just a morphism of rings (preserving the units).
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Finally, an action of a monoid {M, ,n) on a set S is defined to be a
function v : M x S — S such that the following two diagrams commute:

MxMxS—L ,MxS IxS—L M xS
”“J lv \J‘
MxS§—r S, S.

If we write v(x, s)= x * s to denote the result of the action of the monoid
element x on the element s e S, these diagrams state just that

x-(y-s)=(xy)-s, u-s=s

for all x, ye M and all se S. These are the usual conditions for the action
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topological monoid M on a topological space S. If we take
(M, u, ) to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module S over the ring M.
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1. Categories, Functors, and Natural Transformations

1. Axioms for Categories

First we describe categories directly by means of axioms, without
using any set theory, and call them ‘““metacategories”. Actually, we begin
with a simpler notion, a (meta)graph.

A metagraph consists of objects a, b, c, ..., arrows f,g, h, ..., and two
operations, as follows:

Domain, which assigns to each arrow f an object a= dom f;
Codomain, which assigns to each arrow f an object b=cod f.

These operations on f are best indicated by displaying f as an actual
arrow starting at its domain (or “source”) and ending at its codomain
(or “target”):
fia>b or abb.
A finite graph may be readily exhibited: Thus - —-—+ or - 3+.
A metacategory is a metagraph with two additional operations:
Identity, which assigns to each object a an arrow id,=1,:a—a;
Composition, which assigns to each pair (g, f) of arrows with

domg=cod f an arrow g- f, called their composite, with g f:dom f
—codg. This operation may be pictured by the diagram

b
/X
s ¢

which exhibits all domains and codomains involved. These operations
in a metacategory are subject to the two following axioms:
Associativity. For given objects and arrows in the configuration

albLetd
one always has the equality

ko(gef)=(k=g)-f. (1)
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This axiom asserts that the associative law holds for the operation of
composition whenever it makes sense (i.e., whenever the composites on
either side of (1) are defined). This equation is represented pictorially
by the statement that the following diagram is commutative:

sfy=(kz=g)o
akc(gf)(g)f d

=4
™~

- 7
b 7 c.

S

Unit law. For all arrows f:a—b and g:b—c composition with
the identity arrow 1, gives

lyef=f and g-1,=g. )

This axiom asserts that the identity arrow 1, of each object b acts as an
identity for the operation of composition, whenever this makes sense.
The Egs. (2) may be represented pictorially by the statement that the
following diagram is commutative:

a—L—p

NS

b—F—c.

We use many such diagrams consisting of vertices (labelled by objects
of a category) and edges (labelled by arrows of the same category).
Such a diagram is commutative when, for each pair of vertices ¢ and ¢,
any two paths formed from directed edges leading from ¢ to ¢’ yield,
by composition of labels, equal arrows from ¢ to ¢’. A considerable part
of the effectiveness of categorical methods rests on the fact that such
diagrams in each situation vividly represent the actions of the arrows
at hand.

If b is any object of a metacategory C, the corresponding identity
arrow 1, is uniquely determined by the properties (2). For this reason, it
is sometimes convenient to identify the identity arrow 1, with the object b
itself, writing b:b—b. Thus 1, =b=1id,, as may be convenient.

A metacategory is to be any interpretation which satisfies all these
axioms. An example is the metacategory of sets, which has objects all
sets and arrows all functions, with the usual identity functions and the
usual composition of functions. Here “function” means a function with
specified domain and specified codomain. Thus a function f: X - Y
consists of a set X, its domain, a set Y, its codomain, and a rule v— fx
(ie., a suitable set of ordered pairs {x, f x>) which assigns, to each element
x e X, an element fxe Y. These values will be written as fx, f,, or f(x),
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as may be convenient. For example, for any set S, the assignment s+>s
for all se S describes the identity function 15:S—S;if S is a subset of Y,
the assignment s—s also describes the inclusion or insertion function
S— Y ;these functions are different unless S = Y. Given functions f: X — Y
and ¢g:Y—Z, the composite function g- f: X —Z is defined by
(g f)x=g(fx)for all xe X. Observe that g f will mean first apply f,
then g — in keeping with the practice of writing each function f to the
left of its argument. Note, however, that many authors use the opposite
convention.

To summarize, the metacategory of all sets has as objects, all sets, as
arrows, all functions with the usual composition. The metacategory of all
groups is described similarly: Objects are all groups G, H, K; arrows are
all those functions f from the set G to the set H for which f:G—H
is a homomorphism of groups. There are many other metacategories:
All topological spaces with continuous functions as arrows: all compact
Hausdorff spaces with the same arrows; all ringed spaces with their
morphisms, ctc. The arrows of any metacategory are often called its
morphisms.

Since the objects of a metacategory correspond exactly to its identity
arrows, it is technically possible to dispense altogether with the objects
and deal only with arrows. The data for an arrows-only metacategory C
consist of arrows, certain ordered pairs <{g, f>. called the composable
pairs of arrows, and an operation assigning to each composable pair
{g.[> an arrow ¢ f, called their composite. We say “g f is defined”
for “{g, /> 1s a composable pair”.

With these data one defines an identity of C to be an arrow u such
that f u= f whenever the composite f u is defined and u g =g when-
ever u ¢ 1s defined. The data are then required to satisfy the following
three axioms:

(i) The composite (k g) f is defined if and only if the composite
k (g f)is defined. When either is defined, they are equal (and this
triple composite is written as kg f).

(1) The triple composite kg f is defined whenever both composites kg
and ¢ f are defined.

(i) For each arrow g of C there exist identity arrows v and ' of C
such that ¥' ¢ and ¢ u are defined.

In view of the explicit definition given above for identity arrows, the
last axiom is a quite powerful one; it implies that «’ and u are unique in
(iii), and it gives for each arrow g a codomain ' and a domain u. These
axioms are equivalent to the preceding ones. More explicitly, given a
metacategory of objects and arrows, its arrows, with the given composi-
tion, satisfy the “arrows-only” axioms; conversely, an arrows-only
metacategory satisfies the objects-and-arrows axioms when the identity
arrows, defined as above, are taken as the objects (Proof as exercise).
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2. Categories

A category (as distinguished from a metacategory) will mean any
interpretation of the category axioms within set theory. Here are the
details. A directed graph (also called a “diagram scheme”) is a set O of
objects, a set 4 of arrows, and two functions

dom

(1)

cod

In this graph, the set of composable pairs of arrows is the set
AxoA={{g.f>|9.feA and domg=codf},

called the “product over O”.
A category is a graph with two additional functions

0954, Axy,A—A,

c—id,, g, for—9g°f,
called identity and composition also written as g f, such that
dom(ida)=a=cod(ida), dom(g-f)=domf, cod(g-f)=codg (3)

for all objects a e O and all composable pairs of arrows {g, f> € A x oA,
and such that the associativity and unit axioms (1.1) and (1.2) hold.
In treating a category C, we usually drop the letters 4 and O, and write

ceC finC 4

for “c is an object of C” and “f is an arrow of C”, respectively. We also
write
hom(b,c)={f|fin C, domf=b, cod f=c} ()

for the set of arrows from b to c¢. Categories can be defined directly in
terms of composition acting on these “hom-sets” (§ 8 below); we do not
follow this custom because we put the emphasis not on sets (a rather special
category), but on axioms, arrows, and diagrams of arrows. We will
later observe that our definition of a category amounts to saying that a
category is a monoid for the product X ,, in the general sense described
in the introduction. For the moment, we consider examples.

0 is the empty category (no objects, no arrows);

1 is the category 9 with one object and one (identity) arrow;

2 is the category ® — 9 with two objects a, b, and just one arrow
a—b not the identity;
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3 is the category with three objects whose non-identity arrows are

arranged as in the triangle -Z—}'- ;

Ll is the category with two objects a, b and just two arrows a=3b

not the identity arrows. We call two such arrows parallel arrows.

In each of the cases above there is only one possible definition of
composition.

Discrete Categories. A category is discrete when every arrow is an
identity. Every set X is the set of objects of a discrete category (just add
one identity arrow x— x for each x € X), and every discrete category is
so determined by its set of objects. Thus, discrete categories are sets.

Monoids. A monoid is a category with one object. Each monoid is
thus determined by the set of all its arrows, by the identity arrow, and
by the rule for the composition of arrows. Since any two arrows have a
composite, a monoid may then be described as a set M with a binary
operation M x M — M which is associative and has an identity (= unit).
Thus a monoid is exactly a semigroup with identity element. For any
category C and any object ae C, the set hom(q, a) of all arrows a—a
is a monoid.

Groups. A group is a category with one object in which every arrow
has a (two-sided) inverse under composition.

Matrices. For each commutative ring K, the set Matry of all rect-
angular matrices with entries in K is a category; the objects are all
positive integers m, n, .. ., and each m X n matrix 4 is regarded as an arrow
A :n—m, with composition the usual matrix product.

Sets. If V is any set of sets, we take Ens, to be the category with
objects all sets X e V, arrows all functions f: X—Y, with the usual
composition of functions. By Ens we mean any one of these categories.

Preorders. By a preorder we mean a category P in which, given
objects p and p’, there is at most one arrow p—p’. In any preorder P,
define a binary relation < on the objects of P with p <p’ if and only if
there is an arrow p—p’ in P. This binary relation is reflexive (because
there is an identity arrow p— p for each p) and transitive (because arrows
can be composed). Hence a preorder is a set (of objects) equipped with
a reflexive and transitive binary relation. Conversely, any set P with
such a relation determines a preorder, in which the arrows p—p’ are
exactly those ordered pairs (p, p’> for which p <p’. Since the relation is
transitive, there is a unique way of composing these arrows; since it is
reflexive, there are the necessary identity arrows.

Preorders include partial orders (preorders with the added axiom
that p<p’ and p'<p imply p=p’) and linear orders (partial orders
such that, given p and p’, either p<p’ or p' < p).

Ordinal Numbers. We regard each ordinal number n as the linearly
ordered set of all the preceding ordinals n= {0, 1, ..., n— 1} ; in particular,
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0 is the empty set, while the first infinite ordinal is w=1{0,1,2,...}.
Each ordinal n is linearly ordered, and hence is a category (a preorder).
For example, the categories 1, 2, and 3 listed above are the preorders be-
longing to the (linearly ordered) ordinal numbers 1, 2, and 3. Another
example is the linear order w. As a category, it consists of the arrows

0—-1—>2—>53—...,

all their composites, and the identity arrows for each object.

A is the category with objects all finite ordinals and arrows f:m—n
all order-preserving functions (i < j in m implies f; < f; in n). This category
A, sometimes called the simplicial category, plays a central role
(Chapter VII).

Finord = Set,, is the category with objectsall finite ordinalsnand arrows
f:m—n all functions from m to n. This is essentially the category of all
finite sets, using just one finite set n for each finite cardinal number n.

Large Categories. In addition to the metacategory of all sets — which
is not a set — we want an actual category Set, the category of all small
sets. We shall assume that there is a big enough set U, the “universe”,
then describe a set x as “small” if it is a member of the universe, and take
Set to be the category whose set U of objects is the set of all small sets, with
arrows all functions from one small set to another. With this device
(details in § 7 below) we construct other familiar large categories, as
follows:

Set: Objects, all small sets; arrows, all functions between them.

Set,: Pointed sets: Objects, small sets each with a selected base point;
arrows, base-point-preserving functions.

Ens: Category of all sets and functions within a (variable) set V.

Cat: Objects, all small categories; arrows, all functors (§ 3).

Mon: Objects, all small monoids; arrows, all morphisms of monoids.

Grp: Objects, all small groups; arrows, all morphisms of groups.

Ab: Objects, all small (additive) abelian groups, with morphisms
of such.

Rng: All small rings, with the ring morphisms (preserving units)
between them.

CRng: All small commutative rings and their morphisms.

R-Mod: All small left modules over the ring R, with linear maps.

Mod-R: Small right R-modules.

K-Mod: Small modules over the commutative ring K.

Top: Small topological spaces and continuous maps.

Toph: Topological spaces, with arrows homotopy classes of maps.

Top,,: Spaces with selected base point, base point-preserving maps.

Particular categories (like these) will always appear in bold-face type.
Script capitals are used by many authors to denote categories.
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3. Functors

A functor is a morphism of categories. In detail, for categories C and B
afunctor T': C — Bwith domain C and codomain B consists of two suitably
related functions: The object function T, which assigns to each object
¢ of C an object Tc of B and the arrow function (also written T) which
assigns to each arrow f:c—c’ of C an arrow Tf: Tc— T¢’ of B, in such
a way that

T)=1g. T(g-f)=Tg T/, (1)

the latter whenever the composite g - f is defined in C. A functor, like a
category, can be described in the “arrows-only” fashion: It is a function T
from arrows f of C to arrows Tf of B, carrying each identity of C to
an identity of B and each composable pair {g, /> in C to a composable
pair (Tg, Tf> in B, with Tg-Tf=T(g- f).

A simple example is the power set functor 2 :Set— Set. Its object
function assigns to each set X the usual power set 2 X, with elements all
subsets SC X; its arrow function assigns to each f:X—Y that map
2 [P X —2Y which sends each SCX to its image f'S C Y. Since both
Py)=1,4 and P(g- f)=Pg Pf, this clearly defines a functor
2 :Set— Set.

Functors were first explicitly recognized in algebraic topology,
where they arise naturally when geometric properties are described by
means of algebraic invariants. For example, singular homology in a
given dimension # (n a natural number) assigns to each topological space
X an abelian group H,(X), the n-th homology group of X, and also to
each continuous map f: X — Y of spaces a corresponding homomorphism
H,(f): H{X)— H,(Y) of groups, and this in such a way that H, becomes
a functor Top— Ab. For example, if X = Y = S! is the circle, H,(S") = Z,
so the group homomorphism H,(f): Z— Z is determined by an integer d
(the image of 1); this integer is the usual “degree” of the continuous
map f: S'—S'. In this case and in general, homotopic maps f,g: X —Y
yield the same homomorphism H,(X)— H,(Y), so H, can actually be
regarded as a functor Toph— Grp, defined on the homotopy category.
The Eilenberg-Steenrod axioms for homology start with the axioms that
H,, for each natural number », is a functor on Toeph, and continue with
certain additional properties of these functors. The more recently
developed extraordinary homology and cohomology theories are also
functors on Teph. The homotopy groups n,(X) of a space X can also
be regarded as functors; since they depend on the choice of a base point
in X, they are functors Top, — Grp. The leading idea in the use of functors
in topology is that H, or =, gives an algebraic picture or image not just
of the topological spaces, but also of all the continuous maps between
them.
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Functors arise naturally in algebra. To any commutative ring K
the set of all non-singular n x n matrices with entries in K is the usual
general linear group GL,(K); moreover, each homomorphism f: K—K’
of rings produces in the evident way a homomorphism GL, f: GL,(K)
—GL,(K") of groups. These data define for each natural number n a
functor GL,: CRng— Grp. For any group G the set of all products
of commutators xyx~!y~!(x, ye G) is a normal subgroup [G, G] of G,
called the commutator subgroup. Since any homomorphism G—H
of groups carries commutators to commutators, the assignment
G+—[G, G] defines an evident functor Grp— Grp, while G— G/[G, G]
defines a functor Grp— Ab, the factor-commutator functor. Observe,
however, that the center Z(G) of G (all ae G with ax = xa for all x) does
not naturally define a functor Grp— Grp, because a homomorphism
G— H may carry an element in the center of G to one not in the center of H.

A functor which simply “forgets” some or all of the structure of an
algebraic object is commonly called a forgetful functor (or, an underlying
functor). Thus the forgetful functor U : Grp—Set assigns to each group G
the set U G of its elements (“forgetting” the multiplication and hence the
group structure), and assigns to each morphism f: G— G’ of groups the
same function f, regarded just as a function between sets. The forgetful
functor U : Rng— Ab assigns to each ring R the additive abelian group
of R and to each morphism f: R— R’ of rings the same function, regarded
just as a morphism of addition.

Functors may be composed. Explicitly, given functors

CLBS%A
between categories 4, B, and C, the composite functions
c—>S(Tc) f—=>S(Tf)

on objects ¢ and arrows f of C define a functor S= T: C— A, called the
composite (in that order) of § with T. This composition is associative.
For each category B there is an identity functor Iy : B— B, which acts as
an identity for this composition. Thus we may consider the metacategory
of all categories: its objects are all categories, its arrows are all functors
with the composition above. Similarly, we may form the category
Cat of all small categories — but not the category of all categories.

An isomorphism T:C— B of categories is a functor T from C to B
which is a bijection, both on objects and on arrows. Alternatively, but
equivalently, a functor T: C— B is an isomorphism if and only if there
is a functor S: B—C for which both composites S- 7T and T-S are
identity functors; then S is the two-sided inverse S=T!.

Certain properties much weaker than isomorphism will be useful.

A functor T: C—B is full when to every pair ¢, ¢’ of objects of C
and to every arrow g: Tc— T¢" of B, there is an arrow f:c—c¢' of C
with g = T f. Clearly the composite of two full functors is a full functor.
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A functor T : C — B is faithful (or an embedding) when to every pair
¢, ¢’ of objects of C and to every pair f}, f,:c—¢ of parallel arrows of
Ctheequality Tf, =Tf, : Tc — Tc implies f, = f,. Again, composites of
faitbful functors are faithful. For example, the forgetful functor Grp— Set
is faithful but not full and not a bijection on objects.

These two properties may be visualized in terms of hom-sets (see (2.5)).
Given a pair of objects ¢, ¢’ € C, the arrow function of T: C— B assigns
to each f:c—c an arrow Tf:Tc— Tc¢ and so defines a function

T, . hom(c, ¢y=hom(Tc, Tc'), f—Tf.

Then T is full when every such function is surjective, and faithful when
every such function is injective. For a functor which is both full and
faithful (i.e., “fully faithful”), every such function is a bijection, but this
need not mean that the functor itself is an isomorphism of categories, for
there may be objects of B not in the image of 7.

A subcategory S of a category C is a collection of some of the objects
and some of the arrows of C, which includes with each arrow f both the
object dom f and the object cod f, with each object s its identity arrow
1, and with each pair of composable arrows s—s'—s” their composite.
These conditions ensure that these collections of objects and
arrows themselves constitute a category S. Moreover, the injection
(inclusion) map S— C which sends each object and each arrow of S to
itself (in C) is a functor, the inclusion functor. This inclusion functor is
automatically faithful. We say that S is a full subcategory of C when the
inclusion functor S—C is full. A full subcategory, given C, is thus
determined by giving just the set of its objects, since the arrows between
any two of these objects s, s" are all morphisms s— s’ in C. For example,
the category Set, of all finite sets is a full subcategory of the category Set.

Exercises

1. Show how each of the following constructions can be regarded as a functor:
The field of quotients of an integral domain; the Lie algebra of a Lie group.

2. Show that functors 1—C, 2—C, and 3— C correspond respectively to objects,
arrows, and composable pairs of arrows in C.

3. Interpret “functor” in the following special types of categories: (a) A functor
between two preorders is a function T which is monotonic (i.e., p<p’ implies
Tp < Tp').(b) Afunctor between two groups (one-object categories) is a morphism
of groups. (c) If G is a group, a functor G—Set is a permutation representation
of G, while G—Matry is a matrix representation of G.

4. Prove that there is no functor Grp— Ab sending each group G to its center
(consider Sy — S3 — S, the symmetric groups).

5. Find two different functors T: Grp— Grp with object function T(G)=G the
identity for every group G.
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4. Natural Transformations

Given two functors S,T:C—B, a natural transformation t:S--T
is a function which assigns to each object ¢ of C an arrow 1, =7¢: Sc—T¢
of B in such a way that every arrow f:c—c¢ in C yields a diagram

Sce—=%>Tc

C
Jf SfJ J Tf (1)

¢, Sc—<T¢

which is commutative. When this holds, we also say that 7,:Sc—T¢
is natural in c. If we think of the functor S as giving a picture in B of
(all the objects and arrows of) C, then a natural transformation t is a
set of arrows mapping (or, translating) the picture S to the picture 7,
with all squares (and parallelograms!) like that above commutative:

a\ Sa—i‘;”—>Ta\{f‘

h b Sh Sh—2t | —Th
c Sc——n—aTc ’
We call ta,th,tc, ..., the components of the natural transformation 7.

A natural transformation is often called a morphism of functors;
a natural transformation t with every component tc¢ invertible in B
is called a natural equivalence or better a natural isomorphism; in symbols,
7:S=~T. In this case, the inverses (t¢)~! in B are the components of a
natural isomorphism 7' : T S.

The determinant is a natural transformation. To be explicit, let
dety M be the determinant of the nxn matrix M with entries in the
commutative ring K, while K* denotes the group of units (invertible
elements) of K. Thus M is non-singular when dety M is a unit, and dety
is a morphism GL,K-— K* of groups (an arrow in Grp). Because the
determinant is defined by the same formula for all rings K, each morphism
S K—K' of commutative rings leads to a commutative diagram

GL, K% , K*
GL, fl jf* (2)
GL, K%t K'*.

This states that the transformation det: GL,—( )* is natural between
two functors CRng— Grp.

For each group G the projection pg: G— G/[G, G] to the factor-
commutator group defines a transformation p from the identity functor
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on Grp to the factor-commutator functor Grp— Ab— Grp. Moreover,
p is natural, because each group homomorphism f: G— H defines the
evident homomorphism f’ for which the following diagram commutes:

G——G/[G,G]
fl 1f’ (3)
H—P= H/[H H].

The double character group yields a suggestive example in the
category Ab of all abelian groups G. Let D(G) denote the character
group of G, so that DG = hom(G, R/Z) is the set of all homomorphisms
t: G—R/Z with the familiar group structure, where R/Z is the additive
group of real numbers modulo 1. Each arrow f: G'— G in Ab determines
an arrow D f:DG— DG (opposite direction!) in Ab, with
DfNt=tf:GC—R/Z for each t; for composable arrows,
D(ge f)=D f-Dg. Because of this reversal, D is not a functor (it is a
“contravariant” functor on Ab to Ab, see §11.2); however, the twice
iterated character group G+ D(D G) and the identity I(G)= G are both
functors Ab— Ab. For each group G there is a homomorphism

16: G—D(DG)

obtained in a familiar way: To each ge G assign the function
169 : DG—R/Z given for any character t € DG by t—tg; thus (159)t=t(g).
One verifies at once that t is a natural transformation t:I-DD; this
statement is just a precise expression for the elementary observation that
the definition of r depends on no artificial choices of bases, generators, or
the like. In case G is finite, 7 is an isomorphism; thus, if we restrict
all functors to the category Ab, of finite abelian groups, 7 is a natural
isomorphism.

On the other hand, for each finite abelian group G there is an iso-
morphism 64 : G= DG of G to its character group, but this isomorphism
depends on a representation of G as a direct product of cyclic groups
and so cannot be natural. More explicitly, we can make D into a co-
variant functor D’: Ab,,— Ab,; on the category Ab,; with objects
all finite abelian groups and arrows all isomorphisms f between such
groups, setting D'G=DG and D'f=Df"'. Then 65:G—D'G is a
map ¢ : I— D’ of functors Ab, ;— Ab, ;, but it is not natural in the sense
of our definition.

A parallel example is the familiar natural isomorphism of a finite-
dimensional vector space to its double dual.

Another example of naturality arises when we compare the category
Finord of all finite ordinal numbers n with the category Set, of all finite
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sets (in some universe U). Every ordinal n={0,1,...,n— 1} is a finite
set, so the inclusion S is a functor S : Finord—Set,. On the other hand,
each finite set X determines an ordinal number n= # X, the number of
elements in X; we may choose for each X a bijection 6y : X— # X. For
any function f : X — Y between finite sets we may then define a corre-
sponding function #f : #X — # Y between ordinals by #f = Oy f 0}1;
this ensures that the diagram

Xﬁ—»#X

e

Y__"Y_,#y

will commute, and makes # a functor # :Set,— Finord. If X is itself
an ordinal number, we may take fx to be the identity. This ensures that

the composite functor # - § is the identity functor I’ of Finord. On the
other hand, the composite S # is not the identity functor I : Set,— Set
because it sends each finite set X to a special finite set — the ordinal number
n with the same number of elements as X. However, the square diagram
above does show that 0:1—=»S # is a natural isomorphism. All told we
have I~ So 4, I'=#-8S.

More generally, an equivalence between categories C and D is defined
to be a pair of functors S: C— D, T: D— C together with natural iso-
morphisms I.= T- S, I, ~S-T. This example shows that this notion
(to be examined in §IV.4) allows us to compare categories which are
“alike” but of very different “sizes”.

We shall use many other examples of naturality. As Eilenberg-
Mac Lane first observed, “category” has been defined in order to be able
to define “functor” and “functor”” has been defined in order to be able to
define “natural transformation”.

Exercises

1. Let S be a fixed set, and X* the set of all functions h: S— X. Show that X — X*
is the object function of a functor Set—Set, and that evaluation e, : X5 x S—» X,
defined by e(h, s) = h(s), the value of the function % at se S, is a natural trans-
formation.

2. If H is a fixed group, show that G H x G defines a functor H x — : Grp— Grp,
and that each morphism f : H— K of groups defines a natural transformation
Hx —=Kx —.

3. If B and C are groups (regarded as categories with one object each) and
S, T:B—C are functors (homomorphisms of groups), show that there is a
natural transformation S—=» T if and only if S and T are conjugate; i.e., if and
only if there is an element he C with Tg=h(Sg)h~! for allge B.
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4. For functors S, T:C— P where C is a category and P a preorder, show that
there is a natural transformation ST (which is then unique) if and only if
Sc¢ = Tc for every object ce C.

5. Show that every natural transformation t : §-=s T defines a function (also called 1)
which sends each arrow f:c— ¢ of C to an arrow tf:Sc— Tc of B in such a
way that Tgetf = t(g /) = tg- S ffor each composable pair (g, f >. Conversely,
show that every such function © comes from a unique natural transformation
with 7, = (1,). (This gives an “arrows only” description of a natural transfor-
mation.)

6. Let F be a field. Show that the category of all finite-dimensional vector spaces
over F (with morphisms all linear transformations) is equivalent to the category
Matr, described in § 2.

5. Monics, Epis, and Zeros

In categorical treatments many properties ordinarily formulated by
means of elements (elements of a set or of a group) are instead formulated
in terms of arrows. For example, instead of saying that a set X has just
one element, one can say that for any other set Y there is exactly one
function Y— X. We now formulate a few more instances of such methods
of “doing without elements”.

An arrow e:a—b is invertible in C if there is an arrow e :b—a
in C with e'e=1, and ee’=1,. If such an ¢’ exists, it is unique, and is
written as ¢’ =e~!. By the usual proof, (e;e,) ! =e; le; !, provided the
composite e e, is defined and both e, and e, are invertible. Two objects
a and b are isomorphic in the category C if there is an invertible arrow
(an isomorphism) e:a—b; we write a > b. The relation of isomorphism
of objects is manifestly reflexive, symmetric, and transitive.

An arrow m:a—b is monic in C when for any two parallel arrows
1, f2:d—a the equality mo f; =m- f, implies f, = f,; in other words,
m is monic if it can always be cancelled on the left (is left cancellable).
In Set and in Grp the monic arrows are precisely the injections (mono-
morphisms) in the usual sense; i.e., the functions which are one-one into.

An arrow h:a—b is epi in C when for any two arrows g,,g,:b—c
the equality g, - h =g, - himplies g, = g, ; in other words, h is epi when it is
right cancellable. In Set the epi arrows are precisely the surjections
(epimorphisms) in the usual sense; i.e., the functions onto.

For an arrow h:a—b, a right inverse is an arrow r:b—a with
hr=1,. A right inverse (which is usually not unique) is also called a
section of h. If h has a right inverse, it is evidently epi; the converse holds
in Set, but fails in Grp. Similarly, a left inverse for h is called a retraction
for 1, and any arrow with a left inverse is necessarily monic. If gh=1,,
then g is a split epi, h a split monic, and the composite f = hg is defined
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and is an idempotent. Generally, an arrow f:b—b is called idempotent
when f? = f; an idempotent is said to split when there exist arrows g
and h such that f=hg and gh=1.

An object ¢ is terminal in C if to each object a in C there is exactly
one arrow a—t. If ¢ is terminal, the only arrow t—t is the identity, and
any two terminal objects of C are isomorphic in C. An object s is initial
in C if to each object a there is exactly one arrow s—a. For example,
in the category Set, the empty set is an initial object and any one-point
set is a terminal object. In Grp, the group with one element is both
initial and terminal.

A null object z in C is an object which is both initial and terminal.
If C has a null object, that object is unique up to isomorphism, while for
any two objects a and b of C there is a unique arrow a—z—b (the
composite through z), called the zero arrow from a to b. Any composite
with a zero arrow is itself a zero arrow. For example, the categories Ab
and R-Med have null objects (namely 0!), as does Set,, (namely the one-
point set).

A groupoid is a category in which every arrow is invertible. A typical
groupoid is the fundamental groupoid n(X) of a topological space X.
An object of n(X) is a point x of X, and an arrow x—x' of n(X) is a
homotopy class of paths f from x to x'. (Such a path f is a continuous
function I— X, I the closed interval I =[O0, 1], with f(0)=x, f(1)=X/,
while two paths f, g with the same end-points x and x’ are homotopic
when there is a continuous function F:IxI—X with F(t,0)= f(1),
F(t,1)=g(t),and F(0, s)=x, F(1, s)= x' for all s and ¢ in 1.) The composite
of paths g : x'— x"” and f: x—x' is the path h which is “f followed by g¢”,
given explicitly by

h(t)= f(21), 0=tz1)2,

=g(2t—-1), 1/2§_t§1, (1)

Composition applies also to homotopy classes, and makes n(X) a
category and a groupoid (the inverse of any-path is the same path traced
in the opposite direction).

Since each arrow in a groupoid G is invertible, each object x in
G determines a group homg(x, x), consisting of all g: x— x. If there is
anarrow f: x— x’, the groups homg(x, x) and homg(x’, x) areisomorphic,
under g+ fgf~! (i.e, under conjugation). A groupoid is said to be
connected if there is an arrow joining any two of its objects. One may
readily show that a connected groupoid is determined up to isomorphism
by a group (one of the groups homg(x, x)) and by a set (the set of all
objects). In this way, the fundamental groupoid n(X) of a path-connected
space X is determined by the set of points in the space and a group
hom,x,(x, x) — the fundamental group of X.
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Exercises

1. Find a category with an arrow which is both epi and monic, but not invertible
(e.g., dense subset of a topological space).

. Prove that the composite of monics is monic, and likewise for epis.

. If a composite g - f is monic, so is f. Is this true of g?

. Show that the inclusion Z—Q 1s epi in the category Rng.

. In Grp prove that every epi is surjective (Hint. If ¢ : G— H has image M not H,
use the factor group H/M if M has index 2. Otherwise, let Perm H be the group
of all permutations of the set H, choose three different cosets M, Mu and Mv
of M, define o0 € PermH by o(xu) = xv, 6(xv)= xu for xe M, and o otherwise
the identity. Let y : H— Perm H send each h to left multiplication y, by h, while
wu=0""',0. Then po =y, but p+y").

6. In Set, show that all idempotents split.

7. An arrow f : a—b in a category C is regular when there exists an arrow g : b—a
such that fgf = f. Show that f is regular if it has either a left or a right inverse,
and prove that every arrow in Set with a # (¥ is regular.

8. Consider the category with objects (X, e, t ), where X isaset,ec X,andt: X — X,
and with arrows f:{(X,e,t)— (X', ¢,t'> the functions f on X to X' with
fe=e¢ and ft=tf. Prove that this category has an initial object in which X
is the set of natural numbers, e =0, and ¢ is the successor function.

9. If the functor T:C— B is faithful and Tf is monic, prove f monic.

Wb W N

6. Foundations

One of the main objectives of category theory is to discuss properties
of totalities of Mathematical objects such as the “set” of all groups or
the “set” of all homomorphisms between any two groups. Now it is the
custom to regard a group as a set with certain added structure, so we
are here proposing to consider a set of all sets with some given structure.
This amounts to applying a comprehension principle: Given a property
@(x) of sets x, form the set {x|@(x)} of all sets x with this property.
However such a principle cannot be adopted in this generality, since it
would lead to some of the famous paradoxical sets, such as the set of all
sets not members of themselves.

For this reason, the standard practice in naive set theory, with the
usualmembershiprelation e, is to restrict theapplication of the comprehen-
sion principle. One allows the formation from given sets u, v of the set
{u,v} (the set with exactly u and v as elements), of the ordered pair
{u,v), of an infinite set (the set w={0,1,2,...} of all finite ordinals),
and of

The Cartesian Product uxv={x,y>|xeu and yev},
The Power Set Pu={v|vCu},
The Union (of a set x of sets) wx={y|yez for some zex}.
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Finally, given a property ¢(x) (technically, a property expressed in
terms of x, the membership relation, and the usual logical connectives,
including “for all sets ¢” and “there exists a set t”) and given a set u one
allows

Comprehension for elements of u: {x|xeu and @(x)}.

In words: One allows the set of all those x with a given property ¢
which are members of an already given set u.

To this practice, we add one more assumption: The existence of a
universe. A universe is defined to be a set U with the following (somewhat
redundant) properties:

(i) xeue U implies xe U,

(i) ueU and ve U imply {u,v}, <u,v), and uxveU.

(iii) xe U implies xe U and uxeU,

(iv) we U (here w=1{0,1,2,...} is the set of all finite ordinals),

(v) if f:a—bis a surjective function withae Uand bC U, thenbe U.

These closure properties for U ensure that any of the standard opera-
tions of set theory applied to elements of U will always produce elements
of U; in particular, w e U provides that U also contains all the usual
sets of real numbers and related infinite sets. We can then regard
“ordinary” Mathematics as carried out exclusively within U (ie., on
elements of U) while U itself and sets formed from U are to be used for
the construction of the desired large categories.

Now hold the universe U fixed, and call a set ue U a small set. Thus
the universe U is the set of all small sets. Similarly, call a function f: u—v
small when u and v are small sets. This implies that f itself can be regarded
as a small set — say, as the ordered triple {u, G, vy, with G,Cuxv
the usual set of all {x, y> with xeu, y = fx. The limited comprehension
principle thus allows the construction of the set A of all those sets which
are small functions, since these functions are all elements of U. We can
now define the category Set of all small sets to be that category in which U
(the set of all small sets) is the set of objects and A4 (the set of all small
functions) is the set of arrows. Henceforth Set will always denote this
category. h

A small group is similarly a small set with a group structure; i.e., is
an ordered pair {u, m)», where u is a small set and m : u x u—u a function
(binary operation on u) satisfying the usual group axioms. Since any
small group is an element of U, we may form the set of all small groups
and the set of all homomorphisms between two small groups. They
constitute the category Grp of all small groups.

The same process will construct the category of all small Mathematical
objects of other types. For example, a category is small if the set of its
arrows and the set of its objects are both small sets; we will soon form the
category Cat of all small categories. Observe, however, that Set is not
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a small category, because the set U of its objects is not a small set (other-
wise U € U, and this is contrary to the axiom of regularity, which asserts
that there are no infinite chains ... x,ex,_, € x,_, € -:* € X,). Similarly,
Grp is not small.

This description of the foundations may be put in axiomatic form.
We are assuming the standard Zermelo-Fraenkel axioms for set theory,
plus the existence of a set U which is a universe. The Zermelo-Fraenkel
axioms (on a membership relation €) are: Extensionality (sets with the
same elements are equal), existence of the null set, existence of the sets
{u, v}, <u,v>, Pu, and Ux for all sets u, v, and x, the axiom of infinity,
the axiom of choice, the axiom of regularity, and the replacement axiom:

Replacement. Let a be a set and ¢(x, y) a property which is functional
for x in a, in the sense that ¢(x, y} and ¢(x, y) for xea imply y=y/,
and that for each x e a there exists a y with ¢(x, y). Then there exists a
set consisting of all those y such that ¢(x, y) holds for x € a.

Briefly speaking, the replacement axiom states that the image of a set
a under a “function” ¢ is a set. It can be shown that the replacement
axiom implies the comprehension axiom, as stated above. Moreover,
our conditions defining a universe U imply that all the sets x e U (all
the small sets) do satisfy the Zermelo-Fraenkel axioms — for example,
condition (v) in the definition of a universe corresponds to replacement.
We shall see that our assumption of one universe suffices for the usual
purposes of category theory.

Some authors assume instead sets and “classes”, using, for these
concepts, the Godel-Bernays axioms. To explain this, define a class C
to be any subset CC U of the universe. Since x eue U implies x e U,
every element of U is also a subset of U, therefore every small set is also a
class; but conversely, some classes (such as U itself) are not small sets.
These latter are called the proper classes. Together, the small sets and the
classes satisfy the standard Go6del-Bernays axioms (see Godel [1940]).

A large category is one in which both the set of objects and the set of
arrows are classes (proper or otherwise). Using only small sets and all
classes one can describe many of the needed categories — in particular,
our categories Set, Grp, etc. are proper classes, hence are large categories
in this sense. Initially, category theory was restricted to the study of small
and large categories (and based on the Godel-Bernays axioms). However,
we will have many occasions to form categories which are not classes.
One such is the category Cls of all classes: Its objects are all classes;
its arrows all functions f: C— C’ between classes. Then the set of objects
of Cls is the set (U) of all subsets of U; it is not a class; in fact, its cardinal
number is larger than the cardinal of the universe U. Another useful
category is Cat/, the category of all large categories. It is not a class.

In the sequel we shall drop the notation U for the chosen universe
and speak simply of small sets, of classes, and of sets, observing that the
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“sets” include the small sets and the classes, as well as many other sets
such as 2(U), 22 (U), {U}, and the like. Note, in particular, that {U}
is a set which has only one element (namely, the universe U). It is thus
intuitively very “small”, but it 1s not a small set in our sense; {U}e U
would imply U e U, a contradiction to the axiom of regularity. Thus
“small set” for us means a member of the universe, and not a set with a
small cardinal number.

Our foundation by means of one universe does provide, within set
theory, an accurate way of discussing the category of all small sets and all
small groups, but it does not provide sets to represent certain meta-
categories, such as the metacategory of all sets or that of all groups.
Grothendieck uses an alternative device. He assumes that for every set X
there is a universe U with X e U. This stronger assumption evidently
provides for each universe U a category of all those groups which are
members of U. However, this does not provide any category of all
groups. For this reason, there has been considerable discussion of a
foundation for category theory (and for all of Mathematics) not based
on set theory. This i1s why we initially gave the definition of a category C
in a set-free form, simply by regarding the axioms as first-order axioms
on undefined terms “object of C”, “arrow of C”, “composite”, “identity”,
“domain”, and “codomain”. In this style, axioms for the elementary
(i.e., first-order) theory of the category of all sets, as an alternative to the
usual axioms on membership can be given—as an “elementary topos”
(cf. Mac Lane-Moerdijk [1992]).

Exercises

1. Given a universe U and a function f : I-»b with domain I € U and with every
value f; an element of U, for i € I, prove that the usual cartesian product IT, f; is
an element of U.

2. (a) Given a universe U and a function f : [—b with domain I € U, show that
the usual union v, f; is a set of U.

(b) Show that this one closure property of U may replace condition (v) and the
condition x € U implies Ux e U in the definition of a universe.

7. Large Categories

In many relevant examples, a category consists of all (small) Mathe-
matical objects with a given structure, with arrows all the functions which
preserve that structure. We list useful such examples with their monics.
Ab, the category of all small abelian groups, has objects all small
(additive) abelian groups A, B,... and arrows all homomorphisms
f 1 A— B of abelian groups, with the usual composition. In this category,
an arrow is monic if and only if it is a monomorphism (one-one into).
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Also, an epimorphism (a homomorphism onto) is clearly epi. Conversely,
a homomorphism f:A— B which is epi as an arrow must be onto
as a function. For, otherwise, the quotient group B/fA4 is nonzero, so
there are then two different morphisms B— B/f 4, the projection p
and the zero morphism 0, which have p f =0=0, a contradiction to the
assumption that f is epi. In Ab, the zero group is both initial and terminal.

A small ring R is a small set with binary operations of addition and
multiplication which satisfy the usual axioms for a ring — including the
existence of a two-sided identity (= unit) 1 for multiplication. Rng
will denote the category of all small rings; the objects are the small
rings R, the arrows f:R—S the (homo)morphisms of rings — where
a morphism of rings is assumed to carry the unit of R to that of S. In
this category the zero ring is terminal, and the ring Z of integers is
initial since Z— R is the unique arrow carrying 1 € Z to the unit of the
ring R. The monic arrows are precisely the monomorphisms of rings.
Every epimorphism of rings is epi as an arrow, but the inclusion Z—Q
of Z in the field Q of rational numbers is epi, but not an epimorphism.

If R is any small ring, the category R-Mod has objects all small
left R-modules 4, B,... and arrows f:A— B all morphisms of R-
modules (R-linear maps). In this category monics are monomorphisms,
epis are epimorphisms, and the zero module is initial and terminal.
If Fis a field, the category F-Med, also written Vetp, is that of all vector
spaces (linear spaces) over F. By Mod-R we denote the category of all
small right R-modules. If R and S are two rings, R-Med-S is the category
of all small R-S-bimodules (left R-, right S-modules A with r(as)=(ra)s
for all re R, a€ 4, and se S). One may similarly construct categories of
small algebraic objects of any given type.

The category Top of topological spaces has as objects all small
topological spaces X,Y,... and as morphisms all continuous maps
f: X—Y. Again, the monics are the injections and the epis the surjections.
The one-point space is terminal, and the empty space is initial. Similarly,
one may form the category of all small Hausdorff spaces or of all small
compact Hausdorff spaces.

The category Toph has as objects all small topological spaces X, ¥, ...,
while a morphism o: X—Y is a homotopy class of continuous maps
f: X—Y;in other words, two homotopic maps f ~g: X — Y determine
the same morphism from X to Y. The composition of morphisms is the
usual composition of homotopy classes of maps. In this category, the
homotopy class of an injection need not be a monic, as one may see, for
example, for the injection of a circle into a disc (as the bounding circle
of that disc). This category Toph, which arises naturally in homotopy
theory, shows that an arrow in a category need not be the same thing
as a function. There are a number of other categories which are useful
in homotopy theory: For example, the categories of C W-complexes,
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of simplicial sets, of compactly generated spaces (see § VIL8), and of
Kan complexes.

Set, will denote the category of small pointed sets (often called “based”
sets). By a pointed set is meant a nonvoid set P with a selected element,
written * or xp and called the “base point” of P. A map f:P—Q of
pointed sets is a function on the set P to the set Q which carries base
point to base point; i.e., which satisfies f(xp) = *,. The pointed sets with
these maps as morphisms constitute the category Set,. In this category
the set {*} with just one point (the base point) is both an initial and a
terminal object. A morphism f is monic in Set,, if and only if it has a left
inverse, epi if and only if it has a right inverse, and invertible if and only
if it is both monic and epic.

Similarly, Top, denotes the category of small pointed topological
spaces: the objects are spaces X with a designated base point *; the mor-
phisms are continuous maps f: X — Y which send the base point of X
to that of Y. Again, Toph, is the category with objects pointed spaces and
morphisms homotopy classes of continuous base-point-preserving maps
(where also the homotopies are to preserve base points). Both categories
arise in homotopy theory, where the choice of a base point is always
needed in defining the fundamental group or higher homotopy groups
of a space, cf. §5.

Binary relations can be regarded as the arrows of a category Rel.
The objects are all small sets X, Y, ..., and the arrows R: X — Y are the
binary relations on X to Y; that is, the subsets RCXxY. If §: Y—>Z
is another such relation, the composite relation SR : X —Z is defined
to be the usual relative product

SeR={{x, z) | for some er, {x,y>eR and {y,z>eS}.

The identity arrow X — X is the identity relation on X, consisting of all
{x, x) for x € X. The axioms for a category evidently hold. This category
Rel contains Set as a subcategory on the same objects, where each func-
tion f: X — Y is interpreted as the relation consisting of all pairs {x, fx)
for x € X. But Rel has added structure: For each R: X—Y there is a
converse relation R : Y— X consisting of all pairs {y, x> with {x, y> e R.

A concrete category is a pair {(C, U) where C is a category and U
a faithful functor U: C—Set. Since U is faithful, we may identify each
arrow f of C with the function U f. In these terms, a concrete category
may be described as a category C in which each object ¢ comes equipped
with an “underlying” set U c, each arrow f:b—c is an actual function
Ub— U ¢, and composition of arrows is composition of functions. Many
of the explicit large categories described above are concrete categories
in this sense, each relative to its evident forgetful functor U, but this is not
so for Toph or for Rel. For the applications, the notion of category is
simpler (and more “abstract”) than that of concrete category.
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8. Hom-Sets
For objects a and b in the category C the hom-set

hom¢(a,b)={f|f isan arrow f:a—b in C}

consists of all arrows of the category with domain a and codomain b.
The notation for this set is frequently and variously abbreviated as

hom(a, b) = C(a, b) = hom(a, b) =(a, b)=(a, b)c .

A category may be defined in terms of hom-sets as follows. A small
category is given by the following data:

(i) A set of objects a,b,¢,...;

(ii) A function which assigns to each ordered pair <{a,b> of objects a
set hom (a, b);

(iii) For each ordered triple <{a, b, ¢} of objects a function

hom(b, ¢) x hom(a, b)— hom(a, ¢),

called composition, and written (g, f>~>gef for gehom(b,c),
f € hom(a, b);

(iv) Foreach object b,anelement 1, e hom (b, b), called the identity of b.

These data are required to satisfy the familiar associativity and unit
axioms (1.1) and (1.2), plus an added “disjointness” axiom:

(v) If <a,b> +<{d,b"), then hom(a, b)nhom(a', b’)=0, where @ is
the empty set.

In particular, the associativity axiom may be restated as the require-
ment that the following diagram, with each arrow given in the evident
way by composition, be a commutative diagram:

hom(c, d) x hom(b, ¢) x hom(a, b)—hom(b, d) x hom(a, b)

hom(c, d) x hom(a, c)———hom(qa, d) .

This definition of a category is equivalent to the original definition
of §2. Axiom (v) above requires that “distinct” hom-sets be disjoint;
it is included to ensure that each arrow have a definite domain and a
definite codomain. Should this axiom fail in an example, it can be readily
reinstated by adjusting the hom-sets so that they do become disjoint.
For example, we can replace each original set hom(a, b) by the set
{a} x hom(a, b) x {b}; this amounts to “labelling” each fechom(a,b)
with its domain a and codomain b. Some authors omit this axiom (v).
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A functor T: C— B may be described in terms of hom-sets as the
(usual) object function T together with a collection of functions

T. . :Clc,c)—>B(Tc, TC)

(namely, the functions f+ T, for f e C(c, ¢')) such that each T, ;1. =1,
and such that every diagram

C(,")yxCl(c,)———C(c, ")
Ter,ern X Teocr Te,cr

B(Tc, Tc")yx B(Tc, Tc')——B(Tc, Tc"),

with horizontal arrows the composition in B and C, is commutative.

We leave the reader to describe a natural transformation 7:S-T
in terms of functions C(c, ¢')—B(Sc, T¢).

In many relevant examples, the hom-sets of a category themselves
have some structure; for instance, 1n the category of vector spaces V, W, ...
over a fixed field, each hom(V, W) is itself a vector space (of all
linear transformations V— W), The simplest such case is that in
which the hom-sets are abelian groups. Formally, define an Ab-category
(also called a preadditive category) to be a category 4 in which each
hom-set A(a, b) is an additive abelian group and for which composition
is bilinear: For arrows f, f':a—b and ¢,¢ : b—c,

G+9)(f+f)=gof+gef'+gf+g-f".

Thus Ab, R-Mod, Med-R, and the like are all 4 b-categories.
Because the composition {g, f>+>go f is bilinear,

A(b, c) x A(a, by— A(a, ¢),
it can also be written (using the tensor product ® = ® ) as a linear map
A(b, c)® A(a, b)— A(a, c)

and the Ab-category 4 may be described completely in these terms
(without assuming ahead of time that it is a category). Thus an Ab-
category is given by the data

(i} A set of objects a,b, ¢, ...;

(i) A function which assigns to each ordered pair of objects <b, ¢}
an abelian group A(b, ¢);
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(i) For each ordered triple of objects (a, b, ¢> a morphism
A(b, c)® A(a, b)— Afa, 0)

of abelian groups called composition, and written g® f+—g- f;

(iv) For each object, a morphism Z— A(a, a). (Here Z is the additive
abelian group of integers; this morphism is completely determined by
the image of 1 € Z, which may be written as 1,.)

These data are required to satisfy the associative and unit laws
for composition, stated as in (1.1) and (1.2), or by diagrams. The definition
of Ab-category is just like the definition of category by hom-sets: Set is
replaced by Ab, cartesian product x of sets by tensor product in Ab,
and the one-point set * is replaced by Z. There is an evident generalization
to categories A which have hom-objects A(b, ¢) in a category like Ab
which is equipped with a multiplication like ® and a unit like Z for this
multiplication. These are called “enriched categories™ (Kelly [1982]).

If A and B are Ab-categories, a functor T: A— B is said to be additive
when every function T: A(a,a)—B(Ta, Ta’) is a homomorphism of
abelian groups; that is, when T(f + f') = Tf + T for all parallel pairs f
and f'. Clearly, the composite of additive functors is additive. Ab-cat
will denote the category of all small 4b-categories, with arrows additive
functors.

Notes.

These notes, like those at the end of later chapters, are informal remarks
on the background and prospects of our subject, with references to the biblio-
graphy (for example, H. Pétard [1980b] refers to the second article by Pétard listed
for the year 1980).

The fundamental idea of representing a function by an arrow first appeared
in topology about 1940, probably in papers or lectures by W. Hurewicz on relative
homotopy groups; see [1941].

His initiative immediately attracted the attention of R. H. Fox (see Fox [1943])
and N. E. Steenrod, whose [1941] paper used arrows and (implicitly) functors;
see also Hurewicz-Steenrod [19417]). The arrow f : X — Y rapidly displaced the
occasional notation f(X)C Y for a function. It expressed well a central interest of
topology. Thus a notation (the arrow) led to a concept (category).

Commutative diagrams were probably also first used by Hurewicz.

Categories, functors, and natural transformations themselves were discovered
by Eilenberg-Mac Lane [1942a] in their study of limits (via natural transformations)
for universal coefficient theorems in Cech cohomology. In this paper commutative
diagrams appeared in print (probably for the first time). Thus Ext was one of the
first functors considered. A direct treatment of categories in their own right appeared
in Eilenberg-Mac Lane [1945]. Now the discovery of ideas as general as these is
chiefly the willingness to make a brash or speculative abstraction, in this case sup-
ported by the pleasure of purloining words from the philosophers: “Category”
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from Aristotle and Kant, “Functor” from Carnap ( Logische Syntax der Sprache),
and “patural transformation” from then current informal parlance. Initially,
categories were used chiefly as a language, notably and effectively in the Eilenberg-
Steenrod axioms for homology and cohomology theories. With recent increasing
use, the question of proper foundations has come to the fore. Here experts are still
not in agreement; our present assumption of “one universe” is an adequate stopgap,
not a forecast of the future.

Category theory asks of every type of Mathematical object: “What are the mor-
phisms?”; it suggests that these morphisms should be described at the same time
as the objects. Categorists, however, ordinarily name their large categories by the
common name of the objects; thus Set, Cat. Only Ehresmann [1965] and his school
have the courage to name each category by the common name of its arrows:
our Cat is their category of functors. This emphasis on (homo)morphisms is
largely due to Emmy Noether, who emphasized the use of homomorphisms of
groups and rings.



I1. Constructions on Categories

1. Duality

Categorical duality is the process “Reverse all arrows”. An exact de-
scription of this process will be made on an axiomatic basis in this section
and on a set-theoretical basis in the next section. Hence for this section
a category will not be described by sets (of objects and of arrows) and
functions (domain, codomain, composition) but by axioms as in §L.1.

The elementary theory of an abstract category (ETAC) consists of
certain statements X which involve letters a, b, ¢, ... for objects and
letters f, g, h, ... for arrows. These statements are the ones built up from
the atomic statements which involve the usual undefined terms of category
theory; thus, atomic statements are “a is the domain of f”, “b is the
codomain of f”, “i is the identity arrow of a”, and “g can be composed
with f and h is the composite”, “a=>b" and “f =g”. These atomic state-
ments can also be written as equations in the familiar way: “a = dom f”,
“h=gof”. A statement X is defined to be any phrase (well formed formula)
built up from the types of atomic statements listed above in the usual
fashion by means of the ordinary propositional connectives (and, or, not,
implies, if and only if) and the usual quantifiers (“for all a”, “for all f”,*there
exists an a...”, “there exists an f ...””). Thus “f:a—b” is the abbrevia-
tion we have adopted for the statement, “a is the domain of f and b is

the codomain of f.

A sentence is a statement with all variables quantified (i.e., all variables
are “bound”, none being “free”). For example, “for all f there exist a
and b with f:a—b” is a sentence (one which in fact is an axiom, true
in every category). The axioms of ETAC (as given in §I.1) are certain
such sentences.

The dual of any statement X~ of ETAC is formed by making the
following replacements throughout in 2: “domain” by “codomain”,
“codomain” by “domain”, and “A is the composite of g with /> by “h is
the composite of f with g”; arrows and composites are reversed. Logic
(and, or, ...) is unchanged. This gives the following table (a more extensive
table appears in Exercise 1V.3.1).
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Statement X Dual statement X*
fra—b fib—a

a=domf a=codf

i=1, i=1,

h=g-f h=f-g

f is monic fis epi

u is a right inverse of h u is a left inverse of h
f is invertible fis invertible

t is a terminal object t is an initial object .

Note that the dual of the dual is the original statement (Z** =2). If a
statement involves a diagram, the dual statement involves that diagram
with all arrows reversed.

The dual of each of the axioms for a category is also an axiom. Hence
in any proof of a theorem about an arbitrary category from the axioms,
replacing each statement by its dual gives a valid proof (of the dual
conclusion). This is the duality principle: If a statement X of the elementary
theory of an abstract category is a consequence of the axioms, so is the
dual statement 2*. For example, we noted the (elementary) theorem that
a terminal object of a category, if it exists, is unique up to isomorphism.
Therefore we have the dual theorem: An initial object, if it exists, is unique
up toisomorphism. For more complicated theorems, the duality principle
is a handy way to have (at once) the dual theorem. No proof of the dual
theorem need be given. We usually leave even the formulation of the
dual theorem to the reader.

The duality principle also applies to statements involving several
categories and functors between them. The simplest (and typical) case is
the elementary theory of oné functor; ie., of two categories C and B
and a functor T: C— B. For this theory, the atomic statements are those
listed above for the category C, a corresponding list for the category B,
as well as the statements “Tc=>b" or “Tf =h”, giving the values of the
object and arrow functions of T on objects ¢ and arrows f of C. The
axioms include the axioms for a category for C and for B and also the
statements T(gf)=(Tg)(Tf) and T(1,)=1y, which assert that T is
a functor. The dual of a statement is formed by simultaneously dualizing
the atomic parts referring to C and to B (i.e., reversing arrows in C
and in B). Since the statement that T is a functor is self-dual, the duality
principle above is still true.

We emphasize that duality for a statement involving several categories
and functors between them reverses the arrows in each category but does
not reverse the functors.
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2. Contravariance and Opposites

To each category C we also associate the opposite category C°. The
objects of CP are the objects of C, the arrows of C° are arrows f°P,
in one-one correspondence f+f°° with the arrows f of C. For each
arrow f:a—b of C, the domain and codomain of the corresponding
S are as in f°P:b—a (the direction is reversed). The composite
[P g°® =(g f)°? is defined in C°P exactly when the composite g f is defined
in C. This clearly makes C°® a category. Moreover, the domain of f°P
is the codomain of f, f°° is monic if and only if f is epi, and so on. Indeed,
this process translates any statement 2 about C into the dual statement
2* about C°P. In detail, an evident induction on the construction of ~
from atomic statements proves that if X' is any statement with free variables
f, g, ... in the elementary theory of an abstract category, then X is true
for arrows f, g, ... of a category C if and only if the dual statement 2*
istrue for the arrows f°?, g°®, ... of the opposite category CP. In particular,
a sentence X is true in C°? if and only if the dual sentence X* is true in C.
This observation allows us to interpret the dual of a property X as the
original property applied to the opposite category (some authors call
C°? the “dual” category, and write it C°P? = C¥),

If T: C— B is a functor, its object function ¢— T'¢ and its mapping
function fr Tf, rewritten as f°P—(Tf)°?, together define a functor
from C°® to B°, which we denote as T°P: C°®*— B°P. The assignments
CHC®® and T+ T°P define a (covariant!) functor Cat— Cat.

Consider a functor S:C°®*— B. By the definition of a functor, it
assigns to each object ce C°® an object Sc of B and to each arrow
f°P:b—aof C°® an arrow Sf°P:Sb— Sa of B, with S(f°Pg°?)=(S f°P)(Sg°F)
whenever f°Pg°? is defined. The functor S so described may be expressed
directly in terms of the original category C if we write S/ for Sf°P;
then S is a contravariant functor on C to B, which assigns to each object
ce C an object Sce B and to each arrow f:a—b an arrow Sf:Sh—Sa
(in the opposite direction), all in such a way that

S(l)=1s., S(f9=9©SS), (1)
the latter whenever the composite fg is defined in C. Note that the arrow
function S of a contravariant functor inverts the order of composition.
Specificexamples of contravariant functors may be conveniently presented
in this form; i.e., as functions S inverting composition. An example is
the contravariant power-set functor P on Set to Set: For each set X,
PX ={S|SC X} is the set of all subsets of X; for each function f: X— Y,
Pf:PY—PX sends each subset TC Y to its inverse image f 'TC X.
Another example is the familiar process which assigns to each vector
space V its dual (conjugate) vector space V* and to each linear trans-
formation f: V— W its dual f*: W*— V*; these assignments describe a
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contravariant functor on the category of all vector spaces (over a fixed
field) to itself.

To contrast, a functor T: C— B as previously defined, in §1.3, is
called a covariant functor on C to B. For general discussions it is much
more convenient to represent a contravariant functor S on C to B as a
covariant functor S:C°°— B, or sometimes as a covariant functor
S : C— B°®. In this book an arrow between (symbols for) categories will
always denote a covariant functor T: C— B or S: C°®*— B between the
designated categories.

Hom-sets provide an important example of co- and contravariant
functors. Suppose that C is a category with small hom-sets, so that each
hom(a, b) = { f| f: a—bin C} is a small set, hence an object of the category
Set of all small sets. Thus we have for each object ae C the covariant
hom- functor

C{a, —)=hom(a, —): C—Set; (2)

its object function sends each object b to the set hom(a, b); its arrow
function sends each arrow k:b— b to the function

hom/(a, k) : hom(a, b)—hom(a, b') (3)

defined by the assignment f—kof for each f:a—b. To simplify the
notation, this function hom(a, k) is sometimes written k, and called
“composition with k on the left”, or “the map induced by k”.

The contravariant hom- functor, for each object b e C, will be written
covariantly, as

C(—,b)=hom(—, b): C®"—Set; 4)
it sends each object a to the set hom(a, b), and each arrow g:a—d
of C to the function

hom(g, b) : hom(a’, b)— hom(a, b) (5)
defined by ft>fog. Omitting the object b, this function hom(g, b) is

sometimes written simply as g* and called “composition with g on the
right”. Thus, for each f:a'—b,

kyf=kof, g*f=foq.
For two such arrows g : @ — a’ and k : b — b’ the diagram
hom(a’, b)) —%——hom(a, b)
K, l lk* (6)

*

hom(a, b') —2%——hom(a, b')

in Set is commutative, because both paths send f € hom(d’,b) to kfg.
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These hom-functors have been defined only for a category C with
small hom-sets. The familiar large categories Grp, Set, Top, etc. do have
this property. To include categories without this property, we can proceed
as follows: Given a category C, take a set ¥ large enough to include all
subsets of the set of arrows of C (for example, V could be the power set
of the set of arrows of C). Let Ens = Set,, be the category with objects
all sets X e V, arrows all functions f: X — Y between two such sets and
composition the usual composition of functions. Then each hom-set
C(a, b) = hom(a, b)isan object of this category Ens, so the above procedure
defines two hom-functors

C(a, —):C—Ens, C(—,b):C*—Ens. ¥

In particular, when Vis the universe of all small sets, Ens = Set; in general,
Ens is a (variable) category of sets which acts as a receiving category for
the hom-functors of a category or categories of interest.

There are many other examples of contravariant functors. For X a
topological space, the set Open(X) of all open subsets U of X, when
ordered by inclusion, is a partial order and hence a category; there is an
arrow ¥ — U precisely when ¥V < U. Let C(U) denote the set of all con-
tinuous real-valued functions /2 : U — R,; the assignment 4+ h| V restricting
each h to the subset V is a function C(U)— C(V) for each V c U. This
makes C a contravariant functor on Open (X) to Set. This functor is
called the sheaf of germs of continuous functions on X. On a smooth
manifold, the sheaf of germs of C*-differentiable functions is constructed
in similar fashion (cf. Mac Lane-Moerdijk [1992]).

Mod-R is a contravariant functor from rings R to categories. Spe-
cifically, if g : R— S is any morphism of (small) rings, each right S-module
B becomes a right R-module Bg= (Modg)B by “pull-back” along
o:EachreR actson be Bby b-r=b-{gr). Clearly Modg is a functor
Mod-S—Mod-R, and Mod(g,; ¢,) = (Modp,) (Modp,), so Mod itself
can be regarded as a contravariant functor on Rng to Cat’, the category
of all large categories.

One may also form the category Mod of all (right) modules over all
rings. An object of Mod is a pair (R, A, where R is a small ring and 4
a small right R-module. A morphism (R, A>—<{S, B) is a pair {g, f>,
where ¢ : R— Sis a morphism of rings and f: 4— (Mod g) Bis a morphism
of right R-modules. With the evident composition, this yields a category
Mod. A projection functor Mod— Rng is given by (R, 4> R. Further
study of the relation of this functor to the previous functor Rng— Cat’
leads to the theory of fibered categories. (Mod is fibered over Rng,
the fiber over each R being the category Mod-R.)
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3. Products of Categories

From two given categories B and C we construct a new category
B x C, called the product of B and C, as follows. An object of BxC
is a pair <{b, ¢) of objects b of B and ¢ of C; an arrow (b, c)— b, ")
of Bx C is a pair {f,g ) of arrows f: b—b" and g:c—c’, and the com-
posite of two such arrows

<b, C>_M><b” C’> e <b”, ¢’
is defined in terms of the composites in B and C by

gL g>=ff.g°g>. )
Functors
BEBxCSC,

called the projections of the product, are defined on (objects and) arrows by

PLfigo=f, Q<{fig>=g9.

They have the following property: Given any category D and two functors
B&DLC,

there is a unique functor F: D— B x C with PF =R, Q F = T, explicitly,
these two conditions require that Fh, for any arrow h in D, must be
{Rh, Th); conversely, this value for Fh does make F a functor with the
required properties. The construction of F (dotted arrow) may be
visualized by the following commutative diagram of functors:

D

/ F\ ®

v
B BxCc-2%-C.

This property of the product category states that the projections P
and Q are “universal” among pairs of functors to B and C. It is exactly
like a similar property of the projections from the (cartesian) product of
two sets, two groups, or two spaces. The general properties of such pro-
ducts in any category will be considered in Chapter III.

Two functors U:B—B and V:C—C have a product
UxV:Bx C—B x C which may be defined explicitly on objects and
arrows as

(UxV)<b, e =<UbVey (UxV){f,g>=CUf,Vg).
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Alternatively, this functor U x ¥ may be described as the unique functor
(as in the diagram above) which makes the following diagram commuta-
tive:

B—f _BxC—2-C

UJ ;UXV lv 3)

Be? BxC—2 (.
The product x is thus a pair of functions: To each pair (B, C) of cate-
gories, a new category B x C; to each pair of functors (U, V), a new
functor U x V. Moreover, when the composites U'o U and V'c V are
defined, one clearly has (U’ x V')o(U x V)= U'U x V'V. Hence the
operation x itself is a functor; more exactly, on restricting to small cate-

gories, it is a functor
x : Cat x Cat— Cat.

There are similar functors Grp x Grp— Grp, Top x Top—Top, etc.

Our definition of product categories has included in (2) the descrip-
tion of functors F: D— B x C to a product category. On the other hand,
functors S:Bx C—D from a product category are called bifunctors
(on B and C) or functors of two variable objects (in B and in C). Such
bifunctors occur frequently; for instance, the cartesian product X x Y
of two sets X and Y is (the object function of) a bifunctor Set x Set— Set.
Thus our definition of product category gives an automatic definition
of “functor of two variables” — just as the definition of the product X x Y
of two topological spaces gives an automatic definition of “continuous
function of two variables”.

Fix one argument in a bifunctor §; the result is an ordinary functor
of the remaining argument. The whole bifunctor S is determined by these
two arrays of one-variable functors in the following elementary way.

Proposition 1. Let B, C, and D be categories. For all objects ce C
and b e B, let
L:B—D, M,.C—D

be functors such that M,(c)= L.(b) for all b and c. Then there exists
a bifunctor S: BxC—D with S(—,c)=L, for all ¢ and S(b, -)=M,
Sor all b if and only if for every pair of arrows f: b—b and g : c— ¢’ one has

Mb’gOch=Lc’fOMbg' (4)
These equal arrows (4) in D are then the value S(f,g) of the arrow
Sfunction of S at fand g.

Proof. If we write b and c for the corresponding identity arrows,
the definition (1) of the composite in B x C shows that

bogdelficr)=<bf.gc)=<[.9> =<Sfb,c'g> =<f,><b,g).
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Applying the functor S to this equation gives

S(',9) S(f, ) =S8(f,¢)S(b,9);
as a commutative diagram this condition is

S(b, )22 S(b, ¢)
S(f, ¢ S(f.¢)
S, )220, 5(b, ).

This is just condition (4) rewritten, so that condition (4) is necessary.
Conversely, given all L, and M,, this condition defines S(f, g) for every
pair f, g; it may be verified that this definition does yield a bifunctor S
with the required properties.

One may also form products of three or more categories, or combine
the construction of product categories and opposite categories. There
is an evident isomorphism (B x C)°® = B°® x C°®. A functor B°® x C—D
is often called a bifunctor, contravariant in B and covariant in C, with
values in D. For example, if C is a category with small hom-sets, the
hom-sets define such a bifunctor

hom : C°? x C—Set.

Indeed, the commutative diagram (6) of §2 shows exactly that the co-
and contravariant hom-functors

hom(—, c) : C°P — Set , hom(b’ _) . C — Set

do satisfy the condition (4) of the theorem, necessary to make hom
a bifunctor.

Next consider natural transformations between bifunctors
S,S": Bx C—D. Let a be a function which assigns to each pair of objects
beB, ce C an arrow

a(b, ¢): S(b, ¢)—> S'(b, ¢) (5

in D. Call « natural in b if for each ¢ € C the components a(b, ¢) for all b
define
o —,0):8(—,0)=5(-,0),

a natural transformation of functors B— D. The reader may readily
prove the useful result:

Proposition 2. For bifunctors S, S', the function o displayed in (5)
is a natural transformation o.: S— §' (i.e., of bifunctors) if and only if a(b, )
is natural in b for each c € C and natural in ¢ for each b e B.

Such natural transformations appear in the fundamental definition of
adjoint functors (Chapter IV). A functor F: X—C is the left adjoint
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of a functor G: C— X (opposite direction) when there is a bijection
hom(F x, ¢) = homy(x, G¢)

natural in x € X and ce C. Here homq(F —, —) is a bifunctor, the com-
posite

op
XoPx C—LX18 , cop o ¢_home,Get

and homy(—, G—) similarly (at least when X and C have small hom-
sets).

The product category can be visualized in the case C x 2, where 2
is the category with one non-identity arrow 0—1; explicitly Cx2
consists of two copies C x 0 and C x 1 of C with arrows joining the first
to the second, as in the figure (“diagonal” arrows omitted) for C =3
which is the triangle category of §1.2:

™N
Cx1 4

Here the functors T, T, : C—C x 2 (“bottom” and “top”, respectively)
are defined for each arrow f of C by T, f=<f,0) and T, f={f,1).
If | denotes the unique non-identity arrow 0— 1 of 2, then we may define
a transformation between Ty, T} : C— C x 2 by

IJ':TO_.>T1’ ,uC=<C, l>’

for any object c. It maps “bottom” to “top” and is clearly natural. We
call u the universal natural transformation from C for the following
reason. Given any natural transformation 7: - T between S, T: C—B
there is a unique functor F:C x2— B with Fuc=rtc¢ for any object c.
Specifically, F is, when f :c—c’, ‘

FL0y=8f, FLH=Tf, F{f, D=Tforc=1c>Sf. (6)

It may be readily verified that these assignments do define a bifunctor
F:Cx2—B, and that Fu=1.

Cx0

Exercises

1. Show that the product of categories includes the following known special cases:
The product of monoids (categories with one object), of groups, of sets (discrete
categories).

2. Show that the product of two preorders is a preorder.
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3. If {C;|ie I} is a family of categories indexed by a set I, describe the product
C=1II,C,, its projections P;: C—C,, and establish the universal property of
these projections.

4. Describe the opposite of the category Matry of § 1.2.

5. Show that the ring of continuous real-valued functions on a topological space
is the object function of a contravariant functor on Top to Rng.

4. Functor Categories

Given categories C and B, we consider all functors R, S, T, ... : C—B.
If 6:R—=-S and 7:S—= T are two natural transformations, their com-
ponents for each c e C define composite arrows (t - 6)c=1¢~ o ¢ which
are the components of a transformation t+¢:R-T. To show 70
natural, take any f:c—¢’ in C and consider the diagram

—R c__.Rf—>R c —
ac jv l ac’
(1" o)c SSf ’ (t-a)c’

S¢——— 8¢

L s Te— T ¢

Since ¢ and t are natural, both small squares are commutative. Hence
the rectangle commutes, so the composite 7 - ¢ is natural.

This composition of transformations is associative; moreover it has
for each functor T an identity, the natural transformation 1;: T— T with
components 1;7c¢= 1. Hence, given the categories B and C, we may
construct formally a functor category B¢ = Funct(C, B) with objects
the functors T:C—B and morphisms the natural transformations
between two such functors. It is often suggestive to write

Nat(S, T)=B¢(S, T)={r|1:S—=T natural} (1)

for the “hom-set” of this category. It need not be a small set.

Functor categories will be used extensively. For example, if B and C
are sets (categories with all arrows identities), then B¢ is also a set;
namely, the familiar “function-set” consisting of all functions C— B.
In particular, for B= {0, 1} a two-point set, {0, 1}€ is (isomorphic to)
the set of all subsets of C (the “power set” Z (). For any category B,
B! is isomorphic to B, while B? is called the category of arrows of B;
its objects are arrows f: a—b of B, and its arrows f— f” are those pairs
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{h, k) of arrows in B for which the square

a_h—>a’

fJ lf @)

b—t b

commutes. If M is a monoid (category with one object) Set” is the
category with objects the actions of M (on some set) and arrows the
morphisms of such actions. An object of the functor category Grp™ is a
group with operators M.

If K is a commutative ring and G a group, then the functor category
(K-Mod)¢ is the category of (K-linear) representations of G. Spe-
cifically, each functor T: G— K-Mod is determined by a K-module V
(the image of the single object of the category G) and a morphism
T: G— Aut(V) of groups (a representation of G by linear transformations
V— V). If T' is a second such representation, a natural transformation
o:T-T' is given by a single arrow ¢: V— V" (its component at the
single object of G) such that the diagram

V——a LV

TyJ JT'g (3)

V2o

commutes for every g € G. In representation theory, such a ¢ is called
an intertwining operator. Thus (K-Mod)¢ is the category with objects
the representations of G and morphisms the intertwining operators.

When the category C is large, the functor category B¢ need not be a
subset of the universe. For example, if B= {0, 1} is the set with just two
elements, while C is the set U, then a functor U— B is just a function on
U to a set with two elements. The possible such functions correspond
(as characteristic functions) to the possible subsets of U. Therefore the
set of objects in {0, 1}V is equivalent to the set 2(U) of all subsets of U,
and this set has a larger cardinal number than U.

Exercises

L. For R a ring, describe R-Mod as a full subcategory of the functor category AbX.

2. Describe B¥, for X a finite set (a finite discrete category).

3. Let N be the discrete category of natural numbers. Describe the functor category
Ab" (commonly known as the category of graded abelian groups).

4. If P and Q are preorders, describe the functor category QF and show that it is
a preorder.
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5. If Fin is the category of all finite sets and G is a finite group, describe Fin® (the
category of all permutation representations of G).

6. LetM be the infinite cyclic monoid (elements 1,m, m?, ...). In the functor categories
(Matrg)? and (Matr,™ show that objects are matrices and isomorphic objects
(matrices) are exactly equivalent and similar matrices, respectively, in the usual
sense of linear algebra. For Matr, see §1.2.

7. Given categories B, C, and the functor category B?, show that each functor
H: C— B? determines two functors S, T: C— B and a natural transformation
7:S-T, and show that this assignment H+— (S, T, ) is a bijection.

8. Relate the functor H of Exercise 7 to the functor F of (3.6).

5. The Category of All Categories

We have defined a “vertical” composite 7 g,
—_—

C—+—B,

of two natural transformations. There is another “horizontal” composi-
tion for natural transformations. Given functors and natural trans-
formations

S S
e »

one may form first the composite functors SS and T' T: C— A4 and
then construct a square
S Sc—=2-T'Sc

S"rL‘J lT’rc
S Te—= T Te

which is commutative because of the naturality of 7° for the arrows tc¢
of B. Now define (7'~ 7)c to be the diagonal of this square;

(tet)c=T'tcotv'Sc=1Tc-81c. (2)
To show 7o 1: 8 S- T’ T natural, form the diagram
S/SC S'tc rS,TC v Tc T/TC c

I Rt e

S'Sh—g=—S' Th——T'Th, b

for any arrow f of C. Horizontally, the composites by definition are
(7> 7)c and ('~ 1) b; the left-hand square commutes because 7 is natural
and §’ is a functor, while the right-hand square commutes because 1’ is
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natural and Tf: Tc— Tb is an arrow. The commutativity of the outside
of the diagram states that 7't is natural.

This composition {t’,t)—7'c 7 is readily shown to be associative.
It moreover has identities. If Iy: B— B is the identity functor for the
category B and 1p: Iz I the identity natural transformation of that
functor to itself, one has 1got=17 and 7' 1;=1". Thus 14 is the identity
for the composition o; it is also the identity for the composition -. It is
convenient to let the symbol S for a functor also denote the identity
transformation S--S. With this notation in the situation above we have
composite natural transformations

Sot:8c8=8T, TeT:8T->T-T.

The definition (2) can then be rewritten, using also the vertical
composition, as
Tor=(T'c1) (T 8)=(T>T)-(S°1). 3)

There is a more general rule. Given three categories and four trans-
formations

C ﬁ’ B-r-A, )

-~ T

the “vertical” composites under - and the “horizontal” composites under -
are related by the identity (interchange law)

(t-0)e(t-0)=(t°7) ("> 0). )

The reader may enjoy writing down the evident diagrams needed to prove
this fact.

These results may be summarized as follows (considering only small
categories):

Theorem 1. The collection of all natural transformations is the set
of arrows of two different categories under two different operations of
composition, - and o, which satisfy the interchange law (5). Moreover, any
arrow (transformation) which is an identity for the composition < is also
an identity for the composition +.

Notethat the objectsfor the horizontal compositioncare the categories,
for the vertical composition, the functors. In using these compositions,
the symbol - for the “horizontal” composition is often omitted (as it is
usually in writing composition of arrows in a category), while the solid
dot designating “vertical” composition is retained. Observe that objects
and arrows of C may be written as functors ¢: 1—C or f:2—C; then
symbols such as 6°c=o0cc have their accepted meaning in a situation
such as

1—C s 'B.
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By a double category (Ehresmann) is meant a set which (like the set of
all natural transformations) is the set of arrows for two different composi-
tions which together satisfy (5). A 2-category (short for two-dimensional
category) is a double category in which every identity arrow for the first
composition is also an identity for the second composition. For example,
the category of all commutative squares in Set is a double category
(under the evident horizontal and vertical compositions) but not a
2-category. There are also n-categories for higher n, see Chapter XII.

Two (partially defined) binary operations - and - are said to satisfy
the interchange law when (5) holds wherever the composites on either
side are defined. Here some other examples. If C is a category and
-:CxC—C is a functor (for example, a tensor product), while o, 0, T
and 7’ are arrows of C such that the composites ¢’> ¢ and 7'~ 7 are defined,
then the interchange law (5) holds; indeed, it is precisely the requirement
that the functor - preserve composition o. If o, ¢/, 7, and 7’ are square
matrices such that the usual matrix products ¢’ ¢ and 7> 7 are defined,
while 7 - o denotes the matrix

T 0
o ol

with blocks T and ¢ along the diagonal, zeros elsewhere, then (5) holds.

The functor category B€ is itself a functor of the categories B and C,
covariant in B and contravariant in C. Specifically, if we consider only
the category Cat of all small categories, it is a functor Cat®® x Cat— Cat;
the object function sends a pair of categories {C, B) to the functor
category BS, and the arrow function sends a pair of functors F : B— B’
and G: C'—C to the functor

F¢: B> B°
defined on objects Se B¢ as FSS=F-S-G and on arrows 7:S->T in
B¢ as Fét=F-12G. Note, for example, that FC is just “compose with

F on the left” while B® is “compose with G on the right”. This functor
is an exact analogue to the hom-functor Set°® x Set— Set.

Exercises

1. For small categories 4, B, and C establish a bijection
Cat(A x B, C) = Cat(4, C?),

and show it natural in 4, B, and C. Hence show that — x B: Cat— Cat has a
right adjoint (see Chapter IX).
2. For categories A, B, and C establish natural isomorphisms

(AxBf=A°x B¢, CA*Bx(CHA.

Compare the second isomorphism with the bijection of Exercise 1.
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3. Use Theorem 1 to show that horizontal composition is a functor
0: A% x BC— A,

4. Let G be a topological group with identity element e, while o, ¢’, 7, 7', are con-
tinuous paths in G starting and ending at e (thus, if I is the unit interval, 6 : [ =G
is continuous with ¢(0)= e = ¢(1)). Define 7 g to be the path ¢ followed by the
path 7, as in (1.5.1). Define 7 - ¢ to be the pointwise product of t and o, so that
(t-0)t=(zt)(at) for 0<t < 1. Prove that the interchange law (5) holds.

5. (Hilton-Eckmann). Let S be a set with two (everywhere defined) binary operations
-:SxS§—8, o: §xS—S which both have the same (two-sided) unit element e
and which satisfy the interchange identity (5). Prove that - and - are equal, and
that each is commutative.

6. Combine Exercises 4 and 5 to prove that the fundamental group of a topological
group is abelian.

7. If T: A— D is a functor, show that its arrow functions T, ,: A(a, b)— D(Ta, Th)
define a natural transformation between functors A°° x A—Set.

8. For the identity functor I. of any category, the natural transformations
o Ic=> I, form a commutative monoid. Find this monoid in the cases C = Grp,
Ab, and Set.

6. Comma Categories

There is another general construction of a category whose objects
are certain arrows, as in the following several special cases.

If b is an object of the category C, the category of objects under b
is the category (b | C) with objects all pairs {f, ¢), where c is an object
of C and f:b—c an arrow of C, and with arrows h: {f,c>—{f’, ¢
those arrows k: c— ¢’ of C for which k- f = f’. Thus an object of (b | C)
is just an arrow in C from b and an arrow of (b | C) is a commiutative
triangle with top vertex b. In displayed form:

b b
objects {f,c): lf; arrows {f,c>B{f, > /\{ 1)
¢ c—¢

The composition of arrows in (b | C) is then given by the composition in C
of the base arrows h of these triangles.

For example, if * denotes any one-point set, while X is any set, each
function *— X is just a selection of a point in the set X ; hence (x | Set)
is just the category of pointed sets (§1.7). Similarly, (Z | Ab) is the cate-
gory of abelian groups, each with a selected element.

If a is an object of C, the category (C | a) of objects over a has

Cc

c—toe
objects: lf; arrows: f\ /f’, 2
a

a
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the triangle commutative. For example,  is terminal in Set so there is
always a unique X — x; therefore (Set | *) is isomorphic to Set. Or again,
Z is a ring, and the category (Rng | Z) is the category whose objects are
rings equipped with a morphism ¢: R—Z (called a ring R with an
“augmentation” ¢) and whose morphisms are morphisms of rings preserv-
ing the augmentation.

If b is an object of C and S: D— C a functor, the category (b | S)
of objects S-under b has as objects all pairs {f,d) with d e ObjD and
f:b—Sd and as arrows h: {f,d>—<f,d> all those arrows h:d—d’
in D for which f'=Sh-f. In pictures,

b b
objects: Jf ; arrows h: / \f‘ (3)
Sd Sd—;~»Sd (commutative) .

Again, composition is given by composition of the arrows h in D. Note
especially that equality of arrows in (b | S) means their equality as
arrows of D.

For example, let U: Grp—Set be the forgetful functor. Then for
each set x an object of (x | U) is a function x— Ug from x into the
underlying set of some group g; for example, the function mapping x
into the underlying set of the free group generated by the elements of the
set x is one such object. This category (x | U) — and others like it — will
be used extensively in the treatment of adjoint functors.

Again, ifae Cand T: E— Cis a functor, one may construct a category
(T| a) of objects T-over a.

Here is the general construction. Given categories and functors

ELCED

the comma category (T | S), also written (7, S), has as objects all triples
{e,d,f>, with deObjD, ec ObjE, and f:Te—Sd, and as arrows
(e, d, f>— e, d, f'> all pairs (k, h) of arrows k:e—¢', h:d—d such
that f'o Tk = Shef. In pictures,

Tk

Te Te———Te
objects (e, d, f): Jf; arrows <k, h): lf Jf’ 4
Sd Sd—t8d',

with the square commutative. The composite k', h'><k,h)> is
Kk'ok,h' h), when defined.

This general description of the comma category (T | S) does include
all the cases listed. Indeed, an object b of C may be regarded as a functor
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b:1—C. Taking T =b in this sense, the comma category (T | S) becomes
the category (b | S) of objects S-under b. If S = C s the identity functor of C,
this becomes in particular the category (b | C) of objects of C under b.
Similarly, one may take S to be a functor 1—C; i.e., an object a of C.
Again, take S=T= the identity functor of C. Then (C |C) is exactly
the category C? of all arrows of C. Or take S and T to be objects a and b
of C; then (T | S)=1(b | a) is the category with objects all arrows f: b—a
and morphisms only the identity arrow for each object; in other words
(b | a) is the set (the discrete category) homc(b, a). This case is the reason
for the choice of the name “comma category” and the notation (T, S) —
a notation which we avoid because the comma is already overworked.

The construction of the comma category (T | S) may be visualized
by the following commutative diagram of categories and functors

(T1S)
P R 0 )
E-Cez CP*epCesD

here d,, d, are the two functors 1—2, the functor category C? is just
the category of arrows f of C, and so the functors C%, C* (defined as at
the end of the last section) are simply the functors which send each arrow
fof Ctoits domain and its codomain, respectively. The functors P and Q
(called the projections of the comma category) and the functor R are
defined (on objects) as suggested in the diagram

{e,d,f: Te—Sd>

e—Te<i(f: Te—Sd)—Sd<-d.

Exercises

1. If K is a commutative ring, show that the comma category (K | CRng) is the
(usual) category of all small commutative K-algebras.

2. If t is a terminal object in C, prove that (C | t) is isomorphic to C.

. Complete (6) by defining P, Q, and R on arrows.

4. (S.A.Huq). Given functors T, S: D—C, show that a natural transformation
7: TS is the same thing as a functor t: D—(T| S) such that Pt=Qt=id,,
with P and Q the projections of (5).

5. Given any commutative diagram of categories and functors

w
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(bottom row as in (5)), prove that there is a unique functor L: X—(T]S)
for which P'=PL, Q'=QL, and R'=RL. (This describes (T | §) as a “pull-
back”, cf. §1I1.4.)

6. (a) For fixed small C, D, and E, show that {T, S)+—(T | S) is the object function
of a functor (CE) x (CP)— Cat.
(b) Describe a similar functor for variable C, D, and E.

7. Graphs and Free Categories

First, recall the construction of the free monoid F X generated by a set X.
It consists of all the finite strings x;x; - - - x,, of elements x; of the set X;
the multiplication of these strings is given by juxtaposition, so that the
empty string serves as the unit element of F X. The characteristic property
of this free monoid may be stated as follows: For any monoid M, let UM
denote the set of elements of M. Then any function f : X — U M extends
to a unique morphism of monoids:

f:X—>UM extendstoa g:FX—-M.

To get the corresponding description of a free category, we replace the
starting set X by a directed graph G.

Recall that a (directed) graph G (§1.2) is a set O of objects (vertices),
and a set A of arrows f (edges), and a pair of functions A=0:

A=230, 3of=domain f, &= codomain f.

A morphism D :G— G’ of graphs is a pair of functions D,: 0— 0’ and
D,: A— A’ such that

Dyoof=00Dyf and Dpd f=0,D4f

for every arrow f € A. These morphisms, with the evident composition,
are the arrows of the category Grph of all small graphs (a graph is small
if both O and A are small sets). Each graph may be pictured by a diagram
of vertices (objects) and arrows, just like the diagram for a category
except that neither composite arrows nor identity arrows are provided.
Hence a graph is often called a diagram scheme or a precategory.

Every category C determines a graph U C with the same objects and
arrows, forgetting which arrows are composites and which are identities.
Every functor F:C— ' is also a morphism UF:UC— UC’ between
the corresponding graphs. These observations define the forgetful functor
U : Cat— Grph from small categories to small graphs.

Let O be a fixed set. An O-graph will be one with O as its set of objects;
a morphism D of O-graphs will be one with D, : O— O the identity. The
simplest O-graph O is 0—=30, with both functions domain and range
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the identity. If A and B are (the sets of arrows of) two O-graphs, the
product over O is

AxoB=1{{g,f>1009=0,f, ge A, f€B}; (1)
it is the set of “composable pairs” of arrows * -5+ % -. The detmitions
00€g, f7=00f 0:<g.f>=019 2

make this seta O-graph. This product operation on O-graphsis associative,
since for any three O-graphs A, B, and C there is an evident isomorphism
AX 5(Bx,C)=(Ax¢B)x,C. For the special O-graph O there is also
an isomorphism 4 > 4 X0, given by f —{f,dy f>. Also, 4 = O xpA.

A category with objects O may be described as an O-graph A4 equipped
with two morphisms c: 4 x ;,A— A and i : 0— A of O-graphs (composi-
tion and identity) such that the diagrams

(AX oA) X gA= A X (A X A5 Ax gA Ox oA Ax g AL A% 0

l [ [ j j )

Ax oA ¢ A, A = A4 = 4

are commutative, where 1 x ¢ is short for 1 x ¢, etc. Indeed, composable
arrows {g, > have a composite given by ¢ as c(g, f), each object be O
has an identity arrow given by i(b) e A, while the first diagram states
that composition is associative and the second that each i(a) acts as
a left and right identity for composition. In this sense, a category is like
a monoid, as described in the introduction: Set there is replaced by
O-Grph, and product of sets by x ¢.

Any O-graph G may be used to “generate” a category C on the same
set O of objects; the arrows of this category will be the “strings” of com-
posable arrows of G, so that an arrow of C from b to a may be pictured
as a path from b to a, consisting of successive edges of G. This category
C will be written C = C(G) and called the free category generated by the
graph G. Its basic properties may be stated as follows.

Theorem 1. Let G={A =30} be a small graph. There is a small
category C= Cg with O as set of objects and a morphism P:G—UC
of graphs from G to the underlying graph UC of C with the following
property. Given any category B and any morphism D : G— U B of graphs,
there is aunique functor D’ : C— B with(U D')> P = D, as in the commutative
diagram

c G¢—rt-uc

D \ o )
B, UB
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In particular, if B has O as set of objects and D is a morphism of O-graphs,
then D' is the identity on objects.

The property of P stated in (4) is equivalent to stating that the arrow
P: G— UC is an initial object in the comma category (G | U). Hence P
is unique up to an isomorphism (of C). Similar properties appear often;
we shall say that P is “universal” among morphisms from G to the
underlying-graph functor U.

Proof. Take the objects of C to be those of G and the arrows of C
to be the finite strings (or “paths”)

al_l‘l_)az&aa—.)..‘_f"_‘l_)a"

composed of n objects a;, ...,a, of G connected by n— 1 arrows f;:a,—a;,
of G. Regard each such string as an arrow {a,f,,...,[,—_1,4,:0,—a,
in C, and define the composite of two strings by juxtaposition (i.e., by
concatenation), identifying the common end. This composition is mani-
festly associative, and strings {a,> of length n=1 are its identities. Every
string of length n> 1 is a composite of strings of length 2:

ay, f1, 25 s Oyt fum15 G) =Kyt fr—1, @) 0 oKy, f1, 45 . (5)

The desired morphism P : G— U C of graphs sends each arrow f: a,—a,
of the given graph G to the string {a,, f, a,) of length 2.

Now consider any other morphism D : G— U B of the given graph
G to the underlying graph of some category B. If there is a functor
D’": C— B with UD’> P =D, as in the commutative diagram (4), then D’
must be D'{ay=Da on objects and D'<ay, f1,a,>=Df; on arrows.
Since any string of length n >1 is a composite (5) in C, D’ must be given by

D<ay, f1,035 -0y @y iy fo-1, 8,0 =D f,_1o--oDf].

Conversely, this formula does define a functor D' : B— C for which the
indicated diagram commutes, g.e.d.

Here are some easy examples. For the graph consisting of a single
arrow f with 0, f = 9, f, the free category consists of all arrows 1, f, f2, ...
For the graph consisting of a single arrow g with different ends, the free
category consists of this arrow plus two identity arrows (one at each end).
For the graph - — - — - with three different vertices the free category is
a commutative triangle (add one composite arrow and three identity
arrows).

When O consists of one point, the graph G reduces simply to a set
X (the set X =A of arrows) and the theorem provides the familiar
construction of a free monoid M generated by X, as follows:

Corollary 2. To any set X there is a monoid M and a function
p: X—UM, where UM is the underlying set of M, with the following
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universal property: For any monoid L and any function h: X— U L there
is a unique morphism h' : M— L of monoids with h= UMl o p.

The elements of M are the identity and strings <{x,, ..., X,_;», for
x; € X.

Graphs may be used to describe diagrams. If G is any graph, a
diagram of the shape G in the category B may be defined to be a morphism
D:G— UB of graphs. By the Theorem, these morphisms D correspond
exactly to functors D': C;— B, via the bijection D'+—D = U D'~ P. This
bijection

Cat(Cg, B) = Grph(G, U B) (6)

is natural in G and B, so asserts that C : Grph — Cat is left adjoint (see
Chapter IV) to the forgetful functor U : Cat — Grph.

Exercises

1. Define “opposite graph” and “product of two graphs” to agree with the cor-
responding definitions for categories (i.e., so that the functor U will preserve
opposites and products).

2. Show that every finite ordinal number is a free category.

3. Show that each graph G generates a free groupoid F (i.e., one which satisfies
Theorem 1 with “category C” replaced by “groupoid F” and “category B”
by “groupoid E”). Deduce as a corollary that every set X generates a free group.

8. Quotient Categories

Certain categories may be described by generators and relations, as
follows:

Proposition 1. For a given category C, let R be a function which
assigns to each pair of objects a, b of C a binary relation R, , on the hom-
set C(a, b). Then there exist a category C/R and a functor Q =Qp: C—C/R
such that (i) If fR,,f in C, then Qf =Qf'; (i) If H:C—D is any
Sunctor from C for which fR, ,f" implies Hf =Hf" for all f and f",
then there is a unique functor H' : C/R— D with H'> Qg = H. Moreover,
the functor Qg is a bijection on objects.

Put briefly: Q is the universal functor on C with Q f'=Q f’ whenever
fRSf".

For example, if C=Top and fR " means that f is homotopic to [,
then the desired quotient category C/R is just the category Toph of § 1.7,
with objects topological spaces and arrows homotopy classes of con-
tinuous maps. This direct construction is possible for Toph because the
relation of homotopy between maps is an equivalence relation preserved
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by composition. The general case requires a preliminary construction
on the relation R to achieve these properties.

Sketch of proof. Call R a congruence on C if (i) for each pair a, b
of objects, R, is a reflexive, symmetric, and transitive relation on
C(a,b); (i) if f, f' :a — b have f R, f’, then for all g : @’ — a and all
h:b—b' one has (hfg)R, ,(hf'g). Given any R, there is a least con-
gruence R’ on C with R C R’ (proof as exercise). Now take the objects of
C/R to be the objects of C, and take each hom-set (C/R) (a, b) to be the
quotient C(a, b)/R;,, of C(a,b) by the equivalence relation R’ there.
Because the relation is preserved by composition, the composite in C
carries over to C/R by the evident projection Q : C— C/R. Now for any
functor H:C—D the sets S,,={f,f :a—b|Hf=Hf'} evidently
form a congruence on C. Thus, if $ D R one also has SO R’, and H factors
as H= H'- Qy, as required.

In case C is the free category generated by a graph G we call C/R
the category with generators G and relations R. For example, 3 may be
described as the category generated by three objects 0, 1, 2, three arrows
f:0—1, g:152, and h:0—2, and one relation h=g-f. As a special
case (one object), this includes the case of a monoid given by generators
and relations.

Exercises

1. Show that the category generated by the graph

with the one relation ¢’ f = f’g has four identity arrows and exactly five non-
identity arrows f, g, f, ¢ and g'f = f'g.

2. If Cis a group G (regarded as a category with one object) show that to each con-
gruence R on C there is a normal subgroup N of G with fRg if and only if

g ' feN.

Notes.

The leading idea of this chapter is to make the simple notion of a functor apply
to complex cases by defining suitable complex categories — the opposite category for
contravariant functors, the product category for bifunctors, the functor category
really as an adjoint to the product, and the comma category to reduce universal
arrows to initial objects. The importance of the use of functor categories (some-
times called “categories of diagrams™) was emphasized by Grothendieck [1957]
and Freyd [1964]. The notion of a comma category, often used in special cases, was
introduced in full generality in Lawvere’s (unpublished) thesis [1963], in order to
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give a set-free description of adjoint functors. For a time it was a sort of secret tool
in the arsenal of knowledgeable experts.

Duality has a long history. The duality between point and line in geometry,
especially projective geometry, led to a sharp description of axiomatic duality in
the monumental treatise by Veblen-Young on projective geometry. The explicit
description of duality by opposite categories is often preferable, as in the Pontrjagin
duality which appears (§IV.3) as an equivalence between categories, or as an
equivalence between a category and an opposite category (see Negrepontis [1971]).



This Page Intentionally No Longer Blank



II1. Universals and Limits

Universal constructions appear throughout mathematics in various
guises — as universal arrows to a given functor, as universal arrows from
a given functor, or as universal elements of a set-valued functor. Each
universal determines a representation of a corresponding set-valued
functor as a hom-functor. Such representations, in turn, are analyzed
by the Yoneda Lemma. Limits are an important example of universals —
both the inverse limits (= projective limits = limits = left roots) and their
duals, the direct limits (= inductive limits = colimits = right roots). In
this chapter we define universals and limits and examine a few basic
types of limits (products, pullbacks, and equalizers ...). Deeper properties
will appear in Chapter IX on special limits, while the relation to adjoints
will be treated in Chapter V.

1. Universal Arrows

Given the forgetful functor U:Cat— Grph and a graph G, we have
constructed (§ I1.7) the free category C on G and the morphism P: G- U C
of graphs which embeds G in C, and we have shown that this arrow P
is “universal” from G to U. A similar universality property holds for the
morphisms embedding generators into free algebraic systems of other
types, such as groups or rings. Here is the general concept.

Definition. If S: D— C is a functor and ¢ an object of C, a universal
arrow from c to S is a pair {r, u) consisting of an object r of D and an arrow
u:c—Sr of C, such that to every pair {d, {> with d an object of D and
f:c—Sdanarrowof C,there is aunique arrow ' r—d of DwithS fou= f.
In other words, every arrow [ to S factors uniquely through the universal
arrow u, as in the commutative diagram

c—4—S8r r

I sy H (1)

c—f—*SVd,

Qe

55
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Equivalently, u: c— Sr is universal from ¢ to S when the pair {r, u)
is an initial object in the comma category (¢ | S), whose objects are the
arrows ¢c— Sd. As with any initial object, it follows that {r, u) is unique
up to isomorphism in (c | S); in particular, the object r of D is unique
up to isomorphism in D. This remark is typical of the use of comma
categories.

This notion of a universal arrow has a great variety of examples;
we list a few:

Bases of Vector Spaces. Let Vcty denote the category of all vector
spaces over a fixed field K, with arrows linear transformations, while
U : Vetg—Set is the forgetful functor, sending each vector space V to
the set of its elements. For any set X there is a familiar vector space Vy
with X as a set of basis vectors; it consists of all formal K-linear combina-
tions of the elements of X. The function which sends each x e X into
the same x regarded as a vector of Vy is an arrow j: X — U(Vy). For
any other vector space W, it is a fact that each function f: X — U(W)
can be extended to a unique linear transformation f':Vy— W with
U f'oj= f. This familiar fact states exactly that j is a universal arrow
from X to U.

Free Categories from Graphs. Theorem I1.7.1 for the free category C
on a graph G states exactly that the functor P: G — U C is universal.
The same observation applies to the free monoid on a given set of gen-
erators, the free group on a given set of generators, the free R-module
(over a given ring R) on a given set of generators, the polynomial algebra
over a given commutative ring in a given set of generators, and so on in
many cases of free algebraic systems.

Fields of Quotients. To any integral domain D a familiar construction
gives a field Q(D) of quotients of D together with a monomorphism
j: D—Q(D)(which s often formulated by making D a subdomain of Q(D)).
This field of quotients is usually described as the smallest field containing
D, in the sense that for each D C K with K a field there is a monomorphism
f:Q(D)— K of fields which is the identity on the common subdomain D.
However, this inclusion D C K may readily be replaced by any mono-
morphism D— K of domains. Hence our statement means that the pair
{Q(D),j> is universal for the forgetful functor Fld— Dom,, from the
category of fields to that of domains — provided we take arrows of
Dom,, to be the monomorphisms of integral domains (note that a homo-
morphism of fields is necessarily a monomorphism). However, for the
larger category Dom with arrows all homomorphisms of integral domains
there does not exist a universal arrow from each domain to a field. For
instance, for the domain Z of integers there is for each prime p a homo-
morphism Z — Z,; the reader should observe that this makes impossible
the construction of a universal arrow from Z to the functor Fld — Dom.

Complete Metric Spaces. Let Met be the category of all metric spaces
X, Y, ..., with arrows X— Y those functions which preserve the metric
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(and which therefore are necessarily injections). The complete metric
spaces form (the objects of) a full subcategory. The familiar completion
X of a metric space X provides an arrow X— X which is universal for
the evident forgetful functor (from complete metric spaces to metric
spaces).

In many other cases, the function embedding a mathematical object
in a suitably completed object can be interpreted as a universal arrow.
The general fact of the uniqueness of the universal arrow implies the
uniqueness of the completed object, up to a unique isomorphism (who
wants more?).

The idea of universality is sometimes expressed in terms of “universal
elements”. If D is a category and H : D—Set a functor, a universal element
of the functor H is a pair {r, ) consisting of an object r € D and an element
eec Hr such that for every pair {d, x> with xe Hd there is a unique
arrow f:r—d of D with (H f)e=x.

Many familiar constructions are naturally examples of universal
elements. For instance, consider an equivalence relation E on a set S,
the corresponding quotient set S/E consisting of the equivalence classes
of elements of S under E, and the projection p: S— S/E which sends each
se S to its E-equivalence class. Now S/E has the familiar property that
any function f on S which respects the equivalence relation can be re-
garded as a function on S/E. More formally, this means that if f: S— X
has fs= fs’ whenever sE s, then f can be written as a composite f = f'p
for a unique function f':S/E—X:

S—2 S/E

n i

s—L -+ Xx.

This states exactly that (S/E, p)> is a universal element for that functor
H :Set—Set which assigns to each set X the set H X of all those functions
f:S— X for which sEs' implies fs= fs'.

Again, let N be a normal subgroup of a group G. The usual projection
p: G— G/N which sends each g e G to its coset pg=gN in the quotient
group G/N is a universal element for that functor H : Grp— Set which
assigns to each group G’ the set H G’ of all those homomorphisms f: G—G’
which kill N (have fN = 1). Indeed, every such homomorphism factors
as f = f'p, for a unique f': G/N— G'. Now the quotient group is usually
described as a group whose elements are cosets. However, once the cosets
are used to prove this one “universal” property of p: G— G/N, all other
properties of quotient groups — for example, the isomorphism theorems —
can be proved with no further mention of cosets (see Mac Lane-Birk-
hoff [1967]). All that is needed is the existence of a universal element
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p of the functor H. For that matter, even this existence could be proved
without using cosets (see the adjoint functor theorem stated in § V.6).

Tensor products prcvide another example of universal elements.
Given two vector spaces ¥V and V' over the field K, the function H which
assigns to each vector space W the set HW = Bilin(V, V'; W) of all bi-
linear functions ¥V x V'— W 1is the object function of a functor
H : Vecty— Set, and the usual construction of the tensor product provides
both a vector space V® V' and a bilinear function @ : Vx V' -V V',
usually written (v, v'>>v® v/, so that the pair (V' ® V', ® > is a universal
element for the functor H = Bilin(V, V’; —). This applies equally well
when the field K is replaced by a commutative ring (and vector spaces
by K-modules).

Thenotion “universal element” is a special case of the notion “universal
arrow”. Indeed, if * is the set with one point, then any element ee Hr
can be regarded as an arrow e : * — Hr in Ens. Thus a universal element
{r,e) for H is exactly a universal arrow from % to H. Conversely, if C
has small hom-sets, the notion “universal arrow” is a special case of the
notion “universal element”. Indeed, if S: D—C is a functor and ce C
is an object, then {r,u:c—Sr) is a universal arrow from c to S if and
only if the pair {(r,ue C(c,Sr)) is a universal element of the functor
H=C(c,S —). This is the functor which acts on objects d and arrows
h of D by

d—C(c,Sd), h~C(c,Sh).

Hitherto we have treated universal arrows from an object ce C
to a functor S: D— C. The dual concept is also useful. A universal arrow
from S to c is a pair {r, v) consisting of an object re D and an arrow
v: Sr—c with codomain ¢ such that to every pair {d, /> with f:Sd—c¢
thereis a unique f': d—r with f = v S f”, as in the commutative diagram

d Sd—L ¢
i sr I

i i

r, Sr—Y%—c¢.

The projections p:axb—a, q:axb—b of a product in C (for
C=Grp, Set, Cat, ...) are examples of such a universal. Indeed, given
any other pair of arrows f:c—a, g: c—b to a and b, there is a unique
h:c—axb with ph= f,qh=g. Therefore {(p,q) is a “universal pair”.
To make it a universal arrow, introduce the diagonal functor
4:C—-CxC, with dc={c,c). Then the pair f,g above becomes an
arrow < f, g>: Ac—<a, by in C x C, and {p, ¢ is a universal arrow from
4 to the object {a, b>.
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Similarly, the kernel of a homomorphism (in Ab, Grp, Rng, R-Mod, ...)
is a universal, more exactly, a universal for a suitable contravariant
functor.

Note that we say “universal arrow to S” and “universal arrow from §”
rather than “universal” and “couniversal”.

Exercises

1. Show how each of the following familiar constructions can be interpreted as a
universal arrow:
(a) The integral group ring of a group (better, of a monoid).
(b) The tensor algebra of a vector space.
(c) The exterior algebra of a vector space.
2. Find a universal element for the contravariant power set functor 2 : Set® —Set.
3. Find (from any given object) universal arrows to the following forgetful functors:
Ab— Grp, Rng— Ab (forget the multiplication), Top— Set, Set, —Set.
4. Use only universality (of projections) to prove the following isomorphisms of
group theory:
(a) For normal subgroups M, N of G with M CN, (G/M)/(N/M)= G/M.
(b) For subgroups § and N of G, N normal, with join SN, SN/N=S/SnN.
5. Show that the quotient K-module 4/S (S a submodule of A) has a description by
universality. Derive isomorphism theorems.
6. Describe quotients of a ring by a two-sided ideal by universality.
7. Show that the construction of the polynomial ring K[x] in an indeterminate x
over a commutative ring K is a universal construction.

2. The Yoneda Lemma

Next we consider some conceptual properties of universality. First,
universality can be formulated with hom-sets, as follows:

Proposition 1. For a functor S : D—C a pair {r,u:c—Sr) is universal
from ¢ to S if and only if the function sending each f':r—d into
Sf'ou:c—S8d is a bijection of hom-sets

D(r,d) = C(c,Sd). (1)

This bijection is natural in d. Conversely, given r and c, any natural iso-
morphism (1) is determined in this way by a unique arrow u:c—Sr such
that {r,u) is universal from c to S.

Proof. The statement that {r, u) is universal is exactly the statement
that f'—S f'ou=f is a bijection. This bijection is natural in d, for if
g :d—d, then S(g' f)ou=Sg'>(Sf'°u).

Conversely, a natural isomorphism (1) gives for each object d of D
a bijection ¢, : D(r, d)— C(c, Sd). In particular, choose the object d to be r;
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the identity 1, € D(r, r) then goes by ¢, to an arrow u:c—Sr in C. For
any f’:r—d the diagram

D(r,r)—2&—C(c, S¥)
DS l Jca,sm 2)

D(r,d—22—C(c, Sd)

commutes because ¢ is natural. But in this diagram, 1, € D(r, r) is mapped
(top and right) to S /'~ u and (left and bottom) to @,(f"). Since ¢, is a bi-
jection, this states precisely that each f:c— Sd has the form f=Sf'cu
for a unique f'. This is precisely the statement that {r, ) is universal.

If C and D have small hom-sets, this result (1) states that the functor
C(c, S —) to Set is naturally isomorphic to a covariant hom-functor
D(r, —). Such isomorphisms are called representations:

Definition. Let D have small hom-sets. A representation of a functor
K : D—Set is a pair {r, p>, with r an object of D and

w:D(r, -)=K (3)

a natural isomorphism. The object r is called the representing object.
The functor K is said to be representable when such a representation exists.

Up to isomorphism, a representable functor is thus just a covariant
hom-functor D(r, —). This notion can be related to universal arrows as
follows.

Proposition 2. Let * denote any one-point set and let D have small
hom-sets. If {r,u:x—Kr)> is a universal arrow from * to K:D—Set,
then the function y which for each object d of D sends the arrow ' :r—d
to K(f')(ux) € Kd is a representation of K. Every representation of K is
obtained in this way from exactly one such universal arrow.

Proof. For any set X, a function f:*— X from the one-point set =
to X is determined by the element f(«) € X. This correspondence f+ f(x)
is a bijection Set(*, X)—> X, natural in X € Set. Composing with K yields
a natural isomorphism Set(x, K —)—» K. This plus the representation p
of (3) gives
Set(x, K -)= K= D(r, —).

Therefore a representation of K amounts to a natural isomorphism
Set(x, K —) = D(r, —). The proposition thus follows from the previous
one.

A direct proof is equally easy: Given the universal arrow u, the
correspondence f*+ K(f") (u(*)) is a representation; given a representa-
tion p as in (3), yp, maps 1 : r—r to an element of K r, which is a universal
element, hence also a universal arrow *— Kr.
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Observe that each of the notions “universal arrow”, “universal
element”, and “representable functor” subsumes the other two. Thus, a
universal arrow from c to S : D— C amounts (Proposition 1) to a natural
isomorphism D(r,d)= C(c, Sd) and hence to a representation of the
functor C(c, S —): D—Set or equally well to a universal element for
the same functor.

The argument for Proposition 1 rested on the observation that each
natural transformation ¢ : D(r, —)—=> K is completely determined by the
image under ¢, of the identity 1 : »—r. This fact may be stated as follows:

Lemma (Yoneda). If K : D — Set is a functor from D and r an object
in D ( for D a category with small hom-sets), there is a bijection
y:Nat(D(r, —), K)= Kr )
which sends each natural transformation o:D(r, —)=K to a,l1,, the
image of the identity r—r.

The proof is indicated by the following commutative diagram:

D(r,r)—=—K(r) r
f**D(r,f)l jK(f) lf (5
D(r, d)—*2—K(d), d

Corollary. For objects r,se D, each natural transformation
D(r, =)= D(s, —) has the form D(h, —) for a unique arrow h:s—r.

The Yoneda map y of (4) is natural in K and r. To state this fact
formally, we must consider K as an object in the functor category Set?,
regard both domain and codomain of the map y as functors of the pair
(K, r), and consider this pair as an object in the category Set” x D. The
codomain for y is then the evaluation functor E, which maps each pair
{K,r) to the value Kr of the functor K at the object r; the domain is
the functor N which maps the object (K, r) to the set Nat(D(r, —), K)
of all natural transformations and which maps a pair ofarrows F : K—K’,
f:r—r' to Nat(D(f, —), F). With these observations we may at once
prove an addendum to the Yoneda Lemma:

Lemma. The bijection of (4) is a natural isomorphism y : N> E between
the functors E, N :Set” x D—Set.

The object function r+— D(r, —) and the arrow function
(f:s—=ry=D(f, =): D(r, =)= D(s, —)
for fan arrow of D together define a full and faithful functor

Y: D°°— Set” (6)
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called the Yoneda functor. Its dual is another such functor
Y': D—Set®” (7)
(also faithful) which sends f: s—r to the natural transformation
D(—,f):D(—,s)=>D(—,r): D°®*—>Set.

D must have small hom-sets if these functors are to be defined (because
Set is the category of all small sets). For larger D, the Yoneda lemmas
remain valid if Set is replaced by any category Ens whose objects are sets
X, Y, ..., and for which Ens(X, Y) is the set of all functions from X to Y,
provided of course that D has hom-sets which are objects in Ens. (The
meaning of naturality is not altered by further enlargement of Ens;
see Exercise 4.)

Exercises

1. Let functors K, K': D—Set have representations <{r, p> and {r', '), respectively.
Prove that to each natural transformation 7 : K- K’, there is a unique morphism
h:r¥'—r of D such that

toyp=y'sD(h, —): D(r, -} K".

2. State the dual of the Yoneda Lemma (D replaced by D°F).

3. {Kan; the coyoneda lemma.) For K : D — Set, (x | K) is the category of ele-
ments xe Kd, Q: (x| K) — D is the projection x € Kd +> d and for each
aeD,a: (x| K)—D is the diagonal functor sending everything to the constant
value a. Establish a natural isomorphism

Nat (K, D(a, —))= Nat(a, Q).

4. (Naturality is not changed by enlarging the codomain category.) Let E be a full
subcategory of E'. For functors K, L: D— E, with J : E— E’ the inclusion, prove
that Nat(K, L)~ Nat(J K, J L).

3. Coproducts and Colimits

We introduce colimits by a variety of special cases, each of which is a
universal.

Coproducts. For any category C, the diagonal functor 4: C—C xC
is defined on objects by 4(c)=<c, ¢y, on arrows by A(f)=<{f, .
A universal arrow from an object <{a, b) of C xC to the functor 4 is
called a coproduct diagram. It consists of an object ¢ of C and an arrow
<a,by—<{c, c) of CxC; that is, a pair of arrows i:a—c, j:b—c from
a and b to a common codomain ¢. This pair has the familiar universal
property: For any pair of arrows f:a—d, g:b—d there is a unique
h:c—dwithf =hoi, g = hoj. When such a coproduct diagram exists,
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the object ¢ is necessarily unique (up to isomorphism in C); it is written
c=allb or c=a+b and is called a coproduct object. The coproduct
diagram then is

a——allbei-p;

the arrows i and j are called the injections of the coproduct a II b (though
they are not required to be injective as functions). The universality of this
diagram states that any diagram of the following form can be filled in
uniquely (at &) so as to be commutative:

a—H5allbeip

\ / g
d .

Hence the assignment { f, g)>—h is a bijection
C(a,d)yx C(b,d)=C(a U b,d) (2)

natural in d, with inverse h{hi, hj). If every pair of objects a,b in C
has a coproduct then, choosing a coproduct diagram for each pair, the
coproduct LI: Cx C—C is a bifunctor, with h 11 k defined for arrows
h:a—a', k:b—b as the unique arrow hllk:allb—a LI) with
(hI1k)i=i"h, h I k)j=jk (draw the diagram!).

The diagram (1) is more familiar in other guises. For example, in
Set take a L1 b to be a disjoint union of the sets a and b (i.e., a union of
disjoint copies of a and b), while i and j are the inclusion maps a Ca L1 b,
bCall b. Now a function k on a disjoint union is uniquely determined
by independently giving its values on a and on b; i.e, by giving the
composites hi and hj. This says exactly that diagram (1) can be filled
in uniquely at 4. To be sure, a disjoint union is not unique, but it is unique
up to a bijection, as befits a universal.

The coproduct of any two objects exists in many of the familiar cate-
gories, where it has a variety of names as indicated in the following list:

Set disjoint union of sets,

Top disjoint union of spaces,

Top,, wedge product (join two spaces at the base points),
Ab, R-Mod direct sum A @ B,

Grp free product,

CRng tensor product R®S .

In a preorder P, a least upper bound aub of two elements a and b,
if it exists, is an element aub with the properties (i) a<aub, b<aub;
and (ii) if a £¢ and b Z ¢, then aub £ c¢. These properties state exactly
that aub is a coproduct of a and b in P, regarded as a category.
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Infinite Coproducts. In the description of the coproduct, replace
C x C =C? by C* for any set X. Here the set X is regarded as a discrete
category, so the functor category C* has as its objects the X-indexed
families a = {a,|xe X} of objects of C. The corresponding diagonal
functor 4: C— C* sends each ¢ to the constant family (all ¢, =c). A
universal arrow from a to 4 is an X-fold coproduct diagram; it consists
of a coproduct object LI .a,eC and arrows (coproduct injections)
i,:a,— 1 _a, of C with the requisite universal property. This universal
property states that the assignment f—{fi |xe X} is a bijection
C(U,a,, )= [] Cla,, 0, 3
xeX

natural in ¢. In Set, a coproduct is an X-fold disjoint union.
Copowers. If the factors in a coproduct are all equal (a, = b for all x),
the coproduct LI b is called a copower and is written X +b, so that

C(X+b,c)=C(b,c)*, 4

natural in c¢. For example, in Set, with b=Y a set, the copower
X - Y= X x Yis the cartesian product of the sets X and Y.

Cokernels. Suppose that C has a null object z, so that for any two
objects b,ce C there is a zero arrow 0:b—z—c. The cokernel of
f:a—bisthen anarrow u:b—esuchthat(fuf=0:a—e; @) ifh:b—c
has hf =0, then h="hu for a unique arrow h':e—c. The picture is

atosb—tse  uf=0,
h h (5)
v
c, hf=0.

In Ab, the cokernel of f: A— B is the projection B— B/f A to a quotient
group of B, and in many other such categories a cokernel is essentially a
suitable quotient object. However, in categories without a null object
cokernels are not available. Hence we consider more generally certain
“coequalizers”.

Coequalizers. Given in C a pair f,g:a—b of arrows with the same
domain a and the same codomain b, a coequalizer of { f, g> is an arrow
u:b—e(or,a pair (e, up)such that (i) u f =ug; (ii}if h: b—c has hf = hg,
then h=h"u for a unique arrow A':e—c. The picture is

a-—“g_—ib——"—»e uf =ug,
h h (6)
¥
¢, hf=hg.

A coequalizer u can be interpreted as a universal arrow as follows.
Let || denote the category which has precisely two objects and two
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non-identity arrows from the first object to the second; thus the category is
-3 . Form the functor category C*. An object in C* is then a functor
from -+ =3+ to C; that is, a pair {f,g):a—b of parallel arrows a=3 b
in C. An arrow in CY from one such pair < f, g)> to another {f’, g'> is
a natural transformation between the corresponding functors; this
means that it is a pair <h, k> of arrows h:a—d and k: b— b in C

arg"’f__qb kg=gh,
hjv lk
e
a—=3b", kf=f'h,
g

which make the f-square and the g-square commute. There is also a
diagonal functor 4: C— C*, defined on objects ¢ and arrows r of C as

1
Cc c_T3¢C
1
lr = lr }vr
’ /_1_._) ! .
C [ Cp——

insymbols, dc =1, 1> and Ar = {r, r>. Now given the pair{ f, g> : a—b,
an arrow h:b—c with hf=hg is the same thing as an arrow
Chf =hg, kY : {f,g>—<1,, 1, in the functor category C**:

!
ag:b

hfl lh hf=hg.

c——¢

In other words, the arrows h which “coequalize” f and g are the arrows
from (f,g)> to A. Therefore a coequalizer {e, u)> of the pair {f,g) is
just a universal arrow from { f, g> to the functor 4.

Coequalizers of any set of maps from a to b are defined in the same way.

In Ab, the coequalizer of two homomorphisms f,g: A—B is the
projection B— B/(f —g)A on a quotient group of B (by the image of
the difference homomorphism). In Set, the coequalizer of two functions
f,g: X— Y is the projection p: Y— Y/E on the quotient set of Y by the
least equivalence relation EC Y x Y which contains all pairs { fx,gx)
for xe X. The same construction, using the quotient topology, gives
coequalizers in Top.

Pushouts. Given in C a pair f: a—b, g : a—c of arrows with a common
domain a, a pushout of {f,g)> is a commutative square, such as that on
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the left below

P A a—L b
T
v k
c———71, c——S,

such that to every other commutative square (right above) built on f, g
there is a unique t:r—s with tu=h and tv=k. In other words, the
pushout is the universal way of filling out a commutative square on the
sides f,g. It may be interpreted as a universal arrow. Let + - —-
denote the category which looks just like that. An object in the functor
category C' 7 7 is then a pair of arrows {f,¢)> in C with a common
domain, while A(c) = {1,, 1) is the object function of an evident “diagonal”
functor 4: C—C* 7. A commutative square hf =kg as on the right
above can then be read as an arrow

Lo be—L-a—1tsc
th th:kg Jk
A(s) Se—1—S——$

in C7°7 from (f,g) to 4s. The pushout is a universal such arrow.
Its vertex r, which is uniquely determined up to (a unique) isomorphism, is
often written as a coproduct “over a”

r=bU,c=bl, ,c,

and called a “fibered sum” or (the vertex of) a “cocartesian square”.
In Set, the pushout of {f, g> always exists; it is the disjoint union b 11 ¢
with the elements f x and g x identified for each x € a. A similar construction
gives pushouts in Tep — they include such useful constructions as ad-
junction spaces. Pushouts exist in Grp; in particular, if f and g above
are monic in Grp, the arrows u and v of the pushout square are also monic,
and the vertex r is called the “amalgamated product” of b with c.

Cokernel Pair. Given an arrow f:a—b in C, the pushout of f with
fis called the cokernel pair of f. Thus the cokernel pair of f consists of an
object r and a parallel pair of arrows u, v : b—r, with domain b, such that
uf =vf and such that to any parallel pair h k:b—s with hf =kf
there is a unique t:r—s with tu=h and tv=k:

a—f—)b_#r, uf=vf,

Ny

s, hf=kf.
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Colimits. The preceding cases all deal with particular functor categories
and have the following pattern. Let C and J be categories (J for index
category, usually small and often finite). The diagonal functor

4:C—C’

sends each object ¢ to the constant functor A¢ — the functor which has
the value ¢ at each object i €J and the value 1, at each arrow of J. If
f:c—c'is an arrow of C, A4 f is the natural transformation A4 f: Ac=Ac’
which has the same value f at each object i of J. Each functor F:J—C
is an object of C’. A universal arrow {r, u)> from F to 4 is called a colimit
(a“direct limit” or “inductive limit”) diagram for the functor F. It consists
of an object r of C, usually written r = E@)F or r = Colim F, together

with a natural transformation u:F-Ar which is universal among
natural transformations 7: F->Ac. Since Ac is the constant functor,
the natural transformation t consists of arrows 1,: F;—c¢ of C, one for
each object i of J, with t;+ Fu = 1, for each arrow u: i—j of J. Pictorially,
all the squares in the following schematic diagram (for a special choice of J)

F——F,— SsF—=F,«—F,

FERRT

C = 4 = 4 = C = C

must commute. It is convenient to visualize these diagrams with all the
“bottom” objects identified. For this reason, a natural transformation
7: F—=Ac, often written as 17: F->¢, omitting 4, is called a cone from the
base F to the vertex ¢, as in the figure

FiL’FjL’Fk

A

c

(all triangles commutative). In this language, a colimit of F:J—C
consists of an object I;i_rrlFeC and a cone u:F-A(LimF) from the

base F to the vertex Lim F which is universal: For any cone 7: F-4c

from the base F there is a unique arrow ¢ : Lim F—c with 7, ="y, for
every index i € J. We call u the limiting cone or the universal cone (from F).

For example, let J =@ = {0—1—2—3-—---} and consider a functor
F : @—Set which maps every arrow of @ to an inclusion (subset in set).
Such a functor F is simply a nested sequence of sets F, CF, CF,C ---.
The union U of all sets F,, with the cone given by the inclusion maps
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F,—U, is LimF. The same interpretation of unions as special colimits

applies in Grp, Ab, and other familiar categories. The reader may wish to
convince himself now of what we shall soon prove (Exercise V.1.8): For J
small, any F : J — Set has a colimit.

Exercises

1. In the category of commutative rings, show that R—R®S«S, with maps
r—r®1, 1®s<s, is a coproduct diagram.

2. If a category has (binary) coproducts and coequalizers, prove that it also has
pushouts. Apply to Set, Grp, and Top.

3. In the category Matry of § 1.2, describe the coequalizer of two m x n matrices
A, B (i.e,, of two arrows n—m in Matry).

4. Describe coproducts (and show that they exist) in Cat, in Mon, and in Grph.

5. If E is an equivalence relation on a set X, show that the usual set X/E of equiv-
alence classes can be described by a coequalizer in Set.

6. Show that ¢ and b have a coproduct in C if and only if the following functor
is representable: C(a, —) x C(b, —): C—Set, by c—>C(a, ¢) x C(b, c).

7. (Every abelian group is a colimit of its finitely generated subgroups.) If A is an
abelian group, and J,, the preorder with objects all finitely generated subgroups
S C A ordered by inclusion, show that A is the colimit of the evident functor
J,— Ab. Generalize.

4. Products and Limits

The limit notion is dual to that of a colimit. Given categories C, J,
and the diagonal functor A:C—C’, a limit for a functor F:J—C
is a universal arrow {r,v) from 4 to F. It consists of an object r of C,
usually written r=(Li_mF or LimF and called the limit object (the

“inverse limit” or “projective limit”) of the functor F, together with a
natural transformation v:Ar-F which is universal among natural
transformations t: Ac-=F, for objects ¢ of C. Since Ac:J—C is the
functor constantly ¢, this natural transformation 7 consists of one arrow
1;: ¢c—F; of C for each object i of J such that for every arrow u:i—j
of J one has t;= Fu- ;. We may call t:c—=F a cone to the base F from
the vertex c. (We say “cone to the base F” rather than “cocone”). The
universal property of v is this: It is a cone to the base F from the vertex
(L_ir_n_F; for any cone 7 to F from an object ¢, there is a unique arrow

t:c—Lim F such that 7;=v;t for all i. The situation may be pictured as

¢——>5LimF= L1mF

P

F——F—‘—>F

v = limiting cone,
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each cone is represented by a commuting triangle (just one of many),
with vertex up; there is a unique arrow ¢ which makes all the added
(vertex down) triangles commute. As with any universal, the object
I(:irEF and its limiting cone v : (I:_irE‘F—>F are determined uniquely by the

functor F, up to isomorphism in C.
The properties of Lim and Lim are summarized in the diagram

LimF=LimF———F—* ,1imF = ColimF

- :

[ ; (1)

i v
c F c,

T a

where the horizontal arrows are cones, the vertical arrows are arrows in C.
When the limits exist, there are natural isomorphisms

C(c,(Li_mF);Nat(Ac, F) = Conel(c, F), 2
Cone(F, c)=Nat(F,Ac);C(£n}F, o). 3)

There are familiar names for various special limits, dual to those for
colimits:

Products. If J is the discrete category {1,2}, a functor F : {1,2} - C
is a pair of objects <a, b) of C. The limit object is called a product of a
and b, and is written a x b or a Il b; the limit diagram consists of ax b
and two arrows p, g (or sometimes pry, pr,),

aaxbdp,

called the projections of the product. They constitute a cone from the ver-
tex a x b, so by the definition above of a limit, there is a bijection of sets

C(c,axb)=C(c,a)x C(c, b) 4)

natural in ¢, which sends each h:c—axb to the pair of composites
{ph,qh>. Conversely, given arrows f:c—a and g:c—b, there is a
unique h:c—axb with ph= f and gh=g. We write

h=(f,g):c—axb

and call h the arrow with components f and g. We have already observed
(in § 11.3) that the product of any two objects exists in Cat, in Grp, in Top,
and in Mon; in these cases (and in many others) it is called the direct
product. In a preorder, a product is a greatest lower bound.

Infinite products. If J is a set (=discrete category = category with
all arrows identities), then a functor F:J—C is simply a J-indexed
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family of objects a; e C, while a cone with vertex ¢ and base a; is just a
J-indexed family of arrows f;:c—a;. A universal cone p;:I1;a,—a;
thus consists of an object I1;a;, called the product of the factors g,
and of arrows p;, called the projections of the product, with the following
universal property: To each J-indexed family (=cone) f;: c—a; there is
a unique f

fie—=1Il;a;, with pjf=fj, JjedJ.

The arrow f uniquely determined by this property is called the map
(to the product) with components f;, jeJ. Also {f;|jeJ}+ [ is a bi-
jection

;C(c,a) = Cl(c, II;a), )]

natural in ¢. Here the right hand product is that in C, while the left-hand
product is taken in Set (where we assume that C has small hom-sets).
Observe that the hom-functor C(c, —) carries products in C to products
in Set (see § V.4). Products over any small set J exist in Set, in Top,
and in Grp; in each case they are just the familiar cartesian products.

Powers. If the factors in a product are all equal (a¢; = b € C for all j)
the product IT;a; = I1;b is called a power and is written /1;b = b7, so the

C(c, by = C(c, b, (6)

natural in ¢. The power on the left is that in Set, where every small power
X7 exists (and is the set of all functions J— X).

Equalizers. If J=||, a functor F:||—C is a pair f,g:b—a of
parallel arrows of C. A limit object d of F, when it exists, is called an
equalizer (or, a “difference kernel”) of f and g¢. The limit diagram is

d-5b

aall\

a, fe=ge (7

(the limit arrow e amounts to a cone a«d—b from the vertex d). The
limit arrow is often called the equalizer of f and g; its universal property
reads: To any h:c—b with fh=gh there is a unique h':c—d with
eh'=h.

In Set, the equalizer always exists; d is the set {xe b | fx=gx} and
e:d—b is the injection of this subset of b into b. In Top, the equalizer
has the same description (d has the subspace topology). In Ab the equalizer
d of f and g is the usual kernel of the difference homomorphism
f—g:b—a.

Equalizers for any set of arrows from b to a are described similarly.
Any equalizer e is necessarily a monic.
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Pullbacks. If J = (— + <), a functor F : (— - «)—C is a pair of arrows
b-La<&d of C with a common codomain a. A cone over such a functor
is a pair of arrows from a vertex c such that the square (on the left)

C—Ens bx,d—%—d
[ L
b—T)a, b——f—>a

commutes. A universal cone is then a commutative square of this form,
with new vertex written b x ,d and arrows p, g as shown on the right,
such that for any square with vertex ¢ there is a unique r:c—b X ,d
with k = gr, h = pr. The square formed by this universal cone is called a
pullback square or a“cartesian square” and the vertex b x ,d of the universal
cone is called a pullback, a “fibered product”, or a product over (the
object) a. This construction, possible in many categories, first became
prominent in the category Top. If g : d—a is a “fiber map” (of some type)
with “base” a and f is a continuous map into the base, then the projec-
tion p of the pullback is the “induced fiber map” (of the type considered).

The pullback of a pair of equal arrows f: b—a<«b: f, when it exists,
is called the kernel pair of f. It is an object d and a pair of arrows p, g : d—b
such that fp= fq:d—a and such that any pair h,k:c—a with fh= fk
can be written as h=pr, k=gqr for a unique r: c—d.

If J =0 is the empty category, there is exactly one functor 0—C;
namely, the empty functor; a cone over this functor is just an object
ce C (i.e., just a vertex). Hence a universal cone on 0 is an object t of C
such that each object ce C has a unique arrow ¢->t. In other words,
a limit of the empty functor to C is a terminal object of C.

Limits are sometimes defined for diagrams rather than for functors.
In detail, let C be a category, U C the underlying graph of C, and G
any graph. Then a diagram in C of shape G is a morphism D: G—U C of
graphs. Now define a cone p:c-+>D to be a function assigning to each
object ie G an arrow y;:c—D; of C such that Dhey;=pu; for every
arrow h : i—j of the graph G. This is just the previous definition of a cone
(a natural transformation u:Ac--D), coupled with the observation
that this definition uses the composition of arrows in C but not in the
domain G of D. A limit for the diagram D is now a universal cone 4 : c=D.

This variation on the definition of a limit yields no essentially new
information. For, let FG be a free category generated by the graph G,
and P:G— U(FG) the corresponding universal diagram. Then each
diagram D:G—UC can be written uniquely as D=UD'-P for a
(unique) functor D': FG—C, and one readily observes that limits
(and limiting cones) for D’ correspond exactly to those for D.
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Exercises

L.

2.

g

10.

5.

In Set, show that the pullback of f: X—Z and g: Y—Z is given by the set of
pairs {{x,y> | xe X, ye Y, fx=gy}. Describe pullbacks in Top.

Show that the usual cartesian product over an index set J, with its projections,
is a (categorical) product in Set and in Top.

. If the category J has an initial object s, prove that every functor F:J—C to

any category C has a limit, namely F(s). Dualize.

. In any category, prove that f:a—b is epi if and only if the following square is

a pushout:

In a pullback square (8), show that f monic implies g monic.
In Set, show that the kernel pair of f: X — Y is given by the equivalence relation
E={{x,x>|x,x' € X and fx= fx'}, with suitable maps E 3 X.

. (Kernel pairs via products and equalizers.) If C has finite products and equalizers,

show that the kernel pair of f: a— b may be expressed in terms of the projections
PP, axa—a as p e, p,e, where e is the equalizer of fp,,fp,:axa—b
(cf. Exercise 6). Dualize.

. Consider the following commutative diagram

. > > .

L

————> e

(a) If both squares are pullbacks, prove that the outside rectangle (with top
and bottom edges the evident composites) is a pullback.

(b) If the outside rectangle and the right-hand square are pullbacks, so is the
left-hand square.

. (Equalizers via products and pullbacks.) Show that the equalizer of f,g:b—a

may be constructed as the pullback of
(1, f):b—bxa—b:(1,,9).

If C has pullbacks and a terminal object, prove that C has all finite products
and equalizers.

Categories with Finite Products

A category C is said to have finite products if to any finite number of
objects ¢y, ..., ¢, of C there exists a product diagram, consisting of a
product object ¢; x --- x ¢, and n projections p;:¢; x --- X ¢,—¢;, for
i=1, ..., n, with the usual universal property. In particular, C then has a
product of no objects, which is simply a terminal object ¢ in C, as well
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as a product for any two objects. The diagonal map o, : c— ¢ x ¢ is defined
for each ¢ by p,6,=1,=p,3d,; it is a natural transformation.

Proposition 1. If a category C has a terminal object t and a product
diagrama<—a x b—b for any two of its objects, then C has all finite products.
The product objects provide, by {a,b)—axb, a bifunctor CxC—C.
For any three objects a, b, and c there is an isomorphism

a=a,, . axbxcyz(axb)xc (N
natural in a, b, and c. For any object a there are isomorphisms
A=l txaza g=g,.axt=a (2)

which are natural in a, where t is the terminal object of C.

Proof. A product of one object ¢ is just the diagram ¢—c formed
with the identity map of ¢, so is present in any category. Now suppose
that any two objects a,, a, of C have a product. If we choose one such
productdiagrama, «<—a, x a,—a,foreach pair of objects, then x becomes
a functor when f; x f, is defined on arrows f; by p,{f, x f,)=fip:
One may then form a product of three objects a, b, and ¢ by forming the
iterated product object a x (b x ¢) with projections as in the diagram

b
1
a——ax{bxc)—sbxc

T~

The projections to a and the two indicated composites give three arrows
from ax(bxc¢) to a, b, and ¢ respectively. By the universality of the
given projections (from two factors) it follows readily that these three
arrows form a product diagram for a, b, and ¢. Product diagrams for
more factors can be found by iteration in much the same way. For three
factors, one could also form a product diagram by the iteration (a x b) x ¢;
the uniqueness of the product objects then yields a unique isomorphism
ax (b xc)=(axb)x ccommuting with the given projections to a, b, and c.
This is the isomorphism a of the proposition, and it is natural. Finally,
since every object has a unique arrow to the terminal object ¢, the diagram
t«—a-bais a product diagram for ¢ and a. The uniqueness of the product
object txa then yields an isomorphism 4,:txa-—a, and similarly
9, :a x t — a. Naturality of 1 and g follows. These isomorphisms, a, 1
and p so constructed are said to be “canonical.”

The dual result holds for finite coproducts; in particular a coproduct
of no factors is an initial object. For m objects a;, a coproduct diagram
consists of m injections i;:a;—a, U---a,, and any map f:a,---Ua,—c
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is uniquely determined by its m cocomponents f i;=f;:a;—c for
j=1,...,m. In particular, if C has both finite products and finite co-
products, the arrows

a,I---Oa,—b, x---xb,
from a coproduct to a product are determined uniquely by an mxn
matrix of arrows f, =p, fi;:a;—b,, where j=1,....m, k=1,...,n In
categories of finite dimensional vector spaces, where finite coproduct co-
incides with finite product, this matrix is exactly the usual matrix of a
linear transformation relative to given bases in its domain and codomain.

More generally, let C be any category with a null object z (an object
z which is both initial and terminal), so that the arrow a— z—b through
z is the zero arrow 0:a—b. If C also has finite products and finite co-
products, there is then a “canonical” arrow

all---Ha,—a, x - xa,

of the coproduct to the product — namely, that arrow which has the
identity n x n matrix (identities on the diagonal and zeroes elsewhere).
This canonical arrow may be an isomorphism (in Ab or R-Mod), a
proper monic (in Top, or Set,) or a proper epi (in Grp).

Exercises

1. Prove that the diagonal 6.: c—c¢ x ¢ is natural in c.
2. In any category with finite products, prove that the following diagrams in-
volving the canonical maps «, g, 4 of (1) and (2) always commute:

ax (bx(cxd)=(axb)yx(cxd->(axb)xc)xd

j 1Xa I‘ ax1

ax((bxc)xd) = (ax(bxc)yxd,
tx(bxc)—2-(txb)yxc ax(txc)—Es(axxc

lz Jan Jlxz lgxl

bxc = bxc, axec = axc.

3. (a) Prove that Cat has pullbacks (cf. Exercise 11.6.5).
(b) Show that the comma categories (b | C) and (C |a) are pullbacks in Cat.
4. Prove that Cat has all small coproducts.
5. If B has (finite) products show that any functor category B¢ also has (finite)
products (calculated “pointwise”).
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6. Groups in Categories

We return to the ideas of the introduction about expressing algebraic
identities by diagrams. Let C be a category with finite products and a
terminal object ¢. Then a monoid in C is a triple {c,u:cxc—c¢,
n : t — ¢, such that the following diagrams commute:

cx(cxe)—2—(cxc)xc—2 e xe

lxul 111 (1)

cxXc > C,
txe—sexecet Xt ext
CR R @
c = c = ¢

(This is exactly the definition of the introduction, except for the explicit
use in the first diagram of the associativity isomorphism a of (5.1).)
We now define a group in C to be a monoid {c, y, ) together with an
arrow { : c—c¢ which makes the diagram (with §, the diagonal)

% sexe—1,exe

C
l J“ 3
t

n
> C

commute (this suggests that { sends each xec to its right inverse).

By similar diagrams, one may define rings in C, lattices in C, etc.;
the process applies to any type of algebraic system defined by operations
and identities between them.

It is a familiar fact that if G is an (ordinary) group, so is the function
set G* for any X; indeed the product of two functions f, f’ in G* is
defined pointwise, as (f- f)(x)= fx- f'x. In the present context this
construction takes the following form.

Proposition 1. If C is a category with finite products, then an object ¢
is a group (or, a monoid) in C if and only if the hom functoz C(—,¢)is
a group (respectively, a monoid) in the functor category SetC .

Proof. Each multiplication p for ¢ determines a corresponding
multiplication i for the hom-set C(—, ¢): C°®—Set, as the composite

C(—,0)xC(—, ) C(—, cxc)=C(—,¢)
where v=p, = C(—, p), while the first natural isomorphism is that given
(cf. (4.4)) by the definition of the product object ¢ x c. Conversely, given
any natural v as above, the Yoneda lemma proves that there is a unique
picxc—cwith v=p, . A “diagram chase” shows that u is associative if
and only if i is; the chase uses the definition of the associativity iso-
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morphism o by its commutation with the projections of the three-fold
product. The rest of the proof is left as an exercise.

Since the functor category Set®” always has finite products (Exercise
5.5) we can consider objects ¢ in C such that C(—,c¢) is a group in this
functor category even if the category C does not have finite products;
however, I know no real use of this added generality.

Exercises

(Throughout, C is a category with finite products and a terminal object .}

1. Describe the category of monoids in C, and show that it has finite products.

2. Show that the category of groups in C has finite products.

3. Show that a functor T : B — Set is a group in Set® if and only if each T, for b
an object of B, is an (ordinary) group and each Tf, f in B, is a morphism of
groups.

4. (a) If 4 is an abelian group (in Set) show that its multiplication 4 x 4 — 4,

its unit 1 — A, and its inverse A — A are all morphisms of groups (where
A x A is regarded as the direct product group). Deduce that 4 with these
structure maps is a group in Grp.

(b) Prove that every group in Grp has this form.

7. Colimits of Representable Functors

The utility of representable functors hom(d, —) is emphasized by the fol-
lowing basic result about set-valued functors.

Theorem 1. Any functor K : D — Sets from a small category D to the
category of sets can be represented (in a canonical way) as a colimit of a
diagram of representable functors hom(d, —) for objects d in D.

Proof. First, given K, we construct the needed diagram category (for
the colimit) J as the so-called ‘“‘category of elements” of K; that is, as the
comma category 1 | K (see §11.6.(3)) with objects pairs (d, x) of elements
x € K(d) for de D and with arrows f : (d,x) — (d’,x’) those arrows
f :d — d’ of D for which K(f)x = x’ (more briefly, f * x = x'). We then
claim that the given functor K is the colimit of the diagram on 1 | K
given by the functor

M : JP > Sets?

which sends each object (d,x) to the hom-functor D(d,—) and each
arrow f to the induced natural transformation /* : D(d’, -} — D(d, —).
Then the Yoneda isomorphism,

y~! : K(d) — Nat(D(d, -), K),
yields a cone in Sets” over the base M to K, as displayed by the arrows to
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K at the lower left of the following figure:

1

(d,x) +—— (d,X)

J: f;x = x’a
o l l f:d—d
Sets?: D4, —) A D(d',-) M
yix
y_lir 1z ly_lz'
K o >L.
[

We claim that this cone to K is a colimiting cone over D(d,—). First,
consider any other cone over D(d,—) to the vertex L, some functor
L: D — Sets. The arrows of this cone (arrows in Sets”) are natural
transformations D{(d,—) — L, hence are given by the Yoneda lemma
in the form y~!z: D(d,~) — L for some ze L(d) as well as y~!z :
D(d',—) — L, where (since it a cone) z’ = f z.

To show that this cone to the vertex K is universal, we must construct
a unique natural transformation 6 : K — L which carries the first cone
into the second one. So for each x € K(d), we start from the object (d, x)
of JP, as at the top in the diagram (1), and set

de =2z
for the z € L(d) present in the natural transformation y~!z in the cone for
L. To show 6 natural, consider any f : d — d’' with f x = x'. Then also
fz=12, and since y~! is natural, f(y~'z) = y~!(f z) = y~'2. Therefore,
6 is natural. It is evidently unique, q.e.d.

A dual argument will show that any contravariant functor D°P —
Sets can be represented as a colimit of a diagram of representable con-
travariant functors hom(—, d).

For C a small category, a contravariant functor F : C°? — Sets is
often called a presheaf. The intuition comes from the case where C is the
category of open sets U of some topological space and F(U) is the set of
smooth (in some sense) functions defined on U, while an inclusion V' <« U
gives the map F(U) — F(V) which restricts a function on U to one on V.
The functor category SetsC" of all these functors (presheaves) is often
written as C. Certain of these functors (with a “matching” property) are
called sheaves; see Mac Lane-Moerdijk [1992].

Notes.

The Yoneda Lemma made an early appearance in the work of the Japanese pioneer
N. Yoneda (private communication to Mac Lane) [1954]; with time, its impor-
tance has grown.
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Representable functors probably first appeared in topology in the form of “uni-
versal examples”, such as the universal examples of cohomology operations (for
instance, in J. P. Serre’s 1953 calculations of the cohomology, modulo 2, of Eilenberg-
Mac Lane spaces).

Universal arrows are unique only up to isomorphism; perhaps this lack of
absolute uniqueness is why the notion was slow to develop. Examples had long
been present; the bold step of really formulating the general notion of a universal
arrow was taken by Samuel in 1948 the general notion was then lavishly popularized
by Bourbaki. The idea that the ordinary cartesian products could be described by
universal properties of their projections was formulated about the same time
(Mac Lane [1948, 1950]). On the other hand the notions of limit and colimit have
a long history in various concrete examples. Thus colimits were used in the proofs
of theorems in which infinite abelian groups are represented as unions of their
finitely generated subgroups. Limits (over ordered sets) appear in the p-adic
numbers of Hensel and in the construction of Cech homology and cohomology
by limit processes as formalized by Pontrjagin. An adequate treatment of the
natural isomorphisms occurring for such limits was a major motivation of the
first Eilenberg-Mac Lane paper on category theory [1945]. E. H. Moore’s general
analysis (about 1913) used limits over certain directed sets. In all these classical cases,
limits appeared only for functors F:J— C with J a linearly or partly ordered set.
Then Kan [19607 took the step of considering limits for all functors, while Freyd
[1964] for the general case used the word “root” in place of “limit”. His followers
have chosen to extend the original word “limit” to this general meaning. Properties
special to limits over directed sets will be studied in Chapter IX.



IV. Adjoints

1. Adjunctions

We now present a basic concept due to Kan, which provides a different
formulation for the properties of free objects and other universal con-
structions. As motivation, we first reexamine the construction (§ I11.1)
of a vector space Vy with basis X. For a fixed field K consider the functors

14
Set <———U—’Vctx ,

where, for each vector space W, U(W) is the set of all vectors in W,
so that U is the forgetful functor, while, for any set X, V(X) is the vector
space with basis X. The vectors of V(X) are thus the formal finite linear
combinations X r; x; with scalar coefficients r;€ K and with each x; € X,
with the evident vector operations. Each function g : X — U (W) extends
to a unique linear transformation f:V(X)— W, given explicitly by
f(Zrx)=2r(gx,) (e, formal linear combinations in V(X) to actual
linear combinations in W). This correspondence g : g+ f has an inverse
¢@: f—f1X, the restriction of f to X, hence is a bijection

@ : Vet (V(X), W)xSet(X, U(W)).

This bijection ¢ = @y y is defined “in the same way” for all sets X and
all vector spaces W. This means that the ¢y j are the components of a
natural transformation ¢ when both sides above are regarded as functors
of X and W. It suffices to verify naturality in X and in W separately.
Naturality in X means that for each arrow h:X'— X the diagram

Vet (V(X), W) —2— Set(X, U(W))

(Vh}*jv jvh*

Vet (V(X'), W) —2— Set(X', U(W)),

where h* g = g < h, will commute. This commutativity follows from the
definition of ¢ by a routine calculation, as does also the naturality in W.
Note next several similar examples.

79
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The free category C=F G on a given (small) graph G is a functor
Grph— Cat: it is related to the forgetful functor U : Cat— Grph by the
fact (§ 11.7) that each morphism D : G— U B of graphs extends to a unique
map D’: FG— B of categories; moreover, DD’ is a natural isomor-
phism

Cat(F G, B) = Grph(G, UB).

In the category of smallsets, each functiong : § x T— R oftwo variables
can be treated as a function ¢g : S — hom(T, R) of one variable (in S)
whose values are functions of a second variable (in T); explicitly,
[(pg)s)t = g(s, ) for se S, t e T. This describes ¢ as a bijection

¢ : hom(S x T, R) = hom(S,hom(T, R)) .
It is natural in S, T, and R. If we hold the set T fixed and define functors
F,G:Set—Set by F(S)=Sx T, G(R)=hom(T, R), the bijection takes
the form
hom(F(S), R)= hom(S, G(R))

natural in § and R, and much like the previous examples.
For modules 4, B, and C over a commutative ring K there is a
similar isomorphism

hom{A4 ® x B, C) = hom(A, homg(B, C))
natural in all three arguments.

Definition. Let A and X be categories. An adjunction from X to A
is a triple {F, G, ¢>: X— A, where F and G are functors

X+—:—"’A,

while ¢ is a function which assigns to each pair of objects xe X, ac A a
bijection of sets
o=0,, A(Fx,a)= X(x,Ga) (0
which is natural in x and a.

Here the left hand side A(Fx, a) is the bifunctor
X x AL, gop x4 1O, Qe
which sends each pair of objects {x, a) to the hom-set A(Fx, a), and the
righthand sideisasimilar bifunctor X°? x 4A—Set. Therefore the naturality
of the bijection ¢ means that for all k:a—a’ and h:x'—x both the
diagrams:

A(Fx,a)—*—X(x,Ga) A(Fx,a)—>— X(x,Ga)

k{ J(Gk)* (Fhy* j lh* 2

A(Fx, a)—2— X(x, Gd)) A(Fx', a)—2— X(x', Ga)
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will commute. Here k, is short for A(F x, k), the operation of composition
with k, and h* = X(h, Ga).

This discussion assumes that all the hom-sets of X and A are small.
If not, we just replace Set above by a suitable larger category Ens of sets.

An adjunction may also be described without hom-sets directly in
terms of arrows. It is a bijection which assigns to each arrow f: Fx—a
an arrow ¢ f =rad f: x— Ga, the right adjunct of f, in such a way that
the naturality conditions of (2),

ok<f)=Gk-of, o(fcFhy=¢fh, 3)

hold for all f and all arrows h:x'—x and k:a—a’. It is equivalent to
require that ¢ ! be natural; i.e., that for every h, k and g: x— Ga one

has
o Ygh=¢ 'geFh, ¢ "(Gk-g)=k-¢7'g. 4

Given such an adjunction, the functor F is said to be a left-adjoint
for G, while G is called a right adjoint for F. (Some authors write F —G;
others say that F is the “adjoint” of G and G the “coadjoint” of F, but
other authors say the opposite; therefore we shall stick to the language of
“left” and “right” adjoints.)

Every adjunction yields a universal arrow. Specifically, set a= Fx
in (1). The left hand hom-set of (1) then contains the identity 1: Fx— Fx;
call its ¢-image #,. By Yoneda’s Proposition I11.2.1, thisn,is a universal
e Mo x—GFx,  n,=g(lp),
from xe X to G. The adjunction gives such a universal arrow 75, for
every object x. Moreover, the function x+ is a natural transformation
Iy— G F because every diagram

x—= > GFx
hl }GFh
x——GFx
is commutative. This one proves by the calculation
GFh-o(p )=@(Fh-1p)=¢(lpFh=¢(g)-h.

based on the Eq. (3) describing the naturality of ¢. This calculation may
also be visualized by the commutative diagram

A(Fx', Fx') ", A(Fx', Fx) < A(Fx, Fx)

§ | |

X(x', GFX) g X (X', G Fx)e——X(x, GFx),

where h* = X (h, 1) and h, = X(1, h).
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The bijection ¢ can be expressed in terms of the arrows #, as
o(f)=G(f)n, for f:Fx—a; (5)
indeed, by the naturality (3) of ¢ we may compute that
o(f)=0(folrx)=Gfoplps=Gfon,.

This computation may be visualized by chasing 1 around the commutative
square

A(Fx, FX)—2— X (x, GFx) Iy,
SN
A(Fx,a)—*—X(x,Ga) fol=of=Gf-n,.

Dually, the adjunction gives a universal arrow from F. Indeed,
set x = Ga in the adjunction (1). The identity arrow 1 : Ga— Ga is now
present in the right-hand hom-set; its image under ¢! is called &,

e, FGa—a, g=¢ '(15), acAd,

and is a universal arrow from F to a. As before, ¢ is a natural transforma-
tion ¢: F G-I, and

0 (9)=¢,°Fg for g:x—Ga.
Finally, take x = Ga. Then ¢, = ¢ ~'(14,) gives, by the formula (5) for ¢,
Loa=0(e) =Gles) > Nga -
This asserts that the composite natural transformation

G sGFG—%,¢G

is the identity transformation.
To summarize, we have proved

Theorem 1. An adjunction {F, G, ¢) : X — A determines
(i) A natural transformationn : Iy-> G F such that for each object x the
arrown . is universal to G from x, while the right adjunct of each f: Fx—ais

of=Gfon.:x—Ga; (6)

(ii) A natural transformation ¢: F G-I, such that each arrow g, is
universal to a from F, while each g : x— Ga has left adjunct

¢ 'g=¢,-Fg:Fx—a. (7N

Moreover, both the following composites are the identities (of G, resp. F).

G—"¢>GFG—>G, F—H ,FGF—L F. (8)
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We call 5 the unit and ¢ the counit of the adjunction. (Formerly,
we called n a “front adjunction” and ¢ a “back adjunction”.)

The given adjunction is actually already determined by various
portions of all these data, in the following sense.

Theorem 2. Eachadjunction{F, G, ¢) : X — Aiscompletely determined
by the items in any one of the following lists:

(1) Functors F, G, and a natural transformation n:15x-=->GF such
that each n,: x— G F x is universal to G from x. Then ¢ is defined by (6).

(1) The functor G: A— X and for each xe X an object Fyxe€ A and
a universal arrow y,:x—GFyx from x to G. Then the functor F has
object function F, and is defined on arrows h: x—x" by GFheon,=n,°h.

(i) Functors F, G, and a natural transformation ¢:F G—=1, such
that each ¢,: F Ga— a is universal from F to a. Here ¢ " is defined by (7).

(tv) The functor F: X — A and for each a€ A an object Gyae X and
an arrow ¢,: F Gya—a universal from F to a.

(v) Functors F, G and natural transformations n:Iy-—>GF and
g: F G- 1, such that both composites (8) are the identity transformations.
Here ¢ is defined by (6) and ¢~ by (7).

Because of (v), we often denote the adjunction {F,G,¢)> by
F.Gon ey X—A.

Proof. Ad (1): The statement that 5, is universal means that to each
f:x—Ga there is exactly one g as in the commutative diagram
n

Fx x———GFx
Lo I iGg
a, Ga.

This states precisely that 6(g) = G g o , defines a bijection

0:A(Fx,a) > X(x,Ga) .
This bijection @ is natural in x because # is natural, and natural in a be-
cause G is a functor, hence gives an adjunction {F, G, #). In case 5 was
the unit obtained from an adjunction {F, G, ¢), then 8 = ¢.

The data (i1) can be expanded to (i), and hence determine the adjunc-
tion. In (ii) we are given simply a universal arrow {(F,x,n,> for every
object x € X; we shall show that there is exactly one way to make F,
the object function of a functor F for which 5 : I;- G F will be natural.
Specifically, for each h: x— x’ the universality of #, states that there is
exactly one arrow (dotted)

Fox x —GFyx

l h i
i ‘

Fox' X —Ix s GFyx'
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which can make the diagram commute. Choose this arrow as
Fh:Fyx— F,x'; the commutativity states that # is now natural, and it is
easy to check that this choice of Fh makes F a functor.

The proofs of parts (iii) and (iv) are dual.

To prove part (v) we use 1 and & to define functions

A(Fx,a) #X(x, Ga)

by ¢ f =G f-n, for each f: Fx—a and 0g=¢,~ Fg for each g: x—Ga.
Then since G is a functor and # is natural

(ng:GEa@GFgOr]szgafz N6a®9-

But our hypothesis (8) states that Ge,-ng,=1. Hence ¢ 6 =id. Dually
0¢ =1d. Therefore ¢ is a bijection (with inverse 6). It is clearly natural,
hence is an adjunction (and, if we started with an adjunction, it is the one
from which we started).

This theorem is very useful. For example, parts (ii) and (iv) construct
an adjunction whenever we have a universal arrow from (or to) every
object of a given category. For example, the category C has finite products
when for each pair {(a, b) € CxC there is a universal arrow from
A:C—CxCto{a,b). By the theorem above we conclude that the func-
tion <a,b) —axb giving the product object is actually a functor
C x C— C, and that this functor is right adjoint to the diagonal functor 4:

@:(CxC)(dc,Ka,by)= Clc,axb).
Using the definition of the arrows in C x C, this is
¢@:C(c,a)x C(c,b)=C(c,ax b).

The counit of this adjunction (set ¢ =axb on the right) is an arrow
{axb,axby—<a,b); it is thus just a pair of arrows a«—axb—b;
namely, the projections p:axb—a and ¢q:axb—b of the product.
Theadjunction ¢ ~ ! sendseach f: c—a x b to the pair {pf, ¢ f > ; this is the
way in which ¢ is determined by the counit e.

Similarly, if the category C has coproducts {a,b>+—>all b, they
define the coproduct functor C x C — C which is a left adjoint to 4:

Clalb,a)=(CxC)(Ka,b), Ac).

All the other examples of limits (when they always exist) can be similarly
read as examples of adjoints. In many further applications, it turns
out that proving universality is an easy way of showing that adjoints
are present.
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On the other hand, part (v) of the theorem describes an adjunction
by two simple identities

F—t1 ,FGF GFG«1%_¢G
A J(:F G::l z (9)
F G

on the unit and counit of the adjunction. These triangular identities
make no explicit use of the objects of the categories A and X, and so are
easy to manipulate. As we shall soon see, this is convenient for discussing
properties of adjunctions. (For some authors, these identities are said to
make 7 a “quasi-inverse” to &.)

Corollary 1. Any two left-adjoints F and F' of a functor G: A—X
are naturally isomorphic.

The proof is just an application of the fact that a universal arrow,
like an initial object, is unique up to isomorphism. Explicitly, adjunctions
{F,G,¢> and {F', G, ¢"> give to each x two universal arrows x— G Fx
and x— G F'x; hence there is a unique isomorphism 6, : Fx— F'x with
GO, -y, =n; it is easy to verify that 0: F— F'is natural.

Corollary 2. A functor G: A— X has a left adjoint if and only if,
for each x € X, the functor X (x, Ga) is representable as a functor of ae A.
If ¢: A(Fox,a)= X(x, Ga) is a representation of this functor, then F is
the object function of a left-adjoint of G for which the bijection ¢ is natural
in a and gives the adjunction.

This is just a restatement of part (ii} of the theorem. Equivalently,
G has a left-adjoint if and only if there is a universal arrow to G from every
xeX.

We leave the reader to state the duals.

Adjoints of additive functors are additive.

Theorem 3. If the additive functor G : A — M between Ab-categories
A and M has a left adjoint F: M — A, then F is additive and the adjunction
bijections

@:A(Fm,a)= M(m, Ga)

are isomorphisms of abelian groups (for all me M, ae A).

Proof. If n:1->GF is the unit of the adjunction, then ¢ may be
written as @ f =G f-n,, for any f: Fm—a. If also f': Fm—a, the ad-
ditivity of G gives

o(f+ =G+ [Mu=(Cf+GCGfIuy=Cfon,+Gf n,=of+of"
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Therefore ¢ is a morphism of abelian groups. Next take g,g' : m—n
in M. Since # is natural,

GF(g+g)n,=n.9+9)=n.9+n.9
On the other hand, since G is additive,
G(Fg+Fg)n,=(GFg+GFg)n,,=GFgen,+GFg°n,=n,g+n.9g .

The equality of these two results and the universal property of u,, show
that F(g +g¢')=Fg+ Fg'. Hence F is additive.
Dually, any right adjoint of an additive functor is additive.

Exercises

1. Show that Theorem 2 can have an added clause (and its dual):
(vi) A functor G: A— X and for each x € X a representation ¢, of the functor
X(x,G—): A—Set.

2. (Lawvere.) Given functors G: A — X and F: X — A, show that each ad-
Jjunction {F, G, ¢) can be described as an isomorphism # of comma categories
such that the following diagram commutes

0:(Fl1L)=(x]G)

L

XxA = XxA4.

Here the vertical maps have components the projection functors P and Q of
I1.6(5).

3. For the adjunction {4, x, ¢> — product right adjoint to diagonal — show that
the unit d, : ¢— ¢ x ¢ for each object ¢ € Cis the unique arrow such that the diagram

¢

Cpexepe

commutes. (This arrow §, is often called the diagonal arrow of ¢.) If C =Set,
show that d,x = (x, x)> for xec.

4. (Paré.) Given functors G: 4 — X and K : X — A and natural transformations
e:KG—=id,, ¢:idy=GK such that Ge ¢G=15:6G->GKG=G, prove that
¢K +Kg: K-> K is an idempotent in 4* and that G has a left adjoint if and only if
this idempotent splits; explicitly if ¢K - Kg splits as o+ f with f-a=1 and
f: K= F, then F is a left adjoint of G with unit G - ¢ and counit ¢ - ¢ G.

2. Examples of Adjoints

We now summarize a number of examples of adjoints, beginning with
a table of left-adjoints of typical forgetful functors.
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Forgetful functor Left adjoint F Unit of adjunction
U : R-Mod—Set X—FX J: X—UFX(cf§IIL1)

Free R-module, basis X “insertion of generators”
U : Cat— Grph G—CG G—-UCG

Free category on graph G “insertion of generators”
U : Grp—Set X—FX X—-UFX

Free group, generators “insertion of generators”

xeX
U : Ab—Set X—FX

Free abelian group on X “insertion of generators”
U: Ab— Grp G—G/[G, G] G—G/[G, G]

Factor commutator group  projection on the quotient
U : R-Mod— Ab A—~R®A A—-U(R®A)

a—~1®a
U:R-Mod-S—R-Mod A—~A®S A—-U(A®YS)
a—a®1

U : Rng—Mon M—Z(M) M—-UZM
(cf. Exercise II1.1.1) (integral) monoid ring m—m
U: K-Alg— K-Mod VTV VeTV

Tensor algebra on V “insertion of generators”
U : Fld— Dom,, D—QD DcUQD
(cf. §I11.1) Field of quotients “insertion of D:a> a/1”

U : Compmet— Met

Completion of metric space

(§ IIL.1)

There is a similar description of counits. For example, in the free
R-module F X generated by elements jx = {x) for xe X, the elements
may be written as finite sums X r;{x;> with scalars r, € R. Then for any
R-module A the counit ¢,: FUA— A is X r{a;» 2 r;a; (linear com-
binations in A4). In other words ¢, is the epimorphism appearing in the
standard representation of an arbitrary R-module as a quotient of a
free module (the free module on its own elements as generators).

Next, we list some left and right adjoints (which need not exist in
every category C) for diagonal functors; with the unit when C is Set.

Diagonal Adjoint Unit Counit
Sunctor
4:C—-CxC Left: Coproduct (pair of) injections “folding” map
H:CxC—C ira—allb cle—c
{a,by —allb j:b—allb ix—x, jxt>x
Right: Product Diagonal arrow (pair of) projections
II:CxC—C d.:c—cxce p:axba

{a,bY—>axb x—=><{x, x) g:axbHb
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Diagonal Adjoint Unit Counit
functor
C—1 Left: Initial object s s—c¢
Right: Terminal object t c—t
A:C—CH Left: Coequalizer Coequalizing arrow  Identity
(111.3.6) {f, g>—coeq. object e Sogd2 e ey 1ie—e
(111.4.7) Right: Equalizer d Identity Equalizing arrow
<f, 9> +>equal. object d, H—={f 9
A:C—C~'~  Left: (Vertex of) pushout
(I1L.3.7)
Right: (Vertex of) pullback
(111.4.8)
4:C—C? Left: Colimit object Universal cone
Right: Limit object Universal cone

In the case of limits, the form of the unit depends on the number
of connected components of J. Here a category J is called connected
when to any two objects j, ke J there is a finite sequence of arrows

J=Jjo—=j1—j,— " —ja—1—ja=k (both directions possible)

joining j to k (see Exercises 7, 8).

Duality functors provide further examples. For vector spaces V, W
over a field K, the dual D is a contravariant functor on Vet to Vet,
given on objects by DV = Vet(V, K) with the usual vector space structure
and on arrows h: V—W as Dh: DW—DV, where (Dh)f = fh for each
f: W—K. A function

@ =@y w: Yet(V, Vet(W, K))— Vet(W, Vet(V, K)) (N

is defined for h: V—DW by [(phw]v=(hv)w for all veV, we W.
Since ¢y, 9y w is the identity, each g is a bijection. This bijection can be
made into an adjuction as follows. The contravariant functor D leads to
two different (covariant!) functors with the same object function,

D:Vct®®*—>Vet, D°P:Vet— Vet
defined (as usual) for arrows h°®: W—V and h: V— W by
Dh*=Dh:DW—DV; D®h=(Dh®*:DV—DW.
The bijection ¢ of (1) above may now be written as
Vet®®(DPW, VY= Vet(W, D V), 2)

natural in V and W. Therefore D°? is the left adjoint of D. (Warning:
Itis not a right adjoint of D, see § V.5, Exercise 2.) If ky, : W— DD W is the
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usual canonical map to the double dual, the unit of the adjunction
(set ¥V'=D°® W in (2)) is this map 1, =Ky : W— D D°® W, and the counit
is an arrow ¢, : D°*DV—V in Vet®® which turns out to be &, = (1c,)°?
for the same k.

This example illustrates the way in which adjunctions may replace
isomorphisms of categories. For finite dimensional vector spaces, D
and D°P are isomorphisms; for the general case, this is not true, but D is
the right adjoint of D°P.

This example also bears on adjoints for other contravariant functors.
Two contravariant functors S from 4 to X and Tfrom X to A4 are “adjoint
on the right” (Freyd) when there is a bijection A(a, Tx)=~ X(x, Sa),
natural in a and x. We shall not need this terminology, because we can
replace S and T by the covariant functors S: 4A°°— X and T: X°*— A
and form the dual $°°: 4— X°P, also covariant: thus the natural bijection
above becomes X°P(S°Pa, x)= A(a, Tx), and so states that S°P is left
adjoint (in our usual sense) to T — or, equivalently, that T°F is left adjoint
to S. It is not necessarily equivalent to say that T and S are adjoint
“on the left”.

The next three sections will be concerned with three other types of
adjoints: A left adjoint to an inclusion functor (of a full subcategory)
is called a reflection; certain other special sorts of adjoints are
“equivalences” of categories. Some other amusing examples of adjoints
are given in the exercises to follow, some of which require knowledge
of the subject matter involved. Goguen [1971] shows for finite state
machines that the functor “minimal realization” is left adjoint to the
functor “behavior”. The reader is urged to find his own examples as well.

Exercises

1. For K a field and V a vector space over K, there is an “exterior algebra” E(V),
which is a graded, anticommutative algebra. Show that E is the left adjoint
of a suitable forgetful functor (one which is not faithful).

2. Show that the functor U : R-Mod— Ab has not only a left adjoint A~ R® A4,
but also a right adjoint A+~>hom(R, A).

3. For K a field, let Lieg be the category of all (small) Lie algebras L over K,
with arrows the morphisms of K-modules which also preserve the Lie bracket
operation {a,b) > [a,b]. Let V: Alg,— Lie be the functor which assigns to each
(associative) algebra A the Lie algebra VA on the same vector space, with
bracket [a, b} = ab — bafor a, b € A. Using the Poincaré-Birkhoff-Witt Theorem
show that the functor E, where E L is the enveloping associative algebra of L,
is a left adjoint for V.

4. Let Rng’ denote the category of rings R which do not necessarily have an identity
element for multiplication. Show that the standard process of adding an identity
to R provides a left adjoint for the forgetful functor Rng— Rng’ (forget the
presence of the identity).
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10.

1.

12.

Adjoints

. If a monoid M is regarded as a discrete category, with objects the elements

x e M, then the multiplication of M is a bifunctor y: M xM—M. If M is a
group, show that the group inverse provides right adjoints for the functors
u(x,~—) and u(—,y) : M — M. Conversely, does the presence of such adjoints
make a monoid into a group?

. Describe units and counits for pushout and pullback.
. If the category J is a disjoint union (coproduct) LI J, of categories J,, for index

k in some set K, with I, : J,— J the injections of the coproduct, then each functor

F:J— C determines functors F,=F1I,: J,—C.

(a) Prove that LimF = 1, Lim F,, if the limits on the right exist.

(b) Show that every category J is a disjoint union of connected categories
(called the connected components of J).

(c) Conclude that all limits can be obtained from products and limits over
connected categories.

. (a) If the category J is connected, prove for any ¢ e C that Lim4c¢=c¢ and

Colim Ac = ¢, where Ac : J — C is the constant functor.
(b) Describe the unit for the right adjoint to 4: C—C’.

. (Smythe.) Show that the functor O : Cat — Set assigning to each category C

the set of its objects has a left adjoint D which assigns to each set X the discrete
category on X, and that D in turn has a left adjoint assigning to each category
the set of its connected components. Also show that O has a right adjoint
which assigns to each set X a category with objects X and exactly one arrow
in every hom-set.

If a category C has both cokernel pairs and equalizers, show that the functor
K : C*—CY which assigns to each arrow of C its cokernel pair has as right
adjoint the functor which assigns to each parallel pair of arrows its equalizing
arrow.

If C has finite coproducts and a € C, prove that the projection Q:(a | C)—C
of the comma category (Q(a—c)=c) has a left adjoint, with c—(a—allc).
If X is a set and C a category with powers and copowers, prove that the copower
c— X - ¢ is left adjoint to the power ¢+ c*.

3. Reflective Subcategories

For many of the forgetful functors U:A4— X listed in § 2, the counit
e: FU~I, of the adjunction assigns to each ae A the epimorphism

&yt

F(Ua)—a which gives the standard representation of a as a quotient

of a free object. This is a general fact: Whenever a right adjoint G is
faithful, every counit ¢, of the adjunction is epi.

Theorem 1. For an adjunction {F,G,n,e): X—A: (i} G is faithful

if and only if every component ¢, of the counit ¢ is epi, (i) G is full if and
only if every ¢, is a split monic. Hence G is full and faithful if and only
if each ¢, is an isomorphism FGa= a.

The proof depends on a lemma.



Reflective Subcategories 91

Lemma. Let f*: A(a, —)-> A(b, —) be the natural transformation
induced by an arrow f:b—a of A. Then f* is monic if and only if f is epi,
while f* is epi if and only if f is a split monic (i.e., if and only if { has a
left inverse).

Note that f*—f is the bijection Nat(A(a, —), A(b, —))= A(b, a)
given by the Yoneda lemma.

Observe, also, that for functors S, T: C— B, a natural transformation
7:S-Tis epi (respectively, monic) in B€ if and only if every component
7,:S.—T. is epi (respectively, monic) in B for B =Set; this follows by
Exercise II1.4.4, computing the pushout pointwise as in Exercise II1.5.5.

Proof. For he A(a,c), f*h=hf. Hence the first result is just the
definition of an epi f. If f* is epi, there is an hy:a—b with
S*ho=hyf=1:b—b, so fhas a left inverse. The converse is immediate.

Now we prove the theorem. Apply the Yoneda Lemma to the natural
transformation (arrow function of G followed by the adjunction)

A(a, 0)—%2< X(Ga, Go)—2—— A(FGa,c).

It is determined (set ¢ = a) by the image of 1 : a— a, which is exactly the
definition of the counit ¢,: FGa—a. But ¢! is an isomorphism, hence
this natural transformation is monic or epi, respectively, when every G, .
is injective or surjective, respectively; that is, when G is faithful or full,
respectively. The result now follows by the lemma.

A subcategory A of Bis called reflective in B when the inclusion functor
K : A—B has a left adjoint F: B— A. This functor F may be called a
reflector and the adjunction {F, K, ¢> =<F, ¢) : B—A a reflection of B
in its subcategory A. Since the inclusion functor K is always faithful,
the counit ¢ of a reflection is always epi. A reflection can be described in
terms of the composite functor R= K F : B— B;indeed, A C B is reflective
in Bifand only if there is a functor R : B— B with values in the subcategory
A and a bijection of sets

A(Rb,a)y= B(b, a)

natural in b€ B and ae A. A reflection may be described in terms of
universal arrows: A C B is reflective if and only if to each b e B there is
an object Rb of the subcategory 4 and an arrow #,:b— Rb such that
every arrow g:b—ae A has the form g= f-5, for a unique arrow
f:Rb—a of A. As usual, R is then (the object function of) a functor
B— B (with values in A).

If a full subcategory A C B is reflective in B, then by Theorem 1 each
object a € A is isomorphic to F K a, and hence Ra=a for all a.

Dually, A C B is coreflective in B when the inclusion functor A—B
has a right adjoint. (Warning: Mitchell [1965] has interchanged the
meanings of “reflection” and “coreflection”.)
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Here are some examples. Ab is reflective in Grp. For, if
G/[G, G] is the usual factor-commutator group of a group G, then
hom(G/[G, G], A) = hom(G, A) for A abelian, and Ab is full in Grp.
Or consider the category of all metric spaces X, with arrows uniformly
continuous functions. The (full) subcategory of complete metric spaces
is reflective; the reflector sends each metric space to its completion.
Again, consider the category of all completely regular Hausdorff spaces
(with arrows all continuous functions). The (full) subcategory of all
compact Hausdorffspaces is reflective; the reflector sends each completely
regular space to its Stone-Cech compactification.

A coreflective subcategory of Ab is the full subcategory of all torsion
abelian groups (a group is torsion if all elements have finite order);
the coreflector sends each abelian group A4 to the subgroup T A4 of all
elements of finite order in A.

Exercises

1. Show that the table of dual statements (§ I1.1) extends as follows:

Statement Dual statement

S, T: C— B are functors S, T: C— B are functors
T is full T is full

T is faithful T is faithful

#n: S Tis a natural transformation. 5 : T-» S is a natural transformation.
({F,G, ¢>: X—Ais an adjunction {G,F,¢ '>: A— X is an adjunction
n is the unit of {F, G, ). # is the counit of (G, F, ¢ ™).

2. Show that the torsion-free abelian groups form a full reflective subcategory of Ab.

3. If {G,F,¢)>: X—A is an adjunction with G full and every unit #, a monic,
then every 5, is also epi.

4. Show the following subcategories to be reflective:
(a) The full subcategory of all partial orders in the category Preord of all preorders,

with arrows all monotone functions.

(b) The full subcategory of Ty-spaces in Top.

5. Given an adjunction {F, G, 9> : X — A, prove that G is faithful if and only if ¢~
carries epis to epis.

6. Given an adjunction <{F, G, , &> with either F or G full, prove that Ge: GFG—G
is invertible with inverse yG: G—GFG.

7. If A is a full and reflective subcategory of B, prove that every functor S:J—A
with a limit in B has a limit in A.

1

4. Equivalence of Categories

A functor S: A—C is an isomorphism of categories when there is a
functor 7:C — A (backwards) such that ST=I1:C— C and
TS=I1:4— A. In this case, the identity natural transformations
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n: 15 ST and ¢: TS~ I make (T,S;n,e): C— A an adjunction.
In other words, a two-sided inverse T of a functor S is a left-adjoint
of § — and for that matter, T is also a right-adjoint of S.

There is a more general (and more useful) notion:

A functor S: A— C is an equivalence of categories (and the categories
A and C are equivalent) when there is a functor T: C— A (backwards)
and natural isomorphisms S7>~J: C — Cand TS=~I: A4 — A. In this
case T: C— A is also an equivalence of categories. We shall soon see
that T is then both a left adjoint and a right adjoint of S.

Here is an example. In any category C a skeleton of C is any full
subcategory A such that each object of C is isomorphic (in C) to exactly
one object of A. Then 4 is equivalent to C and the inclusion K : A—C is
an equivalence of categories. For, select to each ¢ e C an isomorphism
8,: c=~ Tc with Tcan object of A. Then we can make Ta functor T: C— A
in exactly one way so that 8 will become a natural isomorphism §: /~K T.
Moreover T K = I, so K is indeed an equivalence: 4 category is equivalent
to {any one of ) its skeletons. For example, the category of all finite sets
has as a skeleton the full subcategory with objects all finite ordinal
numbers 0, 1, 2, ..., n, .... (Here 0 is the empty set and each
n={0,1,...,n—1})

A category is called skeletal when any two isomorphic objects are
identical; i.e., when the category is its own skeleton.

An adjoint equivalence of categoriesis anadjunction{T, S;n,¢> : C— A
in which both the unit #:I-+>ST and the counit ¢: TSI are natural
isomorphisms: I=~ST, TS=I. Then #~' and ¢~ ' are also natural
isomorphisms, and the triangular identities ¢T-Tn=1, Se-nS=1
can be written as Ty~ 1-e 'T=1,n"'S-Se ! =1, respectively. These
identities then state that {S, T,&~',#~'>: A—C is an adjunction with
e 1:1-TS as unit and 4~ ':ST-I as counit. Thus in an adjoint
equivalence (T,S, —, —) the functor T:C— A4 is the left adjoint of
S: A— C with unit n and at the same time T is the right adjoint of S,
with unit ¢ 1.

We can now state the main facts about equivalence.

Theorem 1. The following properties of a functor S: A—C are
logically equivalent :
(i) S is an equivalence of categories,
(ii) S is part of an adjoint equivalence {T, S;n,&) : C — A,
(iit) S is full and faithful, and each object c € C is isomorphic to S a for
some object a € A.

Proof. Trivially, (ii) implies (i). To prove that (i) implies (iii), note
that S T > I shows that each ce C has the form ¢~ S(T ¢) forana=T ce 4.
The natural isomorphism 8: TS = I gives for each f:a—a’ the com-
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mutative square

TSa—% a

wl ]

TSda a .

[

Hence f=0,°TSf-0;"; it follows that S is faithful. Symmetrically,
ST=1 proves T faithful. To show S full, consider any h:Sa—Sa’
and set f=0,°Th-0;'. Then the square above commutes also with
S f replaced by h, so TS f = Th. Since T is faithful, S f = h, which means
that § is full.

To prove that (iii} implies (ii) we must construct from § a (left) ad-
joint T. For each ce C we can choose some object a,= T,ce 4 and an
isomorphism #,:

n.ie = S(Tyo
7 JSg. g: Tyc—a.
Sa

For every arrow f:c—Sa, the composite fon. ! has the form Sg for
some g because S is full; this g is unique because S is faithful. In other
words, f=Sge-n, for a unique g, so #, is universal from ¢ to S. There-
fore T, can be made a functor T: C— A in exactly one way so that
n:1-S8 T is natural, and then T is the left adjoint of S with unit the
isomorphism #. As with any adjunction, S¢,*n5,=1 (put c=8a, f=1
in the diagram above). Thus Se, = (r5,) ! is invertible. Since S is full and
faithful, the counit ¢, is also invertible. Therefore (T, S;n,&>:C—A4
is an adjoint equivalence, and the proof is complete.

In this proof, suppose that A is a full subcategory of C and that
S=K:A—C is the insertion. For objects a e A C C we can then choose
ay=a=Ka and ny, the identity. Then K¢, =1, hence ¢,=1 for all a.
This proves

Proposition 2. If A is a full subcategory of C and every ce C is iso-
morphic (in C) to some object of A, then the insertion K: A—C is an
equivalence and is part of an adjoint equivalence (T,K:n,1>:C—A4
with counit the identity. Therefore A is reflective in C.

This includes in particular the case already noted, when 4 is a
skeleton of C.

A functor F : X — A is said to be a left-adjoint-left-inverse of G: A— X
when there is an adjunction {F, G;#, 1) : X— A with counit the identity.
This means (Exercise 4) that G is an isomorphism of A4 to a reflective
subcategory of X. In the case of the Proposition 2 just above, we have
shown that the insertion 4— C has a left-adjoint-left-inverse.
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Duality theorems in functional analysis are often instances of equiv-
alences. For example, let CAb be the category of compact topological
abelian groups, and let P assign to each such group G its character group
PG, consisting of all continuous homomorphisms G—R/Z. The
Pontrjagin duality theorem asserts that P: CAb— Ab°P is an equivalence
of categories. Similarly, the Gelfand-Naimark theorem states that the
functor C which assigns to each compact Hausdorff space X its abelian
C*-algebra of continuous complex-valued functions is an equivalence
of categories (see Negrepontis [1971]).

Exercises

1. Prove: (a) Any two skeletons of a category C are isomorphic.

(b) If A, is a skeleton of A and C, a skeleton of C, then A and C are equivalent
if and only if A, and C, are isomorphic.

2. (a) Prove: the composite of two equivalences D—C, C— A is an equivalence.
(b) State and prove the corresponding fact for adjoint equivalences.

3. If S: A—C is full, faithful, and surjective on objects (each ce C is c=Sa for
some ae A), prove that there is an adjoint equivalence (T, S;1,&):C—A4
with unit the identity (and thence that T is a left-adjoint-right-inverse of S).

4. Given a functor G:A--X, prove the three following conditions logically
equivalent:

(a) G has a left-adjoint-left-inverse.

(b) G has a left adjoint, and is full, faithful, and injective on objects.

(c) There is a full reflective subcategory Y of X and an isomorphism H: A Y
such that G = K H, where K : Y— X is the insertion.

5. If J is a connected category and 4 : C— C” has a left adjoint (colimit), show that
this left adjoint can be chosen to be a left-adjoint-left-inverse.

5. Adjoints for Preorders

Recall that a preorder P is a set P={p, p’, ...} equipped with a reflexive
and transitive binary relation p < p’, and that preorders may be regarded
as categories so that order-preserving functions become functors. An
order-reversing function L on P to Q is then a functor L:P—Q°P.

Theorem 1 (Galois connections are adjoint pairs). Let P, Q be two
preorders and L:P—Q°, R:Q°°—P two order-preserving functions.
Then L (regarded as a functor) is a left adjoint to R if and only if, for all
pePand qeQ,

Lp=q in Q ifandonlyif p<Rq in P. (1)

When this is the case, there is exactly one adjunction ¢ making L the left
adjoint of R. For all p and q,p<RLp and LRq = q; hence also

Lp=zLRLpzLp, Rq=RLRq=Rgq. 2
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Proof. Recall that P becomes a category in which there is (exactly)
one arrow p— p’ whenever p < p’. Thus the condition (1) states precisely
that there is a bijection homgyep(L p, q) = homp(p, Rq); since each hom-
set has at most one element, this bijection is automatically natural.
The unit of the adjunction is the inequality p < RLp for all p, while
the counitis LR g = g for all g. The two Egs. (2) are the triangular identities
connecting unit and counit. In the convenient case when both P and Q
are posets (i.e, when both the relations < are antisymmetric) these
conditions become L=LR L, and R = RLR (each three passages reduce
to one!).

A pair of order-preserving functions L and R which satisfy (1) is
called a Galois connection from P to Q. Here is the fundamental example,
for a group G acting on a set U, by (g,x>—0c-x for 6eG, xeU.
Take P =2(U), the set of all subsets X C U, ordered by inclusion, while
Q =2(G) is the set of subsets S C G also ordered by inclusion (S <8’ if
and only if SCS'). Let LX ={o|xe X implies6-x=x}, RS={x|0€eS
implies ¢ -+ x = x}; in other words, L X is the subgroup of G which fixes
all points x € X and RS is the set of fixed points of the automorphisms
of S. Then LX=Sin Qifand onlyif6-x=xforalloeS and all xe X,
which in turn holds if and only if X < RS in P. Therefore, L and R form
an adjoint pair (a Galois connection). The original instance is that with
G a group of automorphisms of a field U, as in the classical Galois theory.

If U and V are sets, the set Z(U) of all subsets of U is a preorder
under inclusion. For each function f: U— V the direct image f,,, defined
by f(X)={f(x)| xe X} is an order-preserving function and hence a
functor f,: 2(U)—#(V). The inverse image f*(Y)={x|fx=y for
some y € Y} defines a functor f* : (V)— 2 (U) in the opposite direction.
Since f, X CY if and only if X C f*Y, the direct image functor f, is
left adjoint to the inverse image functor f*.

Certain adjoints for Boolean algebras are closely related to the basic
connectives in logic. We again regard #(U) as a preorder, and hence as a
category. The diagonal functor A : 2(U)— 2 (U) x (U) has (as we have
already noted) a right adjoint N, sending subsets X, Y to their inter-
section XY, and a left adjoint U, with (X, Y>> XuUY, the union.
If X is a fixed subset of U, then intersection with X is a functor
XN —:2(U)>2(U). Since XnY<Z if and only if YL X' UZ, where
X' is the complement of X in U, the right adjoint of Xn— is X'u —.
Thus the construction of suitable adjoints yields the Boolean operations
N, v, and ' corresponding to “and”, “or”, and “not”. Now consider
the first projection P: U x V—U from the product of two sets U and V.
Each subset SCU XV defines two corresponding subsets of U by

P.S={x]3y,yeV and <(x,y>eS},
P S={x|Vy,yeV implies {x,y>€eS};
they arise from (x,y)> €S by applying the existential quantifier 3y,
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“there exists a y”” and the universal quantifier V y, “for all y”, respectively
to {x,y> € S. Also P, S is the direct image of S under the projection P.
Now for all subsets X = U one has

SEP*X<P SsX; P*X=S<XE=£PS,

where “«<”’ means “if and only if””. These state that P*, which is the in-
verse image operation, has both a left adjoint P, and a right adjoint Py .
In this sense, both quantifiers 3 and V can be interpreted as adjoints.

There is also a geometric interpretation: P*X is the cylinder
X xVCUxV over the base X CU, P,S is the projection of SCU x V on
the base U, and P, S is the largest subset X of U such that the cylinder on
X is wholly contained in S. This analysis has revealed several basic con-
cepts of logic (and, or, not, V y, 3 ) to be adjoints. This illustrates the
slogan ““adjoints are everywhere”.

Exercises

1. Let H be a space with an inner product (e.g., Hilbert space). If P = is the set
of all subsets S of H, ordered by inclusion, show that LS = RS = the orthogonal
complement of S gives a Galois connection.

2. In a Galois connection between posets, show that the subset {p|p=RLp} of
P equals {p|p=Rq for some ¢} and give a bijection from this set to the subset
{qlq= LRq} of Q. What are these sets in the case of a group of automorphisms
of a field? Does this generalize to an arbitrary adjunction?

3. For C a category with pullbacks, each arrow f:a—d' defines a functor
(Clf)=f,:(Cla)—(Cla’) which carries each object x—a of (Cla) to the
composite x— a—a'. Show that f, has a right adjoint /* with f*(x'—a')=y—a,
where y is the vertex of the pullback of a—a'«x'".

6. Cartesian Closed Categories

Much of the force of category theory will be seen to reside in using
categories with specified additional structures. One basic example will
be the closed categories (§ VII. 7); at present we can define readily one
useful special case, “cartesian closed”.

To assert that a category C has all finite products and coproducts is to
assert that products, terminal, initial and coproducts exist, thus the func-
tors C —» 1and 4 : C — C x C have both left and right adjoints. Indeed,
the left adjoints give initial object and coproduct, respectively, while the
right adjoints give terminal object and product, respectively.

Using just adjoints we will now define “cartesian closed category”.
A category C with all finite products specifically given is called cartesian
closed when each of the following functors

C—1, C-»CxC, C=25C,

c—0, c¢—<{¢cy, araxb,
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has a specified right adjoint (with a specified adjunction). These adjoints
are written as follows

t<+0, axb<ila b, cP<ic.

Thus to specify the first is to specify a terminal object t in C, and specifying
the second is specifying for each pair of objects a, b e C a product object
ax b together with its projections a<«—ax b—b. These projections
determine the adjunction (they constitute the counit of the adjunction);
as already noted, x is then a bifunctor. The third required adjoint
specifies for each functor — xb: C— C a right adjoint, with the corre-
sponding bijection

hom (a x b, ¢) = hom(a, c®)

natural in a and in c. By the parameter theorem (to be proved in the next
section), (b, ¢>+>c” is then (the object function of) a bifunctor C°® x C— C.
Specifying the adjunction amounts to specifying for each cand b an arrow e

e:c’x b—c

which is natural in ¢ and universal from — x b to ¢. We call this e = e,
the evaluation map. It amounts to the ordinary evaluation {f, x> f x of
a function f at an argument x in both of the following cases:

Set is a cartesian closed category, with ¢® = hom(b, c).

Cat is cartesian closed, with exponent C2 the functor category.

A closely related example of adjoints is the functor

— @xB: K-Mod — K-Meod

which has a right adjoint homg (B, —); the adjunction is determined by
a counit homg(B, A)®x B— A given by evaluation.

Exercises

1. (a) If U is any set, show that the preorder 2(U) of all subsets of U is a cartesian
closed category.
(b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed.

2. In some elementary theory T, consider the set S={p,q,...} of sentences of T
as a preorder, with p<g meaning “p entails ¢ (i.e, q is a consequence of p
on the basis of the axioms of T). Prove that S is a cartesian closed category,
with product given by conjunction and exponential ¢” given by “p implies ¢”.

3. In any cartesian closed category, prove ¢'=c and ¢®** = (%"

4. In any cartesian closed category obtain a natural transformation ¢’ x b*— c*
which agrees in Set with composition of functions. Prove it (like composition)
associative.

5. Show that A cartesian closed need not imply 4’ cartesian closed.



Transformations of Adjoints 99
7. Transformations of Adjoints

We next study maps comparing different adjunctions. Given two
adjunctions

(F,G,o,ney:X—A, <(F,G o n,e>: X —=A4 (1

we define a map of adjunctions (from the first to the second adjunction)
to be a pair of functors K: A— A’ and L : X — X' such that both squares

J J J 2

X —— A’

of functors commute, and such that the diagram of hom-sets and
adjunctions

A(Fx,a)—2—— X (x, Ga)
K=KFryx a L=Lx Ga
A'(KFx,Ka) X'(Lx, LGa)

If i
A'(F Lx, Ka)—%— X'(Lx,G'Ka)

commutes for all objects x e X and ae A. Here K, , is the map f—K f
given by the functor K applied to each f : Fx — a.

Proposition 1. Given adjunctions (1) and functors K and L satisfying (2),
the condition (3) on hom-sets is equivalent to Ly =n'L and also to ¢ K = K.

Proof. Given (3) commutative, set a=Fx and chase the identity
arrow 1 : Fx — F x around (3) to get the units #, ' and the equality

(Ly:L—LGFY={yL:L—GFL),

where LGF = G'F'L by (2). Conversely, given the equality Ly =#'L of
natural transformations, the definition of the adjunctions ¢ and ¢’ by
their units gives (3). The case of the counits is dual to this one.

Next, given two adjunctions

(F,G,p.n,8), (F,G o' n,e) : X—A4 4
between the same two categories, two natural transformations

c:F->F ., 1.G=-G
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are said to be conjugate (for the given adjunctions) when the diagram
A(F'x,a)= X (x, G a)
(6x)*= A(6x,a) un,mz(m* (5)

A(Fx,a) = X(x,Ga)

commutes for every pair of objects xe X, ae A.

Theorem 2. Given the two adjunctions (4), the natural transformations
o and 1 are conjugate if and only if any one of the four following diagrams
(of natural transformations) commutes

G————G F— L

Jro [ j Jor (©

GFG —— GF G, FGF ———> FGF',

FtF
FG—E S FG I,—'—>GF
J } j Jc )
FG——1,, G'F —— GF'.

Also, given the adjunctions (4) and the natural transformation ¢ : F— F’,
there is a unique 1: G'->G such that the pair {c,1) is conjugate. Dually,
given (4) and 1, there is a unique o with {o,1) conjugate.

Proof. First, (5) implies (6) and (5) implies (7). For, put x=G’a in (5),
start with the identity arrow 1: G'a— G’a in the upper right and use the
description of ¢ and ¢’ by unit and counit to chase this element 1 around
the diagram as follows

’

Sa =1:1G'a

| |

' [N - —
&4 O-G’ai'_>Gga : GO-G'a “Nea=Tq4-

The result (lewer right) is the first equality of (6). A slightly different
chase yields
gpe—il

8,006 a=¢8,° F1,<11,.

The resulting equality is the first diagram of (7). The second halves of (6)
and (7) are duals.
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Next, suppose ¢ but not 7 given. Then the Yoneda Lemma applied
to the composite transformation ¢ - (6,)* - ¢'~* (three legs of (5)) shows
that there is a unique family of arrows t,, for which (5) commutes, and this
family is a natural transformation. Since each ¢,: FGa-a is universal
from F to a, there is also a unique family of arrows 7, : G'a — Ga for
which the first of (7) commutes. Since (5) implies (7), 7, = 7). In other
words, if T = 7" makes the first square of (7) commute, it also makes (5)
commute. Therefore the first square of (7) implies (5). Given o, there is
immediately a unique natural transformation 7z : G’ = G for which the
first of (6) commutes; since (5) implies (6), 7/, = 7,, and hence the solu-
tions 7/, of (5) are necessarily natural; moreover (6) implies (5).

The reader may also show that (6) implies (5) or (7) by constructing
suitable diagrams of natural transformations.

We now regard a conjugate pair {o, 7) of natural transformations as a
transformation (or morphism) from the first to the second adjunction.
The “vertical” composite of two such

CF, G, ey 2 (F, G, e Y 53 (F, Gy € (8)

is evidently (say by condition (5)) a transformation {(¢’,7'>-{a, 1)
={0'-0,7- 1) from the first to the third adjunction. For the two given
categories X and A we thus have a new category A“4X the category of
adjunctions from X to A; its objects are the adjunctions {F, G;#,¢>,
its arrows are the transformations (conjugate pairs) <o, 1), with the
composition just noted. Also there are two evident “forgetful” functors
to the ordinary functor categories, as follows:

AX(_A(adj)X’ [A(adj)X]op_)XA ,

Fe—(F,G,neHo—G

l 1<> I

F’ <F,’ Gla 11/7 8,> GI .

A typical example for Set is the bijection
hom (S x T, R) = hom(S, hom (T, R)) 9)

discussed in § 1 as an example of an adjunction (for each fixed set T). If
t: T—T' is a function between two such sets, then — x ¢ is a natural
transformation of functors — x T—> — x T. Its conjugate is the natural
transformation hom(t, —): hom(T’, —)—=>hom(T, —); this is, as it should
be, in the reverse direction, corresponding to the fact that S x T is
covariant and hom (7, R) contravariant in the argument T. We may call
(9) an adjunction with a “parameter” TeSet. For a commutative ring
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K the adjunction Medg(A4 ®B, C) =~ Mod (A4, Homg(B, C)) has a para-
meter B e Mody. Here is general statement:

Theorem 3 (Adjunctions with a parameter). Given a bifunctor
F: X x P— A, assume for each object pe P that F(—,p): X— A has a
right adjoint G(p, —): A— X, via an adjunction

hom{F(x, p), a) = hom(x, G(p, a)), (10)

natural in x and a. There is then a unique way to assign to each arrow
h:p—p' of P and each object ae A an arrow G(h,a): G(p’, a)— G(p, a) of
X so that G becomes a bifunctor P°® x A— X for which the bijection of
the adjunction (10) is natural in all three variables x,p, and a. This
assignment of arrows G(h, a) to {h, a) may also be described as the unique
way to make G(h, —) a natural transformation conjugate to F(—, h).

Proof. The condition that the adjunction (10) be natural in pe P is
the commutativity of the square

hom(F (x, p), a) = hom(x, G(p, a))

Flx, hy* Gih,a)x
hom(F(x, p'), a) = hom(x, G(p’, a)).

This commutativity (for all a) states precisely that G(h,~) : G(p,—)=>G(p,—)
must be chosen as the conjugate to F(— h):F(—, p)=F(-,p'). By the
previous theorem, there exists a unique choice of G(h, —) to realize this —
and the condition of conjugacy may be expressed in any of the five
equivalent ways stated there. For a second arrow h':p'—p”, the
uniqueness of the choice of conjugates shows for W'h that G(Wh, —)
=G(h, —)° G(K, —), so that G(—, a) is a functor and G a bifunctor, as
required.

Dually, given a bifunctor G : P°® x A— X where each G(p, —) has a
right adjoint F(—, p), there is a unique way to make F a bifunctor
X xP—A.

Exercises

1. Interpret the definition C(X -a, c)=Set(X, C(c, a)) of copowers X -a in C as
an adjunction with parameter a.

2. Let n,:x—G(p, F(x,p)) be the unit of an adjunction with parameter. It is
natural in x, but what property of  corresponds to the naturality of the adjunction
(10) in p?

3. In the functor category A* let S be that full subcategory with objects those
functors F: X— A which have a right adjoint RF : A— X. Make R a functor
§°°— X by choosing one RF for each F, with Ro the conjugate of .
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4. (Kelly.) An adjoint square is an array of categories, functors, adjunctions, and
natural transformations

X_F6e .4 g:FH-KF,

H K

X &F.Ghe 4 1:HG-GK,

such that the following diagram of hom-sets always commutes

A(Fx, a) —— A'(KFx, Ka) —% A'(F' Hx, Ka)

X(x, Ga)—E— X'(Hx, HGa)—~2> X'(Hx, G'Ka).

Express this last condition variously in terms of unit and counit of the ad-
junctions and prove that each of o, 7 determines the other. (The case
H = K =identity functor is that treated in the text above.)

5. (Palmquist.) Given H, K, and the two adjunctions as in Exercise 4, establish a
bijection between natural transformations a: F'HG-»K and natural trans-
formations f: H-G'KF.

8. Composition of Adjoints

Two successive adjunctions compose to give a single adjunction, in
the following sense:

Theorem 1. Given two adjunctions
(F,G,n,ed:X—4, (F,G,ije):A—=D
the composite functors yield an adjunction
(FF,GG,GiF -n,§-FeGy: X—D.
Proof. With hom-sets, the two given adjunctions yield a composite
isomorphism, natural in xe X and de D:
D(FFx,d)~ A(Fx,Gd)= X(x, GGd) .

This makes the composite FF left adjoint to GG. Setting d = FFx, and
applying these two isomorphisms to the identity 1:FFx— FFx, we
find that the unit of the composite adjunction is x> GF x¢£% GGF F x,
so is GfjF -y, as asserted. By the dual argument, the counit is £- FeG,
g.ed. One can also calculate directly that these last formulas give
natural transformations /->GGFF and FFGG-»I which satisfy the
triangular identities.
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Using this composition, we may form a category Adj, whose objects
are all (small) categories X, 4, D, ... and whose arrows are the adjunctions
(F,G,n,e):X—~A, composed as above; the identity arrow for each
category A is the identity adjunction A —A4.

This category has additional structure. Each hom-set Adj(X, 4)
may be regarded as a category; to wit, the category A“*”* of adjunctions
from X to A as described in the last section. Its objects are these ad-
junctions and its arrows are the conjugate pairs {g, 7), under “vertical”
composition defined in (7.8).

Theorem 2. Given two conjugate pairs

(0,7 :{F,G,n,e)={F,G,n,e): X~ A,
(7,7 :(F,G,1,e)=(F,G,7,8>:A=D

the (horizontal) composite natural transformations 5o and 17 yield a
conjugate pair o : FF->FF,t7:G G-~ GG of natural transformations
Sfor the composite adjunctions.

The proof may be visualized by the diagram of hom-sets

D(FFx,d)~A(F'x,G'd)=X(x,GGd)

J(Eax)* l(ﬂx}*(fd)* J(tfd)*

D(FFx,d) =~ A(Fx,Gd) = X(x,GGd) .

Moreover, this operation of (horizontal) composition is a bifunctor
Adj(A, D) x Adj(X, A)— Adj(X, D). 1)

This means that Adj is a “two-dimensional” category, as is Cat (see § 11.5).
There is additional discussion in Chapter XIIL.

Exercises

1. Prove that horizontal composition is a bifunctor, as in (1), and that this implies
an interchange law between horizontal and vertical composition of conjugate
pairs.

2. Show that the adjunction with right adjoint the forgetful functor Rng—Set can
be obtained as a composite adjunction in two ways, Rng— Ab—Set and
Rng— Mon—Set.

3. Let R, S, and T be rings.

(a) For a bimodule zEg, show that — ®zE : Modz— Modg has a right adjoint
homg(E, —).

(b) Show that this is an adjunction with parameter E ¢ R-Mod-S.

(c) Describe the composite of this adjunction with a similar adjunction
Mod;— Mod,.
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9. Subsets and Characteristic Functions

The characteristic function of a subset S — X is the two-valued function
¥, : X — {0,1} on X with the values
Yyx=0 ifxeS; yYyx=1 ifxeXbutx¢Ss. (1)

Put differently, {0} < {0, 1} represents the simplest non-trivial subset. An
arbitrary subset S < X can be mapped into this simple subset by y,, as
defined. This map produces a pullback square

s —— {0}
L ®
x . 0,1}

Such characteristic functions are often used in probability theory; in
logic, {0, 1} is the set of two “truth values” with 0 the value “truth”. One
says that the monomorphism (the typical subset) ¢: {0} — {0,1} is a
“subobject classifier” for the category of sets.

It turns out that there are similar classifiers for subobjects in other
categories. In general, a subobject classifier for a category C with a ter-
minal object 1 is defined to be a monomorphism ¢ : 1> @ such that every
monomorphism m in C is a pullback of ¢ in an unique way. In other
words, for each m there exists a unique pullback square

S — 1

1

XL).Q.

In the resulting pullback square (3), the top horizontal arrow is the
unique map to the terminal object 1, the lower horizontal arrow acts
as the ‘“‘characteristic function” of the given subobject S, while the
“universal” monomorphism ¢: 1 — Q may be called “truth”.

For example, take C to be the category of functions f : X — Y. Here,
a monomorphism g — f is a function g : § — T between a pair of subsets
S < X and T < Y such that g(s) = f(s) for all s € S. This means that the
diagram

s 2. T
XL»Y

commutes. In this case, there are three types of elements of X: those x in
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S, those x not in S but with g x in T, and, finally, those x not in S with g x
not in 7. We may then define a characteristic function with three values
by setting

yx=0 ifxed,

yx=1 ifx¢SbutfxeT,

Yx=2 if fx¢ T(and hence, x ¢ S) .
Again this prescription provides a pullback

S —— {0}

NN
T—T{O}

Xi”iq {0,1,2}

NN

Yy — {0,2}
vr

of objects X — Y and j: {0,1,2} — {0, 1} in the category of functions,
where the function j on the right is given by jO =0, j1 = 0, j2 = 2. Thus,
in this case, the inclusion j on the right is a subobject classifier for the
category of functions.

There are many other examples of subobject classifiers. First, recall
that the arrow category 2 is the category with only two objects 0 and 1
and only one non-identity arrow a : 0 — 1. Thus, an ordinary function f
is the same thing as a functor 2 — Sets. Hence, we have constructed
above the subobject classifier for the functor category Sets?. For any
category C, there is a subobject classifier (find it!) for the functor category
Sets®.

10. Categories Like Sets

An (elementary) topos is defined to be a category E with the following
properties:

(1} FE has all finite limits;
(ii) E has a subobject classifier;
(i1) E is cartesian closed.

We recall that requiring E to be cartesian closed means requiring that
each functor “product with 4” (i.e., a —a x b) has for all b in E a right
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adjoint ¢ — ¢, so that
hom(a x b, ¢) = hom(a,c’) .

In other words, E has exponentials.

The category Sets of all (small) sets is a topos and so is the category
Sets”” of all set-valued contravariant functors on a small category C.
Such a functor F : C°° > Sets is also called a presheaf. This is in refer-
ence to topology, where C is the set of all open sets U of a topological
space X. In this case, a presheaf F assigns to each open set U a set F(U),
with functorial properties for continuous maps U — V. For example,
F(U) might be the set of all continuous real-valued functions on U. In
this case, F is said to be a sheaf (think of the sheaf of coefficients for a
cohomology theory!). This and other categories of sheaves play a central
role in algebraic geometry and in algebraic topology; the word “topos” is
evidently a derivative of the word “topology”, suggesting that a topo-
logical structure is essentially described by its topos of sheaves of Sets.

This study of categories of sheaves on topological spaces and their
generalization has led to the study of toposes (see Mac Lane-Moerdijk
[1992]). In particular, various logical properties are reflected in the sub-
object classifiers Q of a topos. Under many circumstances, a topos pro-
vides an alternative view of the foundations of mathematics; for example,
the use of “forcing” to prove the independence of the continuum hypoth-
esis can be well organized in terms of constructions on toposes. (see Mac
Lane-Moerdijk [1992], Chapter VI). Also, suitable toposes can replace
the category of sets as a foundation for mathematics.

The axioms for a topos have many useful consequences. For exam-
ples, every topos has all finite colimits.

Notes.

The multiple examples, here and elsewhere, of adjoint functors tend to show that
adjoints occur almost everywhere in many branches of Mathematics. It is the
thesis of this book that a systematic use of all these adjunctions illuminates and
clarifies these subjects. Nevertheless, the notion of an adjoint pair of functors was
developed only very recently. The word “adjoint” seems to have arisen first (and
long ago) to describe certain linear differential operators. About 1930 the concept
was carried over to a Hilbert space H, where the adjoint 7T* of a given linear
transformation T on H is defined by equality of the inner products

(T*x, y)=(x, Ty)

for all vectors x, y € H. Clearly, there is a formal analogy to the definition of adjoint
functor.

Daniel Kan i [1958] was the first to recognize and study adjoint functors.
He needed them for the study of simplicial objects, and he developed the basic
properties such as units and counits, limits as adjoints, adjunctions with a parameter,
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and conjugate transformations, as well as an important existence theorem (the
Kan extension — see Chapter X). Note that his discovery came ten years after
the exact formulation of universal constructions. Initially, the idea of adjunctions
took on slowly, and the relation to universal arrows was not clear. Freyd in his
1960 Princeton thesis (unpublished but widely circulated) and in his book [1964]
and Lawvere [1963, 1964] emphasized the dominant position of adjunctions. One
must pause to ask if there are other basic general notions still to be discovered.

One may also speculate as to why the discovery of adjoint functors was so
delayed. Ideas about Hilbert space or universal constructions in general topology
might have suggested adjoints, but they did not; perhaps the 1939-1945 war
interrupted this development. During the next decade 1945-55 there were very
few studies of categories, category theory was just a language, and possible workers
may have been discouraged by the widespread pragmatic distrust of “general
abstract nonsense” (category theory). Bourbaki just missed ([1948], Appendix III).
His definition of universal construction was clumsy, because it avoided categorical
language, but it amounted to studying a bifunctor W : X°? x 4—Set and asking
for a universal element of W(x, —) for each x. This amounts to asking for objects
Fxe A and a natural isomorphism W(x,a) =~ A(Fx, a); it includes the problem
of finding a left adjoint F to a functor G: A— X, with W(x, a) = homy(x, Ga). It
also includes the problem of finding a tensor product for two modules 4 and B,
with W({A, B}, C) taken to be the set of bilinear functions A x B— C. Moreover,
the tensor product A® B is not in this way an example of a left adjoint (though it
is an example of our universal arrows). In other words Bourbaki’s idea of universal
construction was devised to be so general as to include more — and in particular,
to include the ideas of multilinear algebra which were important to French Mathe-
matical traditions. In retrospect, this added generality seems mistaken; Bourbaki’s
construction problem emphasized representable functors, and asked “Find Fx
so that W(x, a) = A(Fx, a)”. This formulation lacks the symmetry of the adjunction
problem, “Find Fx so that X (x, Ga)=~ A(Fx, a)” — and so missed a basic discovery;
this discovery was left to a younger man, perhaps one less beholden to tradition or
to fashion. Put differently, good general theory does not search for the maximum
generality, but for the right generality.



V. Limits

This chapter examines the construction and properties of limits, as
well as the relation of limits to adjoints. This relation is then used in the
basic existence theorems for adjoint functors, which give universals and
adjoints in a wide variety of cases. The chapter closes with some indic-
ations of the uses of adjoint functors in topology.

1. Creation of Limits

A category C is called small-complete (usually just complete) if all
small diagrams in C have limits in C; that is, if every functor F:J—C
to C from a small category J has a limit. We shall show that Set, Grp, Ab,
and many other categories of algebras are small-complete.

The construction of limits in Set may be illustrated by considering
the limit of a functor F : @°®—Set; here w, the linearly ordered set of all
finite ordinals, is the free category generated by the graph

{0—5152—>3—---}.

The functor F:w°P—Set is just a list of sets F, and of functions f,,
as in the first row of the diagram below:

Foet—F L Fe . —F I F_ .

{x.osxls '“lanFn}H{xO’xl,“'lfnxn+l=anFn}-

Given F, form first the product set II;F;; it consists of all strings
x = {xq, X1, X ...} of elements, with each x, e F,, and it has projections
Pn : I1,F; — F,, but the triangles formed by these projections need not
commute (f,p,+1+P,) A limit must be at least a vertex of a set of
commuting triangles (a cone). So take the subset L of those strings x
which “match” under f, in that f,x,,; =x, for all n. Then functions
u, : L— F, are defined by u,x = x,; since the string x matches, f,ft,+1 = i,

109
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for all n, so pu: L->F is a cone from the vertex LeSet to the base F.
If t: M—=F is any other cone from a set M as vertex, each me M de-
termines a string {t,m} which matches and hence a function g: M— L,
with gm = {t,m}, so with ug = 1. Since g is the unique such function this
shows that u is a universal cone to F, and so that L is the limit set of F.

A string x which “matches” is the same thing as a cone x: *--F to
F from the one point set *. Hence the limit L above can be described as
the set L = Cone (*, F) of all such cones. The same construction applies
for any domain category (in place of w°P).

Theorem 1 (Completeness of Set). If the category J is small, any
functor F:J—Set has a limit which is the set Cone (x, F) of all cones
o:+x=F from the one point set * to F, while the limiting cone v, with

v;: Cone(x, F)>F;, o0, (2)

is for each j that function sending each cone a to the element o; € F;.

For example, if J is discrete, the set Cone(*, F) of J-cones is just the
cartesian product I7;F;.

Proof. Since J is small, Cone (%, F) is a small set, hence an object of
Set. If u:j—k is any arrow of J, then F,0,= g, because ¢ is a cone;
hence v as defined in (2) is a cone to the base F. To prove it universal,
consider any other cone 7: X- F to F from some set X. Then for
each x e X, 7x is a cone to F from one point, so there is a unique function
h: X— Cone (*, F) sending each x to 7x, q.ed.

The crux of this proof is the (natural) bijection

Cone (X, F)~Set(X, Cone (x, F)) 3)

given by t+—h, as above. Since a cone is just a natural transformation,
this may be rewritten as an adjunction

Nat(4 X, F)~Set(X, Cone(*, F)).

By the very definition of limit, this proves that Lim F = Cone(x, F).

Limits in Grp and other categories may be constructed from the set
of all cones in much the same way. For example, if F: @w’®— Grp, as
displayed in (1), then each F, is a group, the set L of all cones (all matching
strings x) is also a group under pointwise multiplication ((xy),= x,y,),
and, the projection p,: L—F, with xt—x, is a group homomorphism,
so that p: L F is a limiting cone in Grp.

The p-adic integers Z, (with p a prime) illustrate this construction.
Take F : o°"— Rng with F, = Z/p"Z, the ring of integers modulo p”, and
with F,,,—F, the canonical projection Z/p"*'Z—Z/p"Z. Then
ZP=I‘£nF exists. An element 4 of Z, is a cone from * to F; that is,
A can be written as a sequence A= {1y, 4;,...} of integers with
Awt+1 = A,(modp™) for all n, where A=14" holds when 4, =1,(modp")
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for all n. Two p-adic integers 4 and y can be added and multiplied “term-
wise”, by the formulas

(A Wn=2nt tns (A= Anthy -

These operations make Z, = Lim F a ring, the ring of p-adic integers, and
this description completely determines Z,. This description is quicker
than the classical one, which first defines a p-adic valuation (and thus a
topology) in Z, and then observes that each p-adic integer 4 is represented
by a Cauchy sequence in that topology.

Formal power series rings also can be described as limits (Ex. 7).

Again, in Top, take each object F, to be a circle S, and each arrow
f,:8'—S' to be the continuous map wrapping the domain circle S
uniformly p times around the codomain circle. The inverse limit set L
then becomes a topological space when we introduce just those open
sets in L necessary to make all the functions g,: L—S' continuous.
This L is the limit space in Top; it is known as the p-adic solenoid.

Here is the general construction for groups.

Theorem 2. Let U : Grp—Set be the forgetful functor. If H:J— Grp
is such that the composite UH has a limit L and a limiting cone v L-UH
in Set, then there is exactly one group structure on the set L for which
each arrow v;: L— UH,; of the cone v is a morphism of groups; moreover,
this group L is a limit of H with v as limiting cone.

Proof. By Theorem 1, take L = Cone (x, U H); define the product of
two such cones ¢, T€ Cone (x, UH) by (67);=0;7; (the product in the
group H,) and the inverse by (67'); = ¢; ! (the inverse in Hj). These defin-
itions make L a group and each component of v a morphism of groups;
conversely, if v given by t+—1; is to be a morphism of groups for each j,
then the product of ¢, 7€ L must be given by this formula.

Now if G is any group and 4: G- H any cone in Grp (consisting of
group morphisms 4;: G— H; for je J), then UA: UG- UH is a cone in
Set, so by universality UZ=(Uv)h for a unique function h: UG— L.
For any two group elements g, and g, in G,

(h(g192))j= /:j(glgZ)z(;~jgl)(’1jg2):(hgl)j(hQZ)j: ((hg1)(hgz))j§

because / is a morphism of groups, so is h, and therefore L is indeed the
limit in Grp.

This argument is just a formalization of the familiar termwise con-
struction of the multiplication in cartesian products of groups, in the
p-adic numbers, etc. The conclusion of the Theorem constructs limits in
Grp from the limits in Set in a unique way, using U. The same argument
will construct all small limits in Rng, Ab, R-Mod and similar algebraic
categories, using the forgetful functors U to Set. In other words, each
forgetful functor “creates” limits in the sense of the following definition:
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Definition. A functor V: A— X creates limits for a functor F : J— A if

(i) To every limiting cone 1:x--VF in X there is exactly one pair
{a, o) consisting of an object ac A with Va= x and a cone ¢:a—F with
Vo =1, and if, moreover,

(i1) This cone a:a—F is a limiting cone in A.

Similarly, we may define “V creates products” (the above, with J
restricted to be discrete); “V creates finite limits” (the above, with J
finite), or “V creates colimits” (the above with the arrows in all cones
reversed). Note especially that “V creates limits” means only that V
produces limits for functors F whose composite V F already has a limit.

In this terminology, Theorem 2 now reads

Theorem 3. The forgetful functor U : Grp—Set creates limits.

Exercises

1. Prove that the projection (x | C) — C of the comma category creates limits.

2. If Comp Haus C Top is the full subcategory of all compact Hausdorff spaces, show
that the forgetful functor Comp Haus— Set creates limits.

3. For any category X, show that the projection X2— X x X which sends each
arrow f:x—y in X to the pair {(x, y) creates limits.

4. Prove that the category of all small finite sets is finitely complete (i.e., has all
finite limits).

5. Prove that Cat is small-complete.

6. Show that each p-adic integer 4 is determined by a string of integers «; with all
a;€{0,1,...,p— 1}, witheach A,=ay +a;p+--- +a,_,p"~ ' (mod p"). Show that
addition and multiplication of p-adic integers correspond to the usual operations
of addition and multiplication of infinite “decimals” ... a, ... a, (with base p,
the decimals extending infinitely to the left).

7. Let K [x] be the usual ring of polynomials in x with coefficients in the commutative
ring K, while F:w°®*—Rng is defined by F,=K[x]/(x"), with the evident
projections, and (x") the usual principal ideal. Prove that Lim F is the ring of
formal power series in x, coefficients in K.

8. Show that the category of sets is cocomplete.

2. Limits by Products and Equalizers

The construction of the limit of F : J — Set as the set of all cones
Cone(*, F)CII;F;

can be made in two steps: Each cone ¢ is an element x of the product
I1;F; with projections p;; to require that an element x of the product be a
cone is to require that (Fu)x;= x, for every arrow u:j—k in J; this
amounts to requiring that x lic in the equalizer of (Fu) p;and p, : I1,F,—F,.
Here is the general formulation of this process in any category.
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Theorem 1. For categories C and J, if C has equalizers of all pairs
of arrows and all products indexed by the sets obj(J) and arr (J), then
C has a limit for every functor F : J—C.

The proof constructs the following diagram in stages, with i denoting
an object and u : j—k an arrow of the index category J. By assumption,
the products IT,F; and II,F, and their projections exist, where the second
product is taken over all arrows u of J, with argument at each arrow u the
value F, = F_ 4, of F at the codomain object of u. Since I1,,F, is a product,
there is a unique arrow f such that the upper square commutes for
every u and a unique arrow g such that the lower square commutes for
every u. By hypothesis,

Foaw = Fooau F,

L:u I/?“i
Huij-"ka:HchoduL—:—Hi.E & nd 1)

N

Froau—""—Fyomu

there exists an equalizer e for f and g. Its composite with the projections
pi give arrows y; = p;e : d — F; for each i. Since e equalizes fand g and
the two squares above commute, one has Fup; = py for every u:j — k;
hence u : Ad 5 F is a cone from the vertex d to the base F. If 7 is any
other such cone, of vertex ¢, its maps 7; combine to yield a unique map
h: ¢ — II;F; to the product; T a cone implies f# = gh. Hence A factors
uniquely through e and therefore the cone 7 factors uniquely through the
cone u. This proves that d and the cone u provide a limit for F. For the
record, much as in the case of Sets:

Theorem 2 ( Limits by product and equalizers, continued). The limit
of F:J—C is the equalizer e of f,g:II,F,—IF,,, (ucarrJ,iel),
where p, f = peoaur Pud =F,° Paomu; the limiting cone p is p;=pje, for
jed, all as in (1).

This theorem has several useful consequences and special cases.

Corollary 1. If a category C has a terminal object, equalizers of all
pairs of arrows, and products of all pairs of objects, then C has all finite
limits.

Here a finite limit is a limit of J— C, with the category J finite.

Corollary 2. If C has equalizers of all pairs of arrows and all small
products, then C is small-complete.

For example, this gives another proof that Set is small-complete.
The concept of completeness is useful chiefly for large categories and
for preorders. In a preorder P, a product of objects a;, j € J, is an object d
with d < a; for all j and such that ¢ < g; for all j implies ¢ <d; in other
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words a product is just a greatest lower bound or meet of the factors g;
(dually, a coproduct is a least upper bound or join).

Proposition 3 (Freyd). A small category C which is small-complete
is simply a preorder which has a greatest lower bound for every small
set of its elements.

Proof. Suppose C is not a preorder. Then there are objects a,be C
with arrows f=g:a—b. For any small set J form the product IT;b
of factors b; all equal to b. Then an arrow h:a—II;b is determined
by its components, which can be f or g. There are thus at least 27 arrows
a — II;b. If the small set J has cardinal larger than arrC, this is a con-
tradiction.

Exercises

1. (Manes.) A parallel pair of arrows f, g : @ — b in C has a common left inverse h
when there is an arrow h:b—a with hf =1=hg.

(a) Prove that a category C with all small products and with equalizers for all
those parallel pairs with a common left inverse is small complete. (Hint:
The parallel pair used in the proof of Theorem 1 does in fact have a common
left inverse.)

(b) In Set, show that a parallel pair of arrows f, g: X— Y has a common right
inverse if and only if the corresponding function (f, g): X— Y x Y has image
containing the diagonal {{y, y>|ye Y}.

2. Prove that C, C, complete (or cocomplete) imply the same for the product

category C; x C,.

3. (Lim and Lim as functors.) If F, F": J— C have limiting cones , ' (or colimiting
cones v,Vv), show that each natural transformation f:F--F determines
uniquely arrows limf or limf such that the following diagram commutes,

where 4: C— C’ is the diagonal functor:

ALimF —*— F —— A(LimF)

Alimp) | ] i AQlimp)
— ) ) v —
ALimF —*— F'——— A(LimF’).
cim 3
Conclude: If C is complete, Lim (or Lim) is a functor Cc’—cC.
4. (Limits of composites.) Given composable functors
JBJLCEC

and limiting cones v for F, v’ for HF W, observe that A, (Hc)=H>Ad;co W:J—C’,
and show that there is a unique “canonical” arrow t: He LimF—Lim HF W
such that the following diagram commutes:

Hvw

A,.(H:LimF) HFW —"— A,(Lim HFW)

A,,(z)l II l As:(s)

A, (LimHFW)—— HF W%, 4 (H- LimF).

Dually, construct s: Lim HF W— H e LimF as indicated at the right.
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5. (Limit as a functor on the comma category of all diagrams in C.)

(a) Interpret W of Ex. 4 as an arrow in (Cat|C) to show (for C complete) that
Lim is a functor (Cat| C)**—C.

(b) Let (Cat|'C) be the (“super-comma”) category with objects F : J— C, arrows
{B, W) : F'—F those pairs consisting of a functor W:J'—J and a natural
transformation f: FW-»F'. Combine Exercise 3 and Exercise 4 to show
(for C complete) that Lim is a functor (Cat <} C)°°— C. Dualize.

3. Limits with Parameters

Let T:J x P—X be a bifunctor, and suppose for each value pe P of
the “parameter” p that T(—,p):J— X has a limit. Then these limits
for all p form the object function p—Lim;T(j, p) of a functor P— X.

Instead of proving this directly, we replace functors P— X by objects
of the functor category X*. This replaces T:J x P— X by its adjunct
S:J— X, under the adjunction Cat(J x P, X)= Cat(J, X*). Recall that
for each object pe P there is a functor E,: X*— X, “evaluate at p”,
given for arrows (natural transformations) o : H-=>H’ of X? as

E,H=H,, E,0=0, H,—H,. (1)

Theorem 1. If S: J— X7 is such that for each object p € P the composite
E,S:J—X has a limit L, with a limiting cone t,: L,~E_S, then there
is a unique functor L: P— X with object function p— L, such that p+—1,
is a natural transformation v: AL = A;L-S; moreover, this t is a limiting
cone from the vertex Le X* to the base S:J— X*.

Proof. Let h:p—q be any arrow of P. Then, writing E,S as S,
the given cones 7, and 7, for a typical arrow u: j—k of J have the form

The triangles commute because 7, and 7, are cones and the parallelogram
because § is a functor. Since the inside cone is universal there is a
unique arrow L, :L,— L, such that 7 jc L,=S,jo1,j for all je J. The
assignment h+—L, makes L a functor (Proof: put another cone outside)
and 1 a natural transformation 4L--S (a cone from the object L e X*
to the functor §:J— X%). It is a limiting cone; for if ¢: M-S is any
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other cone there are unique arrows M,— L, because L, is a limit; they
combine to give a unique natural transformation M- L.
The conclusion may be written

E,(LimS)= I(J_HI(EPS):

In a functor category, limits may be calculated pointwise (provided the
pointwise limits exist).

Corollary. If X is small-complete, so is every functor category X*.

This theorem becomes a case of “creation” of limits, if we write |P|
for the discrete subcategory consisting of all objects and identity arrows
of P.

Theorem 2. For any categories X and P, the inclusion functori:|P|— P
induces a functor i* = X' : X?— X'?| which creates limits.

4. Preservation of Limits

A functor H:C—D is said to preserve the limits of functors F:J—C
when every limiting cone v : b F in C for a functor F yields by composition
with H a limiting cone Hv: Hb- HF in D; this requires not only that
H take each limit object which exists in C to a limit object in D but
also that H take limiting cones to limiting cones. A functor is called
continuous when it preserves all small limits.

Theorem 1. For any category C with small hom-sets, each hom-
Junctor C(c, —): C—Set preserves all limits; in particular, all small
limits.

The same proof will give a more general result: If C has hom-sets
in Ens, any category of sets in which Ens(X, Y) consists of all functions on
X to Y, then each hom-functor C(c, —): C—Ens preserves all limits
which exist in C.

Proof. Let J be any category and F : J— C a functor with a limiting
cone v:Lim F--»F in C. Apply the hom-functor C(c, —); there results a
cone v, = C(c, v), as in the diagram

C(c,LimF)—=—C(c,F), ielJ

Ek il

T

in Set. For any other cone t to the same base from a vertex set X, each
element xe X gives a cone t;x:¢c—F; in C and hence, because v is
universal, a unique arrow h,:c— LimF with v;h, =1;x. Then setting
kx=h, for each x defines a function, and hence an arrow k in Ens as
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shown with vk =7, for all i. Since k is clearly unique with this property,
xisa 11m1t1ng cone in Set, as required.

The same proof, differently stated, might start by noting that the
definition of the functor C(c, F—):J—Set shows that a cone A:c—=F
in C is the same thing as a cone A:*=C(c, F—) in Set, with vertex
a point *. Then, because Cone(X, —)=Set(X, Cone(x, —)) as in (1.3),

Cone(X, C(c, F-)) = Set(X, Cone(x, C(c, F-)))
= Set(X, Cone(c, F)) = Set(X, C(c,Lim F)) ,

where “Cone” means J-cone and where the last step uses the definition of
Lim F. But Lim S, for each S:J — Set, is defined by the adjunction
Cone(X, S) = Set(X,Lim S). Therefore the above equations determine
this Lim S (together with the correct limiting cone) as

LimC(c, F —)~C(c, LimF). 1)

Some authors use this equation to define limits in C in terms of
limits in Set; for example, the product of objects a; in C is defined by
[[Cle,a)=Cle]]a). 2

The contravariant hom-functor may be written as
C(—,c)=C"(c, —): C"—Set;

hence the theorem shows that this functor C{—, ¢) carries small colimits
(and their colimiting cones) in C to the corresponding limits and
limiting cones in Set. For example, the definition of a small coproduct
provides an isomorphism (coproduct to product):

C(La;, ) n C(a

More generally, the colimit of any F : J— C is determined by
C(ColimF,c)=LimC(F—,¢). (3)
Creation and preservation are related:

Theorem 2. If V: A— X creates limits for F : J— A and the composite
VF:J—X has a limit, then V preserves the limit of F.

In particular, if V creates all small limits and X is small-complete,
then A is also small-complete, and V is continuous.

Proof. Let t:a—F and ¢:x— VF be limiting cones in 4 and X,
respectively. Since V creates limits, there is a unique cone ¢: b—=>F in A
with Vg: Vb=V F equal to ¢: x= VF; moreover, ¢ is a limiting cone.
But limits are unique up to isomorphism, so there is an isomorphism
0:b=a with 10=9. Thus VO:Vb=x=Va, with Vi-V0=Vo=o,
so Va is a limit and V preserves limits, as desired.
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In any category an object p is called projective if every arrow h: p—c
from p factors through every epi g: b—c, as h=gh’ for some i’

e P

b K—g—> C
It is equivalent to require that g epi implies hom(p,g):hom(p,b)—hom(p,c)
epi in Set. In other words, p is projective exactly when hom(p, —)
preserves epis. Dually, an object g is injective when hom(—, gq) carries
monics to epis. These notions are especially useful in R-Mod and other
Ab-categories; in R-Mod the projectives are the direct summands of
the free modules.

Exercises

1. Prove that the composite of continuous functors is continuous.

2. If C is complete, and H : C— D preserves all small products and all equalizers
(of parallel pairs) prove that H is continuous.

3. Show that the functor F:Set— Ab sending each set X to the free abelian group
generated by the set X is not continuous.

4. For any small set X, show that the functor (product with X) X x — : Set—Set
preserves all colimits.

5. (Preservation of Limits.) Given H : C—C’ and a functor F: J— C such that F
and HF have limits, prove that H preserves the limits of F if and only if the
canonical arrow H-Lim F—Lim HF of Exercise 2.4 is an isomorphism (This
is a natural way to describe the preservation of limits when both categories C
and C’ are given with specified limits).

5. Adjoints on Limits

One of the most useful properties of adjoints is this: A functor which
is a right adjoint preserves all the limits which exist in its domain:

Theorem 1. If the functor G:A—X has a left adjoint, while the
functor T:J— A has a limiting cone t:a--T in A, then GT has the
limiting cone Gt1: Ga=-GTin X.

Proof. By composition, Gt is indeed a cone from the vertex Ga in X.
If F is a left adjoint to G, and if we apply the adjunction isomorphism
to every arrow of a cone o:x—=GT, we get arrows (g;)’: Fx— Ti for
i€ J which form a cone 6" : Fx— T'in A. But t: a— T is universal among
cones to T in A, so there is a unique arrow h:Fx—a with th=g".
Taking adjuncts again, this gives a unique arrow h*:x— Ga with
Gt-ht = (th)' = (¢”)" = 6. The uniqueness of the arrow A! states pre-
cisely that Gt : Ga = T is universal, q.e.d.
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The proof may be illustrated by the following diagrams (where
u:i—j is any arrow of J).

in A in X
Ti—*—a GTi%"_Ga

eyl e gt
Tu Eh GTu thlh#
Tj‘TFX, GT]TX

This proof can also be cast in a more sophisticated form by using
the fact that Lim is right adjoint to the diagonal functor 4. In fact,
given an adjunction

(F,G,n,e): X—=A

and any index category J, one may form the functor categories (from J)

and hence the diagram
(FLG ey X7 = A7,

where F’(S) = F S for each functor S : J— X, and n’S=nS: S->GFS, etc.
The triangular identities for # and ¢ yield the same identities for ’ and ¢’,
so the second diagram is indeed an adjunction (in brief, adjunctions
pass to the functor category). Now we have the diagram of adjoint pairs

The definitions of the diagonal functors 4 show at once that F’ A= AF,
so the diagram of left adjoints commutes in this square. Since compositions
of adjoints give adjoints, it follows that the composites Limo G’ and
G- Lim are both right adjoints to F’> A= 4+ F. Since the right adjoint
of a given functor is unique up to natural isomorphism, it now follows
that Lime G’ G- Lim. This proves again for each functor T:J— A4
with limit ¢ (and limiting cone t:a-T in A4) that Ga=GLimT
= Lim G’(T) = Lim G T. The reader should show that the same argument
proves that G preserves limiting cones (put units and counits in the
square diagram above, and recall that the limiting cone 7:a->T is just
the value of the counit of the adjunction {4, Lim,...>: A— A’ on the
functor 7).

The dual of the theorem is equally useful: Any functor P which
has a right adjoint (i.e., which is a left adjoint) must preserve colimits
(coproducts, coequalizers, etc.). This explains why the coproduct (free
product) of two free groups is again a free group (on the disjoint union of
the sets of generators).
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Similarly (by the original theorem) all the typical forgetful functors
in algebra preserve products, kernels, equalizers, and other types of
limits. Typically, the product of two algebraic systems (groups, rings,
etc.) has as underlying set just the (cartesian) product of the two under-
lying sets. This, and other similar facts, are immediate consequences of
this one (easy) theorem. The theorem can also be used to show that
certain functors do not have adjoints.

Exercises

1. Show that, for a fixed set X, the functor X x — :Set—Set cannot have a left
adjoint, unless X is a one-point set.

2. For the functor D : Vet°®— Vet of (IV.2.2) show that D has no right adjoint (and
hence, in particular, is not the left adjoint of D°P).

3. f Cis a full and reflective subcategory of a small-cocomplete category D, prove
that C is small-cocomplete.

4. Prove that Set°® is not cartesian closed.

6. Freyd’s Adjoint Functor Theorem

To formulate the basic theorem for the existence of a left adjoint to a
given functor, we first treat the case of the existence of an initial object
in a category and then use the fact that each universal arrow defined by
the unit of a left adjoint is an initial object in a suitable comma category.

Theorem 1 ( Existence of an initial object). Let D be a small-complete
category with small hom-sets. Then D has an initial object if and only
if it satisfies the following

Solution Set Condition. There exists a small set I and an I-indexed
Jamily k; of objects of D such that for every de D there is an ie I and
an arrow k;—d of D.

Proof. This solution set condition is necessary: If D has an initial
object k, then k indexed by the one-point set realizes the condition, since
there is always a (unique) arrow k—d.

Conversely, assume the solution set condition. Since D is small-
complete, it contains a product object w=IIk; of the given I-indexed
family. For each d € D, there is at least one arrow w—d, for example, a
composite w = ITk;— k,—d, where the first arrow is a projection of the
product. By hypothesis, the set of endomorphisms D(w, w) of w is small
and D is complete, so we can construct the equalizer e: v—w of the set
of all the endomorphisms of w. For each d e D, there is by v—w—d
at least one arrow v—d. Suppose there were two, f,g:v—d, and take
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their equalizer e, as in the figure below

S

u—4Lnp——34d

T

w—CES =] ki———k;.
By the construction of w, there is an arrow s:w—u, so the composite
ee;sis, like 1,,, an endomorphism of w. But e was defined as the equalizer
of all endomorphisms of w, so

ee;se=1,e=el,.

Now e is an equalizer, hence is monic; cancelling e on the left gives
e;se=1,. This states that the equalizer e, of f and g has a right inverse.
Like any equalizer, e, is monic, hence is an isomorphism. Therefore,
f =g; this conclusion means that v is initial in D.

This proof will be reformulated in § X.2.

Theorem 2 (The Freyd Adjoint Functor Theorem). Given a small-
complete category A with small hom-sets, a functor G: A— X has a left
adjoint if and only if it preserves all small limits and satisfies the following

Solution Set Condition. For each object x € X there is a small set I
and an I-indexed family of arrows f,:x— Ga,; such that every arrow
h:x—Ga can be written as a composite h= Gte f; for some index i
and some t : a;— a.

Proof. If G has a left adjoint F, then it must preserve all the limits
which exist in its domain A4; in particular, all the small ones. Moreover,
the universal arrow #,:x— GFx which is the unit of the adjunction
satisfies the solution set condition for x, with I the one-point set.

Conversely, given these conditions, it will suffice to construct a uni-
versal arrow x— Ga from each x € X to G; then G has a left adjoint by
the pointwise construction of adjoints. This universal arrow is an initial
object in the comma category (x| G)= D, so we need only verify the
conditions of the previous theorem for this category. The solution set
condition for G clearly gives the condition of the same name for (x| G) = D.
Since A has small hom-sets, so does D. To show D small-complete we
need only arbitrary small products and equalizers of parallel pairs in D.
They may be created as follows:

Lemma. If G:A— X preserves all small products (or, all equalizers)
then for each x € X the projection

Q:(x]G)—4, (x>Ga)—a

of the comma category creates all small products (or, all equalizers).
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Proof. Let J be a set (a discrete category) and f;: x— Ga; a J-indexed
family of objects of (x| G) such that the product diagram p;: ITa,—a;
exists in A. Since G preserves products, Gp;: GIla;—Ga; is a product
diagramin X, so thereisa unique arrow f: x— GIIa;in X with(Gp)) f = f;
for all j:

Ha; GHaj

L]
//
PjJ f// ijPj
/
-

a;, x/—fj—> Ga;
This equation states that p;: f— f; is a cone of arrows in (x| G); indeed,
it is the unique cone there which projects under Q to the given cone
pj:ITa;—a;. One then verifies that this cone p; is a product diagram in
(x| G); these two results show that Q creates products.
Similarly, we “create” the equalizer of two arrows s, t: f—g in (x| G).
As in the figure below, we are given the equalizer e of Qs, Qt; — that
is, of s and t as arrows in A. Since G preserves equalizers, Ge is then the
equalizer of Gs and Gt. But Gse f =g=Gte f, so there is a unique
arrow h: x— Ga making Ge- h= f, as below. In other words ¢: h— f in
(x| G) is the unique arrow of (x| G) with Q-projection e : a—b.

x=-tosGae-Gd  ae-td

x—+— Gb X b
i GsJJGt sljt
x—<— Gc c

It remains to show that the arrow e is an equalizer in (x| G). Sc
consider another object k:x—Gd of (x|G) and an arrow r:k—f
of (x| G) with sr=tr in (x| G). Then sr=tr in A, so there is a unique
in A with r = er’. It remains only to show r" an arrow k—h of (x| G); but
Ge(Gr' o k)= G(er')o k= Gre k= f,so by the unique choice of h, Gr' - k= h,
which states that # is an arrow of (x | G).

This line of argument applies not just to products or equalizers, but
to the creation of any limit (Exercise 1).

Theorem 3 (The Representability Theorem). Let the category D be
small complete with small hom-sets. A functor K : D—Set is representable
if and only if K preserves all small limits and satisfies the following

Solution Set Condition. There exists a small set S of objects of D
such that for any object d e D and any element x € Kd there exist an se S,
an element y € Ks and an arrow f: s—d with (K f) y=x.
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Proof. This is another reformulation of the existence Theorem 1 for
initial objects. Indeed, a representation of K is a universal arrow from the
one-point set = to K (Proposition 111.2.2), hence an initial object in the
comma category (* ] K), which is small-complete because K is assumed
continuous. Conversely, if K is representable, it is necessarily continuous.

The solution set condition (or something like it) is requisite in all
three theorems. For an example, let Ord be the ordered set of all small
ordinal numbers «, §, ...; it is a category with hom-set Ord (e, ) empty
or the one-point set according as a > f or a < ff. The category Ord®® is
small-complete, because the product of any small set of ordinals is
their least upper bound. The functor K : Ord°®*—Set with Ko ==+ the
one-point set for every o« is clearly continuous. However K is not
representable: Were Ko =~ Ord®?(f, o) for some f, then a £ g for all a,
so f would be a largest small ordinal, which is known to be impossible.

Complete Boolean algebras provide another example to show that
some solution set condition is requisite. For a given denumerable set
D one can construct an arbitrarily large complete Boolean algebra
generated by D (Solovay [1966]); this implies that there is no free complete
Boolean algebra generated by D, and hence that the forgetful functor
Comp Bool—Set has no left adjoint—though it is continuous and
Comp Bool is small-complete.

The adjoint functor theorem has many applications.

Forexample, it gives a left adjoint to the forgetful functor U : Grp—Sat.
Indeed, we already know that U creates all limits (Theorem 1.3), hence
that Grpis small-complete and U continuous. It remains to find a solution-
set for each X €Set. Consider any function f: X— UG for G a group,
and take the subgroup S of G generated by all elements fx, for x e X.
Every element of S is then a finite product, say (fx,)¥* (fx,)*! --- (fx,) ¥,
of these generators and their inverses so the cardinal number of S is
bounded, given X. Taking one copy of each isomorphism class of such
groups S then gives a small set of groups, and the set of all functions
X—US is then a solution set.

This left adjoint F :Set— Grp assigns to each set X the free group
FX generated by X, so our theorem has produced this free group
without entering into the usual (rather fussy) explicit construction of the
elements of F X as equivalence classes of words in letters of X. To be sure,
the usual construction also shows that the universal arrow X — U F X is
injective (different elements of X are different as generators of the free
group). However, we can also obtain this fact by general arguments and
the observation that there does exist a group H with two different ele-
ments & + k. Indeed, for any two elements x = y in X we then take a
function f: X - UH with fx=~h and fy =k. Since f must factor
through the universal X — U F X, it follows that this universal must be
an injection.
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This construction applies not just to Grp but to the category of all
small algebraic systems of a given type 7. The type t of an algebraic
system is given by a set Q of operators and a set E of identities. The set Q
of operators is a graded set; that is, a set Q with a function which assigns
to each element w € Q a natural number n, called the arity of w. Thus
an operator w of arity 2 is a binary operator, one of arity 3 a ternary
operator, and so on. If S is any set, an action of 2 on S is a function 4
which assigns to each operator w of arity n an n-ary operation w4 : S"— S
(Here $"= S8 x --- x §, with n factors). From the given operators £ one
forms the set A of all “derived” operators; given w of arity n and n derived
operators A, ...,4, of arities my,...,m, the evident “composite”
(A, ..., 2,) is a derived operator of arity m, + --- +m,; also, given A
of arity n and f:n—m any function from {1,...,n} to {1,...,m},
“substitution” of fin A gives a derived operator 8 of arity m, described
in terms of variables x; as 0(xy, ..., X,,) = A(X;1, ..., Xz,). (This description
by variables refers implicitly to the action of Q on a set; for the abstract
formulation of this and of composition, we refer to the standard treatments
of universal algebra such as: Cohn [1965], or Gréitzer [1968]). At any rate,
each action 4 of © on a set S extends uniquely to an action of the set 4 of
derived operators on S.

The set E of identities for algebraic systems of type 7 is a set of ordered
pairs {4, u)> of derived operators, where A and u have the same arity n.
An action A of Q on § satisfies the identity <A, u) if A, =p,:S"—S.
An algebra A of type T — an {Q, E)-algebra — is a set S together with
an action 4 of Q on S which satisfies all the identities of E; so we call S
the underlying set of the algebra and often write |{4]=S. A morphism
g:A— A of {Q, E)-algebras is a function g:S— S’ on the underlying
sets which preserve all the operators of  (and hence of A) in the sense
that

goula, ....a)=w,(gay, ..., ga,) (1)

for all a;e A. The collection of all small (€, E>-algebras, with these
morphisms as arrows, is a category (Q, E) — Alg, often called a variety
or an equational class of algebras. This description includes the familiar
cases such as Grp, Rng, Ab and many others less familiar (e.g. nilpotent
groups of specified class). For example, to describe Grp, take three
operators in £, the product, the inverse, and the assignment of the
identity element e, of arities 2, 1, and 0, respectively, and take in E the
axioms for the identity (ex=x=xe), the axioms for the inverse
(xx ' =e=x"'x), and the associative law.

For any variety of algebras, the adjoint functor theorem will yield a
left adjoint for the forgetful functor <R, E>-Alg—Set; the solution set is
obtained just as in the case of groups (see also § 7 below). Thus this
theorem produces for any set X the free ring, the free abelian group,
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the free R-module, etc. generated by the elements of the given set X.
It does not produce free fields: In defining a field, the inverse to multi-
plication is not everywhere defined, so fields are not algebraic systems
in the sense considered (and, for that matter, free fields do not exist).
Another illustration of the adjoint functor theorem is the construction
of the left adjoint to
V: Comp Haus— Set , 2
the forgetful functor which sends each compact Hausdorff space to the
set of all its points. Given compact Hausdorff spaces X;, the usual
product topology on the cartesian product set Y =II,V X, is Hausdorff
and compact (the latter by the Tychonoff theorem); hence Comp Haus
has all small products and V preserves them. For that matter, V creates
these products: The product topology is chosen with the fewest open
sets to make all the projections p;: Y— X; continuous, so any other
compact topology Y’ with all p; continuous would be the same set Y
topologized with more open sets; then id: Y'—Y is a continuous
injection from a compact to a Hausdorff space, hence an isomorphism. By
a similar argument, V creates all equalizers, hence all small limits. It
remains to find for each set S a solution set of arrows f: S— V' X where
each X is compact Hausdorff. Since X may be replaced by the closure
fScX, it is enough to assume fS dense in X. To each point xe X,
consider the set Lx={D|DCS and x e fD}; thus Lx is a non-void set
of subsets of S. If x+x' are separated in X by disjoint open sets U
and U’, then f 'UeLxbut f'U is not in Lx’, so Lx# Lx". Thus L is
an injection X —» 228 from X to the double power set of S. If we take
all subsets X of 228, all topologies on each set X and all functions
f:S— VX we obtain a small solution set for S. The adjoint functor
theorem then provides a left adjoint to V; it assigns to each set S the
Stone-Cech compactification of the discrete topology on S.

Exercises

1. For G: A— X continuous, show that the projection (x | G}— A creates all small
limits.

2. Use the adjoint functor theorem to find a left adjoint to each of the forgetful
functors Rng— Set, Rng— Ab, Cat— Grph. Compare with the standard explicit
construction of these adjoints.

3. Given a pullback diagram in Cat,

H

A—H2 4

X2 ,x,
if H creates limits and G preserves them prove that H' creates them.

4. Use Exercise 3 and the fact that (x| X)— X creates limits to give a new proof
of the result of Exercise 1.
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7. Subobjects and Generators

Concepts such as subring, subspace, and subfield will now be treated
categorically, using arrows instead of elements. For instance we will
regard a subgroup S of a group G not as a set of elements of G, but as
the monomorphism S— G given by insertion.

Let A be any category. If u:s—a and v:t—a are two monics with
a common codomain a, write u <v when u factors through v; that is,
when u=vu’ for some arrow u' (which is then necessarily also monic).
When both u<v and v<u, write u=v; this defines an equivalence
relation = among the monics with codomain a, and the corresponding
equivalence classes of these monics are called the subobjects of a. It is
often convenient to say that a monic u : s—a is a subobject of a — that s,
to identify u with the equivalence class of all v=u#, for 6:s5'—s an
invertible arrow. These subobjects do correspond to the usual subobjects
(defined via elements) in familiar large categories such as Rng, Grp, Ab,
and R-Med, but not in Top.

Lemma. In any square pullback diagram
S

h ,
IZZ3p——t

N

s—f——>a

f monic implies ' monic (and g monic implies g’ monic).
Briefly, pullbacks of monics are monic.

Proof. Consider a parallel pair h, k, as shown, with f'h= f’'k. Then
gf'h=gf'k, so fg'h= fg'k. Since f is monic, this gives g'h=g'k. But
we also have f"h= f'k; these two equations, since p is a pullback, imply
h=k. Therefore f' is monic.

The set of all subobjects of each a € A4 is partly ordered by the binary
relation u<v. If u: s—a and v: t—a are two subobjects of @, and A has
pullbacks, the pullback of these two arrows gives (Lemma above) another
monic w : p— a with codomain a and with w < u, w < v; it is the intersection
(= meet or greatest lower bound) of the subobjects u and v in the partly
ordered set of all subobjects of a € 4. Similarly, if J is any set and u;: s,—a
for i e J any J-indexed set of subobjects of a € 4, the pullback of all
these arrows, if it exists, gives the intersection of the subobjects u; of a.
The union (=join or least upper bound) of subobjects can be found
under added hypotheses.

Dually, two epis r, s with domain a are equivalent when r = 0s for
some invertible 6. The equivalence classes of such epis are the quotient
objects of a, partly ordered by the relation r <s, which holds when r
factors through s as r=r's. This definition of quotients by duality is
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simpler than the usual definition of quotient algebras by equivalence
classes, and agrees with the usual definition in those categories where
epis are onto. This latter is the case, for example, in Grp. Hence every
quotient object of a group G in Grp is represented by the projection
p: G— G/N of G onto the factor group G/N of G by some normal subgroup
N of G,and G/M < G/N holds if and only if M D N (in general, the relation
r < s for quotients mean that in r “more” is divided out!).

A set S of objects of the category C is said to generate C when to
any parallel pair h, b’ : c—d of arrows of C, h+ k' implies that there is an
se S and an arrow f : s — ¢ with Af & /' f (the term “generates” is well
established but poorly chosen; “separates” would have been better).
This definition includes the case of a single object s generating a category
C. For example, any one-point set generates Set, Z generates Ab and
Grp, and R generates R-Mod. The set of finite cyclic groups is a generator
for the category of all finite abelian groups (or, of all torsion abelian
groups).

Dually, a set Q of objects is a cogenerating set for the category C
when to every parallel pair h= k' : a—b of arrows of C there is an object
q € Q and an arrow g:b—gq with gh+gh. A single object
q is a cogenerator when {q} is a cogenerating set. For example,
any two-point set is a cogenerator in Set.

In terms of subobjects we can examine further the construction of
solution sets. Given any functor G : A— X an arrow f: x— Ga is said to
span a when there is no proper monomorphism s—a in 4 such that f
factors through Gs— Ga.

Lemma. In the category A, suppose that every set of subobjects of
an object ae A has a pullback. Then if G: A— X preserves all these pull-
backs, every arrow h:x—Ga factors through an arrow f:x— Gb which
spans b.

Proof. Consider the set of all those subobjects u; : 5; — a such that #
factors through Gu; as h = Gu;° h;. Take the pullback v: b—aof all the u;.
Then, as in the commutative diagrams

Gv: Gb— Gais still a pullback (for the Gu;), so h factors through Gv via f,
as shown. It follows from the construction that f spans b.

This lemma states that a solution set for x can be the set of all arrows
from x which span.
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As an application consider the category of algebras of given type 7.
Given an arrow f:S— G A, the algebra 4 has a subalgebra consisting
of all elements obtained from elements of f(S) by iterated applications
of operators w € Q. The cardinal number of this subalgebra A4, is then
bounded by the cardinal of S and that of Q. Since f factors through
S—G Ay, these latter arrows from the set § form a small set which is a
solution set for G: Alg.—Set. They are spanning arrows in the sense
of the lemma, provided a subobject of a is redefined to be a morphism
u: s—a for which Gu is injective in Set.

Another example of the use of this lemma with the adjoint functor
theorem is the proof of the existence of tensor products of modules.
Given modules A4 and B over a commutative ring K, a tensor product is a
universal element of the set Bilin (4, B; C) of bilinear functions
B : A x B—C to some third K-module C. This set is (the object function
of) a functor of C. To get a solution set for given 4 and B, it suffices to
consider only those bilinear § which span C (do not factor through a
proper submodule of C). Then C consists of all finite sums X f(a;, b;),
so the solution set condition holds; since K-Mod is small-complete
and Bilin: K-Mod—Set is continuous, a tensor product ® : 4 x B—>A® B
exists. The usual (more explicit) construction is wholly needless, since
all the properties of the tensor product follow directly from the uni-
versality.

Exercises

1. Use the adjoint functor theorem to construct the coproduct in Grp (the co-
product GIIH in Grp is usually called the free product). Using the product
G x H, show also that the injections G— GLIH and H— GLIH of the coproduct
are both monic, and that their images intersect in the identity subgroup.

2. Make a similar construction for the coproduct of rings.

3. If Ris a ring, A a right R-module and B a left R-module, use the adjoint functor
theorem to construct A ®gB (this tensor product is an abelian group, with a
function {a, b)ra®b e AR zB which is biadditive, has ar@b=a®rb for all
ac A,re R, and b e B, and is universal with these properties). Prove that A®zB
is spanned (as an abelian group) by the elements a®b. If S—R is a morphism
of rings, examine the relation of AQ¢B to A@gB.

4. Construct coequalizers in Alg, by the adjoint functor theorem.

8. The Special Adjoint Functor Theorem

We now consider another existence theorem for adjoints which avoids
the solution set condition by assuming a small set of objects which
cogenerates.

Theorem 1 (Special Initial-Object Theorem). If the category D is
small-complete, has small hom-sets, and a small cogenerating set Q, then D
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has an initial object provided every set of subobjects of each d e D has an
intersection.

Proof. Form the product qo=II,. 5q of all the objects in the small
cogenerating set Q and take the intersection r of all subobjects of q,. For
any object d € D, there is at most one arrow r—d, for if there were two
different arrows, their equalizer would be a proper monic to r, hence a sub-
object of g, smaller than the intersection r.

To show r initial in D, we thus need only construct an arrow r—d
for each d. So consider the set H of all arrows h : d— ¢q € Q and the (small)
product IT,_gq. Take the arrow j:d—1II,_zq with components h
(.., with p,oj=h for each projection p,). Since the set Q cogenerates,
j is monic. Form the pullback

|
I
1
¥ .
d—— Hhqu s
where k is the arrow with components p,° k = p, for each h:d—gq. Then
J'» as pullback of a monic j, is monic, so ¢ is a subobject of g,. But r was

the intersection of all subobjects of g4, so there is an arrow r—c. The
composite r— c—d is the desired arrow.

Theorem 2 (The Special Adjoint Functor Theorem). Let the category
A be small-complete, with small hom-sets, and a small cogenerating set Q,
while every set of subobjects of an object a € A has a pullback (and hence has
an intersection). Let the category X have small hom-sets. Then a functor
G : A— X has a left-adjoint if and only if G preserves all small limits and
all pullbacks of families of monics.

Proof. The conditions are necessary, since any right adjoint functor
must indeed preserve all limits (in particular, all pullbacks). Conversely, it
suffices as usual to construct for each x € X an initial object in the comma
category D = (x| G). We shall show that this category satisfies the hypothe-
ses of the previous theorem for the construction of an initial object.
First we verify that subobjects in (x| G) have the expected form.

Lemma. Anarrowh:{f:x—Ga,a)—{f":x—Gda,a’) inthe comma
category (x| G) is monic if and only if h:a—a' is monic in A.

Proof. Trivially, h:a—a’ monic implies h:f— f' monic. For the
converse, observe that & monic means exactly that its kernel pair (the
pullback of & with h) is 1,,1,:a=3a. On the other hand, by the lemma
of § 6 the projection

x]G)—A, <({f:x—Ga,ay—a
of the comma category creates all limits, and in particular, creates kernel
pairs. Moreover, A has all kernel pairs. Therefore (Theorem 4.2), the
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projection of the comma category preserves all kernel pairs, in particular,
the kernel pair 1,,1,, and consequently carries monics (in(x]G)) to
monics in A, as desired.

Now return to the theorem. We are given a small cogenerating set Q
in A. Since X has small hom-sets, the set @' of all objects k: x — Gg
with g € Q is small. It is, moreover, cogenerating in (x| G). Given s=t¢:
{f:x—>Ga,a)—{f :x—Gad',a") in (x|G), there is a g,€Q and an
arrow h:a —gqg with hs % ht, and this h can be regarded as an arrow

h:{f" 1 x—=Ga,a)—<{fo: x=Gqo. 40,

where fo=Ghe f’, with hs+ht in (x|G). Therefore Q' cogenerates
(x| G).

Since 4 small-complete and G continuous imply (x| G) small-complete
it remains only to construct an intersection in (x|G) for every set of
subobjects h;: (f;:x—Ga;,a;)—{f:x—Ga,a), where ieJ. By the
lemma, the corresponding arrows h; : a;— a are monics in A. By hypothe-
sis, they then have a pullback h:b—ain A

a; x = x = x
; g
S;/ hi ifo Ji S
oy i Gh
b-----a, Gb—% G, ‘> Ga.

The functor G preserves pullbacks, so Gh: Gb— Ga with Gh= Gh; - Gs;
is a pullback of the Gh; in X. Since also Gh;- f;= f for all i € J, there is a
unique f,: x—Gb with f;=Gs;° £ ; the resulting arrow h: { f,bD>—{f, a)
is then a pullback in (x| G) of the given h; (again, because the projection
of the comma category creates pullbacks). This pullback is the required
intersection of the h;.

There is another form of this theorem. Define a category to be well-
powered when the subobjects of each object ae A can be indexed by a
small set; that is, when there is to each a a small set J, and a bijection
from J, to the set of all subobjects of a. Many familiar large categories —
Top, Grp, R-Mod, etc. — are well powered; the dual notion is called
co-well-powered. 1If A is well-powered and small-complete, then any
set of subobjects of an ae 4 has an intersection, formed by the usual
pullback. Therefore the special adjoint functor theorem specializes as
follows:

Corollary. If A is small complete, well-powered, with small hom-sets,
and a small cogenerating set, while X has small hom-sets, then a functor
G: A— X has a left adjoint if and only if it is continuous. In particular,
any continuous K : A—Set is representable.

This classical form of the special adjoint functor theorem (sometimes
called SAF T) often appears without an explicit “small hom-set” hypothe-
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sis — in sources which consider only categories with small hom-sets.
Some authors use “locally small category” to mean “well-powered”;
others use it to mean “has small hom-sets”, so we avoid this term!

The classical form of SAF T can be deduced directly from the adjoint
functor theorem by constructing a solution set (as in Freyd [1964, p. 897,
or Schubert 1970, p. 887).

A typical example is the inclusion functor

G : Comp Haus C Top (1)

of the full subcategory of compact Hausdorff spaces in Top. As already
noted, Comp Haus is small complete; it also has small hom-sets. The
Urysohn lemma states that to any two points x = yina compact Hausdorff
space X there is a continuous function f: X—1I to the unit interval I
with fx=0, fy=1. It follows that I is a cogenerator for Comp Haus.
Hence the special adjoint functor theorem gives a left adjoint for the
inclusion G above. This left-adjoint (or sometimes, its restriction to the
full subcategory of completely regular spaces) is called the Stone-Cech
compactification. This includes the case of a discrete space, as done in § 6.

Watt’s Theorem [1960] is another example. Any ring R is a generator
in the category R-Mod, hence a cogenerator in (R-Mod)®®. It follows that
any contravariant additive functor T on R-Mod to Ab which takes
small colimits to limits is representable by a group isomorphism
T ~homg(—, C) for some R-module C. Indeed, by the special adjoint
functor theorem T': (R-Mod)°®— Ab has a left adjoint F;since T'is additive,
the adjunction

Ab(G, TA)~homgz(4, FG), GeAb, AeR-Maod,
is an isomorphism of additive groups; set G=Z to get

TA~Ab(Z, TA)~homg(4, FZ).

Exercises

1. Let K : A—Set be any functor. If K has a left adjoint, prove that it is representable.
Conversely, if 4 has all small copowers and K is representable as K= A(a, —)
for some ae A prove that K has a left adjoint (which assigns to each set X the
small copower X - a).
2. For A a left R-module, B a right R-module and G an abelian group, establish
adjunctions
(a) hompg (4, hom,(B, G)) = homz(B®gA, G) = homg(B, homg(4, G)), where
hom(B, G) has a suitable (left or right) R-module structure, and where homg
denotes the hom-set in R-Mod, hom, that in Ab.

(b) The additive group Q/Z of rational numbers modulo 1 is known to be an
injective cogenerator of Ab. Use (a) to prove that hom,(R, Q/Z) is an injective
cogenerator of R-Mod (“injective” object as defined in § 4).
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3. Use Exercise 2(b) and the special adjoint functor theorem to prove that any
continuous additive functor T: R-Mod— Ab is representable. (Watt’s theorem).

4. (Stone-Cech compactification.) If X is a completely regular topological space,
show that the universal arrow X — GF X for the left adjoint to (1) is an injection.
(Use the Urysohn lemma: For x%y in X completely regular there exists a
continuous f: X—1JI with fx= fy and I the unit interval) Classical sources
describe this compactification only when X is completely regular. This restriction
is needless; it arose from the idea of considering just universal injections, not
universal arrows.

9. Adjoints in Topology

Top is the category with objects all (small) topological spaces X, Y, ...
and arrows all continuous maps f:X—Y. The standard forgetful
functor (usually a nameless orphan!)

G : Top—Set,

sends X to GX, the set of points in X, is faithful, and has a left adjoint
D which assigns to each set S the discrete topology on S (i.e., all subsets of
S are open). Therefore G preserves all limits which may exist in Top
(this is why the underlying set of the product of spaces is the cartesian
product of their underlying sets). The forgetful functor G also has a
right adjoint D’, which assigns to each set S the indiscrete topology
on S (with only S and @ open). Therefore G preserves all colimits which
may exist in Top — and this is why the coproduct of two spaces is formed
by putting a topology on the disjoint union of the underlying sets.

Next consider the subspace topology on a set SCGX.

If X is a fixed topological space, G induces a functor

Gl X :(Top| X)—(Set| GX)
Y—L X G6Y—-S8,GXx
hl ! l (1)
— | Gh Il
y—L>x G6Y—S456Xx,

here f and f* are objects and h an arrow of the comma category (Top | X).
This functor G | X has a right adjoint L. Indeed, an object t: S—G X in
(Set| GX)is a set S and a function ¢ on S to GX. Put on S the topology
with open sets all t7'U for U open in X, and call the resulting space
LS; then t is a continuous map Lt:LS— X. (For example, if S is a
subset of GX, then LS is just S with the usual “subspace topology.”)
This topology on LS has the familiar universal property: Any continuous



Adjoints in Topology 133

map f: Y—X which factors through t as Gf=t-s, in Set,

GY—%,GXx
s [ Gf=tos,
S ———GX,

has s:Y— LS continuous. This property just restates the desired
adjunction: hom(G f, t) = hom(f, Lt). Observe that (G| X)- L=1d; L is
a “right-adjoint-right-inverse” to (G | X).

Note especially that the universal property of the subspace topology
on a subset SC GX refers not only to the other subspaces of X, but to
other spaces Y and any continuous f:Y—X which factors through
the inclusion t: S— GX (i.e., has image contained in the subset S).

This adjoint may be used to construct (the usual) equalizers in Top
by the following general process:

Proposition 1. If G: C— D is a faithful functor, if D has equalizers,
and if, for each xeC, (G| x):(C|lx)—(D | GXx) has a right-adjoint-
right-inverse L, then C has equalizers.

Proof. To get the equalizer of a parallel pair f, f': x—y, apply G,
take the equalizer t:s—Gx of Gf, Gf’ in D and apply L; the universal
property of the adjunction shows Lt: Ls—x an equalizer in C.

This argument is just an element-free version of the usual definition
of the equalizer: Given two continuous maps f, f': X — Y, take the set S
of points x of X with fx= f'x and impose the subspace topology. The
adjunction explains why the subspace topology.

Now Top is well known to be complete: To prove this one needs
only equalizers (of parallel pairs) and products. The product of any
family X;, i e J, of spaces is constructed by taking the product IIGX; of
the underlying sets and putting on it the (universal) topology in which
all projections p,: IIGX;—GX,,ie J, are continuous. The general fact
that to spaces X, a set S, and functions t;: S— G X, there is a “universal”
topology with exactly those open sets on S required to make all ¢; con-
tinuous can be expressed categorically (Exercise 3).

Colimits may be treated in dual fashion. For any space X the functor

(X|G): (X | Top)—(GX |Set)

has a left adjoint M. Indeed, an object of (GX |Set)is a functiont: GX —S
to a set S. Put on S the topology with open sets all subsets V' C S with
t 1V open in X and call the resulting space MS. (If t: GX—S is a
surjection, this is the familiar “quotient topology” or “identification
topology” on S.) Then the function ¢ is a continuous map Mt: X—MS.
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Moreover, f: X— Y continuous and G f =k-t for some function k,

implies that k : M'S — Y is continuous. Thus k£ k is an adjunction
(X | Top) (Mt, f)=(GX |Set) (1, Gf)

with unit the identity map, so M is left-adjoint-right-inverse to X |G.

Now Proposition 1 was proved just from the axioms for a category,
so its dual is also true. This dual proposition and the above adjunction
prove that Top has coequalizers.

Similar constructions yield coproducts (= disjoint unions) and
general colimits in Top. Such colimits appear often, usually under other
names, as for instance in the basic process of constructing spaces by
gluing pieces together. For example, let {U;|ie J} be an open cover of a
space X. Each continuous f:X-— Y determines a J-indexed family of
restrictions f|U;: U,—Y; conversely, a familiar result states that a
J-indexed family of continuous maps f;: U;—Y determines a map f
continuous on all of X if and only if f;|(UnU)= f;|(U;nU)) for all
i and j. This result may be expressed by the statement that the following
diagram is an equalizer

Top(X,Y) — II; Top(U;, Y) 3 1I; j Top(U; " U;, Y)

where the arrows are given by restriction, as above. This result may
equally well be expressed by the statement that X is the colimit in Top,
with colimiting cone the inclusion maps U;— X, of the functor U : J'— Top,
where J' is the category with objects the pairs of indices (i, j», the single
indices (i), and the (non-identity) maps {i,j>—<i>, <i,j>—<{j>, while U
is the functor with U (i, j> = U;n U}, U (i) = U, with U on (non-identity)
arrows the inclusion maps.

Another coequalizer is the space X/A obtained from the space X
by collapsing the subset A to a point. It is the coequalizer

_a

x - X—X/A

‘——)a,

of the set of all the arrows sending the one point space * to one of the
points a € 4. It is used in homotopy theory. If we consider the category
Top'* whose objects are pairs (X, A) (a space X with a subset 4) and
whose arrows (X, A>—<X’, A’) are continuous maps X — X' sending
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A to A’, then the definition of X/A4, for Y a pointed topological space,
reads:
Top, (X/A, Y)=Top®({X, A), (Y, +)).
Thus (X, A>+—X/A is left adjoint to the functor Y<Y, *> which sends
each pointed space to the pair (Y, *).
There are many familiar subcategories of Top.

Proposition 2. Haus, the full subcategory of all Hausdorff spaces in
Top, is complete and cocomplete. The inclusion functor Haus— Top has a
left adjoint H, as does the forgetful functor Haus— Set.

Proof. The left adjoint H will be obtained by the adjoint functor
theorem. First, any product of Hausdorff spaces or subspace of a Haus-
dorff space is also Hausdorff, hence Haus is complete and the inclusion
functor is continuous (i.e., it preserves small limits). It remains only to
verify the solution set condition for every topological space X. But any
continuous map of X to a Hausdorff space Y factors through the image,
a subspace of Y, hence Hausdorff. This image is a quotient set of X with
some topology, so there is at most a small set of (non-isomorphic) sur-
jections X—Y to a Hausdorff Y. This is the solution set condition.
The resulting left adjoint H assigns to each space X a Hausdorff space
H X and a continuous map % : X — H X, universal from X to a Hausdorff
space. Now 7 universal implies that n is a surjection, so HX may be
described as the “largest Hausdorff quotient” of X. If X is already
Hausdorff, we may take HX =X and #=1, so H is a left-adjoint-left-
inverse to the inclusion.

Since H is a left adjoint, it preserves colimits. It follows that Haus
has all small colimits (is cocomplete). In particular, the coproduct in
Haus is the coproduct in Top (because a coproduct of Hausdorff spaces
is Hausdorff), while a coequalizer in Haus is the largest Hausdorff
quotient of the coequalizer in Top.

The full subcategory of compactly generated Hausdorff spaces is
especially convenient because it is cartesian closed (§ VILR).

Exercises

1. For the full subcategory L conn of locally connected spaces in Top, prove that
D:Set—L conn has a left adjoint C, assigning to each space X the set of its
connected components, but show that this functor C can have no left adjoint
(because of misbehavior on equalizers).

2. Show that the right adjoint D' : Set — Top to the forgetful functor has no right
adjoint (misbehavior on coproducts).

3. (Categorical construction of the usual products in Top.)

(a) For diagonal functors 4:C—C’, A':D—D’, and Te C’, each G:C—D
defines G,: (4] T)—>(4'|GT)by (t:c=T) — (G1:Gc-GT).If G, hasa
left adjoint and G T a limit in D, prove that T has a limit in C.
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(b) For G the forgetful functor Top—Set and J discrete, construct a left adjoint
for G, showing that it constructs on a set S the weakest topology making
a given J-indexed family of functions f;: S— G X; continuous.

{c) Conclude that Top has all (the usual) products.

4. Construct left adjoints for each of the inclusion functors Top,,,— Top,,
n=0,1,2,3, where Top, denotes the full subcategory of all T,-spaces in Top,
with T, =Normal, T; = Regular, T, = Hausdorff, etc.

5. Show that the inclusion Haus—Top has no right adjoint, by showing that a
coequalizer in Top of Hausdorff spaces need not be Hausdorff. Conclude that
the forgetful functor Haus—Set has no right adjoint.

Notes.

Instances and special cases of the adjoint functor theorem abound; there have
been many partial discoveries or rediscoveries. One version is Bourbaki’s condition
[1957] for the existence of universal arrows; this version clearly formulated a
solution set condition, but was cumbersome because Bourbaki’s notion of
“structures” did not make use of categorical ideas. The present version of the
adjoint functor theorem was formulated and popularized by Freyd [1964], who
also formulated SAFT. Our version of the special initial-object theorem is due
to G.M. Kelly (private communication).



V1. Monads and Algebras

In this chapter we will examine more closely the relation between uni-
versal algebra and adjoint functors. For each type t of algebras (§V.6),
we have the category Alg, of all algebras of the given type, the forgetful
functor G : Alg, — Set, and its left adjoint F, which assigns to each set .S
the free algebra F S of type 7 generated by elements of S. A trace of this
adjunction {F, G, ¢) : Set— Alg, resides in the category Set; indeed, the
composite T=GF is a functor Set— Set, which assigns to each set §
the set of all elements of its corresponding free algebra. Moreover, this
functor T is equipped with certain natural transformations which give
it a monoid-like structure, called a “monad”. The remarkable part is then
that the whole category Alg, can be reconstructed from this monad in Set.
Another principal result is a theorem due to Beck, which describes
exactly those categories A with adjunctions <{F, G, ¢): X— A which
can be so reconstructed from a monad T in the base category X. It then
turns out that algebras in this last sense are so general as to include the
compact Hausdorff spaces (§ 9).

1. Monads in a Category

Any endofunctor T:X—X has composites T?=T-T:X—X and
T3=T?T:X—>X. If u:T>>T is a natural transformation, with
components u_: T?x— Tx for each xe€ X, then Tu: T3> T? denotes
the natural transformation with components (Tu), = T(u,): T>x— T*x
while uT: T3-=>T? has components (uT), = pir,. Indeed, Ty and uT
are “horizontal” composites in the sense of § IL.5.

Definition. 4 monad T={T,n, uy in a category X consists of a
Sunctor T: X— X and two natural transformations

n:ly=>T, pn:T?>>T (1)
which make the following diagrams commute
T3 2,72 IT—5% 172 T]
uTl lu I lu [ (2)
T>—£ T, T = T = T
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Formally, the definition of a monad is like that of a monoid M in
sets, as described in the introduction. The set M of elements of the monoid
is replaced by the endofunctor T: X — X, while the cartesian product x
of two sets is replaced by composite of two functors, the binary operation
u:M xM—M of multiplication by the transformation u: T?- T and
the unit (identity) element #:1—M by 5 : I~ T. We shall thus call 5
the unit and u the multiplication of the monad T'; the first commutative
diagram of (2) is then the associative law for the monad, while the second
and third diagrams express the left and right unit laws, respectively.
All told, a monad in X is just a monoid in the category of endofunctors
of X, with product x replaced by composition of endofunctors and unit
set by the identity endofunctor.

Terminology. These objects <X, T,n, 4> have been variously called
“dual standard construction”, “triple”, “monoid”, and “triad”. The
frequent but unfortunate use of the word “triple” in this sense has achieved
a maximum of needless confusion, what with the conflict with ordered
triple, plus the use of associated terms such as “triple derived functors”
for functors which are not three times derived from anything in the world.
Hence the term monad.

Every adjunction {(F,G,#,e>: X— A gives rise to a monad in the
category X. Specifically, the two functors F: X— A and G: A— X have
composite T=GF an endofunctor, the unit # of the adjunction is a
natural transformation #:I-> T and the counit ¢: FG- I, of the ad-
junction yields by horizontal composition a natural transformation
u=GeF:GFGF-GF=T. The associative law of (2) above for this u
becomes the commutativity of the first diagram below

GFGFGFEESE,GFGF FGFG-LS L FG
GeFGF l J GeF jv ¢eFG J £
GFGF—%f __,GF, FG——1,.

Dropping G in front and F behind, this amounts to the commutativity
of the second diagram, which holds by the very definition (§ I1.4) of the
(horizontal) composite ce=¢-(FGe)=¢- (¢ F G) (i.e,, by the “interchange
law” for functors and natural transformations). Similarly, the left and
right unit laws of (2) reduce to the diagrams

I,GF"f ,GFGFSY" _GFI,

GeF

GF
which are essentially just the two triangular identities

1=GenG:G>G 1=¢F-Fn:F~-F
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for an adjunction. Therefore {GF,n, GeF) is indeed a monad in X.
Call it the monad defined by the adjunction {F, G,n,&).

For example, the free group monad in Set is the monad defined by
the adjunction (F, G, ¢):Set— Grp, with G:Grp—Set the usual
forgetful functor.

Dually, a comonad in a category consists of a functor L and trans-
formations

L:A—A, e:L-I, §:LI? (1°)

which render commutative the diagrams

L7 L = L = L
él ILJ 1] l& 1]
D—p— I, L2t 1.

Each adjunction (F,G,n,&e>: X— A defines a comonad {FG,&,FnG) in A.

What is a monad in a preorder P? A functor T: P— P is just a function
T: P— P which is monotonic (x<y in P implies Tx < Ty); there are
natural transformations # and u as in (1) precisely when

x<Tx, T(Tx)<Tx (3)

for all x € P; the diagrams (2) then necessarily commute because in a
preorder there is at most one arrow from here to yonder. The first equation
of (3) gives Tx < T(Tx). Now suppose that the preorder P is a partial
order (x £y £ x implies x = y). Then the Egs. (3) imply that T(Tx)=Tx.
Hence a monad T in a partial order P is just a closure operation t in P;
that is, a monotonic function ¢: P— P with x <tx and t(tx)=tx for all
xeP.

We leave the reader to describe a morphism <{T, u, n)—<T, 1, 5"
of monads (a suitable natural transformation T—>T") and the category
of all monads in a given category X.

2. Algebras for a Monad

The natural question, “Can every monad be defined by a suitable pair
of adjoint functors?” has a positive answer, in fact there are two positive
answers provided by two suitable pairs of adjoint functors. The first
answer (due to Eilenberg-Moore [1965]) constructs from a monad
{(T,n,1n> in X a category of X7 of “T-algebras” and an adjunction
X— X7 which defines <{T,#,u> in X. Formally, the definition of a
T-algebra is that of a set on which the “monoid” T acts (cf. the introduc-
tion).
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Definition. If T={Tn,p> is a monad in X, a T-algebra {(x, h) is
a pair consisting of an object x € X (the underlying object of the algebra)
and an arrow h: Tx—x of X (called the structure map of the algebra)
which makes both the diagrams

T2 x—T" , Tx x—=  ,Tx
u,l 1;, \lh (1)
Tx —t—x X

commute. ( The first diagram is the associative law, the second the unit law.)
A morphism f:{x,h)—<{x', "> of T-algebras is an arrow f:x—Xx" of
X which renders commutative the diagram

X" Tx

fl ij (2)

x—r —Tx' .

Theorem 1 (Every monad is defined by its T-algebras). If {T,n, 1>
is a monad in X, then the set of all T-algebras and their morphisms form
a category XT. There is an adjunction

(FT,GT5 g ey : X—XT

in which the functors GT and FT are given by the respective assignments
g y 14 g

{(x, by ———x x———(Tx, p1,.>
G": jf Jf FT: Jf le (3)
XL y—— X, Xe———ATX, p)

while n"=n and ¢"(x,hy=h for each T-algebra {(x,h). The monad
defined in X by this adjunction is the given monad {T,n, ).

The proof is straightforward verification. If f:<{x, h>—{x', h")
and g:<{x,h>—{(x",h"> are morphisms of T-algebras, so is their
composite g f'; with this composition of arrows, the T-algebras evidently
form a category X7, as asserted. The functor GT: XT— X is the evident
functor which simply forgets the structure map of each T-algebra. On
the other hand, for each x € X the pair {(Tx,pu, : T(Tx)—>Tx) is a T-
algebra (the free T-algebra on x), in view of the associative and (left)
unit laws for the monad T. Hence x—(Tx, u,> does indeed define a
functor FT: X— X7, as asserted. Then GTFTx=GT(Tx, u.>=Tx, so
the unit # of the given monad is a natural transformation n =57 : I, GTF”,
On the other hand, FT G"(x, h) = (Tx, u,», while the first square in the
definition (1) of a T-algebra (x, h) states that the structure maph: Tx—x
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is a morphism {Tx, u >—{x, h) of T-algebras. The resulting trans-
formation
sfx,h>=h:FTGT<x, hy—<{x, b

is natural, by the definition (above) of a morphism of T-algebras. The
triangular identities for an adjunction read

Tx— ,TTx x—"= 5 Tx
< <
Tx X

The first holds by the (right) unit law for T, the second by the unit law
(see (1)) for a T-algebra. Therefore ™ and &” define an adjunction, as
stated.

This adjunction thus determines a monad in X. The endofunctor
GTFT is the original T, its unit #” is the original unit, and its multiplica-
tionu" =G e" FThasu"x = GTe"(Tx, u,> = GT u, = p,, sois the original
multiplication of T. The proof is complete.

We now give several examples which show that the T-algebras for
familiar monads are the familiar algebras.

Closure. A closure operation T on a preorder P is a monad in P
(see § 1); a T-algebra is then an x € P with Tx < x (the structure map).
Since x < Tx for all x, a T-algebra is simply an element xe P with
x<Tx<x. If P is a partial order, this means that x=Tx, so that a
T-algebra is simply an element x of the partial order which is closed,
in the usual sense.

Group actions. If G i1s a (small) group, then for every (small) set X
the definitions

TX=GxX, X-GxX, Gx(GxX)—GxX,
Xi——+<u, X> ) <g1’<g2’x>>'_><g1g2’x>

for xe X, g,, 9, € G and u the unit element of G, define a monad <T, , u)
on Set. A T-algebra is then a set X together with a function 1:Gx X — X
(the structure map) such that always

h(g,9,, x)= h(g,.h(g,, X)),  h(u,x)=x.

If we write g+ x for h(g, x), these are just the usual conditions that
{g,xyr>g* x defines an action of the group G on the set X. That T-
algebras for the monad T are just the group actions is not a surprise,
since our definition of T-algebras was constructed on the model of
group actions.
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Modules. If R is a (small) ring, then for each (small) abelian group A4
the definitions

TA=R®A, A—R®A, RRA)—RRA,
a—~1®a, rn@r,Q@a—rr,Qa,

forae A, ry,r, € R, define a monad on Ab. Much as in the previous case,
the T-algebras are exactly the left R-modules.

Exercises

1. Complete semi-lattices (E. Manes; thesis). Recall that a complete semi-lattice is
a partial order Q in which every subset S C Q has a supremum (least upper bound)
in Q. Let 2 be the covariant power set functor on Set so that 2X is the set of all
subsets S C X, while for each function f: X—Y, (#f)S is the direct image of S
under f. For each set X, let n,: X—>2X send each xe X to the one point
set {x}, while uy : 2P X— 2 X sends each set of sets into its union.

(a) Prove that (£, n, 1) is a monad £ on Set.

(b) Prove that each #-algebra (X,h) is a complete semi-lattice when x<y
is defined by h{x, y} =y, and supS=hS for each SC X.

(c) Prove conversely that every (small) complete semi-lattice is a #-algebra
in this way.

(d) Conclude that the category of Z-algebras is the category of all (small)
complete semi-lattices, with morphisms the order and sup-preserving
functions.

2. Show that GT: XT— X creates limits.

3. (a) For monads {T,n, u» and {T, , ’> on X, define a morphism 6 of monads

as a suitable natural transformation 6: T-> T, and construct the category
of all monads in X.

(b) From 0 construct a functor 6*: XT— XT such that GT- ¢*=GT and a

natural transformation FT-- 8% FT',

3. The Comparison with Algebras

Suppose we start with an adjunction X — A4, construct the monad T
defined in X by the adjunction and then the category X7 of T-algebras;
we then ask: How is this related to the original category A? A full answer
will relate not only the categories, but the adjunctions, and is provided
by the following comparison theorem.

Theorem 1 ( Comparison of adjunctions with algebras). Let
{F,G,n,e): X—A

be an adjunction, T= {GF,n, Ge F) the monad it defines in X. Then there
is a unique functor K : A— X" with GTK=G and KF =FT.
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Proof. The conclusion asserts that we can fill in the arrow K in the
following diagram so that both the F-square and the G-square commute

AKX xT
F 16 FT HGT (1)
X = X

Now the counit ¢ of the given adjunction defines for each a € A an arrow
Ge,: GFGa— Ga. This arrow may be considered as a structure map h
for a T-algebra structure on the object Ga = x, for the requisite diagrams
(cases of (2.1)) are

GFGFGa-4f%,GFGa Ga—I° >GFGa

uGﬂ:GaFGal lGaa \ lGaa

GFGa—(;-r)Ga . Ga .
They commute (the first is the definition of Gee, the second is one of the
triangular identities for the given adjunction). Therefore for any f:a—a'
in A we define K by

Ka=<(Ga,Ge,), Kf=Gf:{Ga, Ge,)—<Gd, Gg,); 2)

since ¢ is natural, the proposed arrow K f commutes with Ge and so is
a morphism of T-algebras. It is routine to verify that K is a functor with

KF=FT, G'K=G. (3)

It remains to show K unique. First, each Ka must be a T-algebra,
and the commutativity requirement GT K = G means that the underlying
X-object of this T-algebra Ka is Ga. Therefore K a must have the form
Ka={Ga,h) for some structure map h; moreover G' K =G means
that the value of K on an arrow f in 4 must be K f = G f, exactly as in (2)
above. It remains only to determine the structure map h. Now (1) com-
mutes, and the two adjunctions (F,G,...> and {FT,G",...> have the
same unit #, so the two functors K: A— X7 and the identity I: X—X
define a map of the first adjunction to the second, in the sense considered
in §IV.7. Proposition 1V.7.1 for this map then states that Ke=¢"K.
But K on arrows is G, so K&,= Gg, for each a € A, while the definition
of the counit ¢ of an algebra gives T Ka=¢"{Ga, h) =h. Thus Ke=¢"K
implies Ge,= h, so the structure map h is determined and K is unique.

For many familiar adjunctions {F, G, ... this comparison functor K
will be an isomorphism; we then say that G is monadic (tripleable). For
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other authors (Barr-Wells [1985]), “triplable” means only that K be an
equivalence of categories. However, here is an easy example when X is
not an isomorphism, and not even an equivalence. The forgetful functor
G : Top— Set has a left adjoint D which assigns to each set X the discrete
topological space (all subsets open in X), for the identity arrow 77y : X —
G D X is trivially universal from the object X to the functor G. This ad-
junction {D, G,n,... > : Set— Top defines on Set the monad I = {I,1,1)
which is the identity (identity functor, identity as unit and as multi-
plication). The I-algebras in Set are just the sets, so the comparison
functor Top— Top’ = Set is in this case the given forgetful functor G.

4. Words and Free Semigroups

The comparison functor can be illustrated explicitly in the case of
semigroups. A semigroup is a set S equipped with an associative binary
operation v:Sx S—S§. The free semigroup WX on a set X is like the
free monoid on X (§ I1.7). It consists of all words (x> ... {x,> of positive
length n spelled in letters x; € X, where we write (x> to distinguish the
word (x> in WX from the element x € X. Words are multiplied by
Juxtaposition,

(x> DY D o V) = K1) o () ) o Y

this multiplication v is associative, so makes F X = (W X, v> a semigroup,
with the set W X the disjoint union I X", n=1,2,.... If G :Smgrp—Set
is the forgetful functor from the category of all small semigroups (forget
the multiplication), then the arrow 7y : X—GF X defined by x+— (x>
(send each x to the one-letter word in x) is universal from X to G. There-
fore F is a functor, left adjoint to G, and # defines an adjunction

(F,G,n,¢):Set—Smgrp .

If S is any semigroup (set S with an associative binary operation S x S— S,
written as multiplication) the counit &g of this adjunction is by definition
that morphism eg: FGS—S of semigroups for which the composite
Gesongs: GS—GFGS—GS is the identity; in other words, &g is the
unique morphism of semi-groups which sends each generator {s) to s.
This means that

es({81) ... {8,0)=5; ... s, {(product in S) (1)

for all s;e S: The counit ¢ removes the “pointy bracket” { ).

Proposition 1. The monad on Set determined by the adjunction
Set—Smgrp is
W=(W:Set—Set, :I->W, u: W=Ww>
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where WX = [[ X", nxx=<{x) for each x € X, while uy is

n=1

px(xpy) - <x1n1>> e LX) - <xknk>>)
={Xq1) oo Xy ) oo Xy oo KXy

for all positive integers k, all k-tuples n,, ..., n, of positive integers, and
all x;;€ X.

Proof. By definition, n x = {x), while u = G¢ F : W?=> Wis determined
by the formula above for &, where we have written each element of
W2 X as a word (of length k) in k words of the respective lengths n,, ..., n,.
More briefly, x5 applied to a word of words removes the outer pointy
brackets.

Note that this description allows direct verification of the unit and
associative laws for the monad W, without overt reference to the notion
of a semi-group. For example, the associative law for ¢ amounts to an
observation on three layers of pointy brackets, that removing first the
middle brackets and then the outer brackets gives the same result as
removing first the outer brackets and then the (newly) outer brackets.

Proposition 2. For the above word-monad W in Set, the W-algebras
have the form (S, v,,v,,...>: A set S equipped with one n-ary operation
v,:S"— S for each positive integer n, such that v, =1 while for every
positive k and every k-tuple of positive integers n,, ..., n, one has the identity

vk(vm X X v"k) = Vay 4t gurImS S, (2

A morphism [:{(S,v,..>—{S8, v{,...> of W-algebras is a function
f:8—S8 which commutes with each v,, so that fv,=v,f":5"—>§".

Proof. Consider a W-algebra (S, h: WS—S). Since WS =1 5", the
structure map h is a list of n-ary operations v,: S"— S, one for each n.
The unit law for the algebra requires that hny = 1, hence that v, be the
identity. On the other hand, since the product of sets is distributive over
the coproducts of sets,

wwXx)=1] (]_[X")";U [TOx™ oo Xy = [T ] xms e,

k n k n k n

where n at the middle and the right runs over all k-tuples <{nj,...,ng).
With this notation, the associative law for the structure map A takes the
stated form (2).

The simplest case of this identity (2), for 3=2+1=1+2 and v, the
identity, is

Va(va X 1)=vy3=v,(1 X v,): SxSxS—>S.

If we write the binary operation v, as multiplication, this states that the
ternary operation v; satisfies, for all elements x, y, z€ S,

(xy)z=vs(x, y, 2) =x(y2).
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Similarly, v, must be the n-fold product. An easy induction proves

Corollary. The system {S,v,,V,,...> is a W-algebra, as above, if
and only if v, =1, v,:SxS—S is an associative binary operation on S,
and for all n=2, v, =V,(v, x1):§""!'—>8.

Thus, if we start with semigroups, regarded as sets (S, v)> with one
associative binary operation, define the resulting monad W on Set, and
then construct the category of W-algebras, we get the same semigroups,
now regarded as algebraic system (S, v;,v,,...», where vi=1, v,=v,
and v,,, is v, iterated. The comparison functor K :Smgrp—Set” is
the evident map <S,v> S, 1,v,, ..., V,, ...» wWhere v, is the iterate of
the binary v. In other words, K is an isomorphism, but it replaces the
algebraic system (S, v)> with one associative binary operation by the same
set with all the iterated operations derived from this binary operation.

A similar description applies to algebras over other familiar monads
(Exercises 1, 2).

Exercises

1. Let W, be the monad in Set defined by the forgetful functor Mon— Set. Show
that a W,-algebra is a set M with a string v,, v,, ... of n-ary operations v,, where
Vo : *— M is the unit of the monoid M and v, is the n-fold product.

2. For any ring R with identity, the forgetful functor G:R-Mod—Set from the
category of left R-modules has a left adjoint and so defines a monad (Tg, n,)

in Set.
(a) Prove that this monad may be described as follows: For each set X, T, X

is the set of all those functions f: X — R with only a finite number of non-
zero values; for each function z : X — Y and each y € ¥, [(Tx0)f . = 2 £,
with sum taken over all x e X with &x = y; foreachxe X, n.x: X — R is
defined by (7, x)x =1, (7, x)x’ = 0; foreach k € Tr(Tr X),  k : X — Ris
defined for x € X by (i, k). = 3 k; f., the sum taken over all f e T, X.

(b) From this description, verify directly that {Tg, 5, &> is a monad.

(c) Show that the (Tg,n,u)-algebras are the usual R-modules, described
not via addition and scalar multiple, but via all operations of linear combina-
tion (The structure map h assigns to each f the “linear combination with
coefficients f for each x € X.)

3. Give a similar complete description of the adjunction defined by the forgetful
functor CRng—Set, noting that T X is the ring of all polynomials with integral
coefficients in letters (i.c., indeterminates) x € X.

4. The adjunction {F, G, ¢) : Ab— Rng with G the functor “forget the multiplica-
tion in a ring” defines a monad T in Ab.

(a) Give a direct description of this monad, like that in the text for W, with X"
replaced by the n-fold tensor power and coproduct LI by the (infinite) direct
sum of abelian groups.

(b) Give the corresponding description of T-algebras and show that the com-
parison functor from rings to T-algebras is an isomorphism.
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5. Free Algebras for a Monad

Given an adjunction
{F,G,p): X—A4,

any full subcategory BC A which contains all the objects Fx for xe X
leads to another adjunction

(Fg,Gg,0p): X—B

where the functor Fj is just F with its codomain restricted from A4 to
B, Gy is G with domain restricted to B, while for xe X and be B the
given adjunction leads to a bijection @g

homg(F x, b) = hom ,(F x, b) = homy(x, Gb)=homy(x, Ggb),

which is manifestly natural in x and b. Moreover, this second adjunction
¢p defines in X the same monad as did the first. This observation shows
that one and the same monad in X can usually be defined by many
different adjunctions. The “smallest” such adjunction will be the one
where B is FX, the full subcategory of A with objects all the “free”
objects Fx € A. The familiar properties of arrows Fx— Fy between such
free objects do suggest a way of constructing this subcategory FX and
the adjunction ¢p directly from the monad. Here is the suggested con-
struction, which really gives this category directly and not as a sub-
category (cf. Exercise 3).

Theorem 1 (The Kleisli category of a monad, [1965].) Given a monad
{T,n, 1> in a category X, consider to each object x € X a new object xr
and to each arrow f:x— Ty in X a new arrow [":x;—yg. These new
objects and arrows constitute a category when the composite of f° with
9" yr—zy is defined by

g o f"=.>Tgef). 1
Moreover, functors Fr: X— X1 and Gr: X;— X are defined by
Fr: kix—y(n,e k) xp—yr, 2
Gr: f"ixp—yr—=pe Tf: Tx—>T*y—Ty (3)
respectively, so that Gpxp=Tx on objects. Then the bijection f’— f

gives an adjunction {Fr, Gy, 1> : X — Xr which defines in X precisely the
given monad {T,n, ).

Sketch of proof. The definition of the arrows f” amounts to a bi-
jection Xp(xp, yr)= X(x, Ty) on hom-sets, while the definition of the
composite in X refers to the composite

x—L > Ty—T8 T2, *#= ,T;
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in X. A suitable large diagram shows the new composition associative:
Other diagrams prove that (r,)": x;— x is a left and right unit for this
composition. Another calculation shows that F; and G4 as described
are indeed functors. By construction, f"+ f is a bijection

Xr(Frx, yr)= Xp(xp, yr) = X(x, Ty)= X(x, Gy y7);

it is natural in x and yy, so yields the desired adjunction ¢. Its unit
is n, and its counit &y is given by (e1)yr = (11,)” : (Ty)r— yr. The resulting
multiplication in X is Gre; Fy, which by the definition of G is exactly
the given multiplication u. Therefore the adjunction does define the
original monad T.

Theorem 2 (The comparison theorem for the Kleisli construction).
Let (F,G,n,&): X— A beanadjunction and T={(GF,n, Ge¢ F) the monad
it defines in X. Then there is a unique functor L: Xr— A with GL=Gr
and LF;=F.

We leave the proof to the reader, noting that the uniqueness of L re-
quires another (and somewhat different) application of Proposition IV.7.1
on maps of adjunctions.

The two comparison theorems may be summarized as follows:

Theorem 3. Given a monad {T,n, uy in X, consider the category with
objects all those adjunctions (F,G,n,¢e): X—A which define {T,n, 1)
in X, and with arrows those maps of adjunctions (§ IV.7) which are the
identity on X. This category has an initial object — the Kleisli construction —
and a terminal object {(FT ,GT,n,e">: X — XT with the comparison
Sfunctor:

Exercises

1. Construct the Kleisli comparison functor L, prove its uniqueness, and show
that the image of X, under L is the full subcategory FX of A with objects all
Fx, xe X.

2. Show that the restriction of L gives an equivalence of categories X;—FX.

3. Construct an example of an adjunction where F is not a bijection on objects.
Deduce that the equivalence X7 — F X in Exercise 2 need not be an isomor-
phism. (Suggestion: S — T(S) = the one-point-set defines a monad in Set.)

4. In the summary comparison Theorem 3, does the category of all adjunctions
really exist?

5. If{F,G,n, &) : X— Bdefines the monad {T, #, 1) in X, while a second adjunction
{L,R,7%,¢") : B—A defines the identity monad in B (ie., RL=1Iz #'=1, and
Ré' L=1), prove that the composite adjunction X— A4 defines in X/the same
monad <{T,n, u).
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6. Split Coequalizers

We need certain special types of coequalizers. By a fork in a category C

we mean a diagram

a%b—e—»c (1)
in C with ed; =ed;. A fork is thus just a cone from the diagram a=3b
to the vertex ¢. Recall that an arrow e is a coequalizer of the parallel
pair of arrows 0, and 0, if it is a fork and if any f: b—d with fd,= [,
has the form f= f'e for a unique f':c—d. An arrow e is called an
absolute coequalizer of 0, and 0, in C if for any functor T: C— X (to any
category X whatever) the resulting fork

TaL—ZO,—’ Th—Te 5Tec
still has Te a coequalizer (of Td, and T0,). In particular, an absolute
coequalizer is automatically a coequalizer. In the same way one can
define absolute colimits (or absolute limits) of any other type (Paré
[1971a]).
A split fork in C is a fork (1) with two more arrows

de—'t—phe—5 ¢ 2
which satisfy with the arrows (1) the conditions
edo=e0,, es=1, 0Jyt=1, 0o;t=se. (3)

We say that s and t split the fork (1). These conditions imply that ¢ is
a split epi, with right inverse s. A split fork can also be represented as a
pair of commutative squares

hb—t g—f0 L}

Je Jf?l le
c——b—p—c
such that both horizontal composites are the identity. Put differently:
The arrows 0, and e are objects in the functor category C? and
{0y, €y : 0,—e is an arrow between them which has <t,s) :e—0, as its
right inverse: <{d,, e) <t, sy =<1, 1).
Lemma. In every split fork, e is the coequalizer of 8, and 0,.
Proof. For any arrow f:b—d with f0,= f0,, take f'= fs:c—d.
Then, using the Eqs. (3) defining a split fork,
J'e=[fse=fojt=fo,t=f,

so f factors through e. On the other hand, f=ke for some k:c—d
implies fs=kes=k, so k is necessarily f'= f's, and f” is unique.
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By a split coequalizer of é, and 0, we shall mean the arrow e of such
a split fork on &, and ¢,. It is possible to characterize those parallel
pairs d,, 6, for which any (and hence every) coequalizer is split (Exercise 2).

Since a split fork is defined by equations involving only composites
and identities, it remains a split fork under the application of any functor.
Hence,

Corollary. In every split fork, e is an absolute coequalizer of d, and 0;.

Here is an example of a fork in Cat, for C any category:
= C—1.
C? is the category whose objects are the arrows of C; d, and 9, are
the functors assigning to each arrow its domain and its codomain,
respectively, while e is the functor which sends every object of C to the
unique object of 1. If C has a terminal object a,, this fork is a split by
the functor s which sends the unique object of 1 to a,, and the functor ¢
which sends each ceC to the unique arrow c—a,,

Here is an example of a fork in Grp. Let N<a1 G be any normal sub-
group of G and form the semidirect product G x ,N, which has elements
the pairs (x,n) for xe G, ne N with the (evidently associative) multi-
plication {x, n)> {y, m> =<{xy,(y " *ny)m>. Then

Gon_—Z_,O—>G~—”—»G/N

is a fork, where p is the usual projection to the quotient group G/N,
while 0,{x, n) = x, 8, {x, n) = xn. Moreover, in this fork p is clearly the
coequalizer of d, and d,. This fork is not in general split, but if we apply
the standard forgetful functor U : Grp—Set, the resulting fork in Set is
split. Take s to be a function sending each coset (element of G/N) to a
representative element in G, while tx = (x,x !(spx)). This example,
incidentally, gives one way in which any quotient group can be regarded
as a coequalizer in the category of groups.

Exercises

1. In Rng give a similar construction to show that every quotient R/4 of a ring R
by an ideal 4 can be represented as a coequalizer, and show that the resulting
fork is split after the application of the forgetful functors to sets.

2. A parallel pair ¢,, 3, : a=3b is said to be contractible (Beck) if there is an arrow
t:b—awith dyt=1and 0,t9,=0,t¢,.

(a) In any split fork (1), prove d,, d; contractible;
(b) If a contractible pair has a coequalizer, prove that this coequalizer is split.
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7. Beck’s Theorem

A basic construction in familiar categories of algebras is the formation
of coequalizers —in Grp, via factor groups, in R-Mod via quotient modules,
and the like. Beck’s theorem will characterize the category of T-algebras
for any monad T as a category with an adjunction in which the “forgetful”
functor creates suitable coequalizers. We recall (§ V.1) that a functor
G: A— X creates coequalizers for a parallel pair f,g:a=3b in 4 when
to each coequalizer u: Gb—z of Gf, Gg in X there is a unique object ¢
and a unique arrow ¢ : b— ¢ with Gc=z and Ge =u and when moreover
this unique arrow is a coequalizer of f and g.

Theorem 1 (Beck’s theorem characterizing algebras). Let
{F,G,neyX—A (1)

be an adjunction, {T,n, ) the monad which it defines in X, XT the category
of T-algebras for this monad, and

CFT,GTn", ey X—XT @

the corresponding adjunction. Then the following conditions are equivalent :
(i) The (unique) comparison functor K : A— X7 is an isomorphism;
(ii) The functor G:A— X creates coequalizers for those parallel
pairs f, g in A for which G f, Gg has an absolute coequalizer in X ;
(ili) The functor G:A—X creates coequalizers for those parallel
pairs f, g in A for which G f, Gg has a split coequalizer in X.

Proof. We first show that (i) implies (ii). Consider two maps
do
<X, h>———a‘l-—> <y’ k>

of T-algebras for which the corresponding arrows in X have an absolute
coequalizer ho
xd:l y—2—z.

To create a coequalizer for this parallel pair we must first find a unique
T-algebra structure m: Tz—z on z such that e becomes a map of T-
algebras, and then prove that this e is, in fact, a coequalizer of d,, d, in

the category X7 of T-algebras. But on the left side of the diagram

Tdo
Tx—=Ty— Tz

Td, !

Jh Jk Im
do M
z

X =y
1

both the upper square (with d,) and the lower square (with d,) commute,
because d, and d, are maps of algebras; it follows that ek has equal
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composites with Td, and Td,. But e is an absolute coequalizer, so Te
is still a coequalizer: Therefore there is a unique vertical map m, as
shown, which makes the right square commute.

We now wish to show that this m is a structure map for z. The
associative law for m (outer square below) may be compared with the
associative law for the structure map k (inner square below) by the diagram

T?z Im Tz

e

T?y— Ty

Hz ﬂyl Jk m (3)

The left hand trapezoid commutes since u is natural, and the other three
trapezoids commute by the definition of m above in terms of k and e.
Therefore

me Tmo T?e=mop,o T?e.

But e is an absolute coequalizer, so T?e is a coequalizer and thus is epi;
cancelling T e gives the associative law for m. The same style of argument
will prove that m satisfies the unit law mon,=1:z—z.

We have found the desired unique T-algebra structure m on z, with
¢ a map of T-algebras by the construction of m. To show that e is a
coequalizer in X7, consider any other map f:<{y,k>—<{w,n> of T-
algebras with fd, = fd,. Then f: y—w is an arrow in X with fd, = fd,,
while e is an (absolute) coequalizer of d, d, : x=3y. Therefore there is
amap f':z—w with f = f’e. An argument just like that for the diagram
(3) shows that f” is in fact a map of T-algebras. Since it is unique with
f= f'e, this completes the proof that e is a coequalizer in X7, and hence
that (i) implies (ii).

Next, every split coequalizer is an absolute coequalizer, hence condi-
tion (ii) of the theorem requires more creativity of G than does condition
(iii). Therefore (ii) implies (iii).

It remains to prove that (iii) implies (i). As a preliminary, consider
a T-algebra {x, h); the conditions that h: Tx—x be a structure map
of an algebra are exactly the conditions that

T?x % Tx—'—x 4

be a fork in X split by T?x«™X= Tx"x. Indeed, the fork condition
hop,=hoTh for (4) is just the associative law for h, the composite
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hon, is 1 because of the unit law for {x, k), while the equations

luxOrITx=17 ThOV]Tx=11x°h
hold by the unit law for the monad T and the naturality of #.
For each object ae A4, the adjunction {(F, G, n): X— A provides
a fork

FGFGa—;—FG&,FGa—i“—»a (5)

in A which we call the “canonical presentation” of a. It does correspond
to a familiar presentation if A = Grp; then ¢, is just the projection on the
group a of the free group generated by all the elements of a. If the functor G
is applied to the fork (5) we get a split fork in X; indeed, that special
case of the split fork (4) when (x, h) is the T-algebra {(Ga, G¢,> used
in the comparison theorem.

Now consider any other adjunction {F',G’,n’,¢):X— A" which
defines the same monad in X. By a comparison (of F' to F) we mean a
functor M : A’— A with M F' = F and GM = G’; as already noted, such a
comparison is a morphism of adjunctions and hence satisfies Me' =¢M.

Lemma. If G satisfies hypothesis (iii) of the theorem on the creation
of coequalizers, then there is a unique comparison M : A'— A.

Since GT is now known to satisfy this hypotheses, this lemma will
incidentally provide a new proof of the comparison theorem (§3).

Proof. If M exists,then FGM =MF'G' and M¢' =¢M, so M must
carry the canonical presentation of a' to the canonical presentation
of Md'. In other words, the object M a’ must fit in a fork

FGFGd=FGFGd —‘;i,a FGa-—*sMd
FG'eh
in A, and moreover k must be M ¢, = ¢,4,-. Map this fork to the category
X by the functor G. The result is the fork

GeFG'a’ G'orar
GFGFGad—=_3GFGa——Gda
TG ¢ar

in X which is split — since T=GF, it is a case of the fork (4) above, for
x = G’ d'. But the hypothesis (iii) ensures that G creates coequalizers in
this case. Therefore there is exactly one possible choice for k and Ma'
above; (moreover, once M a' is chosen, &,,, has the property required of
k, so must be k.) This shows that the comparison M is unique if it exists.

Now choose k and M &' in this way. To show M a functor consider any
f:a@—b' in A'. In the diagram

FGFGad—=33FGa—*—Ma

!
lFG'F'G'f FG'f . Mf

1
+

FGFGV—=FGb—Mb
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both left-hand squares commute, so k,° FG'f must factor though the
first coequalizer k by a unique arrow M a'— M b’ as shown. Taking this
arrow to be M f clearly makes M a functor A'— A, just as required for
the lemma.

By this lemma we construct both the original comparison functor
K:A—XT and a comparison functor M:XT—A. The composite
MK:A—A is then a comparison (of the adjunction F... to itself),
hence must be the identity, again by the lemma. Similarly, KM : XT— X7
is a comparison of FT to FT, hence must be the identity. Now MK =1
and KM =1 prove K an isomorphism, as required for (i).

The construction of M in this theorem may be further analyzed,
using for parallel pairs the following notion of “reflection” of colimits:

Definition. A functor G: A— X reflects colimits of T:J— A when
every cone L:T-a from T to ae A for which GA:GT=Ga is a co-
limiting cone in X is already a colimiting cone in A.

In particular, G reflects coequalizers when every fork in 4 which be-
comes a coequalizer in X is already a coequalizer in 4. Similarly, G
reflects isomorphisms when, for all arrows t of A, Gt an isomorphism
implies ¢ an isomorphism.

Beck’s theorem has an acronym PTT for “precise tripleability
theorem”. There are many other versions: A “weak’ version, easier to
prove, where there are hypotheses on the coequalizers of more pairs
(Exercises 2, 3), an ““equivalence’ version, which gives conditions that the
comparison functor K : 4 — X7 be not an isomorphism but an equiva-
lence of categories (Exercises 2, 6), a ““‘constructive’ version which anal-
yses the hypotheses (certain hypotheses suffice to give a left adjoint for K;
others make this adjunction an equivalence: Exercises 2, 5), a “crude”
version (CT T or V' T T) with strong hypotheses which apply well to the
composite of several “forgetful” functors (Exercises 9-11). However,
note that there are more authoritative definitions of ¥ 77T and CT7T in
Barr-Wells [1985].

Exercises

(Throughout, “coequalizers” means “‘coequalizers of parallel pairs”.)
1. If G creates coequalizers, prove that it also reflects coequalizers.
2. Weak Tripleability Theorem (Beck’s thesis). Given the adjunction (1) and the
corresponding comparison functor K, give a direct proof of the following:
(a) If 4 has all coequalizers, then K has a left adjoint L.
(b) If, in addition, G preserves all coequalizers, then the unit of this adjunction
is an isomorphism / =~ K L.
(c) If, in addition, G reflects all coequalizers, then the counit of this adjunction
is an isomorphism LK =~ [.
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3. (Alternative hypothesis for Exercise 2.) If 4 has all coequalizers, G preserves
all coequalizers, and G reflects isomorphisms, prove that G reflects all co-
equalizers.

4. (a) Show that the canonical presentation of a T-algebra {x, h) is

Hx

<T2 X, iuTx> : < TX, Hx> 4 <x, h> .
Th

(b) Show that the comparison functor M : XT— A in Beck’s theorem appears
as a coequalizer diagram

“px

FGFx—33Fx-->M(x,h).

Fhr

5. Given the data (1), (2), and the comparison functor K, let P be the set of all those
parallel pairs f,g:a=3b in A such that Gf, Gg has a split coequalizer. Using
Exercise 4 (b), prove
(a) If A has coequalizers of all pairs in P, K has a left adjoint M.

(b) If, in addition, G preserves all coequalizers of pairs in P, then the unit
n: I->KM of this adjunction is an isomorphism.

(c) If, in addition to (a), G reflects coequalizers for all pairs in P, then the counit
M K- of this adjunction is an isomorphism.

6. Use the results of Exercise 5 and Theorem 1V .4.1 to prove the following version
of Beck’s theorem, characterizing the category of T-algebras up to equivalence:
Given the data (1) and (2), the following assertions are equivalent:

(i) The comparison functor K : A— X7 is an equivalence of categories.

(i) If f, g is any parallel pair in 4 for which G f, G g has an absolute coequalizer,
then A has a coequalizer for f, g, and G preserves and reflects coequalizers
for these pairs.

(iii) The same, with “absolute coequalizer” replaced by “split coequalizer”.

The next exercises use certain definitions of properties CTT, VTT, PTT
for a functor G: A— X. Let C; (respectively Sg) be the set of all those parallel
pairs {f,g)> in A such that {Gf, Gg) has a coequalizer in X (respectively, a
split coequalizer). Then G has CT T when G has a left adjoint, preserves and
reflects all coequalizers which exist, and when A has coequalizers of all pairs
in Cg. Next, G has VT T when G has a left adjoint, reflects coequalizers of all
pairs in Sg, and when A4 has split coequalizers of all pairs in S;. Finally, G is
PTT when G has a left adjoint, preserves and reflects coequalizers for all pairs
in S;, and when A has coequalizers of all pairs in Sg. Clearly, CTT and VTT
imply PTT.

7. CTT (Crude Tripleability Theorem; Barr-Beck). If G is C T T, prove that the
comparison functor K is an equivalence of categories.

8. VTT (Vulgar tripleability theorem). If G is ¥ T T, prove that the comparison
functor is an equivalence of categories.

9. Given functors G,:A—X, G,: X—Y, G;:Y—>Z with G, CTT, G, PTT,
and G; V TT, prove that the composite functor G;G, G, is PTT.

10. Prove that the composite of two VT T functors is VT T.

11. Prove that the composite of two CTT functors is CTT.
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8. Algebras Are T-Algebras

For semi-groups, monoids, and rings, we already know (§4) that the
comparison functor is an isomorphism. This result holds more generally
for any variety, as defined in §V.6):

Theorem 1. Let Q be a set of operators, E a set of identities (on
the operators derived from Q), G the forgetful functor from the category
{Q, E>-Alg of all small {2, Ey-algebras to Set, and T the resulting monad
in Set. Then the comparison functor K :{Q, Ey-Alg—Set™ is an iso-
morphism.

The proof will use Beck’s theorem. Consider any parallel pair
f.g: A3 B of morphisms of {Q, E)-algebras for which the underlying
functions have an absolute coequalizer e:

GA—Z3GB—=—X. (1)
g

To “create coequalizers” we must show that the set-map e lifts to a unique
morphism B—? of algebras, and then that this map is a coequalizer of the
algebra maps f,g. So consider any n-ary operator w € Q with its given
actions w4 and wg on the sets 4 and B (as usual, we confuse the algebra A
with its underlying set |A|). In the diagram below (ignore the right hand

square) o
n h’VI
At—B"—% - X" »C"

w,,|l ’ wBJ o lwc )

A—t B ,x. K., ¢
g

the two left hand squares (with f and g, respectively) commute because
f and g are morphisms of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>