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Preface to the Second Edition 

This second edition of "Categories Work" adds two new chapters on 
topics of active interest. One is on symmetric monoidal categories and 
braided monoidal categories and the coherence theorems for them-items 
of interest in their own right and also in view of their use in string theory in 
quantum field theory. The second new chapter describes 2-categories and 
the higher-dimensional categories that have recently come into promi
nence. In addition, the bibliography has been expanded to cover some of 
the many other recent advances concerning categories. 

The earlier 10 chapters have been lightly revised, clarifying a number 
of points, in many cases due to helpful suggestions from George lanelidze. 
In Chapter III, I have added a description of the colimits of representable 
functors, while Chapter IV now includes a brief description of character
istic functions of subsets and of the elementary topoi. 

Dune Acres, March 27, 1997 Saunders Mac Lane 
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Preface to the First Edition 

Category theory has developed rapidly. This book aims to present those 
ideas and methods that can now be effectively used by mathematicians 
working in a variety of other fields of mathematical research. This occurs 
at several levels. On the first level, categories provide a convenient con
ceptual language, based on the notions of category, functor, natural 
transformation, contravariance, and functor category. These notions are 
presented, with appropriate examples, in Chapters I and II. Next comes 
the fundamental idea of an adjoint pair of functors. This appears in many 
substantially equivalent forms: that of universal construction, that of direct 
and inverse limit, and that of pairs of functors with a natural isomorphism 
between corresponding sets of arrows. All of these forms, with their inter
relations, are examined in Chapters III to V. The slogan is "Adjoint func
tors arise everywhere." 

Alternatively, the fundamental notion of category theory is that of 
a monoid-a set with a binary operation of multiplication that is associa
tive and that has a unit; a category itself can be regarded as a sort of 
generalized monoid. Chapters VI and VII explore this notion and its gen
eralizations. Its close connection to pairs of adjoint functors illuminates 
the ideas of universal algebra and culminates in Beck's theorem char
acterizing categories of algebras; on the other hand, categories with a 
monoidal structure (given by a tensor product) lead inter alia to the study 
of more convenient categories of topological spaces. 

Since a category consists of arrows, our subject could also be described 
as learning how to live without elements, using arrows instead. This line of 
thought, present from the start, comes to a focus in Chapter VIII, which 
covers the elementary theory of abelian categories and the means to prove 
all of the diagram lemmas without ever chasing an element around a 
diagram. 

Finally, the basic notions of category theory are assembled in the 
last two chapters: more exigent properties of limits, especially of filtered 
limits; a calculus of "ends"; and the notion of Kan extensions. This is the 
deeper form of the basic constructions of adjoints. We end with the obser
vations that all concepts of category theory are Kan extensions (§ 7 of 
Chapter X). 
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viii Preface to the First Edition 

I have had many opportunities to lecture on the materials of these 
chapters: at Chicago; at Boulder, in a series of colloquium lectures to the 
American Mathematical Society; at St. Andrews, thanks to the Edinburgh 
Mathematical Society; at Zurich, thanks to Beno Eckmann and the For
schungsinstitut fUr Mathematik; at London, thanks to A. Frohlich and 
Kings and Queens Colleges; at Heidelberg, thanks to H. Seifert and 
Albrecht Dold; at Canberra, thanks to Neumann, Neumann, and a Ful
bright grant; at Bowdoin, thanks to Dan Christie and the National Science 
Foundation; at Tulane, thanks to Paul Mostert and the Ford Foundation; 
and again at Chicago, thanks ultimately to Robert Maynard Hutchins and 
Marshall Harvey Stone. 

Many colleagues have helped my studies. I have profited much from a 
succession of visitors to Chicago (made possible by effective support from 
the Air Force Office of Scientific Research, the Office of Naval Research, 
and the National Science Foundation): M. Andre, J. Benabou, E. Dubuc, 
F.W. Lawvere, and F.E.J. Linton. I have had good counsel from Michael 
Barr, John Gray, Myles Tierney, and Fritz Ulmer, and sage advice from 
Brian Abrahamson, Ronald Brown, W.H. Cockcroft, and Paul Halmos. 
Daniel Feigin and Geoffrey Phillips both managed to bring some of 
my lectures into effective written form. Myoid friend, A.H. Clifford, 
and others at Tulane were of great assistance. John MacDonald and 
Ross Street gave pertinent advice on several chapters; Spencer Dickson, 
S.A. Huq, and Miguel La Plaza gave a critical reading of other material. 
Peter May's trenchant advice vitally improved the emphasis and arrange
ment, and Max Kelly's eagle eye caught many soft spots in the final 
manuscript. I am grateful to Dorothy Mac Lane and Tere Shuman for 
typing, to Dorothy Mac Lane for preparing the index, and to M.K. 
Kwong for careful proofreading-but the errors that remain, and the 
choice of emphasis and arrangement, are mine. 

Dune Acres, March 27, 1971 Saunders Mac Lane 
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Introduction 

Category theory starts with the observation that many properties of 
mathematical systems can be unified and simplified by a presentation 
with diagrams of arrows. Each arrow I : X ---> Y represents a function; 
that is, a set X, a set Y, and a rule x I->-Ix which assigns to each element 
x E X an element Ix E Y; whenever possible we write Ix and not I(x), 
omitting unnecessary parentheses. A typical diagram of sets and func
tions is 

Y 

1\ 
X ---'-h -->. Z ; 

it is commutative when h is h = g 0 I, where gel is the usual composite 
function gel: X ---> Z, defined by x I->- g(f x). The same diagrams apply 
in other mathematical contexts; thus in the "category" of all topological 
spaces, the letters X, Y, and Z represent topological spaces while I, g, and h 
stand for continuous maps. Again, in the "category" of all groups, 
X, Y, and Z stand for groups, I, g, and h for homomorphisms. 

Many properties of mathematical constructions may be represented 
by universal properties of diagrams. Consider the cartesian product 
X x Yoftwo sets, consisting as usual of all ordered pairs (x, y) of elements 
x E X and y E Y. The projections (x, y) I->- x, (x, y) I->- y of the product 
on its "axes" X and Yare functions p: X x Y ---> X, q: X x Y ---> Y. Any 
function h : W ---> X x Y from a third set W is uniquely determined by its 
composites po hand q 0 h. Conversely, given Wand two functions 
I and g as in the diagram below, there is a unique function h which makes 
the diagram commute; namely, hw = (fw,gw) for each w in W: 

W 

Ylh~ 
X-Xx Y----->Y. p q 
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Thus, given X and Y, <p, q) is "universal" among pairs of functions from 
some set to X and Y, because any other such pair <I, g) factors uniquely 
(via h) through the pair <p, q). This property describes the cartesian 
product X x Y uniquely (up to a bijection); the same diagram, read in 
the category of topological spaces or of groups, describes uniquely the 
cartesian product of spaces or the direct product of groups. 

Adjointness is another expression for these universal properties. 
If we write hom( W, X) for the set of all functions I: W - X and 
hom«U, V), <X, Y» for the set of all pairs of functions I: U-X, 
g: V - Y, the correspondence h I---> <ph, q h) = <I, g) indicated in the 
diagram above is a bijection 

hom(W, X x Y)~ hom«W, W), <X, Y». 

This bijection is "natural" in the sense (to be made more precise later) 
that it is defined in "the same way" for all sets W and for all pairs of sets 
<X, Y) (and it is likewise "natural" when interpreted for topological 
spaces or for groups). This natural bijection involves two constructions 
on sets: The construction WI---> W, W which sends each set to the diagonal 
pair .1 W = < W, W), and the construction <X, Y) I---> X x Y which sends 
each pair of sets to its cartesian product. Given the bijection above, 
we say that the construction X x Y is a right adjoint to the construction.1, 
and that .1 is left adjoint to the product. Adjoints, as we shall see, occur 
throughout mathematics. 

The construction "cartesian product" is called a "functor" because it 
applies suitably to sets and to the functions between them; two functions 
k : X-X' and t: Y - Y' have a function k x I as their cartesian product: 

kxt:Xx Y-X'x Y', <x,Y)I---><kx,ly). 

Observe also that the one-point set 1 = {o} serves as an identity under the 
operation "cartesian product", in view of the bijections 

1xX~X?Xx1 (1) 

given by l<O, x) = x, Q<x, 0) = x. 
The notion of a monoid (a semigroup with identity) plays a central 

role in category theory. A monoid M may be described as a set M to
gether with two functions 

p.:MxM-M, 1J:1-M (2) 

such that the following two diagrams in f1 and" commute: 

1xM~MxM~Mx1 

1 A 1 ~ 1 g (3) 

M x M ------"~'---------->. M , M M M; 
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here 1 in 1 x J1 is the identity function M - M, and 1 in 1 x M is the one
point set 1 = {O}, while A and (J are the bijections of (1) above. To say 
that these diagrams commute means that the following composites are 
equal: 

J1 0 (1 x J1) = J1 0 (J1 x 1), J.l 0 (" x 1) = A, J.l 0 (1 x,,) = (J • 

These diagrams may be rewritten with elements, writing the function J1 
(say) as a product J.l(x,y) = xy for X,y E M and replacing the function" 
on the one-point set 1 = {O} by its (only) value, an element ,,(0) = U E M. 
The diagrams above then become 

<x, y, z)1-1 ---+. <x, yz) <0, x)f-----+<u, x) <x, u) ~<x, 0) 

T T T T T T 
<x y, Z) I-------> (x y)z = x(y z), x UX, xu x. 

They are exactly the familiar axioms on a monoid, that the multiplica
tion be associative and have an element u as left and right identity. 
This indicates, conversely, how algebraic identities may be expressed by 
commutative diagrams. The same process applies to other identities; 
for example, one may describe a group as a monoid M equipped with 
a function' : M - M (of course, the function x f-+ X-I) such that the 
following diagram commutes: 

here b:M-MxM is the diagonal function xf-+<x,x) for xEM, 
while the unnamed vertical arrow M -1 = {O} is the evident (and unique) 
function from M to the one-point set. As indicated just to the right, 
this diagram does state that ( assigns to each element x E M an element 
X-I which is a right inverse to x. 

This definition of a group by arrows J1, 1'/, and ( in such commutative 
diagrams makes no explicit mention of group elements, so applies 
to other circumstances. If the letter M stands for a topological space 
(not just a set) and the arrows are continuous maps (not just functions), 
then the conditions (3) and (4) define a topological group - for they 
specify that M is a topological space with a binary operation J1 of multi
plication which is continuous (simultaneously in its arguments) and 
which has a continuous right inverse, all satisfying the usual group 
axioms. Again, if the letter M stands for a differentiable manifold (of 
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class en) while 1 is the one-point manifold and the arrows 11, 1], and ( 
are smooth mappings of manifolds, then the diagrams (3) and (4) become 
the definition of a Lie group. Thus groups, topological groups, and Lie 
groups can all be described as "diagrammatic" groups in the respective 
categories of sets, of topological spaces, and of differentiable manifolds. 

This definition of a group in a category depended (for the inverse 
in (4)) on the diagonal map <5: M - M x M to the cartesian square 
M x M. The definition of a monoid is more general, because the cartesian 
product x in M x M may be replaced by any other operation 0 on two 
objects which is associative and which has a unit 1 in the sense prescribed 
by the isomorphisms (1). We can then speak of a monoid in the system 
(C, D, 1), where C is the category, D is such an operation, and 1 is its 
unit. Consider, for example, a monoid M in (Ab, (8), Z), where Ab is 
the category of abelian groups, x is replaced by the usual tensor product 
of abelian groups, and 1 is replaced by Z, the usual additive group of 
integers; then (1) is replaced by the familiar isomorphism 

Z (8) X ~ X ~ X (8) Z , X an abelian group. 

Then a monoid M in (Ab, (8), Z) is, we claim, simply a ring. For the given 
morphism 11: M ® M - M is, by the definition of ®, just a function 
M x M - M, call it multiplication, which is bilinear; i.e., distributive 
over addition on the left and on the right, while the morphism I] : Z-M 
of abelian groups is completely determined by picking out one element 
of M; namely, the image u of the generator 1 of Z. The commutative 
diagrams (3) now assert that the multiplication 11 in the abelian group M 
is associative and has u as left and right unit - in other words, that M 
is indeed a ring (with identity = unit). 

The (homo )-morphisms of an algebraic system can also be described 
by diagrams. If <M, 11, 1]) and <M', 11', 1]') are two monoids, each described 
by diagrams as above, then a morphism of the first to the second may 
be defined as a function f: M - M' such that the following diagrams 
commute: 

M MxM~M l~M 

1 f lfxf If II lr (5) 

M', M'xM'~M', l~M'. 

In terms of elements, this asserts that f(x y) = (Ix) (fy) and fu = u', 
with u and u' the unit elements; thus a homomorphism is, as usual, just 
a function preserving composite and units. If M and M' are mono ids 
in (A b, (8), Z), that is, rings, then a homomorphism f as here defined is 
just a morphism of rings (preserving the units). 



Introduction 5 

Finally, an action of a monoid (M,p, '1) on a set S is defined to be a 
function v : M x S ---+ S such that the following two diagrams commute: 

lX~r 
s. 

If we write vex, s) = x . s to denote the result of the action of the monoid 
element x on the element s E S, these diagrams state just that 

x· (y·s) = (xy)·s, u·s = s 

for all x, Y E M and all S E S. These are the usual conditions for the action 
of a monoid on a set, familiar especially in the case of a group acting 
on a set as a group of transformations. If we shift from the category of 
sets to the category of topological spaces, we get the usual continuous 
action of a topological monoid M on a topological space S. If we take 
(M, fl, '1) to be a monoid in (Ab, (8), Z), then an action of M on an object 
S of Ab is just a left module S over the ring M. 





I. Categories, Functors, and Natural Transformations 

1. Axioms for Categories 

First we describe categories directly by means of axioms, without 
using any set theory, and call them "metacategories". Actually, we begin 
with a simpler notion, a (meta) graph. 

A metagraph consists of objects a, b, c, ... , arrows f, g, h, ... , and two 
operations, as follows: 

Domain, which assigns to each arrow f an object a = dom f; 
Codomain, which assigns to each arrow f an object b = codf. 

These operations on f are best indicated by displaying f as an actual 
arrow starting at its domain (or "source") and ending at its codomain 
(or "target"): 

f: a~b or a.4b. 

A finite graph may be readily exhibited: Thus . ~ . ~ . or . =t .. 
A metacategory is a metagraph with two additional operations: 
Identity, which assigns to each object a an arrow ida = 1a : a~a; 
Composition, which assigns to each pair <g, f) of arrows with 

domg = codf an arrow go f, called their composite, with go f: domf 
~codg. This operation may be pictured by the diagram 

b 

/\ 
a --g-o j-'---+) C 

which exhibits all domains and codomains involved. These operations 
in a metacategory are subject to the two following axioms: 

Associativity. For given objects and arrows in the configuration 

a.4b..!4c~d 

one always has the equality 

k 0 (g 0 f) = (k 0 g) 0 f. (1) 

7 
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This axiom asserts that the associative law holds for the operation of 
composition whenever it makes sense (i.e., whenever the composites on 
either side of (1) are defined). This equation is represented pictorially 
by the statement that the following diagram is commutative: 

a kctgcfl=(bglof .d 

fj~lk 
b---g,,-------+. c . 

Unit law. For all arrows f: a-b and g: b-c composition with 
the identity arrow 1b gives 

(2) 

This axiom asserts that the identity arrow Ib of each object b acts as an 
identity for the operation of composition, whenever this makes sense. 
The Eqs. (2) may be represented pictorially by the statement that the 
following diagram is commutative: 

a~b 

~1~ 
b--g-+c. 

We use many such diagrams consisting of vertices (labelled by objects 
of a category) and edges (labelled by arrows of the same category). 
Such a diagram is commutative when, for each pair of vertices c and c', 
any two paths formed from directed edges leading from c to c' yield, 
by composition of labels, equal arrows from c to c'. A considerable part 
of the effectiveness of categorical methods rests on the fact that such 
diagrams in each situation vividly represent the actions of the arrows 
at hand. 

If b is any object of a metacategory C, the corresponding identity 
arrow 1b is uniquely determined by the properties (2). For this reason, it 
is sometimes convenient to identify the identity arrow 1b with the object b 
itself, writing b : b-b. Thus Ib = b = idb , as may be convenient. 

A metacategory is to be any interpretation which satisfies all these 
axioms. An example is the metacategory of sets, which has objects all 
sets and arrows all functions, with the usual identity functions and the 
usual composition of functions. Here "function" means a function with 
specified domain and specified codomain. Thus a function f: X -+ Y 
consists of a set X, its domain, a set Y, its codomain, and a rule v f--7 fx 
(i.e., a suitable set of ordered pairs (x, f x » which assigns, to each element 
x E X, an element f x E Y. These values will be written as f x, fx, or f(x), 
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as may be convenient. For example, for any set S, the assignment sf-->-s 
for all s E S describes the identity function 1s: S-S; if S is a subset of Y, 
the assignment Sf-> S also describes the inclusion or insertion function 
S - Y; these functions are different unless S = Y. Given functions f : X - Y 
and g: Y-Z, the composite function g .. f: X -Z is defined by 
(g Ilx = g(fx) for all x EX. Observe that 9 f will mean first apply f, 
then 9 - in keeping with the practice of writing each function f to the 
left of its argument. Note. however. that many authors use the opposite 
convention. 

To summarize. the metacategory of all sets has as objects, all sets, as 
arrows, all functions with the usual composition. The metacategory of all 
groups is described similarly: Objects are all groups G, H, K; arrows are 
all those functions f from the set G to the set H for which f: G - H 
is a homomorphism of groups. There are many other metacategories: 
All topological spaces with continuous functions as arrows; all compact 
Hausdorff spaces with the same arrows; all ringed spaces with their 
morphisms, ctc. The arrows of any metacategory are often called its 
morphisms. 

Since the objects of a metacategory correspond exactly to its identity 
arrows. it is technically possible to dispense altogether with the objects 
and deal only with arrows. The data for an arrows-only metacategor.\' C 
consist of arrows, certain ordered pairs <Yo f). called the composable 
pairs of arrows. and an operation assigning to each composable pair 
<y,f) an arrow y f. called their composite. We say "g f is defined'" 
for "<g, f) is a composable pair'". 

With these data one defines an identity of C to be an arrow u such 
that f LI = f whenever the composite f u is defined and u 9 = 9 when
ever LI q is defined. The data are then required to satisfy the following 
three axioms: 

(i) The composite (k y) f is defined if and only if the composite 
k (g f) is defined. When either is defined, they are equal (and this 
triple composite is written as k gfl 

(ii) The triple composite k gf is defined whenever both composites kg 
and yf are defined. 

(iii) For each arrow g of C there exist identity arrows u and u' of C 
such that u' y and y LI are defined. 

In view of the explicit definition given above for identity arrows, the 
last axiom is a quite powerful one; it implies that u' and LI are unique in 
(iii), and it gives for each arrow 9 a codomain u' and a domain u. These 
axioms are equivalent to the preceding ones. More explicitly, given a 
metacategory of objects and arrows. its arrows, with the given composi
tion. satisfy the "arrows-only" axioms; conversely. an arrows-only 
metacategory satisfies the objects-and-arrows axioms when the identity 
arrows, defined as above, are taken as the objects (Proof as exercise). 
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2. Categories 

A category (as distinguished from a metacategory) will mean any 
interpretation of the category axioms within set theory. Here are the 
details. A directed graph (also called a "diagram scheme") is a set 0 of 
objects, a set A of arrows, and two functions 

dom 
A====t O. 

cod 
(1) 

In this graph, the set of composable pairs of arrows is the set 

A x oA = {<g,f) I g,fE A and domg = cod!} , 

called the "product over 0". 
A category is a graph with two additional functions 

O~A, AXoA~A, 

C I---------> ide , <g,f)l--------->g u J, 
(2) 

called identity and composition also written as gf, such that 

dom(ida) = a= cod(ida), dom(go f)= domJ, cod(go f) = codg (3) 

for all objects a EO and all composable pairs of arrows <g, J) E A x oA, 
and such that the associativity and unit axioms (1.1) and (1.2) hold. 
In treating a category C, we usually drop the letters A and 0, and write 

CE C J in C (4) 

for "c is an object of C" and "J is an arrow of C', respectively. We also 
write 

hom(b, c) = {f I J in C, domJ = b, codJ = c} (5) 

for the set of arrows from b to c. Categories can be defined directly in 
terms of composition acting on these "hom-sets" (§ 8 below); we do not 
follow this custom because we put the emphasis not on sets (a rather special 
category), but on axioms, arrows, and diagrams of arrows. We will 
later observe that our definition of a category amounts to saying that a 
category is a monoid for the product x 0, in the general sense described 
in the introduction. For the moment, we consider examples. 

o is the empty category (no objects, no arrows); 
1 is the category :J with one object and one (identity) arrow; 
2 is the category :J ~:J with two objects a, b, and just one arrow 
a~b not the identity; 
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3 is the category with three objects whose non-identity arrows are 

d . h . I /\ arrange as 10 t e tnang e . ~ . ; 
U is the category with two objects a, b and just two arrows a=tb 

not the identity arrows. We call two such arrows parallel arrows. 
In each of the cases above there is only one possible definition of 

composition. 
Discrete Categories. A category is discrete when every arrow is an 

identity. Every set X is the set of objects of a discrete category Gust add 
one identity arrow x~x for each x E X), and every discrete category is 
so determined by its set of objects. Thus, discrete categories are sets. 

M onoids. A monoid is a category with one object. Each monoid is 
thus determined by the set of all its arrows, by the identity arrow, and 
by the rule for the composition of arrows. Since any two arrows have a 
composite, a monoid may then be described as a set M with a binary 
operation M x M ~ M which is associative and has an identity (= unit). 
Thus a monoid is exactly a semigroup with identity element. For any 
category C and any object a E C, the set hom (a, a) of all arrows a~a 
is a monoid. 

Groups. A group is a category with one object in which every arrow 
has a (two-sided) inverse under composition. 

Matrices. For each commutative ring K, the set MatrK of all rect
angular matrices with entries in K is a category; the objects are all 
positive integers m, n, ... , and each m x n matrix A is regarded as an arrow 
A : n~m, with composition the usual matrix product. 

Sets. If V is any set of sets, we take Ensv to be the category with 
objects all sets X E V, arrows all functions f: X ~ Y, with the usual 
composition of functions. By Ens we mean anyone of these categories. 

Preorders. By a preorder we mean a category P in which, given 
objects p and p', there is at most one arrow p~ p'. In any preorder P, 
define a binary relation ~ on the objects of P with p ~ p' if and only if 
there is an arrow p~ p' in P. This binary relation is reflexive (because 
there is an identity arrow p~p for each p) and transitive (because arrows 
can be composed). Hence a preorder is a set (of objects) equipped with 
a reflexive and transitive binary relation. Conversely, any set P with 
such a relation determines a preorder, in which the arrows p~ p' are 
exactly those ordered pairs <p, p') for which p ~ p'. Since the relation is 
transitive, there is a unique way of composing these arrows; since it is 
reflexive, there are the necessary identity arrows. 

Preorders include partial orders (preorders with the added axiom 
that p ~ p' and p' ~ pimply p = p') and linear orders (partial orders 
such that, given p and p', either p ~ p' or p' ~ p). 

Ordinal Numbers. We regard each ordinal number n as the linearly 
ordered set of all the preceding ordinals n = {O, 1, ... , n - I}; in particular, 



12 Categories, Functors, and Natural Transformations 

° is the empty set, while the first infinite ordinal is w = {O, 1,2, ... }. 
Each ordinal n is linearly ordered, and hence is a category (a preorder). 
For example, the categories 1, 2, and 3 listed above are the preorders be
longing to the (linearly ordered) ordinal numbers 1, 2, and 3. Another 
example is the linear order w. As a category, it consists of the arrows 

all their composites, and the identity arrows for each object. 
A is the category with objects all finite ordinals and arrows I: m ---+ n 

all order-preserving functions (i~.i in m implies Ii ~ jj in n). This category 
A, sometimes called the simplicial category, plays a central role 
(Chapter VII). 

Finord = Setwis the category with objects all finite ordinals n and arrows 
I: m---+n all functions from m to n. This is essentially the category of all 
finite sets, using just one finite set n for each finite cardinal number 11. 

Large Categories. In addition to the metacategory of all sets ~ which 
is not a set ~ we want an actual category Set, the category of all small 
sets. We shall assume that there is a big enough set U, the "universe", 
then describe a set x as "small" if it is a member of the universe, and take 
Set to be the category whose set U of objects is the set of all small sets, with 
arrows all functions from one small set to another. With this device 
(details in § 7 below) we construct other familiar large categories, as 
follows: 

Set: Objects, all small sets; arrows, all functions between them. 
Set.: Pointed sets: Objects, small sets each with a selected base point; 

arrows, base-point-preserving functions. 
Ens: Category of all sets and functions within a (variable) set V. 
Cat: Objects, all small categories; arrows, all functors (§ 3). 
Mon: Objects, all small monoids; arrows, all morphisms of monoids. 
Grp: Objects, all small groups; arrows, all morphisms of groups. 
Ab: Objects, all small (additive) abelian groups, with morphisms 

of such. 
Rug: All small rings, with the ring morphisms (preserving units) 

between them. 
CRng: All small commutative rings and their morphisms. 
R-Mod: All small left modules over the ring R, with linear maps. 
Mod-R: Small right R-modules. 
K-Mod: Small modules over the commutative ring K. 
Top: Small topological spaces and continuous maps. 
Toph: Topological spaces, with arrows homotopy classes of maps. 
Top*: Spaces with selected base point, base point-preserving maps. 
Particular categories (like these) will always appear in bold-face type. 

Script capitals are used by many authors to denote categories. 
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3. Functors 

A functor is a morphism of categories. In detail, for categories C and B 
a functor T: C - B with domain C and codomain B consists oftwo suitably 
related functions: The object junction T, which assigns to each object 
c of C an object Tc of B and the arrow function (also written T) which 
assigns to each arrow f: c-c' of C an arrow Tf: Tc- Tc' of B, in such 
a way that 

T(g 0 f) = Tg' Tf, (1 ) 

the latter whenever the composite 9 " f is defined in C. A functor, like a 
category, can be described in the "arrows-only" fashion: It is a function T 
from arrows f of C to arrows T f of B, carrying each identity of C to 
an identity of B and each composable pair <g, f) in C to a composable 
pair <Tg, Tf) in B, with Tg T f = T(g" f). 

A simple example is the power set functor f!J : Set-Set. Its object 
function assigns to each set X the usual power set [JjI X, with elements all 
subsets Sex: its arrow function assigns to each f: X - Y that map 
f!J f: 3' X -.2P Y which sends each SeX to its image f S C Y. Since both 
.~(l x) = Ln and [JjI(g f) = [JjI 9 [JjI f, this clearly defines a functor 
:JJ : Set-Set. 

Functors were first explicitly recognized in algebraic topology, 
where they arise naturally when geometric properties are described by 
means of algebraic invariants. For example, singular homology in a 
given dimension n (n a natural number) assigns to each topological space 
X an abelian group Hn(X), the n-th homology group of X, and also to 
each continuous map f: X - Y of spaces a corresponding homomorphism 
HJf) : Hn(X)- Hn( Y) of groups, and this in such a way that Hn becomes 
a functor Top- Ab. For example, if X = Y = SI is the circle, HI (SI) = Z, 
so the group homomorphism HI (f): Z-Z is determined by an integer d 
(the image of 1); this integer is the usual "degree" of the continuous 
map f : SI_ SI. In this case and in general, homotopic maps f, 9 : X - Y 
yield the same homomorphism Hn(X)-Hn(Y), so Hn can actually be 
regarded as a functor Toph- Grp, defined on the homotopy category. 
The Eilenberg-Steenrod axioms for homology start with the axioms that 
Hn , for each natural number n, is a functor on Toph, and continue with 
certain additional properties of these functors. The more recently 
developed extraordinary homology and cohomology theories are also 
functors on Toph. The homotopy groups nn(X) of a space X can also 
be regarded as functors; since they depend on the choice of a base point 
in X, they are functors Top* - Grp. The leading idea in the use of functors 
in topology is that Hn or 1T.n gives an algebraic picture or image not just 
of the topological spaces, but also of all the continuous maps between 
them. 
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Functors arise naturally in algebra. To any commutative ring K 
the set of all non-singular n x n matrices with entries in K is the usual 
general linear group GLn{K); moreover, each homomorphismf: K->K' 
of rings produces in the evident way a homomorphism GLnf: GLn{K) 
->GLn(K') of groups. These data define for each natural number n a 
functor GLn : CRng-> Grp. For any group G the set of all products 
of commutators xyx- I y-I(X, yE G) is a normal subgroup [G, G] of G, 
called the commutator subgroup. Since any homomorphism G-> H 
of groups carries commutators to commutators, the assignment 
GI--i>[G, G] defines an evident functor Grp->Grp, while GI--i>G/[G, G] 
defines a functor Grp-> Ab, the factor-commutator functor. Observe, 
however, that the center Z(G) of G (all a E G with ax = xa for all x) does 
not naturally define a functor Grp-> Grp, because a homomorphism 
G-> H may carry an element in the center of G to one not in the center of H. 

A functor which simply "forgets" some or all of the structure of an 
algebraic object is commonly called a forgetful functor (or, an underlying 
functor). Thus the forgetful functor U : Grp->Set assigns to each group G 
the set U G of its elements ("forgetting" the multiplication and hence the 
group structure), and assigns to each morphism f: G->G' of groups the 
same function f, regarded just as a function between sets. The forgetful 
functor U: Rng->Ab assigns to each ring R the additive abelian group 
of R and to each morphism f : R -> R' of rings the same function, regarded 
just as a morphism of addition. 

Functors may be composed. Explicitly, given functors 

C-4B4A 

between categories A, B, and C, the composite functions 

cI--i>S(Tc) fI--i>S(Tf) 

on objects c and arrows f of C define a functor SeT: C -> A, called the 
composite (in that order) of S with T. This composition is associative. 
For each category B there is an identity functor IB : B->B, which acts as 
an identity for this composition. Thus we may consider the metacategory 
of all categories: its objects are all categories, its arrows are all functors 
with the composition above. Similarly, we may form the category 
Cat of all small categories - but not the category of all categories. 

An isomorphism T: C -> B of categories is a functor T from C to B 
which is a bijection, both on objects and on arrows. Alternatively, but 
equivalently, a functor T: C -> B is an isomorphism if and only if there 
is a functor S: B->C for which both composites STand Tc S are 
identity functors; then S is the two-sided inverse S = T -I. 

Certain properties much weaker than isomorphism will be useful. 
A functor T: C->B is full when to every pair c, c' of objects of C 

and to every arrow g: Tc-> Tc' of B, there is an arrow f: c->("' of C 
with g = Tf. Clearly the composite of two full functors is a full functor. 
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A functor T : C --+ B is faithful (or an embedding) when to every pair 
c, c' of objects of C and to every pair II' 12 : c~c' of parallel arrows of 
Ctheequality Tj; = Tj~ : Tc ~Tc'impliesII = Iz.Again,compositesof 
faithful functors are faithful. For example, the forgetful functor Grp~Set 
is faithful but not full and not a bijection on objects. 

These two properties may be visualized in terms of hom-sets (see (2.5)). 
Given a pair of objects c, c' E C, the arrow function of T: C~B assigns 
to each I: c ~ c' an arrow TI: T c ~ T c' and so defines a function 

~.c·: hom(c, c')~hom(Tc, Tc'), I't--'?Tf. 

Then T is full when every such function is surjective, and faithful when 
every such function is injective. For a functor which is both full and 
faithful (i.e., "fully faithful"), every such function is a bijection, but this 
need not mean that the functor itself is an isomorphism of categories, for 
there may be objects of B not in the image of T. 

A subcategory S of a category C is a collection of some of the objects 
and some of the arrows of C, which includes with each arrow I both the 
object dom I and the object cod I, with each object s its identity arrow 
1s and with each pair of composable arrows S~S' ~s" their composite. 
These conditions ensure that these collections of objects and 
arrows themselves constitute a category S. Moreover, the injection 
(inclusion) map S~C which sends each object and each arrow of S to 
itself (in C) is a functor, the inclusion Iunctor. This inclusion functor is 
automatically faithful. We say that S is a lull subcategory of C when the 
inclusion functor S~C is full. A full subcategory, given C, is thus 
determined by giving just the set of its objects, since the arrows between 
any two of these objects s, s' are all morphisms s~s' in C For example, 
the category Setf of all finite sets is a full subcategory of the category Set. 

Exercises 

1. Show how each of the following constructions can be regarded as a functor: 
The field of quotients of an integral domain; the Lie algebra of a Lie group. 

2. Show that functors 1--> C, 2--> C, and 3--> C correspond respectively to objects, 
arrows, and composable pairs of arrows in C. 

3. Interpret "functor" in the following special types of categories: (a) A functor 
between two preorders is a function T which is monotonic (i.e., p ~ p' implies 
Tp ~ Tp'). (b) A functor between two groups (one-object categories) is a morphism 
of groups. (c) If G is a group, a functor G-->Set is a permutation representation 
of G, while G-->MatrK is a matrix representation of G. 

4. Prove that there is no functor Grp-->Ab sending each group G to its center 
(consider S2 --+ S3 --+ S2, the symmetric groups). 

5. Find two different functors T: Grp--> Grp with object function T( G) = G the 
identity for every group G. 
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4. Natural Transformations 

Given two functors S, T: C - B, a natural transformation r: S --'-> T 
is a function which assigns to each object c of C an arrow rc = r c : S c- Tc 
of B in such a way that every arrow f: c-c' in C yields a diagram 

c Sc~Tc 

1f Sf 1 1 Tf (1) 

c', Sc'~Tc' 

which is commutative. When this holds, we also say that rc: S c- Tc 
is natural in c. If we think of the functor S as giving a picture in B of 
(all the objects and arrows of) C, then a natural transformation r is a 
set of arrows mapping (or, translating) the picture S to the picture T, 
with all squares (and parallelograms 1) like that above commutative: 

aj~ 
h b 

/-c 

S a __ ----'r..::..a __ ->, Ta ~ 

Shj ~Sb rb j~Tb 
~ { 

Sc ,Tc/ T9 
rc 

We call ra, rb, rc, ... , the components of the natural transformation r. 
A natural transformation is often called a morphism of functors; 

a natural transformation r with every component rc invertible in B 
is called a natural equivalence or better a natural isomorphism; in symbols, 
r: S ~ T. In this case, the inverses (rc)-I in B are the components of a 
natural isomorphism r- I : T --'->S. 

The determinant is a natural transformation. To be explicit, let 
detK M be the determinant of the n x n matrix M with entries in the 
commutative ring K, while K* denotes the group of units (invertible 
elements) of K. Thus M is non-singular when detKM is a unit, and detK 
is a morphism GLnK-K* of groups (an arrow in Grp). Because the 
determinant is defined by the same formula for all rings K, each morphism 
f: K - K' of commutative rings leads to a commutative diagram 

GLnK~K* 

GLnf1 1/* (2) 

GLnK'~K'*. 

This states that the transformation det: GLn-( )* is natural between 
two functors CRng- Grp. 

For each group G the projection PG: G-G/[G, G] to the factor
commutator group defines a transformation p from the identity functor 
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on Grp to the factor-commutator functor Grp~ Ab~ Grp. Moreover, 
p is natural, because each group homomorphism f: G~ H defines the 
evident homomorphism f' for which the following diagram commutes: 

G~G/[G,G] 

f 1 1 f' 
(3) 

H~H/[H,H]. 

The double character group yields a suggestive example in the 
category Ab of all abelian groups G. Let D(G) denote the character 
group of G, so that DG = hom(G, R/Z) is the set of all homomorphisms 
t : G~ R/Z with the familiar group structure, where R/Z is the additive 
group of real numbers modulo 1. Each arrow f: G' ~ G in Ab determines 
an arrow D f : D G ~ D G' (opposite direction!) in Ab, with 
(D f) t = t f : G' ~ R/Z for each t; for composable arrows, 
D(g 0 f) = D f 0 D g. Because of this reversal, D is not a functor (it is a 
"contravariant" functor on Ab to Ab, see § 11.2); however, the twice 
iterated character group G ~ D(D G) and the identity J(G) = G are both 
functors Ab~Ab. For each group G there is a homomorphism 

'G: G~D(DG) 

obtained in a familiar way: To each 9 E G assign the function 
'Gg: DG~R/Z given for any character t E DG by t~tg; thus ('Gg)t= t(g). 
One verifies at once that , is a natural transformation ,: J -'-+ D D; this 
statement is just a precise expression for the elementary observation that 
the definition of, depends on no artificial choices of bases, generators, or 
the like. In case G is finite, 'G is an isomorphism; thus, if we restrict 
all functors to the category Ab f of finite abelian groups, T is a natural 
isomorphism. 

On the other hand, for each finite abelian group G there is an iso
morphism a G : G ~ D G of G to its character group, but this isomorphism 
depends on a representation of G as a direct product of cyclic groups 
and so cannot be natural. More explicitly, we can make D into a co
variant functor D': Abf.i~Abf.i on the category Abr,i with objects 
all finite abelian groups and arrows all isomorphisms f between such 
groups, setting D'G=DG and D'f=Df-l. Then aG:G~D'G is a 
map a : J ~ D' of functors Ab f, i~ Ab f, i' but it is not natural in the sense 
of our definition. 

A parallel example is the familiar natural isomorphism of a finite
dimensional vector space to its double dual. 

Another example of naturality arises when we compare the category 
Finord of all finite ordinal numbers n with the category Setf of all finite 
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sets (in some universe U). Every ordinal n = {O, 1, ... , n - 1} is a finite 
set, so the inclusion S is a functor S: Finord---->Setf . On the other hand, 
each finite set X determines an ordinal number n = # X, the number of 
elements in X; we may choose for each X a bijection ex: X ----> # X. For 
any function I : X ~ Y between finite sets we may then define a corre
sponding function #1: #X ~ # Y between ordinals by #1 = ey le)/; 
this ensures that the diagram 

X~#X 

1f 1 #f 
Y~#Y 

will commute, and makes # a functor # : Set f----> Finord. If X is itself 
an ordinal number, we may take ex to be the identity. This ensures that 
the composite functor # 0 S is the identity functor l' of Finord. On the 
other hand, the composite So # is not the identity functor I : Set f---->Set f' 
because it sends each finite set X to a special finite set - the ordinal number 
n with the same number of elements as X. However, the square diagram 
above does show that e : 1--4 S # is a natural isomorphism. All told we 
have 1';;(, So #, l' = # 0 S. 

More generally, an equivalence between categories C and D is defined 
to be a pair of functors S: C---->D, T: D---->C together with natural iso
morphisms Ie';;(, To S, ID ';;(, SoT. This example shows that this notion 
(to be examined in § IV.4) allows us to compare categories which are 
"alike" but of very different "sizes". 

We shall use many other examples of naturality. As Eilenberg
Mac Lane first observed, "category" has been defined in order to be able 
to define "functor" and "functor" has been defined in order to be able to 
define "natural transformation". 

Exercises 

1. Let S be a fixed set, and XS the set of all functions h: S-4X. Show that X 1-+ XS 

is the object function of a functor Set-4Set, and that evaluation ex : XS x S--'-> X, 
defined by e(h, s) = h(s), the value of the function h at s E S, is a natural trans
formation. 

2. If H is a fixed group, show that G 1-+ H x G defines a functor H x - : Grp-4 Grp, 
and that each morphism f : H -4 K of groups defines a natural transformation 
Hx -~Kx-. 

3. If Band C are groups (regarded as categories with one object each) and 
S, T: B~C are functors (homomorphisms or groups), show that there is a 
natural transformation S-'-+T if and only if Sand T are conjugate; i.e., if and 
only if there is an element hE C with Tg = h(Sg)h-l for all 9 E B. 
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4. For functors S, T: C~P where C is a category and P a preorder, show that 
there is a natural transformation S->-+ T (which is then unique) if and only if 
S c;;;; Tc for every object C E C. 

5. Show that every natural transformation t : S~ Tdefines a function (also called t) 

which sends each arrow f: c~c' of C to an arrow tf: Sc~ Tc' of B in such a 
way that T,q 0 tf = t(gf) = tg 0 Sf for each composable pair <g, f>. Conversely, 
show that every such function t comes from a unique natural transformation 
with tc = t(1J (This gives an "arrows only" description of a natural transfor
mation.) 

6. Let F be a field. Show that the category of all finite-dimensional vector spaces 
over F (with morphisms all linear transformations) is equivalent to the category 
MatrF described in § 2. 

5. Monics, Epis, and Zeros 

In categorical treatments many properties ordinarily formulated by 
means of elements (elements of a set or of a group) are instead formulated 
in terms of arrows. For example, instead of saying that a set X has just 
one element, one can say that for any other set Y there is exactly one 
function Y - X. We now formulate a few more instances of such methods 
of "doing without elements". 

An arrow e; a --+ b is invertible in C if there is an arrow e'; b-a 
in C with e' e = la and ee' = lb' If such an e' exists, it is unique, and is 
written as e' = e- 1. By the usual proof, (e1 e2)-1 = ell ell, provided the 
composite e1 e2 is defined and both e1 and e2 are invertible. Two objects 
a and b are isomorphic in the category C if there is an invertible arrow 
(an isomorphism) e; a-b; we write a ~ b. The relation of isomorphism 
of objects is manifestly reflexive, symmetric, and transitive. 

An arrow m; a-b is monic in C when for any two parallel arrows 
f1' f2; d-a the equality m a f1 = m a f2 implies f1 = f2; in other words, 
m is monic if it can always be cancelled on the left (is left cancellable). 
In Set and in Grp the monic arrows are precisely the injections (mono
morphisms) in the usual sense; i.e., the functions which are one-one into. 

An arrow h; a-b is epi in C when for any two arrows gl' g2 ; b-c 
the equality gl a h = g2 a h implies gl = g2; in other words, h is epi when it is 
right cancellable. In Set the epi arrows are precisely the surjections 
(epimorphisms) in the usual sense; i.e., the functions onto. 

For an arrow h; a-b, a right inverse is an arrow r; b-a with 
h r = 1 b' A right inverse (which is usually not unique) is also called a 
section of h. If h has a right inverse, it is evidently epi; the converse holds 
in Set, but fails in Grp. Similarly, a left inverse for h is called a retraction 
for h, and any arrow with a left inverse is necessarily monic. If gh = la' 
then g is a split epi, h a split monic, and the composite f = hg is defined 
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and is an idempotent. Generally, an arrow f: b-b is called idempotent 
when F = f; an idempotent is said to split when there exist arrows 9 
and h such that f = hg and gh = 1. 

An object t is terminal in C if to each object a in C there is exactly 
one arrow a-to If t is terminal, the only arrow t-t is the identity, and 
any two terminal objects of C are isomorphic in C. An object s is initial 
in C if to each object a there is exactly one arrow s-a. For example, 
in the category Set, the empty set is an initial object and anyone-point 
set is a terminal object. In Grp, the group with one element is both 
initial and terminal. 

A null object z in C is an object which is both initial and terminal. 
If C has a null object, that object is unique up to isomorphism, while for 
any two objects a and b of C there is a unique arrow a-z-b (the 
composite through z), called the zero arrow from a to b. Any composite 
with a zero arrow is itself a zero arrow. For example, the categories Ab 
and R-Mod have null objects (namely O!), as does Set* (namely the one
point set). 

A groupoid is a category in which every arrow is invertible. A typical 
groupoid is the fundamental groupoid n(X) of a topological space X. 
An object of n(X) is a point x of X, and an arrow x-x' of n(X) is a 
homotopy class of paths f from x to x'. (Such a path f is a continuous 
function I-X, I the closed interval 1=[0, 1], with f(O) = x, f(l) = x', 
while two paths f, 9 with the same end-points x and x' are homotopic 
when there is a continuous function F: I x I-X with F(t, 0) = f(t), 
F(t, 1) = g(t), and F(O, s) = x, F(I, s) = x' for all sand t in I.) The composite 
of paths 9 : x' - x" and f: x-x' is the path h which is "f followed by g", 
given explicitly by 

h(t) = f(2t), 0;£ t ~ 1/2, 

=g(2t-l), 1/2~t~ 1. 
(1) 

Composition applies also to homotopy classes, and makes n(X) a 
category and a groupoid (the inverse of any 'Path is the same path traced 
in the opposite direction). 

Since each arrow in a groupoid G is invertible, each object x in 
G determines a group homG(x, x), consisting of all g: x-x. If there is 
an arrow f: x- x', the groups homG(x, x) and homG(x', x') are isomorphic, 
under 9 f-+ f 9 f -1 (i.e., under conjugation). A groupoid is said to be 
connected if there is an arrow joining any two of its objects. One may 
readily show that a connected groupoid is determined up to isomorphism 
by a group (one of the groups homG(x, x)) and by a set (the set of all 
objects). In this way, the fundamental groupoid n(X) of a path-connected 
space X is determined by the set of points in the space and a group 
homrr(x)(x, x) - the fundamental group of X. 
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Exercises 

1. Find a category with an arrow which is both epi and monic, but not invertible 
(e.g., dense subset of a topological space). 

2. Prove that the composite of monies is monic, and likewise for epis. 
3. If a composite g f is monic, so is f. Is this true of g? 
4. Show that the inclusion Z-.Q is epi in the category Rng. 
5. In Grp prove that every epi is surjective (Hint. If <p: G-.H has image M not H, 

use the factor group HIM if M has index 2. Otherwise, let Perm H be the group 
of all permutations of the set H, choose three different cosets M, M u and M v 
of M, define a E Perm H by a(x u) = x v, a(x v) = x u for x EM, and a otherwise 
the identity. Let lp : H -. Perm H send each h to left multiplication lph by h, while 
lp~ = a~llpha. Then lp<p = lp' <p, but lp '* lp'). 

6. In Set, show that all idempotents split. 
7. An arrow f: a-.b in a category C is regular when there exists an arrow g: b-.a 

such that f g f = f. Show that f is regular if it has either a left or a right inverse, 
and prove that every arrow in Set with a t= 0 is regular. 

8. Consider the category with objects (X, e, t), where X is a set, e E X, and t: X -.X, 
and with arrows f: (X, e, t)-.(X', e', t') the functions f on X to X' with 
f e = e' and f t = t'f. Prove that this category has an initial object in which X 
is the set of natural numbers, e = 0, and t is the successor function. 

9. If the functor T: C --> B is faithful and Tf is monic. prove f monic. 

6. Foundations 

One of the main objectives of category theory is to discuss properties 
of totalities of Mathematical objects such as the "set" of all groups or 
the "set" of all homomorphisms between any two groups. Now it is the 
custom to regard a group as a set with certain added structure, so we 
are here proposing to consider a set of all sets with some given structure. 
This amounts to applying a comprehension principle: Given a property 
<p(x) of sets x, form the set {x I <p(x)} of all sets x with this property. 
However such a principle cannot be adopted in this generality, since it 
would lead to some of the famous paradoxical sets, such as the set of all 
sets not members of themselves. 

For this reason, the standard practice in naive set theory, with the 
usual membership relation E, is to restrict the application ofthecomprehen
sion principle. One allows the formation from given sets u, v of the set 
{u, v} (the set with exactly u and v as elements), of the ordered pair 
<u, v), of an infinite set (the set w = {O, 1,2, ... } of all finite ordinals), 
and of 

The Cartesian Product 
The Power Set 
The Union (of a set x of sets) 

UXV={<X,y)IXEU and YEV}, 
f?lIu = {v I v C u} , 
u x = {y lYE z for some Z EX} . 



22 Categories, Functors, and Natural Transformations 

Finally, given a property cp(x) (technically, a property expressed in 
terms of x, the membership relation, and the usual logical connectives, 
including "for all sets t" and "there exists a set t") and given a set U one 
allows 

Comprehension for elements of u: {x I x E U and cp(x)}. 

In words: One allows the set of all those x with a given property cp 
which are members of an already given set u. 

To this practice, we add one more assumption: The existence of a 
universe. A universe is defined to be a set U with the following (somewhat 
redundant) properties: 

(i) x E U E U implies x E U, 
(ii) UEU and VEU imply {u,v}, (u,v), and UXVEU. 

(iii) x E U implies f!J>x E U and U x E U , 
(iv) WE U (here W = {a, 1,2, ... } is the set of all finite ordinals), 
(v) if I: a-+b is a surjective function with a E U and b c U, then b E U. 
These closure properties for U ensure that any of the standard opera-

tions of set theory applied to elements of U will always produce elements 
of U; in particular, WE U provides that U also contains all the usual 
sets of real numbers and related infinite sets. We can then regard 
"ordinary" Mathematics as carried out exclusively within U (i.e., on 
elements of U) while U itself and sets formed from U are to be used for 
the construction of the desired large categories. 

Now hold the universe U fixed, and call a set U E U a small set. Thus 
the universe U is the set of all small sets. Similarly, call a function I: u-+ v 
small when U and v are small sets. This implies that I itself can be regarded 
as a small set - say, as the ordered triple (u, G f' v), with G feu x v 
the usual set of all (x, y) with x E U, Y = Ix. The limited comprehension 
principle thus allows the construction of the set A of all those sets which 
are small functions, since these functions are all elements of U. We can 
now define the category Set of all small sets to be that category in which U 
(the set of all small sets) is the set of objects and A (the set of all small 
functions) is the set of arrows. Henceforth Set will always denote this 
category. " 

A small group is similarly a small set with a group structure; i.e., is 
an ordered pair (u, m), where U is a small set and m: U x u-+u a function 
(binary operation on u) satisfying the usual group axioms. Since any 
small group is an element of U, we may form the set of all small groups 
and the set of all homomorphisms between two small groups. They 
constitute the category Grp of all small groups. 

The same process will construct the category of all small Mathematical 
objects of other types. For example, a category is small if the set of its 
arrows and the set of its objects are both small sets; we will soon form the 
category Cat of all small categories. Observe, however, that Set is not 
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a small category, because the set U of its objects is not a small set (other
wise U E U, and this is contrary to the axiom of regularity, which asserts 
that there are no infinite chains ... Xn E X n - 1 E X n - 2 E··· E xo). Similarly, 
Grp is not small. 

This description of the foundations may be put in axiomatic form. 
We are assuming the standard Zermelo-Fraenkel axioms for set theory, 
plus the existence of a set U which is a universe. The Zermelo-Fraenkel 
axioms (on a membership relation E) are: Extensionality (sets with the 
same elements are equal), existence of the null set, existence of the sets 
{u, v}, <u, v), &Pu, and ux for all sets u, v, and x, the axiom of infinity, 
the axiom of choice, the axiom of regularity, and the replacement axiom: 

Replacement. Let a be a set and <p(x, y) a property which is functional 
for x in a, in the sense that <p(x, y) and <p(x, y') for x E a imply y = y', 
and that for each x E a there exists a y with <p(x, y). Then there exists a 
set consisting of all those y such that <p(x, y) holds for x E a. 

Briefly speaking, the replacement axiom states that the image of a set 
a under a "function" <p is a set. It can be shown that the replacement 
axiom implies the comprehension axiom, as stated above. Moreover, 
our conditions defining a universe U imply that all the sets x E U (all 
the small sets) do satisfy the Zermelo-Fraenkel axioms - for example, 
condition (v) in the definition of a universe corresponds to replacement. 
We shall see that our assumption of one universe suffices for the usual 
purposes of category theory. 

Some authors assume instead sets and "classes", using, for these 
concepts, the G6del-Bernays axioms. To explain this, define a class C 
to be any subset C C U of the universe. Since x E U E U implies x E U, 
every element of U is also a subset of U, therefore every small set is also a 
class; but conversely, some classes (such as U itself) are not small sets. 
These latter are called the proper classes. Together, the small sets and the 
classes satisfy the standard G6del-Bernays axioms (see G6del [1940]). 

A large category is one in which both the set of objects and the set of 
arrows are classes (proper or otherwise). Using only small sets and all 
classes one can describe many of the needed categories - in particular, 
our categories Set, Grp, etc. are proper classes, hence are large categories 
in this sense. Initially, category theory was restricted to the study of small 
and large categories (and based on the G6del-Bernays axioms). However, 
we will have many occasions to form categories which are not classes. 
One such is the category Cis of all classes: Its objects are all classes; 
its arrows all functions f : C ---+ C' between classes. Then the set of objects 
of Cis is the set &P(U) of all subsets of U; it is not a class; in fact, its cardinal 
number is larger than the cardinal of the universe U. Another useful 
category is Cat', the category of all large categories. It is not a class. 

In the sequel we shall drop the notation U for the chosen universe 
and speak simply of small sets, of classes, and of sets, observing that the 
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"sets" include the small sets and the classes, as well as many other sets 
such as &(U), &Y'(U), {U}, and the like. Note, in particular, that {U} 
is a set which has only one element (namely, the universe U). It is thus 
intuitively very "small", but it is not a small set in our sense; {U} E U 
would imply U E U, a contradiction to the axiom of regularity. Thus 
"small set" for us means a member of the universe, and not a set with a 
small cardinal number. 

Our foundation by means of one universe does provide, within set 
theory, an accurate way of discussing the category of all small sets and all 
small groups, but it does not provide sets to represent certain meta
categories, such as the metacategory of all sets or that of all groups. 
Grothendieck uses an alternative device. He assumes that for every set X 
there is a universe U with X E U. This stronger assumption evidently 
provides for each universe U a category of all those groups which are 
members of U. However, this does not provide any category of all 
groups. For this reason, there has been considerable discussion of a 
foundation for category theory (and for all of Mathematics) not based 
on set theory. This is why we initially gave the definition of a category C 
in a set-free form, simply by regarding the axioms as first-order axioms 
on undefined terms "object of C", "arrow of C', "composite", "identity", 
"domain", and "codomain". In this style, axioms for the elementary 
(i.e., first-order) theory of the category of all sets, as an alternative to the 
usual axioms on membership can be given-as an "elementary topos" 
(cf. Mac Lane-Moerdijk [1992]). 

Exercises 

1. Given a universe U and a function I : I -->h with domain lEU and with every 
value j~ an element of U, for i E I. prove that the usual cartesian product ITi Ii is 
an element of U. 

2. (a) Given a universe U and a function I: I-->h with domain lEU, show that 
the usual union Ui.f~ is a set of U. 
(b) Show that this one closure property of U may replace condition (v) and the 
condition x E U implies ux E U in the definition of a universe. 

7. Large Categories 

In many relevant examples, a category consists of all (small) Mathe
matical objects with a given structure, with arrows all the functions which 
preserve that structure. We list useful such examples with their monics. 

Ab, the category of all small abelian groups, has objects all small 
(additive) abelian groups A, B, ... and arrows all homomorphisms 
f: A~ B of abelian groups, with the usual composition. In this category, 
an arrow is monic if and only if it is a monomorphism (one-one into). 
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Also, an epimorphism (a homomorphism onto) is clearly epi. Conversely, 
a homomorphism I: A ~ B which is epi as an arrow must be onto 
as a function. For, otherwise, the quotient group B/I A is nonzero, so 
there are then two different morphisms B~B/I A, the projection p 
and the zero morphism 0, which have pI = ° =01, a contradiction to the 
assumption that I is epi. In Ab, the zero group is both initial and terminal. 

A small ring R is a small set with binary operations of addition and 
multiplication which satisfy the usual axioms for a ring - including the 
existence of a two-sided identity (= unit) 1 for multiplication. Rug 
will denote the category of all small rings; the objects are the small 
rings R, the arrows I: R~S the (homo)morphisms of rings - where 
a morphism of rings is assumed to carry the unit of R to that of S. In 
this category the zero ring is terminal, and the ring Z of integers is 
initial since Z~R is the unique arrow carrying 1 E Z to the unit of the 
ring R. The monic arrows are precisely the monomorphisms of rings. 
Every epimorphism of rings is epi as an arrow, but the inclusion Z~Q 
of Z in the field Q of rational numbers is epi, but not an epimorphism. 

If R is any small ring, the category R-Mod has objects all small 
left R-modules A, B, ... and arrows I: A~B all morphisms of R
modules (R-linear maps). In this category monics are monomorphisms, 
epis are epimorphisms, and the zero module is initial and terminal. 
If F is a field, the category F-Mod, also written VctF, is that of all vector 
spaces (linear spaces) over F. By Mod-R we denote the category of all 
small right R-modules. If Rand S are two rings, R-Mod-S is the category 
of all small R-S-bimodules (left R-, right S-modules A with r(as) = (ra)s 
for all r E R, a E A, and s E S). One may similarly construct categories of 
small algebraic objects of any given type. 

The category Top of topological spaces has as objects all small 
topological spaces X, Y, ... and as morphisms all continuous maps 
I: X ~ Y. Again, the monics are the injections and the epis the surjections. 
The one-point space is terminal, and the empty space is initial. Similarly, 
one may form the category of all small Hausdorff spaces or of all small 
compact Hausdorff spaces. 

The category Toph has as objects all small topological spaces X, Y, ... , 
while a morphism rx: X ~ Y is a homotopy class of continuous maps 
I: X ~ Y; in other words, two homotopic maps I ~ g : X ~ Y determine 
the same morphism from X to Y. The composition of morphisms is the 
usual composition of homotopy classes of maps. In this category, the 
homotopy class of an injection need not be a monic, as one may see, for 
example, for the injection of a circle into a disc (as the bounding circle 
of that disc). This category Toph, which arises naturally in homotopy 
theory, shows that an arrow in a category need not be the same thing 
as a function. There are a number of other categories which are useful 
in homotopy theory: For example, the categories of C W-complexes, 
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of simplicial sets, of compactly generated spaces (see § VII.8), and of 
Kan complexes. 

Set* will denote the category of small pointed sets (often called "based" 
sets). By a pointed set is meant a nonvoid set P with a selected element, 
written * or *p and called the "base point" of P. A map f: P~Q of 
pointed sets is a function on the set P to the set Q which carries base 
point to base point; i.e., which satisfies f(*p) = *Q. The pointed sets with 
these maps as morphisms constitute the category Set*. In this category 
the set {*} with just one point (the base point) is both an initial and a 
terminal object. A morphism f is monic in Set* if and only if it has a left 
inverse, epi if and only if it has a right inverse, and invertible if and only 
if it is both monic and epic. 

Similarly, Top* denotes the category of small pointed topological 
spaces: the objects are spaces X with a designated base point *; the mor
phisms are continuous maps f: X ~ Y which send the base point of X 
to that of Y. Again, Toph* is the category with objects pointed spaces and 
morphisms homotopy classes of continuous base-point-preserving maps 
(where also the homotopies are to preserve base points). Both categories 
arise in homotopy theory, where the choice of a base point is always 
needed in defining the fundamental group or higher homotopy groups 
of a space, cf. § 5. 

Binary relations can be regarded as the arrows of a category ReI. 
The objects are all small sets X, Y, ... , and the arrows R : X ~ Yare the 
binary relations on X to Y; that is, the subsets ReX x Y. If S : Y ~ Z 
is another such relation, the composite relation So R : X ~ Z is defined 
to be the usual relative product 

So R = {<x, z) I for some yE Y, <x, y) ER and <y, z) ES}. 

The identity arrow X ~ X is the identity relation on X, consisting of all 
<x, x) for x E X. The axioms for a category evidently hold. This category 
Rei contains Set as a subcategory on the same objects, where each func
tion f: X ~ Y is interpreted as the relation consisting of all pairs <x,f x) 
for x E X. But Rei has added structure: For each R: X ~ Y there is a 
converse relation R* : Y ~X consisting of all pairs <y, x) with <x, y) E R. 

A concrete category is a pair < C, U) where C is a category and U 
a faithful functor U: C ~Set. Since U is faithful, we may identify each 
arrow f of C with the function U f. In these terms, a concrete category 
may be described as a category C in which each object c comes equipped 
with an "underlying" set U c, each arrow f: b~c is an actual function 
U b~ U c, and composition of arrows is composition of functions. Many 
of the explicit large categories described above are concrete categories 
in this sense, each relative to its evident forgetful functor U, but this is not 
so for Toph or for ReI. For the applications, the notion of category is 
simpler (and more "abstract") than that of concrete category. 
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8. Hom-Sets 

For objects a and b in the category C the hom-set 

homc(a, b) = {f I f is an arrow f: a-+b III C} 

consists of all arrows of the category with domain a and codomain b. 
The notation for this set is frequently and variously abbreviated as 

homda, b) = C(a, b) = hom (a, b) = (a, b) = (a, b)c. 

A category may be defined in terms of hom-sets as follows. A small 
category is given by the following data: 

(i) A set of objects a, b, c, ... ; 
(ii) A function which assigns to each ordered pair <a, b) of objects a 

set hom (a,b); 
(iii) For each ordered triple <a, b, c) of objects a function 

hom(b, c) x hom (a, b)-+ hom (a, c), 

called composition, and written <g,f) H-g 0 f for g E hom(b, c), 

f E hom (a, b); 
(iv) For each objectb, an element Ib E hom(b, b), called the identity ofb. 
These data are required to satisfy the familiar associativity and unit 

axioms (1.1) and (1.2), plus an added "disjointness" axiom: 
(v) If <a, b) 4= <a', b'), then hom (a, b)nhom(a', b') = 0, where 0 is 

the empty set. 
In particular, the associativity axiom may be restated as the require

ment that the following diagram, with each arrow given in the evident 
way by composition, be a commutative diagram: 

hom(c, d) x hom(b, c) x hom(a, b)-+ hom(b, d) x hom (a, b) 

1 1 
hom(c, d) x hom (a, c) ) hom (a, d) 

This definition of a category is equivalent to the original definition 
of § 2. Axiom (v) above requires that "distinct" hom-sets be disjoint; 
it is included to ensure that each arrow have a definite domain and a 
definite codomain. Should this axiom fail in an example, it can be readily 
reinstated by adjusting the hom-sets so that they do become disjoint. 
For example, we can replace each original set hom (a, b) by the set 
{a}xhom(a,b)x{b}; this amounts to "labelling" each fEhom(a,b) 
with its domain a and codomain b. Some authors omit this axiom (v). 
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A functor T: C---->B may be described in terms of hom-sets as the 
(usual) object function T together with a collection of functions 

~,e': C(e, e')---->B(Te, Te') 

(namely, the functions fl-+ Tf, for f E C(e, e'») such that each ~,e 1e = 1Te 

and such that every diagram 

C(e', e") x C(e, e')------>. C(e, e") 

1 Te',e" x Te. e , 1 Te,e" 

B(Te', Te") x B(Te, Te')~B(Te, Te"), 

with horizontal arrows the composition in Band C, is commutative, 
We leave the reader to describe a natural transformation r: S--'-> T 

in terms of functions C(e, e')---->B(Se, Te'), 
In many relevant examples, the hom-sets of a category themselves 

have some structure; for instance, III the category of vector spaces V, W, '" 
over a fixed field, each hom (V, W) is itself a vector space (of all 
linear transformations V ----> W), The simplest such case is that in 
which the hom-sets are abelian groups, Formally, define an Ab-eategory 
(also called a preadditive category) to be a category A in which each 
hom-set A(a, b) is an additive abelian group and for which composition 
is bilinear: For arrows f, 1': a---->b and g, g' : b---->e, 

(g + g') 0 (f + 1') = g 0 f + g 0 l' + g' 0 f + g' 0 l' ' 

Thus Ab, R-Mod, Mod-R, and the like are all A b-categories. 
Because the composition <g, f) 1-+ go f is bilinear, 

A(b, c) x A(a, b)----> A(a, c) , 

it can also be written (using the tensor product ® = @z) as a linear map 

A(b, e)®A(a, b)---->A(a, c), 

and the Ab-category A may be described completely in these terms 
(without assuming ahead of time that it is a category). Thus an Ab
category is given by the data 

(i) A set of objects a, b, e, ... ; 
(ii) A function which assigns to each ordered pair of objects <b, c) 

an abelian group A(b, c); 
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(iii) For each ordered triple of objects (a, b, c) a morphism 

A(b, c)®A(a, b)~A(a, c) 

of abelian groups called composition, and written 9 (8) f H- go f; 
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(iv) For each object, a morphism Z~A(a, a). (Here Z is the additive 
abelian group of integers; this morphism is completely determined by 
the image of 1 E Z, which may be written as la.) 

These data are required to satisfy the associative and unit laws 
for composition, stated as in (1.1) and (1.2), or by diagrams. The definition 
of Ab-category is just like the definition of category by hom-sets: Set is 
replaced by Ab, cartesian product x of sets by tensor product in Ab, 
and the one-point set * is replaced by Z. There is an evident generalization 
to categories A which have hom-objects A(b, c) in a category like Ab 
which is equipped with a multiplication like (8) and a unit like Z for this 
multiplication. These are called "enriched categories" (Kelly [1982]). 

If A and B are A b-categories, a functor T: A ~ B is said to be additive 
when every function T: A(a, a')~B(Ta, Ta') is a homomorphism of 
abelian groups; that is, when T(f + f') = T f + T f' for all parallel pairs f 
and f'. Clearly, the composite of additive functors is additive. Ab-cat 
will denote the category of all small Ab-categories, with arrows additive 
functors. 

Notes. 

These notes, like those at the end of later chapters, are informal remarks 
on the background and prospects of our subject, with references to the biblio
graphy (for example, H. Petard [1980 b] refers to the second article by Petard listed 
for the year 1980). 

The fundamental idea of representing a function by an arrow first appeared 
in topology about 1940, probably in papers or lectures by W. Hurewicz on relative 
homotopy groups; see [1941]. 

His initiative immediately attracted the attention of R. H. Fox (see Fox [1943]) 
and N. E. Steenrod, whose [1941] paper used arrows and (implicitly) functors; 
see also Hurewicz-Steenrod [1941]). The arrow f: X ---> Y rapidly displaced the 
occasional notation fiX) C Y for a function. It expressed well a central interest of 
topology. Thus a notation (the arrow) led to a concept (category). 

Commutative diagrams were probably also first used by Hurewicz. 
Categories, functors, and natural transformations themselves were discovered 

by Eilenberg-Mac Lane [1942a] in their study oflimits (via natural transformations) 
for universal coefficient theorems in tech cohomology. In this paper commutative 
diagrams appeared in print (probably for the first time). Thus Ext was one of the 
first functors considered. A direct treatment of categories in their own right appeared 
in Eilenberg-Mac Lane [1945]. Now the discovery of ideas as general as these is 
chiefly the willingness to make a brash or speculative abstraction, in this case sup
ported by the pleasure of purloining words from the philosophers: "Category" 
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from Aristotle and Kant, "Functor" from Carnap (Logische Syntax der Sprache), 
and "natural transformation" from then current informal parlance. Initially, 
categories were used chiefly as a language, notably and effectively in the Eilenberg
Steenrod axioms for homology and cohomology theories. With recent increasing 
use, the question of proper foundations has come to the fore. Here experts are still 
not in agreement; our present assumption of "one universe" is an adequate stopgap, 
not a forecast of the future. 

Category theory asks of every type of Mathematical object: "What are the mor
ph isms?" ; it suggests that these morphisms should be described at the same time 
as the objects. Categorists, however, ordinarily name their large categories by the 
common name of the objects; thus Set, Cat. Only Ehresmann [1965J and his school 
have the courage to name each category by the common name of its arrows: 
our Cat is their category of functors. This emphasis on (homo )morphisms is 
largely due to Emmy Noether, who emphasized the use of homomorphisms of 
groups and rings. 



II. Constructions on Categories 

1. Duality 

Categorical duality is the process "Reverse all arrows". An exact de
scription of this process will be made on an axiomatic basis in this section 
and on a set-theoretical basis in the next section. Hence for this section 
a category will not be described by sets (of objects and of arrows) and 
functions (domain, codomain, composition) but by axioms as in § 1.1. 

The elementary theory of an abstract category (ET AC) consists of 
certain statements 2: which involve letters a, b, c, ... for objects and 
letters f, g, h, '" for arrows. These statements are the ones built up from 
the atomic statements which involve the usual undefined terms of category 
theory; thus, atomic statements are "a is the domain of f", "b is the 
codomain of r: "i is the identity arrow of a", and "g can be composed 
with f and h is the composite", "a = boo and "f = g". These atomic state
ments can also be written as equations in the familiar way: "a = domf", 
"h=g of". A statementEis defined to be any phrase (well formed formula) 
built up from the types of atomic statements listed above in the usual 
fashion by means of the ordinary propositional connectives (and, or, not, 
implies, ifand only if) and the usual quantifiers ("for all a", "for allf","there 
exists an a ... ", "there exists an f ... "). Thus "f: a---+b" is the abbrevia
tion we have adopted for the statement, "a is the domain of f and b is 
the codomain of f". 

A sentence is a statement with all variables quantified (i.e., all variables 
are "bound", none being "free"). For example, "for all f there exist a 
and b with f: a---+b" is a sentence (one which in fact is an axiom, true 
in every category). The axioms of ETAC (as given in § 1.1) are certain 
such sentences. 

The dual of any statement 2: of ET AC is formed by making the 
following replacements throughout in 2:: "domain" by "codomain", 
"codomain" by "domain", and "h is the composite of g withf" by "h is 
the composite of f with g"; arrows and composites are reversed. Logic 
(and, or, ... ) is unchanged. This gives the following table (a more extensive 
table appears in Exercise IV.3.1). 
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Statement 1: 

f: a---->b 
a=domf 
i = la 
h=gof 
f is monic 
u is a right inverse of h 
f is invertible 
t is a terminal object 

Constructions on Categories 

Dual statement 1:* 

f: b---->a 
a=codf 
i = la 
h=fog 
f is epi 
u is a left inverse of h 
f is invertible 
t is an initial object. 

Note that the dual of the dual is the original statement (1:** = 1:). If a 
statement involves a diagram, the dual statement involves that diagram 
with all arrows reversed. 

The dual of each of the axioms for a category is also an axiom. Hence 
in any proof of a theorem about an arbitrary category from the axioms, 
replacing each statement by its dual gives a valid proof (of the dual 
conclusion). This is the duality principle: Ifa statement 1: of the elementary 
theory of an abstract category is a consequence of the axioms, so is the 
dual statement 1:*. For example, we noted the (elementary) theorem that 
a terminal object of a category, if it exists, is unique up to isomorphism. 
Therefore we have the dual theorem: An initial object, ifit exists, is unique 
up to isomorphism. For more complicated theorems, the duality principle 
is a handy way to have (at once) the dual theorem. No proof of the dual 
theorem need be given. We usually leave even the formulation of the 
dual theorem to the reader. 

The duality principle also applies to statements involving several 
categories and functors between them. The simplest (and typical) case is 
the elementary theory of one functor; i.e., of two categories C and B 
and a functor T: C----> B. For this theory, the atomic statements are those 
listed above for the category C, a corresponding list for the category B, 
as well as the statements "Tc = b" or "Tf = h", giving the values of the 
object and arrow functions of T on objects c and arrows f of C. The 
axioms include the axioms for a category for C and for B and also the 
statements T(gf) = (Tg) (Tf) .and T(1a) = lTa which assert that T is 
a functor. The dual of a statement is formed by simultaneously dualizing 
the atomic parts referring to C and to B (i.e., reversing arrows in C 
and in B). Since the statement that T is a functor is self-dual, the duality 
principle above is still true. 

We emphasize that duality for a statement involving several categories 
and functors between them reverses the arrows in each category but does 
not reverse the functors. 
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2. Contra variance and Opposites 

To each category C we also associate the opposite category coP. The 
objects of cop are the objects of C, the arrows of cop are arrows r p, 
in one-one correspondence ff-->- fOP with the arrows f of C. For each 
arrow f: a---->b of C, the domain and codomain of the corresponding 
r p are as in r p : b---->a (the direction is reversed). The composite 
r p gOP = (g f)0P is defined in COP exactly when the composite g f is defined 
in C. This clearly makes cop a category. Moreover, the domain of r p 

is the codomain of f, r p is monic if and only if f is epi, and so on. Indeed, 
this process translates any statement 1: about C into the dual statement 
L:* about COP. In detail, an evident induction on the construction of L: 
from atomic statements proves that if 1: is any statement with free variables 
f, g, ... in the elementary theory of an abstract category, then L: is true 
for arrows f, g, ... of a category C if and only if the dual statement L:* 
is true for the arrowsrp, gOP, ... of the opposite category coP. In particular, 
a sentence L: is true in cop if and only if the dual sentence L:* is true in C. 
This observation allows us to interpret the dual of a property L: as the 
original property applied to the opposite category (some authors call 
Cop the "dual" category, and write it COP = C*). 

If T: C ----> B is a functor, its object function c f-->- Tc and its mapping 
function ff-->- Tf, rewritten as r p f-->-(Tf)°P, together define a functor 
from cop to BOP, which we denote as TOP: cop----> BOP. The assignments 
C f-->- COP and Tf-->- TOP define a (covariant!) functor Cat ----> Cat. 

Consider a functor S: cop----> B. By the definition of a functor, it 
assigns to each object c E Cop an object S c of B and to each arrow 
r p: b---->a of COP an arrow Srp: Sb---->Sa of B, with S(f°PgOP)= (Srp) (SgOP) 
whenever r p gOP is defined. The functor S so described may be expressed 
directly in terms of the original category C if we write Sf for Srp; 
then S is a contravariant functor on C to B, which assigns to each object 
C E C an object SeE B and to each arrow f: a---->b an arrow Sf: Sb---->S a 
(in the opposite direction), all in such a way that 

(1) 

the latter whenever the composite f g is defined in C. Note that the arrow 
function S of a contravariant functor inverts the order of composition. 
Specific examples of contravariant functors may be conveniently presented 
in this form; i.e., as functions S inverting composition. An example is 
the contravariant power-set functor P on Set to Set: For each set X, 
P X = {S I SeX} is the set of all subsets of X; for each function f: X ----> Y, 
j5 f: P Y ----> P X sends each subset T C Y to its inverse image f -1 TeX. 
Another example is the familiar process which assigns to each vector 
space V its dual (conjugate) vector space V* and to each linear trans
formation f: V ----> W its dual f* : W*----> V*; these assignments describe a 
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contravariant functor on the category of all vector spaces (over a fixed 
field) to itself. 

To contrast, a functor T: C----+B as previously defined, in § 1.3, is 
called a covariant functor on C to B. For general discussions it is much 
more convenient to represent a contravariant functor Son C to B as a 
covariant functor S: cop----+ B, or sometimes as a covariant functor 
soP: C----+BoP. In this book an arrow between (symbols for) categories will 
always denote a covariant functor T: C----+B or S: COP----+B between the 
designated categories. 

Hom-sets provide an important example of co- and contravariant 
functors. Suppose that C is a category with small hom-sets, so that each 
hom (a, b) = {fIJ: a----+b in C} is a small set, hence an object of the category 
Set of all small sets. Thus we have for each object a E C the covariant 
hom-Junctor 

C(a, -) = hom (a, -) : C----+Set; (2) 

its object function sends each object b to the set hom (a, b); its arrow 
function sends each arrow k: b----+b' to the function 

hom (a, k) : hom (a, b)----+ hom (a, b') (3) 

defined by the assignment Jf-'>-koJ for each J: a----+b. To simplify the 
notation, this function hom (a, k) is sometimes written k* and called 
"composition with k on the left", or "the map induced by k". 

The contravariant hom-Junctor, for each object bE C, will be written 
covariantly, as 

C( -, b) = hom( -, b) : COP----+Set; (4) 

it sends each object a to the set hom (a, b), and each arrow g: a----+a' 
of C to the function 

hom(g, b): hom (a', b)----+ hom(a, b) (5) 

defined by Jf-'>-Jo g. Omitting the object b, this function hom(g, b) is 
sometimes written simply as g* and called "composition with g on the 
right". Thus, for each J: a'----+b, 

k* (= k 0 J, g* J = Jo g . 

For two such arrows g : a ---+ a' and k : b ---+ b' the diagram 

hom (a', b) -"""g*-...... hom (a, b) 

k* 1 1 k* 

hom (a', b') g* • hom(a, b') 

(6) 

in Set is commutative, because both paths send J E hom( a', b) to k J g. 
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These hom-functors have been defined only for a category C with 
small hom-sets. The familiar large categories Grp, Set, Top, etc. do have 
this property. To include categories without this property, we can proceed 
as follows: Given a category C, take a set V large enough to include all 
subsets of the set of arrows of C (for example, V could be the power set 
of the set of arrows of C). Let Ens = Setv be the category with objects 
all sets X E V, arrows all functions f: X -+ Y between two such sets and 
composition the usual composition of functions. Then each hom-set 
C(a, b) = hom (a, b) is an object of this category Ens, so the above procedure 
defines two hom-functors 

C(a, -}: C-+Ens, C( -, b): COP-+Ens. (7) 

In particular, when V is the universe of all small sets, Ens = Set; in general, 
Ens is a (variable) category of sets which acts as a receiving category for 
the hom-functors of a category or categories of interest. 

There are many other examples of contravariant functors. For X a 
topological space, the set Open(X) of all open subsets U of X, when 
ordered by inclusion, is a partial order and hence a category; there is an 
arrow V -+ U precisely when V c U. Let C( U) denote the set of all con
tinuous real-valued functions h : U -+ R; the assignment h r-. hi V restricting 
each h to the subset V is a function C(U)-+C(V) for each V CU. This 
makes C a contravariant functor on Open (X) to Set. This functor is 
called the sheaf of germs of continuous functions on X. On a smooth 
manifold, the sheaf of germs of C'~) -differentiable functions is constructed 
in similar fashion (cf. Mac Lane-Moerdijk [1992]). 

Mod-R is a contravariant functor from rings R to categories. Spe
cifically, if Q: R-+S is any morphism of (small) rings, each right S-module 
B becomes a right R-module B{! = (Mod{!)B by "pull-back" along 
{!: Each r E R acts on bE B by b· r = b· ((!r). Clearly Mod{! is a functor 
Mod-S-+Mod-R, and Mod({!1{!2) = (Mod {!2)(Mod (!1), so Mod itself 
can be regarded as a contravariant functor on Rng to Cat', the category 
of all large C'ategories. 

One may also form the category Mod of all (right) modules over all 
rings. An object of Mod is a pair (R, A), where R is a small ring and A 
a small right R-module. A morphism (R, A)-+(S, B) is a pair ({!,J), 
where{!: R-+Sis a morphism ofringsandf: A-+(Mod{!)Bisamorphism 
of right R-modules. With the evident composition, this yields a category 
Mod. A projection functor Mod-+Rng is given by (R, A) I-->- R. Further 
study of the relation of this functor to the previous functor Rng-+Cat' 
leads to the theory of fibered categories. (Mod is fibered over Rng, 
the fiber over each R being the category Mod-R.) 
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3. Products of Categories 

From two given categories Band C we construct a new category 
B x C, called the product of Band C, as follows. An object of B x C 
is a pair <b, c) of objects b of Band c of C; an arrow <b, c)---+<b', c') 
of B x C is a pair <f, g) of arrows f: b---+b' and g : c---+c', and the com
posite of two such arrows 

is defined in terms of the composites in Band C by 

<I', g') 0 (f, g) =<1'0 f, g'o g). (1) 
Functors 

B.LBxC~C, 

called the projections of the product, are defined on (objects and) arrows by 

P<f,g)=f, Q<f,g)=g· 

They have the following property: Given any category D and two functors 

there is a unique functor F: D---+ B x C with P F = R, Q F = T; explicitly, 
these two conditions require that Fh, for any arrow h in D, must be 
<Rh, Th); conversely, this value for Fh does make F a functor with the 
required properties. The construction of F (dotted arrow) may be 
visualized by the following commutative diagram of functors: 

(2) 

This property of the product category states that the projections P 
and Q are "universal" among pairs of functors to Band C. It is exactly 
like a similar property of the projections from the (cartesian) product of 
two sets, two groups, or two spaces. The general properties of such pro
ducts in any category will be considered in Chapter III. 

Two functors V: B ---+ B' and V: C ---+ C have a product 
V x V: B x C ---+ B' x C which may be defined explicitly on objects and 
arrows as 

(V x V) <b, c) = <Vb, Vc) (V x V) <f,g) = <V f, Vg). 
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Alternatively, this functor U x V may be described as the unique functor 
(as in the diagram above) which makes the following diagram commuta
tive: 

(3) 

The product x is thus a pair of functions: To each pair <B, C) of cate
gories, a new category B x C; to each pair of functors <U, V), a new 
functor U x V. Moreover, when the composites U'o U and V' 0 V are 
defined, one clearly has (U' x V') 0 (U x V) = u' U X V'V. Hence the 
operation x itself is a functor; more exactly, on restricting to small cate
gories, it is a functor 

x : Cat x Cat-Cat. 

There are similar functors Grp x Grp- Grp, Top xTop-Top, etc. 
Our definition of product categories has included in (2) the descrip

tion of functors F: D-B x C to a product category. On the other hand, 
functors S: B x C-D from a product category are called bifunctors 
(on Band C) or functors of two variable objects (in B and in C). Such 
bifunctors occur frequently; for instance, the cartesian product X x Y 
of two sets X and Y is (the object function of) a bifunctor Set x Set-Set. 
Thus our definition of product category gives an automatic definition 
of "functor of two variables" ~ just as the definition of the product X x Y 
of two topological spaces gives an automatic definition of "continuous 
function of two variables". 

Fix one argument in a bifunctor S; the result is an ordinary functor 
of the remaining argument. The whole bifunctor S is determined by these 
two arrays of one-variable functors in the following elementary way. 

Proposition 1. Let B, C, and D be categories. For all objects c E C 
and bE B, let 

Lc: B-D, Mb: C-D 

be functors such that Mb(C) = Lc(b) for all band c. Then there exists 
a bifunctor S: B x C-D with S( -, c) = Lc for all c and S(b, -) = Mb 
for all b if and only if for every pair of arrows f: b- b' and 9 : c-c' one has 

(4) 

These equal arrows (4) in D are then the value S(f, g) of the arrow 
function of Sat f and g. 

Proof. If we write band c for the corresponding identity arrows, 
the definition (1) of the composite in B x C shows that 

<b', g) 0 <f, c) = <b' f, gc) = <f, g) = <fb, c' g) = <f, c') 0 <b, g) . 
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Applying the functor S to this equation gives 

S(b', g) S(f, c) = S(f, e') S(b, g); 

as a commutative diagram this condition is 

S(b, e)~ S(b, e') 

S(f. c) 1 1 S(f. e') 

S(b', e)~S(b', e'). 

This is just condition (4) rewritten, so that condition (4) is necessary. 
Conversely, given all Le and Mb , this condition defines S(f, g) for every 
pair f, g; it may be verified that this definition does yield a bifunctor S 
with the required properties. 

One may also form products of three or more categories, or combine 
the construction of product categories and opposite categories. There 
is an evident isomorphism (B x C)0P ~ BOP X COp. A functor BOP x C--+ D 
is often called a bifunctor, contravariant in B and covariant in C, with 
values in D. For example, if C is a category with small hom-sets, the 
hom-sets define such a bifunctor 

hom: cop x C--+Set. 

Indeed, the commutative diagram (6) of § 2 shows exactly that the co
and contravariant hom-functors 

hom( -, c) : Cop -+ Set, hom(b, -) : C -+ Set 

do satisfy the condition (4) of the theorem, necessary to make hom 
a bifunctor. 

Next consider natural transformations between bifunctors 
S, S': B x C--+ D. Let II. be a function which assigns to each pair of objects 
b E B, e E C an arrow 

lI.(b, c): S(b, c)--+S'(b, c) (5) 

in D. Call II. natural in b if for each e E C the components lI.(b, c) for all b 
define 

11.( -, c): S( -, e)----.S'( -, c), 

a natural transformation of functors B--+D. The reader may readily 
prove the useful result: 

Proposition 2. For bifunetors S, S', the function II. displayed in (5) 
is a natural transformation II. : S----. S' (i.e., of bifunetors) if and only if lI.(b, c) 
is natural in b for each e E C and natural in e for each b E B. 

Such natural transformations appear in the fundamental definition of 
adjoint functors (Chapter IV). A functor F: X --+ C is the left adjoint 
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of a functor G: C --> X (opposite direction) when there is a bijection 

homdFx, c):::::; homx(x, Gc) 

natural in x E X and c E C. Here homdF -, -) is a bifunctor, the com
posite 

and homx( -, G -) similarly (at least when X and C have small hom
sets). 

The product category can be visualized in the case C x 2, where 2 
is the category with one non-identity arrow 0--> 1; explicitly C x 2 
consists of two copies C x 0 and C x 1 of C with arrows joining the first 
to the second, as in the figure ("diagonal" arrows omitted) for C = 3 
which is the triangle category of § 1.2: 

/t~ 

l/U . ). 

Cxl 

CxO 

Here the functors To, TI : C--> C x 2 ("bottom" and "top", respectively) 
are defined for each arrow f of C by To f = <f, 0) and Td = <f, 1). 
If ~ denotes the unique non-identity arrow 0--> 1 of 2, then we may define 
a transformation between To, TI : C--> C x 2 by 

fJ.: To-'-' TI, fJ.c = <c, 1> , 
for any object c. It maps "bottom" to "top" and is clearly natural. We 
call fJ. the universal natural transformation from C for the following 
reason. Given any natural transformation r : S -'-' T between S, T: C --> B 
there is a unique functor F: C x 2--> B with F fJ. c = r c for any object c. 
Specifically, F is, when f: c-->c', 

F<f,O)=Sf, F<f,l)=Tf, F<f, 1>=Tfo rc=rc'oSf. (6) 

It may be readily verified that these assignments do define a bifunctor 
F : C x 2--> B, and that F fJ. = r. 

Exercises 

1. Show that the product of categories includes the following known special cases: 
The product of monoids (categories with one object), of groups, of sets (discrete 
categories). 

2. Show that the product of two preorders is a preorder. 
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3. If {Ci liE I} is a family of categories indexed by a set I, describe the product 
C = IIi Ci, its projections Pi: C -+ Ci, and establish the universal property of 
these projections. 

4. Describe the opposite of the category MatrK of § 1.2. 
5. Show that the ring of continuous real-valued functions on a topological space 

is the object function of a contravariant functor on Top to Rng. 

4. Functor Categories 

Given categories C and B, we consider all functors R, S, T, '" : C-->B. 
If (J: R ----4 Sand r: S ----4 T are two natural transformations, their com
ponents for each C E C define composite arrows (r· (J)c = rc" (JC which 
are the components of a transformation r· (J : R ----4 T. To show r· (J 

natural, take any f: c-->c' in C and consider the diagram 

R c_----.:R""f_----» R c' 

ae 1 1 ae' 

(t'a)e Sc Sf ) Sc' (t· ale' 

te 1 1 te' 

T C __ T...::.f_----» T c' 

Since (J and r are natural, both small squares are commutative. Hence 
the rectangle commutes, so the composite r· (J is natural. 

This composition of transformations is associative; moreover it has 
for each functor T an identity, the natural transformation 1 T : T --> T with 
components 1T c = 1Te . Hence, given the categories Band C, we may 
construct formally a functor category BC = Funct(C, B) with objects 
the functors T: C--> Band morphisms the natural transformations 
between two such functors. It is often suggestive to write 

Nat(S, T) = BC(S, T) = {r I r: S----4 T natural} (1) 

for the "hom-set" of this category. It need not be a small set. 
Functor categories will be used extensively. For example, if Band C 

are sets (categories with all arrows identities), then BC is also a set; 
namely, the familiar "function-set" consisting of all functions C--> B. 
In particular, for B = {a, 1} a two-point set, {a, l}c is (isomorphic to) 
the set of all subsets of C (the "power set" q> C). For any category B, 
Bl is isomorphic to B, while B2 is called the category of arrows of B; 
its objects are arrows f: a-->b of B, and its arrows f--> f' are those pairs 
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(h, k) of arrows in B for which the square 

(2) 

commutes. If M is a monoid (category with one object) Sef' is the 
category with objects the actions of M (on some set) and arrows the 
morphisms of such actions. An object of the functor category GrpM is a 
group with operators M. 

If K is a commutative ring and G a group, then the functor category 
(K-Mod)G is the category of (K-linear) representations of G. Spe
cifically, each functor T: G-K-Mod is determined by a K-module V 
(the image of the single object of the category G) and a morphism 
T: G-Aut(V) of groups (a representation of G by linear transformations 
V-V). If T' is a second such representation, a natural transformation 
(J: T -4 T' is given by a single arrow (J: V- V' (its component at the 
single object of G) such that the diagram 

(3) 

V~V' 

commutes for every g E G. In representation theory, such a (J is called 
an intertwining oper.ator. Thus (K-Mod)G is the category with objects 
the representations of G and morphisms the intertwining operators. 

When the category C is large, the functor category Be need not be a 
subset of the universe. For example, if B = {a, 1} is the set with just two 
elements, while C is the set U, then a functor U-B is just a function on 
U to a set with two elements. The possible such functions correspond 
(as characteristic functions) to the possible subsets of U. Therefore the 
set of objects in {a, l}u is equivalent to the set glJ(U) of all subsets of U, 
and this set has a larger cardinal number than U. 

Exercises 

1. For R a ring, describe R-Mod as a full subcategory of the functor category AbR . 

2. Describe BX, for X a finite set (a finite discrete category). 
3. Let N be the discrete category of natural numbers. Describe the functor category 

AbN (commonly known as the category of graded abelian groups). 
4. If P and Q are preorders, describe the functor category QP and show that it is 

a preorder. 
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5. If Fin is the category of all finite sets and G is a finite group, describe FinG (the 
category of all permutation representations of G). 

6. Let M be the infinite cyclic monoid (elements 1, m, m2 , ... ). In the functor categories 
(MatrK)l and (MatrK)M show that objects are matrices and isomorphic objects 
(matrices) are exactly equivalent and similar matrices, respectively, in the usual 
sense oflinear algebra. For Matr, see §I.2. 

7. Given categories B, C, and the functor category Bl, show that each functor 
H : C ~ Bl determines two functors S, T: C ~ B and a natural transformation 
r: S ...... T, and show that this assignment H ~ <S, T, r> is a bijection. 

8. Relate the functor H of Exercise 7 to the functor F of (3.6). 

5. The Category of All Categories 

We have defined a "vertical" composite, . a, 

--vCrB, 
---'----> 

of two natural transformations. There is another "horizontal" composi
tion for natural transformations. Given functors and natural trans
formations 

(1) 

one may form first the composite functors S'o Sand T T: C----+A and 
then construct a square 

S'Sc~TSc 

S're 1 1 T're 

S'Tc~TTc 

which is commutative because of the naturality of " for the arrows, c 
of B. Now define (,' 0 ,)c to be the diagonal of this square; 

( " 0 ,) c = T', Co,' S c = " Teo S' ,c . (2) 

To show,' 0,: S' S--4 T T natural, form the diagram 

S'Sc~S'Tc~TTc c 

S'Sf 1 S' T f 1 T' T f 1 1 f 

S'Sb~S'Tb~TTb, b 

for any arrow f of C. Horizontally, the composites by definition are 
(,'0 ,)c and (,'0 ,)b; the left-hand square commutes because, is natural 
and S' is a functor, while the right-hand square commutes because " is 
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natural and Tf: Tc-Tb is an arrow. The commutativity of the outside 
of the diagram states that r' 0 r is natural. 

This composition < r', r)-r' oris readily shown to be associative. 
It moreover has identities. If 18: B-B is the identity functor for the 
category Band lB: IB ........ IB the identity natural transformation of that 
functor to itself, one has lB 0 r = rand r' 0 lB = r'. Thus lB is the identity 
for the composition 0; it is also the identity for the composition o. It is 
convenient to let the symbol S for a functor also denote the identity 
transformation S...-...S. With this notation in the situation above we have 
composite natural tdnsformations 

S' 0 r : S' 0 S...-... S' 0 T, r' 0 T: S' 0 T...-... T' 0 T. 

The definition (2) can then be rewritten, using also the vertical 
composition, as 

r' 0 r = (T' 0 r) ° (r' 0 S) = (r' 0 T) ° (S' or). (3) 

There is a more general rule. Given three categories and four trans
formations 

(4) 

the "vertical" composites under ° and the "horizontal" composites under 0 

are related by the identity (interchange law) 

( r' ° 0"') 0 (r ° 0") = (r' 0 r) 0 (0"' 0 0") . (5) 

The reader may enjoy writing down the evident diagrams needed to prove 
this fact. 

These results may be summarized as follows (considering only small 
categories) : 

Theorem 1. The collection of all natural transformations is the set 
of arrows of two different categories under two different operations of 
composition, ° and 0, which satisfy the interchange law (5). Moreover, any 
arrow (transformation) which is an identity for the composition 0 is also 
an identity for the composition o. 

Note that the objects for the horizontal composition 0 are the categories, 
for the vertical composition, the functors. In using these compositions, 
the symbol 0 for the "horizontal" composition is often omitted (as it is 
usually in writing composition of arrows in a category), while the solid 
dot designating "vertical" composition is retained. Observe that objects 
and arrows of C may be written as functors c: l-C or f: 2-C; then 
symbols such as 0" 0 C = o"c have their accepted meaning in a situation 
such as 



44 Constructions on Categories 

By a double category (Ehresmann) is meant a set which (like the set of 
all natural transformations) is the set of arrows for two different composi
tions which together satisfy (5). A 2-category (short for two-dimensional 
category) is a double category in which every identity arrow for the first 
composition is also an identity for the second composition. For example, 
the category of all commutative squares in Set is a double category 
(under the evident horizontal and vertical compositions) but not a 
2-category. There are also n-categories for higher n, see Chapter XII. 

Two (partially defined) binary operations . and 0 are said to satisfy 
the interchange law when (5) holds wherever the composites on either 
side are defined. Here some other examples. If C is a category and 
. : C x C-- C is a functor (for example, a tensor product), while (J, (J', r 
and r' are arrows of C such that the composites (J' 0 (J and r' 0 r are defined, 
then the interchange law (5) holds; indeed, it is precisely the requirement 
that the functor· preserve composition o. If (J, rI, r, and r' are square 
matrices such that the usual matrix products (J' 0 (J and r' 0 r are defined, 
while r . (J denotes the matrix 

with blocks rand (J along the diagonal, zeros elsewhere, then (5) holds. 
The functor category Be is itself a functor of the categories Band C, 

covariant in B and contravariant in C. Specifically, if we consider only 
the category Cat of all small categories, it is a functor CatOP x Cat--Cat; 
the object function sends a pair of categories < c, B) to the functor 
category Be, and the arrow function sends a pair of functors F: B-- B' 
and G : C' -- C to the functor 

defined on objects S E ~ as FG S = F 0 So G and on arrows r : S--'-> Tin 
Be as FG r = For 0 G. Note, for example, that Fe is just "compose with 
F on the left" while BG is "compose with G on the right". This functor 
is an exact analogue to the hom-functor Seep x Set--Set. 

Exercises 

1. For small categories A, B, and C establish a bijection 

Cat(A x B, C) ~ Cat(A, CB ) • 

and show it natural in A, B, and C. Hence show that - x B: Cat---+Cat has a 
right adjoint (see Chapter IX). 

2. For categories A, B, and C establish natural isomorphisms 

Compare the second isomorphism with the bijection of Exercise 1. 
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3. Use Theorem 1 to show that horizontal composition is a functor 

4. Let G be a topological group with identity element e, while a, a', T, T', are con
tinuous paths in G starting and ending at e (thus, if I is the unit interval, a: I-->G 
is continuous with a(O) = e = a(l)). Define TO a to be the path a followed by the 
path T, as in (1.5.1). Define T' a to be the pointwise product of T and a, so that 
(T' a)t=(Tt)(at) for O~ t~ 1. Prove that the interchange law (5) holds. 

5. (Hilton-Eckmann). Let S be a set with two (everywhere defined) binary operations 
':SxS-->S, o:SxS-->S which both have the same (two-sided) unit element e 
and which satisfy the interchange identity (5). Prove that· and 0 are equal, and 
that each is commutative. 

6. Combine Exercises 4 and 5 to prove that the fundamental group ofa topological 
group is abelian. 

7. If T: A -->D is a functor, show that its arrow functions Ta•b : A(a, b)-->D(Ta, Tb) 
define a natural transformation between functors AOP x A-->Set. 

8. For the identity functor Ie of any category, the natural transformations 
CI. : Ie""'"'> Ie form a commutative monoid. Find this monoid in the cases C = Grp, 
Ab, and Set. 

6. Comma Categories 

There is another general construction of a category whose objects 
are certain arrows, as in the following several special cases. 

If b is an object of the category C, the category of objects under b 
is the category (b ! C) with objects all pairs <I, c), where c is an object 
of C and I: b-c an arrow of C, and with arrows h: <I, c)-<!" c') 
those arrows h : c-c' of C for which h··· 1 = f'. Thus an object of (b ! C) 
is just an arrow in C from b and an arrow of (b ! C) is a commutative 
triangle with top vertex b. In displayed form: 

b 

objects <I, c): If; arrows <I, c).4<!" c'): (1) 

c 

The composition of arrows in (b ! C) is then given by the composition in C 
of the base arrows h of these triangles. 

For example, if * denotes anyone-point set, while X is any set, each 
function * - X is just a selection of a point in the set X; hence (* ! Set) 
is just the category of pointed sets (§ I. 7). Similarly, (Z ! Ab) is the cate
gory of abelian groups, each with a selected element. 

If a is an object of C, the category (C ! a) of objects over a has 

c c~c' 

objects: 1 f ; arrows: f\ f' , (2) 

a a 
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the triangle commutative. For example, * is terminal in Set so there is 
always a unique X -+ *; therefore (Set! *) is isomorphic to Set. Or again, 
Z is a ring, and the category (Rug! Z) is the category whose objects are 
rings equipped with a morphism e: R-Z (called a ring R with an 
"augmentation" e) and whose morphisms are morphisms of rings preserv
ing the augmentation. 

If b is an object of C and S: D- C a functor, the category (b! S) 
of objects S-under b has as objects all pairs (I, d) with dE Obj D and 
f: b-Sd and as arrows h: (f, d)-<I', d' ) all those arrows h: d-d' 
in D for which I' = S h 0 f. In pictures, 

b 

objects: If; arrows h: (3) 

Sd Sd~Sd' (commutative). 

Again, composition is given by composition of the arrows h in D. Note 
especially that equality of arrows in (b! S) means their equality as 
arrows of D. 

For example, let U: Grp-Set be the forgetful functor. Then for 
each set x an object of (x! U) is a function x- U g from x into the 
underlying set of some group g; for example, the function mapping x 
into the underlying set of the free group generated by the elements of the 
set x is one such object. This category (x! U) ~ and others like it ~ will 
be used extensively in the treatment of adjoint functors. 

Again, if a E C and T: E - C is a functor, one may construct a category 
(T! a) of objects T-over a. 

Here is the general construction. Given categories and functors 

the comma category (T! S), also written (T, S), has as objects all triples 
<e,d,f), with dEObjD, eEObjE, and f: Te-Sd, and as arrows 
(e, d,f)- (e', d',I') all pairs <k, h) of arrows k: e-e', h: d-d' such 
that I' 0 Tk = S h of. In pictures, 

Te 

objects <e, d,f): If; 
Sd 

Te~Te' 

arrows <k, h): If If' 
Sd~Sd', 

(4) 

with the square commutative. The composite <k', h')o <k, h) IS 

<k'o k, hi 0 h), when defined. 
This general description of the comma category (T! S) does include 

all the cases listed. Indeed, an object b of C may be regarded as a functor 
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b : 1-C. Taking T = b in this sense, the comma category (T ! S) becomes 
the category (b ! S) of objects S-under b.1f S = C is the identity functor of C, 
this becomes in particular the category (b ! C) of objects of C under b. 
Similarly, one may take S to be a functor 1-C; i.e., an object a of C. 
Again, take S = T = the identity functor of C. Then (C ! C) is exactly 
the category C2 of all arrows of C. Or take Sand T to be objects a and b 
of C; then (T! S) = (b! a) is the category with objects all arrows f: b-a 
and morphisms only the identity arrow for each object; in other words 
(b ! a) is the set (the discrete category) homdb, a). This case is the reason 
for the choice of the name "comma category" and the notation (T, S) -
a notation which we avoid because the comma is already overworked. 

The construction of the comma category (T! S) may be visualized 
by the following commutative diagram of categories and functors 

(T! S) 

/lR~ (5) 

E--:r+Cc.ro C2 ""Cdt C+-sD , 

here do, d1 are the two functors 1-2, the functor category CZ is just 
the category of arrows f of C, and so the functors Cdo, Cd! (defined as at 
the end of the last section) are simply the functors which send each arrow 
f of C to its domain and its codomain, respectively. The functors P and Q 
(called the projections of the comma category) and the functor Rare 
defined (on objects) as suggested in the diagram 

<e, d,f: Te-Sd) 

/I~ (6) 

ef-+ Te~-J,(f: Te-Sd)f-+Sd~-J,d. 

Exercises 

1. If K is a commutative ring, show that the comma category (K ! CRng) is the 
(usual) category of all small commutative K-algebras. 

2. If t is a terminal object in C, prove that (C ! t) is isomorphic to C. 
3. Complete (6) by defining P, Q, and R on arrows. 
4. (S.A.Huq). Given functors T, 8: D-+C, show that a natural transformation 

,: T ....... 8 is the same thing as a functor,: D-+(T! S) such that p, = Q, = idD , 

with P and Q the projections of (5). 
5. Given any commutative diagram of categories and functors 

x 

;/1~ 
E-+C<-C1-+C<-D 
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(bottom row as in (5»), prove that there is a unique functor L: X --->(T l S) 
for which P' = P L, Q' = QL, and R' = RL. (This describes (T l S) as a "pull
back", cf. §IIIA.) 

6. (a) For fixed small C, D, and E, show that <T, S) I-+(T l S) is the object function 
of a functor (CEtp x (C~--->Cat. 
(b) Describe a similar functor for variable C, D, and E. 

7. Graphs and Free Categories 

First, recall the construction of the free monoid F X generated by a set X. 
It consists of all the finite strings XIX2 ... Xn of elements Xi of the set X; 
the multiplication of these strings is given by juxtaposition, so that the 
empty string serves as the unit element of F X. The characteristic property 
of this free monoid may be stated as follows: For any monoid M, let U M 
denote the set of elements of M. Then any function f : X ---> U M extends 
to a unique morphism of monoids: 

f : X ---> U M extends to a g : F X ---> M . 

To get the corresponding description of a free category, we replace the 
starting set X by a directed graph G. 

Recall that a (directed) graph G (§1.2) is a set 0 of objects (vertices), 
and a set A of arrows I (edges), and a pair of functions A::::tO: 

Co 

A -:i 0 , 001 = domain I, od = codomain I· 
[ 1 

A morphism D: G--+G' of graphs is a pair of functions Do: 0--+0' and 
DA : A --+ A' such that 

Doool = OODAI and Do 01 I = 01 DA I 

for every arrow lEA. These morphisms, with the evident composition, 
are the arrows of the category Grph of all small graphs (a graph is small 
if both 0 and A are small sets). Each graph may be pictured by a diagram 
of vertices (objects) and arrows, just like the diagram for a category 
except that neither composite arrows nor identity arrows are provided. 
Hence a graph is often called a diagram scheme or a precategory. 

Every category C determines a graph U C with the same objects and 
arrows, forgetting which arrows are composites and which are identities. 
Every functor F: C--+C' is also a morphism U F: U C--+ U C' between 
the corresponding graphs. These observations define the forgetful functor 
U: Cat--+ Grph from small categories to small graphs. 

Let 0 be a fixed set. An O-graph will be one with 0 as its set of objects; 
a morphism D of O-graphs will be one with Do: 0--+0 the identity. The 
simplest O-graph 0 is O===W, with both functions domain and range 
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the identity. If A and B are (the sets of arrows of) two O-graphs, the 
product over 0 is 

AxoB={<g,f)loog=ot!, gEA, fEB}; (1) 

it is the set of "composable pairs" of arrows ' ..4 ' ..J4 '. The dehnitions 

(2) 

make this set a O-graph. This product operation on O-graphs is associative, 
since for any three O-graphs A, B, and C there is an evident isomorphism 
AXo(BxoC)~(AxoB)xoC. For the special O-graph 0 there is also 
an isomorphism A ~ A xoO, given by fH (f, oof). Also, A ~ 0 xoA. 

A category with objects 0 may be described as an O-graph A equipped 
with two morphisms c: A x oA ---.A and i: O---.A of O-graphs (composi
tion and identity) such that the diagrams 

are commutative, where 1 x c is short for 1 x oc, etc. Indeed, composable 
arrows <g, f) have a composite given by c as c(g, j), each object bE 0 
has an identity arrow given by i(b) E A, while the first diagram states 
that composition is associative and the second that each i(a) acts as 
a left and right identity for composition. In this sense, a category is like 
a monoid, as described in the introduction: Set there is replaced by 
O-Grph, and product of sets by x o. 

Any O-graph G may be used to "generate" a category C on the same 
set 0 of objects; the arrows of this category will be the "strings" of com
posable arrows of G, so that an arrow of C from b to a may be pictured 
as a path from b to a, consisting of successive edges of G. This category 
C will be written C = C(G) and called the free category generated by the 
graph G. Its basic properties may be stated as follows. 

Theorem 1. Let G = {A =t O} be a small graph. There is a small 
category C = CG with 0 as set of objects and a morphism P: G---. V C 
of graphs from G to the underlying graph V C of C with the following 
property. Given any category B and any morphism D : G---. V B of graphs, 
there is a unique functor D' : C ---. B with (V D') 0 P = D, as in the commutative 
diagram 

C 

B, 

G~VC 

~ iUD" D : .. 
VB 

(4) 
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In particular, if B has 0 as set of objects and D is a morphism of O-graphs, 
then D' is the identity on objects. 

The property of P stated in (4) is equivalent to stating that the arrow 
P: G---+ U C is an initial object in the comma category (G t U). Hence P 
is unique up to an isomorphism (of C). Similar properties appear often; 
we shall say that P is "universal" among morphisms from G to the 
underlying-graph functor U. 

Proof. Take the objects of C to be those of G and the arrows of C 
to be the finite strings (or "paths") 

alJ.!.....a2J4a3~ ... fn-!lan 

composed ofn objects al , ... ,an of G connected by n-1 arrows!;:ai---+ai+ 1 

of G. Regard each such string as an arrow <al'/l, ... ,in-l,an):al---+an 
in C, and define the composite of two strings by juxtaposition (i.e., by 
concatenation), identifying the common end. This composition is mani
festly associative, and strings < a l ) of length n = 1 are its identities. Every 
string of length n> 1 is a composite of strings of length 2: 

<at> fl' a2, ... , an-I' fn-I, an) = <an-I, fn-I' an) 0 ••• 0 <aI' fl' a2) . (5) 

The desired morphism P : G---+ U C of graphs sends each arrow f: al ---+a2 
of the given graph G to the string <al,f, a2) of length 2. 

Now consider any other morphism D: G---+ U B of the given graph 
G to the underlying graph of some category B. If there is a functor 
D' : C---+ B with U D' 0 P = D, as in the commutative diagram (4), then D' 
must be D'<a)=Da on objects and D'<aI,fI,a2)=Dfi on arrows. 
Since any string oflength n > 1 is a composite (5) in C, D' must be given by 

D'<aI,fl' a2, ... , an-l,fn-I, an) = D in-I 0 ••• 0 D fl' 

Conversely, this formula does define a functor D': B---+C for which the 
indicated diagram commutes, q.e.d. 

Here are some easy examples. For the graph consisting of a single 
arrow fwith oof = od, the free category consists of all arrows 1,1,12, .... 
For the graph consisting of a single arrow g with different ends, the free 
category consists of this arrow plus two identity arrows (one at each end). 
For the graph . ~ . ~ . with three different vertices the free category is 
a commutative triangle (add one composite arrow and three identity 
arrows). 

When 0 consists of one point, the graph G reduces simply to a set 
X (the set X = A of arrows) and the theorem provides the familiar 
construction of a free monoid M generated by X, as follows: 

Corollary 2. To any set X there is a monoid M and a function 
p: X ---+ U M, where U M is the underlying set of M, with the following 
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universal property,' For any monoid L and any function h : X ---* U L there 
is a unique morphism h' : M ---* L of monoids with h = U h' 0 p. 

The elements of M are the identity and strings <Xl, ... , xn - l ), for 
XiEX. 

Graphs may be used to describe diagrams. If G is any graph, a 
diagram of the shape G in the category B may be defined to be a morphism 
D : G---* U B of graphs. By the Theorem, these morphisms D correspond 
exactly to functors D' : CG ---* B, via the bijection D' f--+ D = U D' 0 P. This 
bijection 

Cat(CG , B) ~ Grph(G, U B) (6) 

is natural in G and B, so asserts that C: Grph --. Cat is left adjoint (see 
Chapter IV) to the forgetful functor U: Cat --. Grph. 

Exercises 

1. Define "opposite graph" and "product of two graphs" to agree with the cor
responding definitions for categories (i.e., so that the functor U will preserve 
opposites and products). 

2. Show that every finite ordinal number is a free category. 
3. Show that each graph G generates a free groupoid F (i.e., one which satisfies 

Theorem 1 with "category C" replaced by "groupoid F" and "category B" 
by "groupoid E"). Deduce as a corollary that every set X generates a free group. 

8. Quotient Categories 

Certain categories may be described by generators and relations, as 
follows: 

Proposition 1. For a given category C, let R be a function which 
assigns to each pair of objects a, b of C a binary relation Ra,b on the hom
set C(a, b). Then there exist a category CjR and a functor Q = QR : C---*CjR 
such that(i) If fRa.hi' in C, then Qf=Qf'; (ii) If H:C---*D is any 
functor from C for which f Ra. b I' implies H f = HI' for all f and 1', 
then there is a unique functor H': CjR---*D with H' QR = H. Moreover, 
the functor QR is a bijection on objects. 

Put briefly: Q is the universal functor on C with Qf = Qf' whenever 
fRf'. 

F or example, if C = Top and f R I' means that f is homotopic to 1', 
then the desired quotient category CjR is just the category Toph of § 1.7, 
with objects topological spaces and arrows homotopy classes of con
tinuous maps. This direct construction is possible for Toph because the 
relation of homotopy between maps is an equivalence relation preserved 
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by composition. The general case requires a preliminary construction 
on the relation R to achieve these properties. 

Sketch of proof. Call R a congruence on C if (i) for each pair a, b 
of objects, Ra,b is a reflexive, symmetric, and transitive relation on 
C(a,b); (ii) iff,J': a ----> b havef Ra,bf', then for all g: a' ----> a and all 
h:b-+b' one has (hfg)Ra'.b,(hf'g). Given any R, there is a least con
gruence R' on C with R C R' (proof as exercise). Now take the objects of 
CjR to be the objects of C, and take each hom-set (CjR) (a, b) to be the 
quotient C(a, b)/R~.b of C(a, b) by the equivalence relation R' there. 
Because the relation is preserved by composition, the composite in C 
carries over to CjR by the evident projection Q: C-+CjR. Now for any 
functor H:C-+D the sets Sa.b={f,J':a-+bIHf=Hf'} evidently 
form a congruence on C. Thus, if S) R one also has S) R', and H factors 
as H = H' 0 QR, as required. 

In case C is the free category generated by a graph G we call CjR 
the category with generators G and relations R. For example, 3 may be 
described as the category generated by three objects 0,1,2, three arrows 
f: 0-+ 1, g: 1-+ 2, and h: 0-+ 2, and one relation h = g of. As a special 
case (one object), this includes the case of a monoid given by generators 
and relations. 

Exercises 

1. Show that the category generated by the graph 

• -------> • 
g' 

with the one relation g'I = l' g has four identity arrows and exactly five non
identity arrows I, g,1', g' and g'I = l' g. 

2. If C is a group G (regarded as a category with one object) show that to each con
gruence R on C there is a normal subgroup N of G with I Rg if and only if 
g-liEN. 

Notes. 

The leading idea of this chapter is to make the simple notion of a functor apply 
to complex cases by defining suitable complex categories - the opposite category for 
contravariant functors, the product category for bifunctors, the functor category 
really as an adjoint to the product, and the comma category to reduce universal 
arrows to initial objects. The importance of the use of functor categories (some
times called "categories of diagrams") was emphasized by Grothendieck [1957] 
and Freyd [1964]. The notion of a comma category, often used in special cases, was 
introduced in full generality in Lawvere's (unpublished) thesis [1963], in order to 



Quotient Categories 53 

give a set-free description of adjoint functors. For a time it was a sort of secret tool 
in the arsenal of knowledgeable experts. 

Duality has a long history. The duality between point and line in geometry, 
especially projective geometry, led to a sharp description of axiomatic duality in 
the monumental treatise by Veblen-Young on projective geometry. The explicit 
description of duality by opposite categories is often preferable, as in the Pontrjagin 
duality which appears (§ IV.3) as an equivalence between categories, or as an 
equivalence between a category and an opposite category (see Negrepontis [1971]). 





III. Universals and Limits 

Universal constructions appear throughout mathematics in various 
guises - as universal arrows to a given functor, as universal arrows from 
a given functor, or as universal elements of a set-valued functor. Each 
universal determines a representation of a corresponding set-valued 
functor as a hom-functor. Such representations, in turn, are analyzed 
by the Y oneda Lemma. Limits are an important example of universals -
both the inverse limits (= projective limits = limits = left roots) and their 
duals, the direct limits (= inductive limits = colimits = right roots). In 
this chapter we define universals and limits and examine a few basic 
types of limits (products, pullbacks, and equalizers ... ). Deeper properties 
will appear in Chapter IX on special limits, while the relation to adjoints 
will be treated in Chapter V. 

1. Universal Arrows 

Given the forgetful functor U: Cat- Grph and a graph G, we have 
constructed (§ II. 7) the free category C on G and the morphism P : G- U C 
of graphs which embeds G in C, and we have shown that this arrow P 
is "universal" from G to U. A similar universality property holds for the 
morphisms embedding generators into free algebraic systems of other 
types, such as groups or rings. Here is the general concept. 

Definition. IJ S : D- C is a Junctor and c an object of C, a universal 
arrow Jrom c to S is a pair (r, u) consisting oj an object r oj D and an arrow 
u: c-Sr oj C, such that to every pair (d,J) with d an object oj D and 
J: c-S d an arrow oj C, there is a unique arrow f': r-d oj D with S f'ou = f. 
In other words, every arrow J to S Jactors uniquely through the universal 
arrow u, as in the commutative diagram 

c~Sr 

i Sf' 

c~S:"d, 
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f' (1) 
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Equivalently, u: c-'>Sr is universal from c to S when the pair <r, u) 
is an initial object in the comma category (c! S), whose objects are the 
arrows c-'>Sd. As with any initial object, it follows that <r, u) is unique 
up to isomorphism in (c ! S); in particular, the object r of D is unique 
up to isomorphism in D. This remark is typical of the use of comma 
categories. 

This notion of a universal arrow has a great variety of examples; 
we list a few: 

Bases of Vector Spaces. Let VctK denote the category of all vector 
spaces over a fixed field K, with arrows linear transformations, while 
U: VctK-'>Set is the forgetful functor, sending each vector space V to 
the set of its elements. For any set X there is a familiar vector space Vx 
with X as a set of basis vectors; it consists of all formal K-linear combina
tions of the elements of X. The function which sends each x E X into 
the same x regarded as a vector of Vx is an arrow j: X -'> U(Vx). For 
any other vector space W, it is a fact that each function f: X -'> U(W) 
can be extended to a unique linear transformation 1': Vx-'> W with 
U 1'0 j = f. This familiar fact states exactly that j is a universal arrow 
from X to U. 

Free Categories from Graphs. Theorem II. 7.1 for the free category C 
on a graph G states exactly that the functor P : G -+ U C is universal. 
The same observation applies to the free monoid on a given set of gen
erators, the free group on a given set of generators, the free R-module 
(over a given ring R) on a given set of generators, the polynomial algebra 
over a given commutative ring in a given set of generators, and so on in 
many cases of free algebraic systems. 

Fields of Quotients. To any integral domain D a familiar construction 
gives a field Q(D) of quotients of D together with a monomorphism 
j: D-'>Q(D) (which is often formulated by making D a sub domain ofQ(D)). 
This field of quotients is usually described as the smallest field containing 
D, in the sense that for each D C K with K a field there is a monomorphism 
f: Q(D)-'> K of fields which is the identity on the common subdomain D. 
However, this inclusion DC K may readily be replaced by any mono
morphism D-'>K of domains. Hence our statement means that the pair 
< Q(D),j) is universal for the forgetful functor Fld -'> Domm from the 
category of fields to that of domains - provided we take arrows of 
Domm to be the monomorphisms of integral domains (note that a homo
morphism of fields is necessarily a monomorphism). However, for the 
larger category Dom with arrows all homomorphisms of integral domains 
there does not exist a universal arrow from each domain to a field. For 
instance, for the domain Z of integers there is for each prime p a homo
morphism Z -+ Zp; the reader should observe that this makes impossible 
the construction of a universal arrow from Z to the functor F1d -+ Dom. 

Complete Metric Spaces. Let Met be the category of all metric spaces 
X, Y, ... , with arrows X -'> Y those functions which preserve the metric 
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(and which therefore are necessarily injections). The complete metric 
spaces form (the objects of) a full subcategory. The familiar completion 
X of a metric space X provides an arrow X --X which is universal for 
the evident forgetful functor (from complete metric spaces to metric 
spaces). 

In many other cases, the function embedding a mathematical object 
in a suitably completed object can be interpreted as a universal arrow. 
The general fact of the uniqueness of the universal arrow implies the 
uniqueness of the completed object, up to a unique isomorphism (who 
wants more?). 

The idea of universality is sometimes expressed in terms of "universal 
elements". If D is a category and H: D--Set a functor, a universal element 
of the functor H is a pair <r, e) consisting of an object rED and an element 
e E H r such that for every pair <d, x) with x E H d there is a unique 
arrow I:r--d of D with (HI)e=x. 

Many familiar constructions are naturally examples of universal 
elements. For instance, consider an equivalence relation E on a set S, 
the corresponding quotient set SIE consisting of the equivalence classes 
of elements of Sunder E, and the projection p : S -- SI E which sends each 
s E S to its E-equivalence class. Now SIE has the familiar property that 
any function I on S which respects the equivalence relation can be re
garded as a function on SI E. More formally, this means that if I: S -- X 
has Is = I s' whenever s E s', then I can be written as a composite I = l' p 
for a unique function 1': SIE--X: 

S~SIE 

if' 
'" s~ x. 

This states exactly that < SI E, p) is a universal element for that functor 
H : Set --Set which assigns to each set X the set H X of all those functions 
I: S--X for which sEs' implies Is = Is'. 

Again, let N be a normal subgroup of a group G. The usual projection 
p: G-- GIN which sends each g E G to its coset pg = g N in the quotient 
group GIN is a universal element for that functor H: Grp--Set which 
assigns to each group G' the set H G' of all those homomorphisms I: G--G' 
which kill N (have IN = 1). Indeed, every such homomorphism factors 
as 1= l' p, for a unique 1': GIN -- G'. Now the quotient group is usually 
described as a group whose elements are cosets. However, once the cosets 
are used to prove this one "universal" property of p: G--GIN, all other 
properties of quotient groups - for example, the isomorphism theorems -
can be proved with no further mention of cosets (see Mac Lane-Birk
hoff [1967]). All that is needed is the existence of a universal element 
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p of the functor H. For that matter, even this existence could be proved 
without using cosets (see the adjoint functor theorem stated in §V.6). 

Tensor products provide another example of universal elements. 
Given two vector spaces V and V' over the field K, the function H which 
assigns to each vector space W the set H W = Bilin( V, V'; W) of all bi
linear functions V x V' ~ W is the object function of a functor 
H : VectK~Set, and the usual construction of the tensor product provides 
both a vector space V@ V' and a bilinear function @ : V x V'~ V@ V', 
usually written <v, v') I-+V® v', so that the pair <V® V', ®) is a universal 
element for the functor H = Bilin(V, V'; -). This applies equally well 
when the field K is replaced by a commutative ring (and vector spaces 
by K-modules). 

The notion "universal element" is a special case of the notion "universal 
arrow". Indeed, if * is the set with one point, then any element e E H r 
can be regarded as an arrow e: * ~ H r in Ens. Thus a universal element 
<r, e) for H is exactly a universal arrow from * to H. Conversely, if C 
has small hom-sets, the notion "universal arrow" is a special case of the 
notion "universal element". Indeed, if S: D~C is a functor and c E C 
is an object, then <r, u: c~Sr) is a universal arrow from c to S if and 
only if the pair <r, U E C(c, Sr) is a universal element of the functor 
H = C(c, S -). This is the functor which acts on objects d and arrows 
h of D by 

Hitherto we have treated universal arrows from an object c E C 
to a functor S : D~ C. The dual concept is also useful. A universal arrow 
from S to c is a pair <r, v) consisting of an object rED and an arrow 
v: Sr~c with codomain c such that to every pair <d,f) with f: Sd~c 
there is a unique f': d~r withf = v 0 Sf', as in the commutative diagram 

d Sd~c 

r! sr [ 
..... 4-
r, Sr~c. 

The projections p: a x b~a, q: a x b~b of a product in C (for 
C = Grp, Set, Cat, ... ) are examples of such a universal. Indeed, given 
any other pair of arrows f: c~a, g: c~b to a and b, there is a unique 
h:c~axb with ph=f,qh=g. Therefore <p,q) is a "universal pair". 
To make it a universal arrow, introduce the diagonal functor 
Ll:C~CxC, with Llc=<c,c). Then the pair f,g above becomes an 
arrow <f, g): Ll c~<a, b) in ex C, and <p, q) is a universal arrow from 
Ll to the object <a, b). 
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Similarly, the kernel ofa homomorphism (in Ab, Grp, Rng, R-Mod, ... ) 
is a universal, more exactly, a universal for a suitable contravariant 
functor. 

Note that we say "universal arrow to S" and "universal arrow from S" 
rather than "universal" and "couniversal". 

Exercises 

1. Show how each of the following familiar constructions can be interpreted as a 
universal arrow: 
(a) The integral group ring of a group (better, of a monoid). 
(b) The tensor algebra of a vector space. 
(c) The exterior algebra of a vector space. 

2. Find a universal element for the contravariant power set functor [JjJ: SetOP~Set. 

3. Find (from any given object) universal arrows to the following forgetful functors: 
Ab~Grp, Rng~Ab (forget the multiplication), Top~Set, Set*~Set. 

4. Use only universality (of projections) to prove the following isomorphisms of 
group theory: 
(a) For normal subgroups M, N of G with MeN, (G/M)/(N/M)~G/M. 
(b) For subgroups Sand N of G, N normal, with join SN, SN/N~S/SnN. 

5. Show that the quotient K-module A/S (S a submodule of A) has a description by 
universality. Derive isomorphism theorems. 

6. Describe quotients of a ring by a two-sided ideal by universality. 
7. Show that the construction of the polynomial ring K[x] in an indeterminate x 

over a commutative ring K is a universal construction. 

2. The Y oneda Lemma 

Next we consider some conceptual properties of universality. First, 
universality can be formul,ated with hom-sets, as follows: 

Proposition 1. For a functor S: D---+C a pair <r, u: c---+Sr) is universal 
from c to S if and only if the function sending each 1': r---+d into 
Sf' 0 u : c---+ S d is a bijection of hom-sets 

D(r, d) ~ C(c, Sd). (1) 

This bijection is natural in d. Conversely, given rand c, any natural iso
morphism (1) is determined in this way by a unique arrow u: c---+Sr such 
that <r, u) is universal from c to S. 

Proof. The statement that <r, u) is universal is exactly the statement 
that 1'1-+ Sf' 0 u = f is a bijection. This bijection is natural in d, for if 
g' : d---+d', then S(g'f') 0 u = S g' 0 (S I' 0 u). 

Conversely, a natural isomorphism (1) gives for each object d of D 
a bijection f{Jd: D(r, d)---+ C(c, S d). In particular, choose the object d to be r; 
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the identity 1r E D(r, r) then goes by CPr to an arrow u: c-Sr in C. For 
any f' : r-d the diagram 

D(r, r)~C(c, Sr) 

D(r,f') 1 1 C(e,Sf') (2) 

D(r, d)~C(c, Sd) 

commutes because cP is natural. But in this diagram, 1r E D(r, r) is mapped 
(top and right) to Sf' 0 u and (left and bottom) to CPd(f'). Since CPd is a bi
jection, this states precisely that each f: c-S d has the form f = Sf' 0 u 
for a unique f'. This is precisely the statement that (r, u) is universal. 

If C and D have small hom-sets, this result (1) states that the functor 
C(c, S -) to Set is naturally isomorphic to a covariant hom-functor 
D(r, -). Such isomorphisms are called representations: 

Definition. Let D have small hom-sets. A representation of a functor 
K : D-Set is a pair (r, lP), with r an object of D and 

lP : D(r, -) ~ K (3) 

a natural isomorphism. The object r is called the representing object. 
The functor K is said to be representable when such a representation exists. 

Up to isomorphism, a representable functor is thus just a covariant 
hom-functor D(r, -). This notion can be related to universal arrows as 
follows. 

Proposition 2. Let * denote anyone-point set and let D have small 
hom-sets. If (r, u: *-K r) is a universal arrow from * to K: D-Set, 
then the function lP which for each object d of D sends the arrow f' : r-d 
to K(j')(u*) E K d is a representation of K Every representation of K is 
obtained in this way from exactly one such universal arrow. 

Proof. For any set X, a function f: * - X from the one-point set * 
to X is determined by the element f( *) E X. This correspondence fl-> f( *) 
is a bijection Set( *, X)-----4 X, natural in X E Set. Composing with K yields 
a natural isomorphism Set( *, K - )-----4 K. This plus the representation lP 
of (3) gives 

Set( *, K - ) ~ K ~ D(r, -). 

Therefore a representation of K amounts to a natural isomorphism 
Set(*, K -) ~ D(r, -). The proposition thus follows from the previous 
one. 

A direct proof is equally easy: Given the universal arrow u, the 
correspondence f' I-> K (f') (u( *)) is a representation; given a representa
tion lP as in (3), lPr maps 1 : r- r to an element of K r, which is a universal 
element, hence also a universal arrow *-K r. 
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Observe that each of the notions "universal arrow", "universal 
element", and "representable functor" subsumes the other two. Thus, a 
universal arrow from c to S: D-C amounts (Proposition 1) to a natural 
isomorphism D(r, d) ~ C(c, S d) and hence to a representation of the 
functor C (c, S -): D-Set or equally well to a universal element for 
the same functor. 

The argument for Proposition 1 rested on the observation that each 
natural transformation cP : D(r, -)-4 K is completely determined by the 
image under CPr of the identity 1 : r-r. This fact may be stated as follows: 

Lemma (Yoneda). If K: D ----; Set is a functor from D and r an object 
in D (for D a category with small hom-sets), there is a bijection 

y: Nat (D(r, -), K) ~ Kr (4) 

which sends each natural transformation IX: D(r, -)-4 K to IXr 1" the 
image of the identity r- r. 

The proof is indicated by the following commutative diagram: 

D(r, r) ~ K(r) 

f*=D(r.nl lK(n (5) 

D(r, d)~K(d), 

Corollary. For objects r, sED, each natural transformation 
D(r, - )-4D(s, -) has the form D(h, -) for a unique arrow h: s-r. 

The Yoneda map y of (4) is natural in K and r. To state this fact 
formally, we must consider K as an object in the functor category SetD, 

regard both domain and codomain of the map y as functors of the pair 
<K, r), and consider this pair as an object in the category SetD x D. The 
codomain for y is then the evaluation functor E, which maps each pair 
<K, r) to the value Kr of the functor K at the object r; the domain is 
the functor N which maps the object <K, r) to the set Nat(D(r, - ), K) 
of all natural transformations and which maps a pair of arrows F : K - K', 
f: r-r' to Nat(D(f, -), F). With these observations we may at once 
prove an addendum to the Yoneda Lemma: 

Lemma. The bijection of (4) is a natural isomorphism y : N -4 E between 
the functors E, N : SetD x D-Set. 

The object function r 1-+ D(r, -) and the arrow function 

(f: s-r)I-+D(f, -): D(r, - )-4D(s, -) 

for f an arrow of D together define a full and faithful functor 

(6) 
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called the Yoneda functor. Its dual is another such functor 

Y' : D---+SetDOP 

(also faithful) which sends f: s---+r to the natural transformation 

D( -,f): D( -, s) ........ D( -, r): DOP---+Set. 

(7) 

D must have small hom-sets if these functors are to be defined (because 
Set is the category of all small sets). For larger D, the Yoneda lemmas 
remain valid if Set is replaced by any category Ens whose objects are sets 
X, Y, ... , and for which Ens(X, Y) is the set of all functions from X to Y, 
provided of course that D has hom-sets which are objects in Ens. (The 
meaning of naturality is not altered by further enlargement of Ens; 
see Exercise 4.) 

Exercises 

1. Let functors K, K': D-+Set have representations (r, tp) and (r', tp'), respectively. 
Prove that to each natural transformation T : K ...... K', there is a unique morphism 
h: r' -+r of D such that 

To tp = tp' 0 D(h, -): D(r, - ) ...... K' . 

2. State the dual of the Yoneda Lemma (D replaced by DOP). 

3. (Kan; the coyoneda lemma.) For K : D ---> Set, (* 1 K) is the category of ele
ments x E K d, Q: (* 1 K) ---> D is the projection x E K d I--> d and for each 
a E D, a: (* 1 K)-+ D is the diagonal functor sending everything to the constant 
value a. Establish a natural isomorphism 

Nat(K, D(a, -)) ~ Nat (a, Q). 

4. (Naturality is not changed by enlarging the codomain category.) Let E be a full 
subcategory of E'. For functors K, L: D---->E, with J: E-+E' the inclusion, prove 
that Nat(K, L) ~ Nat(J K, J L). 

3. Coproducts and Colimits 

We introduce colimits by a variety of special cases, each of which is a 
universal. 

Coproducts. For any category C, the diagonal functor .d : C ---+ C x C 
is defined on objects by .d(c) = <c, c), on arrows by .d(f) = <f,f). 
A universal arrow from an object <a, b) of C x C to the functor .d is 
called a coproduct diagram. It consists of an object c of C and an arrow 
<a, b)---+<c, c) of C x C; that is, a pair of arrows i: a---+c, j: b---+c from 
a and b to a common codomain c. This pair has the familiar universal 
property: For any pair of arrows f: a---+d, g: b---+d there is a unique 
h : c -+ d withf = hoi, g = h 0 j. When such a coproduct diagram exists, 
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the object c is necessarily unique (up to isomorphism in C); it is written 
c = a 11 b or c = a + b and is called a coproduct object. The coproduct 
diagram then is 

a~a 11 b....i-b ; 

the arrows i andj are called the injections of the coproduct a 11 b (though 
they are not required to be injective as functions). The universality of this 
diagram states that any diagram of the following form can be filled in 
uniquely (at h) so as to be commutative: 

(1) 

Hence the assignment <1, g) f-+h is a bijection 

C(a, d) x C(b, d);::; C(a 11 b, d) (2) 

natural in d, with inverse h f-+ <h i, hj). If every pair of objects a, b in C 
has a coproduct then, choosing a coproduct diagram for each pair, the 
coproduct 11: C x C---->C is a bifunctor, with h 11 k defined for arrows 
h : a---->a', k: b---->b' as the unique arrow h 11 k: all b---->a' 11 b' with 
(h 11 k) i = i' h, (h 11 k)j = j' k (draw the diagram !). 

The diagram (1) is more familiar in other guises. For example, in 
Set take a 11 b to be a disjoint union of the sets a and b (i.e., a union of 
disjoint copies of a and b), while i andj are the inclusion maps a Call b, 
be all b. Now a function h on a disjoint union is uniquely determined 
by independently giving its values on a and on b; i.e., by giving the 
composites hi and hj. This says exactly that diagram (1) can be filled 
in uniquely at h. To be sure, a disjoint union is not unique, but it is unique 
up to a bijection, as befits a universal. 

The coproduct of any two objects exists in many of the familiar cate
gories, where it has a variety of names as indicated in the following list: 

Set 
Top 
Top* 
Ab, R-Mod 
Grp 
CRng 

disjoint union of sets, 
disjoint union of spaces, 
wedge product (join two spaces at the base points), 
direct sum A EB B, 
free product, 
tensor product R ® S . 

In a preorder P, a least upper bound aub of two elements a and b, 
if it exists, is an element aub with the properties (i) a;£ aub, b;£ aub; 
and (ii) if a ;£ c and b;£ c, then au b ;£ c. These properties state exactly 
that aub is a coproduct of a and b in P, regarded as a category. 
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Infinite Coproducts. In the description of the coproduct, replace 
C x C = C2 by CX for any set X. Here the set X is regarded as a discrete 
category, so the functor category CX has as its objects the X-indexed 
families a = {ax I x E X} of objects of C. The corresponding diagonal 
functor L1 : C ---+ CX sends each c to the constant family (all Cx = c). A 
universal arrow from a to L1 is an X-fold coproduct diagram; it consists 
of a coproduct object llxax E C and arrows (coproduct injections) 
ix: ax---+llxax of C with the requisite universal property. This universal 
property states that the assignment f~{fix I x E X} is a bijection 

C(llxax, c) ~ [1 C(ax' c), (3) 
XEX 

natural in c. In Set, a coproduct is an X-fold disjoint union. 
Copowers. If the factors in a coproduct are all equal (ax = b for all x), 

the coproduct llxb is called a copower and is written X· b, so that 

C(X· b, c) ~ C(b, cl , (4) 

natural in c. For example, in Set, with b = Y a set, the copower 
X· Y = X x Y is the cartesian product of the sets X and Y. 

Cokernels. Suppose that C has a null object z, so that for any two 
objects b, c E C there is a zero arrow 0: b---+z---+c. The cokernel of 
f: a---+b is then an arrow u: b---+e such that (i) uf = 0: a---+e; (ii) if h: b---+c 
has hf = 0, then h = hi u for a unique arrow hi: e---+c. The picture is 

uf=O, 

(5) 

c, hf=O. 

In Ab, the cokernel of f: A ---+ B is the projection B ---+ Bj fA to a quotient 
group of B, and in many other such categories a cokernel is essentially a 
suitable quotient object. However, in categories without a null object 
cokernels are not available. Hence we consider more generally certain 
··coequalizers". 

Co equalizers. Given in C a pair f, g : a---+b of arrows with the same 
domain a and the same codomain b, a coequalizer of <f, g) is an arrow 
u: b---+e (or, a pair <e, u») such that (i) uf = ug; (ii) if h: b---+c has hf = hg, 
then h = hi u for a unique arrow hi: e---+c. The picture is 

f 

a=?b~~ 
h \lh' 

uf = ug, 

(6) 

c, hf=hg. 

A coequalizer u can be interpreted as a universal arrow as follows. 
Let 11 denote the category which has precisely two objects and two 
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non-identity arrows from the first object to the second; thus the category is 
"=t ". Form the functor category CH. An object in CH is then a functor 
from" =t" to C; that is, a pair <f, g) : a~b of parallel arrows a =t b 
in C. An arrow in CH from one such pair <f, g) to another <!" g') is 
a natural transformation between the corresponding functors; this 
means that it is a pair <h, k) of arrows h : a~d and k : b~b' in C 

f 
a ----+ b kg = g' h , 

.j~j. 
d----+b' kf=f'h, 
~' 

which make the f-square and the g-square commute. There is also a 
diagonal functor LI : C ~ C H, defined on objects e and arrows r of C as 

e' 

1 

I~j. 
e'~e" ----+ , 

1 

in symbols, LIe = 00 1e) and LIr = <r, r). Now given the pair <f, g) : a~b, 
an arrow h: b~e with hf = hg is the same thing as an arrow 
<hf=hg,h): <f,g)~Oo 1) in the functor category CH : 

hf = hg. 

In other words, the arrows h which "coequalize" f and g are the arrows 
from <f, g) to LI. Therefore a co equalizer <e, u) of the pair <f, g) is 
just a universal arrow from <f, g) to the functor LI. 

Coequalize.rs of any set of maps from a to b are defined in the same way. 
In Ab, the coequalizer of two homomorphisms f, g : A ~ B is the 

projection B~B/(f - g)A on a quotient group of B (by the image of 
the difference homomorphism). In Set, the co equalizer of two functions 
f, g : X ~ Y is the projection p: Y ~ Y/E on the quotient set of Y by the 
least equivalence relation Ee Yx Y which contains all pairs <fx,gx) 
for x E X. The same construction, using the quotient topology, gives 
co equalizers in Top. 

Pushouts. Given in C a pair f: a~b, g: a~e of arrows with a common 
domain a, a pushout of <f, g) is a commutative square, such as that on 
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the left below 

a~b 

v c----->r, 
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a~b 

(7) 

such that to every other commutative square (right above) built on f, 9 
there is a unique t: r----->s with tu = h and tv = k. In other words, the 
pushout is the universal way of filling out a commutative square on the 
sides f, g. It may be interpreted as a universal arrow. Let . <---. ----->. 
denote the category which looks just like that. An object in the functor 
category C <-. ~. is then a pair of arrows <f, g) in C with a common 
domain, while,1 (c) = < 10' 1c) is the object function of an evident "diagonal" 
functor ,1: C----->C<-·~. A commutative square hf=kg as on the right 
above can then be read as an arrow 

<f,g) b~a~c 

1 hl lhf = k9 1k 
,1 (s) 

in c<-· ~ from <f, g) to ,1 s, The pushout is a universal such arrow. 
Its vertex r, which is uniquely determined up to (a unique) isomorphism, is 
often written as a coproduct "over a" 

r = b IIac = bII(f.9)C, 

and called a "fibered sum" or (the vertex of) a "cocartesian square". 
In Set, the pushout of <f, g) always exists; it is the disjoint union b II c 
with the elemen ts f x and 9 x identified for each x E a. A similar construction 
gives pushouts in Top - they include such useful constructions as ad
junction spaces. Pushouts exist in Grp; in particular, if f and 9 above 
are monic in Grp, the arrows u and v of the pushout square are also monic, 
and the vertex r is called the "amalgamated product" of b with c. 

Cokernel Pair. Given an arrow f: a----->b in C, the pushout of f with 
f is called the cokernel pair of f. Thus the cokernel pair of f consists of an 
object r and a parallel pair of arrows u, v : b----->r, with domain b, such that 
uf=vfand such that to any parallel pair h,k:b----->s with hf=kf 
there is a unique t: r----->s with tu = h and tv = k: 

a~b~r uf=vf, 

~} 
s, hf=kf. 
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Colimits. The preceding cases all deal with particular functor categories 
and have the following pattern. Let C and J be categories (J for index 
category, usually small and often finite). The diagonal functor 

LI: C->CJ 

sends each object c to the constant functor Llc - the functor which has 
the value c at each object i E J and the value Ie at each arrow of .T. If 
f: c->c' is an arrow of C, Llf is the natural transformation Llf: LI C-4L1 c' 
which has the same value f at each object i of J. Each functor F: J -> C 
is an object of CJ . A universal arrow <r, u) from F to LI is called a colimit 
(a "direct limit" or ··inductive limit") diagram for the functor F. It consists 
of an object r of C, usually written r = LimF or r = ColimF, together 

~ 

with a natural transformation u: F -4L1 r which is universal among 
natural transformations L: F ........ LI c. Since LI c is the constant functor, 
the natural transformation L consists of arrows Lj : Fj->c of C, one for 
each object i of J, with Lj Fu = Lj for each arrow u: i->j of J. Pictorially, 
all the squares in the following schematic diagram (for a special choice of J) 

c c c c c 

must commute. It is convenient to visualize these diagrams with all the 
"bottom" objects identified. For this reason, a natural transformation 
L : F ........ LI c, often written as L : F ........ c, omitting LI, is called a cone from the 
base F to the vertex c, as in the figure 

(all triangles commutative). In this language, a colimit of F: J->C 
consists of an object Lim FE C and a cone ,u: F ........ LI (Lim F) from the 

--+ ~ 

base F to the vertex LimF which is universal: For any cone L: F ........ LI c 
~ 

from the base F there is a unique arrow t' : !dm F ->c with Lj = t'llj for 
every index i E J. We call 11 the limiting cone or the universal cone (from F). 

For example, let J = w = {O->I->2->3-> ... } and consider a functor 
F: w->Set which maps every arrow of w to an inclusion (subset in set). 
Such a functor F is simply a nested sequence of sets Fo C Fl C F2 C .... 
The union U of all sets Fn , with the cone given by the inclusion maps 
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Fn-+ U, is Lim F. The same interpretation of unions as special colimits 
~ 

applies in Grp, Ab, and other familiar categories. The reader may wish to 
convince himself now of what we shall soon prove (Exercise V.1.8): For J 
small, any F : J -> Set has a colimit. 

Exercises 

1. In the category of commutative rings, show that R---->R0S+-S, with maps 
1"1->1"01, 10s-<-1s, is a coproduct diagram. 

2. If a category has (binary) coproducts and coequalizers, prove that it also has 
pushouts. Apply to Set, Grp, and Top. 

3. In the category MatrK of § 1.2, describe the coequalizer of two m x n matrices 
A, B (i.e., of two arrows n---->m in MatrK ). 

4. Describe coproducts (and show that they exist) in Cat, in Mon, and in Grph. 
5. If E is an equivalence relation on a set X, show that the usual set XjE of equiv

alence classes can be described by a co equalizer in Set. 
6. Show that a and b have a coproduct in C if and only if the following functor 

is representable: C(a, - ) x C(b, - ) : C ---->Set, by c f-> C(a, c) x C(b, c). 
7. (Every abelian group is a colimit of its finitely generated subgroups.) If A is an 

abelian group, and JA the preorder with objects an finitely generated subgroups 
SeA ordered by inclusion, show that A is the colimit of the evident functor 
JA ----> Ab. Generalize. 

4. Products and Limits 

The limit notion is dual to that of a colimit. Given categories C, J, 
and the diagonal functor Ll: C -+ CJ , a limit for a functor F: J -+ C 
is a universal arrow <r, v) from L1 to F. It consists of an object r of C, 
usually written r = LimF or LimF and called the limit object (the 

<---
"inverse limit" or "projective limit") of the functor F, together with a 
natural transformation v: Ll r~ F which is universal among natural 
transformations T: Ll c~ F, for objects c of C. Since Ll c : J -+ C is the 
functor constantly c, this natural transformation T consists of one arrow 
T i : C-+Fi of C for each object i of J such that for every arrow u: i-+j 
of J one has Tj = Fu 0 T i . We may call T : c~ F a cone to the base F from 
the vertex c. (We say "cone to the base F" rather than "cocone"). The 
universal property of v is this: It is a cone to the base F from the vertex 
Lim F; for any cone T to F from an object c, there is a unique arrow 
<---
t: c-+ Lim F such that Ti = Vi t for all i. The situation may be pictured as 

<---

c~LimF=LimF 

t'·l ~ { <---lVJ' -- j j / ~ v = limiting cone, 

Fi~Fj 
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each cone is represented by a commuting triangle oust one of many), 
with vertex up; there is a unique arrow t which makes all the added 
(vertex down) triangles commute. As with any universal, the object 
LimF and its limiting cone v: Lim'F -F are determined uniquely by the 
+--- +---
functor F, up to isomorphism in C. 

The properties of Lim and Lim are summarized in the diagram 
+--- -------> 

LimF = LimF~F~LimF = ColimF 
+--- -------> 

T (1) 

c --~) F--(f---» C, 

where the horizontal arrows are cones, the vertical arrows are arrows in C. 
When the limits exist, there are natural isomorphisms 

C(c, LimF) ~ Nat(Ll c, F) = Cone(c, F), 
+---

Cone(F, c) = Nat(F, Ll c) ~ C(Lim F, c). 
-------> 

(2) 

(3) 

There are familiar names for various special limits, dual to those for 
colimits: 

Products. If Jis the discrete category {I,2}, a functor F: {I, 2} ---- C 
is a pair of objects (a, b) of C. The limit object is called a product of a 
and b, and is written a x b or a II b; the limit diagram consists of ax b 
and two arrows p, q (or sometimes prl' pr2 ), 

a?a x b--'4b, 

called the projections of the product. They constitute a cone from the ver
tex a x b, so by the definition above of a limit, there is a bijection of sets 

C(c, a x b) ~ C(c, a) x C(c, b) (4) 

natural in c, which sends each h: c-a x b to the pair of composites 
(ph, qh). Conversely, given arrows f: c-a and g: c-b, there is a 
unique h: c-a x b with ph = f and qh = g. We write 

h = (j, g): c-a x b 

and call h the arrow with components f and g. We have already observed 
(in § II.3) that the product of any two objects exists in Cat, in Grp, in Top, 
and in MOD; in these cases (and in many others) it is called the direct 
product. In a preorder, a product is a greatest lower bound. 

Infinite products. If J is a set (= discrete category = category with 
all arrows identities), then a functor F:J-C is simply a J-indexed 
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family of objects aj E C, while a cone with vertex c and base aj is just a 
J-indexed family of arrows fj: c--->aj. A universal cone Pj: IIjaj--->aj 
thus consists of an object IIjaj, called the product of the factors aj, 
and of arrows p j' called the projections of the product, with the following 
universal property: To each J-indexed family (=cone) fj: c--->aj there is 
a unique f 

The arrow f uniquely determined by this property is called the map 
(to the product) with components fj, j E 1. Also {fj Ij E J} H- f is a bi
jection 

(5) 

natural in c. Here the right hand product is that in C, while the left-hand 
product is taken in Set (where we assume that C has small hom-sets). 
Observe that the hom-functor C(c, -) carries products in C to products 
in Set (see § V.4). Products over any small set J exist in Set, in Top, 
and in Grp; in each case they are just the familiar cartesian products. 

Powers. If the factors in a product are all equal (aj = bEe for all j) 
the product IIjaj = IIjb is called a power and is written IIjb = bJ , so the 

(6) 

natural in c. The power on the left is that in Set, where every small power 
X J exists (and is the set of all functions J ---> X). 

Equalizers. If J=l1. a functor F:ll--->C is a pair f,g:b--->a of 
parallel arrows of C. A limit object d of F, when it exists, is called an 
equalizer (or, a '"difference kernel") of f and g. The limit diagram is 

(7) 

(the limit arrow e amounts to a cone a~d--->b from the vertex d). The 
limit arrow is often called the equalizer of f and g; its universal property 
reads: To any h:c--->b with fh=gh there is a unique h':c--->d with 
eh'=h. 

In Set, the equalizer al wa ys exists; d is the set {x E b I f x = g x} and 
e: d--->b is the injection of this subset of b into b. In Top, the equalizer 
has the same description (d has the subspace topology). In Ab the equalizer 
d of f and g is the usual kernel of the difference homomorphism 
f-g:b--->a. 

Equalizers for any set of arrows from b to a are described similarly. 
Any equalizer e is necessarily a monic. 
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Pullbacks. If J = (~ • -), a functor F : (~ . _)~ C is a pair of arrows 
b.La~d of C with a common codomain a. A cone over such a functor 
is a pair of arrows from a vertex c such that the square (on the left) 

(8) 

commutes. A universal cone is then a commutative square of this form, 
with new vertex written b x ad and arrows p, q as shown on the right, 
such that for any square with vertex c there is a unique r: c~b x ad 
with k = q r, h = pro The square formed by this universal cone is called a 
pullback square or a "cartesian square" and the vertex b x ad of the universal 
cone is called a pullback, a "fibered product", or a product over (the 
object) a. This construction, possible in many categories, first became 
prominent in the category Top. If g : d~a is a "fiber map" (of some type) 
with "base" a and f is a continuous map into the base, then the projec
tion p of the pullback is the "induced fiber map" (of the type considered). 

The pullback of a pair of equal arrows f: b~a-b: f, when it exists, 
is called the kernel pair off. It is an object d and a pair of arrows p, q : d~b 
such that fp = fq: d~a and such that any pair h, k: c~a with fh = fk 
can be written as h = pr, k = q r for a unique r: c~d. 

If J = 0 is the empty category, there is exactly one functor O~C; 
namely, the empty functor; a cone over this functor is just an object 
c E C (i.e., just a vertex). Hence a universal cone on 0 is an object t of C 
such that each object c E C has a unique arrow c--·+t. In other words, 
a limit of the empty functor to C is a terminal object of C. 

Limits are sometimes defined for diagrams rather than for functors. 
In detail, let C be a category, U C the underlying graph of C, and G 
any graph. Then a diagram in C of shape G is a morphism D : G~ U C of 
graphs. Now define a cone Jl. : C....l..+ D to be a function assigning to each 
object iEG an arrow Jl.;:c~D; of C such that DhoJl.;=Jl.j for every 
arrow h : i ~ j of the graph G. This is just the previous definition of a cone 
(a natural transformation Jl.: A C....l..+ D), coupled with the observation 
that this definition uses the composition of arrows in C but not in the 
domain G of D. A limit for the diagram D is now a univer~al cone A. : C....l..+ D. 

This variation on the definition of a limit yields no essentially new 
information. For, let F G be a free category generated by the graph G, 
and P: G~ U(F G) the corresponding universal diagram. Then each 
diagram D: G~ U C can be written uniquely as D = U D' 0 P for a 
(unique) functor D': F G~C, and one readily observes that limits 
(and limiting cones) for D' correspond exactly to those for D. 
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Exercises 

1. In Set, show that the pullback of f: X - Z and g: Y - Z is given by the set of 
pairs {(x, y) I x E X, Y E Y, fx = gy}. Describe pullbacks in Top. 

2. Show that the usual cartesian product over an index set J, with its projections, 
is a (categorical) product in Set and in Top. 

3. If the category J has an initial object s, prove that every functor F: J - C to 
any category C has a limit, namely F(s). Dualize. 

4. In any category, prove that f: a->b is epi if and only if the following square is 
a pushout: 

I 
a------->b 

Ii 11 
b~b. 

5. In a pullback square (8), show that f monic implies q monic. 
6. In Set, show that the kernel pair of f: X - Y is given by the equivalence relation 

E = {(x, x') I x, x' E X and fx = fx'}, with suitable maps E::::::tX. 
7. (Kernel pairs via products and equalizers.) If C has finite products and equalizers, 

show that the kernel pair of f: a->b may be expressed in terms of the projections 
Pl,P2:axa->a as Ple,P2e, where e is the equalizer of fpl,fP2:axa->b 
(cf. Exercise 6). Dualize. 

8. Consider the following commutative diagram 

.~.~. 

1 1 1 
• -----* • ----t. . 

(a) If both squares are pullbacks,prove that the outside rectangle (with top 
and bottom edges the evident composites) is a pullback. 

(b) If the outside rectangle and the right-hand square are pullbacks, so is the 
left-hand square. 

9. (Equalizers via products and pullbacks.) Show that the equalizer of f, g: b->a 
may be constructed as the pullback of 

(lb,f): b-b x a.-b: (lb' g). 

10. If C has pullbacks and a terminal object, prove that C has all finite products 
and equalizers. 

5. Categories with Finite Products 

A category C is said to have finite products if to any finite number of 
objects Cl , ... , cn of C there exists a product diagram, consisting of a 
product object Cl x ... X Cn and n projections Pi: Cl x ... X Cn-Ci, for 
i = 1, ... , n, with the usual universal property. In particular, C then has a 
product of no objects, which is simply a terminal object t in C, as well 
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as a product for any two objects. The diagonal map be: c--->c X C is defined 
for each c by PI be = 1e = P2 be; it is a natural transformation. 

Proposition 1. If a category C has a terminal object t and a product 
diagram a <-a x b--->b for an y two of its objects, then C has all finite products. 
The product objects provide, by <a, b) f-->a x b, a bifunctor C x C--->c. 
For any three objects a, b, and c there is an isomorphism 

rx = rxa• h•e : a x (b x c) ~ (a x b) x c (1) 

natural in a, b, and c. For any object a there are isomorphisms 

). = )'1I: t x a ~ a Q = Qa: a x t ~ a (2) 

which are natural in a, where t is the terminal object of C. 

Proof. A product of one object c is just the diagram c--->c formed 
with the identity map of c, so is present in any category. Now suppose 
that any two objects ai' a2 of C have a product. If we choose one such 
product diagram a1 <-a1 X a 2 --->a 2 for each pair of objects, then x becomes 
a functor when fl x j~ is defined on arrows fi by Pi(fl x f2) = fiP;' 
One may then form a product of three objects a, b, and c by forming the 
iterated product object a x (b x c) with projections as in the diagram 

~~ 
a--a x (b x c)------>b x c 

~! 
c. 

The projections to a and the two indicated composites give three arrows 
from a x (b x c) to a, b, and c respectively. By the universality of the 
given projections (from two factors) it follows readily that these three 
arrows form a product diagram for a, b, and c. Product diagrams for 
more factors can be found by iteration in much the same way. For three 
factors, one could also form a product diagram by the iteration (a x b) x c; 
the uniqueness of the product objects then yields a unique isomorphism 
a x (b x c) ~ (a x b) x C commuting with the given projections to a, b, and c. 
This is the isomorphism rx of the proposition, and it is natural. Finally, 
since every object has a unique arrow to the terminal object t, the diagram 
t<-a--4a is a product diagram for t and a. The uniqueness of the product 
object t x a then yields an isomorphism Aa: t x a--->a, and similarly 
Qa : a x t ----; a. Naturality of A and Q follows. These isomorphisms, IX, A 
and p so constructed are said to be "canonical." 

The dual result holds for finite coproducts; in particular a coproduct 
of no factors is an initial object. For III objects aj , a coproduct diagram 
consists of m injections ij : aj --->a1 11·· ·llam and any map f: a1 11·· ·llam--->c 
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is uniquely determined by its 111 cocomponents .r ij = jj: aj-+c for 
j = 1, ... , m. In particular, if C has both finite products and finite co
products, the arrows 

from a coproduct to a product are determined uniquely by an m x n 
matrix of arrows Jjk = Pkfij: aj-+bk, where j = 1, ... ,111, k = 1, ... , n. In 
categories of finite dimensional vector spaces, where finite coproduct co
incides with finite product, this matrix is exactly the usual matrix of a 
linear transformation relative to given bases in its domain and codomain. 

More generally, let C be any category with a null object z (an object 
z which is both initial and terminal), so that the arrow a-+z-+b through 
z is the zero arrow 0: a-+b. If C also has finite products and finite co
products, there is then a "canonical" arrow 

of the coproduct to the product - namely, that arrow which has the 
identity n x n matrix (identities on the diagonal and zeroes elsewhere). 
This canonical arrow may be an isomorphism (in Ab or R-Mod), a 
proper monic (in Top. or Set.) or a proper epi (in Grp). 

Exercises 

1. Prove that the diagonal be: e~e X e is natural in e. 
2. In any category with finite products, prove that the following diagrams in

volving the canonical maps Ct., (},), of (1) and (2) always commute: 

a x (b x (e x d))-4(a x b) x (e x d)-4((a x b) x c) x d 

11 x, I ,xl 

a x ((b x c) x d) , (a x (b x c)) x d , 

t x (b x e)~(t x b) x e a x (tx e)~(a x t) xc 

1 A 1 Axl l1xA le x1 

bxe bxe, axe = axe. 

3. (a) Prove that Cat has pullbacks (cf. Exercise II.6.S). 
(b) Show that the comma categories (b L C) and (C La) are pullbacks in Cat. 

4. Prove that Cat has all small coproducts. 
5. If B has (finite) products show that any functor category Be also has (finite) 

products (calculated "pointwise"). 
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6. Groups in Categories 

We return to the ideas of the introduction about expressing algebraic 
identities by diagrams. Let C be a category with finite products and a 
terminal object t. Then a monoid in C is a triple <c,ll: c x c ---+ c, 
'7 : t ---+ c), such that the following diagrams commute: 

c x (c x c)~(c x c) x c~c x c 

1xpl Ip (1) 

c X c-------'P=--___ -+I C, 

(2) 

c c c. 

(This is exactly the definition of the introduction, except for the explicit 
use in the first diagram of the associativity isomorphism (X of (5.1 ).) 
We now define a group in C to be a monoid <c, II, '7) together with an 
arrow': C-+C which makes the diagram (with Dc the diagonal) 

c~cxc~cxc 

1 (3) 

t--------Cq'-----___ I c 

commute (this suggests that , sends each x E c to its right inverse). 
By similar diagrams, one may define rings in C, lattices in C, etc.; 

the process applies to any type of algebraic system defined by operations 
and identities between them. 

It is a familiar fact that if G is an (ordinary) group, so is the function 
set GX for any X; indeed the product of two functions f, I' in GX is 
defined pointwise, as (f. 1') (x) = f x • I' x. In the present context this 
construction takes the following form. 

Proposition 1. If C is a category with finite products, then an object c 
is a group (or, a monoid) in C if and only if the hom functor C( -, c) is 
a group (respectively, a monoid) in the functor category SetCoP. 

Proof. Each multiplication II for c determines a corresponding 
multiplication Ii for the hom-set C( -, c): COP-+Set, as the composite 

C( -, c) x C( -, c)~C( -, c x c)-4C( -, c) 

where v = 11* = C( -, II), while the first natural isomorphism is that given 
(cf. (4.4» by the definition of the product object c x c. Conversely, given 
any natural v as above, the Yoneda lemma proves that there is a unique 
II: c x c-+c with v = 11*. A "diagram chase" shows that II is associative if 
and only if Ii is; the chase uses the definition of the associativity iso-
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morphism IX by its commutation with the projections of the three-fold 
product. The rest of the proof is left as an exercise. 

Since the functor category Set cop always has finite products (Exercise 
5.5) we can consider objects c in C such that C( -, c) is a group in this 
functor category even if the category C does not have finite products; 
however, I know no real use of this added generality. 

Exercises 

(Throughout, C is a category with finite products and a terminal object t.) 
1. Describe the category of monoids in C, and show that it has finite products. 
2. Show that the category of groups in C has finite products. 
3. Show that a functor T : B -+ Set is a group in SetB if and only if each Tb, for b 

an object of B, is an (ordinary) group and each Tf,f in B, is a morphism of 
groups. 

4. (a) If A is an abelian group (in Set) show that its multiplication A x A -+ A, 
its unit 1 -+ A, and its inverse A -+ A are all morphisms of groups (where 
A x A is regarded as the direct product group). Deduce that A with these 
structure maps is a group in Grp. 

(b) Prove that every group in Grp has this form. 

7. Colimits of Representable Functors 

The utility of representable functors homed, -) is emphasized by the fol
lowing basic result about set-valued functors. 

Theorem 1. Any functor K : D -> Sets from a small category D to the 
category of sets can be represented (in a canonical way) as a colimit of a 
diagram of representable functors homed, -) for objects d in D. 

Proof First, given K, we construct the needed diagram category (for 
the colimit) J as the so-called "category of elements" of K; that is, as the 
comma category 11 K (see §II.6.(3)) with objects pairs (d,x) of elements 
x E K(d) for dE D and with arrows f : (d, x) -> (d', x') those arrows 
f : d -> d' of D for which K(f)x = x' (more briefly,! * x = x'). We then 
claim that the given functor K is the colimit of the diagram on 11K 
given by the functor 

M : JD -> SetsD 

which sends each object (d, x) to the hom-functor D(d, -) and each 
arrow f to the induced natural transformation 1* : D( d', -) -> D( d, - ). 
Then the Y oneda isomorphism, 

y-l : K(d) -> Nat(D(d, -), K), 

yields a cone in SetsD over the base M to K, as displayed by the arrows to 
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K at the lower left of the following figure: 

J: (d,x) 

1M 1 

f* 
+---- (d',x) 

1 

K ----------------" L. 
(} 

I.x = x, 
I: d -+ d' 

77 

(1) 

We claim that this cone to K is a colimiting cone over D(d, -). First, 
consider any other cone over D(d, -) to the vertex L, some functor 
L : D -+ Sets. The arrows of this cone (arrows in SetsD ) are natural 
transformations D(d,-) -+ L, hence are given by the Yoneda lemma 
in the form y-Iz:D(d,-)-+L for some zEL(d) as well as y-1z': 
D(d', -) -+ L, where (since it a cone) z' = I z. 

To show that this cone to the vertex K is universal, we must construct 
a unique natural transformation e : K -+ L which carries the first cone 
into the second one. So for each x E K(d), we start from the object (d, x) 
of fOP, as at the top in the diagram (1), and set 

edx= z 
for the z E L(d) present in the natural transformation y-I z in the cone for 
L. To show e natural, consider any I: d -+ d' with I x = x. Then also 
I z = z', and since y-I is natural, l(y-I z) = y-I (f z) = y-I z'. Therefore, 
e is natural. It is evidently unique, q.e.d. 

A dual argument will show that any contravariant functor DOP -+ 

Sets can be represented as a colimit of a diagram of representable con
travariant functors hom( -, d). 

For C a small category, a contravariant functor F: cop -+ Sets is 
often called a presheaf. The intuition comes from the case where C is the 
category of open sets U of some topological space and F( U) is the set of 
smooth (in some sense) functions defined on U, while an inclusion V c U 
gives the map F( U) -+ F( V) which restricts a function on U to one on V. 
The functor category SetsC'P of all these functors (presheaves) is often 
written as C. Certain of these functors (with a "matching" property) are 
called sheaves; see Mac Lane-Moerdijk [1992]. 

Notes. 

The Yoneda Lemma made an early appearance in the work of the Japanese pioneer 
N. Yoneda (private communication to Mac Lane) [1954]; with time, its impor
tance has grown. 
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Representable functors probably first appeared in topology in the form of "uni
versal examples", such as the universal examples of cohomology operations (for 
instance, in J. P. Serre's 1953 calculations of the cohomology, modulo 2, ofEilenberg
Mac Lane spaces). 

Universal arrows are unique only up to isomorphism; perhaps this lack of 
absolute uniqueness is why the notion was slow to develop. Examples had long 
been present; the bold step of really formulating the general notion of a universal 
arrow was taken by Samuel in 1948; the general notion was then lavishly popularized 
by Bourbaki. The idea that the ordinary cartesian products could be described by 
universal properties of their projections was formulated about the same time 
(Mac Lane [1948,1950]). On the other hand the notions of limit and colimit have 
a long history in various concrete examples. Thus colimits were used in the proofs 
of theorems in which infinite abelian groups are represented as unions of their 
finitely generated subgroups. Limits (over ordered sets) appear in the p-adic 
numbers of Hensel and in the construction of Cech homology and cohomology 
by limit processes as formalized by Pontrjagin. An adequate treatment of the 
natural isomorphisms occurring for such limits was a major motivation of the 
first Eilenberg-Mac Lane paper on category theory [1945]. E. H. Moore's general 
analysis (about 1913) used limits over certain directed sets. In all these classical cases, 
limits appeared only for functors F : J --> C with J a linearly or partly ordered set. 
Then Kan [1960] took the step of considering limits for all functors, while Freyd 
[1964] for the general case used the word ··root" in place of ·'limit". His followers 
have chosen to extend the original word '·limit" to this general meaning. Properties 
special to limits over directed sets will be studied in Chapter IX. 



IV. Adjoints 

1. Adjunctions 

We now present a basic concept due to Kan, which provides a different 
formulation for the properties of free objects and other universal con
structions. As motivation, we first reexamine the construction (§ 111.1) 
ofa vector space Vx with basis X. For a fixed field K consider the functors 

v 
Set ( ·VctK , 

U 

where, for each vector space W, U(W) is the set of all vectors in W, 
so that U is the forgetful functor, while, for any set X, V(X) is the vector 
space with basis X. The vectors of V(X) are thus the formal finite linear 
combinations 1: rix i with scalar coefficients r i E K and with each Xi E X, 
with the evident vector operations. Each function g: X ----> U(W) extends 
to a unique linear transformation I: V(X)----> W, given explicitly by 
I(1: rixi) = 1:ri(g x;l (i.e., formal linear combinations in V(X) to actual 
linear combinations in W). This correspondence 1p : g f-->-I has an inverse 
({J: If-->- I I X, the restriction of I to X, hence is a bijection 

({J: VctK(V(X), W) ~Set(X, U(W)). 

This bijection ({J = CfJx, w is defined "in the same way" for all sets X and 
all vector spaces W. This means that the ({Jx, ware the components of a 
natural transformation ({J when both sides above are regarded as functors 
of X and W. It suffices to verify naturality in X and in W separately. 
Naturality in X means that for each arrow h: X' ----> X the diagram 

rp 
VctK(V(X), W) ---+ Set (X, U(Wl) 

(Vhj* 1 1 h* 

VctK(V(X'), W) ~ Set (X', U(W)) , 

where h* g = g ,~ h, will commute. This commutativity follows from the 
definition of qJ by a routine calculation, as does also the naturality in W. 

Note next several similar examples. 

79 
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The free category C = F G on a given (small) graph G is a functor 
Grph-Cat: it is related to the forgetful functor V: Cat-Grph by the 
fact (§ 11.7) that each morphism D : G- V B of graphs extends to a unique 
map D': FG-B of categories; moreover, DI--*D' is a natural isomor
phism 

Cat(FG, B) ~ Grph(G, V B). 

In the category of small sets, each function g : S x T - R of two variables 
can be treated as a function rpg: S -+ hom(T,R) of one variable (in S) 
whose values are functions of a second variable (in 'r); explicitly, 
[(rpg)s]t = g(s, t) for s E S, t E T. This describes rp as a bijection 

rp: hom(S x T,R) ~ hom(S,hom(T,R)) . 

It is natural in S, T, and R. If we hold the set T fixed and define functors 
F, G: Set-Set by F(S) = S x T, G(R) = hom(T, R), the bijection takes 
the form 

hom(F(S), R) ~ hom(S, G(R») 

natural in Sand R, and much like the previous examples. 
For modules A, B, and C over a commutative ring K there is a 

similar isomorphism 

hom(A®KB, C)~ hom(A, homK(B, C») 

natural in all three arguments. 

Definition. Let A and X be categories. An adjunction from X to A 
is a triple (F, G, qJ): X ~A, where F and G are functors 

while rp is a function which assigns to each pair of objects x E X, a E A a 
bijection of sets 

qJ = qJx.a: A(Fx, a) ~ X(x, Ga) 

which is natural in x and a. 

Here the left hand side A(Fx, a) is the bifunctor 

xop x A~Aop x A~Set 

(1) 

which sends each pair of objects (x, a) to the hom-set A(Fx, a), and the 
right hand side is a similar bifunctor xop x A -Set. Therefore the naturality 
of the bijection qJ means that for all k: a-a' and h: x' - x both the 
diagrams: 

A(Fx, a)~ X(x, Ga) A(Fx, a)~X(x, Ga) 

k*l 1 (Gk)* (Fh)*l 1 h* (2) 

A(Fx, a')~X(x, Ga') A(Fx', a)~X(x', Ga) 
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will commute. Here k* is short for A(Fx, k), the operation of composition 
with k, and h* = X(h, Ga). 

This discussion assumes that all the hom-sets of X and A are small. 
If not, we just replace Set above by a suitable larger category Ens of sets. 

An adjunction may also be described without hom-sets directly in 
terms of arrows. It is a bijection which assigns to each arrow f: Fx-+a 
an arrow <pf=radf:x-+Ga, the right adjunct off, in such a way that 
the naturality conditions of (2), 

(3) 

hold for all f and all arrows h : x'-+ x and k : a-+a'. It is equivalent to 
require that <p-l be natural; i.e., that for every h, k and g: x-+Ga one 
has 

<p-l(gh)=<p-lgoFh, <p-l(Gkog)=k <p-lg. (4) 

Given such an adjunction, the functor F is said to be a left-adjoint 
for G, while G is called a right adjoint for F. (Some authors write F ---l G; 
others say that F is the "adjoint" of G and G the "coadjoint" of F, but 
other authors say the opposite; therefore we shall stick to the language of 
"left" and "right" adjoints.) 

Every adjunction yields a universal arrow. Specifically, set a = Fx 
in (1). The left hand hom-set of (1) then contains the identity 1 : Fx-+Fx; 
call its <p-image 1'fx' By Yoneda's Proposition III.2.1, this 1'fx is a universal 
arrow 

1'fx: x -+ GFx , 1'fx=<p(I Fx )' 

from x E X to G. The adjunction gives such a universal arrow 1'fx for 
every object x. Moreover, the function Xf--'>1'fx is a natural transformation 
Ix -+ G F because every diagram 

x'~GFx' 

is commutative. This one proves by the calculation 

G Fh <p(1 Fx') = <p(F he 1 Fx') = <p(IFxc F h) = <p(1 Fx) 0 h . 

based on the Eq. (3) describing the naturality of <po This calculation may 
also be visualized by the commutative diagram 

A(Fx', Fx') ~A(Fx', Fx) ~A(Fx, Fx) 

1~ 1~ 1~ 
X(x', GFx')~X(x', GFx)~X(x, GFx), 

where h* = X(h, 1) and h* = X(I, h). 
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The bijection <p can be expressed in terms of the arrows '1x as 

<p(f) = G(f)'1x for f: Fx-a; 

indeed, by the naturality (3) of <p we may compute that 

rp(f) = rp(f 0 lFx) = Gf 0 rplFx = Gf 0 1'fx . 

(5) 

This computation may be visualized by chasing 1 around the commutative 
square 

A(Fx, Fx)~X(x, G Fx) 11 , '1 x 

If * 1 (GIl* I I 
A(Fx,a) q> 'X(x,Ga) F 1 ~<pf= Gfc '1x' 

Dually, the adjunction gives a universal arrow from F. Indeed, 
set x = Ga in the adjunction (1). The identity arrow 1 : Ga- Ga is now 
present in the right-hand hom-set; its image under <p-l is called ea , 

ea:FGa-a, ea=<p-l(lGa), aEA, 

and is a universal arrow from F to a. As before, e is a natural transforma
tion e: F G--'-->fA , and 

<p-l(g)=eac Fg for g:x-Ga. 

Finally, take x = Ga. Then ea = <p -1 (1 Ga) gives, by the formula (5) for <p, 

IGa = <p(ea) = G(ea) C '1Ga . 

This asserts that the composite natural transformation 

G~GFG~G 

is the identity transformation. 
To summarize, we have proved 

Theorem 1. An adjunction <F, G, <p): X ~A determines 
(i) A natural transformation '1 : fx--'--> G F such that for each object x the 

arrow '1x is universal to G from x, while the right adjunct of eachf: Fx-a is 

(6) 

(ii) A natural transformation e: F G--'--> fA such that each arrow ea is 
universal to a from F, while each 9 : x- Ga has left adjunct 

(7) 

Moreover, both the following composites are the identities (of G, resp. F). 

G~GFG~G, F~FGF~F. (8) 
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We caIl I] the unit and G the counit of the adjunction. (Formerly, 
we called I] a "front adjunction" and G a "back adjunction".) 

The given adjunction is actually already determined by various 
portions of all these data, in the following sense. 

Theorem 2. Each adjunction (F, G, cp) : X ~ A is completely determined 
by the items in anyone of the following lists: 

(i) Functors F, G, and a natural transformation 1]: lx-'->GF such 
that each I]x: x- G F x is universal to G from x. Then cp is defined by (6). 

(ii) The junctor G : A - X and for each x E X an object Fox E A and 
a universal arrow I]x:x-GFox from x to G. Then the functor F has 
object function F 0 and is defined on arrows h : x - x' by G F hOI] x = I] x' 0 h. 

(iii) Functors F, G, and a natural transformation G: FG-'->IA such 
that each I:a : F G a - a is universal from F to a. Here cp - 1 is defined by (7). 

(iv) The junctor F: X -A and for each a E A an object Goa E X and 
an arrow Ga : F Go a-a universal from F to a. 

(v) Functors F, G and natural transformations 1]: Ix-'-> G F and 
1:: F G-'-> IA such that both composites (8) are the identity transformations. 
Here cp is defined by (6) and cp-l by (7). 

Because of (v), we often denote the adjunction (F, G, cp) by 
(F, G, 1], 1:) : X ~A. 

Proof. Ad (i): The statement that I]x is universal means that to each 
f: x-Ga there is exactly one g as in the commutative diagram 

Fx x qx ,GFx 

:9 ~lG9 
a, Ga. 

This states precisely that O(g) = G 9 0 11 x defines a bijection 

0: A(F x, a) ---+ X(x, Ga) , 

This bijection 0 is natural in x because 11 is natural, and natural in a be
cause G is a functor, hence gives an adjunction (F, G, 0). In case 11 was 
the unit obtained from an adjunction (F, G, cp), then 0 = cp. 

The data (ii) can be expanded to (i), and hence determine the adjunc
tion. In (ii) we are given simply a universal arrow (Fox, I]x) for every 
object x EX; we shaIl show that there is exactly one way to make Fo 
the object function of a functor F for which I] : Ix-'-> G F will be natural. 
SpecificaIly, for each h: x-x' the universality of IJ x states that there is 
exactly one arrow (dotted) 
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which can make the diagram commute. Choose this arrow as 
F h : Fo x- Fo x'; the commutativity states that 11 is now natural, and it is 
easy to check that this choice of Fh makes F a functor. 

The proofs of parts (iii) and (iv) are dual. 
To prove part (v) we use 11 and c to define functions 

<p 

A(Fx,a)( 0 'X(x,Ga) 

by cpf = Gfc I1x for each f: Fx-a and (}g = Ca c Fg for each g: x-Ga. 
Then since G is a functor and 11 is natural 

But our hypothesis (8) states that G Ca C I1Ga = 1. Hence cp 0 = id. Dually 
o cp = id. Therefore cp is a bijection (with inverse ()). It is clearly natural, 
hence is an adjunction (and, if we started with an adjunction, it is the one 
from which we started). 

This theorem is very useful. For example, parts (ii) and (iv) construct 
an adjunction whenever we have a universal arrow from (or to) every 
object of a given category. For example, the category C has finite products 
when for each pair <a, b) E C X C there is a universal arrow from 
L1 : C-C x C to <a, b). By the theorem above we conclude that the func
tion <a, b) - a x b giving the product object is actually a functor 
C x C - C, and that this functor is right adjoint to the diagonal functor L1: 

cp: (C x C)(L1c, <a, b») ~ C(c, a x b). 

Using the definition of the arrows in C x C, this is 

cp: C(c, a) x C(c, b)~ C(c, a x b). 

The counit of this adjunction (set c = a x b on the right) is an arrow 
<axb,axb)-<a,b); it is thus just a pair of arrows a<'-axb-b; 
namely, the projections p: a x b-a and q: a x b-b of the product. 
The adjunction cp -\ sends each f: c- a x b to the pair <p f, q f) ; this is the 
way in which cp is determined by the counit c. 

Similarly, if the category C has co products <a, b) 1-7 a II b, they 
define the coproduct functor C x C ---> C which is a left adjoint to L1: 

C(a II b, c)~ (C x C) «a, b), L1c). 

All the other examples oflimits (when they always exist) can be similarly 
read as examples of adjoints. In many further applications, it turns 
out that proving universality is an easy way of showing that adjoints 
are present. 
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On the other hand, part (v) of the theorem describes an adjunction 
by two simple identities 

(9) 

on the unit and counit of the adjunction. These triangular identities 
make no explicit use of the objects of the categories A and X, and so are 
easy to manipulate. As we shall soon see, this is convenient for discussing 
properties of adjunctions. (For some authors, these identities are said to 
make 11 a "quasi-inverse" to 8.) 

Corollary 1. Any two left-adjoints F and F' of a functor G: A->X 
are naturally isomorphic. 

The proof is just an application of the fact that a universal arrow, 
like an initial object, is unique up to isomorphism. Explicitly, adjunctions 
<F, G, <p) and <F', G, q/) give to each x two universal arrows x->GFx 
and x-> G F' x; hence there is a unique isomorphism Ox: F x-> F' x with 
GO x 11 x = 11~; it is easy to verify that 0 : F ~ F' is natural. 

Corollary 2. A functor G: A -> X has a left adjoint if and only if, 
for each x E X, the functor X(x, Gal is representable as a functor of a EA. 
If <p: A(Fox, a) ~ X(x, Ga) is a representation of this functor, then Fo is 
the object function of a left-adjoint of G for which the bijection <p is natural 
in a and gives the adjunction. 

This is just a restatement of part (ii) of the theorem. Equivalently, 
G has a left-adjoint if and only if there is a universal arrow to G from every 
XEX. 

We leave the reader to state the duals. 
Adjoints of additive functors are additive. 

Theorem 3. If the additive Junctor G : A --+ M between Ab-categories 
A and M has a left adjoint F : M -> A, then F is additive and the adjunction 
bijections 

<p: A(Fm, al ~ M(m, Ga) 

are isomorphisms of abelian groups (for all mE M, a E A). 

Proof. If 11 : I ~ G F is the unit of the adjunction, then <p may be 
written as <pf = Gf 11m for any f: Fm->a. If also 1': Fm->a, the ad
ditivity of G gives 

<p(f + 1') = G(f + 1') 11m = (G f + G 1') 11m = G f 11m + G 1" 11m = <p J + <p f'. 
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Therefore qJ is a morphism of abelian groups. Next take g, g' : m---->n 
in M. Since I] is natural, 

G F(g + g') 0 I]m = I]n(g + g') = I]ng + I]ng' . 

On the other hand, since G is additive, 

G(Fg + Fg')ol]m= (GFg + GFg')l]m= GFgol]m + G Fg'°l]m = I]ng +I]ng'· 

The equality of these two results and the universal property of I]m show 
that F(g+g')=Fg+Fg'. Hence F is additive. 

Dually, any right adjoint of an additive functor is additive. 

Exercises 

1. Show that Theorem 2 can have an added clause (and its dual): 
(vi) A functor G : A ---> X and for each x E X a representation CfJx of the functor 
X (x, G - ) : A --->Set. 

2. (Lawvere.) Given functors G: A ---> X and F : X ---> A, show that each ad
junction <F, G, q;) can be described as an isomorphism e of comma categories 
such that the following diagram commutes 

Here the vertical maps have components the projection functors P and Q of 
11.6(5). 

3. For the adjunction <.1, x, CfJ) - product right adjoint to diagonal - show that 
the unit(5e: C--->C x C for each object C E Cis the unique arrow such that the diagram 

commutes. (This arrow (5e is often called the diagonal arrow of c.) If C = Set, 
show that (5ex = (x, x) for x E C. 

4. (Pare.) Given functors G : A -> X and K : X -> A and natural transformations 
e:KG--4idA , Q:idx--4GK such that Ge'QG=l G :G--4GKG--4G, prove that 
eK' KQ: K--4K is an idempotent in AX and that G has a left adjoint ifand only if 
this idempotent splits; explicitly if e K . K Q splits as (J.' p with p. (J. = 1 and 
p: K --4 F, then F is a left adjoint of G with unit G p . Q and counit e . (J. G. 

2. Examples of Adjoints 

We now summarize a number of examples of adjoints, beginning with 
a table of left-adjoints of typical forgetful functors. 
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Forgetful functor Left adjoint F Unit of adjunction 

U: R-Mod---->Set Xf->-F X j: X---->UF X(cf.§ III.1) 
Free R-module, basis X ··insertion of generators" 

U: Cat----> Grph Gf->-CG G---->UCG 
Free category on graph G "insertion of generators" 

U: Grp---->Set Xf->-FX X---->UFX 
Free group, generators "insertion of generators" 
XEX 

U: Ab---->Set Xf->-F.X 
Free abelian group on X "insertion of generators" 

U: Ab---->Grp Gf->-G/[G, G] G---->G/[G, G] 
Factor commutator group projection on the quotient 

U: R-Mod---->Ab Af->-R@A A---->U(R@A) 
af->-l@a 

U: R-Mod-S---->R-Mod Af->-A@S A---->U(A@S) 
af->a@l 

U:Rng---->Mon Mf->-Z(M) M---->UZM 
(cf. Exercise III. 1.1 ) (integral) monoid ring mf->-m 

U: K-Alg---->K-Mod Vf->-TV VCTV 
Tensor algebra on V "insertion of generators" 

U: Fld---->Domm Df->-QD DCUQD 
(cf. § III. I) Field of quotients "insertion of D: a f-> a/I" 

U : Compmet ----> Met Completion of metric space (§ III. I) 

There is a similar description of co units. For example, in the free 
R-module F X generated by elements jx = <x) for x E X, the elements 
may be written as finite sums 1: r;(x) with scalars ri E R. Then for any 
R-module A the counit cA:FUA--.A is 1: r;(a) f->1: riai (linear com
binations in A). In other words CA is the epimorphism appearing in the 
standard representation of an arbitrary R-module as a quotient of a 
free module (the free module on its own elements as generators). 

Next, we list some left and right adjoints (which need not exist in 
every category C) for diagonal functors; with the unit when C is Set. 

Diagonal Adjoint Unit Counit 
functor 

Ll:C---->CxC Left: Coproduct (pair of) injections ··folding" map 
11:CxC---->C i: a---->a 11 b c 11 c---->c 

(a, b) f->-a 11 b j:b---->a11b i x f->- x, j X f->- x 

Right: Product Diagonal arrow (pair of) projections 
IT:CxC---->C be: c---->c X c p:axbf->a 

(a, b) f->-a x b x f->- (x, x) q:axbf->b 



88 Adjoints 

Diagonal 

junctor 

C-->l 

L1 : C-->C" 

(I1I.3.6) 

Adjoint Unit Counit 

Left: Initial object s s-->c 

Right: Terminal object t c--> t 

Left: Coequalizer Coequalizing arrow Identity 

<f, g) I--+coeq. object e <f, g) (uf. u» <e, e> 1 : c-->c 

(III.4.7) Right: Equalizer d 
<1, g> 1--+ equal. object 

Identity Equalizing arrow 

<d, d>--><f, g> 

L1 : C-->C~' - Left: (Vertex 00 pushout 
(I1I.3.7) 

Right: (Vertex 00 pullback 
(I1I.4.8) 

Universal cone Left: Colimit object 

Right: Limit object Universal cone 

In the case of limits, the form of the unit depends on the number 
of connected components of J. Here a category J is called connected 
when to any two objects j, k E J there is a finite sequence of arrows 

j = jo-.jl +-j2-"" --.i2n-1 +-.izn = k (both directions possible) 

joining.i to k (see Exercises 7, 8). 
Duality functors provide further examples. For vector spaces V, W 

over a field K, the dual I5 is a contravariant functor on Vet to Vet, 
given on objects by I5 V = Vet(V, K) with the usual vector space structure 
and on arrows h: V-. Was 15h: I5 W-.15 V, where (15h)f = fh for each 
f: W-.K. A function 

cP = CPv. w: Vet(V, Vct(W, K))-. Vet(W, Vet(V, ~l) (1) 

is defined for h:V-.15W by [(cph)w]v=(hv)w for all VEV, wEW. 

Since rpw vrpv w is the identity, each rp is a bijection. This bijection can be 
made int~ an'adjuction as follows. The contravariant functor 15 leads to 
two different (covariant!) functors with the same object function, 

D: veep-. Vet, DOP: Vet-. veep, 

defined (as usual) for arrows hOP: W-. V and h: V-. W by 

D hOP = I5 h : I5 W -. I5 V ; DOP h = (15 h lOP : I5 V -. I5 W. 

The bijection cp of (1) above may now be written as 

VetOP(DOP W, V) ~ Vet(W, D V), (2) 

natural in V and W. Therefore DOP is the left adjoint of D. (Warning: 
It is not a right adjoint of D, see § V.5, Exercise 2.) If Kw : W -. I5I5 W is the 
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usual canonical map to the double dual, the unit of the adjunction 
(set V= DOPWin (2)) is this map '1w=K w : W~DDopW, and the counit 
is an arrow 8y:DoPDV~V in Veep which turns out to be 8y =(Ky)OP 
for the same K. 

This example illustrates the way in which adjunctions may replace 
isomorphisms of categories. For finite dimensional vector spaces, D 
and DOP are isomorphisms; for the general case, this is not true, but D is 
the right adjoint of DOP. 

This example also bears on adjoints for other contravariant functors. 
Two contravariant functors S from A to X and Tfrom X to A are "adjoint 
on the right" (Freyd) when there is a bijection A(a, Tx) ~ X(x, Sa), 
natural in a and x. We shall not need this terminology, because we can 
replace Sand T by the covariant functors S: AOP~ X and T: Xop~ A 
and form the dual soP: A ~ XOP, also covariant: thus the natural bijection 
above becomes XOP(SOP a, x) ~ A(a, Tx), and so states that sop is left 
adjoint (in our usual sense) to T - or, equivalently, that T"P is left adjoint 
to S. It is not necessarily equivalent to say that T and S are adjoint 
"on the left". 

The next three sections will be concerned with three other types of 
adjoints: A left adjoint to an inclusion functor (of a full subcategory) 
is called a reflection; certain other special sorts of adjoints are 
·'equivalences" of categories. Some other amusing examples of adjoints 
are given in the exercises to follow, some of which require knowledge 
of the subject matter involved. Goguen [1971J shows for finite state 
machines that the functor "minimal realization" is left adjoint to the 
functor "behavior". The reader is urged to find his own examples as well. 

Exercises 

1. For K a field and Va vector space over K, there is an ·'exterior algebra" E(V), 
which is a graded, anticommutative algebra. Show that E is the left adjoint 
of a suitable forgetful functor (one which is not faithful). 

2. Show that the functor U : R-Mod---> Ab has not only a left adjoint A f-+ R ®A, 
but also a right adjoint AI-> homAR, A). 

3. For K a field, let LieK be the category of all (small) Lie algebras Lover K, 
with arrows the morphisms of K-modules which also preserve the Lie bracket 
operation < a, b) f-+ [a, b]. Let V: AlgK ---> LieK be the functor which assigns to each 
(associative) algebra A the Lie algebra V A on the same vector space, with 
bracket [a, b] = ab - ba for a, b EA. Using the Poincare-Birkhoff-Witt Theorem 
show that the functor E, where E L is the enveloping associative algebra of L, 
is a left adjoint for V. 

4. Let Rng' denote the category of rings R which do not necessarily have an identity 
element for multiplication. Show that the standard process of adding an identity 
to R provides a left adjoint for the forgetful functor Rng---> Rng' (forget the 
presence of the identity). 
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5. If a monoid M is regarded as a discrete category, with objects the elements 
x E M, then the multiplication of M is a bifunctor J.1: M x M --> M. If M is a 
group, show that the group inverse provides right adjoints for the functors 
jJ.(x, -) and jJ.( -,y) : M --> M. Conversely, does the presence of such adjoints 
make a monoid into a group? 

6. Describe units and co units for pushout and pullback. 
7. If the category J is a disjoint union (coproduct) II Jk of categories Jk• for index 

k in some set K, with Ik : Jk-->J the injections of the coproduct. then each functor 
F : J --> C determines functors Fk = F Ik : Jk --> C. 
(a) Prove that Lim F ~ n k Lim Fk , if the limits on the right exist. 
(b) Show that every category J is a disjoint union of connected categories 

(called the connected components of J). 

(c) Conclude that all limits can be obtained from products and limits over 
connected categories. 

8. (al If the category J is connected, prove for any e E C that LimLl c = c and 
Colim LIe = c, where LIe : J --> C is the constant functor. 

(b) Describe the unit for the right adjoint to Ll: C-->CJ 

9. (Smythe.) Show that the functor 0: Cat --> Set assigning to each category C 
the set of its objects has a left adjoint D which assigns to each set X the discrete 
category on X, and that D in turn has a left adjoint assigning to each category 
the set of its connected components. Also show that 0 has a right adjoint 
which assigns to each set X a category with objects X and exactly one arrow 
in every hom-set. 

10. If a category C has both cokernel pairs and equalizers, show that the functor 
K: C2 -->C ll which assigns to each arrow of C its cokernel pair has as right 
adjoint the functor which assigns to each parallel pair of arrows its equalizing 
arrow. 

11. If C has finite coproducts and a E C. prove that the projection Q : (a 1 C)--> C 
of the comma category (Q(a--> c) = c) has a left adjoint, with e I-'-(a--> a II e). 

12. If X is a set and C a category with powers and co powers, prove that the copower 
c I-'- X . c is left adjoint to the power c f-~ eX 

3. Reflective Subcategories 

For many of the forgetful functors U: A ---> X listed III § 2, the counit 
e : F U -4 fA of the adjunction assigns to each a E A the epimorphism 
ea : F(U a)--->a which gives the standard representation of a as a quotient 
of a free object. This is a general fact: Whenever a right adjoint G is 
faithful, every counit Ea of the adjunction is epi. 

Theorem 1. For an adjunction <F, G, 1], 8>: X ~A: (il G is faithful 
if and only if every component £a of the counit e is epi, (ii) G is full if and 
only if every £a is a split monic. Hence G is full and faithful if and only 
if each £a is an isomorphism F G a ~ a. 

The proof depends on a lemma. 
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Lemma. Let f*: A(a, - )--4A(b, -) be the natural transformation 
induced by an arrow f: b---->a of A. Then f* is monic if and only iff is epi, 
while f* is epi if and only if f is a split monic (i.e., if and only if f has a 
left inverse). 

Note that f* p f is the bijection Nat(A(a, -), A(b, -)) ~ A(b, a) 
given by the Y oneda lemma. 

Observe, also, that for functors S, T: C----> B, a natural transformation 
I: S --4 T is epi (respectively, monic) in Be if and only if every component 
Ie: Se----> Te is epi (respectively, monic) in B for B =Set; this follows by 
Exercise 111.4.4, computing the pushout pointwise as in Exercise 111.5.5. 

Proof. For hE A(a, c), f*h = hf. Hence the first result is just the 
definition of an epi f. If f* is epi, there is an ho: a----> b with 
f* ho = hof = 1 : b---->b, so f has a left inverse. The converse is immediate. 

Now we prove the theorem. Apply the Yoneda Lemma to the natural 
transformation (arrow function of G followed by the adjunction) 

A(a, c)~X(Ga, Gc)~A(FGa, c). 

It is determined (set c = a) by the image of 1 : a---->a, which is exactly the 
definition of the counit Ga : F G a----> a. But q> -1 is an isomorphism, hence 
this natural transformation is monic or epi, respectively, when every Ga,c 

is injective or surjective, respectively; that is, when G is faithful or full, 
respectively. The result now follows by the lemma. 

A subcategory A of B is called reflective in B when the inclusion functor 
K: A---->B has a left adjoint F: B---->A. This functor F may be called a 
reflector and the adjunction <F, K, q» = <F, q»: B~A a reflection of B 
in its subcategory A. Since the inclusion functor K is always faithful, 
the counit G of a reflection is always epi. A reflection can be described in 
terms of the composite functor R = KF: B---->B; indeed, A C B is reflective 
in B ifand only if there is a functor R : B---->B with values in the subcategory 
A and a bijection of sets 

A(R b, a) ~ B(b, a) 

natural in bE B and a E A. A reflection may be described in terms of 
universal arrows: A C B is reflective if and only if to each bE B there is 
an object R b of the subcategory A and an arrow 1Jb : b----> R b such that 
every arrow g: b---->a E A has the form g = fo 1Jb for a unique arrow 
f: R b---->a of A. As usual, R is then (the object function of) a functor 
B---->B (with values in A). 

If a full subcategory A C B is reflective in B, then by Theorem 1 each 
object a E A is isomorphic to F K a, and hence R a ~ a for all a. 

Dually, A C B is coreflective in B when the inclusion functor A ----> B 
has a right adjoint. (Warning: Mitchell [1965] has interchanged the 
meanings of "reflection" and "coreflection".) 
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Here are some examples. Ab is reflective in Grp. For, if 
Gj[G, G] is the usual factor-commutator group of a group G, then 
hom(Gj[G, G], A) ~ hom(G, A) for A abelian, and Ab is full in Grp. 
Or consider the category of all metric spaces X, with arrows uniformly 
continuous functions. The (full) subcategory of complete metric spaces 
is reflective; the reflector sends each metric space to its completion. 
Again, consider the category of all completely regular Hausdorff spaces 
(with arrows all continuous functions). The (full) subcategory of all 
compact Hausdorffspaces is reflective; the reflector sends each completely 
regular space to its Stone-Cech compactification. 

A coreflective subcategory of Ab is the full subcategory of all torsion 
abelian groups (a group is torsion if all elements have finite order); 
the coreflector sends each abelian group A to the subgroup T A of all 
elements of finite order in A. 

Exercises 

1. Show that the table of dual statements (§ II.l) extends as follows: 

Statement 

S, T: C-+B are functors 
T is full 
T is faithful 
I] : S--4 T is a natural transformation. 
<F, G, cp): X ~A is an adjunction 
I] is the unit of <F, G, cp). 

Dual statement 

S, T: C-+B are functors 
T is full 
T is faithful 
I] : T --4 S is a natural transformation. 
<G, F, cp-l) : A~X is an adjunction 
I] is the counit of.< G, F, cp - 1). 

2. Show that the torsion-free abelian groups form a full reflective subcategory of Ab. 
3. If < G, F, cp) : X ~ A is an adjunction with G full and every unit I]x a monic, 

then every I]x is also epi. 
4. Show the following subcategories to be reflective: 

(a) The full subcategory of all partial orders in the category Preord of all pre orders, 
with arrows all monotone functions. 

(b) The full subcategory of To-spaces in Top. 
S. Given an adjunction <F, G, cp) : X ~ A, prove that G is faithful if and only if cp-l 

carries epis to epis. 
6. Given an adjunction <F, G, 1], £) with either F or G full, prove that G£: G F G-+ G 

is invertible with inverse I]G: G-+GFG. 
7. If A is a full and reflective subcategory of B, prove that every functor S : J -+ A 

with a limit in B has a limit in A. 

4. Equivalence of Categories 

A functor S: A ----> C is an isomorphism of categories when there is a 
functor T: C -+ A (backwards) such that S T = I : C ---. C and 
T S = I: A ---. A. In this case, the identity natural transformations 
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11: I ~ ST and e: T S ~ I make <T,S;11,e): C ~ A an adjunction. 
In other words, a two-sided inverse T of a functor S is a left-adjoint 
of S - and for that matter, T is also a right-adjoint of S. 

There is a more general (and more useful) notion: 
A functor S: A -. C is an equivalence of categories (and the categories 

A and C are equivalent) when there is a functor T: C-.A (backwards) 
and natural isomorphisms S T~I : C -+ C and T S~I: A -+ A. In this 
case T: C-.A is also an equivalence of categories. We shall soon see 
that T is then both a left adjoint and a right adjoint of S. 

Here is an example. In any category C a skeleton of C is any full 
subcategory A such that each object of C is isomorphic (in C) to exactly 
one object of A. Then A is equivalent to C and the inclusion K: A -. Cis 
an equivalence of categories. For, select to each c E C an isomorphism 
ee: c ~ Tc with Tc an object of A. Then we can make Ta functor T: C-. A 
in exactly one way so that o will become a natural isomorphism ():I~K T. 
Moreover T K ~ I, so K is indeed an equivalence: A category is equivalent 
to (anyone of) its skeletons. For example, the category of all finite sets 
has as a skeleton the full subcategory with objects all finite ordinal 
numbers 0, 1, 2, ... , n, .... (Here ° is the empty set and each 
n = {O, 1, ... , n -l}.) 

A category is called skeletal when any two isomorphic objects are 
identical; i.e., when the category is its own skeleton. 

An adjoint equivalence of categories is an adjunction < T, S; IJ, e) : C ~ A 
in which both the unit IJ : 1--'-+ STand the counit e : TS --'-+ I are natural 
isomorphisms: I ~ S T, TS ~ I. Then IJ -1 and e -1 are also natural 
isomorphisms, and the triangular identities e T· TIJ = 1, S e • IJ S = 1 
can be written as TIJ -1 • e -1 T = 1, IJ -1 S· S e -1 = 1, respectively. These 
identities then state that <S, T, e-I, 1J- 1 ): A~C is an adjunction with 
e -1 : 1--'-+ T S as unit and IJ -1 : S T --'-+ I as counit. Thus in an adjoint 
equivalence < T, S, -, -) the functor T: C -. A is the left adjoint of 
S: A -. C with unit IJ and at the same time T is the right adjoint of S, 
with unit e- 1 . 

We can now state the main facts about equivalence. 

Theorem 1. The following properties of a functor S: A-.C are 
logically equivalent: 

(i) S is an equivalence of categories, 
(ii) S is part of an adjoint equivalence <T, S; 11, e) : C ~ A, 

(iii) S is full and faithful, and each object c E C is isomorphic to Sa for 
some object a E A. 

Proof. Trivially, (ii) implies (i). To prove that (i) implies (iii), note 
thatS T~I shows thateachcE Chas theformc~S(T c) forana= T CEA. 

The natural isomorphism e: TS ~ I gives for each f: a-.a' the com-
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mutative square 

Hence f = ()a'o TS fo ();;1; it follows that S is faithful. Symmetrically, 
ST~I proves T faithful. To show S full, consider any h:Sa--->Sa' 
and set f=()a'o Tho ()a- 1 . Then the square above commutes also with 
Sf replaced by h, so T S f = T h. Since T is faithful, Sf = h, which means 
that S is full. 

To prove that (iii) implies (ii) we must construct from S a (left) ad
joint T. For each c E C we can choose some object ao = Toc E A and an 
isomorphism 17c: 

17c: c ~ S(Toc) 

~lSg, 
Sa 

For every arrow f: c--->Sa, the composite fo 17c- 1 has the form Sg for 
some g because S is full; this g is unique because S is faithful. In other 
words, f = S go 17c for a unique g, so 17c is universal from c to S. There
fore To can be made a functor T: C--->A in exactly one way so that 
17 : 1--'--* S T is natural, and then T is the left adjoint of S with unit the 
isomorphism 17. As with any adjunction, S Ga' 17Sa = 1 (put c = Sa, f = 1 
in the diagram above). Thus S lOa = (17Sa) -1 is invertible. Since S is full and 
faithful, the counit lOa is also invertible. Therefore (T, S; 17, G): C~A 
is an adjoint equivalence, and the proof is complete. 

In this proof, suppose that A is a full subcategory of C and that 
S = K: A ---> C is the insertion. For objects a E A C C we can then choose 
ao = a = K a and 17Ka the identity. Then KGa = 1, hence lOa = 1 for all a. 
This proves 

Proposition 2. If A is a full subcategory of C and every c E C is iso
morphic ( in C) to some object of A, then the insertion K: A ---> C is an 
equivalence and is part of an adjoint equivalence (T, K ; 17, 1) : C ~ A 
with counit the identity. Therefore A is reflective in C. 

This includes in particular the case already noted, when A is a 
skeleton of C. 

A functor F : X ---> A is said to be a left-adjoint-left -inverse of G : A ---> X 
when there is an adjunction (F, G; 17, 1) : X ~ A with co unit the identity. 
This means (Exercise 4) that G is an isomorphism of A to a reflective 
subcategory of X. In the case of the Proposition 2 just above, we have 
shown that the insertion A ---> C has a left-adjoint-left-inverse. 
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Duality theorems in functional analysis are often instances of equiv
alences. For example, let CAb be the category of compact topological 
abelian groups, and let P assign to each such group G its character group 
PG, consisting of all continuous homomorphisms G~R/Z. The 
Pontrjagin duality theorem asserts that P : CAb~ AbOP is an equivalence 
of categories. Similarly, the Gelfand-Naimark theorem states that the 
functor C which assigns to each compact Hausdorff space X its abelian 
C*-algebra of continuous complex-valued functions is an equivalence 
of categories (see Negrepontis [1971]). 

Exercises 

1. Prove: (a) Any two skeletons ofa category C are isomorphic. 
(b) If Ao is a skeleton of A and Co a skeleton of C, then A and C are equivalent 

if and only if Ao and Co are isomorphic. 
2. (a) Prove: the composite of two equivalences D---->C, C---->A is an equivalence. 

(b) State and prove the corresponding fact for adjoint equivalences. 
3. If S:A---->C is full, faithful, and surjective on objects (each CEC is c=Sa for 

some a E A), prove that there is an adjoint equivalence (T, S; 1, e): C~A 
with unit the identity (and thence that T is a left-adjoint-right-inverse of S). 

4. Given a functor G: A ----> X, prove the three following conditions logically 
equivalent: 
(a) G has a left-adjoint-Ieft-inverse. 
(b) G has a left adjoint, and is full, faithful, and injective on objects. 
(c) There is a full reflective subcategory Y of X and an isomorphism H: A ~ Y 

such that G = K H, where K : Y ----> X is the insertion. 
5. If J is a connected category and Ll: C---->CJ has a left adjoint (colimit), show that 

this left adjoint can be chosen to be a left-adjoint-left-inverse. 

5. Adjoints for Preorders 

Recall that a preorder P is a set P = {p, p', ... } equipped with a reflexive 
and transitive binary relation p ~ p', and that preorders may be regarded 
as categories so that order-preserving functions become functors. An 
order-reversing function I on P to Q is then a functor L: P~Qop. 

Theorem 1 (Galois connections are adjoint pairs). Let P, Q be two 
preorders and L: P~QoP, R: QOP~P two order-preserving functions. 
Then L (regarded as a functor) is a left adjoint to R if and only if, for all 
PEP and q E Q, 

Lp~q in Q if and only if p~Rq in P. (1) 

When this is the case, there is exactly one adjunction qJ making L the left 
adjoint of R. For all p and q, p ~ R Lp and LRq ~ q; hence also 

Lp~LRLp~Lp, Rq~RLRq~Rq. (2) 
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Proof. Recall that P becomes a category in which there is (exactly) 
one arrow p->p' whenever p;£ p'. Thus the condition (1) states precisely 
that there is a bijection homQop(L p, q) ~ homp(p, R q); si~e each hom
set has at most one element, this bijection is automatically natural. 
The unit of the adjunction is the inequality p;£ R L p for all p, while 
the counit is LR q ~ q for all q. The two Eqs. (2) are the triangular identities 
connecting unit and counit. In the convenient case when both P and Q 
are po sets (i.e., when both the relations ;£ are antisymmetric) these 
conditions become L = LRL, and R = RLR (each three passages reduce 
to one!). 

A pair of order-preserving functions Land R which satisfy (1) is 
called a Galois connection from P to Q. Here is the fundamental example, 
for a group G acting on a set U, by (0', x) f-->-O'. x for 0' E G, x E U. 
Take P = Y'(U), the set of all subsets Xc U, ordered by inclusion, while 
Q = Y'( G) is the set of subsets S C G also ordered by inclusion (S;£ S' if 
and only if SCS'). Let LX = { 0' I x E X implies 0' • x = x}, R S = {x I 0' E S 
implies 0' • X = x}; in other words, L X is the subgroup of G which fixes 
all points x E X and RS is the set of fixed points of the automorphisms 
of S. Then L X ~ S in Q if and only if 0' • x = x for all 0' E S and all x E X, 
which in turn holds if and only if X ;£ R S in P. Therefore, Land R form 
an adjoint pair (a Galois connection). The original instance is that with 
G a group of automorphisms of a field U, as in the classical Galois theory. 

If U and V are sets, the set Y'(U) of all subsets of U is a preorder 
under inclusion. For each function f: U -> V the direct image f*, defined 
by f*(X) = {f(x) I x E X} is an order-preserving function and hence a 
functor f*: Y'(U)->Y'(V). The inverse image f*(Y) = {x I fx = y for 
some y E Y} defines a functor f* : Y'(V)->Y'(U) in the opposite direction. 
Since f* X C Y if and only if Xc f* Y, the direct image functor f* is 
left adjoint to the inverse image functor f*. 

Certain adjoints for Boolean algebras are closely related to the basic 
connectives in logic. We again regard Y'(U) as a preorder, and hence as a 
category. The diagonal functor L1 : Y'(U)->Y'(U) x Y'(U) has (as we have 
already noted) a right adjoint n, sending subsets X, Y to their inter
section X nY, and a left adjoint u, with (X, Y) f-->- X U Y, the union. 
If X is a fixed subset of U, then intersection with X is a functor 
X n - : Y'(U)->Y'(U). Since X n Y;£ Z if and only if Y;£ X'uZ, where 
X' is the complement of X in U, the right adjoint of X n - is X' u -. 
Thus the construction of suitable adjoints yields the Boolean operations 
n, u, and I corresponding to "and", "or", and "not". Now consider 
the first projection P : U x V -> U from the product of two sets U and V. 
Each subset S C U x V defines two corresponding subsets of U by 

p.S = {xI3y,y E V 

PlfS = {xiV Y,Y E V 

and (x,y) E S} , 

implies (x,y) E S} j 

they arise from (x, y) E S by applying the existential quantifier 3y, 
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"there exists a y" and the universal quantifier V y, "for all y", respectively 
to <x,y) E S. Also p.S is the direct image of S under the projection P. 
Now for all subsets X c U one has 

S ;;:; P* X<=> P * S ;;:; X ; P* X ;;:; S <=> X ;;:; P., S , 

where "{o}" means "if and only if". These state that P*, which is the in
verse image operation, has both a left adjoint p. and a right adjoint P * . 
In this sense, both quantifiers 3 and V can be interpreted as adjoints. 

There is also a geometric interpretation: P* X is the cylinder 
X x V C V x Vover the base X C V, P* S is the projection of S C V x Von 
the base V, and P#S is the largest subset X of V such that the cylinder on 
X is wholly contained in S. This analysis has revealed several basic con
cepts of logic (and, or, not, V y, 3 y) to be adjoints. This illustrates the 
slogan "adjoints are everywhere". 

Exercises 

1. Let H be a space with an inner product (e.g., Hilbert space). If P = Q is the set 
of all subsets S of H, ordered by inclusion, show that LS = RS = the orthogonal 
complement of S gives a Galois connection. 

2. In a Galois connection between posets, show that the subset {p[p=RLp} of 
P equals {p [p = Rq for some q} and give a bijection from this set to the subset 
{q [q = LRq} of Q. What are these sets in the case of a group of automorphisms 
of a field? Does this generalize to an arbitrary adjunction? 

3. For C a category with pullbacks, each arrow f:a~a' defines a functor 
(q f) = f*: (C L a)~(qa') which carries each object x~a of (C La) to the 
composite x~a~a'. Show thatf* has a right adjointf* withf*(x'->a')= y~a, 
where y is the vertex of the pullback of a~a' <-x'. 

6. Cartesian Closed Categories 

Much of the force of category theory will be seen to reside in using 
categories with specified additional structures. One basic example will 
be the closed categories (§ VII. 7); at present we can define readily one 
useful special case, "cartesian closed". 

To assert that a category C has all finite products and coproducts is to 
assert that products, terminal, initial and coproducts exist, thus the func
tors C -> 1 and L1 : C -> C x C have both left and right adjoints. Indeed, 
the left adjoints give initial object and coproduct, respectively, while the 
right adjoints give terminal object and product, respectively. 

Using just adjoints we will now define "cartesian closed category". 
A category C with all finite products specifically given is called cartesian 
closed when each of the following functors 

C-d, C--+CxC, C~C, 

C f-+ 0 , C f-+ < c, c) , a f-+ a x b , 
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has a specified right adjoint (with a specified adjunction). These adjoints 
are written as follows 

t~-10, axb~-1<a,b), Cb~-1C. 

Thus to specify the first is to specify a terminal object t in C, and specifying 
the second is specifying for each pair of objects a, b E C a product object 
a x b together with its projections a-a x b-+b. These projections 
determine the adjunction (they constitute the co unit of the adjunction); 
as already noted, x is then a bifunctor. The third required adjoint 
specifies for each functor - x b: C-+C a right adjoint, with the corre
sponding bijection 

hom(a x b, c) ~ hom (a, cb) 

natural in a and in c. By the parameter theorem (to be proved in the next 
section), <b, C)~Cb is then (the object function of) a bifunctor COP x c-+c. 
Specifying the adjunction amounts to specifying for each c and b an arrow e 

e: cb x b-+c 

which is natural in c and universal from - x b to c. We call this e = eb,c 
the evaluation map. It amounts to the ordinary evaluation <I, x) 1-+/ x of 
a function/at an argument x in both of the following cases: 

Set is a cartesian closed category, with ch = hom(b, c). 
Cat is cartesian closed, with exponent CB the functor category. 
A closely related example of adjoints is the functor 

- ®KB: K-Mod-+K-Mod 

which has a right adjoint homK(B, -); the adjunction is determined by 
a counit homK(B, A)®KB-+A given by evaluation. 

Exercises 

1. (a) If U is any set, show that the preorder 9(U) of all subsets of U is a cartesian 
closed category. 

(b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed. 
2. In some elementary theory T, consider the set S = {p, q, ... } of sentences of T 

as a preorder, with p ~ q meaning "p entails q" (i.e., q is a consequence of p 
on the basis of the axioms of T). Prove that S is a cartesian closed category, 
with product given by conjunction and exponential qP given by "p implies q". 

3. In any cartesian closed category, prove c' ~ c and Cbxb' ~ (cht, 
4. In any cartesian closed category obtain a natural transformation cb X ba->ca 

which agrees in Set with composition of functions. Prove it (like composition) 
associative. 

5, Show that A cartesian closed need not imply AJ cartesian closed, 
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7. Transformations of Adjoints 

We next study maps comparing different adjunctions. Given two 
adjunctions 

<F, G, cp, 1], s): X ~A, <F', G', cp', 1]', 0: X' ~A' (1) 

we define a map of adjunctions (from the first to the second adjunction) 
to be a pair of functors K : A ----> A' and L : X ----> X' such that both squares 

(2) 

of functors commute, and such that the diagram of hom-sets and 
adjunctions 

A(Fx, a) 'P )X(x,Ga) 

K=KFx,al 1 L=Lx,Ga 

A'(KFx,Ka) X'(Lx, LGa) (3) 

A'(F' Lx, Ka) 'P' ) X'(Lx, G' Ka) 

commutes for all objects XEX and aE A, Here KFx,a is the map fl---+Kf 
given by the functor K applied to each! : F x ---> a. 

Proposition 1. Given adjunctions (1) and functors K and L satisfying (2), 
the condition (3) on hom-sets is equivalent to LI] = 1]' L and also to s' K = Ks, 

Proof. Given (3) commutative, set a = Fx and chase the identity 
arrow 1 : F x ---> F x around (3) to get the units 11, 11' and the equality 

<LI1: L---->LGF) = <I]' L: L---->G' F' L), 

where LG F = G' F' L by (2), Conversely, given the equality LI1 = 11' L of 
natural transformations, the definition of the adjunctions cp and cp' by 
their units gives (3). The case of the counits is dual to this one. 

Next, given two adjunctions 

<F, G, cp, 11, s) , <F', G', q/, 1]', 0: X ~ A (4) 

between the same two categories, two natural transformations 
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are said to be conjugate (for the given adjunctions) when the diagram 
cp' 

A (F'x, a) ~ X(x, G' a) 

(<Tx)*=A(ax,a) 1 1 X(x,ra)=(ra)* (5) 

A(Fx, a) ~ X(x, Ga) 
cp 

commutes for every pair of objects x E X, a EA. 

Theorem 2. Given the two adjunctions (4), the natural transformations 
a and r are conjugate if and only if anyone of the four following diagrams 
(of natural transformations) commutes 

G' )G F a ) F' 

1 ~G' I Gr' Nl reF' (6) 

GFG'~GF'G', FG'F'~FGF', 

FG' Fr )FG Ix ~ ) GF 

laG' lc l~' lGa (7) 

F'G' c' ) IA, G'F'~GF'. 

Also, given the adjunctions (4) and the natural transformation a: F --'--> F', 
there is a unique r: G'--'-->G such that the pair <a, r) is conjugate. Dually, 
given (4) and r, there is a unique a with <a, r) conjugate. 

Proof. First, (5) implies (6) and (5) implies (7). For, put x = G' a in (5), 
start with the identity arrow 1 : G' a- G' a in the upper right and use the 
description of cp and cp' by unit and counit to chase this element 1 around 
the diagram as follows 

e~ ..... ~ ------------l11 = 1G , a 

I I 
e~ aG'a~G£~c GaG'a 

The result (loy,er right) is the first equality of (6). A slightly different 
chase yields 

The resulting equality is the first diagram of (7). The second halves of (6) 
and (7) are duals. 
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Next, suppose (J but not r given. Then the Yoneda Lemma applied 
to the composite transformation <p C ((J J* G <p' -1 (three legs of (5») shows 
that there is a unique family of arrows r~ for which (5) commutes, and this 
family is a natural transformation. Since each ea : FGa->a is universal 
from F to a, there is also a unique family of arrows r,: : G' a -+ G a for 
which the first of (7) commutes. Since (5) implies (7), r" = r~. In other 
words, if r = r" makes the first square of (7) commute, it also makes (5) 
commute. Therefore the first square of (7) implies (5). Given (1, there is 
immediately a unique natural transformation r : G' ~ G for which the 
first of (6) commutes; since (5) implies (6), r~ = r a, and hence the solu
tions r~ of (5) are necessarily natural; moreover (6) implies (5). 

The reader may also show that (6) implies (5) or (7) by constructing 
suitable diagrams of natural transformations. 

We now regard a conjugate pair < (J, r) of natural transformations as a 
transformation (or morphism) from the first to the second adjunction. 
The "vertical" composite of two such 

<F, G, 1], e) <".r\ <F'; G', 1]', e') <a'.r'>, <F", G", 1]", e") (8) 

is evidently (say by condition (5») a transformation <(J', r') C <(J, r) 
= «(J' . (J, r . r') from the first to the third adjunction. For the two given 
categories X and A we thus have a new category A(adjlX, the category of 
adjunctions from X to A; its objects are the adjunctions <F, G; 1], e); 
its arrows are the transformations (conjugate pairs) <(J,r), with the 
composition just noted. Also there are two evident "forgetful" functors 
to the ordinary functor categories, as follows: 

AX_A(adjlX, [A(adjl xJ op-> X A , 

F ( I<F, G,I],e)~G 

"1 l<",r> Ir 
F' ( I<F',G',r,.,e')~ G'. 

A typical example for Set is the bijection 

hom(S x T, R) ~ hom(S, hom(T, R») (9) 

discussed in § 1 as an example of an adjunction (for each fixed set T). If 
t : T -> T is a function between two such sets, then - x t is a natural 
transformation of functors - x T --4 - x T. Its conjugate is the natural 
transformation hom (t, -): hom (T, -)--4 hom (T, -); this is, as it should 
be, in the reverse direction, corresponding to the fact that S x T is 
covariant and hom (T, R) contravariant in the argument T. We may call 
(9) an adjunction with a "parameter" T E Set. For a commutative ring 
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K the adjunction ModK(A®KB, C) ~ ModK(A, HomK(B, C)) has a para
meter BE ModK. Here is general statement: 

Theorem 3 (Adjunctions with a parameter). Given a bifunctor 
F: X x P---+ A, assume for each object PEP that F( -, p) : X ---+ A has a 
right adjoint G(p, -): A ---+ X, via an adjunction 

hom (F (x, p), a) ~ hom (x, G(p, a)), (10) 

natural in x and a. There is then a unique way to assign to each arrow 
h: p---+p' of P and each object a E A an arrow G(h, a): G(p', a)---+G(p, a) of 
X so that G becomes a bifunctor pop x A ---+ X for which the bijection of 
the adjunction (10) is natural in all three variables x, p, and a. This 
assignment of arrows G(h, a) to <h, a) may also be described as the unique 
way to make G(h, - ) a natural transformation conjugate to F( -, h). 

Proof. The condition that the adjunction (10) be natural in PEP is 
the commutativity of the square 

hom (F(x, p), a) ~ hom (x, G(p, a)) I F(x, h)* I G(h,a). 

hom(F(x, p'), a) ~ hom (x, G(p', a)). 

This commutativity (for all a) states precisely that G(h, -) : G(p', -)-4G(p,-) 
must be chosen as the conjugate to F(-, h) : F(-, p)--'-> F(-, p'). By the 
previous theorem, there exists a unique choice of G(h, -) to realize this -
and the condition of conjugacy may be expressed in any of the five 
equivalent ways stated there. For a second arrow h': p' ---+ p", the 
uniqueness of the choice of conjugates shows for h' h that G(h' h, -) 
= G(h, -) a G(h', -), so that G( -, a) is a functor and G a bifunctor, as 
required. 

Dually, given a bifunctor G : pop x A ---+ X where each G (p, - ) has a 
right adjoint F( -, p), there is a unique way to make F a bifunctor 
X x P---+A. 

Exercises 

1. Interpret the definition C(X . a, c) ~ Set (X, C(c, a)) of co powers X . a in C as 
an adjunction with parameter a. 

2. Let '1x: x---> G(p, F(x, p)) be the unit of an adjunction with parameter. It is 
natural in x, but what property of '1 corresponds to the naturality of the adjunction 
(10) in p? 

3. In the functor category AX let S be that full subcategory with objects those 
functors F: X ---> A which have a right adjoint RF : A ---> X. Make R a functor 
soP--->XA by choosing one RF for each F, with Rcr the conjugate of cr. 
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4. (Kelly.) An adjoint square is an array of categories, functors, adjunctions, and 
natural transformations 

X (F.G,,,,) ,A u:F'H-'->KF, 

1H 1K 
X' (F,G',,,,') 'A', r:HG ...... G'K, 

such that the following diagram of hom-sets always commutes 

A(Fx, a) ~ A'(KFx, Ka) ~ A'(F'Hx, Ka) 

1'" 1~ 
H (ra) I 

X(x, Ga) --> X'(H x, H Ga) ------"--> X (H x, G' Ka). 

Express this last condition variously in terms of unit and co unit of the ad
junctions and prove that each of u, r determines the other. (The case 
H = K = identity functor is that treated in the text above.) 

5, (Palmquist.) Given H, K, and the two adjunctions as in Exercise 4, establish a 
bijection between natural transformations iJ(: F' H G ...... K and natural trans
formations f3 : H -'-> G' K F. 

8. Composition of Adjoints 

Two successive adjunctions compose to give a single adjunction, in 
the following sense: 

Theorem 1. Given two adjunct ions 

<F, G, 1], e): X ~A, 

the composite functors yield an adjunction 

<FF, GG, Gr;F, l],e,FeG): X ~D, 

Proof, With hom-sets, the two given adjunctions yield a composite 
isomorphism, natural in x E X and dE D: 

D(FFx, d) ~ A(Fx, Gd) ~ X(x, GGd). 

This makes the composite F F left adjoint to GG. Setting d = F F x, and 
applying these two isomorphisms to the identity 1: FFx-FFx, we 
find that the unit of the composite adjunction is x~GFxGiiFx~ GGFFx, 
so is Gr;F, 1], as asserted, By the dual argument, the co unit is e' FeG, 
q,e.d, One can also calculate directly that these last formulas give 
natural transformations / ........ GGFF and FFGG ........ / which satisfy the 
triangular identities, 
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Using this composition, we may form a category Adj, whose objects 
are all (small) categories X, A, D, ... and whose arrows are the adjunctions 
<F, G, '1, a): X ..... A, composed as above; the identity arrow for each 
category A is the identity adjunction A ..... A. 

This category has additional structure. Each hom-set Adj(X, A) 
may be regarded as a category; to wit, the category A(adj)X of adjunct ions 
from X to A as described in the last section. Its objects are these ad
junctions and its arrows are the conjugate pairs <cr, r), under "vertical" 
composition defined in (7.8). 

Theorem 2. Given two conjugate pairs 

<cr, r): <F, G, '1, a)...£+<F', G', '1', a'): X ..... A , 

«(f, f): (f, C,"if, e)...£+<F', C', if, e'): A ..... D 

the (horizontal) composite natural transformations (jcr and rf yield a 
conjugate pair (jcr : F F ....... F' F', rf : G' C' ....... G C of natural transformations 
for the composite adjunctions. 

The proof may be visualized by the diagram of hom-sets 

D(F'F'x, d)~A(F'x, C'd)~X(x, G'C'd) 

1 (;;ax)· 1 (<<x)·(Td). 1 (ftd). 

D(FFx, d) ~ A (Fx, Cd) ~ X(x, GCd) . 

Moreover, this operation of (horizontal) composition is a bifunctor 

Adj(A, D) x Adj(X, A)-+Adj(X, D). (1) 

This means that Adj is a "two-dimensional" category, as is Cat (see § II.S). 
There is additional discussion in Chapter XII. 

Exercises 

1. Prove that horizontal composition is a bifunctor, as in (1), and that this implies 
an interchange law between horizontal and vertical composition of conjugate 
pairs. 

2. Show that the adjunction with right adjoint the forgetful functor Rng->Set can 
be obtained as a composite adjunction in two ways, Rng->Ah->Set and 
Rng-> MOD->Set. 

3. Let R, S, and T be rings. 
(a) For a bimodule REs, show that - ® RE : ModR-> Mods has a right adjoint 

homs(E, -). 
(b) Show that this is an adjunction with parameter E E R-Mod-S. 
(c) Describe the composite of this adjunction with a similar adjunction 

Mods~ModT· 
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9. Subsets and Characteristic Functions 

The characteristic function of a subset SeX is the two-valued function 
l/Is : X --> {a, I} on X with the values 

l/Isx = ° if XES; l/Isx = 1 if x E X but x ¢ S . (1) 

Put differently, {a} c {a, I} represents the simplest non-trivial subset. An 
arbitrary subset SeX can be mapped into this simple subset by l/I s' as 
defined. This map produces a pullback square 

S ------> {o} 

1 1 (2) 

X ~ {O,l}. 

Such characteristic functions are often used in probability theory; in 
logic, {a, I} is the set of two "truth values" with ° the value "truth". One 
says that the monomorphism (the typical subset) t: {a} --> {a, I} is a 
"subobject classifier" for the category of sets. 

It turns out that there are similar classifiers for subobjects in other 
categories. In general, a subobject classifier for a category C with a ter
minal object 1 is defined to be a monomorphism t : 1 >-+ Q such that every 
monomorphism m in C is a pullback of t in an unique way. In other 
words, for each m there exists a unique pullback square 

S ------> 

m I It (3) 

X~Q. 

In the resulting pullback square (3), the top horizontal arrow is the 
unique map to the terminal object 1, the lower horizontal arrow acts 
as the "characteristic function" of the given subobject S, while the 
"universal" monomorphism t: 1 --> Q may be called "truth". 

For example, take Cto be the category offunctionsJ: X --> Y. Here, 
a monomorphism g >-+ J is a function g : S --> T between a pair of subsets 
SeX and T c Y such that g(s) = J(s) for all s E S. This means that the 
diagram 

S~ T 

I I 
x~ Y 

commutes. In this case, there are three types of elements of X: those x in 
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S, those x not in S but with g x in T, and, finally, those x not in S with g x 
not in T. We may then define a characteristic function with three values 
by setting 

l/Isx = 0 if XES, 

l/Isx = 1 if x ¢ S but! x E T , 

l/Isx = 2 if! x ¢ T(and hence, x ¢ S) . 

Again this prescription provides a pullback 

S ) {O} 

1\ I\l 
X T t/ls , {L,ll I 
~1 ~ 

y ) {0,2} 
t/lr 

of objects X -+ Y and j : {O, 1, 2} -+ {O, I} in the category of functions, 
where the function j on the right is given by jO = 0, jl = 0, j2 = 2. Thus, 
in this case, the inclusion j on the right is a subobject classifier for the 
category of functions. 

There are many other examples of subobject classifiers. First, recall 
that the arrow category 2 is the category with only two objects 0 and 1 
and only one non-identity arrow a : 0 -+ 1. Thus, an ordinary function! 
is the same thing as a functor 2 -+ Sets. Hence, we have constructed 
above the subobject classifier for the functor category Sets2• For any 
category C, there is a subobject classifier (find it!) for the functor category 
Setsc . 

10. Categories Like Sets 

An (elementary) topos is defined to be a category E with the following 
properties: 

(i) E has all finite limits; 
(ii) E has a subobject classifier; 

(iii) E is cartesian closed. 

We recall that requiring E to be cartesian closed means requiring that 
each functor "product with b" (i.e., a t--+a x b) has for all b in E a right 
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adjoint c ~ ch, so that 

hom(a x b, c) ~ hom(a, cb ) . 

In other words, E has exponentials. 
The category Sets of all (small) sets is a topos and so is the category 

Sets cop of all set-valued contravariant functors on a small category C. 
Such a functor F : cop ~ Sets is also called a pre sheaf. This is in refer
ence to topology, where C is the set of all open sets U of a topological 
space X. In this case, a presheaf F assigns to each open set U a set F( U), 
with functorial properties for continuous maps U ---- V. For example, 
F( U) might be the set of all continuous real-valued functions on U. In 
this case, F is said to be a sheaf (think of the sheaf of coefficients for a 
cohomology theory!). This and other categories of sheaves playa central 
role in algebraic geometry and in algebraic topology; the word "topos" is 
evidently a derivative of the word "topology", suggesting that a topo
logical structure is essentially described by its topos of sheaves of Sets. 

This study of categories of sheaves on topological spaces and their 
generalization has led to the study of toposes (see Mac Lane-Moerdijk 
[1992]). In particular, various logical properties are reflected in the sub
object classifiers Q of a topos. Under many circumstances, a topos pro
vides an alternative view of the foundations of mathematics; for example, 
the use of "forcing" to prove the independence of the continuum hypoth
esis can be well organized in terms of constructions on toposes. (see Mac 
Lane-Moerdijk [1992], Chapter VI). Also, suitable toposes can replace 
the category of sets as a foundation for mathematics. 

The axioms for a topos have many useful consequences. For exam
ples, every topos has all finite colimits. 

Notes. 

The multiple examples, here and elsewhere, of adjoint functors tend to show that 
adjoints occur almost everywhere in many branches of Mathematics. It is the 
thesis of this book that a systematic use of all these adjunctions illuminates and 
clarifies these subjects. Nevertheless, the notion of an adjoint pair of functors was 
developed only very recently. The word "adjoint" seems to have arisen first (and 
long ago) to describe certain linear differential operators. About 1930 the concept 
was carried over to a Hilbert space H, where the adjoint T* of a given linear 
transformation Ton H is defined by equality of the inner products 

(T*x,y)=(x, Ty) 

for all vectors x, y E H. Clearly, there is a formal analogy to the definition of adjoint 
functor. 

Daniel Kan in [1958J was the first to recognize and study adjoint functors. 
He needed them for the study of simplicial objects, and he developed the basic 
properties such as units and co units, limits as adjoints, adjunctions with a parameter, 
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and conjugate transformations, as well as an important existence theorem (the 
Kan extension - see Chapter X). Note that his discovery came ten years after 
the exact formulation of universal constructions. Initially, the idea of adjunctions 
took on slowly, and the relation to universal arrows was not clear. Freyd in his 
1960 Princeton thesis (unpublished but widely circulated) and in his book [1964J 
and Lawvere [1963, 1964J emphasized the dominant position of adjunct ions. One 
must pause to ask if there are other basic general notions still to be discovered. 

One may also speculate as to why the discovery of adjoint functors was so 
delayed. Ideas about Hilbert space or universal constructions in general topology 
might have suggested adjoints, but they did not; perhaps the 1939-1945 war 
interrupted this development. During the next decade 1945-55 there were very 
few studies of categories, category theory was just a language, and possible workers 
may have been discouraged by the widespread pragmatic distrust of "general 
abstract nonsense" (category theory). Bourbaki just missed ([1948J, Appendix III). 
His definition of universal construction was clumsy, because it avoided categorical 
language, but it amounted to studying a bifunctor W : xop x A ~Set and asking 
for a universal element of W(x, -) for each x. This amounts to asking for objects 
Fx E A and a natural isomorphism W(x, a) ~ A (Fx, a); it includes the problem 
of finding a left adjoint F to a functor G: A ~ X, with W(x, a) = homx(x, Ga). It 
also includes the problem of finding a tensor product for two modules A and B, 
with W(A, B), C) taken to be the set of bilinear functions A x B~C. Moreover, 
the tensor product A <8"JB is not in this wayan example of a left adjoint (though it 
is an example of our universal arrows). In other words Bourbaki's idea of universal 
construction was devised to be so general as to include more - and in particular, 
to include the ideas of multilinear algebra which were important to French Mathe
matical traditions. In retrospect, this added generality seems mistaken; Bourbaki's 
construction problem emphasized representable functors, and asked "Find Fx 
so that W(x, a) ~ A(Fx, a)". This formulation lacks the symmetry of the adjunction 
problem, "Find Fx so that X(x, Ga) ~ A(Fx, a)" - and so missed a basic discovery; 
this discovery was left to a younger man, perhaps one less beholden to tradition or 
to fashion. Put differently, good general theory does not search for the maximum 
generality, but for the right generality. 



v. Limits 

This chapter examines the construction and properties of limits, as 
well as the relation of limits to adjoints. This relation is then used in the 
basic existence theorems for adjoint functors, which give universals and 
adjoints in a wide variety of cases. The chapter closes with some indic
ations of the uses of adjoint functors in topology. 

1. Creation of Limits 

A category C is called small-complete (usually just complete) if all 
small diagrams in C have limits in C; that is, if every functor F : J --+ C 
to C from a small category J has a limit. We shall show that Set, Grp, Ab, 
and many other categories of algebras are small-complete. 

The construction of limits in Set may be illustrated by considering 
the limit of a functor F: wOP--+Set; here £0, the linearly ordered set of all 
finite. ordinals, is the free category generated by the graph 

{O--+1--+2--+3--+···} . 

The functor F: wop --+Set is just a list of sets Fn and of functions In' 
as in the first row of the diagram below: 

F. fo F fl F F. fn F. 

1~~17"H~ (1) 

JI.F ( inc!. L=LimF , , ~ 

Given F, form first the product set JIiFi; it consists of all strings 
x = {Xo, Xl' X2 ••• } of elements, with each Xn E Fn, and it has projections 
Pn : JI;F; ----> Fn, but the triangles formed by these projections need not 
commute (fnPn+l =!= Pn). A limit must be at least a vertex of a set of 
commuting triangles (a cone). So take the subset L of those strings X 

which "match" under I, in that Inxn+ 1 = Xn (or all n. Then functions 
Jln: L--+Fn are defined by JlnX = Xn; since the string x matches,lnJln+l = Jln 

109 
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for all n, so Ii : L-4 F is a cone from the vertex L E Set to the base F. 
If T : M -4 F is any other cone from a set M as vertex, each mE M de
termines a string {Tnm} which matches and hence a function g : M ~ L, 
with gm = {Tnm}, so with lig = T. Since g is the unique such function this 
shows that Ii is a universal cone to F, and so that L is the limit set of F. 

A string x which "matches" is the same thing as a cone x : *-4 F to 
F from the one point set *. Hence the limit L above can be described as 
the set L = Cone (*, F) of all such cones. The same construction applies 
for any domain category (in place of mOP). 

Theorem 1 (Completeness of Set). If the category J is small, any 
functor F: J ~Set has a limit which is the set Cone (*, F) of all cones 
(J: *-4F from the one point set * to F, while the limiting cone v, with 

(2) 

is for each j that function sending each cone (J to the element (Jj E Fj. 

For example, if J is discrete, the set Cone( *, F) of J-cones is just the 
cartesian product IIjFj. 

Proof. Since J is small, Cone (*, F) is a small set, hence an object of 
Set. If u:j~k is any arrow of J, then Fu(Jj=(Jk because (J is a cone; 
hence v as defined in (2) is a cone to the base F. To prove it universal, 
consider any other cone r: X -4 F to F from some set X. Then for 
each x E X, T X is a cone to F from one point, so there is a unique function 
h : X ~ Cone (*, F) sending each x to r x, q .e.d. 

The crux of this proof is the (natural) bijection 

Cone (X, F) ~ Set (X, Cone (*, F)) (3) 

given by rf->-h, as above. Since a cone is just a natural transformation, 
this may be rewritten as an adjunction 

Nat(Ll X, F) ~Set(X, Cone(*, F)). 

By the very definition of limit, this proves that Lim F ~ Cone (*, F). 
Limits in Grp and other categories may be constructed from the set 

of all cones in much the same way. For example, if F: mOP~ Grp, as 
displayed in (1), then each Fn is a group, the set L of all cones (all matching 
strings x) is also a group under pointwise multiplication ((xY)n = xnYn), 
and, the projection lin: L~Fn with XI->-Xn is a group homomorphism, 
so that Ii : L-4 F is a limiting cone in Grp. 

The p-adic integers Zp (with p a prime) illustrate this construction. 
Take F: mOP~ Rng with Fn = Zjpnz, the ring of integers modulo pn, and 
with Fn+I~Fn the canonical projection Zjpn+lZ~Zjpnz. Then 
Zp =!d!!!F exists. An element A of Zp is a cone from * to F; that is, 
A can be written as a sequence A = Po, AI' ... } of integers with 
An+1 =An(mod pn) for all n, where A=A' holds when An=A~(modpn) 
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for all n. Two p-adic integers A and fl can be added and multiplied "term
wise", by the formulas 

(A + fl)n = ;'n + fln , (Afl)n = Anfln . 

These operations make Zp = Lim F a ring, the ring of p-adic integers, and 
this description completely determines Zp. This description is quicker 
than the classical one, which first defines a p-adic valuation (and thus a 
topology) in Z, and then observes that each p-adic integer ;, is represented 
by a Cauchy sequence in that topology. 

Formal power series rings also can be described as limits (Ex. 7). 
Again, in Top, take each object Fn to be a circle SI, and each arrow 

fn: SI----+SI to be the continuous map wrapping the domain circle SI 
uniformly p times around the codomain circle. The inverse limit set L 
then becomes a topological space when we introduce just those open 
sets in L necessary to make all the functions fln: L----+ SI continuous. 
This L is the limit space in Top; it is known as the p-adic solenoid. 

Here is the general construction for groups. 

Theorem 2. Let U : Grp----+Set be the forgetful functor. rf H : J ----+ Grp 
is such that the composite U H has a limit L and a limiting cone v : L~ U H 
in Set, then there is exactly one group structure on the set L for which 
each arrow Vj: L----+ U Hj of the cone v is a morphism of groups; moreover, 
this group L is a limit of H with v as limiting cone. 

Proof. By Theorem 1, take L = Cone (*, U H); define the product of 
two such cones a, T E Cone (*, U H) by (aT)j = ajTj (the product in the 
group H) and the inverse by (a- 1)j = aj 1 (the inverse in H). These defin
itions make L a group and each component of va morphism of groups; 
conversely, if v given by Tf---+T j is to be a morphism of groups for each j, 
then the product of a, TEL must be given by this formula. 

Now if G is any group and A: G~H any cone in Grp (consisting of 
group morphisms Aj : G----+ Hj for j E J), then U A: U G~ U H is a cone in 
Set, so by universality UA=(Uv)h for a unique function h: UG----+L. 
For any two group elements gl and g2 in G, 

(h(gl g2)t = ))gl g2) = (Ajgd (A jg2) = (hgd; (hg 2)j = ((hgd (hg 2))j; 

because ), is a morphism of groups, so is h, and therefore L is indeed the 
limit in Grp. 

This argument is just a formalization of the familiar termwise con
struction of the multiplication in cartesian products of groups, in the 
p-adic numbers, etc. The conclusion of the Theorem constructs limits in 
Grp from the limits in Set in a unique way, using U. The same argument 
will construct all small limits in Rng, Ab, R-Mod and similar algebraic 
categories, using the forgetful functors U to Set. In other words, each 
forgetful functor "creates" limits in the sense of the following definition: 
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Definition. A functor V: A - X creates limits for a functor F : J - A if 
(i) To every limiting cone c: X--4 V F in X there is exactly one pair 

< a, (J> consisting of an object a E A with Va = x and a cone (J : a--4 F with 
V (J = c, and if, moreover, 

(ii) This cone (J: a--4 F is a limiting cone in A. 

Similarly, we may define "V creates products" (the above, with J 
restricted to be discrete); "V creates finite limits" (the above, with J 
finite), or "V creates colimits" (the above with the arrows in all cones 
reversed). Note especially that "V creates limits" means only that V 
produces limits for functors F whose composite V F already has a limit. 

In this terminology, Theorem 2 now reads 

Theorem 3. The forgetful functor V : Grp-Set creates limits. 

Exercises 

1. Prove that the projection (x 1 C) ...... C of the comma category creates limits. 
2. If Comp Haus C Top is the full subcategory of all compact Hausdorff spaces, show 

that the forgetful functor Comp Haus ...... Set creates limits. 
3. For any category X, show that the projection X 2 ...... X x X which sends each 

arrow f: x ...... y in X to the pair (x, y) creates limits. 
4. Prove that the category of all small finite sets is finitely complete (i.e., has all 

finite limits). 
5. Prove that Cat is small-complete. 
6. Show that each p-adic integer }, is determined by a string of integers a j with all 

a j E {D, 1, ... , p - I}, with each).n == ao + alP + ... + an- l pn-l (mod pn). Show that 
addition and multiplication of p-adic integers correspond to the usual operations 
of addition and multiplication of infinite "decimals" ... an ... ao (with base p, 
the decimals extending infinitely to the left). 

7. Let K [x] be the usual ring of polynomials in x with coefficients in the commutative 
ring K, while F:woP ...... Rng is defined by Fn=K[x]/(xn), with the evident 
projections, and (xn) the usual principal ideal. Prove that Lim F is the ring of 
formal power series in x, coefficients in K. 

8. Show that the category of sets is cocomplete. 

2. Limits by Products and Equalizers 

The construction of the limit of F : J ...... Set as the set of all cones 

Cone(*, F) C lljFj 

can be made in two steps: Each cone (J is an element x of the product 
lljFj with projections Pj; to require that an element x of the product be a 
cone is to require that (FU)Xj=Xk for every arrow u:j-k in J; this 
amounts to requiring that x lie in the equalizer of(Fu) Pj and Pk : lljFj-Fk. 
Here is the general formulation of this process in any category. 
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Theorem 1. For categories C and J, if C has equalizers of all pairs 
of arrows and all products indexed by the sets obj (J) and arr (J), then 
C has a limit for every functor F : J -+ C. 

The proof constructs the following diagram in stages, with i denoting 
an object and u :j-+k an arrow of the index category J. By assumption, 
the products II;F; and IIuFk and their projections exist, where the second 
product is taken over all arrows u of J, with argument at each arrow u the 
value Fk = Fcodu of F at the codomain object of u. Since II uFk is a product, 
there is a unique arrow f such that the upper square commutes for 
every u and a unique arrow g such that the lower square commutes for 
every u. By hypothesis, 

(1) 

there exists an equalizer e for f and g. Its composite with the projections 
Pi give arrows fl.i = Pie: d -+ Fi for each i. Since e equalizes f and g and 
the two squares above commute, one has FUfl.j = fl.k for every u : j -+ k; 
hence fl. : Ad -=+ F is a cone from the vertex d to the base F. If 't" is any 
other such cone, of vertex c, its maps 't"i combine to yield a unique map 
h : c -+ IIiFi to the product; 't" a cone implies f h = gh. Hence h factors 
uniquely through e and therefore the cone .. factors uniquely through the 
cone fl.. This proves that d and the cone fl. provide a limit for F. For the 
record, much as in the case of Sets: 

Theorem 2 (Limits by product and equalizers, continued). The limit 
of F:J-+C is the equalizer e of f,g:II;F;-+IIuFcodu (uEarrJ,iEJ), 
where Puf=Pcodu, pug=FuoPdomu: the limiting cone J.L is J.Lj=Pje, for 
j E J, all as in (1). 

This theorem has several useful consequences and special cases. 

Corollary 1. If a category C has a terminal object, equalizers of all 
pairs of arrows, and products oj all pairs of objects, then C has all finite 
limits. 

Here a finite limit is a limit of J -+ C, with the category J finite. 

Corollary 2. If C has equalizers of all pairs of arrows and all small 
products, then C is small-complete. 

For example, this gives another proof that Set is small-complete. 
The concept of completeness is useful chiefly for large categories and 

for preorders. In a preorder P, a product of objects aj,j E J, is an object d 
with d ~ a j for all j and such that c ~ a j for all j implies c ~ d; in other 
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words a product is just a greatest lower bound or meet of the factors aj 
(dually, a coproduct is a least upper bound or join). 

Proposition 3 (Freyd). A small category C which is small-complete 
is simply a preorder which has a greatest lower bound for every small 
set of its elements. 

Proof. Suppose C is not a pre order. Then there are objects a, bEe 
with arrows f =1= g: a---->b. For any small set J form the product IIjb 
of factors bj all equal to b. Then an arrow h: a----> IIjb is determined 
by its components, which can be f or g. There are thus at least 21 arrows 
a ----> IIjb. If the small set J has cardinal larger than arrC, this is a con
tradiction. 

Exercises 

1. (Manes.) A parallel pair of arrows f, g : a ---+ b in C has a common left inverse h 
when there is an arrow h: b----+a with hf = 1 = hg. 
(a) Prove that a category C with all small products and with equalizers for all 

those parallel pairs with a common left inverse is small complete. (Hint: 
The parallel pair used in the proof of Theorem 1 does in fact have a common 
left inverse.) 

(b) In Set, show that a parallel pair of arrows f, g: X ----+ Y has a common right 
inverse if and only if the corresponding function (f, g) : X ----+ Y x Y has image 
containing the diagonal {<y, y> lYE Y}. 

2. Prove that Cl , C2 complete (or co complete) imply the same for the product 
category Cl x C2 . 

3. (Lim and Lim as functors.) IfF, P: J----+C have limiting cones 11,11'(or colimiting 
c'Ones v, ~ show that each natural transformation f3: F --4 P determines 
uniquely arrows \i!!!f3 or Jir!!f3 such that the following diagram commutes, 

where LI : C----+CJ is the diagonal functor: 

LI LimF ~ F ~ LI (Lim F) 
<----;-- 1 ---;--> 

J{1imP)! {J ! .1(limp) 
+-- {- ... ---t 

LI Lim P ~ P ~ LI (LimP) . 
+----- ---> 

Conclude: If C is complete, ~ (or ~) is a functor CJ ----+C. 

4. (Limits of composites.) Given composable functors 

J' ~J-4CJ4C' 

and limiting cones v for F, v' for H FW, observe thatLIJ'(H c) = H 0 LlJ CoW: J'----+C'. 
and show that there is a unique "canonical" arrow t:H0!d!!!F----+ld!!!.HFW 
such that the following diagram commutes: 

LlJ'(Ho LimF)~ HFW ~ LlJ'(LimHFW) 

LlJ';r II ~J'(S) 
JJ,(LimHFW)~H FW~LlJ'(H 0 Lim F) . 

+----- ---> 

Dually, construct s:!d!nH FW ----+ H 0!d!nF as indicated at the right. 
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5. (Limit as a functor on the comma category of all diagrams in C.) 
(a) Interpret W of Ex. 4 as an arrow in (Catlc) to show (for C complete) that 

!d!l! is a functor (Catlc)°P-.C. 

(b) Let (Catlc) be the ("super-comma") category with objects F: J -.C, arrows 
<p, W) : F' -. F those pairs consisting of a functor W: J' -. J and a natural 
transformation p: FW~F'. Combine Exercise 3 and Exercise 4 to show 
(for C complete) that Lim is a functor (Cat t C)0P-. C. Dualize. 

3. Limits with Parameters 

Let T: J x P-+ X be a bifunctor, and suppose for each value PEP of 
the "parameter" p that T( -, p) : J -+ X has a limit. Then these limits 
for all p form the object function pr+ Limj TV, p) of a functor P-+ X. 

Instead of proving this directly, we replace functors P-+ X by objects 
of the functor category X p. This replaces T: J x P-+ X by its adjunct 
S : J -+ X P, under the adjunction Cat(J x P, X) ~ Cat(J, X P). Recall that 
for each object PEP there is a functor Ep: x P -+ X, "evaluate at p", 
given for arrows (natural transformations) (J : H --4 H' of x P as 

EpH=Hp, Ep(J=(Jp:Hp-+H~. (1) 

Theorem 1. If S : J -+ x P is such that for each object PEP the composite 
EpS:J-+X has a limit Lp with a limiting cone Tp:Lp--4EpS, then there 
is a unique functor L: P-+X with object function pr+Lp such that pr+Tp 
is a natural transformation T : LJ L = LJ J L--4 S .. moreover, this T is a limiting 
cone from the vertex L E x P to the base S : J -+ X p • 

Proof. Let h: p-+q be any arrow of P. Then, writing EpS as Sp' 
the given cones Tp and Tq for a typical arrow u :j-+k of J have the form 

Lp 

The triangles commute because Tp and Tq are cones and the parallelogram 
because S is a functor. Since the inside cone is universal there is a 
unique arrow Lh:Lp-+Lq such that T~oLh=S0oT~ for alljEJ. The 
assignment hr+ Lh makes L a functor (Proof: put another cone outside) 
and r a natural transformation LJL--4S (a cone from the object LEXP 

to the functor S: J -+ X P). It is a limiting cone; for if (J : M --4 S is any 
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other cone there are unique arrows Mp--+ Lp because Lp is a limit; they 
combine to give a unique natural transformation M -4 L. 

The conclusion may be written 

Ep(~S) = ~(EpS): 

In a Junctor category, limits may be calculated pointwise (provided the 
pointwise limits exist). 

Corollary. IJ X is small-complete, so is every Junctor category X p . 

This theorem becomes a case of "creation" of limits, if we write IPI 
for the discrete subcategory consisting of all objects and identity arrows 
of P. 

Theorem 2. For any categories X and P, the inclusion Junctor i : IPI--+ P 
induces a Junctor i* = Xi : x P --+ XIPI which creates limits. 

4. Preservation of Limits 

A functor H: C --+ D is said to preserve the limits of functors F: J --+ C 
when every limiting cone v : b-4 F in C for a functor F yields by composition 
with H a limiting cone Hv: Hb-4HF in D; this requires not only that 
H take each limit object which exists in C to a limit object in D but 
also that H take limiting cones to limiting cones. A functor is called 
continuous when it preserves all small limits. 

Theorem 1. For any category C with small hom-sets, each hom
Junctor C (c, -): C --+Set preserves all limits; in particular, all small 
limits. 

The same proof will give a more general result: If C has hom-sets 
in Ens, any category of sets in which Ens(X, Y) consists of all functions on 
X to Y, then each hom-functor C(c, -): C--+ Ens preserves all limits 
which exist in C. 

Proof. Let J be any category and F: J--+C a functor with a limiting 
cone v: LimF -4 F in C. Apply the hom-functor C(c, -); there results a 
cone v* = C(c, v), as in the diagram 

C(c, Lim F) V*i ) C(c,FJ, i E J 
t 
I 

[k 
I 

X 'i ) C(c,FJ 

in Set. For any other cone! to the same base from a vertex set X, each 
element x E X gives a cone !iX: c--+ Fi in C and hence, because v is 
universal, a unique arrow hx: c--+ LimF with vihx = !iX, Then setting 
kx = hx for each x defines a function, and hence an arrow k in Ens as 
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shown, with V*ik = Ti for all i. Since k is clearly unique with this property, 
v * is a limiting cone in Set, as required. 

The same proof, differently stated, might start by noting that the 
definition of the functor C (c, F - ) : J ~Set shows that a cone A.: c ....... F 
in C is the same thing as a cone A.: * ....... C(c, F -) in Set, with vertex 
a point *. Then, because Cone(X, -) ~Set(X, Cone(*, -)) as in (1.3), 

Cone(X, C(c,F-)) ~ Set(X,Coneh C(c,F-))) 

= Set(X,Cone(c,F)) ~ Set(X, C(c, Lim F)) , 

where "Cone" means J-cone and where the last step uses the definition of 
LimF. But LimS, for each S: J ~ Set, is defined by the adjunction 
Cone(X, S) ~ Set(X, Lim S). Therefore the above equations determine 
this Lim S (together with the correct limiting cone) as 

LimC(c, F -) ~ C(c, Lim F) . (1) 

Some authors use this equation to define limits in C in terms of 
limits in Set; for example, the product of objects aj in C is defined by 

n C(c, ai) ~ C(c, n ai)· (2) 
i i 

The contravariant hom-functor may be written as 

C( -, c) = COP(c, -): COP~Set; 

hence the theorem shows that this functor C( -, c) carries small colimits 
(and their colimiting cones) in C to the corresponding limits and 
limiting cones in Set. For example, the definition of a small coproduct 
provides an isomorphism (coproduct to product): 

C(lljaj, c) ~ n C(aj' c). 
j 

More generally, the colimit of any F : J ~ C is determined by 

C(ColimF, c)~ LimC(F -, c). (3) 

Creation and preservation are related: 

Theorem 2. If V: A ~ X creates limits for F : J ~ A and the composite 
V F : J ~ X has a limit, then V preserves the limit of F. 

In particular, if V creates all small limits and X is small-complete, 
then A is also small-complete, and V is continuous. 

Proof. Let T: a ....... F and a: x ....... V F be limiting cones in A and X, 
respectively. Since V creates limits, there is a unique cone ll: b...£.+F in A 
with V II : Vb ....... V F equal to a: x ....... V F; moreover, II is a limiting cone. 
But limits are unique up to isomorphism, so there is an isomorphism 
(}:b~a with T()=(}. Thus V(}:Vb=x~Va, with VToV(}=V(}=a, 
so Va is a limit and V preserves limits, as desired. 
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In any category an object p is called projective if every arrow h: p-+c 
from p factors through every epi g: b-+c, as h = gh' for some h' 

p 

h~//' Ih 
"II," 

b~c 
It is equivalent to require thatg epi implies hom(p,g):hom(p,b)-+hom(p,c) 
epi in Set In other words, p is projective exactly when hom(p, -) 
preserves epis. Dually, an object q is injective when hom( -, q) carries 
monies to epis, These notions are especially useful in R-Mod and other 
Ab-categories; in R-Mod the projectives are the direct summands of 
the free modules. 

Exercises 

1. Prove that the composite of continuous functors is continuous. 
2. If C is complete, and H: C-+D preserves all small products and all equalizers 

(of parallel pairs) prove that H is continuous. 
3. Show that the functor F: Set-+Ab sending each set X to the free abelian group 

generated by the set X is not continuous. 
4. For any small set X, show that the functor (product with X) X x - : Set-+Set 

preserves all colimits. 
5. (Preservation of Limits.) Given H: C-+C' and a functor F: J-+C such that F 

and H F have limits, prove that H preserves the limits of F if and only if the 
canonical arrow H 0 Lim F -+ Lim H F of Exercise 2.4 is an isomorphism (This 
is a natural way to deScribe thepreservation of limits when both categories C 
and C' are given with specified limits). 

5. Adjoints on Limits 

One of the most useful properties of adjoints is this: A functor which 
is a right adjoint preserves all the limits which exist in its domain: 

Theorem 1. IJ the Junctor G: A -+ X has a left adjOint, while the 
Junctor T: J -+ A has a limiting cone -r: a->-+ T in A, then G T has the 
limiting cone G -r : Ga->-+ G T in X. 

Proof. By composition, G-r is indeed a cone from the vertex Ga in X. 
If F is a left adjoint to G, and if we apply the adjunction isomorphism 
to every arrow of a cone a: X-4 G T, we get arrows (a;)" : Fx-+ Ti for 
i E J which form a cone a· : Fx->-+ Tin A. But -r : a-4 T is universal among 
cones to T in A, so there is a unique arrow h: Fx-+a with -rh = a·. 
Taking adjuncts again, this gives a unique arrow h#: x-+Ga with 
G-r· h~ = (-rh)~ = (al»~ = a. The uniqueness of the arrow h~ states pre
cisely that G-r : Ga ~ T is universal, q.e.d. 
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The proof may be illustrated by the following diagrams (where 
u: i-j is any arrow of J). 

in A in X 

GTi~Ga 

GTUl ~rh# 
GTj +---a:- x. 

J 

This proof can also be cast in a more sophisticated form by using 
the fact that Lim is right adjoint to the diagonal functor .1. In fact, 
given an adjunction 

(F,G,rJ,e):X~A 

and any index category J, one may form the functor categories (from J) 
and hence the diagram 

(FJ, GJ, rJJ, eJ) : X J ~ A J , 

where FJ(S) = FS for each functor S: J-X, and rJJS= rJS: S ...... GFS, etc. 
The triangular identities for rJ and e yield the same identities for rJJ and eJ, 
so the second diagram is indeed an adjunction (in brief, adjunct ions 
pass to the functor category). Now we have the diagram of adjoint pairs 

,F:~=:fLm 
X ( : 'A. 

The definitions of the diagonal functors .1 show at once that FJ L1 = .1 F, 
so the diagram ofleft adjoints commutes in this square. Since compositions 
of adjoints give adjoints, it follows that the composites Lim 0 GJ and 

+--
G 0 ~ are both right adjoints to FJ 0 .1 = .1 0 F. Since the right adjoint 
of a given functor is unique up to natural isomorphism, it now follows 
that Lim 0 GJ ~ Go Lim. This proves again for each functor T: J _ A 
with limit a (and limiting cone 'r: a ...... T in A) that Ga = G Lim T 
= Lim GJ (T) = Lim G T. The reader should show that the same argument 
proves that G preserves limiting cones (put units and counits in the 
square diagram above, and recall that the limiting cone 'r : a ...... T is just 
the value of the counit of the adjunction (.1, Lim, ... ): A~AJ on the 
functor T). 

The dual of the theorem is equally useful: Any functor P which 
has a right adjoint (i.e., which is a left adjoint) must preserve colimits 
(coproducts, coequalizers, etc.). This explains why the coproduct (free 
product) of two free groups is again a free group (on the disjoint union of 
the sets of generators). 
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Similarly (by the original theorem) all the typical forgetful functors 
in algebra preserve products, kernels, equalizers, and other types of 
limits. Typically, the product of two algebraic systems (groups, rings, 
etc.) has as underlying set just the (cartesian) product of the two under
lying sets. This, and other similar facts, are immediate consequences of 
this one (easy) theorem. The theorem can also be used to show that 
certain functors do not have adjoints. 

Exercises 

1. Show that, for a fixed set X, the functor X x - : Set--4Set cannot have a left 
adjoint, unless X is a one-point set. 

2. For the functor D: VctOP --4 Vet of (IV. 2.2) show that D has no right adjoint (and 
hence, in particular, is not the left adjoint of DOP). 

3. If C is a full and reflective subcategory of a small-co complete category D, prove 
that C is small-cocomplete. 

4. Prove that SetOP is not cartesian closed. 

6. Freyd's Adjoint Functor Theorem 

To formulate the basic theorem for the existence of a left adjoint to a 
given functor, we first treat the case of the existence of an initial object 
in a category and then use the fact that each universal arrow defined by 
the unit of a left adjoint is an initial object in a suitable comma category. 

Theorem 1 (Existence of an initial object). Let D be a small-complete 
category with small hom-sets. Then D has an initial object if and only 
if it satisfies the following 

Solution Set Condition. There exists a small set I and an I -indexed 
family ki of objects of D such that for every dE D there is an i E I and 
an arrow ki---+d of D. 

Proof. This solution set condition is necessary: If D has an initial 
object k, then k indexed by the one-point set realizes the condition, since 
there is always a (unique) arrow k---+d. 

Conversely, assume the solution set condition. Since D is small
complete, it contains a product object w = II k i of the given I -indexed 
family. For each dE D, there is at least one arrow w---+d, for example, a 
composite w = II ki---+ ki---+d, where the first arrow is a projection of the 
product. By hypothesis, the set of endomorphisms D(w, w) of w is small 
and D is complete, so we can construct the equalizer e: v---+w of the set 
of all the endomorphisms of w. For each dE D, there is by v---+w---+d 
at least one arrow v---+d. Suppose there were two, f, g : v---+d, and take 
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their equalizer e l as in the figure below 

J 
u~v :d 
rs le 9 i 
, I 
W~W=nki~ki' 

By the construction of w, there is an arrow s: w- u, so the composite 
eel s is, like 1w , an endomorphism of w. But e was defined as the equalizer 
of all endomorphisms of w, so 

Now e is an equalizer, hence is monic; cancelling e on the left gives 
el se = 1v. This states that the equalizer el of f and g has a right inverse. 
Like any equalizer, el is monic, hence is an isomorphism. Therefore, 
f = g; this conclusion means that v is initial in D. 

This proof will be reformulated in § X.2. 

Theorem 2 (The Freyd Adjoint Functor Theorem). Given a small
complete category A with small hom-sets, a functor G: A - X has a left 
adjoint if and only if it preserves all small limits and satisfies the following 

Solution Set Condition. For each object x E X there is a small set I 
and an I-indexed family of arrows fi: x-Gai such that every arrow 
h : x-Ga can be written as a composite h = Gt 0 fi for some index i 
and some t: ai-a. 

Proof. If G has a left adjoint F, then it must preserve all the limits 
which exist in its domain A; in particular, all the small ones. Moreover, 
the universal arrow '1x: x-GFx which is the unit of the adjunction 
satisfies the solution set condition for x, with I the one-point set. 

Conversely, given these conditions, it will suffice to construct a uni
versal arrow x-Ga from each x E X to G; then G has a left adjoint by 
the pointwise construction of adjoints. This universal arrow is an initial 
object in the comma category (x 1 G) = D, so we need only verify the 
conditions of the previous theorem for this category. The solution set 
condition for G clearly gives the condition of the same name for (xl G) = D. 
Since A has small hom-sets, so does D. To show D small-complete we 
need only arbitrary small products and equalizers of parallel pairs in D. 
They may be created as follows: 

Lemma. If G : A-X preserves all small products (or, all equalizers) 
then for each x E X the projection 

Q: (xlG)-A, (x-4Ga)r-+a 

of the comma category creates all small products (or, all equalizers). 
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Proof. Let J be a set (a discrete category) and fj: x--Gaj a J-indexed 
family of objects of (x!G) such that the product diagram Pj:IIaj--aj 
exists in A. Since G preserves products, GPj: GIIaj--Gaj is a product 
diagram in X, sothereisa unique arrow f: x--GIIajin X with (Gpj)f = fj 
for allj: 

This equation states that Pj: f -- fj is a cone of arrows in (x! G); indeed, 
it is the unique cone there which projects under Q to the given cone 
Pj: II aj--aj. One then verifies that this cone Pj is a product diagram in 
(x!G); these two results show that Q creates products. 

Similarly, we "create" the equalizer of two arrows s, t : f --g in (x! G). 
As in the figure below, we are given the equalizer e of Qs, Qt; - that 
is, of sand t as arrows in A. Since G preserves equalizers, Ge is then the 
equalizer of Gs and Gt. But Gs 0 f = g = Gt 0 f, so there is a unique 
arrow h: x-- Ga making Ge 0 h = f, as below. In other words e: h-- f in 
(x! G) is the unique arrow of (x! G) with Q-projection e: a--b. 

It remains to show that the arrow e is an equalizer in (x!G). Sc 
consider another object k: x--Gd of (x!G) and an arrow r: k-- j 
of (x!G) with sr=tr in (x!G). Then sr=tr in A, so there is a unique r' 
in A with r = er'. It remains only to show r' an arrow k--h of (x! G); but 
Ge(Gr' 0 k) = G(er') 0 k = Gr 0 k = f, so by the unique choice of h, Gr' 0 k = h, 
which states that r' is an arrow of (x ! G). 

This line of argument applies not just to products or equalizers, but 
to the creation of any limit (Exercise 1). 

Theorem 3 (The Representability Theorem). Let the category D be 
small complete with small hom-sets. A functor K : D--Set is representable 
if and only if K preserves all small limits and satisfies the following 

Solution Set Condition. There exists a small set S of objects of D 
such that for any object dE D and any element x E Kd there exist an s E S, 
an element y E K s and an arrow f: s--d with (K f) y = x. 
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Proof. This is another reformulation of the existence Theorem 1 for 
initial objects. Indeed, a representation of K is a universal arrow from the 
one-point set * to K (Proposition 111.2.2), hence an initial object in the 
comma category (*!K), which is small-complete because K is assumed 
continuous. Conversely, if K is representable, it is necessarily continuous. 

The solution set condition (or something like it) is requisite in all 
three theorems. For an example, let Ord be the ordered set of all small 
ordinal numbers a, [3, ... ; it is a category with hom-set Ord(a, [3) empty 
or the one-point set according as a> [3 or a ~ [3. The category Ordop is 
small-complete, because the product of any small set of ordinals is 
their least upper bound. The functor K: OrdoP~Set with Ka = * the 
one-point set for every a is clearly continuous. However K is not 
representable: Were K a ~ OrdOP ([3, a) for some [3, then a;£ [3 for all a, 
so [3 would be a largest small ordinal, which is known to be impossible. 

Complete Boolean algebras provide another example to show that 
some solution set condition is requisite. For a given denumerable set 
D one can construct an arbitrarily large complete Boolean algebra 
generated by D (Solovay [1966]); this implies that there is no free complete 
Boolean algebra generated by D, and hence that the forgetful functor 
Comp Bool~Set has no left adjoint-though it is continuous and 
Comp Bool is small-complete. 

The adjoint functor theorem has many applications. 
Forexample, it gives a left adjointto the forgetfulfunctor U : Grp~S2t. 

Indeed, we already know that U creates all limits (Theorem 1.3), hence 
that Grp is small-complete and U continuous. It remains to find a solution
set for each X E Set. Consider any function f: X ~ U G for G a group, 
and take the subgroup S of G generated by all elements f x, for x E X. 
Every element of S is then a finite product, say (f Xl) ± 1 (f X 2) ± 1 ... (f Xn) ± 1 , 

of these generators and their inverses so the cardinal number of S is 
bounded, given X. Taking one copy of each isomorphism class of such 
groups S then gives a small set of groups, and the set of all functions 
X ~ US is then a solution set. 

This left adjoint F: Set~ Grp assigns to each set X the free group 
F X generated by X, so our theorem has produced this free group 
without entering into the usual (rather fussy) explicit construction of the 
elements of F X as equivalence classes of words in letters of X. To be sure, 
the usual construction also shows that the universal arrow X - U F X is 
injective (different elements of X are different as generators of the free 
group). However, we can also obtain this fact by general arguments and 
the observation that there does exist a group H with two different ele
ments h =1= k. Indeed, for any two elements x =1= y in X we then take a 
function f : X - U H with f x = hand f y = k. Since f must factor 
through the universal X - U F X, it follows that this universal must be 
an injection. 
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This construction applies not just to Grp but to the category of all 
small algebraic systems of a given type !. The type ! of an algebraic 
system is given by a set Q of operators and a set E of identities. The set Q 
of operators is a graded set; that is, a set Q with a function which assigns 
to each element WE Q a natural number n, called the arity of w. Thus 
an operator W of arity 2 is a binary operator, one of arity 3 a ternary 
operator, and so on. If S is any set, an action of Q on S is a function A 
which assigns to each operator W of arity n an n-ary operation W A : sn---+ S 
(Here sn = s X ... x S, with n factors). From the given operators Q one 
forms the set A of all "derived" operators; given w of arity nand n derived 
operators AI"'" An of arities ml , ... , mm the evident "composite" 
W(A\, ... , An) is a derived operator of arity m\ + ... + mn; also, given A 
of arity nand f: n---+m any function from {I, ... , n} to {I, ... , m}, 
"substitution" of f in A gives a derived operator () of arity m, described 
in terms of variables Xi as ()(xl , ... , xm) = A(Xjl' ... , x jn). (This description 
by variables refers implicitly to the action of Q on a set; for the abstract 
formulation of this and of composition, we refer to the standard treatments 
of universal algebra such as: Cohn [1965], or Gratzer [1968]). At any rate, 
each action A of Q on a set S extends uniquely to an action of the set A of 
derived operators on S. 

The set E of identities for algebraic systems of type! is a set of ordered 
pairs 0,11) of derived operators, where A and 11 have the same arity n. 
An action A of Q on S satisfies the identity <A,Il) if AA = IlA : sn---+s. 
An algebra A of type! - an <Q, E)-algebra - is a set S together with 
an action A of Q on S which satisfies all the identities of E; so we call S 
the underlying set of the algebra and often write IAI = s. A morphism 
g : A ---+ A' of <Q, E)-algebras is a function g : S---+S' on the underlying 
sets which preserve all the operators of Q (and hence of A) in the sense 
that 

(1) 

for all ai E A. The collection of all small <Q, E)-algebras, with these 
morphisms as arrows, is a category <Q, E) - Alg, often called a variety 
or an equational class of algebras. This description includes the familiar 
cases such as Grp, Rng, Ab and many others less familiar (e.g. nilpotent 
groups of specified class). For example, to describe Grp, take three 
operators in Q, the product, the inverse, and the assignment of the 
identity element e, of arities 2, 1, and 0, respectively, and take in E the 
axioms for the identity (ex = x = xe), the axioms for the inverse 
(xx- l =e=x-lx), and the associative law. 

For any variety of algebras, the adjoint functor theorem will yield a 
left adjoint for the forgetful functor <Q, E)-A1g---+Set; the solution set is 
obtained just as in the case of groups (see also § 7 below). Thus this 
theorem produces for any set X the free ring, the free abelian group, 
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the free R-module, etc. generated by the elements of the given set X. 
It does not produce free fields: In defining a field, the inverse to multi
plication is not everywhere defined, so fields are not algebraic systems 
in the sense considered (and, for that matter, free fields do not exist). 

Another illustration of the adjoint functor theorem is the construction 
of the left adjoint to 

V: Comp Haus~Set , (2) 

the forgetful functor which sends each compact Hausdorff space to the 
set of all its points. Given compact Hausdorff spaces Xi' the usual 
product topology on the cartesian product set Y = lli V Xi is Hausdorff 
and compact (the latter by the Tychonoff theorem); hence Comp Hans 
has all small products and V preserves them. For that matter, V creates 
these products: The product topology is chosen with the fewest open 
sets to make all the projections Pi: Y ~ Xi continuous, so any other 
compact topology Y' with all Pi continuous would be the same set Y 
topologized with more open sets; then id: Y' ~ Y is a continuous 
injection from a compact to a Hausdorff space, hence an isomorphism. By 
a similar argument, V creates all equalizers, hence all small limits. It 
remains to find for each set S a solution set of arrows I: s~ V X where 
each X is compact Hausdorff. Since X may be replaced by the closure 
IS c X, it is enough to assume IS dense in X. To each point x E X, 
consider the set Lx={DIDCS and xEID}; thus Lx is a non-void set 
of subsets of S. If x =F x' are separated in X by disjoint open sets U 
and U', then 1-1 U E Lx but 1-1 U is not in Lx', so Lx =F Lx'. Thus L is 
an injection X ~r!J>f!jJS from X to the double power set of S. If we take 
all subsets X of f!jJ f!jJ S, all topologies on each set X and all functions 
I: s~ V X we obtain a small solution set for S. The adjoint functor 
theorem then provides a left adjoint to V; it assigns to each set S the 
Stone-Cech compactification of the discrete topology on S. 

Exercises 

1. For G : A ....... X continuous, show that the projection (x L G) ....... A creates all small 
limits. 

2. Use the adjoint functor theorem to find a left adjoint to each of the forgetful 
functors Rng ....... Set, Rng ....... Ab, Cat ....... Grph. Compare with the standard explicit 
construction of these adjoints. 

3. Given a pullback diagram in Cat, 
A'~A 

GJ IG 
X' --.lL..., X , 

if H creates limits and G preserves them prove that H' creates them. 
4. Use Exercise 3 and the fact that (xLX) ....... X creates limits to give a new proof 

of the result of Exercise 1. 
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7. Subobjects and Generators 

Concepts such as subring, subspace, and subfield will now be treated 
categorically, using arrows instead of elements. For instance we will 
regard a subgroup S of a group G not as a set of elements of G, but as 
the monomorphism S~G given by insertion. 

Let A be any category. If u: s~a and v: t~a are two monics with 
a common codomain a, write u ~ v when u factors through v; that is, 
when u = vu' for some arrow u' (which is then necessarily also monic). 
When both u ~ v and v ~ u, write u == v; this defines an equivalence 
relation == among the monics with codomain a, and the corresponding 
equivalence classes of these monics are called the subobjects of a. It is 
often convenient to say that a monic u: s~a is a subobject of a - that is, 
to identify u with the equivalence class of all v = uO, for 0: s' ~ s an 
invertible arrow. These subobjects do correspond to the usual subobjects 
(defined via elements) in familiar large categories such as Rng, Grp, Ab, 
and R-Mod, but not in Top. 

Lemma. In any square pullback diagram 

h f' 

·==C'l~j, 
s~a 

f monic implies f' monic (and g monic implies g' monic). 

Briefly, pullbacks of monics are monic. 

Proof. Consider a parallel pair h, k, as shown, with f' h = f' k. Then 
gf'h=gf'k, so fg'h=fg'k. Since f is monic, this gives g'h=g'k. But 
we also have f' h = f'k; these two equations, since p is a pullback, imply 
h = k. Therefore f' is monic. 

The set of all subobjects of each a E A is partly ordered by the binary 
relation u ~ v. If u : s~a and v: t~a are two subobjects of a, and A has 
pullbacks, the pullback of these two arrows gives (Lemma above) another 
monic w: p~a with codomain a and with w ~ u, w ~ v; it is the intersection 
( = meet or greatest lower bound) of the subobjects u and v in the partly 
ordered set of all subobjects of a E A. Similarly, if J is any set and ui : si~a 
for i E J any J-indexed set of subobjects of a E A, the pullback of all 
these arrows, if it exists, gives the intersection of the subobjects Ui of a. 
The union (= join or least upper bound) of subobjects can be found 
under added hypotheses. 

Dually, two epis r, s with domain a are equivalent when r = Os for 
some invertible O. The equivalence classes of such epis are the quotient 
objects of a, partly ordered by the relation r ~ s, which holds when r 
factors through s as r = r's. This definition of quotients by duality is 
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simpler than the usual definition of quotient algebras by equivalence 
classes, and agrees with the usual definition in those categories where 
epis are onto. This latter is the case, for example, in Grp. Hence every 
quotient object of a group G in Grp is represented by the projection 
p: G~GIN ofG onto the factor group GIN ofG by some normal subgroup 
N ofG, and GIM ~ GIN holds if and only if M)N (in general, the relation 
r ~ s for quotients mean that in r "more" is divided out!). 

A set S of objects of the category C is said to generate C when to 
any parallel pair h, h' : c~d of arrows of C, h =1= h' implies that there is an 
s E S and an arrow I: s -+ c with hi =1= h'l (the term "generates" is well 
established but poorly chosen; "separates" would have been better). 
This definition includes the case of a single object s generating a category 
C. For example, anyone-point set generates Set, Z generates Ab and 
Grp, and R generates R-Mod. The set of finite cyclic groups is a generator 
for the category of all finite abelian groups (or, of all torsion abelian 
groups). 

Dually, a set Q of objects is a cogenerating set for the category C 
when to every parallel pair h =1= h' : a---->b of arrows of C there is an object 
q E Q and an arrow g: b ---> q with g h =1= g h'. A single object 
q is a cogenerator when {q} is a cogenerating set. For example, 
any two-point set is a cogenerator in Set. 

In terms of subobjects we can examine further the construction of 
solution sets. Given any functor G : A ~ X an arrow f: x~ Ga is said to 
span a when there is no proper monomorphism s~a in A such that f 
factors through Gs~Ga. 

Lemma. In the category A, suppose that every set of subobjects of 
an object a E A has a pullback. Then if G : A ~ X preserves all these pull
backs, every arrow h: x~Ga factors through an arrow f: x~Gb which 
spans b. 

Proof Consider the set of all those subobjects Uj : Sj -+ a such that h 
factors through GUj as h = GUjo hj' Take the pullback v: b~a of all the uj. 
Then, as in the commutative diagrams 

Gv: Gb~Ga is still a pullback (for the Guj), so h factors through Gv viaf, 
as shown. It follows from the construction that I spans b. 

This lemma states that a solution set for x can be the set of all arrows 
from x which span. 
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As an application consider the category of algebras of given type ,. 
Given an arrow f: S ----> G A, the algebra A has a subalgebra consisting 
of all elements obtained from elements of f(S) by iterated applications 
of operators WE Q. The cardinal number of this subalgebra A f is then 
bounded by the cardinal of S and that of Q. Since f factors through 
S ----> G A f' these latter arrows from the set S form a small set which is a 
solution set for G: AIg,----> Set. They are spanning arrows in the sense 
of the lemma, provided a subobject of a is redefined to be a morphism 
u: s---->a for which Gu is injective in Set. 

Another example of the use of this lemma with the adjoint functor 
theorem is the proof of the existence of tensor products of modules. 
Given modules A and B over a commutative ring K, a tensor product is a 
universal element of the set Bilin (A, B; C) of bilinear functions 
f3: A x B---->C to some third K-module C. This set is (the object function 
of) a functor of C. To get a solution set for given A and B, it suffices to 
consider only those bilinear f3 which span C (do not factor through a 
proper submodule of C). Then C consists of all finite sums L: f3(a;, b;), 
so the solution set condition holds; since K-Mod is small-complete 
and Bilin: K-Mod---->Set is continuous, a tensor product ® : A x B---->A®B 
exists. The usual (more explicit) construction is wholly needless, since 
all the properties of the tensor product follow directly from the uni
versality. 

Exercises 

1. Use the adjoint functor theorem to construct the coproduct in Grp (the co
product GIlH in Grp is usually called the free product). Using the product 
G x H, show also that the injections G----> GIlH and H ----> GIlH of the coproduct 
are both monic, and that their images intersect in the identity subgroup. 

2. Make a similar construction for the coproduct of rings. 
3. If R is a ring, A a right R-module and B a left R-module, use the adjoint functor 

theorem to construct A@RB (this tensor product is an abelian group, with a 
function (a, b)l-+a@bEA@RB which is biadditive, has ar@b=a@rb for all 
a E A, r E R, and bE B, and is universal with these properties). Prove that A@RB 
is spanned (as an abelian group) by the elements a@b. If S---->R is a morphism 
of rings, examine the relation of A@sB to A@RB. 

4. Construct coequalizers in Alg, by the adjoint functor theorem. 

8. The Special Adjoint Functor Theorem 

We now consider another existence theorem for adjoints which avoids 
the solution set condition by assuming a small set of objects which 
cogenerates. 

Theorem 1 (Special Initial-Object Theorem). If the category D is 
small-complete, has small hom-sets, and a small cogenerating set Q, then D 
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has an initial object provided every set of subobjects of each d E D has an 
intersection. 

Proof. Form the product qo = IIqEQq of all the objects in the small 
cogenerating set Q and take the intersection r of all subobjects of qo. For 
any object dE D, there is at most one arrow r---'>d, for if there were two 
different arrows, their equalizer would be a proper monic to r, hence a sub
object of qo smaller than the intersection r. 

To show r initial in D, we thus need only construct an arrow r---'>d 
for each d. So consider the set H of all arrows h: d---'>q E Q and the (small) 
product IIhEHq. Take the arrow j: d--,,-IIhEHq with components h 
(i.e., with Ph 0 j = h for each projection Ph)' Since the set Q cogenerates, 
j is monic. Form the pullback 

: __ J ___ ~ II1qEQq = qo 

I k 
I 

.j- • 

d~IIhEHq, 

where k is the arrow with components Ph 0 k = Pq for each h: d---'>q. Then 
j', as pullback of a monic j, is monic, so c is a subobject of qo. But r was 
the intersection of all subobjects of qo, so there is an arrow r---'>c. The 
composite r---'>c---'>d is the desired arrow. 

Theorem 2 (The Special Adjoint Functor Theorem). Let the category 
A be small-complete, with small hom-sets, and a small cogenerating set Q, 
while every set of subobjects of an object a E A has a pullback (and hence has 
an intersection). Let the category X have small hom-sets. Then a functor 
G : A ---'> X has a left-adjoint if and only if G preserves all small limits and 
all pullbacks of families of monics. 

Proof. The conditions are necessary, since any right adjoint functor 
must indeed preserve all limits (in particular, all pullbacks). Conversely, it 
suffices as usual to construct for each x E X an initial object in the comma 
category D = (xL G). We shall show that this category satisfies the hypothe
ses of the previous theorem for the construction of an initial object. 
First we verify that subobjects in (xLG) have the expected form. 

Lemma. An arrow h : <f: x---'>Ga, a)---'><f': x---'>Ga', a') in the comma 
category (xLG) is monic if and only if h: a---'>a' is monic in A. 

Proof. Trivially, h: a---'>a' monic implies h: f ---'> f' monic. For the 
converse, observe that h monic means exactly that its kernel pair (the 
pullback of h with h) is la' 1a : a=ta. On the other hand, by the lemma 
of § 6 the projection 

(xL G)---,> A, <f: X---'> Ga, a) r--+a 

of the comma category creates all limits, and in particular, creates kernel 
pairs. Moreover, A has all kernel pairs. Therefore (Theorem 4.2), the 
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projection of the comma category preserves all kernel pairs, in particular, 
the kernel pair la' la' and consequently carries monics (in (x!G)) to 
monics in A, as desired. 

Now return to the theorem. We are given a small cogenerating set Q 
in A. Since X has small hom-sets, the set (! of all objects k : x -+ G q 
with q E Q is small. It is, moreover, cogenerating in (x! G). Given s 9= t : 
(f:x--+Ga,a)--+(I':x--+Ga',a') in (x! G), there is a qoEQ and an 
arrow h: a' --+qo with hs 9= ht, and this h can be regarded as an arrow 

h: (I' : x--+ Ga', a')--+ (fo: x--+ Gqo, qo) , 

where fo = Gh 0 1', with hs 9= ht in (x! G). Therefore Q' cogenerates 
(x!G). 

Since A small-complete and G continuous imply (x! G) small-complete 
it remains only to construct an intersection in (x!G) for every set of 
subobjects hi: (fi : x--+ Gai' a)--+ (f: x--+ Ga, a), where i E J. By the 
lemma, the corresponding arrows hi: ai--+a are monics in A. By hypothe
sis, they then have a pullback h: b--+a in A 

The functor G preserves pullbacks, so Gh : Gb--+ Ga with Gh = Ghi 0 GSi 
is a pullback of the Ghi in X. Since also Ghi 0 fi = f for all i E J, there is a 
uniquefo: x--+Gb withfi= Gsio fo; the resulting arrow h: (fo,b)--+(f, a) 
is then a pullback in (x! G) of the given hi (again, because the projection 
of the comma category creates pullbacks). This pullback is the required 
intersection of the hi. 

There is another form of this theorem. Define a category to be well
powered when the subobjects of each object a E A can be indexed by a 
small set; that is, when there is to each a a small set Ja and a bijection 
from Ja to the set of all subobjects of a. Many familiar large categories -
Top, Grp, R-Mod, etc. - are well powered; the dual notion is called 
co-well-powered. If A is well-powered and small-complete, then any 
set of subobjects of an a E A has an intersection, formed by the usual 
pullback. Therefore the special adjoint functor theorem specializes as 
follows: 

Corollary. If A is small complete, well-powered, with small hom-sets, 
and a small cogenerating set, while X has small hom-sets, then a functor 
G: A--+X has a left adjoint if and only if it is continuous. In particular, 
any continuous K : A --+Set is representable. 

This classical form of the special adjoint functor theorem (sometimes 
called SAFT) often appears without an explicit "small hom-set" hypothe-
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sis - in sources which consider only categories with small hom-sets. 
Some authors use "locally small category" to mean "well-powered"; 
others use it to mean "has small hom-sets", so we avoid this term! 

The classical form of SAFT can be deduced directly from the adjoint 
functor theorem by constructing a solution set (as in Freyd [1964, p. 89], 
or Schubert [1970, p. 88]). 

A typical example is the inclusion functor 

G : Comp Haus C Top (1) 

of the full subcategory of compact Hausdorff spaces in Top. As already 
noted, Comp Haus is small complete; it also has small hom-sets. The 
Urysohn lemma states that to any two points x =1= y in a compact Hausdorff 
space X there is a continuous function f: X ----> I to the unit interval I 
with f x = 0, f y = 1. It follows that I is a cogenerator for Comp Haus. 
Hence the special adjoint functor theorem gives a left adjoint for the 
inclusion G above. This left-adjoint (or sometimes, its restriction to the 
full subcategory of completely regular spaces) is called the Stone-Cech 
compactijication. This includes the case of a discrete space, as done in § 6. 

Watt's Theorem [1960] is another example. Any ring R is a generator 
in the category R-Mod, hence a cogenerator in (R-Mod)OP. It follows that 
any contravariant additive functor T on R-Mod to Ab which takes 
small colimits to limits is representable by a group isomorphism 
T ~ homR ( -, C) for some R-module C. Indeed, by the special adjoint 
functor theorem T: (R-Mod)OP ----> Ab has a left adjoint F; since Tis additive, 
the adjunction 

Ab(G, TA)~homR(A,FG), GEAb, A ER-Mod , 

is an isomorphism of additive groups; set G = Z to get 

TA~Ab(Z, TA)~homR(A,FZ). 

Exercises 

1. Let K : A ---->Set be any functor. If K has a left adjoint, prove that it is representable. 
Conversely, if A has all small co powers and K is representable as K ~ A (a, -) 
for some a E A prove that K has a left adjoint (which assigns to each set X the 
small copower X . a). 

2. For A a left R-module, B a right R-module and G an abelian group, establish 
adjunctions 
(a) homR (A, homz(B, G)) ~ homz(B®RA, G) ~ homR(B, homz(A, G)), where 

homz(B, G) has a suitable (left or right) R-module structure, and where homR 

denotes the hom-set in R-Mod, homz that in Ab. 
(b) The additive group Q/Z of rational numbers modulo 1 is known to be an 

injective cogenerator of Ab. Use (a) to prove that homz(R, Q/Z) is an injective 
cogenerator of R-Mod ("injective" object as defined in § 4). 
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3. Use Exercise 2(b) and the special adjoint functor theorem to prove that any 
continuous additive functor T: R-Mod- Ab is representable. (Watt's theorem). 

4. (Stone-Cech compactification.) If X is a completely regular topological space, 
show that the universal arrow X - G F X for the left adjoint to (l) is an injection. 
(Use the Urysohn lemma: For x~y in X completely regular there exists a 
continuous f: X-I with f x ~ f y and I the unit interval.) Classical sources 
describe this compactification only when X is completely regular. This restriction 
is needless; it arose from the idea of considering just universal injections, not 
universal arrows. 

9. Adjoints in Topology 

Top is the category with objects all (small) topological spaces X, Y, ... 
and arrows all continuous maps !: X ~ Y. The standard forgetful 
functor (usually a nameless orphan!) 

G:Top~Set, 

sends X to G X, the set of points in X, is faithful, and has a left adjoint 
D which assigns to each set S the discrete topology on S (i.e., all subsets of 
S are open). Therefore G preserves all limits which may exist in Top 
(this is why the underlying set of the product of spaces is the cartesian 
product of their underlying sets). The forgetful functor G also has a 
right adjoint D', which assigns to each set S the indiscrete topology 
on S (with only Sand 0 open). Therefore G preserves all colimits which 
may exist in Top - and this is why the coproduct of two spaces is formed 
by putting a topology on the disjoint union of the underlying sets. 

Next consider the subspace topology on a set S C GX. 
If X is a fixed topological space, G induces a functor 

G!X: (Top!X)~(Set!GX) 

y...-..L....x GY~GX 

h 1 II ~ 1 Gh 

Y'~X GY'~GX, 

(1) 

here! and!, are objects and h an arrow of the comma category (Top!X). 
This functor G! X has a right adjoint L. Indeed, an object t: S~G X in 
(Set! G X) is a set S and a function t on S to G X. Put on S the topology 
with open sets all t- 1 U for U open in X, and call the resulting space 
LS; then t is a continuous map Lt: LS~X. (For example, if S is a 
subset of G X, then L S is just S with the usual "subspace topology.") 
This topology on LS has the familiar universal property: Any continuous 
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map f: Y --+X which factors through t as G f = to s, in Set, 

Gf=tos, 

has s: Y ~ LS continuous. This property just restates the desired 
adjunction: hom (Gf, t) ~ hom(j, Lt). Observe that (GlX)o L = Id; L is 
a "right-adjoint-right-inverse" to (G 1 X). 

Note especially that the universal property of the subspace topology 
on a subset S C GX refers not only to the other subspaces of X, but to 
other spaces Y and any continuous f: Y ~ X which factors through 
the inclusion t : S ~ G X (i.e., has image contained in the subset S). 

This adjoint may be used to construct (the usual) equalizers in Top 
by the following general process: 

Proposition 1. If G : C~ D is a faithful functor, if D has equalizers, 
and if, for each x E C, (G 1 x): (C 1 x)~(D 1 G x) has a right-ad;oint
right-inverse L, then C has equalizers. 

Proof. To get the equalizer of a parallel pair f, l' : x~ y, apply G, 
take the equalizer t: s-Gx of Gj, G1' in D and apply L; the universal 
property of the adjunction shows Lt : Ls~ x an equalizer in C. 

This argument is just an element-free version of the usual definition 
of the equalizer: Given two continuous maps f, l' : X ~ Y, take the set S 
of points x of X with f x = l' x and impose the subspace topology. The 
adjunction explains why the subspace topology. 

Now Top is well known to be complete: To prove this one needs 
only equalizers (of parallel pairs) and products. The product of any 
family Xi' i E J, of spaces is constructed by taking the product IIGXi of 
the underlying sets and putting on it the (universal) topology in which 
all projections Pi: II G Xi~ G Xi' i E J, are continuous. The general fact 
that to spaces Xi' a set S, and functions ti: S~GXi there is a "universal" 
topology with exactly those open sets on S required to make all ti con
tinuous can be expressed categorically (Exercise 3). 

Colimits may be treated in dual fashion. For any space X the functor 

(X lG): (X 1 Top)~(GX lSet) 

has a left adjoint M. Indeed, an object of(GX lSet) is a function t: GX ~S 
to a set S. Put on S the topology with open sets all subsets V C S with 
t -1 V open in X and call the resulting space MS. (If t: G X ~ S is a 
surjection, this is the familiar "quotient topology" or "identification 
topology" on S.) Then the function t is a continuous map M t : X ~ MS. 
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Moreover, I: X -+ Y continuous and G 1= k 0 t for some function k, 

GX 

Set: I \f 
M S ----k----+ Y, S ----k----> G Y , 

implies that k : M S ---.. Y is continuous. Thus k H k is an adjunction 

(X 1 Top) (Mt,J) ~ (GX lSet)(t, Gf) 

with unit the identity map, so M is left-adjoint-right-inverse to X lG. 
Now Proposition 1 was proved just from the axioms for a category, 

so its dual is also true. This dual proposition and the above adjunction 
prove that Top has coequalizers. 

Similar constructions yield co products (= disjoint unions) and 
general colimits in Top. Such colimits appear often, usually under other 
names, as for instance in the basic process of constructing spaces by 
gluing pieces together. For example, let {Ui liE J} be an open cover of a 
space X. Each continuous I: X -+ Y determines a J -indexed family of 
restrictions I lUi: Ui-+ Y; conversely, a familiar result states that a 
J-indexed family of continuous maps Ii: Ui-+ Y determines a map I 
continuous on all of X if and only if Iil(UinUj)=Ijl(UinU) for all 
i and j. This result may be expressed by the statement that the following 
diagram is an equalizer 

Top(X, Y) ---.. IIi Top( Ui, Y) =::t IIi,} Top( Ui n rlj, Y) , 

where the arrows are given by restriction, as above. This result may 
equally well be expressed by the statement that X is the colimit in Top, 
with colimiting cone the inclusion maps Ui -+ X, of the functor U : J' -+ Top, 
where J' is the category with objects the pairs of indices (i,j), the single 
indices (i), and the (non-identity) maps (i,j)-+(i), (i,j)-+(i), while U 
is the functor with U (i,j) = Uin Uj, U (i) = Ui' with U on (non-identity) 
arrows the inclusion maps. 

Another coequalizer is the space X/A obtained from the space X 
by collapsing the subset A to a point. It is the co equalizer 

* X-+X/A 

of the set of all the arrows sending the one point space * to one of the 
points a E A. It is used in homotopy theory. If we consider the category 
Top(2) whose objects are pairs (X, A) (a space X with a subset A) and 
whose arrows (X,A)-+(X', A') are continuous maps X-+X' sending 
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A to A', then the definition of X/A, for Ya pointed topological space, 
reads: 

Thus <X, A>~X/A is left adjoint to the functor Y~<Y, *> which sends 
each pointed space to the pair < Y, * >. 

There are many familiar subcategories of Top. 

Proposition 2. Haus, the full subcategory of all H ausdorfJ spaces in 
Top, is complete and cocomplete. The inclusion functor Haus-Top has a 
left adjoint H, as does the forgetful functor Haus-Set. 

Proof. The left adjoint H will be obtained by the adjoint functor 
theorem. First, any product of Hausdorff spaces or subspace of a Haus
dorff space is also Hausdorff, hence Haus is complete and the inclusion 
functor is continuous (i.e., it preserves small limits). It remains only to 
verify the solution set condition for every topological space X. But any 
continuous map of X to a Hausdorff space Y factors through the image, 
a subspace of Y, hence Hausdorff. This image is a quotient set of X with 
some topology, so there is at most a small set of (non-isomorphic) sur
jections X - Y to a Hausdorff Y. This is the solution set condition. 
The resulting left adjoint H assigns to each space X a Hausdorff space 
H X and a continuous map '1 : X - H X, universal from X to a Hausdorff 
space. Now '1 universal implies that '1 is a surjection, so H X may be 
described as the "largest Hausdorff quotient" of X. If X is already 
Hausdorff, we may take H X = X and '1 = 1, so H is a left-adjoint-left
inverse to the inclusion. 

Since H is a left adjoint, it preserves colimits. It follows that Haus 
has all small colimits (is cocomplete). In particular, the coproduct in 
Haus is the coproduct in Top (because a coproduct of Hausdorff spaces 
is Hausdorff), while a coequalizer in Haus is the largest Hausdorff 
quotient of the coequalizer in Top. 

The full subcategory of compactly generated Hausdorff spaces is 
especially convenient because it is cartesian closed (§ VII.8). 

Exercises 

1. For the full subcategory L conn of locally connected spaces in Top, prove that 
D : Set-> L conn has a left adjoint C, assigning to each space X the set of its 
connected components, but show that this functor C can have no left adjoint 
(because of misbehavior on equalizers). 

2. Show that the right adjoint D' : Set ----> Top to the forgetful functor has no right 
adjoint (misbehavior on co products). 

3. (Categorical construction of the usual products in Top.) 
(a) For diagonal functors LJ: C->CJ , LJ': D->DJ , and TE CJ , each G: C->D 

defines G*: (LJ t T)-> (LJ I t GT) by (-c: C--4 T) I-> (Gr: GC--4GT). If G* has a 
left adjoint and G T a limit in D, prove that T has a limit in C. 
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(b) For G the forgetful functor Top->Set and 1 discrete, construct a left adjoint 
for G*, showing that it constructs on a set S the weakest topology making 
a given 1-indexed family of functions fj: S->GXj continuous. 

(c) Conclude that Top has all (the usual) products. 
4. Construct left adjoints for each of the inclusion functors TOPn+l->ToPn' 

n = 0, 1,2, 3, where TOPn denotes the full subcategory of all Tn-spaces in Top, 
with T4 = Normal, T3 = Regular, T2 = Hausdorff, etc. 

5. Show that the inclusion Haus-> Top has no right adjoint, by showing that a 
coequalizer in Top of Hausdorff spaces need not be Hausdorff. Conclude that 
the forgetful functor Haus->Set has no right adjoint. 

Notes. 

Instances and special cases of the adjoint functor theorem abound; there have 
been many partial discoveries or rediscoveries. One version is Bourbaki's condition 
[1957] for the existence of universal arrows; this version clearly formulated a 
solution set condition, but was cumbersome because Bourbaki's notion of 
"structures" did not make use of categorical ideas. The present version of the 
adjoint functor theorem was formulated and popularized by Freyd [1964], who 
also formulated SAFT. Our version of the special initial-object theorem is due 
to G.M. Kelly (private communication). 



VI. Monads and Algebras 

In this chapter we will examine more closely the relation between uni
versal algebra and adjoint functors. For each type r of algebras (§V.6), 
we have the category AlgT of all algebras of the given type, the forgetful 
functor G : AlgT --; Set, and its left adjoint F, which assigns to each set S 
the free algebra F S of type r generated by elements of S. A trace of this 
adjunction <F, G, q> > : Set~ Alg, resides in the category Set; indeed, the 
composite T = G F is a functor Set~Set, which assigns to each set S 
the set of all elements of its corresponding free algebra. Moreover, this 
functor T is equipped with certain natural transformations which give 
it a monoid-like structure, called a "monad". The remarkable part is then 
that the whole category Alg, can be reconstructed from this monad in Set. 
Another principal result is a theorem due to Beck, which describes 
exactly those categories A with adjunctions <F, G, q> > : X ~ A which 
can be so reconstructed from a monad T in the base category X. It then 
turns out that algebras in this last sense are so general as to include the 
compact Hausdorff spaces (§ 9). 

1. Monads in a Category 

Any endofunctor T: X ~ X has composites T2 = To T: X ~ X and 
T 3= T 20 T:X~X. If p,: T2~T is a natural transformation, with 
components Ilx: T2 x~ Tx for each x E X, then Tp,: T3~ T2 denotes 
the natural transformation with components (T Il)x = T(IlJ : T3 x~ T2 x 
while 11 T: T3 -4 T2 has components (11 T)x = IlTx. Indeed, Til and 11 T 
are "horizontal" composites in the sense of § 11.5. 

Definition. A monad T= <T, '1, 11> in a category X consists of a 
functor T: X ~ X and two natural transformations 

'1 : Ix-4 T, 11 : T2-4 T (1) 

which make the following diagrams commute 

(2) 

T T T. 

137 



138 Monads and Algebras 

Formally, the definition of a monad is like that of a monoid M in 
sets, as described in the introduction. The set M of elements of the monoid 
is replaced by the endofunctor T: X ----> X, while the cartesian product x 
of two sets is replaced by composite of two functors, the binary operation 
J1 : M x M ----> M of multiplication by the transformation J1: T2~ T and 
the unit (identity) element I] : 1----> M by I] : Ix~ T. We shall thus call I] 
the unit and J1 the multiplication of the monad T; the first commutative 
diagram of (2) is then the associative law for the monad, while the second 
and third diagrams express the left and right unit laws, respectively. 
All told, a monad in X is just a monoid in the category of endofunctors 
of X, with product x replaced by composition of endofunctors and unit 
set by the identity en do functor. 

Terminology. These objects (X, T, 1], J1) have been variously called 
"dual standard construction", "triple", "monoid", and "triad". The 
frequent but unfortunate use ofthe word "triple" in this sense has achieved 
a maximum of needless confusion, what with the conflict with ordered 
triple, plus the use of associated terms such as "triple derived functors" 
for functors which are not three times derived from anything in the world. 
Hence the term monad. 

Every adjunction (F, G, 1], e): X ~A gives rise to a monad in the 
category X. Specifically, the two functors F : X ----> A and G : A ----> X have 
composite T = G F an endofunctor, the unit I] of the adjunction is a 
natural transformation 1]: I~ T and the co unit e: FG~IA of the ad
junction yields by horizontal composition a natural transformation 
J1 = G e F : G F G F ~ G F = T. The associative law of (2) above for this J1 
becomes the commutativity of the first diagram below 

GFGFGF~GFGF FGFG~FG 

GeFGF1 1GeF 1eFG 1e 
G F G F GeF ) G F , F G ) IA . 

Dropping G in front and F behind, this amounts to the commutativity 
of the second diagram, which holds by the very definition (§ 11.4) of the 
(horizontal) composite ee = e . (F G e) = e . (eF G) (i.e., by the "interchange 
law" for functors and natural transformations). Similarly, the left and 
right unit laws of (2) reduce to the diagrams 

IXG~T~FIX 
GF 

which are essentially just the two triangular identities 

l=Ge'I]G:G~G 
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for an adjunction. Therefore <GF, 1], GEF) is indeed a monad in X. 
Call it the monad defined by the adjunction <F, G, 1], E). 

For example, the free group monad in Set is the monad defined by 
the adjunction <F, G, cp) : Set~ Grp, with G: Grp-->Set the usual 
forgetful functor. 

Dually, a comonad in a category consists of a functor L and trans
formations 

L:A-->A, E:L~I, (j:L~L2 

which render commutative the diagrams 

L L L 

Each adjunction <F,G,I],E):X -->A defines a comonad <FG,E,FI]G) in A. 
What is a monad in a preorder P? A functor T: P--> P is just a function 

T: P--> P which is monotonic (x;£ y in P implies Tx;£ Ty); there are 
natural transformations I] and fl as in (1) precisely when 

x;£ Tx , T(Tx);£ Tx (3) 

for all x E P; the diagrams (2) then necessarily commute because in a 
pre order there is at most one arrow from here to yonder. The first equation 
of (3) gives Tx;£ T(Tx). Now suppose that the preorder P is a partial 
order (x;£ y;£ x implies x = y). Then the Eqs. (3) imply that T(Tx) = Tx. 
Hence a monad T in a partial order P is just a closure operation t in P; 
that is, a monotonic function t: P--> P with x;£ tx and t(tx) = tx for all 
XEP. 

We leave the reader to describe a morphism <T, fl, I])--><T, fl', 1]') 

of monads (a suitable natural transformation T ~ T) and the category 
of all monads in a given category X. 

2. Algebras for a Monad 

The natural question, "Can every monad be defined by a suitable pair 
of adjoint functors?" has a positive answer, in fact there are two positive 
answers provided by two suitable pairs of adjoint functors. The first 
answer (due to Eilenberg-Moore [1965]) constructs from a monad 
<T, 1], fl) in X a category of X T of "T-algebras" and an adjunction 
X ~ XT which defines < T, 1], fl) in X. Formally, the definition of a 
T-algebra is that of a set on which the "monoid" T acts (cf. the introduc: 
tion). 
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Definition. If T= <T,,,,,It) is a monad in X, a T-algebra <x, h) is 
a pair consisting of an object x E X (the underlying object of the algebra) 
and an arrow h: Tx-+ x of X (called the structure map of the algebra) 
which makes both the diagrams 

T2X~Tx x ~x I Tx 

#x 1 1 h 

Tx~x 

~j. 
x 

(1) 

commute. (The first diagram is the associative law, the second the unit law.) 
A morphism f: <x, h)-+<x', h') of T-algebras is an arrow f: X-+X' of 
X which renders commutative the diagram 

x~Tx 

J 1 1 TJ (2) 

x'~Tx'. 

Theorem 1 (Every monad is defined by its T-algebras). If < T, ", It) 
is a monad in X, then the set of all T-algebras and their morphisms form 
a category XT. There is an adjunction 

<FT, GT; ",T, eT): X~XT 

in which the functors GT and FT are given by the respective assignments 

x t------+<Tx, Itx) 

FT: 1J iTJ (3) 

<x', h')t------+x' , x't------+ <Tx', Itx') , 

while ",T =" and eT <x, h) = h for each T-algebra <x, h). The monad 
defined in X by this adjunction is the given monad <T,,,, It). 

The proof is straightforward verification. If f: <x, h)-+<x', h') 
and g: <x', h')-+<x", h") are morphisms of T-algebras, so is their 
composite gf; with this composition of arrows, the T-algebras evidently 
form a category XT, as asserted. The functor GT : X T -+ X is the evident 
functor which simply forgets the structure map of each T-algebra. On 
the other hand, for each x E X the pair < Tx, Itx: T(Tx)-+ Tx) is a T
algebra (the free T-algebra on x), in view of the associative and (left) 
unit laws for the monad T. Hence xr-<Tx, Itx) does indeed define a 
functor FT : X -+ X T, as asserted. Then GT FT x = GT < Tx, Itx) = Tx, so 
the unit" ofthe given monad is a natural transformation", ="T: Ix ....... GT F~ 
On the other hand, FT GT <x, h) = <Tx, Itx)' while the first square in the 
definition (1) ofa T-algebra <x, h) states that the structure maph: Tx-+x 
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is a morphism <Tx, J.1x)- <x, h) of T-algebras. The resulting trans
formation 

is natural, by the definition (above) of a morphism of T-algebras. The 
triangular identities for an adjunction read 

T X __ T-,-~x,,----"""*~ T T x 

l~x 
Tx x 

The first holds by the (right) unit law for T, the second by the unit law 
(see (1)) for a T-algebra. Therefore YfT and ST define an adjunction, as 
stated. 

This adjunction thus determines a monad in X. The endofunctor 
GT FT is the original T, its unit YfT is the original unit, and its multiplica
tion J.1T = GT ST FT has J.1T x = GT ST <Tx, J.1x) = GT J.1x = J.1x, so is the original 
multiplication of T. The proof is complete. 

We now give several examples which show that the T-algebras for 
familiar monads are the familiar algebras. 

Closure. A closure operation T on a preorder P is a monad in P 
(see § 1); a T-algebra is then an x E P with Tx ~ x (the structure map). 
Since x ~ Tx for all x, a T-algebra is simply an element x E P with 
x ~ Tx ~ x. If P is a partial order, this means that x = Tx, so that a 
T-algebra is simply an element x of the partial order which is closed, 
in the usual sense. 

Group actions. If G is a (small) group, then for every (small) set X 
the definitions 

TX = G xX, X~G x X, G x(GxX)---+G xX, 

x~<u, x), <gl' <g2' X»~<gl g2, x) 

for x EX, gl' g 2 E G and u the unit element of G, define a monad < T, Yf, J.1) 

on Set. A T-algebra is then a set X together with a function h: G x X-X 
(the structure map) such that always 

If we write g' x for h(g, x), these are just the usual conditions that 
<g, x) I--'>g . x defines an action of the group G on the set X. That T
algebras for the monad T are just the group actions is not a surprise, 
since our definition of T-algebras was constructed on the model of 
group actions. 
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Modules. If R is a (small) ring, then for each (small) abelian group A 
the definitions 

TA=R®A, A~R@A, 

af->-l®a, 

R®(R®A)~R®A , 

r1 ®(r2 ®a) f->- r1 r2 ®a, 

for a E A, r1, r2 E R, define a monad on Ab. Much as in the previous case, 
the T-algebras are exactly the left R-modules. 

Exercises 

1. Complete semi-lattices (E. Manes; thesis). Recall that a complete semi-lattice is 
a partial order Q in which every subset SeQ has a supremum (least upper bound) 
in Q. Let ~ be the covariant power set Junctor on Set so that ~ X is the set of all 
subsets SeX, while for each function J: X -+ Y, (~f)S is the direct image of S 
under f. For each set X, let I]x: X -+~ X send each x E X to the one point 
set {x}, while J.1x : ~ ~ X -+~ X sends each set of sets into its union. 
(a) Prove that (~, 1], J.1> is a monad ~ on Set. 
(b) Prove that each ~-algebra (X, h> is a complete semi-lattice when x;£ y 

is defined by h{x, y} = y, and supS = hS for each SeX. 
(c) Prove conversely that every (small) complete semi-lattice is a ~-algebra 

in this way. 
(d) Conclude that the category of ~-algebras is the category of all (small) 

complete semi-lattices, with morphisms the order and sup-preserving 
functions. 

2. Show that GT : X T -+ X creates limits. 
3. (a) For monads (T, 1], J.1> and (T; 1]', J.1') on X, define a morphism 0 of monads 

as a suitable natural transformation 0: T --'-> T, and construct the category 
of all monads in X. 

(b) From 0 construct a functor 0*: XT'-+ XT such that GTo 0* = GT' and a 
natural transformation FT --'-> 0* 0 FT'. 

3. The Comparison with Algebras 

Suppose we start with an adjunction X ~ A, construct the monad T 
defined in X by the adjunction and then the category X T of T-algebras; 
we then ask: How is this related to the original category A? A full answer 
will relate not only the categories, but the adjunctions, and is provided 
by the following comparison theorem. 

Theorem 1 (Comparison oj adjunctions with algebras). Let 

<F, G, rf,G): X ~A 

be an adjunction, T = < G F, 1'/, G e F) the monad it defines in X. Then there 
is a unique Junctor K : A ~ XT with GT K = G and K F = FT. 
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Proof. The conclusion asserts that we can fill in the arrow K in the 
following diagram so that both the F-square and the G-square commute 

(1) 

Now the counit e of the given adjunction defines for each a E A an arrow 
G ea : G F G a-+ G a. This arrow may be considered as a structure map h 
for a T-algebra structure on the object Ga = x, for the requisite diagrams 
(cases of (2.1)) are 

/lGa=GeFGa 1 
GFGa----=:-Ge-a-.... IGa ' 

They commute (the first is the definition of Gee, the second is one of the 
triangular identities for the given adjunction). Therefore for any f: a-+a' 
in A we define K by 

since e is natural, the proposed arrow Kf commutes with Ge and so is 
a morphism of T-algebras. It is routine to verify that K is a functor with 

(3) 

It remains to show K unique. First, each K a must be aT-algebra, 
and the commutativity requirement GT K = G means that the underlying 
X -object of this T-algebra K a is Ga. Therefore K a must have the form 
K a = (G a, h) for some structure map h; moreover GT K = G means 
that the value of K on an arrow f in A must be K f = G f, exactly as in (2) 
above. It remains only to determine the structure map h. Now (1) com
mutes, and the two adjunctions (F, G, ... ) and (FT, GT, ••• ) have the 
same unit 1'/, so the two functors K : A -+ XT and the identity I : X -+ X 
define a map of the first adjunction to the second, in the sense considered 
in § IV.7. Proposition IV.7.1 for this map then states that Ke = eT K. 
But K on arrows is G, so K ea = G ea for each a E A, while the definition 
of the counit eT of an algebra gives eT Ka =eT (Ga, h) = h. Thus Ke=eT K 
implies G ea = h, so the structure map h is determined and K is unique. 

For many familiar adjunctions (F, G, ... ) this comparison functor K 
will be an isomorphism; we then say that G is monadic (tripleable). For 
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other authors (Barr-Wells [1985]), "triplable" means only that K be an 
equivalence of categories. However, here is an easy example when K is 
not an isomorphism, and not even an equivalence. The forgetful functor 
G : Top ---4 Set has a left adjoint D which assigns to each set X the discrete 
topological space (all subsets open in X), for the identity arrow 11x : X ---4 

G D X is trivially universal from the object X to the functor G. This ad
junction (D, G, 11, ... ) : Set~ Top defines on Setthe monad I = (1,1,1) 
which is the identity (identity functor, identity as unit and as multi
plication). The I-algebras in Set are just the sets, so the comparison 
functor Top ---4 Top! = Set is in this case the given forgetful functor G. 

4. Words and Free Semigroups 

The comparison functor can be illustrated explicitly in the case of 
semigroups. A semigroup is a set S equipped with an associative binary 
operation v: S x S--S. The free semigroup W X on a set X is like the 
free monoid on X (§ II.7). It consists of all words (Xl) ... (xn) of positive 
length n spelled in letters Xi E X, where we write (x) to distinguish the 
word (x) in W X from the element x E X. Words are multiplied by 
juxtaposition, 

this multiplication v is associative, so makes F X = (W X, v) a semigroup, 
with the set W X the disjoint union 11 xn, n = 1,2, .... If G : Smgrp--Set 
is the forgetful functor from the category of all small semigroups (forget 
the multiplication), then the arrow I'/x: X --G F X defined by x f->- (x) 
(send each x to the one-letter word in x) is universal from X to G. There
fore F is a functor, left adjoint to G, and 1'/ defines an adjunction 

(F, G, 1'/, c) : Set~Smgrp . 

If S is any semigroup (set S with an associative binary operation S x S --S, 
written as multiplication) the counit cs of this adjunction is by definition 
that morphism cs: FGS--S of semigroups for which the composite 
Gcs°l'/Gs: GS--GFGS--GS is the identity; in other words, Cs is the 
unique morphism of semi-groups which sends each generator (s) to s. 
This means that 

(1) 

for all Si E S: The counit c removes the "pointy bracket" ( ). 

Proposition 1. The monad on Set determined by the adjunction 
Set~Smgrp is 

W=(W:Set--Set, I'/:I--'-->W, p: W 2 --,-->W) 
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00 

where W X = U X n, 'Ix x = <x) for each x E X, while I1x is 
n=l 

I1x(<<Xll ) ... <x1n ) ... «xk1 ) ... <xkn.») 
= <xll ) ... <x1n ) ... <xk1 ) ... <Xkn.) 

for all positive integers k, all k-tuples n1, ... , nk of positive integers, and 
all Xij EX. 

Proof. By definition, 'I x = <x), while 11 = GsF: W2~ Wis determined 
by the formula above for lOs, where we have written each element of 
W 2 X as a word (oflength k) in k words of the respective lengths n1, ••• , nk . 

More briefly, I1x applied to a word of words removes the outer pointy 
brackets. 

Note that this description allows direct verification of the unit and 
associative laws for the monad W, without overt reference to the notion 
of a semi-group. For example, the associative law for 11 amounts to an 
observation on three layers of pointy brackets, that removing first the 
middle brackets and then the outer brackets gives the same result as 
removing first the outer brackets and then the (newly) outer brackets. 

Proposition 2. For the above word-monad W in Set, the W-algebras 
have the form <S, VI' V2' ... ): A set S equipped with one n-ary operation 
vn : sn~ S for each positive integer n, such that VI = 1 while for every 
positive k and every k-tuple of positive integers nl , ... , nk one has the identity 

(2) 

A morphism f: <S, V1, ... )~<S', v;, ... ) of W-algebras is a function 
f:S~S' which commutes with each Vn, so that fVn=v~f":sn~s'. 

Proof. Consider a W-algebra <S, h: WS~S). Since WS= usn, the 
structure map h is a list of n-ary operations Vn: sn~s, one for each n. 
The unit law for the algebra requires that h'lx = 1, hence that V1 be the 
identity. On the other hand, since the product of sets is distributive over 
the coproducts of sets, 

W(WX)=U (Uxn)k;:;;U U(Xn1x ... xxnk);:;;UUxnl+···+nk, 
k n k n k n 

where n at the middle and the right runs over all k-tuples <nl, ... , nk). 
With this notation, the associative law for the structure map h takes the 
stated form (2). 

The simplest case of this identity (2), for 3 = 2 + 1 = 1 + 2 and VI the 
identity, is 

V2(V 2 X 1) = V3 = vz(1 x v2 ): S x S x S~S. 

If we write the binary operation V2 as multiplication, this states that the 
ternary operation V3 satisfies, for all elements x, y, Z E S, 

(XY)Z = v3(x, y, z) = x(yz). 
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Similarly, Vn must be the n-fold product. An easy induction proves 

Corollary. The system (S, VI' V2 , .•• ) is a W-algebra, as above, if 
and only if VI = 1, V2: S x S-+S is an associative binary operation on S, 
and for all n ~ 2, Vn+1 = vn(v 2 x 1): sn+l-+s. 

Thus, if we start with semigroups, regarded as sets (S, v) with one 
associative binary operation, define the resulting monad W on Set, and 
then construct the category of W-algebras, we get the same semigroups, 
now regarded as algebraic system (S, VI' V2, ••• ), where VI = 1, V2 = v, 
and V.+ I is V2 iterated. The comparison functor K: Smgrp-+SetW is 
the evident map (S, v) 1-+ (S, 1, V2 , ... , V., ... ) where Vn is the iterate of 
the binary v. In other words, K is an isomorphism, but it replaces the 
algebraic system (S, v) with one associative binary operation by the same 
set with all the iterated operations derived from this binary operation. 

A similar description applies to algebras over other familiar monads 
(Exercises 1, 2). 

Exercises 

1. Let Wo be the monad in Set defined by the forgetful functor MOD-+Set. Show 
that a Wo-algebra is a set M with a string Vo, VI' ... of n-ary operations V., where 
Vo: *-+M is the unit of the monoid M and v. is the n-fold product. 

2. For any ring R with identity, the forgetful functor G: R-Mod-+Set from the 
category of left R-modules has a left adjoint and so defines a monad <TR , I'/,Il) 
in Set. 
(a) Prove that this monad may be described as follows: For each set X, TRX 

is the set of all those functions!: X -7 R with only a finite number of non
zero values; for each function t : X -7 Y and each Y E Y, [(TRt)! L = I'1., 
with sum taken over all x E X with tx = y; for each x E X, T/xX : X -7 R is 
defined by ('Ix x)x = 1, ('Ix x)x' = 0; for each k E TR(TR X), flx k : X -> R is 
defined for x E X by (/Lx k)x = ~ kf fx> the sum taken over all f E TR X. 

(b) From this description, verify directly that < TR , 1'/, Il) is a monad. 
(c) Show that the <TR , 1'/, Il)-algebras are the usual R-modules, described 

not via addition and scalar multiple, but via all operations of linear combina
tion (The structure map h assigns to each! the "linear combination with 
coefficients!x for each x EX".) 

3. Give a similar complete description of the adjunction defined by the forgetful 
functor CRDg-+Set, noting that T X is the ring of all polynomials with integral 
coefficients in letters (i.e., indeterminates) x E X. 

4. The adjunction <F, G, qJ) : Ab~ Rng with G the functor "forget the multiplica
tion in a ring" defines a monad T in Ab. 
(a) Give a direct description of this monad, like that in the text for W, with X' 

replaced by the n-fold tensor power and coproduct 11 by the (infinite) direct 
sum of abelian groups. 

(b) Give the corresponding description of T-algebras and show that the com
parison functor from rings to T-algebras is an isomorphism. 
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5. Free Algebras for a Monad 

Given an adjunction 

<F, G, cp): X~A, 

any full subcategory Be A which contains all the objects Fx for x E X 
leads to another adjunction 

<FB, GB, CPB): X~B 

where the functor FB is just F with its codomain restricted from A to 
B, GB is G with domain restricted to B, while for x E X and bE B the 
given adjunction leads to a bijection CPB 

homB(FBx, b) = homA(Fx, b) ~ homx(x, Gb) = homx(x, GBb), 

which is manifestly natural in x and b. Moreover, this second adjunction 
CPB defines in X the same monad as did the first. This observation shows 
that one and the same monad in X can usually be defined by many 
different adjunctions. The "smallest" such adjunction will be the one 
where B is F X, the full subcategory of A with objects all the "free" 
objects F x E A. The familiar properties of arrows F x~ F y between such 
free objects do suggest a way of constructing this subcategory F X and 
the adjunction CPB directly from the monad. Here is the suggested con
struction, which really gives this category directly and not as a sub
category (cf. Exercise 3). 

Theorem 1 (The Kleisli category of a monad, [1965].) Given a monad 
< T, '1, 11) in a category X, consider to each object x E X a new object XT 
and to each arrow f: x~ Ty in X a new arrow f': XT~ YT' These new 
objects and arrows constitute a category when the composite of f' with 
g' : YT~ ZT is defined by 

Moreover, functors FT : X ~XT and GT : XT~X are defined by 

FT: k: x~yf-'>-('1yO k)': XT~YT, 

GT: f': xT~YTf-'>-l1yO Tf: Tx~ T2y~Ty 

(1) 

(2) 

(3) 

respectively, so that GT XT = Tx on objects. Then the bijection f' f-'>- f 
gives an adjunction <FT, GT, CPT) : X ~ XT which defines in X precisely the 
given monad <T, '1, 11)· 

Sketch of proof. The definition of the arrows f' amounts to a bi
jection XT(XT, YT) ~ X(x, Ty) on hom-sets, while the definition of the 
composite in X T refers to the composite 

x~Ty~ T2 z~Tz 
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in X. A suitable large diagram shows the new composition associative: 
Other diagrams prove that (I'/x)": XT-XT is a left and right unit for this 
composition. Another calculation shows that FT and GT as described 
are indeed functors. By construction, l' 'r->-J is a bijection 

it is natural in x and YT, so yields the desired adjunction CPT' Its unit 
is 1'/, and its counit eT is given by (eT)YT = (lTy)': (TYh- YT' The resulting 
multiplication in X is GTeTFT, which by the definition of GT is exactly 
the given multiplication 11. Therefore the adjunction does define the 
original monad T. 

Theorem 2 (The comparison theorem Jor the Kleisli construction). 
Let (F, G, 1'/, e) : X ~A be an adjunction and T = (G F, 1'/, GeF) the monad 
it defines in X. Then there is a unique Junctor L: X T- A with G L = GT 
and LFT=F. 

We leave the proof to the reader, noting that the uniqueness of L re
quires another (and somewhat different) application of Proposition IV.7.1 
on maps of adjunctions. 

The two comparison theorems may be summarized as follows: 

Theorem 3. Given a monad (T, 1'/, f1) in X, consider the category with 
objects all those adjunctions (F,G,I'/,e):X~A which define (T,I'/,f1) 
in X, and with arrows those maps oj adjunctions (§ IV. 7) which are the 
identity on X. This category has an initial object - the Kleisli construction
and a terminal object (FT, GT, I'/, eT ) : X --+ XT with the comparison 
Junctor: 

XT -----~---+ A -----~--- ... X T . 

Exercises 

1. Construct the Kleisli comparison functor L, prove its uniqueness, and show 
that the image of X T under L is the full subcategory FX of A with objects all 
Fx, XEX. 

2. Show that the restriction of L gives an equivalence of categories X T --+ F X. 
3. Construct an example of an adjunction where F is not a bijection on objects. 

Deduce that the equivalence X T ~ F X in Exercise 2 need not be an isomor
phism. (Suggestion: S 1--+ T(S) = the one-point-set defines a monad in Set.) 

4. In the summary comparison Theorem 3, does the category of all adjunctIOns 
really exist? 

5. If <F, G, 1], e) : X ~Bdefines the monad <T, 1], 11) in X, while a second adjunction 
<L, R, 1]', e') : B~ A defines the identity monad in B (i.e., R L = I B, 1]' = 1, and 
Re'L = 1), prove that the composite adjunction X ~ A defines in Xlthe same 
monad <T, 1], 11)· 
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6. Split Coequalizers 

We need certain special types of coequalizers. By a fork in a category C 
we mean a diagram 

(1) 

in C with e80 = e81 . A fork is thus just a cone from the diagram a~b 
to the vertex c. Recall that an arrow e is a co equalizer of the parallel 
pair of arrows 80 and 81 if it is a fork and if any f: b---+d with f 80 = f 81 

has the form f = f' e for a unique f': c---+d. An arrow e is called an 
absolute coequalizer of 80 and 81 in C if for any functor T: C---+ X (to any 
category X whatever) the resulting fork 

still has Te a coequalizer (of T80 and T81). In particular, an absolute 
coequalizer is automatically a coequalizer. In the same way one can 
define absolute colimits (or absolute limits) of any other type (Pare 
[1971a]). 

A sp{it fork in C is a fork (1) with two more arrows 

(2) 

which satisfy with the arrows (1) the conditions 

e80 =e81 , es=l, 80 t=l, 81 t=se. (3) 

We say that sand t split the fork (1). These conditions imply that e is 
a split epi, with right inverse s. A split fork can also be represented as a 
pair of commutative squares 

c~b~c s e 

such that both horizontal composites are the identity. Put differently: 
The arrows 81 and e are objects in the functor category C2 and 
<80 , e): 81 ---+e is an arrow between them which has <t, s): e---+81 as its 
right inverse: <80 , e) <t, s) = <1, I). 

Lemma. In every split fork, e is the coequalizer of 80 and 81 . 

Proof. For any arrow f:b---+d with f8 0 =f81, take f'=fs:c---+d. 
Then, using the Eqs. (3) defining a split fork, 

f'e= fse= f8 1t = f8 0 t = f, 

so f factors through e. On the other hand, f = ke for some k: c---+d 
implies f s = k e s = k, so k is necessarily f' = f s, and f' is unique. 
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By a split coequalizer of 00 and 01 we shall mean the arrow e of such 
a split fork on 00 and 01. It is possible to characterize those parallel 
pairs 00 , 01 for which any (and hence every) coequalizer is split (Exercise 2). 

Since a split fork is defined by equations involving only composites 
and identities, it remains a split fork under the application of any functor. 
Hence, 

Corollary. In every split fork, e is an absolute coequalizer of 00 and 01. 

Here is an example of a fork in Cat, for C any category: 

CZ is the category whose objects are the arrows of C; 00 and 01 are 
the functors assigning to each arrow its domain and its codomain, 
respectively, while e is the functor which sends every object of C to the 
unique object of 1. If C has a terminal object ao, this fork is a split by 
the functor s which sends the unique object of 1 to ao' and the functor t 
which sends each CEC to the unique arrow c-+ao. 

Here is an example of a fork in Grp. Let N <J G be any normal sub
group of G and form the semidirect product G x oN, which has elements 
the pairs (x, n) for x E G, n E N with the (evidently associative) multi
plication (x, n) (y, m) = (xy, (y-l ny) m). Then 

is a fork, where p is the usual projection to the quotient group GIN, 
while 0o(x, n) = x, 01 (x, n) = xn. Moreover, in this fork p is clearly the 
coequalizer of 00 and 01• This fork is not in general split, but if we apply 
the standard forgetful functor U: Grp--+Set, the resulting fork in Set is 
split. Take s to be a function sending each coset (element of GIN) to a 
representative element in G, while Ix = (x,x-1(spx). This example, 
incidentally, gives one way in which any quotient group can be regarded 
as a coequalizer in the category of groups. 

Exercises 

1. In Rng give a similar construction to show that every quotient RIA of a ring R 
by an ideal A can be represented as a coequalizer, and show that the resulting 
fork is split after the application of the forgetful functors to sets. 

2. A parallel pair 00 , 01 : a=t b is said to be contractible (Beck) if there is an arrow 
t : b--+a with 00 t = 1 and 01 t 00 = 01 tal • 

(a) In any split fork (1), prove 00 , 01 contractible; 
(b) If a contractible pair has a coequalizer, prove that this coequalizer is split. 
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7. Beck's Theorem 

A basic construction in familiar categories of algebras is the formation 
of coequalizers - in Grp, via factor groups, in R-Mod via quotient modules, 
and the like. Beck's theorem will characterize the category of T-algebras 
for any monad T as a category with an adjunction in which the "forgetful" 
functor creates suitable coequalizers. We recall (§ V.1) that a functor 
G : A --> X creates coequalizers for a parallel pair f, 9 : a~ b in A when 
to each coequalizer u: Gb-->z of Gf, Gg in X there is a unique object c 
and a unique arrow e: b-->c with Gc = z and Ge = u and when moreover 
this unique arrow is a coequalizer of f and g. 

Theorem 1 (Beck's theorem characterizing algebras). Let 

(F,G,1],s):X~A (1 ) 

be an adjunction, (T, 1], 11) the monad which it defines in X, X T the category 
of T-algebras for this monad, and 

(FT, GT, 1]T, ST) : X ~ XT (2) 

the corresponding adjunction. Then the following conditions are equivalent: 
(i) The (unique) comparison functor K: A-->XT is an isomorphism; 

(ii) The functor G: A --> X creates coequalizers for those parallel 
pairs f, 9 in A for which G f, G 9 has an absolute coequalizer in X; 

(iii) The functor G: A --> X creates coequalizers for those parallel 
pairs f, 9 in A for which G f, Gg has a split coequalizer in X. 

Proof. We first show that (i) implies (ii). Consider two maps 
do 

(x, h)~ (y, k) 
d, 

of T-algebras for which the corresponding arrows in X have an absolute 
coequalizer 

To create a coequalizer for this parallel pair we must first find a unique 
T-algebra structure m: Tz-->z on z such that e becomes a map of T
algebras, and then prove that this e is, in fact, a coequalizer of do, d1 in 
the category X T of T-algebras. But on the left side of the diagram 

both the upper square (with do) and the lower square (with d1 ) commute, 
because do and d1 are maps of algebras; it follows that ek has equal 
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composites with Tdo and Td1 • But e is an absolute coequalizer, so Te 
is still a coequalizer: Therefore there is a unique vertical map m, as 
shown, which makes the right square commute. 

We now wish to show that this m is a structure map for z. The 
associative law for m (outer square below) may be compared with the 
associative law for the structure map k (inner square below) by the diagram 

(3) 

/ 
Tz-----:::-:-m----~) z 

The left hand trapezoid commutes since Ji is natural, and the other three 
trapezoids commute by the definition of m above in terms of k and e. 
Therefore 

m ° Tm 0 T 2 e = m ° JizO T 2 e. 

But e is an absolute coequalizer, so T 2 e is a coequalizer and thus is epi; 
cancelling T2 e gives the associative law for m. The same style of argument 
will prove that m satisfies the unit law m ° Yfz = 1 : z~ z. 

We have found the desired unique T-algebra structure m on z, with 
e a map of T-algebras by the construction of m. To show that e is a 
coequalizer in XT, consider any other map f: <y, k)~<w, n) of T
algebras withfdo = f d1 . Thenf: y~w is an arrow in X withf do = fd1 , 

while e is an (absolute) coequalizer of do, d1 : x::::ty. Therefore there is 
a map f': z~ w with f = f' e. An argument just like that for the diagram 
(3) shows that f' is in fact a map of T-algebras. Since it is unique with 
f = f' e, this completes the proof that e is a coequalizer in XT, and hence 
that (i) implies (ii). 

Next, every split co equalizer is an absolute coequalizer, hence condi
tion (ii) of the theorem requires more creativity of G than does condition 
(iii). Therefore (ii) implies (iii). 

It remains to prove that (iii) implies (i). As a preliminary, consider 
a T-algebra <x, h); the conditions that h: Tx~x be a structure map 
of an algebra are exactly the conditions that 

(4) 

be a fork in X split by T2X(~TX Tx~x. Indeed, the fork condition 
h 0 Jix = h ° Th for (4) is just the associative law for h, the composite 
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h ° t'lx is 1 because of the unit law for (x, h), while the equations 

Jl.x ° t'lTx = 1 , Th ° t'lTx = t'lxO h 

hold by the unit law for the monad T and the naturality of t'l. 
For each object a E A, the adjunction (F, G, e, t'l): X ~A provides 

a fork 
(5) 

in A which we call the "canonical presentation" of a. It does correspond 
to a familiar presentation if A = Grp; then ea is just the projection on the 
group a of the free group generated by all the elements of a. If the functor G 
is applied to the fork (5) we get a split fork in X; indeed, that special 
case of the split fork (4) when (x, h) is the T-algebra (Ga, Gea ) used 
in the comparison theorem. 

Now consider any other adjunction (F', G', t'l', e') : X ~ A' which 
defines the same monad in X. Bya comparison (of F' to F) we mean a 
functor M : A' - A with M F' = F and G M = G'; as already noted, such a 
comparison is a morphism of adjunctions and hence satisfies Me' = eM. 

Lemma. If G satisfies hypothesis (iii) of the theorem on the creation 
of coequalizers, then there is a unique comparison M: A'-A. 

Since GT is now known to satisfy this hypotheses, this lemma will 
incidentally provide a new proof of the comparison theorem (§ 3). 

Proof. If M exists, then F G M = M F' G' and Me' = eM, so M must 
carry the canonical presentation of a' to the canonical presentation 
of M a'. In other words, the object M a' must fit in a fork 

I , ", , [FG'a' f' k I FGFG a =FG F G a ====tFG a -·--------+Ma 
FG',~, 

in A, and moreover k must be M e~, = SMa'. Map this fork to the category 
X by the functor G. The result is the fork 

G'FG'4' G' 
G F G F G' d====t G F G' d ~ G' d 

TG'e;', 

in X which is split - since T = G F, it is a case of the fork (4) above, for 
x = G' a'. But the hypothesis (iii) ensures that G creates coequalizers in 
this case. Therefore there is exactly one possible choice for k and M a' 

above; (moreover, once M d is chosen, eMa' has the property required of 
k, so must be k.) This shows that the comparison M is unique if it exists. 

Now choose k and M d in this way. To show M a functor consider any 
f: d-b' in A'. In the diagram 

F G' F' G' d====tFG' a' ~M a' 

1 1 ! 
FG'F'G' J FG' J 1 MJ 

F G' F' G' b'====tFG' b' ~M b' 
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both left-hand squares commute, so kb 0 F G' J must factor though the 
first coequalizer k by a unique arrow M a' ---+ M b' as shown. Taking this 
arrow to be MJ clearly makes M a functor A'---+A, just as required for 
the lemma. 

By this lemma we construct both the original comparison functor 
K: A ---+ X T and a comparison functor M: X T ---+ A. The composite 
M K: A---+A is then a comparison (of the adjunction F ... to itself), 
hence must be the identity, again by the lemma. Similarly, K M : XT ---+ X T 

is a comparison of FT to FT, hence must be the identity. Now M K = 1 
and K M = 1 prove K an isomorphism, as required for (i). 

The construction of M in this theorem may be further analyzed, 
using for parallel pairs the following notion of "reflection" of colimits: 

Definition. A Junctor G: A ---+ X reflects colimits of T: J ---+ A when 
every cone Je: T -4a Jrom T to a E A Jor which GJe: G T -4Ga is a co
limiting cone in X is already a colimiting cone in A. 

In particular, G reflects coequalizers when every fork in A which be
comes a co equalizer in X is already a coequalizer in A. Similarly, G 
reflects isomorphisms when, for all arrows t of A, G t an isomorphism 
implies t an isomorphism. 

Beck's theorem has an acronym PTT for "precise tripleability 
theorem". There are many other versions: A "weak" version, easier to 
prove, where there are hypotheses on the coequalizers of more pairs 
(Exercises 2, 3), an "equivalence" version, which gives conditions that the 
comparison functor K : A -t XT be not an isomorphism but an equiva
lence of categories (Exercises 2, 6), a "constructive" version which anal
yses the hypotheses (certain hypotheses suffice to give a left adjoint for K; 
others make this adjunction an equivalence: Exercises 2, 5), a "crude" 
version (C T T or V T T) with strong hypotheses which apply well to the 
composite of several "forgetful" functors (Exercises 9-11). However, 
note that there are more authoritative definitions of V T T and C T T in 
Barr-Wells [1985]. 

Exercises 

(Throughout, "coequalizers" means "coequalizers of parallel pairs".) 
1. If G creates coequalizers, prove that it also reflects coequalizers. 
2. Weak Tripleability Theorem (Beck's thesis). Given the adjunction (1) and the 

corresponding comparison functor K, give a direct proof of the following: 
(a) If A has all coequalizers, then K has a left adjoint L. 
(b) If, in addition, G preserves all coequalizers, then the unit of this adjunction 

is an isomorphism I ~ K L. 
(c) If, in addition, G reflects all coequalizers, then the counit of this adjunction 

is an isomorphism LK ~ I. 
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3. (Alternative hypothesis for Exercise 2.) If A has all coequalizers, G preserves 
all coequalizers, and G reflects isomorphisms, prove that G reflects all co
equalizers. 

4. (a) Show that the canonical presentation of a T-algebra <x, h> is 

<T1X, IlTx> ==t<Tx, Ilx>~<x, h>. 
Th 

(b) Show that the comparison functor M : XT ---> A in Beck's theorem appears 
as a coequalizer diagram 

FGFx ==tFx-~M(x, h). 
Fh 

5. Given the data (1), (2), and the comparison functor K, let P be the set of all those 
parallel pairs f, g : a=t b in A such that G f, G g has a split coequalizer. Using 
Exercise 4 (b), prove 
(a) If A has coequalizers of all pairs in P, K has a left adjoint M. 
(b) If, in addition, G preserves all coequalizers of pairs in P, then the unit 

I] : 1--4 K M of this adjunction is an isomorphism. 
(c) If, in addition to (a), G reflects coequalizers for all pairs in P, then the counit 

M K --4 I of this adjunction is an isomorphism. 
6. Use the results of Exercise 5 and Theorem IV.4.1 to prove the following version 

of Beck's theorem, characterizing the category of T-algebras up to equivalence: 
Given the data (1) and (2), the following assertions are equivalent: 

(i) The comparison functor K : A ---> XT is an equivalence of categories. 
(ii) If f, g is any parallel pair in A for which G f, Gg has an absolute coequalizer, 

then A has a coequalizer for f, g, and G preserves and reflects coequalizers 
for these pairs. 

(iii) The same, with "absolute coequalizer" replaced by "split coequalizer". 

The next exercises use certain definitions of properties CTT, VTT, PTT 
for a functor G : A ---> X. Let CG (respectively SG) be the set of all those parallel 
pairs <f,g> in A such that <Gf,Gg> has a coequalizer in X (respectively, a 
split coequalizer). Then G has C T T when G has a left adjoint, preserves and 
reflects all co equalizers which exist, and when A has coequalizers of all pairs 
in CG . Next, G has V T T when G has a left adjoint, reflects coequalizers of all 
pairs in SG' and when A has split coequalizers of all pairs in SG' Finally, G is 
P T T when G has a left adjoint, preserves and reflects coequalizers for all pairs 
in SG' and when A has coequalizers of all pairs in SG' Clearly, C TT and VTT 
imply PTT. 

7. CTT (Crude Tripleability Theorem; Barr-Beck). If Gis CTT, prove that the 
comparison functor K is an equivalence of categories. 

8. VTT (Vulgar tripleability theorem). If G is VTT, prove that the comparison 
functor is an equivalence of categories. 

9. Given functors Gj:A--->X, G1:X--->Y, G3 :Y--->Z with Gj CTT, G1 PTT, 
and G3 V T T, prove that the composite functor G3 G1 Gj is P T T. 

10. Prove that the composite of two VTT functors is VTT. 
11. Prove that the composite of two C T T functors is C T T. 
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8. Algebras Are T-AIgebras 

For semi-groups, monoids, and rings, we already know (§ 4) that the 
comparison functor is an isomorphism. This result holds more generally 
for any variety, as defined in §V.6): 

Theorem 1. Let Q be a set of operators, E a set of identities (on 
the operators derived from Q), G the forgetful functor from the category 
<Q, E)-Alg of all small <Q, E)-algebras to Set, and T the resulting monad 
in Set. Then the comparison functor K: <Q, E)-AIg-+SetT is an iso
morphism. 

The proof will use Beck's theorem. Consider any parallel pair 
f, g: A~B of morphisms of <Q, E)-algebras for which the underlying 
functions have an absolute co equalizer e: 

GJ 
GA====tGB~X. 

Gg 
(1) 

To "create coequalizers" we must show that the set-map e lifts to a unique 
morphism B-+? of algebras, and then that this map is a coequalizer of the 
algebra maps f, g. So consider any n-ary operator WE Q with its given 
actions W A and W B on the sets A and B (as usual, we confuse the algebra A 
with its underlying set IAI). In the diagram below (ignore the right hand 
square) In , 

,y~ Bln~ ~n _____ ~_~ ____ + c
1
n 

WA 1 WB tx Wc (2) 

J e h' A ====t B ----+ X ------------+ C 
9 

the two left hand squares (with f and g, respectively) commute because 
f and 9 are morphisms of Q-algebras. The function e is an absolute 
co equalizer in Set and therefore its n-th power e" is still a coequalizer 
(of f" and gn). But 

ewBfn = efwA = egwA = ewBgn, 

so eWB must factor uniquely through this coequalizer as eWB = wxen. 
This defines the operation Wx on X so that the square (2) on e commutes; 
that is, so that e is a morphism of Q-algebras. The same diagram applies 
to all the derived operators A and defines Ax uniquely; it follows that 
any identity AB = I1B valid in B is also valid in X, so X is a <Q, E)-algebra. 

It remains to show e a coequalizer for algebras. So consider any 
morphism h: B-+C of algebras with hf = hg. Then hf = hg in Set 
(apply the forgetful functor G), so h factors as h = h' e for a unique func
tion h'. We must show that the right hand square in (2) above commutes 
for every operator w. But h is a morphism of algebras, so 

h' wxen = h' eWB = hWB = Wchn = Wc h'" en 

and en a coequalizer means en epi, hence gives h' Wx = wch'", as required. 
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Exercises 

1. Prove Theorem 1, using split coequalizers rather than absolute coequalizers, 
noting that each Wx must be defined in terms of a splitting (s, t) of the fork (1) as 

(For n = 2, observe that this is like the usual definition of the product of cosets of 
a normal subgroup.) 

2. If K is a commutative ring, show that Beck's theorem applies to the forgetful 
functor K-Alg---->K-Mod. 

9. Compact Hausdorff Spaces 

Theorem 1. The standard forgetful functor 

G : Cmpt Haus~Set, 

which assigns to each (small) compact HausdorJJ space its underlying 
set, is monadic. 

Proof. We already know that G has a left adjoint F; indeed, we may 
take each F X to be the Stone-Cech compactification (V,{j.2) of the set X 
with the discrete topology. 

For the remainder of the proof (given in a form due to R. Pare [1971J) 
it is convenient to regard a topological space as a pair (X, (- h) consist
ing of a set X and a closure operation S I-'> S defined for all subsets 
S, T e X with the standard properties 

0=0, SeS, 5=S, SuT=SuT, 

with 0 the empty subset. A continuous mapf:(X,(-h)~(Y,(-}Y) is 
then a function f: X ~ Y such that fS e fS for all SeX. Also a function 
f:X~Y is closed if fS)fS for all SeX. We recall the well-known 

Lemma. If X is a compact space and YaH ausdorJJ space, then every 
continuous f: (X, (-h)~(Y, (-}Y) is closed. 

We must verify that the forgetful functor G, 

(X, (-h)I-'>X , 

creates coequalizers for suitable pairs. So let f,g:(X,(-h)=t(Y,(-}Y) 
be a pair of continuous maps such that there is a set Wand an absolute 
coequalizer e, 

f e 
X ====t Y -------- W, 

9 

in Set. Let P denote the covariant power set functor Set~Set; thus 
for each subset S e Y, (Pe)S e W is the usual direct image of Sunder e. 



158 Monads and Algebras 

Since e is an absolute co equalizer, Pe is still a coequalizer, in the diagram 
(of sets) 

,-,~r :: 1Pr-,:' T-,w 
PX~PY~PW 

(1) 

Pg 

Since f and g are both continuous maps, both squares on the left (the 
square with f, and that with g) are commutative. It follows that 

Pee ( - )y 0 P f = P e 0 (- )y 0 P g . 

But P e is a coequalizer, so P eo (-)y factors through P e. This gives a 
unique function (-)w - the dotted arrow in (1) - which makes the right 
hand square in the diagram commute. This function may thus be described 
as follows: Given a subset T C W, choose any subset S C Y with (P e)S = T; 
then T = (Pe)S, independent of the choice of S. In particular, if e- I Tc Y 
is the usual inverse image of T, then T= Pe(e- I T). It is now routine to 
verify that this is a closure operation on W, hence that W is a topological 
space. 

By the commutativity of the diagram, e is then continuous and closed. 
Since Y is compact and e : Y ~ W is surjective, W is also compact. Since 
Y is Hausdorff, each point in Y is a closed set there; since e is a closed map 
and is surjective, the points of Ware closed. To show W Hausdorff, 
consider two points WI =1= W2 E W. They are closed in W, so e- I WI and 
e- I W 2 are disjoint closed sets in Y. By a familiar property of the compact 
Hausdorff space Y, disjoint closed sets can be separated by disjoint 
open sets (every compact Hausdorff space is normal), so there are disjoint 
open sets UI , U2 C Y with e- I Wi E Ui' Their complements U{ and U~ 
in Yare then closed sets with U{ u U~ = Y. Since e is a closed map, 
e(UD and e(U~) are closed sets in W with 

(Pe)(U{)u(Pe)(U~)= W, wi¢(Pe)(U;). 

So take complements again, this time in W: [(Pe) U{]' and [(Pe) U~]' 
are disjoint open neighborhoods of WI and W 2 , respectively, in W. 
Therefore W is a Hausdorff space. 

We have produced from the absolute coequalizer e in Set a unique 
topology on its codomain W such that e is continuous; moreover, this 
topology is compact Hausdorff. It remains to show that the continuous 
map e: (Y, (- )y)~(W, (- )w) is a coequalizer in empt Hans. So consider 
any compact Hausdorff (Z, ( -)z) and a continuous map h: Y ~ Z, 
such that both composites in 
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are equal. Since e is a coequalizer in Set, there is a unique function 
h' : W -> Z with h = h' e : Y -> Z; it remains to show h' continuous. Take 
TC Wand S C Y with (Pe)S = T. Then T= (Pe)S, so 

(Ph') T= (Ph')(Pe) S = P(h) S = P(h)S 

= (Ph') (Pe)S = (Ph') T. 

Therefore h' is continuous (and closed). The proof is complete. 

Exercises 

1. Show that the topology on W introduced in the proof above is the "quotient 
topology" on W defined bye: Y ---> W (i.e., that a set is open in W if and only if 
its inverse image is open in Y). 

Notes. 

The recognition of the power and simplicity of the use of monads and comonads 
came quite slowly, and started from their use in homological algebra (see §VII.6). 
Mac Lane [1956] mentioned in passing (his § 3) that all the standard resolutions 
could be obtained from universal arrows (i.e., from adjunctions). Then Godement 
[1958] systematized these resolutions by using standard constructions (comonads). 
P. J. Huber [1961], starting from "homotopy theory" in the Eckmann-Hilton sense, 
explored the examples of derived functors which can be defined by comonads and 
then in [1962] studied the resulting functorial simplicial resolutions for more 
general abelian categories. Then Hilton (and others) raised the question as to whether 
any monad arises from an adjunction. Two independent answers appeared: 
Kleisli's constructions in [1965] of the "free algebra" realization and the decisive 
construction by Eilenberg-Moore [1965] of the category of algebras for a monad. 
Stimulated by this description ofthe algebras, Barr-Beck in [1966] showed how the 
resolutions derived from monads and comonads can be used even in non-abelian 
categories - obtaining the surprising result that the free group monad in Set 
does lead to the standard cohomology of groups. Subsequent developments in 
this direction are sumarized in their paper [1969]. 

Thus, about 1965, it became urgent to decide how to characterize the category 
of algebras over a monad. Linton [1966] treated the case for monads in Set, and 
then Beck established his theorem (unpublished, but presented at a conference in 
1966). The absolute "coequalizer" form of the theorem, due to Pare [1971], made 
possible Pare's elegant proof (§ 9) that compact Hausdorff spaces are monadic. 
Many other developments in this direction are summarized in Manes' thesis 
(cf. [1969]). 

The description of algebras by monads is closely related to another description 
by algebraic theories (Lawvere [1963], described in Pareigis [1970]). 





VII. Monoids 

This chapter will explore the general notion of a monoid in a category. 
As we have already seen in the introduction, an ordinary monoid in Set 
is defined by the usual diagrams relative to the cartesian product x in 
Set, while a ring is a monoid in Ab, relative to the tensor product @ 
there. Thus we shall begin with categories B equipped with a suitable 
bifunctor such as x or @, more generally denoted by D. These categories 
will themselves be called "monoidal" categories because the bifunctor 
0: B x B--+B is required to be associative. Usually it is associative only 
"up to" an isomorphism; for example, for the tensor product of vector 
spaces there is an isomorphism V @ (V @ W) ~ (V @ V)@ W. Ordinarily 
we simply "identify" these two iterated product spaces by this isomorphism. 
Closer analysis shows that more care is requisite in this identification ~ 
one must use the right isomorphism, and one must verify that the 
resulting identification of multiple products can be made in a "coherent" 
way. 

Once the coherence question for monoidal categories is settled, we 
proceed to define monoids in such categories, the actions of monoids on 
objects of the category, and the construction of free monoids. Next, we 
introduce the simplicial category .1, which turns out to be the basic 
monoidal category because it contains a "universal" monoid and 
because of its role in simplicial resolutions and simplicial topology. 
Finally, compactly generated spaces are used to illustrate closed monoidal 
categories. 

1. Monoidal Categories 

A category is monoidal when it comes equipped with a "product" like 
the direct product x, the direct sum EEl, or the tensor product @. We 
write this product as 0 (many authors write @) to cover all cases 
impartially. We consider first categories equipped with a multiplication 0 
which is strictly associative and has a strict two-sided identity object e. 
In detail, a strict monoidal category <B, 0, e) is a category B with a 
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bifunctor 0 : B x B ---- B which is associative, 

O(D x 1) = 0(1 x D): B x B x B----B, 

and with an object e which is a left and right unit for D, 

D(e x l)=idB = D(l x e). 

(1) 

(2) 

In writing the associative law (1), we have identified (B x B) x B with 
B x (B x B); in writing the unit law (2), we mean ex 1 to be the functor 
c I->- < e, c) : B ---- B x B. The bifunctor 0 assigns to each pair of objects 
a, b E B an object aDb of B and to each pair of arrows I: a----a', g: b----b' 
an arrow 109: aDb----a'Ob'. Thus 0 a bifunctor means that the 
interchange law 

holds whenever the composites If and g' g are defined. The associative 
law (1) states that the binary operation 0 is associative both for objects 
and for arrows; similarly, the unit law (2) means that eO c = c = cO e 
for objects c and that 1e D I = I = IDle for arrows f. 

Any monoid M (in the usual sense, in Set), regarded as a discrete cate
gory, is a strict monoidal one with 0 the multiplication of elements of M. If 
X is any category, the category End(X) with objects all endofunctors 
S : X ---- X and arrows all natural transformations e: S --4 T is strict 
monoidal, with 0 the composition of functors. 

A (relaxed) monoidal category is a category B with a bifunctor 0, 
its multiplication, which is associative "up to" a natural isomorphism IY., 

and which has an object e which is a left unit for D up to a natural 
isomorphism A and a right unit up to (!. Moreover, "all" diagrams in
volving IY., A, and (! must commute. 

Formally, a monoidal category B = <B, 0, e, IY., A, (!) is a category B, 
a bifunctor 0: B x B---- B, an object e E B, and three natural isomor
phisms IY., A, (!. Explicitly, 

IY. = lY.a,b,c: aD(bOc) ~ (aDb)Dc (4) 

is natural for all a, b, c E B, and the pentagonal diagram 

aO(bD(cOd))~ (aD b)O(cDd)~ ((aDb)Oc)Dd 

110a laD! (5) 

aD((bOc)Dd) a ) (aO(bOc))Od 

commutes for all a, b, c, dEB. Again, A and (! are natural 

(6) 
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for all objects a E B, the triangular diagram 

(7) 

aOc aOc 

commutes for all a, c E B, and also 

(8) 

Soon we shall see that these three diagrams imply that all such 
diagrams commute. For the moment, we observe (Exercise 1) that they 
imply commutativity in the diagrams 

aO(bOe)~(aOb)Oe 

1 Delle (9) 

bOc bOc, aOb aOb. 

Any category with finite products is monoidal, if we take aOb to be 
(any chosen) product of the objects a, band e to be a terminal object, 
while rt, A, and (2 are the unique isomorphisms (Prop. III. 5.1) which 
commute with the respective projections. Then the pentagon (5) com
mutes (both legs commute with the projections of the four fold products), 
and so does the triangle (7). Similarly, any category with finite co
products is monoidal, with 0 the coproduct and e an initial object. 

The usual "tensor products" give monoidal categories. For example, 
the tensor product of two abelian groups A and B is defined by the 
condition that there is a function A x B---+A0B, a, bl-?a0b, universal 
among bilinear functions on A x B to abelian groups. By iteration, there 
is a universal trilinear A x (B x C)---+ A 0 (B 0 C); by the uniqueness of a 
universal, there is then a unique isomorphism rt : A (8) (B (8) C)---+ (A 0 B) 0 C 
which is natural (because of its uniqueness); the corresponding pentagon 
(5) commutes because both legs are the unique comparisons of 
universal quadrilinear functions. The isomorphisms A: Z0A ~ A, 
(2 : A 0 Z ~ A are well known (and used to identitfy Z 0 A with A). 
All told, <Ab, 0, Z, rt, A, (2 > is a monoidal category. 

The pentagonal condition (5) for 0 in Ab may also be verified 
directly on elements a E A, b E B, and c E C, by noting that rt[a0(b0c)] 
= (a0b)0c. This suggests one role of this condition: It avoids the 
possible use of the "wrong" associativity; for example, of the isomorphism 
rtf: A0(B0C)---+(A (8) B) (8) C defined on elements of these abelian groups 
as rtf[a0(b0c)]=-(a(8)b)0c. For this rtf, (5) fails to commute by a 
SIgn. 
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There are many other examples. A discussion like that for Ab shows 
for each commutative ring K that <K-Mod, <8>K' K) is monoidal. The 
same holds for graded K-modules and for differential graded K-modules 
(= chain complexes of K-modules) under the customary definition of 
the tensor product for such objects (Mac Lane [1963]). Similarly, the 
category of all K-algebras (or, all differential graded K-algebras) is 
monoidal, under the familiar tensor product of algebras. For any ring R, 
the category of all R - R bimodules is monoidal under <8>R' 

A (strict) morphism of monoidal categories. 

T: (B, D, e, ex, A, e)-(B', D', e', ex', A.', e'), 

is a functor T: B-B' such that, for all a, b, c,j, and g 

T(aDb)=TaD'Tb, T(fDg) = TjD'Tg, Te=e', (to) 

Texa,b,c = ex~a, Tb, Tc> T Aa = A~a, Tea = e~a . (11) 

With these morphisms as arrows, we can form Moncat, the category of 
all small monoidal categories. This category has (the obvious) 
finite products; in particular 1 with the evident (strict) monoidal structure 
is terminal in Moncat. There is also a full subcategory consisting of all 
strict monoidal categories; naturally, the definition of morphisms T 
for these can omit the conditions (11) on ex, A, and e. 

Many useful morphisms between monoidal categories are, however, 
not strict in the sense of (10) and (11). For example, the forgetful functor 
U: <K-Mod, <8>K' - )-<Ab, <8>, ... ) is not strict; indeed, for K-modules 
A and B, we have not an equality U(A<8>KB) = UA<8>UB nor even an 
isomorphism, but just a natural morphism UA<8>UB-U(A<8>KB), 
expressing the fact that A <8>K B is a quotient of A <8>z B. A similar situation 
arises for the forgetful functor <Ab, <8>, ... )-<Set, x , ... ). We shall not 
formulate here the properties of these "relaxed" morphisms between 
monoidal categories (for this, see §XII.S). 

One might be tempted to avoid all this fuss with ex, A, and e by simply 
identifying all isomorphic objects in B. This will not do, by the following 
argument due to Isbell. Let Seto be the skeleton of the category of sets; 
it has a product X x Y with projections PI and P2 as usual. If D is a (the) 
denumerable set, then D = D x D, and both projections of this product 
are epis PI' P2 : D-D. Now suppose that the isomorphism ex: X x (Y x Z) 
= (X x Y) x Z, defined as usual to commute with the three projections, 
were always the identity; it is then the identity for X = Y = Z = D; SInce 
ex is natural, j x (g x h) = (f x g) x h for any three j, g, h : D-D. But x on 
functions is defined in terms of the projections PI and P2 above, so 

jPI = PI (f X (g x h)) = PI ((f X g) x h) = (f X g)PI : D-D, 

and PI is epi, so j = j x g. The corresponding argument with P2 gives 
j x g = g, hence j = g for any j, g : D-D, an absurdity. A similar 
argument applies to the skeleton of <Ab, <8>, ... ). 
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Exercises 

1. Prove that (5) and (7) imply (9). Hint: Take the pentagon (5) with a=b=e 
and fill in the inside, adding Q in two places, the basic identity (7) twice, and 
suitable naturalities to get (AD l)lxA = U: eO(eO(cOd))-+cOd, and hence 
(A an isomorphism) (A 0 1) C( = A. 

2. Construct the product in Moncat of two monoidal categories. 
3. For B monoidal, show that BOP has the (evident) monoidal structure. 
4. For B monoidal and C any category, show that the functor category ~ is 

monoidal, with mUltiplication SO T defined by (SO T)c = ScO Tc and e: C-+ B 
the constant functor e. Show that the adjunction BC x D ~ (Bcf is an isomorphism 
of monoidal categories. 

5. Prove: A strict monoidal category with one object is a set (the set of arrows) 
with two binary operations 0, 0 which satisfy the interchange law and have a 
common (left and right) unit ide. Apply Ex. 5 of § 11.5. 

6. Show by examples that the axioms (5) and (7) are independent. 

2. Coherence 

A coherence theorem asserts: "Every diagram commutes"; more modestly, 
that every diagram of a certain class commutes. The class of diagrams at 
issue now are the diagrams in a monoidal category which, like the 
pentagon (1.5), are built up from instances of rx, A, and (! by multiplica
tions D. However, two apparently or formally different vertices of such 
a diagram might become equal in a particular monoidal category, in 
such a way as to spoil the commutativity. Hence we prove only that 
every "formal" diagram commutes, where a formal diagram is one in 
which the vertices are iterated formal D-products of "variables". We 
call these formal products "binary words"; they are exactly like the well
formed formulas and terms used in logical syntax in proof theory. 

The precise definition is by recursion. A binary word of length 0 is 
the symbol eo (the empty word); a binary word oflength 1 is the symbol ( - ) 
(the variable or the place holder); if v and ware binary words of lengths 
m and n, respectively, then the symbol vDw=(v)D(w) is a binary word 
of length m+n. For example, ((-D-)Deo)D- is a binary word of 
length 3 - an iterated 4-fold product, with chosen arrangement of 
parentheses, and a specified argument set equal to eo. For any two 
binary words v and w of the same length, introduce one arrow V---+ w. 
These words with these arrows form a category W (a preorder with 
every arrow invertible). It is a monoidal category under multiplication 
v,wl-+vDw, with unit eo, and with rx,A, and (! the appropriate (and 
necessarily unique) arrows. 

By its very construction (unique arrows v---+w) every diagram in W 
will commute. Morphisms from W to B then give the desired diagrams 
which commute in other monoidal categories B. These morphisms are 
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given by the following theorem, which states in effect that W is the free 
monoidal category on one generator ( - ): 

Theorem 1. For any monoidal category B and any object bE B, there 
is a unique morphism W -----> B of mOlioidal categories with ( - ) f-+ b. 

Proof. We write the desired morphism as Wf-+Wb, to suggest that it 
means "Substitute b in all the blanks of the word w". On objects W we 
must set 

(1) 

by induction, these formulas uniquely determine all W b . 

For words of fixed length n we now construct a certain "basic" graph 
Gn = Gn,b' Its vertices are all words W of length n which do not involve eo 
while its edges V-----> ware to be identical with certain arrows Vb -----> Wb in B. 
Call them the "basic" arrows. Here each instance 

of associativity and each instance of a -1 is basic, as are all arrows 
f3 D 1 or 10 f3 with 1: Vb -----> Vb an identity and f3 already recognized as 
basic. Intuitively, each basic arrow is an arrow such as (1 Oa)O(1 0 1)
one instance of a, boxed with identities. Observe then that each basic 
arrow is either "directed" (it involves a) or "antidirected" (with a- 1 ). In 
the graph Gn the paths from u to ware thus the composable sequences 
of basic arrows from Ub to Wb ; by composition each path yields an arrow 
Ub----->Wb in B. The crux of our proof will be to show that any two paths 
from u to W yield by composition the same arrow Ub----->Wb in B - i.e., 
that the graph Gn is a commutative diagram in B. 

First, take w(n) to be the unique word of length n which has all pairs 
of parentheses starting in front. There is a directed path in Gn from any 
W of length n to w(n); indeed, we may choose such a path in a canonical 
way, successively moving outermost parentheses to the front by instances 
of a. For any two words V and W of length n the two canonical paths 
combine to give a path V ---- w(n) ---- w; this observation is really just the 
known proof of the "general associative law" for a product ab, given the 
usual associative law a(bc) = (ab)c. 

Define the rank Q of a word W by recursion, setting QeD = 0, Q( - ) = 0, 
and 

Q(vDw)=Q(v)+Q(w)+length(w)-1 ; 

observe that QW = ° means that all pairs of parentheses in W start at the 
front. 

Now we show that Gn commutes. Along any path from V to w, join 
each vertex to the "bottom" vertex w(n) by the canonical directed path. 
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A glance at the diagram 

I~r~r~r~I 
wIn) w(n) w(n) w(n) w(n) 

indicates that it will suffice to show that any two directed paths (all IX'S, 

no IX -1) from a Vi to W(n) are equal. This will be proved by induction on 
the rank of Vi = V. Suppose it true for all V of smaller rank, and consider 
two different directed paths starting at V with (directed) basic arrows 
f3 and y, as in the figure 

Both f3 and y decrease the rank. Hence it will suffice to show that one 
can "rejoin" their codomains v' and v" by directed paths to some com
mon vertex z in such a way that the diamond from V to z is commutative. 
This is done by a case subdivison. If f3 = y, take z = V' = V". If f3 =1= y, 
write V as v = u D wand observe that f3 has one of the following three 
forms: 

f3 = f3' 0 1w; f3 acts "inside" the first factor u, 

f3 = 1u D f3"; f3 acts inside the second factor, 

f3 -1X where v=uOw=uD(sDt). - U,s,t, 

For y there are three corresponding cases. 
Now compare the cases for f3 and y. If both act inside the same 

factor u, we can use induction on the length n. If f3 acts inside u and y 
inside w, use the diamond 

uOw 

7~ 
u'Dw uOw' 

1~ ~1 Dy' ~u'ow,/II'DI 

which commutes because D is a bifunctor. There remains the case when 
one of f3 or y, say f3, is f3 = IX = lXu.s,t as in the third case above, Since 
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y =1= {3, y must act inside u or inside w. If y acts inside u, we use a diamond 
from uO(sOt) to (u'Os)Ot, which commutes because a is natural. If y 
is inside w = sOt and actually inside s or inside t, naturality of a gives 
a similar diamond. There remains only the case where y is inside sOt 
but not inside s or t. Then y must be an instance of a, t must be a product 
t = pDq, and our diamond must then start with 

V= uOw= uO(sO(pOq)) 

~~ 
(uOs)O(pOq) uO((sOp)Oq). 

This we can complete to a "diamond" by taking that diamond to be 
the pentagon of (5). This shows that the graph Gn is commutative in B; 
it completes the coherence proof as far as associativity alone is concerned. 

It is trivial to "fold in" to this proof the applications of A and (!. 

Formally, consider the graph G~ with vertices all words of length n, 
including words involving eo, and with edges all basic arrows constructed, 
just as above, by boxing instances of a, A, and (! (and their inverses) 
with identities. This graph G~ is infinite, but contains the previous 
(finite) graph Gn built from a alone. It remains to show G~ commutative 
in B. For each word w, there is still at least one path w_w(n). But the 
composite arrow obtained from any such path is equal to that for a 
different path which first removes all e's, then applies a. Indeed, if some 
e is removed by A : eO b ~ b after some application of a, then that e can 
be removed before - either by naturality of tx, or by (7), or by (9). Moreover 
by (8) it does not matter in eOe whether e is removed by A or by (!. 

Finally, this reduced path has composite equal to that for a canonical 
path in which all the e's are removed in some specified order (say, 
starting with the left-most occurence of e). This process reduces G~ to 
Gn and proves that G~ is commutative in B, since Gn is. 

We can now define the morphism W-B required in the theorem. 
The category W was constructed with exactly one arrow v-w between 
words v and w of the same length n; the morphism will send this arrow 
to the composite arrow for any path Vb - Wb in G~, since we now know 
the composite to be unique (independent of the choice of the path). In 
virtue of this same uniqueness, this construction does define a functor 
W - B. Moreover this functor is a morphism of monoidal categories 
because 

/Og=/o 1010g={f01)0(10g) 

for any arrows / and g. 
The coherence result can be formulated in terms of graphs whose 

edges are the natural transformations tx, A, and (!. To state this, note 
first that each word w of length n (in one variable) determines for each 
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monoidal category B a functor WB: Bn = B x ... x B----+ B of n variables, 
obtained by replacing each blank (-) in the word w by the identity 
functor of B. The explicit definition of this functor, like (1), is by recursion; 
(eO)B : 1----+ B is the constant functor e E Band ( - )B is the identity functor 
B----+ B, while if WB and w~ are already determined for words wand w' 
of the respective lengths nand n', then (WOW')B is the composite functor 

(wOw')B:Bn+n'=BnxBn' WBXWB)BxB~B. (2) 

With this formulation, the coherence result is as follows: 

Corollary. Let B be a monoidal category. There is a function which 
assigns to each pair of words v, w of the same length n a (unique) natural 
isomorphism 

(3) 

called the canonical map from VB to wB, in such a way that the identity 
arrow e----+ e is canonical (between functors of 0 variables), the identity 
transformation idB : IB--4IB is canonical, IY., IY. -1, A, A -1, e and e -1 are 
canonical, and the composite as well as the O-product of two canonical 
maps is canonical. 

This sort of formulation, as will appear from the proof, applies also 
to the case considered in the theorem itself: For each bE B there is a 
function which assigns to each pair of words v, w of the same length a 
canonical arrow canb(v, w): Vb----+Wb, with properties like those stated for 
canB · 

Proof. From the given monoidal category B we construct a category 
It(B) with objects all pairs (n, T), T any functor T:Bn----+B, and with 
arrows f: (n, T)----+ (n, T) all natural transformations f: T --4 T. In 
this category we define a multiplication by(m,S)O(n, T) = (m+n,SOT), 
where SO T is the composite 

SOT:Bm+n~BmxBn~BxB~B, 

we take the unit e to be the functor 1----+ B constant at e and define 
A: eO T --4 T for each T and then for each a E Bn as the arrow 
ATa:eO Ta----+ Ta of B. This A is natural in T. Similar pointwise definitions 
give e and IY.; it is routine to verify that Jt(B) is a (relaxed) monoidal 
category. 

The identity functor I: B----+B is an object of It(B). Hence the theorem 
above stating that W is free monoidal on ( - ) gives (for b = I) a unique 
morphism W ----+ I t(B) of monoidal categories with ( - ) f-o> I. In particular, 
this morphism sends each word w to the functor WB described in (2) 
above, while the unique arrow V----+ w, for v and w of the same length, is 
sent to a natural transformation VB--4WB which we call canB(v, w), as in (3). 
Since the functor is a morphism, it must preserve IY., A, and e. Thus, using 
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our notation for words, 
canB(eO' eo) = le: e--4e, canB(( -), (-)) = idB: B--4B, 

canB( - O( - 0 -), (- 0 -)0 -) = a: BO(BOB)--4(BOB)OB, 

canB(eOO -, (- ))= A, canB( - Deo, (- ))= (2, 

canB(vDv', wDw') = canB(v, w)OcanB(v', w'). 

This corollary states that every diagram of the following sort IS 

commutative: 
Vertices. Words w of length n representing functors wB : Bn_B. 
Edges. Natural transformations ie' idB' a, A, (2, and their 0 products. 

Moreover, the functors in question are e, J, - 0 - and their composites, 
and each edge is a natural transformation between the functors represented 
by the vertices at its ends. 

Exercises 

1. Draw a diagram showing all canonical maps between binary words of length 5. 
(It can be regarded as a polyhedral subdivision of the surface of the sphere 
into 19 regions - 16 pentagons (instances of oc) and 3 squares (which commute 
by naturality).) 

2. (Stasheff [1963].) Show that the diagram giving all canonical maps between 
words of length n + 3 can be regarded as a polyhedral subdivision of the 
surface of the n-sphere. 

3. Construct the free monoidal category on any set X, and prove for it the ap
propriate universal property. (Hint: Its objects are words, with any x E X a 
word of length 1, and there is a surjection Wx~Mx from the set Wx of words 
to the free monoid on X. There is a (unique) arrow v~w if and only if v and w 
are words with the same image in Mx.) 

3. Monoids 

Following the ideas suggested in the introduction, we can now define 
the notion of a monoid in an arbitrary monoidal category <B, D, e). 

A monoid c in B is an object c E B together with two arrows 
J1: cDc-c, IJ: e-c such that the diagrams 

cD(cDc)~ (cOc)Dc~ cDc 

ID~l l~ (1) 

cD c -------'~--------» C, 

(2) 
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are commutative. A morphism f: <c, J.1, 11)~<c', J.1', 11') of monoids is an 
arrow f: c~c' such that 

fJ.1 = J.1'(fDf): cDc~c', f11 = 11': e~c' . 

With these arrows, the monoids in B constitute a category MonB, and 
< c, J.1, 11) ~ c defines a forgetful functor U : MonB~ B. 

This definition includes a variety of cases; some already noted in 
our introduction: 

M onoidal Category 

<Set, x, 1) 
<Top, x, *) 
<Cc,o,Id) 
<Ab,@,Z) 
<K-Mod, @K' K) 
<Graded modules, ... ) 
<DG-K-Mod, @K' K) 
<BOP, D OP, e) 
<K-Modop, @;:P, K) 
<Cat, x, 1) 
<O-Grph, x 0, O~O) 

Monoids Therein 

(ordinary) Monoids 
Topological monoids 
Monads (cf. Chapter VI!) 
Rings 
K-algebras 
Graded algebras 
Differential graded K -algebras 
Comonoids in B 
K-coalgebras 
Strict Monoidal categories 
Categories (cf. (II. 7. 3)). 

There is a "general associative law" which states that in a monoid 
< c, J.1, 11) any two n-fold products are equal. Specifically, if w is any 
binary word and We E B the corresponding object of B, as defined in 
Theorem 2.1, the w-fold product J.1w is an arrow J.1w: We~C defined by the 
following recursion: If w = eo, J.1eo : e~c is 11; if w = ( - ), J.1( _) : c~c is the 
identity; if w = ( - ) D ( - ), J.1w is J.1, and in general if w = u D V, J.1uDv is the 
evident composite 

(3) 

Proposition 1 (General Associative Law). For < c, J.1, 11) a monoid in B, 
the iterated products J.1v and J.1w for any two words v and w of the same 
length n satisfy 

(4) 

where cane(v, w): ve~we is the canonical arrow of Theorem 2.1. 

Proof. The axioms (1) and (2) for a monoid are exactly those cases 
of (4) where the canonical arrow in question is 0(, A., or (2. From these 
cases, (4) may be verified by induction, since all canonical arrows are 
composites of O('s, A.'s, and (2's. 
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For example, one may define the n-th O-power of every bE B to be 

bn=(bOb)O"'Ob (5) 

with ''all parentheses in front"; thus bO = e, bl = b, bn + I = bn 0 b. For the 
monoid < c, p, I] > the n-fold product pIn) : cn __ c is then defined by recursion 
as 

p(O) = 1], p(!) = ido p(Z)=p, and p(n+ll=p(p(n)Ol). (6) 

Then (4) includes the more familiar equation ("general associative law") 

p(n)(p(kIl 0 ... 0 p(kn )) = p(k l + ... +kn ) 

valid for all natural numbers nand k1 , ..• , kn . 

(7) 

Theorem 2 (Construction of free monoids). If the monoidal category 
B has denumerable coproducts, and if for each a E B the functors a 0 -
and - Oa: B--B preserve these coproducts, then the forgetful functor 
U : Mon B -- B has a left adjoint. 

Note: In many cases (B = Set, B = Ab, ... ) the functors a 0 - and 
- 0 a themselves have right adjoints, hence automaticaIIy preserve co
products. 

Proof The distributive law f}: U ll (a 0 bill ~ a 0 Un bn holds for each 
denumerable coproduct Unbn of objects bn E B because a 0 - preserves 
coproducts. Indeed, the definition ofthe coproduct injections in: bn -- Un bn 

and jn shows that there is a unique arrow 0 which makes the diagram 

aObn aObn 

11 Din 1 jn 

a 0 Unbn <-... P ..... Un(a 0 bn) 

commute, and "preserves coproducts" means exactly that 0 is an iso
morphism. Its inverse is constructed similarly. 

For given a, take bn = an to be the n-th power defined as in (5) and 
define a multiplication p on Unan by "juxtaposition" amOan ~ am+n. 
FormaIly, p is the unique arrow defined by the commutative diagram 

where the vertical map "can" is the canonical map (iterated associativity) 
given by the coherence theorem for B, <p is that unique map on the 
coproduct Un.m which makes the square with the coproduct injections 
jm.n and in+m commute for all the natural numbers m and n, the map () 0 () 

is the composite of two canonical isomorphisms 0 above (because 0 is 
distributive over Urn and Un), and the multiplication p is p = <p(O 00). 
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A large but routine diagram (exercise!) shows this Jl to be associative, 
in the sense (1). A corresponding unit 1Ja: e----+IInan is defined to be the 
injection io : e = aO ----+ IInan of the coproduct. All told, <IInan, Jl, 1Ja) is a 
monoid in B. The injection (!a = i1 : a = a1 ----+ IInan of the coproduct is an 
arrow 

(!a: a----+ U<IInan, Jl, 1Ja) 

to the forgetful functor U: MOllB ----+ B. 
This arrow is universal from a to U. For let <c, JlC' 1J) be any monoid 

in Band j: a----+c = U(c, JlC' 1JJ an arrow in B. Then we define an arrow 
f': IInan----+c as the composite on the bottom of the commutative diagram 

constructed as follows. First, take w to be the word of length n with all 
parentheses in front, so that Wb = bn, by our definition of bn ; then 
Jlw: cn---->c is the n-fold product defined in the general associative law (6), 
in and jn are coproduct injections, and the dotted arrows on the bottom 
are constructed, by universality of the coproducts, so as to make the 
indicated squares commute (for all n). A routine large diagram will 
prove that f' is a morphism of monoids; by construction f' 0 (!a = j, so 
(!a is indeed universal and therefore IInan is a free monoid on a, as asserted 
in the theorem. 

The point of this quite formal proof is that it contains many separate 
instances of the same sort of formality. If B = <Set, x, 1, ... ), this is the 
standard construction (Corollary II. 7. 2) of the free monoid on the set a; 
in this case an is the set of words of length n spelled in letters of a, and 
the free monoid is the disjoint union IInan, with product given by com
position. If B = <K-Mod, Q9K' K, ... ), this is the standard construction 
(e.g., Mac Lane [1963b], p. 179) of the tensor algebra EBnAn on the 
K -module A. The same construction also gives "differential graded" 
tensor algebras, free topological monoids, etc. 

Exercises 

1. Prove: if B has finite products, so does MonB . 

2. (Coherence for monoids.) Interpret the proposition about the canonical maps 
IIw for a monoid < c, II, 1] > as the following coherence theorem. Consider a 
graph with vertices the binary words wand with arrows v---+w those arrows 
Vc---+Wc which are 1, II, 1], instances O((u~, v~, w~) of 0(, instances of A and of Q, and 
all D-products of such arrows. Prove that any two paths w---+( -) in this graph 
have equal composites, but show that this would not hold when the ending 
is not (-) as above but the word ( - ) 0 ( -) of length 2. 
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3. (a) (Substitution of words in a word.) Each word U of length n determines a 
functoruw: W'- W. If VI' ... , v.arenwords, show that the word UW(vI , ... , v.) 
has length the sum ofthe lengths of the Vi' and that it corresponds (intutively) 
to substituting VI' ... , v., in order, for the n blanks (-) in the word u. 

(b) If W = UW(Vl, .. . , v,,), show that the canonical maps /-lw of Proposition I 
have the property that the composite 

We = UW(v1c' ... , vnc) J.LW(/lvl···Jlvn), uc~ C 

is equal to Il_: We-C' Show that this result includes Proposition 1. 

4. Actions 

Again, we work in a fixed monoidal category B. A left action of a monoid 
<c, J1, Yf> on an object a E B is an arrow v: cOa~a of B such that the 
diagram 

cO(cOa)~(cOc)Oa~cOa~eOa 

110V Iv lA (1) 

cOa ------'--------+, a a 

commutes. For example, c acts on itself by the map J1: cOc~c; this 
is the "left regular representation" of c. A morphism f: v~v' of left 
actions of c is an arrow f:a~a' in B such that v'(10f)=fv: cOa~a'. 
With these morphisms as arrows, the left actions v for a fixed monoid c 
form a category eLaet. These definitions clearly include familiar cases: 
an action of an ordinary monoid on a set, a left R-module regarded as 
an action of the ring R on an abelian group, and similarly with rings 
replaced by K-algebras, or D G-algebras (D G = differential graded). 

There is a forgetful functor cLaet ~ B, defined by <v: c 0 a~ a> j---?- a; 
it has a left adjoint which sends each b E B to cOb, with action of c on 
cOb defined by the composite 

cO(cOb)~ (cOc)Ob~ cOb. 

Right actions (J: bOc~b of c are defined similarly, and commuting 
left-and-right actions of c on a may be defined to parallel the usual 
bimodules (left and right R-modules). 

Exercises 

1. (Dubuc [1970], Prop II. 1.1.) Let <T, 1'/, Il) be a monad in a category X. Show 
that the monad T has an action on an endofunctor S: X-X if and only if S 
can be lifted to the category X T of T-algebras as S = GTS', and show that these 
actions correspond one-one to the liftings S' : X _ XT. 

2. Let a small strict monoidal category B (as a monoid in <Cat, x, ... ») act on a 
category C. Define then the action of a monoid in B on an object in C, and use 
this to extend the result of Exercise 1 to the case of functors S: A - X from any 
category A. 
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3. Describe the actions of a K-coalgebra. 
4. If B has coproducts preserved by all functors aD -, show that cLaet has co

products preserved by the forgetful functor to B. 
5. If the base category B has finite products, so does the category cLaet, in such 

a way that the projections a x a' ----> a, a' of the product (in B) become morphisms 
of actions (in cLact). 

6. (Generalization of the tensor product of a right module by a left module.) If B 
has coequalizers, c is a monoid, (J: bDc---->b a right action, and v: cDa---->a a 
left action, construct a "tensor product" bOca E B as the coequalizer of two 
maps bD(cDa)--+bDa given by the actions, and prove Dc a functor 
Dc: Ractc x cLact--+B. 

7. (Coherence result for an action.) Given a left action v: cDa---->a of a monoid c, 
describe the properties of canonical maps v~: wc .• --+a, where w is any word of 
length ~ 1 with "last argument" (-) (define what this means), while we,. results 
from substituting a for the last argument and c for all the other arguments in w. 

5. The Simplicial Category 

We now describe a particular strict monoidal category .1 which plays a 
central role in topology and also provides a "universal" monoid. 

This category .1 has as objects all finite ordinal numbers 
n = {O, 1, ... , n - 1} and as arrows I: n-n' all (weakly) monotone 
functions; that is, all functions I such that 0 ~ i ~j < n implies Ii ~ I j . 

In this category, the ordinal number 0 is initial, while the number 1 is 
terminal. Ordinal addition is a bifunctor +: .1 x .1-.1, defined on 
ordinals n, m as the usual (ordered) sum n + m and on arrows I: n-n', 
g:m-m' as 

(f + g)(i) = Ii, i = 0, ... , n - 1 

=n'+g(i-n), i=n, ... ,n+m-1. 

(Thus the function I + g is just I and g placed "side by side".) Moreover, 
<.1, +,0) is a strict monoidal category. Since 1 is terminal in .1, there 
are unique arrows J1. : 2-1, I] : 0-1; for the same reason, these arrows 
form a monoid (1, J1., 1]) in J. It is "universal" in the following sense. 

Proposition 1. Given a monoid <c, J1.', 1]') in a strict monoidal category 
<B, D, e), there is a unique morphism F: <.1, +, O)-<B, D, e) such that 
F 1 = c, F J1. = J1.' and FI] = 1]', as in the figure 

0~1~2=1+1 
, , 
: 
I 

, I I 
.. , .. /l' oj. 

e ~ c +-~ ---''--- cDc, 

<.1, +,0) 

(1) 

<B, D, e). 
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The proof depends on showing that the arrows of A are exactly the 
iterated formal products (for the binary product fl). In detail, write fl(k) 
for the unique arrow fl(k): k-- 1. Thus fl(O) = 1], fl(1) is the identity, 
fl(2) = fl: 2-- 1, 

fl(3) = fl(fl + 1) = fl(l + fl): 3-- 1, 

and so on. Since 1 is terminal in A, 

fl(n)(fl(k tl + ... + fl(k n )) = fl(k, + ... +kn ) • (2) 

(This is the "general associative law".) On the other hand, iff: m --> n is 
any arrow of A, let mi be the (ordinal) number of elements in the subset 
f -1 i of m; then 

n-1 

f = fl(mo) + fl(m tl + ... + fl(mn - tl, L: mi = m 
i=O 

(3) 

(note that some of the mi may be zero). This shows that any f is a sum 
of iterated products constructed from fl and 1]. 

Now consider the functor F required in the Proposition. Since 
F(l) = c and F is to be a morphism of monoidal categories, F must have 
Fn = C<n); this determines the object function of F. Next, F fl = fl' and 
F1] = 1]' imply that F fl(n) = fl,(n); the representation (3) of any arrow f of 
A then determines the arrow function F f of F. Thus F is unique. It 
remains only to show that the object and arrow functions so defined 
give a functor. But in A, composites are given by (2), which corresponds 
exactly to the general associative law valid in B. q.e.d. 

This universal property gives a complete characterization of A. Its 
objects form the free monoid generated (under +) by 1; its arrows are 
generated by additions and compositions from fl: 2 __ 1 and 1]: 0-- 1, 
using the associative law for fl and the left and right unit laws for 1] and fl. 

There is another description of the arrows of A, which starts by 
observing that a monotlilne function f: n--n' can be factored as f = go h 
where h : n-- nil is surjective and monotone, g : nil __ n' is monotone and 
injective. Moreover, this injective function g will be determined just by 
giving the image of g, which is a subset of nil ordinals in the set n'. In 
particular, there are exactly n + 1 injective monotone functions n-- n + 1; 
namely, for i = 0, ... , n, the injective monotone function 67: n--n + 1 
whose image omits i, thus 

67:n--n+1, 6i{0, ... ,n-1}={0, ... ,[, ... ,n}, (4) 

where i on the right indicates that i is to be omitted. We display all 
these arrows (omitting the superscripts n) as 
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On the other hand, a monotone h : n~ n" which is surjective is determined 
by the subset VI hj = hU + 1), 0 ~j~ n - 2} of those n - n" argumentsj at 
which h does not increase. In particular, there are n such arrows n + 1 ~ n; 
for i = 0, ... , n - 1 they are 

a?: n + l~n, a?(i) = a?(i + 1). (6) 

We display them (without superscripts) as 

O 1 0"0 2~3+----4 +---- ~ +---- -<E----- .•. , 
0"1 +---- O"o' ... 'O"n_l:n+1~n. (7) 

These arrows may also be expressed in terms of 11 and 1]. Indeed 
bo : O~ 1 is 1], 0"0 : 2~ 1 is 11, and the definitions show that 

b?=li+1]+l n - i :n~n+1, i=O, ... ,n, (8) 

0"?=li+Il+1n_i_l:n+1~n, i=0, ... ,n-1. (9) 

Lemma. In A, any arrow f: n~n' has a unique representation 

(10) 

where the ordinal numbers hand k satisfy n - h + k = n', while the strings 
of subscripts i and j satisfy 

n' > il > ... > ik :;;: 0, 0 ~jl < ... <jh < n -1. 

Proof. By induction on i E n, any monotone f is determined by its 
image, a subset of n', and by the set of those j E n at which it does not 
increase [fU) = fU + 1)]. Putting il , •.. , ik , in reverse order, for those 
elements of n' not in the image and jl' ... ,jh, in order, for the elements j 
of n where f does not increase, it follows that the functions on both 
sides of (10) are equal. 

In particular, the composite of any two b's or O"'S may be put into 
the canonical form (10). This yields the following list of three kinds of 
identities on these binary composities 

bibj=bj+lbi .<. 1=) (11) 

O"jO"i = aiO"j+l i~j, (12) 

O"jbi = biO"j-l, 
kj, ) 

= 1, i= j, i = j + 1 (13) 

=bi- 1 0"j, i>j+1. 

These identities may be verified directly. For example, (11) asserts that 
b?+lb'j = b}: i b? : n~n + 2 for any j ~ n; one checks that each side of this 
equation is a monotone injection, and that both sides have the same 
image. 
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Proposition 2. The category ,1, with objects all finite ordinals, is 
generated by the arrows bi:n~n+1 and a'i:n+1~n subject to the 
relations (11), (12), and (13). 

Proof. These relations suffice to put any composite of b'S and a's 
into the unique form (10) of the Lemma. 

The category ,1 has a direct geometric interpretation by affine 
simplices, which give a functor 

(14) 

representing ,1 as a subcategory of Top. On objects n of ,1, take ,10 to 
be the empty topological space, and ,1n+1 to be the "standard" n
dimensional affine simplex - the subspace of Euclidean Rn+1 consisting 
of the following points 

,1n+1 = {p= (to, ... , tn)lto ~ 0, ... , tn~ 0, 2: ti = 1}; 

here the non-negative real numbers to, ... , tn are the barycentric co
ordinatesofthepointpE.1n+1. Onarrowsf: n+ l~m+ 1, A J:.1n+1~.1m+1 
is the (affine) map defined by 

.1J(to, .. ·,tn)=(sO, .. ·,sm), Sj= I ti · 
Ji=j 

Note carefully that (in this notation) .1n+1 has dimension nand n+ 1 
vertices, while ,1 J is the (unique) affine map which sends the vertex i of 
.1n+1 to the vertex fi of ,1m+1; for example, .1 b,: .1n+1 ~.1n+2 is that 
affine map which sends the n-simplex .1n+1 to that n-dimensional face 
of .1n+2 which is opposite vertex number i. Geometrically, the "boundary" 
of a tetrahedron .1 4 consists of the four triangular faces which are the 
images of .13 under 15o, 15 1 ,152 , and 153 , Using standard properties of affine 
geometry (Mac Lane-Birkhoff [1967J, Chap. 12) one may verify (exer
cise) that A as defined is indeed a functor ,1~Top. 

Note that this functor A sends the ordinal number n + 1 to the 
n-dimensional simplex: ,1 is a subcategory of Top, but the geometric 
dimension is one less than the arithmetic one used in ,1. 

By ,1 + we denote the full subcategory of ,1 with objects all the 
positive ordinals {l, 2, 3, ... } (omit only 0). Topologists use this category, 
call it ,1, and rewrite its objects (using the geometric dimension) as 
{O, 1,2, ... }. Here we stick to our ,1, which contains the real 0, an object 
which is necessary if all face and degeneracy operations are to be ex
pressed, as in (3), in terms of binary product J1 and unit Yf. 

Contravariant functors on the category ,1 + to Set are traditionally 
known as "simplicial sets". 

Thus, a simplicial object S in a category X is defined to be a functor 
S: (,1+)OP~X, and a morphism S~S' of simplicial objects is a natural 
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transformation (): S---'->S'. If we write this functor S as 

n+1H-Sn, (jjH-d j, l1 jH-Sj , 

so that Sn is in geometric dimension n, then a simplicial object in X 
may be described in the traditional (and more complicated) way as a 
list of So, Sl' ... , Sn, ... of objects of X (Sn: the object of n-simplices) 
with arrows ("face operators") dj : Sn - Sn -1 for i = 0, ... , n, and n > 0, 
and arrows ("degeneracies") Sj:Sn-Sn+1 for i=O, ... ,n,n~O which 
satisfy the identities dual to (11), (12), and (13). 

djdj+1 =dA, .<. 
I=J (11 OP) 

Sj+1 Sj=SjSj i~j (12°P) 

djsj = Sj-1 d j , 

i<j ! 
= 1, i=j,j+1, (13°P) 

= sjdi - 1 i>j+1. 

For example, if Y is an affine simplex with its vertices linearly ordered, 
then d j Y is the "i-th face" obtained by omitting vertex i while Sj Y is the 
degenerate simplex with vertex i doubled. The rules above then follow. 

An augmented simplicial object in X is a functor S': JOp_ X. A 
simplicial object S may be augmented (i.e., extended to a functor S') by 
finding one object S_lEX and one arrow B:So-S_ 1 of X with 
Bdo = Bd1 : Sl - S -1; thus S'((jo) = B. Such an arrow B is (traditionally) an 
augmentation of S. 

A simplicial object S in an abelian category A (e.g. A = Ab) gives 
homology, via a suitable "boundary" operation. Specifically construct 
from S the arrows 

(15) 

where the boundary homomorphism 0: Sn+1-Sn is the arrow defined as 
the alternating sum o=do-d1 + ... +(_1)n+1dn+1. The relations (l1 0P) 

on the faces dj imply that 00 = O. (This means that the diagram (15) is 
a chain complex in A). Since 00 = 0, 

1m {o: Sn+1-Sn} ~ Ker{o: Sn-Sn_d 

and we can take the quotient object (see Chap. VIII) to be the n-th 
homology of S: 

and 
Ho(S) = So/Im{o : S, -> So} 

Hn(S) = Ker{o : Sn -> Sn-d/1m{o :Sn+' -> Sn}, n > O. 

Each augmentation of the functor S yields an augmentation of this 
chain complex; that is, an object S-l of A and an arrow B: SO-S-l 
with BO = 0, hence an arrow Ho(S)- S -1' 

The singular homology of a topological space is a classical example. 
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Consider the composite functor 

AOPxTop hom(Ll-" .. ) ISet~Ab 

where A : A -+ Top is the functor described in (14), while Z assigns to 
each set the free abelian group generated by the elements of that set. 
This composite determines for each topological space X an augmented 
simplicial object S = S(X) in Ab. Each arrow hE hom(An+l' X) is a 
singular n-simplex in X, so Sn+l is the free abelian group generated by 
all such simplices (all finite linear combinations with integral coefficients 
of singular n-simplices). The associated chain complex is the singular 
chain complex of the space X, with its homology the singular homology 
(see e.g. Mac Lane [1963J Chap. II). 

We may summarize the protean aspects of A thus: 
(a) A is the category of finite ordinal numbers, hence a full sub

category of the category Ord of all (linearly) ordered sets. 
(b) A is a full subcategory of Cat, if we interpret each ordinal n as 

a category (finite preorder); the objects of A are the categories 0, 1,2,3, .... 
(c) A is the strict monoidal category containing the universal monoid, 

its arrows are all "iterated multiplications" l1(mo) + ... + l1(m" - 1). 

(d) A is a subcategory of Top, consisting of the standard ordered 
simplices (one for each dimension), with order preserving affine mappings. 

The simplicial objects defined via A provide a means of treating many 
questions in algebraic topology, especially those dealing with homology, 
C W-complexes, Eilenberg-Mac Lane spaces, and cohomology operations. 
This line of development is presented in May [1967J, Lamotke [1968J, 
and Gabriel-Zisman [1967J, the last presentation making full use of 
categorical techniques. 

Exercises 

1. In ,1, show that an arrow f : n-+ n' is monic (or epi) if and only if the function f 
is injective (resp., surjective). 

2. (a) Show that the subcategory Lfmon C ,1 of all monics in ,1 is generated by the 
arrows 8;, subject to the relations (11). 

(b) Show that every arrow in Lf mon is uniquely an iterated sum of Yf : 0-+ 1 and 
id: 1-+ 1. 

3. (a) Show that the subcategory Lf epi C ,1 of all epis in ,1 is generated by the arrows 
(Ji subject to the relations (12). Show that Lf epi is a strict monoidal category. 

(b) A semigroup <c, fJ,) in a strict monoidal category <C, 0, e) is an object c 
with an arrow fJ,: cOc-+c which is associative, in that fJ,(fJ, Ole) = fJ,(leOfJ,). 
Show that 2-+ 1 is a universal semigroup in Lfep;. 

4. Show that the category of simplicial objects in Set is small-complete. 

6. Monads and Homology 

Monads and their duals, the comonads, play via A a central role in 
homological algebra, as we may now briefly indicate. Let L = <L, £, c5) 
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be a comonad in a category A; in other words L: A ---+ A is an endo-
functor, and the natural transformations e: L ....... IdA' (j : L ....... [} satisfy 

(jL·(j=L(j·(j:L ....... L3, eL·(j=lL =Le·(j:L ....... L. (1) 

These are the duals to the definition of a monad in (2) of § VI. 1. This 
amounts to saying that (L, e,J) is a comonoid in the strict monoidal 
category AA of endofunctors of A, where the functor D (multiplication) 
is composition. 

Now ,1 contains the universal monoid (1,0---+ 1,1 + 1---+ 1), so JOp 
contains the universal comonoid (1, 1---+0, 1---+ 1 + 1). Thus, by the dual 
of Theorem 5.1, any comonoid in a strict monoidal category (B, D, e) 
determines a unique morphism JOp ---+ B of monoidal categories, carrying 
the universal comonoid to the given one. This morphism JOP---+B is an 
augmented simplicial object in B (and (,1 + )OP ---+ B is a simplicial object). 

In particular, each comonad (L, e, (j) in A, as a comonoid in the 
functor category AA, determines an augmented simplicial object (functor) 
JOP---+AA, with 

(1, ° -l---d+l) 

I I I 0 I 
(L, Id~L-----+LoL). 

Thus n f-+ Ln = L 0 ••• 0 L, s is the augmentation, (j = So : L---+ L2 is the 
degeneracy arrow, and the faces and degeneracies in higher dimensions 
are given by the duals of the equations (8) and (9) of § 5 (which express (j 
and (J in terms of JJ. and 1'/): 

di = EsLn- i : Ln+1 ....... Ln, i= 0, ... , n, 

si = E (j Ln - i -1 : Ln ....... Ln + 1 , i = 0, ... , n - 1 . 

The whole simplicial object has the form 

S L {L~L2-L3 . mp = ~ t=== ... , 

(2) 

(3) 

Now suppose that A is an Ab-category (e.g., an abelian category, or 
that we have applied to Smp L a functor to some Ab-category). The 
simplicial identities on the face operations di then show that the alter
nating sums 

a = do - d1 + d2 - ... + (-ltdn: Ln+1a---+Lna 

satisfy aa = 0, so are the boundary morphisms of a chain complex 
called L*a, 

with an augmentation Sa: La---+a. This complex is a standard "resolution" 
of a E A in the sense of homological algebra, and so may be used to 
construct derived functors; in particular, various cohomology functors. 
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The cohomology of groups provides an example. 
The forgetful functor U: Rng-+ MOD (forget the addition) has (by 

the adjoint functor theorem) a left adjoint Z, sending each monoid M 
to the monoid ring ZM. In particular, if M = II is a (multiplicative) 
group, ZII is the group ring: Its additive group is the free abeiian group 
generated by the elements x E II, and its multiplication is the unique 
bilinear map with <x,y)-+xy, the product in II, for all X,YEII. Let 
II-Mod denote the category of left II-modules A. 

The forgetful functor U: II-Mod-+Ab has a left adjoint Z(II)® -
which assigns to each (additive) abelian group B the left Z(II)-module 
Z(II)®B. The unit and co unit of this adjunction are the maps 

YJ:B-+Z(II)®B, bf->1®b, bEB, 

8:Z(II)®UA-+A, x®al-?xa, aEA. 

The composite II -Mod-+ Ab-+ II-Mod determines a comonad <L, 8, 6) 
in the category II-Mod, where L: II-Mod-+II-Mod is the functor 
L = Z(II) ® - (literally, Z(II) ® U - ), 8: L-'-> Id is as above, and 6: L-'-> L2 
is the natural transformation 6 = Z(II)®YJU given explicitly for each 
II-module A as 

6A : LA = Z(II)®A-+Z(II)®Z(II)®A = L2 A 

x®al-?x®l®a, xEII,aEA, 

where 1 is the identity element of the group II. Take the II-module 
A = Z = the abelian group Z regarded as a trivial II-module (x· m = m 
for all x E II and all integers m). Then Z(II)®Z:;:;: Z(II), and the simplicial 
object (SmpL)Z becomes 

where Z(II)(n) denotes the n-fold tensor product An = Z(II)®··· ® Z(II). 
Explicitly, An + I is the free abelian group with generators all elements 

X®X1 ® ···®xn =x®[xll···lxnJ 

(the alternative notation on the right is traditional) for all elements 
x, Xi E II. The II-module structure is determined (y E II) by 

<y, x [xII·· ·1···1 xnJ> I-? yx[xi 1···1 xnJ . 

The face operators di : Z(II)(n+ll-+Z(II)(nl, as determined (2) by 8, are 

di(x[xll···lxnJ) = XXI [x2 1···1 xnJ, i = 0, 

=x[xII···lxiXi+II···lxnJ,O<i<n, 

=x[xll···lxn_IJ, i=n. 
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The degeneracy operators Si: Z(II)(n)-+ Z(II)(n + 1), as determined by b 
according to (3), are the II-module maps 

Since II-Mod is already an abelian category, this (augmented) simplicial 
object determines an augmented chain complex in II-Mod of the form 

This is a "free resolution" of the trivial II-module Z; it is, in fact, the 
standard resolution used to define the homology and cohomology of 
the group II. (Mac Lane [1963J, Theorem IV. 5.1). 

The cohomology of II is obtained from the resolution as follows. Take a 
II -module A and the corresponding functor homlI( -, A): (II -Mod)OP-+ Ab, 
where homlI( -, -) denotes the abelian group of II-module morphisms. 
Apply this functor to the chain complex above (dropping the augmentation 
Z(II)-+ Z) to get a "cochain" complex 

with co boundary b = homlI(8, A). The cohomology groups of this 
complex are exactly the cohomology groups Hn(II, A) of the group II 
with coefficients in A. The formulas for di above give b explicitly. Thus, 
for example, H°(II,A)={alaEA and xa=a for all x}; H1(II,A) is the 
group of "crossed homomorphisms" II -+ A modulo the principal 
crossed homomorphisms, and H2(II, A) is the group of all group ex
tensions of the additive group A by the multiplicative group II, with 
operations (conjugation) given by the II-module structure of A (Mac Lane 
[1963a], IV.l, IV.3). 

The higher cohomology groups of groups appear in obstruction 
problems (Mac Lane [1963a], IV.S), in the theory of the K(II, 1) spaces 
in topology (Mac Lane [1963a], IV.ll), and class field theory (Cassels
Frohlich [1967]). 

The homology of II with coefficients in a right-II-module C is found 
in a similar way: To the standard resolutions apply not the functor 
homlI ( -, A) but the (covariant, additive) functor C®lI - : II-Mod-+Ab. 
The homology of the resulting chain complex in Ab is the homology 
Hn(II, C) of II with coefficients in C. For example (Mac Lane [1963a], 
Prop. X.5.l) 

Ho(II, Z) = Z, Hl (II, Z) = II/[II, II] ; 

the latter is the factor commutator group of II. 
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7. Closed Categories 

The ideas broached in this chapter have extensive further developments 
which we shall indicate briefly. First, a monoidal category B is said to 
be symmetric when it is equipped with isomorphisms 

Ya.b: aDb~ bDa, 

natural in a, b E B, such that the diagrams 

Ya.b o Yb.a=l, Qb=AboYb.e:bDe~b, 

aD(bDc)~ (aDb)Dc~ cD(aDb) 

11DY 1 a 

aD(cDb)~ (aDc)Db~ (cDa)Db 

(1) 

(2) 

(3) 

all commute. This selection of conditions suffices (Mac Lane [1963b]) 
to prove that "all" such diagrams commute, much as in the coherence 
theorem of § 2 above. Monoidal categories <B, D, e, ... ), where 0 is 
the categorical product or coproduct, are automatically symmetric 
when Y : a x b ~ b x a is taken to be the (canonical) isomorphism which 
commutes with the projections. These ideas are elaborated in Chapter XI. 

A closed category V is a symmetric, monoidal category in which 
each functor - Db: V ----+ V has a specified right adjoint ( )b: V ----+ V. For 
example, <Ab, ®, - ) is closed; the adjoint is given for abelian groups A 
and B as AB = hom(B, A), the abelian group of all morphisms B----+ A. 
Similarly, <K-Mod, ®K' ... ) is closed for any commutative ring K. The 
cartesian closed categories, such as Set and Cat, are also closed categories 
in this sense. In all these cases, the functor ( )b: V ----+ V is a sort of "internal 
hom functor". 

An Ab-category (and in particular, an abelian category) has already 
been described (§ 1.8) as a category with "hom-sets" in Ab. Similarly, 
one can describe "categories" with "hom-sets" in any monoidal category 
B: AsetRof"objects" r, s, t; to each pair ofobjectsr, san objectR(r, s) E B; 
to each ordered triple an arrow (composition!) 

R(s, t)DR(r, s)----+R(r, t) 

in B; to each object r, an arrow e----+R(r, r) in B (unit!). These data are 
subject to the usual associativity and unit axioms on composition. The 
result is called a B-category, a B-based category, or a category relative 
to B - and often, replacing the letter B by V, a V-category. But observe 
that this structure R is not yet a category in the ordinary sense; it has 
only hom-objects R(r, s) and not hom-sets. These can be obtained only 
applying to the hom-objects R(r, s) a suitable functor U: B----+Set, say 
U = B(e, -), to get hom-sets U R(r, s). When there are such hom-sets, 
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one says that the ordinary category U R has been "enriched" by the 
objects R(r, s) E B. 

Practically all the basic theory of categories applies to enriched cat
egories, provided that the basic category B is not just monoidal, but 
closed. This development (for a presentation, see Dubuc [1970] and Kelly 
[1982] and references there) may provide a powerful method of treating at 
one time the cases of ordinary categories, additive categories based on 
closed categories of chain complexes (for relative homological algebra), 
and categories based on a suitable cartesian closed variant of Top. 

8. Compactly Generated Spaces 

A convenient category of topological spaces should be cartesian closed. 
The familiar adjunction which makes Set cartesian closed, 

Set (X x Y,Z) ~Set(X, ZY), ZY =Set(Y, Z), (1) 

which sends each f: X x Y ---+ Z to .r: X ---+ ZY, with (f~ x)y = f(x, y), 
may be considered also for topological spaces X, Y, and Z. We obtain a 
topological space Cop(Y, Z) by imposing on the set Top(Y, Z) of all 
continuous maps Y ---+Z the compact open topology: A subbase for the 
open sets consists of the sets N(C, U) where C is any compact subset of 
Y, U any open subset of Z, and N(C, U) consists of all those continuous 
h: Y ---+Z for which hC cU. A standard argument (which we will not 
need) shows that the basic adjunction f 1--+ f~ of (1) restricts to give an 
adjunction 

Top(X x Y, Z) ~ Top(X, Cop( Y, Z)), (2) 

provided Y is locally compact Hausdorff. 
There have been many attempts to repair this situation for more 

general spaces Y by using a variety of other topologies on the function 
space or other topologies on the product space. The best device is to so 
restrict the category of topological spaces that the (categorical) product 
X 1--+ X X Y (with its intrinsic topology as a product) does always have 
a right adjoint (which will be a function space with a uniquely determined 
topology). 

A topological space X is compactly generated when each subset A C X 
which intersects every compact subset C of X in a closed set is itself 
closed. By CGHaus we denote the category with objects all compactly 
generated Hausdorff spaces (= Kelley spaces), with arrows all continuous 
functions X ---+ X'. 

Proposition 1. CGHaus is a full coreflective subcategory of Haus. 
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It is a full subcategory by definition. To each Hausdorff space Y 
we construct a compactly generated space K Y with the same points as 
Y (the "Kelleyfication" of Y) by requiring that A C Y be closed in K Y 
if and only if An C is closed in Y for all compact sets C C Y. Thus all 
closed sets of Yare closed in K Y, K Y is Hausdorff, and the identity 
function By : K Y ---> Y is continuous. Any continuous map f : X ---> Y from 
a compactly generated Hausdorff space X factors as f = B r· 

(3) 

wh~re r : X ---> K Y is the same function (as f) and is continuous because 
X is compactly generated. This shows that B is universal from K to Y, 
so is the co unit of an adjunction which makes CGHaus coreflective in 
Hans, as desired. 

The description of K Y means also (see Fig. (3)) that a function 
g : Y ---> Z to a topological space Z is continuous, on K Yas gB : K Y ---> Z, 
if and only if the original g is continuous on all compact subsets of Y. 
Observe also that metrizable spaces and locally compact Hausdorff 
spaces are compactly generated. 

Proposition 2. CGHaus is (small) complete and cocomplete. 

Proof. The category Haus is complete (Proposition V.9.2) and a right 
adjoint such as K preserves limits. Hence CGHaus is complete. In 
particular, the product (written D) of two spaces X and Yin CGHans is 
obtained from their "ordinary" product X x Yin Haus as 

XD Y=K(X x Y). (4) 

In other words, the D-product of Kelley spaces is the product of the 
underlying sets, with the Kelleyfication of the usual product topology. 

Cocompleteness follows readily. Since any coproduct in Haus 
(= disjoint union) of compactly generated spaces is also compactly 
generated, it will suffice to construct the coequalizer of a parallel pair f, 
g: Y::::tX in CGHaus. Take the coequalizer p : X --->Q in Haus (Prop. V.9.2) 
and form KQ: 

Since B: KQ--->Q is universal, there is a unique continuous p': X--->KQ 
with BP' = P and p'f = p' g. Since p' is also a map in Haus, and p is the 
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coequalizer off and g there, there is a continuous t: Q~KQ with p' = tp. 
Then p = Bp' = Btp, so et = 1 and etB = B. But B is monic (in Haus), so tf = 1, 
and B is an isomorphism: The coequalizer in Haus lies in CGHaus. 

For example, if A is a subset of a compactly generated Hausdorff 
space X, then we get an identification space X/fA as a coequalizer in 
CGHaus (collapse all of A to a point in CGHaus). It is the largest Haus
dorff quotient of the space X/A (collapsed in Top); its topology is auto
matically compactly generated. 

Theorem 3. CGHaus is a cartesian closed category. 

For two compactly generated Hausdorff spaces X and Y define 

XY=K(Cop(Y,X)), (5) 

the function space with the Kelleyfication of the compact-open topology. 
Define e: XYO Y ~X by evaluation; <J,Y)'r-'>-fy. We claim that e is 
continuous; it suffices to prove that e: X Y x Y ~ X is continuous on 
compact sets. Since any compact subset of the product space is contained 
in the product of its projections, it suffices to show that e is continuous on 
any set of the form D x C, where D is compact in Cop( Y, X) and Cis 
compact in Y. Consider <J,Y)ED x C, and let U be an open set of X 
containingfy. Since f: Y ~ X is continuous, there exists a neighborhood 
M of yin C whose closure satisfiesf Me U. But N(M, U) as given be
fore (2) is a set of the subbase for Cop( Y, X) and [N(M, U) n D] x Mis 
open in D x C, contains <f,y), and is mapped by e into U. This proves e 
continuous. 

It remains to show e universal from - D ¥to X. So consider any map 
h: ZD Y ~X in CGHaus. Then we construct k: Z~Set (Y,X) as k = h~; 
that is, so that (kz)y = h(z,y) for all ZEZ and yE Y. A direct proof shows 
that kz: Y~X is continuous; thus kZEXY. Next, we prove that z'r-'>-kz 
is continuous Z~XY. Since Z is compactly generated, it is enough to 
show Z~Cop(Y,X) continuous. So let N(C, U) be one of the open sets 
for the subbase of the compact-open topology, and suppose that 
k Z E N( C, U); thus (h{ z} x C) c U. Since U is open, C compact, and h 
continuous, there is a neighborhood Vof z such that h(V x C) c U. This 
implies that k V C N (C, U). Therefore k is continuous. 

We now have the commutative diagram 

XYOY~X 

kOl r /. 
ZDY 

by the adjunction in Set, there is at most one k with e (kO 1) = h, and we 
have just shown this k continuous. Therefore e is universal, and defines 
the desired adjunction 

CGHaus(ZD Y,X) ~ CGHaus(Z,XY). (6) 
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Since 0 designates the product in CGHaus, this category is cartesian 
closed. 

This adjunction (6) is a bijection of sets. One also wishes the corre
sponding homeomorphism 

X ZOY ~(XY)Z 

of function spaces. This follows from the adjunction (6) for categorical 
reasons (Ex. IV.6.3). 

This summarizes the basic properties of the category CGHaus. More 
extensive work (Steenrod [1967] and elsewhere) indicates that it is the 
convenient category for topological studies; Dubuc and Porta [1971] 
show that it is appropriate for topological algebra (extensions of the 
Gelfand duality). All told, this suggests that in Top we have been studying 
the wrong mathematical objects. 

The right ones are the spaces in CGHaus. 

Exercises 

1. If Yis Hausdorff, show that K Yis the colimit (in Haus) of the compact subs paces 
of Y, ordered by inclusion. 

2. Prove that a closed (or open) subset of a space X E CGHaus with the usual 
subspace topology is itself in CGHaus. 

3. Prove that the inclusion CGHaus-Haus creates colimits. 
4. If Z is locally compact Hausdorff and X E CGHaus, prove that Z D X = Z x X. 
5. Prove that CGHaus is equivalent to the following category: Objects, all Hausdorff 

spaces; arrows J: X - Yall functions continuous on compact sets. 

9. Loops and Suspensions 

For homotopy theory, we consider the category CGHaus* of pointed 
compactly generated Hausdorff spaces - with objects the spaces 
XECGHaus with a selected base point, *x, and with arrows the con
tinuous maps preserving the base point. Let X(*lY be the subspace of X Y 

consisting of all base-point preserving maps. Since it is a closed subspace, 
it is compactly generated. It has a natural base-point (the continuous 
function sending all of Y to * x). In the standard adjunction f f-+ P, 

CGHaus (ZO Y,X) ~ CGHaus (Z,XY) 

u 

CGHaus*(?, X) 
u 

~ CGHaus*(Z,X(*lY), 

consider on the right the indicated subset: Those f~ : Z __ X(*lY which 
preserve base-point. Thus (f~z)*y=*x and (f~*z)Y=*x; that is, for all 
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ZEZ and yE Y 

f(z,*)=*=f(*,y). 

These are exactly the continuous functions f which collapse the "wedge" 
Z v Y = (Z 0 *) u (* 0 Y) to a point. The corresponding identification 
space is called the smash product 

(ZO Y)//[(ZD*)u(*D Y)] = Z 1\ Y 

(or sometimes written as Z * Y). This gives an adjunction 

CGHaus*(Z 1\ Y,X) ~ CGHaus*(Z,X(*lY). (1) 

The circle S! may be obtained from the closed unit interval 
1= {tiO ~ t ~ 1} as the identification space S! = I//{O, 1}; we regard it as a 
pointed space with base point ° = + 1. The functors 1: (reduced suspension) 
and Q (loop space) on CGHaus* to CGHaus* are defined as 

1:X=X I\S!, QX=X(*)Sl; 

by the bijection above 1: : CGHaus* --+ CGHaus* has Q as right adjoint. 
The points of Q X are the loops in X at the base point; that is, the con
tinuous mapsf: I--+X withf(O) = f(1) = *x. On the other hand,,1:X is the 
cylinder X x I with top X x { + 1}, bottom X x {OJ, and generator * x I 
all collapsed to a single point, the (new) base point; equivalently it is the 
double cone over X (X x I with top and bottom collapsed) and with the 
generator over * collapsed, as in the figure 

For example, 1:S! = S! 1\ S! is the two sphere S2, 1:ns! the (n + 1)-sphere. 
The unit X --+Q1:X of the adjunction sends x E X to the function 
<x, - > : I --+1:X; it has a vivid geometric picture; it sends each point x E X 
to that generator of the cone which passes through x; this generator is a 
loop from north pole to south pole = north pole, hence a point of Q1:X. 

By iteration, 1:n is the left adjoint of Qn : CGHaus* --+CGHaus*; this 
adjunction has a unit X --+Qn 1:n X which can be written as a composite 

X --+Q1:X ~ QQ1:1:X --+ ... 

and Qn, as a right adjoint, preserves products: Qn(XOY)~QnXOQny. 
These and similar facts can be obtained either by direct topological 
arguments, or by application of the properties of adjunctions. 
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Exercises 

1. Construct a left adjoint for Set.(S, -): Set. --+Set •. 
2. Show that the smash product in CGHaus. is commutative and associative up to 

natural isomorphisms which make CGHaus. a symmetric monoidal category 
with unit the two-point space. 

3. In Top. show that - x Y does not have a right adjoint (because it does not 
preserve coproducts). 

4. The Path space functor P:CGHaus--+CGHaus has PX=X(·lI, where 0 is 
taken as the base point of the interval/. For each pathJ E P X,f~ J(I) defines a 
natural transformation n : P ....... Id. Show that Q can be obtained as the pullback 
ofa diagram P ....... Id-. (Classically, QX is the "fibre" ofnx:PX--+X). 

5. Describe the counit of the 1:-Q adjunction. 

Notes. 

Monoidal categories were first explicitly formulated by Benabou [1963, 1964], 
who called them "categories avec mUltiplication" and by Mac Lane [1963b], who 
called them "categories with multiplication"; the renaming is due to Eilenberg. 
Coherence theorems were initiated by Stasheff in a 1963 treatment of higher 
homotopies, by Mac Lane [1963b], and by Epstein [1966], who needed them for a 
general definition of Steenrod operations. Coherence theorems are undergoing 
active development; Lambek [1968] found a fascinating conner-tion with the 
cut-elimination theorems of Gentzen-style proof theory; following his lead, Kelly
Mac Lane [1970] proved a coherence theorem for closed categories. The simplicial 
category, long implicit in the boundary formulas of algebraic topology, became 
explicit in the study of Eilenberg-Mac Lane spaces and of the Eilenberg-Zilber 
theorem about 1950, and played a role in the development of homological algebra 
(see the notes to Chap. VI). Our discussion of monads and homology is only a slight 
introduction to the recent proliferation of conceptual schemes for the organization 
of homological algebra. 

Compactly generated spaces first appeared in John Kelley's 1955 book on 
General Topology; their convenience for topology was emphasized by Steenrod 
[1967], Gabriel-Zisman [1967], and others. There are alternative closed categories 
convenient for topology, notably the quasi-topological spaces due to Spanier. 

The suspension 1: of a topological space is a tool long used in homotopy theory. 
The Cartan-Serre attack (about 1951) on the difficult problem of computing the 
homotopy groups of spheres made essential use of loop spaces and suspension. 
These constructions originally seemed thoroughly geometric. Thus the natural 
map X --+Q1:X came from a topological insight, but now appears in conceptual 
terms, as the unit of an adjunction. 



VIII. Abelian Categories 

This chapter will formulate the special properties which hold in 
categories such as Ab, R-Mod, Mod-R, and R-Mod-S: They are all 
Ab-categories (the hom-sets are abelian groups and composition is 
bilinear), all finite limits and colimits exist, and these limits - especially 
kernel and co kernel - are well behaved. This leads to a set of axioms 
describing an "abelian" category. The axioms suffice to prove all the 
facts about commuting diagrams and connecting morphisms which are 
proved in Ab by methods of chasing elements. We carry the subject 
exactly to this point, leaving the subsequent development of homological 
algebra to more specialized treatments. 

1. Kernels and Cokernels 

Recall (§ 1.5) that a null object z in a category is an object which is both 
initial and terminal. If C has a null object, then to any a, bee the unique 
arrows a- z and z - b have a composite 0 = Ob " a-b called the zero 
arrow from a to b. It follows that any composite with one factor a zero is 
itself a zero arrow. The null object is unique up to isomorphism, and the 
notion of zero arrow is independent of the choice of the null. 

Let C have a null object. A kernel of an arrow f,' a-b is defined to 
be an equalizer of the arrowsf,O: a~b. Put more directly, k: s-a is a 
kernel off: a-b whenfk = 0, and every h withf h = 0 factors uniquely 
through k (as h = kh') 

Thus any category with all equalizers (or, more generally, with all pull
backs or with all finite limits) and with a zero has kernels for all arrows, 
and the kernel k: s-a offis unique, up to an isomorphism of s. Like all 
equalizers, a kernel k is necessarily monic (kg' = kh' implies g' = h', by the 
unique factorization requirement in the definition). Hence it is convenient 
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to think of the kernel k: s-+a as a subobject of a - that is, as an 
equivalence class of monics s -+ a. 

For example, in Grp the group I with just one element (the identity 
element) is a null object, and for any two groups the zero morphism 
G---+H is the unique morphism which sends all of G to the identity 
element in H. The kernel of an arbitrary morphism I : G---+ H of groups 
is the insertion N ---+ G of the usual kernel N, (with N = all x in G with 
Ix = 1). Note that N is a normal subgroup of G, so in Grp every kernel is 
monic but there are monics which are not kernels. 

In the category Sef* of pointed sets (§ 1.7), the one-point set is a null 
object and the zero map P---+Q is the function taking all of P to the base 
point *Q in Q. For any morphism I : P---+Q of pointed sets, the kernel 
S---+P is the insertion of the subset S of those x E P with Ix = *Q' where 
the base point of S is identical with the base point of P. Much the same 
description gives kernels in Top*. In Grp, an epimorphism is determined 
(up to isomorphism) by its kernel, but this is by no means the case in Sef* 
or in Top*. 

In any Ab-category A, all equalizers are kernels. Indeed, in such 
a category each hom-set A(b,c) is an abelian group. Hence, given a 
parallel pair I, g : b---+c, a third arrow h: a---+b satisfies I h = gh if and 
only if(f - g)h = O. Therefore the universal such h can be described either 
as the equalizer of I and g or as the kernel of I-g. This is the reason one 
usually deals with kernels and not with equalizers in R-Mod, Ab, etc. 

The dual notion of cokernel has already been described, in § II 1.3. 
Now suppose that the category C has a null object z and kernels and 

cokernels for all arrows. For each object c E C, the set Pc of all arrows I 
with codomain c has a preorder ~, with g ~I defined to mean that g 

factors through I (i. e., that g =1 g' for some arrow g'). This reflexive and 
transitive relation ~ defines as usual an equivalence relation ==, with 
1== g meaning that I ~ g and g ~f. The equivalence classes of arrows 
I E Pc under this relation form a partially ordered set, which contains the 
partially ordered set of subobjects of c (restrictlto be a monomorphism; 
then g ~I is the inclusion relation already defined for subobjects in 
§ V.7). 

Dually, the set QC of all arrows u with domain c is preordered, with 
u ~ v when v factors through u (v = v' u for some v'). 

Now choose a kernel for each arrow u from c and a cokernel for each 
arrow I to c. Then the definitions of kernel and cokernel state that 

I ~ keru<o>u 1= 0<0> coker I ~ u . (1) 

These logical equivalences state exactly that the functions 
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define a Galois connection from the preorder QC to the preorder Pc, 
as defined in § IV.S. As for any such connection, the triangular identities 
read 

ker(coker(keru)) = keru , coker (ker (coker f)) = coker f, 

and g is a kernel if and only if g = ker(cokerg). These facts are also readily 
provable directly from the definitions. 

If C has a null object, kernels, and cokernels, then any arrow f of 
C has a canonical factorization 

f = mq, m = ker(coker f). (2) 

Lemma 1. If also f = m'q', where m' is a kernel, then in the commuta
tive square 

(3) 

there is a (unique) diagonal arrow t with m = m't and q' = t q. Moreover, 
if C has equalizers and every monic in C is a kernel, then q is epi. 

Proof. By assumption, m' = ker p' where p' = coker m'; take also 

q 

p = coker m = coker f. Then p'm' = 0, so p' f = p'm' q' = 0, and p' factors 
throughp as p' = wp for some w. Then p'm = wpm = 0, som factors through 
m' = ker p' as m = m't for a unique monic t. Moreover, m' q' = m'tq and 
m' is monic, so q' = tq. This gives the desired diagram (3). 

Next, to prove that q is epi, consider some parallel pair of arrows 

re= se, 

rq = sq, 

r, s with rq = sq. Then q factors through the equalizer e of rand s as 
q = eq' for some q', and f = mq = meq'. Now m' = me is monic, hence by 
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assumption is a kernel, so by the first conclusion of the lemma there is an 
arrow t with m = m't = met and hence with 1 = et. The monic e thus has 
a right inverse, so is an isomorphism. But e was taken to be the equalizer 
of rand s, so r = s. This proves q epi. 

Thus (2) is now an epi-monic factorization of the arrow f. 

2. Additive Categories 

An A b-category A, as defined in § I.8, is a category in which each hom-set 
A (b, c) is an additive abelian group (not necessarily small) and composi
tion of arrows is bilinear relative to this addition. Thus each abelian 
group A (b, c) has a zero element 0: b- c, called the zero arrow (even 
though A may not have a null object in the previous sense). Again, 
a composite with a zero arrow is necessarily zero, since composition is 
distributive over addition. 

Proposition 1. The following properties of an object z in an Ab-category 
A are equivalent.' (i) z is initial,' (ii) z is terminal,' (iii) 1 z = 0 : z_ z,' (iv) the 
abelian group A (z, z) is the zero group. In particular, any initial (or any 
terminal) object in A is a null object. 

Proof. If z is initial, there is a unique map z- z, hence 1z = 0 and 
A(z,z) = O. If 1z = 0, then any f: b-z has f = 1zf = Of = 0: b-z, so 
there is a unique arrow, namely 0, from b to z, and z is terminal. The rest 
follows by duality. 

When there is a null (= initial and terminal) object z in the A b
category A, the unique maps b-z and z-c are the zero elements of 
A(b,z) and A(z,c) respectively. Hence the composite b-z-c, which is 
the zero morphism 0: b-c, as defined in § 1, is also the zero element of 
the abelian group A (b, c). 

Next we consider products and coproducts in the Ab-category A. 

Definition. A biproduct diagram for the objects a, b E A is a diagram 

(1) 

with arrows Pl' P2' il , i2 which satisfy the identities 

Pl il =la , P2 i2=l b , il Pl+i2P2=l c ' (2) 

Theorem 2. Two objects a and b in an Ab-category A have a product in 
A if and only if they have a biproduct in A. Specifically, given a biproduct 
diagram (1), the object c with the projections Pl and P2 is a product of a 
and b, while, dually, c with i l and i2 is a coproduct. In particular, two objects 
a and b have a product in A if and only if they have a coproduct in A. 
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Proof. First assume we have the biproduct diagram (1) with the 
condition (2). Then 

PI i2 = PI (i I PI + izpz) iz = 1 0 PI i z + PI iz 0 1 = PI iz + PI iz ; 

subtracting, PI iz = 0; symmetrically pz il = O. (These are familiar 
equations for the usual biproduct of modules.) Now consider any diagram 

a ~ d ~ b. The sum h = idl + iIlz : d---'>c then has Pih = Ii; con
versely, if h': d---'>c has Pih' =1; for i = 1,2, then 

h' = (ilPI + izpz)h' = i l PI h' + izpzh' = idl + iIlz , 

so h' = h. This states that there is a unique h : d---'> c with Pih = Ii for i = 1,2, 
so the diagram a ~ c ~ b is indeed a product. The assignment 
h f---">- <II ,Jz) is an isomorphism 

A(d,c) ~ A(d,a)EBA(d,b) 

of abelian groups, where EB on the right is the direct sum of abelian 
groups. 

Conversely, given a product diagram a ~ a x b ~ b, the defini
tion of this product provides a unique arrow i l : a---'>a x b with com
ponents Plil=la, pzil=O and a unique i2 :b---'>axb with Pliz=O, 
pziz = lb' Then 

pdilPI + izpz) = PI + Opz = PI' pz (iIPI + izpz) = P2' 

so ilPI + izpz: a x b---'>a x b is the unique arrow with components 
PI and Pz, hence is the identity 1a x b' Thus the given product diagram 
does indeed yield a biproduct, with (1) and (2). 

In special categories, such as Ab and R-Mod, the biproduct is often 
called a direct sum. Note also that the description of the biproduct 
diagram is "internal", since it involves only the objects a, b, and c and the 
arrows between them, while the standard categorical description of 
the product (or the coproduct) is "external", since it refers to construction 
of arrows in the whole category. 

Given objects a, bE A, the biproduct diagram (1), if it exists, is de
termined uniquely up to an isomorphism of the object c. If all such 
biproducts exist, then a choice of c = aEBb for each pair <a, b) determines 
a bifunctor EB: A x A ---'> A, with II EBiz defined for arrows II : a---'> a' 
and Iz : b---'> b' either by the equations 

p~ifl EBI2) = IjPj, j = 1, 2, (3) 

(i.e., defined as for a product x = EB) or by the equations 

ifl EBIz)ik = iJk' k = 1,2, (4) 
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that is, as for a coproduct E9 = II, with (, i~ the injections of the second 
coproduct. Indeed, the first pair (3) of equations determines fl E9f2 
uniquely as the arrow with components fl' f2; then by the defining 
equations for the second biproduct and by p; i~ = 0, 

(fl E9 f2) ik = (i~ p~ + i; p~) (fl E9 f2) ik = i~fk , 

as in the second pair of equations, and dually. 
The conclusion may also be formulated thus: The identification of 

the product functor a x b, with mapping function defined by (3), with 
the coproduct functor aIIb, mapping function defined by (4), is a natural 
isomorphism. 

Iteration, for given ai' ... , an E A, yields a biproduct EB aj charac-
terized (up to isomorphism in A) by the diagram j 

i· ffi Pk 
a j----"---> Q7 a j ------> ak , j, k = 1, ... , n 

j 

and the equations 

ilPI + ... + inPn = 1 , Pkij = (;kj = 0 k =t=j, (5) 
=1 k=j. 

Moreover, for given CI , ... , Cm E A there is an isomorphism 

A(EBck , EBa j ) ~ L A(ck , a) 
k j j.k 

of abelian groups, where 1: denotes the iterated biproduct of abelian 
groups. This implies that each arrow f: EB k ck -E9 j aj is determined by 
the n x m matrix of its components fkj = Pkfij: aj-ck. Composition of 
arrows is then given by the usual matrix product of the matrices of 
components. In other words, the equations (5) contain the familiar 
calculus of matrices (cf. § 111.5). 

An additive category is by definition an A b-category which has a zero 
object 0 and a biproduct for each pair of its objects. 

Proposition 3. For parallel arrowsf, l' : a-b in an additive category A, 

(6) 

where (;a:a-axa is the diagonal map, lb:bE9b=bIIb_b the co
diagonal. 

-t£ere the di~gonal is defined by PI (;a = 1a = P2 (;a and the codiagonal 
by (;b i l = 1b = (;b i 2 . The proof is a direct calculation: 

lb (f E9 1')(;a = lb(f E9 1') (iIPI + i2P2)(;a 

= lb(f E9 1')il + lb(f EB 1')i2 

= lb it! + lb izf' = f + l' . 
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This proposition suggests that the additive structure of A can be 
derived from the biproduct (cf. Exercise 4). 

If A and Bare Ab-categories, an additive functor T: A - B is a 
functor from A to B with 

T (f + 1') = T f + T I' (7) 

for any parallel pair of arrows f, I' : b-c in A. It follows that TO = O. 
Since the additive structure of A can be described in terms of the bi
product structure of A, this condition (7) can also be reformulated as 
follows: 

Proposition 4. If A and Bare Ab-categories, while A has all binary 
biproducts, then a functor T: A - B is additive if and only if T carries 
each binary biproduct diagram in A to a biproduct diagram in B. 

Proof. Each of the equations PI i l = 1, P2i2 = 1, and ilPI + i2P2 = 1 
describing a biproduct in terms of its insertions ij and projections Pj is 
preserved by an additive functor; therefore each additive functor preserves 
biproducts. 

Conversely, suppose that T preserves all binary biproducts. Then 
a parallel pair ofarrowsflJ2:a-a' has T(fltBf2)=Tfl tB Tf2 and 
therefore T(fl + f2) = Tfl + Tf2 by the formula (6) for sum in terms of 
direct sum and the equations T(bJ = bTu, T(bU ) = bTu, which follows 
at once from the definition of the diagonal b and the codiagonal b in 
terms of product and coproduct. 

Our proposition can also be modified: Tis additive if and only if T 
carries each binary product diagram in A to a product diagram in B, or, 
if and only if it carries each binary coproduct in A to a coproduct in B. 

Many familiar functors for Ab-categories A are additive. For example, 
if A has small hom-sets each hom-functor 

A(a, -):A-Ab, A(-,a):AoP_Ab 

is additive. If A and Bare Ab-categories, so is A x B, and the projections 
A x B-A, A x B-B of this product are additive functors. The tensor 
product of abelian groups is a functor Ab x Ab~ Ab, additive in each 
of its arguments, and so is the torsion product. 

Exercises 

1. In any additive category A, show that the canonical map 

K:a\ll .. ·llan-+a\x ... x an 

(defined in §III.5) is an isomorphism. (This is essentially a reformulation of 
Theorem 2.) 

2. Define the corresponding canonical map K of an infinite coproduct to the 
corresponding infinite product, and show by an example that it need not be an 
isomorphism in every additive category. 
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3. In an additive category, show that the biproduct is associative and commutative 
(up to a natural isomorphism). 

4. (Alternative definition of addition of arrows, to get an additive category.) 
(a) Let A be a category with a null object, finite products, and finite coproducts in 

which the canonical arrow a1 lIa2-al x a2 from the coproduct to the 
product (§ III.5) is always an isomorphism. For J, f': a-b define 
I +1' = Jb(f x/')ba • Prove that this addition makes each set A(a, b) 
a commutative monoid, and that composition is distributive over this 
addition. 

(b) If, moreover, there is for each a E A an arrow va: a-a with va + 1a = 0: a-a, 
prove that each A(a, b) is a group under the addition defined above, and 
hence that this addition gives A the structure of an additive category (Mac 
Lane [1950]). 

5. (The free Ab-category on a given C.) Given a category C, construct an Ab
category A and a functor C-A which is universal from C to an Ab-category. 
(Hint: The objects of A are those of C, while A(b,c) = Z(C(b, c)) is the free 
abelian group on the set C (b, c).) 

6. (The free additive category.) 
(a) Given an Ab-category A, construct an additive category Add (A) and an 

additive functor A - Add (A) which is universal from A to an additive 
category. (Hint: Objects of Add (A) are n-tuples of objects of A, for n = 0, 1, ... , 
while arrows are matrices of arrows of A.) 

(b) If A is the commutative ring K, regarded as an additive category with one 
object, show that Add (K) is the category MatrK described in § 1.2. (Hint: Show 
that MatrK has the desired universal property.) 

3. Abelian Categories 

Definition. An abelian category A is an Ab-category satisfying the 
following conditions 

(i) A has a null object, 
(ii) A has binary biproducts, 

(iii) Every arrow in A has a kernel and a cokernel, 
(iv) Every monic arrow is a kernel, and every epi a cokernel. 

The first two conditions ensure that A is an additive category, as 
described in § 2. Instead of requiring a null object in (i), we could by 
Proposition 2.1 require a terminal object or an initial object. Instead of 
requiring all biproducts a/ffib, we could require all products a x b or all 
binary coproducts. 

With (i) and (ii), the existence of kernels in condition (iii) implies 
that A has all finite limits. Indeed, the equalizer of f, g : a-+b may be 
constructed as the kernel of f - g, (i) and (ii) give finite products, and 
finite products and equalizers give all finite limits. Dually, the existence 
of co kernels implies the existence of all finite colimits. 
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Condition (iv) is powerful. It implies, for example, that any arrow / 
which is both monic and epi is an isomorphism. For /: a-b monic 
means / = ker g for some g, hence g / = 0 = 0 f. But / is epi, so cancels 
to give g = 0 : b- c, and the kernel of g = 0 is equivalent to the identity of 
b, hence is an isomorphism. 

The categories R-Mod, Mod-R, Ab (and many others) are all abelian, 
with the usual kernels and cokernels. If A is abelian, so is any functor 
category AJ , for arbitrary J. Specifically, if S, T: J-A are any two 
functors, the set Nat(S, T) = AJ (S, T) of all natural transformations 
IX, p: S-L+ T is an abelian group, with addition defined termwise -
(IX + P)j=lXj + pj : Sj-Tjfor eachj E J. The functor N: J-A everywhere 
equal to the null object of A is the null functor in AJ , the biproduct 
S EfJ T of two functors is defined termwise, as (S EfJ T)a = Sa EfJ T a, and 
the kernel K of a natural transformation IX: S-L+ T is defined termwise, 
so that for each j, Kj-Sj is the kernel of IXj. All the axioms follow, to 
make AJ abelian. 

Proposition t. In an abelian category A, every arrow / has a /actoriza
tion/ = me, with m monic and e epi; moreover, 

m = ker (coker f), e = coker (ker f). (1) 

Given any other factorization /' = m' e' with m' monic and e' epi and a 
commutative square 

f 

(2) 

. ~ ---:---+. 
e' m' 

f' 

as shown at the left above, there is a unique k with e' g = ke, m' k = hm 
(i.e., with the squares at the right commutative). 

Proof. To construct such a factorization of /, take m = ker (coker f). 
Since (coker f) 0/= 0, / factors as / = me for a unique e, and by Lemma 1 
of § 1, e is epi. Now m is monic, so for any composable t, /t=O if and 
only if e t = O. This implies that ker / = ker e. But e is epi, so the arrow 
e = coker (ker e) = coker (ker f). We have proved (1). 

Now regard/and/, as objects in the arrow category AZ; a morphism 
(g, h> : / - /' is then just a commutative square as in (2) above. Consider 
the factorizations / = me and /' = m' e', and set u = ker / = ker e. Then 
o = h / u = m' e' gu, so e' gu = 0, and e' g must factor through e = coker u 
as e' g = ke for a unique k. Then afso m' ke = m' e' g = hme, so m' k = hm, 
and both squares commute in the rectangle of (2). 
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This completes the proof. The second part shows that any morphism 
<g, h) : / ----+ f' must carry a factorization of / to a factorization of f', 
so that the factorization is functorial. In particular, for the identity 
morphism <1,1) : / ----+ /, this proves that any two monic-epi factoriza
tions / = me and / = m' e' are isomorphic (k an isomorphism above). 

From this factorization, we define (the usual) image and coimage of 
/ = me: a----+b as 

m = im/, e= coim/, (3) 

uniquely up to isomorphism. Thus the image m of/is a subobject of its 
codomain b, its coimage a quotient object of its domain. More generally, 
if/ = mlte! with ml monic, t an isomorphism and e epi, then ml == im/, 
e! == coim / and t is (the usual) isomorphism of coimage to image. This is 
the situation which arises in familiar concrete categories like Ab. If 
/ : B----+ C is a morphism in Ab with kernel a subgroup K of B, image a 
subgroup S of C, then/factors as a three-fold composite 

B~BIK~S~C, 

with e l the projection on the standard quotient group, m! the inclusion, 
and u the evident isomorphism of the coimage BIK to the image S. This 
three-fold factorization arises because each quotient object BIK has a 
canonical representation (by cosets). 

Exact sequences work as usual in any abelian category. 

Definition. A composable pair 0/ arrows, 

(4) 

is exact at b when im / == ker g (equivalence as subobjects 0/ b) - or, 
equivalently, when coker / == coim g. 

Observe that im/ ~ ker g if and only if g / = 0, while im/ ~ ker g if 
and only if every k with g k = 0 factors as k = mk', where m is the first 
factor in the monic-epi factorization / = me. This bipartite definition of 
exactness is just the usual condition (say in Ab): <I, g) exact means that 
the composite g / is zero and that every element killed by g is in the 
image off. 

Definition. The diagram (with 0 the null object) 

(5) 

is a short exact sequence when it is exact at a, at b, and at c. 

Since O----+a is the zero arrow, exactness at a means just that / is 
monic; dually, exactness at c means g epi. All told, (5) short exact thus is 
equivalent to 

/ = ker g , g = coker / . (6) 
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Similarly, the statement that h = coker fbecomes the statement that the 
sequence 

(7) 

is exact at b and at c. Classically, such a sequence (7) was called a short 
right exact sequence. Similarly, k = ker f is expressed by a short left 
exact sequence. 

The monic-epi factorization f = me of any arrow f determines two 
short exact sequences which appear (with the bordering zeros omitted) 
as the top and side of the following commutative diagram: 

(8) 

A functor T : A ~ B between abelian categories A and B is, by defini
tion, exact when it preserves all finite limits and all finite colimits. In 
particular, an exact functor preserves kernels and co kernels, which 
means that 

ker(Tf) = T(ker f), coker(T f) = T(coker f) ; (9) 

it also preserves images, coimages, and carries exact sequences to exact 
sequences. By the familiar construction of limits from products and 
equalizers and dual constructions, T: A ~ B is exact if and only if it is 
additive and preserves kernels and cokernels. 

A functor T is left exact when it preserves all finite limits. In other 
words, Tis left exact if and only if it is additive and ker(T f) = T(ker f) 
for allf: the last condition is equivalent to the requirement that Tpreserves 
short left exact sequences. 

Abelian categories have a more economical description, not involving 
a given abelian group structure on each hom-set. Explicitly, let A be any 
category which satisfies the axioms (i), (ii'), (iii), and (iv) just as above, 
except that (ii) is replaced by 

(ii') A has binary products and binary co products. 
Then the formula (2.6) can be used to introduce an addition in each 
hom-set A(a, b), and with this addition A is an abelian category. The 
somewhat fussy proof, Freyd [1964], Schubert [1970], will be omitted 
here because it seems oflittle use for the applications, where the categories 
usually come equipped with the needed addition in each A (a, b). 
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Exercises 

1. For A, B abelian categories, show that an additive functor T: A ----> B is exact if 
and only if it carries all short exact sequences in A to short exact sequences in B. 

2. Prove: A and B abelian implies that the product category A x B is abelian. 
3. Show that the category of all free abelian groups is not abelian. 
4. Show that the category of all finite abelian groups (with arrows all morphisms 

of such) is abelian. 
5. If R is a left noetherian ring, show that the category of all finitely generated left 

R-modules (with arrows all morphisms of such modules) is abelian. 
6. For subobjects u ~ v of an object a in an abelian category, define a "quotient" 

object v/u (to agree with the usual notion in Ab). If gf = 0, prove that ker g/imfis 
isomorphic to the dual object coim g/coker f. 

4. Diagram Lemmas 

In an abelian category A, a chain complex is a sequence 

···-+c ~c ~c -+ ... n+l n n-1 (1) 

of composable arrows, with anan + 1 = 0 for all n. The sequence need not 
be exact at cn ; the deviation from exactness is measured by the n-th 
homology object (for the quotient, cf. Exercise 3.6) 

(2) 

Initially in algebraic topology one used chain complexes only in Ab or 
in K-Mod (especially for K the integers modulo a prime), but more 
general considerations of sheaf theory and homological algebra use 
complexes in many other abelian categories. The definition (2) of homo
logy applies in any abelian category; the development of its properties 
depends on certain manipulations of exact sequences, normally proved 
in Ab by chasing elements around diagrams. We will now show how the 
basic diagram lemmas hold in any (fixed) abelian categoryA. 

A morphism (m, e)---+(m', e') of short exact sequences (in A) is by 
definition a triple (f, g, h) of arrows in A such that the diagram 

O~i~i'~}~O 
O~·~.~.~O 

(3) 

commutes. The short exact sequences with these morphisms constitute 
a category Ses A; in an evident way, it is additive. A first basic lemma is: 

Lemma 1 (The short five lemma). In any commutative diagram (3) 
with short exact rows,! and h monic imply g monic, andf and h epi imply g epi. 
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In Ab, take any element x in ker g; then g(x) = 0: 

x'~xf------!'~e(x) 

II gI } 
Of-->- f(x')f----------->-O f-->-O = he (x), 

so he(x) = 0, e(x) = O. By exactness of the first row, there must be an 
element x' with m(x') = x. By exactness of the second row, f(x') = 0, 
therefore x' = 0, and so x = O. This argument is a "diagram chase" with x. 

In any abelian category, the same argument can be done without 
elements. Take k = ker g. Then hek = e' gk = 0; since h is monic, ek = O. 
Thereforek factors throughm = kere as k=mk'. But 0 = gk = gmk' = m'fk', 
and m' and f are monic, so k = O. Since k = ker g, this proves g monic. 

The proof that g is epi is dual. 
In Ab, a pullback of a monic or an epi is monic or epi, respectively. 

This holds for pullbacks of monies in any category (Lemma V.7), and 
for pullbacks of epis in an abelian category, as follows. 

Proposition 2. Given a pullback square (on the right below) 

k' f' 
a----~s~d 

in an abelian category,j epi implies!, epi. Also, the kernel k offfactors as 
k = g' k' for a k' which is the kernel of!'. 

In particular, given a short exact sequence a----+b----+c, each arrow 
g: d----+c to the right-hand end object c yields by pullback a short exact 
sequence a----+s----+d. This operation (and its dual) is basic to the description 
of Ext (c,a)(the set of "all" short exact sequences from a to c) as a bifunctor 
for an abelian category (Mac Lane [1963] Chap. III), 

Proof. The pullback s (like any pUllback) is constructed from 
products and equalizers thus: Take bEBd with projections Pi and P2' 
form the left exact sequence 

0----+ s ~ b EB d ----=./..:...p-, --=-g.:....:P2~) C 

(i.e., m is a kernel), and set g' = Pi m,!, = pzm. 
Heref Pi - gpz is epi, For suppose h(f Pi - gP2) = 0 for some h. Then, 

using the injection i i of the biproduct, 

0=h(fPi-gP2)ii =hfpiii =hf, 

and h = 0 because f is given to be epi. 
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Now suppose u1' = 0 for some u. Since f' = pzm, upzm = 0, so upz 
factors through f Pl - 9 pz = coker m as u pz = u' (f Pl - 9 pz)· But 
PZi1 =0, so 

0=uPZi1 =U'(fPl -gpz)i1 =u'fp1i1 =u'f. 

Since f is epi, u' = 0; therefore l' is epi, as desired. 
Finally, consider k = ker f. The pair of arrows k: a---->b and 0: a---->d 

have f k = 0 = gO, sq by the definition of the pullback s there is a unique 
arrow k' : a---->s with g' k' = k and l' k' = 0; since k is monic, so is k'. To 
show it the kernel of l' consider any arrow v with 1'v = 0. Then 
f g' v = 9 l' v = 0, so g'v factors through k = ker f as g'v = kv' for some v'. 
Then g'v=g'(k'v') and1'v=O=1'(k'v'), so by the uniqueness involved 
in the definition of a pullback, v = k' v'. Therefore k' = ker 1', as desired. 

In virtue of this Proposition, diagram chases can be made in any 
abelian category using "members" (in A) instead of elements (in Ab). 
Call an arrow x with codomain a E A a member of a, written x Em a, and 
define x == y for two members of a to mean that there are epis u, v with 
xu = yv. This relation is manifestly reflexive and symmetric. To prove it 
transitive, suppose also that yw = zr for epis wand r and form the pullback 
square displayed at the upper left in the diagram 

·~a 

By Proposition 2, v' and w' are epi, and hence x == z. Then a member of a 
is an equivalence class, for the relation ==, of arrows to a. Since every 
arrow x has a factorization x = me, every member of a is represented by a 
subobject (a monic m) of a, but we shall not need to use this fact. Each 
object a has a zero member, the (equivalence class of the) zero arrow 
O---->a. Each member x Em a has a "negative" - x. 

F or any arrow f: a----> b, each member x Em a gives f x Em b, and 
x == y in a implies f x == f y in b, so any arrow from a to b carries members 
of a to members of b - just as if these members were elements of sets. 

Theorem 3 (Elementary rules for chasing diagrams). For the members 
in any abelian category 

(i) f: a---->b is monic if and only if, for all x Ema,f X == 0 implies x == 0; 
(ii) f : a----> b is monic if and only if,for all x, x' Em a,f X == f X' implies x == x' ; 

(iii) g: b----> cis epi if and only iffor each z Em C there exist a y Em b with 9 y == z; 
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(iv) h: r~s is the zero arrow if and only if,for all x Emr, hx = 0; 
(v) A sequence a~ b ~c is exact at b if and only if gf = 0 and to 

every y Em b with 9 y = 0 there exists x Em a with f x = y; 
(vi) (Subtraction) Given g: b~c and x, Y Emb with gx = gy, there is a 
member z Emb with gz = 0; moreover, any f: b~d withfx = 0 hasfy =f z 
and any h : b~a with hy = 0 has hx = - hz. 

Proof. Rules (i) and (ii) are just the definition of a monic. In (iii), 
if 9 is epi, then one can construct y Emb with gy = z by pullback (using 
Proposition 2); conversely, if 9 is not epi, the member Ie Em C is not of the 
form 9 y = Ie for any y Em b. Rule (iv) is trivial. 

For rule (v), take the standard factorization f = me, and suppose 
first that the given sequence is exact at b, so that m = ker g. If 9 Y = 0, 
Y = my 1 for some Y l' Form the pullback at the left of the diagram 

e' .-----+ . 
I 
I 

1",1 . I 
.j. 

, 
I 

1\'1 
,L. 

since ye' = me it = fit and e' is epi, y = fit, as required. Conversely, 
given this property for all y Emb, take k = ker g; then k Emb and gk = 0 
(in c). Therefore there is a member x Ema with f x = k; that is, with 
ku = mexv for suitable epis u and v. But this equation implies that the 
monic k factors through m, and hence that im f ~ ker g. Combined with 
9 f = 0, this gives the desired exactness. 

Rule (vi) is intended to replace the subtraction of elements in Ab. If 
gx=gy, there are epis u, v with gxu=gyv, and (vi) holds with 
Z= yv - xu Emb. 

Here is an example of a diagram chase with these methods: 

Lemma 4 (The Five Lemma). In a commutative diagram 

l~~l~l~l~l, (4) 

bl~b2~b3~b4~bs 

with exact rows, ft, f2' f4' fs isomorphisms imply f3 an isomorphism. 

Proof. By duality, it suffices to prove f3 monic. In Ab one would 
"chase" an element x E ker f3' Consider instead any member x Ema3 
with f3 x = O. This gives f4 g3 x = 0; since f4 is monic, g3X = 0: 

II F-ill~r~T 
y' --~--> f2Y-----> 01-:>0 = f4g3 X . 
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By exactness at a3 and Rule (v) of the theorem, there is a y Ernaz with 
gz y =- x. Then 0 =- f3 X =- f3 gzy =- hzfz y, so by exactness at bz there is a 
y' Ernbl with hi y' =- fzY. Since j~ is epi, there is a Z Ernal with hJ, z =- fz Y 
or fZgIZ=-f2Y. Butfz is monic, so, by Rule (ii), g,z=-y and x=-gzy 
=- g2g1 Z =- O. Since any x withf3 X=-O is itself 0'/3 is monic, as required. 

As another illustration, consider any morphism <f, g, h) of short 
exact sequences, as in (3); add the kernels and co kernels off, g, and h to 
form a diagram 

0-----+ Kef .---!':.'?---+ Keg ____ e!' __ -+ K e h 

I Ij lk 
0-----+ a ~ b ~c -----+0 

11 "1 h1 (5) 

0-----+ a rn' 
~ b' e' 
~ c' -----+0 

j j j 
Cof -_'!!..!_-+ Cog _--':1..._-+ Coh------+ 0 ; 

where Kef is the domain of ker f, Co f the codomain of coker f, etc. 
In this diagram the columns (with 0' s added top and bottom) are exact 
sequences by construction, and both middle rows are given to be exact. 
By the definitions of kernel and cokernel, one may add unique arrows 
mo, eo in the top row and m" e l in the bottom row so as to make the 
added squares commute. An easy diagram chase (by the method of 
Theorem 3) shows the first row exact at Kefand Keg; dually, the last 
row is exact at Cog and Coho However, the first row is not necessarily a 
short exact sequence because eo need not be epi; moreover, this happens 
precisely when ml is not monic. An easy example of this phenomenon 
(in Ab; g =!= 0) is 

o -----+ 0 -----+ Z --L-. Z -----+ 0 

I 19 1 
0-----+ Z --L-. Z -----+ 0 -------+ 0 . 

The failure of exactness can be repaired by the following striking 
lemma, which produces an added b called the connecting homomorphism 
- it is essentially the connecting homomorphism used for relative 
homology (a complex modulo a subcomplex) and for the connecting 
maps between derived functors in homological algebra. 

Lemma 5 (Ker-coker sequence = Snake lemma). Given a morphism 
<f, g, h) of short exact sequences, as in (3), there is an arrow b: Keh-Co{ 
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such that the following sequence is exact: 

0----+ Kef ~Keg~Keh~Cof ~Cog~Coh----+O (6) 

Proof. From the map of short exact sequences we first build a 
different diagram; on the left in 

r" 
y~kx 

I I (7) ! c------> 9 Y f---> 0 

ZI 

Co = K e h, d is the pullback of e and k = ker h, so that u is epi with kernel 
s as in Proposition 2; dually, d' is the pushout ofp = cokerf and m', with 
cokemel s' as shown. Right down the middle runs a composite arrow 
Jo=p'gk':d-;d', with s'Jo=hku=O and Jos=u'pf=O. Since 
u' = ker s' and u = coker s, this means that Jo factors uniquely as 

bo=u'bu:d~co--.L-;al~d' . 

The middle factor is the required "connecting" arrow b : CO--+QI' 

The effect of this arrow b on a member x EmCO can be described by 
the zig-zag staircase shown at the right of (7) above. Indeed, since e is 
epi there is a member yEmb with ey==kx. Then e'gy==hey==hkx==O, so 
by exactness there is a member Z Em a' with rn' 2 == gy. We claim that bx is 
then the member 21 =P2EmQ 1. For, d is a pullback so there is an XoEmd 
with uXo == x, k' Xo == y. Then 

u'bx == u'buxo = boxo == p'gy == U'21 

and u' is monic, so bx == 2 I' This argument also proves that (the equiva
lence class of) the member 21 is independent of the choices made in the 
construction of the zig-zag (7). This zig-zag is exactly the description 
usually given for the action of a connecting morphism (j on the elements 
of abelian groups. 

Using the zig-zag description we can now prove the exactness of the 
ker-coker sequence (6), say the exactness at Keh. First, to show that 
beo=O, it suffices to show beow=O for any member wEmbO=Keg. But 
the member eo w = X EmCO has kx = keo w = ejw, where j = ker 9 as in (5); 
hence in the zig-zag (7) we may choose y = jw. Then 9 y = gjw == 0, which 
proves that beo = O. On the other hand, consider any x EmCO with bx == O. 
This means that the 21 constructed in the zig-zag has 21 == 0; by exactness 
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there is a member ZZEma with Jzz=-z which means that gmzz=-gy. 
Now form the "difference" member Yo = Y - mZ2 Em b. By Rule (vi) above, 
this difference member has eyo =- ey = kx and gyo =- O. But j: bo-+b is 
ker g, so there is an Xo Em bo with j Xo =- Yo: 

Xo f----~ eo Xo x 

} I Ik 
Yo~ kx=kx 

} 
o 

Then keoxo = eyo =- kx and k is monic, so eoxo =- x. We have shown that 
each x with bx =- 0 has the form x=- eoxo, so is in the image of eo. This 
proves exactness; in fact, it is exactly like the usual exactness proof with 
honest elements of actual abelian groups. 

Exercises 

1. In the five-lemma, obtain minimal hypotheses (onflJ2' andf4 only) for f3 to 
be monic. 

2. In the five-lemma, prove h epi using members (not comembers). (Hint: Rule 
(vi) of Theorem 3 is necessary in this proof.) 

3. Complete the proof of the exactness of the ker-coker sequence. 
4. Show that the connecting morphism b is natural; i.e., that it is a natural transfor

mation between two appropriate functors defined on a suitable category whose 
objects are morphisms (3) of short exact sequences. 

5. A 3 x 3 diagram is one of the form (bordered by zeros) 
• -----1- • -----+ .. 

111 
.-----+.~. 

111 
.----+.~. 

(a) Give a direct proof of the 3 x 3 lemma: If a 3 x 3 diagram is commutative 
and all three columns and the last two rows are short exact sequences, then 
so is the first row. 

(b) Show that this lemma also follows from the ker-coker sequence. 
(c) Prove the middle 3 x 3 lemma: If a 3 x 3 diagram is commutative, and all 

three columns and the first and third rows are short exact sequences, then so 
is the middle row. 

6. For two arrowsf: a---->b and g: b---->c establish an exact sequence 

O---->Kef---->Kegf ---->Keg---->Cof---->Co gf ---->Cog---->O. 

7. Show explicitly that the category Ses (A) is not in general abelian. 
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Notes. 

Shortly after the discovery of categories, Eilenberg and Steenrod [1952] showed 
how the language of categories and functors could be used to give an axiomatic 
description of the homology and cohomology of a topological space. This, in turn, 
suggested the problem of describing those categories in which the values of such a 
homology theory could lie. After discussions with Eilenberg, this was done by 
Mac Lane [1948, 1950]. His notion of an "abelian bicategory" was clumsy, and the 
subject languished until Buchsbaum's axiomatic study [1955] and the discovery by 
Grothendieck [1957] that categories of sheaves (of abelian groups) over a topological 
space were abelian categories but not categories of modules, and that homological 
algebra in these categories was needed for a complete treatment of sheaf cohomology 
(Godement [1958]). With this impetus, abelian categories joined the establishment. 

This chapter has given only an elementary theory of abelian categories - a 
demonstration directly from the axioms of all the usual diagram lemmas. Our 
method of "chasing members" is an adaptation of the method given by Mac Lane 
[1963, Chap. XII]; the critical point is the snake lemma, which must construct an 
arrow. Earlier proofs of this lemma in abelian categories were obscure; the present 
version is due to M. Andre (private communication). These diagram lemmas can 
also be proved in abelian categories from the case of R-modules by using suitable 
embedding theorems (Lubkin-H-aron-Freyd-Mitchell). These beautiful theorems 
construct for any small abelian category A a faithful, exact functor A --+ Ab and a 
full and faithful exact functor A--+R-Mod for a suitable ring R. For proofs we 
refer to Mitchell [1965], Freyd [1964], and Pareigis [1970]. 

These sources will also indicate the further elegant developments for abelian 
categories: A Krull-Remak-Schmidt theorem, Morita duality, the construction of 
"injective envelopes" in suitable abelian categories, the structure of Grothendieck 
categories, and the locally Noetherian categories (Gabriel [1962]). 





IX. Special Limits 

This chapter covers two useful types oflimits (and colimits): The filtered 
limits, which are limits taken over preordered sets which are directed 
(and, more generally, over certain filtered categories), and the "ends", 
which are limits obtained from certain bifunctors, and which behave 
like integrals. 

1. Filtered Limits 

A preorder P is said to be directed when any two elements p, q E P have 
an upper bound in P; that is, an r with p ~ rand q ~ r (there is no re
quirement that r be unique). It follows that any finite set of elements of P 
has an upper bound in P. A directed preorder is also called a "directed set" 
or a "filtered set". 

This notion (renamed) generalizes to categories. A category J is 
filtered when J is not empty and 

(a) To any two objectsj,j'EJ there is kEJ and arrows j->k, j'->k: 

(b) To any two parallel arrows u, v: i-> j in J, there is k E J and an 
arrow w:j->k such that wu = wv, as in the commutative diamond 

Condition (a) states that the discrete diagram {j,j'} is the base of a cone 
with vertex k. Condition (b) states that i~j is the base of a cone. It follows 
that any finite diagram in a filtered category J is the base of at least one 
cone with a vertex k E J. 

Note that the terminology for "co" varies. Some authors (e.g., 
Mac Lane-Moerdijk [1992]) call such a filtered J "cofiltered". 

211 
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A filtered colimit is by definition a colimit of a functor F : J -> C de
fined on a filtered category J. 

Classically, colimits were defined only over directed pre orders 
(sometimes just over directed orders). This has proved to be a needless 
conceptual restriction of the notion of coli mit. What does remain relevant 
is the interchange formulas for filtered colimits (§ 2) and the possibility 
of obtaining all colimits from finite coproducts, coequalizers, and colimits 
over directed preorders. Since we already know that (infinite) coproducts 
and coequalizers give all colimits (the dual of Theorem V.2.!) this needs 
only the following result. 

Theorem 1. A category C with finite coproducts and colimits over all 
(small) directed preorders has all (small) coproducts. 

Proof. We wish to construct a colimit for a functor P: J -C, where J 
is a set (= a discrete category). Let J+ be the preorder with objects all 
finite subsets S C J, ordered by inclusion; clearly, J+ is filtered. Let p+ 
assign to each finite subset S the coproduct 11 Ps, taken over all s E S. 
If SeT is an arrow u : S- T of J+, take p+ u to be the unique (dotted) 
arrow which makes the diagram 

p+ S = 11 Ps-- ---> 11 Pt = p+ T 

I is I i~ 
Ps Ps 

commute for every s E S, with i and i' the injections of the coproducts. 
This evidently makes p+ a functor J+ -C which agrees on J with the 
given functor P, if J is included in r by identifying eachj with the one
point subset U}. 

N ow consider any natural transformation B: P + ........ G to some other 
functor G: J+ -c. For each s E S the diagram 

p+ S = 11 Ps-~§..--+GS 

I is I G({s) C S) 

PS--o;--+G{s} 

commutes. By the definition of coproducts, this means that B is completely 
determined by the values B, ofB on Ps. In particular, each cone v+ : P+ ........ c 
over p+ is completely determined by its values on J, which form a cone 
v: P ........ c over F. Moreover, v+ is a limiting cone if and only if v is. Thus 
we can calculate the desired coproduct 11 Fj, which is the coli mit of P, 
as the colimit of P+, known to exist because J+ is a directed preorder. 

As a typical application, we construct colimits in Grp. 

Proposition 2. The forgetful functor Grp-Set creates filtered colimits. 
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Proof. We are given a filtered category J and a functor G: J ~ Grp; 
it assigns to arrows j~k group morphisms Gj~ Gk ; we shall write Gj 
both for the group and its underlying set. We are also given a limiting 
cone P for the composite functor J ~ Grp~Set; it has a set S as vertex 
and assigns to each j E J a function Pj: Gj~S, We first show that there 
is a unique group structure on the set S which will make all functions 
Pj morphisms of groups. First note that to each s E S there is at least one 
indexj with a group element gj for which Pjgj=s; otherwise we could 
omit s from S to have a cone with a smaller set Sf as vertex, an evident 
contradiction to the universality of S (there would be two functions 
S=tS having the same composite with p). 

Now we define a product of any two elements s, t E S. Write s = Pjgj 

and t = Pkgk for some j, k E J; since J is filtered, there is in J a cone 

gjl ---.s 

Gjx----:,G;'" / 
/' '''G S 

G:~G,:/ ~ 
gk~1 --------------------~,t 

overj, k with some vertex i. The image of this cone under G is Gj~Gjf-Gk' 
so sand t E S both come from elements of the group Gj ; define their 
product in S to be pj of their product in Gj • This product is independent 
of the choice ofi, because a different choice i' is part ofa cone Gj~ Gmf-Gj, 

of group morphisms. Also, the product of three factors r, s, t is associative, 
because we can choose Gj to contain pre-images of all three, and multi
plication is known to be associative in Gj • Each group Gj has a unit 
element, and each Gj~Gk maps unit to unit; the common image of 
these units is a unit for the multiplication in S. Inverses are formed 
similarly. 

We now have found a (unique) group structure on S for which 
Pj: Gj~S is a morphism of groups. This states that P is a cone from 
G to S in Grp. It is universal there: If v: G ........ T is another cone in Grp, 
it is also a cone in Set, so there is a unique set map f: S~ Twith f P = v; 
one checks as above that this map f must be a morphism of groups. 

This argument is clearly not restricted to Grp; it applies to each 
category Alg r of algebras of a fixed type r (defined by operators and 
identities, § V.6). The same remark applies to the following corollary. 

Corollary 3. Grp has all (small) co limits. 

Proof. First, the one-element group is an initial object in Grp. Next, 
any two groups G and H have a coproduct G * H. Indeed, any pair of 
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homomorphisms G-L, H - L to a third group L factors through the 
subgroup of L generated by the images of G and H. The cardinal number 
of this subgroup is bounded; this verifies the solution set condition for 
an application of the adjoint functor theorem to construct the coproduct 
G * H. Comparison with G -t G x X shows that G -t G x H is monic. 

These two observations show that Grp has all finite co products. 
By Proposition 2, it has all filtered colimits. Hence, by Theorem 1, 
it has all small coproducts. To get all small colimits we then need only 
coequalizers, and the coequalizer of two homomorphisms u, v : G-H 
is the projection H-H/N on the quotient group by the least normal 
subgroup N containing all the elements (ug) (vg)-I for 9 E G. 

This proof gives an explicit picture of the coproduct in Grp. The 
coproduct G * H of two groups is usually called the free product; its 
elements are finite words <gl' hi, g2, hz, ... , gn' hn> spelled in letters 
gi E G and hi E H; these words are multiplied by juxtaposition, while 
equality is given by successive cancellations (if hi = 1 in H, drop it and 
multiply gigi+l in G, etc.). A direct proof of associativity of the multi
plication from this definition is fussy. By this corollary an infinite co
product IJiGi of groups Gi is obtained by pasting together all the finite 
coproducts 

(the inclusion maps make this a subgroup of any coproduct of more 
factors). Thus Ui Gi is the union of all these finite coproducts, identified 
along these inclusion maps. 

Exercises 

1. Use the adjoint functor theorem to prove in one step that Grp has all small 
colimits. 

2. Prove that Alg, as described in §V.6 has all small colimits; in particular, de
scribe the initial object (when is it empty?). 

2. Interchange of Limits 

Consider a bifunctor F: P x J- X to a cocomplete category X. For values 
PEP of the parameter p, the colimits of F(p, - ) : J _ X define functors 
pr--+ColimjF(p,j) of p, so that the colimiting cones. 

Pp,j: F(p,j)-~jF(p,j) (1) 

are natural in p (Theorem V.3.1). One may prove readily (§ 8 below) that 

Colimp ColimJ. F(p,j) ~ ColimJ. ColimpF(p,j) 
-----i> ---+ . ---t----" 

(2) 
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with the isomorphism gIven by the "canonical" map. Dually, limits 
commute. But limits need not commute with colimits, because 
the canonical map 

K: Co lim j Limp F(p,j)- Limp ColimJ. F(P,j) 
------+ of-- '+--~ 

(3) 

need not be an isomorphism. 
This canonical map exists as soon as all four limits and colimits in (3) 

exist, and is constructed as in the following diagram 

F(p,j) (V p .; Limp F(p,j)------'''CLi_-+) ~j ~p F(p,j) 

1 ~ I I 

"p,j rj r (4) 

~j F(p,j)+-~ ~p ~j F(p,j) ~p ~j F(p,j) 

where v and v _ ,j for each} are limiting cones, and p, PP. _ for each p the 
colimiting cones. Since v is a cone in p and P is natural in p, the 
composite Pp.j Vp,j for fixed} is a cone in p; by the universality ofv there 
then exist arrows rt.j for each j making the left hand squares commute. 
Since Pp • _ is a cone in}, so is rt.; by the universality of P, there is then a 
map K making the right hand square commute. It is the desired canonical 
arrow. 

This K need not be an isomorphism. Consider, for example, the case 
when P = {I, 2} and J = {I, 2} are both discrete 2-object categories. The 
canonical K when it exists (in evident notation) 

K: (A1 x B 1) II (A z x B z)-(A1 II A 2) X (B1 II B 2) 

is given by two components rt.1 and !X2, where !Xl is determined by 

In Ab, K is evidently an isomorphism, but in Set it is not - the domain of K 

is a disjoint union of two sets, while the codomain of K is the four-fold 
disjoint union 

(Al x B 1 ) II (Al x B 2) II (A2 x B 1) II (A2 x B z). 

We now turn to conditions which suffice to make K an isomorphism. 

Theorem 1. If the category P is finite while J is small and filtered, then 
for any bifunctor F: P x J -Set the canonical arrow 

K : ~j ~P F(p,j)-~P ~j F(p,j) 

as in (iv) is an isomorphism. 
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This states that finite limits commute with filtered colimits in Set. 

Proof. By the construction of co limits in terms of coproducts and 
coequalizers (dual of Theorem V.2.2 with J filtered), 

~j F(p,j) = llj F(p,j)/E, (5) 

where II j is the disjoint union and E is the equivalence relation defined 
for elements x E F{p,j) and x' E F(p,j') in that union by x E x' if and 
only if there are arrows u:j---'>k, u':j'---'>k with F(P,u)x=F(p,u')x'. 
Write (x,j) for the E-equivalence class of an element x E F(p,j). Now J 
is filtered; condition (a) in the definition of "filtered" implies that any 
finite list (X1,jl)' ... ,(xm,jm) of such elements can be written as a list 
(Yl' k), ... , (Ym' k) with one second index k. Condition (b) in the definition 
implies that every equality between elements of this list takes place 
after application of a suitable one arrow w: k---'>k'. 

F or any functor G : P ---'>Set, ~P G P = Cone( *, G), the set of cones r 

over G with vertex a point *. If G p = Colim j F(p,j) and P is finite, each 
----+ 

such cone consists of a finite number of elements of ~j F(p,j) and 

the conditions that r be a cone involve a finite number of equations 
between these elements. Since J is directed, the observations above 
now mean that each cone r can consist of elements rp = (Yp ' k') for some 
one index k', where the YpEF(p, k')already constituteacone Y : * ...... F( -, k'). 
This cone Y is an element of LimpF{p, k'); its equivalence class (y, k') 
is an element of Colimj Limp. The map 

r r> (y, k') E ~j ~P F(p,j) , 

which is independent of the choices made, is the desired (two-sided) 
inverse of the canonical arrow K. 

Exercises 

1. Show that K of(3) is natural for arrmvs a: F-'-+F' in X PxJ 

2. (Verdier.) A category J is pseudo-filtered when it satisfies condition (b) for 
filtered categories and the following condition (d): Any two arrows i -; j, 
i -; l' with the same domain can be embedded in a commutative diamond 

/j, 
.~ ........ ' ........ "j.k 
I -" 

~.,//// 
J . 

Prove that a category J is filtered if and only if it is connected and pseudo
filtered. Prove that a category is pseudo-filtered if and only if its connected 
components are filtered. 

3. In Set. show that coproducts commute with pullback. 
4. Using Exercises 2 and 3, show that pseudo-filtered colimits commute with 

pullbacks in Set. 
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3. Final Functors 

Colimits may often be computed over subcategories. For example, 
the colimit of a functor F : N ........ Cat, where N is the linearly ordered set 
of natural numbers, is clearly the same as the colimit of the restriction of 
F to any infinite subset S of N (i.e., to any subcategory which contains 
at least one object "beyond" each object of N). In classical terminology, 
such a subset S was called "cofinal" in N; it now seems preferable to 
drop the "co", as not related to dualizations. Also, we will replace the 
subset S first by the inclusion functor S ........ N and then by an arbitrary 
functor. 

A functor L : J' ........ J is called final if for each k E J the comma category 
(k 1 L) is non-empty and connected. This means that to each k there is 
an object j' E J' and an arrow k ........ Lj', and that any two such arrows can 
be joined to give finite commutative diagram of the form 

k 
I 
I 
I 

.j, 

k 

1 
. +-TJ,--Li' . 

A subcategory is called final when the corresponding inclusion functor is 
final. For example, if J is a linear order, J' C J and L the inclusion, then 
L final means simply that to each k E J there is j' E J' with k ~J. 

For L: J' ........ J and F: J ........ X there is a canonical map 

h : Colim F L ........ Colim F 
----> ----> 

(1) 

defined when both colimits exist; if fl' : F L ........ Colim F Land fl are the 
----> 

colimiting cones, h is the unique arrow of X with h flJ' = flLj' for all f E J'. 
The main theorem now is: 

Theorem 1. If L: J' ........ J is final and F: J ........ X is a functor such that 
x = Colim F L exists, then Colim F exists and the canonical map (1) is 

-----+ ----> 
an isomorphism. 

Proof. Given a co limiting cone fl : F L ........ Colim F L = x, we construct 
arrows Tk : F k ---- x for each k E J by choosing an arrow u : k ---- Lj' and 
taking Tk to be the composite 

Fk~FLj'~x. 

Since fl is a cone and (k 1 L) is connected, the connectivity diagram above 
readily shows Tk independent of the choice of u and j'. It follows at once 
that T: F -4 X is a cone with vertex x and base F. On the other hand, if 
A: F -4 Y is another cone with this base F, then AL: F L-4 Y is a cone with 
base F L, so by the universal property of fl there exists a unique f: x ........ y 
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with ff.-l = AL, and hence (because Ak = )'Lj' ° Fu) with f' = A. This shows 
that , is a limiting cone and hence that x = Colim F; clearly this also 
makes the canonical map h an isomorphism. 

The condition that L be final is necessary for the validity of this 
theorem (cf. Exercise 5). The dual of this result (the dual of final is "initial") 
is useful for limits. 

Exercises 

1. If j E J and {j} is the discrete subcategory of J with just the one object j, show 
that the inclusion {j} ---->J is final if and only if j is a terminal object in J. What 
does this say about colimits and terminal objects? 

2. Prove that a composite of final functors is final. 
3. If J is filtered, L: J'---->J is full, and each (k 1 L) is non-empty (k E J) prove that 

L is final. 
4. For the covariant hom-functor J(k, -): J->Set, use the Yoneda Lemma 

to show that ~J(k, -) is the one-point set. 

5. (Converse of the Theorem of the text). Let L: J' ->J be a functor, where J' 
and J have small hom-sets, such that for every F: J -> X with X co complete 
the canonical map ~ F L->~F is an isomorphism. Prove that L must 

be final. (Hint: Use F = J(k, -), X = Set, and Exercise 4.) 

4. Diagonal Naturality 

We next consider an extension of the concept of naturality, Given 
categories C, B and functors S, T: cop x C ---> B, a dinatural transformation 
lI.: S~ T is a function lI. which assigns to each object c E C an arrow 
lI.c: S(c, c)---> T(c, c) of B, called the component of lI. at c, in such a way that 
for every arrow f: c--->c' of C the following hexagonal diagram 

S(c, c)_-",ac~--» T(c, c) Sty ~f) 
S(e', c) T(c, e') 

S(l~ ~'I) 
(1 ) 

S(c', c') iXc' ) T(c', c') 

is commutative, Observe that the contravariance of Sand T in the first 
argument is used in forming the arrows S(j, 1) and T(j, 1) in this diagram. 

Every ordinary natural transformation ,: S-'-> T between the bi
functors Sand T, with components 'c,c': S(c, c')---> T(c, C'), will yield a 
dinatural transformation lI.: S -"+ T between the same bifunctors, with 
components just the diagonal components of ,; thus lI.c = 'c,c' More 
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interesting examples arise from functors which are "dummy" in one or 
more variables. For example, T: COP x C ----> B is dummy in its first variable 
if it is a composite 

where Q is the projection on the second factor and To is some functor 
(of one variable). Put differently, each functor 10: C---->B of one variable 
may be treated as a bifunctor cop x C ----> B, dummy in the first variable. 
Again, a functor dummy in both variables is in effect a constant object 
bE B with T(e, e') = b for all objects e, e' E C and T(f, 1') = lb for all 
arrows f and l' in C. 

The following types of dinatural transformations S ~ T arise. If S 
is dummy in its second variable and T dummy in its first variable, a 
dinatural transformation Ct.:S~T sends a functor So:coP---->B to a 
covariant To: C ----> B by components Ct.c : So e----> To e which make the 
diagrams 

Soe~Toc 

SO!I 1 To! (2) 

Soc'~ToC' 

commute for each arrow f: e---->e' of C. Such a dinatural transformation 
might be called a natural transformation of the contravariant functor 
So to the covariant functor To. (Dually, of a covariant to a contravariant 
one.) 

If T = b : cop x C ----> B is dummy in both variables, a dinatural trans
formation Ct.: S~b consists of components Ct.c : S(e, e)---->b which make 
the diagram 

S(c', c)~S(e', c') 

SU.!) 1 1 ac' (3) 

S(e, e)--a-c ---+) b 

commute for every f: e---->e'. (The right hand side of the hexagon (1) 
has collapsed to one object b.) Such a transformation Ct.: S~b is called 
an extranatural transformation, a "supernatural" transformation or a 
wedge from S to b. The same terms are applied to the dual concept 
f3: b~ T, given by components f3c: b----> T(e, e) such that every square 

b (lc ) T(e, c) 

(lc' 1 1 T(1.!) (4) 

T(e', e')~ T(e, e') 

is commutative. (The left hand side of the hexagon (1) has collapsed.) 
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We give an example of each type. A Euclidean vector space E is a 
vector space over the field R of real numbers· equipped with an inner 
product function ( , ): Ex E----+R which is bilinear, symmetric, and 
positive definite. These spaces are the objects of a category Euclid, 
with arrows those linear maps which preserve inner product. There are 
two functors 

U : Euclid ----+ V ctR , 

to the category of real vector spaces: The (covariant) forgetful functor U 
"forget the inner product" and the contravariant functor .. take the dual 
space". Now for each Euclidean vector space E the assignment e f-->- (e, -), 
for e E E, is a linear function KE : E ----+ E*; these functions KE are the 
components for a transformation K which is dinatural from U to * 
(dual of type (2)): This is the fact, familiar in Riemannian geometry, that 
each Euclidean vector space is naturally isomorphic to its dual - and 
we need the notion of dinaturality to express this fact categorically. 

Evaluation. Vx, for X a (small) set, takes the value of each function 
h : X ----+ A at each argument x E X. If the (small) set A is fixed, we may 
regard V x as a function 

Vx: hom(X,A) x X -> A, (h,x)t-+hx, 

defined for each object X E Set. For two small sets X and Y, hom (X, A) x Y 
is the (object function of a) functor SeeP x Set----+Set, while for every 
arrow f: Y----+X the obvious property h(fx)=(hf)x of evaluation states 
that the square like (3) always commutes. Hence the functions Vx are 
the components of an extranatural transformation 

V: hom( -, A) x (- )-'-'-+A. 

Observe that V is also natural (in the usual sense) in the argument A; 
we say that hom (X, A) x X ----+ A by evaluation is dinatural (= extra
natural) in X and natural in A. 

Counits. For functors F : X x P ----+ A and G: pop x A ----+ X a bijection 

A(F(x, p), a) ~ X(x, G(p, a)) (5) 

natural in x, p, and a is an adjunction with parameter p (Theorem IV.7.3); 
its counit, obtained by setting x = G(p, a) in (5), is a collection of 
components 

C(p.a): F(G(p, a), p)----+a (6) 

natural in a and dinatural (= extranaturaI) in p. This includes the case 
of evaluation above. 

Here is an example of the dual type of dinaturality. In any category C 
the identity function assigns to each object c the identity arrow Ie: c----+ c, 
which may be regarded as an element Ie E hom(c, c) or as an arrow 
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Ie: * -> hom(c, C), where * is the one-point set. Now hom (c, c') is (the 
object function of) a functor COP x C->Set, and for each arrow f: c->c' 
the identity function 1 has the evident property fo Ie = 1e,,0/, which states 
in the present language that 1 is a dinatural transformation 

1 : * -'-'-> hom( -, -). 

All three types of dinatural transformations occur in combination 
with natural transformations in the previous sense (and indeed we will 
usually simply call all three types "natural transformations", dropping 
the "di" except where it is needed for emphasis). Thus given categories 
and functors 

S : COP x C x A -> B , T:A xDoPxD->B 

a natural transformation y: S-'-'-> T is a function which assigns to each 
triple of objects c E C, a E A, and dE D an arrow 

y(c, a, d): S(c, c, a)->T(a, d, d) 

of B such that (i) for c and d fixed, y( c, -, d) is natural in a, in the usual 
sense; (ii) for a and d fixed, y( - , a, d) is dinatural in c; (iii) for c and a 
fixed, y(c, a, -) is din at ural in d. In the description of these natural trans
formations anyone of the categories A, B, or C may be replaced by a 
product of several categories, and in each case naturality in a product 
argument c E C = C' x C" may be replaced by naturality in each argu
ment of the pair c = <c', c") when the other is fixed (see Exercise 3 
below), For example, in any category the operation of composition 

hom(b, c) x hom (a, b)->hom(a, c) 

is natural; i.e., natural in a, dinatural in b, and natural in c. 
The composite of two dinatural transformations need not be di

natural at all, but any dinatural transformation rx : S -- Tmay be composed 
on either side with transformations which are natural in both arguments, 
If (J : S' ~ Sand r: T ~ T' are natural transformations, the composite 
arrows 

S'(c, c)~S(c, c)~ T(c, c)~ T'(c, c) 

are the components of a din at ural transformation S' -'-'-> T', Here is a 
more interesting case (easily proved), 

Proposition 1. Given functors 

R : C -> B , S : C x cop x C -> B , 

and functions (for all c, d E C) 

Q(c, d): R(c)->S(c, d, d), (J(d, c): S(d, d, c)-> T(c) 
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which are natural in c and dinatural in d, the function which assigns to 
each c E C the composite arrow 

R(c)~S(c, c, c)~ T(c) 

is a natural transformation R -4 T. 

Exercises 

1. Prove that the unit IJx: x---->G(p, F(x, p)) of an adjunction with parameter is 
dinatural in p, and that this property is equivalent to the naturality of the ad
junction itself in p (cf. IV.7., Exercise 2). Dualize. 

2. Formulate the triangular identities for an adjunction with parameter. 
3. (Naturality by separation of arguments.) Given bE B, a functor 

S: (C x D)0P x C x D---->B, 

and a function f3 assigning to c E C, dE D an arrow 

f3c.d : S(c, d, c, d}---->b 

of B, show that f3: S-'-4b is dinatural if and only if it is dinatural in c (for each 
fixed d) and dinatural in d (for each fixed c). State the dual result. 

4. Extend the composition rule of Proposition 1 to the case when S is a functor 
C x cop x C x cop x C---->B. Do the same for any odd number of factors C. 

5. For S: cop x C---->B and b, b' E B, show that dinatural transformations b-'-4S 
and S-'-4b' do not in general have a well defined composite b---->b'. 

6. Extending Exercises 3 and 4, find a general rule for the composition of natural 
transformations in many variables. 

5. Ends 

An "end" is a special (and especially useful) type of limit, defined by 
universal wedges in place of universal cones. 

Defmition. An end of a functor S : cop x C ----> X is a universal dinatural 
transformation from a constant e to S; that is, an end of S is a pair < e, w), 
where e is an object of X and W : e~S is a wedge (a dinatural transforma
tion) with the property that to every wedge f3: X~S there is a unique arrow 
h : x->e of B with f3a = Wah for all a E C. 

Thus for each arrow f: b->c of C there is a diagram 

x~S(b,b) 
:~A ~(1.f) 

h 1 /~ ---2 S(b, c) 
S( .) S(I,I) 

e~ c,c 

(1) 
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such that both quadrilaterals commute (these are the dinaturality 
conditions); the universal property of W states that there is a unique h 
such that both triangles (at the left) commute. 

The uniqueness property which applies to any universal states in this 
case that if <e, w) and (e', w') are two ends for S, there is a unique iso
morphism u: e---->e' with w' 0 u = w (i.e., with w~ u = We for each c E C). 
We call w the ending wedge or the universal wedge, with components W<, 

while the object e itself, by abuse of language, is called the "end" of S 
and is written with integral notation as 

e = J S(c, c) = End of S. 

Note that the "variable of integration" c appears twice under the integral 
sign (once contravariant, once covariant) and is "bound" by the integral 
sign, in that the result no longer depends on c and so is unchanged if"c" 
is replaced by any other letter standing for an object of the category C. 
These properties are like those of the letter x in the usual integral J f(x) dx 
of the calculus. 

Natural transformations provide an example of ends. Two functors 
U, V: C---->X define a functor homx(U -, V -): COP x C---->Set, and if 
Y is any set, a wedge, : Y -'-'-> homx(U -, V -), with components 

'c: Y ----> homx(U c, Vel, c E C , 

assigns to each y E Y and to each c E C an arrow 'c.y: U c----> V c of X 
such that for every arrow f: b---->c one has the "wedge condition" 
V fo 'b.y = 'c.y U f. But this condition is just the commutativity of the 
square 

Uc~Vc 

which asserts that, _. r for fixed y is a natural transformation, _. r: U -'-+ V. 
Thus, if we write Nat(U, V) for the set of all such natural transformations, 
the assignment yf-->-L.J' is the unique function Y---->Nat(U, V) which 
makes the following diagram commute. 

y __ r,,--c _-->, hom(U c, Vc) 
I 
I 
I 
I 

... 
Nat(U, V)~hom(U c, Vc), 

where We assigns to each natural A. : U -'-+ V its component A.c: U c----> V c. 
This states exactly that w is a universal wedge. Hence 

Nat(U, V)=Jhom(Uc, Vc); U, V: C---->X. (2) 
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Every end is manifestly a limit - specifically, a limit ofa suitable diagram 
in X made up of pieces like those pieces S(b, b)--->S(b, c) <----S(c, c), one 
for each fin C, which come up in the diagram (1) defining an end. This 
can be stated formally in terms of the following construction (to be used 
only in this section) of a category C§ depending on C. The objects of C§ 
are all symbols c§ and f§ for c E C and f an arrow in C (note especially 
that c§ and (lc)§ are different objects). The arrows of C§ are the identity 
arrows for these objects, plus for each arrow f: b--->c in C two arrows 

b§---> f§<----c§ 

in C§. The only meaningful compositions for these arrows in C§ are 
compositions with one factor an identity arrow. Thus we have defined 
a category C§, called the subdivision category of C. 

Each functor S: cop x C ---> X defines a functor S§: C§---> X by the 
assignments indicated (from top to bottom) in the following figure for 
a typical f: b--->c in C: 

C§ b§ ------>~ f§ +-( ----c§ 

S§l I I I I I 
X S(b, b) S(b,j)~ S(b, c) (S(f,c) S(c, c) 

Inspection of this figure shows that a cone r: X---'--+ S§ is exactly the same 
thing as a wedge w: x ....... S. This proves that a limit of S§ is an end of S, 
in the following sense. 

Proposition 1. For any functor S: cop X C--->X and the associated 
functor S§: C§---> X, as defined above, there is an isomorphism 

(): J S(c, c) ~ Lim [S§: C§---> X] . 
c <-----

(3) 

In more detail, if either the indicated end or the indicated limit exists, 
then both exist, and there is a unique arrow () in X such that the diagram 

J S(c, c)~S(c, c) 

c 01 
Lim s§ ~ S§(c) 
<-----

commutes for every c E C, where w is the ending wedge and A the limiting 
cone; moreover, this arrow () is an isomorphism. 

Corollary 2. If X is small-complete and C is small, every functor 
S: cop x C--->X has an end in X. 

The Proposition above has reduced ends to limits. The converse is 
easier: Every limit may be regarded as an end! 
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Proposition 3. For each Junctor T: C -+ X let S be the composite Junctor 

where Q is the second projection < c, c') H-C' oj the product. Then 
<e,,: e ........ T) is a limit Jor T in X if and only if <e,,: e ....... S) is an end 
Jor S in X. 

Proof. The components 'c of a cone e ........ T make the triangle 
'c = TJo 'b commute (naturality condition!) for each J: b-+c in C. This 
amounts to saying that every square 

e tb) Tb = S(b, b) 

tc 1 1 S(1.f)~T(f) 
Tc= S(c, c) 5([,1)-1) Tc=S(b,c) 

commutes (S( -, - 1 is "dummy" in the first variable), and this in turn 
states exactly that, : e ....... S is a wedge. It follows that, is universal as a 
cone if and only if it is universal as a wedge. 

This conclusion reads: There is an isomorphism 

f S(c, c) = f Tc ~ Lim T 

valid when either the end or the limit exists, carrying the ending wedge 
to the limiting cone; the indicated notation thus allows us to write any 
limit as an integral (an end) without explicitly mentioning the dummy 
variable (the first variable c of S). 

A functor H: X -+ Y is said to preserve the end of a functor 
S: cop x C-+X when w: e ....... S an end ofS in X implies that Hw: He ....... H S 
is an end for H S; in symbols 

H f S(c, c) = f H S(c, c). 

Similarly, H creates the end of S when to each end v : y ....... H S in Y there is 
a unique wedge w: e ....... S with H w = v, and this wedge w is an end of S. 
Since an end (of the functor S) is the same thing as a limit (of the cor
responding S§) the properties we have established for the preservation 
of limits carryover to the preservation of ends. For example, the hom
flJhctors preserve (and reverse, see § 6) ends: 

X (x, f S(c, C)) = f X(x, S(c, c)), 

xU S(c, c), x) = f X(S(c, el, x). 

(4) 

(5) 
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6. Coends 

The definition of the coend of a functor S: cop x C~X is dual to that 
of an end. A coend of S is a pair, <d, ( : S--d), consisting of an object 
dE X and a dinatural transformation ( (a wedge), universal among 
dinatural transformations from S to a constant. The object d (when it 
exists, unique up to isomorphism) will usually be written with an integral 
sign and with the bound variable c as superscript; thus 

c 

S(c, c)~ S S(c, c)= d. 

The formal properties of coends are dual to those of ends. 
Coends are familiar under other names. For example, the tensor 

product of modules over a ring R is a coend. Specifically, a ring R is an 
Ab-category with one object (which we call R again) and with arrows the 
elements r E R, composition of arrows being their product in R. A left 
R-module B is an additive functor R ~ Ab which sends the (one) object R 
to the abelian group B and each arrow r in R to the scalar multiplication 
r*: bl--+rb in B. Similarly, a right R-module A is an additive functor 
ROP~Ab (contravariant on R to Ab). If Q9 is the usual tensor product 
in Ab, then R 1--+ A Q9 B is a bifunctor ROP x R ~ Ab. Moreover, the coend 

R 

S A@B=A@R B 

is exactly the usual tensor product over R. Indeed, a wedge ( from the 
bifunctor A@B to an abelian group M is precisely a (single) morphism 
(!: A @ B~M of abelian groups such that the diagram 

A@B~A@B 

r. 01B 1 1e 
A@B~ M 

commutes for every arrow r in R. With the above interpretation of modules 
as functors, this means for elements a E A and bE B that 

(!(ar@b)=(!(a@rb). 

Therefore M is an end precisely when M is A Q9 B modulo all ar@ b - a@rb, 
and this is precisely the usual description of the tensor product M = A @ RB. 

The point of these observations is not the reduction of the familiar 
to the unfamiliar (tensor products to coends) but the extension of the 
familiar to cover many more cases. If B is any monoidal category with 
multiplication D, as in Chapter VII, then any two functors T: POP~B 
and S: P~ B have a "tensor product" 

p 

TDpS= J (Tp) 0 (Sp) , 
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an object of B. The simplicial category A of § VII.S has a functor 
.1 : .1-Top (each ordinal n + 1 realized by the n-dimensional affine 
simplex), while any S: L1oP_Set is called a simplicial set. Now the co
power SoX (set S times space X) is just the disjoint union UsX of S 
copies of X. Hence (n, m) 1-+ S n . A m is a functor AOP x L1 -+ Top and the 
coend 

n 

J(Sn) 0 L1n (1) 

is the usual geometric realization (Lamotke [1968], p. 34; May [1967], 
p. 55) of the simplicial set S. The coend formula describes the geometric 
realization in one gulp: Take the disjoint union of affine n-simplices, one 
for each t E S 17, and paste them together according to the given face and 
degeneracy operations (arrows of A). There is a similar efficient description 
of the (Stasheff-Milgram) classifying space of a topological monoid 
(best situated in the category CGHaus of § VII.8); see Mac Lane [1970]. 

Exercises 

1. For S: cop x C ...... Set, prove that the set Wedge (*, S) of all wedges w: *=-S 
from the one-point set * to S is an end of S, with ending wedge given by 
Wf-->WA*)E S(e, e). Compare with the explicit description of a limit in Set as a 
set of cones. 

2. Show directly (without using limits) that a category X with all small products 
and with equalizers has all small ends (cf. the corresponding proof for limits 
in § Y.2). 

3. To each category C there is a "twisted arrow category" C~ with objects the arrows 
f: a ...... b of C and arrows <h, k) : f ...... .f' the arrows h: a' ...... a (note the twist!) 
and k:b ...... b' such that .f'=kfh. Then <f:a ...... b)f--><a, b) is a functor 
K: C# --> cop X C. For any S : cop x C --> B, prove that cones e ~ S K cor
respond to wedges e ~ S, and use this fact to give another proof of the re
duction of ends to limits (Proposition 5.1). 

4. Let Fin (the skeletal category of finite non-empty sets) be the category with 
objects finite nonzero ordinals n and arrows all functions f: n ...... m. For each 
set X, nf--> X" defines (the object function of) a functor (Fin)OP ...... Set. For each 
ring R, the assignment n 1-> R" becomes a covariant functor R( ) : Fin ...... R -Mod 
if each function f: n ...... m (arrow in Fin) takes a list ao, ... , an- 1 ERn to 
bo, ... , bm- 1 E Rm, where bi = I: aj' the sum over all those j E n with f j = i. Show 
that the free R-module generated by the set X is the coend 

S xnoR(n)' 

and show that this formula is essentially the usual description of the elements 
of the free module as finite formal sums I:xja i , i = 1, ... , n. 

5. If Dis cocomplete, functors S: COP ...... Set and T: C ...... D have a tensor product 

defined as the coend .f (Se) 0 (Te), where 0 denotes the copower. Show that the 
tensor product is a functor DC x SetCoP ...... D. 
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7. Ends with Parameters 

The basic formal properties for ends are much like those for integrals 
in calculus. All these properties will apply equally well to limits (regarded 
as ends with a dummy variable). 

Proposition 1 (End or limit of a natural transformation). Given a 
natural transformation y: S --4 S' between functors S, s' : cop x C ~ X 
which both have ends <e, w) and <e', w'), respectively, there is a unique 
arrow g = J Ye,e : e~e' in X such that the following diagram commutes 

e 

for every c E c,' 
J S(c, c) ~ S(c, c) 

g=!yC,c: lYe,e (1) 
,!. , 

J S'(c, c)~ S'(c, c). 
e 

Proof. The composites Ye,e 0 We define a wedge, so g exists and is 
unique by the universality of the wedge w'. 

We call the arrow g the end of the natural transformation y. 
Composing Y with another Y' : S' --4 S" yields the rule 

(2) 

By this composition rule, a limit (or an end) involving a parameter 
p (in some category P) can be shown to be a functor of that parameter 
in the following sense. 

Theorem 2 (Parameter Theorem for ends and limits). Let 
T: P x cop x C~X be a functor such that T(p, -, -) for each object 
PEP has an end 

wp: J T(p, C, c)-'-'+ T(p, -, -) (3) 

in X. Then there is a unique functor U: P~ X with object function 
Up = J T(p, c, c) such that the components of the wedge (3) for each c E C 

e 

define a transformation (wpL: U p~ T(p, c, c), natural in p. 

Proof. Each arrow s: p~q of P defines a natural transformation 
Y = T(s, -, - ): T(p, -, -)--4 T(q, -, -). Hence the arrow function of 
the desired functor U must have Us = J T(s, c, c), defined as in (1), and 

e 

the composition rule (2) shows that this definition of Us does determine 
a functor U: P~X. 

The functor U will be written U = J T( -, c, c); thus 
e 

[[T(-,c,c)] p= [T(p,c,c), [[T(-,c,c)] s= [T(s,c,c). (4) 
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The notation suggests that this functor U is itself an end. Indeed, 
regard S T( -, c, c) as an object of the functor category xP and rewrite 

c 

T: P x cop x C-X as the functor T~: cop x C-XP given on arrows 
(or objects) f,1' of C by 

T~(f,1')= T( -,f,1'): P-X. 

Put differently, T~ is the image of T under the standard adjunction 

Cat(P x cop x C, X) ~ Cat (COP x C, X P). 

Theorem 3 (Parameter Theorem, continued). Under the same hy
potheses on T, the functor T~ has the end 

w~: S T( -, c, c)~T~ 
c 

where (w!)p = (wp)c for all PEP and c E C. 

Proof. The end S T( -, c, c) is an object of X P, while T~ is a functor 
c 

with codomain X p. By the previous theorem, the arrows (wp)c of X 
provide for each c an arrow of xP (a natural transformation) 

w! : S T( -, c, c)~ T( -, c, c) ; 
c 

its component at p is (w:)p = (wp)c Moreover, varying c, w~ is a wedge 
ST(-,c,c)-'-4T~. It is a universal wedge, for, given any object FEXP 

c 

and any wedge {J: F -'-4 T~, each component {Jp factors uniquely through 
the corresponding component wp' so {J itself factors uniquely through 
w~. This gives the end for T#, as required. 

This theorem can also be formulated wholly in terms of the functor 
category X P, as was done in the case of limits in Theorem V.3.1. 

Exercises 

l. (Dubuc.) Construct a functor category x P and a functor T: C -+ x P which 
has a limit not a pointwise limit. (Suggestion: Take C = 2.) 

2. State and prove the parameter theorem for coends. 
3. If X is small complete and C is small, use Proposition 1 to prove that Lim: XC ----> X 

. --IS a functor (cf. Ex. V.2.3). 
4. For any categories X and P, show that the functor x P --+ XIPI induced by inclusion 

(of the discrete subcategory IFI) creates ends and coends (cf. Theorem V.3.2). 
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8. Iterated Ends and Limits 

We now describe when the "double integral" can be obtained as an 
"iterated" integral (Fubini !). 

Proposition. Let S: pop x P x cop x C - X be a functor such that 
the end J S(p, q, c, c) exists for all pairs <p, q) of objects of P; by the 

e 

parameter theorems, regard these ends as a bifunctor pop x P-X, and 
regard S as a bifunctor (P x C)0P X (P X C)-X. Then there is an iso
morphism 

(): J S(p,c,p,c)~ J [JS(p,p,c,c)]. 
(p.e) p e 

Indeed, the "double end" on the left exists if and only if the end J on the 
p 

right exists, and then there is a unique arrow () in X such that the diagram 

J S(P) ;(p,e) S() , p, c, c ) p, p, c, C 
(p,e) 1 

61 
I 

oj, 

J [J S(p, p, c, c)] ~ J S(p, p, c, c) ~ S(p, p, c, c) 
pee 

commutes, where the horizontal arrows ~, Q, and ()) are the universal wedges 
belonging to the corresponding ends; moreover, the arrow () is an iso
morphism. 

Proof. For each <p, q) E P x P we are given the end 

())p,q: J S(p, q, c, c)~S(P, q, -, -). 
e 

For any x E X each P-indexed family Pp : x ~ f S(p,p, c, c) of arrows 
c 

of X determines a (P x C)-indexed family ~p,e as the composites 

~p,e: x ~ J S(p,p, c,c) Wp,p,e I S(p, p, c, c) ; 
e 

for p fixed, ~(p, _) is trivially a wedge in c. Conversely, since ())p,p is 
universal, every (P x C)-indexed family which is natural in c for each 
p is such a composite, for a unique family Q. Now Q or ~ is extranatural 
in p (the latter for some c) if and only if the corresponding square below 

X lip ) J S(p, p, c, c) 

IIq 1 e It S(p,s,e,e) 

J S(q, q, c, c)~ J S(p, q, c, c), 
e e e 

x 

1 ;q,e 

S(q, q, c, c) 

~p,e I S(p, p, c, c) 

1 S(p,s,e,e) 

S(s,q,e,e) I S(p, q, c, c) 
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commutes for each arrow s: p-+q in P. Also, the first square commutes 
precisely when it commutes after composition with the arrows Wp,q,e for 
all objects c. Form the cubical diagram with these two squares as 
front and back faces and with edges lx, wp.p,e' Wp,q,e' and Wq,q,e (front 
to back). By our definitions the four side faces involving these edges 
commute; hence the front square commutes if and only if the back 
square commutes for all c. Therefore (} is a wedge (in p) if and only if ~ 
is a wedge (in (p, c»), so that wedges from x to S S( -, -, c, c) correspond 

e 
one-one to wedges from x to S. Since the end is a universal wedge, and 
since a universal is determined up to isomorphism, this gives the 
isomorphism e of the proposition. 

Note one essential point: This proposition reduces double to iterated 
integrals provided the inner integral S S(p, q, c, c) exists for all pairs 

e 

(p, q) (not just for p = q). The case of limits involves no such refinement. 
The familiar result on change of order of integrals follows from 

this one, expanding a double integral in two ways. 

Corollary. Let S: pop x P x cop x C -+ X be a functor such that the 
ends S S(p, q, c, c) and S S(p, p, b, c) exist, for all p, q E P and b, c E C. By 

e p 

the parameter theorems regard these ends as bifunctors (of p, q or b, c) 
respectively .. then there is an isomorphism 

e: i [f S(p, p, c, c)] ~ Hi S(p, p, c, c)]. 

Indeed, the (outside) iterated end on the left exists if and only if the 
(outside) iterated end on the right exists, and the isomorphism e is the 
unique arrow in '{ such that the diagrams 

S S S (p, p, c, c) ---+ S S (p, p, c, c) ---+ S (p, p, c, c) 
pel e 

16 
I 

.j. 

S S S(p, p, c, c) ---+ S S(p, p, c, c) ---+ S(p, p, c, c) 
ep p 

commute for all PEP and c E C, where the horizontal arrows are the 
appropriate components of the universal wedges for the integrals involved. 

These results include the corresponding facts for limits and colimits. 
Thus, for a functor F: P x C-+X with P and C small, X complete 

by Proposition 5.3, with the corresponding formula for colimits. 
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Notes. 

A systematic treatment of all possible properties of limits was contained in a 
manuscript by Chevalley on category theory; the manuscript was unfortunately 
lost by some shipping company. 

Eilenberg and Kelly discovered the extranatural transformations (and all the 
rules for their composition) in [1966 b], while diagonally natural transformations 
are due to Dubuc and Street [1970]. The tensor product of functors was first 
defined by Kan [1958, § 14]; these products have been further developed in 
unpublished work of F. Ulmer and Allen Clark. 

The idea of an end was discovered by Yoneda [1960], and its efficient utilization 
is due to Day and Kelly [1969], who observed that this notion is essential in cate
gories based not on Set but on other closed categories. See also Kelly [1982]. 



x. Kan Extensions 

If M is a subset of C, any function t : M ~ A to a non-empty set A can be 
extended to all of C in many ways, but there is no canonical or unique 
way of defining such an extension. However, if M is a subcategory of C, 
each functor T: M ~ A has in principle two canonical (or extreme) 
"extensions" from M to functors L, R : C ~ A. These extensions are 
characterized by the universality of appropriate natural transformations; 
they need not always exist, but when M is small and A is complete and 
cocomplete they do exist, and can be given as certain limits or as certain 
ends. These "Kan extensions" are fundamental concepts in category 
theory. With them we find again that each fundamental concept can be 
expressed in terms of the others. This chapter begins by expressing 
adjoints as limits and ends by expressing "everything" as Kan extensions. 

1. Adjoints and Limits 

Limits and colimits, if they exist for all functors J ~ C, provide re
spectively right and left adjoints for the diagonal functor ,1 : 

C 

~ r 11 r ~ (= right adjoint of ,1) . (1) 

CJ 

Conversely, left adjoints can be interpreted as limits. First note that 
an initial object in any category C is a limit: 

Initial object C = Colim(O -+ C) = Lim(Id : C -+ C) , (2) 
f--

where 0 denotes the empty category (the ordinal 0) and 0 -+ C is the 
empty functor. The definition of the initial object e states exactly that 
it is the colimit of the empty functor. Moreover, the unique arrows 
I1c: e~c, one for each c, define a cone e--4Idc. If A: d--4Idc is a cone 
from some other vertex, then there is a unique f : d ~ e with alll1e! = Ac; 
indeed, this equation for c = e shows that f must be Ae, and for f = Ae 
this equation I1cAe = Ac does hold because A is a cone over Ide. This 

233 
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proves e = Lim Ide. The converse property, that any limit of Id is initial, 
is a special case of 

Lemma 1. If A : d~ Ide is a cone over the identity functor and F : J ----> C 
is a functor such that AF : d~ F is a limiting cone for F, then d is initial in C. 

Proof. Since A is a cone, the triangles 

;\::, /\ 1\ 
d~Fi, d~Fi, d~c 

commute for each i E J and each arrow f in C. But AF is a limiting 
cone, so the first two triangles prove Ad = 1. Then by the third triangle, 
f = Ac: There is a unique arrow f from d to each c, and d is indeed initial. 

This result reduces initial objects to limits. Now a functor G : A ----> X 
has a left adjoint precisely when for each x the comma category (x! G) 
of all pairs (g: x -+ Ga,a) has an initial object. In this way we can 
express the left adjoint by limits. Recall that (g, a)f-->-a defines the 
(second) projection Q : (x! G)----> A of the comma category. 

Theorem 2 (Formal criterion for the existence of an adjoint). 
A functor G : A ----> X has a left adjoint if and only if both 

(i) G preserves all limits which exist in A; 
(ii) For each xEX,Lim(Q:(x!G)---->A) exists in A. 

When this is the case, a left adjoint F is given on each x E X as 

Fx= Lim(Q: (x!G)---->A) , 
<--

(3) 

and the left adjunct of each arrow g: X----> Ga is the component 
Ag: Fx---->Qg = a of the limiting cone A for the limit (3). 

Proof. Since right adjoints preserve all limits, (i) is necessary. Since 
a left adjoint F to G has each (fix: x---->GFx, Fx) an initial object in 
(x!G), any functor on this comma category has a limit (namely, its value 
on that initial object). Hence (ii) is necessary. 

This motivates the converse. By hypothesis (ii) the composite functor 

(y!G)~(y!G)~A (4) 

has a limit in A for each y E X. By hypothesis (i), G preserves all limits; 
hence, using the Lemma of § V.6, Q creates all limits. Therefore Id has 
a limit on (y! G). This limit is, by (2), an initial object there, say y----> Ga. 
But then a is a value a = Fy for a left adjoint F, and 

Fy = Q [Lim(y! G)---->(y! G)] = Lim(Q : (y! G)---->A) 
+-- +--

(since Q preserves this limit which it has created !). This is the desired 
formula; the rule for finding the left adjuncts follows at once. 
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Exercises 

I. State the dual of Theorem 2. 
2. (Benabou, formal criterion for representability). Let C have small hom-sets, 

while * is the one-point set. Prove: A functor K: C---+Set is representable if 
and only if (i) K preserves all limits which exist in C, and (ii) the projection 
Q: (*!K)---+C of the comma category has a limit in C. When this is the case, 
the limiting cone A: r-4Q for this projection assigns to each hE Kc an arrow 
Ah: r---+c and hl--+Ah is a representation K ~ C(r, -). 

3. (Formal criterion for a universal arrow.) Let X have small hom-sets. Prove 
that there is a universal arrow from x E X to G: A ---+ X if and only if 
(i) X (x, G - ) : A ---+Set preserves all limits and (ii) ~ Q : ((x! G)---+ A) exists in A. 

4. (Refinements offormal existence criteria.) 
(a) In the Theorem, show that condition (i) may be replaced by "G preserves 

the limits required to exist in (ii)". 
(b) In Ex. 2, show that condition (i) may be replaced by "K preserves the limit 

ofQ". 
5. (Representables and adjoints; Benabou.) Let C have small hom-sets, and 

construct from each K: C---+Set the category CK obtained by adjoining to C 
one new object 00 with new hom-sets CK(oo,c)=Kc, CK(oo,oo)=*, the one
point set and C K(C, (0) = 0, the empty set, with appropriate composition. Let 
J K : C ---+ C K be the inclusion. Prove that K is representable if and only if J K 
has a left adjoint. 

2. Weak Universality 

Given a functor G : A - X and an object x E X, a weak universal arrow 
from x to G is a pair (r, w: x- Gr) consisting of an object rEA and 
an arrow w of X, as indicated, such that for every arrow f: x-Ga 
there exists an arrow f' : r-a with f = G f' 0 w. This is just the definition 
of universal arrow, except that f' is not required to be unique. By the 
same device (Freyd) we can modify all the various types of universals, 
defining weak products, weak limits, weak coproducts (existence but 
not uniqueness in each case). 

As an application, we give a second proof of the Freyd existence 
theorem for an initial object (Theorem V.6.1). 

Theorem 1. If D is a small complete category with small hom-sets, then D 
has an initial object if and only if it has a small set S of objects which is 
weakly initial: For every dE D there exists s E S and an arrow s-d. 

Proof. Let S also denote the full subcategory of D with the objects s; 
since D has small hom-sets, S is still small, so by completeness the 
inclusion functor F: S-D has a limiting cone J1: v~F. We shall prove 
v = LimF initial in D. 
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First, for every dE D we choose s-d and define Yd as the composite 
Yd: vE4s-d. We claim that Y : v- IdD is a cone. For, take any arrow 
f: d-d' and form the diagram 

Since S is small complete, there is a pullback of s -+ d' ~ s' with vertex p; 
since S is weakly initial, there is an arrow v~ s" - p. The two composite 
arrows s" - p-sand s" - p- s' are in S because S is full, so the two 
upper quadrilaterals commute (p is a cone), while the pentagon commutes 
because p is a pullback. This proves y a cone. 

If, in deftning y, we choose v -+ s -+ S to be Its, then y is a cone such 
that the composite Y F : v~ F is the limiting cone It. By Lemma 1.1, v is 
initial in D, q.e.d. 

Carefully examined, this proof is just a refinement of the previous 
one (§ V.6), where we took first a product II s (to get a single weakly 
initial object) and then a suitable equalizer. In this proof, these operations 
are combined to one: Lim F for F: SeD. 

3. The Kan Extension 

Given a functor K : M - C and a category A we consider the functor 
category AC, with objects the functors S: C-A and arrows the natural 
transformations u: S~S', and we define the functor AK: AC_AM by 
the assignments 

(u: S~S'>~(uK:SK~S'K>. 

The problem of Kan extension is to find left and right adjoints to AK. 
We consider this problem first for right adjoints. 

Definition. Given functors K:M-C and T:M-A, a right Kan 
extension of T along K is a pair R, e : RK ~ T consisting of a functor 
R E AC and a natural transformation e which is universal as an arrow from 
AK:AC_AM to TEAM. 

As always, this universality determines the functor R = RanK T 
uniquely, up to natural isomorphism. In detail, this universality means 
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that for each pair S, IX : S K -4 T there is a unique natural transformation 
(J : S -4 R such that IX = c: • (J K : S K -4 T. The diagram is 

c::RK-4T (1) 

The assignment (Jf-+c: • (J K is a bijection 

Nat(S, RanK T) ~ Nat (SK, T), (2) 

natural in S; again, this natural bijection determines RanK T from K 
and T. It is a right Kan extension because it appears at the right in the 
hom-set "Nat" (But note that some authors call this R a "left" Kan 
extension). 

By the general result that universal arrows from the functor AK to 
all the objects T together constitute a left adjoint to the functor AK , 

it follows that if every functor TEAM has a right Kan extension 
(R, C: T : RK -4 T), then Tf-+ R is (the object function of) a right adjoint 
to AK and c: is the unit ofthis adjunction. In the sequel, we shall construct 
right Kan extensions for individual functors T, which may exist when 
(the whole of) the right adjoint of AK does not exist. 

A useful case is that in which M is a subcategory of C and K : M---+C 
the inclusion Me C; in this case, AK is the operation which restricts 
the domain of a functor S: C---+ A to the subcategory M. Conversely, 
for given T: M ---+ A we consider extensions E : C ---+ A of T to C. Then 
ECEA must have for each arrow f:c---+m in C an arrow Ef:Ec---+Tm 
in A, and these arrows must constitute a cone from the vertex Ec to the 
base T, where T is regarded as a functor on the category of arrows 
f: c---+m (fixed c to variable m). These arrows f are the objects of the 
comma category (c!K), so a natural choice of Ec is the limit (with Ef 
the limiting cone) of the functor T: (c!K)---+A: 

~I~ 
m------+ m' ------+ mil 

This procedure (compare (1.3)) works in general. For each c E C, 
the comma category (eLK) has the objects (f, m), written f for short, 
where f: c---+Km in C, while <f, m)f-+m is (the object function of) the 
projection functor Q : (c!K)---+ M. 

Theorem 1 (Right Kan extension as a point-wise limit). Given 
K : M ---+ C, let T: M ---+ A be a functor such that the composite 
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(c t K)~ M ~ A has for each c E C a limit in A, with limiting cone A, 
written 

Each g : c~ c' induces a unique arrow 

Rg: Lim TQ~Lim TQ' 
+-- +--

(4) 

commuting with the limiting cones. These formulas define a functor 
R : C ~ A, and for each n E M, the components Al Kn = en of the limiting 
cones define a natural transformation e: RK -4 T, and R, e is a right 
Kan extension of T along K. 

Proof. First, Rg is defined in (4) by the fact that the limit is a functor 
of (dK) and hence of c. Specifically, given g: c~c' and the projection 
Q':(c'tK)~A, each f':c'~Km determines f'g:c~KmE(ctK), the 
components A1'g: Rc~ Tm form a cone from Rc, and since the cone 
A' is universal, there is a unique arrow Rg which makes 

Rc=LimTQ ~ Tm 
+--1 

: Rg (5) 
.. ., 

Rc'=LimTQ'~Tm 
+--

commute for all f'. (Actually, f' f->- f' g defines the functor 
(g tK): (c' tK)~(dK), so that TQ' = TQ 0 (g tK), and Rg is the canonical 
comparison (cf. "final functors")). This choice of Rg clearly makes R a 
functor. 

For each n E M, lKn is an object of (KntK), so the limiting cone A 
has a component AIKn : RKn~ Tn, called en' For each h: n~n' form the 
diagram 

(6) 

the lower triangle commutes by the definition of Rg for g = Kh, and 
the upper triangle commutes because A is a cone. Therefore the square 
commutes; this states that e : RK -4 T is natural. 

Now let S: C~A be another functor, with rx: SK-4 T natural. We 
construct (Ic : S c ---> R c from the diagram for f : c ---> K m 

(7) 
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For each arrow h: <f, m)~<f', m') of (c!K), where f' = Kh 0 f, the 
right-hand square commutes because IX is natural. This shows that the 
diagonal arrows IXm 0 Sf: S c~ Tm form a cone from S c. Hence there 
is a unique arrow (Je' as shown in (7). To prove (J natural for g : c~c', 
form the diagram 

(8) 

for each f': c'~Km in (c' !K). The right-hand square and the outer 
square commute by the definition of (J, and the top box by the definition 
(5) of Rg. Therefore the left-hand (inner) square commutes aftef both 
legs are composed with AI' - and this for all f'. But A' is a limiting cone, 
so the left-hand square commutes. Therefore (J is natural. 

The definition (7) of (J for c = Kn, f = 1Kn , and m = n shows that 
IXn = A1 Kn (J Kn' hence that IX = e . (J K. This proves that e: RK -4 T gives 
every IX as IX = e . (J K for some (J. The diagram (8) shows that (J is unique 
with this property. Indeed, this property determines the components 
(JKn of (J; to determine other components, set c' = Kn, f' = 1Kn , and 
m = n in (8). The lefthand square commutes if (J is natural, and then 
A9° (Je is determined for all g: c~ Kn. But A is a limiting cone, so (Je is 
determined. This shows that e is universal, q.e.d. 

Corollary 2. If M is small and A complete, any functor T: M ~ A 
has a right Kan extension along any K : M ~ C, and AK has a right adjOint. 

This applies in particular when A =Set; this is the case originally 
studied by Kan [1958]. 

Corollary 3. If the functor K in the theorem is full and faithful, then 
the universal arrow e: RK -4 T for the Kan extension R of T along K 
is a natural isomorphism e : RK ~ T. 

Proof. For n E M,RKn is obtained from a limit over the comma 
category (eLK) with c = Kn. Because K is full and faithful, every object 
f : Kn~ Km in this comma category can be written as f = Kh for a 
unique h: n~m. This states that 1: Kn~Kn is an initial object in this 
comma category and hence that RKn = Limf TQ can be found by 
evaluating TQ just at this initial object: Thus RKn = Tn, en = 1, q.e.d. 

This also gives a case in which a Kan extension is an actual extension: 

Corollary 4. If M is a full subcategory of a category C and T: M ~ A 
is a functor such that each composite (c!K)~M~A has a limit in A, 
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then there is a functor R: C-+A with RK = T (i.e., R extends T) such 
that the identity natural transformation 1: RK -4 T makes R the right 
Kan extension of T along the insertion K : M -+ C. 

Proof. Apply Corollary 3 to the insertion M -+ C. 
The left Kan extension L = LanK T is described similarly, as a pair 

L, '1: T -4LK with '1 universal from T to AK; this gives a bijection 

Nat (LanK T, S) ~ Nat(T, SK) (9) 

natural in S E AC• When the requisite colimits exist, L is given by 

Lc =Colim((K!c)~MLA), (10) 
-----> 

where P is the projection (m, Km-+c) ~m. 

Exercises 

Exercises 1-4 refer to the data for a Kan extension: 

K:M-+C, T:M-+A. 

1. If A is the arrow category 2, and M and C are sets, then a functor T: M ---> 2 
can be regarded as a subset of M. Show that 2M is the contravariant power 
set q> M, that LanK T is the direct image of T eM under the function K, and 
describe RanK T. 

2. (Kan extensions of representable functors.) If A = Set, and M, C have small 
hom-sets, show that the left Kan extension of M(m, -) is C(Km, -) with unit 
Yf : M(m, -) ~ C(Km, K -) given by Yfm = lKm. 

3. If M, C, and A are all sets, while A has at least two elements and K is not sur
jective, prove that neither LanK T nor RanK T exists. 

4. (Ulmer.) Show that Corollary 3 still holds if the hypothesis "K is full and 
faithful" is replaced by "K is full, and as faithful as T". Here K "is as faithful 
as T" when, for arrows h,h':m-+n in M, Kh=Kh' implies Th=Th'. 

5. For any category M, let Moo be the category formed by adding to M one new 
object 00, terminal in Moo. For T: M -+ A, prove (from first principles) that a 
co limiting cone for T is a left Kan extension of T along the inclusion functor 
Me Moo, and conversely. 

4. Kan Extensions as Coends 

The calculus of coends gives an elegant formula for Kan extensions; for 
variety we treat the left Kan. 

Theorem 1. Given functors K: M -+ C and T: M -+ A such that for 
all m, m' E M and all c E C the copowers C(Km', c)· Tm exist in A, then T 
has a left Kan extension L = LanK T along K if for every c E C the 
following coend exists, and when this is the case, the object functor of L 
is this coend 

m 

Lc=(LanKT)c= J C(Km,c)' Tm, CEC. (1) 
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Proof. By the parameter theorem, we may regard this coend as a 
functor of c. Compare it with any other functor S: C-4A. Then 

A(Tm, SKm) ~ Nat(C(Km, -), A(Tm, S -)) 

~ J Ens(C(Km, c), A(Tm, Sc)) 
(2) 

by the Y oneda lemma and the representation of the set of natural trans
formations as an end (in a sufficiently large full category Ens of sets). 
Now we can write down in succession the following isomorphisms 

Nat(L, S) ~ J A(Lc, Sc) 

~ I A (7 C(Km, c)· Tm, sc) 

~ J J A(C(Km, c)· Tm, Sc) 
c m 

(end formula for Nat) 

(Definition (1) of L) 

(Continuity of A( -, S c)) 

~ J J Ens(C(Km, c), A(Tm, Sc)) (Definition of copowers) 
c m 

~ J J Ens(C(Km, c), A(Tm, Se)) (Fubini) 
me 

~ J A(Tm, SKm) (by (2) above) 
m 

~ Nat(T, SK) (end formula for Nat). 

Here the Fubini theorem (interchange of ends) applies because both 
indicated ends J and J exist, while Ens must be a sufficiently large 

m c 

category of sets (to contain all hom-sets for A and C and all sets Nat (L, S), 
Nat(T, SK) for all S: C-4A). Since each step is natural in S, the com
posite isomorphism is natural in S and proves that L = LanK T. 

Note that we do not assert the converse: That if LanK T exists, it 
must be given for each e as the coend (1). 

The unit 1] of this Kan extension is obtained by setting S = Land 
following the chain of isomorphisms. We record the result: 

Theorem 2 (Kan extensions as coends, continued.) For the Kan ex
tension (1) above the universal arrow 1] : T --'--> LK is given for each nE M 
as the composite of an injection ilKn of the eopower (for f = 1Kn : K n-4 K n) 
with a component of the ending wedge w: 

Tn i lKn ) C(Kn, Kn)· Tn 

~ l,""K" 
T C(Km, Kn)· Tm= (LanK T)(Kn). 
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For the left Kan extension we thus have two formulas - (1) above 
by coends, and (3.10) by co limits. They are closely related, and simply 
constitute two ways of organizing the same colimit information (see 
Exercise 1 below). The corollaries of § 3 can be deduced from either 
formula. Also right Kan extensions are given by a formula 

(RanK T)c = S TmC(c.Km) , (3) 
m 

valid when the indicated power (powers X, ~~ax in A) and its end exist. 
Consider additive Kan extensions: M, C, and A are Ab-categories 

and the given functors K and T are both additive. Then we can describe 
a right Ab-Kan extension of Talong K as an additive functor R': C-+A 
with a bijection (3.2) given and natural for additive functors S. This 
functor R' need not agree with the ordinary right Kan extensions RanK T 
obtained by forgetting that K, T (and S) are additive. However, R' 
can still be given by a formula (3) with an end, provided the power aC 

involved (for a E A, C E Ab) is replaced by a "cotensor" aC defined by the 
adjunction 

A(b, cC) ~ Ab(C, A(b, c)) (4) 

for all bE A (see Day and Kelly [1969], Dubuc [1970]). For example, 
if A = R-Mod, this makes aC = Ab( C, a) with the evident R-module 
structure (induced from that of a E R-Mod). 

Derived functors are an example. If T: R-Mod-+Ab is right exact, 
its left derived functors Tn: R-Mod-+Ab come equipped with certain 
connecting morphisms, which make them what is called a connected 
sequence of functors (Mac Lane [1963a], Cartan-Eilenberg [1956]); 
basic example: If A is a right R-module, the left-derived functors of the 
tensor product A ® R - : R-Mod -+ Ab are the torsion products 
Torn(A, -): R-Mod-+Ab. 

The left-derived functors Tn of T can be described by the following 
"universal" property: To = T, and if Sn is any connected sequence of 
(additive) functors, each natural transformation So....L+ To extends to a 
unique morphism {Sn I n~O}-+{Tn I n~O} of connected sequences of 
functors. 

This property may be rewritten thus. Embed R-Mod in a larger 
Ab-category E with objects (C, n), C an R-module and n a nonnegative 
integer, while the hom-groups are E«C,n), (B,m»)=Ext~-m{C,B), 
with composites given by the Yoneda product. Then C ~ (C, 0) is a 
functor K: R-Mod-+E. A connected sequence of additive functors 
{Tn I n ~ O} is then the same thing as a single additive functor T*: E-+Ab 
with T* (C, n) = Tn{ C), while T* on the morphisms of E gives the connecting 
morphisms. The universal property stated above for the sequence T* 
of left derived functors of T now reads: 

Nat(S* K, T) ~ Nat(S*, T*) . 
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This states exactly that T* is the right Ab-Kan extension of T = To 
along K: R -Mod ---+ E (and that the unit c: T* K -'-+ T of this Kan ex
tension is the identity). 

For details we refer to Cartan-Eilenberg or to Mac Lane [1963a] 
(where the category E is treated in a different but equivalent way, as a 
"graded Ab-category"). 

Exercises 

1. If the coends in Theorem 1 exist, prove that these coends do give the colimits 
required in the formula (3.10) for LanK. 

2. For fixed K, describe LanK T and RanK T, when they exist, as functors of T. 
3. (Dubuc.) If RanKT exists, while L: C -+ D is any functor, prove that RanLKT 

exists if and only if RanLRanK T exists and that then these two functors (and 
their universal arrows) are equal. 

4. (Ulmer; Day-Kelly; Kan extensions as a coend in a functor category AC.) 

If C(Km', c)· Tm exists for all m', m E M and all C E C, show that 
<m',m) 1-+ C(Km', -). Tm is (the objectfuQction of) a functor MOP x M -+Ac. 
Prove that T has a left Kan extension along K if and only if this bifunctor has 
a coend, and that then this coend is the Kan extension 

m 

LanKT= S C(Km, -). Tm. 

Describe the universal arrow for LanK T in terms of the coend. 
5. (Ulmer.) As in Ex. 4, obtain a necessary and sufficient condition for the existence 

of RanI( T in terms of the limit formula, interpreted in the functor category AC. 

5. Pointwise Kan Extensions 

Given functors 

(1) 

and a right Kan extension RanK T with co unit c: (RanK T) K -'--> T, we 
say that G preserves this right Kan extension when Go RanK T is a right 
Kan extension of GT along K with co unit Gc:G(RanKT)K-'-+GT. 
This implies (but is stronger than) 

Go RanK T ~ RanK(G T). 

We already know that right adjoints G preserve limits. We now show 
that they also preserve Kan extensions. 

Theorem 1. If G : A ---+ X has a left adjoint F, it preserves all right 
Kan extensions which exist in A. 

Proof. First a preliminary, for an adjunction 

A(Fx, a) ~ X(x, Ga), XEX, aEA. 
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If in place of x we have a functor H: C-+X and in place of a a functor 
L: C-+A, then applying this adjunction at every Lc and H c gives a 
bijection, 

Nat(F H, L) ~ Nat(H, G L). (2) 

(As usual the adjunction switches F on the left to G on the right.) 
Now assume the adjunction and a right Kan extension RanK T 

for some K and T: M-+A. Then for any functor H: C-+X we have the 
following bijections 

Nat(H, Go RanK T) ~ Nat(F H, RanK T) 

~ Nat(F H K, T) ~ Nat(H K, G T), 

natural in H; the first and third are instances of (2), and the second is the 
definition of the right Kan extension. The composite bijection (for all H) 
shows that Go RanK T is the right Kan extension RanKG T. To get its 
counit, we set H = Go RanK T and take the image of the identity; we 
get G e, where e : (RanK T) K -4 T is the co unit of the given Kan extension. 

Corollary 2. If R, e : R K ~ T is a right Kan extension and A has small 
hom-sets and all small co powers, then for each a E A, A(a, R -) : C -+ Set, 
is the right Kan extension of A(a, T -) : M -+ Set, with counit A(a, e -). 

Proof. The functor A(a, -): A -+Set has the left adjoint X f-+ X . a, 
the copower. 

Definition. Given C ~ M ~ A, where A has small hom-sets, a 
right Kan extension R is point-wise when it is preserved by all representable 
functors A(a, -) : A -+Set, for a E A. 

Theorem 3. A functor T: M -+ A has a pointwise right Kan extension 
along K: M -+ C if and only if the limit of (c ! K)-+ M -+ A exists for 
all c. When this is the case, RanK T is given by the formulas of Theorem 3.1. 

Proof. Since A(a, -) preserves limits, any Kan extension given by the 
limit formula is pointwise. 

Conversely, suppose for each a E A that A(a, T - ) : M -+Set has a 
right Kan extension W = A(a, R -), as in the figure 

Kl~ 
M~A A(a._)ISet. 

Then for each functor V, as shown, there is a bijection 

Nat(V, Ra) ~ Nat (V K, A(a, T - )), 

natural in V. This holds in particular when V = C(c, -) for some c E C, so 

Nat(C(c, -), A(a, R -)) ~ Nat(C(c, K -), A(a, T -)). 
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We reduce the left hand side by the Yoneda Lemma and the right hand 
side by the lemma below to get, with Q the projection (c 1 K) ---+ M 

A(a, Rc)~ Cone(a, TQ: (c ~ K)-+A). 

This states that the set of cones is representable, hence that the limit 
of TQ exists, q.e.d. 

The missing lemma is 

Lemma. Given K : M -+ C, there is a bijection 

Cone(a, (c ~ K)-+M-+C)~Nat(C(c, K -), A(a, T-»). 

Proof. A cone ,:a-4TQ assigns to each f:c-+Km an arrow 
,(f, m): a-+ Tm subject to the cone conditions; for each h: m-+m', 

,(Kh 0 f, m') = Th 0 ,(f, m). 

A natural transformation p: C(c, K - )-4 A(a, T -) assigns to each 
mEM and to each f:c-+Km an arrow Pmf:a-+Tm, subject to the 
naturality condition, for each h : m' -+ m. that 

The bijection ,+-+P is now evident. 
This proof of the theorem also shows 

Corollary 4. R, I: : R K -4 T is a pointwise Kan extension of T along 
K if and only if, for all a E A and c E C, 

A(a,Rc)-+Nat(C(c,K -),A(a, T-») 

sending g : a-+ R c to the transformation with the component 

C(c,Km)~A(Rc,RKm) A(g,£ml)A(a, Tm) 

at mE M is a bijection. 

Exercise 

1. In the situation (1), if RanKT and RanKGT both exist, with counits e and e', 
prove that there is a unique natural transformation (the canonical map) 
w: Go RanKT-4RanKGTwith e'· wK = Ge, and prove that G preserves RanK T 
if and only if w is an isomorphism. 

6. Density 

A subcategory M of C is said to be dense in C if every object of C is a 
colimit of objects of M; more exactly, a colimit in a canonical way, 
for which the colimiting cone consists of all arrows m-+ c to c from an 
mE M. More generally, density can be defined not only for an inclusion 
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Me C, but for any functor K: M -+ C. The arrows m-+ c are then re
placed by the objects <m,f: Km-+c) of the comma category (K! c). 
Recall that the projections PC, QC of this comma category are given by 
pc <m,f) = m, QC<m,f) = f, and observe that (the object function of) QC 
may also be regarded as a cone QC: K PC-+c. 

Definition. A functor K : M -+ C is dense when for each c E C 

Colim ((K!c)~M~C) =c, (1) 

with colimiting cone the "canonical cone" QC. In particular, a subcategory 
M of C is dense in C when the inclusion functor M -+ C is dense in the sense 
just defined. 

The definition (1) is sometimes phrased, 'The canonical map 
Colim K pc -+ C is an isomorphism"; here the canonical map is the unique 
arrow k: ColimK PC-+c which carries the co limiting cone to QC. 

For example, the one-point set * is dense in Set: For each set X, the 
comma category (* ! X) is just the set (discrete category) of elements 
XEX, each regarded as a function x: *-+X, while (1) becomes state
ment that each X is the coproduct II x of its elements (i.e., that a function f 
with domain X can be uniquely determined by specifying the value 
fx at each x EX). 

Dually, a functor K: M -+C is codense when for each c E C 

Lim((c!K)~M~C) =c, (2) 

with limiting cone the canonical cone sending <f :c-+Km, m) to f 
But this limit is precisely the one involved in the definition of RanKK. 
Hence 

Proposition 1. The functor K : M -+ C is codense if and only if Ide, 
together with the identity natural transformation IdK : K ~ K, is the 
pointwise right Kan extension of K along K. 

In this case Corollary 5.4 simplifies (e is the identity) to the corre
spondence sending each f: a-+ c to the natural transformation 

f* = CU, K - ) : C(c, K - )~ C(a, K - ) (3) 

(the transformationj* is "composition withf on the right"). Hence 

Proposition 2. The functor K: M -+ C is codense if and only if the 
correspondence f 1-+ CU, K - ) above is for all a and c E C a bijection 

C(a, c) ~ Nat(C(c, K - ), C(a, K -)); 

that is, if and only if the functor COP-+EnsM defined by 

Cf---+ C(c, K -) : M -+ EnsM 

is full and faithful, where the hom-sets of M lie in Ens. 

(4) 

(5) 
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Corollary 3. If the hom-sets of M lie in a full category Ens of sets, 
then Yoneda embedding Y: M ---> (EnsM)OP, given by Y m = M(m, -) is 
codense. 

Proof. By the Y oneda Lemma itself, for each F : M ---+ Ens, 

(EnsM)Op (F, Ym) = EnsM(Ym, F) ~ Fm. 

Thus the right side of (4) above, with C = (EnsM)op, a = F and c = G 
becomes 

Nat(G, F) = (EnsM)op (F, G) = C(F, G), 

and (4) becomes an identity. 
This result is often stated thus: Any functor M ---+ Ens is a canonical 

limit of representable functors. 
The dual of Proposition 2 states that K: M ---+ C is dense if and 

only if cl--*C(K-, c) is a full and faithful functor C---+EnsMOP. As an 
application, we show that the full subcategory of finitely generated 
abelian groups is dense in Ab. We need only show that for K and any two 
abelian groups A and B the map 

Ab(A, B)---+ Nat{Ab(K -, A), Ab(K -, B») 
is a bijection. First, it is injective: Two homomorphisms f, g: A---+B 
which agree on cyclic subgroups of A must agree everywhere. Also, it is 
surjective: Given r:Ab(K-,A)....L+Ab(K-,B), we define a function 
f: A ---+ B by taking fa for each a E A to be the value of r on the map 
Z---+ A taking 1 to a. Because Z f£J Z is a finitely generated group, this 
function must be a homomorphism. Its image under the map in question 
agrees with r; the proof is complete. Note that the argument proves 
more: The full subcategory with one object Z f£J Z is dense in Ab. (There 
are two summands Z required because abelian groups are algebraic 
systems defined by binary operations.) 

Exercises 

1. In R-Mod, show that the full subcategory with one object R EB R is dense. 
2. Show that the full subcategory with one object Z is not dense in Ab. 
3. Let the image category KM for K : M --? C be the subcategory of C with objects 

all Km for m EM and arrows all Kh, h in M. Prove that K dense implies KM a 
dense subcategory of C. 

4. Prove that the objects of a subcategory M generate C if and only if the functor 
C ---+ EnsMop given by Cf-> C(K -, c) is faithful. 

5. If all copowers C(Km' ,c) • Km exist in C, prove that K : M --? C is dense if and 
only if each object c E C is the coend 

c = f C(Km, c) • Km 

with coending wedge w:;' : C(Km, c)· Km ---+ c given on the injections if of the 
copower as w:;' it = f : Km ---+ C. 
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7. All Concepts Are Kan Extensions 

The notion of Kan extensions subsumes all the other fundamental 
concepts of category theory. 

Theorem 1. A functor T: M -4 A has a colimit if and only if it has a 
left Kan extension along the (unique) functor K1 : M -41, and then 
Colim T is the value of LanK I T on the unique object ofl. 

Proof. A functor S: 1-4 A is just an object a E A, and a natural 
transformation rx : T ~ S K1, for Kl : M -41, is just a cone with base T 
and vertex a. Since the left Kan extension L = LanK! T is constructed 
to provide the universal natural '1 : T -4 LK1 , it also provides the universal 
cone with base T, and hence the colimit of T. 

Dually, right Kan extensions along the same functor Kl give limits. 

Theorem 2 (Formal criteria for the existence of an adjoint). A functor 
G : A -4 X has a left adjoint if and only if the right Kan extension 
RanG 1 A : X -4 A exists and is preserved by G; when this is the case, this 
right Kan extension is a left adjoint F = RanG1A for G, and the counit 
transformation E: (RanG 1 A) G-41 A for the Kan extension is the counit 
E: FG-41 of the adjunction. 

Proof. If G has a left adjoint F, with unit '1: 1x-4GF and counit 
E: FG-41 A , then we can construct for all functors H : A -4C (in particular, 
for the identity functor 1 A) a bijection 

Nat(S, H F) ~ Nat(SG, H), 

natural in S : X -4 C, by the assignments 

{o':S -4HF}~{SG~HFG~H}, 

{r:SG-4 H}~{S ~ SGF ~HF}. 

(1) 

The first followed by the second is the identity a ~ a, because the diagram 

S ~ HF HF 

S~l lHF~ 
SGF~HFGF~HF 

is commutative (the first square represents the horizontal composite 0''1 
in two ways, and the second square is H applied to one of the two 
triangular identities for '1 and E). The composite in the other order is 
also an identity, by a similar diagram. Hence we have the asserted 
bijection, clearly natural in S. If we take H = 1 A, this bijection shows 
that F = RanG 1 A, its unit is the image of a = 1 F' so is E. If we take H = G, 
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this bijection shows that GF = RanGG, with unit GI:. Hence G preserves 
the right Kan extension RanG 1 A' We have proved the first half of the 
theorem. 

We have proved more: For any H, HF=RanGH, with unit HI:. Thus 
RanGlA is preserved by any functor whatever (it is an absolute Kan 
extension). This is formulated as follows: 

Proposition 3. If G : A ~ X has a left adjoint F with counit I: : F G~ 1, 
then RanG 1 A exists, is equal to F with counit 1:, and is preserved by any 
functor whatever. 

Now suppose conversely that lA has a right Kan extension R along G, 
and that this extension is preserved by G. We then have bijections 

cP = CPs: Nat(S, R) ~ Nat(SG, lA), cp(S ~ R) = 1:' eG, 

1p=1pH: Nat(H, GR)~Nat(HG, G), 1p(H ~ GR)= GI:' (JG, 

natural in S: X ~A and H: X ~X, with co unit CPR 1 = 1:: RG~lA and 
1pGRl = GI:: GRG~G. Define 1]: l~GR to be 1pid 1 (1: G~G). Then 
1p1] = 1, so 

This is one of the two triangular identities for the proposed adjunction 
1:: RG~ lA, 1]: lx~GR. The other would be I:R· R1] = lR' Applying the 
bijection CPR' it will suffice to prove instead cp(I:R' R1]) = 1:. Putting in 
the definition of cP in terms of 1:, we are to prove the following square 
commutative: 

R~G 
R G +---------~ R G R G 

1 RGe 1 
e eRG 

Insert the dotted arrow at the top and use R of the (known) triangular 
identity GI: '1]G = 1. The square then reduces to the equivalence of two 
expressions for u: RGRG~ 1, q.e.d. 

The arguments ·so far in this section have not used either formula 
for Kan extensions. We now examine the meaning of these formulas in 
the simple case of Kan extensions along the identity functor I : C ~ C. 
The universal property defining Kan extensions shows at once for each 
T: C~A that 

LanIT= T, RanIT= T. 

Consider in particular T: C~Set, and assume that C has small hom
sets. Then, in the formula for RanI as an end, all the powers involved 
exist, so for every c E C 

Tc = (RanI T)c = J TmC(c,m) . 
m 
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But in Set, X Y =Set(Y, X), and by (IX.S.2) the end reduces to a set of 
natural transformations 

Tc= SSet(C(c,m), Tm)~Nat(C(c, -), T). 
m 

The result is just the Y oneda Lemma. 

Exercises 

1. Show that the bijection (1) (and (5.2) as well) is a special case of a bijection 
defined for an adjoint square (Exercise IV.7.4) 

Nat(H G, G' K) ~ Nat(F' H, KG) . 

2. Obtain the Yoneda Lemma from the limit formula for RanK T. (This gives an 
independent proof of the Y oneda Lemma, which was not used in the proof 
of § 3). 

3. (a) If K: M---+C has a right KanextensionR,alongitself,tp: Nat(S,R)~ Nat(SK, K), 
prove that <R,1/,J1) is a monad in C, where 1/=tp-l(1dK ), J1=tp-l(s·Rs). 
(This is called the codensity monad of K.) 

(b) Show that K is codense if and only if 1/ is an isomorphism. 
(c) IfG:A---+X has a left adjoint F:X---+A with unit 1/:Id~GF and co unit 

s: FG~Id, then its codensity monad exists and is <GF, 1/, GsF). (The 
monad defined by the adjunction.) 

Notes. 

The formal criteria for adjoints are due to Benabou [1965]. The construction of 
Kan extensions by limits and co limits, in the critical case when the receiving 
category A is Set, was achieved by Kan in [1960]. The impact of this construction 
was understood only gradually. In 1963 Lawvere used these extensions in functorial 
semantics. Ulmer emphasized their importance, and in an unpublished paper 
gave the coend formula (without the name coend) for LanK T. Benabou (unpub
lished) and Day-Kelly [1969] describe Kan extensions in relative categories 
(including Ab-categories). This idea is further developed by Dubuc [1970]; here 
the coend formula for Kan extensions plays a central role. 

The Cartan-Eilenberg notion of derived functors is, as noted in § 4, the original 
and decisive example of a Kan extension. Verdier, by embedding each abelian 
category in a suitable derived category, has achieved an elegant form of this 
interpretation of derived functors by Kan extensions. For an exposition, see 
Quillen [1967]. 

Isbell, in a pioneering paper [1960], defined a functor K : M ---+ C to be "left 
adequate" when c I->- C(K -, c) is full and faithful. This assignment is the functor 
of the dual of Proposition 6.2; hence by that theorem "left adequate" and "dense" 
agree. Isbell has developed the ideas further in characterizing categories of algebras 
[1964]. 

The ubiquity of Kan extensions has developed gradually; I have learned 
much in this chapter from my student Eduardo Dubuc; and Max Kelly has 
suggested major improvements, notably the use of pointwise Kan extensions. 



XI. Symmetry and Braidings in Monoidal Categories 

A monoidal category, as introduced in Chapter VII, is a category equip
ped with binary "tensor" products, associative up to a natural iso
morphism IX. A principal result for these categories was a "coherence" 
theorem: If a certain pentagonal diagram (§ VII.l.S) in IX commutes, then 
all diagrams involving this IX must commute. We now consider various 
extensions of this result. 

First, we observe that this coherence theorem really amounts to an 
assertion that the monoidal category is equivalent to a "strict" one; that 
is, to one in which the associativity map as well as the maps A. and p for 
the unit object are always identities. Next, a symmetric monoidal cate
gory (§ VII. 7) is one in which the tensor product is not only associative 
but also commutative up to a suitable natural isomorphism y : a 0 b ~ 
bOa. Again, a coherence theorem holds, in that all diagrams involving IX 

and y commute; however, it is not always possible to make y the identity 
(i.e., to strictify). These symmetric monoidal categories have y2 = 1 (that 
is, y is its own inverse), but there are other cogent examples of monoidal 
categories where y is a "twist" with y2 :F 1. These are the "braided" 
monoidal categories, they (§4) arise in applications to quantum mechanics 
and to knot theory. 

1. Symmetric Monoidal Categories 

A monoidal category M is a category with a bifunctor, ® or 0, 

D:MxM-+M 

written for objects a, b of M variously as a "product" 

(a,b) -+aDb,a®b,orab 

which is associative up to a natural isomorphism 

IX: a(bc) ~ (ab)c (1) 

and is equipped with an element e, which is unit up to natural iso
morphisms 

251 
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A:ea~a, p:ae~e. (2) 

These maps must satisfy certain commutativity requirements; for a, a 
pentagonal diagram 

a(b(cd)) ~ (ab)(cd) ~ ((ab)c)d 

~l Id (3) 

a((bc)d) ____ IX -----+1 (a(bc))d , 

as in §VII.1.(5), and for A and p the two commutativities 

(ae)c 

Ipi (4) 

ac ac, 

The category of all vector spaces over a given field F, with the usual ten
sor product ® of vector spaces as the product D and with the one
dimensional vector space F as unit, is a standard example of a monoidal 
category M; with this in mind, monoidal categories are often called tensor 
categories. 

The assumed commutativities (3) and (4) suffice to show, as in the 
Corollary of Theorem VII.2.1, that "every" diagram of a's, A'S, and p's 
commutes; that is, given any word w in letters a, b, ... ,e, there is a unique 
composite of a, A, and p mapping w to a word with all parentheses start
ing in front and all e's removed. (For example, by (4), any e can be re
moved before or after the application of an associatvity a, with equal 
results.) 

Examples to be presented later suggest the idea of a "braiding". 
A braiding for a monoidal category M consists of a family of iso

morphisms 

Ya,b : aD b ~ b D a (5) 

natural in a and b E M, which satisfy for e the commutativity 

(6) 

a a 

and which, with the associativity a, make both the following hexagonal 
diagrams commute (with the symbol D omitted): 
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(ab)c 
Y c(ab) a(bc) Y (bc)a ------+ ------+ 

1 ~-I l~ l~ 1 ~-I 

a(bc) (ca)b (ab)c b(ca) (7) 

l·y 1 lY'1 lY'1 ll.y 

a(cb) 
~ 

(ac)b, (ba)c 
~-I 

b(ac) . ------+ ------+ 

Note that the first diagram replaces each Ya b c which has a product a b as 
first index by two y's with single indices, while the second hexagonal dia
gram does the same for Ya be with a product as second index. Note also that 
the first hexagon of (7) for Y implies the second diagram for y- l , and con
versely. Thus, when y is a braiding for M, then y-l is also a braiding for M. 

A symmetric monoidal category, as already defined in §VII. 7, is a 
category with a braiding y such that every diagram 

ab ~ba 

~ lYb,Q 

ab 

(8) 

commutes. For this case, either one of the hexagons (7) implies the other. 
The coherence theorem for monoidal categories, as proved in Chapter 
VII, will now be extended to the symmetric case, using the symmetric 
group Sn on n letters. As in § VII.2, we will consider D-words w in n 
letters and also permutations 'l' of Sn. For each symmetric monoidal 
category M, a "permuted" word W'l' determines a functor (w 'l') M : 
M n -+ M, defined by permuting the arguments of w by 'l', as in 

(w'l')M(al' ... ,an) = w(ad, ... ,aTn) , ai EM. 

Theorem 1. In each symmetric monoidal category M there is a function 
which assigns to each pair (va, w 'l') of permuted words of the same length n 
a (unique) natural isomorphism 

(9) 

called the canonical map from va to W'l', in such a way that the identity of 
M and all instances of a and yare canonical, and the composite as well as 
the D-product of two canonical maps is canonical. 

Proof There is always at least one such map between different per
muted words, since we can use instances of a to rearrange the parentheses 
and instances of y to transpose adjacent arguments. This will provide for 
any desired permutations of the arguments, since all the permutations of 
the symmetric group can be achieved by successive transpositions. The 
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identities (7) show that interchanging a single argument a with a product 
of arguments can always be replaced by successive interchanges of indi
vidual arguments. 

It remains to show that any two such composites ("paths") from 
(VO')M to a (WT)M are equal. From the monoidal coherence theorem 
(§ VII. 2) for associativity alone, we already know that any two sequences 
of applications of IX to get from a (v 0') M to a (w T) M will be equal. Hence, 
we might as well assume that the product 0 is strictly associative and 
that IX is the identity. In this case, the two hexagons (7) can be replaced by 
two triangles 

abc ~ cab abc ~ bca 

l'r~/r'l r'l~~.r (7a) 

acb, b a c. 

These identities show that we need only consider successive steps 
which interchange two adjacent letters a, b. Now the symmetric group Sn 
is generated by the transpositions Ti = (i, 1 + i) of successive letters for 
i = I, ... , n - 1. And any closed path consisting of such transpositions 
will correspond to a relation between these generators Ti. It is known that 
all such relations are products of conjugates of a number of the known 
"defining relations", which (for Sn) can be taken to be just the relations 

T1 = 1 , i=I, ... ,n-l, 

i= 1, ... ,n-2, (10) 

1 ~ i < j - 1 ~ n - 2. 

Hence, to prove coherence, we need only show that for each 'iuch relation 
the corresponding diagram of paths is commutative. 

The first relation T1 = 1 matches the assumed property y2 = 1 of (8). 
For the third relation, the naturality of y suffices. For the second relation 
(T1T2)3 = 1, the naturality of Yab and the two triangles (7a), relabelled, 
give a commutative diagram ' 

~·1 

abc ) bac 

1'1~\1' 
:'\ y,T 

cab ) cba 

(11) 

1· r 

The perimeter here reads T1 T2 T1 = T2 T1 T2, as desired for (10). 
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This coherence theorem also extends to include the use of the maps 
A and p which remove units. The assumption (6) provides that we can 
remove any unit before or after an application of y, and the corre
sponding result for (J( is already known. The precise formulation of the 
resulting theorem is left to the reader; it requires consideration of words 
with more than n arguments, some of which are taken to be the unit. We 
note also that the statement of the corollary of § VII. 2 requires similar 
adjustment in the use of "words" involving e. The result still expresses 
the fact that "all formal diagrams involving just (J(, y, p, and y will 
commute". 

2. Monoidal Functors 

For any category with added categorical structure it is in order to define 
the corresponding structure for functors and for natural transformations. 
Here we consider the monoidal case again (§VII. 1). 

A monoidal Junctor (F, F2, Fo) : M ---> M' between monoidal cate
gories M and M' consists of the following three items: 

(i) An (ordinary) functor F : M ---> M' between categories; 
(ii) For objects a, bin M morphisms 

F2(a, b) : F(a) D F(b) ---> F(a D b) 

in M' which are natural in a and b; 
(iii) For the units e and e', a morphism in M' 

Fo : e' ---> Fe. 

(1) 

(2) 

Together, these must make all the following three diagrams, involving the 
structural maps (J(, A, and p, commute in M': 

F(a) D (F(b) D F(c)) 
ri 

(F(a) D F(b)) D F(c) -------
11DF2 1F2Dl 

F(a) D (F(b D c)) (F(a Db) D F(c)) (3) 

1F2 1F2 

F(aD(bDc)) 
F(rx) 

F((aDb)Dc) , -------
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F(b) De' ~ F(b) e' 0 F(b) F(b) 

110FO IF(P) 

F(b) D F(e) ------t F(b 0 e) , 
F2 

I Fo 0 1 I F(.\) 

F(e) 0 F(b) ------t F(e D b) . 
F2 

(4) 

The evident composite of two monoidal functions is monoidal. 
A monoidal functor is said to be strong when Fo and all the F2(a, b) 

are isomorphisms, and strict when Fo and all F2 (a, b) are identities (recall 
that a monoidal category is strict when (x, A, and p are identities). 

A monoidal natural transformation (): (F, F2, Fo) -+ (G, G2, Go) : 
M -+ M' between two monoidal functors is a natural transformation 
between the underlying ordinary functors (): F -+ G such that all the 
diagrams 

F(a) D F(b) ~ F(a 0 b) 

10aOlh 10aob (5) 

G(a) D G(b) ~ G(a 0 b) 

and 

e'~Fe 

II 10
, 

(6) 

e'~Ge 

commute in M'. The evident composite of two monoidal natural trans
formations is natural. 

For a monoidal function F, the maps F2 for the product and Fo for 
the unit can be extended to the functors defined by arbitrary tensor words 
v in n letters (as these words are defined in § VII.2). This will give for each 
such functor v a transformation 

(7) 

natural in aI, ... ,an, such that Fo is F2 and Fe is Fo. Indeed, words are 
defined inductively as tensor products v 0 v' of shorter words and we 
take Fvov' as F2(Fv 0 Fv'). With this definition it is evident that all dia
grams in these natural transformations commute. Specifically, if v and w 
are two such D-words in n letters, the coherence theorem gives a unique 
natural transformation 17 : v -+ w constructed out of the maps (x, p, and A. 
Thus by induction, the diagram 
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v(F al, ... ,F an) ~ Fv(al, ... ,an) 

1~ lF~ (8) 

w(F al, ... ,F an) ~ Fw(al, ... ,an) 

commutes. (This is just the extension of conditions (3) and (4) to arbi
trary words.) Moreover, for any monoidal natural transformation 
() : F -+ G between two monoidal functors and for any word v, the dia
gram 

V(Fal, ... ,Fan) ~ 

1 v(Oat , ... ,0 .. ) 

v(Gal, ... , Gan) ---+ 
G. 

Fv(al, ... ,an) 

lo.(at , ... ,an ) 

Gv(al, ... ,an) 

commutes; this condition generalizes the conditions (5) and (6). 

(9) 

If B, B' are braided (or even symmetric) monoidal categories, a 
braided monoidal functor is a monoidal functor (F, F2 , Fo) : B -+ B' 
which commutes with the braidings y and y' in the following sense: 

(10) 

F(aOb) ~ F(bOa) j 

here y and y' are the braidings of Band B', respectively. The category of 
braided monoidal categories has morphisms these braided monoidal 
functors. 

3. Strict Monoidal Categories 

Theorem 1. Any monoidal category M is categorically equivalent, via a 
strong monoidal Junctor G: M -+ S and a strong monoidal Junctor 
F : S -+ M, to a strict monoidal category S. 

(Recall that the monoidal category is said to be "strict" when the struc
ture maps ex, y, and p are all identities.) 

Proof The coherence theorem yields unique "canonical" maps be
tween words; hence, the plan of the proof is to embed the given category 
M in a larger strict monoidal category S consisting of iterated formal 
products (where all pairs of parenthesis start in front) of elements of M. 
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S will be the free monoid generated by the elements of M. Specifi
cally, take the objects s of S to be all finite strings s = [b l , ... ,bk ] of 
objects of M, including the empty string 0. A product s D t of strings s 
and t is then defined by concatenation of strings, as s· t. This product is 
associative, so the associativity map IX for S can be the identity. Also, the 
empty string 0 acts as a unit for this product, so the maps p and A. for S 
can both be the identity. With these agreements, S is an associative 
monoid with a unit, but not yet a monoidal category. 

Now define a map F : S ~ M on strings in S by setting 

F(0) = e, 

F(s) = F[b l , ••. ,bk] = ( ... (b l D b2) Db3 ) ... ) D bk) , (1) 

where on the right all pairs of parenthesis begin in front. Now define the 
arrows s ~ t between strings sand t in S to be exactly the arrows between 
the corresponding objects in M, 

F(s) ~ F(t), ( I') 

with composition just as in M. This convention clearly makes S into a 
category. Then the concatenation product s· u can be extended to a cor
responding product!· g of arrows!: s ~ t and g : u ~ v, where u and v, 
like sand t, are finite strings of objects of M. Specifically, this means that 
we define! . g as the following composite in M: 

) fOg 
F(s· u) ~ F(s) D F(u ----+ F(t) D F(v) ~ F(t· v) ; 

here the two outer arrows are the canonical maps in M. For a triple 
product with a map h : w ~ y of strings, iteration of this definition gives 
(f . g) . h as the composite of canonical maps, therefore also canonical. 
The coherence theorem for monoidal categories then shows that this 
product! . g of arrows is strictly associative. Hence, S is a strict monoidal 
category. Moreover, F is a strong monoidal functor if we take Fo to be 
the identity e ~ e and F2(S, t) to be the unique canonical map (move all 
parentheses to the front) 

F2(S, t) : F(s) 0 F(t) ~ F(s· t) . (2) 

With this definition, the requirements (3) and (4) of §2 for a monoidal 
functor follow from the coherence theorem for the monoidal category M. 

A strong monoidal functor G : M ~ S in the opposite direction with 
G(b) = [b] is defined for b, e in M by noting that G(b)· G(e) = 
[b][e] = [b, e] and by setting 
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G(b) = [b], G(f) =f, 

Go = 1 : 0 ---- [e], (3) 

G2(b, c) = 1 : [b, c] ---- [b 0 c] . 

Here the last map is 1 because by the definition (1) above a map of 
strings [b, c] ---- [b 0 c] is just a map b 0 c ---- b 0 c in M. The conditions 
(3), (4), and (4') of §2 on G then follow. In the case of (3), observe that 
the map G2 0 1 is 

(G(a)· G(b»· G(c) <hOI I G(aDb)· G(c) , 

[a, b, C]I-I ------>1 [a Db, c], 

therefore, by the definition (1) of maps in S, must be the map 
IX: aD (b 0 c) ---- (a 0 b) 0 c in B as a map in S; this matches the map 
G(IX) at the base of (3) of 2, while IX' = 1 is at the top. The composite 
functor F G : M ---- M is the identity, while the composite G Fis naturally 
isomorphic to the identity. Hence, the monoidal category M is indeed 
categorically equivalent (by monoidal functors) to the strict monoidal 
category S, as claimed. 

Conversely, the equivalence given in the conclusion of this theorem 
will yield the coherence theorem as an easy consequence: 

Theorem 2. If the monoidal category M is equivalent by a strong mon
oidal functor G : M ---- S to a strict monoidal category S, then coherence 
holds for the associativity of the tensor product 0 in M. 

Proof Suppose that v and ware two tensor words in k letters, while 
o and 0' : v ---- ware two natural transformations between the corre
sponding functors, both constructed as combinations of the associativity 
transformation IX in M. Now use the natural transformations Gv and Gw 

constructed as in (2.7) from G2 and Go. As in (2.8), the diagram 

V(Gal, ... , Gan) ~ W(Gal, ... , Gan) 

1 G, 1 Gw 

commutes, as does the corresponding diagram for 0'. Here, Os is short for 
O( Gal, ... , G an) and Om short for O( aI, ... , an). But since the monoidal 
category S, with G : M ---- S, is strict and 0 and 0' are both constructed 
from IX, we have 0 = 0' in S. Then comparing the diagrams above for 0 
and for 0', with Gv and Gw known to be isomorphisms, we find that 
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G OM = G O'u. But G is an equivalence of categories, so there is also a 
functor F : S --+ M in the opposite direction with F G ~ 1. But we have 
F GOm = F GO~. With F G ~ 1, this implies 0 = 0' in M. In other words, 
coherence for associativity (and likewise for p and A) holds in M, as 
claimed. 

Exercises 

1. For any category C, show that the functor category Ce with composition as 
tensor product and Ie as the unit is a strict monoidal category. 

2. If, in Exercise 1, C = M is a monoidal category, show that there is a strong 
monoidal functor (T, T2, To)M -> MM in which, for a, b, c, in M, 

T(a) = aD -, 

T2(a,b)c = lXa,b,c : a D (b D c) -> (a D b) Dc) , 

(To)a = A(a) -\ : a -> e D a . 

In particular, note that the conditions (3) and (4) above for this monoidal 
functor T became the conditions (5), (7), and (9) of § VII.1 in the definition of a 
monoidal category. 

3. Use the above results to give another proof, independent of this coherence 
theorem, of Theorem 1 above. Note that this gives an independent proof of 
coherence, as in Theorem 2 above. 

4. The Braid Groups En and the Braid Category 

Now we introduce the promised actual braids and the resulting category 
of braids. 

A braid on three strings, such as the following one 

is formed by twisting the strings around each other in space without cut
ting or tying them. One such braid can be multiplied by a second one by 
attaching the right-hand ends of the first strings, in order, to the left-hand 
ends of the second set of strings. Two braids are said to be equal when the 
first one can be continuously deformed into the second without crossing 
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or cutting strings. Here are some labelled examples of braids on three 
strings, including an inverse and two products: 

An evident deformation of the last diagram into the preceding one sug
gests the equality 

(1) 

The multiplication of these braids is clearly associative and has an iden
tity (three untwisted strings) and an inverse. This may serve to indicate 
the definition of the Artin braid group B3. It is generated by 0"1 and 0"2, 

subject only to the relation (1). A corresponding description yields the 
braid group Bn on n strings. 

More formally, this braid group Bn can be defined as the fundamental 
group of a suitable space Tn, that of n-tuples of distinct points. Indeed, let 
P be the Euclidean plane and take the space Tn to be the set of all n
tuples of n distinct points of P, with the evident topology. Thus, the Artin 
braid group Bn can be defined formally as the fundamental group of this 
space Tn. 

The braid group Bn clearly can be generated by the n - 1 braids O"j, 

where O"j twists the i-th string once under the (i + I )-st string. Its inverse 
O"il is indicated above, with a suggested deformation of 0"10"20"1 into 
0"20"10"2. Indeed, the defining relations for these generators O"j of Bn are as 
follows: 

O"j 0"i+1 O"j = O"j+1 O"j 0"i+1, all i = 1, ... ,n - 1 , (2) 

O"j O"j = O"j O"j, Ii - jl #- 1 . (3) 

The braid group B2 is simply the infinite cyclic group on the (single) 
generator 0"1. The braid group BI consists of just the identity. 

Each braid on n strings determines a permutation of the n end-points 
and hence a homomorphism Bn -+ Sn onto the symmetric group Sn on n 
letters. We recall that Sn is generated by the n - 1 transpositions 
rj = (i, i + 1) which interchange the letters i and i + 1, and that Sn is 
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defined by these generators and the following relations: 

2 - 1 T j - , 

This again shows the homomorphism (Ij ...... Tj of Bn onto Sn. 

(4) 

(5) 

All the braid groups may be combined to form the braid category B. 
The objects are all the natural numbers n = 0, 1,2, ... (including zero) 
and the arrows are the braids n -> n; there are no arrows n -> m for 
n i= m and only the identity arrow 0 -> 0). This defines a monoidal 
category, with the box product D· B x B -> B given by "addition" 
o = +; here the sum of two objects (natural numbers) m and n is the 
usual sum of numbers, while addition of braids is the operation: lay the 
braids side by side: 

+ = 

This operation is clearly (strictly) associative and has the empty braid on 
o as unit. Hence, the braid category B is, under +, a strict monoidal 
category. It is almost a symmetric monoidal category; the addition of 
objects m + n is commutative and one can define a transformation 
Ym n : m + n -> n + m by crossing m strings over n strings, as in the fol
lo~ing figure (for m = 3, n = 2): 

• 

This Y natural in m and n, as one can see pictorally (Joyal-Street, [1993]) 
for braids c; : m -> m and 11 : n -> n in the following schematic diagram: 
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The symmetry requirement y2 = 1 fails, but both hexagons apply, as 
suggested in the following diagram (where the associativity is evidently 
not visible): 

= 

The realization of a braid by twisted strings directly suggests the use 
of braided categories for string theory in theoretical physics. 

5. Braided Coherence 

As we have seen in § 1, coherence for a symmetric monoidal category 
holds; all formal diagrams involving just associativity IX and commuta
tivity yare commutative. This is by no means the case for a braided 
monoidal category B; given two objects a and b in B, there might be an 
infinite number of "canonical" automorphisms of a D b, as follows: 

(1) 

In this way, a subgroup of the braid group B2 acts on a D b; as a result, 
all diagrams in y do not commute. 

The general situation is similar and is described by the following 
"coherence" theorem of Joyal-Street [1993)]: 

Theorem 1. If B is the braid category and M a braided monoidal cat
egory, with Mo the underlying (ordinary) category, there is an equivalence 
of categories 

homBMc(B, M) ~ Mo , (2) 

where homBMc stands for the category of strong braided monoidal functors 
F : B ---> M. The equivalence (2) is given by evaluating each such functor 
F : B ---> M at the object 1 of the braid category B. 
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Proof By Theorem 3.1 the monoidal category M is stronglyequiv
alent to a strict monoidal category S. The braiding y of M readily trans
lates by this equivalence to a braiding of S, so that the equivalence 
M -+ S is a strong morphism of braided categories. It therefore suffices 
to prove the theorem with M replaced by a strict monoidal category S. 
We will then show that there is an isomorphism of categories 

(3) 

where homBMs stands for strict braided monoidal functors F and the 
isomorphism is again given by evaluation at 1 E B. The correspondence 
(3) sends each such functor Fto the object F(1) of S. Conversely, given an 
object a of S, we wish to define a strict braided monoidal functor 
F = Fa: B -+ S with F(I) = a. Since Fis to be strict, it must preserve the 
product, so we set F(n) = an. In the braid category B, the maps n -+ n 
must be sent to maps an -+ an in S. These maps n -+ n in B are exactly 
the elements of the n-th braid group Bn , which is generated by the stand
ard maps (1i, i = 1, ... ,n - 1. In particular, (1 : 2 -+ 2 must be mapped to 

F((1) = Ya,a : a2 -+ a2 in S . 

Ip B, the map (1i (twist string i under string i + 1) can be written as a sum 
(i.e., a D product) 

Therefore, we must (and do) set 

F((1i) = l i - 1 + Ya,a + I n- i - 1 , an -+ an . 

We must then check that F preserves the defining relations of the braid 
group Bn. The relations 

(1i(1j = (1j(1i, Ii - jl > 1 , 

are immediate, while the relation 

follows from the two commutative hexagons for y, as they are illustrated 
in the diagram (11) of § 1, for the case when i = 1. 

To complete the definition of the monoidal functor F = (F, F2 , Fo), 
we must also produce a suitable map Fo and a map 

F2(m, n) : F(m) D F(n) -+ F(m + n) , 

natural in m and n. This must be a map 
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for the chosen a = F(l). But since the sum of a braid m ---+ m and one 
n ---+ n simply lays these braids side by side, we can take this map to be the 
identity. 

We also need a map Fo : e' ---+ Fe; here, e' is the unit object of S, while 
e = 0 and so F(e) = e'; so we can take Fo to be the identity; with these 
choices, F is indeed strict. 

Finally, we show that the operation "evaluate at I" of (3) is an 
equivalence of categories by showing that it is full and faithful. In
deed, given two strict monoidal functors F, G: B ---+ S and a map 
f : F(l) ---+ G(l) in So between their images (by evaluation at 1) in So, we 
wish to have a natural transformation () : F ---+ G for which () at the object 
1 is the given map f But in B, the object n is the n-fold D-product of 
objects 1, while S is a strict monoidal category and so has n-th powers by 
D. For aD-word w with n factors, the strict monoidal functor Fyields 
an isomorphism Fw : F(1t ---+ F(n); also, this word with all n arguments 
equal to a yields the n-th power of a in B or in S. Hence, the desired 
natural transformation () : F ---+ G with ()( 1) = f must make the following 
diagram commute: 

F(lt ~ G(1t 

~ lFw 1 Gw ; 

F(n) ----+ 
On 

G(n) 

so we must define ()n by this as GwfnF;I. From the properties of Fw and 
Gw, it follows that () so defined is natural. 

Note. This proof follows the argument of Joyal-Street in a preprint 
[1986]; it was not introduced in the subsequent published paper [1993]. 

The result is a coherence theorem, but not in the usual sense. It does 
not assert that every diagram in the basic maps IX, A, p, and y commutes, 
but it does serve to describe all the composites of these maps and then all 
the endomorphisms they generate for an iterated tensor product. Each of 
these maps has an underlying braid, as for example in 

(aDb)Dc abc 

lr 
cD(aDb), 

X\ 
cab. 

This braid gives the pairing of the variables for this map as a natural 
transformation. The result can be stated informally (Joyal-Street [1993]) 
as follows: Two composites of IX, A, p, and yare equal if they have the 
same underlying braids. 

The resulting coherence theorem can be stated as follows: 
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Theorem 2. Each composite 0/ the canonical maps acting on an n-fold 
product in a braided monoidal category M induces a braiding (an element 
in the braid group). Two such composites are equal/or all M if and only if 
they give the same element in En. 

6. Perspectives 

The study of braided categories has many connections with other mathe
matical topics, as well as in the study of parts of quantum field theories in 
Physics. Some of these connections arise in string theory in Physics. There 
the paths of elementary particles weaving around each other can form a 
braid - and then something more, with two strings joining or separating, 
as in the case of the Feynman diagrams representing the collision and the 
separation of elementary particles; here, we consider the braid as com
posed of paths (not by a moving point but by a moving "string" in a 
different sense, say as an oscillating circular string. Our paths (called 
strings above) are then replaced by tubes with a (topologically) circular 
cross section. An array of a finite number of such tubes can then be re
garded as the morphisms (the paths) of a braided category. These tubes 
can be each given a conformal structure and the same applies to the col
lisions, as in a Feynman diagram (see Mac Lane [1991]. These con
structions also playa role in Tannaka duality for compact topological 
groups (see Doplicher-Roberts [1989]). 

In a different direction, the one-dimensional strings in one of our 
braids may be replaced by ribbons, and these ribbons can given one or 
more twists, clockwise or counterclockwise (see the ribbon categories of 
Shum [1994]). There are extensive connections to knot theory (Kauffman 
[1991, 1993] and again to Physics. The strings of a braid may be replaced 
by "tangles". In a tangle, a string may start out at the bottom line, twist 
around various other strings, and then return to a different point on the 
starting line, as for example in the following diagram: 

Finally, there are striking connections to Hopf algebras and to quan
tum groups (which are generalized Hopf algebras). There is an extensive 
bibliography in the monograph by Schnider and Sternberg [1993]. 



XII. Structures in Categories 

In this chapter, we will examine several conceptual developments. We 
start with the idea of an "internal" category, described by diagrams 
within an ambient category. We then go on to study the sequences of 
composable arrows in a category - they constitute the "nerve" of the 
category, which turns out to be a simplicial set. 

From this point, we tum to consider "higher-dimensional" categories 
such as a 2-category, which has objects, arrows, and 2-cells between 
arrows, and so on, to categories with three cells and beyond. 

1. Internal Categories 

In this section, we will work within an ambient category E which is 
finitely complete; that is, which has all finite products, pullbacks, and a 
terminal object. As already observed in our introduction, we can define 
monoids, groups, graphs, and other types of algebraic objects within E. 
Following this pattern, we can define a category within E - called a cat
egory object in E or an internal category in E. 

Such an internal category C = (Co, Cl, i, do, d1, y) is to consist of two 
objects Co and Cl of E, called respectively the "object of objects" and the 
"object of arrows", together with four maps in E: 

(1) 

called identity i, domain do, codomain d1, and composition y; here, y is 
defined on the following pullback Cl x CoCl: 

C1 X CoCI 
"2 

------> 

"1 1 (2) 

C1 
do 

------> Co , 

which is thus (for E = Sets) just the object of all pairs of composable ar
rows. These four maps (1) are subject to the following four commuta-

267 
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tivity conditions, which simply express the usual axioms for a category. 
Thus, 

do i = I = d l i : Co ---- Co (3) 

specifies domain and codomain of the identity arrows and then 

Co X coCI 
ix I 

------ CI X CoCI 
Ixi 

......--. CI X coCo 

1 n2 lr 1 nl 
(4) 

CI CI CI, 

asserts that identity arrows act as such under composition y, then 

CI "I CI X coCI 
n2 ......--. ------

1dl 1r (5) 

Co 
dl CI 

do ......--. ------ Co 

which specifies the domain and the codomain of a composite and 

CI X coCI X coCI 
rxl 

CI x coCI ------
1 1xr 1r (6) 

CI x coCI 
r CI ------

which expresses the associative law for composition in terms of the (evi
dently associative) triple pullback CI x CI X CI. This definition is essen
tially the same as that previously given in §II.7.(3). 

Since these diagrams express the category axioms, a category object in 
Sets is just an ordinary small category. Also, a category object in Grp is a 
category in which both the set Co of objects and the set CI of arrows are 
groups, and for which all the structural maps i, do, d l , and yare homo
morphisms of groups. This means for the case of i and do that the 
diagrams 

CoxCo~Co CI X CI 
ml 

CI ------
lixi 1i 1 doxdo 1do 

CI x CI ~CI' CoxCo~ Co 

commute, where mo and ml are the multiplications in the groups Co and 
CI. But Co x Co with CI x CI give the product category C x C, so these 
diagrams also mean that the group multiplications mo and ml together 
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give a morphism of categories; that is, a functor m : C x C - C which is 
associative and has an inverse. Thus, the given category object in Grp is 
the same as a group object in Cat. 

A similar interchange between algebraic structures holds generally: 
The category of X objects in that of Y objects is also the category of Y 
objects in the category of all X objects. 

An internal Junctor f : C - D between two internal categories C and 
D in the same ambient category E is defined to be a pair of maps 
fo : Co - Do and Ji : Cl - Dl of E which as the "object" and "arrow" 
functions make the evident diagrams commute: 

Cl X CoCl 
f.xf. do i 
-- Dl X DoDl Cl ====t Co -- Cl 

lye lYD hl 
d. 

101 hl (7) 
h do i 

Cl -- Dl, Dl ====t Do --Dl. 
d. 

Similiarly, one may also readily describe an internal natural trans
formation between two internal functors from C to D. 

However, these internal functors C - D go from C to another in
ternal category D and not from C to the universe E; there is no internal 
:ategory corresponding to the universe. Thus, internal functors in Sets do 
not include functors H: C - Sets (such as the omnipresent hom-func
tors). This leads to a reformulation of the concept of such functors H. 
Since the set Co of objects is small and the category of sets is cocomplete 
we can replace the object function Ho : Co - Sets by a coproduct of sets 
rod its evident projection to Co, 

1t : Ho = II Ho c - Co . 
ceCo 

(8) 

fhe actions of arrows f : c - c' then combine to yield an "action" map 

Cl x CoHo - Ho . 

Hence, given an internal category C in E, we are led to consider ob
ects in E "over" Co such as 1t : Ho - Co, do : Cl - Co. A left Co-object 
n E is thus defined to be an object 1t : H - Co over Co together with an 
LCtion map 

(9) 

IVhere for this pullback Cl is an object over Co via the domain map 
io: Cl - Co. This action map p. is to be a map "over Co", in the sense 
hat the following diagram commutes, where Pl is the projection on the 
irst factor: 
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d1 
--+ Co; 
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(10) 

it is also to be just like the action of a group on a set, in that it must sat
isfy a unit law and an associative law, as follows: 

(11 ) 

'" Cl x coH --+ H . 

Such a left C-object is also called an "internal diagram" on the internal 
category C or (Borceux) an internal base-valued functor. The essential 
point is to observe that when E = Set, this includes precisely the familiar 
functors to the ambient category Set from a category in Set. 

A morphism H ---- K of such (left) C-objects is then simply a mor
phism ¢> : H ---- K in E which preserves the structure involved; that is, 
which makes both the following diagrams in this morphism ¢> commute: 

H~ 
lxr,6 

Cl x coK K Cl x coH--+ 

1n 1n 1'" 1'" 
(12) 

Co = Co, H --+ K. 
r,6 

For ordinary set-valued functors, Hand K, this makes ¢> exactly a natural 
transformation; the first diagram states that ¢> sends each H(c) to K(c), 
and the second diagram states that this commutes with composition (as 
required for naturality). 

In § 8, we study category objects in groups. 

2. The Nerve of a Category 

Given a category C (in Sets), the pullback C2 = Cl X coCl, as used 
above, consists of the composable pairs of arrows of C. Similarly we 
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consider, as in §II.7.(S), the composable strings 

fi h In 
• ---t • ---t ... ---t • 

of n arrows, with 

ddl = doh,· .. , ddn-l = dofn . (1) 

They are the elements of the iterated pullback 

C n = Cl X CoCI xCo ... X CoCI (n factors) . (2) 

With Co, this sequence of sets 

actually constitutes a simplicial set (in the same sense as defined in 
(§VII.S). For n = 1, we already have the "face operators" do, 
d1 : C1 --; Co. For n> 1, the "face operators" di = Cn --; Cn-l for 
i = 0, ... , n are defined by deletion or by composition of adjacent arrows 
as in 

do(ji,···,fn) = (h,···,fn), 

di(fi., ... ,/n) = (fi., ... ,jjjj+l, ... ,fn), j= l, ... ,n-l, (3) 

dn(fl, ... , fn) = (fi., ... , fn-tl , 
while the degeneracies Sf are defined by inserting suitable identity maps 
id"f at suitable positions, as in 

so(fi., ... , fn) = (idofi'/l, 12, ... , fn) , 

(4) 

for j = 1, ... , n. The results are again composable strings of arrows. The 
required identities for face and degeneracy operators, as stated in 
§VII.S.(ll), are readily verified. The geometric meaning may be illus
trated by placing the arrows fi on edges of simplices, so that the compo
sitions are evident, as in 

.---t. , 
fi 

.---~'., 
fi 

The nerve of an internal category in E is similarly a simplicial object 
inE. 
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Exercise 

1. Verify the face and degeneracy identities for the operations as defined above 
for the nerve. 

3. 2-Categories 

A 2-category is a system of 2-cells or "maps" which can be composed in 
two different but commuting categorical ways. 

A first example (see § 11.5) is that in which natural transformations are 
the "maps". Given three functors 

R, S, T : C --+ B 

and natural transformations a : R ~ Sand r : S ~ T, we have defined in 
§ 11.4 a "vertical" composite natural transformation rea: R --+ T by 
(rea)(c) =rcoac for each object c of C. This is a first natural trans
formation a followed by a second 

R R 
-----+ -----+ 

C nu B, C nTU B. 
-----+ -----+ 

l 
T 

-----+ 
T 

But there is also a horizontal composition of natural transformations, 
matching the composition of functors (§ 11.5) as in the diagram 

R'oR 
-----+ 

C u'oun A, 
-----+ 

s'os 

with (d 0 a)c = d S coR' ac for any object c in C. Both compositions are 
associative, and they commute with each other (Theorem 11.5.1). 

Similarly, there are two commuting ways of composing homotopies 
between continuous maps. Recall from topology that a homotopy 
e : f ~ 9 between continuous maps f and 9 of a space X into a space Y is 
a continuous deformation 
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of the map f into g; that is, a continuous map () : X x I -+ Y, where I is 
the unit interval and the identities ()(x, 0) = f(x) and ()(x, I) = g(x) hold 
at the start 0 and the end 1 for each point x in X. A second homotopy 
rp = g '" h has with () a vertical composite rp. () :f '" h (see below). Also, 
maps f', g' : Y -+ Z and a homotopy ()' : f' '" g' between them give with 
() a "horizontal" composite ()' 0 () : f' of'" g' 0 g of the composite maps. 
However, the expected vertical composite rp • () of two homotopies, which 
uses () for 0 < t < 1/2 and then rp for 1/2 < t < 1, is not associative. 
Hence, to get categoricity we must we must use as 2-cells the homotopy 
classes of homotopies! Again, the horizontal composition commutes with 
the vertical one. 

These examples (and others) lead to the general notion of a 2-category 
to be a structure consisting of objects, arrows between the objects, and 2-
cells between the arrows, where the 2-cells can be composed in two ways, 
"horizontal" and "vertical". 

Start with an ordinary category C with objects a, b, ... and "hori
zontal" arrows f : a -+ b. A 2-category II on C has, additionally, certain 
2-cells IX : f ::::} g with domain f and codomain g, where f and g are par
allel arrows in C, say from a to b, as displayed in 

or pictured (vertically) as 

rx:f::::}g:a-+b 

h 

~. 
~ 

k 

These 2-cells have two different compositions. First, if 

IX' :f' ::::} g' : b -+ c 

is a second 2-cell, there is a horizontal composite 2-cell rx' 0 rx 

9 g' g'og 

(1) 

(2) 

(3) 

(4) 

which matches (above and below) the given composition of arrows. We 
require that the 2-cells form a category under this horizontal composi
tion. In particular, this means that there is for each object b an "identity" 
2-cell 1 : 1 ::::} 1 : b -+ b, acting as a 2-sided identity for this composition. 
Also, both "domain" rx 1-+ f and "codomain" rx 1-+ g are functors from the 
horizontal category of 2-cells to the horizontal category of arrows. 

Moreover, for each pair of objects a, b, the 2-cells from a to b are the 
arrows of a category under a "vertical" composition, as in 
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f f 
---+ ---+ 

a ~R b a Rpo~ b, 
---+ gives ---+ (5) 

Rp 
h 

---+ 
h 

with a solid dot denoting this vertical composition. There are also vertical 
identity 2-cells If : f ::::} f for this composition. 

Two additional axioms relate the horizontal to the vertical. First, we 
require that the horizontal composite of two vertical identities is itself a 
vertical identity, as in the diagram 

If'! = If' 0 If . (6) 

Next, given the array of 2-cells 

IX:f::::}g:a--+b, IX' : f' ::::} g' : b --+ C , (7) 

P h b d.' h"b :g::::} :a--+ , p.g::::} . --+c, 

the composites involved in the display 

(8) 

must satisfy the equation 

(/3' 0 p) • (IX' 0 IX) = (P' • IX') 0 (p. IX) : f' 0 f ::::} h' 0 h : a --+ c . (9) 

Here (as elsewhere), the solid dot. is used for vertical composition 
and the small circle 0 (or just juxtaposition) for horizontal composition. 
This axiom (9) is called the "middle four exchange", because it inter
changes the middle two arguments in the sequence of the four 2-cells P', 
p, IX', and IX. 

Note that this structure also provides a horizontal composite of a 2-
cell with a I-cell - just compose the 2-cell with the vertical identity of the 
I-cell, on either side, as inf' 0 IX, 
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I' 
-----+ 

b KIf, 
-----+ 

I' 

1'1 
-----+ 

c = a !'o<X C, 

-----+ 
/,g 

also written (as a "whisker" I' on the 2-celllX) as follows: 

I' b -----+ c. 

275 

(10) 

(11) 

This definition of a 2-category does include the examples of 2-
categories adduced above: the 2-category of topological spaces, con
tinuous maps, and classes of homotopies, and the 2-category CAT of 
small categories, functors, and natural transformations. 

It is convenient to write T(a, b) for the vertical category on the 
objects a and b. Then the middle four interchange (9) and the rule (6) 
for the vertical identities together mean that horizontal composition is a 
bifunctor between vertical categories: 

Ka,b,c: T(b, c) x T(a, b) ----+ T(a, c) . (12) 

Also, the operation Va which sends any object a to its identity arrow 
la : a ----+ a is a functor from the terminal category 1 (with one object, one 
arrow) 

Va : 1 ----+ T(a, a) . (13) 

These two operations suffice to describe a 2-category in terms of 
its vertical hom-categories T(a, b) - the description is parallel to the 
definition of an ordinary category by hom-sets (§1.8). Thus, a 2-category 
is given by the following data: 

(i) A set of objects a, b, c, ... ; 
(ii) A function which assigns to each ordered pair of objects (a, b) a 

category T(a, b); 
(iii) For each ordered triple <a, b, c) of objects a functor (12), called 

composition; 
(iv) For each object a, a functor Va as in (13). 

These elements of data are required to satisfy the associative law for 
the composition (iii) and the requirement that Va provides a left and right 
identity for this composition. 

This set of axioms for a 2-category is equivalent to the previous set. It 
is exactly like the definition of a category in terms of hom-sets, which 
have been here replaced by the hom-objects T(a, b). These objects are 
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not just sets but are categories (i.e., objects of the category CAT); one 
says that they are hom-sets "enriched" in CAT, the category of all (small) 
categories. The construction uses the fact that CAT has products and a 
terminal object. More generally, it is often helpful to use monoidal cate
gories V in place of CAT and to examine categories "enriched" in V
that is, with hom-objects which are objects of V, with composition and 
identities as above. (See also §VII.7 and the remark in §1.8 about Ab
categories.) The monograph of Kelly [1982] is a systematic examination 
of such enriched categories; see also Dubuc [1970]. 

4. Operations in 2-Categories 

Many of the properties of functors, as they have been developed in CAT, 
will carry over directly to other 2-categories. Adjunction is an example. 
Thus, in a 2-category, one says that two I-cells running in opposite 
directions between the same two objects, as in the figure 

I 
at==2b, 

9 

are adjoint, with f a left adjoint to the right adjoint g, when there are 2-
cells rJ and I'. ("unit" and "counit") 

rJ : 1 =} gf : a ---- a , I'. : f g =} Ib : b ---- b 

such that both the following equations hold: 

(ef)· (f rJ) = 11 :f =} f gf =} f : a ---- b , 

(g e) • ( rJ g) = 1 9 : g =} g f g =} g : b ---- a . 

(1) 

(2) 

(3) 

Indeed, in the 2-category CAT, these two equations state exactly the two 
triangular laws for the unit rJ and the counit I'. of an (ordinary) adjunction 
between functors (§IV.1.(9)). In the first equation, ef really stands for the 
horizontal composite ell, so that Eq. (2) should strictly be pictured as 
follows: 

I a a ------- b 

II n~ II II 
I 

a ------- b 
I b~ I 

II nil n (4) 
a _______ a _______ b 

II II no II 
a ------- b. 

I 
a _______ 

b ,b 
I 
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Here, the left-hand side presents two horizontal compositions of 2-cells, 
followed by a vertical composition of the results. This may be sugges
tively pictured, omitting the If lower left, as 

1 

a\~);\ ~Jl~~ (5) 

b lb b--+b. 
1 

Similarly, the left-hand side of Eq. (3) involves the following vertical 
composites: 

/~I 
b l b 

1 
a --+ a 

b --+ b. 
1 

The diagram expresses the fact that the horizontal cmposite ge is 
"pasted" along f to the horizontal composite l1g to get the identity cell 
from g to g. 

In much the same way, we can lift the notion of a (right) Kan ex
tension (§X.3) to 2-categories. Thus, given objects m, c, a and arrows k, t 
in the following configuration in a 2-category: 

c 
y (6) 
m~a; 

a right Kan extension of t along k is an arrow r and a 2-cell e : r k => t 

c 

yn\ 
m--+a 

t 

(7) 

such that any other such 2-cell tX with tX : sk => t for some s : c => a is a 
composite of e with a unique 2-cell rI, as in 

c 

;/n\ 
m--+a, 

t 

(8) 
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In other words, r and Ii form the universal way of filling in the triangle 
(6), unique up to a 2-cell a. This configuration is, of course, exactly that 
already used in §X.3 to describe right Kan extensions of actual functors. 

As with all other algebraic objects, we must define the morphisms 
between 2-categories. They are called 2-functors. A 2-functor 

F:T-'>U 

between two 2-categories T and U is a triple of functions sending objects, 
arrows, and 2-cells of T to items of the same types in U so as to preserve 
all the categorical structures (domains, codomains, identities, and com
posites). If G is a second such functor G: T -'> U between the same 2-
categories, a 2-natural transformation e: F ~ G is a function which 
sends each object a of T to an arrow ea : Fa -'> G a of U in such a way 
that for each 2-cell rt. : f ::::} 9 of T, the equality 

Gf 

-------Fb~Gb=Fa~Ga nf<x 

------Gg 

Gb (9) 

holds (between the indicated "whiskered" 2-cells). In particular, applied 
just to the edges (the I-cells), this means that e is necessarily an (ordinary) 
natural transformation between the associated ordinary functors F and G. 
The reader may check that 2-categories, 2-functors, and 2-natural trans
formations between them form the objects, arrows, and 2-cells of a 2-
category! This category is often called 2-Cat. 

But there is now a step up to the next dimension; given two 2-natural 
transformations e : F -'> G and qJ : F -'> G between the same two 2-func
tors F and G, there are certain appropriate maps p : e ::::} qJ, called modi
fications, between transformations. Specifically, such a modification p is 
required to assign to each object a of T a 2-cell Pa : ea ::::} qJa such that the 
following 2-composites are equal for every 2-cell rt. : f ::::} g: 

Ff 

-------
Fa nF<X Fb 

------Fg 

Gb=Fa Ga Gb. 

A three-dimensional presentation of this requirement is as follows: 

~la 
Fa = Fa .."Gb = Gb 1 ;; I -!~------' ~ 

----t ~ 
F b ----= F b. 

(10) 
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The front face of the cube is F 0(, the back face GO(. The bottom is /l b, the 
top /la' while the right and left side squares commute (because () and qJ are 
natural). Equation (10) states that the front followed by the bottom 
equals the top followed by the back. 

This suggests that we regard the modification /l as a 3-cell/l : () ::::} qJ. 

These 3-cells taken with ()'s as 2-cells, 2-functors as arrows, and objects as 
objects together form the data for a 3-category. Just as a 2-category can 
be defined as a category with hom-sets enriched in Cat, so a 3-category 
can be formally defined to be a category with hom-sets enriched in 2-Cat, 
as we will see in the next section. 

5. Single-Set Categories 

A category is usually considered as a structure consisting of two sets, a 
set of objects and a set of arrows. But it is also possible to have a defini
tion which uses only one set, that of arrows, with the objects regarded as 
special arrows - to wit, as the identity arrows. In § I.l, we have already 
described such an "arrows-only" definition of a category. Here is a differ
ent arrows-only formulation which will be used below to describe n
categories. A category is a set C of arrows with two functions 
s, t : C ---> C, called "source" and target", and a partially defined binary 
operation #, called composition, all subject to the following axioms, for 
all x, y, and z in C: 

The operation x # y is defined iff s x = t y and then 

s(x#y)=sy, t(x#y)=tx; 

x#sx=x, tx#x=x; 

(1) 

(2) 

(x # y) # z = x # (y # z) if either side is defined; (3) 

ssx=sx=tsx; 

ttx=tx=stx. (4) 

Then x is an identity iff x = s x or, equivalently, iff x = t x. 
In this form, a functor F : C ---> D is simply a function from the set C 

to the set D such that 

sF = F sand t F = F t : C ---> D (5) 
and also 

F(x # y) = F x # F Y (6) 

whenever x # y is defined (and this, by (5), implies that F x # F Y is 
defined). 

This definition of a category or of a functor clearly is equivalent to 
the standard definition in terms of a set of objects and a set of arrows. 
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Similarly a 2-category can be considered to be a single set X con
sidered as the set of 2-cells (e.g., of natural transformations). Then the 
previous I-cells (the arrows) and the O-cells (the objects) are just regarded 
as special "degenerate" 2-cells. On the set X of 2-cells there are then two 
category structures, the "horizontal" structure (#0, So, to) and the 
"vertical" structure (# 1 , SI, tl). Each satisfies the axioms above for a 
category structure and in addition 

(i) Every identity for the O-structure is an identity for the I-structure; 
(ii) The two category structures commute with each other. 

Here, the condition (ii) means, of course, that 

So SI = SI So , So tl = tl So , to tl = tl to (7) 

and that, for a,p = 0, 1 or 1, 0, and for all x, y, U, and v 

(x#"y) #p(u#"v) #,,(y#pv) , 

t,,(x #py) = (t"x) #p (t"y) , 

sIlex #py) = (s"x) #p (s"y) , 

whenever both sides are defined. 

(8) 

Since SoX and tox are identities for the O-structure, they are also iden
tities for the I-structure by condition (i) above. Hence, 

SI So = So, tl So = So, SI to = to , tl to = to . (9) 

With condition (7), this yields also 

So SI = So , So tl = So , to tl = to . (10) 

Together, these rules, with (4), calculate any composite of an S or t with 
an S or t. The results agree with the intuitive picture of the "edges" of a 
2-cell, as follows: 

SI 

So SI = So tl = So So = tl So = So illto = to SI = to tl = SI to = to to , 
II 

tl = tl tl = SI tl . 

With this preparation, we can now readily define a 3-category or 
more generally an n-category for any natural number n. The latter is a set 
X with n different category structures (# j, Sj, tj), for i = 0, ... ,n - 1, 
which commute with each other and are such that an identity for struc
ture i is also an identity for structures j whenever j > i. Put differently, 
each pair # j and # j for j > i constitute a 2-category. This readily leads 
to a definition of the useful notion of an w-category: i = 0, 1,2, .... 
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6. Bicategories 

Sometimes the composition of arrows in a would-be category is not as
sociative, but only associative "up to" an isomorphism. This suggests the 
notion of a bicategory, which is a structure like a 2-category, but one 
in which the composition of arrows is associative only up to an iso
morphism given by a suitable 2-cell. 

Formally, a bicategory B consists of O-cells a, b, . .. , I-cells I, g, ... , 
and 2-cells p, (1, ••• , with sources and targets arranged as suggested in 

h 
~ 

c l d, 
~ 

h' 

(1) 

where the I-cells extend horizontally and the 2-cells vertically. Specifi
cally, each I-cell I has O-cells a and b as domain and codomain, as in 
I: a -+ b, while each 2-cell p has coterminal (i.e., parallel) I-cells I and 
I' as its domain and codomain. Moreover, to each pair ofO-cells (a, b), 
there is an (ordinary) category B(a, b) in which the objects are all the 
I-cells I, I', ... from a to b, while the arrows are the 2-cells between such 
I-cells. In this category B(a, b) the "vertical" composition of2-cells is (of 
course) associative and has for each object I: a -+ b a 2-cell If :1 =} I 
which acts as an identity for this vertical composition. This composition 
is denoted by juxtaposition, or by 0. 

Next, for each ordered triple of O-cells a, b, c, there is a bifunctor 

* : B(b, c) x B(a, b) -+ B(a, c) , (2) 

called horizontal composition and written as *. Thus, given the diagram 
(1) above, there are composite 2-cells (1 * p, r * (1 and composite I-cells 
g * I as follows: 

g*f hog 
~ ~ 

a ~u*p c, b ~uu d (3) 
~ ~ 

g"f' h'.g' 

There is also for each O-cell a an identity I-cell Ia : a -+ a (which is not 
quite a real identity; see below). 

This horizontal composition *, although written in the usual order of 
composition for a category, is not strictly associative, but is associative 
only "up to" a natural isomorphism ex between iterated composite func
tors, as follows: 
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B(c, d) x B(b, c) x B(a, b) 

~.~ 
B(c, d) x B(a, c) B(b,d) x B(a, b) 

(4) 

~ ~ 
B(a, d). 

The requirement that (X be a natural transformation of functors amounts 
to the following commutativity for the 2-cells displayed in (1): 

h * (g * I) 

U(u*p)l 

h' * (g' * I') 

(h * g) *1 

1 (uu)*p 

(h' * g') *' /'. 

(5) 

The purported "identity" arrows Ia are required to act as identities 
for the horizontal composition only up to the following isomorphisms A 
and p, natural in I E B(a, b): 

Pa,b : 1* Ia ::::} I , Aa,b : Ib * I ::::} I . (6) 

These three natural transformations (x, A, and P are subject to two 
"coherence" axioms, as follows. For I-cells J, g, and h as above and 
k : d ----t e, the following pentagon, copied from that required for a mon
oidal category (§VII.1.(5)), must commute: 

k* (h * (g*/)) ~ (k*h) * (g*/) ~ 

hal 
----------+1 (k* (h*g)) *1. 

(7) 

For A and p, just as for a monoidal category in §VII.1.(7), the following 
diagram (left and right identities) must commute: 

(g* Ib ) */) 

lp*l 
(8) 

g*l· 

For ordinary categories C, there is the familiar transition to the dual 
or "opposite" category COP (§II.2), in which the direction of all the 
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arrows is reversed. For a bicategory (or also for a 2-category), there are 
two such duals; one by reversing the arrows, the other by reversing the 
2-cells! 

There is also a suitable definition of a functor (i.e., a morphism) 
between bicategories. We urge the reader to make his own definition or 
to consult the literature (e.g., Benabou [1967]). 

7. Examples of Bicategories 

First, any monoidal category M is also a bicategory B with one O-cell. 
Just take the objects a, b, ... of the monoidal M to be the I-cells of B, 
with the tensor product as composition, and the arrows of M to be the 2-
cells. Then the natural isomorphisms IX, A, and p given with M are exactly 
those required for B with the same identities, as expressed in the pentagon 
and square just above. Reciprocally, a bicategory B with just one O-cell is 
just a monoidal category in this sense. For that matter, the coherence 
theorem for monoidal categories also applies to give a coherence result 
for the maps p, A, and IX in bicategories. 

The next example is the category of rings; more exactly, the bicate-
gory in which 

O-cells are rings R, S, T, 
I-cells are bimodules SAR : R --> S, 
2-cells are bimodule homomorphisms A --> A'. 

As for the composition of I-cells, if TBS is a left T, right S bimodule the 
usual tensor product B ® s A of modules, with elements sums of products 
b ® a for b E B and a E A and with bs ® a = b ® sa for s E S, etc., is evi
dently a left T and right R bimodule. For a right T and left U-module 
UCT the known associativity of the tensor product of modules 

(I) 

yields the required associativity of this horizontal composition. The ver
tical composition is the usual composition of bimodule homomorphisms 
A --> A' --> A". 

Next, we describe the bicategory of "spans" - in a base category C 
which has all pullbacks. We choose to each pair of arrows s, t with a 
common target object b in C a pullback, to be called the "canonical" 
pullback of sand t: 

1 (2) 

• ~ b. 
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A span from a to b in the base category C is now defined to be a pair of 
arrows from some common vertex v to a and to b, as in 

v 

/\ 
a b. 

The bicategory Span( C) is now defined to have as 

O-cells the objects of the given category C, 
I-cells the spans of C, as above, 

(3) 

2-cells between two such spans from a to b those I-cells x : v --) v' of 
Casin 

(4) 

which make the two triangles commute. The vertical composite of two 
such 2-cells is given by the composite (in C) of the middle arrows x. The 
horizontal composite of spans from a to b and from b to c is obtained by 
taking the (already chosen) canonical pullback of the two middle arrows, 
as in 

U 

/\ 
/ , 

II:" ~ 
V w (5) 

/\/\ 
abc. 

For associativity of this composition, consider three successive spans 
from a to b to c to d, as in 

Z 
/\ 

/ , 
II:" ~ 

u y 
/\ /\ 

/ , / , 
II:" ~II:" ~ 
v w x 

/\/\/\ 
abc d, 

(6) 

to which there are added above three (canonical) pullback squares, as 
displayed. Since the squares are pullbacks, the composite rectagles here 
are also pullbacks. Hence, both associations of the triple composite gives 
a pullback which might be that with vertex the top O-cell z of the three 
given spans. Since the pullback of any such diagram is unique up to iso-
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morphism, this gives the required natural isomorphism IX from one triple 
composite to the other. Thus, it also shows why the pentagonal commu
tativity condition for IX must hold. 

The identity span on a O-cell a is a compound of two identity arrows 
of C, from a to a. The pullback diagram with a second span from a to b, 

c 

/\ 
a c (7) 

Y~;f\ 
a a b, 

exhibits the required natural transformation A. on this composite. The 
remaining verifications of the axioms are left to the reader. 

A bicategory is also called a "weak 2-category". This terminology 
does suggest that there could be a notion of a weak n-category. Such is 
the case, and it appears with various definitions in aspects of theoretical 
physics (see Baez et al. [1995, 1996]). 

8. Crossed Modules and Categories in Grp 

We return to an illustration of category objects. It turns out that a cat
egory object in Grp is essentially the same thing as one of the "crossed 
modules" which arise in homotopy theory. We present here a proof, as 
formulated for me by George Jane1idze, of this striking categorical result. 

A crossed module is defined to be a pair of groups Hand P with an 
action of P on H and a homomorphism oc : H ---t P respecting this 
action. If the action of an element p in P on an element h is denoted by 
hP, then this means that for h, kin Hand p, q in P, hi = h, and 

oc (hP) = p(OCh)p-1 . 

Such crossed modules arise in homotopy theory. 
Now recall from § 1 that an internal category in Grp consists of two 

groups Co and CI and four group homorphisms 

Co , 
i 

Co ----+ CI , (1) 

satisfying the usual conditions for an internal category. We claim first 
that in this system we can forget the categorical composition y; the system 
is completely determined by the diagram of groups and homorphisms 
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with 

i 
eO~el 

doi=l=dli 

and the vanishing of the following commutator subgroup of el, 

[kerdo , kerdd = 1 , 

fonned from the kernels of the group homomorphisms do and dl . 

(2) 

(3) 

(4) 

Indeed, to see that the group homomorphisms do, dl, and i together 
"remember" the composition y, we write this composition, that of a 
composable pair of morphisms 

f g 
a~b~c, 

as go f. Since this is a morphism of the group product, here written as 
juxtapostion glg2, we have 

(glg2) 0 (fd2) = (gl ofd(g2 oh) 

when both composities on the right are defined (this is again the middle 
four exchange). In particular, this result applied to the identity arrow Ib 
of b gives 

g of = (lb1;lg) 0 (fl;11b) 

= (lb of)(I;1 0 1;1)(g 0 Ib) 

= f(1;1 0 1;I)g . 

Setting f = g = Ib gives the product fonnula 

Ib = Ib(1;1 0 1;1) Ib 

and hence 

This also follows from the fact that ( )-1 : e ---+ e is a functor, where e is 
a group object. 

Putting this in (5) gives 

In other words, the categorical composition y is detennined by the group 
structure of C. Alternatively, we also have 
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9 of = (gl;;'l b) 0 (Ibl;;'f) 

= (g 0 Ib)(I;;' 0 I;;' )(Ib 0 f) 

= gl;;'f . 

Hence, the group product satisfies 

fl;;'g = gl;;'f . 
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In particular, if the object b of Co is the unit in the group Co - and hence 
Ib = i(b) is the unit element in C" then fg = gf. But since b is the unit 
element of the group Co, then the category arrow 9 with domain b must 
be in ker do, while f is similarly in ker d,. Hence, the result f 9 = 9 f 
means that the commutator (4) above must be the identity. 

Conversely, given a diagram (2) in Grp with (3) and (4), we can define 
a categorical composition y : C, xCo C, ----> C, by setting 

y(g, f) = fl;;'g or gl;;'f. 

A calculation then shows that this y is the composition for an internal 
category in Grp. 

Next, the data (2), (3), and (4) in the category Grp determine a 
crossed module IX : H ----> P as follows. Take 

H = ker do and P = Co . 

Then the restriction d; of d, to ker do is a homorphism 

IX: H ----> P. 

Indeed, 

1----> Kerdo ----> C, ~ Co ----> 1 

is a short exact sequence of groups which determine an action of Co on 
H = Ker do - in the standard way: conjugate each element of Ker do by a 
chosen representative, in C" of each element of Co. Note that 
i: Co ----> C, has doi = I, so that the short exact sequence above is "split" 
by i. Conversely, the reader may show that a crossed module IX : H ----> P 
determines such a split exact sequence of groups. These reciprocal con
struction show that the category of crossed modules is categorically 
equivalent to the category of diagrams (2) satisfying (3) and (4) in Grp. 
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We have described a category in terms of sets, as a set of objects and a 
set of arrows. However, categories can be described directly-and they 
can then be used as a possible foundation for all of mathematics, thus 
replacing the use in such a foundation of the usual Zermelo-Fraenkel 
axioms for set theory. Here is the direct description: 

1. Objects and arrows. A category consists of objects a, b, c, ... and 
arrows f, g, h. Sets form a category with sets as the objects and 
functions as the arrows. 

2. Domain. Each arrow f has an object a as its "domain" and an 
object b as its "codomain"; we then write f : a --+ b. 

3. Composition. Given f : a --+ band g : b --+ c, their composite is 
an arrow g 0 f : a --+ c. 

4. Associativity. If also h: c --+ d, then the triple composition is 
associative: 

h 0 (g 0 f) = (h 0 g) 0 f : a --+ d . 

5. Identities. Each object b has an identity arrow Ib: b --+ b. If 
also f : a --+ b, then Ib 0 f = f. If also g : b --+ c, then go Ib = g. 

An elementary topos is a category with a certain additional structure: 
terminal object, pullbacks, truth, a subobject classifier, and power objects 
(sets of subsets). The axioms for this addtional structure are as follows: 

6. Terminal object. There is a terminal object 1 such that every ob
ject a has exactly one arrow a --+ 1. 

7. Pullbacks. Every pair of arrows f: a --+ b +- c : g with a 
common codomain b has a pullback, defined as in § 111.4: 

a ----+ b. 
f 

(1) 

In particular, (take b = 1), any two objects a and c have a product 
a x c. 

8. Truth. There is an object Q (the object of truth values) and a 
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monomorphism t: 1 -+ Q called truth; to any monomorphism 
m : a -+ b, there is a unique arrow ljJ : b -+ Q such that the fol
lowing square is a pullback: 

a -----+ 1 

mi It 
b -----+ Q. 

'" 

(2) 

9. Power objects. To each object b, there is an associated object 
P b and an arrow eb : b x P b -+ Q such that for every arrow 
f : b x a -+ Q there is a unique arrow g : a -+ P b for which the 
following diagram commutes: 

bxa f 
-----+ Q 

lxg I II 
(3) 

b x Pb -----+ Q. 
tb 

To understand these axioms, we observe how they apply to the usual 
category of all sets. There, any set with just one element can serve as a 
terminal object 1, because each set a has a unique function a -+ 1 to 1. For 
two sets a and b, the pullback of two arrows a -+ 1 +-- b is then the usual 
set-theoretic product, with its projections to the given factors a and b. 

For truth values, take the object Q to be any set 2 consisting of two 
objects, 1 and 0, while the monomorphism t : 1 -+ 2 is just the usual in
clusion of 1 in 2. Then a monomorphism m : a -+ b, as in Axiom 8, is a 
subset a of b. This subset has a well-known characteristic function 
ljJ : b -+ 2 with ljJ(y) = 1 or 0 according as the element of y of b is or is 
not in the subset a. This produces the pullback (2) above. 

Axiom 9 describes P b, the set of all subsets s of b, often called the 
"power set" Pb. Indeed, one can then set eb(x, s) = 0 if the element x of 
b is in the subset s and equal to 1 otherwise. This does give a pullback, as 
in (3) above. 

These axioms for a topos then hold for the category of sets. They have 
a number of strong consequences. For example, they give all finite cate
gorical products and pullbacks, as well as all finite coproducts, including 
an initial object 0, the empty set. For example, they provide a right 
adjoint to the product a x b as a functor of a; this is the exponential ch 
with (see § IV.6) 

hom(a x b, c) ~ (a, cb ) . 

A category of sets can now be described as an elementary topos, 
defined as above, with three additional properties: 
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(a) it is well-pointed, 
(b) it has the axiom of choice (AC), 
(c) it has a natural-numbers object (NNO). 

In describing these properties, it is useful to think of the objects as sets 
and the arrows as functions. 

Well-pointed requires that if two arrows f, g : a -+ b have (f"# g) 
then there must exist an arrow p : 1 -+ a for whichfp "# gpo The intention 
is that when the functions f and g differ they must differ at some "point" 
p, that is, at some element p of the set a. 

The axiom of choice (AC) requires that every subjectionf : a -+ b has 
a right inverse 'l" : b -+ a for which f 0 'l" = b. This right inverse picks out 
to each point p : 1 -+ b of b a point of a, to wit, the composite 'l"P which is 
mapped by f onto p. 

The natural-numbers object (NNO) can be described as a set N with 
an initial object 0 : 1 -+ N and a successor function s : N -+ N in terms 
of which functions f : N -+ X on N can be defined by recursion, by 
specifying f(O) and the composite fos. In other words, an NNO N in a 
category is a diagram 

1 !!..,N':"'N 

consisting of a point 0 of N and a map s such that, given any arrows 
1 !!... b .!:.. b, there is a unique arrow f : N -+ b which makes the following 
diagram commute: 

1~ 

II 
1~ 

In the usual functional notation, this states that 

fO=h, fs=kf; 

that is,fis defined by givingf( 0) and thenf(n + 1) in terms off(n). 
Thus, the category of sets may be described as a well-pointed topos 

with the AC in which there is an NNO. This set of axioms for set theory 
is weakly consistent with a version of the Zermelo axioms (the so-called 
"bounded" Zermelo; see Mac Lane and Moerdijk [1992]). They are 
originally due to Lawvere [1964], who called them the "elementary theory 
of the category of sets." Among the other examples of an elementary 
topos are the sheaves on a topological space; see Mac Lane and Moerdijk 
[1992]. 

In these axioms, it is often assumed that the subject classifier Q has 
just two elements. This makes it a Boolean algebra. 





Table of Standard Categories: Objects and Arrows 

Ab 
Adj 
Alg 
Bool 
CAb 
CAT 
CG Haus 
Comp Bool 
Comp Haus 
CRng 
Ensv 
Euclid 
Fin 
Finord 
Grp 
Grpb 
Haus 
Lconn 
K-Mod 
Mod-R 
R-Mod 
MatrK 
Mon 
Moncat 
Ord 
Rng 
Ses-A 
Set 
Set. 
Smgrp 
Top 
Topb 
Vet 
o 
1 
2 
3 
<Q,E) 
b 1 c 
c 1 a 
T1S 

Abelian groups 
Small categories, adjunctions, p. 104 
< , E)-algebras 
Boolean algebras 
Compact topological abelian groups 
Categories, functors 
Compactly generated Hausdorff spaces p. 185 
Complete Boolean algebras 
Compact Hausdorff spaces, p. 125 
Commutatative rings, homomorphisms 
Sets and functions, within a universe V, p. 11 
Euclidean vector spaces, orthogonal transformations 
Skeletal category of finite sets 
Finite ordinals, all set functions, p. 12 
Groups and homomorphisms 
Directed graphs and morphisms 
Hausdorff Spaces, continuous maps 
Locally connected topological spaces 
K-Modules and their morphisms 
Right R-modules, R a ring 
Left R-modules and morphisms 
Natural numbers, morphisms rectangular matrices, p. 11 
Monoids and morphisms of monoids, p. 12 
Monoidal categories and strict morphisms, p. 160 
Ordered sets, order-preserving maps, p. 123 
Rings and homomorphisms 
Short exact sequences of A -modules 
All small sets and functions 
Sets with base point 
Semigroups and morphisms 
Topological spaces, continuous maps, p. 122 
Topological spaces, homotopy classes of maps, p. 12 
Vector spaces, linear transformations 
Empty category, p. 10 
One-object category, p. 10 
Two objects, p. 10 
Three objects, p. 11 
Universal algebras, type r, p. 120, 152 
Objects of C under b, p. 46 
Objects of C over a, p. 46 
Comma category, p. 46 
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Table of Terminology 

This Book 

arrow 
domain 
codomain 
graph 
natural transformation 
natural isomorphism 

mOlllc 
epi 
idempotent 
opposite 
coproduct 
equalizer 
pullback 
pushout 
universal arrow 

limit exists 
limit 
colimit 
cone to a functor 
cone from a functor 

left adjoint 
right adjoint 
unit of adjunction 
triangular identities 
monad 

biproduct 
Ab-category 

Elsewhere (for abbreviations, see below) 

map (E & M), morphism (Gr) 
source (Ehr) 
target (Ehr) 
precategory, diagram scheme (Mit) 
morphism of functors (Gr), functorial map (G-Z) 
natural equivalence (E & M; now obsolete) 

monomorphism 
epimorphism, epic 
projector (Gr) 
dual 
sum 
kernel, difference kernel 
fibered product (Gr), cartesian square 
cocartesian square, comeet 
left liberty map (G-Z) 

limit is representable (Gr) 
projective limit, inverse limit 
inductive limit, direct limit 
projective cone, inverse cone (G-Z) 
inductive cone, co-cone 

coadjoint (Mit), adjoint 
adjoint (Mit), coadjoint 
adjunction morphism (G-Z) 
8 quasi-inverse to IJ (G-Z) 
triple 

direct sum (in Ab-categories) 
preadditive category (old) 

Gr = Grothendieck 
Ehr = Ehresmann 
Mit = Mitchell 
E & M = Eilenberg & Mac Lane 
G-Z = Gabriel-Zisman 
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Ab-category, 17,24,28,29 
Abelian 

- categories, 28 
- groups, 24 

Absolute 
- coequalizer, 149 
- Kan extension, 249 
-limit, 149 

Action 
group, 141 
left - of a monoid, 5 
- of operators, 124 

Addition 
ordinal -, 175 
- of arrows, 195 Ex. 

Additive 
- category, 196 
- functor, 29, 197 
- Kan extension, 242 

Adjoint 
arrows, 276 
Freyd's - functor theorem, 128, 

129 
left -, 38, 81 
left - left-inverse, 94 
right -,81 
- equivalence, 93 
- functor, 38 
- pairs, 95 
- square, 103 

Adjointness, 2 
Adjunct, 79, 81 
Adjunction, 80, 83, 276 

category of -, 101 
counit of -, 83 
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front and back -,83 
mapof-,99 
monad defined by -, 139 
unit of -,83 
- with a parameter, 102 

Algebraic system, 75, 124 
Algebras, 156 

morphisms of T -, 140 
structure map of T -, 140 
T-,140 
variety of -, 124 

Amalgamated product, 66 
Ambient category, 267 
Arity, 124 
Arrows 

addition of -, 195 Ex. 
canonical -, 73 
category of -,40 
composable pair of -,9, 10, 13,49 
connecting -,207 
diagonal -, 84 
epi -,19 
factorization of -, 194, 199 
idempotent -, 20, 21 
identity -, 7, 8, 10 
invertible -, 19 
kernel of -, 191 
monic -,19 
parallel -, 11 
regular -,21 Ex. 
universal-, 55, 58,235 Ex. 
weak universal-, 235 
zero -, 20, 74, 190, 194 
- function, 13 
- oniy-metacategory, 9 
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Associative law, 8 
general-, 166, 171 
- for monad, 138 
- for monoid, 162 
- for monoidal categories, 162 
- for T-algebra, 140 

Associativity, 7 
Atomic statement, 31 
Augmentation, 179 
Augmented simplicial object, 179 
Axiom of choice, 291 

Barycentric coordinates, 178 
Based category, 184 
Base point, 12 
Basic 

- arrows, 166 
- graphs, 166 

Beck's theorem, 151 
Bicategory, 209, 281, 283 

- of rings, 283 
Bifunctor, 37 
Bilinear composition, 28 
Bimodule, 283 
Binary 

- relation, 26 
-words, 165 

Biproduct, 194 
Boolean algebra, 123 
Bound 

greatest lower -, 114, 126 
least upper -, 114, 126 
- variable, 31, 223 

Boundary 
- homomorphism, 179 
- of tetrahedron, 178 

Braid,260 
Braiding, 251, 252 
Box Product, 262 fT. 

Cancellable (left or right), 19 
Canonical 

- arrow, 73, 74 
- map, 73, 169, 215, 253 

- presentation, 155 
Cartesian 

- closed category, 106 
-product, 2 

Category, 1, 10 
Ab-, 28 
abelian -, 198 
abstract -, 31 
additive -, 196 
ambient -, 267 
based -,184 
bi -,281 
cartesian closed -, 106 
closed -, 184 
comma-,45 
complete -, 109, 110 
concrete -,26 
connected -, 90 Ex. 
co-well powered -, 180 
discrete -, 11 
double-,44 
dual-,31 
empty -,233 
enriched -,29,276 
equivalence of -, 93 
fibered -, 35 
filtered -, 211 
free -,49 
functor -, 40 
horizontal-,277 
image -,247 
internal-, 267, 285 
isomorphism of -,92 
large -, 12, 23, 24 
locally small-, 131 
monoidal-, 251 
opposite -, 33 
preadditive -,28 
product -, 36 
pseudo-filtered -,216 Ex. 
relative -, 187 
simplicial-, 12 
single set -,279 
skeletal, 93 
strict monoidal-, 161,257 
subdivision -,224 
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super-comma -, 115 Ex. 
symmetric -, 251 
symmetric monoidal-, 184,251 
tensor -, 252 
2 -,104,272 
two-dimensional-, 44, 272 
well-powered -, 180 
vertical-,273 
- of adjunctions, 99 
- of algebras, 128 
- of arrows, 40 
- of diagrams, 52 
- object, 267 
- of small sets, 12, 24 

Chain complex, 202 
Character group, 17 
Characteristic function, 105 
Chase, diagram, 75, 204 
Class, 23 

equational-, 124 
Closed, 141 

cartesian - categories, 97 
- category, 184 

Closure operation, 141 
Cochain complex, 183 
Cocomponents of a map, 74 
Codense functor, 246 
Codensity monad, 250 
Codomain, 7, 9 
Coend,226 
Coequalizers, 64 

absolute -, 149 
creation of -, 151 
split -, 149 

Cogenerating set, 127 
Cogenerator, 127 
Coherence theorem -,263 
Cohomology, 13 
Coimage, 200 
Cokeme1, 193,206 

- pair, 66 
Colimit,67 

filtered -, 212 
reflection of -, 154 

Comma 
- category, 46 

super - category, 115 Ex. 
Commutative diagram, 3, 7 
Commutator, 14 

- subgroup, 14 
Comonad, 139 
Comonoid, 181 
Compact Hausdorff space, 131 
Compactification, 92, 131 
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Compactly generated spaces, 185, 190 
Compact-open topology, 185 
Comparison 

- functor, 142, 151, 153 
- theorem, 142 

Complete category, 109, 113 
Component, 16 

connected -,90 Ex. 
matrix of -, 196 
- of natural transformation, 218 
- of wedge, 223 

Composable pair, 200 
Composite, 9 

horizontal -, 43 
vertical-,43 
- function, 9 
- functor, 14, 42 
- of paths, 20 
- of transformations, 40 

Composition, 7, 9, 279 
Comprehension principle, 21 
Concrete category, 26 
Cone, 67, 68 

canonical-,246 
colimiting -, 214 
limiting -,67,113 
universal -, 67 

Congruence, 52 
Conjugate natural transformation, 

102, 104 
Conjugation, 18 Ex., 20 
Connected 

- category, 88, 90 Ex. 
- component, 90 Ex. 
- groupoid, 20 
- sequence of functors, 242 
- space, 26 

Connecting homomorphism, 206, 242 
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Connection, Galois, 95 
Continuous 

- functor, 116 
- hom-functor, 183 
-map, 157 

Contractible, 150 
Contravariant, 17, 33 
Coordinates, barycentric, 178 
Copowers, 63 
Coproduct, 62 

denumerable -, 172 
finite -, 212 
infinite -, 212 
injections of -,63 
- diagram, 62 
- object, 63 

Coreflective, 91 
Counit of adjunction, 83, 87 
Covariant 

- functor, 34 
- hom-functor, 34 
- power-set functor, 142 Ex. 

Co-well-powered category, 130 
Creation, 122 

- of coequalizers, 153 
- of ends, 225 
- oflimits, 111, 112 

Crossed module -,285 
CTT-Crude trip1eability theorem, 154 

Degeneracy, 179 
Dense 

- functor, 246 
- subcategory, 245 

Derived 
- functor, 242 
- operator, 124 

Determinant, 16 
Diagonal 

- arrows, 16 
- functor, 58, 66, 119, 233 
- map, 73, 196 

Diagram, 2, 3, 4, 51, 71 
biproduct -, 194 
category of -, 52 

commutative -,3,8, 165 
coproduct -, 63, 64 
limit -,69 
product -, 69 
- chase, 75, 204 
- scheme, 48 

Difference, 70 
- kernel, 70 
- member, 208 

Dinatural transformation, 218 
Direct 

- product, 69 
- sum, 195 

Directed 
- graph, 10 
- preorder, 211 
- set, 211 

Disjoint 
- hom-sets, 27 
-union, 63 

Domain, 7 
Double 

- category, 44 
- dual, 17 
- end, 230 

Dual,31 
- category, 32 
- statement, 33 

Duality principle, 32, 266 
Dummy, 219 

Eilenberg-Moore category of a 
monad,139 

Element, universal, 57, 58 
Elementary particles, 266 
Embedding, 15 
Empty 

- category, 10, 233 
- functor, 233 
- string, 258 

End,222 
creation of -,225 
double -, 230 
iterated -,230 
interchange of -,241 
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preservation of -,225 
- of natural transformation, 228 

Ending wedge, 223 
Endofunctor, 137 
Enriched category, 276 
Epi,19 

split -,19 
- monic factorization, 194, 199 

Equalizer, 70 
Equational class, 124 
Equivalence, 16 

adjoint -,93 
natura1-, 16 
- of categories, 18, 92, 93 

ETAC,31 
Euclidean vector spaces, 220 
Evaluation, 98 
Evaluation map, 220 
Exact 

left - functor, 201 
right - sequence, 201 
short - sequence, 200 
- functor, 197,201 

Exponential-, 98 Ex. 
Extensions, 233 

absolute Kan -, 249 
Kan -, 233, 236 

left-,240 
right-, 236 

Exterior Algebra, 89 Ex. 
Extranatural transformation, 219, 

220 

Face operator, 182 
Factor-commutator, 14 
Factorization of arrows, 199 
Faithful functor, 15 
Fibered 

- category, 35 
- product, 71 
-sum, 66 

Fiber map, 71 
Fields of quotients, 56, 87 
Filtered, 216 Ex. 

- category, 211 
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- colirnit, 212 
- set, 211 

Final 
- functor, 2, 17 
- subcategory, 217 

Finite 
-limit, 113 
- product, 72 

Five Lemma, 202, 205 
Forgetful functor, 212 
Fork, split, 149 
Formal criteria 

- for existence of adjoint, 234 
- for representability, 235 Ex. 
- for a universal arrow, 235 Ex. 

Free 
- category, 49, 56 
-monoid,50 
- monoidal category, 166 
- product, 214 
- T-algebra, 140 

Freyd 
- adjoint functor theorem, 120, 

121 
- existence theorem for an initial 

object, 235 
Fubinic Theorem, 230 
Full functor, 14 

- subcategory, 15 
Function, 8 

arrow-,13 
characteristic -, 105 
composite -,9 
identity -,9 
inclusion -, 9 
insertion -,9 
monotone -,175 
object-,13 
order preserving -,95,96 
- set, 40 
- space, 185 

Functor,2, 13 
additive -, 29, 85, 197 
adjoint -, 80 
category -,40 
codense -, 246 
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Functor (cont.) 
comparison -, 144 
composite -, 14 
continuous -, 116 
contravariant -, 33 
covariant -, 33 
dense -,246 
derived -,242 
diagonal-, 233 
empty -,233 
exact -,201 
faithful-, 15 
final-, 217, 238 
forgetful-, 14, 87, 120, 144, 157, 

212 
full-, 14 
identity -, 14 
inclusion -, 15 
left adequate -, 250 
left adjoint left inverse -, 94 
left exact -, 201 
monoidal-, 255 
morphism of -, 16 
power-set -, 13, 33 
representable -, 60 
underlying -, 14 
Yoneda -,62 
- category, 40 

Fundamental groupoid, 20 

Galois connections, 95, 96 
General linear group, 14 
Generating 

- object, 125 
- set, 125, 127 

Generators of a category, 52 
Geometric realization, 227 
Godel-Bemays axioms, 23 
Graded set, 124 
Graph, 10, 48, 80 
Greatest Lower Bound, 126 
Group, 11 

fundamental-,20 
small-,22 

- actions, 141 
- in a category, 75 

Groupoid, 20, 51 

Hausdorff spaces, 25, 135 
compact -, 125, 157 
compactly generated -, 185 

Hom-functor, 27 
contravariant -, 34 
covariant -, 34 

Hom-object, 184 
Homology, 13, 179, 184 

singular -, 179 
Homomorphism, 1; see also 

Morphisms 
boundary -, 179 
connecting -,206,242 
crossed -, 285 

Homotopy class 
- of maps, 12, 25 
- of paths, 20 

Hom-sets, 10, 27 
disjoint -, 27 

Index 

Horizontal composite, 42, 273, 277 
- category, 277 

Idempotent, 20 
split -,20 

Identities (for algebras), 124 
Identity, 7, 8, 10 

triangular -, 85 
- arrow, 9 
- function, 9 
- functor, 14, 43 
- natural transformation, 43 

Image, 200 
Inclusion 

- function, 9 
- functor, 15 

Induced map, 34 
Infinite 

- coproduct, 64 
- product, 69 



Index 

Initial functor, 218 
Initial object, 128 

existence of -, 120 
Injection, 15, 19 

- of coproduct, 63, 73 
Injective, 15 

- monotone function, 176 
- object, 118 

Insertion function, 9 
Integral, 228 

double -, 230 
iterated -,230 

Interchange, 214 
- of ends (Fubini), 231 
-law, 43 

Internal 
- category, 267 
- functor, 269 
- hom-functor, 269 

Intersection of subobjects, 126 
Intertwining operator, 41 
Inverse, 14 

left adjoint-left -, 94 
left or right -, 19 
two-sided -, 14 
-limit, 68 

Invertible arrow, 19 
Isomorphic, 19 
Isomorphism, 14 

natural-, 16 
reflection of -, 154 
- of categories, 14, 92 
- of objects, 19 

Iterated integral, 230 

Join, 14, 126 

Kan extensions, 236 
absolute -,249 
additive -,242 
left - as coends, 240 
pointwise -, 237, 243, 245 
right -,236 

Kelleyfication, 186 
Kelley spaces, 185 
Ker-Coker sequence, 206 
Kernel, 191 

difference -, 70 
- pair, 71 

Kleisli category of a monad, 147 

Large category, 12,23,24 
Least upper bound, 126 
Left 

- action, 174 
- adequate functor, 250 
- adjoint, 38, 81 
- adjoint - inverse, 94 
- adjunct, 79, 81 
- cancellable, 19 
- exact functor, 201 
- inverse, 19 
- Kan extensions, 240, 248 
- regular representations, 174 

Lemma 
Five-, 205 
Short five -,202 
snake-, 206 
Yoneda -,61 

Length of words, 165 
Limit, 68, 78, 112, 233 

creation of -, 112, 117 
direct -,67 
filtered -, 212 
finite -, 113 
inductive -,67 
interchange of -, 214 
inverse -, 68 
pointwise -, 237 
preservation of -, 117 
projective -,68 
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- of a natural transformation, 228 
- object, 68 

Limiting cone, 67, 68, 69 
Linear order, 11 
Locally small category, 131 
Loop space, 189 
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Map, see also Arrows 
canonical, 169, 215, 246 
continuous -, 157, 185 
diagonal-,73,196 
evaluation -, 98 
fiber -,71 
homotopic -, 13 
structure - of algebras, 140 
- of adjunctions, 99 

Matrices, 11, 74, 196 
Matrix multiplication, 196 
Meet, 114, 126 
Member, 204 
Metacategory, 7, 8, 9 
Metagraph, 7 
Middle four exchange, 275 
Modification, 278 
Modules, 141 

crossed -, 285 
Monad, 137, 138, 180 

codensity -,250 Ex. 
free group -, 139 
multiplication of -, 138 
unit of -, 138 
- defined by adjunction, 139 

Monadic, 143 
Monic, 19 

split -, 19 
- arrow, 19 

Monoid, 2, 11, 50, 75, 170 
free -,50, 172 
universal -, 161 

Monoidal categories, 161, 162 
strict -, 151 
symmetric -, 184 
- functors, 255 

Monotone function, 15 Ex., 176 
Morphisms, 9 

- of arrows, 9 
- of categories, 13 
- of functors, 16 
- of graphs, 48 
- of monoidal categories, 164 

relaxed -, 164 
strict -, 164 

- of short exact sequences, 202 
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- of simplicial objects, 178 
- of T-algebras, 140 

Multiplication 
- in a monad, 138 
- of mono ida I categories, 162 

Natural, 2, 16 
components of - transformation, 

218 
conjugate - transformation, 102, 

104 
universal - transformation, 39 
- bijection, 2 
- equivalence, 16 
- isomorphism, 16 
- number object, 291 
- transformation, 16 

Nerve, 271 
Null object, 20, 191, 194 
Number, ordinal, 11 

Object, 3, 7, 10 
coproduct -, 63 
free -,147 
homology, 202 
initial-, 128 
injective -, 118 
limit -,68 
null-, 20, 191, 194 
of objects, 267 
projective -, 118 
quotient -, 126 
simplicial -, 178 
terminal-, 20, 72 
- function, 13, 202 
- over, 45 
-under, 454 

O-graph,48 
Operator 

derived -, 124 
intertwining -,41 

Opposite category, 33 
Order 

linear -. 11 
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partial -, 11 
- preserving function, 93 

Ordinal 
finite -, 12 
- addition, 175 
- number, 11, 17, 175, 178 

P-adic 
- integers, 11 0 
- solenoid, III 

Pair 
adjoint -,95 
cokernel -, 66 
composable -, 9, 10, 13, 49 
conjugate -, 100 ff. 
equalizer of -, 70 
kernel-,71 
parallel -, 11 

Parameter 
adjunction with a -, 102 
- theorem, 229 

Partial order, 11 
Path, 50 

directed -, 166 
Pointed 

- set, 26 
- topological space, 26, 188 

Pointwise 
- Kan extensions, 237, 243, 245 
-limit, 116 

Power, 70, 290 
- set, 13,21,290 
- set functor, 13, 33 

Preadditive category, 28 
Precategory,48 
Precise tripleability theorem (Beck), 

154 
Preorder, 11, 92 

directed -, 211 
Presentation, canonical, 153 
Preservation of 

- coproduct, 172 
- end of functor, 225 
-limit, 116 
- right Kan extension, 243 

Presheaf, 77 
Product, 36, 69 

amalgamated -,66 
cartesian -, 1 
direct -,69 
fibered -, 71 
free -, 128 Ex. 
infinite -, 69 
iterated -, 176 
projections of -, 1 
smash -,189 
tensor -, 128, 161 
- category, 36 
-diagram, 1 

Projections 
- of comma category, 47 
- of product, 36 
- of product category, 69 

Projective object, 118 
Proper class, 23 
Pseudo-filtered category, 215 
PTT-Beck, 154 
Pullback, 71 

- square, 71 
Pushout, 65 

Quantifiers, 97 
Quasi-inverse, 85 
Quotient 

field of -, 56 
- object, 126,202 
- topology, 133 

Rank of word, 166 
Reflection, 89 

- of colimits, 154 
- of isomorphisms, 154 

Reflective subcategory, 91 
Reflector, 91 
Relations, 26, 254 
Relative category, 184 
Relaxed morphism, 164 
Replacement axiom, 23 
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Representability, 122 
formal criterion for -,234 
- theorem, 122 

Representation, 60 
left regular -, 174 

Resolution, 181 
Retraction, 19 
Right 

- adjoint, 81 
- adjoint - inverse, 133 
- adjunct, 79, 81 
- cancellable, 19 
- exact sequence, 201 
- inverse, 19 
- Kan extension, 236 

Ring, small, 46 
Root, 78 

SAFT,130 
Satisfaction of identities, 124 
Scheme, diagram, 48 
Section (= right inverse), 19 
Semi group, 144 

free -,144 
Sentence, 31 
Sequence 

right exact -, 201 
short exact -, 200 

Sets 
based -,26 
category of small-, 62 
cogenerating -, 127 
directed -, 211 
filtered -, 211 
function -,40 
generating -, 127 
graded -, 124 
linearly ordered -, 180 
metacategory of -, 8 
pointed -, 26 
simplicial-, 12, 174 
small-,22 
solution -, 120 
underlying -, 124 

Sheaf,35 

Simplex 
affine -,178 
singular -, 180 

Simplicial 
- category, 175 
- object, 181, 178 
- set, 12, 174 

Single set category, 279 
Singular 

- chain complex, 180 
- homology, 180 
- simplex, 180 

Skeleton (of a category), 93 
Small 
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- complete category, 109, 113, 
115 

- group, 22 
- pointed set, 26 
- ring, 25 
- set, 22 
- topological space, 25 

Smash product, 189 
Snake Lemma, 206 
Solenoid, p-adic, 111 
Solution set (condition), 120 
Source, 7, 279 
Space 

compact Hausdorff -, 125, 157 
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