Elementary Topology

 Problem TextbookO. Ya. Viro
O.A. Tvanov

N. Yu. Netsvetaev
V. M. Kharlamov.

Elementary Topology Problem Textbook

Elementary Topology Problem Textbook

O. Ya. Viro
O. A. Ivanov
N. Yu. Netsvetaev
V. M. Kharlamov

2000 Mathematics Subject Classification. Primary 54-01, 54-00, 55-00, 55-01, 57-01, $57 \mathrm{M} 05,57 \mathrm{M} 10,57 \mathrm{M} 15$.

The cover design is based on a sketch by Masha Netsvetaeva and Nikita Netsvetaev. The photo on p. xvii of Vladimir Abramovich Rokhlin is coutesy of Oleg Viro.
The photo on the back cover and on p. xx of Oleg Yanovich Viro, Viatcheslav Mikhailovich Kharlamov, Nikita Yur'evich Netsvetaev, and Oleg Aleksandrovich Ivanov is courtesy of Julia Viro.

For additional information and updates on this book, visit www.ams.org/bookpages/mbk-54

Library of Congress Cataloging-in-Publication Data
Elementary topology : problem textbook / O. Ya. Viro ... [et al.]. p. cm .

Includes bibliographical references and index.
ISBN 978-0-8218-4506-6 (alk. paper)

1. Topology-Textbooks. I. Viro, O. IA., 1948-

QA611.E534 2008
514—dc22
2008009303

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2008 by the authors. All rights reserved.

Printed in the United States of America.
@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 131211100908
$$

Dedicated to the memory of Vladimir Abramovich Rokhlin (1919-1984)

- our teacher

Contents

Introduction xi
Part 1. General Topology
Chapter I. Structures and Spaces 3

1. Set-Theoretic Digression: Sets 3
2. Topology on a Set 11
3. Bases 16
4. Metric Spaces 18
5. Subspaces 27
6. Position of a Point with Respect to a Set 29
7. Ordered Sets 35
8. Cyclic Orders 42
Proofs and Comments 45
Chapter II. Continuity 55
9. Set-Theoretic Digression: Maps 55
10. Continuous Maps 59
11. Homeomorphisms 67
Proofs and Comments 76
Chapter III. Topological Properties 83
12. Connectedness 83
13. Application of Connectedness 89
14. Path Connectedness 92
15. Separation Axioms 97
16. Countability Axioms 103
17. Compactness 108
18. Sequential Compactness 114
19x. Local Compactness and Paracompactness 117
Proofs and Comments 122
Chapter IV. Topological Constructions 135
19. Multiplication 135
20. Quotient Spaces 141
21. Zoo of Quotient Spaces 145
22. Projective Spaces 155
24x. Finite Topological Spaces 159
$25 x$. Spaces of Continuous Maps 163
Proofs and Comments 167
Chapter V. Topological Algebra 179
26x. Generalities on Groups 181
27x. Topological Groups 187
28 x . Constructions 191
$29 x$. Actions of Topological Groups 196
Proofs and Comments 200
Part 2. Elements of Algebraic Topology
Chapter VI. Fundamental Group 207
23. Homotopy 207
24. Homotopy Properties of Path Multiplication 212
25. Fundamental Group 215
26. The Role of Base Point 220
Proofs and Comments 223
Chapter VII. Covering Spaces and Calculation of Fundamental Groups 231
27. Covering Spaces 231
28. Theorems on Path Lifting 235
29. Calculation of Fundamental Groups by Using Universal Coverings 237
Proofs and Comments 242
Chapter VIII. Fundamental Group and Maps 247
30. Induced Homomorphisms and Their First Applications 247
31. Retractions and Fixed Points 253
32. Homotopy Equivalences 256
33. Covering Spaces via Fundamental Groups 261
41x. Classification of Covering Spaces 263
Proofs and Comments 269
Chapter IX. Cellular Techniques 279
34. Cellular Spaces 279
43x. Topological Properties of Cellular Spaces 286
35. Cellular Constructions 288
36. One-Dimensional Cellular Spaces 291
37. Fundamental Group of a Cellular Space 295
Proofs and Comments 304
Hints, Comments, Advices, Solutions, and Answers 317
Bibliography 393
Index 395

Introduction

The subject of the book: Elementary Topology

Elementary means close to elements, basics. It is impossible to determine precisely, once and for all, which topology is elementary and which is not. The elementary part of a subject is the part with which an expert starts to teach a novice.

We suppose that our student is ready to study topology. So, we do not try to win her or his attention and benevolence by hasty and obscure stories about mysterious and attractive things such as the Klein bottle, ${ }^{1}$ though the Klein bottle will appear in its turn. However, we start with what a topological space is, that is, we start with general topology.

General topology became a part of the general mathematical language a long time ago. It teaches one to speak clearly and precisely about things related to the idea of continuity. It is not only needed to explain what, finally, the Klein bottle is, but it is also a way to introduce geometrical images into any area of mathematics, no matter how far from geometry the area may be at first glance.

As an active research area, general topology is practically completed. A permanent usage in the capacity of a general mathematical language has polished its system of definitions and theorems. Indeed, nowadays, the study of general topology resembles a study of a language rather than a study of mathematics: one has to learn many new words, while the proofs of the majority of the theorems are extremely simple. However, the quantity of

[^0]the theorems is huge. This comes as no surprise because they play the role of rules that regulate usage of words.

The book consists of two parts. General topology is the subject of part one. The second part is an introduction to algebraic topology via its most classical and elementary segment, which emerges from the notions of fundamental group and covering space.

In our opinion, elementary topology also includes basic topology of manifolds, i.e., spaces that look locally as the Euclidean space. One- and twodimensional manifolds, i.e., curves and surfaces are especially elementary. However, a book should not be too thick, and so we had to stop.

Chapter 5, which is the last chapter of the first part, keeps somewhat aloof. It is devoted to topological groups. The material is intimately related to a number of different areas of Mathematics. Although topological groups play a profound role in those areas, it is not that important in the initial study of general topology. Therefore, mastering this material may be postponed until it appears in a substantial way in other mathematical courses (which will concern the Lie groups, functional analysis, etc.). The main reason why we included this material is that it provides a great variety of examples and exercises.

Organization of the text

Even a cursory overview detects unusual features in the organization of this book. We dared to come up with several innovations and hope that the reader will quickly get used to them and even find them useful.

We know that the needs and interests of our readers vary, and realize that it is very difficult to make a book interesting and useful for each reader. To solve this problem, we formatted the text in such a way that the reader could easily determine what (s)he can expect from each piece of the text. We hope that this will allow the reader to organize studying the material of the book in accordance with his or her tastes and abilities. To achieve this goal, we use several tricks.

First of all, we distinguished the basic, so to speak, lecture line. This is the material which we consider basic. It constitutes a minor part of the text.

The basic material is often interrupted by specific examples, illustrative and training problems, and discussion of the notions that are related to these examples and problems, but are not used in what follows. Some of the notions play a fundamental role in other areas of mathematics, but here they are of minor importance.

In a word, the basic line is interrupted by variations wherever possible. The variations are clearly separated from the basic theme by graphical means.

The second feature distinguishing the present book from the majority of other textbooks is that proofs are separated from formulations. This makes the book look like a pure problem book. It would be easy to make the book looking like hundreds of other mathematical textbooks. For this purpose, it suffices to move all variations to the ends of their sections so that they would look like exercises to the basic text, and put the proofs of theorems immediately after their formulations.

For whom is this book?

A reader who has safely reached the university level in her/his education may bravely approach this book. Super brave daredevils may try it even earlier. However, we cannot say that no preliminary knowledge is required. We suppose that the reader is familiar with real numbers, and, surely, with natural, integer, and rational numbers too. A knowledge of complex numbers would also be useful, although one can manage without them in the first part of the book.

We assume that the reader is acquainted with naive set theory, but admit that this acquaintance may be superficial. For this reason, we make special set-theoretical digressions where the knowledge of set theory is particularly desirable.

We do not seriously rely on calculus, but because the majority of our readers are already familiar with it, at least slightly, we do not hesitate to resort to using notations and notions from calculus.

In the second part, experience in group theory will be useful, although we give all necessary information about groups.

One of the most valuable acquisitions that the reader can make by mastering the present book is new elements of mathematical culture and an ability to understand and appreciate an abstract axiomatic theory. The higher the degree in which the reader already possesses this ability, the easier it will be for her or him to master the material of the book.

If you want to study topology on your own, do try to work with the book. It may turn out to be precisely what you need. However, you should attentively reread the rest of the Introduction again in order to understand how the material is organized and how you can use it.

The basic theme

The core of the book is made up of the material of the topology course for students majoring in Mathematics at the Saint Petersburg (Leningrad) State University. The core material makes up a relatively small part of the book and involves nearly no complicated arguments.

The reader should not think that by selecting the basic theme the authors just try to impose their tastes on her or him. We do not hesitate to do this occasionally, but here our primary goal is to organize study of the subject.

The basic theme forms a complete entity. The reader who has mastered the basic theme has mastered the subject. Whether the reader had looked in the variations or not is her or his business. However, the variations have been included in order to help the reader with mastering the basic material. They are not exiled to the final pages of sections in order to have them at hand precisely when they are most needed. By the way, the variations can tell you about many interesting things. However, following the variations too literally and carefully may take far too long.

We believe that the material presented in the basic theme is the minimal amount of topology that must be mastered by every student who has decided to become a professional mathematician.

Certainly, a student whose interests will be related to topology and other geometrical disciplines will have to learn far more than the basic theme includes. In this case the material can serve as a good starting point.

For a student who is not going to become a professional mathematician, even a selective acquaintance with the basic theme might be useful. It may be useful for preparation for an exam or just for catching a glimpse and a feeling of abstract mathematics, with its emphasized value of definitions and precise formulations.

Where are the proofs?

The book is tailored for a reader who is determined to work actively.
The proofs of theorems are separated from their formulations and placed at the end of the current chapter.

We believe that the first reaction to the formulation of any assertion (coming immediatcly after the feeling that the formulation has been understood) must be an attempt to prove the assertion-or to disprove it, if you do not manage to prove it. An attempt to disprove an assertion may be useful both for achieving a better understanding of the formulation and for looking for a proof.

By keeping the proofs away from the formulations, we want to encourage the reader to think through each formulation, and, on the other hand,
to make the book inconvenient for careless skimming. However, a reader who prefers a more traditional style and, for some reason, does not wish to work too actively can either find the proofs at the end of the chapter, or skip them all together. (Certainly, in the latter case there is some danger of misunderstanding.)

This style can also please an expert who needs a handbook and prefers formulations not overshadowed by proofs. Most of the proofs are simple and easy to discover.

Structure of the book

Basic structural units of the book are sections. They are divided into numbered and titled subsections. Each subsection is devoted to a single topic and consists of definitions, comments, theorems, exercises, problems, and riddles.

By a riddle we mean a problem whose solution (and often also the meaning) should be guessed rather than calculated or deduced from the formulation.

Theorems, exercises, problems, and riddles belonging to the basic material are numbered by pairs consisting of the number of the current section and a letter, separated by a dot.
2.B. Riddle. Taking into account the number of the riddle, determine in which section it must be contained. By the way, is this really a riddle?

The letters are assigned in alphabetical order. They number the assertions inside a section.

A difficult problem (or theorem) is often followed by a sequence of assertions that are lemmas to the problem. Such a chain often ends with a problem in which we suggest the reader, armed with the lemmas just proven, return to the initial problem (respectively, theorem).

Variations

The basic material is surrounded by numerous training problems and additional definitions, theorems, and assertions. In spite of their relation to the basic material, they usually are left outside of the standard lecture course.

Such additional material is easy to recognize in the book by the smaller print and wide margins, as shown here. Exercises, problems, and riddles that are not included in the basic material, but are closely related to it, are numbered by pairs consisting of the number of a section and the number of the assertion in the limits of the section.
2.5. Find a problem with the same number 2.5 in the main body of the book.

All solutions to problems are located at the eind of the book.

As is common, the problems that have seemed to be most difficult to the authors are marked by an asterisk. They are included with different purposes: to outline relations to other areas of mathematics, to indicate possible directions of development of the subject, or just to please an ambitious reader.

Additional themes

We decided to make accessible for interested students certain theoretical topics complementing the basic material. It would be natural to include them into lecture courses designed for senior (or graduate) students. However, this does not usually happen, because the topics do not fit well into traditional graduate courses. Furthermore, studying them seems to be more natural during the very first contacts with topology.

In the book, such topics are separated into individual subsections, whose numbers contain the symbol x, which means extra. (Sometimes, a whole section is marked in this way, and, in one case, even a whole chapter.)

Certainly, regarding this material as additional is a matter of taste and viewpoint. Qualifying a topic as additional, we follow our own ideas about what must be contained in the initial study of topology. We realize that some (if not most) of our colleagues may disagree with our choice, but we hope that our decorations will not hinder them from using the book.

Advices to the reader

You can use the present book when preparing for an exam in topology (especially so if the exam consists in solving problems). However, if you attend lectures in topology, then it is reasonable to read the book before the lectures, and try to prove the assertions in it on your own before the lecturer will prove them.

The reader who can prove assertions of the basic theme on his or her own needn't solve all of the problems suggested in the variations, and can resort to a brief acquaintance with their formulations and solve only the most difficult of them. On the other hand, the more difficult it is for you to prove assertions of the basic theme, the more attention you should pay to illustrative problems, and the less attention should be paid to problems with an asterisk.

Many of our illustrative problems are easy to come up with. Moreover, when seriously studying a subject, one should permanently cook up questions of this kind.

On the other hand, some problems presented in the book are not easy to come up with at all. We have widely used all kinds of sources, including both literature and teachers' folklore.

Notations

We did our best to avoid notations which are not commonly accepted. The only exception is the use of a few symbols which are very convenient and almost self-explanatory. Namely, within proofs symbols \Leftrightarrow and \Leftrightarrow should be understood as (sub)titles. Each of them means that we start proving the corresponding implication. Similarly, symbols \subset and \supset indicate the beginning of proofs of the corresponding inclusions.

How this book was created

In the basic theme, we follow the course of lectures composed by Vladimir Abramovich Rokhlin at the Faculty of Mathematics and Mechanics of the Leningrad State University in the 1960s. It seems appropriate to sketch the circumstances of creating the course, although we started to write this book only after Vladimir Abramovich's death (1984).

Vladimir Abramovich Rokhlin gives a lecture, 1960s.

In the 1960s, mathematics was one of the most attractive areas of science for young people in the Soviet Union, being second maybe only to physics among the natural sciences. Every year more than a hundred students were enrolled in the mathematical subdivision of the Faculty.

Several dozen of them were alumnae and alumni of mathematical schools. The system and contents of the lecture courses at the Faculty were seriously updated.

Until Rokhlin developed his course, topology was taught in the Faculty only in the framework of special courses. Rokhlin succeeded in including a one-semester course on topology into the system of general mandatory courses. The course consisted of three chapters devoted to general topology, fundamental group and coverings, and manifolds, respectively. The contents of the first two chapters differed only slightly from the basic material of the book. The last chapter started with a general definition of a topological manifold, included a topological classification of one-dimensional manifolds, and ended either with a topological classification of triangulated two-dimensional manifolds or with elements of differential topology, up to embedding a smooth manifold in the Euclidean space.

Three of the four authors belong to the first generation of students who attended Rokhlin's lecture course. This was a one-semester course, three hours a week in the first semester of the second year. At most two two-hour lessons during the whole semester were devoted to solving problems. It was not Rokhlin, but his graduate students who conducted these lessons. For instance, in 1966-68 they were conducted by Misha Gromov-an outstanding geometer, currently a professor of the Paris Institute des Hautes Etudies Scientifiques and the New York Courant Institute. Rokhlin regarded the course as a theoretical one and did not wish to spend lecture time solving problems. Indeed, in the framework of the course one did not have to teach students how to solve series of routine problems, like problems in techniques of differentiation and integration, that are traditional for calculus.

Despite the fact that we built our book by starting from Rokhlin's lectures, the book will give you no idea about Rokhlin's style. The lectures were brilliant. Rokhlin wrote very little on the blackboard. Nevertheless, it was very easy to take notes. He spoke without haste, with maximally simple and ideally correct sentences.

For the last time, Rokhlin gave his mandatory topology course in 1973. In August of 1974, because of his serious illness, the administration of the Faculty had to look for a person who would substitute for Rokhlin as a lecturer. The problem was complicated by the fact that the results of the exams in the preceding year were terrible. In 1973, the time allotted for the course was increased up to four hours a week, while the number of students
had grown, and, respectively, the level of their training had decreased. As a result, the grades for exams "crashed down".

It was decided that the whole class, which consisted of about 175 students, should be split into two classes. Professor Viktor Zalgaller was appointed to give lectures to the students who were going to specialize in applied mathematics, while Assistant Professor Oleg Viro would give the lectures to student-mathematicians. Zalgaller suggested introducing exercise lessons-one hour a week. As a result, the time allotted for the lectures decreased, and de facto the volume of the material also reduced along with the time.

It remained to understand what to do in the exercise lessons. One had to develop a system of problems and exercises that would give an opportunity to revisit the definitions given in the lectures, and would allow one to develop skills in proving easy theorems from general topology in the framework of a simple axiomatic theory.

Problems in the first part of the book are a result of our efforts in this direction. Gradually, exercise lessons and problems were becoming more and more useful as long as we had to teach students with a lower level of preliminary training. In 1988, the Publishing House of the Leningrad State University published the problems in a small book, Problems in Topology.

Students found the book useful. One of them, Alekseĭ Solov'ev, even translated it into English on his own initiative when he became a graduate student at the University of California. The translation initiated a new stage of work on the book. We started developing the Russian and English versions in parallel and practically covered the entire material of Rokhlin's course. In 2000, the Publishing House of the Saint Petersburg State University published the second Russian edition of the book, which already included a chapter on the fundamental group and coverings.

The English version was used by Oleg Viro for his lecture course in the USA (University of California) and Sweden (Uppsala University). The Russian version was used by Slava Kharlamov for his lecture courses in France (Strasbourg University). The lectures have been given for quite different audiences: both for undergraduate and graduate students. Furthermore, few professors (some of whom the authors have not known personally) have asked the authors' permission to use the English version in their lectures, both in the countries mentioned above and in other ones. New demands upon the text have arisen. For instance, we were asked to include solutions to problems and proofs of theorems in the book, in order to make it meet the Western standards and transform it from a problem book into a selfsufficient textbook. After some hesitation, we fulfilled those requests, the
more so that they were upheld by the Publishing House of the American Mathematical Society.

Acknowledgments

We are grateful to all of our colleagues for their advices and help. Mikhail Zvagel'skiĭ, Anatoliĭ Korchagin, Semen Podkorytov, and Alexander Shumakovitch made numerous useful remarks and suggestions. We also thank Alekseı̆ Solov'ev for translating the first edition of the book into English. Our special gratitude is due to Viktor Abramovich Zalgaller, whose pedagogical experience and sincere wish to help played an invaluable role for us at a time when we were young.

Each of us has been lucky to be a student of Vladimir Abramovich Rokhlin, to whose memory we dedicate this book.

The authors, from the left to the right:
Oleg Yanovich Viro,
Viatcheslav Mikhaĭlovich Kharlamov, Nikita Yur'evich Netsvetaev, Oleg Aleksandrovich Ivanov.

Part 1

General Topology

Our goal in this part of the book is to teach the basics of the mathematical language. More specifically, one of its most important components: the language of set-theoretic topology, which treats the basic notions related to continuity. The term general topology means: this is the topology that is needed and used by most mathematicians. The permanent usage in the capacity of a common mathematical language has polished its system of definitions and theorems. Nowadays, studying general topology really more resembles studying a language rather than mathematics: one needs to learn a lot of new words, while proofs of most theorems are quite simple. On the other hand, the theorems are numerous because they play the role of rules regulating usage of words.

We have to warn students for whom this is one of their first mathematical subjects. Do not hurry to fall in love with it. Do not let an imprinting happen. This field may seem to be charming, but it is not very active nowadays. Other mathematical subjects are also nice and can give exciting opportunities for research. Check them out!

Structures and Spaces

1. Set-Theoretic Digression: Sets

We begin with a digression, which, however, we would like to consider unnecessary. Its subject is the first basic notions of the naive set theory. This is a part of the common mathematical language, too, but an even more profound part than general topology. We would not be able to say anything about topology without this part (look through the next section to see that this is not an exaggeration). Naturally, it may be expected that the naive set theory becomes familiar to a student when she or he studies Calculus or Algebra, two subjects of study that usually precede topology. If this is true in your case, then, please, just glance through this section and pass to the next one.

$\left\lceil 1^{\prime} 1 〕\right.$ Sets and Elements

In an intellectual activity, one of the most profound actions is gathering objects in groups. The gathering is performed in mind and is not accompanied with any action in the physical world. As soon as the group has been created and assigned a name, it can be a subject of thoughts and arguments and, in particular, can be included into other groups. Mathematics has an elaborate system of notions, which organizes and regulates creating those groups and manipulating them. The system is called the naive set theory, which, however, is a slightly misleading name because this is rather a language than a theory.

The first words in this language are set and element. By a set we understand an arbitrary collection of various objects. An object included in the collection is an element of the set. A set consists of its elements. It is also formed by them. In order to diversify the wording, the word set is replaced by the word collection. Sometimes other words, such as class, family, and group, are used in the same sense, but this is not quite safe because each of these words is associated in modern mathematics with a more special meaning, and hence should be used instead of the word set with caution.

If x is an element of a set A, then we write $x \in A$ and say that x belongs to A and A contains x. The sign \in is a variant of the Greek letter epsilon, which corresponds to the first letter of the Latin word element. To make the notation more flexible, the formula $x \in A$ is also allowed to be written in the form $A \ni x$. So, the origin of the notation is sort of ignored, but a more meaningful similarity to the inequality symbols $<$ and $>$ is emphasized. To state that x is not an element of A, we write $x \notin A$ or $A \not \supset x$.

$\left\lceil 1^{\prime} 2\right\rfloor$ Equality of Sets

A set is determined by its elements. The set is nothing but a collection of its elements. This manifests most sharply in the following principle: two sets are considered equal if and only if they have the same elements. In this sense, the word set has slightly disparaging meaning. When something is called a set, this shows, maybe unintentionally, a lack of interest to whatever organization of the elements of this set.

For example, when we say that a line is a set of points, we assume that two lines coincide if and only if they consist of the same points. On the other hand, we commit ourselves to consider all relations between points on a line (e.g., the distance between points, the order of points on the line, etc.) separately from the notion of a line.

We may think of sets as boxes that can be built effortlessly around elements, just to distinguish them from the rest of the world. The cost of this lightness is that such a box is not more than the collection of elements placed inside. It is a little more than just a name: it is a declaration of our wish to think about this collection of things as an entity and not to go into details about the nature of its member-elements. Elements, in turn, may also be sets, but as long as we consider them elements, they play the role of atoms, with their own original nature ignored.

In modern mathematics, the words set and element are very common and appear in most texts. They are even overused. There are instances when it is not appropriate to use them. For example, it is not good to use the word element as a replacement for other, more meaningful words. When you call something an element, then the set whose element is this one
should be clear．The word element makes sense only in combination with the word set，unless we deal with a nonmathematical term（like chemical element），or a rare old－fashioned exception from the common mathematical terminology（sometimes the expression under the sign of integral is called an infinitesimal element；lines，planes，and other geometric images are also called elements in old texts）．Euclid＇s famous book on geometry is called Elements，too．

「1＇3」 The Empty Set

Thus，an element may not be without a set．However，a set may have no elements．Actually，there is such a set．This set is unique because a set is completely determined by its elements．It is the empty set denoted ${ }^{1}$ by \varnothing ．

$\left\lceil 1^{\prime} 4 〕\right.$ Basic Sets of Numbers

In addition to \varnothing ，there are some other sets so important that they have their own special names and designations．The set of all positive integers， i．e．， $1,2,3,4,5, \ldots$ ，etc．，is denoted by \mathbb{N} ．The set of all integers，both positive，and negative，and zero，is denoted by \mathbb{Z} ．The set of all rational numbers（add to the integers the numbers that are presented by fractions， like $2 / 3$ and $\frac{-7}{5}$ ）is denoted by \mathbb{Q} ．The set of all real numbers（obtained by adjoining to rational numbers the numbers like $\sqrt{2}$ and $\pi=3.14 \ldots$ ）is denoted by \mathbb{R} ．The set of complex numbers is denoted by \mathbb{C} ．

$\left\lceil 1^{\prime} 5\right\rfloor$ Describing a Set by Listing Its Elements

A set presented by a list a, b, \ldots, x of its elements is denoted by the symbol $\{a, b, \ldots, x\}$ ．In other words，the list of objects enclosed in curly brackets denotes the set whose elements are listed．For example，$\{1,2,123\}$ denotes the set consisting of the numbers 1,2 ，and 123 ．The symbol $\{a, x, A\}$ denotes the set consisting of three elements：a, x ，and A ，whatever objects these three letters denote．

1．1．What is $\{\varnothing\}$ ？How many elements does it contain？
1．2．Which of the following formulas are correct：
1）$\varnothing \in\{\varnothing,\{\varnothing\}\}$ ；
2）$\{\varnothing\} \in\{\{\varnothing\}\}$ ；
3）$\varnothing \in\{\{\varnothing\}\}$ ？

A set consisting of a single element is a singleton．This is any set which is presented as $\{a\}$ for some a ．

$$
\text { 1.3. Is }\{\{\varnothing\}\} \text { a singleton? }
$$

[^1]Notice that the sets $\{1,2,3\}$ and $\{3 ; 2,1,2\}$ are equal since they have the same elements. At first glance, lists with repetitions of elements are never needed. There even arises a temptation to prohibit usage of lists with repetitions in such notation. However this would not be wise. In fact, quite often one cannot say a priori whether there are repetitions or not. For example, the elements in the list may depend on a parameter, and under certain values of the parameter some entries of the list coincide, while for other values they don't.

$$
\begin{aligned}
& \text { 1.4. How many elements do the following sets contain? } \\
& \begin{array}{llll}
\text { 1) }\{1,2,1\} ; & \text { 2) }\{1,2,\{1,2\}\} ; & \text { 3) }\{\{2\}\} ; \\
\text { 4) }\{\{1\}, 1\} ; & \text { 5) }\{1, \varnothing\} ; & \text { 6) }\{\{\varnothing\}, \varnothing\} ; \\
\text { 7) }\{\{\varnothing\},\{\varnothing\}\} ; & \text { 8) } & \{x, 3 x-1\} \text { for } x \in \mathbb{R} \text {. }
\end{array}
\end{aligned}
$$

「1'6」 Subsets

If A and B are sets and every element of A also belongs to B, then we say that A is a subset of B, or B includes A, and write $A \subset B$ or $B \supset A$.

The inclusion signs \subset and \supset resemble the inequality signs $<$ and $>$ for a good reason: in the world of sets, the inclusion signs are obvious counterparts for the signs of inequalities.
1.A. Let a set A have a elements, and let a set B have b elements. Prove that if $A \subset B$, then $a \leq b$.

$\left\lceil 1^{\prime} 7\right\rfloor$ Properties of Inclusion

1.B Reflexivity of Inclusion. Any set includes itself: $A \subset A$ holds true for any A.

Thus, the inclusion signs are not completely true counterparts of the inequality signs $<$ and $>$. They are closer to \leq and \geq. Notice that no number a satisfies the inequality $a<a$.
1.C The Empty Set Is Everywhere. The inclusion $\varnothing \subset A$ holds true for any set A. In other words, the empty set is present in each set as a subset.

Thus, each set A has two obvious subsets: the empty set \varnothing and A itself. A subset of A different from \varnothing and A is a proper subset of A. This word is used when we do not want to consider the obvious subsets (which are improper).
1.D Transitivity of Inclusion. If A, B, and C are sets, $A \subset B$, and $B \subset C$, then $A \subset C$.

$\left\lceil 1^{\prime} 8\right\rfloor$ To Prove Equality of Sets, Prove Two Inclusions

Working with sets, we need from time to time to prove that two sets, say A and B, which may have emerged in quite different ways, are equal. The most common way to do this is provided by the following theorem.

1.E Criterion of Equality for Sets.

$A=B$ if and only if $A \subset B$ and $B \subset A$.

$\left\lceil 1^{\prime} 9\right\rfloor$ Inclusion Versus Belonging

1.F. $x \in A$ if and only if $\{x\} \subset A$.

Despite this obvious relation between the notions of belonging \in and inclusion \subset and similarity of the symbols \in and \subset, the concepts are quite different. Indeed, $A \in B$ means that A is an element in B (i.e., one of the indivisible pieces constituting B), while $A \subset B$ means that A is made of some of the elements of B.

In particular, we have $A \subset A$, while $A \notin A$ for any reasonable A. Thus, belonging is not reflexive. One more difference: belonging is not transitive, while inclusion is.
1.G Non-Reflexivity of Belonging. Construct a set A such that $A \notin A$. Cf. 1.B.
1.H Non-Transitivity of Belonging. Construct three sets A, B, and C such that $A \in B$ and $B \in C$, but $A \notin C$. Cf. 1.D.

$\left\lceil 1^{\prime} 10\right.$ 」 Defining a Set by a Condition (Set-Builder Notation)

As we know (see Section $1^{\prime} 5$), a set can be described by presenting a list of its elements. This simplest way may be not available or, at least, may not be the easiest one. For example, it is easy to say: "the set of all solutions of the following equation" and write down the equation. This is a reasonable description of the set. At least, it is unambiguous. Having accepted it, we may start speaking on the set, studying its properties, and eventually may be lucky to solve the equation and obtain the list of its solutions. (Though the latter task may be difficult, this should not prevent us from discussing the set.)

Thus, we see another way for a description of a set: to formulate properties that distinguish the elements of the set among elements of some wider and already known set. Here is the corresponding notation: the subset of a set A consisting of the elements x that satisfy a condition $P(x)$ is denoted by $\{x \in A \mid P(x)\}$.
1.5. Present the following sets by lists of their elements (i.e., in the form $\{a, b, \ldots\}$)
(a) $\{x \in \mathbb{N} \mid x<5\}$,
(b) $\{x \in \mathbb{N} \mid x<0\}$,
(c) $\{x \in \mathbb{Z} \mid x<0\}$.

「1'11」 Intersection and Union

The intersection of sets A and B is the set consisting of their common elements, i.e., elements belonging both to A and B. It is denoted by $A \cap B$ and is described by the formula

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

Two sets A and B are disjoint if their intersection is empty, i.e., $A \cap B=$ \varnothing. In other words, they have no common elements.

The union of two sets A and B is the set consisting of all elements that belong to at least one of the two sets. The union of A and B is denoted by $A \cup B$. It is described by the formula

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

Here the conjunction or should be understood in the inclusive way: the statement " $x \in A$ or $x \in B$ " means that x belongs to at least one of the sets A and B, and, maybe, to both of them. ${ }^{2}$

Figure 1. The sets A and B, their intersection $A \cap B$, and their union $A \cup B$.
1.I Commutativity of \cap and \cup. For any two sets A and B, we have

$$
A \cap B=B \cap A \quad \text { and } \quad A \cup B=B \cup A
$$

In the above figure, the first equality of Theorem $1 . L$ is illustrated by sketches. Such sketches are called Venn diagrams or Euler circles. They are quite useful, and we strongly recommend trying to draw them for each formula involving sets. (At least, for formulas with at most three sets, since in this case they can serve as proofs! (Guess why?)).
1.6. Prove that for any set A we have

$$
A \cap A=A, \quad A \cup A=A, \quad A \cup \varnothing=A, \quad \text { and } A \cap \varnothing=\varnothing .
$$

1.7. Prove that for any sets A and B we have ${ }^{3}$

$$
A \subset B, \quad \text { iff } \quad A \cap B=A, \quad \text { iff } \quad A \cup B=B
$$

[^2]1.J Associativity of \cap and \cup. For any sets A, B, and C, we have
$$
(A \cap B) \cap C=A \cap(B \cap C) \quad \text { and } \quad(A \cup B) \cup C=A \cup(B \cup C) .
$$

Associativity allows us to not care about brackets and sometimes even to omit them. We define $A \cap B \cap C=(A \cap B) \cap C=A \cap(B \cap C)$ and $A \cup B \cup C=(A \cup B) \cup C=A \cup(B \cup C)$. However, the intersection and union of an arbitrarily large (in particular, infinite) collection of sets can be defined directly, without reference to the intersection or union of two sets. Indeed, let Γ be a collection of sets. The intersection of the sets in Γ is the set formed by the elements that belong to every set in Γ. This set is denoted by $\bigcap_{A \in \Gamma} A$. Similarly, the union of the sets in Γ is the set formed by elements that belong to at least one of the sets in Γ. This set is denoted by $\bigcup_{A \in \Gamma} A$.
1.K. The notions of intersection and union of an arbitrary collection of sets generalize the notions of intersection and union of two sets: for $\Gamma=\{A, B\}$, we have

$$
\bigcap_{C \in \Gamma} C=A \cap B \text { and } \bigcup_{C \in \Gamma} C=A \cup B
$$

1.8. Riddle. How are the notions of system of equations and intersection of sets related to each other?
1.L Two Distributivities. For any sets A, B, and C, we have

$$
\begin{align*}
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C), \tag{1}\\
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) . \tag{2}
\end{align*}
$$

Figure 2. The left-hand side $(A \cap B) \cup C$ of equality (1) and the sets $A \cup C$ and $B \cup C$, whose intersection is the right-hand side of the equality (1).
1.M. Draw a Venn diagram illustrating (2). Prove (1) and (2) by tracing all details of the proofs in the Venn diagrams. Draw Venn diagrams illustrating all formulas below in this section.
1.9. Riddle. Generalize Theorem 1.L to the case of arbitrary collections of sets.
1.N Yet Another Pair of Distributivities. Let A be a set and let Γ be a set consisting of sets. Then we have

$$
A \cap \bigcup_{B \in \Gamma} B=\bigcup_{B \in \Gamma}(A \cap B) \quad \text { and } \quad A \cup \bigcap_{B \in \Gamma} B=\bigcap_{B \in \Gamma}(A \cup B) .
$$

$\left\lceil 1^{\prime} 12\right\rfloor$ Different Differences

The difference $A \backslash B$ of two sets A and B is the set of those elements of A which do not belong to B. Here we do not assume that $A \supset B$.

If $A \supset B$, then the set $A \backslash B$ is also called the complement of B in A.
1.10. Prove that for any sets A and B their union $A \cup B$ is the union of the following three sets: $A \backslash B, B \backslash A$, and $A \cap B$, which are pairwise disjoint.
1.11. Prove that $A \backslash(A \backslash B)=A \cap B$ for any sets A and B.
1.12. Prove that $A \subset B$ if and only if $A \backslash B=\varnothing$.
1.13. Prove that $A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)$ for any sets A, B, and C.

The set $(A \backslash B) \cup(B \backslash A)$ is the symmetric difference of the sets A and B. It is denoted by $A \triangle B$.

Figure 3. Differences of the sets A and B.
1.14. Prove that for any sets A and B we have

$$
A \Delta B=(A \cup B) \backslash(A \cap B)
$$

1.15 Associativity of Symmetric Difference. Prove that for any sets A, B, and C we have

$$
(A \Delta B) \Delta C=A \Delta(B \Delta C) .
$$

1.16. Riddle. Find a symmetric definition of the symmetric difference $(A \Delta B) \Delta$ C of three sets and generalize it to arbitrary finite collections of sets.
1.17 Distributivity. Prove that $(A \Delta B) \cap C=(A \cap C) \Delta(B \cap C)$ for any sets A, B, and C.
1.18. Does the following equality hold true for any sets A, B, and C :

$$
(A \Delta B) \cup C=(A \cup C) \Delta(B \cup C) ?
$$

2. Topology on a Set

$\left\lceil 2^{\prime} 1\right\rfloor$ Definition of Topological Space

Let X be a set. Let Ω be a collection of its subsets such that:
(1) the union of any collection of sets that are elements of Ω belongs to Ω;
(2) the intersection of any finite collection of sets that are elements of Ω belongs to Ω;
(3) the empty set \varnothing and the whole X belong to Ω.

Then

- Ω is a topological structure or just a topology ${ }^{4}$ on X;
- the pair (X, Ω) is a topological space;
- elements of X are points of this topological space;
- elements of Ω are open sets of the topological space (X, Ω).

The conditions in the definition above are the axioms of topological structure.

$\left\lceil 2^{\prime} 2\right\rfloor$ Simplest Examples

A discrete topological space is a set with the topological structure consisting of all subsets.
2.A. Check that this is a topological space, i.e., all axioms of topological structure hold true.

An indiscrete topological space is the opposite example, in which the topological structure is the most meager. (It is also called trivial topology.) It consists only of X and \varnothing.
2.B. This is a topological structure, is it not?

Here are slightly less trivial examples.
2.1. Let X be the ray $[0,+\infty)$, and let Ω consist of \varnothing, X, and all rays $(a,+\infty)$ with $a \geq 0$. Prove that Ω is a topological structure.
2.2. Let X be a plane. Let Σ consist of \varnothing, X, and all open disks centered at the origin. Is Σ a topological structure?
2.3. Let X consist of four elements: $X=\{a, b, c, d\}$. Which of the following collections of its subsets are topological structures in X, i.e., satisfy the axioms of topological structure:

[^3](1) $\varnothing, X,\{a\},\{b\},\{a, c\},\{a, b, c\},\{a, b\}$;
(2) $\varnothing, X,\{a\},\{b\},\{a, b\},\{b, d\}$;
(3) $\varnothing, X,\{a, c, d\},\{b, c, d\}$?

The space of Problem 2.1 is the arrow. We denote the space of Problem 2.3 (1) by \forall. It is a sort of toy space made of 4 points. (The meaning of the pictogram is explained below in Section 7'9.) Both spaces, as well as the space of Problem 2.2, are not very important, but they provide nice simple examples.

$\left\lceil 2^{\prime} 3\right\rfloor$ The Most Important Example: Real Line

Let X be the set \mathbb{R} of all real numbers, Ω the set of arbitrary unions of open intervals (a, b) with $a, b \in \mathbb{R}$.
2.C. Check whether Ω satisfies the axioms of topological structure.

This is the topological structure which is always meant when \mathbb{R} is considered as a topological space (unless another topological structure is explicitly specified). This space is usually called the real line, and the structure is referred to as the canonical or standard topology on \mathbb{R}.

$\left\lceil 2^{\prime} 4\right\rfloor$ Additional Examples

2.4. Let X be \mathbb{R}, and let Ω consist of the empty set and all infinite subsets of \mathbb{R}. Is Ω a topological structure?
2.5. Let X be \mathbb{R}, and let Ω consists of the empty set and complements of all finite subsets of \mathbb{R}. Is Ω a topological structure?

The space of Problem 2.5 is denoted by $\mathbb{R}_{T_{1}}$ and called the line with T_{1} topology.
2.6. Let (X, Ω) be a topological space, Y the set obtained from X by adding a single element a. Is

$$
\{\{a\} \cup U \mid U \in \Omega\} \cup\{\varnothing\}
$$

a topological structure in Y ?
2.7. Is the set $\{\varnothing,\{0\},\{0,1\}\}$ a topological structure in $\{0,1\}$?

If the topology Ω in Problem 2.6 is discrete, then the topology on Y is called a particular point topology or topology of everywhere dense point. The topology in Problem 2.7 is a particular point topology; it is also called the topology of a connected pair of points or Sierpiński topology.

[^4]
$\left\lceil 2^{\prime} 5\right\rfloor$ Using New Words: Points, Open Sets, Closed Sets

We recall that, for a topological space (X, Ω), elements of X are points, and elements of Ω are open sets. ${ }^{5}$
2.D. Reformulate the axioms of topological structure using the words open set wherever possible.

A set $F \subset X$ is closed in the space (X, Ω) if its complement $X \backslash F$ is open (i.e., $X \backslash F \in \Omega$).

$\left\lceil 2^{\prime} 6\right\rfloor$ Set-Theoretic Digression: De Morgan Formulas

2.E. Let Γ be an arbitrary collection of subsets of a set X. Then

$$
\begin{align*}
& X \backslash \bigcup_{A \in \Gamma} A=\bigcap_{A \in \Gamma}(X \backslash A), \tag{3}\\
& X \backslash \bigcap_{A \in \Gamma} A=\bigcup_{A \in \Gamma}(X \backslash A) . \tag{4}
\end{align*}
$$

Formula (4) is deduced from (3) in one step, is it not? These formulas are nonsymmetric cases of a single formulation, which contains, in a symmetric way, sets and their complements, unions, and intersections.

2.9. Riddle. Find such a formulation.

$\left\lceil 2^{\prime} 7 」\right.$ Properties of Closed Sets

2.F. Prove that:
(1) the intersection of any collection of closed sets is closed;
(2) the union of any finite number of closed sets is closed;
(3) the empty set and the whole space (i.e., the underlying set of the topological structure) are closed.

$\left\lceil 2^{\prime} 8\right\rfloor$ Being Open or Closed

Notice that the property of being closed is not the negation of the property of being open. (They are not exact antonyms in everyday usage, too.)
2.G. Find examples of sets that are
(1) both open and closed simultaneously (open-closed);
(2) neither open, nọr closed.

[^5]2.10. Give an explicit description of closed sets in
(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) $\mathfrak{V} ;$
(5) $\mathbb{R}_{T_{1}}$.
2. \boldsymbol{H}. Is a closed segment $[a, b]$ closed in \mathbb{R} ?

The concepts of closed and open sets are similar in a number of ways. The main difference is that the intersection of an infinite collection of open sets is not necessarily open, while the intersection of any collection of closed sets is closed. Along the same lines, the union of an infinite collection of closed sets is not necessarily closed, while the union of any collection of open sets is open.
2.11. Prove that the half-open interval $[0,1)$ is neither open nor closed in \mathbb{R}, but is both a union of closed sets and an intersection of open sets.
2.12. Prove that the set $A=\{0\} \cup\{1 / n \mid n \in \mathbb{N}\}$ is closed in \mathbb{R}.

$\left\lceil 2^{\prime} 9\right\rfloor$ Characterization of Topology in Terms of Closed Sets

2.13. Suppose a collection \mathcal{F} of subsets of X satisfies the following conditions:
(1) the intersection of any family of sets from \mathcal{F} belongs to \mathcal{F};
(2) the union of any finite number sets from \mathcal{F} belongs to \mathcal{F};
(3) \varnothing and X belong to \mathcal{F}.

Prove that then \mathcal{F} is the set of all closed sets of a topological structure (which one?).
2.14. List all collections of subsets of a three-element set such that there are topologies where these collections are complete sets of closed sets.

「2'10」 Neighborhoods

A neighborhood of a point in a topological space is any open set containing this point. Analysts and French mathematicians (following N. Bourbaki) prefer a wider notion of neighborhood: they use this word for any set containing a neighborhood in the above sense.
2.15. Give an explicit description of all neighborhoods of a point in
(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) V ;
(5) a connected pair of points;
(6) particular point topology.

$\left\lceil 2^{\prime} 11 x\right\rfloor$ Open Sets on Line

2.Ix. Prove that every open subset of the real line is a union of disjoint open intervals.

At first glance, Theorem 2.Ix suggests that open sets on the line are simple. However, an open set may lie on the line in a quite complicated manner. Its complement may happen to be not that simple. The complement of an
open set is a closed set. One can naively expect that a closed set on \mathbb{R} is a union of closed intervals. The next important example shows that this is very far from being true.

$\left\lceil 2^{\prime} 12 x\right\rfloor$ Cantor Set

Let K be the set of real numbers that are sums of series of the form $\sum_{k=1}^{\infty} a_{k} / 3^{k}$ with $a_{k} \in\{0,2\}$.

In other words, K consists of the real numbers that have the form $0 . a_{1} a_{2} \ldots a_{k} \ldots$ without the digit 1 in the number system with base 3 .
2.Jx. Find a geometric description of K.

2.Jx.1. Prove that

(1) K is contained in $[0,1]$,
(2) K does not meet $(1 / 3,2 / 3)$,
(3) K does not meet $\left(\frac{3 s+1}{3^{k}}, \frac{3 s+2}{3^{k}}\right)$ for any integers k and s.
2.Jx.2. Present K as $[0,1]$ with an infinite family of open intervals removed.
2.Jx.3. Try to sketch K.

The set K is the Cantor set. It has a lot of remarkable properties and is involved in numerous problems below.
2.Kx. Prove that K is a closed set in the real line.

$\left\lceil 2^{\prime} 13 x\right\rfloor$ Topology and Arithmetic Progressions

2.Lx*. Consider the following property of a subset F of the set \mathbb{N} of positive integers: there is $n \in \mathbb{N}$ such that F contains no arithmetic progressions of length n. Prove that subsets with this property together with the whole \mathbb{N} form a collection of closed subsets in some topology on \mathbb{N}.

When solving this problem, you probably will need the following combinatorial theorem.
2.Mx Van der Waerden's Theorem*. For every $n \in \mathbb{N}$, there is $N \in \mathbb{N}$ such that for any subset $A \subset\{1,2, \ldots, N\}$, either A or $\{1,2, \ldots, N\} \backslash A$ contains an arithmetic progression of length n.

See [3].

3. Bases

$\left\lceil 3^{\prime} 1\right\rfloor$ Definition of Base

The topological structure is usually presented by describing its part, which is sufficient to recover the whole structure. A collection Σ of open sets is a base for a topology if each nonempty open set is a union of sets in Σ. For instance, all intervals form a base for the real line.
3.1. Can two distinct topological structures have the same base?
3.2. Find some bases for the topology of
(1) a discrete space;
(2) V;
(3) an indiscrete space;
(4) the arrow.

Try to choose the smallest possible bases.
3.3. Prove that any base of the canonical topology on \mathbb{R} can be decreased.
3.4. Riddle. What topological structures have exactly one base?

$\left\lceil 3^{\prime} 2\right\rfloor$ When a Collection of Sets is a Base

3.A. A collection Σ of open sets is a base for the topology iff for every open set U and every point $x \in U$ there is a set $V \in \Sigma$ such that $x \in V \subset U$.
3.B. A collection Σ of subsets of a set X is a base for a certain topology on X iff X is the union of all sets in Σ and the intersection of any two sets in Σ is the union of some sets in Σ.
3.C. Show that the second condition in Theorem 3.B (on the intersection) is equivalent to the following one: the intersection of any two sets in Σ contains, together with any of its points, a certain set in Σ containing this point (cf. Theorem 3.A).

$\left\lceil 3^{\prime} 3\right\rfloor$ Bases for Plane

Consider the following three collections of subsets of \mathbb{R}^{2} :

- Σ^{2}, which consists of all possible open disks (i.e., disks without their boundary circles);
- Σ^{∞}, which consists of all possible open squares (i.e., squares without their sides and vertices) with sides parallel to the coordinate axes;
- Σ^{1}, which consists of all possible open squares with sides parallel to the bisectors of the coordinate angles.
(The squares in Σ^{∞} and Σ^{1} are determined by the inequalities $\max \{\mid x-$ $a|,|y-b|\}<\rho$ and $|x-a|+|y-b|<\rho$, respectively.)

3.5. Prove that every element of Σ^{2} is a union of elements of Σ^{∞}.
3.6. Prove that the intersection of any two elements of Σ^{1} is a union of elements of Σ^{1}.
3.7. Prove that each of the collections $\Sigma^{2}, \Sigma^{\infty}$, and Σ^{1} is a base for some topological structure in \mathbb{R}^{2}, and that the structures determined by these collections coincide.

$\left\lceil 3^{\prime} 4\right\rfloor$ Subbases

Let (X, Ω) be a topological space. A collection Δ of its open subsets is a subbase for Ω provided that the collection

$$
\Sigma=\left\{V \mid V=\bigcap_{i=1}^{k} W_{i}, k \in \mathbb{N}, W_{i} \in \Delta\right\}
$$

of all finite intersections of sets in Δ is a base for Ω.
3.8. Let X be a set, Δ a collection of subsets of X. Prove that Δ is a subbase for a topology on X iff $X=\bigcup_{W \in \Delta} W$.

$\left\lceil 3^{\prime} 5\right\rfloor$ Infiniteness of the Set of Prime Numbers

3.9. Prove that all (infinite) arithmetic progressions consisting of positive integers form a base for some topology on \mathbb{N}.
3.10. Using this topology, prove that the set of all prime numbers is infinite.

$\left\lceil 3^{\prime} 6\right\rfloor$ Hierarchy of Topologies

If Ω_{1} and Ω_{2} are topological structures in a set X such that $\Omega_{1} \subset \Omega_{2}$, then Ω_{2} is finer than Ω_{1}, and Ω_{1} is coarser than Ω_{2}. For instance, the indiscrete topology is the coarsest topology among all topological structures in the same set, while the discrete topology is the finest one, is it not?
3.11. Show that the T_{1}-topology on the real line (see $2^{\prime} 4$) is coarser than the canonical topology.

Two bases determining the same topological structure are equivalent.
3.D. Riddle. Formulate a necessary and sufficient condition for two bases to be equivalent without explicitly mentioning the topological structures determined by the bases. (Cf. 3.7: the bases $\Sigma^{2}, \Sigma^{\infty}$, and Σ^{1} must satisfy the condition you are looking for.)

4. Metric Spaces

$\left\lceil 4^{\prime} 1\right\rfloor$ Definition and First Examples

A function ${ }^{6} \rho: X \times X \rightarrow \mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$ is a metric (or distance function) on X if
(1) $\rho(x, y)=0$ iff $x=y$;
(2) $\rho(x, y)=\rho(y, x)$ for any $x, y \in X$;
(3) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$ for any $x, y, z \in X$.

The pair (X, ρ), where ρ is a metric on X, is a metric space. Condition (3) is the triangle inequality.
4. \boldsymbol{A}. Prove that the function

$$
\rho: X \times X \rightarrow \mathbb{R}_{+}: \quad(x, y) \mapsto \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

is a metric for any set X.
4.B. Prove that $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{+}:(x, y) \mapsto|x-y|$ is a metric.
4.C. Prove that $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}:(x, y) \mapsto \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$ is a metric.

The metrics of Problems $4 . B$ and $4 . C$ are always meant when \mathbb{R} and \mathbb{R}^{n} are considered as metric spaces, unless another metric is specified explicitly. The metric of Problem 4.B is a special case of the metric of Problem 4.C. All these metrics are called Euclidean.

$\left\lceil 4^{\prime} 2\right\rfloor$ Further Examples

4.1. Prove that $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}:(x, y) \mapsto \max _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|$ is a metric.
4.2. Prove that $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}:(x, y) \mapsto \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$ is a metric.

The metrics in \mathbb{R}^{n} introduced in Problems 4.C, 4.1, 4.2 are members of an infinite sequence of metrics:

$$
\rho^{(p)}:(x, y) \mapsto\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}, \quad p \geq 1
$$

4.3. Prove that $\rho^{(p)}$ is a metric for any $p \geq 1$.

[^6]4.3.1 Hölder Inequality. Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \geq 0$, let $p, q>0$, and let $1 / p+1 / q=1$. Prove that
$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

The metric of 4.C is $\rho^{(2)}$, that of 4.2 is $\rho^{(1)}$, and that of 4.1 can be denoted by $\rho^{(\infty)}$ and appended to the series since

$$
\lim _{p \rightarrow+\infty}\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}=\max a_{i}
$$

for any positive $a_{1}, a_{2}, \ldots, a_{n}$.
4.4. Riddle. How is this related to $\Sigma^{2}, \Sigma^{\infty}$, and Σ^{1} from Section 3 ?

For a real $p \geq 1$, denote by $l^{(p)}$ the set of sequences $x=\left\{x_{i}\right\}_{i=1,2, \ldots}$ such that the series $\sum_{i=1}^{\infty}|x|^{p}$ converges.
4.5. Let $p \geq 1$. Prove that for any two sequences $x, y \in l^{(p)}$ the series $\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}$ converges and that

$$
(x, y) \mapsto\left(\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

is a metric on $l^{(p)}$.

$\left\lceil 4^{\prime} 3\right\rfloor$ Balls and Spheres

Let (X, ρ) be a metric space, $a \in X$ a point, r a positive real number. Then the sets

$$
\begin{align*}
B_{r}(a) & =\{x \in X \mid \rho(a, x)<r\} \tag{5}\\
D_{r}(a) & =\{x \in X \mid \rho(a, x) \leq r\} \tag{6}\\
S_{r}(a) & =\{x \in X \mid \rho(a, x)=r\} \tag{7}
\end{align*}
$$

are, respectively, the open ball, closed ball (or disk), and sphere of the space (X, ρ) with center a and radius r.

$\left\lceil 4^{\prime} 4\right\rfloor$ Subspaces of a Metric Space

If (X, ρ) is a metric space and $A \subset X$, then the restriction of the metric ρ to $A \times A$ is a metric on A, and so $\left(A,\left.\rho\right|_{A \times A}\right)$ is a metric space. It is called a subspace of (X, ρ).

The disk $D_{1}(0)$ and the sphere $S_{1}(0)$ in \mathbb{R}^{n} (with Euclidean metric, see 4.C) are denoted by D^{n} and S^{n-1} and called the (unit) n-disk and ($n-1$)-sphere. They are regarded as metric spaces (with the metric induced from \mathbb{R}^{n}).
4.D. Check that D^{1} is the segment $[-1,1], D^{2}$ is a plane disk, S^{0} is the pair of points $\{-1,1\}, S^{1}$ is a circle, S^{2} is a sphere, and D^{3} is a ball.

The last two assertions clarify the origin of the terms sphere and ball (in the context of metric spaces).

Some properties of balls and spheres in an arbitrary metric space resemble familiar properties of planar disks and circles and spatial balls and spheres.
4.E. Prove that for any po ${ }^{i}$ ats x and a of any metric space and any $r>$ $\rho(a, x)$ we have

$$
B_{r-\rho(c, x)}(x) \subset B_{r}(a) \text { and } D_{r-\rho(a, x)}(x) \subset D_{r}(a)
$$

4.6. Riddle. What if $r<\rho(x, a)$? What is an analog for the statement of Problem 4.E in this case?

$\left\lceil 4^{\prime} 5\right\rfloor$ Surprising Balls

However, balls and spheres in other metric spaces may have rather surprising properties.
4.7. What are balls and spheres in \mathbb{R}^{2} equipped with the metrics of 4.1 and 4.2 ? (Cf. 4.4.)
4.8. Find $D_{1}(a), D_{1 / 2}(a)$, and $S_{1 / 2}(a)$ in the space of 4.A.
4.9. Find a metric space and two balls in it such that the ball with the smaller radius contains the ball with the bigger one and does not coincide with it.
4.10. What is the minimal number of points in the space which is required to be constructed in 4.9?
4.11. Prove that the largest radius in 4.9 is at most twice the smaller radius.

$\left\lceil 4^{\prime} 6\right\rfloor$ Segments (What Is Between)

4.12. Prove that the segment with endpoints $a, b \in \mathbb{R}^{n}$ can be described as

$$
\left\{x \in \mathbb{R}^{n} \mid \rho(a, x)+\rho(x, b)=\rho(a, b)\right\},
$$

where ρ is the Euclidean metric.
4.13. How does the set defined as in Problem 4.12 look if ρ is the metric defined in Problems 4.1 or 4.2? (Consider the case where $n=2$ if it seems to be easier.)

$\left\lceil 4^{\prime} 7\right\rfloor$ Bounded Sets and Balls

A subset A of a metric space (X, ρ) is bounded if there is a number $d>0$ such that $\rho(x, y)<d$ for any $x, y \in A$. The greatest lower bound for such d is the diameter of A. It is denoted by $\operatorname{diam}(A)$.
4. \boldsymbol{F}. Prove that a set A is bounded iff A is contained in a ball.
4.14. What is the relation between the minimal radius of such a ball and $\operatorname{diam}(A)$?

「4'8」 Norms and Normed Spaces

Let X be a vector space (over \mathbb{R}). A function $X \rightarrow \mathbb{R}_{+}: x \mapsto\|x\|$ is a norm if
(1) $\|x\|=0$ iff $x=0$;
(2) $\|\lambda x\|=|\lambda|\|x\|$ for any $\lambda \in \mathbb{R}$ and $x \in X$;
(3) $\|x+y\| \leq\|x\|+\|y\|$ for any $x, y \in X$.
4.15. Prove that if $x \mapsto\|x\|$ is a norm, then

$$
\rho: X \times X \rightarrow \mathbb{R}_{+}:(x, y) \mapsto\|x-y\|
$$

is a metric.
A vector space equipped with a norm is a normed space. The metric determined by the norm as in 4.15 transforms the normed space into a metric space in a canonical way.
4.16. Look through the problems of this section and figure out which of the metric spaces involved are, in fact, normed vector spaces.
4.17. Prove that every ball in a normed space is a convex ${ }^{7}$ set symmetric with respect to the center of the ball.
4.18*. Prove that every convex closed bounded set in \mathbb{R}^{n} that has a center of symmetry and is not contained in any affine space except \mathbb{R}^{n} itself is a unit ball with respect to a certain norm, which is uniquely determined by this ball.

[^7]
「4'9」 Metric Topology

4.G. The collection of all open balls in the metric space is a base for a certain topology.

This topology is the metric topology. We also say that it is generated by the metric. This topological structure is always meant whenever the metric space is regarded as a topological space (for instance, when we speak about open and closed sets, neighborhoods, etc. in this space).
4.H. Prove that the standard topological structure in \mathbb{R} introduced in Section 2 is generated by the metric $(x, y) \mapsto|x-y|$.
4.19. What topological structure is generated by the metric of 4.A?
4.I. A set U is open in a metric space iff, together with each of its points, the set U contains a ball centered at this point.

$\left\lceil 4^{\prime} 10\right\rfloor$ Openness and Closedness of Balls and Spheres

4.20. Prove that a closed ball is closed (here and below, we mean the metric topology).
4.21. Find a closed ball that is open.
4.22. Find an open ball that is closed.
4.23. Prove that a sphere is closed.
4.24. Find a sphere that is open.

$\left\lceil 4^{\prime} 11\right\rfloor$ Metrizable Topological Spaces

A topological space is metrizable if its topological structure is generated by a certain metric.
4.J. An indiscrete space is not metrizable if it is not a singleton (otherwise, it has too few open sets).
4.K. A finite space X is metrizable iff it is discrete.
4.25. Which of the topological spaces described in Section 2 are metrizable?

$\left\lceil 4^{\prime} 12\right\rfloor$ Equivalent Metrics

Two metrics in the same set are equivalent if they generate the same topology.
4.26. Are the metrics of $4 . C, 4.1$, and 4.2 equivalent?
4.27. Prove that two metrics ρ_{1} and ρ_{2} in X are equivalent if there are numbers $c, C>0$ such that

$$
c \rho_{1}(x, y) \leq \rho_{2}(x, y) \leq C \rho_{1}(x, y)
$$

for any $x, y \in X$.

4.28. Generally speaking, the converse is not true.
4.29. Riddle. Hence, the condition of equivalence of metrics formulated in Problem 4.27 can be weakened. How?
4.30. The metrics $\rho^{(p)}$ in \mathbb{R}^{n} defined right before Problem 4.3 are equivalent.
4.31*. Prove that the following two metrics ρ_{1} and ρ_{C} in the set of all continuous functions $[0,1] \rightarrow \mathbb{R}$ are not equivalent:

$$
\rho_{1}(f, g)=\int_{0}^{1}|f(x)-g(x)| d x, \quad \rho_{C}(f, g)=\max _{x \in[0,1]}|f(x)-g(x)| .
$$

Is it true that one of the topological structures generated by them is finer than the other one?

$\left\lceil 4^{\prime} 13\right\rfloor$ Operations with Metrics

4.32. 1) Prove that if ρ_{1} and ρ_{2} are two metrics in X, then $\rho_{1}+\rho_{2}$ and $\max \left\{\rho_{1}, \rho_{2}\right\}$ also are metrics. 2) Are the functions $\min \left\{\rho_{1}, \rho_{2}\right\}, \rho_{1} \rho_{2}$, and ρ_{1} / ρ_{2} metrics? (By definition, for $\rho=\rho_{1} / \rho_{2}$ we put $\rho(x, x)=0$.)
4.33. Prove that if $\rho: X \times X \rightarrow \mathbb{R}_{+}$is a metric, then
(1) the function $(x, y) \mapsto \frac{\rho(x, y)}{1+\rho(x, y)}$ is a metric;
(2) the function $(x, y) \mapsto \min \{\rho(x, y), 1\}$ is a metric;
(3) the function $(x, y) \mapsto f(\rho(x, y))$ is a metric if f satisfies the following conditions:
(a) $f(0)=0$,
(b) f is a monotone increasing function, and
(c) $f(x+y) \leq f(x)+f(y)$ for any $x, y \in \mathbb{R}$.
4.34. Prove that the metrics ρ and $\frac{\rho}{1+\rho}$ are equivalent.

$\left\lceil 4^{\prime} 14\right\rfloor$ Distances between Points and Sets

Let (X, ρ) be a metric space, $A \subset X$, and $b \in X$. The number $\rho(b, A)=$ $\inf \{\rho(b, a) \mid a \in A\}$ is the distance from the point b to the set A.
4.L. Let A be a closed set. Prove that $\rho(b, A)=0$ iff $b \in A$.
4.35. Prove that $|\rho(x, A)-\rho(y, A)| \leq \rho(x, y)$ for any set A and any points x and y in a metric space.

$\left\lceil 4^{\prime} 15 x\right\rfloor$ Distance between Sets

Let A and B be two bounded subsets in a metric space (X, ρ). We define

$$
d_{\rho}(A, B)=\max \left\{\sup _{a \in A} \rho(a, B), \sup _{b \in B} \rho(b, A)\right\} .
$$

This number is the Hausdorff distance between A and B.
4. $M \mathrm{x}$. Prove that the Hausdorff distance between bounded subsets of a metric space satisfies conditions (2) and (3) in the definition of a metric.
4. Nx. Prove that for every metric space the Hausdorff distance is a metric on the set of its closed bounded subsets.

Let A and B be two bounded polygons in the plane. ${ }^{8}$ We define

$$
d_{\Delta}(A, B)=S(A)+S(B)-2 S(A \cap B),
$$

where $S(C)$ is the area of a polygon C.
4. $O \mathbf{x}$. Prove that d_{Δ} is a metric on the set of all bounded plane polygons.

We call d_{Δ} the area metric.
4.Px. Prove that the area metric is not equivalent to the Hausdorff metric on the set of all bounded plane polygons.
4.Qx. Prove that the area metric is equivalent to the Hausdorff metric on the set of convex bounded plane polygons.

$\left\lceil 4^{\prime} 16 \mathrm{x}\right\rfloor$ Ultrametrics and p-Adic Numbers

A metric ρ is an ultrametric if it satisfies the ultrametric triangle inequality:

$$
\rho(x, y) \leq \max \{\rho(x, z), \rho(z, y)\}
$$

for any x, y, and z.
A metric space (X, ρ), where ρ is an ultrametric, is an ultrametric space.

[^8]4. $R \mathrm{x}$. Check that only one metric in 4.A-4.2 is an ultrametric. Which one?
4. Sx . Prove that all triangles in an ultrametric space are isosceles (i.e., for any three points a, b, and c, at least two of the three distances $\rho(a, b), \rho(b, c)$, and $\rho(a, c)$ are equal).
4.Tx. Prove that spheres in an ultrametric space are not only closed (see Problem 4.23), but also open.

The most important example of an ultrametric is the p-adic metric in the set \mathbb{Q} of rational numbers. Let p be a prime number. For $x, y \in \mathbb{Q}$, present the difference $x-y$ as $\frac{r}{s} p^{\alpha}$, where r, s, and α are integers, and r and s are co-prime with p. We define $\rho(x, y)=p^{-\alpha}$.
4. Ux. Prove that ρ is an ultrametric.

$\left\lceil 4^{\prime} 17 \mathrm{x}\right\rfloor$ Asymmetrics

A function $\rho: X \times X \rightarrow \mathbb{R}_{+}$is an asymmetric on a set X if
(1) $\rho(x, y)=0$ and $\rho(y, x)=0$, iff $x=y$;
(2) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$ for any $x, y, z \in X$.

Thus, an asymmetric satisfies conditions 1 and 3 in the definition of a metric, but, maybe, does not satisfy condition 2 .

Here is example of an asymmetric taken "from real life": the length of the shortest path from one place to another by car in a city having one-way streets.
4. $\boldsymbol{V} \mathbf{x}$. Prove that if $\rho: X \times X \rightarrow \mathbb{R}_{+}$is an asymmetric, then the function

$$
(x, y) \mapsto \rho(x, y)+\rho(y, x)
$$

is a metric on X.
Let A and B be two bounded subsets of a metric space (X, ρ). The number $a_{\rho}(A, B)=\sup _{b \in B} \rho(b, A)$ is the asymmetric distance from A to B.
4. $\boldsymbol{W} \mathbf{x}$. The function a_{ρ} on the set of bounded subsets of a metric space satisfies the triangle inequality in the definition of an asymmetric.
4. $\boldsymbol{X} \mathbf{x}$. Let (X, ρ) be a metric space. A set $B \subset X$ is contained in all closed sets containing $A \subset X$ iff $a_{\rho}(A, B)=0$.
4. Yx. Prove that a_{ρ} is an asymmetric on the set of all bounded closed subsets of a metric space (X, ρ).

Let A and B be two polygons on the plane. We define

$$
a_{\Delta}(A, B)=S(B)-S(A \cap B)=S(B \backslash A),
$$

where $S(C)$ is the area of a polygon C.
4.36x. Prove that a_{Δ} is an asymmetric on the set of all planar polygons.

A pair (X, ρ), where ρ is an asymmetric on X, is an asymmetric space. Certainly, any metric space is an asymmetric space, too. Open and closed balls and spheres in an asymmetric space are defined as in a metric space, see Section $4^{\prime} 3$.
4.Zx. The set of all open balls of an asymmetric space is a base of a certain topology.

We also say that this topology is generated by the asymmetric.
4.37x. Prove that the formula $a(x, y)=\max \{x-y, 0\}$ determines an asymmetric on $[0, \infty)$, and the topology generated by this asymmetric is the arrow topology, see Section $2^{\prime} 2$.

5. Subspaces

$\left\lceil 5^{\prime} 1\right.$ 」 Topology for a Subset of a Space

Let (X, Ω) be a topological space, $A \subset X$. Denote by Ω_{A} the collection of sets $A \cap V$, where $V \in \Omega: \Omega_{A}=\{A \cap V \mid V \in \Omega\}$.
5.A. The collection Ω_{A} is a topological structure in A.

The pair $\left(A, \Omega_{A}\right)$ is a subspace of the space (X, Ω). The collection Ω_{A} is the subspace topology, the relative topology, or the topology induced on A by Ω, and its elements are said to be sets open in A.

5.B. The canonical topology on \mathbb{R}^{1} coincides with the topology induced on \mathbb{R}^{1} as on a subspace of \mathbb{R}^{2}.
5.1. Riddle. How to construct a base for the topology induced on A by using a base for the topology on X ?
5.2. Describe the topological structures induced
(1) on the set \mathbb{N} of positive integers by the topology of the real line;
(2) on \mathbb{N} by the topology of the arrow;
(3) on the two-element set $\{1,2\}$ by the topology of $\mathbb{R}_{T_{1}}$;
(4) on the same set by the topology of the arrow.
5.3. Is the half-open interval $[0,1)$ open in the segment $[0,2]$ regarded as a subspace of the real line?
5.C. A set F is closed in a subspace $A \subset X$ iff F is the intersection of A and a closed subset of X.
5.4. If a subset of a subspace is open (respectively, closed) in the ambient space, then it is also open (respectively, closed) in the subspace.

$\left\lceil 5^{\prime} 2\right\rfloor$ Relativity of Openness and Closedness

Sets that are open in a subspace are not necessarily open in the ambient space.
5.D. The unique open set in \mathbb{R}^{1} which is also open in \mathbb{R}^{2} is \varnothing.

However, the following is true.
5.E. An open set of an open subspace is open in the ambient space, i.e., if $A \in \Omega$, then $\Omega_{A} \subset \Omega$.

The same relation holds true for closed sets. Sets that are closed in the subspace are not necessarily closed in the ambient space. However, the following is true.
5.F. Closed sets of a closed subspace are closed in the ambient space.
5.5. Prove that a set U is open in X iff each point in U has a neighborhood V in X such that $U \cap V$ is open in V.

This allows us to say that the property of being open is local. Indeed, we can reformulate 5.5 as follows: a set is open iff it is open in a neighborhood of each of its points.
5.6. Show that the property of being closed is not local.
5. G Transitivity of Induced Topology. Let (X, Ω) be a topological space, $X \supset A \supset B$. Then $\left(\Omega_{A}\right)_{B}=\Omega_{B}$, i.e., the topology induced on B by the relative topology of A coincides with the topology induced on B directly from X.
5.7. Let (X, ρ) be a metric space, $A \subset X$. Then the topology on A generated by the induced metric $\left.\rho\right|_{A \times A}$ coincides with the relative topology induced on A by the metric topology on X.
5.8. Riddle. The statement 5.7 is equivalent to a pair of inclusions. Which of them is less obvious?

$\left\lceil 5^{\prime} 3\right\rfloor$ Agreement on Notation for Topological Spaces

Different topological structures in the same set are considered simultaneously rather seldom. This is why a topological space is usually denoted by the same symbol as the set of its points, i.e., instead of (X, Ω) we write just X. The same applies to metric spaces: instead of (X, ρ) we write just X.

6. Position of a Point with Respect to a Set

This section is devoted to further expanding the vocabulary needed when we speak about phenomena in a topological space.

$\left\lceil 6^{\prime} 1\right\rfloor$ Interior, Exterior, and Boundary Points

Let X be a topological space, $A \subset X$ a subset, and $b \in X$ a point. The point b is

- an interior point of A if b has a neighborhood contained in A;
- an exterior point of A if b has a neighborhood disjoint with A;
- a boundary point of A if each neighborhood of b meets both A and the complement of A.

$\left\lceil 6^{\prime} 2\right\rfloor$ Interior and Exterior

The interior of a set A in a topological space X is the greatest (with respect to inclusion) open set in X contained in A, i.e., an open set that contains any other open subset of A. It is denoted by $\operatorname{Int} A$ or, in more detail, by $\operatorname{Int}_{X} A$.
6.A. Every subset of a topological space has an interior. It is the union of all open sets contained in this set.
6.B. The interior of a set A is the set of interior points of A.
6.C. A set is open iff it coincides with its interior.
6.D. Prove that in \mathbb{R} :
(1) $\operatorname{Int}[0,1)=(0,1)$,
(2) Int $\mathbb{Q}=\varnothing$, and
(3) $\operatorname{Int}(\mathbb{R} \backslash \mathbb{Q})=\varnothing$.

6．1．Find the interior of $\{a, b, d\}$ in the space $\{$ ．
6．2．Find the interior of the interval $(0,1)$ on the line with the Zariski topology．
The exterior of a set is the greatest open set disjoint with A ．Obviously， the exterior of A is $\operatorname{Int}(X \backslash A)$ ．

「6＇3」 Closure

The closure of a set A is the smallest closed set containing A ．It is denoted by $\mathrm{Cl} A$ or，more specifically，by $\mathrm{Cl}_{X} A$ ．

6．E．Every subset of a topological space has a closure．It is the intersection of all closed sets containing this set．

6．3．Prove that if A is a subspace of X and $B \subset A$ ，then $\mathrm{Cl}_{A} B=\left(\mathrm{Cl}_{X} B\right) \cap A$ ．
Is it true that $\operatorname{Int}_{A} B=\left(\operatorname{Int}_{X} B\right) \cap A$ ？
A point b is an adherent point for a set A if all neighborhoods of b meet A．

6．F．The closure of a set A is the set of the adherent points of A ．
6．G ．A set A is closed iff $A=\mathrm{Cl} A$ ．
6．H．The closure of a set A is the complement of the exterior of A ．In formulas： $\mathrm{Cl} A=X \backslash \operatorname{Int}(X \backslash A)$ ，where X is the space and $A \subset X$ ．

6．I．Prove that in \mathbb{R} we have：
（1） $\mathrm{Cl}[0,1)=[0,1]$ ，
（2） $\mathrm{Cl} \mathbb{Q}=\mathbb{R}$ ，and
（3） $\mathrm{Cl}(\mathbb{R} \backslash \mathbb{Q})=\mathbb{R}$ ．
6．4．Find the closure of $\{a\}$ in \mathfrak{V} ．

「6＇4」 Closure in Metric Space

Let A be a subset and b a point of a metric space (X, ρ) ．We recall that the distance $\rho(b, A)$ from b to A is $\inf \{\rho(b, a) \mid a \in A\}$（see $\left.4^{\prime} 14\right)$ ．
6．J．Prove that $b \in \mathrm{Cl} A$ iff $\rho(b, A)=0$ ．

$\left\lceil 6^{\prime} 5\right\rfloor$ Boundary

The boundary of a set A is the set $\mathrm{Cl} A \backslash \operatorname{Int} A$ ．It is denoted by $\operatorname{Fr} A$ or，in more detail， $\operatorname{Fr}_{X} A$ ．

6．5．Find the boundary of $\{a\}$ in \mathcal{V} ．
$\boldsymbol{6} \boldsymbol{K}$ ．The boundary of a set is the set of its boundary points．
6．L．Prove that a set A is closed iff $\operatorname{Fr} A \subset A$ ．
6.6. 1) Prove that $\operatorname{Fr} A=\operatorname{Fr}(X \backslash A)$. 2) Find a formula for $\operatorname{Fr} A$ which is symmetric with respect to A and $X \backslash A$.
6.7. The boundary of a set A equals the intersection of the closure of A and the closure of the complement of A : we have $\mathrm{Fr} A=\mathrm{Cl} A \cap \mathrm{Cl}(X \backslash A)$.

$\left\lceil 6^{\prime} 6\right\rfloor$ Closure and Interior with Respect to a Finer Topology

6.8. Let Ω_{1} and Ω_{2} be two topological structures in X such that $\Omega_{1} \subset \Omega_{2}$. Let Cl_{i} denote the closure with respect to Ω_{i}. Prove that $\mathrm{Cl}_{1} A \supset \mathrm{Cl}_{2} A$ for any $A \subset X$.
6.9. Formulate and prove a similar statement about the interior.

$\left\lceil 6^{\prime} 7\right\rfloor$ Properties of Interior and Closure

6.10. Prove that if $A \subset B$, then $\operatorname{Int} A \subset \operatorname{Int} B$.
6.11. Prove that $\operatorname{Int} \operatorname{Int} A=\operatorname{Int} A$.
6.12. Find out whether the following equalities hold true that for any sets A and B:

$$
\begin{align*}
& \operatorname{Int}(A \cap B)=\operatorname{Int} A \cap \operatorname{Int} B, \tag{8}\\
& \operatorname{Int}(A \cup B)=\operatorname{Int} A \cup \operatorname{Int} B . \tag{9}
\end{align*}
$$

6.13. Give an example in which one of equalities (8) and (9) is wrong.
6.14. In the example that you found when solving Problem 6.12, an inclusion of one side into another one holds true. Does this inclusion hold true for arbitrary A and B ?
6.15. Study the operator Cl in a way suggested by the investigation of Int undertaken in 6.10-6.14.
6.16. Find $\operatorname{Cl}\{1\}, \operatorname{Int}[0,1]$, and $\operatorname{Fr}(2,+\infty)$ in the arrow.
6.17. Find $\operatorname{Int}((0,1] \cup\{2\}), \operatorname{Cl}\{1 / n \mid n \in \mathbb{N}\}$, and $\operatorname{Fr} \mathbb{Q}$ in \mathbb{R}.
6.18. Find $\mathrm{ClN}, \operatorname{Int}(0,1)$, and $\operatorname{Fr}[0,1]$ in $\mathbb{R}_{T_{1}}$. How do you find the closure and interior of a set in this space?
6.19. Does a sphere contain the boundary of the open ball with the same center and radius?
6.20. Does a sphere contain the boundary of the closed ball with the same center and radius?
6.21. Find an example in which a sphere is disjoint with the closure of the open ball with the same center and radius.

$\left\lceil 6^{\prime} 8\right\rfloor$ Compositions of Closure and Interior

6.22 Kuratowski's Problem. How many pairwise distinct sets can one obtain from of a single set by using the operators Cl and Int?

The following problems will help you to solve Problem 6.22.
6.22.1. Find a set $A \subset \mathbb{R}$ such that the sets $A, \mathrm{Cl} A$, and $\operatorname{Int} A$ are pairwise distinct.
6.22.2. Is there a set $A \subset \mathbb{R}$ such that
(1) $A, \mathrm{Cl} A$, $\operatorname{Int} A$, and $\mathrm{Cl} \operatorname{Int} A$ are pairwise distinct;
(2) $A, \mathrm{Cl} A, \operatorname{Int} A$, and $\operatorname{Int} \mathrm{Cl} A$ are pairwise distinct;
(3) $A, \mathrm{Cl} A, \operatorname{Int} A, \mathrm{Cl} \operatorname{Int} A$, and $\operatorname{Int} \mathrm{Cl} A$ are pairwise distinct?

If you find such sets, keep on going in the same way, and when you fail to proceed, try to formulate a theorem explaining the failure.
6.22.3. Prove that $\mathrm{Cl} \operatorname{Int} \mathrm{Cl} \operatorname{Int} A=\mathrm{Cl} \operatorname{Int} A$.

$\left\lceil 6^{\prime} 9\right\rfloor$ Sets with Common Boundary

6.23*. Find three open sets in the real line that have the same boundary. Is it possible to increase the number of such sets?

$\left\lceil 6^{\prime} 10\right\rfloor$ Convexity and Int, Cl , and Fr

Recall that a set $A \subset \mathbb{R}^{n}$ is convex if together with any two points it contains the entire segment connecting them (i.e., for any $x, y \in A$, every point z of the segment $[x, y]$ belongs to A).

Let A be a convex set in \mathbb{R}^{n}.
6.24. Prove that $\mathrm{Cl} A$ and $\operatorname{Int} A$ are convex.
6.25. Prove that A contains a ball if A is not contained in an $(n-1)$-dimensional affine subspace of \mathbb{R}^{n}.
6.26. When is $\operatorname{Fr} A$ convex?

$\left\lceil 6^{\prime} 11\right\rfloor$ Characterization of Topology by Operations of Taking Closure and Interior

6.27*. Suppose that Cl_{*} is an operator on the set of all subsets of a set X, which has the following properties:
(1) $\mathrm{Cl}_{*} \varnothing=\varnothing$,
(2) $\mathrm{Cl}_{*} A \supset A$,
(3) $\mathrm{Cl}_{*}(A \cup B)=\mathrm{Cl}_{*} A \cup \mathrm{Cl}_{*} B$,
(4) $\mathrm{Cl}_{*} \mathrm{Cl}_{*} A=\mathrm{Cl}_{*} A$.

Prove that $\Omega=\left\{U \subset X \mid \mathrm{Cl}_{*}(X \backslash U)=X \backslash U\right\}$ is a topological structure and $\mathrm{Cl}_{*} A$ is the closure of a set A in the space (X, Ω).
6.28. Present a similar system of axioms for Int.

$\left\lceil 6^{\prime} 12 」\right.$ Dense Sets

Let A and B be two sets in a topological space $X . A$ is dense in B if $\mathrm{Cl} A \supset B$, and A is everywhere dense if $\mathrm{Cl} A=X$.
6.M. A set is everywhere dense iff it meets any nonempty open set.
6.N. The set \mathbb{Q} is everywhere dense in \mathbb{R}.
6.29. Give an explicit characterization of everywhere dense sets 1) in an indiscrete space, 2) in the arrow, and 3) in $\mathbb{R}_{T_{1}}$.
6.30. Prove that a topological space is discrete iff it contains a unique everywhere dense set. (By the way, which one?)
6.31. Formulate a necessary and sufficient condition on the topology of a space which has an everywhere dense point. Find spaces in Section 2 that satisfy this condition.
6.32. 1) Is it true that the union of everywhere dense sets is everywhere dense?
2) Is it true that the intersection of two everywhere dense sets is everywhere dense?
6.33. Prove that any two open everywhere dense sets have everywhere dense intersection.
6.34. Which condition in Problem 6.33 is redundant?
6.35^{*}. 1) Prove that a countable intersection of open everywhere dense sets in \mathbb{R} is everywhere dense. 2) Is it possible to replace \mathbb{R} here by an arbitrary topological space?
6.36*. Prove that \mathbb{Q} is not the intersection of countably many open sets in \mathbb{R}.

$\left\lceil 6^{\prime} 13 」\right.$ Nowhere Dense Sets

A set is nowhere dense if its exterior is everywhere dense.
6.37. Can a set be everywhere dense and nowhere dense simultaneously?
6.O. A set A is nowhere dense in X iff each neighborhood of each point $x \in X$ contains a point y such that the complement of A contains y together with a neighborhood of y.
6.38. Riddle. What can you say about the interior of a nowhere dense set?
6.39. Is \mathbb{R} nowhere dense in \mathbb{R}^{2} ?
6.40. Prove that if A is nowhere dense, then $\operatorname{Int} \mathrm{Cl} A=\varnothing$.
6.41. 1) Prove that the boundary of a closed set is nowhere dense. 2) Is this true for the boundary of an open set? 3) Is this true for the boundary of an arbitrary set?
6.42. Prove that a finite union of nowhere dense sets is nowhere dense.
6.43. Prove that for every set A there exists a greatest open set B in which A is dense. The extreme cases $B=X$ and $B=\varnothing$ mean that A is either everywhere dense or nowhere dense, respectively.
6.44*. Prove that \mathbb{R} is not the union of countably many nowhere-dense subsets.

$\left\lceil 6^{\prime} 14\right.$ Limit Points and Isolated Points

A point b is a limit point of a set A if each neighborhood of b meets $A \backslash b$.
6.P. Every limit point of a set is its adherent point.
6.45. Present an example in which an adherent point is not a limit one.

A point b is an isolated point of a set A if $b \in A$ and b has a neighborhood disjoint with $A \backslash b$.
6.Q. A set A is closed iff A contains all of its limit points.
6.46. Find limit and isolated points of the sets $(0,1] \cup\{2\}$ and $\{1 / n \mid n \in \mathbb{N}\}$ in \mathbb{Q} and in \mathbb{R}.
6.47. Find limit and isolated points of the set \mathbb{N} in $\mathbb{R}_{T_{1}}$.

$\left\lceil 6^{\prime} 15 」\right.$ Locally Closed Sets

A subset A of a topological space X is locally closed if each point of A has a neighborhood U such that $A \cap U$ is closed in U (cf. Problems 5.5-5.6).
6.48. Prove that the following conditions are equivalent:
(1) A is locally closed in X;
(2) A is an open subset of its closure $\mathrm{Cl} A$;
(3) A is the intersection of open and closed subsets of X.

7. Ordered Sets

This section is devoted to orders. They are structures on sets and occupy a position in Mathematics almost as profound as topological structures. After a short general introduction, we focus on relations between structures of these two types. Similarly to metric spaces, partially ordered sets possess natural topological structures. This is a source of interesting and important examples of topological spaces. As we will see later (in Section 21), practically all finite topological spaces appear in this way.

$\left\lceil 7^{\prime} 1\right\rfloor$ Strict Orders

A binary relation on a set X is a set of ordered pairs of elements of X, i.e., a subset $R \subset X \times X$. Many relations are denoted by special symbols, like \prec, \vdash, \equiv, or \sim. When such notation is used, there is a tradition to write $x R y$ instead of writing $(x, y) \in R$. So, we write $x \vdash y$, or $x \sim y$, or $x \prec y$, etc. This generalizes the usual notation for the classical binary relations $=$, $<,>, \leq, \subset$, etc.

A binary relation \prec on a set X is a strict partial order, or just a strict order if it satisfies the following two conditions:

- Irreflexivity: There is no $a \in X$ such that $a \prec a$.
- Transitivity: $a \prec b$ and $b \prec c$ imply $a \prec c$ for any $a, b, c \in X$.

7. A Antisymmetry. Let \prec be a strict partial order on a set X. There are no $x, y \in X$ such that $x \prec y$ and $y \prec x$ simultaneously.
7.B. Relation $<$ in the set \mathbb{R} of real numbers is a strict order.

The formula $a \prec b$ is sometimes read as " a is less than b " or " b is greater than a ", but it is often read as " b follows a " or " a precedes b ". The advantage of the latter two ways of reading is that then the relation \prec is not associated too closely with the inequality between real numbers.

「7'2」 Nonstrict Orders

A binary relation \preceq on a set X is a nonstrict partial order, or just a nonstrict order, if it satisfies the following three conditions:

- Transitivity: If $a \preceq b$ and $b \preceq c$, then $a \preceq c$ for any $a, b, c \in X$.
- Antisymmetry: If $a \preceq b$ and $b \preceq a$, then $a=b$ for any $a, b \in X$.
- Reflexivity: $a \preceq a$ for any $a \in X$.
7.C. The relation \leq on \mathbb{R} is a nonstrict order.
7.D. In the set \mathbb{N} of positive integers, the relation $a \mid b(a$ divides $b)$ is a nonstrict partial order.
7.1. Is the relation $a \mid b$ a nonstrict partial order on the set \mathbb{Z} of integers?
7.E. Inclusion determines a nonstrict partial order on the set of subsets of any set X.

$\left\lceil 7^{\prime} 3\right\rfloor$ Relation between Strict and Nonstrict Orders

7.F. For each strict order \prec, there is a relation \preceq defined on the same set as follows: $a \preceq b$ if either $a \prec b$, or $a=b$. This relation is a nonstrict order.

The nonstrict order \preceq of $7 . F$ is associated with the original strict order々.
7.G. For each nonstrict order \preceq, there is a relation \prec defined on the same set as follows: $a \prec b$ if $a \preceq b$ and $a \neq b$. This relation is a strict order.

The strict order \prec of $7 . G$ is associated with the original nonstrict order々.
7.H. The constructions of Problems 7.F and 7.G are mutually inverse: applied one after another in any order, they give the initial relation.

Thus, strict and nonstrict orders determine each other. They are just different incarnations of the same structure of order. We have already met a similar phenomenon in topology: open and closed sets in a topological space determine each other and provide different ways for describing a topological structure.

A set equipped with a partial order (either strict or nonstrict) is a partially ordered set or, briefly, a poset. More formally speaking, a partially ordered set is a pair (X, \prec) formed by a set X and a strict partial order \prec on X. Certainly, instead of a strict partial order \prec we can use the corresponding nonstrict order \preceq.

Which of the orders, strict or nonstrict, prevails in each specific case is a matter of convenience, taste, and tradition. Although it would be handy to keep both of them available, nonstrict orders conquer situation by situation. For instance, nobody introduces special notation for strict divisibility. Another example: the symbol \subseteq, which is used to denote nonstrict inclusion, is replaced by the symbol \subset, which is almost never understood as a designation solely for strict inclusion.

In abstract considerations, we use both kinds of orders: strict partial orders are denoted by the symbol \prec, nonstrict ones by the symbol \preceq.

$\left\lceil 7^{\prime} 4\right\rfloor$ Cones

Let (X, \prec) be a poset and let $a \in X$. The set $\{x \in X \mid a \prec x\}$ is the upper cone of a, and the set $\{x \in X \mid x \prec a\}$ the lower cone of a. The element a does not belong to its cones. Adding a to them, we obtain completed cones: the upper completed cone or star $C_{X}^{+}(a)=\{x \in X \mid a \preceq x\}$ and the lower completed cone $C_{X}^{-}(a)=\{x \in X \mid x \preceq a\}$.
7.I Properties of Cones. Let (X, \prec) be a poset. Then we have:
(1) $C_{X}^{+}(b) \subset C_{X}^{+}(a)$, provided that $b \in C_{X}^{+}(a)$;
(2) $a \in C_{X}^{+}(a)$ for each $a \in X$;
(3) $C_{X}^{+}(a)=C_{X}^{+}(b)$ implies $a=b$.
7.J Cones Determine an Order. Let X be an arbitrary set. Suppose for each $a \in X$ we fix a subset $C_{a} \subset X$ so that
(1) $b \in C_{a}$ implies $C_{b} \subset C_{a}$,
(2) $a \in C_{a}$ for each $a \in X$, and
(3) $C_{a}=C_{b}$ implies $a=b$.

We write $a \prec b$ if $b \in C_{a}$. Then the relation \prec is a nonstrict order on X, and for this order we have $C_{X}^{+}(a)=C_{a}$.
7.2. Let $C \subset \mathbb{R}^{3}$ be a set. Consider the relation \triangleleft_{C} on \mathbb{R}^{3} defined as follows: $a \triangleleft_{C} b$ if $b-a \in C$. What properties of C imply that \triangleleft_{C} is a partial order on \mathbb{R}^{3} ? What are the upper and lower cones in the poset $\left(\mathbb{R}^{3}, \triangleleft_{C}\right)$?
7.3. Prove that each convex cone C in \mathbb{R}^{3} with vertex $(0,0,0)$ and such that $P \cap C=\{(0,0,0)\}$ for some plane P satisfies the conditions found in the solution to Problem 7.2.
7.4. Consider the space-time \mathbb{R}^{4} of special relativity theory, where points represent moment-point events and the first three coordinates x_{1}, x_{2} and x_{3} are the spatial coordinates, while the fourth one, t, is the time. This space carries a relation, "the event (x_{1}, x_{2}, x_{3}, t) precedes (and may influence) the event ($\widetilde{x}_{1}, \widetilde{x}_{2}, \widetilde{x}_{3}, \widetilde{t}$)". The relation is defined by the inequality

$$
c(\tilde{t}-t) \geq \sqrt{\left(\tilde{x}_{1}-x_{1}\right)^{2}+\left(\tilde{x}_{2}-x_{2}\right)^{2}+\left(\tilde{x}_{3}-x_{3}\right)^{2}} .
$$

Is this a partial order? If yes, then what are the upper and lower cones of an event?
7.5. Answer the versions of questions of the preceding problem in the case of two- and three-dimensional analogs of this space, where the number of spatial coordinates is 1 and 2, respectively.

$\left\lceil 7^{\prime} 5\right\rfloor$ Position of an Element with Respect to a Set

Let (X, \prec) be a poset, $A \subset X$ a subset. Then b is the greatest element of A if $b \in A$ and $c \preceq b$ for every $c \in A$. Similarly, b is the smallest element of A if $b \in A$ and $b \preceq c$ for every $c \in A$.
7.K. An element $b \in A$ is the smallest element of A iff $A \subset C_{X}^{+}(b)$; an element $b \in A$ is the greatest element of A iff $A \subset C_{X}^{-}(b)$.
7.L. Each set has at most one greatest and at most one smallest element.

An element b of a set A is a maximal element of A if A contains no element c such that $b \prec c$. An element b is a minimal element of A if A contains no element c such that $c \prec b$.
7.M. An element b of A is maximal iff $A \cap C_{X}^{-}(b)=b$; an element b of A is minimal iff $A \cap C_{X}^{+}(b)=b$.
7.6. Riddle. 1) How are the notions of maximal and greatest elements related?
2) What can you say about a poset in which these notions coincide for each subset?

「7'6」 Linear Orders

Please, notice: the definition of a strict order does not require that for any $a, b \in X$ we have either $a \prec b$, or $b \prec a$, or $a=b$. The latter condition is called a trichotomy. In terms of the corresponding nonstrict order, it is reformulated as follows: any two elements $a, b \in X$ are comparable: either $a \preceq b$, or $b \preceq a$.

A strict order satisfying trichotomy is linear (or total). The corresponding poset is linearly ordered (or totally ordered). It is also called just an ordered set. ${ }^{9}$ Some orders do satisfy trichotomy.
7.N. The order $<$ on the set \mathbb{R} of real numbers is linear.

This is the most important example of a linearly ordered set. The words and images rooted in it are often extended to all linearly ordered sets. For example, cones are called rays, upper cones become right rays, while lower cones become left rays.
7.7. A poset (X, \prec) is linearly ordered iff $X=C_{X}^{+}(a) \cup C_{X}^{-}(a)$ for each $a \in X$.
7.8. The order $a \mid b$ on the set \mathbb{N} of positive integers is not linear.
7.9. For which X is the relation of inclusion on the set of all subsets of X a linear order?

[^9]
$\left\lceil 7^{\prime} 7\right\rfloor$ Topologies Determined by Linear Order

7.O. Let (X, \prec) be a linearly ordered set. Then the set X itself and all right rays of X, i.e., sets of the form $\{x \in X \mid a \prec x\}$, where a runs through X, constitute a base for a topological structure in X.

The topological structure determined by this base is the right ray topology of the linearly ordered set (X, \prec). The left ray topology is defined similarly: it is generated by the base consisting of X and sets of the form $\{x \in X \mid x \prec a\}$ with $a \in X$.
7.10. The topology of the arrow (see Section 2) is the right ray topology of the half-line $[0, \infty)$ equipped with the order $<$.
7.11. Riddle. To what extent is the assumption that the order be linear necessary in Theorem 7.O? Find a weaker condition that implies the conclusion of Theorem 7.0 and allows us to speak about the topological structure described in Problem 2.2 as the right ray topology of an appropriate partial order on the plane.
7.P. Let (X, \prec) be a linearly ordered set. Then the subsets of X having the forms

- $\{x \in X \mid a \prec x\}$, where a runs through X,
- $\{x \in X \mid x \prec a\}$, where a runs through X,
- $\{x \in X \mid a \prec x \prec b\}$, where a and b run through X
constitute a base for a topological structure in X.
The topological structure determined by this base is the interval topology of the linearly ordered set (X, \prec).
7.12. Prove that the interval topology is the smallest topological structure containing the right ray and left ray topological structures.
7.Q. The canonical topology of the line is the interval topology of $(\mathbb{R},<)$.

$\left\lceil 7^{\prime} 8 」\right.$ Poset Topology

7.R. Let (X, \preceq) be a poset. Then the subsets of X having the form $\{x \in$ $X \mid a \preceq x\}$, where a runs through the entire X, constitute a base for a topological structure in X.

The topological structure generated by this base is the poset topology.
7.S. In the poset topology, each point $a \in X$ has the smallest (with respect to inclusion) neighborhood. This is $\{x \in X \mid a \preceq x\}$.
7.T. The following properties of a topological space are equivalent:
(1) each point has a smallest neighborhood,
(2) the intersection of any collection of open sets is open,
(3) the union of any collection of closed sets is closed.

A space satisfying the conditions of Theorem 7.T is a smallest neighborhood space. ${ }^{10}$ In such a space, open and closed sets satisfy the same conditions. In particular, the set of all closed sets of a smallest neighborhood space is also a topological structure, which is dual to the original one. It corresponds to the opposite partial order.
7.13. How to characterize points open in the poset topology in terms of the partial order? Answer the same question about closed points. (Slightly abusing the terminology, here by points we mean the corresponding singletons.)
7.14. Directly describe open sets in the poset topology of \mathbb{R} with order $<$.
7.15. Consider a partial order on the set $\{a, b, c, d\}$ where the strict inequalities are: $c \prec a, d \prec c, d \prec a$, and $d \prec b$. Check that this is a partial order and the corresponding poset topology is the topology of \downarrow described in Problem 2.3 (1).
7.16. Describe the closure of a point in a poset topology.
7.17. Which singletons are dense in a poset topology?

$\left\lceil 7^{\prime} 9\right\rfloor$ How to Draw a Poset

Now we can explain the pictogram \forall, by which we denote the space introduced in Problem 2.3(1). It describes the partial order on $\{a, b, c, d\}$ that determines the topology of this space by 7.15. Indeed, if we place a, b, c, and d, i.e., the elements of the set under consideration, at vertices of the graph of the pictogram, as shown in the picture, then the vertices marked by comparable elements are connected by a segment or ascending broken line, and
 the greater element corresponds to the higher vertex.

In this way, we can represent any finite poset by a diagram. Elements of the poset are represented by points. We have $a \prec b$ if and only if the following two conditions are fulfilled: 1) the point representing b lies above the point representing a, and 2) the two points are connected either by a segment or by a polyline consisting of segments that connect points representing intermediate elements of a chain $a \prec c_{1} \prec c_{2} \prec \cdots \prec c_{n} \prec b$. We could have connected by a segment any two points corresponding to comparable elements, but this would make the diagram excessively cumbersome. This is why the segments that are determined by the others via transitivity are not drawn. Such a diagram representing a poset is its Hasse diagram.
7.U. Prove that any finite poset is determined by a Hasse diagram.

[^10]7. V. Describe the poset topology on the set \mathbb{Z} of integers defined by the following Hasse diagram:

The space of Problem 7.V is the digital line, or Khalimsky line. In this space, each even number is closed and each odd one is open.
7.18. Associate with each even integer $2 k$ the interval $(2 k-1,2 k+1)$ of length 2 centered at this point, and with each odd integer $2 k-1$, the singleton $\{2 k-1\}$. Prove that a set of integers is open in the Khalimsky topology iff the union of sets associated to its elements is open in \mathbb{R} with the standard topology.
7.19. Among the topological spaces described in Section 2, find all those obtained as posets with the poset topology. In the cases of finite sets, draw Hasse diagrams describing the corresponding partial orders.

8. Cyclic Orders

$\left\lceil 8^{\prime} 1\right\rfloor$ Cyclic Orders in Finite Sets

Recall that a cyclic order on a finite set X is a linear order considered up to cyclic permutation. The linear order allows us to enumerate elements of the set X by positive integers, so that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. A cyclic permutation transposes the first k elements with the last $n-k$ elements without changing the order inside each of the two parts of the set:

$$
\left(x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, x_{k+2}, \ldots, x_{n}\right) \mapsto\left(x_{k+1}, x_{k+2}, \ldots, x_{n}, x_{1}, x_{2}, \ldots, x_{k}\right)
$$

When we consider a cyclic order, it makes no sense to say that one of its elements is greater than another one, since an appropriate cyclic permutation puts the two elements in the opposite order. However, it makes sense to say that an element immediately precedes another one. Certainly, the very last element immediately precedes the very first one: indeed, a nontrivial cyclic permutation puts the first element immediately after the last one.

In a cyclically ordered finite set, each element a has a unique element b next to a, i.e., which follows a immediately. This determines a map of the set onto itself, namely, the simplest cyclic permutation

$$
x_{i} \mapsto \begin{cases}x_{i+1} & \text { if } i<n \\ x_{1} & \text { if } i=n\end{cases}
$$

This permutation acts transitively (i.e., any element is mapped to any other one by an appropriate iteration of the permutation).
8.A. Any map $T: X \rightarrow X$ that transitively acts on X determines a cyclic order on X such that each $a \in X$ precedes $T(a)$.
8.B. An n-element set possesses exactly $(n-1)$! pairwise distinct cyclic orders.

In particular, a two-element set has only one cyclic order (which is so uninteresting that sometimes it is said to make no sense), while any threeelement set possesses two cyclic orders.

$\left\lceil 8^{\prime} 2 x\right\rfloor$ Cyclic Orders in Infinite Sets

One can consider cyclic orders on an infinite set. However, most of what was said above does not apply to cyclic orders on infinite sets without an adjustment. In particular, most of them cannot be described by showing pairs of elements that are next to each other. For example, points of a circle can be cyclically ordered clockwise (or counter-clockwise), but no point immediately follows another point with respect to this cyclic order.

Such "continuous" cyclic orders are defined almost in the same way as cyclic orders on finite sets were defined above. The difference is that sometimes it is impossible to define cyclic permutations of a set in the necessary quantity, and we have to replace them by cyclic transformations of linear orders. Namely, a cyclic order is defined as a linear order considered up to cyclic transformations, where by a cyclic transformation of a linear order \prec on a set X we mean a passage from \prec to a linear order \prec^{\prime} such that X splits into subsets A and B such that the restrictions of \prec and \prec^{\prime} to each of them coincide, while $a \prec b$ and $b \prec^{\prime} a$ for any $a \in A$ and $b \in B$.
8.Cx. Existence of a cyclic transformation transforming linear orders to each other determines an equivalence relation on the set of all linear orders on a set.

A cyclic order on a set is an equivalence class of linear orders with respect to the above equivalence relation.
8.Dx. Prove that for a finite set this definition is equivalent to the definition in the preceding section.
8.Ex. Prove that the cyclic "counter-clockwise" order on a circle can be defined along the definition of this section, but cannot be defined as a linear order modulo cyclic transformations of the set for whatever definition of cyclic transformations of circle. Describe the linear orders on the circle that determine this cyclic order up to cyclic transformations of orders.
8. $\mathbf{F x}$. Let A be a subset of a set X. If two linear orders \prec^{\prime} and \prec on X are obtained from each other by a cyclic transformation, then their restrictions to A are also obtained from each other by a cyclic transformation.
8. $\mathbf{G} \times$ Corollary. A cyclic order on a set induces a well-defined cyclic order on every subset of this set.
8.Hx. A cyclic order on a set X can be recovered from the cyclic orders induced by it on all three-element subsets of X.
8.Hx.1. A cyclic order on a set X can be recovered from the cyclic orders induced by it on all three-element subsets of X containing a fixed element $a \in X$.

Theorem 8.Hx allows us to describe a cyclic order as a ternary relation. Namely, let a, b, and c be elements of a cyclically ordered set. Then we write $[a \prec b \prec c]$ if the induced cyclic order on $\{a, b, c\}$ is determined by the linear order in which the inequalities in the brackets hold true (i.e., b follows a and c follows b).
8.Ix. Let X be a cyclically ordered set. Then the ternary relation $[a \prec b \prec c]$ on X has the following properties:
(1) for any pairwise distinct $a, b, c \in X$, we have either $[a \prec b \prec c]$, or [$b \prec a \prec c$], but not both;
(2) $[a \prec b \prec c$], iff $[b \prec c \prec a$], iff $[c \prec a \prec b]$, for any $a, b, c \in X$;
(3) if $[a \prec b \prec c]$ and $[a \prec c \prec d]$, then $[a \prec b \prec d]$.

Vice versa, a ternary relation on X having these four properties determines a cyclic order on the set X.

$\left\lceil 8^{\prime} 3 x\right\rfloor$ Topology of Cyclic Order

8.Jx. Let X be a cyclically ordered set. Then the sets that belong to the interval topology of every linear order determining the cyclic order on X constitute a topological structure in X.

The topology defined in $8 . J x$ is the cyclic order topology.
$\mathbf{8 . K x}$. The cyclic order topology determined by the cyclic counterclockwise order of S^{1} is the topology generated by the metric $\rho(x, y)=|x-y|$ on $S^{1} \subset \mathbb{C}$.

Proofs and Comments

1.A The question is so elementary that it is difficult to find more elementary facts which we could use in the proof. What does it mean that A consists of a elements? This means, say, that we can count elements of A one by one, assigning to them numbers $1,2,3, \ldots$ and the last element will receive number a. It is known that the result does not depend on the order in which we count. (In fact, one can develop a set theory which would include a theory of counting, and in which this is a theorem. However, since we have no doubts about this fact, let us use it without proof.) Therefore, we can start counting elements of B by counting those in A. Counting the elements in A is done first, and then, if there are some elements of B that are not in A, counting is continued. Thus, the number of elements in A is less than or equal to the number of elements in B.
1.B Recall that, by the definition of an inclusion, $A \subset B$ means that each element of A is an element of B. Therefore, the statement that we must prove can be rephrased as follows: each element of A is an element of A. This is a tautology.

1. C Recall that, by the definition of an inclusion, $A \subset B$ means that each element of A is an element of B. Thus, we need to prove that any element of \varnothing belongs to A. This is true because \varnothing does not contain any elements. If you are not satisfied with this argument (since it may seem a little bit strange), then let us resort to the question whether this can be wrong. How can it happen that \varnothing is not a subset of A ? This is possible only if \varnothing contains an element which is not an element of A. However, \varnothing does not contain such elements because \varnothing has no elements at all.
1.D We must prove that each element of A is an element of C. Let $x \in A$. Since $A \subset B$, it follows that $x \in B$. Since $B \subset C$, the latter belonging (i.e., $x \in B$) implies $x \in C$. This is what we had to prove.
1.E We have already seen that $A \subset A$. Hence, if $A=B$, then, indeed, $A \subset B$ and $B \subset A$. On the other hand, $A \subset B$ means that each element of A belongs to B, while $B \subset A$ means that each element of B belongs to A. Hence, A and B have the same elements, i.e., they are equal.
2. G It is easy to construct a set A with $A \notin A$. Take $A=\varnothing$, or $A=\mathbb{N}$, or $A=\{1\}, \ldots$
3. \boldsymbol{H} Take $A=\{1\}, B=\{\{1\}\}$, and $C=\{\{\{1\}\}\}$. It is more difficult to construct sets A, B, and C such that $A \in B, B \in C$, and $A \in C$. Take $A=\{1\}, B=\{\{1\}\}$, and $C=\{\{1\},\{\{1\}\}\}$.
2.A What should we check? The first axiom reads here that the union of any collection of subsets of X is a subset of X. Well, this is true. If $A \subset X$ for each $A \in \Gamma$, then, obviously, $\bigcup_{A \in \Gamma} A \subset X$. We check the second axiom exactly in the same way. Finally, we obviously have $\varnothing \subset X$ and $X \subset X$.
2.B Yes, it is. If one of the united sets is X, then the union is X, otherwise the union in empty. If one of the sets to intersect is \varnothing, then the intersection is \varnothing. Otherwise, the intersection equals X.
4. C First, show that $\bigcup_{A \in \Gamma} A \cap \bigcup_{B \in \Sigma} B=\bigcup_{A \in \Gamma, B \in \Sigma}(A \cap B)$. Therefore, if A and B are intervals, then the right-hand side is a union of intervals. This proves that Ω satisfies the second axiom of topological structure. The first and third axioms are obvious here.

If you think that a set which is a union of intervals is too simple, then, please try to answer the following question (which has nothing to do with the problem under consideration, though). Let $\left\{r_{n}\right\}_{n=1}^{\infty}=\mathbb{Q}$ (i.e., we numbered all rational numbers). Prove that $\bigcup_{n=1}^{\infty}\left(r_{n}-2^{-n}, r_{n}+2^{-n}\right)$ does not contain all real numbers, although this is a union of intervals that contains all (!) rational numbers.
2.D The union of any collection of open sets is open. The intersection of any finite collection of open sets is open. The empty set and the whole space are open.

2.E

(3)

$$
\begin{aligned}
x \in \bigcap_{A \in \Gamma}(X \backslash A) & \Longleftrightarrow \forall A \in \Gamma: x \in X \backslash A \\
& \Longleftrightarrow \forall A \in \Gamma: x \notin A \Longleftrightarrow x \notin \bigcup_{A \in \Gamma} A \Longleftrightarrow x \in X \backslash \bigcup_{A \in \Gamma} A
\end{aligned}
$$

(4) Replace both sides of the formula by their complements in X and put $B=X \backslash A$.
2.F (1) Let $\Gamma=\left\{F_{\alpha}\right\}$ be a collection of closed sets. We must verify that $\bigcap_{\alpha} F_{\alpha}$ is closed, i.e., $X \backslash \bigcap_{\alpha} F_{\alpha}$ is open. Indeed, by the second De Morgan formula we have

$$
X \backslash \bigcap_{\alpha} F_{\alpha}=\bigcup_{\alpha}\left(X \backslash F_{\alpha}\right),
$$

which is open by the first axiom of topological structure.
(2) Similar to (1); use the first De Morgan formula and the second axiom of topological structure.
(3) Obvious.
2.G In any topological space, the empty set and the whole space are both open and closed. Any set in a discrete space is both open and closed. Half-open intervals on the line are neither open nor closed. Cf. the next problem.
2.H Yes, it is, because its complement $\mathbb{R} \backslash[a, b]=(-\infty, a) \cup(b,+\infty)$ is open.
2.Ix Let $U \subset \mathbb{R}$ be an open set. For each $x \in U$, let $\left(m_{x}, M_{x}\right) \subset U$ be the largest open interval containing x (take the union of all open intervals in U that contain x). Since U is open, such intervals exist. Any two such intervals either coincide or are disjoint.
2.Lx Conditions (a) and (c) from Problem 2.13 are obviously fulfilled. To prove (b), we use Theorem 2.Mx and argue by contradiction. Suppose that two sets A and B contain no arithmetic progressions of length n. If $A \cup B$ contains a sufficiently long progression, then A or B contains a progression of length n, a contradiction.
3.A To prove an equivalence of two statements, prove two implications.

Present U as a union of elements of Σ. Each point $x \in U$ is contained in at least one of these sets. Such a set can be taken for V. It is contained in U since it participates in a union equal to U.

We must prove that each $U \in \Omega$ is a union of elements of Σ. For each point $x \in U$, choose according to the assumption a set $V_{x} \in \Sigma$ such that $x \in V_{x} \subset U$ and consider $\bigcup_{x \in U} V_{x}$. Notice that $\bigcup_{x \in U} V_{x} \subset U$ because $V_{x} \subset U$ for each $x \in U$. On the other hand, each point $x \in U$ is contained in its own V_{x} and hence in $\bigcup_{x \in U} V_{x}$. Therefore, $U \subset \bigcup_{x \in U} V_{x}$. Thus, $U=\bigcup_{x \in U} V_{x}$.
3.B $\Leftrightarrow X$, being an open set in any topology, is the union of some sets in Σ. The intersection of any two sets in Σ is open, and, therefore, it also is a union of base sets.
\Leftrightarrow Let us prove that the set of unions of all collections of elements of Σ satisfies the axioms of topological structure. The first axiom is obviously fulfilled since the union of unions is a union. Let us prove the second axiom (the intersection of two open sets is open). Let $U=\bigcup_{\alpha} A_{\alpha}$ and $V=\bigcup_{\beta} B_{\beta}$, where $A_{\alpha}, B_{\beta} \in \Sigma$. Then

$$
U \cap V=\left(\bigcup_{\alpha} A_{\alpha}\right) \cap\left(\bigcup_{\beta} B_{\beta}\right)=\bigcup_{\alpha, \beta}\left(A_{\alpha} \cap B_{\beta}\right),
$$

and since, by assumption, $A_{\alpha} \cap B_{\beta}$ is a union of elements of Σ, so is the intersection $U \cap V$. In the third axiom, we need to check only the part concerning the entire X. By assumption, X is a union of sets in Σ.
3.D Let Σ_{1} and Σ_{2} be bases of topological structures Ω_{1} and Ω_{2} in a set X. Obviously, $\Omega_{1} \subset \Omega_{2}$ iff $\forall U \in \Sigma_{1} \forall x \in U \exists V \in \Sigma_{2}: x \in V \subset U$. Now recall that $\Omega_{1}=\Omega_{2}$ iff $\Omega_{1} \subset \Omega_{2}$ and $\Omega_{2} \subset \Omega_{1}$.
4. \boldsymbol{A} Indeed, it makes sense to check that all conditions in the definition of a metric are fulfilled for each triple of points x, y, and z.
4. B The triangle inequality in this case takes the form $|x-y| \leq \mid x-$ $z|+|z-y|$. Putting $a=x-z$ and $b=z-y$, we transform the triangle inequality into the well-known inequality $|a+b| \leq|a|+|b|$.
4.C As in the solution of Problem 4.B, the triangle inequality takes the form: $\sqrt{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}}+\sqrt{\sum_{i=1}^{n} b_{i}^{2}}$. Two squarings and an obvious simplification reduce this inequality to the well-known Cauchy inequality $\left(\sum a_{i} b_{i}\right)^{2} \leq \sum a_{i}^{2} \sum b_{i}^{2}$.
4. \boldsymbol{E} We must prove that every point $y \in B_{r-\rho(a, x)}(x)$ belongs to $B_{r}(a)$. In terms of distances, this means that $\rho(y, a)<r$ if $\rho(y, x)<r-\rho(a, x)$ and $\rho(a, x)<r$. By the triangle inequality, $\rho(y, a) \leq \rho(y, x)+\rho(x, a)$. Replacing the first summand on the right-hand side of the latter inequality by a greater number $r-\rho(a, x)$, we obtain the required inequality. The second inclusion is proved in a similar way.
4.F \Leftrightarrow Show that if $d=\operatorname{diam} A$ and $a \in A$, then $A \subset D_{d}(a)$.
\Leftrightarrow Use the fact that diam $D_{d}(a) \leq 2 d$. (Cf. 4.11.)
4.G This follows from Problem 4.E, Theorem 3.B and Assertion 3.C.
4. \boldsymbol{H} For this metric, the balls are open intervals. Each open interval in \mathbb{R} is a ball. The standard topology on \mathbb{R} is determined by the base consisting of all open intervals.
4.I \Leftrightarrow If $a \in U$, then $a \in B_{r}(x) \subset U$ and $B_{r-\rho(a, x)}(a) \in B_{r}(x) \subset U$, see 4.E.
$\Leftrightarrow U$ is a union of balls, and, therefore, U is open in the metric topology.
4.J An indiscrete space does not have sufficiently many open sets. For $x, y \in X$ and $r=\rho(x, y)>0$, the ball $D_{r}(x)$ is nonempty and does not coincide with the whole space (it does not contain y).
4. $K ~ 引$ For $x \in X$, put $r=\min \{\rho(x, y) \mid y \in X \backslash x\}$. Which points are in $B_{r}(x)$? \Leftrightarrow Obvious. (Cf. 4.19.)
4. $L \Leftrightarrow$ The condition $\rho(b, A)=0$ means that each ball centered at b meets A, i.e., b does not belong to the complement of A (since A is closed, the complement of A is open). \Leftrightarrow Obvious.
4. $M \times$ Condition (2) is obviously fulfilled. Put $r(A, B)=\sup _{a \in A} \rho(a, B)$, so that $d_{\rho}(A, B)=\max \{r(A, B), r(B, A)\}$. To prove that (3) is also fulfilled, it suffices to prove that $r(A, C) \leq r(A, B)+r(B, C)$ for any $A, B, C \subset X$. We
easily see that $\rho(a, C) \leq \rho(a, b)+\rho(b, C)$ for all $a \in A$ and $b \in B$. Hence, we have $\rho(a, C) \leq \rho(a, b)+r(B, C)$, whence

$$
\rho(a, C) \leq \inf _{b \in B} \rho(a, b)+r(B, C)=\rho(a, B)+r(B, C) \leq r(A, B)+r(B, C),
$$

which implies the required inequality.
4. $N \mathrm{x}$ By 4.Mx, d_{ρ} satisfies conditions (2) and (3) from the definition of a metric. From 4.L it follows that if the Hausdorff distance between two closed sets A and B equals zero, then $A \subset B$ and $B \subset A$, i.e., $A=B$. Thus, d_{ρ} satisfies the condition (1).
4. $O \mathbf{x} d_{\Delta}(A, B)$ is the area of the symmetric difference $A \Delta B=(A \backslash$ $B) \cup(B \backslash A)$ of A and B. The first two axioms of metric are obviously fulfilled. Prove the triangle inequality by using the inclusion $A \backslash B \subset$ $(C \backslash B) \cup(A \backslash C)$.
4. $R \mathrm{x}$ Clearly, the metric in $4 . A$ is an ultrametric. The other metrics are not: for each of them you can find three points x, y, and z such that $\rho(x, y)=\rho(x, z)+\rho(z, y)$.
4.Sx The definition of an ultrametric implies that none of the pairwise distances between the points a, b, and c is greater than each of the other two.
4.Tx By 4.Sx, if $y \in S_{r}(x)$ and $r>s>0$, then $B_{s}(y) \subset S_{r}(x)$.
4. $U \mathbf{x}$ Let $x-z=\frac{r_{1}}{s_{1}} p^{\alpha_{1}}$ and $z-y=\frac{r_{2}}{s_{2}} p^{\alpha_{2}}$, where $\alpha_{1} \leq \alpha_{2}$. Then we have

$$
x-y=p^{\alpha_{1}}\left(\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}} p^{\alpha_{2}-\alpha_{1}}\right)=p^{\alpha_{1}} \frac{r_{1} s_{2}+r_{2} s_{1} p^{\alpha_{2}-\alpha_{1}}}{s_{1} s_{2}},
$$

whence $p(x, y) \leq p^{-\alpha_{1}}=\max \{\rho(x, z), \rho(z, y)\}$.
5.A We must check that Ω_{A} satisfies the axioms of topological structure. Consider the first axiom. Let $\Gamma \subset \Omega_{A}$ be a collection of sets in Ω_{A}. We must prove that $\bigcup_{U \in \Gamma} U \in \Omega_{A}$. For each $U \in \Gamma$, find $U_{X} \in \Omega$ such that $U=A \cap U_{X}$. This is possible due to the definition of Ω_{A}. Transform the union under consideration: $\bigcup_{U \in \Gamma} U=\bigcup_{U \in \Gamma}\left(A \cap U_{X}\right)=A \cap \bigcup_{U \in \Gamma} U_{X}$. The union $\bigcup_{U \in \Gamma} U_{X}$ belongs to Ω (i.e., is open in X) as the union of sets open in X. (Here we use the fact that Ω, being a topology on X, satisfies the first axiom of topological structure.) Therefore, $A \cap \bigcup_{U \in \Gamma} U_{X}$ belongs to Ω_{A}. Similarly we can check the second axiom. The third axiom: $A=A \cap X$, and $\varnothing=A \cap \varnothing$.
5.B Let us prove that a subset of \mathbb{R}^{1} is open in the relative topology iff it is open in the canonical topology.
\Leftrightarrow The intersection of an open disk with \mathbb{R}^{1} is either an open interval or the empty set. Any open set in the plane is a union of open disks. Therefore, the intersection of any open set of the plane with \mathbb{R}^{1} is a union
of open intervals. Thus, it is open in \mathbb{R}^{1}.
Prove this part on your own.
$5 . C \quad \Longrightarrow$ The complement $A \backslash F$ is open in A, i.e., $A \backslash F=A \cap U$, where U is open in X. What closed set cuts F on A ? It is cut by $X \backslash U$. Indeed, we have $A \cap(X \backslash U)=A \backslash(A \cap U)=A \backslash(A \backslash F)=F$.
\Leftrightarrow This is proved in a similar way.
5.D No disk of \mathbb{R}^{2} is contained in \mathbb{R}.
5.E If $A \in \Omega$ and $B \in \Omega_{A}$, then $B=A \cap U$, where $U \in \Omega$. Therefore, $B \in \Omega$ is the intersection of two sets, A and U, belonging to Ω.
5.F Follow the solution to the preceding Problem, 5.E, but use 5.C instead of the definition of the relative topology.
5. G The core of the proof is the equality $(U \cap A) \cap B=U \cap B$. It holds true because $B \subset A$, and we apply it to $U \in \Omega$. When U runs through Ω, the right-hand side of the equality $(U \cap A) \cap B=U \cap B$ runs through Ω_{B}, while the left-hand side runs through $\left(\Omega_{A}\right)_{B}$. Indeed, elements of Ω_{B} are intersections $U \cap B$ with $U \in \Omega$, and elements of $\left(\Omega_{A}\right)_{B}$ are intersections $V \cap B$ with $V \in \Omega_{A}$, but V, in turn, being an element of Ω_{A}, is the intersection $U \cap A$ with $U \in \Omega$.
6.A The union of all open sets contained in A, firstly, is open (as a union of open sets), and, secondly, contains every open set that is contained in A (i.e., it is the greatest one among those sets).
6.B Let x be an interior point of A (i.e., there exists an open set U_{x} such that $x \in U_{x} \subset A$). Then $U_{x} \subset \operatorname{Int} A$ (because $\operatorname{Int} A$ is the greatest open set contained in A), whence $x \in \operatorname{Int} A$. Vice versa, if $x \in \operatorname{Int} A$, then the set Int A itself is a neighborhood of x contained in A.
6.C \Longleftrightarrow If U is open, then U is the greatest open subset of U, and hence coincides with the interior of U.
\Leftrightarrow A set coinciding with its interior is open since the interior is open.

6.D

(1) $[0,1)$ is not open in the line, while $(0,1)$ is. Therefore, $\operatorname{Int}[0,1)=$ $(0,1)$.
(2) Since any interval contains an irrational point, \mathbb{Q} contains no nonempty set open in the classical topology of \mathbb{R}. Therefore, $\operatorname{Int} \mathbb{Q}=\varnothing$.
(3) Since any interval contains rational points, $\mathbb{R} \backslash \mathbb{Q}$ does not contain a nonempty set open in the classical topology of \mathbb{R}. Therefore, $\operatorname{Int}(\mathbb{R} \backslash \mathbb{Q})=\varnothing$.
6.E The intersection of all closed sets containing A, firstly, is closed (as an intersection of closed sets), and, secondly, is contained in every closed set that contains A (i.e., it is the smallest one among those sets). Cf. the
proof of Theorem 6.A. In general, properties of closure can be obtained from properties of interior by replacing unions with intersections and vice versa.
6.F If $x \notin \mathrm{Cl} A$, then there exists a closed set F such that $F \supset A$ and $x \notin F$, whence $x \in U=X \backslash F$. Thus, x is not an adherent point for A. Prove the converse implication on your own, cf. 6.H.
6. G Cf. the proof of Theorem 6.C.
6.H The intersection of all closed sets containing A is the complement of the union of all open sets contained in $X \backslash A$.
6.I (1) The half-open interval $[0,1)$ is not closed, and $[0,1]$ is closed; (2)-(3) The exterior of each of the sets \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ is empty since each interval contains both rational and irrational numbers.
6.J \Leftrightarrow If b is an adherent point for A, then $\forall \varepsilon>0 \exists a \in A \cap D_{\varepsilon}(b)$, whence $\forall \varepsilon>0 \exists a \in A: \rho(a, b)<\varepsilon$. Thus, $\rho(b, A)=0$.
\Leftrightarrow This is an easy exercise.
6.K If $x \in \operatorname{Fr} A$, then $x \in \operatorname{Cl} A$ and $x \notin \operatorname{Int} A$. Hence, firstly, each neighborhood of x meets A, secondly, no neighborhood of x is contained in A, and therefore each neighborhood of x meets $X \backslash A$. Thus, x is a boundary point of A. Prove the converse on your own.
6.L Since $\operatorname{Int} A \subset A$, it follows that $\mathrm{Cl} A=A$ iff $\operatorname{Fr} A \subset A$.
6.M \Longleftrightarrow Argue by contradiction. A set A disjoint with an open set U is contained in the closed set $X \backslash U$. Therefore, if U is nonempty, then A is not everywhere dense.
\Leftrightarrow A set meeting each nonempty open set is contained in only one closed set: the entire space. Hence, its closure is the whole space, and this set is everywhere dense.
6.N This is $6 . I(2)$.
6.O The condition means that each neighborhood of each point contains an exterior point of A. This, in turn, means that the exterior of A is everywhere dense.

$6 . Q \quad \Longrightarrow$ This is Theorem 6.P.

\Leftrightarrow Hint: any point of $\mathrm{Cl} A \backslash A$ is a limit point of A.
7.F We need to check that the relation " $a \prec b$ or $a=b$ " satisfies the three conditions from the definition of a nonstrict order. Doing this, we can use only the fact that \prec satisfies the conditions from the definition of a strict order. Let us check the transitivity. Suppose that $a \preceq b$ and $b \preceq c$. This means that either 1) $a \prec b \prec c$, or 2) $a=b \prec c$, or 3) $a \prec b=c$, or 4) $a=b=c$.

1) In this case, $a \prec c$ by transitivity of \prec, and so $a \preceq c$. 2) We have $a \prec c$,
whence $a \preceq c$. 3) We have $a \prec c$, whence $a \preceq c$. 4) Finally, $a=c$, whence $a \preceq c$. Other conditions are checked similarly.
7.I Assertion (1) follows from transitivity of the order. Indeed, consider an arbitrary element $c \in C_{X}^{+}(b)$. By the definition of a cone, $b \preceq c$, while the condition $b \in C_{X}^{+}(a)$ means that $a \preceq b$. By transitivity, this implies that $a \preceq c$, i.e., $c \in C_{X}^{+}(a)$. We have thus proved that each element of $C_{X}^{+}(b)$ belongs to $C_{X}^{+}(a)$. Hence, $C_{X}^{+}(b) \subset C_{X}^{+}(a)$, as required.
Assertion (2) follows from the definition of a cone and the reflexivity of order. Indeed, by definition, $C_{X}^{+}(a)$ consists of all b such that $a \preceq b$, and, by reflexivity of order, $a \preceq a$.
Assertion (3) follows similarly from the antisymmetry: the assumption $C_{X}^{+}(a)=C_{X}^{+}(b)$ together with assertion (2) implies that $a \preceq b$ and $b \preceq a$, which together with antisymmetry implies that $a=b$.
7.J By Theorem 7.I, cones in a poset have the properties that form the hypothesis of the theorem to be proved. When proving Theorem 7.I, we showed that these properties follow from the corresponding conditions in the definition of a partial nonstrict order. In fact, they are equivalent to these conditions. Permuting words in the proof of Theorem 7.I, we obtain a proof of Theorem 7.J.
7.O By Theorem 3.B, it suffices to prove that the intersection of any two right rays is a union of right rays. Let $a, b \in X$. Since the order is linear, either $a \prec b$, or $b \prec a$. Let $a \prec b$. Then

$$
\{x \in X \mid a \prec x\} \cap\{x \in X \mid b \prec x\}=\{x \in X \mid b \prec x\}
$$

7. \boldsymbol{R} By Theorem 3. C, it suffices to prove that each element of the intersection of two cones, say, $C_{X}^{+}(a)$ and $C_{X}^{+}(b)$, is contained in the intersection together with a whole cone of the same kind. Assume that $c \in C_{X}^{+}(a) \cap C_{X}^{+}(b)$ and $d \in C_{X}^{+}(c)$. Then $a \preceq c \preceq d$ and $b \preceq c \preceq d$, whence $a \preceq d$ and $b \preceq d$. Therefore, $d \in C_{X}^{+}(a) \cap C_{X}^{+}(b)$. Hence, $C_{X}^{+}(c) \subset C_{X}^{+}(a) \cap C_{X}^{+}(b)$.
7.T Equivalence of the second and third properties follows from the De Morgan formulas, as in 2.F. Let us prove that the first property implies the second one. Consider the intersection of an arbitrary collection of open sets. For each of its points, every set in this collection is a neighborhood. Therefore, its smallest neighborhood is contained in each of the sets to be intersected. Hence, the smallest neighborhood of the point is contained in the intersection, which we denote by U. Thus, each point of U lies in U together with its neighborhood. Since U is the union of these neighborhoods, it is open.

Now let us prove that if the intersection of any collection of open sets is open, then any point has a smallest neighborhood. Where can one get such a
neighborhood from? How to construct it? Take all neighborhoods of a point x and consider their intersection U. By assumption, U is open. It contains x. Therefore, U is a neighborhood of x. This neighborhood, being the intersection of all neighborhoods, is contained in each of the neighborhoods. Thus, U is the smallest neighborhood.
7. V The minimal base of this topology consists of singletons of the form $\{2 k-1\}$ with $k \in \mathbb{Z}$ and three-element sets of the form $\{2 k-1,2 k, 2 k+1\}$, where again $k \in \mathbb{Z}$.

Continuity

9. Set-Theoretic Digression: Maps

$\left\lceil 9^{\prime} 1\right\rfloor$ Maps and Main Classes of Maps

A map f of a set X to a set Y is a triple consisting of X, Y, and a rule, ${ }^{1}$ which assigns to every element of X exactly one element of Y. There are other words with the same meaning: mapping, function, etc. (Special kinds of maps may have special names like functional, operator, etc.)

If f is a map of X to Y, then we write $f: X \rightarrow Y$, or $X \xrightarrow{f} Y$. The element b of Y assigned by f to an element a of X is denoted by $f(a)$ and called the image of a under f, or the f-image of a. We write $b=f(a)$, or $a \stackrel{f}{\mapsto} b$, or $f: a \mapsto b$. We also define maps by formulas like $f: X \rightarrow Y: a \mapsto b$, where b is explicitly expressed in terms of a.

A $\operatorname{map} f: X \rightarrow Y$ is a surjective map, or just a surjection if every element of Y is the image of at least one element of X. (We also say that f is onto.) A map $f: X \rightarrow Y$ is an injective map, injection, or one-to-one map if every element of Y is the image of at most one element of X. A map is a bijective map, bijection, or invertible map if it is both surjective and injective.

[^11]
$\left\lceil 9^{\prime} 2\right\rfloor$ Image and Preimage

The image of a set $A \subset X$ under a map $f: X \rightarrow Y$ is the set of images of all points of A. It is denoted by $f(A)$. Thus, we have

$$
f(A)=\{f(x) \mid x \in A\} .
$$

The image of the entire set X (i.e., the set $f(X)$) is the image of f. It is denoted by $\operatorname{Im} f$.

The preimage of a set $B \subset Y$ under a map $f: X \rightarrow Y$ is the set of elements of X with images in B. It is denoted by $f^{-1}(B)$. Thus, we have

$$
f^{-1}(B)=\{a \in X \mid f(a) \in B\} .
$$

Be careful with these terms: their etymology can be misleading. For example, the image of the preimage of a set B can differ from B, and even if it does not differ, it may happen that the preimage is not the only set with this property. Hence, the preimage cannot be defined as a set whose image is the given set.
9. \boldsymbol{A}. We have $f\left(f^{-1}(B)\right) \subset B$ for any map $f: X \rightarrow Y$ and any $B \subset Y$.
9.B. $f\left(f^{-1}(B)\right)=B$ iff $B \subset \operatorname{Im} f$.
9. C. Let $f: X \rightarrow Y$ be a map, and let $B \subset Y$ be such that $f\left(f^{-1}(B)\right)=B$. Then the following statements are equivalent:
(1) $f^{-1}(B)$ is the unique subset of X whose image equals B;
(2) for any $a_{1}, a_{2} \in f^{-1}(B)$, the equality $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$.
9.D. A map $f: X \rightarrow Y$ is an injection iff for each $B \subset Y$ such that $f\left(f^{-1}(B)\right)=B$ the preimage $f^{-1}(B)$ is the unique subset of X with image equal to B.
9.E. We have $f^{-1}(f(A)) \supset A$ for any map $f: X \rightarrow Y$ and any $A \subset X$.
9.F. $f^{-1}(f(A))=A$ iff $f(A) \cap f(X \backslash A)=\varnothing$.
9.1. Do the following equalities hold true for any $A, B \subset Y$ and $f: X \rightarrow Y$:

$$
\begin{align*}
& f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B) \tag{10}\\
& f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B) \tag{11}\\
& f^{-1}(Y \backslash A)=X \backslash f^{-1}(A) ? \tag{12}
\end{align*}
$$

9.2. Do the following equalities hold true for any $A, B \subset X$ and $f: X \rightarrow Y$:

$$
\begin{align*}
f(A \cup B) & =f(A) \cup f(B), \tag{13}\\
f(A \cap B) & =f(A) \cap f(B), \tag{14}\\
f(X \backslash A) & =Y \backslash f(A) ? \tag{15}
\end{align*}
$$

9.3. Give examples in which two of the above equalities (13)-(15) are false.

9.4. Replace false equalities of 9.2 by correct inclusions.

9.5. Riddle. What simple condition on $f: X \rightarrow Y$ should be imposed in order to make all equalities of 9.2 correct for any $A, B \subset X$?
9.6. Prove that for any map $f: X \rightarrow Y$ and any subsets $A \subset X$ and $B \subset Y$ we have:

$$
B \cap f(A)=f\left(f^{-1}(B) \cap A\right)
$$

$\left\lceil 9^{\prime} 3\right\rfloor$ Identity and Inclusion

The identity map of a set X is the map $\operatorname{id}_{X}: X \rightarrow X: x \mapsto x$. It is denoted just by id if there is no ambiguity. If A is a subset of X, then the $\operatorname{map}^{\operatorname{in}}{ }_{A}: A \rightarrow X: x \mapsto x$ is the inclusion map, or just inclusion, of A into X. It is denoted just by in when A and X are clear.
9. G. The preimage of a set B under the inclusion in : $A \rightarrow X$ is $B \cap A$.

$\left.{ }^{-} 9^{\prime} 4\right\rfloor$ Composition

The composition of maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is the map $g \circ f: X \rightarrow Z: x \mapsto g(f(x))$.
9.H Associativity of Composition. We have $h \circ(g \circ f)=(h \circ g) \circ f$ for any maps $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: Z \rightarrow U$.
9.I. We have $f \circ \operatorname{id}_{X}=f=\operatorname{id}_{Y} \circ f$ for any $f: X \rightarrow Y$.
9.J. A composition of injections is injective.
9.K. If the composition $g \circ f$ is injective, then so is f.
9.L. A composition of surjections is surjective.
9.M. If the composition $g \circ f$ is surjective, then so is g.
9.N. A composition of bijections is a bijection.
9.7. Let a composition $g \circ f$ be bijective. Is then f or g necessarily bijective?

${ }^{-9} 9^{\prime} 5$ Inverse and Invertible

A map $g: Y \rightarrow X$ is inverse to a map $f: X \rightarrow Y$ if $g \circ f=\mathrm{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$. A map having an inverse map is invertible.
9.O. A map is invertible iff it is a bijection.
9.P. If an inverse map exists, then it is unique.

$\left\lceil 9^{\prime} 6\right\rfloor$ Submaps

If $A \subset X$ and $B \subset Y$, then for every $f: X \rightarrow Y$ such that $f(A) \subset B$ we have a map $\operatorname{ab}(f): A \rightarrow B: x \mapsto f(x)$, which is called the abbreviation of f to A and B, a submap, or a submapping. If $B=Y$, then $\operatorname{ab}(f): A \rightarrow Y$ is denoted by $\left.f\right|_{A}$ and called the restriction of f to A. If $B \neq Y$, then $\operatorname{ab}(f): A \rightarrow B$ is denoted by $\left.f\right|_{A, B}$ or even simply $f \mid$.
9. Q. The restriction of a map $f: X \rightarrow Y$ to $A \subset X$ is the composition of the inclusion in : $A \rightarrow X$ and f. In other words, $\left.f\right|_{A}=f \circ$ in.
9.R. Any submap (in particular, any restriction) of an injection is injective.
9.S. If a map possesses a surjective restriction, then it is surjective.

10. Continuous Maps

$\left\lceil 10^{\prime} 1\right\rfloor$ Definition and Main Properties of Continuous Maps

Let X and Y be two topological spaces. A map $f: X \rightarrow Y$ is continuous if the preimage of each open subset of Y is an open subset of X.
10.A. A map is continuous iff the preimage of each closed set is closed.
10.B. The identity map of any topological space is continuous.

1O.C. Any constant map (i.e., a map with one-point image) is continuous.
10.1. Let Ω_{1} and Ω_{2} be two topological structures in a space X. Prove that the identity map

$$
\text { id : }\left(X, \Omega_{1}\right) \rightarrow\left(X, \Omega_{2}\right)
$$

is continuous iff $\Omega_{2} \subset \Omega_{1}$.
10.2. Let $f: X \rightarrow Y$ be a continuous map. Find out whether or not it is continuous with respect to
(1) a finer topology on X and the same topology on Y,
(2) a coarser topology on X and the same topology on Y,
(3) a finer topology on Y and the same topology on X,
(4) a coarser topology on Y and the same topology on X.
10.3. Let X be a discrete space, Y an arbitrary space. 1) Which maps $X \rightarrow Y$ are continuous? 2) Which maps $Y \rightarrow X$ are continuous for each topology on Y ?
10.4. Let X be an indiscrete space, Y an arbitrary space. 2) Which maps $Y \rightarrow X$ are continuous? 1) Which maps $X \rightarrow Y$ are continuous for each topology on Y ?
10.D. Let A be a subspace of X. The inclusion in : $A \rightarrow X$ is continuous.
10.E. The topology Ω_{A} induced on $A \subset X$ by the topology of X is the coarsest topology on A with respect to which the inclusion in : $A \rightarrow X$ is continuous.
10.5. Riddle. The statement $10 . E$ admits a natural generalization with the inclusion map replaced by an arbitrary map $f: A \rightarrow X$ of an arbitrary set A. Find this generalization.
10.F. A composition of continuous maps is continuous.
10.G. A submap of a continuous map is continuous.
10.H. A $\operatorname{map} f: X \rightarrow Y$ is continuous iff $\mathrm{ab}(f): X \rightarrow f(X)$ is continuous.

$\left\lceil 10^{\prime} 2\right\rfloor$ Reformulations of Definition

10．6．Prove that a map $f: X \rightarrow Y$ is continuous iff

$$
\mathrm{Cl} f^{-1}(A) \subset f^{-1}(\mathrm{Cl} A)
$$

for each $A \subset Y$ ．
10．7．Formulate and prove similar criteria of continuity in terms of $\operatorname{Int} f^{-1}(A)$ and $f^{-1}(\operatorname{Int} A)$ ．Do the same for $\mathrm{Cl} f(A)$ and $f(\mathrm{Cl} A)$ ．
10．8．Let Σ be a base for the topology on Y ．Prove that a map $f: X \rightarrow Y$ is continuous iff $f^{-1}(U)$ is open for each $U \in \Sigma$ ．

「10＇3」 More Examples

10．9．Consider the map

$$
f:[0,2] \rightarrow[0,2]: f(x)= \begin{cases}x & \text { if } x \in[0,1) \\ 3-x & \text { if } x \in[1,2]\end{cases}
$$

Is it continuous（with respect to the topology induced from the real line）？
10．10．Consider the map f from the segment $[0,2]$（with the relative topology induced by the topology of the real line）into the arrow（see Section 2）defined by the formula

$$
f(x)= \begin{cases}x & \text { if } x \in[0,1] \\ x+1 & \text { if } x \in(1,2]\end{cases}
$$

Is it continuous？
10．11．Give an explicit characterization of continuous maps of $\mathbb{R}_{T_{1}}$（see Section 2） to \mathbb{R} ．

10．12．Which maps $\mathbb{R}_{T_{1}} \rightarrow \mathbb{R}_{T_{1}}$ are continuous？
10．13．Give an explicit characterization of continuous maps of the arrow to itself．
10．14．Let f be a map of the set \mathbb{Z}_{+}of nonnegative numbers to \mathbb{R} defined by the formula

$$
f(x)= \begin{cases}1 / x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Let $g: \mathbb{Z}_{+} \rightarrow f\left(\mathbb{Z}_{+}\right)$be the submap of f ．Induce a topology on \mathbb{Z}_{+}and $f\left(\mathbb{Z}_{+}\right)$ from \mathbb{R} ．Are f and the map g^{-1} inverse to g continuous？

$\left\lceil 10^{\prime} 4\right.$ 」 Behavior of Dense Sets Under Continuous Maps

10．15．Prove that the image of an everywhere dense set under a surjective con－ tinuous map is everywhere dense．

10．16．Is it true that the image of a nowhere dense set under a continuous map is nowhere dense？

10．17＊．Do there exist a nowhere dense subset A of $[0,1]$（with the topology induced from the real line）and a continuous map $f:[0,1] \rightarrow[0,1]$ such that $f(A)=[0,1]$ ？

$\left\lceil 10^{\prime} 5\right\rfloor$ Local Continuity

A map f from a topological space X to a topological space Y is continuous at a point $a \in X$ if for every neighborhood V of $f(a)$ the point a has a neighborhood U such that $f(U) \subset V$.
10.I. A map $f: X \rightarrow Y$ is continuous iff it is continuous at each point of X.
10.J. Let X and Y be two metric spaces. A map $f: X \rightarrow Y$ is continuous at a point $a \in X$ iff each ball centered at $f(a)$ contains the image of a ball centered at a.
1.́.K. Let X and Y be two metric spaces. A map $f: X \rightarrow Y$ is continuous at a point $a \in X$ iff for every $\varepsilon>0$ there exists $\delta>0$ such that for every point $x \in X$ the inequality $\rho(x, a)<\delta$ implies $\rho(f(x), f(a))<\varepsilon$.

Theorem $10 . K$ means that the definition of continuity usually studied in Calculus, when applicable, is equivalent to the above definition stated in terms of topological structures.

$\left\lceil 10^{\prime} 6\right\rfloor$ Properties of Continuous Functions

10.18. Let $f, g: X \rightarrow \mathbb{R}$ be two continuous functions. Prove that the functions $X \rightarrow \mathbb{R}$ defined by the formulas

$$
\begin{align*}
x & \mapsto f(x)+g(x), \tag{16}\\
x & \mapsto f(x) g(x), \tag{17}\\
x & \mapsto f(x)-g(x), \tag{18}\\
x & \mapsto|f(x)|, \tag{19}\\
x & \mapsto \max \{f(x), g(x)\}, \tag{20}\\
x & \mapsto \min \{f(x), g(x)\} \tag{21}
\end{align*}
$$

are continuous.
10.19. Prove that if $0 \notin g(X)$, then the function

$$
X \rightarrow \mathbb{R}: x \mapsto \frac{f(x)}{g(x)}
$$

is also continuous.
10.20. Find a sequence of continuous functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R},(i \in \mathbb{N})$, such that the function

$$
\mathbb{R} \rightarrow \mathbb{R}: x \mapsto \sup \left\{f_{i}(x) \mid i \in \mathbb{N}\right\}
$$

is not continuous.
10.21. Let X be a topological space. Prove that a function $f: X \rightarrow \mathbb{R}^{n}: x \mapsto$ $\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is continuous iff so are all functions $f_{i}: X \rightarrow \mathbb{R}$ with $i=1, \ldots, n$.

Real $p \times q$ matrices form a space $\operatorname{Mat}(p \times q, \mathbb{R})$, which differs from $\mathbb{R}^{p q}$ only in the way its natural coordinates are numbered (they are numbered by pairs of indices).

10．22．Let $f: X \rightarrow \operatorname{Mat}(p \times q, \mathbb{R})$ and $g: X \rightarrow \operatorname{Mat}(q \times r, \mathbb{R})$ be two continuous maps．Prove that the map

$$
X \rightarrow \operatorname{Mat}(p \times r, \mathbb{R}): x \mapsto g(x) f(x)
$$

is also continuous．
Recall that $G L(n ; \mathbb{R})$ is the subspace of $\operatorname{Mat}(n \times n, \mathbb{R})$ consisting of all invert－ ible matrices．

10．23．Let $f: X \rightarrow G L(n ; \mathbb{R})$ be a continuous map．Prove that $X \rightarrow G L(n ; \mathbb{R})$ ： $x \mapsto(f(x))^{-1}$ is also continuous．

$\left\lceil 10^{\prime} 7\right\rfloor$ Continuity of Distances

10．L．For every subset A of a metric space X ，the function $X \rightarrow \mathbb{R}: x \mapsto$ $\rho(x, A)$（see Section 4）is continuous．

10．24．Prove that the metric topology of a metric space X is the coarsest topology with respect to which the function $X \rightarrow \mathbb{R}: x \mapsto \rho(x, A)$ is continuous for every $A \subset X$ ．

「10＇8」 Isometry

A map f of a metric space X to a metric space Y is an isometric em－ bedding if $\rho(f(a), f(b))=\rho(a, b)$ for any $a, b \in X$ ．A bijective isometric embedding is an isometry．

10．M．Every isometric embedding is injective．
10．N．Every isometric embedding is continuous．

「10＇9」 Contractive Maps

A map $f: X \rightarrow X$ of a metric space X is contractive if there exists $\alpha \in(0,1)$ such that $\rho(f(a), f(b)) \leq \alpha \rho(a, b)$ for any $a, b \in X$ ．
10．25．Prove that every contractive map is continuous．
Let X and Y be two metric spaces．A map $f: X \rightarrow Y$ is a Hölder map if there exist $C>0$ and $\alpha>0$ such that $\rho(f(a), f(b)) \leq C \rho(a, b)^{\alpha}$ for any $a, b \in X$ ．

10．26．Prove that every Hölder map is continuous．

$\left\lceil 10^{\prime} 10\right\rfloor$ Sets Defined by Systems of Equations and Inequalities

10．O．Let $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{R}$ be continuous functions．Then the subset of X formed by solutions to the system of equations

$$
f_{1}(x)=\cdots=f_{n}(x)=0
$$

is closed．
10.P. Let $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{R}$ be continuous functions. Then the subset of X formed by solutions to the system of inequalities

$$
f_{1}(x) \geq 0, \ldots, f_{n}(x) \geq 0
$$

is closed, while the set of solutions to the system of inequalities

$$
f_{1}(x)>0, \ldots, f_{n}(x)>0
$$

is open.
10.27. Where in 10.0 and $10 . P$ can a finite system be replaced by an infinite one?
10.28. Prove that in $\mathbb{R}^{n}(n \geq 1)$ every proper algebraic set (i.e., a set defined by algebraic equations) is nowhere dense.

$\left\lceil 10^{\prime} 11\right\rfloor$ Set-Theoretic Digression: Covers

A collection Γ of subsets of a set X is a cover or a covering of X if X is the union of sets in Γ, i.e., $X=\bigcup_{A \in \Gamma} A$. In this case, elements of Γ cover X.

These words also have a more general meaning. A collection Γ of subsets of a set Y is a cover or a covering of a set $X \subset Y$ if X is contained in the union of the sets in Γ, i.e., $X \subset \bigcup_{A \in \Gamma} A$. In this case, the sets in Γ are also said to cover X.

$\left\lceil 10^{\prime} 12\right.$ • Fundamental Covers

Consider a cover Γ of a topological space X. Each element of Γ inherits a topological structure from X. When do these structures uniquely determine the topology of X ? In particular, what conditions on Γ ensure that the continuity of a map $f: X \rightarrow Y$ follows from the continuity of its restrictions to elements of Γ ? To answer these questions, solve Problems 10.29-10.30 and 10.Q-10.V.
10.29. Find out whether or not this is true for the following covers:
(1) $X=[0,2]$, and $\Gamma=\{[0,1],(1,2]\}$;
(2) $X=[0,2]$, and $\Gamma=\{[0,1],[1,2]\}$;
(3) $X=\mathbb{R}$, and $\Gamma=\{\mathbb{Q}, \mathbb{R} \backslash \mathbb{Q}\}$;
(4) $X=\mathbb{R}$, and Γ is the set of all one-point subsets of \mathbb{R}.

A cover Γ of a space X is fundamental if: a set $U \subset X$ is open iff for every $A \in \Gamma$ the set $U \cap A$ is open in A.
10.Q. A cover Γ of a space X is fundamental iff: a set $U \subset X$ is open, provided $U \cap A$ is open in A for every $A \in \Gamma$.
10.R. A cover Γ of a space X is fundamental iff: a set $F \subset X$ is closed, provided that $F \cap A$ is closed in A for every $A \in \Gamma$.
10.30. The cover of a topological space by singletons is fundamental iff the space is discrete.

A cover of a topological space is open (respectively, closed) if it consists of open (respectively, closed) sets. A cover of a topological space is locally finite if every point of the space has a neighborhood meeting only a finite number of elements of the cover.
10.S. Every open cover is fundamental.
10.T. A finite closed cover is fundamental.
10.U. Every locally finite closed cover is fundamental.
10.V. Let Γ be a fundamental cover of a topological space X, and let f : $X \rightarrow Y$ be a map. If the restriction of f to each element of Γ is continuous, then so is f.

A cover Γ^{\prime} is a refinement of a cover Γ if every element of Γ^{\prime} is contained in an element of Γ.
10.31. Prove that if a cover Γ^{\prime} is a refinement of a cover Γ and Γ^{\prime} is fundamental, then so is Γ.
10.32. Let Δ be a fundamental cover of a topological space X, and let Γ be a cover of X such that $\Gamma_{A}=\{U \cap A \mid U \in \Gamma\}$ is a fundamental cover for the subspace $A \subset X$ for every $A \in \Delta$. Prove that Γ is a fundamental cover of X.
10.33. Prove that the property of being fundamental is local, i.e., if every point of a space X has a neighborhood V such that $\Gamma_{V}=\{U \cap V \mid U \in \Gamma\}$ is a fundamental cover of V, then Γ is fundamental.

$\left\lceil 10^{\prime} 13 x\right\rfloor$ Monotone Maps

Let (X, \prec) and (Y, \prec) be two posets. A map $f: X \rightarrow Y$ is

- (non-strictly) monotonically increasing or just monotone if $f(a) \preceq f(b)$ for any $a, b \in X$ with $a \preceq b$;
- (non-strictly) monotonically decreasing or antimonotone if $f(b) \preceq f(a)$ for any $a, b \in X$ with $a \preceq b$;
- strictly monotonically increasing or just strictly monotone if $f(a) \prec f(b)$ for any $a, b \in X$ with $a \prec b$;
- strictly monotonically decreasing or strictly antimonotone if $f(b) \prec f(a)$ for any $a, b \in X$ with $a \prec b$.

10. Wx. Let X and Y be two linearly ordered sets. Then any surjective strictly monotone or antimonotone map $X \rightarrow Y$ is continuous with respect to the interval topology on X and Y.
10.34 x . Show that the surjectivity condition in $10 . W x$ is needed.
10.35x. Is it possible to remove the word strictly from the hypothesis of Theorem $10 . W x$?
10.36x. In the assumptions of Theorem $10 . W x$, is f continuous with respect to the right-ray or left-ray topologies?
10.Xx. A map $f: X \rightarrow Y$ of a poset to a poset is monotone increasing iff it is continuous with respect to the poset topologies on X and Y.

$\left\lceil 10^{\prime} 14 \mathrm{x}\right\rfloor$ Gromov-Hausdorff Distance

10.37x. For any metric spaces X and Y, there exists a metric space Z such that X and Y can be isometrically embedded in Z.

Isometrically embedding two metric space in a single one, we can consider the Hausdorff distance between their images (see Section 4'15x). The infimum of such Hausdorff distances over all pairs of isometric embeddings of metric spaces X and Y in metric spaces is the Gromov-Hausdorff distance between X and Y.
10.38x. Do there exist metric spaces with infinite Gromov-Hausdorff distance?
10.39x. Prove that the Gromov-Hausdorff distance is symmetric and satisfies the triangle inequality.
10.40x. Riddle. In what sense can the Gromov-Hausdorff distance satisfy the first axiom of metric?

$\left\lceil 10^{\prime} 15 x\right\rfloor$ Functions on the Cantor Set and Square-Filling Curves

Recall that the Cantor set K is the set of real numbers that are presented as sums of series of the form $\sum_{n=1}^{\infty} a_{n} / 3^{n}$ with $a_{n} \in\{0,2\}$.
10.41x. Consider the map

$$
\gamma_{1}: K \rightarrow[0,1]: \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} \mapsto \frac{1}{2} \sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} .
$$

Prove that γ_{1} is a continuous surjection. Sketch the graph of γ_{1}.
10.42 x . Prove that the function

$$
K \rightarrow K: \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} \mapsto \sum_{n=1}^{\infty} \frac{a_{2 n}}{3^{n}}
$$

is continuous.
Denote by K^{2} the set $\left\{(x, y) \in \mathbb{R}^{2} \mid x \in K, y \in K\right\}$.
10.43x. Prove that the map

$$
\gamma_{2}: K \rightarrow K^{2}: \sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} \mapsto\left(\sum_{n=1}^{\infty} \frac{a_{2 n-1}}{3^{n}}, \sum_{n=1}^{\infty} \frac{a_{2 n}}{3^{n}}\right)
$$

is a continuous surjection.
The unit segment $[0,1]$ is denoted by I, while the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1 \text { for each } i\right\}
$$

is denoted by I^{n} and called the (unit) n-cube.
10.44x. Prove that the map $\gamma_{3}: K \rightarrow I^{2}$ defined as the composition of $\gamma_{2}: K \rightarrow$ K^{2} and $K^{2} \rightarrow I^{2}:(x, y) \mapsto\left(\gamma_{1}(x), \gamma_{1}(y)\right)$ is a continuous surjection.
10.45 x . Prove that the map $\gamma_{3}: K \rightarrow I^{2}$ is a restriction of a continuous map. (Cf. 2.Jx.2.)

The latter map is a continuous surjection $I \rightarrow I^{2}$. Thus, this is a curve filling the square. A curve with this property was first constructed by G. Peano in 1890. Though the construction sketched above involves the same ideas as Peano's original construction, the two constructions are slightly different. A lot of other similar examples have been found since then. You may find a nice survey of them in Hans Sagan's book Space-Filling Curves, Springer-Verlag 1994. Here is a sketch of Hilbert's construction.
10.46x. Prove that there exists a sequence of polygonal maps $f_{n}: I \rightarrow I^{2}$ such that
(1) f_{n} connects all centers of the 4^{n} equal squares with side $1 / 2^{n}$ forming an obvious subdivision of I^{2};
(2) we have $\operatorname{dist}\left(f_{n}(x), f_{n-1}(x)\right) \leq \sqrt{2} / 2^{n+1}$ for any $x \in I$ (here, dist denotes the metric induced on I^{2} by the standard Euclidean metric of \mathbb{R}^{2}).
10.47x. Prove that any sequence of paths $f_{n}: I \rightarrow I^{2}$ satisfying the conditions of $10.46 x$ converges to a map $f: I \rightarrow I^{2}$ (i.e., for any $x \in I$ there exists a limit $\left.f(x)=\lim _{n \rightarrow \infty} f_{n}(x)\right)$, this map is continuous, and its image $f(I)$ is dense in I^{2}. $10.48 \mathrm{x} .{ }^{2}$ Prove that any continuous map $I \rightarrow I^{2}$ with dense image is surjective.
10.49x. Generalize $10.43 x-10.48 x$ to obtain a continuous surjection of I onto I^{n}.

[^12]
11. Homeomorphisms

$\left\lceil 11^{\prime} 1 〕\right.$ Definition and Main Properties of Homeomorphisms

An invertible map $f: X \rightarrow Y$ is a homeomorphism if both this map and its inverse are continuous.
11.A. Find an example of a continuous bijection which is not a homeomorphism.
11.B. Find a continuous bijection $[0,1) \rightarrow S^{1}$ which is not a homeomorphism.
11. C. The identity map of a topological space is a homeomorphism.
11.D. A composition of homeomorphisms is a homeomorphism.
11.E. The inverse of a homeomorphism is a homeomorphism.

$\left\lceil 11^{\prime} 2\right\rfloor$ Homeomorphic Spaces

A topological space X is homeomorphic to a space Y if there exists a homeomorphism $X \rightarrow Y$.
11.F. Being homeomorphic is an equivalence relation.

11.1. Riddle. How is Theorem 11.F related to 11.C-11.E?

$\left\lceil 11^{\prime} 3\right\rfloor$ Role of Homeomorphisms

11.G. Let $f: X \rightarrow Y$ be a homeomorphism. Then $U \subset X$ is open (in X) iff $f(U)$ is open (in Y).
11.H. A map $f: X \rightarrow Y$ is a homeomorphism iff f is a bijection and determines a bijection between the topological structures of X and Y.
11.I. Let $f: X \rightarrow Y$ be a homeomorphism. Then for every $A \subset X$
(1) A is closed in X iff $f(A)$ is closed in Y;
(2) $f(\mathrm{Cl} A)=\mathrm{Cl}(f(A))$;
(3) $f(\operatorname{Int} A)=\operatorname{Int}(f(A))$;
(4) $f(\operatorname{Fr} A)=\operatorname{Fr}(f(A))$;
(5) A is a neighborhood of a point $x \in X$ iff $f(A)$ is a neighborhood of the point $f(x)$;
(6) etc.

Therefore, homeomorphic spaces are completely identical from the topological point of view: a homeomorphism $X \rightarrow Y$ establishes a one-to-one correspondence between all phenomena in X and Y that can be expressed in terms of topological structures. ${ }^{3}$

$\left\lceil 11^{\prime} 4\right\rfloor$ More Examples of Homeomorphisms

11.J. Let $f: X \rightarrow Y$ be a homeomorphism. Prove that for every $A \subset X$ the submap $\operatorname{ab}(f): A \rightarrow f(A)$ is also a homeomorphism.
11.K. Prove that every isometry (see Section 10) is a homeomorphism.
11.L. Prove that every nondegenerate affine transformation of \mathbb{R}^{n} is a homeomorphism.
11.M. Let X and Y be two linearly ordered sets. Any strictly monotone surjection $f: X \rightarrow Y$ is a homeomorphism with respect to the interval topological structures in X and Y.
11.N Corollary. Any strictly monotone surjection $f:[a, b] \rightarrow[c, d]$ is a homeomorphism.
11.2. Let R be a positive real. Prove that the inversion

$$
\tau: \mathbb{R}^{n} \backslash 0 \rightarrow \mathbb{R}^{n} \backslash 0: x \mapsto \frac{R x}{|x|^{2}}
$$

is a homeomorphism.
11.3. Let $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ be the upper half-plane, let $a, b, c, d \in \mathbb{R}$, and let $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|>0$. Prove that

$$
f: \mathcal{H} \rightarrow \mathcal{H}: z \mapsto \frac{a z+b}{c z+d}
$$

is a homeomorphism.
11.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bijection. Prove that f is a homeomorphism iff f is a monotone function.
11.5. 1) Prove that every bijection of an indiscrete space onto itself is a homeomorphism. Prove the same 2) for a discrete space and 3) $\mathbb{R}_{T_{1}}$.
11.6. Find all homeomorphisms of the space \mathcal{V} (see Section 2) to itself.
11.7. Prove that every continuous bijection of the arrow onto itself is a homeomorphism.

[^13]11.8. Find two homeomorphic spaces X and Y and a continuous bijection $X \rightarrow Y$ which is not a homeomorphism.
11.9. Is $\gamma_{2}: K \rightarrow K^{2}$ considered in Problem $10.43 \times$ a homeomorphism? Recall that K is the Cantor set, $K^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in K, y \in K\right\}$, and γ_{2} is defined by
$$
\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}} \mapsto\left(\sum_{k=1}^{\infty} \frac{a_{2 k-1}}{3^{k}}, \sum_{k=1}^{\infty} \frac{a_{2 k}}{3^{k}}\right)
$$

$\left\lceil 11^{\prime} 5\right\rfloor$ Examples of Homeomorphic Spaces

Below the homeomorphism relation is denoted by \cong. This notation is not commonly accepted. In other textbooks, you may see any sign close to, but distinct from $=$, e.g., \sim, \simeq, \approx, etc.
11.O. Prove that
(1) $[0,1] \cong[a, b]$ for any $a<b$;
(2) $[0,1) \cong[a, b) \cong(0,1] \cong(a, b]$ for any $a<b$;
(3) $(0,1) \cong(a, b)$ for any $a<b$;
(4) $(-1,1) \cong \mathbb{R}$;
(5) $[0,1) \cong[0,+\infty)$ and $(0,1) \cong(0,+\infty)$.

11.P. Let $N=(0,1) \in S^{1}$ be the North Pole of the unit circle. Prove that $S^{1} \backslash N \cong \mathbb{R}^{1}$.

11. Q. The graph of a continuous real-valued function defined on an interval is homeomorphic to the interval.
11.R. $S^{n} \backslash$ point $\cong \mathbb{R}^{n}$. (The first space is the "punctured sphere".)

Here, and sometimes below, our notation is slightly incorrect: in the curly brackets, we drop the initial part " $(x, y) \in \mathbb{R}^{2} \mid$ ".
11.10. Prove that the following plane domains are homeomorphic.
(1) The whole plane \mathbb{R}^{2};
(2) open square $\operatorname{Int} I^{2}=\{x, y \in(0,1)\}$;
(3) open strip $\{x \in(0,1)\}$;
(4) open upper half-plane $\mathcal{H}=\{y>0\}$;
(5) open half-strip $\{x>0, y \in(0,1)\}$;
(6) open disk $B^{2}=\left\{x^{2}+y^{2}<1\right\}$;
(7) open rectangle $\{a<x<b, c<y<d\}$;
(8) open quadrant $\{x, y>0\}$;
(9) open angle $\{x>y>0\}$;
(10) $\left\{y^{2}+|x|>x\right\}$, i.e., the plane without the ray $\{y=0 \leq x\}$;
(11) open half-disk $\left\{x^{2}+y^{2}<1, y>0\right\}$;
(12) open sector $\left\{x^{2}+y^{2}<1, x>y>0\right\}$.
11.S. Prove that
(1) the closed disk D^{2} is homeomorphic to the square $I^{2}=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid x, y \in[0,1]\right\} ;$
(2) the open disk $B^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ is homeomorphic to the open square $\operatorname{Int} I^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \in(0,1)\right\} ;$
(3) the circle S^{1} is homeomorphic to the boundary $\partial I^{2}=I^{2} \backslash \operatorname{Int} I^{2}$ of the square.
11.T. Let $\Delta \subset \mathbb{R}^{2}$ be a planar bounded closed convex set with nonempty interior U. Prove that
(1) Δ is homeomorphic to the closed disk D^{2};
(2) U is homeomorphic to the open disk B^{2};
(3) $\operatorname{Fr} \Delta=\operatorname{Fr} U$ is homeomorphic to S^{1}.
11.11. In which of the assertions in $11 . T$ can we omit the assumption that the closed convex set Δ is bounded?
11.12. Classify up to homeomorphism all (nonempty) closed convex sets in the plane. (Make a list without repeats; prove that every such set is homeomorphic to a set in the list; postpone the proof of nonexistence of homeomorphisms till Section 12.)
11.13*. Generalize the previous three problems to the case of sets in \mathbb{R}^{n} with arbitrary n.

The latter four problems show that angles are not essential in topology, i.e., for a line or the boundary of a domain the property of having angles is not preserved by homeomorphism. Here are two more problems in this direction.
11.14. Prove that every simple (i.e., without self-intersections) closed polygon in \mathbb{R}^{2} (as well as in \mathbb{R}^{n} with $n>2$) is homeomorphic to the circle S^{1}.
11.15. Prove that every nonclosed simple finite unit polyline in \mathbb{R}^{2} (as well as in \mathbb{R}^{n} with $n>2$) is homeomorphic to the segment $[0,1]$.

The following problem generalizes the technique used in the previous two problems and is actually used more often than it may seem at first glance.
11.16. Let X and Y be two topological spaces equipped with fundamental covers: $X=\bigcup_{\alpha} X_{\alpha}$ and $Y=\bigcup_{\alpha} Y_{\alpha}$. Suppose that $f: X \rightarrow Y$ is a map such that $f\left(X_{\alpha}\right)=Y_{\alpha}$ for each α and the submap $\operatorname{ab}(f): X_{\alpha} \rightarrow Y_{\alpha}$ is a homeomorphism. Then f is a homeomorphism.
11.17. Prove that $\mathbb{R}^{2} \backslash\{|x|,|y|>1\} \cong I^{2} \backslash\{x, y \in\{0,1\}\}$. (An "infinite cross" is homeomorphic to a square without vertices.)

11.18*. A nonempty set $\Sigma \subset \mathbb{R}^{2}$ is "star-shaped with respect to a point c " if Σ is a union of segments (and rays) with an endpoint at c. Prove that if Σ is open, then $\Sigma \cong B^{2}$. (What can you say about a closed star-shaped set with nonempty interior?)
11.19. Prove that the following plane figures are homeomorphic to each other. (See 11.10 for our agreement about notation.)
(1) A half-plane: $\{x \geq 0\}$;
(2) a quadrant: $\{x, y \geq 0\}$;
(3) an angle: $\{x \geq y \geq 0\}$;
(4) a semi-open strip: $\{y \in[0,1)\}$;
(5) a square without three sides: $\{0<x<1,0 \leq y<1\}$;
(6) a square without two sides: $\{0 \leq x, y<1\}$;
(7) a square without a side: $\{0 \leq x \leq 1,0 \leq y<1\}$;
(8) a square without a vertex: $\{0 \leq x, y \leq 1\} \backslash(1,1)$;
(9) a disk without a boundary point: $\left\{x^{2}+y^{2} \leq 1, y \neq 1\right\}$;
(10) a half-disk without the diameter: $\left\{x^{2}+y^{2} \leq 1, y>0\right\}$;
(11) a disk without a radius: $\left\{x^{2}+y^{2} \leq 1\right\} \backslash[0,1]$;
(12) a square without a half of the diagonal: $\{|x|+|y| \leq 1\} \backslash[0,1]$.
11.20. Prove that the following plane domains are homeomorphic to each other:
(1) punctured plane $\mathbb{R}^{2} \backslash(0,0)$;
(2) punctured open disk $B^{2} \backslash(0,0)=\left\{0<x^{2}+y^{2}<1\right\}$;
(3) annulus $\left\{a<x^{2}+y^{2}<b\right\}$, where $0<a<b$;
(4) plane without a disk: $\mathbb{R}^{2} \backslash D^{2}$;
(5) plane without a square: $\mathbb{R}^{2} \backslash I^{2}$;
(6) plane without a segment: $\mathbb{R}^{2} \backslash[0,1]$;
(7) $\mathbb{R}^{2} \backslash \Delta$, where Δ is a closed bounded convex set with $\operatorname{Int} \Delta \neq \varnothing$.
11.21. Let $X \subset \mathbb{R}^{2}$ be the union of several segments with a common endpoint. Prove that the complement $\mathbb{R}^{2} \backslash X$ is homeomorphic to the punctured plane.
11.22. Let $X \subset \mathbb{R}^{2}$ be a simple nonclosed finite polyline. Prove that its complement $\mathbb{R}^{2} \backslash X$ is homeomorphic to the punctured plane.
11.23. Let $K=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{2}$ be a finite set. The complement $\mathbb{R}^{2} \backslash K$ is a plane with n punctures. Prove that any two planes with n punctures are homeomorphic, i.e., the position of a_{1}, \ldots, a_{n} in \mathbb{R}^{2} does not affect the topological type of $\mathbb{R}^{2} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$.
11.24. Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}^{2}$ be n pairwise disjoint closed disks. Prove that the complement of their union is homeomorphic to a plane with n punctures.
11.25. Let $D_{1}, \ldots, D_{n} \subset \mathbb{R}^{2}$ be pairwise disjoint closed disks. The complement of the union of their interiors is called a plane with n holes. Prove that any two planes with n holes are homeomorphic, i.e., the location of disks D_{1}, \ldots, D_{n} does not affect the topological type of $\mathbb{R}^{2} \backslash \bigcup_{i=1}^{n} \operatorname{Int} D_{i}$.
11.26. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions such that $f<g$. Prove that the "strip" $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x) \leq y \leq g(x)\right\}$ bounded by their graphs is homeomorphic to the closed strip $\{(x, y) \mid y \in[0,1]\}$.
11.27. Prove that a mug (with a handle) is homeomorphic to a doughnut.
11.28. Arrange the following items to homeomorphism classes: a cup, a saucer, a glass, a spoon, a fork, a knife, a plate, a coin, a nail, a screw, a bolt, a nut, a wedding ring, a drill, a flower pot (with a hole in the bottom), a key.
11.29. In a spherical shell (the space between two concentric spheres), one drilled out a cylindrical hole connecting the boundary spheres. Prove that the rest is homeomorphic to D^{3}.
11.30. In a spherical shell, one made a hole connecting the boundary spheres and having the shape of a knotted tube (see Figure below). Prove that the rest of the shell is homeomorphic to D^{3}.

11.31. Prove that the two surfaces shown in the uppermost Figure on the next page are homeomorphic (they are called handles).

11.32. Prove that the two surfaces shown in the Figure below are homeomorphic. (They are homeomorphic to a projective plane with two holes. More details about this is given in Section 22.)

11.33*. Prove that $\mathbb{R}^{3} \backslash S^{1} \cong \mathbb{R}^{3} \backslash\left(\mathbb{R}^{1} \cup(0,0,1)\right)$. (What can you say in the case of \mathbb{R}^{n} ?)
11.34. Prove that the subset of S^{n} defined in the standard coordinates in \mathbb{R}^{n+1} by the inequality $x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}<x_{k+1}^{2}+\cdots+x_{n}^{2}$ is homeomorphic to $\mathbb{R}^{n} \backslash \mathbb{R}^{n-k}$.

$\left\lceil 11^{\prime} 6\right\rfloor$ Examples of Nonhomeomorphic Spaces

11. U. Spaces containing different numbers of points are not homeomorphic.
12. \boldsymbol{V}. A discrete space and a (non-one-point) indiscrete space are not homeomorphic.
11.35. Prove that the spaces \mathbb{Z}, \mathbb{Q} (with topology induced from \mathbb{R}), $\mathbb{R}, \mathbb{R}_{T_{1}}$, and the arrow are pairwise non-homeomorphic.
11.36. Find two spaces X and Y that are not homeomorphic, but there exist continuous bijections $X \rightarrow Y$ and $Y \rightarrow X$.

$\left\lceil 11^{\prime} 7\right\rfloor$ Homeomorphism Problem and Topological Properties

One of the classical problems in topology is the homeomorphism problem: to find out whether or not two given topological spaces are homeomorphic. In each special case, the character of solution depends mainly on the answer. In order to prove that two spaces are homeomorphic, it suffices to present a homeomorphism between them. This is essentially what one usually does in this case (and what we did considering all examples of homeomorphic spaces above). However, to prove that two spaces are not homeomorphic, it does
not suffice to consider any special map, and usually it is impossible to review all the maps. Therefore, proving the nonexistence of a homeomorphism must involve indirect arguments. In particular, we may look for a property or a characteristic shared by homeomorphic spaces and such that one of the spaces has it, while the other one does not. Properties and characteristics that are shared by homeomorphic spaces are called topological properties and invariants. Obvious examples here are the cardinality (i.e., the number of elements) of the set of points and the set of open sets (cf. Problems 11.34 and $11 . U$). Less obvious properties are the main object of the next chapter.

$\left\lceil 11^{\prime} 8\right\rfloor$ Information: Nonhomeomorphic Spaces

Euclidean spaces of different dimensions are not homeomorphic. The disks D^{p} and D^{q} with $p \neq q$ are not homeomorphic. The spheres S^{p} and S^{q} with $p \neq q$ are not homeomorphic. Euclidean spaces are homeomorphic neither to balls, nor to spheres (of any dimension). Letters A and P are not homeomorphic (if the lines are absolutely thin!). The punctured plane $\mathbb{R}^{2} \backslash(0,0)$ is not homeomorphic to the plane with a hole, $\mathbb{R}^{2} \backslash\left\{x^{2}+y^{2}<1\right\}$.

These statements are of different degrees of difficulty. Some of them are considered in the next section. However, some of them cannot be proved by techniques of this course. (See, e.g., [2].)

$\left\lceil 11^{\prime} 9\right\rfloor$ Embeddings

A continuous map $f: X \rightarrow Y$ is a (topological) embedding if the submap $\mathrm{ab}(f): X \rightarrow f(X)$ is a homeomorphism.
11. \boldsymbol{W}. The inclusion of a subspace into a space is an embedding.
11. \boldsymbol{X}. Composition of embeddings is an embedding.
11. Y. Give an example of a continuous injection which is not a topological embedding. (Find such an example above and create a new one.)
11.37. Find two topological spaces X and Y such that X can be embedded in Y, Y can be embedded in X, but $X \not \neq Y$.
11.38. Prove that \mathbb{Q} cannot be embedded in \mathbb{Z}.
11.39. 1) Can a discrete space be embedded in an indiscrete space? 2) What about vice versa?
11.40. Prove that the spaces $\mathbb{R}, \mathbb{R}_{T_{1}}$, and the arrow cannot be embedded in each other.
11.41 Corollary of Inverse Function Theorem. Deduce the following statement from the Inverse Function Theorem (see, e.g., any course of advanced calculus):

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable map whose Jacobian $\operatorname{det}\left(\partial f_{i} / \partial x_{j}\right)$ does not vanish at the origin $0 \in \mathbb{R}^{n}$. Then the origin has a neighborhood U such that the restriction $\left.f\right|_{U}: U \rightarrow \mathbb{R}^{n}$ is an embedding and $f(U)$ is open.

It is of interest that if $U \subset \mathbb{R}^{n}$ is an open set, then any continuous injection $f: U \rightarrow \mathbb{R}^{n}$ is an embedding and $f(U)$ is also open in \mathbb{R}^{n}. (Certainly, this also implies that \mathbb{R}^{m} and \mathbb{R}^{n} with $m \neq n$ are not homeomorphic.)

「11'10」 Equivalence of Embeddings

Two embeddings $f_{1}, f_{2}: X \rightarrow Y$ are equivalent if there exist homeomorphisms $h_{X}: X \rightarrow X$ and $h_{Y}: Y \rightarrow Y$ such that $f_{2} \circ h_{X}=h_{Y} \circ f_{1}$. (The latter equality may be stated as follows: the diagram

is commutative.)
An embedding $S^{1} \rightarrow \mathbb{R}^{3}$ is called a knot.
11.42. Prove that any two knots $f_{1}, f_{2}: S^{1} \rightarrow \mathbb{R}^{3}$ with $f_{1}\left(S^{1}\right)=f_{2}\left(S^{1}\right)$ are equivalent.
11.43. Prove that two knots with images
 are equivalent.

Information: There are nonequivalent knots. For instance, those with images

and

Proofs and Comments

9. \boldsymbol{A} If $x \in f^{-1}(B)$, then $f(x) \in B$.
9.B \Leftrightarrow Obvious. \Leftrightarrow For each $y \in B$, there exists an element x such that $f(x)=y$. By the definition of the preimage, $x \in f^{-1}(B)$, whence $y \in f\left(f^{-1}(B)\right)$. Thus, $B \subset f\left(f^{-1}(B)\right)$. The opposite inclusion holds true for any set, see 9.A.
9.C (1) $\Longrightarrow(2)$ Assume that $f(C)=B$ implies $C=f^{-1}(B)$. If there exist distinct $a_{1}, a_{2} \in f^{-1}(B)$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$, then also $f\left(f^{-1}(B) \backslash a_{2}\right)=B$, which contradicts the assumption.
$(2) \Longrightarrow(1)$ Assume now that there exists $C \neq f^{-1}(B)$ such that $f(C)=$ B. Clearly, $C \subset f^{-1}(B)$. Therefore, C can differ from $f^{-1}(B)$ only if $f^{-1}(B) \backslash C \neq \varnothing$. Take $a_{1} \in f^{-1}(B) \backslash C$, and let $b=f\left(a_{1}\right)$. Since $f(C)=B$, there exists $a_{2} \in C$ with $f\left(a_{2}\right)=f\left(a_{1}\right)$, but $a_{2} \neq a_{1}$ because $a_{2} \in C$, while $a_{1} \notin C$.
9.D This follows from 9.C.
9.E Let $x \in A$. Then $f(x)=y \in f(A)$, whence $x \in f^{-1}(f(A))$.
9.F Both equalities are obviously equivalent to the following statement: $f(x) \notin f(A)$ for each $x \notin A$.
10. $G \operatorname{in}^{-1}(B)=\{x \in A \mid x \in B\}=A \cap B$.
9.H Let $x \in X$. Then
$h \circ(g \circ f)(x)=h(g \circ f)(x))=h(g(f(x)))=(h \circ g)(f(x))=(h \circ g) \circ f(x)$.
9.J Let $x_{1} \neq x_{2}$. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ because f is injective, and $g\left(f\left(x_{1}\right)\right) \neq g\left(f\left(x_{2}\right)\right)$ because g is injective.
9.K If f is not injective, then there exist $x_{1} \neq x_{2}$ with $f\left(x_{1}\right)=f\left(x_{2}\right)$. However, then $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$, which contradicts the injectivity of $g \circ f$.
9.L Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be surjective. Then we have $f(X)=Y$, whence $g(f(X))=g(Y)=Z$.
9.M This follows from the obvious inclusion $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.
11. \mathbf{N}. This follows from 9.J and 9.L.
9.O \Longleftrightarrow Use $9 . K$ and $9 . M . ~ \Leftarrow$ Let $f: X \rightarrow Y$ be a bijection. Then, by surjectivity, for each $y \in Y$ there exists $x \in X$ such that $y=f(x)$, and, by injectivity, such an element of X is unique. Putting $g(y)=x$, we obtain a map $g: Y \rightarrow X$. It is easy to check (please, do it!) that g is inverse to f.
9.P This is actually obvious. On the other hand. it is interesting to look at a "mechanical" proof. Let two maps $g, h: Y \rightarrow X$ be inverse to a $\operatorname{map} f: X \rightarrow Y$. Consider the composition $g \circ f \circ h: Y \rightarrow X$. On the one hand, we have $g \circ f \circ h=(g \circ f) \circ h=\operatorname{id}_{X} \circ h=h$. On the other hand, we have $g \circ f \circ h=g \circ(f \circ h)=g \circ \mathrm{id}_{Y}=g$.
10.A Let $f: X \rightarrow Y$ be a map. \Leftrightarrow If $f: X \rightarrow Y$ is continuous, then, for each closed set $F \subset Y$, the set $X \backslash f^{-1}(F)=f^{-1}(Y \backslash F)$ is open, and therefore $f^{-1}(F)$ is closed. \Leftarrow Exchange the words open and closed in the above argument.
10.C The preimage of any set under a constant map either is empty or coincides with the whole space.
10.D If a set U is open in X, then its preimage in $^{-1}(U)=U \cap A$ is open in A by the definition of the relative topolow:
10.E If $U \in \Omega_{A}$, then $U=V \cap A$ for sme $V \in \Omega$. If the map in : $\left(A, \Omega^{\prime}\right) \rightarrow(X, \Omega)$ is continuous, then the preinn:, $U=\mathrm{in}^{-1}(V)=V \cap A$ of a set $V \in \Omega$ belongs to Ω^{\prime}. Thus, $\Omega_{A} \subset \Omega^{\prime}$.
10.F Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous maps. We must show that for every $U \subset Z$ that is open in Z its preimage $(g \circ f)^{-1}(U)=$ $f^{-1}\left(g^{-1}(U)\right)$ is open in X. The set $g^{-1}(U)$ is open in Y by continuity of g. In turn, its preimage $f^{-1}\left(g^{-1}(U)\right)$ is open in X by the continuity of f.
10.G $\left(\left.f\right|_{A, B}\right)^{-1}(V)=\left(\left.f\right|_{A, B}\right)^{-1}(U \cap B)=A \cap f^{-1}(U)$.
10.H \Leftrightarrow Use 10.G. \Leftrightarrow Use the fact that $f=\mathrm{in}_{f(X)} \circ \mathrm{ab}(f)$.
10.I \Leftrightarrow Let $a \in X$. Then for any neighborhood U of $f(a)$ we can construct the required neighborhood V of a just by putting $V=f^{-1}(U)$: indeed, $f(V)=f\left(f^{-1}(U)\right) \subset U$. \Longleftrightarrow We must check that the preimage of each open set is open. Let $U \subset Y$ be an open set in Y. Take $a \in f^{-1}(U)$. By continuity of f at a, the point a has a neighborhood V such that $f(V) \subset U$. Then, obviously, $V \subset f^{-1}(U)$. This proves that each point of $f^{-1}(U)$ is internal, and hence $f^{-1}(U)$ is open.
10.J When proving each of the implications, use Theorem 4.I, according to which a neighborhood of a point in a metric space contains a ball centered at the point.
10.K The condition "for every point $x \in X$ the inequality $\rho(x, a)<\delta$ implies $\rho(f(x), f(a))<\varepsilon$ " means that $f\left(B_{\delta}(a)\right) \subset B_{\varepsilon}(f(a))$. Now, apply 10.J.
10.L This immediately follows from the inequality of Problem 4.35.
10.M If $f(x)=f(y)$, then $\rho(f(x), f(y))=0$, whence $\rho(x, y)=0$.
10.N Use the obvious fact that the primage of any open ball under isometric embedding is an open ball of the same radius.
10.O The set of solutions of the system is the intersection of the preimages of the point $0 \in \mathbb{R}$. Since the maps are continuous and the point is closed, the preimages of the point are closed, and hence the intersection of the preimages is closed.
10.P The set of solutions of a system of nonstrict inequalities is the intersection of preimages of the closed ray $[0,+\infty)$. Similarly, the set of solutions of a system of strict inequalities is the intersection of preimages of the open ray $(0,+\infty)$.
12. Q Indeed, it makes no sense to require the necessity: the intersection of an open set with any set A is open in A anyway.
10.R Consider the complement $X \backslash F$ of F and apply 10.Q.
10.S Let Γ be an open cover of a space X. Let $U \subset X$ be a set such that $U \cap A$ is open in A for each $A \in \Gamma$. By $5 . E$, an open subset of open subspace is open in the whole space. Therefore, $A \cap U$ is open in X. Then $U=\bigcup_{A \in \Gamma} A \cap U$ is open as a union of open sets.
10.T Argue as in the preceding proof, but, instead of the definition of a fundamental cover, use its reformulation $10 . R$, and instead of Theorem 5.E use Theorem 5.F, according to which a closed set of a closed subspace is closed in the entire space.
13. U Denote the space by X and the cover by Γ. Since Γ is locally finite, each point $a \in X$ has a neighborhood U_{a} meeting only a finite number of elements of Γ. Form the cover $\Sigma=\left\{U_{a} \mid a \in X\right\}$ of X. Let $U \subset X$ be a set such that $U \cap A$ is open for each $A \in \Gamma$. By 10.T, $\left\{A \cap U_{a} \mid A \in \Gamma\right\}$ is a fundamental cover of U_{a} for each $a \in X$. Hence, $U_{a} \cap U$ is open in U_{a}. By $10 . S, \Sigma$ is fundamental. Hence, U is open.
14. V Let U be a set open in Y. Since the restrictions of f to elements of Γ are continuous, the preimage $\left(\left.f\right|_{A}\right)^{-1}(U)$ of U under the restriction of f to any $A \in \Gamma$ is open. Obviously, we have $\left(\left.f\right|_{A}\right)^{-1}(U)=f^{-1}(U) \cap A$. Hence, $f^{-1}(U) \cap A$ is open in A for each $A \in \Gamma$. By assumption, Γ is fundamental. Therefore, $f^{-1}(U)$ is open in X. We have thus proved that the preimage of any open set under f is open. Hence, f is continuous.
15. Wx It suffices to prove that the preimage of any base open set is open. The proof is quite straight-forward. For instance, the preimage of $\{x \mid a \prec x \prec b\}$ is $\{x \mid c \prec x \prec d\}$, where $f(c)=a$ and $f(d)=b$, which is a base open set.
16. $\mathbf{X x}$ Let X and Y be two posets, $f: X \rightarrow Y$ a map. \Longrightarrow Assume that $f: X \rightarrow Y$ is monotone. To prove the continuity of f it suffices to prove that the preimage of each base open set is open. Put $U=C_{Y}^{+}(b)$ and $V=f^{-1}(U)$. If $x \in V$ (i.e., $b \prec f(x)$), then for any $y \in C_{X}^{+}(x)$ (i.e., $x \prec y$) we have $y \in V$. Therefore, $V=\bigcup_{f(x) \in U} C_{X}^{+}(x)$. This set is open as a union
of open base sets (in the poset topology of X).
\Leftrightarrow Let $a, b \in X$ and $a \prec b$. Then b is contained in any neighborhood of a. The set $C_{Y}^{+}(f(a))$ is a neighborhood of $f(a)$ in Y. Since f is continuous, a has a neighborhood in X whose f-image is contained in $C_{Y}^{+}(f(a))$. However, then the minimal neighborhood of a in X (i.e., $\left.C_{X}^{+}(a)\right)$ also has this property. Therefore, $f(b) \in f\left(C_{X}^{+}(a)\right) \subset C_{Y}^{+}(f(a))$, and hence $f(a) \prec f(b)$.
17. \boldsymbol{A} For example, consider the identity map of a discrete topological space X onto the same set but equipped with indiscrete topology. For another example, see 11.B.
11.B Consider the map $x \mapsto(\cos 2 \pi x, \sin 2 \pi x)$.
18. C This and the next two statements directly follow from the definition of a homeomorphism.
11.F See the solution to 11.1.
19. G Denote $f(U) \subset Y$ by V. Since f is a bijection, we have $U=$ $f^{-1}(V)$. We also denote $f^{-1}: Y \rightarrow X$ by $g . ~ \Leftrightarrow \quad$ We have $V=g^{-1}(U)$, which is open by continuity of g. \Leftarrow If $V=f(U)$ is open, then $U=g(V)$ is open as the preimage of an open set under a continuous map.
11.H See 11.G.
11.I (1) A homeomorphism establishes a one-to-one correspondence between open sets of X and Y. Hence, it also establishes a one-to-one correspondence between closed sets of X and Y.
(2)-(6) Use the fact that the definitions of the closure, interior, boundary, etc. can be given in terms of open and closed sets.
11.J Obviously, $\mathrm{ab}(f)$ is a bijection. The continuity of $\mathrm{ab}(f)$ and $(\mathrm{ab}(f))^{-1}$ follows from the general theorem $10 . G$ on the continuity of a submap of a continuous map.
11.K Any isometry is continuous, see $10 . N$; the map inverse to an isometry is an isometry.
11.L Recall that an affine transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by the formula $y=f(x)=A x+b$, where A is a matrix and b a vector; f is nondegenerate if A is invertible, whence $x=A^{-1}(y-b)=A^{-1}(y)-A^{-1}(b)$, which means that f is a bijection and f^{-1} is also a nondegenerate affine transformation. Finally, f and f^{-1} are continuous, e.g., because they are given in coordinates by linear formulas (see 10.18 and 10.21).
11.M Prove that f is invertible and f^{-1} is also strictly monotone. Then apply $10 . W x$.
11.O Homeomorphisms of the form $\langle 0,1\rangle \rightarrow\langle a, b\rangle$ are defined, for example, by the formula $x \mapsto a+(b-a) x$, and homeomorphisms $(-1 ; 1) \rightarrow$ \mathbb{R}^{1} and $\langle 0,1) \rightarrow\langle 0,+\infty)$ by the formula $x \mapsto \tan (\pi x / 2)$. (In the latter case,
you can easily find, e.g., a rational formula, but it is of interest that the above homeomorphism also arises quite often!)
11.P Observe that $(1 / 4,5 / 4) \rightarrow S^{1} \backslash N: t \mapsto(\cos 2 \pi t, \sin 2 \pi t)$ is a homeomorphism and use assertions (3) and (4) of the preceding problem. Here is another, more sophisticated construction, which can be of use in higher dimensions. The restriction f of the central projection $\mathbb{R}^{2} \backslash N \rightarrow \mathbb{R}^{1}$ (the x axis) to $S^{1} \backslash N$ is a homeomorphism. Indeed, f is obviously invertible: f^{-1} is a restriction of the central projection $\mathbb{R}^{2} \backslash N \rightarrow S^{1} \backslash N$. The map $S^{1} \backslash N \rightarrow \mathbb{R}$ is presented by the formula $(x, y) \mapsto x /(1-y)$, and the inverse map is given by the formula $x \mapsto\left(2 x /\left(x^{2}+1\right),\left(x^{2}-1\right) /\left(x^{2}+1\right)\right)$. (Why are these maps continuous?)
11.Q Check that the vertical projection of the graph to the x axis determines a homeomorphism.
11.R As usual, we identify \mathbb{R}^{n} and $\left\{x \in \mathbb{R}^{n+1} \mid x_{n+1}=0\right\}$. Then the restriction of the central projection

$$
\mathbb{R}^{n+1} \backslash(0, \ldots, 0,1) \rightarrow \mathbb{R}^{n}
$$

to $S^{n} \backslash(0, \ldots, 0,1)$ is a homeomorphism, which is called the stereographic projection. For $n=2$, it is used in cartography. It is invertible: the inverse map is the restriction to \mathbb{R}^{n} of the central projection $\mathbb{R}^{n+1} \backslash(0, \ldots, 0,1) \rightarrow$ $S^{n} \backslash(0, \ldots, 0,1)$. The first map is defined by the formula

$$
x=\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(\frac{x_{2}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}\right),
$$

and the second one by

$$
x=\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\frac{2 x_{1}}{|x|^{2}+1}, \ldots, \frac{2 x_{n}}{|x|^{2}+1}, \frac{|x|^{2}-1}{|x|^{2}+1}\right) .
$$

Check this. (Why are these maps continuous?) Explain how we can obtain a solution to this problem geometrically from the second solution to Problem 11.P.
11.S After reading the proof, you may see that sometimes formulas are cumbersome, while a clearer verbal description is possible.
(1) Instead of I^{2} it is convenient to consider the homeomorphic square $K=$ $\{(x, y) \quad||x| \leq 1,|y| \leq 1\}$ of double size centered at the origin. (There is a linear homeomorphism $I^{2} \rightarrow K:(x, y) \mapsto(2 x-1,2 y-1)$.) We have a homeomorphism

$$
K \rightarrow D^{2}:(x, y) \mapsto\left(\frac{x \max \{|x|,|y|\}}{\sqrt{x^{2}+y^{2}}}, \frac{y \max \{|x|,|y|\}}{\sqrt{x^{2}+y^{2}}}\right)
$$

Geometrically, this means that each segment joining the origin with a point on the contour of the square is linearly mapped to the part of the segment
that lies within the circle.
(2), (3) Take suitable submaps of the above homeomorphism $K \rightarrow D^{2}$. Certainly, assertion (2) follows from the previous problem. It is also of interest that in case (3) we can use a much simpler formula:

$$
\partial K \rightarrow S^{1}:(x, y) \mapsto\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

(This is simply a central projection!) We can also divide the circle into four arcs and map each of them to a side of K, cf. below.
$11 . T$ (1) For simplicity, assume that $D^{2} \subset \Delta$. For $x \in \mathbb{R}^{2} \backslash 0$, let $a(x)$ be the (unique) positive number such that $a(x) \frac{x}{|x|} \in \operatorname{Fr} \Delta$. Then we have a homeomorphism

$$
\Delta \rightarrow D^{2}: x \mapsto \frac{x}{a(x)} \text { if } x \neq 0, \text { while } 0 \mapsto 0
$$

(Observe that in the case when Δ is the square K, we obtain the homeomorphism described in the preceding problem.)
(2), (3) Take suitable submaps of the above homeomorphism $\Delta \rightarrow D^{2}$.
11.U There is no bijection between them.
11. V These spaces have different numbers of open sets.
11. W Indeed, if in : $A \rightarrow X$ is an inclusion, then the submap ab(in): $A \rightarrow A$ is the identity homeomorphism.
11. X Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two embeddings. Then the submap ab($g \circ f): X \rightarrow g(f(X))$ is the composition of the homeomorphisms $\mathrm{ab}(f): X \rightarrow f(X)$ and $\mathrm{ab}(g): f(X) \rightarrow g(f(X))$.
11. \boldsymbol{Y} The previous examples are $[0,1) \rightarrow S^{1}$ and $\mathbb{Z}_{+} \rightarrow\{0\} \cup\{1 / n\}_{n=1}^{\infty}$. Here is another one: Let $f: \mathbb{Z} \rightarrow \mathbb{Q}$ be a bijection and let $\mathrm{in}_{\mathbb{Q}}: \mathbb{Q} \rightarrow \mathbb{R}$ be the inclusion. Then the composition $\mathrm{in}_{\mathbb{Q}} \circ f: \mathbb{Z} \rightarrow \mathbb{R}$ is a continuous injection, but not an embedding.

Topological Properties

12. Connectedness

$\left\lceil 12^{\prime} 1 〕\right.$ Definitions of Connectedness and First Examples

A topological space X is connected if X has only two subsets that are both open and closed: the empty set \varnothing and the entire X. Otherwise, X is disconnected.

A partition of a set is a cover of this set with pairwise disjoint subsets. To partition a set means to construct such a cover.
12.A. A topological space is connected, iff it does not admit a partition into two nonempty open sets, iff it does not admit a partition into two nonempty closed sets.
12.1. 1) Is an indiscrete space connected? The same question for 2) the arrow and 3) $\mathbb{R}_{T_{1}}$.
12.2. Describe explicitly all connected discrete spaces.
12.3. Describe explicitly all disconnected two-element spaces.
12.4. 1) Is the set \mathbb{Q} of rational numbers (with the relative topology induced from \mathbb{R}) connected? 2) The same question for the set $\mathbb{R} \backslash \mathbb{Q}$ of irrational numbers.
12.5. Let Ω_{1} and Ω_{2} be two topologies in a set X, and let Ω_{2} be finer than Ω_{1} (i.e., $\Omega_{1} \subset \Omega_{2}$). 1) If (X, Ω_{1}) is connected, is (X, Ω_{2}) connected? 2) If (X, Ω_{2}) is connected, is (X, Ω_{1}) connected?

$\left\lceil 122^{\prime} 2\right.$ Connected Sets

When we say that a set A is connected, we mean that A lies in some topological space (which should be clear from the context) and, equipped with the relative topology, A is a connected space.
12.6. Characterize disconnected subsets without mentioning the relative topology.
12.7. Is the set $\{0,1\}$ connected 1) in $\mathbb{R}, 2)$ in the arrow, 3$)$ in $\mathbb{R}_{T_{1}}$?
12.8. Describe explicitly all connected subsets 1) of the arrow, 2) of $\mathbb{R}_{T_{1}}$.
12.9. Show that the set $[0,1] \cup(2,3]$ is disconnected in \mathbb{R}.
12.10. Prove that every nonconvex subset of the real line is disconnected. (In other words, each connected subset of the real line is a singleton or an interval.)
12.11. Let A be a subset of a space X. Prove that A is disconnected iff A has two nonempty subsets B and C such that $A=B \cup C, B \cap \mathrm{Cl}_{X} C=\varnothing$, and $C \cap \mathrm{Cl}_{X} B=\varnothing$.
12.12. Find a space X and a disconnected subset $A \subset X$ such that if U and V are any two open sets partitioning X, then we have either $U \supset A$, or $V \supset A$.
12.13. Prove that for every disconnected set A in \mathbb{R}^{n} there are disjoint open sets $U, V \subset \mathbb{R}^{n}$ such that $A \subset U \cup V, U \cap A \neq \varnothing$, and $V \cap A \neq \varnothing$.

Compare 12.11-12.13 with 12.6.

$\left\lceil 12^{\prime} 3\right\rfloor$ Properties of Connected Sets

12.14. Let X be a space. If a set $M \subset X$ is connected and $A \subset X$ is open-closed, then either $M \subset A$, or $M \subset X \backslash A$.
12.B. The closure of a connected set is connected.
12.15. Prove that if a set A is connected and $A \subset B \subset \mathrm{Cl} A$, then B is connected.
12.C. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of connected subsets of a space X. Assume that any two sets in this family have nonempty intersection. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is connected. (In other words: the union of pairwise intersecting connected sets is connected.)
12.D Special case. If $A, B \subset X$ are two connected sets with $A \cap B \neq \varnothing$, then $A \cup B$ is also connected.
12.E. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of connected subsets of a space X. Assume that each set in this family meets $A_{\lambda_{0}}$ for some $\lambda_{0} \in \Lambda$. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is connected.
12.F. Let $\left\{A_{k}\right\}_{k \in \mathbb{Z}}$ be a family of connected sets such that $A_{k} \cap A_{k+1} \neq \varnothing$ for each $k \in \mathbb{Z}$. Prove that $\bigcup_{k \in \mathbb{Z}} A_{k}$ is connected.
12.16. Let A and B be two connected sets such that $A \cap \mathrm{Cl} B \neq \varnothing$. Prove that $A \cup B$ is also connected.
12.17. Let A be a connected subset of a connected space X, and let $B \subset X \backslash A$ be an open-closed set in the relative topology of $X \backslash A$. Prove that $A \cup B$ is connected.
12.18. Does the connectedness of $A \cup B$ and $A \cap B$ imply that of A and B ?
12.19. Let A and B be two sets such that both their union and intersection are connected. Prove that A and B are connected if both of them are 1) open or 2) closed.

12.20. Let $A_{1} \supset A_{2} \supset \ldots$ be an infinite decreasing sequence of closed connected sets in the plane \mathbb{R}^{2}. Is $\bigcap_{k=1}^{\infty} A_{k}$ a connected set?

$\left\lceil 122^{\prime} 4\right.$ Connected Components

A connected component of a space X is a maximal connected subset of X, i.e., a connected subset that is not contained in any other (strictly) larger connected subset of X.
12.G. Every point belongs to some connected component. Furthermore, this component is unique. It is the union of all connected sets containing this point.
12.H. Two connected components either are disjoint or coincide.

A connected component of a space X is also called just a component of X. Theorems $12 . G$ and $12 . H$ mean that connected components constitute a partition of the whole space. The next theorem describes the corresponding equivalence relation.
12.I. Prove that two points lie in the same component iff they belong to the same connected set.
12.J Corollary. A space is connected iff any two of its points belong to the same connected set.
12.K. Connected components are closed.
12.21. If each point of a space X has a connected neighborhood, then each connected component of X is open.
12.22. Let x and y belong to the same component. Prove that any open-closed set contains either both x and y, or none of them (cf. 12.37).

「12'5」 Totally Disconnected Spaces

A topological space is totally disconnected if all of its components are singletons.
12.L Obvious Example. Any discrete space is totally disconnected.
12.M. The space \mathbb{Q} (with the topology induced from \mathbb{R}) is totally disconnected.

Note that \mathbb{Q} is not discrete.
12.23. Give an example of an uncountable closed totally disconnected subset of the line.
12.24. Prove that Cantor set (see $2 . J x$) is totally disconnected.

$\left\lceil 12^{\prime} 6\right\rfloor$ Boundary and Connectedness

12.25. Prove that if A is a proper nonempty subset of a connected space, then $\operatorname{Fr} A \neq \varnothing$.
12.26. Let F be a connected subset of a space X. Prove that if $A \subset X$ and neither $F \cap A$, nor $F \cap(X \backslash A)$ is empty, then $F \cap \operatorname{Fr} A \neq \varnothing$.
12.27. Let A be a subset of a connected space. Prove that if $\operatorname{Fr} A$ is connected, then so is $\mathrm{Cl} A$.
12.28. Let X be a connected topological space, $U, V \subset X$ two non-disjoint open subsets none of which contains the other one. Prove that if their boundaries $\operatorname{Fr} U$ and $\operatorname{Fr} V$ are connected, then $\operatorname{Fr} U \cap \operatorname{Fr} V \neq \emptyset$

$\left\lceil 12^{\prime} 7\right\rfloor$ Connectedness and Continuous Maps

A continuous image of a space is its image under a continuous map.
12.N. A continuous image of a connected space is connected. (In other words, if $f: X \rightarrow Y$ is a continuous map and X is connected, then $f(X)$ is also connected.)
12.O Corollary. Connectedness is a topological property.
12.P Corollary. The number of connected components is a topological invariant.
12.Q. A space X is disconnected iff there is a continuous surjection $X \rightarrow$ S^{0}.
12.29. Theorem $12 . Q$ often yields short proofs of various results concerning connected sets. Apply it for proving, e.g., Theorems 12.B-12.F and Problems 12.D and 12.16 .
12.30. Let X be a connected space, $f: X \rightarrow \mathbb{R}$ a continuous function. Then $f(X)$ is an interval of \mathbb{R}.
12.31. Suppose a space X has a group structure and the multiplication by any element of the group (both from the left and from the right) is a continuous map $X \rightarrow X$. Prove that the component of unity is a normal subgroup.

$\lceil 12$ '8」 Connectedness on Line

12.R. The segment $I=[0,1]$ is connected.

There are several ways to prove Theorem 12.R. One of them is suggested by $12 . Q$, but refers to the famous Intermediate Value Theorem from Calculus, see 13.A. However, when studying topology, it would be more natural to find an independent proof and deduce the Intermediate Value Theorem from Theorems $12 . R$ and 12.Q. Two problems below provide a sketch of basically the same proof of 12.R. Cf. 2.Ix above.
12.R. 1 Bisection Method. Let U and V be two subsets of I such that $V=$ $I \backslash U$. Let $a \in U, b \in V$, and $a<b$. Prove that there exists a nondecreasing sequence a_{n} with $a_{1}=a, a_{n} \in U$, and a nonincreasing sequence b_{n} with $b_{1}=b$, $b_{n} \in V$, such that $b_{n}-a_{n}=(b-a) / 2^{n-1}$.
12.R.2. Under assumptions of $12 . R .1$, if U and V are closed in I, then which of them contains $c=\sup \left\{a_{n}\right\}=\inf \left\{b_{n}\right\}$?
12.32. Deduce $12 . R$ from the result of Problem 2.Ix.
12.S. Prove that every open set in \mathbb{R} has countably many connected components.
12.T. Prove that \mathbb{R}^{1} is connected.
12.U. Each convex set in \mathbb{R}^{n} is connected. (In particular, so are \mathbb{R}^{n} itself, the ball B^{n}, and the disk D^{n}.)
12.V Corollary. Intervals in \mathbb{R}^{1} are connected.
12. W. Every star-shaped set in \mathbb{R}^{n} is connected.
12.X Connectedness on Line. A subset of a line is connected iff it is an interval.
12.Y. Describe explicitly all nonempty connected subsets of the real line.
12.Z. Prove that the n-sphere S^{n} is connected. In particular, the circle S^{1} is connected.
12.33. Consider the union of the spiral

$$
r=\exp \left(\frac{1}{1+\varphi^{2}}\right), \text { with } \varphi \geq 0
$$

(r, φ are the polar coordinates) and the circle $S^{1} .1$) Is this set connected? 2) Will the answer change if we replace the entire circle by one of its subsets? (Cf. 12.15.)
12.34. Are the following subsets of the plane \mathbb{R}^{2} connected:
(1) the set of points with both coordinates rational;
(2) the set of points with at least one rational coordinate;
(3) the set of points whose coordinates are either both irrational, or both rational?
12.35. Prove that for any $\varepsilon>0$ the ε-neighborhood of a connected subset of the Euclidean space is connected.
12.36. Prove that each neighborhood U of a connected subset A of the Euclidean space contains a connected neighborhood of A.
12.37. Find a space X and two points belonging to distinct components of X such that each subset $A \subset X$ that is simultaneously open and closed contains either both points, or neither of them. (Cf. 12.22.)

13. Application of Connectedness

「13'1」 Intermediate Value Theorem and Its Generalizations

The following theorem is usually included in Calculus. You can easily deduce it from the material of this section. In fact, in a sense it is equivalent to connectedness of the segment.

13.A Intermediate Value Theorem. A continuous function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

takes every value between $f(a)$ and $f(b)$.
Many problems that can be solved by using the Intermediate Value Theorem can be found in Calculus textbooks. Here are few of them.
13.1. Prove that any polynomial of odd degree in one variable with real coefficients has at least one real root.
13.B Generalization of 13.A. Let X be a connected space, $f: X \rightarrow \mathbb{R}$ a continuous function. Then $f(X)$ is an interval of \mathbb{R}.
13.C Corollary. Let $J \subset \mathbb{R}$ be an interval of the real line, $f: J \rightarrow \mathbb{R}$ a continuous function. Then $f(J)$ is also an interval of \mathbb{R}. (In other words, continuous functions map intervals to intervals.)

$\left\lceil 13^{\prime} 2\right\rfloor$ Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected components is a topological invariant (see Section 11).
13.D. $[0,2]$ and $[0,1] \cup[2,3]$ are not homeomorphic.

Simple constructions assigning homeomorphic spaces to homeomorphic ones (e.g., deleting one or several points), allow us to use connectedness for proving that some connected spaces are not homeomorphic.
13.E. $I,[0, \infty), \mathbb{R}^{1}$, and S^{1} are pairwise nonhomeomorphic.
13.2. Prove that a circle is not homeomorphic to a subspace of \mathbb{R}^{1}.
13.3. Give a topological classification of the letters of the alphabet: A, B, C, D, \ldots. regarded as subsets of the plane (the arcs comprising the letters are assumed to have zero thickness).
13.4. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto square, which are called Peano curves, see Section 10.
13.F. \mathbb{R}^{1} and \mathbb{R}^{n} are not homeomorphic if $n>1$.

Information. \mathbb{R}^{p} and \mathbb{R}^{q} are not homeomorphic unless $p=q$. This follows, for instance, from the Lebesgue-Brouwer Theorem on the invariance of dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension Theory, Princeton, NJ, 1941).
13.5. The statement " \mathbb{R}^{p} is not homeomorphic to \mathbb{R}^{q} unless $p=q$ " implies that S^{p} is not homeomorphic to S^{q} unless $p=q$.

$\left\lceil 13^{\prime} 3 x\right\rfloor$ Induction on Connectedness

A map $f: X \rightarrow Y$ is locally constant if each point of X has a neighborhood U such that the restriction of f to U is constant.
13.6x. Prove that any locally constant map is continuous.
13.7x. A locally constant map on a connected set is constant.
13.8x. Riddle. How are 12.26 and $13.7 \times$ related?
13.9x. Let G be a group equipped with a topology such that for each $g \in G$ the $\operatorname{map} G \rightarrow G: x \mapsto x g x^{-1}$ is continuous, and let G with this topology be connected. Prove that if the topology induced on a normal subgroup H of G is discrete, then H is contained in the center of G (i.e., $h g=g h$ for any $h \in H$ and $g \in G$).
13.10x Induction on Connectedness. Let \mathcal{E} be a property of subsets of a topological space X such that the union of sets with nonempty pairwise intersections inherits this property from the sets involved. Prove that if X is connected and each point in X has a neighborhood with property \mathcal{E}, then X also has property \mathcal{E}.
13.11x. Prove 13.7x and solve 13.9x using 13.10x.

For more applications of induction on connectedness, see 14.T, 14.22x, 14.24x, and $14.26 x$.

$\left\lceil 13^{\prime} 4 \mathrm{x}\right.$ 」 Dividing Pancakes

13.12x. Any irregularly shaped pancake can be cut in half by one stroke of the knife made in any prescribed direction. In other words, if A is a bounded open set in the plane and l is a line in the plane, then a certain line L parallel to l divides A in half by area.
13.13x. If, under the assumptions of $13.12 x, A$ is connected, then L is unique.
13.14x. Suppose two irregularly shaped pancakes lie on the same platter; show that it is possible to cut both exactly in half by one stroke of the knife. In other words: if A and B are two bounded regions in the plane, then there exists a line in the plane that bisects the area of each of the regions.
13.15x. Prove that a plane pancake of any shape can be divided into four pieces of equal area by two mutually perpendicular straight cuts. In other words, if A is a bounded connected open set in the plane, then there are two perpendicular lines that divide A into four parts having equal areas.
13.16x. Riddle. What if the knife is curved and makes cuts of a shape different from the straight line? For what shapes of the cuts can you formulate and solve problems similar to $13.12 x-13.15 x$?
13.17x. Riddle. Formulate and solve counterparts of Problems $13.12 x-13.15 x$ for regions in three-space. Can you increase the number of regions in the counterparts of $13.12 x$ and $13.14 x$?
13.18x. Riddle. What about pancakes in \mathbb{R}^{n} ?

14. Path Connectedness

$\left\lceil 14^{\prime} 1\right\rfloor$ Paths

A path in a topological space X is a continuous map of the segment $I=[0,1]$ to X. The point $s(0)$ is the initial point of a path $s: I \rightarrow X$, while $s(1)$ is the final point of s. We say that the path s connects $s(0)$ with $s(1)$. This terminology is inspired by an image of a moving point: at the moment $t \in[0,1]$, the point is at $s(t)$.

To tell the truth, this is more than what is usually called a path, since, besides information on the trajectory of the point, it contains a complete account of the movement: the schedule saying when the point goes through each point.
14.1. If $s: I \rightarrow X$ is a path, then the image $s(I) \subset X$ is connected.
14.2. Let $s: I \rightarrow X$ be a path connecting a point in a set $A \subset X$ with a point in $X \backslash A$. Prove that $s(I) \cap \operatorname{Fr}(A) \neq \varnothing$.

14.3. Let A be a subset of a space X, and let $\operatorname{in}_{A}: A \rightarrow X$ be the inclusion. Prove that $u: I \rightarrow A$ is a path in A iff the composition $\operatorname{in}_{A} \circ u: I \rightarrow X$ is a path in X.

A constant map $s_{a}: I \rightarrow X: x \mapsto a$ is a stationary path. Each path s has an inverse path $s^{-1}: t \mapsto s(1-t)$. Although, strictly speaking, this notation is already used (for the inverse map), the ambiguity of notation usually leads to no confusion: as a rule, inverse maps do not appear in contexts involving paths.

Let $u: I \rightarrow X$ and $v: I \rightarrow X$ be two paths such that $u(1)=v(0)$. We define

$$
u v: I \rightarrow X: t \mapsto \begin{cases}u(2 t) & \text { if } t \in[0,1 / 2], \\ v(2 t-1) & \text { if } t \in[1 / 2,1] .\end{cases}
$$

14.A. Prove that the above map $u v: I \rightarrow X$ is continuous (i.e., it is a path). Cf. 10.T and 10.V.

The path $u v$ is the product of u and v. Recall that $u v$ is defined only if the final point $u(1)$ of u is the initial point $v(0)$ of v.

$\left\lceil 14^{\prime} 2\right\rfloor$ Path-Connected Spaces

A topological space X is path-connected (or arcwise connected) if any two points are connected in X by a path.
14.B. Prove that the segment I is path-connected.
14.C. Prove that the Euclidean space of any dimension is path-connected.
14.D. Prove that the n-sphere S^{n} with $n>0$ is path-connected.
14.E. Prove that the 0 -sphere S^{0} is not path-connected.
14.4. Which of the following spaces are path-connected:
(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) $\mathbb{R}_{T_{1}}$;
(5) $\quad \mathfrak{V}$?

$\left\lceil 14^{\prime} 3\right\rfloor$ Path-Connected Sets

A path-connected set (or arcwise connected set) is a subset of a topological space (which should be clear from the context) that is path-connected as a subspace (the space with the relative topology).
14.5. Prove that a subset A of a space X is path-connected iff any two points in A are connected by a path $s: I \rightarrow X$ with $s(I) \subset A$.
14.6. Prove that each convex subset of Euclidean space is path-connected.

14.7. Every star-shaped set in \mathbb{R}^{n} is path-connected.
14.8. The image of a path is a path-connected set.
14.9. Prove that the set of plane convex polygons with topology generated by the Hausdorff metric is path-connected. (What can you say about the set of convex n-gons with fixed n ?)
14.10. Riddle. What can you say about the assertion of Problem 14.9 in the case of arbitrary (not necessarily convex) polygons?

$\left\lceil 14^{\prime} 4\right\rfloor$ Properties of Path-Connected Sets

Path connectedness is very similar to connectedness. Further, in some important situations it is even equivalent to connectedness. However, some properties of connectedness do not carry over to the case of path connectedness (see 14.Q and $14 . R$). For the properties that do carry over, proofs are usually easier in the case of path connectedness.
14.F. The union of a family of pairwise intersecting path-connected sets is path-connected.
14.11. Prove that if two sets A and B are both closed or both open and their union and intersection are path-connected, then A and B are also path-connected.
14.12. 1) Prove that the interior and boundary of a path-connected set may be not path-connected. 2) Connectedness shares this property.
14.13. Let A be a subset of the Euclidean space. Prove that if $\operatorname{Fr} A$ is pathconnected, then so is $\mathrm{Cl} A$.
14.14. Prove that the same holds true for a subset of an arbitrary path-connected space.

$\left\lceil 14^{\prime} 5\right\rfloor$ Path-Connected Components

A path-connected component or arcwise connected component of a space X is a path-connected subset of X that is not contained in any other pathconnected subset of X.
14.G. Every point belongs to a path-connected component.
14.H. Two path-connected components either coincide or are disjoint.

Theorems $14 . G$ and 14.H mean that path-connected components constitute a partition of the entire space. The next theorem describes the corresponding equivalence relation.
14.I. Prove that two points belong to the same path-connected component iff they are connected by a path (cf. 12.I).

Unlike the case of connectedness, path-connected components are not necessarily closed. (See 14.Q, cf. 14.P and 14.R.)

$\left\lceil 14^{\prime} 6\right\rfloor$ Path Connectedness and Continuous Maps

14.J. A continuous image of a path-connected space is path-connected.

14.K Corollary. Path connectedness is a topological property.
14.L Corollary. The number of path-connected components is a topological invariant.

$\left\lceil 14^{\prime} 7\right\rfloor$ Path Connectedness Versus Connectedness

14.M. Any path-connected space is connected.

Put

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\sin (1 / x)\right\}, \quad X=A \cup(0,0) .
$$

14.15. Sketch A.
14. N. Prove that A is path-connected and X is connected.
14.O. Prove that deleting any point from A makes A and X disconnected (and, hence, not path-connected).
14.P. X is not path-connected.
14. Q. Find an example of a path-connected set whose closure is not pathconnected.
14.R. Find an example of a path-connected component that is not closed.
14.S. If each point of a space X has a path-connected neighborhood, then each path-connected component of X is open. (Cf. 12.21.)
14.T. Assume that each point of a space X has a path-connected neighborhood. Then X is path-connected iff X is connected.
14. U. For open subsets of the Euclidean space, connectedness is equivalent to path connectedness.
14.16. For subsets of the real line, path connectedness and connectedness are equivalent.
14.17. Prove that for each $\varepsilon>0$ the ε-neighborhood of a connected subset of the Euclidean space is path-connected.
14.18. Prove that each neighborhood U of a connected subset A of the Euclidean space contains a path-connected neighborhood of A.

$\left\lceil 14^{\prime} 8 \mathrm{x}\right\rfloor$ Polyline-Connectedness

A subset A of Euclidean space is polyline-connected if any two points of A are joined by a finite broken line (a polyline) contained in A.
14.19 x . Each polyline-connected set in \mathbb{R}^{n} is path-connected, and thus also connected.
14.20x. Each convex set in \mathbb{R}^{n} is polyline-connected.
14.21 x . Each star-shaped set in \mathbb{R}^{n} is polyline-connected.
14.22x. Prove that for open subsets of the Euclidean space connectedness is equivalent to polyline-connectedness.
14.23x. Construct a non-one-point path-connected subset A of Euclidean space such that no two distinct points of A are connected by a polyline in A.
14.24x. Let $X \subset \mathbb{R}^{2}$ be a countable set. Prove that $\mathbb{R}^{2} \backslash X$ is polyline-connected.
14.25x. Let $X \subset \mathbb{R}^{n}$ be the union of countably many affine subspaces with dimensions at most $n-2$. Prove that $\mathbb{R}^{n} \backslash X$ is polyline-connected.
14.26x. Let $X \subset \mathbb{C}^{n}$ be the union of countably many algebraic subsets (i.e., subsets defined by systems of algebraic equations in the standard coordinates of \mathbb{C}^{n}). Prove that $\mathbb{C}^{n} \backslash X$ is polyline-connected.

$\left\lceil 14^{\prime} 9 x\right\rfloor$ Connectedness of Some Sets of Matrices

Recall that real $n \times n$ matrices constitute a space, which differs from $\mathbb{R}^{n^{2}}$ only in the way of enumerating its natural coordinates (they are numbered by pairs of indices). The same holds true for the set of complex $n \times n$ matrices and $\mathbb{C}^{n^{2}}$ (which is homeomorphic to $\mathbb{R}^{2 n^{2}}$).
14.27x. Find connected and path-connected components of the following subspaces of the space of real $n \times n$ matrices:
(1) $G L(n ; \mathbb{R})=\{A \mid \operatorname{det} A \neq 0\}$;
(2) $O(n ; \mathbb{R})=\left\{A \mid A \cdot\left({ }^{t} A\right)=\mathbb{E}\right\}$;
(3) $\operatorname{Symm}(n ; \mathbb{R})=\left\{\left.A\right|^{t} A=A\right\}$;
(4) $\operatorname{Symm}(n ; \mathbb{R}) \cap G L(n ; \mathbb{R})$;
(5) $\left\{A \mid A^{2}=\mathbb{E}\right\}$.
14.28x. Find connected and path-connected components of the following subspaces of the space of complex $n \times n$ matrices:
(1) $G L(n ; \mathbb{C})=\{A \mid \operatorname{det} A \neq 0\}$;
(2) $U(n ; \mathbb{C})=\left\{A \mid A \cdot\left({ }^{t} \bar{A}\right)=\mathbb{E}\right\}$;
(3) $\operatorname{Herm}(n ; \mathbb{C})=\left\{\left.A\right|^{t} A=\bar{A}\right\}$;
(4) $\operatorname{Herm}(n ; \mathbb{C}) \cap G L(n ; \mathbb{C})$.

15. Separation Axioms

Our purpose in this section is to consider natural restrictions on the topological structure making the structure closer to being metrizable. They are called "Separation Axioms". A lot of separation axioms are known. We restrict ourselves to the five most important of them. They are numerated, and denoted by $T_{0}, T_{1}, T_{2}, T_{3}$, and T_{4}, respectively. ${ }^{1}$

$\left\lceil 15^{\prime} 1 〕\right.$ Hausdorff Axiom

We start with the second axiom, which is the most important one. In addition to the designation T_{2}, it has a name: the Hausdorff axiom. A topological space satisfying T_{2} is a Hausdorff space. This axiom is stated as follows: any two distinct points possess disjoint neighborhoods. We can state it more formally: $\forall x, y \in X, x \neq y \exists U_{x}, V_{y}: U_{x} \cap V_{y}=\varnothing$.

15.A. Any metric space is Hausdorff.
15.1. Which of the following spaces are Hausdorff:
(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) $\mathbb{R}_{T_{1}}$;
(5) V ?

If the next problem holds you up even for a minute, we advise you to think over all definitions and solve all simple problems.
15.B. Is the segment $[0,1]$ with the topology induced from \mathbb{R} a Hausdorff space? Do the points 0 and 1 possess disjoint neighborhoods? Which, if any?
15.C. A space X is Hausdorff iff for each $x \in X$ we have $\{x\}=\bigcap_{U \ni x} \mathrm{Cl} U$.

[^14]
$\left\lceil 15^{\prime} 2\right.$ 」 Limits of Sequences

Let $\left\{a_{n}\right\}$ be a sequence of points of a topological space X ．A point $b \in X$ is the limit of the sequence if for any neighborhood U of b there exists a number N such that $a_{n} \in U$ for any $n \geq N .{ }^{2}$ In this case，we say that the sequence converges or tends to b as n tends to infinity．

15．2．Explain the meaning of the statement＂b is not a limit of sequence a_{n}＂by using as few negations（i．e．，the words no，not，none，etc．）as you can．
15．3．The limit of a sequence does not depend on the order of the terms．More precisely，let a_{n} be a convergent sequence：$a_{n} \rightarrow b$ ，and let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection．Then the sequence $a_{\boldsymbol{\phi}(n)}$ is also convergent and has the same limit： $a_{\phi(n)} \rightarrow b$ ．For example，if the terms in the sequence are pairwise distinct，then the convergence and the limit depend only on the set of terms，which shows that these notions actually belong to geometry．

15．D．Any sequence in a Hausdorff space has at most one limit．
15．E．Prove that each point in the space $\mathbb{R}_{T_{1}}$ is a limit of the sequence $a_{n}=n$.

$\left\lceil 15^{\prime} 3\right\rfloor$ Coincidence Set and Fixed Point Set

Let $f, g: X \rightarrow Y$ be two maps．Then the set $C(f, g)=\{x \in X \mid f(x)=g(x)\}$ is the coincidence set of f and g ．
15．4．Prove that the coincidence set of two continuous maps from an arbitrary space to a Hausdorff space is closed．
15．5．Construct an example proving that the Hausdorff condition in 15.4 is es－ sential．

A point $x \in X$ is a fixed point of a map $f: X \rightarrow X$ if $f(x)=x$ ．The set of all fixed points of a map f is the fixed point set of f ．

15．6．Prove that the fixed－point set of a continuous map from a Hausdorff space to itself is closed．

15．7．Construct an example showing that the Hausdorff condition in 15.6 is es－ sential．

15．8．Prove that if $f, g: X \rightarrow Y$ are two continuous maps，Y is Hausdorff，A is everywhere dense in X ，and $\left.f\right|_{A}=\left.g\right|_{A}$ ，then $f=g$ ．
15．9．Riddle．How are Problems $15.4,15.6$ ，and 15.8 related to each other？

「15＇4」 Hereditary Properties

A topological property is hereditary if it carries over from a space to its subspaces，which means that if a space X has this property，then each subspace of X also has it．

[^15]15.10. Which of the following topological properties are hereditary:
(1) finiteness of the set of points;
(2) finiteness of the topological structure;
(3) infiniteness of the set of points;
(4) connectedness;
(5) path connectedness?
15.F. The property of being a Hausdorff space is hereditary.

$\left\lceil 15^{\prime} 5\right\rfloor$ The First Separation Axiom

A topological space X satisfies the first separation axiom T_{1} if each one of any two points of X has a neighborhood that does not contain the other point. ${ }^{3}$ More formally: $\forall x, y \in X, x \neq y \exists U_{y}: x \notin U_{y}$.

15. G. For any topological space X, the following three assertions are equivalent:

- the space X satisfies the first separation axiom,
- all one-point sets in X are closed,
- all finite sets in X are closed.
15.11. Prove that a space X satisfies the first separation axiom iff every point of X is the intersection of all of its neighborhoods.
15.12. Any Hausdorff space satisfies the first separation axiom.
15.H. Any finite set in a Hausdorff space is closed.
15.I. A metric space satisfies the first separation axiom.
15.13. Find an example showing that the first separation axiom does not imply the Hausdorff axiom.
15.J. Show that $\mathbb{R}_{T_{1}}$ satisfies the first separation axiom, but is not a Hausdorff space (cf. 15.13).
15.K. The first separation axiom is hereditary.
15.14. Suppose that for any two distinct points a and b of a space X there exists a continuous map f from X to a space with the first separation axiom such that $f(a) \neq f(b)$. Prove that X also satisfies the first separation axiom.
15.15. Prove that a continuous map of an indiscrete space to a space satisfying axiom T_{1} is constant.

[^16]15.16. Prove that every set has the coarsest topological structure satisfying the first separation axiom. Describe this structure.

$\left\lceil 15^{\prime} 6\right\rfloor$ The Kolmogorov Axiom

The first separation axiom emerges as a weakened Hausdorff axiom.
15.L. Riddle. How can the first separation axiom be weakened?

A topological space satisfies the Kolmogorov axiom or the zeroth separation axiom T_{0} if at least one of any two distinct points of this space has a neighborhood that does not contain the other point.
15.M. An indiscrete space containing at least two points does not satisfy axiom T_{0}.
15.N. The following properties of a space X are equivalent:
(1) X satisfies the Kolmogorov axiom;
(2) any two different points of X have different closures;
(3) X contains no indiscrete subspace consisting of two points.
(4) X contains no indiscrete subspace consisting of more than one point.
15.O. A topology is a poset topology iff it is a smallest neighborhood topology satisfying the Kolmogorov axiom.

Thus, on the one hand, posets give rise to numerous examples of topological spaces, among which we see the most important spaces, like the line with the standard topology. On the other hand, all posets are obtained from topological spaces of a special kind, which are quite far away from the class of metric spaces.

$\left\lceil 15^{\prime} 7\right\rfloor$ The Third Separation Axiom

A topological space X satisfies the third separation axiom if every closed set in X and every point of its complement have disjoint neighborhoods, i.e., for every closed set $F \subset X$ and every point $b \in X \backslash F$ there exist disjoint open sets $U, V \subset X$ such that $F \subset U$ and $b \in V$.

A space is regular if it satisfies the first and third separation axioms.
15.P. A regular space is a Hausdorff space.
15.Q. A space is regular iff it satisfies the second and third separation axioms.
15.17. Find a Hausdorff space which is not regular.
15.18. Find a space satisfying the third, but not the second separation axiom.
15.19. Prove that a space X satisfies the third separation axiom iff every neighborhood of every point $x \in X$ contains the closure of a neighborhood of x.
15.20. Prove that the third separation axiom is hereditary.
15.R. Any metric space is regular.

$\left\lceil 15^{\prime} 8\right\rfloor$ The Fourth Separation Axiom

A topological space X satisfies the fourth separation axiom if any two disjoint closed sets in X have disjoint neighborhoods, i.e., for any two closed sets $A, B \subset X$ with $A \cap B=\varnothing$ there exist open sets $U, V \subset X$ such that $U \cap V=\varnothing, A \subset U$, and $B \subset V$.

A space is normal if it satisfies the first and fourth separation axioms.
15.S. A normal space is regular (and hence Hausdorff).
15.T. A space is normal iff it satisfies the second and fourth separation axioms.
15.21. Find a space which satisfies the fourth, but not second separation axiom.
15.22. Prove that a space X satisfies the fourth separation axiom iff every neighborhood of every closed set $F \subset X$ contains the closure of some neighborhood of F.
15.23. Prove that each closed subspace of a normal space is normal.
15.24. Let X satisfy the fourth separation axiom, and let $F_{1}, F_{2}, F_{3} \subset X$ be three closed subsets with empty intersection: $F_{1} \cap F_{2} \cap F_{3}=\emptyset$. Prove that they have neighborhoods U_{1}, U_{2}, U_{3} with empty intersection.
15.U. Any metric space is normal.
15.25. Find two closed disjoint subsets A and B of some metric space such that $\inf \{\rho(a, b) \mid a \in A, b \in B\}=0$.
15.26. Let $f: X \rightarrow Y$ be a continuous surjection such that the image of each closed set is closed. Prove that if X is normal, then so is Y.

$\left\lceil 15^{\prime} 9 \mathrm{x}\right\rfloor$ Nemytskii's Space

Denote by \mathcal{H} the open upper half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ equipped with the topology generated by the Euclidean metric. Denote by \mathcal{N} the union of \mathcal{H} and the boundary line $\mathbb{R}^{1}: \mathcal{N}=\mathcal{H} \cup \mathbb{R}^{1}$, but equip it with the topology obtained by adjoining to the Euclidean topology the sets of the form $x \cup D$, where $x \in \mathbb{R}^{1}$ and D is an open disk in \mathcal{H} touching \mathbb{R}^{1} at the point x. This is the Nemytskii space. It can be used to clarify properties of the fourth separation axiom.
15.27x. Prove that the Nemytskii space is Hausdorff.
15.28x. Prove that the Nemytskii space is regular.
15.29x. What topological structure is induced on \mathbb{R}^{1} from \mathcal{N} ?
15.30x. Prove that the Nemytskii space is not normal.
15.31x Corollary. There exists a regular space which is not normal.
15.32x. Embed the Nemytskii space in a normal space in such a way that the complement of the image would be a single point.
15.33x Corollary. Theorem 15.23 does not extend to nonclosed subspaces, i.e., the property of being normal is not hereditary, is it?

$\left\lceil 15^{\prime} 10 x\right\rfloor$ Urysohn Lemma and Tietze Theorem

15.34 x . Let A and B be two disjoint closed subsets of a metric space X. Then there exists a continuous function $f: X \rightarrow I$ such that $f^{-1}(0)=A$ and $f^{-1}(1)=$ B.
15.35x. Let F be a closed subset of a metric space X. Then any continuous function $f: X \rightarrow[-1,1]$ extends over the whole X.
15.35x.1. Let F be a closed subset of a metric space X. For any continuous function $f: F \rightarrow[-1,1]$, there exists a function $g: X \rightarrow[-1 / 3,1 / 3]$ such that $|f(x)-g(x)| \leq 2 / 3$ for each $x \in F$.
15. Vx Urysohn Lemma. Let A and B be two nonempty disjoint closed subsets of a normal space X. Then there exists a continuous function f : $X \rightarrow I$ such that $f(A)=0$ and $f(B)=1$.
15. Vx.1. Let A and B be two disjoint closed subsets of a normal space X. Consider the set $\Lambda=\left\{\left.\frac{k}{2^{n}} \right\rvert\, k, n \in \mathbb{Z}_{+}, k \leq 2^{n}\right\}$. There exists a collection $\left\{U_{p}\right\}_{p \in \Lambda}$ of open subsets of X such that for any $p, q \in \Lambda$ we have: 1) $A \subset U_{0}$ and $B \subset X \backslash U_{1}$, and 2) if $p<q$, then $\mathrm{Cl} U_{p} \subset U_{q}$.
15. Wx Tietze Extension Theorem. Let A be a closed subset of a normal space X. Let $f: A \rightarrow[-1,1]$ be a continuous function. Prove that there exists a continuous function $F: X \rightarrow[-1,1]$ such that $\left.F\right|_{A}=f$.
15. $\boldsymbol{X x}$ Corollary. Let A be a closed subset of a normal space X. Then any continuous function $A \rightarrow \mathbb{R}$ extends to a function on the whole X.
15.36x. Will the statement of the Tietze theorem remain true if we replace the segment $[-1,1]$ in the hypothesis by $\mathbb{R}, \mathbb{R}^{n}, S^{1}$, or S^{2} ?
15.37x. Derive the Urysohn Lemma from the Tietze Extension Theorem.

16. Countability Axioms

In this section, we continue to study topological properties that are additionally imposed on a topological structure in order to make the abstract situation under consideration closer to special situations and hence richer in contents. The restrictions studied in this section bound a topological structure "from above": they require that something be countable.

$\left\lceil 16^{\prime} 1\right\rfloor$ Set-Theoretic Digression: Countability

Recall that two sets have equal cardinality if there exists a bijection of one of them onto the other. A set of the same cardinality as a subset of the set \mathbb{N} of positive integers is countable.
16.1. A set X is countable iff there exists an injection $X \rightarrow \mathbb{N}$ (or, more generally, an injection of X into another countable set).

Sometimes this term is used only for infinite countable sets, i.e., for sets of the cardinality of the whole set \mathbb{N} of positive integers, while sets countable in the above sense are said to be at most countable. This is less convenient. In particular, if we adopted this terminology, this section would be called "At Most Countability Axioms". This would also lead to other more serious inconveniences as well. Our terminology has the following advantageous properties.
16. A. Any subset of a countable set is countable.
16.B. The image of a countable set under any map is countable.
16. C. The following sets are countable:
(1) \mathbb{Z},
(2) $\mathbb{N}^{2}=\{(k, n) \mid k, n \in \mathbb{N}\}$,
(3) \mathbb{Q}.

16.D. The union of a countable family of countable sets is countable.
16.E. \mathbb{R} is not countable.
16.2. Prove that each set Σ of disjoint figure-eight curves in the plane is countable.

$\left\lceil 16^{\prime} 2\right\rfloor$ Second Countability and Separability

In this section, we study three restrictions on the topological structure. Two of them have numbers (one and two), the third one has no number. As in the previous section, we start from the restriction having number two.

A topological space X satisfies the second axiom of countability or is second countable if X has a countable base. A space is separable if it contains a countable dense set. (This is the countability axiom without a number that we mentioned above.)
16.F. The second axiom of countability implies separability.
16. G. The second axiom of countability is hereditary.
16.3. Are the arrow and $\mathbb{R}_{T_{1}}$ second countable?
16.4. Are the arrow and $\mathbb{R}_{T_{1}}$ separable?
16.5. Construct an example proving that separability is not hereditary.
16.H. A metric separable space is second countable.
16.I Corollary. For metrizable spaces, separability is equivalent to the second axiom of countability.
16.J. (Cf. 16.5.) Prove that for metrizable spaces separability is hereditary.
16.K. Prove that Euclidean spaces and all their subspaces are separable and second countable.
16.6. Construct a metric space which is not second countable.
16.7. Prove that each collection of pairwise disjoint open sets in a separable space is countable.
16.8. Prove that the set of components of an open set $A \subset \mathbb{R}^{n}$ is countable.
16.L. A continuous image of a separable space is separable.
16.9. Construct an example proving that a continuous image of a second countable space may be not second countable.
16. M Lindelöf Theorem. Any open cover of a second countable space contains a countable part that also covers the space.
16.10. Prove that each base of a second countable space contains a countable part which is also a base.
16.11 Brouwer Theorem*. Let $\left\{K_{\lambda}\right\}$ be a family of closed sets of a second countable space and assume that for every decreasing sequence $K_{1} \supset K_{2} \supset \ldots$ of sets in this family the intersection $\bigcap_{n=1}^{\infty} K_{n}$ also belongs to the family. Then the family contains a minimal set A, i.e., a set such that no proper subset of A belongs to the family.

$\left\lceil 16^{\prime} 3\right\rfloor$ Bases at a Point

Let X be a space, a a point of X. A neighborhood base at a or just a base of X at a is a collection Σ of neighborhoods of a such that each neighborhood of a contains a neighborhood from Σ.
16. N. If Σ is a base of a space X, then $\{U \in \Sigma \mid a \in U\}$ is a base of X at a.
16.12. In a metric space, the following collections of balls are neighborhood bases at a point a :

- the set of all open balls with center a;
- the set of all open balls with center a and rational radii;
- the set of all open balls with center a and radii r_{n}, where $\left\{r_{n}\right\}$ is any sequence of positive numbers converging to zero.
16.13. What are the minimal bases at a point in the discrete and indiscrete spaces?

$\left\lceil 16^{\prime} 4\right\rfloor$ First Countability

A topological space X satisfies the first axiom of countability or is a first countable space if X has a countable neighborhood base at each point.
16. O. Any metric space is first countable.
16.P. The second axiom of countability implies the first one.
16.Q. Find a first countable space which is not second countable. (Cf. 16.6.)
16.14. Which of the following spaces are first countable:
(1) the arrow;
(2) $\mathbb{R}_{T_{1}}$;
(3) a discrete space;
(4) an indiscrete space?
16.15. Find a first countable separable space which is not second countable.
16.16. Prove that if X is a first countable space, then at each point it has a decreasing countable neighborhood base: $U_{1} \supset U_{2} \supset \ldots$.

$\left\lceil 16^{\prime} 5\right\rfloor$ Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits. Moreover, they like to talk about all topological notions by relying on the notions of sequence and its limit. This tradition has little mathematical justification, except for a long history descending from the XIXth century's studies on the foundations of analysis. In fact, almost always ${ }^{4}$ it is more convenient to avoid sequences, provided that you deal with topological notions, except summation of series, where sequences are involved in the underlying definitions. Paying a tribute to this tradition, here we explain how and in

[^17]what situations topological notions can be described in terms of sequences and their limits.

Let A be a subset of a space X. The set $\mathrm{SCl} A$ of limits of all sequences a_{n} with $a_{n} \in A$ is the sequential closure of A.

16.R. Prove that $\mathrm{SCl} A \subset \mathrm{Cl} A$.

16.S. If a space X is first countable, then the opposite inclusion $\mathrm{Cl} A \subset$ $\mathrm{SCl} A$ also holds true for each $A \subset X$, whence $\mathrm{SCl} A=\mathrm{Cl} A$.

Therefore, in a first countable space (in particular, in any metric space) we can recover (hence, define) the closure of a set provided that we know which sequences are convergent and what their limits are. In turn, the knowledge of closures allows one to determine which sets are closed. As a consequence, knowledge of closed sets allows one to recover open sets and all other topological notions.
16.17. Let X be the set of real numbers equipped with the topology consisting of \varnothing and complements of all countable subsets. (Check that this is actually a topology.) Describe convergent sequences, sequential closure and closure in X. Prove that X contains a set A with $\mathrm{SCl} A \neq \mathrm{Cl} A$.

$\left\lceil 16^{\prime} 6\right\rfloor$ Sequential Continuity

Now we consider the continuity of maps along the same lines. A map $f: X \rightarrow Y$ is sequentially continuous if for each $b \in X$ and each sequence $a_{n} \in X$ converging to b the sequence $f\left(a_{n}\right)$ converges to $f(b)$.
16.T. Any continuous map is sequentially continuous.

16.U. The preimage of a sequentially closed set under a sequentially continuous map is sequentially closed.
16. V. If X is a first countable space, then any sequentially continuous map $f: X \rightarrow Y$ is continuous.

Thus, continuity and sequential continuity are equivalent for maps of a first countable space.
16.18. Construct a discontinuous map which is sequentially continuous. (Cf. Problem 16.17.)

$\left\lceil 16^{\prime} 7 \mathrm{x}\right\rfloor$ Embedding and Metrization Theorems

16. $\boldsymbol{W} \mathbf{x}$. Prove that the space l_{2} is separable and second countable.
17. $\boldsymbol{X} \mathbf{x}$. Prove that a regular second countable space is normal.
18. Yx. Prove that a normal second countable space can be embedded in l_{2}. (Use the Urysohn Lemma 15. Vx.)
16.Zx. Prove that a second countable space is metrizable iff it is regular.

17. Compactness

$\left\lceil 17^{\prime} 1\right.$ Definition of Compactness

This section is devoted to a topological property playing a very special role in topology and its applications. It is a sort of topological counterpart for the property of being finite in the context of set theory. (It seems though that this analogy has never been formalized.)

A topological space X is compact if each open cover of X contains a finite part that also covers X.

If Γ is a cover of X and $\Sigma \subset \Gamma$ is a cover of X, then Σ is a subcover (or subcovering) of Γ. Thus, a space X is compact if every open cover of X contains a finite subcovering.
17. \boldsymbol{A}. Any finite space and indiscrete space are compact.
17.B. Which discrete spaces are compact?
17.1. Let $\Omega_{1} \subset \Omega_{2}$ be two topological structures in X.1) Does the compactness of (X, Ω_{2}) imply that of (X, Ω_{1})? 2) And vice versa?
17.C. The line \mathbb{R} is not compact.
17.D. A space X is not compact iff it has an open cover containing no finite subcovering.
17.2. Is the arrow compact? Is $\mathbb{R}_{T_{1}}$ compact?

「17'2」 Terminology Remarks

Originally the word compactness was used for the following weaker property: any countable open cover contains a finite subcovering.
17.E. For a second countable space, the original definition of compactness is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexandrov (1896-1982) and P. S. Urysohn (1898-1924). They suggested for it the term bicompactness. This notion turned out to be fortunate; it has displaced the original one and even took its name, i.e., "compactness". The term bicompactness is sometimes used (mainly by topologists of Alexandrov's school).

Another deviation from the terminology used here comes from Bourbaki: we do not include the Hausdorff property in the definition of compactness, while Bourbaki does. According to our definition, $\mathbb{R}_{T_{1}}$ is compact, but according to Bourbaki it is not.

$\left\lceil 17^{\prime} 3\right\rfloor$ Compactness in Terms of Closed Sets

A collection of subsets of a set is said to have the finite intersection property if each finite subcollection has a nonempty intersection.
17.F. A collection Σ of subsets of a set X has the finite intersection property iff there exists no finite $\Sigma_{1} \subset \Sigma$ such that the complements of sets in Σ_{1} cover X.
17.G. A space X is compact iff every collection of closed sets in X with the finite intersection property has a nonempty intersection.

$\left\lceil 17^{\prime} 4\right\rfloor$ Compact Sets

A compact set is a subset A of a topological space X (the latter must be clear from the context) provided that A is compact as a space with the relative topology induced from X.
17.H. A subset A of a space X is compact iff each cover of A with sets open in X contains a finite subcovering.
17.3. Is $[1,2) \subset \mathbb{R}$ compact?
17.4. Is the same set $[1,2)$ compact in the arrow?
17.5. Find a necessary and sufficient condition (not formulated in topological terms) for a subset of the arrow to be compact?
17.6. Prove that each subset of $\mathbb{R}_{T_{1}}$ is compact.
17.7. Let A and B be two compact subsets of a space X. 1) Does it follow that $A \cup B$ is compact? 2) Does it follow that $A \cap B$ is compact?
17.8. Prove that the set $A=0 \cup\{1 / n\}_{n=1}^{\infty}$ in \mathbb{R} is compact.

$\left\lceil 17^{\prime} 5\right\rfloor$ Compact Sets Versus Closed Sets

17.I. Is compactness hereditary?
17.J. Any closed subset of a compact space is compact.

Theorem 17.J can be considered a partial heredity of compactness.
In a Hausdorff space a theorem converse to 17.J holds true:
17.K. Any compact subset of a Hausdorff space is closed.

The arguments proving Theorem 17.K prove, in fact, a more detailed statement presented below. This statement is more powerful. It has direct consequences, which do not follow from the theorem.

17.L Lemma to 17.K, but not only Let A be a compact subset of a Hausdorff space X, and let b be a point of X not in A. Then there exist open sets $U, V \subset X$ such that $b \in V, A \subset U$, and $U \cap V=\varnothing$.
17.9. Construct a nonclosed compact subset of some topological space. What is the minimal number of points needed?

$\left\lceil 17^{\prime} 6\right\rfloor$ Compactness and Separation Axioms

17.M. A compact Hausdorff space is regular.
17.N. Prove that a compact Hausdorff space is normal.
17.O Lemma to 17.N. Any two disjoint compact sets in a Hausdorff space possess disjoint neighborhoods.
17.10. Prove that the intersection of any family of compact subsets of a Hausdorff space is compact. (Cf. 17.7.)
17.11. Let X be a Hausdorff space, let $\left\{K_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of its compact subsets, and let U be an open set containing $\bigcap_{\lambda \in \Lambda} K_{\lambda}$. Prove that for some finite $A \subset \Lambda$ we have $U \supset \bigcap_{\lambda \in A} K_{\lambda}$.
17.12. Let $\left\{K_{n}\right\}_{1}^{\infty}$ be a decreasing sequence of nonempty compact connected sets in a Hausdorff space. Prove that the intersection $\bigcap_{n=1}^{\infty} K_{n}$ is nonempty and connected. (Cf. 12.20.)

$\left\lceil 17^{\prime} 7\right\rfloor$ Compactness in Euclidean Space

17.P. The segment I is compact.

Recall that the unit n-dimensional cube (the n-cube) is the set

$$
I^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \in[0,1] \text { for } i=1, \ldots, n\right\}
$$

17. Q. The cube I^{n} is compact.
17.R. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded (see Theorems 15.A, 17.K, and 17.R).
17.S. Construct a closed and bounded, but noncompact set in a metric space.
17.13. Are the metric spaces of Problem 4.A compact?
17.T. A subset of a Euclidean space is compact iff it is closed and bounded.
17.14. Which of the following sets are compact:
(1) $[0,1)$;
(2) ray $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$;
(3) S^{1};
(4) S^{n};
(5) one-sheeted hyperboloid;
(6) ellipsoid;
(7) $[0,1] \cap \mathbb{Q}$?

An $n \times k$ matrix ($a_{i j}$) with real entries can be regarded as a point in $\mathbb{R}^{n k}$. To do this, we only need to enumerate somehow (e.g., lexicographically) the entries of $\left(a_{i j}\right)$ by numbers from 1 to $n k$. This identifies the set $L(n, k)$ of all such matrices with $\mathbb{R}^{n k}$ and endows it with a topological structure. (Cf. Section 14.)
17.15. Which of the following subsets of $L(n, n)$ are compact:
(1) $G L(n)=\{A \in L(n, n) \mid \operatorname{det} A \neq 0\}$;
(2) $S L(n)=\{A \in L(n, n) \mid \operatorname{det} A=1\}$;
(3) $O(n)=\{A \in L(n, n) \mid A$ is an orthogonal matrix $\}$;
(4) $\left\{A \in L(n, n) \mid A^{2}=\mathbb{E}\right\}$, where \mathbb{E} is the unit matrix?

$\left\lceil 17^{\prime} 8\right\rfloor$ Compactness and Continuous Maps

17. U. A continuous image of a compact space is compact. (In other words, if X is a compact space and $f: X \rightarrow Y$ is a continuous map, then the set $f(X)$ is compact.)
18. V. A continuous numerical function on a compact space is bounded and attains its maximal and minimal values. (In other words, if X is a compact space and $f: X \rightarrow \mathbb{R}$ is a continuous function, then there exist $a, b \in X$ such that $f(a) \leq f(x) \leq f(b)$ for every $x \in X$.) Cf. 17.U and 17.T.
17.16. Prove that if $f: I \rightarrow \mathbb{R}$ is a continuous function, then $f(I)$ is a segment.
17.17. Let A be a subset of \mathbb{R}^{n}. Prove that A is compact iff each continuous numerical function on A is bounded.
17.18. Prove that if F and G are disjoint subsets of a metric space, F is closed, and G is compact, then the distance $\rho(G, F)=\inf \{\rho(x, y) \mid x \in F, y \in G\}$ is positive.
17.19. Prove that any open set U containing a compact set A of a metric space X contains an ε-neighborhood of A (i.e., the set $\{x \in X \mid \rho(x, A)<\varepsilon\}$) for some $\varepsilon>0$.
17.20. Let A be a closed connected subset of \mathbb{R}^{n}, and let V be the closed ε neighborhood of A (i.e., $V=\left\{x \in \mathbb{R}^{n} \mid \rho(x, A) \leq \varepsilon\right\}$). Prove that V is pathconnected.
17.21. Prove that if the closure of each open ball in a compact metric space is the closed ball with the same center and radius, then any ball in this space is connected.
17.22. Let X be a compact metric space, and let $f: X \rightarrow X$ be a map such that $\rho(f(x), f(y))<\rho(x, y)$ for any $x, y \in X$ with $x \neq y$. Prove that f has a unique fixed point. (Recall that a fixed point of f is a point x such that $f(x)=x$, see 15.6.)
17.23. Prove that for each open cover of a compact metric space there exists a (sufficiently small) number $r>0$ such that each open ball of radius r is contained in an element of the cover.
19. W Lebesgue Lemma. Let $f: X \rightarrow Y$ be a continuous map from a compact metric space X to a topological space Y, and let Γ be an open cover of Y. Then there exists a number $\delta>0$ such that for any set $A \subset X$ with diameter $\operatorname{diam}(A)<\delta$ the image $f(A)$ is contained in an element of Γ.

$\left\lceil 17^{\prime} 9\right\rfloor$ Compactness and Closed Maps

A continuous map is closed if the image of each closed set under this map is closed.
17.24. A continuous bijection is a homeomorphism iff it is closed.
17. \boldsymbol{X}. A continuous map of a compact space to a Hausdorff space is closed. Here are two important corollaries of this theorem.
17. Y. A continuous bijection of a compact space onto a Hausdorff space is a homeomorphism.
17.Z. A continuous injection of a compact space into a Hausdorff space is a topological embedding.
17.25. Show that none of the assumptions in $17 . Y$ can be omitted without making the statement false.
17.26. Does there exist a noncompact subspace A of the Euclidian space such that each continuous map of A to a Hausdorff space is closed? (Cf. 17.V and 17.X.)
17.27. A restriction of a closed map to a closed subset is also a closed map.
17.28. Assume that $f: X \rightarrow Y$ is a continuous map, $K \subset X$ is a compact set, and Y is Hausdorff. Suppose that the restriction $\left.f\right|_{K}$ is injective and each $a \in K$ has a neighborhood U_{a} such that the restriction $\left.f\right|_{U_{a}}$ is injective. Then K has a neighborhood U such that the restriction $\left.f\right|_{U}$ is injective.

$\left\lceil 17^{\prime} 10 \mathrm{x}\right\rfloor$ Norms in \mathbb{R}^{n}

17.29x. Prove that each norm $\mathbb{R}^{n} \rightarrow \mathbb{R}$ (see Section 4) is a continuous function (with respect to the standard topology of \mathbb{R}^{n}).
17.30x. Prove that any two norms in \mathbb{R}^{n} are equivalent (i.e., determine the same topological structure). See 4.27, cf. 4.31.
17.31 x . Does the same hold true for metrics on \mathbb{R}^{n} ?

$\left\lceil 17^{\prime} 11 \mathrm{x}\right\rfloor$ Induction on Compactness

A function $f: X \rightarrow \mathbb{R}$ is locally bounded if for each point $a \in X$ there exist a neighborhood U and a number $M>0$ such that $|f(x)| \leq M$ for $x \in U$ (i.e., each point has a neighborhood U such that the restriction of f to U is bounded).
17.32x. Prove that if a space X is compact and a function $f: X \rightarrow \mathbb{R}$ is locally bounded, then f is bounded.

This statement is a simple application of a general principle formulated below in 17.33x. This principle can be called induction on compactness (cf. induction on connectedness, which was discussed in Section 12).

Let X be a topological space, \mathcal{C} a property of subsets of X. We say that \mathcal{C} is additive if the union of each finite family of sets having the property \mathcal{C} also has this property. The space X possesses the property \mathcal{C} locally if each point of X has a neighborhood with property \mathcal{C}.
17.33x. Prove that a compact space which locally possesses an additive property has this property itself.
17.34x. Using induction on compactness, deduce the statements of Problems 17.R, 18.M, and 18.N.

18. Sequential Compactness

$\left\lceil 18^{\prime} 1\right\rfloor$ Sequential Compactness Versus Compactness

A topological space is sequentially compact if every sequence of its points contains a convergent subsequence.
18. \boldsymbol{A}. If a first countable space is compact, then it is sequentially compact.

A point b is an accumulation point of a set A if each neighborhood of b contains infinitely many points of A.
18.A.1. Prove that a point b in a space satisfying the first separation axiom is an accumulation point iff b is a limit point.
18.A.2. Any infinite set in a compact space has an accumulation point.
18.A.3. A space in which each infinite set has an accumulation point is sequentially compact.
18.B. A sequentially compact second countable space is compact.
18.B.1. A decreasing sequence of nonempty closed sets in a sequentially compact space has a nonempty intersection.
18.B.2. Prove that each nested sequence of nonempty closed sets in a space X has a nonempty intersection iff each countable collection of closed sets in X with the finite intersection property has a nonempty intersection.
18.B.3. Derive Theorem 18.B from 18.B.1 and 18.B.2.
18. C. For second countable spaces, compactness and sequential compactness are equivalent.

$\left\lceil 18^{\prime} 2\right\rfloor$ In Metric Space

A subset A of a metric space X is an ε-net (where ε is a positive number) if $\rho(x, A)<\varepsilon$ for each point $x \in X$.
18.D. Prove that each compact metric space contains a finite ε-net for each $\varepsilon>0$.
18.E. Prove that each sequentially compact metric space contains a finite ε-net for each $\varepsilon>0$.
18.F. Prove that a subset A of a metric space is everywhere dense iff A is an ε-net for each $\varepsilon>0$.
18. G. Any sequentially compact metric space is separable.
18.H. Any sequentially compact metric space is second countable.
18.I. For metric spaces, compactness and sequential compactness are equivalent.
18.1. Prove that a sequentially compact metric space is bounded. (Cf. 18.E and 18.I.)
18.2. Prove that for each $\varepsilon>0$ each metric space contains
(1) a discrete ε-net, and
(2) an ε-net such that the distance between any two of its points is greater than ε.

$\left\lceil 18^{\prime} 3\right\rfloor$ Completeness and Compactness

A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of points of a metric space is a Cauchy sequence (or a fundamental sequence) if for every $\varepsilon>0$ there exists a number N such that $\rho\left(x_{n}, x_{m}\right)<\varepsilon$ for any $n, m \geq N$. A metric space X is complete if every Cauchy sequence in X converges.
18.J. A Cauchy sequence containing a convergent subsequence converges.
18. K. Prove that a metric space M is complete iff every nested sequence of closed balls in M with radii tending to 0 has a nonempty intersection.
18.L. Prove that a compact metric space is complete.
18. M. Prove that a complete metric space is compact iff for each $\varepsilon>0$ it contains a finite ε-net.
18.N. Prove that a complete metric space is compact iff it contains a compact ε-net for each $\varepsilon>0$.

$\left\lceil 18^{\prime} 4 \mathrm{x}\right\rfloor$ Noncompact Balls in Infinite Dimension

We denote by l^{∞} the set of all bounded sequences of real numbers. This is a vector space with respect to the component-wise operations. There is a natural norm in it: $\|x\|=\sup \left\{\left|x_{n}\right| \mid n \in \mathbb{N}\right\}$.
18.3x. Are closed balls of l^{∞} compact? What about spheres?
18.4x. Is the set $\left\{x \in l^{\infty}| | x_{n} \mid \leq 2^{-n}, n \in \mathbb{N}\right\}$ compact?
18.5x. Prove that the set $\left\{x \in l^{\infty}| | x_{n} \mid=2^{-n}, n \in \mathbb{N}\right\}$ is homeomorphic to the Cantor set K introduced in Section 2.
18.6x*. Does there exist an infinitely dimensional normed space in which closed balls are compact?

$\left\lceil 18^{\prime} 5 x\right\rfloor p$-Adic Numbers

Fix a prime integer p. Denote by \mathbb{Z}_{p} the set of series of the form $a_{0}+a_{1} p+$ $\cdots+a_{n} p^{n}+\ldots$ with $0 \leq a_{n}<p, a_{n} \in \mathbb{N}$. For $x, y \in \mathbb{Z}_{p}$, put $\rho(x, y)=0$ if $x=y$, and $\rho(x, y)=p^{-m}$ if m is the smallest number such that the m th coefficients in the series x and y are different.
18.7x. Prove that ρ is a metric on \mathbb{Z}_{p}.

This metric space is the space of integer p-adic numbers. There is an injection $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ sending $a_{0}+a_{1} p+\cdots+a_{n} p^{n} \in \mathbb{Z}$ with $0 \leq a_{k}<p$ to the series

$$
a_{0}+a_{1} p+\cdots+a_{n} p^{n}+0 p^{n+1}+0 p^{n+2}+\cdots \in \mathbb{Z}_{p}
$$

and $-\left(a_{0}+a_{1} p+\cdots+a_{n} p^{n}\right) \in \mathbb{Z}$ with $0 \leq a_{k}<p$ to the series

$$
b_{0}+b_{1} p+\cdots+b_{n} p^{n}+(p-1) p^{n+1}+(p-1) p^{n+2}+\ldots,
$$

where

$$
b_{0}+b_{1} p+\cdots+b_{n} p^{n}=p^{n+1}-\left(a_{0}+a_{1} p+\cdots+a_{n} p^{n}\right)
$$

Cf. 4.Ux.
$\mathbf{1 8 . 8 x}$. Prove that the image of the injection $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ is dense in \mathbb{Z}_{p}.
18.9 x . Is \mathbb{Z}_{p} a complete metric space?
18.10x. Is \mathbb{Z}_{p} compact?

$\left\lceil 18^{\prime} 6 x\right\rfloor$ Spaces of Convex Figures

Let $D \subset \mathbb{R}^{2}$ be a closed disk of radius p. Consider the set \mathcal{P}_{n} of all convex polygons P with the following properties:

- the perimeter of P is at most p;
- P is contained in D;
- P has at most n vertices (the cases of one and two vertices are not excluded; the perimeter of a segment is twice its length).
See 4.Mx, cf. 4.Ox.
18.11x. Equip \mathcal{P}_{n} with a natural topological structure. For instance, define a natural metric on \mathcal{P}_{n}.
18.12x. Prove that \mathcal{P}_{n} is compact.
18.13x. Prove that \mathcal{P}_{n} contains a polygon having the maximal area.
18.14 x . Prove that this polygon is a regular n-gon.

Consider now the set \mathcal{P}_{∞} of all convex polygons that have perimeter at most p and are contained in D. In other words, $\mathcal{P}_{\infty}=\bigcup_{n=1}^{\infty} \mathcal{P}_{n}$.
18.15x. Construct a topological structure in \mathcal{P}_{∞} that induces on \mathcal{P}_{n} the topological structures discussed above.
18.16x. Prove that the space \mathcal{P}_{∞} is not compact.

Consider now the set \mathcal{P} of all convex closed subsets of the plane that have perimeter at most p and are contained in D. (Observe that all sets in \mathcal{P} are compact.)
18.17x. Construct a topological structure in \mathcal{P} that induces the structure introduced above in the space \mathcal{P}_{∞}.
18.18x. Prove that the space \mathcal{P} is compact.
18.19x. Prove that there exists a convex plane set with perimeter at most p having a maximal area.
18.20x. Prove that this is a disk of radius $p /(2 \pi)$.

19x. Local Compactness and Paracompactness

$\left\lceil 19^{\prime} 1 x\right\rfloor$ Local Compactness

A topological space X is locally compact if each point of X has a neighborhood with compact closure.
19.1x. Compact spaces are locally compact.
19.2x. Which of the following spaces are locally compact:
(1) \mathbb{R}; (2) \mathbb{Q}; (3) \mathbb{R}^{n}; (4) a discrete space?
19.3x. Find two locally compact sets on the line such that their union is not locally compact.
19.Ax. Is the local compactness hereditary?
19.Bx. A closed subset of a locally compact space is locally compact.
19.Cx. Is it true that an open subset of a locally compact space is locally compact?
19.Dx. A Hausdorff locally compact space is regular.
19.Ex. An open subset of a locally compact Hausdorff space is locally compact.
19.Fx. Local compactness is a local property for a Hausdorff space, i.e., a Hausdorff space is locally compact iff each of its points has a locally compact neighborhood.

$\left\lceil 19^{\prime} 2 \mathrm{x}\right\rfloor$ One-Point Compactification

Let (X, Ω) be a Hausdorff topological space. Let X^{*} be the set obtained by adding a point x_{*} to X (of course, x_{*} does not belong to X). Let Ω^{*} be the collection of subsets of X^{*} consisting of

- sets open in X and
- sets of the form $X^{*} \backslash C$, where $C \subset X$ is a compact set:

$$
\Omega^{*}=\Omega \cup\left\{X^{*} \backslash C \mid C \subset X \text { is a compact set }\right\} .
$$

19. $\mathbf{G} \mathbf{x}$. Prove that Ω^{*} is a topological structure on X^{*}.
19.Hx. Prove that the space $\left(X^{*}, \Omega^{*}\right)$ is compact.
19.Ix. Prove that the inclusion $(X, \Omega) \hookrightarrow\left(X^{*}, \Omega^{*}\right)$ is a topological embedding.
19.Jx. Prove that if X is locally compact, then the space (X^{*}, Ω^{*}) is Hausdorff. (Recall that in the definition of X^{*} we assumed that X is Hausdorff.)

A topological embedding of a space X in a compact space Y is a compactification of X if the image of X is dense in Y. In this situation, Y is also called a compactification of X. (To simplify the notation, we identify X with its image in Y.)
19.Kx. Prove that if X is a locally compact Hausdorff space and Y is a compactification of X with one-point complement $Y \backslash X$, then there exists a homeomorphism $Y \rightarrow X^{*}$ identical on X.

Any space Y of Problem 19.Kx is called a one-point compactification or Alexandrov compactification of X. Problem 19.Kx says that Y is essentially unique.
19.Lx. Prove that the one-point compactification of the plane is homeomorphic to S^{2}.
19.4x. Prove that the one-point compactification of \mathbb{R}^{n} is homeomorphic to S^{n}.
19.5x. Give explicit descriptions for one-point compactifications of the following spaces:
(1) annulus $\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2}<2\right\}$;
(2) square without vertices $\left\{(x, y) \in \mathbb{R}^{2}|x, y \in[-1,1],|x y|<1\}\right.$;
(3) $\operatorname{strip}\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[0,1]\right\}$;
(4) a compact space.
19. Mx. Prove that a locally compact Hausdorff space is regular.
19.6x. Let X be a locally compact Hausdorff space, K a compact subset of X, and U a neighborhood of K. Then K has a neighborhood V such that the closure $\mathrm{Cl} V$ is compact and contained in U.

$\left\lceil 19^{\prime} 3 x\right\rfloor$ Proper Maps

A continuous map $f: X \rightarrow Y$ is proper if each compact subset of Y has compact preimage.

Let X and Y be two Hausdorff spaces. Any map $f: X \rightarrow Y$ obviously extends to the map

$$
f^{*}: X^{*} \rightarrow Y^{*}: x \mapsto \begin{cases}f(x) & \text { if } x \in X \\ y^{*} & \text { if } x=x^{*}\end{cases}
$$

19. $N \mathrm{x}$. Prove that f^{*} is continuous iff f is a proper continuous map.
19.Ox. Prove that each proper map of a Hausdorff space to a Hausdorff locally compact space is closed.

Problem 19.Ox is related to Theorem 17.X.
19.Px. Extend this analogy: formulate and prove statements corresponding to Theorems $17 . Z$ and 17.Y.

$\left\lceil 19^{\prime} 4 \mathrm{x}\right.$ Locally Finite Collections of Subsets

A collection Γ of subsets of a space X is locally finite if each point $b \in X$ has a neighborhood U that meets only finitely many sets $A \in \Gamma$.
19. Qx. A locally finite cover of a compact space is finite.
19.7x. If a collection Γ of subsets of a space X is locally finite, then so is $\{\mathrm{Cl} A \mid$ $A \in \Gamma\}$.
19.8x. If a collection Γ of subsets of a space X is locally finite, then each compact set $A \subset X$ meets only a finite number of sets in Γ.
19.9x. If a collection Γ of subsets of a space X is locally finite and each $A \in \Gamma$ has compact closure, then each $A \in \Gamma$ meets only a finite number of sets in Γ.
19.10x. Any locally finite cover of a sequentially compact space is finite.
19.Rx. Find an open cover of \mathbb{R}^{n} that has no locally finite subcovering.

Let Γ and Δ be two covers of a set X. The cover Δ is a refinement of Γ if for each $A \in \Delta$ there exists $B \in \Gamma$ such that $A \subset B$.
$19 . S \mathrm{x}$. Prove that any open cover of \mathbb{R}^{n} has a locally finite open refinement.
19.Tx. Let $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ be a (locally finite) open cover of \mathbb{R}^{n}. Prove that there exists an open cover $\left\{V_{i}\right\}_{i \in \mathbb{N}}$ of \mathbb{R}^{n} such that $\mathrm{Cl} V_{i} \subset U_{i}$ for each $i \in \mathbb{N}$.

$\left\lceil 19^{\prime} 5 x\right\rfloor$ Paracompact Spaces

A space X is paracompact if every open cover of X has a locally finite open refinement.
19.Ux. Any compact space is paracompact.
19. $V \mathrm{x} . \mathbb{R}^{n}$ is paracompact.
19. $W \mathbf{x}$. Let $X=\bigcup_{i=1}^{\infty} X_{i}$, where X_{i} are compact sets such that $X_{i} \subset$ Int X_{i+1}. Then X is paracompact.
19. $\mathbf{X x}$. Let X be a locally compact space. If X has a countable cover by compact sets, then X is paracompact.
19.11x. Prove that if a locally compact space is second countable, then it is paracompact.
19.12x. A closed subspace of a paracompact space is paracompact.
19.13 x . A disjoint union of paracompact spaces is paracompact.

$\left\lceil 19^{\prime} 6 x\right\rfloor$ Paracompactness and Separation Axioms

19.14x. Let X be a paracompact topological space, and let F and M be two disjoint subsets of X, where F is closed. Suppose that F is covered by open sets U_{α} whose closures are disjoint with $M: \operatorname{Cl} U_{\alpha} \cap M=\varnothing$. Then F and M have disjoint neighborhoods.
19.15x. A Hausdorff paracompact space is regular.
19.16x. A Hausdorff paracompact space is normal.
19.17x. Let X be a Hausdorff locally compact and paracompact space, Γ a locally finite open cover of X. Then X has a locally finite open cover Δ such that the closures $\mathrm{Cl} V$, where $V \in \Delta$, are compact sets and $\{\mathrm{Cl} V \mid V \in \Delta\}$ is a refinement of Γ.

Here is a more general (though formally weaker) fact.
19.18 x . Let X be a normal space, Γ a locally finite open cover of X. Then X has a locally finite open cover Δ such that $\{\mathrm{Cl} V \mid V \in \Delta\}$ is a refinement of Γ.

Information. Metrizable spaces are paracompact.

$\left\lceil 19^{\prime} 7 \mathrm{x}\right\rfloor$ Partitions of Unity

Let X be a topological space, $f: X \rightarrow \mathbb{R}$ a function. Then the set $\operatorname{supp} f=\operatorname{Cl}\{x \in X \mid f(x) \neq 0\}$ is the support of f.
19.19x. Let X be a topological space, and let $\left\{f_{\alpha}: X \rightarrow \mathbb{R}\right\}_{\alpha \in \Lambda}$ be a family of continuous functions whose supports $\operatorname{supp}\left(f_{\alpha}\right)$ constitute a locally finite cover of X. Prove that the formula

$$
f(x)=\sum_{\alpha \in \Lambda} f_{\alpha}(x)
$$

determines a continuous function $f: X \rightarrow \mathbb{R}$.
A family of nonnegative functions $f_{\alpha}: X \rightarrow \mathbb{R}_{+}$is a partition of unity if the supports $\operatorname{supp}\left(f_{\alpha}\right)$ constitute a locally finite cover of the space X and $\sum_{\alpha \in \Lambda} f_{\alpha}(x)=1$.

A partition of unity $\left\{f_{\alpha}\right\}$ is subordinate to a cover Γ if $\operatorname{supp}\left(f_{\alpha}\right)$ is contained in an element of Γ for each α. We also say that Γ dominates $\left\{f_{\alpha}\right\}$.
19. Yx. Let X be a normal space. Then each locally finite open cover of X dominates a certain partition of unity.
19.20x. Let X be a Hausdorff space. If each open cover of X dominates a certain partition of unity, then X is paracompact.

Information. A Hausdorff space X is paracompact iff each open cover of X dominates a certain partition of unity.

$\left\lceil 19^{\prime} 8 \mathrm{x}\right\rfloor$ Application: Making Embeddings from Pieces

19.21x. Let X be a topological space, $\left\{U_{i}\right\}_{i=1}^{k}$ an open cover of X. If U_{i} can be embedded in \mathbb{R}^{n} for each $i=1, \ldots, k$, then X can be embedded in $\mathbb{R}^{k(n+1)}$.
19.21x.1. Let $h_{i}: U_{i} \rightarrow \mathbb{R}^{n}, i=1, \ldots, k$, be embeddings, and let $f_{i}: X \rightarrow \mathbb{R}$ form a partition of unity subordinate to the cover $\left\{U_{i}\right\}_{i=1}^{k}$. We put $\hat{h}_{i}(x)=\left(h_{i}(x), 1\right) \in \mathbb{R}^{n+1}$. Show that the map $X \rightarrow \mathbb{R}^{k(n+1)}$: $x \mapsto\left(f_{i}(x) \hat{h}_{i}(x)\right)_{i=1}^{k}$ is an embedding.
19.22x. Riddle. How can you generalize 19.21x?

Proofs and Comments

12.A A set A is open and closed, iff A and $X \backslash A$ are open, iff A and $X \backslash A$ are closed.
12.B It suffices to prove the following apparently less general assertion: A space having a connected everywhere dense subset is connected. (See 6.3.) Let $X \supset A$ be the space and the subset. To prove that X is connected, let $X=U \cup V$, where U and V are disjoint sets open in X, and prove that one of them is empty (cf. 12.A). $U \cap A$ and $V \cap A$ are disjoint sets open in A, and

$$
A=X \cap A=(U \cup V) \cap A=(U \cap A) \cup(V \cap A)
$$

Since A is connected, one of these sets, say $U \cap A$, is empty. Then U is empty since A is dense, see $6 . M$.
12.C To simplify the notation, we may assume that $X=\bigcup_{\lambda} A_{\lambda}$. By Theorem 12.A, it suffices to prove that if U and V are two open sets partitioning X, then either $U=\varnothing$ or $V=\varnothing$. For each $\lambda \in \Lambda$, since A_{λ} is connected, we have either $A_{\lambda} \subset U$ or $A_{\lambda} \subset V$ (see 12.14). Fix a $\lambda_{0} \in \Lambda$. To be definite, let $A_{\lambda_{0}} \subset U$. Since each of the sets A_{λ} meets $A_{\lambda_{0}}$, all sets A_{λ} also lie in U, and so none of them meets V, whence

$$
V=V \cap X=V \cap \bigcup_{\lambda} A_{\lambda}=\bigcup_{\lambda}\left(V \cap A_{\lambda}\right)=\varnothing .
$$

12.E Apply Theorem $12 . C$ to the family $\left\{A_{\lambda} \cup A_{\lambda_{0}}\right\}_{\lambda \in \Lambda}$, which consists of connected sets by 12.D. (Or just repeat the proof of Theorem 12.C.)
12.F Using 12.D, prove by induction that $\bigcup_{-n}^{n} A_{k}$ is connected, and apply Theorem 12.C.
12. \boldsymbol{G} The union of all connected sets containing a given point is connected (by 12.C) and obviously maximal.
12.H Let A and B be two connected components with $A \cap B \neq \varnothing$. Then $A \cup B$ is connected by 12.D. By the maximality of connected components, we have $A \supset A \cup B \subset B$, whence $A=A \cup B=B$.
12.I \Leftrightarrow This is obvious since the component is connected.

Since the components of the points are not disjoint, they coincide.
12.K If A is a connected component, then its closure $\mathrm{Cl} A$ is connected by 12.B. Therefore, $\mathrm{Cl} A \subset A$ by the maximality of connected components. Hence, $A=\mathrm{Cl} A$ because the opposite inclusion holds true for any set A.
12.M See 12.10.
12.N Passing to the map $\mathrm{ab}(f): X \rightarrow f(X)$, we see that it suffices to prove the following theorem:

If X is a connected space and $f: X \rightarrow Y$ is a continuous surjection, then Y is also connected.

Consider a partition of Y in two open sets U and V and prove that one of them is empty. The preimages $f^{-1}(U)$ and $f^{-1}(V)$ are open by continuity of f and constitute a partition of X. Since X is connected, one of them, say $f^{-1}(U)$, is empty. Since f is surjective, we also have $U=\varnothing$.
12. $Q \Leftrightarrow$ Let $X=U \cup V$, where U and V are nonempty disjoint sets open in X. Set $f(x)=-1$ for $x \in U$ and $f(x)=1$ for $x \in V$. Then f is continuous and surjective, is it not?
\Leftrightarrow Assume the contrary: let X be connected. Then S^{0} is also connected by $12 . N$, a contradiction.
12.R By Theorem 12.Q, this statement follows from Cauchy's Intermediate Value Theorem. However, it is more natural to deduce Intermediate Value Theorem from 12.Q and the connectedness of I.

So, assume the contrary: let $I=[0,1]$ be disconnected. Then $[0,1]=$ $U \cup V$, where U and V are disjoint and open in $[0,1]$. Suppose $0 \in U$, consider the set $C=\{x \in[0,1] \mid[0, x) \subset U\}$ and put $c=\sup C$. Show that each of the possibilities $c \in U$ and $c \in V$ leads to a contradiction. A slightly different proof of Theorem 12.R is sketched in Lemmas 12.R.1 and 12.R.2.
12.R. 1 Use induction: for $n=1,2,3, \ldots$, set

$$
\left(a_{n+1}, b_{n+1}\right)= \begin{cases}\left(\left(a_{n}+b_{n}\right) / 2, b_{n}\right) & \text { if }\left(a_{n}+b_{n}\right) / 2 \in U \\ \left(a_{n},\left(a_{n}+b_{n}\right) / 2\right) & \text { if }\left(a_{n}+b_{n}\right) / 2 \in V\end{cases}
$$

12.R.2 On the one hand, we have $c \in U$ since $c \in \operatorname{Cl}\left\{a_{n} \mid n \in \mathbb{N}\right\}$, and a_{n} belong to U, which is closed in I. On the other hand, we have $c \in V$ since $c \in \operatorname{Cl}\left\{b_{n} \mid n \in \mathbb{N}\right\}$, and b_{n} belong to V, which is also closed in I. The contradiction means that U and V cannot be both closed, i.e., I is connected.
12.S Every open set on a line is a union of disjoint open intervals (see 2.Ix), each of which contains a rational point. Therefore, each open subset U of a line is the union of countably many open intervals. Each of them is open and connected, and thus is a connected component of U (see 12.T).
12.T Apply $12 . R$ and 12.J. (Cf. $12 . U$ and 12.X.)
12.U Apply $12 . R$ and 12.J. (Recall that a set $K \subset \mathbb{R}^{n}$ is said to be convex if for any $p, q \in K$ we have $[p, q] \subset K$.)
12.V Combine 12.R and 12.C.
12.X \Leftrightarrow This is $12.10 . ~ \Leftarrow$ This is $12 . V$.
12. Y Singletons and all kinds of intervals (including open and closed rays and the whole line).
12.Z Use 11.R, 12.U, and, say Theorem 12.B (or 12.I).
13.A Since the segment $[a, b]$ is connected by $12 . R$, its image is an interval by 12.30. Therefore, it contains all points between $f(a)$ and $f(b)$.
13.B Combine $12 . N$ and 12.10.
13.C Combine $12 . V$ and 12.30 .
13.D One of them is connected, while the other one is not.
13.E For each of the spaces, find the number of points with connected complement. (This is obviously a topological invariant.)
13.F Cf. 13.4.
14. \boldsymbol{A} Since the cover $\{[0,1 / 2],[1 / 2,1]\}$ of $[0,1]$ is fundamental and the restriction of $u v$ to each element of the cover is continuous, the entire map $u v$ is also continuous.
14.B If $x, y \in I$, then $I \rightarrow I: t \mapsto(1-t) x+t y$ is a path connecting x and y.
14. C If $x, y \in \mathbb{R}^{n}$, then $[0,1] \rightarrow \mathbb{R}^{n}: t \mapsto(1-t) x+t y$ is a path connecting x and y.
14.D Use $11 . R$ and 14.C.
14.E Combine $12 . R$ and 12.Q.
14.F Let x and y be two points in the union, and let A and B be the sets in the family that contain x and y. If $A=B$, there is nothing to prove. If $A \neq B$, take $z \in A \cap B$, join x with z in A by a path u, and join y with z in B by a path v. Then the path $u v$ joins x and y in the union, and it remains to use 14.5.
14. G Consider the union of all path-connected sets containing the point and use 14.F. (Cf. 12.G.)
14.H Similarly to $12 . H$, only instead of $12 . D$ use 14.F.
14.I \Leftrightarrow Recall the definition of a path-connected component.
\Leftrightarrow This follows from (the proof of) 14.G.
14.J Let X be path-connected, let $f: X \rightarrow Y$ be a continuous map, and let $y_{1}, y_{2} \in f(X)$. If $y_{i}=f\left(x_{i}\right), i=1,2$, and u is a path joining x_{1} and x_{2}, then how can you construct a path joining y_{1} and y_{2} ?
14.M Combine 14.8 and 12.J.
14.N By 11. Q, A is homeomorphic to $(0,+\infty) \cong \mathbb{R}$, which is pathconnected by 14. C, and so A is also path-connected by 14.K. Since A is connected (combine $12 . T$ and 12.0 , or use $14 . M$) and, obviously, $A \subset$
$X \subset \mathrm{Cl} A$ (what is $\mathrm{Cl} A$, by the way?), it follows form 12.15 that X is also connected.
14.O This is especially obvious for A since $A \cong(0, \infty)$ (you can also use 12.2).
14.P Prove that any path in X starting at $(0,0)$ is constant.
14. Q Let A and X be as above. Check that A is dense in X (cf. the solution to $14 . N$) and plug in Problems $14 . N$ and 14.P.
14.R See 14. Q.
14.S Let C be a path-connected component of X, and let $x \in C$ be an arbitrary point. If U_{x} is a path-connected neighborhood of x, then U_{x} lies entirely in C (by the definition of a path-connected component!), and so x is an interior point of C, which is thus open.
14.T \Leftrightarrow This is $14 . M$.
\Leftrightarrow Since path-connected components of X are open (see Problem 14.S) and X is connected, there can be only one path-connected component.
14.U This follows from 14.T because spherical neighborhoods in \mathbb{R}^{n} (i.e., open balls) are path-connected (by 14.6 or 14.7).
15. \boldsymbol{A} If $r_{1}+r_{2} \leq \rho\left(x_{1}, x_{2}\right)$, then the balls $B_{r_{1}}\left(x_{1}\right)$ and $B_{r_{2}}\left(x_{2}\right)$ are disjoint.
15.B Certainly, I is Hausdorff since it is metrizable. The intervals $[0,1 / 2)$ and $(1 / 2,1]$ are disjoint neighborhoods of 0 and 1 , respectively.
15.C \Leftrightarrow If $y \neq x$, then x and y have disjoint neighborhoods U_{x} and V_{y}. Therefore, $y \notin \mathrm{Cl} U_{x}$, whence $y \notin \bigcap_{U \ni x} \mathrm{Cl} U$.
\Leftrightarrow If $y \neq x$, then $y \notin \bigcap_{U \ni x} \mathrm{Cl} U$, and it follows that x has a neighborhood U_{x} such that $y \notin \mathrm{Cl} U_{x}$. Set $V_{y}=X \backslash \mathrm{Cl} U_{x}$.
15.D Assume the contrary: let $x_{n} \rightarrow a$ and $x_{n} \rightarrow b$, where $a \neq b$. Let U and V be disjoint neighborhoods of a and b, respectively. Then for sufficiently large n we have $x_{n} \in U \cap V=\varnothing$, a contradiction.
15.E A neighborhood of a point in $\mathbb{R}_{T_{1}}$ has the form $U=\mathbb{R} \backslash$ $\left\{x_{1}, \ldots, x_{N}\right\}$, where, say, $x_{1}<x_{2}<\cdots<x_{N}$. Then, obviously, $a_{n} \in U$ for each $n>x_{N}$.
15.F Assume that X is a space, $A \subset X$ is a subspace, and $x, y \in A$ are two distinct points. If X is Hausdorff, then x and y have disjoint neighborhoods U and V in X. In this case, $U \cap A$ and $V \cap A$ are disjoint neighborhoods of x and y in A. (Recall the definition of the relative topology!)
15. $G(1) \Rightarrow(2)$ Let X satisfy T_{1} and let $x \in X$. By Axiom T_{1}, each point $y \in X \backslash x$ has a neighborhood U that does not contain x, i.e., $U \subset X \backslash x$, which means that all points in $X \backslash x$ are inner. Therefore, $X \backslash x$ is open, and so its complement $\{x\}$ is closed.
$(2) \Rightarrow(3)$ If singletons in X are closed, then so are finite subsets of X, which are finite unions of singletons.
$(2) \Rightarrow(1)$ If singletons in X are closed and $x, y \in X$ are two distinct points, then $X \backslash x$ is a neighborhood of y that does not contain x, as required in T_{1}.
15.H Combine 15.12 and 15.G.
15.I Combine 15.A and 15.12.
15.J Each point in $\mathbb{R}_{T_{1}}$ is closed, as required by T_{1}, but any two nonempty sets intersect, which contradicts T_{2}.
15.K Combine $15 . G$ and 5.4 , and once more use $15 . G$; or just modify the proof of 15.F.
15.N $(1) \Rightarrow(2)$ Actually, T_{0} precisely says that at least one of the points does not lie in the closure of the other one (to see this, use Theorem 6.F). $(2) \Rightarrow(1)$ Use the above reformulation of T_{0} and the fact that if $x \in \operatorname{Cl}\{y\}$ and $y \in \operatorname{Cl}\{x\}$, then $\operatorname{Cl}\{x\}=\operatorname{Cl}\{y\}$.
(1) $\Leftrightarrow(3)$ This is obvious. (Recall the definition of the relative topology!)
(3) $\Leftrightarrow(4)$ This is also obvious.
$15.0 \Longleftrightarrow$ This is obvious.
\Leftrightarrow Let X be a T_{0} space such that each point $x \in X$ has a smallest neighborhood C_{x}. Then we say that $x \preceq y$ if $y \in C_{x}$. Let us verify the axioms of order. Reflexivity is obvious. Transitivity: assume that $x \preceq y$ and $y \preceq z$. Then C_{x} is a neighborhood of y, whence $C_{y} \subset C_{x}$, and so also $z \in C_{x}$, which means that $x \preceq z$. Antisymmetry: if $x \preceq y$ and $y \preceq x$, then $y \in C_{x}$ and $x \in C_{y}$, whence $C_{x}=C_{y}$. By T_{0}, this is possible only if $x=y$. Verify that this order generates the initial topology.
15.P Let X be a regular space, and let $x, y \in X$ be two distinct points. Since X satisfies T_{1}, the singleton $\{y\}$ is closed, and so we can apply T_{3} to x and $\{y\}$.
15.Q \Leftrightarrow See Problem 15.P. \Leftrightarrow See Problem 15.12.
15.R Let X be a metric space, $x \in X$, and $r>0$. Prove that, e.g., $\mathrm{Cl} B_{r}(x) \subset B_{2 r}(x)$, and use 15.19.
15.S Apply T_{4} to a closed set and a singleton, which is also closed by T_{1}.
15.T \Leftrightarrow See Problem 15.S. \Leftrightarrow See Problem 15.12.
15. U Let A and B be two disjoint closed sets in a metric space (X, ρ). Then, obviously, $A \subset U=\{x \in X \mid \rho(x, A)<\rho(x, B)\}$ and $B \subset V=\{x \in$ $X \mid \rho(x, A)>\rho(x, B)\} . U$ and V are open (use 10.L) and disjoint.
15. V x. 1 Put $U_{1}=X \backslash B$. Since X is normal, A has an open neighborhood $U_{0} \supset A$ such that $\mathrm{Cl} U_{0} \subset U_{1}$. Let $U_{1 / 2}$ be an open neighborhood of
$\mathrm{Cl} U_{0}$ such that $\mathrm{Cl} U_{1 / 2} \subset U_{1}$. Repeating the process, we obtain the required collection $\left\{U_{p}\right\}_{p \in \Lambda}$.
15. $V \mathbf{x}$ Put $f(x)=\inf \left\{\lambda \in \Lambda \mid x \in \operatorname{Cl} U_{\lambda}\right\}$. We easily see that f is continuous.
15. Wx Slightly modify the proof of $15.35 x$, using Urysohn Lemma 15. Vx instead of 15.35×1.
16.A Let $f: X \rightarrow \mathbb{N}$ be an injection, $A \subset X$ a subspace. Then the restriction $\left.f\right|_{A}: A \rightarrow \mathbb{N}$ is also an injection. Use 16.1.
16.B Let X be a countable set, $f: X \rightarrow Y$ a map. Sending each $y \in f(X)$ to a point in $f^{-1}(y)$, we obtain an injection $f(X) \rightarrow X$. Hence, $f(X)$ is countable by 16.1.
16. C Suggest algorithms (or even formulas!) for enumerating elements in \mathbb{Z} and \mathbb{N}^{2}. Find an injection $\mathbb{Q} \rightarrow \mathbb{N}^{2}$.
16.D Use 16.C.
16.E We will prove that for any sequence $\left\{x_{n}\right\}$ of real numbers in any interval $[a, b] \subset \mathbb{R}$ there exists a real number $c \in[a, b]$ which does not belong to the sequence. This is more than required. Choose a decreasing sequence of segments $[a, b] \supset\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \cdots \supset\left[a_{n}, b_{n}\right] \supset \ldots$ such that $\left\{x_{1}, \ldots, x_{n}\right\} \cap\left[a_{n}, b_{n}\right]=\varnothing$. Such a sequence is easy to choose, is it not? This gives two monotone sequences of real numbers: increasing sequence $\left\{a_{n}\right\}$ and decreasing sequence $\left\{b_{n}\right\}$. Let $A=\sup \left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $B=\inf \left\{b_{n} \mid n \in \mathbb{N}\right\}$. Since $a_{n}<b_{n}$ for each n, these are real numbers and $A \leq B$. Then $[A, B]=\cap_{n}\left[a_{n}, b_{n}\right]$ and any $c \in[A, B]$ has the desired property. Cf. to 6.44 .
16.F Construct a countable set A intersecting each base set (at least) at one point and prove that A is everywhere dense.
16. G Let X be a second countable space, $A \subset X$ a subspace. If $\left\{U_{i}\right\}_{1}^{\infty}$ is a countable base in X, then $\left\{U_{i} \cap A\right\}_{1}^{\infty}$ is a countable base in A. (See 5.1.)
16.H Show that if the set $A=\left\{x_{n}\right\}_{n=1}^{\infty}$ is everywhere dense, then the collection $\left\{B_{r}(x) \mid x \in A, r \in \mathbb{Q}, r>0\right\}$ is a countable base of X. (Use Theorems 4.I and 3.A to show that this is a base and $16 . D$ to show that it is countable.)
16.J Use 16.I and 16.G.
16.K By $16 . I$ and 16.G (or, more to the point, combine 16.H, 16.G, and $16 . F$), it is sufficient to find a countable everywhere-dense set in \mathbb{R}^{n}. For example, take $\mathbb{Q}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \in \mathbb{Q}, i=1, \ldots, n\right\}$. To see that \mathbb{Q}^{n} is dense in \mathbb{R}^{n}, use the metric $\rho^{(\infty)}$. To see that \mathbb{Q}^{n} is countable, use 16.C and 16.D.
16.L Use 10.15.
16.M Let X be the space, let $\{U\}$ be a countable base in X, and let $\Gamma=\{V\}$ be a cover of X. Let $\left\{U_{i}\right\}_{i=1}^{\infty}$ be the base sets that are contained in at least one element of the cover: let $U_{i} \subset V_{i}$. Using the definition of a base, we easily see that $\left\{U_{i}\right\}_{i=1}^{\infty}$ is a cover of X. Then $\left\{V_{i}\right\}_{i=1}^{\infty}$ is the required countable subcovering of Γ.
16.N Use 3.A.
16.O Use 16.12
16.P Use $16 . N$ and 16.A.
16. Q Consider an uncountable discrete space.
16.R If $x_{n} \in A$ and $x_{n} \rightarrow a$, then, obviously, a is an adherent point for A.
16.S Let $a \in \mathrm{Cl} A$, and let $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ be a decreasing neighborhood base at a (see 16.16). For each n, there is $x_{n} \in U_{n} \cap A$, and we easily see that $x_{n} \rightarrow a$.
16.T Indeed, let $f: X \rightarrow Y$ be a continuous map, let $b \in X$, and let $a_{n} \rightarrow b$ in X. We must prove that $f\left(a_{n}\right) \rightarrow f(b)$ in Y. Let $V \subset Y$ be a neighborhood of $f(b)$. Since f is continuous, $f^{-1}(V) \subset X$ is a neighborhood of b, and since $a_{n} \rightarrow b$, we have $a_{n} \in f^{-1}(V)$ for $n>N$. Then also $f\left(a_{n}\right) \in V$ for $n>N$, as required.
16. U Assume that $f: X \rightarrow Y$ is a sequentially continuous map and $A \subset Y$ is a sequentially closed set. To prove that $f^{-1}(A)$ is sequentially closed, we must prove that if $\left\{x_{n}\right\} \subset f^{-1}(A)$ and $x_{n} \rightarrow a$, then $a \in f^{-1}(A)$. Since f is sequentially continuous, we have $f\left(x_{n}\right) \rightarrow f(a)$, and since A is sequentially closed, we have $f(a) \in A$, whence $a \in f^{-1}(A)$, as required.
16. V It suffices to check that if $F \subset Y$ is a closed set, then so is the preimage $f^{-1}(F) \subset X$, i.e., $\operatorname{Cl}\left(f^{-1}(F)\right) \subset f^{-1}(F)$. Let $a \in \operatorname{Cl}\left(f^{-1}(F)\right)$. Since X is first countable, we also have $a \in \operatorname{SCl}\left(f^{-1}(F)\right)$ (see 16.S), and so there is a sequence $\left\{x_{n}\right\} \subset f^{-1}(F)$ such that $x_{n} \rightarrow a$, whence $f\left(x_{n}\right) \rightarrow f(a)$ because f is sequentially continuous. Since F is closed, we have $f(a) \in F$ (by $16 . R$), i.e., $a \in f^{-1}(F)$, as required.
16. $W \mathbf{x}$ Since l_{2} is a metric space, it is sufficient to prove that l_{2} is separable (see 16.I), i.e., to find a countable everywhere dense set $A \subset l_{2}$. The first idea here might be to consider the set of sequences with rational components, but this set is uncountable! Instead of this, let A be the set of all rational sequences $\left\{x_{i}\right\}$ such that $x_{i}=0$ for all sufficiently large i. (To show that A is countable, use $16 . C$ and 16.D. To show that A is everywhere dense, use the fact that if a series $\sum x_{i}^{2}$ converges, then for each $\varepsilon>0$ there is k such that $\sum_{i=k}^{\infty} x_{i}^{2}<\varepsilon$.)
17. \boldsymbol{A} Each of the spaces has only a finite number of open sets, and so each open cover is finite.
17.B Only the finite ones. (Consider the cover consisting of all singletons.)
17.C Consider the cover of \mathbb{R} by the open intervals $(-n, n), n \in \mathbb{N}$.
17.D The latter condition is precisely the negation of compactness.
17.E This follows from the Lindelöf theorem 16.M.
17.F This follows from the second De Morgan formula (see 2.E). Indeed, $\bigcap_{\lambda} A_{\lambda} \neq \varnothing$ iff $\bigcup_{\lambda}\left(X \backslash A_{\lambda}\right)=X \backslash \bigcap_{\lambda} A_{\lambda} \neq X$.
17. $\boldsymbol{G} \Leftrightarrow$ Let X be a compact space and let $\Gamma=\left\{F_{\lambda}\right\}$ be a family of closed subsets of X with the finite intersection property. Assume the contrary: let $\bigcap_{\lambda} F_{\lambda}=\varnothing$. Then by the second De Morgan formula we have $\bigcup_{\lambda}\left(X \backslash F_{\lambda}\right)=X \backslash \bigcap_{\lambda} F_{\lambda}=X$, i.e., $\left\{X \backslash F_{\lambda}\right\}$ is an open cover of X. Since X is compact, this cover contains a finite subcovering: $\bigcup_{i=1}^{n}\left(X \backslash F_{i}\right)=X$, whence $\bigcap_{i=1}^{n} F_{i}=\varnothing$, which contradicts the finite intersection property of Γ.

Prove the converse implication on your own.
17. $\boldsymbol{H} \Leftrightarrow$ Let $\Gamma=\left\{U_{\alpha}\right\}$ be a cover of A by open subsets of X. Since A is a compact set, the cover of A with the sets $A \cap U_{\alpha}$ contains a finite subcovering $\left\{A \cap U_{\alpha_{i}}\right\}_{1}^{n}$. Hence, $\left\{U_{\alpha_{i}}\right\}$ is a finite subcovering of Γ.
\Leftrightarrow Prove the converse implication on your own.
17.I Certainly not. The most classical example which proves this is $[0,1] \supset(0,1)$. Here $[0,1]$ is compact by Theorem 17.P, while $(0,1)$ is not compact by 17.C.

Since Theorem 17.P is still ahead, here we provide the following abstract general construction. Take any non-compact space A, add a point: $X=$ $A \cup b, b \notin A$, and define a topological structure in X by saying that a set is open in X iff it is either the whole X or is an open subset of A.
17.J Let X be a compact space, $F \subset X$ a closed subset, and $\left\{U_{\alpha}\right\}$ an open cover of A. Then $\{X \backslash F\} \cup\left\{U_{\alpha}\right\}$ is an open cover of X, which contains a finite subcovering $\{X \backslash F\} \cup\left\{U_{i}\right\}_{1}^{n}$. Clearly, $\left\{U_{i}\right\}_{1}^{n}$ is a cover of F.
17.K This follows from 17.L.
17.L Since X is Hausdorff, for each $x \in A$ the points x and b possess disjoint neighborhoods U_{x} and $V_{b}(x)$. Obviously, $\left\{U_{x}\right\}_{x \in A}$ is an open cover of A. Since A is compact, the cover contains a finite subcovering $\left\{U_{x_{i}}\right\}_{1}^{n}$. Put $U=\bigcup_{i=1}^{n} U_{x_{i}}$ and $V=\bigcap_{i=1}^{n} V_{b}\left(x_{i}\right)$. Then U and V are the required sets. (Check that they are disjoint.)
17.M Combine 17.J and 17.L.
17.N This follows from 17.O.
17.O (Cf. the proof of Lemma 17.L.) Let X be a Hausdorff space, $A, B \subset X$ two compact sets. By Lemma 17.L, each $x \in B$ has a neighborhood V_{x} disjoint with a certain neighborhood $U(x)$ of A. Obviously, $\left\{V_{x}\right\}_{x \in B}$ is an open cover of B. Since B is compact, the cover contains a finite subcovering $\left\{U_{x_{i}}\right\}_{1}^{n}$. Put $V=\bigcup_{i=1}^{n} V_{x_{i}}$ and $U=\bigcap_{i=1}^{n} U_{b}\left(x_{i}\right)$. Then U and V are the required neighborhoods. (Check that they are disjoint.)
17.P We argue by contradiction. If I is not compact, then I has a cover Γ_{0} such that no finite part of Γ_{0} covers I (see 17.D). We bisect I and denote by I_{1} the half that also is not covered by any finite part of Γ_{0}. Then we bisect I_{1}, etc. As a result, we obtain a sequence of nested intervals I_{n}, where the length of I_{n} is equal to 2^{-n}. By the completeness axiom, they have a unique point in common: $\bigcap_{n=1}^{\infty} I_{n}=\left\{x_{0}\right\}$. Consider an element $U_{0} \in \Gamma_{0}$ containing x_{0}. Since U_{0} is open, we have $I_{n} \subset U_{0}$ for sufficiently large n, which contradicts the fact that, by construction, no finite part of Γ_{0} covers I_{n}.
17.Q Repeat the argument used in the proof of Theorem 17.P, only instead of bisecting the segment each time subdivide the current cube into 2^{n} equal smaller cubes.
17. \boldsymbol{R} Consider the cover by open balls, $\left\{B_{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$.
17. \boldsymbol{S} Let, e.g., $X=[0,1) \cup[2,3]$. (Or just let $X=[0,1)$.) The set $[0,1)$ is bounded, it is also closed in X, but it is not compact.
17.T \Leftrightarrow Combine Theorems 15.A, 17.K, and 17.R.
\Leftrightarrow If a subset $F \subset \mathbb{R}^{n}$ is bounded, then F lies in a certain cube, which is compact (see Theorem 17.Q). If, in addition, F is closed, then F is also compact by 17.J.
17. \boldsymbol{U} We use Theorem 17.H. Let $\Gamma=\left\{U_{\lambda}\right\}$ be a cover of $f(X)$ by open subsets of Y. Since f is continuous, $\left\{f^{-1}\left(U_{\lambda}\right)\right\}$ is an open cover of X. Since X is compact, this cover has a finite subcovering $\left\{f^{-1}\left(U_{\lambda_{i}}\right)\right\}_{i=1}^{n}$. Then $\left\{U_{\lambda_{i}}\right\}_{i=1}^{n}$ is a finite subcovering of Γ.
17. V By 17.U and 17.T, the set $f(X) \subset \mathbb{R}$ is closed and bounded. Since $f(X)$ is bounded, there exist finite numbers $m=\inf f(X)$ and $M=$ $\sup f(X)$, whence, in particular, $m \leq f(x) \leq M$. Since $f(X)$ is closed, we have $m, M \in f(X)$, whence it follows that there are $a, b \in X$ with $f(a)=m$ and $f(b)=M$, as required.
17. \boldsymbol{W} This follows from 17.23: consider the cover $\left\{f^{-1}(U) \mid U \in \Gamma\right\}$ of X.
17.X This immediately follows from 17.J, 17.K, and 17.U.
17. Y Combine 17.X and 17.24.
17.Z See Problem 17.Y.

18.A.1 \Leftrightarrow This is obvious.

Let x be a limit point. If x is not an accumulation point of A, then x has a neighborhood U_{x} such that the set $U_{x} \cap A$ is finite. Show that x has a neighborhood W_{x} such that $\left(W_{x} \backslash x\right) \cap A=\varnothing$.
18.A.2 Argue by contradiction: consider the cover of the space by neighborhoods having finite intersections with the infinite set.
18.A.3 Let X be a space, $\left\{a_{n}\right\}$ a sequence of points in X. Let A be the set of all points in the sequence. If A is finite, there is not much to prove. So, we assume that A is infinite. By Theorem 18.A.2, A has an accumulation point x_{0}. Let $\left\{U_{n}\right\}$ be a countable neighborhood base of x_{0}, and let $x_{n_{1}} \in U_{1} \cap A$. Since the set $U_{2} \cap A$ is infinite, there is $n_{2}>n_{1}$ such that $x_{n_{2}} \in U_{2} \cap A$. Prove that the subsequence $\left\{x_{n_{k}}\right\}$ thus constructed converges to x_{0}. If A is finite, then the argument simplifies a great deal.
18.B.1 Consider a sequence $\left\{x_{n}\right\}, x_{n} \in F_{n}$, and show that if $x_{n_{k}} \rightarrow x_{0}$, then $x_{n} \in F_{n}$ for all $n \in \mathbb{N}$.
18.B.2 \Leftrightarrow Let $\left\{F_{k}\right\} \subset X$ be a sequence of closed sets having the finite intersection property. Then $\left\{\bigcap_{k=1}^{n} F_{k}\right\}$ is a nested sequence of nonempty closed sets, whence $\bigcap_{k=1}^{\infty} F_{k} \neq \varnothing$.

This is obvious.
18.B.3 By the Lindelöf theorem 16.M, it is sufficient to consider countable covers $\left\{U_{n}\right\}$. If no finite collection of sets in this cover is not a cover, then the closed sets $F_{n}=X \backslash U_{n}$ form a collection with the finite intersection property.
18.C This follows from $18 . B$ and 18.A.
18.D Reformulate the definition of an ε-net: A is an ε-net if $\left\{B_{\varepsilon}(x)\right\}_{x \in A}$ is a cover of X. Now the proof is obvious.
18.E We argue by contradiction. If $\left\{x_{i}\right\}_{i=1}^{k-1}$ is not an ε-net, then there is a point x_{k} such that $\rho\left(x_{i}, x_{k}\right) \geq \varepsilon, i=1, \ldots, k-1$. As a result, we obtain a sequence in which the distance between any two points is at least ε, and so it has no convergent subsequences.
18.F \Leftrightarrow This is obvious because open balls in a metric space are open sets.
\Leftarrow Use the definition of the metric topology.
18.G The union of finite $1 / n$-nets of the space is countable and everywhere dense. (see 18.E).
18. \boldsymbol{H} Use 13.82 .
18.I If X is compact, then X is sequentially compact by 18.A. If X is sequentially compact, then X is separable, and hence X has a countable base. Then 18. C implies that X is compact.
18.J Assume that $\left\{x_{n}\right\}$ is a Cauchy sequence and its subsequence $x_{n_{k}}$ converges to a point a. Find a number m such that $\rho\left(x_{l}, x_{k}\right)<\varepsilon / 2$ for $k, l \geq m$, and i such that $n_{i}>m$ and $\rho\left(x_{n_{i}}, a\right)<\varepsilon / 2$. Then for all $l \geq m$ we have the inequality $\rho\left(x_{l}, a\right) \leq \rho\left(x_{l}, x_{n_{i}}\right)+\rho\left(x_{n_{i}}, a\right)<\varepsilon$.
18.K \Leftrightarrow Obvious.
\Leftrightarrow Let $\left\{x_{n}\right\}$ be a Cauchy sequence. Let n_{1} be such that $\rho\left(x_{n}, x_{m}\right)<1 / 2$ for all $n, m \geq n_{1}$. Therefore, $x_{n} \in B_{1 / 2}\left(x_{n_{1}}\right)$ for all $n \geq n_{1}$. Further, take $n_{2}>n_{1}$ so that $\rho\left(x_{n}, x_{m}\right)<1 / 4$ for all $n, m \geq n_{2}$. Then $B_{1 / 4}\left(x_{n_{2}}\right) \subset$ $B_{1 / 2}\left(x_{n_{1}}\right)$. Proceeding with the construction, we obtain a sequence of decreasing disks such that their unique common point x_{0} satisfies $x_{n} \rightarrow x_{0}$.
18.L Let $\left\{x_{n}\right\}$ be a Cauchy sequence of points of a compact metric space X. Since X is also sequentially compact, $\left\{x_{n}\right\}$ contains a convergent subsequence, and then the initial sequence also converges.
$18 . M \Leftrightarrow$ Each compact space contains a finite ε-net.
\Leftrightarrow We show that the space is sequentially compact. Consider an arbitrary sequence $\left\{x_{n}\right\}$. We denote by A_{n} a finite $1 / n$-net in X. Since $X=\bigcup_{x \in A_{1}} B_{1}(x)$, one of the balls contains infinitely many points of the sequence; let $x_{n_{1}}$ be the first of them. From the remaining members lying in the first ball, we let $x_{n_{2}}$ be the first one of those lying in the ball $B_{1 / 2}(x)$, $x \in A_{2}$. Proceeding with this construction, we obtain a subsequence $\left\{x_{n_{k}}\right\}$. Let us show that the latter is fundamental. Since by assumption the space is complete, the constructed sequence has a limit. We have thus proved that the space is sequentially compact, and, hence, it is also compact.
18.N \Leftrightarrow Obvious. \Leftrightarrow This follows from assertion 18.M because an $\varepsilon / 2$-net for a $\varepsilon / 2$-net is an ε-net for the entire space.
19.Ax No, it is not: consider $\mathbb{Q} \subset \mathbb{R}$.
19.Bx Let X be a locally compact space, $F \subset X$ a closed subset, and $x \in F$. Let $U \subset X$ be a neighborhood of x with compact closure. Then $U \cap F$ is a neighborhood of x in F. Since F is closed, the set $\mathrm{Cl}_{F}(U \cap F)=$ $(\mathrm{Cl} U) \cap F$ (see 6.3) is compact as a closed subset of a compact set.
19. $C \times$ No, this is wrong in general. Take any space (X, Ω) that is not locally compact (e.g., let $X=\mathbb{Q}$). We put $X^{*}=X \cup x_{*}$ and $\Omega^{*}=\left\{X^{*}\right\} \cup \Omega$. The space (X^{*}, Ω^{*}) is compact for a trivial reason (which one?), and, hence, it is locally compact. Now, X is an open subset of X^{*}, but it is not locally compact by our choice of X.
19.Dx Let X be the space, W a neighborhood of a point $x \in X$. Let U_{0} be a neighborhood of x with compact closure. Since X is Hausdorff, it follows that $\{x\}=\bigcap_{U \ni x} \mathrm{Cl} U$, whence $\{x\}=\bigcap_{U \ni x}\left(\mathrm{Cl} U_{0} \cap \mathrm{Cl} U\right)$. Since each of the sets $\mathrm{Cl} U_{0} \cap \mathrm{Cl} U$ is compact, 17.11 implies that x has neighborhoods U_{1}, \ldots, U_{n} such that $\mathrm{Cl} U_{0} \cap \mathrm{Cl} U_{1} \cap \cdots \cap \mathrm{Cl} U_{n} \subset W$. Put $V=U_{0} \cap U_{1} \cap$
$\cdots \cap U_{n}$. Then $\mathrm{Cl} V \subset W$. Therefore, each neighborhood of x contains the closure of a certain neighborhood (a "closed neighborhood") of x. By 15.19, X is regular.
19.Ex Let X be the space, $V \subset X$ the open subset, $x \in V$ a point. Let U be a neighborhood of x such that $\mathrm{Cl} U$ is compact. By 19.Dx and $15.19, x$ has a neighborhood W such that $\mathrm{Cl} W \subset U \cap V$. Therefore, $\mathrm{Cl}_{V} W=\mathrm{Cl} W$ is compact, and so the space V is locally compact.
19.Fx \Leftrightarrow Follows from 19.Ex.
\Leftrightarrow Let point a of space X have a locally compact neighborhood U. Then it has a neighborhood V of a in U with compact $\mathrm{Cl}_{U} V$. Being an open subset in open subspace $U \subset X$, the set V is open in X. So, V is a neighborhood of a in X. The closure $\mathrm{Cl} V$ of V in X is Hausdorff (as the Hausdorff property is hereditary) and hence its compact subset $\mathrm{Cl}_{U} V$ is closed in $\mathrm{Cl} V$. Therefore $\mathrm{Cl}_{U} V=\mathrm{Cl} V$, and hence V is a desired neighborhood of a in X with compact closure.
19. $G \mathbf{x}$ Since \varnothing is both open and compact in X, we have $\varnothing, X^{*} \in \Omega^{*}$. We verify that unions and finite intersections of subsets in Ω^{*} lie in Ω^{*}. This is obvious for subsets in Ω. Let $X^{*} \backslash K_{\lambda} \in \Omega^{*}$, where $K_{\lambda} \subset X$ are compact sets, $\lambda \in \Lambda$. Then we have $\bigcup_{\lambda}\left(X^{*} \backslash K_{\lambda}\right)=X^{*} \backslash \bigcap_{\lambda} K_{\lambda} \in \Omega^{*}$ because X is Hausdorff and so $\bigcap_{\lambda} K_{\lambda}$ is compact. Similarly, if Λ is finite, then we also have $\bigcap_{\lambda}\left(X^{*} \backslash K_{\lambda}\right)=X^{*} \backslash \bigcup_{\lambda} K_{\lambda} \in \Omega^{*}$. Therefore, it suffices to consider the case where a set in Ω^{*} and a set in Ω are united (intersected). We leave this as an exercise.
19.Hx Let $U=X^{*} \backslash K_{0}$ be an element of the cover that contains the added point. Then the remaining elements of the cover provide an open cover of the compact set K_{0}.
19.Ix In other words, the topology of X^{*} induces on X the initial topology of X (i.e., $\Omega^{*} \cap 2^{X}=\Omega$). We must check that no new open sets arise in X. This is true because compact sets in the Hausdorff space X are closed.
19.Jx If $x, y \in X$, this is obvious. If, say, $y=x_{*}$ and U_{x} is a neighborhood of x with compact closure, then U_{x} and $X \backslash \mathrm{Cl} U_{x}$ are neighborhoods separating x and x_{*}.
19.K \mathbf{x} Let $X^{*} \backslash X=\left\{x_{*}\right\}$ and $Y \backslash X=\{y\}$. We have an obvious bijection

$$
f: Y \rightarrow X^{*}: x \mapsto \begin{cases}x & \text { if } x \in X \\ x_{*} & \text { if } x=y\end{cases}
$$

If $U \subset X^{*}$ and $U=X^{*} \backslash K$, where K is a compact set in X, then the set $f^{-1}(U)=Y \backslash K$ is open in Y. Therefore, f is continuous. It remains to apply 17.Y.
19.Lx Verify that if an open set $U \subset S^{2}$ contains the "North Pole" $(0,0,1)$ of S^{2}, then the complement of the image of U under the stereographic projection is compact in \mathbb{R}^{2}.
19.Mx X^{*} is compact and Hausdorff by 19.Hx and 19.Jx, and, therefore, X^{*} is regular by 17.M. Since X is a subspace of X^{*} by 19.Ix, it remains to use the fact that regularity is hereditary by 15.20. See also 19.Dx.
19.Nx \Longleftrightarrow If f^{*} is continuous, then, obviously, so is f (by $19 . I x$). Let $K \subset Y$ be a compact set, and let $U=Y \backslash K$. Since f^{*} is continuous, the set $\left(f^{*}\right)^{-1}(U)=X^{*} \backslash f^{-1}(K)$ is open in X^{*}, i.e., $f^{-1}(K)$ is compact in X. Therefore, f is proper.
\Leftrightarrow Use a similar argument.
19.Ox Let $f^{*}: X^{*} \rightarrow Y^{*}$ be the canonical extension of a map $f: X \rightarrow$ Y. Prove that if F is closed in X, then $F \cup\left\{x^{*}\right\}$ is closed in X^{*}, and hence compact. After that, use 19.Nx, 17.X, and 19.Ix.
19.Px A proper injection of a Hausdorff space into a locally compact Hausdorff space is a topological embedding. A proper bijection of a Hausdorff space onto a locally compact Hausdorff space is a homeomorphism.
19. $Q \mathrm{x}$ Let Γ be a locally finite cover, and let Δ be a cover of X by neighborhoods each of which meets only a finite number of sets in Γ. Since X is compact, we can assume that Δ is finite. In this case, obviously, Γ is also finite.
$19 . R \times$ Cover \mathbb{R}^{n} by the balls $B_{n}(0), n \in \mathbb{N}$.
$19 . S \times$ Use a locally finite covering of \mathbb{R}^{n} by equal open cubes.
19.7x Cf. 19.17x.
19.Ux This is obvious.
19. $V x$ This is $19 . S x$.
19. $W \mathbf{x}$ Let Γ be an open cover of X. Since each of the sets $K_{i}=$ $X_{i} \backslash \operatorname{Int} X_{i-1}$ is compact, Γ contains a finite subcovering Γ_{i} of K_{i}. Observe that the sets $W_{i}=\operatorname{Int} X_{i+1} \backslash X_{i-2} \supset K_{i}$ form a locally finite open cover of X. Intersecting elements of Γ_{i} with W_{i} for each i, we obtain a locally finite refinement of Γ.
19. $\boldsymbol{X} \mathbf{x}$ Using assertion $19.6 \times$, construct a sequence of open sets U_{i} such that for each i the closure $X_{i}=\mathrm{Cl} U_{i}$ is compact and lies in $U_{i+1} \subset \operatorname{Int} X_{i+1}$. After that, apply 19. Wx.
19. $\mathbf{Y x}$ Let $\Gamma=\left\{U_{\alpha}\right\}$ be the cover. By 19.18x, there exists an open cover $\Delta=\left\{V_{\alpha}\right\}$ such that $\mathrm{Cl} V_{\alpha} \subset U_{\alpha}$ for each α. Let $\varphi_{\alpha}: X \rightarrow I$ be an Urysohn function with $\operatorname{supp} \varphi_{\alpha}=X \backslash U_{\alpha}$ and $\varphi_{\alpha}^{-1}(1)=\mathrm{Cl} V_{\alpha}($ see $15 . V x)$. Put $\varphi(x)=\sum_{\alpha} \varphi_{\alpha}(x)$. Then the collection $\left\{\varphi_{\alpha}(x) / \varphi(x)\right\}$ is the required partition of unity.

Topological Constructions

20. Multiplication

「20'1」 Set-Theoretic Digression: Product of Sets

Let X and Y be two sets. The set of ordered pairs (x, y) with $x \in X$ and $y \in Y$ is called the direct product, Cartesian product, or just product of X and Y and denoted by $X \times Y$. If $A \subset X$ and $B \subset Y$, then $A \times B \subset X \times Y$. Sets $X \times b$ with $b \in Y$ and $a \times Y$ with $a \in X$ are fibers of the product $X \times Y$.
20.A. Prove that for any $A_{1}, A_{2} \subset X$ and $B_{1}, B_{2} \subset Y$ we have

$$
\begin{gathered}
\left(A_{1} \cup A_{2}\right) \times\left(B_{1} \cup B_{2}\right)=\left(A_{1} \times B_{1}\right) \cup\left(A_{1} \times B_{2}\right) \cup\left(A_{2} \times B_{1}\right) \cup\left(A_{2} \times B_{2}\right), \\
\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)=\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right), \\
\left(A_{1} \times B_{1}\right) \backslash\left(A_{2} \times B_{2}\right)=\left(\left(A_{1} \backslash A_{2}\right) \times B_{1}\right) \cup\left(A_{1} \times\left(B_{1} \backslash B_{2}\right)\right) .
\end{gathered}
$$

The natural maps

$$
\operatorname{pr}_{X}: X \times Y \rightarrow X:(x . y) \mapsto x \quad \text { and } \quad \operatorname{pr}_{Y}: X \times Y \rightarrow Y:(x . y)-y
$$

are（natural）projections．
20．B．Prove that $\operatorname{pr}_{X}^{-1}(A)=A \times Y$ for each $A \subset X$ ．
20．1．Find the corresponding formula for $B \subset Y$ ．

「20＇2」 Graphs

A map $f: X \rightarrow Y$ determines a subset Γ_{f} of $X \times Y$ defined by $\Gamma_{f}=$ $\{(x . f(x)) \mid x \in X\}$ ，it is called the graph of f ．

20．C ．A set $\Gamma \subset X \times Y$ is the graph of a map $X \rightarrow Y$ iff for each $a \in X$ the intersection $\Gamma \cap(a \times Y)$ is a singleton．

20．2．Prove that for each map $f: X \rightarrow Y$ and each set $A \subset X$ we have

$$
f(A)=\operatorname{pr}_{Y}\left(\Gamma_{f} \cap(A \times Y)\right)=\operatorname{pr}_{Y}\left(\Gamma_{f} \cap \operatorname{pr}_{X}^{-1}(A)\right)
$$

and $f^{-1}(B)=\operatorname{pr}_{X}(\Gamma \cap(X \times B))$ for each $B \subset Y$ ．
The set $\Delta=\{(x, x) \mid x \in X\}=\{(x, y) \in X \times X \mid x=y\}$ is the diagonal of $X \times X$ ．
20．3．Let A and B be two subsets of X ．Prove that $(A \times B) \cap \Delta=\varnothing$ iff $A \cap B=\varnothing$ ．
20．4．Prove that the map $\left.\operatorname{pr}_{X}\right|_{\Gamma_{f}}$ is bijective．
20．5．Prove that f is injective iff $\left.\operatorname{pr}_{Y}\right|_{\Gamma_{f}}$ is injective．
20．6．Consider the map $T: X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$ ．Prove that $\Gamma_{f-1}=T\left(\Gamma_{f}\right)$ for each invertible map $f: X \rightarrow Y$ ．

$\lceil 20$ 3」 Product of Topologies

Let X and Y be two topological spaces．If U is an open set of X and B is an open set of Y ，then we say that $U \times V$ is an elementary open set of $X \times Y$ ．

20．D．The set of elementary open sets of $X \times Y$ is a base of a topological structure in $X \times Y$ ．

The topological structure determined by the base of elementary open sets is the product topology in $X \times Y$ ．The product of two spaces X and Y is the set $X \times Y$ with the product topology．

20．7．Prove that for any subspaces A and B of spaces X and Y the product topology on $A \times B$ coincides with the topology induced from $X \times Y$ via the natural inclusion $A \times B \subset X \times Y$ ．

20．E．$Y \times X$ is canonically homeomorphic to $X \times Y$ ．
The word canonically here means that the homeomorphism between $X \times$ Y and $Y \times X$ ，which exists according to the statement，can be chosen in a nice special（or even obvious？）way，and so we may expect that it has additional pleasant properties．
20.F. The canonical bijection $X \times(Y \times Z) \rightarrow(X \times Y) \times Z$ is a homeomorphism.
20.8. Prove that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.
20.9. Prove that $\mathrm{Cl}(A \times B)=\mathrm{Cl} A \times \mathrm{Cl} B$ for any $A \subset X$ and $B \subset Y$.
20.10. Is it true that $\operatorname{Int}(A \times B)=\operatorname{Int} A \times \operatorname{Int} B$?
20.11. Is it true that $\operatorname{Fr}(A \times B)=\operatorname{Fr} A \times \operatorname{Fr} B$?
20.12. Is it true that $\operatorname{Fr}(A \times B)=(\operatorname{Fr} A \times B) \cup(A \times \operatorname{Fr} B)$?
20.13. Prove that $\operatorname{Fr}(A \times B)=(\operatorname{Fr} A \times B) \cup(A \times \operatorname{Fr} B)$ for closed A and B.
20.14. Find a formula for $\operatorname{Fr}(A \times B)$ in terms of $A, \operatorname{Fr} A, B$, and $\operatorname{Fr} B$.

$\left\lceil 20^{\prime} 4\right\rfloor$ Topological Properties of Projections and Fibers

20. G. The natural projections $\mathrm{pr}_{X}: X \times Y \rightarrow X$ and $\mathrm{pr}_{Y}: X \times Y \rightarrow Y$ are continuous for any topological spaces X and Y.
20.H. The product topology is the coarsest topology with respect to which pr_{X} and pr_{Y} are continuous.
20.I. A fiber of a product is canonically homeomorphic to the corresponding factor. The canonical homeomorphism is the restriction to the fiber of the natural projection of the product onto the factor.
20.J. Prove that $\mathbb{R}^{1} \times \mathbb{R}^{1}=\mathbb{R}^{2}, \quad\left(\mathbb{R}^{1}\right)^{n}=\mathbb{R}^{n}, \quad$ and $(I)^{n}=I^{n}$. (We remind the reader that I^{n} is the n-dimensional unit cube in \mathbb{R}^{n}.)
20.15. Let Σ_{X} and Σ_{Y} be bases of spaces X and Y. Prove that the sets $U \times V$ with $U \in \Sigma_{X}$ and $V \in \Sigma_{Y}$ constitute a base for $X \times Y$.
20.16. Prove that a map $f: X \rightarrow Y$ is continuous iff $\left.\operatorname{pr}_{X}\right|_{\Gamma_{f}}: \Gamma_{f} \rightarrow X$ is a homeomorphism.
20.17. Prove that if W is open in $X \times Y$, then $\operatorname{pr}_{X}\left(W^{-}\right)$is open in X.

A map from a space X to a space Y is open (closed) if the image of each open set under this map is open (respectively, closed). Therefore, 20.17 states that $\operatorname{pr}_{X}: X \times Y \rightarrow X$ is an open map.
20.18. Is pr_{X} a closed map?
20.19. Prove that for each space X and each compact space Y the map pr_{X} : $X \times Y \rightarrow X$ is closed.

$\left\lceil 20^{\prime} 5 」\right.$ Cartesian Products of Maps

Let X, Y, and Z be three sets. A map $f: Z \rightarrow X \times Y$ determines the compositions $f_{1}=\operatorname{pr}_{X} \circ f: Z \rightarrow X$ and $f_{2}=\operatorname{pr}_{Y} \circ f: Z \rightarrow Y$, which are called the factors (or components) of f. Indeed, f is determined by them as a sort of product.
20.K. Prove that for any maps $f_{1}: Z \rightarrow X$ and $f_{2}: Z \rightarrow Y$ there exists a unique map $f: Z \rightarrow X \times Y$ with $\operatorname{pr}_{X} \circ f=f_{1}$ and $\operatorname{pr}_{Y} \circ f=f_{2}$.
20.20. Prove that $f^{-1}(A \times B)=f_{1}^{-1}(-A) \cap f_{2}^{-1}(B)$ for any $A \subset X$ and $B \subset Y$.
20.L. Let X, Y, and Z be three spaces. Prove that $f: Z \rightarrow X \times Y$ is continuous iff so are f_{1} and f_{2}.

Any two maps $g_{1}: X_{1} \rightarrow Y_{1}$ and $g_{2}: X_{2} \rightarrow Y_{2}$ determine a map

$$
g_{1} \times g_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}:\left(x_{1}, x_{2}\right) \mapsto\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right),
$$

which is their (Cartesian) product.
20.21. Prove that $\left(g_{1} \times g_{2}\right)\left(A_{1} \times A_{2}\right)=g_{1}\left(A_{1}\right) \times g_{2}\left(A_{2}\right)$ for any $A_{1} \subset X_{1}$ and $A_{2} \subset X_{2}$.
20.22. Prove that $\left(g_{1} \times g_{2}\right)^{-1}\left(B_{1} \times B_{2}\right)=g_{1}^{-1}\left(B_{1}\right) \times g_{2}^{-1}\left(B_{2}\right)$ for any $B_{1} \subset Y_{1}$ and $B_{2} \subset Y_{2}$.
20.M. Prove that the Cartesian product of continuous maps is continuous.
20.23. Prove that the Cartesian product of open maps is open.
20.24. Prove that a metric $\rho: X \times X \rightarrow \mathbb{R}$ is continuous with respect to the metric topology.
20.25. Let $f: X \rightarrow Y$ be a map. Prove that the graph Γ_{f} is the preimage of the diagonal $\Delta_{Y}=\{(y, y) \mid y \in Y\} \subset Y \times Y$ under the map $f \times \operatorname{id}_{Y}: X \times Y \rightarrow Y \times Y$.

$\left\lceil 20^{\prime} 6\right\rfloor$ Properties of Diagonal and Other Graphs

20.26. Prove that a space X is Hausdorff iff the diagonal $\Delta=\{(x, x) \mid x \in X\}$ is closed in $X \times X$.

20.27. Prove that if Y is a Hausdorff space and $f: X \rightarrow Y$ is a continuous map, then the graph Γ_{f} is closed in $X \times Y$.
20.28. Let Y be a compact space. Prove that if a map $f: X \rightarrow Y$ has closed graph Γ_{f}, then f is continuous.
20.29. Prove that the hypothesis on compactness in 20.28 is necessary.
20.30. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that its graph is:
(1) closed;
(2) connected;
(3) path-connected;
(4) locally connected;
(5) locally compact.
20.31. Consider the following functions

1) $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto\left\{\begin{array}{ll}0 & \text { if } x=0, \\ 1 / x, & \text { otherwise. }\end{array}\right.$ 2) $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto\left\{\begin{array}{ll}0 & \text { if } x=0, \\ \sin (1 / x) . & \text { otherwise. }\end{array}\right.$ Do their graphs possess the properties listed in 20.30?
20.32. Does any of the properties of the graph of a function f that are mentioned in 20.30 imply that f is continuous?
20.33. Let Γ_{f} be closed. Then the following assertions are equivalent:
(1) f is continuous:
(2) f is locally bounded:
(3) the graph Γ_{f} of f is connected:
(4) the graph Γ_{f} of f is path-connected.
20.34. Prove that if Γ_{f} is connected and locally connected, then f is continuous.
20.35. Prove that if Γ_{f} is connected and locally compact, then f is continuous.
20.36. Are some of the assertions in Problems 20.33-20.35 true for maps f : $\mathbb{R}^{2} \rightarrow \mathbb{R}$?

「20'7」 Topological Properties of Products

20.N. The product of Hausdorff spaces is Hausdorff.

20.37. Prove that the product of regular spaces is regular.
20.38. The product of normal spaces is not necessarily normal.
20.38.1*. Prove that the space \mathcal{R} formed by real numbers with the topology determined by the base consisting of all semi-open intervals $[a, b)$ is normal.
20.38.2. Prove that in the Cartesian square of the space introduced in 20.38 .1 the subspace $\{(x, y) \mid x=-y\}$ is closed and discrete.
20.38.3. Find two disjoint subsets of $\{(x, y) \mid x=-y\}$ that have no disjoint neighborhoods in the Cartesian square of the space of 20.38.1.
20.O. The product of separable spaces is separable.
20.P. First countability of factors implies first countability of the product.
20.Q. The product of second countable spaces is second countable.
20.R. The product of metrizable spaces is metrizable.
20.S. The product of connected spaces is connected.
20.39. Prove that for connected spaces X and Y and any proper subsets $A \subset X$ and $B \subset Y$ the set $\mathrm{X} \times Y \backslash A \times B$ is connected.
20.T. The product of path-connected spaces is path-connected.
20.U. The product of compact spaces is compact.
20.40. Prove that the product of locally compact spaces is locally compact.
20.41. If X is a paracompact space and Y is compact, then $X \times Y$ is paracompact.
20.42. For which of the topological properties studied above is it true that if $X \times Y$ possesses the property: then so does X ?

$\left\lceil 20^{\prime} 8\right\rfloor$ Representation of Special Spaces as Products

20.V. Prove that $\mathbb{R}^{2} \backslash 0$ is homeomorphic to $S^{1} \times \mathbb{R}$.

20.43. Prove that $\mathbb{R}^{n} \backslash \mathbb{R}^{k}$ is homeomorphic to $S^{n-k-1} \times \mathbb{R}^{k+1}$.
20.44. Prove that $S^{n} \cap\left\{x \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\cdots+x_{k}^{2} \leq x_{k+1}^{2}+\cdots+x_{n+1}^{2}\right\}$ is homeomorphic to $S^{k-1} \times D^{n-k+1}$.
20.45. Prove that $O(n)$ is homeomorphic to $S O(n) \times O(1)$.
20.46. Prove that $G L(n)$ is homeomorphic to $S L(n) \times G L(1)$.
20.47. Prove that $G L_{+}(n)$ is homeomorphic to $S O(n) \times \mathbb{R}^{n(n+1) / 2}$, where

$$
G L_{+}(n)=\{A \in L(n, n) \mid \operatorname{det} A>0\} .
$$

20.48. Prove that $S O(4)$ is homeomorphic to $S^{3} \times S O(3)$.

The space $S^{1} \times S^{1}$ is a torus.
20. W. Construct a topological embedding of the torus in \mathbb{R}^{3}.

The product $S^{1} \times \cdots \times S^{1}$ of k factors is the k-dimensional torus.
20.X. Prove that the k-dimensional torus can be topologically embedded in \mathbb{R}^{k+1}.
20. Y. Find topological embeddings of $S^{1} \times D^{2}, S^{1} \times S^{1} \times I$, and $S^{2} \times I$ in \mathbb{R}^{3}.

21. Quotient Spaces

$\left\lceil 21^{\prime} 1\right\rfloor$ Set-Theoretic Digression:
 Partitions and Equivalence Relations

Recall that a partition of a set A is a cover of A consisting of pairwise disjoint sets.

Each partition of a set X determines an equivalence relation (i.e., a relation, which is reflexive, symmetric. and transitive): two elements of X are said to be equivalent if they belong to the same element of the partition. Vice versa, each equivalence relation on X determines the partition of X into classes of equivalent elements. Thus, partitions of a set into nonempty subsets and equivalence relations on the set are essentially the same. More precisely, they are two ways of describing the same phenomenon.

Let X be a set, S a partition of X. The set whose elements are members of the partition S (which are subsets of X) is the quotient set or factor set of X by S. It is denoted by X / S. 1
21.1. Riddle. How does this operation relate to division of numbers? Why is there a similarity in terminology and notation?

The set X / S is also called the set of equivalence classes for the equivalence relation corresponding to the partition S.

The map pr : $X \rightarrow X / S$ that sends $x \in X$ to the element of S containing x is the (canonical) projection or factorization map. A subset of X which is a union of elements of a partition is saturated. The smallest saturated set containing a subset A of X is the saturation of A.
21.2. Prove that $A \subset X$ is an element of a partition S of X iff $A=\mathrm{pr}^{-1}$ (point), where $\mathrm{pr}: X \rightarrow X / S$ is the natural projection.
21. \boldsymbol{A}. Prove that the saturation of a set A equals $\operatorname{pr}^{-1}(\operatorname{pr}(A))$.
21.B. Prove that a set is saturated iff it is equal to its saturation.

[^18]
$\left\lceil 21^{\prime} 2\right\rfloor$ Quotient Topology

A quotient set X / S of a topological space X with respect to a partition S into nonempty subsets is equipped with a natural topology: a set $U \subset$ X / S is said to be open in X / S if its preimage $\operatorname{pr}^{-1}(U)$ under the canonical projection pr : $X \rightarrow X / S$ is open.
21. C. The collection of these sets is a topological structure in the quotient set X / S.

This topological structure is the quotient topology. The set X / S with this topology is the quotient space of X by partition S.
21.3. Give an explicit description of the quotient space of the segment $[0,1]$ by the partition consisting of $[0,1 / 3],(1 / 3,2 / 3]$, and $(2 / 3,1]$.

21.4. What can you say about a partition S of a space X if the quotient space X / S is known to be discrete?
21.D. A subset of a quotient space X / S is open iff it is the image of an open saturated set under the canonical projection pr.
21. \boldsymbol{E}. A subset of a quotient space X / S is closed, iff its preimage under pr is closed in X, iff it is the image of a closed saturated set.
21.F. The canonical projection pr: $X \rightarrow X / S$ is continuous.
21. G. Prove that the quotient topology is the finest topology on X / S such that the canonical projection pr is continuous with respect to it.

$\left\lceil 21^{\prime} 3\right\rfloor$ Topological Properties of Quotient Spaces

21.H. A quotient space of a connected space is connected.
21.I. A quotient space of a path-connected space is path-connected.
21.J. A quotient space of a separable space is separable.
21.K. A quotient space of a compact space is compact.
21.L. The quotient space of the real line by the partition $\mathbb{R}_{+}, \mathbb{R} \backslash \mathbb{R}_{+}$is not Hausdorff.
21. M. The quotient space of a space X by a partition S is Hausdorff iff any two elements of S have disjoint saturated neighborhoods.
21.5. Formulate similar necessary and sufficient conditions for a quotient space to satisfy other separation axioms and countability axioms.
21.6. Give an example showing that the second countability can get lost when we pass to a quotient space.

〔21'4」 Set-Theoretic Digression: Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let $f: X \rightarrow Y$ be a map which is constant on each element of S. Then there is a map $X / S \rightarrow Y$ which sends each element A of S to the element $f(a)$. where $a \in A$. This map is denoted by f / S and called the quotient map or factor map of f (by the partition S).
21.N. 1) Prove that a map $f: X \rightarrow Y$ is constant on each element of a partition S of X iff there exists a map $g: X / S \rightarrow Y$ such that the following diagram is commutative:

2) Prove that such a map g coincides with f / S.

More generally, let S and T be partitions of sets X and Y. Then every map $f: X \rightarrow Y$ that maps each subset in S to a subset in T determines a $\operatorname{map} X / S \rightarrow Y / T$ which sends an element A of the partition S to the element of the partition T containing $f(A)$. This map is denoted by $f /(S, T)$ and called the quotient map or factor map of f (with respect to S and T).
21. O. Formulate and prove for $f / S, T$ a statement generalizing 21.N.

A map $f: X \rightarrow Y$ determines the partition of the set X into nonempty preimages of the elements of Y. This partition is denoted by $S(f)$.
21.P. The map $f / S(f): X / S(f) \rightarrow Y$ is injective.

This map is the injective factor (or injective quotient) of f.

$\left\lceil 21^{\prime} 5\right\rfloor$ Continuity of Quotient Maps

21. Q. Let X and Y be two spaces, S a partition of X into nonempty sets, and $f: X \rightarrow Y$ a continuous map constant on each element of S. Then the factor f / S of f is continuous.
21.7. If the $\operatorname{map} f$ is open, then so is the quotient $\operatorname{map} f / S$.
21.8. Let X and Y be two spaces, S a partition of X into nonempty sets. Prove that the formula $f \mapsto f / S$ determines a bijection from the set of all continuous maps $X \rightarrow Y$ that are constant on each element of S onto the set of all continuous maps $X / S \rightarrow Y$.
21.R. Let X and Y be two spaces, let S and T be partitions of X and Y, respectively, and let $f: X \rightarrow Y$ be a continuous map that maps each set in S to a set in T. Then the map $f / S, T: X / S \rightarrow Y / T$ is continuous.

$\left\lceil 21^{\prime} 6 x\right\rfloor$ Closed Partitions

A partition S of a space X is closed if the saturation of each closed set is closed.
21.9x. Prove that a partition is closed iff the canonical projection $X \rightarrow X / S$ is a closed map.
21.10x. Prove that if a partition S contains only one element consisting of more than one point, then S is closed if this element is a closed set.
21.Sx. Let X be a space satisfying the first separation axiom, S a closed partition of X. Then the quotient space X / S also satisfies the first separation axiom.
21.Tx. The quotient space of a normal space with respect to a closed partition is normal.

$\left\lceil 21^{\prime} 7 \mathrm{x}\right\rfloor$ Open Partitions

A partition S of a space X is open if the saturation of each open set is open.
21.11x. Prove that a partition S is open iff the canonical projection $X \rightarrow X / S$ is an open map.
21.12x. Prove that if a set A is saturated with respect to an open partition, then Int A and $\mathrm{Cl} A$ are also saturated.
21.Ux. The quotient space of a second countable space with respect to an open partition is second countable.
21. Vx. The quotient space of a first countable space with respect to an open partition is first countable.
21. Wx. Let X and Y be two spaces, S and T their open partitions. Denote by $S \times T$ the partition of $X \times Y$ consisting of $A \times B$ with $A \in S$ and $B \in T$. Then the injective factor $X \times Y / S \times T \rightarrow X / S \times Y / T$ of $\mathrm{pr}_{S} \times \mathrm{pr}_{T}$: $X \times Y \rightarrow X / S \times Y / T$ is a homeomorphism.

22. Zoo of Quotient Spaces

$\left\lceil 22^{\prime} 1\right.$ § Tool for Identifying a Quotient Space with a Known Space

22.A. If X is a compact space, Y is a Hausdorff space, and $f: X \rightarrow Y$ is a continuous map, then the injective factor $f / S(f): X / S(f) \rightarrow Y$ is a homeomorphism.
22.B. The injective factor of a continuous map from a compact space to a Hausdorff one is a topological embedding.

> 22.1. Describe explicitly partitions of a segment such that the corresponding quotient spaces are all letters of the alphabet.
22.2. Prove that the segment I admits a partition with the quotient space homeomorphic to square $I \times I$.

$\left\lceil 22^{\prime} 2\right\rfloor$ Tools for Describing Partitions

An accurate literal description of a partition can often be somewhat cumbersome, but usually it can be shortened and made more understandable. Certainly, this requires a more flexible vocabulary with lots of words having almost the same meanings. For instance, such words as factorize and pass to a quotient can be replaced by attach, glue together, identify, contract, paste, and other words substituting or accompanying these in everyday life.

Some elements of this language are easy to formalize. For instance, factorization of a space X with respect to a partition consisting of a set A and singletons in the complement of A is the contraction (of the subset A to a point), and the result is denoted by X / A.

> 22.3. Let $A, B \subset X$ form a fundamental cover of a space X. Prove that the quotient map $A / A \cap B \rightarrow X / B$ of the inclusion $A \hookrightarrow X$ is a homeomorphism.

If A and B are two disjoint subspaces of a space X and $f: A \rightarrow B$ is a homeomorphism, then passing to the quotient of X by the partition into singletons in $X \backslash(A \cup B)$ and two-element sets $\{x, f(x)\}$, where $x \in A$, we glue or identify the sets A and B via the homeomorphism f.

A rather convenient and flexible way for describing partitions is to describe the corresponding equivalence relations. The main advantage of this approach is that, by transitivity, it suffices to specify only some pairs of equivalent elements: if one states that $x \sim y$ and $y \sim z$, then it is not necessary to state that $x \sim z$ since this is automatically true.

Hence, a partition is represented by a list of statements of the form $x \sim y$ that are sufficient for recovering the equivalence relation. We denote
the corresponding partition by such a list enclosed into square brackets. For example, the quotient of a space X obtained by identifying subsets A and B by a homeomorphism $f: A \rightarrow B$ is denoted by $X /[a \sim f(a)$ for any $a \in A]$ or just $X /[a \sim f(a)]$.

Some partitions are easily described by a picture, especially if the original space can be embedded in the plane. In such a case, as in the pictures below, we draw arrows on the segments to be identified to show the directions to be identified.

Below we introduce all kinds of descriptions for partitions and give examples of their usage, simultaneously providing literal descriptions. The latter are not that nice, but they may help the reader to remain confident about the meaning of the new words. On the other hand, the reader will appreciate the improvement the new words bring in.

$\left\lceil 22^{\prime} 3\right\rfloor$ Welcome to the Zoo

22. C. Prove that $I /[0 \sim 1]$ is homeomorphic to S^{1}.

In other words, the quotient space of segment I by the partition consisting of $\{0,1\}$ and $\{a\}$ with $a \in(0,1)$ is homeomorphic to a circle.
22. C.1. Find a surjective continuous map $I \rightarrow S^{1}$ such that the corresponding partition into preimages of points consists of singletons in the interior of the segment and the pair of boundary points of the segment.
22.D. Prove that D^{n} / S^{n-1} is homeomorphic to S^{n}.

In 22.D, we deal with the quotient space of the n-disk D^{n} by the partition $\left\{S^{n-1}\right\} \cup\left\{\{x\} \mid x \in B^{n}\right\}$.

Here is a reformulation of 22.D: Contracting the boundary of an n dimensional ball to a point, we obtain an n-dimensional sphere.
22.D.1. Find a continuous map of the n-disk D^{n} to the n-sphere S^{n} that maps the boundary of the disk to a single point and bijectively maps the interior of the disk onto the complement of this point.
22. \boldsymbol{E}. Prove that $I^{2} /[(0, t) \sim(1, t)$ for $t \in \mathrm{I}]$ is homeomorphic to $S^{1} \times I$.

Here the partition consists of pairs of points $\{(0, t),(1, t)\}$ where $t \in I$, and singletons in $(0,1) \times I$.

Reformulation of 22.E: If we g/ue the side edges of a square by identifying points on the same hight, then we obtain a cylinder.

22.F. $S^{1} \times I /\left[(z, 0) \sim(z .1)\right.$ for $\left.z \in S^{1}\right]$ is homeomorphic to $S^{1} \times S^{1}$.

Here the partition consists of singletons in $S^{1} \times(0,1)$ and pairs of points of the basis circles lying on the same element of the cylinder.

Here is a reformulation of 22.F: If we glue the base circles of a cylinder by identifying pairs of points on the same element, then we obtain a torus.
22.G. $I^{2} /[(0, t) \sim(1, t),(t, 0) \sim(t, 1)]$ is homeomorphic to $S^{1} \times S^{1}$.

In 22. G, the partition consists of

- singletons in the interior $(0,1) \times(0,1)$ of the square,
- pairs of points on the vertical sides that are the same distance from the bottom side (i.e., pairs $\{(0, t),(1, t)\}$ with $t \in(0,1))$,
- pairs of points on the horizontal sides that lie on the same vertical line (i.e., pairs $\{(t, 0),(t, 1)\}$ with $t \in(0,1)$),
- the four vertices of the square.

Reformulation of 22.G: Identifying the sides of a square according to the picture, we obtain a torus.

$\left\lceil 22^{\prime} 4\right\rfloor$ Transitivity of Factorization

A solution of Problem 22.G can be based on Problems 22.E and 22.F and the following general theorem.
22.H Transitivity of Factorization. Let S be a partition of a space X, and let S^{\prime} be a partition of the space X / S. Then the quotient space $(X / S) / S^{\prime}$ is canonically homeomorphic to X / T, where T is the partition of X into preimages of elements of S^{\prime} under the projection $X \rightarrow X / S$.

「22'5」 Möbius Strip

The Möbius strip or Möbius band is defined as $I^{2} /[(0, t) \sim(1,1-t)]$. In other words, this is the quotient space of the square I^{2} by the partition into centrally symmetric pairs of points on the vertical edges of I^{2}, and singletons that do not lie on the vertical edges. The Möbius strip is obtained, so to speak, by identifying the vertical sides of a square in such a way that the directions shown on them by arrows are superimposed, as shown below.

22.I. Prove that the Möbius strip is homeomorphic to the surface that is swept in \mathbb{R}^{3} by a segment rotating in a half-plane around the midpoint, while the half-plane rotates around its boundary line. The ratio of the angular velocities of these rotations is such that the rotation of the half-plane through 360° takes the same time as the rotation of the segment through 180°. See below.

$\left\lceil 22^{\prime} 6\right\rfloor$ Contracting Subsets

22.4. Prove that $[0,1] /[1 / 3,2 / 3]$ is homeomorphic to $[0,1]$, and $[0,1] /\{1 / 3,1\}$ is homeomorphic to letter P .
22.5. Prove that the following spaces are homeomorphic:
(1) \mathbb{R}^{2};
(2) \mathbb{R}^{2} / I;
(3) \mathbb{R}^{2} / D^{2};
(4) \mathbb{R}^{2} / I^{2};
(5) \mathbb{R}^{2} / A, where A is the union of several segments with a common end point;
(6) \mathbb{R}^{2} / B, where B is a simple polyline, i.e., the union of a finite sequence of segments I_{1}, \ldots, I_{n} such that the initial point of I_{i+1} is the final point of I_{i}.
22.6. Prove that if $f: X \rightarrow Y$ is a homeomorphism, then the quotient spaces X / A and $Y / f(A)$ are homeomorphic.
22.7. Let $A \subset \mathbb{R}^{2}$ be the ray $\{(x, y) \mid x \geq 0, y=0\}$. Is \mathbb{R}^{2} / A homeomorphic to $\operatorname{Int} D^{2} \cup\{(0,1)\}$?

$\left\lceil 22^{\prime} 7\right\rfloor$ Further Examples

22.8. Prove that $S^{1} /\left[z \sim e^{2 \pi i / 3} z\right]$ is homeomorphic to S^{1}.

The partition in 22.8 consists of triples of points that are vertices of equilateral inscribed triangles.
22.9. Prove that the following quotient spaces of the disk D^{2} are homeomorphic to D^{2} :
(1) $D^{2} /[(x, y) \sim(-x,-y)]$.
(2) $D^{2} /[(x, y) \sim(x,-y)]$.
(3) $D^{2} /[(x, y) \sim(-y, x)]$.
22.10. Find a generalization of 22.9 with D^{n} substituted for D^{2}.
22.11. Describe explicitly the quotient space of the line \mathbb{R}^{1} by the equivalence relation $x \sim y \Leftrightarrow x-y \in \mathbb{Z}$.
22.12. Represent the Möbius strip as a quotient space of cylinder $S^{1} \times I$.

$\left\lceil 22^{\prime} 8 」\right.$ Klein Bottle

The Klein bottle is $I^{2} /[(t, 0) \sim(t, 1),(0, t) \sim(1,1-t)]$. In other words, this is the quotient space of square I^{2} by the partition into

- singletons in its interior,
- pairs of points $(t, 0),(t, 1)$ on horizontal edges that lie on the same vertical line,
- pairs of points $(0, t) .(1,1-t)$ symmetric with respect to the center of the square that lie on the vertical edges. and
- the quadruple of vertices.
22.13. Present the Klein bottle as a quotient space of
(1) a cylinder;
(2) the Möbius strip.
22.14. Prove that $S^{1} \times S^{1} /[(z, w) \sim(-z, \bar{w})]$ is homeomorphic to the Klein bottle. (Here \bar{w} denotes the complex number conjugate to w.)
22.15. Embed the Klein bottle in \mathbb{R}^{4} (cf. 22.I and 20.W).
22.16. Embed the Klein bottle in \mathbb{R}^{4} so that the image of this embedding under the orthogonal projection $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ would look as follows:

「22＇9」 Projective Plane

Let us identify each boundary point of the disk D^{2} with the antipodal point，i．e．，we factorize the disk by the partition consisting of singletons in the interior of the disk and pairs of points on the boundary circle symmetric with respect to the center of the disk．The result is the projective plane． This space cannot be embedded in \mathbb{R}^{3} ，too．Thus，we are not able to draw it．Instead，we present it differently．

22．J．A projective plane is a result of gluing together a disk and a Möbius strip via a homeomorphism between their boundary circles．

$\left\lceil 22^{\prime} 10 」\right.$ You May Have Been Provoked to Perform an Illegal Operation

Solving the previous problem，you did something that did not fit into the theory presented above．Indeed，the operation with two spaces called g／uing in 22．J has not appeared yet．It is a combination of two operations：first，we make a single space consisting of disjoint copies of the original spaces，and then we factorize this space by identifying points of one copy with points of another．Let us consider the first operation in detail．

$\left\lceil 22^{\prime} 11\right\rfloor$ Set－Theoretic Digression：Sums of Sets

The（disjoint）sum of a family of sets $\left\{X_{\alpha}\right\}_{\alpha \in A}$ is the set of pairs $\left(x_{\alpha}, \alpha\right)$ such that $x_{\alpha} \in X_{\alpha}$ ．The sum is denoted by $\bigsqcup_{\alpha \in A} X_{\alpha}$ ．So，we can write

$$
\bigsqcup_{\alpha \in A} X_{\alpha}=\bigcup_{\alpha \in A}\left(X_{\alpha} \times\{\alpha\}\right) .
$$

For each $\beta \in A$ ，we have a natural injection

$$
\operatorname{in}_{\beta}: X_{\beta} \rightarrow \bigsqcup_{\alpha \in A} X_{\alpha}: x \mapsto(x, \beta) .
$$

If only two sets X and Y are involved and they are distinct，then we can avoid indices and define the sum by setting

$$
X \sqcup Y=\{(x, X) \mid x \in X\} \cup\{(y, Y) \mid y \in Y\} .
$$

「22＇12」 Sums of Spaces

22．K．Let $\left\{X_{\alpha}\right\}_{\alpha \in A}$ be a collection of topological spaces．Then the collec－ tion of subsets of $\bigsqcup_{\alpha \in A} X_{\alpha}$ whose preimages under all inclusions $\mathrm{in}_{\alpha}, \alpha \in A$ ， are open is a topological structure．

The sum $\bigsqcup_{\alpha \in A} X_{\alpha}$ with this topology is the（disjoint）sum of the topo－ logical spaces $X_{\alpha}(\alpha \in A)$ ．

22．L．The topology described in 22．K is the finest topology with respect to which all inclusions in_{α} are continuous．
22.17. The maps $\operatorname{in}_{\beta}: X_{\beta} \rightarrow \bigsqcup_{\alpha \in A} X_{\alpha}$ are topological embeddings, and their images are both open and closed in $\bigsqcup_{\alpha \in A} X_{\alpha}$.
22.18. Which of the standard topological properties are inherited from summands X_{α} by the sum $\bigsqcup_{\alpha \in A} X_{\alpha}$? Which are not?

〔22'13」 Attaching Space

Let X and Y be two spaces, A a subset of Y, and $f: A \rightarrow X$ a continuous map. The quotient space $X \cup_{f} Y=(X \sqcup Y) /[a \sim f(a)$ for $a \in A]$ is called the result of attaching or gluing the space Y to the space X via f. The map f is the attaching map.

Here the partition of $X \sqcup Y$ consists of singletons in $\operatorname{in}_{2}(Y \backslash A)$ and $\operatorname{in}_{1}(X \backslash f(A))$, and sets $\operatorname{in}_{1}(x) \cup \operatorname{in}_{2}\left(f^{-1}(x)\right)$ with $x \in f(A)$.
22.19. Prove that the composition of the inclusion $X \rightarrow X\llcorner Y$ and the projection $X \sqcup Y \rightarrow X \cup_{f} Y$ is a topological embedding.
22.20. Prove that if X is a point, then $X \cup_{f} Y$ is Y / A.
22.M. Prove that attaching the n-disk D^{n} to its copy via the identity map of the boundary sphere S^{n-1} we obtain a space homeomorphic to S^{n}.
22.21. Prove that the Klein bottle is a result of gluing together two copies of the Möbius strip via the identity map of the boundary circle.

22.22. Prove that the result of gluing together two copies of a cylinder via the identity map of the boundary circles (of one copy to the boundary circles of the other) is homeomorphic to $S^{1} \times S^{1}$.
22.23. Prove that the result of gluing together two copies of the solid torus $S^{1} \times D^{2}$ via the identity map of the boundary torus $S^{1} \times S^{1}$ is homeomorphic to $S^{1} \times S^{2}$.
22.24. Obtain the Klein bottle by gluing two copies of the cylinder $S^{1} \times I$ to each other.
22.25. Prove that the result of gluing together two copies of the solid torus $S^{1} \times D^{2}$ via the map

$$
S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}:(x, y) \mapsto(y, x)
$$

of the boundary torus to its copy is homeomorphic to S^{3}.
22.N. Let X and Y be two spaces, A a subset of Y, and $f, g: A \rightarrow X$ two continuous maps. Prove that if there exists a homeomorphism $h: X \rightarrow X$ such that $h \circ f=g$, then $X \cup_{f} Y$ and $X \cup_{g} Y$ are homeomorphic.
22.O. Prove that $D^{n} \cup_{h} D^{n}$ is homeomorphic to S^{n} for each homeomorphism $h: S^{n-1} \rightarrow S^{n-1}$.
22.26. Classify up to homeomorphism the spaces that can be obtained from a square by identifying a pair of opposite sides by a homeomorphism.
22.27. Classify up to homeomorphism the spaces that can be obtained from two copies of $S^{1} \times I$ by identifying the copies of $S^{1} \times\{0,1\}$ via a homeomorphism.
22.28. Prove that the topological type of the space resulting from gluing together two copies of the Möbius strip via a homeomorphism of the boundary circle does not depend on the homeomorphism.
22.29. Classify up to homeomorphism the spaces that can be obtained from $S^{1} \times I$ by identifying $S^{1} \times 0$ and $S^{1} \times 1$ via a homeomorphism.

$\left\lceil 22^{\prime} 14\right.$ Basic Surfaces

Deleting from the torus $S^{1} \times S^{1}$ the interior of an embedded disk, we obtain a handle. Similarly, deleting from the two-sphere the interior of n disjoint embedded disks, we obtain a sphere with n holes.
22.P. A sphere with a hole is homeomorphic to the disk D^{2}.
22. Q. A sphere with two holes is homeomorphic to the cylinder $S^{1} \times I$.

A sphere with three holes has a special name. It is called pantaloons or just pants.

The result of attaching p copies of a handle to a sphere with p holes via embeddings homeomorphically mapping the boundary circles of the handles onto those of the holes is a sphere with p handles, or, in a more ceremonial way (and less understandable, for a while), an orientable connected closed surface of genus p.
22.30. Prove that a sphere with p handles is well defined up to homeomorphism (i.e., the topological type of the result of gluing does not depend on the attaching embeddings).
22.R. A sphere with one handle is homeomorphic to the torus $S^{1} \times S^{1}$.

22.S. A sphere with two handles is homeomorphic to the result of gluing together two copies of a handle via the identity map of the boundary circle.

A sphere with two handles is a pretzel. Sometimes, this word also denotes a sphere with more handles.

The space obtained from a sphere with q holes by attaching q copies of the Möbius strip via embeddings of the boundary circles of the Möbius strips onto the boundary circles of the holes (the boundaries of the holes) is a sphere with q cross-caps, or a nonorientable connected closed surface of genus q.
22.31. Prove that a sphere with q cross-caps is well defined up to homeomorphism (i.e., the topological type of the result of gluing does not depend on the attaching embeddings).
22.T. A sphere with a cross-cap is homeomorphic to the projective plane.
22. \boldsymbol{U}. A sphere with two cross-caps is homeomorphic to the Klein bottle.

A sphere, spheres with handles, and spheres with cross-caps are basic surfaces.
22.V. Prove that a sphere with p handles and q cross-caps is homeomorphic to a sphere with $2 p+q$ cross-caps (here $q>0$).
22.32. Classify up to homeomorphism those spaces which are obtained by attaching p copies of $S^{1} \times I$ to a sphere with $2 p$ holes via embeddings of the boundary circles of the cylinders onto the boundary circles of the sphere with holes.

23. Projective Spaces

This section can be considered as a continuation of the previous one. The quotient spaces described here are of too great importance to regard them just as examples of quotient spaces.

$\left\lceil 23^{\prime} 1 〕\right.$ Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere S^{n} by the partition into pairs of antipodal points. and denoted by $\mathbb{R} P^{n}$.
23.A. The space $\mathbb{R} P^{n}$ is homeomorphic to the quotient space of the n disk D^{n} by the partition into singletons in the interior of D^{n}. and pairs of antipodal point of the boundary sphere S^{n-1}.
23.B. $\mathbb{R} P^{0}$ is a point.
23.C. The space $\mathbb{R} P^{1}$ is homeomorphic to the circle S^{1}.
23.D. The space $\mathbb{R} P^{2}$ is homeomorphic to the projective plane defined in the previous section.
23.E. The space $\mathbb{R} P^{n}$ is canonically homeomorphic to the quotient space of $\mathbb{R}^{n+1} \backslash 0$ by the partition into one-dimensional vector subspaces of \mathbb{R}^{n+1} punctured at 0 .

A point of the space $\mathbb{R}^{n+1} \backslash 0$ is a sequence of real numbers, which are not all zeros. These numbers are the homogeneous coordinates of the corresponding point of $\mathbb{R} P^{n}$. The point with homogeneous coordinates x_{0}, x_{1}, \ldots, x_{n} is denoted by $\left(x_{0}: x_{1}: \cdots: x_{n}\right)$. Homogeneous coordinates determine a point of $\mathbb{R} P^{n}$, but are not determined by this point: proportional vectors of coordinates $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and $\left(\lambda x_{0}, \lambda x_{1}, \ldots . \lambda x_{n}\right)$ determine the same point of $\mathbb{R} P^{n}$.
23.F. The space $\mathbb{R} P^{n}$ is canonically homeomorphic to the metric space whose points are lines of \mathbb{R}^{n+1} through the origin $0=(0, \ldots, 0)$ and the metric is defined as the angle between lines (which takes values in $[0, \pi / 2]$). Prove that this is really a metric.
23.G. Prove that the map

$$
i: \mathbb{R}^{n} \rightarrow \mathbb{R} P^{n}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(1: x_{1}: \cdots: x_{n}\right)
$$

is a topological embedding. What is its image? What is the inverse map of its image onto \mathbb{R}^{n} ?
23.H. Construct a topological embedding $\mathbb{R} P^{n-1} \rightarrow \mathbb{R} P^{n}$ with image $\mathbb{R} P^{n} \backslash i\left(\mathbb{R}^{n}\right)$, where i is the embedding from Problem 23.G.

Therefore, the projective space $\mathbb{R} P^{n}$ can be regarded as the result of extending \mathbb{R}^{n} by adjoining "improper" or "infinite" points, which constitute a projective space $\mathbb{R} P^{n-1}$.
23.1. Introduce a natural topological structure in the set of all lines on the plane and prove that the resulting space is homeomorphic to a) $\mathbb{R} P^{2} \backslash\{\mathrm{pt}\}$; b) open Möbius strip (i.e., a Möbius strip with the boundary circle removed).
23.2. Prove that the set of all rotations of the space \mathbb{R}^{3} around lines passing through the origin equipped with the natural topology is homeomorphic to $\mathbb{R} P^{3}$.

$\left\lceil 23^{\prime} \mathbf{2 x}\right\rfloor$ Complex Projective Space of Dimension n

This space is defined as the quotient space of the unit sphere $S^{2 n+1}$ in \mathbb{C}^{n+1} by the partition into circles cut by (complex) lines of \mathbb{C}^{n+1} passing through the point 0 . It is denoted by $\mathbb{C} P^{n}$.
23.Ix. $\mathbb{C} P^{n}$ is homeomorphic to the quotient space of the unit $2 n$-disk $D^{2 n}$ of the space \mathbb{C}^{n} by the partition whose elements are singletons in the interior of $D^{2 n}$ and circles cut on the boundary sphere $S^{2 n-1}$ by (complex) lines of \mathbb{C}^{n} passing through the origin $0 \in \mathbb{C}^{n}$.

23.Jx. $\mathbb{C} P^{0}$ is a point.

The space $\mathbb{C} P^{1}$ is a complex projective line.
23. $K \mathbf{x}$. The complex projective line $\mathbb{C} P^{1}$ is homeomorphic to S^{2}.
23.Lx. The space $\mathbb{C} P^{n}$ is canonically homeomorphic to the quotient space of the space $\mathbb{C}^{n+1} \backslash 0$ by the partition into complex lines of \mathbb{C}^{n+1} punctured at 0 .

Hence, $\mathbb{C} P^{n}$ can be regarded as the space of complex-proportional nonzero complex sequences $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. The notation ($x_{0}: x_{1}: \cdots: x_{n}$) and the term homogeneous coordinates introduced in the real case are used in the same way for the complex case.
23.Mx. The space $\mathbb{C} P^{n}$ is canonically homeomorphic to the metric space, whose points are the (complex) lines of \mathbb{C}^{n+1} passing through the origin 0 , and the metric is defined as the angle between lines (which takes values in $[0, \pi / 2]$).

$\left\lceil 23^{\prime} 3 x\right\rfloor$ Quaternionic Projective Spaces

Recall that \mathbb{R}^{4} bears a remarkable multiplication, which was discovered by R. W. Hamilton in 1843. It can be defined by the formula

$$
\begin{aligned}
& \left(x_{1}, x_{1}, x_{3}, x_{4}\right) \times\left(y_{1}, y_{2}, y_{3}, y_{4}\right)= \\
& \quad\left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}, \quad x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right. \\
& \left.\quad x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}, \quad x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}\right)
\end{aligned}
$$

It is bilinear, and to describe it in a shorter way it suffices to specify the products of the basis vectors. Following Hamilton, the latter are traditionally denoted (in this case) as follows:

$$
1=(1,0,0,0), \quad i=(0,1,0,0), \quad j=(0,0,1,0), \quad \text { and } \quad k=(0,0,0,1) .
$$

In this notation, 1 is really a unity: $(1,0,0,0) \times x=x$ for each $x \in \mathbb{R}^{4}$. The rest of the multiplication table looks as follows:

$$
i j=k, \quad j k=i, \quad k i=j, \quad j i=-k, \quad k j=-i, \quad \text { and } \quad i k=-j .
$$

Together with coordinate-wise addition, this multiplication determines a structure of algebra in \mathbb{R}^{4}. Its elements are quaternions.
23.Nx. Check that the quaternion multiplication is associative.

It is not commutative (e.g., $i j=k \neq-k=j i$). Otherwise. quaternions are very similar to complex numbers. As in \mathbb{C}, there is a transformation called conjugation acting in the set of quaternions. As well as the conjugation of complex numbers, it is also denoted by a bar: $x \mapsto \bar{x}$. It is defined by the formula $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1},-x_{2},-x_{3},-x_{4}\right)$ and has two remarkable properties:
23.Ox. We have $\overline{a b}=\bar{b} \bar{a}$ for any two quaternions a and b.
23.Px. We have $a \bar{a}=|a|^{2}$, i.e., the product of any quaternion a by the conjugate quaternion \bar{a} equals $\left(|a|^{2}, 0,0,0\right)$.

The latter property allows us to define, for any $a \in \mathbb{R}^{4}$, the inverse quaternion

$$
a^{-1}=|a|^{-2} \bar{a}
$$

such that $a a^{-1}=1$.
Hence, the quaternion algebra is a division algebra or a skew field. It is denoted by \mathbb{H} after Hamilton, who discovered it.

In the space $\mathbb{H}^{n}=\mathbb{R}^{4 n}$, there are right quaternionic lines, i.e., subsets $\left\{\left(a_{1} \xi, \ldots, a_{n} \xi\right) \mid \xi \in \mathbb{H}\right\}$, and similar left quaternionic lines $\left\{\left(\xi a_{1}, \ldots, \xi a_{n}\right) \mid\right.$ $\xi \in \mathbb{H}\}$. Each of them is a real 4-dimensional subspace of $\mathbb{H}^{n}=\mathbb{R}^{4 n}$.
23. $Q \mathbf{x}$. Find a right quaternionic line that is not a left quaternionic line.
23.Rx. Prove that two right quaternionic lines in \mathbb{H}^{n} either meet only at 0 , or coincide.

The quotient space of the unit sphere $S^{4 n+3}$ of the space $\mathbb{H}^{n+1}=\mathbb{R}^{4 n+4}$ by the partition into its intersections with right quaternionic lines is the (right) quaternionic projective space of dimension n. Similarly, but with left quaternionic lines, we define the (left) quaternionic projective space of dimension n.
23.5 x . Are the right and left quaternionic projective space of the same dimension homeomorphic?

The left quaternionic projective space of dimension n is denoted by $\mathbb{H} P^{n}$.
23.Tx. $\mathbb{H} P^{0}$ is a singleton.
23. Ux. $\mathbb{H} P^{n}$ is homeomorphic to the quotient space of the closed unit disk $D^{4 n}$ in \mathbb{H}^{n} by the partition into points of the interior of $D^{4 n}$ and the 3 -spheres that are intersections of the boundary sphere $S^{4 n-1}$ with (left quaternionic) lines of \mathbb{H}^{n}.

The space $\mathbb{H} P^{1}$ is the quaternionic projective line.
23. Vx. Quaternionic projective line $\mathbb{H} P^{1}$ is homeomorphic to S^{4}.
23. $W \mathbf{x} . \mathbb{H} P^{n}$ is canonically homeomorphic to the quotient space of $\mathbb{H}^{n+1} \backslash 0$ by the partition to left quaternionic lines of \mathbb{H}^{n+1} passing through the origin and punctured at it.

Hence, $\mathbb{H} P^{n}$ can be presented as the space of classes of left proportional (in the quaternionic sense) nonzero sequences (x_{0}, \ldots, x_{n}) of quaternions. The notation ($x_{0}: x_{1}: \cdots: x_{n}$) and the term homogeneous coordinates introduced above in the real case are used in the same way in the quaternionic situation.
23. $\mathrm{X} \mathbf{x} . \mathbb{H} P^{n}$ is canonically homeomorphic to the set of (left quaternionic) lines of \mathbb{H}^{n+1} equipped with the topology generated by the angular metric (which takes values in $[0, \pi / 2]$).

24x. Finite Topological Spaces

$\left\lceil 24^{\prime} 1 \mathrm{x}\right\rfloor$ Set-Theoretic Digression:
 Splitting a Transitive Relation
 Into Equivalence and Partial Order

In the definitions of equivalence and partial order relations, the condition of transitivity seems to be the most important. Below, we supply a formal justification of this feeling by showing that the other conditions are natural companions of transitivity: although they are not its consequences.
24. Ax. Let \prec be a transitive relation on a set X. Then the relation \precsim defined by

$$
a \precsim b \text { if } a \prec b \text { or } a=b
$$

is also transitive (and, furthermore, it is certainly reflexive, i.e., $a \precsim$ a for each $a \in X$).

A binary relation \precsim on a set X is a preorder if it is transitive and reflective, i.e., satisfies the following conditions:

- Transitivity. If $a \precsim b$ and $b \precsim c$, then $a \precsim c$.
- Reflexivity. We have $a \precsim a$ for any a.

A set X equipped with a preorder is preordered.
If a preorder is antisymmetric, then this is a nonstrict order.
24.1x. Is the relation $a \mid b$ a preorder on the set \mathbb{Z} of integers?
24.Bx. If (X, \precsim) is a preordered set, then the relation \sim defined by

$$
a \sim b \text { if } a \precsim b \text { and } b \precsim a
$$

is an equivalence relation (i.e., it is symmetric. reflexive, and transitive) on X.
24.2x. What equivalence relation is defined on \mathbb{Z} by the preorder $a \mid b$?
24.Cx. Let (X, \precsim) be a preordered set, and let \sim be an equivalence relation defined on X by \precsim according to 24.Bx. Then $a^{\prime} \sim a$, $a \precsim b$, and $b \sim b^{\prime}$ imply $a^{\prime} \precsim b^{\prime}$ and in this way \precsim determines a relation on the set of equivalence classes X / \sim. This relation is a nonstrict partial order.

Thus, any transitive relation generates an equivalence relation and a partial order on the set of equivalence classes.
24.Dx. How this chain of constructions would degenerate if the original relation was
(1) an equivalence relation, or
(2) nonstrict partial order?
24.Ex. In any topological space, the relation \precsim defined by

$$
a \precsim b \text { if } a \in \operatorname{Cl}\{b\}
$$

is a preorder.
24.3x. In the set of all subsets of an arbitrary topological space, the relation

$$
A \precsim B \text { if } A \subset \mathrm{Cl} B
$$

is a preorder. This preorder determines the following equivalence relation: two sets are equivalent iff they have the same closure.
24.Fx. The equivalence relation determined by the preorder which is defined in Theorem 24.Ex determines the partition of the space into maximal (with respect to inclusion) indiscrete subspaces. The quotient space satisfies the Kolmogorov separation axiom T_{0}.

The quotient space of Theorem 24.Fx is the maximal T_{0}-quotient of X.
24.Gx. A continuous image of an indiscrete space is indiscrete.
24.Hx. Prove that any continuous map $X \rightarrow Y$ induces a continuous map of the maximal T_{0}-quotient of X to the maximal T_{0}-quotient of Y.

$\lceil\mathbf{2 4} \mathbf{\prime 2} \mathbf{x}\rfloor$ The Structure of Finite Topological Spaces

The results of the preceding subsection provide a key to understanding the structure of finite topological spaces. Let X be a finite space. By Theorem 24.Fx, X is partitioned to indiscrete clusters of points. By 24.Gx, continuous maps between finite spaces respect these clusters and, by $24 . H x$, induce continuous maps between the maximal T_{0}-quotient spaces.

This means that we can consider a finite topological space as its maximal T_{0}-quotient whose points are equipped with multiplicities, which are positive integers: the numbers of points in the corresponding clusters of the original space.

The maximal T_{0}-quotient of a finite space is a smallest neighborhood space (as a finite space). By Theorem 15.O, its topology is determined by a partial order. By Theorem 10.Xx, homeomorphisms between spaces with poset topologies are monotone bijections.

Thus, a finite topological space is characterized up to homeomorphism by a finite poset whose elements are equipped with multiplicities (positive integers). Two such spaces are homeomorphic iff there exists a monotone bijection between the corresponding posets that preserves the multiplicities. To recover the topological space from a poset with multiplicities, we must equip the poset with the poset topology and then replace each of its elements by an indiscrete cluster of points, the number points in which is the multiplicity of the element.

$\left\lceil 24^{\prime} 3 \mathrm{x}\right\rfloor$ Simplicial Schemes

Let V be a set, Σ a certain set of subsets of V. A pair (V, Σ) is a simplicial scheme with the set of vertices V and the set of simplices Σ if

- each subset of each set in Σ belongs to Σ,
- the intersection of any collection of sets in Σ belongs to Σ,
- each singleton in V belongs to Σ.

The set Σ is partially ordered br inclusion. When equipped with the poset topology of this partial order. it is called the space of simplices of the simplicial scheme ($X . \Sigma$).

A simplicial scheme also vields another topological space. Namely: for a simplicial scheme (I^{-}, Σ). consider the set $S\left(\mathrm{I}^{\circ} . \Sigma\right)$ of all functions $c: I^{\circ} \rightarrow$ $[0,1]$ such that

$$
\operatorname{Supp}(c)=\{v \in V \mid c(v) \neq 0\} \in \Sigma
$$

and $\sum_{v \in V} c(v)=1$. Equip $S(V, \Sigma)$ with the topology generated by metric

$$
\rho\left(c_{1}, c_{2}\right)=\sup _{v \in V}\left|c_{1}(v)-c_{2}(v)\right|
$$

The space $S(V, \Sigma)$ is a simplicial or triangulated space. It is covered by the sets $\{c \in S \mid \operatorname{Supp}(c)=\sigma\}$, where $\sigma \in \Sigma$, which are called its (open) simplices.

> 24.4 x . Which open simplices of a simplicial space are open sets, which are closed, and which are neither closed nor open?
24.Ix. For each $\sigma \in \Sigma$, find a homeomorphism of the space

$$
\{c \in S \mid \operatorname{Supp}(c)=\sigma\} \subset S(V, \Sigma)
$$

onto an open simplex whose dimension is one less than the number of vertices belonging to σ. (Recall that the open n-simplex is the set $\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in\right.$ $\mathbb{R}^{n+1} \mid x_{j}>0$ for $j=1, \ldots, n+1$ and $\left.\sum_{i=1}^{n+1} x_{i}=1\right\}$.)
24.Jx. Prove that for each simplicial scheme (V, Σ) the quotient space of the simplicial space $S(V, \Sigma)$ by its partition into open simplices is homeomorphic to the space Σ of simplices of the simplicial scheme (V, Σ).

$\left\lceil 24^{\prime} 4 \mathrm{x}\right\rfloor$ Barycentric Subdivision of a Poset

24.Kx. Find a poset which is not isomorphic to the set of simplices (ordered by inclusion) of whatever simplicial scheme.

Let (X, \prec) be a poset. Consider the set X^{\prime} of all nonempty finite strictly increasing sequences $a_{1} \prec a_{2} \prec \cdots \prec a_{n}$ of elements of X. It can also be described as the set of all nonempty finite subsets of X in each of which \prec determines a linear order. It is naturally ordered by inclusion.

The poset $\left(X^{\prime}, \subset\right)$ is the barycentric subdivision of (X, \prec).
24. $\mathbf{L x}$. For any poset (X, \prec), the pair (X, X^{\prime}) is a simplicial scheme.

There is a natural map $X^{\prime} \rightarrow X$ that sends an element of X^{\prime} (i.e., a nonempty finite linearly ordered subset of X) to its greatest element.
24.Mx. Is this map monotone? Strictly monotone? The same questions concerning a similar map that sends a nonempty finite linearly ordered subset of X to its smallest element.

Let (V, Σ) be a simplicial scheme, and let Σ^{\prime} be the barycentric subdivision of Σ (ordered by inclusion). The simplicial scheme $\left(\Sigma, \Sigma^{\prime}\right)$ is the barycentric subdivision of the simplicial scheme (V, Σ).

There is a natural mapping $\Sigma \rightarrow S(V, \Sigma)$ that sends a simplex $\sigma \in \Sigma$ (i.e., a subset $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ of V) to the function $b_{\sigma}: V \rightarrow \mathbb{R}$ with $b_{\sigma}\left(v_{i}\right)=$ $1 /(n+1)$ and $b_{\sigma}(v)=0$ for any $v \notin \sigma$.

Define a map $\beta: S\left(\Sigma, \Sigma^{\prime}\right) \rightarrow S(V, \Sigma)$ that sends a function $\varphi: \Sigma \rightarrow \mathbb{R}$ to the function

$$
V \rightarrow \mathbb{R}: v \mapsto \sum_{\sigma \in \Sigma} \varphi(\sigma) b_{\sigma}(v) .
$$

24. $N \mathrm{x}$. Prove that the map $\beta: S\left(\Sigma, \Sigma^{\prime}\right) \rightarrow S(V, \Sigma)$ is a homeomorphism and constitutes, together with the projections $S(V, \Sigma) \rightarrow \Sigma$ and $S\left(\Sigma, \Sigma^{\prime}\right) \rightarrow \Sigma^{\prime}$ and the natural map $\Sigma^{\prime} \rightarrow \Sigma$, a commutative diagram

25x. Spaces of Continuous Maps

$\left\lceil 25^{\prime} 1 \mathrm{x}\right\rfloor$ Sets of Continuous Mappings

We denote by $\mathcal{C}(X, Y)$ the set of all continuous maps of a space X to a space Y.
25.1x. Let X be nonempty. Prove that $\mathcal{C}(X, Y)$ is a singleton iff so is Y°.
25.2x. Let X be nonempty: Prove that there exists an injection $Y \rightarrow \mathcal{C}\left(X . Y^{\circ}\right)$. In other words, the cardinality card $\mathcal{C}(X . Y)$ of $\mathcal{C}(X, Y)$ is greater than or equal to card Y.
25.3x. Riddle. Find natural conditions implying that $\mathcal{C}(X, Y)=Y$.
25.4x. Let $Y=\{0,1\}$ be equipped with the topology $\{\varnothing .\{0\},\{0,1\}\}$. Prove that there exists a bijection between $\mathcal{C}(X, Y)$ and the topological structure of X.
25.5x. Let X be an n-element discrete space. Prove that $\mathcal{C}(X, Y)$ can be identified with $Y \times \cdots \times Y$ (n factors).
25.6x. Let Y be a k-element discrete space. Find a necessary and sufficient condition for the set $\mathcal{C}(X, Y)$ to contain k^{2} elements.

$\left\lceil\mathbf{2 5} \mathbf{h}^{\prime 2} \mathrm{x}\right\rfloor$ Topologies on a Set of Continuous Mappings

Let X and Y be two topological spaces, $A \subset X$, and $B \subset Y$. We define $W(A, B)=\{f \in \mathcal{C}(X, Y) \mid f(A) \subset B\}$,

$$
\Delta^{(p w)}=\{W(a, U) \mid a \in X, U \text { is open in } Y\} .
$$

and

$$
\Delta^{(c o)}=\{W(C, U) \mid C \subset X \text { is compact, } U \text { is open in } Y\} .
$$

25. $A \mathbf{x}$. $\Delta^{(p w)}$ is a subbase of a topological structure on $\mathcal{C}(X, Y)$.

The topological structure generated by $\Delta^{(p w)}$ is the topology of pointwise convergence. The set $\mathcal{C}(X, Y)$ equipped with this structure is denoted by $\mathcal{C}^{(p w)}(X, Y)$.
25.Bx. $\Delta^{(c o)}$ is a subbase of a topological structures on $\mathcal{C}(X, Y)$.

The topological structure determined by $\Delta^{(c o)}$ is the compact-open topology. Hereafter we denote by $\mathcal{C}(X, Y)$ the space of all continuous maps $X \rightarrow Y$ with the compact-open topology, unless the contrary is specified explicitly.
25.Cx Compact-Open Versus Pointwise. The compact-open topology is finer than the topology of pointwise convergence.
25.7x. Prove that $\mathcal{C}(I . I)$ is not homeomorphic to $\mathcal{C}^{(p w)}(I, I)$.

Denote by $\operatorname{Const}(X, Y)$ the set of all constant maps $f: X \rightarrow Y$.
25.8 x . Prove that the topology of pointwise convergence and the compact-open topology of $\mathcal{C}(X, Y)$ induce the same topological structure on $\operatorname{Const}(X, Y)$, which, with this topology, is homeomorphic Y.
25.9x. Let X be an n-element discrete space. Prove that $\mathcal{C}^{(p w)}(X, Y)$ is homeomorphic $Y \times \cdots \times Y$ (n times). Is this true for $\mathcal{C}(X, Y)$?

$\left\lceil 25^{\prime} \mathbf{3 x}\right.$ 」 Topological Properties of Mapping Spaces

25. Dx. If Y is Hausdorff, then $\mathcal{C}^{(p w)}(X, Y)$ is Hausdorff for any space X. Is this true for $\mathcal{C}(X, Y)$?
25.10x. Prove that $\mathcal{C}(I, X)$ is path-connected iff so is X.
25.11 x . Prove that $\mathcal{C}^{(p w)}(I, I)$ is not compact. Is the space $\mathcal{C}(I, I)$ compact?

$\left\lceil 25^{\prime} 4 \mathrm{x}\right\rfloor$ Metric Case

25.Ex. If Y is metrizable and X is compact, then $\mathcal{C}(X, Y)$ is metrizable.

Let (Y, ρ) be a metric space, X a compact space. For continuous maps $f, g: X \rightarrow Y$, let

$$
d(f, g)=\max \{\rho(f(x), g(x)) \mid x \in X\}
$$

25.F× This is a Metric. If X is a compact space and Y a metric space, then d is a metric on the set $\mathcal{C}(X, Y)$.

Let X be a topological space, Y a metric space with metric ρ. A sequence f_{n} of maps $X \rightarrow Y$ uniformly converges to $f: X \rightarrow Y$ if for each $\varepsilon>0$ there exists a positive integer N such that $\rho\left(f_{n}(x), f(x)\right)<\varepsilon$ for any $n>N$ and $x \in X$. This is a straightforward generalization of the notion of uniform convergence which is known from Calculus.
25.G× Metric of Uniform Convergence. Let X be a compact space, (Y, d) a metric space. A sequence f_{n} of maps $X \rightarrow Y$ converges to $f: X \rightarrow Y$ in the topology generated by d iff f_{n} uniformly converges to f.
25.Hx Completeness of $\mathcal{C}(X, Y)$. Let X be a compact space, (Y, ρ) a complete metric space. Then $(\mathcal{C}(X, Y), d)$ is a complete metric space.
25.Ix Uniform Convergence Versus Compact-Open. Let X be a compact space, Y a metric space. Then the topology generated by d on $\mathcal{C}(X, Y)$ is the compact-open topology.
25.12x. Prove that the space $\mathcal{C}(\mathbb{R} . I)$ is metrizable.
25.13x. Let Y be a bounded metric space, and let X be a topological space admitting a presentation $X=\bigcup_{i=1}^{\infty} X_{i}$, where X_{i} is compact and $X_{i} \subset \operatorname{Int} X_{i+1}$ for each $i=1,2, \ldots$. Prove that $\mathcal{C}(X, Y)$ is metrizable.

Denote by $\mathcal{C}_{b}(X, Y)$ the set of all continuous bounded maps from a topological space X to a metric space Y. For maps $f, g \in \mathcal{C}_{b}(X, Y)$, put

$$
d^{\infty}(f, g)=\sup \{\rho(f(x), g(x)) \mid x \in X\} .
$$

25.Jx Metric on Bounded Maps. This is a metric on $\mathcal{C}_{b}(X . Y)$.
25.Kx d^{∞} and Uniform Convergence. Let X be a topological space, Y a metric space. A sequence f_{n} of bounded maps $X \rightarrow Y$ converges to $f: X \rightarrow Y$ in the topology generated by d^{∞} iff f_{n} uniformly converge to f.
25.Lx When Uniform Is not Compact-Open. Find X and Y such that the topology generated by d^{∞} on $\mathcal{C}_{b}(\mathcal{Y} . Y)$ is not the compact-open topology.

$\left\lceil 25^{\prime} 5 \mathrm{x}\right.$ 」 Interactions with Other Constructions

25.Mx. For any continuous maps $\varphi: X^{\prime} \rightarrow X$ and $\tau^{\prime}: Y \rightarrow \mathrm{I}^{\prime \prime}$. the map $\mathcal{C}(X, Y) \rightarrow \mathcal{C}\left(X^{\prime}, Y^{\prime}\right): f \mapsto \psi \circ f \circ \varphi$ is continuous.
25.Nx Continuity of Restricting. Let X and Y be two spaces, $A \subset X$ a subset. Prove that the map $\mathcal{C}(X, Y) \rightarrow \mathcal{C}(A, Y):\left.f \mapsto f\right|_{A}$ is continuous.
25.Ox Extending Target. For any spaces X and Y and any $B \subset Y$, the map $\mathcal{C}(X, B) \rightarrow \mathcal{C}(X, Y): f \mapsto i_{B} \circ f$ is a topological embedding.
25.Px Maps to Product. For any three spaces X, Y, and Z, the space $\mathcal{C}(X, Y \times Z)$ is canonically homeomorphic to $\mathcal{C}(X, Y) \times \mathcal{C}(X, Z)$.
25.Qx Restricting to Sets Covering Source. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a closed cover of X. Prove that for each space Y the map

$$
\phi: \mathcal{C}(X, Y) \rightarrow \prod_{i=1}^{n} \mathcal{C}\left(X_{i}, Y\right): f \mapsto\left(\left.f\right|_{X_{1}}, \ldots,\left.f\right|_{X_{n}}\right)
$$

is a topological embedding. What if the cover is not fundamental?
25.Rx. Riddle. Can you generalize assertion 25.Qx?
25.S× Continuity of Composing. Let X be a space, Y a locally compact Hausdorff space. Prove that the map

$$
\mathcal{C}(X, Y) \times \mathcal{C}(Y, Z) \rightarrow \mathcal{C}(X, Z):(f, g) \mapsto g \circ f
$$

is continuous.
25.14x. Is local compactness of Y necessary in $25 . S x$?
25.Tx Factorizing Source. Let S be a closed partition ${ }^{2}$ of a Hausdorff compact space X. Prove that for any space Y the map

$$
\phi: \mathcal{C}(X / S, Y) \rightarrow \mathcal{C}(X, Y)
$$

is a topological embedding.

[^19]25.15x. Are the conditions imposed on S and X in 25.Tx necessary?
25. Ux The Evaluation Map. Let X and Y be two spaces. Prove that if X is locally compact and Hausdorff, then the map
$$
\phi: \mathcal{C}(X, Y) \times X \rightarrow Y:(f, x) \mapsto f(x)
$$
is continuous.
25.16x. Are the conditions imposed on X in $25 . U \times$ necessary?
$\left\lceil\mathbf{2 5}{ }^{\prime} \mathbf{6 x}\right\rfloor$ Mappings $X \times Y \rightarrow Z$ and $X \rightarrow \mathcal{C}(Y, Z)$
25.Vx. Let X, Y, and Z be three topological spaces, $f: X \times Y \rightarrow Z$ a continuous map. Then the map
$$
F: X \rightarrow \mathcal{C}(Y, Z): F(x): y \mapsto f(x, y)
$$
is continuous.
The converse assertion is also true under certain additional assumptions.
25. Wx. Let X and Z be two spaces, Y a Hausdorff locally compact space, $F: X \rightarrow \mathcal{C}(Y, Z)$ a continuous map. Then the map $f: X \times Y \rightarrow Z:$ $(x, y) \mapsto F(x)(y)$ is continuous.
25. $\mathbf{X x}$. If X is a Hausdorff space and the collection $\Sigma_{Y}=\left\{U_{\alpha}\right\}$ is a subbase of the topological structure of Y, then the collection $\{W(K, U) \mid U \in \Sigma\}$ is a subbase of the compact-open topology on $\mathcal{C}(X, Y)$.
25. $Y \mathbf{x}$. Let X, Y, and Z be three spaces. Let
$$
\Phi: \mathcal{C}(X \times Y, Z) \rightarrow \mathcal{C}(X, \mathcal{C}(Y, Z))
$$
be defined by the relation
$$
\Phi(f)(x): y \mapsto f(x, y)
$$

Then
(1) if X is a Hausdorff space, then Φ is continuous;
(2) if X is a Hausdorff space, while Y is locally compact and Hausdorff, then Φ is a homeomorphism.
25.Zx. Let S be a partition of a space X. and let pr: $X \rightarrow X / S$ be the projection. The space $X \times Y$ bears a natural partition $S^{\prime}=\{A \times y \mid A \in$ $S, y \in Y\}$. If the space Y is Hausdorff and locally compact, then the natural quotient map $f:(X \times Y) / S^{\prime} \rightarrow X / S \times Y$ of the projection $\mathrm{pr} \times \operatorname{id}_{Y}$ is a homeomorphism.
25.17x. Try to prove Theorem 25.Zx directly.

Proofs and Comments

20.A For example, let us prove the second relation:

$$
\begin{aligned}
& (x, y) \in\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right) \Longleftrightarrow x \in A_{1}, y \in B_{1}, x \in A_{2} . y \in B_{2} \\
& \Longleftrightarrow x \in A_{1} \cap A_{2}, y \in B_{1} \cap B_{2} \Longleftrightarrow(x, y) \in\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right) .
\end{aligned}
$$

20.B Indeed,
$\operatorname{pr}_{X}^{-1}(A)=\left\{z \in X \times Y \mid \operatorname{pr}_{X}(z) \in A\right\}=\{(x \cdot y) \in X \times Y \mid x \in A\}=A \times Y$.
20.C \Longleftrightarrow Indeed. $\Gamma_{f} \subset\left(x \times Y^{\prime}\right)=\{(x . f(x))\}$ is a singleton.

If $\Gamma \cap(x \times Y)$ is a singleton $\{(x . y)\}$. then we can put $f(x)=y$.
20.D This follows from Theorem 3.A because the intersection of elementary open sets is an elementary open set.
20. \boldsymbol{E} Verify that $X \times Y \rightarrow Y \times X:(x, y) \mapsto(y, x)$ is a homeomorphism.
20.F In view of a canonical bijection, we can identify two sets and write

$$
(X \times Y) \times Z=X \times(Y \times Z)=\{(x, y, z) \mid x \in X, y \in Y, z \in Z\}
$$

However, elementary open sets in the spaces $(X \times Y) \times Z$ and $X \times(Y \times Z)$ are different. Check that the collection $\left\{U \times V \times W \mid U \in \Omega_{X}, V \in \Omega_{Y}, W \in\right.$ $\left.\Omega_{Z}\right\}$ is a base of the topological structures in both spaces.
20.G Indeed, for each open set $U \subset X$ the preimage $\operatorname{pr}_{X}^{-1}(U)=U \times Y$ is an elementary open set in $X \times Y$.
20.H Let Ω^{\prime} be a topology on $X \times Y$ such that the projections pr_{X} and pr_{Y} are continuous. Then, for any $U \in \Omega_{X}$ and $V \in \Omega_{Y}$, we have

$$
\operatorname{pr}_{X}^{-1}(U) \cap \operatorname{pr}_{Y}^{-1}(V)=(U \times Y) \cap(X \times V)=U \times V \in \Omega^{\prime}
$$

Therefore, each base set of the product topology lies in Ω^{\prime}, whence it follows that Ω^{\prime} contains the product topology of X and Y.
20.I Clearly, $\operatorname{ab}\left(\operatorname{pr}_{X}\right): X \times y_{0} \rightarrow X$ is a continuous bijection. To see that the inverse map is continuous, we must show that each set open in $X \times y_{0}$ as in a subspace of $X \times Y$ has the form $U \times y_{0}$. Indeed, if W is open in $X \times Y$, then
$W \cap\left(X \times y_{0}\right)=\bigcup_{\alpha}\left(U_{\alpha} \times V_{\alpha}\right) \cap\left(X \times y_{0}\right)=\bigcup_{\alpha: y_{0} \in V_{\alpha}}\left(U_{\alpha} \times y_{0}\right)=\left(\bigcup_{\alpha: y_{0} \in V_{\alpha}} U_{\alpha}\right) \times y_{0}$.
20.J From the point of view of set theory, we have $\mathbb{R}^{1} \times \mathbb{R}^{1}=\mathbb{R}^{2}$. The collection of open rectangles is a base of topology on $\mathbb{R}^{1} \times \mathbb{R}^{1}$ (show this), and, therefore, the topologies in $\mathbb{R}^{1} \times \mathbb{R}^{1}$ and \mathbb{R}^{2} have one and the same base,
and so they coincide. The second assertion is proved by induction and, in turn, implies the third one by 20.7 .
20.K Set $f(z)=\left(f_{1}(z), f_{2}(z)\right)$. If $f(z)=(x, y) \in X \times Y$, then $x=$ $\left(\operatorname{pr}_{X} \circ f\right)(z)=f_{1}(z)$. We similarly have $y=f_{2}(z)$.
20.L \Leftrightarrow The maps $f_{1}=\operatorname{pr}_{X} \circ f$ and $f_{2}=\operatorname{pr}_{Y} \circ f$ are continuous as compositions of continuous maps (use 20.G).
\Leftrightarrow Recall the definition of the product topology and use 20.20.
20.M Recall the definition of the product topology and use 20.22.
20.N Let X and Y be two Hausdorff spaces, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ two distinct points. Let, for instance, $x_{1} \neq x_{2}$. Since X is Hausdorff, x_{1} and x_{2} have disjoint neighborhoods: $U_{x_{1}} \cap U_{x_{2}}=\varnothing$. Then, e.g., $U_{x_{1}} \times Y$ and $U_{x_{2}} \times Y$ are disjoint neighborhoods of (x_{1}, y_{1}) and (x_{2}, y_{2}) in $X \times Y$.
20.O If A and B are countable and dense in X and Y, respectively, then $A \times B$ is a dense countable set in $X \times Y$.
20.P See the proof of Theorem 20. Q below.
20.Q If Σ_{X} and Σ_{Y} are countable bases in X and Y, respectively, then $\Sigma=\left\{U \times V \mid U \in \Sigma_{X}, V \in \Sigma_{Y}\right\}$ is a base in $X \times Y$ by 20.15.
20.R Show that if ρ_{1} and ρ_{2} are metrics on X and Y, respectively, then $\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\rho_{1}\left(x_{1}, x_{2}\right), \rho_{2}\left(y_{1}, y_{2}\right)\right\}$ is a metric on $X \times Y$ generating the product topology. What form have the balls in the metric space ($X \times Y, \rho$)?
20.S For any two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, the set $\left(X \times y_{2}\right) \cup$ $\left(x_{1} \times Y\right)$ is connected and contains these points.
20.T If u and v are paths joining x_{1} with x_{2} and y_{1} with y_{2}, respectively, then the path $u \times v$ joins $\left(x_{1}, y_{1}\right)$ with $\left(x_{2}, y_{2}\right)$.
20. U It is sufficient to consider a cover consisting of elementary open sets. Since Y is compact, each fiber $x \times Y$ has a finite subcovering $\left\{U_{i}^{x} \times V_{i}^{x}\right\}$. Put $W^{x}=\cap U_{i}^{x}$. Since X is compact, the cover $\left\{W^{x}\right\}_{x \in X}$ has a finite subcovering $W^{x_{j}}$. Then $\left\{U_{i}^{x_{j}} \times V_{i}^{x_{j}}\right\}$ is the required finite subcovering.
20.V Consider the map

$$
(x, y) \mapsto\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}, \ln \sqrt{x^{2}+y^{2}}\right) .
$$

21. A First, the preimage $\operatorname{pr}^{-1}(\operatorname{pr}(A))$ is saturated. Second, it is the least because if $B \supset A$ is a saturated set, then $B=\operatorname{pr}^{-1}(\operatorname{pr}(B)) \supset$ $\operatorname{pr}^{-1}(\operatorname{pr}(A))$.
22. C Put $\Omega^{\prime}=\left\{U \subset X / S \mid \operatorname{pr}^{-1}(U) \in \Omega\right\}$. Let $U_{\alpha} \in \Omega^{\prime}$. Since the sets $p^{-1}\left(U_{\alpha}\right)$ are open, the set $p^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right)=\bigcup_{\alpha} p^{-1}\left(U_{\alpha}\right)$ is also open, whence
$\bigcup_{\alpha} U_{\alpha} \in \Omega^{\prime}$. Verify the remaining axioms of topological structure on your own.
21.D \Leftrightarrow If a set $V \subset X$ is open and saturated. then $V=$ $\mathrm{pr}^{-1}(p(V))$, and, hence, the set $U=\operatorname{pr}(V)$ is open in X / S.
\Leftrightarrow Conversely, if $U \subset X / S$ is open, then $U=\operatorname{pr}\left(\operatorname{pr}^{-1}\left(U^{\top}\right)\right)$. where $V=\operatorname{pr}^{-1}(U)$ is open and saturated.
21.E The set F closed. iff $X / S \backslash F$ is open, iff $\mathrm{pr}^{-1}(X / S \backslash F)=$ $X \backslash \mathrm{pr}^{-1}(F)$ is open, iff $p^{-1}(F)$ is closed.
21.F This immediately follows from the definition of the quotient topology.
21.G We must prove that if Ω^{\prime} is a topology on N / S such that the factorization map is continuous. then $\Omega^{\prime} \subset \Omega_{X ; S}$. Indeed. if $U^{-} \in \Omega^{\prime}$. then $p^{-1}(U) \in \Omega_{X}$, whence $U \in \Omega_{X / S}$ by the definition of the quotient topology.
21.H It is connected as a continuous image of a connected space.
21.I It is path-connected as a continuous image of a path-connected space.
21.J It is separable as a continuous image of a separable space.
21.K It is compact as a continuous image of a compact space.
21.L This quotient space consists of two points, one of which is not open in it.
21.M \Leftrightarrow Let $a, b \in X / S$, and let $A, B \subset X$ be the corresponding elements of the partition. If U_{a} and U_{b} are disjoint neighborhoods of a and b, then $p^{-1}\left(U_{a}\right)$ and $p^{-1}\left(U_{b}\right)$ are disjoint saturated neighborhoods of A and B. \Leftrightarrow This follows from 21.D.
21.N 1) \Leftrightarrow Put $g=f / S$. \Leftrightarrow The set $f^{-1}(y)=p^{-1}\left(g^{-1}(y)\right)$ is saturated, i.e., it consists of elements of the partition S. Therefore, f is constant at each of the elements of the partition. 2) If A is an element of S, a is the point of the quotient set corresponding to A, and $x \in A$, then $f / S(a)=f(A)=g(p(x))=g(a)$.
21.O The map f maps elements of S to those of T iff there exists a map $g: X / S \rightarrow Y / T$ such that the diagram

$$
\begin{array}{rlr}
X & \xrightarrow{f} Y \\
\operatorname{pr}_{X} \downarrow & & \operatorname{pr}_{Y} \downarrow \\
X / S & \xrightarrow{g} Y / T
\end{array}
$$

is commutative. Then we have $f /(S, T)=g$.
21.P This is so because distinct elements of the partition $S(f)$ are preimages of distinct points in Y.
21. Q Since $p^{-1}\left((f / S)^{-1}(U)\right)=\left(f / S^{\circ p}\right)^{-1}(U)=f^{-1}(U)$, the definition of the quotient topology implies that for each $U \in \Omega_{Y}$ the set $(f / S)^{-1}(U)$ is open, i.e., the map f / S is continuous.
21. \boldsymbol{R} See 21.O and 21.8.
21.S \mathbf{x} Each singleton in X / S is the image of a singleton in X. Since X satisfies T_{1}, each singleton in X is closed, and its image, by $21.9 x$, is also closed. Consequently, the quotient space also satisfies T_{1}.
21.Tx This follows from 15.26.
21. $\boldsymbol{U x}$ Let $U_{n}=p\left(V_{n}\right), n \in \mathbb{N}$, where $\left\{V_{n}\right\}_{n \in \mathbb{N}}$ is a base of X. Consider an open set W in the quotient space. Since $\operatorname{pr}^{-1}(W)=\bigcup_{n \in A} V_{n}$, we have $W=\operatorname{pr}\left(\operatorname{pr}^{-1}(W)\right)=\bigcup_{n \in A} U_{n}$, i.e., the collection $\left\{U_{n}\right\}$ is a base in the quotient space.
21. $V \mathbf{x}$ For an arbitrary point $y \in X / S$, consider the image of a countable neighborhood base at a certain point $x \in \operatorname{pr}^{-1}(y)$.
21. $W \mathbf{x}$ Since the injective factor of a continuous surjection is a continuous bijection, it only remains to prove that the factor is an open map, which follows by 21.7 from the fact that the map $X \times Y \rightarrow X / S \times Y / T$ is open (see 20.23).
22.A This follows from 21.P, 21.Q, 21.K, and 17.Y.
22.B Use $17 . Z$ instead of $17 . Y$.
22.C. 1 If $f: t \in[0,1] \mapsto(\cos 2 \pi t, \sin 2 \pi t) \in S^{1}$, then $f / S(f)$ is a homeomorphism as a continuous bijection of a compact space onto a Hausdorff space, and the partition $S(f)$ is the initial one.
22.D. 1 If $f: x \in D^{n} \mapsto\left(\frac{x}{r} \sin \pi r,-\cos \pi r\right) \in S^{n} \subset \mathbb{R}^{n+1}$, then the partition $S(f)$ is the initial one and $f / S(f)$ is a homeomorphism.
22.E Consider the map $g=f \times$ id : $I^{2}=I \times I \rightarrow S^{1} \times I$ (f is defined as in 22.C.1). The partition $S(g)$ is the initial one, so that $g / S(g)$ is a homeomorphism.
22.F Check that the partition $S\left(\mathrm{id}_{S^{1}} \times f\right)$ is the initial one.
22.G The partition $S(f \times f)$ is the initial one.
22.H Consider the commutative diagram

where the map q is obviously a bijection. The assertion of the problem follows from the fact that a set U is open in $(X / S) / S^{\prime}$ iff $p_{1}^{-1}\left(p_{2}^{-1}(U)\right)=$ $p^{-1}\left(q^{-1}(U)\right)$ is open in X iff $q^{-1}(U)$ is open in X / T.
22.I To simplify the formulas, we replace the square I^{2} by a rectangle. Here is a formal argument: consider the map

$$
\begin{aligned}
\varphi:[0,2 \pi] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}^{3}: & (x \cdot y) \mapsto \\
& \left(\left(1+y \sin \frac{x}{2}\right) \cos x,\left(1+y \sin \frac{x}{2}\right) \sin x \cdot y \cos \frac{x}{2}\right) .
\end{aligned}
$$

Check that φ really maps the square onto the Möbius strip and that $S(\varphi)$ is the given partition. Certainly: the starting point of the argument is not a specific formula. First of all. rou should imagine the required map. We map the horizontal midsegment of the unit square onto the midline of the \öbius strip, and we map each of the rertical segments of the square onto a segment of the strip orthogonal to the midline. This mapping maps the rertical sides of the square to one and the same segment, but here the opposite vertices of the square are identified with each other (check this).
22.J See the following section.
22.K Actually, it is easier to prove a more general assertion. Assume that we are given topological spaces X_{α} and maps $f_{\alpha}: X_{\alpha} \rightarrow Y$. Then $\Omega=\left\{U \subset Y \mid f_{\alpha}^{-1}(U)\right.$ is open in $\left.X_{\alpha}\right\}$ is the finest topological structure in Y with respect to which all maps f_{α} are continuous.

22.L See the hint to 22.K.

22.M We map $D_{1}^{n} \sqcup D_{2}^{n}$ to S^{n} so that the images of D_{1}^{n} and D_{2}^{n} are the upper and the lower hemisphere, respectively. The partition into the preimages is the partition with quotient space $D^{n} \cup_{\text {id }\left.\right|_{S^{n-1}}} D^{n}$. Consequently, the corresponding quotient map is a homeomorphism.
22.N Consider the map $F: X \sqcup Y \rightarrow X \sqcup Y$ such that $\left.F\right|_{X}=\operatorname{id}_{X}$ and $\left.F\right|_{Y}=h$. This mapping maps an element of the partition corresponding to the equivalence relation $z \sim f(x)$ to an element of the partition corresponding to the equivalence relation $x \sim g(x)$. Consequently, there exists a continuous bijection $H: X \cup_{f} Y \rightarrow X \cup_{g} Y$. Since h^{-1} also is a homeomorphism, H^{-1} is also continuous.
22.O By 22.N, it is sufficient to prove that each homeomorphism f : $S^{n-1} \rightarrow S^{n-1}$ extends to a homeomorphism $F: D^{n} \rightarrow D^{n}$, which is obvious.
22.P For example, the stereographic projection from an inner point of the hole maps the sphere with a hole onto a disk homeomorphically.
22. Q The stereographic projection from an inner point of one of the holes homeomorphically maps the sphere with two holes onto a "disk with a hole". Prove that the latter is homeomorphic to a cylinder. (Another option: if we take the center of the projection in the hole in an appropriate way, then the projection maps the sphere with two holes onto a circular ring, which is obviously homeomorphic to a cylinder.)
22.R By definition, the handle is homeomorphic to a torus with a hole, while the sphere with a hole is homeomorphic to a disk, which precisely fills in the hole.
22.S Cut a sphere with two handles into two symmetric parts each of which is homeomorphic to a handle.
22.T Combine the results of 22.P and 22.J.
22. U Consider the Klein bottle as a quotient space of a square and cut the square into 5 horizontal (rectangular) strips of equal width. Then the quotient space of the middle strip is a Möbius band, the quotient space of the union of the two extreme strips is one more Möbius band, and the quotient space of the remaining two strips is a ring, i.e., precisely a sphere with two holes. (Here is another, maybe more visual, description. Look at the picture of the Klein bottle: it has a horizontal plane of symmetry. Two horizontal planes close to the plane of symmetry cut the Klein bottle into two Möbius bands and a ring.)
22. V The most visual approach here is as follows: single out one of the handles and one of the films. Replace the handle by a "tube" whose boundary circles are attached to those of two holes on the sphere, which should be sufficiently small and close to each other. After that, start moving one of the holes. (The topological type of the quotient space does not change in the course of such a motion.) First, bring the hole to the boundary of the film, then shift it onto the film, drag it once along the film, shift it from the film, and, finally, return the hole to the initial spot. As a result, we transform the initial handle (a torus with a hole) into a Klein bottle with a hole, which splits into two Möbius bands (see Problem 22.U), i.e., into two films.
23.A Consider the composition f of the embedding D^{n} in S^{n} onto a hemisphere and of the projection $\mathrm{pr}: S^{n} \rightarrow \mathbb{R} P^{n}$. The partition $S(f)$ is that described in the formulation. Consequently, $f / S(f)$ is a homeomorphism.

$$
\text { 23.C Consider } f: S^{1} \rightarrow S^{1}: z \mapsto z^{2} \in \mathbb{C} \text {. Then } S^{1} / S(f) \cong \mathbb{R} P^{1} \text {. }
$$

23.D See 23.A.
23.E Consider the composition f of the embedding of S^{n} in \mathbb{R}^{n} \ 0 with the projection onto the quotient space by the described partition. Clearly. the partition $S(f)$ is the partition factorizing by which we obtain the projective space. Therefore, $f / S(f)$ is a homeomorphism.
23.F To see that the described function is a metric, use the triangle inequality between the plane angles of a trilateral angle. Now, send each point $x \in S^{n}$ to the line $l(x)$ through the origin with direction vector x. We have thus defined a continuous (check this) map of S^{n} to the indicated space of lines, whose injective factor is a homeomorphism.
23.G The image of this map is the set $U_{0}=\left\{\left(x_{0}: x_{1}: \cdots: x_{n}\right) \mid x_{0} \neq\right.$ $0\}$, and the inverse map $j: U_{0} \rightarrow \mathbb{R}^{n}$ is defined by the formula

$$
\left(x_{0}: x_{1}: \cdots: x_{n}\right) \mapsto\left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) .
$$

Since both i and j are continuous. i is a topological embedding.
23.H Consider the embedding $S^{n-1}=S^{n} \cap\left\{x_{n+1}=0\right\} \rightarrow S^{n} \subset \mathbb{R}^{n+1}$ and the induced embedding $\mathbb{R} P^{n-1} \rightarrow \mathbb{R} P^{n}$.
24.AX If $a \precsim b \precsim c$. then we have $a \prec b \prec c, a=b=c, a \prec b=c$. or $a=b \prec c$. In all four cases. we have $a \precsim c$.
24.Bx The relation \sim is obviously reflexive. symmetric, and also transitive.
24.C× Indeed, if $a^{\prime} \sim a, a \precsim b$, and $b \sim b^{\prime}$, then $a^{\prime} \precsim a \precsim b \precsim b^{\prime}$, whence $a^{\prime} \precsim b^{\prime}$. Clearly, the relation defined on the equivalence classes is transitive and reflexive. Now, if two equivalence classes $[a]$ and $[b]$ satisfy both $a \precsim b$ and $b \precsim a$, then $[a]=[b]$, i.e., the relation is antisymmetric, and, hence, it is a nonstrict order.
24.Dx (a) In this case, we obtain the trivial nonstrict order on a singleton; (b) In this case, we obtain the same nonstrict order on the same set.
24.Ex The relation is obviously reflexive. Further, if $a \precsim b$, then each neighborhood U of a contains b, and so U also is a neighborhood of b. Hence, if $b \precsim c$, then $c \in U$. Therefore, $a \in \operatorname{Cl}\{c\}$, whence $a \precsim c$, and thus the relation is also transitive.
24.Fx Consider the element of the partition that consists by definition of points each of which lies in the closure of any other point, so that each open set in X containing one of the points also contains any other. Therefore, the topology induced on each element of the partition is indiscrete. It is also clear that each element of the partition is a maximal subset which is an indiscrete subspace. Now consider two points in the quotient space and two points $x . y \in X$ lying in the corresponding elements of the partition. Since $x \nsim y$. there is an open set containing exactly one of these points. Since each open set U in X is saturated with respect to the partition, the image of U in X / S is the required neighborhood.
24. $G \times$ Obvious.
24.Hx This follows from 24.Fx, 24.Gx, and 21.R.
25. $\boldsymbol{A x}$ It is sufficient to observe that the sets in $\Delta^{(p w)}$ cover the entire set $\mathcal{C}(X, Y)$. (Actually, $\mathcal{C}(X . Y) \in \Delta^{(p w)}$.)
25.Bx Similarly to 25.Ax
25. $C \times$ Since each one-point subset is compact, it follows that $\Delta^{(p w)} \subset$ $\Delta^{(c o)}$, whence $\Omega^{(p w)} \subset \Omega^{(c o)}$.
25.D× If $f \neq g$, then there is $x \in X$ such that $f(x) \neq g(x)$. Since Y is Hausdorff, $f(x)$ and $g(x)$ have disjoint neighborhoods U and V, respectively. The subbase elements $W(x . U)$ and $W(x, V)$ are disjoint neighborhoods of f and g in the space $\mathcal{C}^{(p u)}(X, Y)$. They also are disjoint neighborhoods of f and g in $\mathcal{C}(X, Y)$.
25.Ex See assertion 25.Ix.
25.Hx Consider functions $f_{n} \in \mathcal{C}(X, Y)$ such that $\left\{f_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence. For every point $x \in X$, the sequence $\left\{f_{n}(x)\right\}$ is a Cauchy sequence in Y. Therefore, since Y is a complete space, this sequence converges. Let $f(x)=\lim f_{n}(x)$. We have thus defined a function $f: X \rightarrow Y$.

Since $\left\{f_{n}\right\}$ is a Cauchy sequence, for each $\varepsilon>0$ there exists a positive integer N such that $\rho\left(f_{n}(x), f_{k}(x)\right)<\varepsilon / 4$ for any $n, k \geq N$ and $x \in X$. Passing to the limit as $k \rightarrow \infty$, we see that $\rho\left(f_{n}(x), f(x)\right) \leq \varepsilon / 4<\varepsilon / 3$ for any $n \geq N$ and $x \in X$. Thus, to prove that $f_{n} \rightarrow f$ as $n \rightarrow \infty$, it remains to show that $f \in \mathcal{C}(X, Y)$. Each $a \in X$ has a neighborhood U_{a} such that $\rho\left(f_{N}(x), f_{N}(a)\right)<\varepsilon / 3$ for every $x \in U_{a}$. The triangle inequality implies that for every $x \in U_{a}$ we have

$$
\rho(f(x), f(a)) \leq \rho\left(f(x) . f_{N}(x)\right)+\rho\left(f_{N}(x), f_{N}(a)\right)+\rho\left(f_{N}(a), f(a)\right)<\varepsilon .
$$

Therefore, the function f is a continuous limit of the considered Cauchy sequence.
25.Ix Take an arbitrary set $W(K, U)$ in the subbase. Let $f \in W(K, U)$. If $r=\rho(f(K), Y \backslash U)$, then $D_{r}(f) \subset W(K, U)$. As a consequence, we see that each open set in the compact-open topology is open in the topology generated by the metric of uniform convergence. To prove the converse assertion, it suffices to show that for each map $f: X \rightarrow Y$ and each $r>0$ there are compact sets $K_{1}, K_{2}, \ldots, K_{n} \subset X$ and open sets $U_{1}, U_{2}, \ldots, U_{n} \subset$ Y such that

$$
f \in \bigcap_{i=1}^{n} W\left(K_{i}, U_{i}\right) \subset D_{r}(f) .
$$

Cover $f(X)$ by a finite number of balls with radius $r / 4$ centered at certain points $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$. Let K_{i} be the f-preimage of a closed disk in Y with radius $r / 4$, and let U_{i} be the open ball with radius $r / 2$. By construction, we have $f \in W\left(K_{1}, U_{1}\right) \cap \cdots \cap W\left(K_{n}, U_{n}\right)$. Consider an arbitrary map g in this intersection. For each $x \in K_{1}$, we see that $f(x)$ and $g(x)$ lie in one and the same open ball with radius $r / 2$, whence $\rho(f(x), g(x))<r$. Since, by construction, the sets K_{1}, \ldots, K_{n} cover X, we have $\rho(f(x), g(x))<r$ for all $x \in X$, whence $d(f, g)<r$, and, therefore, $g \in D_{r}(f)$.
25.Mx This follows from the fact that for any compact $K \subset X^{\prime}$ and open $U \subset Y^{\prime}$ the preimage of the subbase set $W(K, U) \in \Delta^{(c o)}\left(X^{\prime}, Y^{\prime}\right)$ is the subbase set $W\left(\varphi(K), \psi^{-1}(U)\right) \in \Delta^{(c o)}(X, Y)$.
25.Nx This immediately follows from 25.Mx.
25.Ox Clearly, the indicated map is an injection. To simplify the notation, we identify the space $\mathcal{C}(X . B)$ with its image under this injection. For each compact set $K \subset X$ and $U \in \Omega_{B}$, we denote br $\mathbb{I}^{-B}(K . U)$ the corresponding subbase set in $\mathcal{C}(X . B)$. If $V \in \Omega_{Y}$ and $U=B^{\prime} I^{\circ}$. then we have $W^{B}(K, U)=\mathcal{C}(X . B)-\mathscr{F}^{-}\left(K^{-} I^{-}\right)$. whence it follows that $\mathcal{C}(X . Y)$ induces the compact-open topology on $\mathcal{C}(\mathrm{X}, B)$.
25.Px Verify that the natural mapping $f \rightarrow\left(\operatorname{pr}_{Y} \circ f\right.$. $\left.\operatorname{pr}_{Z} \circ f\right)$ is a homeomorphism.
25. $Q \mathbf{x}$ The injectivity of Q follows from the fact that $\left\{X_{i}\right\}$ is a cover. while the continuity of ϕ follows from assertion $25 . N x$. Once more, to simplify the notation, we identify the set $\mathcal{C}(X, Y)$ with its image under the injection ϕ. Let $K \subset X$ be a compact set, $U \in \Omega_{Y}$. Put $K_{i}=K \cap X_{i}$ and denote by $W^{i}\left(K_{i}, U\right)$ the corresponding element in the subbase $\Delta^{(c o)}\left(X_{i}, Y\right)$. Since, obviously,

$$
W(K, U)=\mathcal{C}(X, Y) \cap\left(W^{1}\left(K_{1}, U\right) \times \cdots \times W^{n}\left(K_{n}, U\right)\right)
$$

the continuous injection ϕ is indeed a topological embedding.
25.Sx Consider maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, a compact set $K \subset X$, and $V \in \Omega_{Z}$ such that $g(f(K)) \subset V$, i.e., $\phi(f, g) \in W(K, V)$. Then we have an inclusion $f(K) \subset g^{-1}(V) \in \Omega_{Y}$. Since Y is Hausdorff and locally compact and the set $f(K)$ is compact, $f(K)$ has a neighborhood U whose closure is compact and also contained in $g^{-1}(V)$ (see, 19.6x.) In this case, we have $\phi(W(K, U) \times W(\mathrm{Cl} U, V)) \subset W(K, V)$, and, consequently, the map ϕ is continuous.
25.Tx The continuity of ϕ follows from 25.Mx, and its injectivity is obvious. Let $K \subset X / S$ be a compact set, $U \in \Omega_{Y}$. The image of the open subbase set $W(K, U) \subset \mathcal{C}(X / S, Y)$ is the set of all maps $g: X \rightarrow Y$ constant on all elements of the partitions and such that $g\left(\operatorname{pr}^{-1}(K)\right) \subset U$. It remains to show that the set $W\left(\operatorname{pr}^{-1}(K), U\right)$ is open in $\mathcal{C}(X, Y)$. Since the quotient space X / S is Hausdorff, it follows that the set K is closed. Therefore, the preimage $\operatorname{pr}^{-1}(K)$ is closed, and hence also compact. Consequently, $W\left(\mathrm{pr}^{-1}(K), U\right)$ is a subbase set in $\mathcal{C}(X, Y)$.
25. Ux Let $f_{0} \in \mathcal{C}(X . Y)$ and $x_{0} \in X$. To prove that ϕ is continuous at the point (f_{0}, x_{0}), consider a neighborhood V of $f_{0}\left(x_{0}\right)$ in Y. Since the map f_{0} is continuous, the point x_{0} has a neighborhood U^{\prime} such that $f_{0}\left(U^{\prime}\right) \subset V^{\prime}$. Since the space X is Hausdorff and locally compact, it follows that x_{0} has a neighborhood U such that the closure $\mathrm{Cl} U$ is a compact subset of U^{\prime}. Since,
obviously, $f(x) \in V$ for any map $f \in W=W(\mathrm{Cl} U, V)$ and any point $x \in U$, we see that $\phi(W \times U) \subset V$.
25. $V \mathbf{x}$ Assume that $x_{0} \in X, K \subset Y$ is a compact set, $V \subset \Omega_{Z}$, and $F\left(x_{0}\right) \in W(K, V)$, i.e., $f\left(\left\{x_{0}\right\} \times K\right) \subset V$. We show that the map F is continuous. For this purpose, let us find a neighborhood U_{0} of x_{0} in X such that $F\left(U_{0}\right) \subset W(K, V)$. The latter inclusion is equivalent to the fact that $f\left(U_{0} \times K\right) \in V$. We cover the set $\left\{x_{0}\right\} \times K$ by a finite number of neighborhoods $U_{i} \times V_{i}$ such that $f\left(U_{i} \times V_{i}\right) \subset V$. It remains to put $U_{0}=\bigcap_{i} U_{i}$.
25. $W \mathbf{x}$ Let $\left(x_{0}, y_{0}\right) \in X \times Y$, and let G be a neighborhood of the point $z_{0}=f\left(x_{0}, y_{0}\right)=F\left(x_{0}\right)\left(y_{0}\right)$. Since the map $F\left(x_{0}\right): Y \rightarrow Z$ is continuous, y_{0} has a neighborhood W such that $F(W) \subset G$. Since Y is Hausdorff and locally compact, y_{0} has a neighborhood V with compact closure such that $\mathrm{Cl} V \subset W$ and, consequently, $F\left(x_{0}\right)(\mathrm{Cl} V) \subset G$, i.e., $F\left(x_{0}\right) \in W(\mathrm{Cl} V, G)$. Since the map F is continuous, x_{0} has a neighborhood U such that $F(U) \subset$ $W(\mathrm{Cl} V, G)$. Then, if $(x, y) \in U \times V$, we have $F(x) \in W(\mathrm{Cl} V, G)$, whence $f(x, y)=F(x)(y) \in G$. Therefore, $f(U \times V) \subset G$, i.e., f is continuous.
25. $\boldsymbol{X} \mathbf{x}$ It suffices to show that for each compact set $K \subset X$, each open set $U \subset Y$. and each $f \in W(K . U)$ there are compact sets $K_{1}, K_{2}, \ldots, K_{m} \subset$ K and open sets $U_{1}, U_{2} \ldots, U_{m} \in \Sigma_{Y}$ such that

$$
f \in W\left(K_{1}, U_{1}\right) \cap W\left(K_{2}, U_{2}\right) \cap \cdots \cap W\left(K_{m}, U_{m}\right) \subset W(K, U) .
$$

Let $x \in K$. Since $f(x) \in U$, there are sets $U_{1}^{x}, U_{2}^{x}, \ldots, U_{n_{x}}^{x} \in \Sigma_{Y}$ such that $f(x) \in U_{1}^{x} \cap U_{2}^{x} \cap \cdots \cap U_{n_{x}}^{x} \subset U$. Since f is continuous, x has a neighborhood G_{x} such that $f\left(G_{x}\right) \subset U_{1}^{x} \cap U_{2}^{x} \cap \cdots \cap U_{n_{x}}^{x}$. Since X is locally compact and Hausdorff, X is regular, and, consequently, x has a neighborhood V_{x} such that $\mathrm{Cl} V_{x}$ is compact and $\mathrm{Cl} V_{x} \subset G_{x}$. Since the set K is compact, K is covered by a finite number of neighborhoods $V_{x_{i}}, i=1,2, \ldots, n$. We set $K_{i}=K \cap \mathrm{Cl} V_{x_{i}}, i=1,2, \ldots, n$, and $U_{i j}=U_{j}^{x_{i}}, j=1,2, \ldots, n_{x_{i}}$. Then the set

$$
\bigcap_{i=1}^{n} \bigcap_{j=1}^{n_{i}} W\left(K_{j}, U_{i j}\right)
$$

is the required one.
25. Yx First of all, we observe that assertion 25. $V x$ implies that the $\operatorname{map} \Phi$ is well defined (i.e., for $f \in \mathcal{C}(X, \mathcal{C}(Y, Z))$ we indeed have $\Phi(f) \in$ $\mathcal{C}(X, \mathcal{C}(Y, Z))$), while assertion $25 . W x$ implies that if Y is locally compact and Hausdorff, then Φ is invertible.

1) Let $K \subset X$ and $L \subset Y$ be compact sets, $V \in \Omega_{Z}$. The sets of the form $W(L, V)$ constitute a subbase in $\mathcal{C}(Y, Z)$. By 25.Xx, the sets of the form $W(K, W(L, V))$ constitute a subbase in $\mathcal{C}(X, \mathcal{C}(Y, Z))$. It remains to observe that $\Phi^{-1}(W(K, W(L, V)))=W(K \times L, V) \in \Delta^{(c o)}(X \times Y, Z)$. Therefore,
the map Φ is continuous.
2) Let $Q \subset X \times Y$ be a compact set, $G \in \Omega_{Z}$. Let $\varphi \in \Phi(W(Q, G))$, so that $\varphi(x): y \mapsto f(x, y)$ for a certain map $f \in W(Q, G)$. For each $q \in Q$, take a neighborhood $U_{q} \times V_{q}$ of q such that: the set $\mathrm{Cl} V_{q}$ is compact and $f\left(U_{q} \times \mathrm{Cl} V_{q}\right) \subset G$. Since Q is compact, we have $Q \subset \bigcup_{i=1}^{n}\left(U_{q_{i}} \times V_{q_{i}}\right)$. The sets $W_{i}=W\left(\mathrm{Cl} V_{q_{i}}, G\right)$ are open in $\mathcal{C}(Y, Z)$, and, hence. the sets $T_{i}=$ $W\left(p_{X}(Q) \cap \mathrm{Cl} U_{q_{i}}, W_{i}\right)$ are open in $\mathcal{C}(X . \mathcal{C}(Y, Z))$. Therefore. $T=\bigcap_{i=1}^{n} T_{i}$ is a neighborhood of φ. We show that $T \subset \Phi(W(Q, G))$. Indeed. if $u \in T$, then $\psi=\Phi(g)$, and we have $g(x . y) \in G$ for $(x . y) \in Q$, so that $g \in \mathbb{W}^{-}(Q . G)$, whence $\psi \in \Phi(W(Q . G))$. Therefore. the set $\Phi(W(Q . G))$ is open. and so Φ is a homeomorphism.
25.Zx Obviously. the quotient map f is a continuous bijection. Consider the factorization map $p: X \times Y^{-}-\left(\mathrm{I}^{\prime} \times Y^{\prime}\right) / S^{\prime}$. By 2.5. ${ }^{-} \times$. the map $\Phi: X \rightarrow \mathcal{C}\left(Y,(X \times Y) / S^{\prime}\right)$, where $\Phi(x)(y)=p(x . y)$. is continuous. We observe that Φ is constant on elements of the partition S, and, consequently, the quotient map $\widetilde{\Phi}: X / S \rightarrow \mathcal{C}\left(Y,(X \times Y) / S^{\prime}\right)$ is continuous. By 25. $W \times$, the map $g: X / S \times Y \rightarrow(X \times Y) / S^{\prime}$, where $g(z, y)=\widetilde{\Phi}(z)(y)$, is also continuous. It remains to observe that g and f are mutually inverse maps.

Topological Algebra

In this chapter, we study topological spaces strongly related to groups: either the space itself is a group in a nice way (so that all the maps coming from group theory are continuous), or a group acts on a topological space and can be thought of as consisting of homeomorphisms.

This material has interdisciplinary character. Although it plays important roles in many areas of Mathematics, it is not so important in the framework of general topology. Quite often, this material can be postponed till the introductory chapters of the mathematical courses that really require it (functional analysis, Lie groups, etc.). In the framework of general topology, this material provides a great collection of exercises.

In the second part of the book, which is devoted to algebraic topology, groups appear in a more profound way. So, the reader will meet groups no later than the next chapter, when studying fundamental groups.

Groups are attributed to algebra. In the mathematics built on sets, main objects are sets with additional structure. Above, we met a few of the most fundamental of these structures: topology, metric, and (partial) order. Topology and metric evolved from geometric considerations. Algebra studied algebraic operations with numbers and similar objects and introduced into the set-theoretic Mathematics various structures based on operations. One of the simplest (and most versatile) of these structures is the structure of a group. It emerges in an overwhelming majority of mathematical environments. It often appears together with topology and in a nice interaction with it. This interaction is a subject of topological algebra.

The second part of this book is called Algebraic Topology. It also treats the interaction of topology and algebra, spaces and groups. But this is a
completely different interaction. There the structures of topological space and group do not live on the same set, but the group encodes topological properties of the space.

26x. Generalities on Groups

This section is included mainly to recall the most elementary definitions and statements concerning groups. We do not mean to present a self-contained outline of the group theory. The reader is actually assumed to be familiar with groups, homomorphisms, subgroups, quotient groups, etc.

If this is not yet so, we recommend reading one of the numerous algebraic textbooks covering the elementary group theory. The mathematical culture. which must be acquired for mastering the material presented previously in this book, would make this an easy and pleasant exercise.

As a temporary solution. the reader can read a few definitions and prove a few theorems gathered in this section. They provide a sufficient basis for most of what follows.

$\left\lceil 26^{\prime} 1 \mathrm{x}\right\rfloor$ The Notion of Group

Recall that a group is a set G equipped with a group operation. A group operation on a set G is a map $\omega: G \times G \rightarrow G$ satisfying the following three conditions (known as group axioms):

- Associativity. $\omega(a, \omega(b, c))=\omega(\omega(a, b), c)$ for any $a, b, c \in G$.
- Existence of Neutral Element. There exists $e \in G$ such that $\omega(e, a)=\omega(a, e)=a$ for every $a \in G$.
- Existence of Inverse Element. For any $a \in G$, there exists $b \in G$ such that $\omega(a, b)=\omega(b, a)=e$.
26.Ax Uniqueness of Neutral Element. A group contains a unique neutral element.
26.Bx Uniqueness of Inverse Element. Each element of a group has a unique inverse element.
26.Cx First Examples of Groups. In each of the following situations, check if we have a group. What is its neutral element? How to calculate the element inverse to a given one?
- The set G is the set \mathbb{Z} of integers, and the group operation is addition: $\omega(a, b)=a+b$.
- The set G is the set $\mathbb{Q}_{>0}$ of positive rational numbers, and the group operation is multiplication: $\omega(a, b)=a b$.
- $G=\mathbb{R}$, and $\omega(a . b)=a+b$.
- $G=\mathbb{C}$, and $\omega(a, b)=a+b$.
- $G=\mathbb{R} \backslash 0$, and $\omega(a, b)=a b$.
- G is the set of all bijections of a set A onto itself, and the group operation is composition: $\omega(a, b)=a \circ b$.
26.1x Simplest Group. 1) Can a group be empty? 2) Can it consist of one element?

A group consisting of one element is trivial.
26.2x Solving Equations. Let G be a set with an associative operation ω : $G \times G \rightarrow G$. Prove that G is a group iff for any $a, b \in G$ the set G contains a unique element x such that $\omega(a, x)=b$ and a unique element y such that $\omega(y, a)=b$.

$\left\lceil 26^{\prime} \mathbf{2 x}\right.$ 」 Additive Versus Multiplicative

The above notation is never used! (The only exception may happen, as here. when the definition of group is discussed.) Instead, one uses either multiplicative or additive notation.

Under the multiplicative notation, the group operation is called multiplication and also denoted as multiplication: $(a . b) \mapsto a b$. The neutral element is called unity and denoted by 1 or 1_{G} (or e). The element inverse to a is denoted by a^{-1}. This notation is borrowed, say, from the case of nonzero rational numbers with the usual multiplication.

Under the additive notation, the group operation is called addition and also denoted as addition: $(a, b) \mapsto a+b$. The neutral element is called zero and denoted by 0 . The element inverse to a is denoted by $-a$. This notation is borrowed, say, from the case of integers with the usual addition.

An operation $\omega: G \times G \rightarrow G$ is commutative if $\omega(a, b)=\omega(b, a)$ for any $a, b \in G$. A group with commutative group operation is commutative or Abelian. Traditionally, the additive notation is used only in the case of commutative groups, while the multiplicative notation is used both in the commutative and noncommutative cases. Below, we mostly use the multiplicative notation.
26.3x. In each of the following situations, check if we have a group:
(1) a singleton $\{a\}$ with multiplication $a a=a$,
(2) the set \mathbb{S}_{n} of bijections of the set $\{1,2, \ldots, n\}$ of the first n positive integers onto itself with multiplication determined by composition (the symmetric group of degree n).
(3) the sets $\mathbb{R}^{n}, \mathbb{C}^{n}$, and \mathbb{I}^{-n} with coordinate-wise addition,
(4) the set $\operatorname{Homeo}(X)$ of all homeomorphisms of a topological space X with multiplication determined by composition,
(5) the set $G L(n, \mathbb{R})$ of invertible real $n \times n$ matrices equipped with matrix multiplication.
(6) the set $\Lambda_{n}(\mathbb{R})$ of all real $n \times n$ matrices with addition determined by addition of matrices,
(7) the set of all subsets of a set X with multiplication determined by the symmetric difference:

$$
(A, B) \mapsto A \triangle B=(A \cup B) \backslash(A \cap B)
$$

(8) the set \mathbb{Z}_{n} of classes of positive integers congruent modulo n with addition determined by addition of positive integers,
(9) the set of complex roots of unity of degree n equipped with usual multiplication of complex numbers,
(10) the set $\mathbb{R}_{>0}$ of positive reals with usual multiplication,
(11) $S^{1} \subset \mathbb{C}$ with standard multiplication of complex numbers,
(12) the set of translations of a plane with multiplication determined by composition.

Associativity implies that every finite sequence of elements in a group has a well-defined product, which can be calculated by a sequence of pairwise multiplications determined by any placement of parentheses, say, abcde $=$ $(a b)(c(d e))$. The distribution of the parentheses is immaterial. In the case of a three-element sequence, this is precisely the associativity: $(a b) c=a(b c)$.
26.Dx. Derive from the associativity that the product of any length does not depend on the position of the parentheses.

For an element a of a group G, the powers a^{n} with $n \in \mathbb{Z}$ are defined by the following formulas: $a^{0}=1, a^{n+1}=a^{n} a$, and $a^{-n}=\left(a^{-1}\right)^{n}$.
26.Ex. Prove that raising to a power has the following properties: $a^{p} a^{q}=$ a^{p+q} and $\left(a^{p}\right)^{q}=a^{p q}$.

$\left\lceil 26^{\prime} 3 x\right\rfloor$ Homomorphisms

Recall that a map $f: G \rightarrow H$ of a group to another one is a homomorphism if $f(x y)=f(x) f(y)$ for any $x, y \in G$.
26.4x. In the above definition of a homomorphism, the multiplicative notation is used. How does this definition look in the additive notation? What if one of the groups is multiplicative, while the other is additive?
26.5x. Let a be an element of a multiplicative group G. Is the map $\mathbb{Z} \rightarrow G: n \mapsto$ a^{n} a homomorphism?
26.Fx. Let G and H be two groups. Is the constant map $G \rightarrow H$ mapping the entire G to the neutral element of H a homomorphism? Is any other constant map $G \rightarrow H$ a homomorphism?
26. Gx. A homomorphism maps the neutral element to the neutral element. and it maps mutually inverse elements to mutually inverse elements.
26.Hx. The identity map of a group is a homomorphism. The composition of homomorphisms is a homomorphism.

Recall that a homomorphism f is an epimorphism if f is surjective, f is a monomorphism if f is injective, and f is an isomorphism if f is bijective.
26.Ix. The map inverse to an isomorphism is also an isomorphism.

Two groups are isomorphic if there exists an isomorphism of one of them onto another one.
26.Jx. Isomorphism is an equivalence relation.
26.6x. Show that the additive group \mathbb{R} is isomorphic to the multiplicative group $\mathbb{R}_{>0}$.

$\left\lceil 26^{\prime} 4 x\right.$ Subgroups

A subset A of a group G is a subgroup of G if A is invariant under the group operation of G (i.e., for any $a, b \in A$ we have $a b \in A$) and A equipped with the group operation induced by that on G is a group.

For two subsets A and B of a multiplicative group G, we put $A B=\{a b \mid$ $a \in A, b \in B\}$ and $A^{-1}=\left\{a^{-1} \mid a \in A\right\}$.
26.Kx. A subset A of a multiplicative group G is a subgroup of G iff $A A \subset A$ and $A^{-1} \subset A$.
26.7x. The singleton consisting of the neutral element is a subgroup.
26.8 x . Prove that a subset A of a finite group is a subgroup if $A A \subset A$. (The condition $A^{-1} \subset A$ is superfluous in this case.)
26.9x. List all subgroups of the additive group \mathbb{Z}.
26.10x. Is $G L(n, \mathbb{R})$ a subgroup of $M_{n}(\mathbb{R})$? (See $26.3 \times$ for notation.)
26.Lx. The image of a group homomorphism $f: G \rightarrow H$ is a subgroup of H.
26.Mx. Let $f: G \rightarrow H$ be a group homomorphism, K a subgroup of H. Then $f^{-1}(K)$ is a subgroup of G.

In short: The preimage of a subgroup under a group homomorphism is a subgroup.

The preimage of the neutral element under a group homomorphism f : $G \rightarrow H$ is called the kernel of f and denoted by $\operatorname{Ker} f$.
26.Nx Corollary of 26.Mx. The kernel of a group homomorphism is a subgroup.
26.Ox. A group homomorphism is a monomorphism iff its kernel is trivial.
26.Px. The intersection of any collection of subgroups of a group is also a subgroup.

A subgroup H of a group G is generated by a subset $S \subset G$ if H is the smallest subgroup of G containing S.
26.Qx. The subgroup H generated by S is the intersection of all subgroups of G that contain S. On the other hand, H is the set of all elements that are products of elements in S and elements inverse to elements in S.

The elements of a set that generates G are generators of G. A group generated by one element is cyclic.
26.Rx. A cyclic (multiplicative) group consists of powers of its generator (i.e., if G is a cyclic group and a generates G, then $G=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$). Anycyclic group is commutative.
26.11x. A group G is croclic iff there exists an epimorphism $f: \mathbb{Z} \rightarrow G$.
26.Sx. A subgroup of a cyclic group is cyclic.

The number of elements in a group G is the order of G. It is denoted by $|G|$.
26.Tx. Let G be a finite cyclic group, d a positive divisor of $|G|$. Then G contains a unique subgroup H with $|H|=d$.

Each element of a group generates a cyclic subgroup, which consists of all powers of this element. The order of the subgroup generated by a (nontrivial) element $a \in G$ is the order of a. It can be a positive integer or the infinity.

For each subgroup H of a group G, the right cosets of H are the sets $H a=\{x a \mid x \in H\}, a \in G$. Similarly, the sets $a H$ are the left cosets of H. The number of distinct right (or left) cosets of H is the index of H.
26.Ux Lagrange theorem. If H is a subgroup of a finite group G, then the order of H divides that of G.

A subgroup H of a group G is normal if for any $h \in H$ and $a \in G$ we have $a h a^{-1} \in H$. Normal subgroups are also called normal divisors or invariant subgroups.

If the subgroup is normal, then left cosets coincide with right cosets, and the set of cosets is a group with multiplication defined by the formula $(a H)(b H)=a b H$. The group of cosets of H in G is called the quotient group or factor group of G by H and denoted by G / H.
26. Vx. The kernel $\operatorname{Ker} f$ of a homomorphism $f: G \rightarrow H$ is a normal subgroup of G.
26. Wx. The image $f(G)$ of a homomorphism $f: G \rightarrow H$ is isomorphic to the quotient group $G / \operatorname{Ker} f$ of G by the kernel of f.
26.Xx. The quotient group \mathbb{R} / \mathbb{Z} is canonically isomorphic to the group S^{1}. Describe the image of the group $\mathbb{Q} \subset \mathbb{R}$ under this isomorphism.
26. Yx. Let G be a group, A a normal subgroup of G, and B an arbitrary subgroup of G. Then $A B$ is also a normal subgroup of G, while $A \cap B$ is a normal subgroup of B. Furthermore, we have $A B / A \cong B / A \cap B$.

27x. Topological Groups

$\left\lceil 27^{\prime} 1 \mathrm{x}\right\rfloor$ Notion of Topological Group

A topological group is a set G equipped with both a topological structure and a group structure such that the maps $G \times G \rightarrow G:(x, y) \mapsto x y$ and $G \rightarrow G: x \mapsto x^{-1}$ are continuous.
27.1x. Let G be a group and a topological space simultaneously. Prove that the maps $\omega: G \times G \rightarrow G:(x, y) \mapsto x y$ and $\alpha: G \rightarrow G: x \mapsto x^{-1}$ are continuous iff so is the map $\beta: G \times G \rightarrow G:(x, y)-x y^{-1}$.
27.2x. Prove that if G is a topological group, then the inversion $G \rightarrow G: x \mapsto x^{-1}$ is a homeomorphism.
27.3x. Let G be a topological group, X a topological space, $f, g: X \rightarrow G$ two maps continuous at a point $x_{0} \in X$. Prove that the maps $X \rightarrow G: x \mapsto f(x) g(x)$ and $X \rightarrow G: x \mapsto(f(x))^{-1}$ are continuous at x_{0}.
27. $\boldsymbol{A x}$. A group equipped with the discrete topology is a topological group.
27.4x. Is a group equipped with the indiscrete topology a topological group?

$\left\lceil 27^{\prime} 2 \mathrm{x}\right\rfloor$ Examples of Topological Groups

27. $\mathbf{B x}$. The groups listed in 26. $C x$ equipped with standard topologies are topological groups.
27.5x. The unit circle $S^{1}=\{\mid z=1\} \simeq こ$ with the standard multiplication is a topological group.
27.6x. In each of the following situations, check if we have a topological group.
(1) The spaces $\mathbb{R}^{n}, \mathbb{C}^{n}$, and \mathbb{H}^{n} with coordinate-wise addition. (\mathbb{C}^{n} is isomorphic to $\mathbb{R}^{2 n}$, while \mathbb{H}^{n} is isomorphic to $\Xi^{2 n}$.)
(2) The sets $M_{n}(\mathbb{R}), M_{n}(\mathbb{C})$, and $I_{n}(\mathbb{H})$ of all $n \times n$ matrices with real, complex, and, respectively, quaternion entries. equipped with the product topology and entry-wise addition. (We identify $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$, $M_{n}(\mathbb{C})$ with $\mathbb{C}^{n^{2}}$, and $M_{n}(\mathbb{H})$ with $\mathbb{H}^{n^{2}}$.)
(3) The sets $G L(n, \mathbb{R}), G L(n, \mathbb{C})$, and $G L(n . \mathbb{F})$ of invertible $n \times n$ matrices with real, complex, and quaternionic entries, respectively, under the matrix multiplication.
(4) $S L(n, \mathbb{R}), S L(n, \mathbb{C}), O(n), O(n, \mathbb{C}), U(n), S O(n), S O(n, \mathbb{C}), S U(n)$, and other subgroups of $G L(n, K)$ with $K=\mathbb{R}, \mathbb{C}$, or \mathbb{H}.
27.7x. Introduce a topological group structure on the additive group \mathbb{R} that would be distinct from the usual, discrete, and indiscrete topological structures.
27.8x. Find two nonisomorphic connected topological groups that are homeomorphic as topological spaces.
27.9x. On the set $G=0.1$) (equipped with the standard topology). we define addition as follows: $\omega^{\prime}(x, y)=x+y(\bmod 1)$. Is (G, ω) a topological group?

$\left\lceil 27^{\prime} 3 \mathrm{x}\right\rfloor$ Translations and Conjugations

Let G be a group. Recall that the maps $L_{a}: G \rightarrow G: x \mapsto a x$ and $R_{a}: G \rightarrow G: x \mapsto x a$ are left and right translations through a, respectively. Note that $L_{a} \circ L_{b}=L_{a b}$, while $R_{a} \circ R_{b}=R_{b a}$. (To "repair" the last relation, some authors define right translations by $x \mapsto x a^{-1}$.)
27.Cx. A translation of a topological group is a homeomorphism.

Recall that the conjugation of a group G by an element $a \in G$ is the map $G \rightarrow G: x \mapsto a x a^{-1}$.
27.Dx. The conjugation of a topological group by any of its elements is a homeomorphism.

The following simple observation allows a certain "uniform" treatment of the topology on a group: neighborhoods of distinct points can be compared.
27.Ex. If U is an open set in a topological group G, then for each $x \in G$ the sets $x U, U x$, and U^{-1} are open.
27.10x. Does the same hold true for closed sets?
27.11x. Prove that if U and V are subsets of a topological group G and U is open, then $U V$ and $V U$ are open.
27.12x. Will the same hold true if we replace everywhere the word open by the word closed?
27.13x. Are the following subgroups of the additive group \mathbb{R} closed?
(1) \mathbb{Z},
(2) $\sqrt{2} \mathbb{Z}$,
(3) $\mathbb{Z}+\sqrt{2} \mathbb{Z}$?
27.14x. Let G be a topological group, $U \subset G$ a compact subset, $V \subset G$ a closed subset. Prove that $U V$ and $V U$ are closed.
27.14x.1. Let F and C be two disjoint subsets of a topological group G. If F is closed and C is compact, then 1_{G} has a neighborhood V such that $C V \cup V C$ does not meet F. If G is locally compact, then V can be chosen so that $\mathrm{Cl}(C V \cup V C)$ is compact.

$\left\lceil 27^{\prime} 4 x\right\rfloor$ Neighborhoods

27.Fx. Let Γ be a neighborhood base of a topological group G at 1_{G}. Then $\Sigma=\{a U \mid a \in G, U \in \Gamma\}$ is a base for topology of G.

A subset A of a group G is symmetric if $A^{-1}=A$.
27. Gx. Any neighborhood of 1 in a topological group contains a symmetric neighborhood of 1 .
27. Hx. For any neighborhood U of 1 in a topological group, 1 has a neighborhood V such that $V V \subset U$.
27.15x. Let G be a topological group, U a neighborhood of 1_{G}, and n a positive integer. Then 1_{G} has a symmetric neighborhood V such that $V^{n} \subset U$.
27.16x. Let V be a symmetric neighborhood of 1_{G} in a topological group G. Then $\bigcup_{n=1}^{\infty} V^{n}$ is an open-closed subgroup.
27.17x. Let G be a group, Σ be a collection of subsets of G. Prove that G carries a unique topology Ω such that Σ is a neighborhood base for Ω at 1_{G} and (G, Ω) is a topological group, iff Σ satisfies the following five conditions:
(1) each $U \in \Sigma$ contains 1_{G}.
(2) for every $x \in L^{-} \in \Sigma$. there exists $V \in \Sigma$ such that $x V \subset U$,
(3) for each $L^{-} \in \Sigma$. there exists $V \in \Sigma$ such that $V^{-1} \subset U$,
(4) for each $L^{-} \in \Sigma$. there exists $V \in \Sigma$ such that $V V \subset U$,
(5) for any $x \in G$ and $U^{-} \equiv \Sigma$. there exists $V \in \Sigma$ such that $V \subset x^{-1} U x$.
27.Ix. Riddle. In what sense is $27 . H \times$ similar to the triangle inequality?
27.Jx. Let C be a compact subset of G. Prove that for every neighborhood U of 1_{G} the unity 1_{G} has a neighborhood V such that $V \subset x U x^{-1}$ for every $x \in C$.

$\left\lceil 27^{\prime} 5 x\right\rfloor$ Separation Axioms

27.Kx. A topological group G is Hausdorff, iff G satisfies the first separation axiom, iff the unity 1_{G} (or, more precisely, the singleton $\left\{1_{G}\right\}$) is closed.
27.Lx. A topological group G is Hausdorff iff the unity 1_{G} is the intersection of its neighborhoods.
27.Mx. If the unity of a topological group G is closed, then G is regular (as a topological space).

Use the following fact.
27.Mx.1. Let G be a topological group, $U \subset G$ a neighborhood of 1_{G}. Then 1_{G} has a neighborhood V with closure contained in $U: \mathrm{Cl} V \subset U$.
27.Nx Corollary. For topological groups, the first three separation axioms are equivalent.
27.18x. Prove that a finite group carries as many topological group structures as there are normal subgroups. Namely, each finite topological group G contains a normal subgroup N such that the sets $g N$ with $g \in G$ form a base for the topology of G.

$\left\lceil 27^{\prime} 6 x\right\rfloor$ Countability Axioms

27.Ox. If Γ is a neighborhood base at 1_{G} in a topological group G and $S \subset G$ is a dense set. then $\Sigma=\{a U \mid a \in S, U \in \Gamma\}$ is a base for the topology of G. (Cf. 27.Fx and 16.H.)
27.Px. A first countable separable topological group is second countable.
27.19x*. (Cf. 16.Zx) A first countable Hausdorff topological group G is metrizable. Furthermore, G can be equipped with a right (left) invariant metric.

28x. Constructions

$\left\lceil 28^{\prime} 1 \mathrm{x}\right\rfloor$ Subgroups

28.Ax. Let H be a subgroup of a topological group G. Then the topological and group structures induced from G make H a topological group.
28.1x. Let H be a subgroup of an Abelian group G. Prove that. given a structure of topological group in H and a neighborhood base at 1 : G carries a structure of topological group with the same neighborhood base at 1 .
28.2x. Prove that a subgroup of a topological group is open iff it contains an interior point.
28.3x. Prove that every open subgroup of a topological group is also closed.
28.4 x . Prove that every closed subgroup of finite index is also open.
28.5 x . Find an example of a subgroup of a topological group that
(1) is closed, but not open;
(2) is neither closed, nor open.
28.6x. Prove that a subgroup H of a topological group is a discrete subspace iff H contains an isolated point.
28.7x. Prove that a subgroup H of a topological group G is closed, iff there exists an open set $U \subset G$ such that $U \cap H=U \cap \mathrm{Cl} H \neq \varnothing$, i.e., iff $H \subset G$ is locally closed at one of its points.
28.8x. Prove that if H is a non-closed subgroup of a topological group G, then $\mathrm{Cl} H \backslash H$ is dense in $\mathrm{Cl} H$.
28.9x. The closure of a subgroup of a topological group is a subgroup.
28.10x. Is it true that the interior of a subgroup of a topological group is a subgroup?
28.Bx. A connected topological group is generated by any neighborhood of 1.
28. C x. Let H be a subgroup of a group G. Define a relation: $a \sim b$ if $a b^{-1} \in H$. Prove that this is an equivalence relation, and the right cosets of H in G are the equivalence classes.
28.11x. What is the counterpart of $28 . C x$ for left cosets?

Let G be a topological group, $H \subset G$ a subgroup. The set of left (respectively, right) cosets of H in G is denoted by G / H (respectively, $H \backslash G$). The sets G / H and $H \backslash G$ carry the quotient topology. Equipped with these topologies, they are called spaces of cosets.
28. $\mathbf{D x}$. For any topological group G and its subgroup H, the natural projections $G \rightarrow G / H$ and $G \rightarrow H \backslash G$ are open (i.e., the image of every open set is open).
28.Ex. The space of left (or right) cosets of a closed subgroup in a topological group is regular.
28.Fx. The group G is compact (respectively, connected) if so are H and G / H.
28.12x. If H is a connected subgroup of a group G, then the preimage of each connected component of G / H is a connected component of G.
28.13x. We regard the group $S O(n-1)$ as a subgroup of $S O(n)$. If $n \geq 2$, then the space $S O(n) / S O(n-1)$ is homeomorphic to S^{n-1}.
28.14x. The groups $S O(n), U(n), S U(n)$, and $S p(n)$ are 1) compact and 2) connected for any $n \geq 1$. 3) How many connected components do the groups $O(n)$ and $O(p, q)$ have? (Here, $O(p, q)$ is the group of linear transformations in \mathbb{R}^{p+q} preserving the quadratic form $x_{1}^{2}+\cdots+x_{p}^{2}-y_{1}^{2}-\cdots-y_{q}^{2}$.)

$\left\lceil 28^{\prime} 2 x\right\rfloor$ Normal Subgroups

28. $\mathbf{G x}$. Prove that the closure of a normal subgroup of a topological group is a normal subgroup.
28.Hx. The connected component of 1 in a topological group is a closed normal subgroup.
28.15 x . The path-connected component of 1 in a topological group is a normal subgroup.
28.Ix. The quotient group of a topological group is a topological group (provided that it is equipped with the quotient topology).
28.Jx. The natural projection of a topological group onto its quotient group is open.
28.Kx. If a topological group G is first (respectively, second) countable, then so is any quotient group of G.
28.Lx. Let H be a normal subgroup of a topological group G. Then the quotient group G / H is regular iff H is closed.
28.Mx. Prove that a normal subgroup H of a topological group G is open iff the quotient group G / H is discrete.

The center of a group G is the set $C(G)=\{x \in G \mid x g=g x$ for each $g \in$ $G\}$.
28.16x. Each discrete normal subgroup H of a connected group G is contained in the center of G.

$\left\lceil 28^{\prime} 3 x\right\rfloor$ Homomorphisms

In the case of topological groups, a homomorphism is a continuous group homomorphism.
28.Nx. Let G and H be two topological groups. A group homomorphism $f: G \rightarrow H$ is continuous iff f is continuous at 1_{G}.

Not counting similar modifications. which can be summarized by the following principle: everything is assumed to respect the topological structures, the terminology of group theory carries over without changes. In particular. an isomorphism in group theory is an invertible homomorphism. Its inverse is a homomorphism (and hence an isomorphism) automatically. In the theory of topological groups, this must be included in the definition: an isomorphism of topological groups is an invertible homomorphism whose inverse is also a homomorphism. In other words, an isomorphism of topological groups is a map that is both a group isomorphism and a homeomorphism. Cf. Section 11.
28.17x. Prove that the map $[0,1) \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$ is a topological group homomorphism.
28.Ox. An epimorphism $f: G \rightarrow H$ is an open map iff the injective factor $f / S(f): G / \operatorname{Ker} f \rightarrow H$ of f is an isomorphism.
28.Px. An epimorphism of a compact topological group onto a topological group with closed unity is open.
28. Qx. Prove that the quotient group \mathbb{R} / \mathbb{Z} of the additive group \mathbb{R} by the subgroup \mathbb{Z} is isomorphic to the multiplicative group $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ of complex numbers with absolute value 1 .

$\left\lceil 28^{\prime} \mathbf{4 x}\right.$ 」 Local Isomorphisms

Let G and H be two topological groups. A local isomorphism from G to H is a homeomorphism f of a neighborhood U of 1_{G} in G onto a neighborhood V of 1_{H} in H such that

- $f(x y)=f(x) f(y)$ for any $x, y \in U$ such that $x y \in U$,
- $f^{-1}(z t)=f^{-1}(z) f^{-1}(t)$ for any $z, t \in V$ such that $z t \in V$.

Two topological groups G and H are locally isomorphic if there exists a local isomorphism from G to H.
28.Rx. Isomorphic topological groups are locally isomorphic.
28.Sx. The additive group \mathbb{R} and the multiplicative group $S^{1} \subset \subset$ are locally isomorphic, but not isomorphic.
28.18x. Prove that local isomorphism of topological groups is an equivalence relation.
28.19x. Find neighborhoods of unities in \mathbb{R} and S^{1} and a homeomorphism between them that satisfies the first condition in the definition of local isomorphism, but does not satisfy the second one.
28.20x. Prove that if a homeomorphism between neighborhoods of unities in two topological groups satisfies only the first condition in the definition of local isomorphism, then it has a submap that is a local isomorphism between these topological groups.

$\left\lceil 28^{\prime} 5 x\right\rfloor$ Direct Products

Let G and H be two topological groups. In group theory, the product $G \times H$ is given a group structure. ${ }^{1}$ In topology, it is given a topological structure (see Section 20).
28. Tx. These two structures are compatible: the group operations in $G \times H$ are continuous with respect to the product topology.

Thus. $G \times H$ is a topological group. It is called the direct product of the topological groups G and H. There are canonical homomorphisms related to this: the inclusions $i_{G}: G \rightarrow G \times H: x \mapsto(x .1)$ and $i_{H}: H \rightarrow G \times H$: $x \mapsto(1, x)$, which are monomorphisms, and the projections $\mathrm{pr}_{G}: G \times H \rightarrow$ $G:(x, y) \mapsto x$ and $\operatorname{pr}_{H}: G \times H \rightarrow H:(x, y) \mapsto y$, which are epimorphisms.
28.21x. Prove that the topological groups $(G \times H) / i_{H}(H)$ and G are isomorphic.
28.22x. The product operation is both commutative and associative: $G \times H$ is (canonically) isomorphic to $H \times G$, while $G \times(H \times K)$ is canonically isomorphic to $(G \times H) \times K$.

A topological group G decomposes into a direct product of two subgroups A and B if the map $A \times B \rightarrow G:(x, y) \mapsto x y$ is a topological group isomorphism. If this is the case, then the groups G and $A \times B$ are usually identified via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The only difference is that in ordinary group theory an isomorphism is just an algebraic isomorphism. Furthermore, in that theory, G decomposes into a direct product of its subgroups A and B iff A and B generate G, A and B are normal subgroups, and $A \cap B=\{1\}$. Therefore, if these conditions are fulfilled in the case of topological groups. then $A \times B \rightarrow G:(x, y) \mapsto x y$ is a group isomorphism.
28.23x. Prove that in this situation the map $A \times B \rightarrow G:(x, y) \mapsto x y$ is continuous. Find an example where the inverse group isomorphism is not continuous.

[^20]28. Ux. Prove that if a compact Hausdorff group G decomposes algebraically into a direct product of two closed subgroups, then G also decomposes into a direct product of these subgroups as a topological group.
28.24x. Prove that the multiplicative group $\mathbb{R} \backslash 0$ of nonzero reals is isomorphic (as a topological group) to the direct product of the multiplicative groups $S^{0}=\{1,-1\}$ and $\mathbb{R}_{>0}=\{x \in \mathbb{R} \mid x>0\}$.
28.25x. Prove that the multiplicative group $\mathbb{C} \backslash 0$ of nonzero complex numbers is isomorphic (as a topological group) to the direct product of the multiplicative groups $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ and $\mathbb{R}_{>0}$.
28.26x. Prove that the multiplicative group $\mathbb{H} \backslash 0$ of nonzero quaternions is isomorphic (as a topological group) to the direct product of the multiplicative groups $S^{3}=\{z \in \mathbb{H}:|z|=1\}$ and $\mathbb{R}_{>0}$.
28.27x. Prove that the subgroup $S^{0}=\{1 .-1\}$ of $S^{3}=\{z \in \mathbb{H}:|z|=1\}$ is not a direct factor.
28.28x. Find a topological group homeomorphic to $\mathbb{R} P^{3}$ (the three-dimensional real projective space).

Let a group G contain a normal subgroup A and a subgroup B such that $A B=G$ and $A \cap B=\left\{1_{G}\right\}$. If B is also normal, then G is the direct product $A \times B$. Otherwise, G is a semidirect product of A and B.
28. Vx. Let a topological group G be a semidirect product of its subgroups A and B. If for any neighborhoods of unity, $U \subset A$ and $V \subset B$, their product $U V$ contains a neighborhood of 1_{G}, then G is homeomorphic to $A \times B$.

$\left\lceil\mathbf{2 8}{ }^{\prime} \mathbf{6 x}\right.$ 」 Groups of Homeomorphisms

For any topological space X, the autohomeomorphisms of X form a group under composition as the group operation. We denote this group by Top X. To make this group topological. we slightly enlarge the topological structure induced on Top X by the compact-open topology of $\mathcal{C}(X . X)$.
28. $W \mathbf{x}$. The collection of the sets $W(C, U)$ and $(W(C . U))^{-1}$ taken over all compact $C \subset X$ and open $U \subset X$ is a subbase for the topological structure on $\operatorname{Top} X$.

In what follows, we equip $\operatorname{Top} X$ with this topological structure.
28. $\mathbf{X x}$. If X is Hausdorff and locally compact, then $\operatorname{Top} X$ is a topological group.
28. Xx .1. If X is Hausdorff and locally compact, then the map $\operatorname{Top} X \times \operatorname{Top} X \rightarrow$ $\operatorname{Top} X:(g, h) \mapsto g \circ h$ is continuous.

29x. Actions of Topological Groups

$\left\lceil 29^{\prime} 1 \mathrm{x}\right\rfloor$ Action of a Group on a Set

A left action of a group G on a set X is a map $G \times X \rightarrow X:(g, x) \mapsto g x$ such that $1 x=x$ for each $x \in X$ and $(g h) x=g(h x)$ for each $x \in X$ and any $g, h \in G$. A set X equipped with such an action is a left G-set. Right G-sets are defined in a similar way.
29.Ax. If X is a left G-set, then $G \times X \rightarrow X:(x, g) \mapsto g^{-1} x$ is a right action of G on X.
29.Bx. If X is a left G-set, then the map $X \rightarrow X: x \mapsto g x$ is a bijection for each $g \in G$.

A left action of G on X is effective (or faithful) if for each $g \in G \backslash 1$ the map $G \rightarrow G: x \mapsto g x$ is not equal to id_{G}. Let X_{1} and X_{2} be two left G-sets. A map $f: X_{1} \rightarrow X_{2}$ is G-equivariant if $f(g x)=g f(x)$ for any $x \in X$ and $g \in G$.

We say that X is a homogeneous left G-set, or, rather, that G acts on X transitively if there exists $g \in G$ such that $y=g x$ for any $x, y \in X$.

The same terminology applies to right actions with obvious modifications.
29.Cx. The natural actions of G on G / H and $H \backslash G$ transform G / H and $H \backslash G$ into homogeneous left and, respectively, right G-sets.

Let X be a homogeneous left G-set. Consider a point $x \in X$ and the set $G^{x}=\{g \in G \mid g x=x\}$. We easily see that G^{x} is a subgroup of G. It is called the isotropy subgroup of x.
29.Dx. Each homogeneous left (respectively, right) G-set X is isomorphic to G / H (respectively, $H \backslash G$), where H is the isotropy group of a certain point in X.
29.Dx.1. All isotropy subgroups $G^{x}, x \in X$, are pairwise conjugate.

Recall that the normalizer $N r(H)$ of a subgroup H of a group G consists of all elements $g \in G$ such that $g H^{-1}=H$. This is the largest subgroup of G containing H as a normal subgroup.
29.Ex. The group of all automorphisms of a homogeneous G-set X is isomorphic to $N(H) / H$, where H is the isotropy group of a certain point in X.
29.Ex.1. If two points $x, y \in X$ have the same isotropy group, then X has an automorphism sending x to y.

$\left\lceil 29^{\prime} 2 \mathrm{x}\right\rfloor$ Continuous Action

We speak about a left G-space X if X is a topological space, G is a topological group acting on X, and the action $G \times X \rightarrow X$ is continuous (as a map). All terminology (and definitions) concerning G-sets extends to G-spaces literally.

Note that if G is a discrete group, then each action of G by homeomorphisms is continuous and thus provides a G-space.
29.Fx. Let X be a left G-space. Then the natural map $\phi: G \rightarrow \operatorname{Top} X$ induced by this action is a group homomorphism.
29.Gx. If in the assumptions of Problem 29.Fx the G-space X is Hausdorff and locally compact, then the induced homomorphism $\phi: G \rightarrow \operatorname{Top} X$ is continuous.
29.1x. In each of the following situations, check if we have a continuous action and a continuous homomorphism $G \rightarrow \operatorname{Top} X$:
(1) G is a topological group, $X=G$, and G acts on X by left (or right) translations, or by conjugation;
(2) G is a topological group, $H \subset G$ is a subgroup, $X=G / H$, and G acts on X via $g(a H)=(g a) H$;
(3) $G=G L(n, K)$ (where $K=\mathbb{R}, \mathbb{C}$, or $\mathbb{H})$), and G acts on K^{n} via matrix multiplication;
(4) $G=G L(n, K)$ (where $K=\mathbb{R}, \mathbb{C}$, or \mathbb{H}), and G acts on $K P^{n-1}$ via matrix multiplication;
(5) $G=O(n, \mathbb{R})$, and G acts on S^{n-1} via matrix multiplication;
(6) the (additive) group \mathbb{R} acts on the torus $S^{1} \times \cdots \times S^{1}$ according to formula $\left(t,\left(w_{1}, \ldots, w_{r}\right)\right) \mapsto\left(e^{2 \pi i a_{1} t} w_{1} \ldots . e^{2 \pi i a_{r} t} u_{r}\right)$; this action is an irrational flow if a_{1}, \ldots, a_{r} are linearly independent over \mathbb{Q}.

If the action of G on X is not effective, then we can consider its kernel

$$
G^{\mathrm{Ker}}=\{g \in G \mid g x=x \text { for all } x \in X\} .
$$

This kernel is a closed normal subgroup of G, and the topological group G / G^{Ker} acts naturally and effectively on X.
29.Hx. The formula $g G^{\mathrm{Ker}}(x)=g x$ determines an effective continuous action of $G / G^{\text {Ker on }} X$.

A group G acts properly discontinuously on X if for each compact set $C \subset X$ the set $\{g \in G \mid(g C) \cap C \neq \varnothing\}$ is finite.
29.Ix. If G acts properly discontinuously and effectively on a Hausdorff locally compact space X, then $\phi(G)$ is a discrete subset of Top X. (Here, as before, $\phi: G \rightarrow \operatorname{Top} X$ is the monomorphism induced by the G-action.) In particular, G is a discrete group.
29.2x. List, up to similarity, all triangles $T \subset \mathbb{R}^{2}$ such that the reflections in the sides of T generate a group acting on \mathbb{R}^{2} properly discontinuously:

$\left\lceil 29^{\prime} 3 x\right\rfloor$ Orbit Spaces

Let X be a left G-space. For $x \in X$, the set $G(x)=\{g x \mid g \in G\}$ is the orbit of x. In terms of orbits, the action of G on X is transitive iff it has only one orbit. For $A \subset X$ and $E \subset G$, we put $E(A)=\{g a \mid g \in E, a \in A\}$. We denote the set of all orbits by X / G and equip it with the quotient topology.
29.Jx. Let G be a compact topological group acting on a Hausdorff space X. Then the canonical map $G / G^{x} \rightarrow G(x)$ is a homeomorphism for each $x \in X$.
29.3x. Give an example where X is Hausdorff, but G / G_{x} is not homeomorphic to $G(x)$.
29.Kx. If a compact topological group G acts on a compact Hausdorff space X, then X / G is a compact Hausdorff space.
29.4x. Let G be a compact group, X a Hausdorff G-space, $A \subset X$. If A is closed (respectively, compact), then so is $G(A)$.
29.5x. Consider the canonical action of $G=\mathbb{R} \backslash 0$ on $X=\mathbb{R}$ (by multiplication). Find all orbits and all isotropy subgroups of this action. Recognize X / G as a topological space.
29.6x. Let G be the group generated by reflections in the sides of a rectangle in \mathbb{R}^{2}. Recognize the quotient space \mathbb{R}^{2} / G as a topological space. Recognize the group G.
29.7x. Let G be the group from Problem 29.6x, and let $H \subset G$ be the subgroup of index 2 constituted by the orientation-preserving elements in G. Recognize the quotient space \mathbb{R}^{2} / H as a topological space. Recognize the groups G and H.
29.8x. Consider the following (diagonal) action of the torus $G=\left(S^{1}\right)^{n+1}$ on $X=\mathbb{C} P^{n}:\left(z_{0}: z_{1}: \ldots: z_{n}\right) \mapsto\left(\theta_{0} z_{0}: \theta_{1} z_{1}: \ldots: \theta_{n} z_{n}\right)$. Find all orbits and isotropy subgroups. Recognize X / G as a topological space.
29.9x. Consider the canonical action (by permutations of coordinates) of the symmetric group $G=\mathbb{S}_{n}$ on $X=\mathbb{R}^{n}$ and $X=\mathbb{C}^{n}$, respectively. Recognize X / G as a topological space.
29.10x. Let $G=S O(3)$ act on the space X of symmetric 3×3 real matrices with trace 0 by conjugations $x \mapsto g x g^{-1}$. Recognize X / G as a topological space. Find all orbits and isotropy groups.

$\left\lceil 29^{\prime} 4 x\right\rfloor$ Homogeneous Spaces

A G-space is homogeneous if the action of G is transitive.
29.Lx. Let G be a topological group, $H \subset G$ a subgroup. Then G is a homogeneous H-space under the translation action of H. The quotient space G / H is a homogeneous G-space under the induced action of G.
29.Mx. Let X be a Hausdorff homogeneous G-space. If X and G are locally compact and G is second countable, then X is homeomorphic to G / G^{x} for each $x \in X$.
29.Nx. Let X be a homogeneous G-space. Then the canonical map $G / G^{x} \rightarrow$ $X, x \in X$, is a homeomorphism iff it is open.
29.11x. Show that $O(n+1) / O(n)=S^{n}$ and $U(n) / U(n-1)=S^{2 n-1}$.
29.12x. Show that $O(n+1) / O(n) \times O(1)=\mathbb{R} P^{n}$ and $U(n) / U(n-1) \times U(1)=$ $\mathbb{C} P^{n}$.
29.13x. Show that $S p(n) / S p(n-1)=S^{4 n-1}$, where

$$
\operatorname{Sp}(n)=\left\{A \in G L(\mathbb{H}) \mid A A^{*}=I\right\} .
$$

29.14x. Represent the torus $S^{1} \times S^{1}$ and the Klein bottle as homogeneous spaces.
29.15x. Give a geometric interpretation of the following homogeneous spaces: 1) $O(n) / O(1)^{n}$, 2) $O(n) / O(k) \times O(n-k)$, 3) $O(n) / S O(k) \times O(n-k)$, and 4) $O(n) / O(k)$.
29.16x. Represent $S^{2} \times S^{2}$ as a homogeneous space.
29.17x. Recognize $S O(n, 1) / S O(n)$ as a topological space.

Proofs and Comments

27.Ax Use the fact that any autohomeomorphism of a discrete space is continuous.
27.Cx Any translation is continuous, and the translations by a and a^{-1} are mutually inverse.
27.Dx Any conjugation is continuous, and the conjugations by g and g^{-1} are mutually inverse.
27.Ex The sets $x U, U x$, and U^{-1} are the images of U under the homeomorphisms L_{x} and R_{x} of the left and right translations through x and passage to the inverse element (i.e., reversing), respectively.
27.Fx Let $V \subset G$ be an open set, $a \in V$. If a neighborhood $U \in \Gamma$ is such that $U \subset a^{-1} V$, then $a U \subset V$. By Theorem 3.A, Σ is a base for topology of G.
27. $G \mathbf{x}$ If U is a neighborhood of 1 , then $U \cap U^{-1}$ is a symmetric neighborhood of 1 .
27.Hx By the continuity of multiplication, 1 has two neighborhoods V_{1} and V_{2} such that $V_{1} V_{2} \subset U$. Put $V=V_{1} \cap V_{2}$.
27.Jx Let W be a symmetric neighborhood such that $1_{G} \in W$ and $W^{3} \subset U$. Since C is compact, C is covered by finitely many sets of the form $W_{1}=x_{1} W, \ldots, W_{n}=x_{n} W$ with $x_{1}, \ldots, x_{n} \in C$. Put $V=\bigcap_{i=1}^{n}\left(x_{i} W x_{i}^{-1}\right)$. Clearly, V is a neighborhood of 1_{G}. If $x \in C$, then $x=x_{i} w_{i}$ for suitable $i, w_{i} \in W$. Finally, we have

$$
x^{-1} V x=w_{i}^{-1} x_{i}^{-1} V x_{i} w_{i} \subset w_{i}^{-1} W w_{i} \subset W^{3} \subset U .
$$

27.Kx If 1_{G} is closed, then all singletons in G are closed. Therefore, G satisfies T_{1} iff 1_{G} is closed. Let us prove that in this case the group G is also Hausdorff. Consider $g \neq 1$ and take a neighborhood U of 1_{G} not containing g. By 27.15x, 1_{G} has a symmetric neighborhood V such that $V^{2} \subset U$. Verify that $g V$ and V are disjoint, whence it follows that G is Hausdorff.
27.Lx \Leftrightarrow Use $15 . C \Leftrightarrow$ In this case, each element of G is the intersection of its neighborhoods. Hence, G satisfies the first separation axiom, and it remains to apply 27.Kx.
27.Mx. 1 It suffices to take a symmetric neighborhood V such that $V^{2} \subset U$. Indeed, then for each $g \notin U$ the neighborhoods $g V$ and V are disjoint, whence $\mathrm{Cl} V \subset U$.
27.Ox Let W be an open set, $g \in W$. Let V be a symmetric neighborhood of 1_{G} with $V^{2} \subset W$. There 1_{G} has a neighborhood $U \in \Gamma$ such
that $U \subset V$. There exists $a \in S$ such that $a \in g U^{-1}$. Then $g \in a U$ and $a \in g U^{-1} \subset g V^{-1}=g V$. Therefore, $a U \subset a V \subset g V^{2} \subset W$.
27.Px This immediately follows from 27.Ox.
28.Bx This follows from 27.16x.
28.Dx If U is open, then $U H$ (respectively, $H U$) is open. see 27.11x.
28.Ex Let G be the group. $H \subset G$ the subgroup. The space G / H of left cosets satisfies the first separation axiom since $g H$ is closed in G for any $g \in G$. Observe that every open set in G / H has the form $\left\{g H \mid g \in C^{-}\right\}$. where U is an open set in G. Hence. it is sufficient to check that for every open neighborhood U^{-}of 1_{G} in G the unity 1_{G} has a neighborhood V in G such that $\mathrm{Cl} V H \subset l^{\prime} H$. Pick a symmetric neighborhood V with $V^{2} \subset U$. see 27.15x. Let $x \in G$ belong to $\mathrm{Cl} V H$. Then $V x$ contains a point $v h$ with $v \in V$ and $h \in H$, so that there exists $r^{\prime} \in V$ such that $v^{\prime} x=v h$, whence $x \in V^{-1} V H=V^{2} H \subset U H$.
28.Fx (Compactness) First, we check that if H is compact, then the projection $G \rightarrow G / H$ is a closed map. Let $F \subset G$ be a closed set, $x \notin F H$. Since $F H$ is closed (see 27.14x), x has a neighborhood U disjoint with $F H$. Then $U H$ is disjoint with $F H$. Hence, the projection is closed. Now, consider a family of closed sets in G with the finite intersection property. Their images also form a family of closed sets in G / H with the finite intersection property. Since G / H is compact, the images have nonempty intersection. Therefore, there is $g \in G$ such that the traces of the closed sets in the family on $g H$ have the finite intersection property. Finally, since $g H$ is compact, the closed sets in the family have nonempty intersection.
(Connectedness) Let $G=U \cup V$, where U and V are disjoint open subsets of G. Since all cosets $g H, g \in G$, are connected, each of them is contained either in U or in V. Hence, G is decomposed into $U H$ and $V H$, which yields a decomposition of G / H in two disjoint open subsets. Since G / H is connected, either $U H$ or $V H$ is empty. Therefore, either U or V is empty.
28.Hx Let C be the connected component of 1_{G} in a topological group G. Then C^{-1} is connected and contains 1_{G}, whence $C^{-1} \subset C$. For any $g \in C$, the set $g C$ is connected and meets C, whence $g C \subset C$. Therefore, C is a subgroup of G. C is closed since connected components are closed. C is normal since $g C g^{-1}$ is connected and contains 1_{G}, whatever $g \in G$ is.
28.Ix Let G be a topological group, H a normal subgroup of G, and $a, b \in G$ two elements. Let \bar{W} be a neighborhood of the coset $a b H$ in G / H. The preimage of \bar{W} in G is an open set W consisting of cosets of H and containing $a b$. In particular, W is a neighborhood of $a b$. Since the multiplication in G is continuous, a and b have neighborhoods U and V, respectively, such that $U V \subset W$. Then $(U H)(V H)=(U V) H \subset W H$.

Therefore, multiplication of elements in the quotient group determines a continuous map $G / H \times G / H \rightarrow G / H$. Prove on your own that the map $G / H \times G / H: a H \rightarrow a^{-1} H$ is also continuous.
28.Jx This is special case of 28.Dx.
28.Kx If $\left\{U_{i}\right\}$ is a countable (neighborhood) base in G, then $\left\{U_{i} H\right\}$ is a countable (neighborhood) base in G / H.
28. Lx This is a special case of 28.Ex.
28. Mx $\quad \Rightarrow \quad$ In this case, all cosets of H are also open. Therefore, each singleton in G / H is open. \Longleftrightarrow If $1_{G / H}$ is open in G / H, then H is open in G by the definition of the quotient topology.
28. $\mathbf{N x} \Leftrightarrow$ Obvious. \Longleftrightarrow Let $a \in G$, and let $b=f(a) \in H$. For any neighborhood U of b, the set $b^{-1} U$ is a neighborhood of 1_{H} in H. Therefore, 1_{G} has a neighborhood V in G such that $f(V) \subset b^{-1} U$. Then $a V$ is a neighborhood of a, and we have $f(a V)=f(a) f(V)=b f(V) \subset b b^{-1} U=U$. Hence, f is continuous at each point $a \in G$, i.e., f is a topological group homomorphism.
28.Ox $\quad \Longrightarrow \quad$ Each open subset of $G / \operatorname{Ker} f$ has the form $U \cdot \operatorname{Ker} f$, where U is an open subset of G. Since $f / S(f)(U \cdot \operatorname{Ker} f)=f(U)$, the map $f / S(f)$ is open.
\Longleftrightarrow Since the projection $G \rightarrow G / \operatorname{Ker} f$ is open (see 28.Dx), the map f is open if so is $f / S(f)$.
28.Px Combine 28.Ox, 27. $K x$, and 17.Y.
28. Qx This follows from 28.Ox since the exponential map $\mathbb{R} \rightarrow S^{1}$: $x \mapsto e^{2 \pi x i}$ is open.
28.Sx The groups are not isomorphic since only one of them is compact. The exponential map $x \mapsto e^{2 \pi x i}$ determines a local isomorphism from \mathbb{R} to S^{1}.
28. $V \mathbf{x}$ The map $A \times B \rightarrow G:(a, b) \mapsto a b$ is a continuous bijection. To see that it is a homeomorphism, observe that it is open since for any neighborhoods of unity, $U \subset A$ and $V \subset B$, and any points $a \in A$ and $b \in B$, the product $U a V b=a b U^{\prime} V^{\prime}$, where $U^{\prime}=b^{-1} a^{-1} U a b$ and $V^{\prime}=b^{-1} V b$, contains $a b W^{\prime}$, where W^{\prime} is a neighborhood of 1_{G} contained in $U^{\prime} V^{\prime}$.
28. $W \mathbf{x}$ This immediately follows from 3.8.
28. $X \mathbf{x}$ The map Top $X \rightarrow \operatorname{Top} X: g \mapsto g^{-1}$ is continuous because it preserves the subbase for the topological structure on Top X. It remains to apply 28.Xx.1.
28. $\boldsymbol{X x} .1$ It suffices to check that the preimage of every element of a subbase is open. For $W(C, U)$, this is a special case of $25 . S x$, where we showed that for any $g h \in W(C, U)$ there is an open $U^{\prime}, h(C) \subset U^{\prime} \subset g^{-1}(U)$,
such that $\mathrm{Cl} U^{\prime}$ is compact, $h \in W\left(C, U^{\prime}\right), g \in W\left(\mathrm{Cl} U^{\prime}, U\right)$, and

$$
g h \in W\left(\mathrm{Cl} U^{\prime}, U\right) \circ W\left(C, U^{\prime}\right) \subset W(C, U) .
$$

The case of $(W(C, U))^{-1}$ reduces to the previous one because for any $g h \in$ $(W(C, U))^{-1}$ we have $h^{-1} g^{-1} \in W(C, U)$, and so, applying the above construction, we obtain an open U^{\prime} such that $g^{-1}(C) \subset U^{\prime} \subset h(U), \mathrm{Cl} U^{\prime}$ is compact, $g^{-1} \in W\left(C, U^{\prime}\right), h^{-1} \in W\left(\mathrm{Cl} U^{\prime}, U\right)$, and

$$
h^{-1} g^{-1} \in W\left(\mathrm{Cl} U^{\prime} . U\right) \circ W\left(C, U^{\prime}\right) \subset W(C, U) .
$$

Finally, we have $g \in\left(W\left(C, U^{\prime}\right)\right)^{-1}, h \in\left(W\left(\mathrm{Cl} U^{\prime}, U\right)\right)^{-1}$, and

$$
g h \in\left(W\left(C, U^{\prime}\right)\right)^{-1} \circ\left(W\left(\mathrm{Cl} U^{\prime}, U\right)\right)^{-1} \subset(W(C, U))^{-1} .
$$

We observe that the above map is continuous even for the pure compactopen topology on Top X.
29.Gx It suffices to check that the preimage of every element of a subbase is open. For $W(C, U)$, this is a special case of $25 . V x$. Let $\phi(g) \in$ $(W(C, U))^{-1}$. Then $\phi\left(g^{-1}\right) \in W(C, U)$, and therefore g^{-1} has an open neighborhood V in G with $\phi(V) \subset W(C, U)$. It follows that V^{-1} is an open neighborhood of g in G and $\phi\left(V^{-1}\right) \subset(W(C, U))^{-1}$. (The assumptions about X are needed only to ensure that $\operatorname{Top} X$ is a topological group.)
29.Ix Let us check that 1_{G} is an isolated point of G. Consider an open set V with compact closure. Let $U \subset V$ be an open subset with compact closure $\mathrm{Cl} U \subset V$. Then, for each of finitely many $g_{k} \in G$ with $g_{k}(U) \cap V \neq \varnothing$, let $x_{k} \in X$ be a point with $g_{k}\left(x_{k}\right) \neq x_{k}$, and let U_{k} be an open neighborhood of x_{k} disjoint with $g_{k}\left(x_{k}\right)$. Finally, $G \cap W(\mathrm{Cl} U, V) \cap$ $\bigcap_{k=1}^{n} W\left(x_{k}, U_{k}\right)$ contains only 1_{G}.
29.Jx The space G / G^{x} is compact, the orbit $G(x) \subset X$ is Hausdorff, and the map $G / G^{x} \rightarrow G(x)$ is a continuous bijection. It remains to apply 17.Y.
29.Kx To prove that X / G is Hausdorff, consider two disjoint orbits, $G(x)$ and $G(y)$. Since $G(y)$ is compact, there are disjoint open sets $U \ni x$ and $V \supset G(y)$. Since $G(x)$ is compact, there is a finite number of elements $g_{k} \in G$ such that $\bigcup_{k} g_{k} U$ covers $G(x)$. Then $\mathrm{Cl}\left(\bigcup_{k} g_{k} U\right)=\bigcup_{k} \mathrm{Cl} g_{k} U=$ $\bigcup_{k} g_{k} \mathrm{Cl} U$ is disjoint with $G(y)$, which shows that X / G is Hausdorff. (Note that this part of the proof does not involve the compactness of X.) Finally, X / G is compact as a quotient of the compact space X.
29.Mx It suffices to prove that the canonical map $f: G / G^{x} \rightarrow X$ is open (see 29.Nx).
Take a neighborhood $V \subset G$ of 1_{G} with compact closure and a neighborhood $U \subset G$ of 1_{G} with $\mathrm{Cl} U \cdot \mathrm{Cl} U \subset V^{\circ}$. Since G contains a dense countable set. it follows that there is a sequence $g_{n} \in G$ such that $\left\{g_{n} U\right\}$ is an open cover of G.

It remains to prove that at least one of the sets $f\left(g_{n} U\right)=g_{n} f(U)=g_{n} U(x)$ has nonempty interior.
Assume the contrary. Then, using the local compactness of X, its Hausdorff property, and the compactness of $f\left(g_{n} \mathrm{Cl} U\right)$, we construct by induction a nested sequence of open sets $W_{n} \subset X$ with compact closure such that W_{n} is disjoint with $g_{k} U x$ with $k<n$ and $g_{n} U x \cap W_{n}$ is closed in W_{n}. Finally, we obtain nonempty $\bigcap_{n=1}^{\infty} W_{n}$ disjoint with $G(x)$, a contradiction.
29. Nx The canonical $\operatorname{map} G / G^{x} \rightarrow X$ is continuous and bijective. Hence, it is a homeomorphism iff it is open (and iff it is closed).

Part 2

Elements of Algebraic Topology

This part of the book can be considered an introduction to algebraic topology, which is a part of topology that relates topological and algebraic problems. The relationship is used in both directions, but the reduction of topological problems to algebra is more useful at first stages because algebra is usually easier.

The relation is established according to the following scheme. One invents a construction that assigns to each topological space X under consideration an algebraic object $A(X)$. The latter may be a group, a ring, a space with a quadratic form, an algebra, etc. Another construction assigns to a continuous map $f: X \rightarrow Y$ a homomorphism $A(f): A(X) \rightarrow A(Y)$. The constructions satisfy natural conditions (in particular, they form a functor), which make it possible to relate topological phenomena with their algebraic images obtained via the constructions.

There is an immense number of useful constructions of this kind. In this part, we deal mostly with one of them which, historically, was the first one: the fundamental group of a topological space. It was invented by Henri Poincaré in the end of the XIXth century.

Fundamental Group

30. Homotopy

$\left\lceil 30^{\prime} 1 〕\right.$ Continuous Deformations of Maps

30.A. Is it possible to deform continuously:
(1) the identity map id : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ into the constant map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$: $x \mapsto 0$,
(2) the identity map id : $S^{1} \rightarrow S^{1}$ into the srmmetry $S^{1} \rightarrow S^{1}: x \mapsto$ $-x$ (here x is considered a complex number because the circle S^{1} is $\{x \in \mathbb{C}:|x|=1\}$),
(3) the identity map id : $S^{1} \rightarrow S^{1}$ into the constant map $S^{1} \rightarrow S^{1}$: $x \mapsto 1$,
(4) the identity map id : $S^{1} \rightarrow S^{1}$ into the two-fold wrapping $S^{1} \rightarrow$ $S^{1}: x \mapsto x^{2}$,
(5) the inclusion $S^{1} \rightarrow \mathbb{R}^{2}$ into a constant map,
(6) the inclusion $S^{1} \rightarrow \mathbb{R}^{2} \backslash 0$ into a constant map?
30.B. Riddle. When you (tried to) solve the previous problem, what did you mean by "deform continuously"?

The present section is devoted to the notion of homotopy formalizing the naive idea of continuous deformation of a map.

$\left\lceil 30^{\prime} 2\right\rfloor$ Homotopy as a Map and a Family of Maps

Let f and g be two continuous maps of a topological space X to a topological space Y, and let $H: X \times I \rightarrow Y$ be a continuous map such that $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ for each $x \in X$. Then f and g are homotopic, and H is a homotopy between f and g.

For $x \in X$ and $t \in I$. we denote $H(x . t)$ by $h_{t}(x)$. This change of notation results in a change of the point of view of H. Indeed, for a fixed t the formula $x \mapsto h_{t}(x)$ determines a map $h_{t}: X \rightarrow Y$, and H becomes a family of maps h_{t} enumerated by $t \in I$.
30.C. Each h_{t} is continuous.
30.D. Does continuity of all h_{t} imply continuity of H ?

The conditions $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ in the above definition of a homotopy can be reformulated as follows: $h_{0}=f$ and $h_{1}=g$. Thus, a homotopy between f and g can be regarded as a family of continuous maps that connects f and g. Continuity of a homotopy allows us to say that it is a continuous family of continuous maps (see $30^{\prime} 10$).

$\lceil 30$ '3」 Homotopy as a Relation

30.E. Homotopy of maps is an equivalence relation.
30.E.1. If $f: X \rightarrow Y$ is a continuous map. then $H: X \times I \rightarrow Y:(x, t) \mapsto f(x)$ is a homotopy between f and f.
30.E.2. If H is a homotopy between f and g, then H^{\prime} defined by $H^{\prime}(x, t)=$ $H(x, 1-t)$ is a homotopy between g and f.
30.E.3. If H is a homotopy between f and f^{\prime} and H^{\prime} is a homotopy between f^{\prime} and $f^{\prime \prime}$, then $H^{\prime \prime}$ defined by

$$
H^{\prime \prime}(x, t)= \begin{cases}H(x, 2 t) & \text { if } t \in[0,1 / 2] \\ H^{\prime}(x, 2 t-1) & \text { if } t \in[1 / 2,1]\end{cases}
$$

is a homotopy between f and $f^{\prime \prime}$.
Homotopy, being an equivalence relation by $30 . E$, splits the set $\mathcal{C}(X, Y)$ of all continuous maps from a space X to a space Y into equivalence classes. The latter are homotopy classes. The set of homotopy classes of all continuous maps $X \rightarrow Y$ is denoted br $\pi(X, Y)$. Maps homotopic to a constant map are also said to be null-homotopic.
30.1. Prove that the set $\pi(\mathrm{X} . I)$ is a singleton for each X.
30.2. Prove that two constant maps $\mathrm{X} \rightarrow Y$ are homotopic iff their images lie in one path-connected component of Y^{-}.
30.3. Prove that the number of elements of $\pi\left(I . Y^{*}\right)$ is equal to the number of path-connected components of Y.

$\left\lceil 30^{\prime} 4\right\rfloor$ Rectilinear Homotopy

30.F. Any two continuous maps of the same space to \mathbb{R}^{n} are homotopic.
30.G. Solve the preceding problem by proving that for continuous maps $f, g: X \rightarrow \mathbb{R}^{n}$, the formula $H(x, t)=(1-t) f(x)+t g(x)$ determines a homotopy between f and g.

The homotopy defined in 30.G is a rectilinear homotopy:
30.H. Any two continuous maps of an arbitrary space to a convex subspace of \mathbb{R}^{n} are homotopic.

$\left\lceil 30^{\prime} 5\right.$ 」 Maps to Star-Shaped Sets

A set $A \subset \mathbb{R}^{n}$ is star-shaped if A contains a point a such that for any $x \in A$ the whole segment $[a, x]$ connecting x to a is contained in A. The point a is the center of the star. (Certainly, the center of the star is not uniquely determined.)
30.4. Prove that any two continuous maps of a space to a star-shaped subspace of \mathbb{R}^{n} are homotopic.

$\left\lceil 30^{\prime} 6\right\rfloor$ Maps of Star-Shaped Sets

30.5. Prove that any continuous map of a star-shaped set $C \subset \mathbb{R}^{n}$ to any space is null-homotopic.
30.6. Under what conditions (formulated in terms of known topological properties of a space X) are any two continuous maps of any star-shaped set to X homotopic?

$\left\lceil 30^{\prime} 7\right.$ 」 Easy Homotopies

30．7．Prove that each non－surjective map of any topological space to S^{n} is null－ homotopic．
30．8．Prove that any two maps of a one－point space to $\mathbb{R}^{n} \backslash 0$ with $n>1$ are homotopic．
30．9．Find two nonhomotopic maps from a one－point space to $\mathbb{R} \backslash 0$ ．
30．10．For various m, n ，and k ，calculate the number of homotopy classes of maps $\{1,2, \ldots, m\} \rightarrow \mathbb{R}^{n} \backslash\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ ，where $\{1,2, \ldots, m\}$ is equipped with discrete topology．
30．11．Let f and g be two maps from a topological space X to $\mathbb{C} \backslash 0$ ．Prove that if $|f(x)-g(x)|<|f(x)|$ for any $x \in X$ ，then f and g are homotopic．
30．12．Prove that for any polynomials p and q over \mathbb{C} of the same degree in one variable there exists $r>0$ such that for any $R>r$ the formulas $z \mapsto p(z)$ and $z \mapsto q(z)$ determine maps of the circle $\{z \in \mathbb{C}:|z|=R\}$ to $\mathbb{C} \backslash 0$ and these maps are homotopic．
30．13．Let f and g be two maps of an arbitrary topological space X to S^{n} ．Prove that if $|f(a)-g(a)|<2$ for each $a \in X$ ，then f is homotopic to g ．
30．14．Let $f: S^{n} \rightarrow S^{n}$ be a continuous map．Prove that if it is fixed－point－free， i．e．．$f(x) \neq x$ for every $x \in S^{n}$ ．then f is homotopic to the symmetry $x \mapsto-x$ ．

$\left\lceil 30^{\prime} 8 」\right.$ Two Natural Properties of Homotopies

30．I．Let $f, f^{\prime}: X \rightarrow Y, g: Y \rightarrow B$ ，and $h: A \rightarrow X$ be continuous maps， and let $F: X \times I \rightarrow Y$ be a homotopy between f and f^{\prime} ．Prove that then $g \circ F \circ\left(h \times \mathrm{id}_{I}\right)$ is a homotopy between $g \circ f \circ h$ and $g \circ f^{\prime} \circ h$ ．

30．J．Riddle．In the assumptions of 30．I，define a natural map

$$
\pi(X, Y) \rightarrow \pi(A, B) .
$$

How does it depend on g and h ？Write down all nice properties of this construction．
30．K．Prove that two maps $f_{0}, f_{1}: X \rightarrow Y \times Z$ are homotopic iff $\operatorname{pr}_{Y} \circ f_{0}$ is homotopic to $\operatorname{pr}_{Y} \circ f_{1}$ and $\operatorname{pr}_{Z} \circ f_{0}$ is homotopic to $\operatorname{pr}_{Z} \circ f_{1}$ ．

$\left\lceil 30^{\prime} 9\right.$ 」 Stationary Homotopy

Let A be a subset of X ．A homotopy $H: X \times I \rightarrow Y$ is fixed or stationary on A ，or．briefly：an A－homotopy if $H(x . t)=H(x, 0)$ for all $x \in A, t \in I$ ． Two maps connected by an A－homotopy are A－homotopic．

Certainly；any two A－homotopic maps coincide on A ．If we want to emphasize that a homotopy is not assumed to be fixed，then we say that it is free．If we want to emphasize the opposite（that the homotopy is fixed）， then we say that it is relative．${ }^{1}$

[^21]30．L．Prove that，like free homotopy，A－homotopy is an equivalence rela－ tion．

The classes into which the A－homotopy splits the set of continuous maps $X \rightarrow Y$ that agree on A with a map $f: A \rightarrow Y$ are A－homotopy classes of continuous extensions of f to X ．

30．M．For what A is a rectilinear homotopy fixed on A ？

「30＇10」 Homotopies and Paths

Recall that a path in a space X is a continuous map from the segment I to X ．（See Section 14．）

30．N．Riddle．In what sense is any path a homotopy？
30．O．Riddle．In what sense does any homotopy consist of paths？
30．P．Riddle．In what sense is any homotopy a path？
Recall that the compact－open topology in $\mathcal{C}(X, Y)$ is the topology generated by the sets $\{\varphi \in \mathcal{C}(X, Y) \mid \varphi(A) \subset B\}$ for compact $A \subset X$ and open $B \subset Y$ ．

30．15．Prove that any homotopy $h_{t}: X \rightarrow Y$ determines（see $30^{\prime} 2$ ）a path in $\mathcal{C}(X, Y)$ with compact－open topology．

30．16．Prove that if X is locally compact and regular，then any path in $\mathcal{C}(X, Y)$ with compact－open topology determines a homotopy．

「30＇11」 Homotopy of Paths

30．Q ．Prove that two paths in a space X are freely homotopic iff their images belong to the same path－connected component of X ．

This shows that the notion of free homotopy in the case of paths is not interesting．On the other hand，there is a sort of relative homotopy playing a very important role．This is $(0 \cup 1)$－homotopy：This causes the following commonly accepted deviation from the terminology introduced above：ho－ motopy of paths always means not a free homotopy．but a homotopy fixed on the endpoints of I（i．e．，on $0 \cup 1$ ）．

Notation：a homotopy class of a path s is denoted by $[s]$ ．

31. Homotopy Properties of Path Multiplication

「31'1」Multiplication of Homotopy Classes of Paths

Recall (see Section 14) that two paths u and v in a space X can be multiplied, provided that the initial point $v(0)$ of v is the final point $u(1)$ of u. The product $u v$ is defined by

$$
u v(t)= \begin{cases}u(2 t) & \text { if } t \in[0,1 / 2] \\ v(2 t-1) & \text { if } t \in[1 / 2,1]\end{cases}
$$

31.A. If a path u is homotopic to u^{\prime}, a path v is homotopic to v^{\prime}, and the product uv exists, then $u^{\prime} v^{\prime}$ exists and is homotopic to uv.

Define the product of homotopy classes of paths u and v as the homotopy class of $u v$. So, $[u][v]$ is defined as $[u v]$, provided that $u v$ is defined. This is a definition requiring a proof.
31.B. The product of homotopy classes of paths is well defined. ${ }^{2}$

$\left\lceil 31^{\prime} 2\right\rfloor$ Associativity

31.C. Is multiplication of paths associative?

Certainly, this question might be formulated in more detail as follows.
31.D. Let u, v, and w be paths in a certain space such that products $u v$ and $v w$ are defined (i.e., $u(1)=v(0)$ and $v(1)=w(0))$. Is it true that $(u v) w=u(v w)$?
31.1. Prove that for paths in a metric space $(u v) w=u(v w)$ implies that u, v, and w are constant maps.
31.2. Riddle. Find nonconstant paths u, v, and w in an indiscrete space such that $\left(u v^{\prime}\right) w=u(v w)$.
31.E. Multiplication of homotopy classes of paths is associative.

[^22]31.E.1. Reformulate Theorem 31.E in terms of paths and their homotopies.
31.E.2. Find a map $\varphi: I \rightarrow I$ such that if u, v, and w are paths with $u(1)=$ $v(0)$ and $v(1)=w(0)$, then $((u v) w) \circ \varphi=u(v w)$.

31.E.3. Any path in I starting at 0 and ending at 1 is homotopic to id : $I \rightarrow I$.
31.E.4. Let u, v, and w be paths in a space such that products $u v$ and $v w$ are defined (thus, $u(1)=v(0)$ and $v(1)=w(0))$. Then $(u v) w$ is homotopic to $u(v w)$.

If you want to understand the essence of 31.E, then observe that the paths (uv)w and $u(v w)$ have the same trajectories and differ only by the time spent in different fragments of the path. Therefore, in order to find a homotopy between them, we must find a continuous way to change one schedule to the other. The lemmas above suggest a formal way of such a change, but the same effect can be achieved in many other ways.
31.3. Present explicit formulas for the homotopy H between the paths (uv) w and $u(v w)$.

$\left\lceil 31^{\prime} 3\right\rfloor$ Unit

Let a be a point of a space X. Denote by e_{a} the path $I \rightarrow X: t \mapsto a$.
31.F. Is e_{a} a unit for multiplication of paths?

The same question in more detailed form:
31. G. Is $e_{a} u=u$ for paths u with $u(0)=a$? Is $v e_{a}=v$ for paths v with $v(1)=a$?
31.4. Prove that if $e_{a} u=u$ and the space satisfies the first separation axiom. then $u=e_{a}$.
31.H. The homotopy class of e_{a} is a unit for multiplication of homotopy classes of paths.

$\left\lceil 31^{\prime} 4\right.$ Inverse

Recall that a path u has the inverse path $u^{-1}: t \mapsto u(1-t)$ (see Section 14).
31.I. Is the inverse path inverse with respect to multiplication of paths?

In other words:
31.J. For a path u beginning in a and finishing in b, is it true that $u u^{-1}=e_{a}$ and $u^{-1} u=e_{b}$?
31.5. Prove that for a path u with $u(0)=a$ equality $u u^{-1}=e_{a}$ implies $u=e_{a}$.
31.K. For any path u, the homotopy class of the path u^{-1} is inverse to the homotopy class of u.
31.K.1. Find a map $\varphi: I \rightarrow I$ such that $u u^{-1}=u \circ \varphi$ for any path u.
31.K.2. Any path in I that starts and finishes at 0 is homotopic to the constant path $e_{0}: I \rightarrow I$.

We see that from the algebraic point of view multiplication of paths is terrible. but it determines multiplication of homotopy classes of paths, which has nice algebraic properties. The only unfortunate property is that the multiplication of homotopy classes of paths is defined not for any two classes.
31.L. Riddle. How to select a subset of the set of homotopy classes of paths to obtain a group?

32. Fundamental Group

$\left\lceil 32^{\prime} 1\right\rfloor$ Definition of Fundamental Group

Let X be a topological space. x_{0} a point of X. A path in X which starts and ends at x_{0} is a loop in X at x_{0}. Denote by $\Omega_{1}\left(X, x_{0}\right)$ the set of loops in X at x_{0}. Denote by $\pi_{1}\left(X . x_{0}\right)$ the set of homotopy classes of loops in X at x_{0}.

Both $\Omega_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X . x_{0}\right)$ are equipped with a multiplication.
32.A. For any topological space X and a point $x_{0} \in X$, the set $\pi_{1}\left(X, x_{0}\right)$ of homotopy classes of loops at x_{0} with multiplication defined above in Section 31 is a group.
$\pi_{1}\left(X, x_{0}\right)$ is the fundamental group of the space X with base point x_{0}. It was introduced by Poincaré, and this is why it is also called the Poincaré group. The letter π in this notation is also due to Poincaré.

$\left\lceil 32^{\prime} 2\right\rfloor$ Why Index 1?

The index 1 in the designation $\pi_{1}\left(X, x_{0}\right)$ appeared later than the letter π. It is related to one more name of the fundamental group: the first (or one-dimensional) homotopy group. There is an infinite sequence of groups $\pi_{r}\left(X, x_{0}\right)$ with $r=1,2,3 \ldots$, the fundamental group being one of them. The higher-dimensional homotopy groups were defined br Witold Hurewicz in 1935, thirty years after the fundamental group was defined. Roughly speaking, the general definition of $\pi_{r}\left(X, x_{0}\right)$ is obtained from the definition of $\pi_{1}\left(X, x_{0}\right)$ by replacing I with the cube I^{r}.
32.B. Riddle. How to generalize problems of this section in such a way that in each of them I would be replaced by I^{r} ?

There is even a "zero-dimensional homotopy group" $\pi_{0}\left(X, x_{0}\right)$, but it is not a group, as a rule. It is the set of path-connected components of X. Although there is no natural multiplication in $\pi_{0}\left(X, x_{0}\right)$, unless X is equipped with some special additional structures, $\pi_{0}\left(X, x_{0}\right)$ has a natural unit. This is the component containing x_{0}.

$\left\lceil 32^{\prime} 3\right\rfloor$ Circular loops

Let X be a topological space, $x_{0} \in X$. A continuous map $l: S^{1} \rightarrow X$ such that ${ }^{3} l(1)=x_{0}$ is a (circular) loop at x_{0}. Assign to each circular loop l the composition of l with the exponential map $I \rightarrow S^{1}: t \mapsto e^{2 \pi i t}$. This is a usual loop at the same point.

[^23]32. C. Prove that any loop is obtained in this way from a circular loop.

Two circular loops l_{1} and l_{2} are homotopic if they are 1 -homotopic. A homotopy of a circular loop not fixed at x_{0} is a free homotopy.
32.D. Prove that two circular loops are homotopic iff the corresponding ordinary loops are homotopic.
32.1. What kind of homotopy of loops corresponds to free homotopy of circular loops?
32.2. Describe the operation with circular loops corresponding to the multiplication of paths.
32.3. Let C and V be the circular loops with common base point $U(1)=V(1)$ corresponding to the loops u and v. Prove that the circular loop

$$
z \mapsto\left\{\begin{array}{l}
U\left(z^{2}\right) \text { if } \operatorname{Im}(z) \geq 0, \\
V\left(z^{2}\right) \text { if } \operatorname{Im}(z) \leq 0
\end{array}\right.
$$

corresponds to the product of u and v.
32.4. Outline a construction of fundamental group using circular loops.

$\left\lceil 32^{\prime} 4 」\right.$ The Very First Calculations

32. \boldsymbol{E}. Prove that $\pi_{1}\left(\mathbb{R}^{n}, 0\right)$ is a trivial group (i.e., consists of one element).
32.F. Generalize 32.E to the situations suggested by $30 . H$ and 30.4.
32.5. Calculate the fundamental group of an indiscrete space.
32.6. Calculate the fundamental group of the quotient space of disk D^{2} obtained by identifying of each $x \in D^{2}$ with $-x$.
32.7. Prove that if a two-element space X is path-connected, then X is simply connected.
33. G. Prove that $\pi_{1}\left(S^{n},(1,0, \ldots, 0)\right)$ with $n \geq 2$ is a trivial group.

Whether you have solved Problem 32. G or not. we recommend you considering Problems 32.G.1, 32.G.2, 32.G.4, 32.G.5. and 32.G.6. They are designed to give an approach to 32.G, warn about a natural mistake, and prepare an important tool for further calculations of fundamental groups.
32.G.1. Prove that any loop $s: I \rightarrow S^{n}$ that does not fill the entire S^{n} (i.e., $s(I) \neq S^{n}$) is null-homotopic. provided that $n \geq 2$. (Cf. Problem 30.7.)

Warning: for any n, there exists a loop filling S^{n}. See Problem 10.49x.
32.G.2. Can a loop filling S^{2} be null-homotopic?
32.G.3 Corollary of Lebesgue Lemma 17.W. Let $s: I \rightarrow X$ be a path, Γ an open cover of a topological space X. There exists a sequence of points $a_{1}, \ldots, a_{N} \in I$ with $0=a_{1}<a_{2}<\cdots<a_{N-1}<a_{N}=1$ such that $s\left(\left[a_{i}, a_{i+1}\right]\right)$ is contained in an element of Γ for each i.
32.G.4. Prove that if $n \geq 2$, then for any path $s: I \rightarrow S^{n}$ the segment I has a subdivision into a finite number of subintervals such that the restriction of s to each of the subintervals is homotopic to a map with nowhere-dense image via a homotopy fixed on the endpoints of the subinterval.
32.G.5. Prove that if $n \geq 2$. then any loop in S^{n} is homotopic to a nonsurjective loop.
32.G.6. 1) Deduce 32.G from 32.G.1 and 32.G.5. 2) Find all points of the proof of 32. G obtained in this war: where the condition $n \geq 2$ is used.

$\left\lceil 32^{\prime} 5 」\right.$ Fundamental Group of a Product

32.H. The fundamental group of the product of topological spaces is canonically isomorphic to the product of the fundamental groups of the factors:

$$
\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)=\pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y . y_{0}\right)
$$

32.8. Consider a loop $u: I \rightarrow X$ at x_{0}, a loop $v: I \rightarrow Y$ at y_{0}, and the loop $w=u \times v: I \rightarrow X \times Y$. We introduce the loops $\left.u^{\prime}: I \rightarrow X \times Y: t \mapsto\left(u(t), y_{0}\right)\right)$ and $v^{\prime}: I \rightarrow X \times Y: t \mapsto\left(x_{0}, v(t)\right)$. Prove that $u^{\prime} v^{\prime} \sim w \sim v^{\prime} u^{\prime}$.
32.9. Prove that $\pi_{1}\left(\mathbb{R}^{n} \backslash 0,(1,0, \ldots, 0)\right)$ is trivial if $n \geq 3$.

$\left\lceil 32^{\prime} 6\right\rfloor$ Simply-Connectedness

A nonempty topological space X is simply connected (or one-connected) if X is path-connected and every loop in X is null-homotopic.
32.I. For a path-connected topological space X, the following statements are equivalent:
(1) X is simply connected,
(2) each continuous map $f: S^{1} \rightarrow X$ is (freely) null-homotopic,
(3) each continuous map $f: S^{1} \rightarrow X$ extends to a continuous map $D^{2} \rightarrow X$,
(4) any two paths $s_{1}, s_{2}: I \rightarrow X$ connecting the same points x_{0} and x_{1} are homotopic.

Theorem 32.I is closely related to Theorem 32.J below. Notice that since Theorem 32.J concerns not all loops, but an individual loop, it is applicable in a broader range of situations.
32.J. Let X be a topological space, $s: S^{1} \rightarrow X$ a circular loop. Then the following statements are equivalent:
(1) s is null-homotopic,
(2) s is freely null-homotopic,
(3) s extends to a continuous map $D^{2} \rightarrow X$,
(4) the paths $s_{+}, s_{-}: I \rightarrow X$ defined by the formula $s_{ \pm}(t)=s\left(e^{ \pm \pi i t}\right)$ are homotopic.
32.J.1. Riddle. To prove that 4 statements are equivalent, we must prove at least 4 implications. What implications would you choose for the easiest proof of Theorem 32.J?
32.J.2. Does homotopy of circular loops imply that these circular loops are free homotopic?
32.J.3. A homotopy between a map of the circle and a constant map possesses a quotient map whose source space is homeomorphic to the disk D^{2}.
32.J.4. Represent the problem of constructing a homotopy between the paths s_{+}and s_{-}as a problem of extending a certain continuous map of the boundary of a square to the whole square.
32.J.5. When we solve the extension problem obtained as a result of Problem 32.J.4. does it help to know that the circular loop $S^{1} \rightarrow X: t \mapsto s\left(e^{2 \pi i t}\right)$ extends to a continuous map of a disk?
32.10. Which of the following spaces are simply connected:
(a) a discrete
(b) an indiscrete
(c) \mathbb{R}^{n}; space: space;
(d) a convex set;
(e) a star-shaped set;
(f) $\quad S^{n}$;
(g) $\mathbb{R}^{n} \backslash 0$?
32.11. Prove that if a topological space X is the union of two open simply connected sets U and V with path-connected intersection $U \cap V$, then X is simply connected.
32.12. Show that the assumption in 32.11 that U and V are open is necessary.
32.13*. Let X be a topological space, $U, V \subset X$ two open subsets. Prove that if $U \cup V$ and $U \cap V$ are simply connected, then so are U and V.

$\left\lceil 32^{\prime} 7 \mathrm{x}\right\rfloor$ Fundamental Group of a Topological Group

Let G be a topological group. Given loops $u . v^{\prime}: I \rightarrow G$ starting at the unity $1 \in G$, we define a loop $u \odot v: I \rightarrow G$ by the formula $u \odot v(t)=$ $u(t) \cdot v(t)$, where \cdot denotes the group operation in G.
32.Kx. Prove that the set $\Omega(G, 1)$ of all loops in G starting at 1 equipped with the operation \odot is a group.
32. Lx. Prove that the operation $₹$ on $\Omega(G, 1)$ determines a group operation on $\pi_{1}(G, 1)$, which coincides with the standard group operation (determined by multiplication of paths).
32.Lx.1. For loops $u, v \rightarrow G$ starting at 1 , find $\left(u e_{1}\right) \odot\left(e_{1} v\right)$.
32.Mx. The fundamental group of a topological group is Abelian.

$\left\lceil 32^{\prime} 8 \mathrm{x}\right\rfloor$ High Homotopy Groups

Let X be a topological space. $x_{0} \in X$. A continuous map $I^{r} \rightarrow X$ mapping the boundary ∂I^{r} of I^{r} to x_{0} is a spheroid of dimension r of X at x_{0}, or just an r-spheroid. Two r-spheroids are homotopic if they are ∂I^{r}-homotopic. For two r-spheroids u and v of X at $x_{0}, r \geq 1$, define the product $u v$ by the formula

$$
u v\left(t_{1}, t_{2}, \ldots, t_{r}\right)= \begin{cases}u\left(2 t_{1} \cdot t_{2} \ldots, t_{r}\right) & \text { if } t_{1} \in[0,1 / 2] \\ u\left(2 t_{1}-1 . t_{2} \ldots, t_{r}\right) & \text { if } t_{1} \in[1 / 2,1]\end{cases}
$$

The set of homotopr classes of r-sheroids of a space X at x_{0} is the r th (or r-dimensional) homotopy group $\overline{-}\left(\mathrm{X} . x_{0}\right.$) of Y at x_{0}. Thus.

$$
\pi_{r}\left(\mathrm{X} \cdot x_{0}\right)=\pi\left(I^{r} . \partial I^{r}: \mathrm{X}, x_{0}\right) .
$$

Multiplication of spheroids induces multiplication in $\pi_{r}\left(X . x_{0}\right)$. which makes $\pi_{r}\left(X, x_{0}\right)$ a group.
32. $\mathbf{N x}$. Find $\pi_{r}\left(\mathbb{R}^{n}, 0\right)$.
32.Ox. For any X and x_{0}, the group $\pi_{r}\left(X, x_{0}\right)$ with $r \geq 2$ is Abelian.

Similar to $32^{\prime} 3$, higher-dimensional homotopy groups can be built up not out of homotopy classes of maps $\left(I^{r}, \partial I^{r}\right) \rightarrow\left(X, x_{0}\right)$, but as

$$
\pi\left(S^{r},(1,0, \ldots, 0) ; X, x_{0}\right)
$$

Another way, also quite popular, is to define $\pi_{r}\left(X . x_{0}\right)$ as

$$
\pi\left(D^{r} . \partial D^{r} ; X . x_{0}\right) .
$$

32.Px. Construct natural bijections

$$
\pi\left(I^{r}, \partial I^{r} ; X, x_{0}\right) \rightarrow \pi\left(D^{r}, \partial D^{r} ; X, x_{0}\right) \rightarrow \pi\left(S^{r} .(1.0 \ldots \ldots 0) ; X, x_{0}\right)
$$

32.Qx. Riddle. For any X, x_{0} and $r \geq 2$, present group $\pi_{r}\left(X, x_{0}\right)$ as the fundamental group of some space.
32.Rx. Prove the following generalization of 32.H:

$$
\pi_{r}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)=\pi_{r}\left(X, x_{0}\right) \times \pi_{r}\left(Y, y_{0}\right) .
$$

$32 . S \mathrm{x}$. Formulate and prove analogs of Problems $32 . K x$ and $32 . L x$ for higher homotopy groups and $\pi_{0}(G, 1)$.

33．The Role of Base Point

「33＇1」 Overview of the Role of Base Point

Sometimes the choice of the base point does not matter，sometimes it is obviously crucial，and sometimes this is a delicate question．In this section， we have to clarify all subtleties related to the base point．We start with preliminary formulations describing the subject in its entirety，but without some necessary details．

The role of the base point may be roughly described as follows：
－When the base point changes within the same path－connected com－ ponent，the fundamental group remains in the same class of isomor－ phic groups．
－However，if the group is non－Abelian，it is impossible to find a natural isomorphism between the fundamental groups at different base points even in the same path－connected component．
－Fundamental groups of a space at base points belonging to different path－connected components have nothing to do with each other．

In this section，these will be demonstrated．The proof involves useful con－ structions，whose importance extends far outside the frameworks of our initial question on the role of the base point．

「33＇2」 Definition of Translation Maps

Let x_{0} and x_{1} be two points of a topological space X ，and let s be a path connecting x_{0} with x_{1} ．Denote by σ the homotopy class $[s]$ of s ．Define a $\operatorname{map} T_{s}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ by the formula $T_{s}(\alpha)=\sigma^{-1} \alpha \sigma$ ．

33．1．Prove that for any loop $a: I \rightarrow X$ representing $\alpha \in \pi_{1}\left(X, x_{0}\right)$ and any path $s: I \rightarrow X$ with $s(0)=x_{0}$ the loop a is connected with a loop representing $T_{s}(\alpha)$ by a free homotopy $H: I \times I \rightarrow X$ such that $H(0, t)=H(1, t)=s(t)$ for $t \in I$ ．
33．2．Let $a, b: I \rightarrow X$ be two loops homotopic via a homotopy $H: I \times I \rightarrow X$ such that $H(0, t)=H(1, t)$（i．e．，H is a free homotopy of loops：at each moment $t \in I$ ，it keeps the endpoints of the path coinciding）．Set $s(t)=H(0, t)$（hence， s is the path run through by the initial point of the loop under the homotopy）． Prove that the homotopy class of b is the image of the homotopy class of a under $T_{s}: \pi_{1}(X, s(0)) \rightarrow \pi_{1}(X, s(1))$ ．

$\left\lceil 33^{\prime} 3\right\rfloor$ Properties of T_{s}

33.A. T_{s} is a (group) homomorphism. ${ }^{4}$
33.B. If u is a path connecting x_{0} to x_{1} and v is a path connecting x_{1} with x_{2}, then $T_{u v}=T_{v} \circ T_{u}$. In other words, the diagram

$$
\begin{array}{rcc}
\pi_{1}\left(X, x_{0}\right) \xrightarrow{T_{u}} & \pi_{1}\left(X, x_{1}\right) \\
T_{u v} \searrow & & \downarrow T_{v} \\
& & \pi_{1}\left(X, x_{2}\right)
\end{array}
$$

is commutative.
33. C. If paths u and v are homotopic, then $T_{u}=T_{v}$.
33. $D . T_{e_{a}}=\mathrm{id}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, a)$.
33. $\boldsymbol{E} . T_{s^{-1}}=T_{s}^{-1}$.
33.F. T_{s} is an isomorphism for any path s.
33. G. For any points x_{0} and x_{1} lying in the same path-connected component of X, the groups $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ are isomorphic.

Despite the result of Theorem 33. G, we cannot write $\pi_{1}(X)$ even if the topological space X is path-connected. The reason is that although the groups $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(X, x_{1}\right)$ are isomorphic, there may be no canonical isomorphism between them (see 33.J below).
33.H. The space X is simply connected iff X is path-connected and the group $\pi_{1}\left(X, x_{0}\right)$ is trivial for a certain point $x_{0} \in X$.

$\left\lceil 33^{\prime} 4\right\rfloor$ Role of Path

33.I. If a loop s represents an element σ of the fundamental group $\pi_{1}\left(X, x_{0}\right)$, then T_{s} is the inner automorphism of $\pi_{1}\left(X, x_{0}\right)$ defined by $\alpha \mapsto \sigma^{-1} \alpha \sigma$.
33.J. Let x_{0} and x_{1} be points of a topological space X belonging to the same path-connected component. The isomorphisms $T_{s}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ do not depend on s iff $\pi_{1}\left(X, x_{0}\right)$ is an Abelian group.

Theorem 33.J implies that if the fundamental group of a topological space X is Abelian, then we may simply write $\pi_{1}(X)$.

[^24]
$\left\lceil 33^{\prime} 5 x\right\rfloor$ In Topological Group

In a topological group G, there is another way to relate $\pi_{1}\left(G, x_{0}\right)$ with $\pi_{1}\left(G, x_{1}\right)$: there are homeomorphisms $L_{g}: G \rightarrow G: x \mapsto x g$ and $R_{g}:$ $G \rightarrow G: x \mapsto g x$, so that there are two induced isomorphisms $\left(L_{x_{0}^{-1} x_{1}}\right)_{*}$: $\pi_{1}\left(G, x_{0}\right) \rightarrow \pi_{1}\left(G, x_{1}\right)$ and $\left(R_{x_{1} x_{0}^{-1}}\right)_{*}: \pi_{1}\left(G, x_{0}\right) \rightarrow \pi_{1}\left(G, x_{1}\right)$.
33.Kx. Let G be a topological group, $s: I \rightarrow G$ a path. Prove that

$$
T_{s}=\left(L_{s(0)^{-1} s(1)}\right)_{*}=\left(R_{s(1) s(0)^{-1}}\right): \pi_{1}(G, s(0)) \rightarrow \pi_{1}(G, s(1))
$$

33.Lx. Deduce from $33 . K x$ that the fundamental group of a topological group is Abelian (cf. 32.Mx).
33.3x. Prove that the following spaces have Abelian fundamental groups:
(1) the space of nondegenerate real $n \times n$ matrices $G L(n, \mathbb{R})=\{A \mid \operatorname{det} A \neq$ $0\}$;
(2) the space of orthogonal real $n \times n$ matrices $O(n, \mathbb{R})=\left\{A \mid A \cdot\left({ }^{t} A\right)=\mathbb{E}\right\}$;
(3) the space of special unitary complex $n \times n$ matrices $S U(n)=\{A \mid$ $\left.A \cdot\left({ }^{t} \bar{A}\right)=1, \operatorname{det} A=1\right\}$.

$\left\lceil 33^{\prime} 6 x\right.$ In High Homotopy Groups

33.Mx. Riddle. Guess how T_{s} is generalized to $\pi_{r}\left(X, x_{0}\right)$ with any r.

Here is another form of the same question. We include it because its statement contains a greater piece of an answer.
33.Nx. Riddle. Given a path $s: I \rightarrow X$ with $s(0)=x_{0}$ and a spheroid $f: I^{r} \rightarrow X$ at x_{0}, how does one make up a spheroid at $x_{1}=s(1)$ out of these?
33.Ox. Let $s: I \rightarrow X$ be a path, $f: I^{r} \rightarrow X$ a spheroid with $f\left(\operatorname{Fr} I^{r}\right)=$ $s(0)$. Prove that there exists a homotopy $\cdot H: I^{r} \times I \rightarrow X$ of f such that $H\left(\operatorname{Fr} I^{r} \times t\right)=s(t)$ for any $t \in I$. Furthermore, the spheroid obtained by such a homotopy is unique up to homotopy and determines an element of $\pi_{r}(X, s(1))$, which is uniquely determined by the homotopy class of s and the element of $\pi_{r}(X, s(0))$ represented by f.

Certainly, a solution of 33.Ox gives an answer to 33.Nx and 33.Mx. The $\operatorname{map} \pi_{r}(X, s(0)) \rightarrow \pi_{r}(X, s(1))$ defined by 33.Ox is denoted by T_{s}. By 33.2, this T_{s} generalizes T_{s} defined in the beginning of the section for the case $r=1$.
33.Px. Prove that the properties of T_{s} formulated in Problems 33.A-33.F hold true in all dimensions.
33. Qx. Riddle. What are the counterparts of 33.Kx and 33.Lx for higher homotopy groups?

Proofs and Comments

30. A (a), (b), (e): yes; (c), (d), (f): no. See 30.B.
30.B See $30^{\prime} 2$.
30.C The map h_{t} is continuous as the restriction of the homotopy H to the fiber $X \times t \subset X \times I$.
30.D Certainly, no, it does not.
30.E See 30.E.1, 30.E.2, and 30.E.3.
30.E. 1 The map H is continuous as the composition of the projection $p: X \times I \rightarrow X$ and the map f, and, furthermore, $H(x, 0)=f(x)=H(x, 1)$. Consequently, H is a homotopy.
30.E.2 The map H^{\prime} is continuous as the composition of the homeomorphism $X \times I \rightarrow X \times I:(x, t) \mapsto(x, 1-t)$ and the homotopy H, and, furthermore, $H^{\prime}(x, 0)=H(x, 1)=g(x)$ and $H^{\prime}(x, 1)=H(x, 0)=f(x)$. Therefore, H^{\prime} is a homotopy.
30.E. 3 Indeed, $H^{\prime \prime}(x, 0)=f(x)$ and $H^{\prime \prime}(x, 1)=H^{\prime}(x, 1)=f^{\prime \prime}(x)$. $H^{\prime \prime}$ is continuous since the restriction of $H^{\prime \prime}$ to each of the sets $X \times[0,1 / 2]$ and $X \times[1 / 2,1]$ is continuous and these sets constitute a fundamental cover of $X \times I$.

Below we do not prove that homotopies are continuous because this always follows from explicit formulas.
30.F Each of them is homotopic to the constant map mapping the entire space to the origin, for example, if $H(x, t)=(1-t) f(x)$, then $H: X \times I \rightarrow \mathbb{R}^{n}$ is a homotopy between f and the constant map $x \mapsto 0$. (There is a more convenient homotopy between arbitrary maps to \mathbb{R}^{n}, see 30.G.)
30.G Indeed, $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$. The map H is obviously continuous. For example, this follows from the inequality

$$
\left|H(x, t)-H\left(x^{\prime}, t^{\prime}\right)\right| \leq\left|f(x)-f\left(x^{\prime}\right)\right|+\left|g(x)-g\left(x^{\prime}\right)\right|+(|f(x)|+|g(x)|)\left|t-t^{\prime}\right| .
$$

30.H Let K be a convex subset of \mathbb{R}^{n}, let $f, g: X \rightarrow K$ be two continuous maps, and let H be the rectilinear homotopy between f and g. Then $H(x, t) \in K$ for all $(x, t) \in X \times I$, and we obtain a homotopy $H: X \times I \rightarrow K$.
30.I The map $H=g \circ F \circ\left(h \times \operatorname{id}_{I}\right): A \times I \rightarrow B$ is continuous. $H(a .0)=$ $g(F(h(a), 0))=g(f(h(a)))$, and $H(a, 1)=g(F(h(a), 1))=g\left(f^{\prime}(h(a))\right)$. Consequently, H is a homotopy.
30.J Send $f: X \rightarrow Y$ to $g \circ f \circ h: A \rightarrow B$. Assertion 30.I shows that this correspondence preserves the homotopy relation, and, hence, it can be transferred to homotopy classes of maps. Thus, a map $\pi(X, Y) \rightarrow \pi(A, B)$ is defined.
30.K Any map $f: X \rightarrow Y \times Z$ is uniquely determined by its components $\operatorname{pr}_{X} \circ f$ and $\operatorname{pr}_{Y} \circ f . ~ \Leftrightarrow$ If H is a homotopy between f and g, then $\operatorname{pr}_{Y} \circ H$ is a homotopy between $\operatorname{pr}_{Y} \circ f$ and $\operatorname{pr}_{Y} \circ g$, and $\operatorname{pr}_{Z} \circ H$ is a homotopy between $\operatorname{pr}_{Z} \circ f$ and $\operatorname{pr}_{Z} \circ g$.
\Leftrightarrow If H_{Y} is a homotopy between $\mathrm{pr}_{Y} \circ f$ and $\mathrm{pr}_{Y} \circ g$ and H_{Z} is a homotopy between $\operatorname{pr}_{Z} \circ f$ and $\mathrm{pr}_{Z} \circ g$, then a homotopy between f and g is determined by the formula $H(x, t)=\left(H_{Y}(x, t), H_{Z}(x, t)\right)$.
30.L The proof does not differ from that of assertion 30.E.
30.M For the sets A such that $\left.f\right|_{A}=\left.g\right|_{A}$ (i.e., for the sets contained in the coincidence set of f and g).
30.N A path is a homotopy of a map of a point, cf. 30.8.
30.O For each point $x \in X$. the map $u_{x}: I \rightarrow X: t \mapsto h(x, t)$ is a path.
30.P If H is a homotopy: then for each $t \in I$ the formula $h_{t}=H(x, t)$ determines a continuous map $X \rightarrow Y$. Thus, we obtain a map $\mathcal{H}: I \rightarrow$ $\mathcal{C}(X, Y)$ of the segment to the set of all continuous maps $X \rightarrow Y$. After that, see 30.15 and 30.16.
30.15 This follows from 25. Vx.
30.16 This follows from 25. Wx.
30.Q This follows from the solution to Problem 30.3.
31.A 1) We start with a visual description of the required homotopy. Let $u_{t}: I \rightarrow X$ be a homotopy between u and u^{\prime}, and let $v_{t}: I \rightarrow X$ be a homotopy between v and v^{\prime}. Then the paths $u_{t} v_{t}$ with $t \in[0,1]$ form a homotopy between $u v$ and $u^{\prime} v^{\prime}$.
2) Now we present a more formal argument. Since the product $u v$ is defined, we have $u(1)=v(0)$. Since $u \sim u^{\prime}$, we have $u(1)=u^{\prime}(1)$, and we similarly have $v(0)=v^{\prime}(0)$. Therefore, the product $u^{\prime} v^{\prime}$ is defined. The homotopy between $u v$ and $u^{\prime} v^{\prime}$ is the map

$$
H: I \times I \rightarrow X:(s, t) \mapsto \begin{cases}H^{\prime}(2 s . t) & \text { if } s \in[0,1 / 2] \\ H^{\prime \prime}(2 s-1, t) & \text { if } s \in[1 / 2,1]\end{cases}
$$

(H is continuous because the sets $[0,1 / 2] \times I$ and $[1 / 2,1] \times I$ constitute a fundamental cover of the square $I \times I$, and the restriction of H to each of these sets is continuous.)
31.B This is a straight-forward reformulation of 31.A.
31.C No; see 31.D, cf. 31.1.
31.D No, this is almost always wrong (see 31.1 and 31.2). Here is the simplest example. Let $u(s)=0$ and $w(s)=1$ for all $s \in[0,1]$ and $v(s)=s$. Then we have $(u v) w(s)=0$ only for $s \in[0,1 / 4]$, and $u(v w)(s)=0$ for $s \in[0,1 / 2]$.
31.E. 1 Reformulation: for any three paths u, v, and w such that the products $u v$ and $v w$ are defined, the paths ($u v) w$ and $u(v w)$ are homotopic.
31.E.2 Let

$$
\varphi(s)= \begin{cases}s / 2 & \text { if } s \in[0.1 / 2] \\ s-1 / 4 & \text { if } s \in[1 / 2.3 / 4] . \\ 2 s-1 & \text { if } s \in[3 / 4.1]\end{cases}
$$

Verify that φ is the required function, i.e.. $((u r) w)(\nu(s))=u(v w)(s)$.
31.E.3 Consider the rectilinear homotopy, which is in addition fixed on $\{0,1\}$.
31.E. 4 This follows from 30.I and 31.E.2, and 31.E.3.
31.F See 31.G.
31.G Generally speaking, no; see 31.4.
31.H Let

$$
\varphi(s)= \begin{cases}0 & \text { if } s \in[0,1 / 2] \\ 2 s-1 & \text { if } s \in[1 / 2,1]\end{cases}
$$

Verify that $e_{a} u=u \circ \varphi$. Since $\varphi \sim \operatorname{id}_{I}$, we have $u \circ \varphi \sim u$, whence

$$
\left[e_{a}\right][u]=\left[e_{a} u\right]=[u \circ \varphi]=[u] .
$$

31.I See 31.J.
31.J Certainly not, unless $u=e_{a}$.
31.K. 1 Consider the map

$$
\varphi(s)= \begin{cases}2 s & \text { if } s \in[0,1 / 2] \\ 2-2 s & \text { if } s \in[1 / 2,1]\end{cases}
$$

31.K.2 Use the rectilinear homotopy.
31.L Groups are the sets of classes of paths u with $u(0)=u(1)=x_{0}$, where x_{0} is a certain marked point of X, as well as their subgroups.
32.A This immediately follows from 31.B, 31.E, 31.H, and 31.K.
32.B See Section $32^{\prime} 8 \mathrm{x}$.
32.C If $u: I \rightarrow X$ is a loop, then there exists a quotient map \tilde{u} : $I /\{0,1\} \rightarrow X$. It remains to observe that $I /\{0,1\} \cong S^{1}$.
32.D \Leftrightarrow If $H: S^{1} \times I \rightarrow X$ is a homotopy of circular loops, then the formula $H^{\prime}(s, t)=H\left(e^{2 \pi i s}, t\right)$ determines a homotopy H^{\prime} between ordinary loops.
\Leftrightarrow Homotopies of circular loops are quotient maps of homotopies of ordinary loops by the partition of the square induced by the relation $(0, t) \sim$ $(1, t)$.
32. \boldsymbol{E} This is true because there is a rectilinear homotopy between any loop in \mathbb{R}^{n} at the origin and a constant loop.
32.F Here is a possible generalization: for each convex (and even starshaped) set $V \subset \mathbb{R}^{n}$ and any point $x_{0} \in V$, the fundamental group $\pi_{1}\left(V, x_{0}\right)$ is trivial.
32.G. 1 Let $p \in S^{n} \backslash u(I)$. Consider the stereographic projection $\tau: S^{n} \backslash p \rightarrow \mathbb{R}^{n}$. The loop $v=\tau \circ u$ is null-homotopic: let h be the corresponding homotopy. Then $H=\tau^{-1} \circ h$ is a homotopy joining the loop u and a constant loop on the sphere.
32.G.2 Such loops certainly exist. Indeed, if a loop u fills the entire sphere, then so does the loop $u u^{-1}$, which, however, is null-homotopic.
32.G.4 Let x be an arbitrary point of the sphere. We cover the sphere by two open sets $U=S^{n} \backslash x$ and $V=S^{n} \backslash\{-x\}$. By Lemma 32.G.3, there is a sequence of points $a_{1}, \ldots, a_{N} \in I$, where $0=a_{1}<a_{2}<\cdots<a_{N-1}<$ $a_{N}=1$, such that for each i the image $u\left(\left[a_{i}, a_{i+1}\right]\right)$ lies entirely in U or in V. Since each of these sets is homeomorphic to \mathbb{R}^{n}, where any two paths with the same starting and ending points are homotopic, it follows that each of the restrictions $\left.u\right|_{\left[a_{i}, a_{i+1}\right]}$ is homotopic to a path the image of which is, e.g., an "arc of a great circle" of S^{n}. Thus, the path u is homotopic to a path the image of which does not fill the sphere, and, moreover, is nowhere dense.
32.G. 5 This immediately follows from Lemma 32.G.4.
32.G.6 1) This is immediate. 2) The assumption $n \geq 2$ was used only in Lemma 32.G.4.
32.H We send a loop $u: I \rightarrow X \times Y$ at the point $\left(x_{0}, y_{0}\right)$ to the pair of loops in X and Y that are the components of u : $u_{1}=\operatorname{pr}_{X}$ ou and $u_{2}=\operatorname{pr}_{Y} \circ u$. By assertion 30.I, the loops u and v are homotopic iff $u_{1} \sim v_{1}$ and $u_{2} \sim v_{2}$. Consequently, sending the class of the loop u to the pair $\left(\left[u_{1}\right],\left[u_{2}\right]\right)$, we obtain a bijection between the fundamental group $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$ of the product of the spaces and the product $\pi_{1}\left(X, x_{0}\right) \times$ $\pi_{1}\left(Y, y_{0}\right)$ of the fundamental groups of the factors. It remains to verify that the bijection constructed is a homomorphism, which is also obvious because $\operatorname{pr}_{X} \circ(u v)=\left(\operatorname{pr}_{X} \circ u\right)\left(\operatorname{pr}_{X} \circ v\right)$.
32.I $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: The space X is simply connected \Rightarrow each loop in X is null-homotopic \Rightarrow each circular loop in X is relatively null-homotopic \Rightarrow
each circular loop in X is freely null-homotopic.
(b) \Longrightarrow (c): By assumption, for an arbitrary map $f: S^{1} \rightarrow X$ there is a homotopy $h: S^{1} \times I \rightarrow X$ such that $h(p, 0)=f(p)$ and $h(p, 1)=x_{0}$. Consequently, there is a continuous map $h^{\prime}: S^{1} \times I /\left(S^{1} \times 1\right) \rightarrow X$ such that $h=h^{\prime} \circ$ pr. It remains to observe that $S^{1} \times I /\left(S^{1} \times 1\right) \cong D^{2}$. $(\mathrm{c}) \Longrightarrow(\mathrm{d})$: Let $g(t, 0)=u_{1}(t), g(t, 1)=u_{2}(t), g(0, t)=x_{0}$, and $g(1, t)=x_{1}$ for $t \in I$. Thus, we mapped the boundary of the square $I \times I$ to X. Since the square is homeomorphic to a disk and its boundary is homeomorphic to a circle, it follows that the map extends from the boundary to the entire square. The extension obtained is a homotopy between u_{1} and u_{2}. $(\mathrm{d}) \Longrightarrow(\mathrm{a})$: This is obvious.
32.J. 1 It is reasonable to consider the following implications: $(\mathrm{a}) \Longrightarrow$ $(\mathrm{b}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{d}) \Longrightarrow(\mathrm{a})$.
32.J.2 It certainly does. Furthermore, since s is null-homotopic, it follows that the circular loop f is also null-homotopic, and the homotopy is even fixed at the point $1 \in S^{1}$. Thus, (a) $\Longrightarrow(\mathrm{b})$.
32.J.3 The assertion suggests the main idea of the proof of the implication (b) \Longrightarrow (c). A null-homotopy of a certain circular loop f is a map $H: S^{1} \times I \rightarrow X$ constant on the upper base of the cylinder. Consequently, there is a quotient map $S^{1} \times I / S^{1} \times 1 \rightarrow X$. It remains to observe that the quotient space of the cylinder by the upper base is homeomorphic to a disk.
32.J.4 By the definition of a homotopy $H: I \times I \rightarrow X$ between two paths, the restriction of H to the contour of the square is given. Consequently, the problem of constructing a homotopy between two paths is the problem of extending a map from the contour of the square to the entire square.
32.J.5 All that remains to observe for the proof of the implication $(\mathrm{c}) \Longrightarrow(\mathrm{d})$, is the following fact: if $F: D^{2} \rightarrow X$ is an extension of the circular loop f, then the formula $H(t, \tau)=F(\cos \pi t,(2 \tau-1) \sin \pi t)$ determines a homotopy between s_{+}and s_{-}.
32.J In order to prove the theorem, it remains to prove the implication $(\mathrm{d}) \Longrightarrow(\mathrm{a})$. We state this assertion without using the notion of a circular loop. Let $s: I \rightarrow X$ be a loop. Let $s_{+}(t)=s(2 t)$ and $s_{-}(t)=s(1-2 t)$. Thus, we must prove that if the paths s_{+}and s_{-}are homotopic, then the loop s is null-homotopic. Try to prove this on your own.
32.Kx The associativity of \odot follows from that of the multiplication in G; the unity in the set $\Omega(G, 1)$ of all loops is the constant loop at the unity of the group; the element inverse to the loop u is the path v, where $v(s)=(u(s))^{-1}$.
32.Lx. 1 Verify that $\left(u e_{1}\right) \odot\left(e_{1} v\right)=u v$.
32.Lx We prove that if $u \sim u_{1}$, then $u \odot v \sim u_{1} \odot v$. For this purpose, it suffices to check that if h is a homotopy between u and u_{1}, then the formula $H(s, t)=h(s, t) v(s)$ determines a homotopy between $u \odot v$ and $u_{1} \odot v$. Further, since $u e_{1} \sim u$ and $e_{1} v \sim v$, we have $u v=\left(u e_{1}\right) \odot\left(e_{1} v\right) \sim u \odot v$, and, therefore, the paths $u v$ and $u \odot v$ lie in one homotopy class. Consequently, the operation \odot induces the standard group operation on the set of homotopy classes of paths.
32.Mx It is sufficient to prove that $u v \sim v u$, which follows from the following chain:

$$
u v=\left(u e_{1}\right) \odot\left(e_{1} v\right) \sim u \odot v \sim\left(e_{1} u\right) \odot\left(v e_{1}\right)=v u
$$

32.Nx This group is also trivial. The proof is similar to that of assertion 32.E.
33.A Indeed, if $\alpha=[u]$ and $\beta=[v]$, then

$$
T_{s}(\alpha \beta)=\sigma^{-1} \alpha \beta \sigma=\sigma^{-1} \alpha \sigma \sigma^{-1} \beta \sigma=T_{s}(\alpha) T_{s}(\beta) .
$$

33. B Indeed,

$$
T_{u v}(\alpha)=[u v]^{-1} \alpha[u v]=[v]^{-1}[u]^{-1} \alpha[u][v]=T_{v}\left(T_{u}(\alpha)\right) .
$$

33.C By the definition of translation along a path, the homomorphism T_{s} depends only on the homotopy class of s.
33.D This is so because $T_{e_{a}}([u])=\left[e_{a} u e_{a}\right]=[u]$.
33. \boldsymbol{E} Since $s^{-1} s \sim e_{x_{1}}$, 33.B-33.D imply that

$$
T_{s^{-1}} \circ T_{s}=T_{s^{-1} s}=T_{e_{x_{1}}}=\operatorname{id}_{\pi_{1}\left(X, x_{1}\right)}
$$

Similarly, we have $T_{s} \circ T_{s^{-1}}=\mathrm{id}_{\pi_{1}\left(X, x_{0}\right)}$, whence $T_{s^{-1}}=T_{s}^{-1}$.
33.F By 33.E, the homomorphism T_{s} has an inverse and, consequently, is an isomorphism.
33. G If x_{0} and x_{1} lie in one path-connected component, then they are joined by a path s. By 33.F, $T_{s}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ is an isomorphism.
33.H This immediately follows from Theorem 33. G.
33.I This directly follows from the definition of T_{s}.
33.J \Leftrightarrow Assume that the translation isomorphism does not depend on the path. In particular, the isomorphism of translation along any loop at x_{0} is trivial. Consider an arbitrary element $\beta \in \pi_{1}\left(X, x_{0}\right)$ and a loop s in the homotopy class β. By assumption, $\beta^{-1} \alpha \beta=T_{s}(\alpha)=\alpha$ for each $\alpha \in \pi_{1}\left(X, x_{0}\right)$. Therefore, $\alpha \beta=\beta \alpha$ for any elements $\alpha, \beta \in \pi_{1}\left(X, x_{0}\right)$, which precisely means that the group $\pi_{1}\left(X, x_{0}\right)$ is Abelian.
\Leftarrow Consider two paths s_{1} and s_{2} joining x_{0} and x_{1}. Since $T_{s_{1} s_{2}^{-1}}=$
$T_{s_{2}}^{-1} \circ T_{s_{1}}$, it follows that $T_{s_{1}}=T_{s_{2}}$ iff $T_{s_{1} s_{2}^{-1}}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$. Let $\beta \in \pi_{1}\left(X, x_{0}\right)$ be the class of the loop $s_{1} s_{2}^{-1}$. If the group $\pi_{1}\left(X, x_{0}\right)$ is Abelian, then $T_{s_{1} s_{2}^{-1}}(\alpha)=\beta^{-1} \alpha \beta=\alpha$, whence $T_{s_{1} s_{2}^{-1}}=$ id, and so $T_{s_{1}}=T_{s_{2}}$.
33.K \mathbf{x} Let u be a loop at $s(0)$. The formula $H(\tau, t)=u(\tau) s(0)^{-1} s(1)$ determines a free homotopy between u and the loop $L_{s(0)^{-1} s(1)}(u)$ such that $H(0, t)=H(1, t)=s(t)$. Therefore, by 33.2, the loops $L_{s(0)^{-1} s(1)}(u)$ and $s^{-1} u s$ are homotopic, whence $T_{s}=\left(L_{s(0)^{-1} s(1)}\right)_{*}$. The equality for $R_{s(0)^{-1} s(1)}$ is proved in a similar way.
33.Lx By 33.Kx, we have $T_{s}=\left(L_{e}\right)_{*}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$ for each loop s at x_{0}. Therefore, if β is the class of the loop s, then $T_{s}(\alpha)=\beta^{-1} \alpha \beta=\alpha$. whence $\alpha \beta=\beta \alpha$.

Covering Spaces and Calculation of Fundamental Groups

34. Covering Spaces

$\left\lceil 34^{\prime} 1\right\rfloor$ Definition of Covering

Let X and B be topological spaces, $p: X \rightarrow B$ a continuous map. Assume that p is surjective and each point of B possesses a neighborhood U such that the preimage $p^{-1}(U)$ of U is a disjoint union of open sets V_{α} and p homeomorphically maps each V_{α} onto U. Then $p: X \rightarrow B$ is a covering (of B), the space B is the base of this covering, X is the covering space for B and the total space of the covering. Neighborhoods like U are said to be trivially covered. The map p is a covering map or covering projection.
34. \boldsymbol{A}. Let B be a topological space, F a discrete space. Prove that the projection $\operatorname{pr}_{B}: B \times F \rightarrow B$ is a covering.

> 34.1. If $U^{\prime} \subset U \subset B$ and the neighborhood U is trivially covered, then the neighborhood U^{\prime} is also trivially covered.

The following statement shows that in a certain sense any covering locally is organized as the covering of 34.A.
34.B. A continuous surjective map $p: X \rightarrow B$ is a covering iff for each point a of B the preimage $p^{-1}(a)$ is discrete and there exist a neighborhood U of a
and a homeomorphism $h: p^{-1}(U) \rightarrow U \times p^{-1}(a)$ such that $\left.p\right|_{p^{-1}(U)}=\operatorname{pr}_{U} \circ h$. Here, as usual, $\mathrm{pr}_{U}: U \times p^{-1}(a) \rightarrow U$.

However, the coverings of $34 . A$ are not interesting. They are trivial. Here is the first really interesting example.
34. \boldsymbol{C}. Prove that the map $\mathbb{R} \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$ is a covering.

To distinguish the most interesting examples, a covering with a connected total space is called a covering in the narrow sense. Of course, the covering of $34 . C$ is a covering in the narrow sense.

「34'2」 More Examples

34.D. The map $\mathbb{R}^{2} \rightarrow S^{1} \times \mathbb{R}:(x, y) \mapsto\left(e^{2 \pi i x}, y\right)$ is a covering.
34.E. Prove that if $p: X \rightarrow B$ and $p^{\prime}: X^{\prime} \rightarrow B^{\prime}$ are coverings, then so is $p \times p^{\prime}: X \times X^{\prime} \rightarrow B \times B^{\prime}$.

If $p: X \rightarrow B$ and $p^{\prime}: X^{\prime} \rightarrow B^{\prime}$ are two coverings, then $p \times p^{\prime}: X \times X^{\prime} \rightarrow$ $B \times B^{\prime}$ is the product of the coverings p and p^{\prime}. The first example of the product of coverings is presented in 34.D.
34. \boldsymbol{F}. The map $\mathbb{C} \rightarrow \mathbb{C} \backslash 0: z \mapsto e^{z}$ is a covering.
34.2. Riddle. In what sense are the coverings of $34 . D$ and $34 . F$ the same? Define an appropriate equivalence relation for coverings.
34. \boldsymbol{G}. The map $\mathbb{R}^{2} \rightarrow S^{1} \times S^{1}:(x, y) \mapsto\left(e^{2 \pi i x}, e^{2 \pi i y}\right)$ is a covering.
34. \boldsymbol{H}. For any positive integer n, the map $S^{1} \rightarrow S^{1}: z \mapsto z^{n}$ is a covering.
34.3. Prove that for each positive integer n the map $\mathbb{C} \backslash 0 \rightarrow \mathbb{C} \backslash 0: z \mapsto z^{n}$ is a covering.
34.I. For any positive integers p and q, the map $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$: $(z, w) \mapsto\left(z^{p}, w^{q}\right)$ is a covering.
34.J. The natural projection $S^{n} \rightarrow \mathbb{R} P^{n}$ is a covering.
34. \boldsymbol{K}. Is $(0,3) \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$ a covering? (Cf. 34.14.)
34.L. Is the projection $\mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto x$ a covering? Indeed, why isn't an open interval $(a, b) \subset \mathbb{R}$ a trivially covered neighborhood: its preimage $(a, b) \times \mathbb{R}$ is the union of open intervals $(a, b) \times\{y\}$, which are homeomorphically projected onto (a, b) by the projection $(x, y) \mapsto x$?
34.4. Find coverings of the Möbius strip by a cylinder.
34.5. Find nontrivial coverings of the Möbius strip by itself.
34.6. Find a covering of the Klein bottle by a torus. Cf. Problem 22.14.
34.7. Find coverings of the Klein bottle by the plane \mathbb{R}^{2} and the cylinder $S^{1} \times \mathbb{R}$, and a nontrivial covering of the Klein bottle by itself.
34.8. Describe explicitly the partition of \mathbb{R}^{2} into preimages of points under this covering.
34.9*. Find a covering of a sphere with any number of cross-caps by a sphere with handles.

「34'3」 Local Homeomorphisms versus Coverings

34.10. Any covering is an open map. ${ }^{1}$

A map $f: X \rightarrow Y$ is a local homeomorphism if each point of X has a neighborhood U such that the image $f(U)$ is open in Y and the submap $\mathrm{ab}(f): U \rightarrow f(U)$ is a homeomorphism.
34.11. Any covering is a local homeomorphism.
34.12. Find a local homeomorphism which is not a covering.
34.13. Prove that the restriction of a local homeomorphism to an open set is a local homeomorphism.
34.14. For which subsets of \mathbb{R} is the restriction of the map of Problem 34.C a covering?
34.15. Find a nontrivial covering $X \rightarrow B$ with X homeomorphic to B and prove that it satisfies the definition of a covering.

$\left\lceil 34^{\prime} 4\right\rfloor$ Number of Sheets

Let $p: X \rightarrow B$ be a covering. The cardinality (i.e., the number of points) of the preimage $p^{-1}(a)$ of a point $a \in B$ is the multiplicity of the covering at a or the number of sheets of the covering over a.
34.M. If the base of a covering is connected, then the multiplicity of the covering at a point does not depend on the point.

[^25]In the case of a covering with connected base, the multiplicity is called the number of sheets of the covering. If the number of sheets is n, then the covering is n-sheeted, and we speak about an n-fold covering. Of course, if the covering is nontrivial, it is impossible to distinguish the sheets of it, but this does not prevent us from speaking about the number of sheets. On the other hand, we adopt the following agreement. By definition, the preimage $p^{-1}(U)$ of any trivially covered neighborhood $U \subset B$ splits into open subsets: $p^{-1}(U)=\cup V_{\alpha}$, such that the restriction $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow U$ is a homeomorphism. Each of the subsets V_{α} is a sheet over U.
34.16. What are the numbers of sheets for the coverings from Section 34^{\prime} 2?

In Problems 34.17-34.19, we did not assume that you would rigorously justify your answers. This is done below, see Problems 40.3-40.6.
34.17. What numbers can you realize as the number of sheets of a covering of the Möbius strip by the cylinder $S^{1} \times I$?
34.18. What numbers can you realize as the number of sheets of a covering of the Möbius strip by itself?
34.19. What numbers can you realize as the number of sheets of a covering of the Klein bottle by a torus?
34.20. What numbers can you realize as the number of sheets of a covering of the Klein bottle by itself?
34.21. Construct a d-fold covering of a sphere with p handles by a sphere with $1+d(p-1)$ handles.
34.22. Let $p: X \rightarrow Y$ and $q: Y \rightarrow Z$ be coverings. Prove that if q has finitely many sheets, then $q \circ p: x \rightarrow Y$ is a covering.
34.23*. Is the hypothesis of finiteness of the number of sheets in Problem 34.22 necessary?
34.24. Let $p: X \rightarrow B$ be a covering with compact base B. 1) Prove that if X is compact, then the covering is finite-sheeted. 2) If B is Hausdorff and the covering is finite-sheeted, then X is compact.
34.25. Let X be a topological space presentable as the union of two open connected sets U and V. Prove that if the intersection $U \cap V$ is disconnected, then X has a connected infinite-sheeted covering.

$\left\lceil 34^{\prime} 5\right\rfloor$ Universal Coverings

A covering $p: X \rightarrow B$ is universal if X is simply connected. The appearance of the word universal in this context is explained below in Section 40. 34.N. Which coverings of the problems stated above in this section are universal?

35. Theorems on Path Lifting

$\left\lceil 35^{\prime} 1 〕\right.$ Lifting

Let $p: X \rightarrow B$ and $f: A \rightarrow B$ be arbitrary maps. A map $g: A \rightarrow X$ such that $p \circ g=f$ is said to cover f or be a lift of f. Various topological problems can be phrased in terms of finding a continuous lift of some continuous map. Problems of this sort are called lifting problems. They may involve additional requirements. For example, the required lift must coincide with a lift already given on some subspace.
35.A. The identity map $S^{1} \rightarrow S^{1}$ does not admit a continuous lifting with respect to the covering $\mathbb{R} \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$. (In other words, there is no continuous map $g: S^{1} \rightarrow \mathbb{R}$ such that $e^{2 \pi i g(x)}=x$ for $x \in S^{1}$.)

$\left\lceil 35^{\prime} 2\right\rfloor$ Path Lifting

35.B Path Lifting Theorem. Let $p: X \rightarrow B$ be a covering, and let $x_{0} \in X$ and $b_{0} \in B$ be points such that $p\left(x_{0}\right)=b_{0}$. Then for any path $s: I \rightarrow B$ starting at b_{0} there is a unique path $\tilde{s}: I \rightarrow X$ that starts at x_{0} and is a lift of s. (In other words, there exists a unique path $\tilde{s}: I \rightarrow X$ with $\tilde{s}(0)=x_{0}$ and $p \circ \tilde{s}=s$.)

We can also prove a more general assertion than Theorem 35.B: see Problems 35.1-35.3.
35.1. Let $p: X \rightarrow B$ be a trivial covering. Then any continuous map f of any space A to B has a continuous lift $\tilde{f}: A \rightarrow X$.
35.2. Let $p: X \rightarrow B$ be a trivial covering, and let $x_{0} \in X$ and $b_{0} \in B$ be two points such that $p\left(x_{0}\right)=b_{0}$. Then any continuous map $f: A \rightarrow B$ sending a point a_{0} to b_{0} has a unique continuous lift $\tilde{f}: A \rightarrow X$ with $\tilde{f}\left(a_{0}\right)=x_{0}$.
35.3. Let $p: X \rightarrow B$ be a covering, and let A be a connected and locally connected space. If $f, g: A \rightarrow X$ are two continuous maps coinciding at some point and $p \circ f=p \circ g$, then $f=g$.
35.4. If we replace x_{0}, b_{0}, and a_{0} in Problem 35.2 by pairs of points, then the lifting problem may happen to have no solution \tilde{f} with $\tilde{f}\left(a_{0}\right)=x_{0}$. Formulate a condition necessary and sufficient for existence of such a solution.
35.5. What goes wrong with the Path Lifting Theorem 35.B for the local homeomorphism of Problem 34.K?
35.6. Consider the covering $\mathbb{C} \rightarrow \mathbb{C} \backslash 0: z \mapsto e^{z}$. Find lifts of the paths $u(t)=2-t$ and $v(t)=(1+t) e^{2 \pi i t}$ and their products $u v$ and $v u$.

$\left\lceil 35^{\prime} 3\right\rfloor$ Homotopy Lifting

35. C Path Homotopy Lifting Theorem. Let $p: X \rightarrow B$ be a covering, and let $x_{0} \in X$ and $b_{0} \in B$ be points such that $p\left(x_{0}\right)=b_{0}$. Let $u, v: I \rightarrow B$
be paths starting at b_{0}, and let $\tilde{u}, \tilde{v}: I \rightarrow X$ be the lifting paths for u and v starting at x_{0}. If the paths u and v are homotopic, then the covering paths \tilde{u} and \tilde{v} are homotopic.
35.D Important Corollary. Under the assumptions of Theorem 35.C, the covering paths \tilde{u} and \tilde{v} have the same final point (i.e., $\tilde{u}(1)=\tilde{v}(1)$).

Notice that the paths in $35 . C$ and $35 . D$ are assumed to share the initial point x_{0}. In the statement of $35 . D$, we emphasize that they also share the final point.
35.E Corollary of 35.D. Let $p: X \rightarrow B$ be a covering, $s: I \rightarrow B$ a loop. If s has a lift $\tilde{s}: I \rightarrow X$ with $\tilde{s}(0) \neq \tilde{s}(1)$ (i.e., there exists a covering path which is not a loop), then s is not null-homotopic.
35.F. If a path-connected space B has a nontrivial path-connected covering space, then the fundamental group of B is nontrivial.
35.7. Prove that any covering $p: X \rightarrow B$ with simply connected B and pathconnected X is a homeomorphism.
35.8. What corollaries can you deduce from 35.F and the examples of coverings presented above in Section 34?
35.9. Riddle. Is it really important in the hypothesis of Theorem 35.C that u and v are paths? To what class of maps can you generalize this theorem?

36. Calculation of Fundamental Groups by Using Universal Coverings

$\left\lceil 36^{\prime} 1 〕\right.$ Fundamental Group of Circle

For an integer n, denote by s_{n} the loop in S^{1} defined by the formula $s_{n}(t)=e^{2 \pi i n t}$. The initial point of this loop is 1 . Denote the homotopy class of s_{1} by α. Thus, $\alpha \in \pi_{1}\left(S^{1}, 1\right)$.
36.A. The loop s_{n} represents $\alpha^{n} \in \pi_{1}\left(S^{1}, 1\right)$.
36.B. Find the paths in \mathbb{R} starting at $0 \in \mathbb{R}$ and covering the loops s_{n} with respect to the universal covering $\mathbb{R} \rightarrow S^{1}$.
36.C. The homomorphism $\mathbb{Z} \rightarrow \pi_{1}\left(S^{1}, 1\right): n \mapsto \alpha^{n}$ is an isomorphism.
36.C.1. The formula $n \mapsto \alpha^{n}$ determines a homomorphism $\mathbb{Z} \rightarrow \pi_{1}\left(S^{1}, 1\right)$.
36.C.2. Prove that a loop $s: I \rightarrow S^{1}$ starting at 1 is homotopic to s_{n} if the path $\tilde{s}: I \rightarrow \mathbb{R}$ covering s and starting at $0 \in \mathbb{R}$ ends at $n \in \mathbb{R}($ i.e., $\tilde{s}(1)=n)$.
36.C.3. Prove that if the loop s_{n} is null-homotopic, then $n=0$.
36.1. Find the image of the homotopy class of the loop $t \mapsto e^{2 \pi i t^{2}}$ under the isomorphism of Theorem 36.C.

Denote by deg the isomorphism inverse to the isomorphism of Theorem 36.C. 36.2. For any loop $s: I \rightarrow S^{1}$ starting at $1 \in S^{1}$, the integer $\operatorname{deg}([s])$ is the final point of the path starting at $0 \in \mathbb{R}$ and covering s.
36.D Corollary of Theorem 36.C. The fundamental group of $\left(S^{1}\right)^{n}$ is a free Abelian group of rank n (i.e., isomorphic to \mathbb{Z}^{n}).
36.E. On the torus $S^{1} \times S^{1}$, find two loops whose homotopy classes generate the fundamental group of the torus.
36.F Corollary of Theorem 36.C. The fundamental group of the punctured plane $\mathbb{R}^{2} \backslash 0$ is an infinite cyclic group.
36.3. Solve Problems 36.D-36.F without reference to Theorems 36.C and 32.H, but using explicit constructions of the corresponding universal coverings.

$\left\lceil 36^{\prime} 2\right.$ § Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic group. It is calculated in the previous subsection since the projective line is a circle. The zero-dimensional projective space is a point, and hence its fundamental group is trivial. Now we calculate the fundamental groups of projective spaces of all other dimensions.

Let $n \geq 2$, and let $l: I \rightarrow \mathbb{R} P^{n}$ be a loop covered by a path $\tilde{l}: I \rightarrow S^{n}$ which connects two antipodal points of S^{n}, say, the poles $P_{+}=(1,0, \ldots, 0)$ and $P_{-}=(-1,0, \ldots, 0)$. Denote by λ the homotopy class of l. It is an element of $\pi_{1}\left(\mathbb{R} P^{n},(1: 0: \cdots: 0)\right)$.
36.G. For any $n \geq 2$, the group $\pi_{1}\left(\mathbb{R} P^{n},(1: 0: \cdots: 0)\right)$ is a cyclic group of order 2. It has two elements: λ and 1 .
36.G.1 Lemma. Any loop in $\mathbb{R} P^{n}$ at $(1: 0: \cdots: 0)$ is homotopic either to l or constant. This depends on whether the covering path of the loop connects the poles P_{+}and P_{-}, or is a loop.

> 36.4. Where did we use the assumption $n \geq 2$ in the proofs of Theorem $36 . G$ and Lemma 36.G.1?

$\left\lceil 36^{\prime} 3\right\rfloor$ Fundamental Group of Bouquet of Circles

Consider a family of topological spaces $\left\{X_{\alpha}\right\}$. In each of the spaces, we mark a point x_{α}. Take the disjoint sum $\bigsqcup_{\alpha} X_{\alpha}$ and identify all marked points. The resulting quotient space $\bigvee_{\alpha} X_{\alpha}$ is the bouquet of $\left\{X_{\alpha}\right\}$. Hence, a bouquet of q circles is a space which is the union of q copies of a circle. The copies meet at a single common point, and this is the only common point for any two of them. The common point is the center of the bouquet.

Denote the bouquet of q circles by B_{q} and its center by c. Let u_{1}, \ldots, u_{q} be loops in B_{q} starting at c and parameterizing the q copies of the circle that constitute B_{q}. Denote by α_{i} the homotopy class of u_{i}.
36.H. $\pi_{1}\left(B_{q}, c\right)$ is a free group freely generated by $\alpha_{1}, \ldots, \alpha_{q}$.

$\left\lceil 36^{\prime} 4\right\rfloor$ Algebraic Digression: Free Groups

Recall that a group G is a free group freely generated by its elements a_{1}, \ldots, a_{q} if:

- each element $x \in G$ is a product of powers (with positive or negative integer exponents) of a_{1}, \ldots, a_{q}, i.e.,

$$
x=a_{i_{1}}^{e_{1}} a_{i_{2}}^{e_{2}} \ldots a_{i_{n}}^{e_{n}}
$$

and

- this expression is unique up to the following trivial ambiguity: we can insert or delete factors $a_{i} a_{i}^{-1}$ and $a_{i}^{-1} a_{i}$ or replace a_{i}^{m} by $a_{i}^{r} a_{i}^{s}$ with $r+s=m$.
36.I. A free group is determined up to isomorphism by the number of its free generators.

The number of free generators is the rank of the free group. For a standard representative of the isomorphism class of free groups of rank q, we can take the group of words in an alphabet of q letters a_{1}, \ldots, a_{q} and their inverses $a_{1}^{-1}, \ldots, a_{q}^{-1}$. Two words represent the same element of the group iff they are obtained from each other by a sequence of insertions or deletions of fragments $a_{i} a_{i}^{-1}$ and $a_{i}^{-1} a_{i}$. This group is denoted by $\mathbb{F}\left(a_{1} \ldots \ldots a_{q}\right)$, or just \mathbb{F}_{q} if the notation for the generators is not to be emphasized.
36.J. Each element of $\mathbb{F}\left(a_{1}, \ldots, a_{q}\right)$ has a unique shortest representative. This is a word without fragments that could have been deleted.

The number $l(x)$ of letters in the shortest representative of an element $x \in \mathbb{F}\left(a_{1}, \ldots, a_{q}\right)$ is the length of x. Certainly, this number is not well defined, unless the generators are fixed.
36.5. Show that an automorphism of \mathbb{F}_{q} can map $x \in \mathbb{F}_{q}$ to an element with different length. For what value of q does such an example not exist? Is it possible to change the length in this way arbitrarily?
36.K. A group G is a free group freely generated by its elements a_{1}, \ldots, a_{q} iff every map of the set $\left\{a_{1}, \ldots, a_{q}\right\}$ to any group X extends to a unique homomorphism $G \rightarrow X$.

Theorem $36 . K$ is sometimes taken as a definition of a free group. (Definitions of this sort emphasize relations among different groups, rather than the internal structure of a single group. Of course, relations among groups can tell everything about the "internal affairs" of each group.)

Now we can reformulate Theorem 36.H as follows:

36.L. The homomorphism

$$
\mathbb{F}\left(a_{1}, \ldots, a_{q}\right) \rightarrow \pi_{1}\left(B_{q}, c\right)
$$

taking a_{i} to α_{i} for $i=1, \ldots, q$ is an isomorphism.
First, for the sake of simplicity we restrict ourselves to the case where $q=$ 2. This allows us to avoid superfluous complications in notation and pictures. This is the simplest case that really represents the general situation. The case $q=1$ is too special.

To take advantages of this, we change the notation and put $B=B_{2}$, $u=u_{1}, v=u_{2}, \alpha=\alpha_{1}$, and $\beta=\alpha_{2}$.

Now Theorem 36.L looks as follows:
The homomorphism $\mathbb{F}(a, b) \rightarrow \pi(B, c)$ taking a to α and b to β is an isomorphism.

This theorem can be proved like Theorems 36.C and 36.G, provided that we know the universal covering of B.

$\left\lceil 36^{\prime} 5\right.$ 」 Universal Covering for Bouquet of Circles

Denote by U and V the points antipodal to c on the circles of B. Cut B at these points, removing U and V and replacing each of them with two new points. Whatever this operation is, its result is a cross K, which is the union of four closed segments with a common endpoint c. There appears a natural map $P: K \rightarrow B$ that sends the center c of the cross to the center c of B and homeomorphically maps the rays of the cross onto half-circles of B. Since the circles of B are parameterized by loops u and v, the halves of each of the circles are ordered: the corresponding loop passes first one of the halves and then the other one. Denote by U^{+}the point of $P^{-1}(U)$ belonging to the ray mapped by P onto the second half of the circle, and by U^{-}the other point of $P^{-1}(U)$. We similarly denote points of $P^{-1}(V)$ by V^{+}and V^{-}.

The restriction of P to $K \backslash\left\{U^{+}, U^{-}, V^{+}, V^{-}\right\}$homeomorphically maps this set onto $B \backslash\{U, V\}$. Therefore, P provides a covering of $B \backslash\{U, V\}$. However, it fails to be a covering at U and V : none of these points has a trivially covered neighborhood. Furthermore, the preimage of each of these points consists of 2 points (the endpoints of the cross), where P is not even a local homeomorphism. To eliminate this defect, we attach a copy of K at each of the 4 endpoints of K and extend P in a natural way to the result. But then 12 new endpoints appear at which the map is not a local homeomorphism. Well, we repeat the trick and restore the property of being a local homeomorphism at each of the 12 new endpoints. Then we do this at each of the 36 new points, etc. However, if we repeat this infinitely many times, all bad points become nice ones. ${ }^{2}$
36. M. Formalize the construction of a covering for B described above.

[^26]Consider $\mathbb{F}(a, b)$ as a discrete topological space. Take $K \times \mathbb{F}(a, b)$. The latter space can be thought of as a collection of copies of K enumerated by elements of $\mathbb{F}(a, b)$. Topologically, this is a disjoint sum of the copies because $\mathbb{F}(a, b)$ is equipped with discrete topology. In $K \times \mathbb{F}(a, b)$, we identify points $\left(U^{-}, g\right)$ with $\left(U^{+}, g a\right)$ and $\left(V^{-}, g\right)$ with $\left(V^{+}, g b\right)$ for each $g \in \mathbb{F}(a, b)$. Denote the resulting quotient space by X.
36.N. The composition of the projection $K \times \mathbb{F}(a, b) \rightarrow K$ and $P: K \rightarrow B$ determines a continuous quotient map $p: X \rightarrow B$.
36.O. $p: X \rightarrow B$ is a covering.
36.P. X is path-connected. For any $g \in \mathbb{F}(a, b)$. there is a path connecting $(c, 1)$ with (c, g) and covering the loop obtained from g by replacing a with u and b with v.
36.Q. X is simply connected.
36. \boldsymbol{R}^{*}. Let a topological space X be the union of two open path-connected sets U and V. Prove that if $U \cap V$ has at least three connected components, then the fundamental group of X is non-Abelian and, moreover, admits an epimorphism onto a free group of rank 2 .

$\left\lceil 36^{\prime} 6 〕\right.$ Fundamental Groups of Finite Topological Spaces

36.6. Prove that if a three-element space X is path-connected, then X is simply connected (cf. 32.7).
36.7. Consider a topological space $X=\{a, b, c, d\}$ with topology determined by the base $\{\{a\},\{c\},\{a, b, c\},\{c, d, a\}\}$. Prove that X is path-connected, but not simply connected.
36.8. Calculate $\pi_{1}(X)$.
36.9. Let X be a finite topological space with nontrivial fundamental group. Let n_{0} be the least possible cardinality of X. 1) Find n_{0}. 2) What nontrivial groups arise as fundamental groups of n_{0}-element spaces?
36.10. 1) Find a finite topological space with non-Abelian fundamental group. 2) What is the least possible cardinality of such a space?
36.11^{*}. Find a finite topological space with fundamental group isomorphic to \mathbb{Z}_{2}.

Proofs and Comments

34. \boldsymbol{A} Let us show that the set B itself is trivially covered. Indeed, $\left(\operatorname{pr}_{B}\right)^{-1}(B)=X=\bigcup_{y \in F}(B \times y)$, and since the topology on F is discrete, it follows that each of the sets $B \times y$ is open in the total space of the covering, and the restriction of pr_{B} to each of them is a homeomorphism.
34.B \Leftrightarrow We construct a homeomorphism $h: p^{-1}(U) \rightarrow U \times$ $p^{-1}(a)$ for an arbitrary trivially covered neighborhood $U \subset B$ of a. By the definition of a trivially covered neighborhood, we have $p^{-1}(U)=\bigcup_{\alpha} U_{\alpha}$. Let $x \in p^{-1}(U)$, consider an open set U_{α} containing x, and send x to the pair $(p(x), c)$, where $\{c\}=p^{-1}(a) \cap U_{\alpha}$. Clearly, the correspondence $x \mapsto(p(x), c)$ determines a homeomorphism $h: p^{-1}(U) \rightarrow U \times p^{-1}(a)$.
\Leftrightarrow By assertion 34.1, U is a trivially covered neighborhood. Hence, $p: X \rightarrow B$ is a covering.
35. C For each point $z \in S^{1}$, the set $U_{z}=S^{1} \backslash\{-z\}$ is a trivially covered neighborhood of z. Indeed, let $z=e^{2 \pi i x}$. Then the preimage of U_{z} is the union $\bigcup_{k \in \mathbb{Z}}(x+k-1 / 2, x+k+1 / 2)$, and the restriction of the covering to each of the above intervals is a homeomorphism.
34.D The product $\left(S^{1} \backslash\{-z\}\right) \times \mathbb{R}$ is a trivially covered neighborhood of a point $(z, y) \in S^{1} \times \mathbb{R}$; cf. 34.E.
34.E Verify that the product of trivially covered neighborhoods of points $b \in B$ and $b^{\prime} \in B^{\prime}$ is a trivially covered neighborhood of the point $\left(b, b^{\prime}\right) \in B \times B^{\prime}$.
34.F Consider the diagram

where $g(z, x)=z e^{x}, h(x, y)=y+2 \pi i x$, and $q(x, y)=\left(e^{2 \pi i x}, y\right)$. The equality $g(q(x, y))=e^{2 \pi i x} \cdot e^{y}=e^{y+2 \pi i x}=p(h(x, y))$ implies that the diagram is commutative. Clearly, g and h are homeomorphisms. Since q is a covering by $34 . D$, so is p.
34.G By 34.E, this assertion follows from 34.C. Certainly, it is not difficult to prove it directly. The product $\left(S^{1} \backslash\{-z\}\right) \times\left(S^{1} \backslash\left\{-z^{\prime}\right\}\right)$ is a trivially covered neighborhood of the point $\left(z, z^{\prime}\right) \in S^{1} \times S^{1}$.
36. \boldsymbol{H} Let $z \in S^{1}$. The preimage $-z$ under the projection consists of n points, which partition the covering space into n arcs, and the restriction
of the projection to each of them determines a homeomorphism of this arc onto the neighborhood $S^{1} \backslash\{-z\}$ of z.

34.I By 34.E, this assertion follows from 34.H.

34.J The preimage of a point $y \in \mathbb{R} P^{n}$ is a pair $\{x .-x\} \subset S^{n}$ of antipodal points. The plane passing through the center of the sphere and orthogonal to the vector x splits the sphere into two open hemispheres, each of which is homeomorphically projected to a neighborhood (homeomorphic to \mathbb{R}^{n}) of the point $y \in \mathbb{R} P^{n}$.
34.K No, it is not, because the point $1 \in S^{1}$ has no trivially covered neighborhood.
34.L The open intervals mentioned in the statement are not open subsets of the plane. Furthermore, since the preimage of any interval is a connected set, it cannot be split into disjoint open subsets at all.
34.M Prove that the definition of a covering implies that the set of the points in the base with preimage of prescribed cardinality is open and use the fact that the base of the covering is connected.
34.N Those coverings where the covering space is $\mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{n} \backslash 0$ with $n \geq 3$, and S^{n} with $n \geq 2$, i.e., a simply connected space.
35.A Assume that the identity map $S^{1} \rightarrow S^{1}$ has a lift g; this is a continuous injection $S^{1} \rightarrow \mathbb{R}$. We show that there are no such injections. Let $g\left(S^{1}\right)=[a, b]$. The Intermediate Value Theorem implies that each point $x \in(a, b)$ is the image of at least two points of the circle. Consequently, g is not an injection.
35.B Cover the base by trivially covered neighborhoods and partition the segment $[0,1]$ by points $0=a_{0}<a_{1}<\cdots<a_{n}=1$ such that the image $s\left(\left[a_{i}, a_{i+1}\right]\right)$ lies entirely in one of the trivially covered neighborhoods; $s\left(\left[a_{i}, a_{i+1}\right]\right) \subset U_{i}, i=0,1, \ldots, n-1$. Since the restriction of the covering to $p^{-1}\left(U_{0}\right)$ is a trivial covering and $f\left(\left[a_{0}, a_{1}\right]\right) \subset U_{0}$, the path $\left.s\right|_{\left[a_{0}, a_{1}\right]}$ has a lift such that $\widetilde{s}\left(a_{0}\right)=x_{0}$; let $x_{1}=\widetilde{s}\left(a_{1}\right)$. Similarly, there is a unique lift $\left.\widetilde{s}\right|_{\left[a_{1}, a_{2}\right]}$ such that $\widetilde{s}\left(a_{1}\right)=x_{1}$; let $x_{2}=\widetilde{s}\left(a_{2}\right)$, and so on. Thus, there exists a lift $\widetilde{s}: I \rightarrow X$. Its uniqueness is obvious. If you are not satisfied, use induction.
35. C Let $h: I \times I \rightarrow B$ be a homotopy between the paths u and v, so that $h(\tau, 0)=u(\tau), h(\tau, 1)=v(\tau), h(0, t)=b_{0}$, and $h(1, t)=b_{1} \in B$. We show that h is covered by a map $\tilde{h}: I \times I \rightarrow X$ with $\tilde{h}(0,0)=x_{0}$. The proof of the existence of the covering homotopy is similar to that of the Path Lifting Theorem. We subdivide the square $I \times I$ into smaller squares such that the h-image of each of them is contained in a certain trivially covered neighborhood in B. The restriction $h_{k, l}$ of the homotopy h to each of the "little" squares $I_{k, l}$ is covered by the corresponding map $\widetilde{h}_{k \cdot l}$. In order to obtain a homotopy covering h, we must only ensure that these
maps coincide on the intersections of these squares. By 35.3 , it suffices to require that these maps coincide at least at one point. Let us make the first step: let $h\left(I_{0,0}\right) \subset U_{b_{0}}$, and let $\widetilde{h}_{0,0}: I_{0,0} \rightarrow X$ be a covering map such that $\widetilde{h}_{0,0}\left(a_{0}, c_{0}\right)=x_{0}$. Now we put $b_{1}=h\left(a_{1}, c_{0}\right)$ and $x_{1}=\widetilde{h}\left(a_{1}, c_{0}\right)$. There is a map $\widetilde{h}_{1,0}: I_{1,0} \rightarrow X$ covering $\left.h\right|_{I_{1,0}}$ such that $\widetilde{h}_{1,0}\left(a_{1}, c_{0}\right)=x_{1}$. Proceeding in this way, we obtain a map \tilde{h} defined on the entire square. It remains to verify that \widetilde{h} is a homotopy of paths. Consider the covering path $\widetilde{u}: t \mapsto \widetilde{h}(0, t)$. Since $p \circ \widetilde{u}$ is a constant path, the path \widetilde{u} must also be constant, whence $\widetilde{h}(0, t)=x_{0}$. Similarly, $\widetilde{h}(1, t)=x_{1}$ is the marked point of the covering space. Therefore, \widetilde{h} is a homotopy of paths. In conclusion, we observe that the uniqueness of this homotopy follows, once more, from Lemma 35.3.
35.D Formally speaking, this is indeed a corollary, but actually we already proved this when proving Theorem 35.C.
35. \boldsymbol{E} A constant path is covered by a constant path. By 35.D, each null-homotopic loop is covered by a loop.
36. \boldsymbol{A} Consider the paths $\tilde{s}_{n}: I \rightarrow \mathbb{R}: t \mapsto n t, \tilde{s}_{n-1}: I \rightarrow \mathbb{R}: t \mapsto$ $(n-1) t$, and $\tilde{s}_{1}: I \rightarrow \mathbb{R}: t \mapsto n-1+t$ covering the paths s_{n}, s_{n-1}, and s_{1}, respectively. Since the product $\widetilde{s}_{n-1} \widetilde{s}_{1}$ is defined and has the same starting and ending points as the path \widetilde{s}_{n}, we have $\widetilde{s}_{n} \sim \widetilde{s}_{n-1} \widetilde{s}_{1}$, whence $s_{n} \sim s_{n-1} s_{1}$. Therefore, $\left[s_{n}\right]=\left[s_{n-1}\right] \alpha$. Reasoning by induction, we obtain the required equality $\left[s_{n}\right]=\alpha^{n}$.
36.B See the proof of assertion 36.A: this is the path defined by the formula $\widetilde{s}_{n}(t)=n t$.
36. C By 36.C.1, the map in question is indeed a well-defined homomorphism. By 36.C.2, it is an epimorphism, and by 36.C.3 it is a monomorphism. Therefore, it is an isomorphism.
36.C. 1 If $n \mapsto \alpha^{n}$ and $k \mapsto \alpha^{k}$, then $n+k \mapsto \alpha^{n+k}=\alpha^{n} \cdot \alpha^{k}$.
36.C.2 Since \mathbb{R} is simply connected, the paths \widetilde{s} and \widetilde{s}_{n} are homotopic, and, therefore, the paths s and s_{n} are also homotopic, whence $[s]=\left[s_{n}\right]=$ α^{n}.
36.C.3 If $n \neq 0$, then the path \widetilde{s}_{n} ends at the point n, and, hence, it is not a loop. Consequently, the loop s_{n} is not null-homotopic.
36.D This follows from the above computation of the fundamental group of the circle and assertion 32.H:

$$
\pi_{1}(\underbrace{S^{1} \times \cdots \times S^{1}}_{n \text { factors }},(1,1, \ldots, 1)) \cong \underbrace{\pi_{1}\left(S^{1}, 1\right) \times \cdots \times \pi_{1}\left(S^{1}, 1\right)}_{n \text { factors }} \cong \mathbb{Z}^{n}
$$

36.E Let $S^{1} \times S^{1}=\{(z, w):|z|=1,|w|=1\} \subset \mathbb{C} \times \mathbb{C}$. The generators of $\pi_{1}\left(S^{1} \times S^{1},(1,1)\right)$ are the loops $s_{1}: t \mapsto\left(e^{2 \pi i t}, 1\right)$ and $s_{2}: t \mapsto\left(1, e^{2 \pi i t}\right)$.
36. \boldsymbol{F} Since $\mathbb{R}^{2} \backslash 0 \cong S^{1} \times \mathbb{R}$, we have $\pi_{1}\left(\mathbb{R}^{2} \backslash 0,(1,0)\right) \cong \pi_{1}\left(S^{1}, 1\right) \times$ $\pi_{1}(\mathbb{R}, 1) \cong \mathbb{Z}$.
36.G.1 Let u be a loop in $\mathbb{R} P^{n}$, and let \tilde{u} be the path in S^{n} covering u. For $n \geq 2$, the sphere S^{n} is simply connected, and if \widetilde{u} is a loop, then \widetilde{u} and, hence, u are null-homotopic. Now if \widetilde{u} is not a loop, then, once more since S^{n} is simply connected, we have $\widetilde{u} \sim \widetilde{l}$, whence $u \sim l$.
36.G By 36.G.1, the fundamental group consists of two elements, and, therefore, it is a cyclic group of order two.
36. \boldsymbol{H} See $36^{\prime} 5$.
36.M See the paragraph following the present assertion.
36.N This obviously follows from the definition of P.
36.O This obviously follows from the definition of p.
36.P Use induction.
36. Q Use the fact that the image of any loop, as a compact set, meets only a finite number of the segments constituting the covering space X, and use induction on the number of such segments.

Fundamental Group and Maps

37. Induced Homomorphisms and Their First Applications

$\left\lceil 37^{\prime} 1\right\rfloor$ Homomorphisms Induced by a Continuous Map
Let $f: X \rightarrow Y$ be a continuous map of a topological space X to a topological space Y. Let $x_{0} \in X$ and $y_{0} \in Y$ be points such that $f\left(x_{0}\right)=y_{0}$. The latter property of f is expressed by saying that f maps the pair (X, x_{0}) to the pair $\left(Y, y_{0}\right)$, and writing $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$.

Consider the map $f_{\#}: \Omega\left(X, x_{0}\right) \rightarrow \Omega\left(Y, y_{0}\right): s \mapsto f \circ s$. This map assigns to a loop its composition with f.
37. A. The map $f_{\#}$ sends homotopic loops to homotopic loops.

Therefore, $f_{\#}$ induces a map $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$.
37.B. $f_{*}: \pi\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is a homomorphism for any continuous map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$.
$f_{*}: \pi\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is the homomorphism induced by f.
37.C. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $g:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ be (continuous) maps. Then we have

$$
(g \circ f)_{*}=g_{*} \circ f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Z, z_{0}\right) .
$$

37.D. Let $f, g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be two continuous maps homotopic via a homotopy fixed at x_{0}. Then $f_{*}=g_{*}$.
37.E. Riddle. How can we generalize Theorem 37.D to the case of freely homotopic f and g ?
37.F. Let $f: X \rightarrow Y$ be a continuous map, and let x_{0} and x_{1} be two points of X connected by a path $s: I \rightarrow X$. Denote $f\left(x_{0}\right)$ by y_{0} and $f\left(x_{1}\right)$ by y_{1}. Then the diagram

is commutative, i.e., $T_{f \circ s} \circ f_{*}=f_{*} \circ T_{s}$.
37.1. Prove that the map $\mathbb{C} \backslash 0 \rightarrow \mathbb{C} \backslash 0: z \mapsto z^{3}$ is not homotopic to the identity $\operatorname{map} \mathbb{C} \backslash 0 \rightarrow \mathbb{C} \backslash 0: z \mapsto z$.
37.2. Let X be a subset of \mathbb{R}^{n}. Prove that if a continuous map $f: X \rightarrow Y$ extends to a continuous map $\mathbb{R}^{n} \rightarrow Y$, then $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$ is a trivial homomorphism (i.e., sends everything to the unit) for each $x_{0} \in X$.
37.3. Prove that if a Hausdorff space X contains an open set homeomorphic to $S^{1} \times S^{1} \backslash(1,1)$, then X has infinite noncyclic fundamental group.
37.3.1. Prove that a space X satisfying the conditions of 37.3 can be continuously mapped to a space with infinite noncyclic fundamental group in such a way that the map would induce an epimorphism of $\pi_{1}(X)$ onto this infinite group.
37.4. Prove that the space $G L(n, \mathbb{C})$ of complex $n \times n$ matrices with nonzero determinant has infinite fundamental group.

$\left\lceil 37^{\prime} 2\right\rfloor$ Fundamental Theorem of Algebra

Our goal here is to prove the following theorem, which, at first glance, has no relation to fundamental group.
37. G Fundamental Theorem of Algebra. Every polynomial of positive degree in one variable with complex coefficients has a complex root.

In more detail:
Let $p(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$ be a polynomial of degree $n>0$ in z with complex coefficients. Then there exists a complex number w such that $p(w)=0$.

Although it is formulated in an algebraic way and called "The Fundamental Theorem of Algebra," it has no simple algebraic proof. Its proofs usually involve topological arguments or use complex analysis. This is so because the field \mathbb{C} of complex numbers as well as the field \mathbb{R} of reals
is extremely difficult to describe in purely algebraic terms: all customary constructive descriptions involve a sort of completion construction, cf. Section 18.
37.G.1 Reduction to Problem on a Map. Deduce Theorem 37.G from the following statement:

For any complex polynomial $p(z)$ of a positive degree, the image of the map $\mathbb{C} \rightarrow \mathbb{C}: z \mapsto p(z)$ contains the zero. In other words, the formula $z \mapsto p(z)$ does not determine a map $\mathbb{C} \rightarrow \mathbb{C} \backslash 0$.
37.G.2 Estimate of Remainder. Let $p(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$ be a complex polynomial, $q(z)=z^{n}$, and $r(z)=p(z)-q(z)$. Then there exists a positive real R such that $|r(z)|<|q(z)|=R^{n}$ for any z with $|z|=R$.
37.G.3 Lemma on Lady with Dog. (Cf. 30.11.) A lady $q(z)$ and her dog $p(z)$ walk on the punctured plane $\mathbb{C} \backslash 0$ periodically (i.e., say, with $z \in S^{1}$). Prove that if the lady does not let the dog run further than $|q(z)|$ from her, then the doggy's loop $S^{1} \rightarrow \mathbb{C} \backslash 0: z \mapsto p(z)$ is homotopic to the lady's loop $S^{1} \rightarrow \mathbb{C} \backslash 0: z \mapsto q(z)$.
37.G.4 Lemma for Dummies. (Cf. 30.12.) If $f: X \rightarrow Y$ is a continuous map and $s: S^{1} \rightarrow X$ is a null-homotopic loop, then $f \circ s: S^{1} \rightarrow Y$ is also null-homotopic.

$\left\lceil 37^{\prime} 3 x\right\rfloor$ Generalization of Intermediate Value Theorem

37.Hx. Riddle. How to generalize Intermediate Value Theorem 13.A to the case of maps $f: D^{n} \rightarrow \mathbb{R}^{n}$?
37.Ix. Find out whether Intermediate Value Theorem 13.A is equivalent to the following statement:
Let $f: D^{1} \rightarrow \mathbb{R}^{1}$ be a continuous map. If $0 \notin f\left(S^{0}\right)$ and the submap $\left.f\right|_{S^{0}}: S^{0} \rightarrow \mathbb{R}^{1} \backslash 0$ of f induces a nonconstant map $\pi_{0}\left(S^{0}\right) \rightarrow \pi_{0}\left(\mathbb{R}^{1} \backslash 0\right)$, then there exists a point $x \in D^{1}$ such that $f(x)=0$.
37.Jx. Riddle. Suggest a generalization of Intermediate Value Theorem to maps $D^{n} \rightarrow \mathbb{R}^{n}$ which would generalize its reformulation 37.Ix. To do it, you must define the induced homomorphism for homotopy groups.
37.Kx. Let $f: D^{n} \rightarrow \mathbb{R}^{n}$ be a continuous map. If $f\left(S^{n-1}\right)$ does not contain $0 \in \mathbb{R}^{n}$ and the submap $\left.f\right|_{S^{n-1}}: S^{n-1} \rightarrow \mathbb{R}^{n} \backslash 0$ of f induces a nonconstant map

$$
\pi_{n-1}\left(S^{n-1}\right) \rightarrow \pi_{n-1}\left(\mathbb{R}^{n} \backslash 0\right)
$$

then there exists a point $x \in D^{1}$ such that $f(x)=0$.
Usability of Theorem $37 . K x$ is impeded by a condition which is difficult to check if $n>0$. For $n=1$, this is still possible in the framework of the theory developed above.
37.5x. Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ be a continuous map. If $f\left(S^{1}\right)$ does not contain $a \in \mathbb{R}^{2}$ and the circular loop $\left.f\right|_{S^{1}}: S^{1} \rightarrow \mathbb{R}^{2} \backslash a$ determines a nontrivial element of $\pi_{1}\left(\mathbb{R}^{2} \backslash a\right)$, then there exists $x \in D^{2}$ such that $f(x)=a$.
37.6x. Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ be a continuous map that leaves fixed each point of the boundary circle S^{1}. Then $f\left(D^{2}\right) \supset D^{2}$.
37.7x. Assume that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a continuous map and there exists a real number m such that $|f(x)-x| \leq m$ for any $x \in \mathbb{R}^{2}$. Prove that f is a surjection.
37.8 x . Let $u, v: I \rightarrow I \times I$ be two paths such that $u(0)=(0,0), u(1)=(1,1)$, $v(0)=(0,1)$, and $v(1)=(1,0)$. Prove that $u(I) \cap v(I) \neq \varnothing$.
37.8x.1. Let u and v be as in $37.8 x$. Prove that $0 \in \mathbb{R}^{2}$ is a value of the $\operatorname{map} w: I^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto u(x)-v(y)$.
37.9x. Prove that there exist disjoint connected sets $F, G \subset I^{2}$ such that the corner points $(0,0)$ and $(1,1)$ of the square I^{2} belong to F, while $(0,1),(1,0) \in G$.

37.10x. In addition, can we require that the sets F and G satisfying the assumptions of Problem 37.9x be closed?
37.11x. Let C be a smooth simple closed curve on the plane with two inflection points having the form shown in the figure. Prove that there is a line intersecting C at four points a, b, c, and d with segments $[a, b],[b, c]$, and $[c, d]$ of the same length.

$\left\lceil 37^{\prime} 4 \mathrm{x}\right\rfloor$ Winding Number

As we know (see 36.F), the fundamental group of the punctured plane $\mathbb{R}^{2} \backslash 0$ is isomorphic to \mathbb{Z}. There are two isomorphisms, which differ by multiplication by -1 . Choose one of them that sends the homotopy class of the loop $t \mapsto(\cos 2 \pi t, \sin 2 \pi t)$ to $1 \in \mathbb{Z}$. In terms of circular loops, the isomorphism means that each loop $f: S^{1} \rightarrow \mathbb{R}^{2} \backslash 0$ is assigned an integer. Roughly speaking, it is the number of times the loop goes around 0 (with account of direction).

Now we change the viewpoint in this consideration: we fix the loop, but vary the point. Let $f: S^{1} \rightarrow \mathbb{R}^{2}$ be a circular loop and let $x \in \mathbb{R}^{2} \backslash f\left(S^{1}\right)$. Then f determines an element in $\pi_{1}\left(\mathbb{R}^{2} \backslash x\right)=\mathbb{Z}$. (Here we choose basically the same identification of $\pi_{1}\left(\mathbb{R}^{2} \backslash x\right)$ with \mathbb{Z} that sends 1 to the homotopy class of $t \mapsto x+(\cos 2 \pi t, \sin 2 \pi t)$.) This number is denoted by $\operatorname{ind}(f, x)$ and called the winding number or index of x with respect to f.

It is also convenient to characterize the number $\operatorname{ind}(u, x)$ as follows. Along with the circular loop $u: S^{1} \rightarrow \mathbb{R}^{2} \backslash x$, consider the map $\varphi_{u, x}: S^{1} \rightarrow$ $S^{1}: \quad z \mapsto(u(z)-x) /|u(z)-x|$. The homomorphism $\left(\varphi_{u, x}\right)_{*}: \pi_{1}\left(S^{1}\right) \rightarrow$ $\pi_{1}\left(S^{1}\right)$ sends the generator α of the fundamental group of the circle to the element $k \alpha$, where $k=\operatorname{ind}(u, x)$.
37.Lx. The formula $x \mapsto \operatorname{ind}(u, x)$ determines a locally constant function on $\mathbb{R}^{2} \backslash u\left(S^{1}\right)$.
37.12x. Let $f: S^{1} \rightarrow \mathbb{R}^{2}$ be a loop and let $x, y \in \mathbb{R}^{2} \backslash f\left(S^{1}\right)$. Prove that if $\operatorname{ind}(f, x) \neq \operatorname{ind}(f, y)$, then any path connecting x and y in \mathbb{R}^{2} meets $f\left(S^{1}\right)$.
37.13x. Prove that if $u\left(S^{1}\right)$ is contained in a disk, while a point x is not, then $\operatorname{ind}(u, x)=0$.
37.14 x . Find the set of values of function ind : $\mathbb{R}^{2} \backslash u\left(S^{1}\right) \rightarrow \mathbb{Z}$ for the following loops u :
a) $u(z)=z$;
b) $u(z)=\bar{z}$;
c) $u(z)=z^{2}$;
d) $u(z)=z+z^{-1}+z^{2}-z^{-2}$
(here $z \in S^{1} \subset \mathbb{C}$).
37.15x. Choose several loops $u: S^{1} \rightarrow \mathbb{R}^{2}$ such that $u\left(S^{1}\right)$ is a bouquet of two circles (a "lemniscate"). Find the winding number with respect to these loops for various points.
37.16x. Find a loop $f: S^{1} \rightarrow \mathbb{R}^{2}$ such that there exist points $x, y \in \mathbb{R}^{2} \backslash f\left(S^{1}\right)$ with ind $(f, x)=\operatorname{ind}(f, y)$, but belonging to different connected components of $\mathbb{R}^{2} \backslash f\left(S^{1}\right)$.
37.17x. Prove that any ray R radiating from x meets $f\left(S^{1}\right)$ at least at $|\operatorname{ind}(f, x)|$ points (i.e., the number of points in $f^{-1}(R)$ is at least $\left.|\operatorname{ind}(f, x)|\right)$.
37.Mx. If $u: S^{1} \rightarrow \mathbb{R}^{2}$ is a restriction of a continuous map $F: D^{2} \rightarrow \mathbb{R}^{2}$ and $\operatorname{ind}(u, x) \neq 0$, then $x \in F\left(D^{2}\right)$.
37.Nx. If u and v are two circular loops in \mathbb{R}^{2} with common base point (i.e.. $u(1)=v(1))$ and $u v$ is their product, then $\operatorname{ind}(u v, x)=\operatorname{ind}(u, x)+\operatorname{ind}(\tau \cdot x)$ for each $x \in \mathbb{R}^{2} \backslash u v\left(S^{1}\right)$.
37.Ox. Let u and v be circular loops in \mathbb{R}^{2}, and let $x \in \mathbb{R}^{2} \backslash\left(u\left(S^{1}\right) \cup v\left(S^{1}\right)\right)$. If u and v are connected by a (free) homotopy $u_{t}, t \in I$ such that $x \in$ $\mathbb{R}^{2} \backslash u_{t}\left(S^{1}\right)$ for each $t \in I$, then $\operatorname{ind}(u, x)=\operatorname{ind}(v, x)$.
37.Px. Let $u: S^{1} \rightarrow \mathbb{C}$ be a circular loop, $a \in \mathbb{C}^{2} \backslash u\left(S^{1}\right)$. Then we have

$$
\operatorname{ind}(u, a)=\frac{1}{2 \pi i} \int_{S^{1}} \frac{|u(z)-a|}{u(z)-a} d z .
$$

37. Qx. Let $p(z)$ be a polynomial with complex coefficients, let $R>0$, and let $z_{0} \in \mathbb{C}$. Consider the circular loop $u: S^{1} \rightarrow \mathbb{C}: z \mapsto p(R z)$. If $z_{0} \in \mathbb{C} \backslash u\left(S^{1}\right)$, then the polynomial $p(z)-z_{0}$ has (counting the multiplicities) precisely $\operatorname{ind}\left(u, z_{0}\right)$ roots in the open disk $B_{R}^{2}=\{z:|z|<R\}$.
37.Rx. Riddle. By what can we replace the circular loop u, the domain B_{R}, and the polynomial $p(z)$ so that the assertion remains valid?

$\left\lceil 37^{\prime} 5 x\right\rfloor$ Borsuk-Ulam Theorem

37.Sx One-Dimensional Borsuk-Ulam. For each continuous map f : $S^{1} \rightarrow \mathbb{R}^{1}$, there exists $x \in S^{1}$ such that $f(x)=f(-x)$.
37.Tx Two-Dimensional Borsuk-Ulam. For each continuous map f : $S^{2} \rightarrow \mathbb{R}^{2}$, there exists $x \in S^{2}$ such that $f(x)=f(-x)$.
37.Tx.1 Lemma. If there exists a continuous map $f: S^{2} \rightarrow \mathbb{R}^{2}$ such that $f(x) \neq f(-x)$ for each $x \in S^{2}$, then there exists a continuous map $\varphi: \mathbb{R} P^{2} \rightarrow$ $\mathbb{R} P^{1}$ inducing a nonzero homomorphism $\pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow \pi_{1}\left(\mathbb{R} P^{1}\right)$.
37.18 x . Prove that at each instant of time, there is a pair of antipodal points on the earth's surface where the pressures and also the temperatures are equal.

Theorems $37 . S x$ and $37 . T x$ are special cases of the following general theorem. We do not assume the reader is ready to prove Theorem $37 . U x$ in the full generality, but is there another easy special case?
37.Ux Borsuk-Ulam Theorem. For each continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists $x \in S^{n}$ such that $f(x)=f(-x)$.

38. Retractions and Fixed Points

「38'1」Retractions and Retracts

A continuous map of a topological space onto a subspace is a retraction if the restriction of the map to the subspace is the identity map. In other words, if X is a topological space and $A \subset X$, then $\rho: X \rightarrow A$ is a retraction if ρ is continuous and $\left.\rho\right|_{A}=\mathrm{id}_{A}$.
38. \boldsymbol{A}. Let ρ be a continuous map of a space X onto its subspace A. Then the following statements are equivalent:
(1) ρ is a retraction,
(2) $\rho(a)=a$ for any $a \in A$,
(3) $\rho \circ$ in $=\mathrm{id}_{A}$,
(4) $\rho: X \rightarrow A$ is an extension of the identity map $A \rightarrow A$.

A subspace A of a space X is a retract of X if there exists a retraction $X \rightarrow A$.
38.B. Any one-point subset is a retract.

A two-element set may be not a retract.
38.C. Any subset of \mathbb{R} consisting of two points is not a retract of \mathbb{R}.
38.1. If A is a retract of X and B is a retract of A, then B is a retract of X.
38.2. If A is a retract of X and B is a retract of Y, then $A \times B$ is a retract of $X \times Y$.
38.3. A closed interval $[a, b]$ is a retract of \mathbb{R}.
38.4. An open interval (a, b) is not a retract of \mathbb{R}.
38.5. What topological properties of ambient space are inherited by a retract?
38.6. Prove that a retract of a Hausdorff space is closed.
38.7. Prove that the union of the Y axis and the set $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y=\right.$ $\sin (1 / x)\}$ is not a retract of \mathbb{R}^{2} and, moreover, is not a retract of any of its neighborhoods.
38.D. S^{0} is not a retract of D^{1}.

The role of the notion of retract is clarified by the following theorem.
38.E. A subset A of a topological space X is a retract of X iff for each space Y each continuous map $A \rightarrow Y$ extends to a continuous map $X \rightarrow Y$.

$\left\lceil 38^{\prime} 2\right\rfloor$ Fundamental Group and Retractions

38.F. If $\rho: X \rightarrow A$ is a retraction, $i: A \rightarrow X$ is the inclusion, and $x_{0} \in A$, then $\rho_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$ is an epimorphism and $i_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{0}\right)$ is a monomorphism.
38.G. Riddle. Which of the two statements of Theorem 38.F (about ρ_{*} or i_{*}) is easier to use for proving that a set $A \subset X$ is not a retract of X ?
38.H Borsuk Theorem in Dimension 2. S^{1} is not a retract of D^{2}.
38.8. Is the projective line a retract of the projective plane?

The following problem is more difficult than $38 . H$ in the sense that its solution is not a straightforward consequence of Theorem 38.F, but rather demands to reexamine the arguments used in proof of 38.F.
38.9. Prove that the boundary circle of the Möbius band is not a retract of the Möbius band.
38.10. Prove that the boundary circle of a handle is not a retract of the handle.

The Borsuk Theorem in its whole generality cannot be deduced like Theorem 38.H from Theorem 38.F. However, we can prove it by using a generalization of $38 . F$ to higher homotopy groups. Although we do not assume that you can successfully prove it now relying only on the tools provided above, we formulate it here.
38.I Borsuk Theorem. The $(n-1)$-sphere S^{n-1} is not a retract of the n-disk D^{n}.

At first glance this theorem seems to be useless. Why could it be interesting to know that a map with a very special property of being a retraction does not exist in this situation? However, in mathematics nonexistence theorems are often closely related to theorems that may seem to be more attractive. For instance, the Borsuk Theorem implies the Brouwer Theorem discussed below. But prior to this we must introduce an important notion related to the Brouwer Theorem.

$\left\lceil 38^{\prime} 3\right\rfloor$ Fixed-Point Property

Let $f: X \rightarrow X$ be a continuous map. A point $a \in X$ is a fixed point of f if $f(a)=a$. A space X has the fixed-point property if every continuous map $X \rightarrow X$ has a fixed point. The fixed point property implies solvability of a wide class of equations.

38.11. Prove that the fixed point property is a topological property.

38.12. A closed interval $[a, b]$ has the fixed point property.
38.13. Prove that if a topological space has the fixed point property, then so does each of its retracts.
38.14. Let X and Y be two topological spaces, $x_{0} \in X$, and $y_{0} \in Y$. Prove that X and Y have the fixed point property iff so does their bouquet $X \vee Y=$ $X \sqcup Y /\left[x_{0} \sim y_{0}\right]$.
38.15. Prove that any finite tree has the fixed-point property. (We recall that a tree is a connected space obtained from a finite collection of closed intervals by somehow identifying their endpoints so that deleting an internal point from any of the segments makes the space disconnected, see $45^{\prime} 4 \mathrm{x}$.) Is this statement true for infinite trees?
38.16. Prove that \mathbb{R}^{n} with $n>0$ does not have the fixed point property.
38.17. Prove that S^{n} does not have the fixed point property.
38.18. Prove that $\mathbb{R} P^{n}$ with odd n does not have the fixed point property.
38.19*. Prove that $\mathbb{C} P^{n}$ with odd n does not have the fixed point property.

Information. $\mathbb{R} P^{n}$ and $\mathbb{C} P^{n}$ with any even n have the fixed point property.

38.J Brouwer Theorem. D^{n} has the fixed point property.

38.J.1. Show that the Borsuk Theorem in dimension n (i.e., the statement that S^{n-1} is not a retract of D^{n}) implies the Brouwer Theorem in dimension n (i.e., the statement that any continuous map $D^{n} \rightarrow D^{n}$ has a fixed point).

38.K. Derive the Borsuk Theorem from the Brouwer Theorem.

The existence of fixed points can follow not only from topological arguments.
38.20. Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a periodic affine transformation (i.e., $\underbrace{f \circ \cdots \circ f}_{p \text { times }}=\operatorname{id}_{\mathbb{R}^{n}}$ for a certain p), then f has a fixed point.

39. Homotopy Equivalences

$\left\lceil 39^{\prime} 1\right\rfloor$ Homotopy Equivalence as Map

Let X and Y be two topological spaces, and let $f: X \rightarrow Y$ and g : $Y \rightarrow X$ be continuous maps. Consider the compositions $f \circ g: Y \rightarrow Y$ and $g \circ f: X \rightarrow X$. They would be equal to the corresponding identity maps if f and g were mutually inverse homeomorphisms. If $f \circ g$ and $g \circ f$ are only homotopic to the identity maps, then f and g are homotopy inverse to each other. If a continuous map f possesses a homotopy inverse map, then f is a homotopy invertible map or a homotopy equivalence.
39. A. Prove the following properties of homotopy equivalences:
(1) any homeomorphism is a homotopy equivalence,
(2) a map homotopy inverse to a homotopy equivalence is a homotopy equivalence,
(3) the composition of two homotopy equivalences is a homotopy equivalence.
39.1. Find a homotopy equivalence that is not a homeomorphism.

$\left\lceil 39^{\prime 2}\right.$ 」 Homotopy Equivalence as Relation

Two topological spaces X and Y are homotopy equivalent if there exists a homotopy equivalence $X \rightarrow Y$.
39.B. Homotopy equivalence of topological spaces is an equivalence relation.

The classes of homotopy equivalent spaces are homotopy types, and we say that homotopy equivalent spaces have the same homotopy type.
39.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.
39.3. Prove that homotopy equivalent spaces have the same number of connected components.
39.4. Find an infinite set of topological spaces that belong to the same homotopy type, but are pairwise non-homeomorphic.

$\left\lceil 39^{\prime} 3\right\rfloor$ Deformation Retraction

A retraction $\rho: X \rightarrow A$ is a deformation retraction if its composition in $\circ \rho$ with the inclusion in : $A \rightarrow X$ is homotopic to the identity id_{X}. If in $\circ \rho$ is A-homotopic to id_{X}, then ρ is a strong deformation retraction. If X admits a (strong) deformation retraction onto A, then A is a (strong) deformation retract of X.
39.C. Each deformation retraction is a homotopy equivalence.
39.D. If A is a deformation retract of X, then A and X are homotopy equivalent.
39.E. Any two deformation retracts of one and the same space are homotopy equivalent.
39.F. If A is a deformation retract of X and B is a deformation retract of Y, then $A \times B$ is a deformation retract of $X \times Y$.

「39'4」 Examples

39. \boldsymbol{G}. Circle S^{1} is a deformation retract of $\mathbb{R}^{2} \backslash 0$.

39.5. Prove that the Möbius strip is homotopy equivalent to a circle.
39.6. Classify letters of the Latin alphabet up to homotopy equivalence.
39.H. Prove that a plane with s punctures is homotopy equivalent to the union of s circles intersecting at a single point.

39.I. Prove that the union of a diagonal of a square and the contour of the same square is homotopy equivalent to the union of two circles intersecting at a single point.

39.7. Prove that a handle is homotopy equivalent to a bouquet of two circles. (E.g., construct a deformation retraction of the handle to the union of two circles intersecting at a single point.)
39.8. Prove that a handle is homotopy equivalent to the union of three arcs with common endpoints (i.e., the letter θ).
39.9. Prove that the space obtained from S^{2} by identifying two (distinct) points is homotopy equivalent to the union of a two-sphere and a circle intersecting at a single point.
39.10. Prove that the space $\left\{(p, q) \in \mathbb{C}: z^{2}+p z+q\right.$ has two distinct roots $\}$ of quadratic complex polynomials with distinct roots is homotopy equivalent to the circle.
39.11. Prove that the space $G L(n, \mathbb{R})$ of invertible $n \times n$ real matrices is homotopy equivalent to the subspace $O(n)$ consisting of orthogonal matrices.
39.12. Riddle. Is there any relation between a solution of the preceding problem and the Gram-Schmidt orthogonalization? Can the Gram-Schmidt orthogonalization algorithm be regarded as a deformation retraction?
39.13. Construct the following deformation retractions: (a) $\mathbb{R}^{3} \backslash \mathbb{R}^{1} \rightarrow S^{1}$; (b) $\mathbb{R}^{n} \backslash \mathbb{R}^{m} \rightarrow S^{n-m-1} ;$ (c) $S^{3} \backslash S^{1} \rightarrow S^{1}$; (d) $S^{n} \backslash S^{m} \rightarrow S^{n-m-1}(\mathrm{e}) \mathbb{R} P^{n} \backslash \mathbb{R} P^{m} \rightarrow$ $\mathbb{R} P^{n-m-1}$.

$\left\lceil 39^{\prime} 5\right\rfloor$ Deformation Retraction versus Homotopy Equivalence

39.J. Spaces of Problem 39.I cannot be embedded in one another. On the other hand, they can be embedded as deformation retracts in the plane with two punctures.

Deformation retractions constitute a very special class of homotopy equivalences. For example, they are often easier to visualize. However, as follows from 39.J, it may happen that two spaces are homotopy equivalent, but none of them can be embedded in the other one, and so none of them is homeomorphic to a deformation retract of the other one. Therefore, deformation retractions seem to be insufficient for establishing homotopy equivalences.

However, this is not the case:
39.14*. Prove that any two homotopy equivalent spaces can be embedded as deformation retracts in the same topological space.

$\left\lceil 39^{\prime} 6\right\rfloor$ Contractible Spaces

A topological space X is contractible if the identity map id : $X \rightarrow X$ is null-homotopic.
39.15. Show that \mathbb{R} and I are contractible.
39.16. Prove that any contractible space is path-connected.
39.17. Prove that the following statements about a topological space X are equivalent:
(1) X is contractible,
(2) X is homotopy equivalent to a point,
(3) there exists a deformation retraction of X onto a point,
(4) each point a of X is a deformation retract of X,
(5) each continuous map of any topological space Y to X is null-homotopic,
(6) each continuous map of X to any topological space Y is null-homotopic.
39.18. Is it true that if X is a contractible space, then for any topological space Y
(1) any two continuous maps $X \rightarrow Y$ are homotopic?
(2) any two continuous maps $Y \rightarrow X$ are homotopic?
39.19. Find out if the spaces on the following list are contractible:
(1) \mathbb{R}^{n},
(2) a convex subset of \mathbb{R}^{n}.
(3) a star-shaped subset of \mathbb{R}^{n}.
(4) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2} \leq 1\right\}$,
(5) a finite tree (i.e., a connected space obtained from a finite collection of closed intervals by somehow identifying their endpoints so that deleting an internal point of each of the segments makes the space disconnected, see $45^{\prime} 4 \mathrm{x}$.)
39.20. Prove that $X \times Y$ is contractible iff both X and Y are contractible.

$\left\lceil 39^{\prime} 7\right\rfloor$ Fundamental Group and Homotopy Equivalences

39.K. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two homotopy inverse maps, and let $x_{0} \in X$ and $y_{0} \in Y$ be two points such that $f\left(x_{0}\right)=y_{0}$ and $g\left(y_{0}\right)=x_{0}$ and, moreover, the homotopies connecting $f \circ g$ with id_{Y} and $g \circ f$ with id_{X} are fixed at y_{0} and x_{0}, respectively. Then f_{*} and g_{*} are mutually inverse isomorphisms between the groups $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(Y, y_{0}\right)$.
39.L Corollary. If $\rho: X \rightarrow A$ is a strong deformation retraction, $x_{0} \in$ A, then $\rho_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$ and $\mathrm{in}_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ are mutually inverse isomorphisms.
39.21. Calculate the fundamental group of the following spaces:
(a) $\mathbb{R}^{3} \backslash \mathbb{R}^{1}$,
(b) $\mathbb{R}^{N} \backslash \mathbb{R}^{n}$,
(c) $\mathbb{R}^{3} \backslash S^{1}$,
(d) $\mathbb{R}^{N} \backslash S^{n}$,
(1) Siöbius band, $^{3} S^{1}$
(f) $S^{N} \backslash S^{k}$,
(g) $\underset{\text { sphere }}{\mathbb{R} P^{3}} \underset{\mathbb{R}}{ } P^{1}$, (his holes, handle,
(k) Klein bottle with a point re-
(1) Möbius band with s holes. moved,
39.22. Prove that the boundary circle of the Möbius band standardly embedded in \mathbb{R}^{3} (see 22.18) cannot be the boundary of a disk embedded in \mathbb{R}^{3} in such a way that its interior does not meet the band.
39.23. 1) Calculate the fundamental group of the space Q of all complex polynomials $a x^{2}+b x+c$ with distinct roots. 2) Calculate the fundamental group of the subspace Q_{1} of Q consisting of polynomials with $a=1$ (unitary polynomials).
39.24. Riddle. Can you solve 39.23 along the lines of deriving the customary formula for the roots of a quadratic trinomial?
39.M. Suppose that the assumptions of Theorem 39.K are weakened as follows: $g\left(y_{0}\right) \neq x_{0}$ and/or the homotopies connecting $f \circ g$ with id_{Y} and $g \circ f$ with id_{X} are not fixed at y_{0} and x_{0}, respectively. How would f_{*} and g_{*} be related? Would $\pi_{1}\left(X, x_{0}\right)$ and $\pi_{1}\left(Y, y_{0}\right)$ be isomorphic?

40. Covering Spaces via Fundamental Groups

「40'1」 Homomorphisms Induced by Covering Projections

40.A. Let $p: X \rightarrow B$ be a covering, $x_{0} \in X$, and $b_{0}=p\left(x_{0}\right)$. Then $p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(B, b_{0}\right)$ is a monomorphism. Cf. 35.C.

The image of the monomorphism $p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(B, b_{0}\right)$ induced by the covering projection $p: X \rightarrow B$ is the group of the covering p with base point x_{0}.
40.B. Riddle. Is the group of the covering determined by the covering?
40.C Group of Covering versus Lifting of Loops. Let $p: X \rightarrow B$ be a covering. Describe the loops in B whose homotopy classes belong to the group of the covering in terms provided by Path Lifting Theorem 35.B.
40.D. Let $p: X \rightarrow B$ be a covering, let $x_{0}, x_{1} \in X$ belong to the same path-component of X, and let $b_{0}=p\left(x_{0}\right)=p\left(x_{1}\right)$. Then $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ and $p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)$ are conjugate subgroups of $\pi_{1}\left(B, b_{0}\right)$ (i.e., there is $\alpha \in$ $\pi_{1}\left(B, b_{0}\right)$ such that $\left.p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)=\alpha^{-1} p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \alpha\right)$.
40.E. Let $p: X \rightarrow B$ be a covering, $x_{0} \in X$, and $b_{0}=p\left(x_{0}\right)$. For each $\alpha \in \pi_{1}\left(B, b_{0}\right)$, there exists an $x_{1} \in p^{-1}\left(b_{0}\right)$ such that $p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)=$ $\alpha^{-1} p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \alpha$.
40.F. Let $p: X \rightarrow B$ be a covering in the narrow sense, and let $G \subset$ $\pi_{1}\left(B, b_{0}\right)$ be the group of this covering with a base point x_{0}. A subgroup $H \subset \pi_{1}\left(B, b_{0}\right)$ is a group of the same covering iff H is conjugate to G.

$\left\lceil 40^{\prime} 2\right\rfloor$ Number of Sheets

40.G Number of Sheets and Index of Subgroup. Let $p: X \rightarrow B$ be a finite-sheeted covering in the narrow sense. Then the number of sheets is equal to the index of the group of this covering.
40.H Sheets and Right Cosets. Let $p: X \rightarrow B$ be a covering in the narrow sense, $b_{0} \in B$, and $x_{0} \in p^{-1}\left(b_{0}\right)$. Construct a natural bijection between $p^{-1}\left(b_{0}\right)$ and the set $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \backslash \pi_{1}\left(B, b_{0}\right)$ of right cosets of the group of the covering in the fundamental group of the base space.

[^27]40.3. What numbers can appear as the number of sheets of a covering of the Möbius strip by the cylinder $S^{1} \times I$?
40.4. What numbers can appear as the number of sheets of a covering of the Möbius strip by itself?
40.5. What numbers can appear as the number of sheets of a covering of the Klein bottle by a torus?
40.6. What numbers can appear as the number of sheets of a covering of the Klein bottle by itself?
40.7. What numbers can appear as the numbers of sheets for a covering of the Klein bottle by the plane \mathbb{R}^{2} ?
40.8. What numbers can appear as the numbers of sheets for a covering of the Klein bottle by $S^{1} \times \mathbb{R}$?

$\left\lceil 40^{\prime} 3\right\rfloor$ Hierarchy of Coverings

Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be two coverings, let $x_{0} \in X, y_{0} \in Y$, and $p\left(x_{0}\right)=q\left(y_{0}\right)=b_{0}$. The covering q with base point y_{0} is subordinate to p with base point x_{0} if there exists $\operatorname{arap} \varphi: X \rightarrow Y$ such that $q \circ \varphi=p$ and $\varphi\left(x_{0}\right)=y_{0}$. In this case, the map φ is a subordination.
40.I. A subordination is a covering map.
40.J. If a subordination exists, then it is unique. Cf. 35.B.

Two coverings $p: X \rightarrow B$ and $q: Y \rightarrow B$ are equivalent if there exists a homeomorphism $h: X \rightarrow Y$ such that $p=q \circ h$. In this case, h and h^{-1} are equivalences.
40.K. If two coverings are subordinated to each other, then the corresponding subordinations are equivalences.
40.L. The equivalence of coverings is, indeed, an equivalence relation on the set of coverings with a given base space.
40.M. Subordination determines a nonstrict partial order on the set of equivalence classes of coverings with a given base.
40.9. What equivalence class of coverings is minimal (i.e., subordinated to all other classes)?
40.N. Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be two coverings, and let $x_{0} \in X$, $y_{0} \in Y$, and $p\left(x_{0}\right)=q\left(y_{0}\right)=b_{0}$. If q with base point y_{0} is subordinated to p with base point x_{0}, then the group of the covering p is contained in the group of the covering q, i.e., $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \subset q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$.

41x. Classification of Covering Spaces

$\left\lceil 41^{\prime} 1 \mathrm{x}\right\rfloor$ Existence of Subordinations

A topological space X is locally path-connected if for each point $a \in X$ and each neighborhood U of a the point a has a path-connected neighborhood $V \subset U$.
41.1x. Find a topological space which is path-connected, but not locally pathconnected.
41. Ax. Let B be a locally path-connected space, let $p: X \rightarrow B$ and q : $Y \rightarrow B$ be two coverings in the narrow sense, and let $x_{0} \in X, y_{0} \in Y$, and $p\left(x_{0}\right)=q\left(y_{0}\right)=b_{0}$. If $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \subset q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$, then q is subordinated to p.
41.Ax.1. Under the conditions of 41.Ax, if two paths $u, v: I \rightarrow X$ have the same initial point x_{0} and a common final point, then the paths that cover $p \circ u$ and $p \circ v$ and have the same initial point y_{0} also have the same final point.
41.Ax.2. Under the conditions of 41.Ax, the map $X \rightarrow Y$ defined by 41. $A x .1$ (guess what this map is!) is continuous.
41.2x. Construct an example proving that the hypothesis of local path connectedness in 41.Ax.2 and 41.Ax is necessary.
41. $B \mathbf{x}$. Two coverings $p: X \rightarrow B$ and $q: Y \rightarrow B$ with a common locally path-connected base are equivalent iff for some $x_{0} \in X$ and $y_{0} \in Y$ with $p\left(x_{0}\right)=q\left(y_{0}\right)=b_{0}$ the groups $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ and $q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$ are conjugate in $\pi_{1}\left(B, b_{0}\right)$.
41.3x. Construct an example proving that the assumption of local path connectedness of the base in $41 . B x$ is necessary.

$\left\lceil 41^{\prime} 2 \mathrm{x}\right\rfloor$ Micro Simply Connected Spaces

A topological space X is micro simply connected if each point $a \in X$ has a neighborhood U such that the inclusion homomorphism $\pi_{1}(U, a) \rightarrow \pi_{1}(X, a)$ is trivial.
41.4x. Any simply connected space is micro simply connected.
41.5x. Find a micro simply connected, but not simply connected space.

A topological space is locally contractible at point a if each neighborhood U of a contains a neighborhood V of a such that the inclusion $V \rightarrow U$ is null-homotopic. A topological space is locally contractible if it is locally contractible at each of its points.
41.6x. Any finite topological space is locally contractible.
41.7x. Any locally contractible space is micro simply connected.
41.8 x . Find a space which is not micro simply connected.

In the literature, the micro simply connectedness is also called weak local simply connectedness, while a strong local simply connectedness is the following property: any neighborhood U of any point x contains a neighborhood V such that any loop at x in V is null-homotopic in U.
41.9x. Find a micro simply connected space which is not strong locally simply connected.

$\left\lceil 41^{\prime} 3 x\right\rfloor$ Existence of Coverings

41. Cx. A space having a universal covering space is micro simply connected.
41.Dx Existence of a Covering with a Given Group. If a topological space B is path-connected, locally path-connected, and micro simply connected, then for any $b_{0} \in B$ and any subgroup π of $\pi_{1}\left(B, b_{0}\right)$ there exists a covering $p: X \rightarrow B$ and a point $x_{0} \in X$ such that $p\left(x_{0}\right)=b_{0}$ and $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)=\pi$.
41.Dx.1. Suppose that in the assumptions of Theorem 41.Dx there exists a covering $p: X \rightarrow B$ satisfying all requirements of this theorem. For each $x \in X$, describe all paths in B that are p-images of paths connecting x_{0} to x in X.
41.Dx.2. Does the solution of Problem 41.Dx. 1 determine an equivalence relation on the set of all paths in B starting at b_{0}, so that we obtain a one-to-one correspondence between the set X and the set of equivalence classes?
41.Dx.3. Describe a topology on the set of equivalence classes from 41.Dx.2 such that the natural bijection between X and this set is a homeomorphism.
41.Dx.4. Prove that the reconstruction of X and $p: X \rightarrow B$ provided by Problems 41.Dx.1-41.Dx. 4 under the assumptions of Theorem 41.Dx determine a covering whose existence is claimed by Theorem 41.Dx.

Essentially, assertions 41.Dx.1-41.Dx.3 imply the uniqueness of the covering with a given group. More precisely, the following assertion holds true.
41.Ex Uniqueness of the Covering with a Given Group. Assume that B is path-connected, locally path-connected, and micro simply connected. Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be two coverings, and let $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)=$ $q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$. Then the coverings p and q are equivalent, i.e., there exists a homeomorphism $f: X \rightarrow Y$ such that $f\left(x_{0}\right)=y_{0}$ and $p \circ f=q$.
41.Fx Classification of Coverings over a Good Space. Let B be a path-connected, locally path-connected, and micro simply connected space with base point b_{0}. Then there is a one-to-one correspondence between classes of equivalent coverings (in the narrow sense) over B and conjugacy classes of subgroups of $\pi_{1}\left(B, b_{0}\right)$. This correspondence identifies the hierarchy of coverings (ordered by subordination) with the hierarchy of subgroups (ordered by inclusion).

Under the correspondence of Theorem 41.Fx, the trivial subgroup corresponds to a covering with simply connected covering space. Since this covering subordinates any other covering with the same base space, it is said to be universal.
41.10x. Describe all coverings of the following spaces up to equivalence and subordination:
(1) circle S^{1};
(2) punctured plane $\mathbb{R}^{2} \backslash 0$;
(3) Möbius strip;
(4) four-point digital circle (the space formed by 4 points, a, b, c, d; with the base of open sets formed by $\{a\},\{c\},\{a, b, c\}$, and $\{c, d, a\}$)
(5) torus $S^{1} \times S^{1}$;

$\left\lceil 41^{\prime} 4 x\right\rfloor$ Action of Fundamental Group on Fiber

41.Gx Action of π_{1} on Fiber. Let $p: X \rightarrow B$ be a covering, $b_{0} \in B$. Construct a natural right action of $\pi_{1}\left(B, b_{0}\right)$ on $p^{-1}\left(b_{0}\right)$.
41.Hx. When the action in $41 . G x$ is transitive?

$\left\lceil 41^{\prime} 5 x\right\rfloor$ Automorphisms of Covering

A homeomorphism $\varphi: X \rightarrow X$ is an automorphism of a covering $p: X \rightarrow$ B if $p \circ \varphi=p$.
41.Ix. Automorphisms of a covering form a group.

We denote the group of automorphisms of a covering $p: X \rightarrow B$ by Aut (p).
41.Jx. An automorphism $\varphi: X \rightarrow X$ of the covering $p: X \rightarrow B$ is determined by the image $\varphi\left(x_{0}\right)$ of any $x_{0} \in X$. Cf. 40.J.
41.Kx. Any two-fold covering has a nontrivial automorphism.
41.11x. Find a three-fold covering without nontrivial automorphisms.

Let G be a group and H its subgroup. Recall that the normalizer $N(H)$ of H is the subset of G consisting of $g \in G$ such that $g^{-1} H g=H$. This is a subgroup of G, which contains H as a normal subgroup. So, $N(H) / H$ is a group.
41.Lx. Let $p: X \rightarrow B$ be a covering, $x_{0} \in X$ and $b_{0}=p\left(x_{0}\right)$. Construct a map $\pi_{1}\left(B, b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$ which induces a bijection of the set $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \backslash \pi_{1}\left(B, b_{0}\right)$ of right cosets onto $p^{-1}\left(b_{0}\right)$.
41. $M \mathbf{x}$. Show that the bijection $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \backslash \pi_{1}\left(B, b_{0}\right) \rightarrow p^{-1}\left(b_{0}\right)$ constructed in 41.Lx maps the set of images of x_{0} under all automorphisms of a covering $p: X \rightarrow B$ to the group $N\left(p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)\right) / p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$.
41.N x . For any covering $p: X \rightarrow B$ in the narrow sense, there is a natural injective map $\operatorname{Aut}(p)$ to the group $N\left(p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)\right) / p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$. This map is an antihomomorphism. ${ }^{1}$
41.Ox. Under assumptions of Theorem 41.Nx, if B is locally path-connected, then the antihomomorphism $\operatorname{Aut}(p) \rightarrow N\left(p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)\right) / p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ is bijective.

'6x」Regular Coverings

41.Px Regularity of Covering. Let $p: X \rightarrow B$ be a covering in the narrow sense, $b_{0} \in B$, and $x_{0} \in p^{-1}\left(b_{0}\right)$. The following conditions are equivalent:
(1) $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ is a normal subgroup of $\pi_{1}\left(B, b_{0}\right)$;
(2) $p_{*}\left(\pi_{1}(X, x)\right)$ is a normal subgroup of $\pi_{1}(B, p(x))$ for each $x \in X$;
(3) all groups $p_{*} \pi_{1}(X, x)$ for $x \in p^{-1}(b)$ are the same;
(4) for each loop $s: I \rightarrow B$, either every path in X covering s is a loop (independently of the initial point), or none of them is a loop;
(5) the automorphism group acts transitively on $p^{-1}\left(b_{0}\right)$.

A covering satisfying to (any of) the equivalent conditions of Theorem 41.Px is said to be regular. Otherwise, the covering is irregular.
41.12x. The coverings $\mathbb{R} \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$ and $S^{1} \rightarrow S^{1}: z \mapsto z^{n}$ for integer $n>0$ are regular.
41.Qx. The automorphism group of a regular covering $p: X \rightarrow B$ is naturally anti-isomorphic to the quotient group $\pi_{1}\left(B, b_{0}\right) / p_{*} \pi_{1}\left(X, x_{0}\right)$ of the group $\pi_{1}\left(B, b_{0}\right)$ by the group of the covering for any $x_{0} \in p^{-1}\left(b_{0}\right)$.
41.Rx Classification of Regular Coverings over a Good Base. There is a one-to-one correspondence between classes of equivalent coverings (in the narrow sense) over a path-connected, locally path-connected, and micro simply connected space B with a base point b_{0}, on one hand, and antiepimorphisms $\pi_{1}\left(B, b_{0}\right) \rightarrow G$, on the other hand.

[^28]Algebraic properties of the automorphism group of a regular covering are often referred to as if they were properties of the covering itself. For instance, a cyclic covering is a regular covering with cyclic automorphism group, an Abelian covering is a regular covering with Abelian automorphism group, etc.
41.13x. Any two-fold covering is regular.
41.14x. Which coverings considered in the problems of Section 34 are regular? Are there any irregular coverings?
41.15 x . Find a three-fold irregular covering of a bouquet of two circles.
41.16x. Let $p: X \rightarrow B$ be a regular covering, $Y \subset X$, and $C \subset B$, and let $q: Y \rightarrow C$ be a submap of p. Prove that if q is a covering, then this covering is regular.

$\left\lceil 41^{\prime} 7 \mathrm{x}\right\rfloor$ Lifting and Covering Maps

41.Sx. Riddle. Let $p: X \rightarrow B$ and $f: Y \rightarrow B$ be continuous maps. Let $x_{0} \in X$ and $y_{0} \in Y$ be points such that $p\left(x_{0}\right)=f\left(y_{0}\right)$. In terms of the homomorphisms $p_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(B, p\left(x_{0}\right)\right)$ and $f_{*}: \pi_{1}\left(Y, y_{0}\right) \rightarrow$ $\pi_{1}\left(B, f\left(y_{0}\right)\right)$, formulate a necessary condition for f to have a lift $\widetilde{f}: Y \rightarrow X$ such that $\tilde{f}\left(y_{0}\right)=x_{0}$. Find an example in which this condition is not sufficient. What additional assumptions can make it sufficient?
41.Tx Theorem on Lifting a Map. Let $p: X \rightarrow B$ be a covering in the narrow sense and $f: Y \rightarrow B$ be a continuous map. Let $x_{0} \in X$ and $y_{0} \in Y$ be points such that $p\left(x_{0}\right)=f\left(y_{0}\right)$. If Y is a locally path-connected space and $f_{*} \pi\left(Y, y_{0}\right) \subset p_{*} \pi\left(X, x_{0}\right)$, then there exists a unique continuous map $\tilde{f}: Y \rightarrow X$ such that $p \circ \tilde{f}=f$ and $\tilde{f}\left(y_{0}\right)=x_{0}$.
41.Ux. Let $p: X \rightarrow B$ and $q: Y \rightarrow C$ be two coverings in the narrow sense, and let $f: B \rightarrow C$ be a continuous map. Let $x_{0} \in X$ and $y_{0} \in Y$ be points such that $f p\left(x_{0}\right)=q\left(y_{0}\right)$. If there exists a continuous map $F: X \rightarrow Y$ such that $f p=q F$ and $F\left(x_{0}\right)=y_{0}$, then we have $f_{*} p_{*} \pi_{1}\left(X, x_{0}\right) \subset q_{*} \pi_{1}\left(Y, y_{0}\right)$.
41.Vx Theorem on Covering of a Map. Let $p: X \rightarrow B$ and $q: Y \rightarrow C$ be two coverings in the narrow sense, $f: B \rightarrow C$ a continuous map. Let $x_{0} \in X$ and $y_{0} \in Y$ be points such that $f p\left(x_{0}\right)=q\left(y_{0}\right)$. If Y is locally path-connected and $f_{*} p_{*} \pi_{1}\left(X, x_{0}\right) \subset q_{*} \pi_{1}\left(Y, y_{0}\right)$, then there exists a unique continuous map $F: X \rightarrow Y$ such that $f p=q F$ and $F\left(x_{0}\right)=y_{0}$.

$\left\lceil 41^{\prime} 8 \mathrm{x}\right.$ 」 Induced Coverings

41. Wx. Let $p: X \rightarrow B$ be a covering, $f: A \rightarrow B$ a continuous map. Denote by W the subspace of $A \times X$ consisting of points (a, x) such that $f(a)=p(x)$. Let $q: W \rightarrow A$ be the restriction of the projection $A \times X \rightarrow A$. Then $q: W \rightarrow A$ is a covering with the same number of sheets as p.

A covering $q: W \rightarrow A$ obtained as in Theorem $41 . W x$ is said to be induced from $p: X \rightarrow B$ by $f: A \rightarrow B$.
41.17x. Represent coverings from Problems 34.D and 34.F as coverings induced from $\mathbb{R} \rightarrow S^{1}: x \mapsto e^{2 \pi i x}$.
41.18x. Which of the coverings considered above is induced from the covering of Problem 36.?

$\left\lceil 41^{\prime} 9 \mathrm{x}\right\rfloor$ High-Dimensional Homotopy Groups of Covering Space

41.Xx. Let $p: X \rightarrow B$ be a covering. Then for any continuous map s : $I^{n} \rightarrow B$ and any lift $u: I^{n-1} \rightarrow X$ of the restriction $\left.s\right|_{I^{n-1}}$ the map s has a unique lift extending u.
41.Yx. For any covering $p: X \rightarrow B$ and points $x_{0} \in X$ and $b_{0} \in B$ such that $p\left(x_{0}\right)=b_{0}$, the homotopy groups $\pi_{r}\left(X, x_{0}\right)$ and $\pi_{r}\left(B, b_{0}\right)$ with $r>1$ are canonically isomorphic.
41.Zx. Prove that homotopy groups of dimensions greater than 1 of circle, torus, Klein bottle and Möbius strip are trivial.

Proofs and Comments

37. \boldsymbol{A} This follows from 30.I.
37.B Let $[u],[v] \in \pi_{1}\left(X, x_{0}\right)$. Since $f \circ(u v)=(f \circ u)(f \circ v)$, we have $f_{\#}(u v)=f_{\#}(u) f_{\#}(v)$ and

$$
\begin{gathered}
f_{*}([u][v])=f_{*}([u v])=\left[f_{\#}(u v)\right]=\left[f_{\#}(u) f_{\#}(v)\right] \\
=\left[f_{\#}(u)\right]\left[f_{\#}(v)\right]=f_{*}([u]) f_{*}([v]) .
\end{gathered}
$$

37.C Let $[u] \in \pi_{1}\left(X, x_{0}\right)$. Since $(g \circ f)_{\#}(u)=g \circ f \circ u=g_{\#}\left(f_{\#}(u)\right)$, we have

$$
(g \circ f)_{*}([u])=\left[(g \circ f)_{\#}(u)\right]=\left[g_{\#}\left(f_{\#}(u)\right)\right]=g_{*}\left(\left[f_{\#}(u)\right]\right)=g_{*}\left(f_{*}(u)\right),
$$

and, consequently, $(g \circ f)_{*}=g_{*} \circ f_{*}$.
37.D Let $H: X \times I \rightarrow Y$ be a homotopy between f and g, and let $H\left(x_{0}, t\right)=y_{0}$ for all $t \in I$. Then u is a certain loop in X. Consider the map $h=H \circ\left(u \times \operatorname{id}_{I}\right)$, so that $h:(\tau, t) \mapsto H(u(\tau), t)$. Then $h(\tau, 0)=$ $H(u(\tau), 0)=f(u(\tau))$ and $h(\tau, 1)=H(u(\tau), 1)=g(u(\tau))$, and thus h is a homotopy between the loops $f \circ u$ and $g \circ u$. Furthermore, we have $h(0, t)=$ $H(u(0), t)=H\left(x_{0}, t\right)=y_{0}$, and we similarly have $h(1, t)=y_{0}$. Therefore, h is a homotopy between the loops $f_{\#}(u)$ and $g_{\#}(v)$, whence

$$
f_{*}([u])=\left[f_{\#}(u)\right]=\left[g_{\#}(u)\right]=g_{*}([u]) .
$$

37. \boldsymbol{E} Let H be a homotopy between the maps f and g, and let the loop s be defined by the formula $s(t)=H\left(x_{0}, t\right)$. By assertion 33.2, $g_{*}=T_{s} \circ f_{*}$.
37.F This obviously follows from the equality

$$
f_{\#}\left(s^{-1} u s\right)=(f \circ s)^{-1} f_{\#}(u)(f \circ s) .
$$

37.G.1 This is the assertion of Theorem 37.G.
37.G.2 For example, it is sufficient to take R such that

$$
R>\max \left\{1,\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|\right\} .
$$

37.G.3 Use the rectilinear homotopy $h(z, t)=t p(z)+(1-t) q(z)$. It remains to verify that $h(z, t) \neq 0$ for all z and t. Indeed, since $|p(z)-q(z)|<$ $q(z)$ by assumption, we have

$$
|h(z, t)| \geq|q(z)|-t|p(z)-q(z)| \geq|q(z)|-|p(z)-q(z)|>0 .
$$

37.G.4 Indeed, this is a quite obvious lemma; see 37.A.
37. G Take a number R satisfying the assumptions of assertion 37.G.2 and consider the loop $u: u(t)=R e^{2 \pi i t}$. The loop u, certainly, is nullhomotopic in \mathbb{C}. Now we assume that $p(z) \neq 0$ for all z with $|z| \leq R$. Then
the loop $p \circ u$ is null-homotopic in $\mathbb{C} \backslash 0$, by 37.G.3, and the loop $q \circ u$ is null-homotopic in $\mathbb{C} \backslash 0$. However, $(q \circ u)(t)=R^{n} e^{2 \pi i n t}$, and, therefore, this loop is not null-homotopic. A contradiction.
37.Hx See 37.Kx.
37.Ix Yes, it is.
37.Jx See 37.Kx.
37. $K \mathbf{x}$ Let $i: S^{n-1} \rightarrow D^{n}$ be the inclusion. Assume that $f(x) \neq 0$ for all $x \in D^{n}$. We preserve the designation f for the submap $D^{n} \rightarrow \mathbb{R}^{n} \backslash 0$ and consider the inclusion homomorphisms $i_{*}: \pi_{n-1}\left(S^{n-1}\right) \rightarrow \pi_{n-1}\left(D^{n}\right)$ and $f_{*}: \pi_{n-1}\left(D^{n}\right) \rightarrow \pi_{n-1}\left(\mathbb{R}^{n} \backslash 0\right)$. Since all homotopy groups of D^{n} are trivial, the composition $(f \circ i)_{*}=f_{*} \circ i_{*}$ is a zero homomorphism. However, the composition $f \circ i$ is the map f_{0}, which, by assumption, induces a nonzero homomorphism $\pi_{n-1}\left(S^{n-1}\right) \rightarrow \pi_{n-1}\left(\mathbb{R}^{n} \backslash 0\right)$.
37. Lx Consider a circular neighborhood U of x disjoint with the image $u\left(S^{1}\right)$ of the circular loop under consideration and let $y \in U$. Join x and y by a rectilinear path $s: t \mapsto t y+(1-t) x$. Then

$$
h(z . t)=\varphi_{u . s(t)}(z)=\frac{u(z)-s(t)}{|u(z)-s(t)|}
$$

determines a homotopy between $\varphi_{u, x}$ and $\varphi_{u, y}$, whence $\left(\varphi_{u, x}\right)_{*}=\left(\varphi_{u, y}\right)_{*}$, whence it follows that $\operatorname{ind}(u, y)=\operatorname{ind}(u, x)$ for any point $y \in U$. Consequently, the function ind : $x \mapsto \operatorname{ind}(u, x)$ is constant on U.
37.Mx If $x \notin F\left(D^{2}\right)$, then the circular loop u is null-homotopic in $\mathbb{R}^{2} \backslash x$ because $u=F \circ i$, where i is the standard embedding $S^{1} \rightarrow D^{2}$, and i is null-homotopic in D^{2}.
37. $N \mathbf{x}$ This is true because we have $[u v]=[u][v]$ and $\pi_{1}\left(\mathbb{R}^{2} \backslash x\right) \rightarrow \mathbb{Z}$ is a homomorphism.
37.Ox The formula

$$
h(z, t)=\varphi_{u_{t}, x}(z)=\frac{u_{t}(z)-x}{\left|u_{t}(z)-x\right|}
$$

determines a homotopy between $\varphi_{u, x}$ and $\varphi_{v, x}$, whence ind $(u, x)=\operatorname{ind}(v, x)$; cf. 37.Lx.
37.Sx We define a map $\varphi: S^{1} \rightarrow \mathbb{R}: x \mapsto f(x)-f(-x)$. Then

$$
\varphi(-x)=f(-x)-f(x)=-(f(x)-f(-x))=-\varphi(x),
$$

thus φ is an odd map. Consequently, if, for example, $\varphi(1) \neq 0$, then the image $\varphi\left(S^{1}\right)$ contains values with distinct signs. Since the circle is connected, there is a point $x \in S^{1}$ such that $f(x)-f(-x)=\varphi(x)=0$.
37.Tx. 1 Assume that $f(x) \neq f(-x)$ for all $x \in S^{2}$. In this case, the formula $g(x)=(f(x)-f(-x)) /|f(x)-f(-x)|$ determines a map g :
$S^{2} \rightarrow S^{1}$. Since $g(-x)=-g(x)$, it follows that g sends antipodal points of S^{2} to antipodal points of S^{1}. The quotient map of g is a continuous map $\varphi: \mathbb{R} P^{2} \rightarrow \mathbb{R} P^{1}$. We show that the induced homomorphism $\varphi_{*}: \pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow$ $\pi_{1}\left(\mathbb{R} P^{1}\right)$ is nontrivial. The generator λ of the group $\pi_{1}\left(\mathbb{R} P^{2}\right)$ is the class of the loop l covered by the path \tilde{l} joining two opposite points of S^{2}. The path $g \circ \tilde{l}$ also joins two opposite points lying on the circle, and, consequently, the loop $\varphi \circ l$ covered by $g \circ \tilde{l}$ is not null-homotopic. Thus, $\varphi_{*}(\lambda)$ is a nontrivial element of $\pi_{1}\left(\mathbb{R} P^{1}\right)$.
37.Tx To prove the Borsuk-Ulam Theorem, it only remains to observe that there are no nontrivial homomorphisms $\pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow \pi_{1}\left(\mathbb{R} P^{1}\right)$ because the first of these groups is isomorphic to \mathbb{Z}_{2}, while the second one is isomorphic to \mathbb{Z}.
38. \boldsymbol{A} Prove this assertion on your own.
38. \boldsymbol{B} Since any map to a singleton is continuous, the map $\rho: X \rightarrow\left\{x_{0}\right\}$ is a retraction.
38.C The line is connected. Therefore, its retract (being its continuous image) is connected, too. However, a pair of points in the line is not connected.
38.D See the proof of assertion 38.C.
38.E \Leftrightarrow Let $\rho: X \rightarrow A$ be a retraction, $f: A \rightarrow Y$ a continuous map. Then the composition $F=f \circ \rho: X \rightarrow Y$ extends f.
\Leftarrow Consider the identity map id : $A \rightarrow A$. Its continuous extension to X is the required retraction $\rho: X \rightarrow A$.
38. \boldsymbol{F} Since $\rho_{*} \circ i_{*}=(\rho \circ i)_{*}=\left(\operatorname{id}_{A}\right)_{*}=\operatorname{id}_{\pi_{1}\left(A, x_{0}\right)}$, it follows that the homomorphism ρ_{*} is an epimorphism, and the homomorphism i_{*} is a monomorphism.
38.G About i_{*}; for example, see the proof of the following assertion.
38. \boldsymbol{H} Since the group $\pi_{1}\left(D^{2}\right)$ is trivial, while $\pi_{1}\left(S^{1}\right)$ is not, it follows that $i_{*}: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(D^{2}, 1\right)$ cannot be a monomorphism. Consequently, by assertion 38.F, the disk D^{2} cannot be retracted to its boundary S^{1}.
38.I The proof repeats that of Theorem 38.H word for word, we must only use ($n-1$)-dimensional homotopy groups instead of fundamental groups. The reason for this is that the group $\pi_{n-1}\left(D^{n}\right)$ is trivial, while $\pi_{n-1}\left(S^{n-1}\right) \cong \mathbb{Z}$ (i.e., this group is nontrivial).
38.J Assume that a map $f: D^{n} \rightarrow D^{n}$ has no fixed points. For each $x \in D^{n}$, consider the ray starting at $f(x) \in D^{n}$ and passing through x, and denote by $\rho(x)$ the point of its intersection with the boundary sphere S^{n-1}. Clearly, $\rho(x)=x$ for $x \in S^{n-1}$. Prove that the map ρ is continuous. Therefore, $\rho: D^{n} \rightarrow S^{n-1}$ is a retraction. However, this contradicts the Borsuk Theorem.
39. \boldsymbol{A} Prove this assertion on your own.
39.B This immediately follows from assertion 39.A.
39.C Since ρ is a retraction, it follows that one of the conditions in the definition of homotopically inverse maps is automatically fulfilled: $\rho \circ$ in $=$ id_{A}. The second requirement: in $\circ \rho$ is homotopic to id_{X}, is fulfilled by assumption.
39.D This immediately follows from assertion 39.C.
39.E This follows from 39.D and 39.B.
39.F Let $\rho_{1}: X \rightarrow A$ and $\rho_{2}: Y \rightarrow B$ be deformation retractions. Prove that $\rho_{1} \times \rho_{2}$ is a deformation retraction.
39. G Let the map $\rho: \mathbb{R}^{2} \backslash 0 \rightarrow S^{1}$ be defined by the formula $\rho(x)=$ $x /|x|$. The formula $h(x, t)=(1-t) x+t x /|x|$ determines a rectilinear homotopy between the identity map of $\mathbb{R}^{2} \backslash 0$ and the composition $\rho \circ i$, where i is the standard inclusion $S^{1} \rightarrow \mathbb{R}^{2} \backslash 0$.
39.H The topological type of $\mathbb{R}^{2} \backslash\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ does not depend on the position of the points $x_{1}, x_{2}, \ldots, x_{s}$ in the plane. We put them on the unit circle: for example, let them be roots of unity of degree s. Consider s simple closed curves on the plane each of which encloses exactly one of the points and passes through the origin, and which have no other common points except the origin. Instead of curves, maybe it is simpler to take, e.g., rhombi with centers at our points. It remains to prove that the union of the curves (or rhombi) is a deformation retract of the plane with s punctures. Clearly, it makes little sense to write down explicit formulas, although this is possible. Consider an individual rhombus R and its center c. The central projection maps $R \backslash c$ to the boundary of R, and there is a rectilinear homotopy between the projection and the identical map of $R \backslash c$. It remains to show that the part of the plane lying outside the union of the rhombi also admits a deformation retraction to the union of their boundaries. What can we do in order to make the argument look more like a proof? First consider the polygon P whose vertices are the vertices of the rhombi opposite to the origin. We easily see that P is a strong deformation retract of the plane (as well as the disk is). It remains to show that the union of the rhombi is a deformation retract of P, which is obvious, is it not?
39.I We subdivide the square into four parts by two midsegments and consider the set K formed by the contour, the midsegments, and the two quarters of the square containing one of the diagonals. Show that each of the following sets is a deformation retract of K : the union of the contour and the mentioned diagonal of the square; the union of the contours of the "empty" quarters of this square.
39.J 1) None of these spaces can be embedded in another. Prove this on your own, using the following lemma. Let J_{n} be the union of n segments with a common endpoint. Then J_{n} cannot be embedded in J_{k} for any $n>k \geq 2$. 2) The second question is answered in the affirmative; see the proof of assertion 39.I.
39. K Since the composition $g \circ f$ is x_{0}-null-homotopic, we have $g_{*} \circ f_{*}=$ $(g \circ f)_{*}=\operatorname{id}_{\pi_{1}\left(X, x_{0}\right)}$. Similarly, $f_{*} \circ g_{*}=\operatorname{id}_{\pi_{1}\left(Y, y_{0}\right)}$. Thus, f_{*} and g_{*} are two mutually inverse homomorphisms.
39.L Indeed, this immediately follows from Theorem 39.K.
39.M Let $x_{1}=g\left(x_{0}\right)$. For any homotopy h between id_{X} and $g \circ f$, the formula $s(t)=h\left(x_{0}, t\right)$ determines a path at x_{0}. By the answer to Riddle 37.E, the composition $g_{*} \circ f_{*}=T_{s}$ is an isomorphism. Similarly, the composition $f_{*} \circ g_{*}$ is an isomorphism. Therefore, f_{*} and g_{*} are isomorphisms.
40.A If u is a loop in X such that the loop $p \circ u$ in B is null-homotopic, then by the Path Homotopy Lifting Theorem 35.C the loop u is also nullhomotopic. Thus, if $p_{*}([u])=[p \circ u]=0$, then $[u]=0$, which precisely means that p_{*} is a monomorphism.
40.B No, it is not. If $p\left(x_{0}\right)=p\left(x_{1}\right)=b_{0}, x_{0} \neq x_{1}$, and the group $\pi_{1}\left(B, b_{0}\right)$ is non-Abelian, then the subgroups $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ and $p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)$ can easily be distinct (see 40.D).
40.C The group $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ of the covering consists of the homotopy classes of those loops at b_{0} whose covering path starting at x_{0} is a loop.
40.D Let s be a path in X joining x_{0} and x_{1}. Denote by α the class of the loop $p \circ s$ and consider the inner automorphism $\varphi: \pi_{1}\left(B, b_{0}\right) \rightarrow$ $\pi_{1}\left(B, b_{0}\right): \beta \mapsto \alpha^{-1} \beta \alpha$. We prove that the following diagram is commutative:

Indeed, since $T_{s}([u])=\left[s^{-1} u s\right]$, we have

$$
p_{*}\left(T_{s}([u])\right)=\left[p \circ\left(s^{-1} u s\right)\right]=\left[\left(p \circ s^{-1}\right)(p \circ u)(p \circ s)\right]=\alpha^{-1} p_{*}([u]) \alpha .
$$

Since the diagram is commutative and T_{s} is an isomorphism, it follows that

$$
p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)=\varphi\left(p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)\right)=\alpha^{-1} p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \alpha
$$

thus, the groups $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ and $p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)$ are conjugate.
40.E Let s be a loop in X representing the class $\alpha \in \pi_{1}\left(B, b_{0}\right)$. Let the path \widetilde{s} cover s and start at x_{0}. If we put $x_{1}=\widetilde{s}(1)$, then, as it follows from the proof of assertion 40.D, we have $p_{*}\left(\pi_{1}\left(X, x_{1}\right)\right)=\alpha^{-1} p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \alpha$.
40.F This follows from 40.D and 40.E.
40.G See 40.H.
40.H For brevity, put $H=p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$. Consider an arbitrary point $x_{1} \in p^{-1}\left(b_{0}\right)$; let s be the path starting at x_{0} and ending at x_{1}, and let $\alpha=[p \circ s]$. Send x_{1} to the right coset $H \alpha \subset \pi_{1}\left(B, b_{0}\right)$. Let us verify that this definition is correct. Let s_{1} be another path from x_{0} to x_{1}, and let $\alpha_{1}=\left[p \circ s_{1}\right]$. The path $s s_{1}^{-1}$ is a loop, so that $\alpha \alpha_{1}^{-1} \in H$, whence $H \alpha=H \alpha_{1}$. Now we prove that the described correspondence is a surjection. Let $H \alpha$ be a coset. Consider a loop u representing the class α; let \widetilde{u} be the path covering u and starting at x_{0}, and $x_{1}=\tilde{u}(1) \in p^{-1}\left(b_{0}\right)$. By construction, x_{1} is sent to the coset $H \alpha$, and, therefore, the above correspondence is surjective. Finally, we prove that it is injective. Let $x_{1}, x_{2} \in p^{-1}\left(b_{0}\right)$, let s_{1} and s_{2} be two paths joining x_{0} with x_{1} and x_{2}, respectively, and let $\alpha_{i}=\left[p \circ s_{i}\right], i=1,2$. Assume that $H \alpha_{1}=H \alpha_{2}$ and show that then $x_{1}=x_{2}$. Consider a loop $u=\left(p \circ s_{1}\right)\left(p \circ s_{2}^{-1}\right)$ and the path \widetilde{u} covering u, which is a loop because $\alpha_{1} \alpha_{2}^{-1} \in H$. It remains to observe that the paths s_{1}^{\prime} and s_{2}^{\prime}, where $s_{1}^{\prime}(t)=u(t / 2)$ and $s_{2}^{\prime}(t)=u(1-t / 2)$, start at x_{0} and cover the paths $p \circ s_{1}$ and $p \circ s_{2}$, respectively. Therefore, $s_{1}=s_{1}^{\prime}$ and $s_{2}=s_{2}^{\prime}$, and, thus,

$$
x_{1}=s_{1}(1)=s_{1}^{\prime}(1)=\widetilde{u}(1 / 2)=s_{2}^{\prime}(1)=s_{2}(1)=x_{2} .
$$

40.I Consider an arbitrary point $y \in Y$, let $b=q(y)$, and let U_{b} be a neighborhood of b that is trivially covered for both p and q. Further, let V be the sheet over U_{b} containing y, and let $\left\{W_{\alpha}\right\}$ be the collection of sheets over U_{b} the union of which is $\varphi^{-1}(V)$. Clearly, the map $\left.\varphi\right|_{W_{\alpha}}=\left.\left(\left.q\right|_{V}\right)^{-1} \circ p\right|_{W_{\alpha}}$ is a homeomorphism.
40.J Let p and q be two coverings. Consider an arbitrary point $x \in X$ and a path s joining the marked point x_{0} with x. Let $u=p \circ s$. By assertion 35.B, there exists a unique path $\widetilde{u}: I \rightarrow Y$ covering u and starting at y_{0}. Therefore, $\widetilde{u}=\varphi \circ s$, and, consequently, the point $\varphi(x)=\varphi(s(1))=$ $\widetilde{u}(1)$ is uniquely determined.
40.K Let $\varphi: X \rightarrow Y$ and $\psi: Y \rightarrow X$ be subordinations, and let $\varphi\left(x_{0}\right)=y_{0}$ and $\psi\left(y_{0}\right)=x_{0}$. Clearly, the composition $\psi \circ \varphi$ is a subordination of the covering $p: X \rightarrow B$ to itself. Consequently, by the uniqueness of a subordination (see 40.J), we have $\psi \circ \varphi=\operatorname{id}_{X}$. Similarly, $\varphi \circ \psi=\operatorname{id}_{Y}$, which precisely means that the subordinations φ and ψ are mutually inverse equivalences.
40.L This relation is obviously symmetric, reflexive, and transitive.
40.M Clearly, if two coverings p and p^{\prime} are equivalent and q is subordinated to p, then q is also subordinated to p^{\prime}, and, therefore, the relation of subordination is transferred from coverings to their equivalence classes. This relation is obviously reflexive and transitive, and it is proved in $40 . \mathrm{K}$ that two coverings subordinated to each other are equivalent, and, therefore, this relation is antisymmetric.
40.N Since $p_{*}=(q \circ \varphi)_{*}=q_{*} \circ \varphi_{*}$, we have

$$
p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)=q_{*}\left(\varphi_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)\right) \subset q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right) .
$$

41.Ax. 1 Let $\widetilde{u}, \widetilde{v}: I \rightarrow Y$ be the paths starting at y_{0} and covering the paths $p \circ u$ and $p \circ v$, respectively. Consider the path $u v^{-1}$, which is a loop at x_{0} by assumption, the loop $(p \circ u)(p \circ v)^{-1}=p \circ\left(u v^{-1}\right)$, and its class $\alpha \in p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right) \subset q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$. Thus, we have $\alpha \in q_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$, and, therefore, the path starting at y_{0} and covering the loop $(p \circ u)(p \circ v)^{-1}$ is also a loop. Consequently, the paths covering $p \circ u$ and $p \circ v$ and starting at y_{0} end at one and the same point. It remains to observe that they are the paths \widetilde{u} and \widetilde{v}.
41.Ax.2 We define the map $\varphi: X \rightarrow Y$ as follows. Let $x \in X$, and let u be a path joining x_{0} and x. Then we have $\varphi(x)=y$, where y is the endpoint of the path $\widetilde{u}: I \rightarrow Y$ covering the path $p \circ u$. By assertion 41.Ax.1, the $\operatorname{map} \varphi$ is well defined. We prove that $\varphi: X \rightarrow Y$ is continuous. Let $x_{1} \in X$, $b_{1}=p\left(x_{1}\right)$, and $y_{1}=\varphi\left(x_{1}\right)$. Then, by construction, we have $q\left(y_{1}\right)=b_{1}$. Consider an arbitrary neighborhood V of y_{1}. We can assume that V is a sheet over a trivially covered path-connected neighborhood U of b_{1}. Let W be the sheet over U containing x_{1}. Then the neighborhood W is also path-connected. Consider an arbitrary point $x \in W$. Let a path $v: I \rightarrow W$ join x_{1} and x. Clearly, the image of the path \tilde{v} starting at y_{1} and covering the path $p \circ v$ is contained in the neighborhood V, whence $\varphi(x) \in V$. Thus, $\varphi(W) \subset V$, and, consequently, φ is continuous at x.
41. $B x$ This follows from $40 . E$ and 41.Ax, and 40.K.
41. $C \times$ Let $X \rightarrow B$ be a universal covering, U a trivially covered neighborhood of a point $a \in B$, and V one of the "sheets" over U. Then the inclusion $i: U \rightarrow B$ is the composition $p \circ j \circ\left(\left.p\right|_{V}\right)^{-1}$, where j is the inclusion $V \rightarrow X$. Since the group $\pi_{1}(X)$ is trivial, the inclusion homomorphism $i_{*}: \pi_{1}(U, a) \rightarrow \pi_{1}(B, a)$ is also trivial.
41.Dx. 1 Let two paths u_{1} and u_{2} join b_{0} and b. The paths covering them and starting at x_{0} end at one and the same point x iff the class of the loop $u_{1} u_{2}^{-1}$ lies in the subgroup π.
41.Dx. 2 Yes, it does. Consider the set of all paths in B starting at b_{0}. equip it with the following equivalence relation: $u_{1} \sim u_{2}$ if $\left[u_{1} u_{2}^{-1}\right] \in \pi$, and let \widetilde{X} be the quotient set by this relation. A natural bijection between X
and \tilde{X} is constructed as follows. For each point $x \in X$, we consider a path u joining the marked point x_{0} with a point x. The class of the path $p \circ u$ in \widetilde{X} is the image of x. The described correspondence is obviously a bijection $f: X \rightarrow \widetilde{X}$. The map $g: \widetilde{X} \rightarrow X$ inverse to f has the following structure. Let $u: I \rightarrow B$ represent a class $y \in \tilde{X}$. Consider the path $v: I \rightarrow X$ covering u and starting at x_{0}. Then $g(y)=v(1)$.
41.Dx.3 We define a base for the topology on \tilde{X}. For each pair (U, x), where U is an open set in B and $x \in \tilde{X}$, the set U_{x} consists of the classes of all possible paths $u v$, where u is a path in the class x, and v is a path in U starting at $u(1)$. It is not difficult to prove that for each point $y \in U_{x}$ we have the identity $U_{y}=U_{x}$, whence it follows that the collection of the sets of the form U_{x} is a base for the topology on \widetilde{X}. In order to prove that f and g are homeomorphisms, it is sufficient to verify that both f and g maps each set in a certain base for the topology to an open set. Consider the base consisting of trivially covered neighborhoods $U \subset B$, such that, first, U is path-connected and, second, each loop in U is null-homotopic in B.
41.Dx. 4 The space \widetilde{X} is defined in 41.Dx.2. The projection $p: \widetilde{X} \rightarrow \underset{\sim}{B}$ is defined as follows: $p(y)=u(1)$, where u is a path in the class $y \in \tilde{X}$. The map p is continuous without any assumptions on the properties of B. Prove that if a set U in B is open and path-connected and each loop in U is null-homotopic in B, then U is a trivially covered neighborhood.
41.Fx Consider the subgroups $\pi \subset \pi_{0} \subset \pi_{1}\left(B, b_{0}\right)$ and let $p: \widetilde{X} \rightarrow B$ and $q: \tilde{Y} \rightarrow B$ be the coverings constructed by π and π_{0}, respectively. The construction of the covering implies that there exists a map $f: \widetilde{X} \rightarrow \widetilde{Y}$. Show that f is the required subordination.
41. $G \mathbf{x}$ We say that the group G acts from the right on a set F if each element $\alpha \in G$ determines a map $\varphi_{\alpha}: F \rightarrow F$ so that: 1) $\varphi_{\alpha \beta}=\varphi_{\alpha} \circ \varphi_{\beta} ; 2$) if e is the unity of the group G, then $\varphi_{e}=\operatorname{id}_{F}$. Let $F=p^{-1}\left(b_{0}\right)$. For each $\alpha \in \pi_{1}\left(B, b_{0}\right)$, we define a map $\varphi_{\alpha}: F \rightarrow F$ as follows. Let $x \in F$. Consider a loop u at b_{0} such that $[u]=\alpha$. Let \widetilde{u} be the path covering u and starting at x. Denote $\widetilde{u}(1)$ by $\varphi_{\alpha}(x)$.

The Path Homotopy Lifting Theorem implies that the map φ_{α} depends only on the homotopy class of u, and, therefore, the definition is correct. If $[u]=e$, i.e., the loop u is null-homotopic, then the path \widetilde{u} is also a loop, whence $\widetilde{u}(1)=x$, thus, $\varphi_{e}=\operatorname{id}_{F}$. Verify that the first property in the definition of an action of a group on a set is also fulfilled.
41.Hx See 41.Px.
41.Ix The group operation on the set of all automorphisms is their composition.
41.Jx This follows from 40.J.
41.Kx Show that the map transposing the two points in the preimage of each point in the base is a homeomorphism.
41.Lx This is assertion 40.H.
41. Qx This follows from 41.Nx and 41.Px.

Cellular Techniques

42. Cellular Spaces

$\left\lceil 42^{\prime} 1\right.$ Definition of Cellular Spaces

In this section, we study a class of topological spaces that play a very important role in algebraic topology. Their role in the context of this book is more restricted: this is the class of spaces for which we learn how to calculate the fundamental group. ${ }^{1}$

A zero-dimensional cellular space is just a discrete space. Points of a 0dimensional cellular space are also called (zero-dimensional) cells, or 0-cells.

A one-dimensional cellular space is a space that can be obtained as follows. Take any 0-dimensional cellular space X_{0}. Take a family of maps $\varphi_{\alpha}: S^{0} \rightarrow$ X_{0}. Attach the sum of a family of copies of D^{1} to X_{0} via φ_{α} (the copies are indexed by the same indices α as the maps φ_{α}):

$$
X_{0} \cup_{\sqcup_{\varphi \alpha}}\left(\bigsqcup_{\alpha} D^{1}\right)
$$

The images of copies of the interior parts $\operatorname{Int} D^{1}$ of D^{1} are called (open) 1dimensional cells, 1-cells, one-cells, or edges. The subsets obtained from D^{1} are closed 1-cells. The cells of X_{0} (i.e., points of X_{0}) are also called vertices.

[^29]Open 1-cells and 0 -cells constitute a partition of a one-dimensional cellular space. This partition is included in the notion of cellular space. In other words, a one-dimensional cellular space is a topological space equipped with a partition that can be obtained in this way. ${ }^{2}$

A two-dimensional cellular space is a space that can be obtained as follows. Take any cellular space X_{1} of dimension 0 or 1 . Take a family of continuous ${ }^{3}$ maps $\varphi_{\alpha}: S^{1} \rightarrow X_{1}$. Attach the sum of a family of copies of D^{2} to X_{1} via φ_{α} :

$$
X_{1} \cup_{\sqcup \varphi_{\alpha}}\left(\bigsqcup_{\alpha} D^{2}\right) .
$$

The images of the interior parts of copies of D^{2} are (open) 2-dimensional cells, 2-cells, two-cells, or faces. The cells of X_{1} are also regarded as cells of the 2 -dimensional cellular space. Open cells of both kinds constitute a partition of a 2-dimensional cellular space. This partition is included in the notion of cellular space, i.e., a two-dimensional cellular space is a topological space equipped with a partition that can be obtained in the way described above. The set obtained out of a copy of the whole D^{2} is a closed 2 -cell.

A cellular space of dimension n is defined in a similar way: This is a space equipped with a partition. It is obtained from a cellular space X_{n-1} of dimension less than n by attaching a family of copies of the n-disk D^{n} via a family of continuous maps of their boundary spheres:

$$
X_{n-1} \cup_{\sqcup \varphi_{\alpha}}\left(\bigsqcup_{\alpha} D^{n}\right)
$$

The images of the interiors of the attached n-disks are (open) n-dimensional cells or simply n-cells. The images of the entire n-disks are closed n-cells. Cells of X_{n-1} are also regarded as cells of the n-dimensional cellular space.

[^30]Each of the mappings φ_{α} is an attaching map, and the restriction of the corresponding factorization map to the n-disk D^{n} is the characteristic map.

A cellular space is obtained as the union of an increasing sequence of cellular spaces $X_{0} \subset X_{1} \subset \cdots \subset X_{n} \subset \ldots$ obtained in this way from each other. The sequence may be finite or infinite. In the latter case, the topological structure is introduced by saying that the cover of the union by the sets X_{n} is fundamental, i.e., a set $U \subset \bigcup_{n=0}^{\infty} X_{n}$ is open iff its intersection $U \cap X_{n}$ with each X_{n} is open in X_{n}.

The partition of a cellular space into its open cells is a cellular decomposition. The union of all cells of dimension less than or equal to n of a cellular space X is the n-dimensional skeleton of X. This term may be misleading since the n-dimensional skeleton may contain no n-cells, and so it may coincide with the ($n-1$)-dimensional skeleton. Thus, the n-dimensional skeleton may have dimension less than n. For this reason, it is better to speak about the nth skeleton or n-skeleton.

42.1. In a cellular space, skeletons are closed.

A cellular space is finite if it contains a finite number of cells. A cellular space is countable if it contains a countable number of cells. A cellular space is locally finite if each of its points has a neighborhood that meets finitely many cells.

Let X be a cellular space. A subspace $A \subset X$ is a cellular subspace of X if A is a union of open cells and together with each cell e contains the closed cell \bar{e}. This definition admits various equivalent reformulations. For instance, $A \subset X$ is a cellular subspace of X iff A is both a union of closed cells and a union of open cells. Another option: together with each point $x \in A$ the subspace A contains the closed cell $\bar{e} \in x$. Certainly, A is equipped with a partition into the open cells of X contained in A. Obviously, the k-skeleton of a cellular space X is a cellular subspace of X.
42.2. Prove that the union and intersection of any collection of cellular subspaces are cellular subspaces.
42.A. Prove that a cellular subspace of a cellular space is a cellular space. (Probably, your proof will involve assertion 43.Fx.)
42.A.1. Let X be a topological space, and let $X_{1} \subset X_{2} \subset \ldots$ be an increasing sequence of subsets constituting a fundamental cover of X. Let $A \subset X$ be a subspace; denote $A \cap X_{i}$ by A_{i}. Let one of the following conditions be fulfilled:

1) X_{i} is open in X for each i;
2) A_{i} is open in X for each i;
3) A_{i} is closed in X for each i.

Then $\left\{A_{i}\right\}$ is a fundamental cover of A.

$\left\lceil 42^{\prime} 2\right\rfloor$ First Examples

42.B. A cellular space consisting of two cells, where one is a 0 -cell and the other one is an n-cell, is homeomorphic to S^{n}.
42.C. Represent D^{n} with $n>0$ as a cellular space made of three cells.
42.D. A cellular space consisting of a single 0 -cell and q one-cells is a bouquet of q circles.
42.E. Represent torus $S^{1} \times S^{1}$ as a cellular space with one 0 -cell, two 1-cells, and one 2 -cell.
42.F. How would you obtain a presentation of torus $S^{1} \times S^{1}$ as a cellular space with 4 cells from a presentation of S^{1} as a cellular space with 2 cells?
42.3. Prove that if X and Y are finite cellular spaces, then $X \times Y$ has a natural structure of a finite cellular space.
42.4*. Does the statement of Problem 42.3 remain true if we skip the finiteness condition in it? If yes, prove this; if no, find an example in which the product is not a cellular space.
42.G. Represent the sphere S^{n} as a cellular space such that the spheres $S^{0} \subset S^{1} \subset S^{2} \subset \cdots \subset S^{n-1}$ are its skeletons.

42.H. Represent $\mathbb{R} P^{n}$ as a cellular space with $n+1$ cells. Describe the attaching maps of the cells.
42.5. Represent $\mathbb{C} P^{n}$ as a cellular space with $n+1$ cells. Describe the attaching maps of its cells.
42.6. Represent the following topological spaces as cellular ones
(a) handle;
(b) Möbius strip;
(c) $S^{1} \times I$,
(d) sphere with p
(e) sphere with p
handles; cross-caps.
42.7. What is the minimal number of cells in a cellular space homeomorphic to
(a) Möbius strip;
(b) sphere with p
(c) sphere with p cross-caps?
42.8. Find a cellular space where the closure of a cell is not equal to a union of other cells. What is the minimal number of cells in a space containing a cell of this sort?
42.9. Consider the disjoint sum of countably many copies of the closed interval I and identify the copies of 0 in all of them. Represent the result (which is the bouquet of the countable family of intervals) as a countable cellular space. Prove that this space is not first countable.
42.I. Represent \mathbb{R}^{1} as a cellular space.
42.10. Prove that for any two cellular spaces homeomorphic to \mathbb{R}^{1} there exists a homeomorphism between them which homeomorphically maps each cell of one of them onto a cell of the other one.
42.J. Represent \mathbb{R}^{n} as a cellular space.

Denote by \mathbb{R}^{∞} the union of the sequence of Euclidean spaces $\mathbb{R}^{0} \subset$ $\mathbb{R}^{1} \subset \cdots \subset \mathbb{R}^{n} \subset$ canonically included to each other: $\mathbb{R}^{n}=\left\{x \in \mathbb{R}^{n+1}\right.$: $\left.x_{n+1}=0\right\}$. Equip \mathbb{R}^{∞} with the topological structure for which the spaces \mathbb{R}^{n} constitute a fundamental cover.
42.K. Represent \mathbb{R}^{∞} as a cellular space.

42.11. Show that \mathbb{R}^{∞} is not metrizable.

$\left\lceil 42^{\prime} 3\right\rfloor$ Further Two-Dimensional Examples

We consider a class of 2-dimensional cellular spaces that admit a simple combinatorial description. Each space in this class is a quotient space of a finite family of convex polygons by identification of sides via affine homeomorphisms. The identification of vertices is determined by the identification of the sides. The quotient space has a natural decomposition into 0-cells, which are the images of vertices; 1-cells, which are the images of sides; and faces, which are the images of the interior parts of the polygons.

To describe such a space, we first need to show what sides are identified. Usually this is indicated by writing the same letters at the sides to be identified. There are only two affine homeomorphisms between two closed intervals. To specify one of them, it suffices to show the orientations of the intervals that are identified by the homeomorphism. Usually this is done by drawing arrows on the sides. Here is a description of this sort for the standard presentation of torus $S^{1} \times S^{1}$ as the quotient space of square:

We can replace a picture by a combinatorial description. To do this, put letters on all sides of the polygon, go around the polygons counterclockwise
and write down the letters that stay at the sides of polygon along the contour. The letters corresponding to the sides whose orientation is opposite to the counterclockwise direction are put with exponent -1 . This yields a collection of words, which contains sufficient information about the family of polygons and the partition. For instance, the presentation of the torus shown above is encoded by the word $a b^{-1} a^{-1} b$.
42.12. Prove that:
(1) the word $a^{-1} a$ describes a cellular space homeomorphic to S^{2},
(2) the word aa describes a cellular space homeomorphic to $\mathbb{R} P^{2}$,
(3) the word $a b a^{-1} b^{-1} c$ describes a handle,
(4) the word $a b c b^{-1}$ describes cylinder $S^{1} \times I$,
(5) each of the words $a a b$ and $a b a c$ describe Möbius strip,
(6) the word $a b a b$ describes a cellular space homeomorphic to $\mathbb{R} P^{2}$,
(7) each of the words $a a b b$ and $a b^{-1} a b$ describe Klein bottle,
(8) the word

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}
$$

describes sphere with g handles,
(9) the word $a_{1} a_{1} a_{2} a_{2} \ldots a_{g} a_{g}$ describes sphere with g cross-caps.

$\left\lceil 42^{\prime} 4\right\rfloor$ Embedding in Euclidean Space

42.L. Any countable 0 -dimensional cellular space can be embedded in \mathbb{R}.
42.M. Any countable locally finite 1-dimensional cellular space can be embedded in \mathbb{R}^{3}.
42.13. Find a 1-dimensional cellular space which you cannot embed in \mathbb{R}^{2}. (We do not ask you to prove rigorously that no embedding is possible.)
42.N. Any finite dimensional countable locally finite cellular space can be embedded in a Euclidean space of sufficiently high dimension.
42.N.1. Let X and Y be topological spaces such that X can be embedded in \mathbb{R}^{p}, Y can be embedded in \mathbb{R}^{q}, and both embeddings are proper maps. (See 19'3x; in particular, their images are closed in \mathbb{R}^{p} and \mathbb{R}^{q}, respectively.) Let A be a closed subset of Y. Assume that A has a neighborhood U in Y such that there exists a homeomorphism $h: \mathrm{Cl} U \rightarrow A \times I$ mapping A to $A \times 0$. Let $\varphi: A \rightarrow X$ be a proper continuous map. Then the initial embedding $X \rightarrow \mathbb{R}^{p}$ extends to an embedding $X \cup_{\varphi} Y \rightarrow \mathbb{R}^{p+q+1}$.
42.N.2. Let X be a locally finite countable k-dimensional cellular space, A the ($k-1$)-skeleton of X. Prove that if A can be embedded in \mathbb{R}^{p}, then X can be embedded in \mathbb{R}^{p+k+1}.
42.O. Any countable locally finite cellular space can be embedded in \mathbb{R}^{∞}.
42.P. Any finite cellular space is metrizable.
42. Q. Any finite cellular space is normal.
42.R. Any countable cellular space can be embedded in \mathbb{R}^{∞}.
42.S. Any cellular space is normal.
42.T. Any locally finite cellular space is metrizable.

$\left\lceil 42^{\prime} 5 \mathrm{x}\right\rfloor$ Simplicial Spaces

Recall that in $24^{\prime} 3 \mathrm{x}$ we introduced a class of topological spaces: simplicial spaces. Each simplicial space is equipped with a partition into subsets, called open simplices, which are indeed homeomorphic to open simplices of Euclidean space.
42. Ux. Any simplicial space is cellular, and its partition into open simplices is the corresponding partition into open cells.

43x. Topological Properties of Cellular Spaces

The present section contains assertions of mixed character. For example, we study conditions ensuring that a cellular space is compact (43.Jx) or separable (43.Nx). We also prove that a cellular space X is connected, iff X is path-connected ($43 . R x$), iff the 1 -skeleton of X is path-connected (43.Ux). On the other hand, we study the cellular topological structure as such. For example, any cellular space is Hausdorff (43.Ax). Further, it is not clear at all from the definition of a cellular space that a closed cell is the closure of the corresponding open cell (or that closed cells are closed sets). In this connection, the present section includes assertions of technical character. (We do not formulate them as lemmas to individual theorems because often they are lemmas for several assertions.) For example: closed cells constitute a fundamental cover of a cellular space (43.Cx).

We notice that in textbooks (say; in the textbook [2] by Fuchs and Rokhlin) a cellular space is defined as a Hausdorff topological space equipped by a cellular partition with two properties:
(C) each closed cell meets only a finite number of (open) cells;
(W) closed cells constitute a fundamental cover of the space.
The results of assertions $43 . A x, 43 . B x$, and $43 . E x$ imply that cellular spaces in the sense of the above definition are cellular spaces in the sense of Fuchs - Rokhlin' textbook (i.e., in the standard sense), the possibility of inductive construction for which is proved in [2]. Thus, both definitions of a cellular space are equivalent.

An advice to the reader: first try to prove the above assertions for finite cellular spaces.
43.Ax. Each cellular space is a Hausdorff topological space.
43.Bx. In a cellular space, the closure of any cell e is the closed cell \bar{e}.
43. Cx. Closed cells constitute a fundamental cover of a cellular space.
43.Dx. Each cover of a cellular space by cellular subspaces is fundamental.
43.Ex. In a cellular space, any closed cell meets only a finite number of open cells.
43.Fx. If A is cellular subspace of a cellular space X, then A is closed in X.
43.Gx. The space obtained as a result of pasting two cellular subspaces together along their common subspace, is cellular.
43.Hx. If a subset A of a cellular space X intersects each open cell along a finite set, then A is closed. Furthermore, the induced topology on A is discrete.
43.Ix. Prove that each compact subset of a cellular space meets a finite number of cells.
43.Jx Corollary. A cellular space is compact iff it is finite.
43.Kx. Any cell of a cellular space is contained in a finite cellular subspace of this space.
43.Lx. Any compact subset of a cellular space is contained in a finite cellular subspace.
43.Mx. A subset of a cellular space is compact iff it is closed and meets only a finite number of open cells.
43. $N \mathbf{x}$. A cellular space is separable iff it is countable.
43.Ox. Any path-connected component of a cellular space is a cellular subspace.
43.Px. A cellular space is locally path-connected.
43.Qx. Any path-connected component of a cellular space is both open and closed. It is a connected component.
43. $R \mathrm{x}$. A cellular space is connected iff it is path-connected.
43.5 x . A locally finite cellular space is countable iff it has countable 0 skeleton.
43.TX. Any connected locally finite cellular space is countable.
43. Ux. A cellular space is connected iff its 1 -skeleton is connected.

44. Cellular Constructions

$\left\lceil 44^{\prime} 1 〕\right.$ Euler Characteristic

Let X be a finite cellular space. Let $c_{i}(X)$ denote the number of its cells of dimension i. The Euler characteristic of X is the alternating sum of $c_{i}(X)$:

$$
\chi(X)=c_{0}(X)-c_{1}(X)+c_{2}(X)-\cdots+(-1)^{i} c_{i}(X)+\ldots .
$$

44. A. Prove that the Euler characteristic is additive in the following sense: for any cellular space X and its finite cellular subspaces A and B we have

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B) .
$$

44.B. Prove that the Euler characteristic is multiplicative in the following sense: for any finite cellular spaces X and Y, the Euler characteristic of their product $X \times Y$ is $\chi(X) \chi(Y)$.

$\left\lceil 44^{\prime} 2\right\rfloor$ Collapse and Generalized Collapse

Let X be a cellular space, e and f its open cells of dimensions n and $n-1$, respectively. Suppose:

- the attaching map $\varphi_{e}: S^{n-1} \rightarrow X_{n-1}$ of e determines a homeomorphism of the open upper hemisphere S_{+}^{n-1} onto f,
- f does not meet the images of attaching maps of cells distinct from e,
- the cell e is disjoint from the image of the attaching map of any cell.

44.C. $X \backslash(e \cup f)$ is a cellular subspace of X.
44.D. $X \backslash(e \cup f)$ is a deformation retract of X.

We say that $X \backslash(e \cup f)$ is obtained from X by an elementary collapse, and we write $X \searrow X \backslash(e \cup f)$.

If a cellular subspace A of a cellular space X is obtained from X by a sequence of elementary collapses, then we say that X is collapsed onto A and also write $X \backslash A$.
44.E. Collapsing does not change the Euler characteristic: if X is a finite cellular space and $X \backslash A$, then $\chi(A)=\chi(X)$.

As above, let X be a cellular space, let e and f be its open cells of dimensions n and $n-1$, respectively, and let the attaching map $\varphi_{e}: S^{n} \rightarrow X_{n-1}$ of e determine a homeomorphism of S_{+}^{n-1} onto f. Unlike the preceding situation, here we assume neither that f is disjoint from the images of attaching maps of cells different from e, nor that e is disjoint from the images of attaching maps of whatever cells. Let $\chi_{e}: D^{n} \rightarrow X$ be a characteristic map of e. Furthermore, let $\psi: D^{n} \rightarrow S^{n-1} \backslash \varphi_{e}^{-1}(f)=S^{n-1} \backslash S_{+}^{n-1}$ be a deformation retraction.
44.F. Under these conditions, the quotient space $X /\left[\chi_{e}(x) \sim \varphi_{e}(\psi(x))\right]$ of X is a cellular space where the cells are the images under the natural projections of all cells of X except e and f.

We say that the cellular space $X /\left[\chi_{e}(x) \sim \varphi_{e}(\psi(x))\right]$ is obtained by cancellation of cells e and f.
44.G. The projection $X \rightarrow X /\left[\chi_{e}(x) \sim \varphi_{e}(\psi(x))\right]$ is a homotopy equivalence.
44.G.1. Find a cellular subspace Y of a cellular space X such that the projection $Y \rightarrow Y /\left[\chi_{e}(x) \sim \varphi_{e}(\psi(x))\right]$ would be a homotopy equivalence by Theorem 44.D.
44.G.2. Extend the map $Y \rightarrow Y \backslash(e \cup f)$ to a map $X \rightarrow X^{\prime}$, which is a homotopy equivalence by $44.6 x$.

$\left\lceil 44^{\prime} 3 x\right\rfloor$ Homotopy Equivalences of Cellular Spaces

44.1x. Let $X=A \cup_{\varphi} D^{n}$ be the space obtained by attaching an n-disk to a topological space A via a continuous map $\varphi: S^{n-1} \rightarrow A$. Prove that the complement $X \backslash x$ of any point $x \in X \backslash A$ admits a (strong) deformation retraction to A.
44.2x. Let X be an n-dimensional cellular space, and let K be a set intersecting each of the open n-cells of X at a single point. Prove that the $(n-1)$-skeleton X_{n-1} of X is a deformation retract of $X \backslash K$.
44.3x. Prove that the complement $\mathbb{R} P^{n} \backslash$ point is homotopy equivalent to $\mathbb{R} P^{n-1}$; the complement $\mathbb{C} P^{n} \backslash$ point is homotopy equivalent to $\mathbb{C} P^{n-1}$.
44.4x. Prove that the punctured solid torus $D^{2} \times S^{1} \backslash$ point, where point is an arbitrary interior point, is homotopy equivalent to a torus with a disk attached along the meridian $S^{1} \times 1$.
44.5x. Let A be cellular space of dimension n, and let $\varphi: S^{n} \rightarrow A$ and $\psi: S^{n} \rightarrow A$ be two continuous maps. Prove that if φ and ψ are homotopic, then the spaces $X_{\varphi}=A \cup_{\psi} D^{n-1}$ and $X_{v}=A \cup_{\psi} D^{n+1}$ are homotopy equivalent.

Below we need a more general fact.
44.6x. Let $f: X \rightarrow Y$ be a homotopy equivalence, and let $\varphi: S^{n-1} \rightarrow X$ and φ^{\prime} : $S^{n-1} \rightarrow Y$ continuous maps. Prove that if $f \circ \rho \sim \varphi^{\prime}$, then $X \cup_{甲} D^{n} \simeq Y \cup_{\boldsymbol{q}^{\prime}} D^{n}$.
44.7x. Let X be a space obtained from a circle by attaching two copies of a disk by the maps $S^{1} \rightarrow S^{1}: z \mapsto z^{2}$ and $S^{1} \rightarrow S^{1}: z \mapsto z^{3}$, respectively. Find a cellular space homotopy equivalent to X with the smallest possible number of cells.
44.8x. Riddle. Generalize the result of Problem 44.7x.
44.9x. Prove that the space K obtained by attaching a disk to the torus $S^{1} \times S^{1}$ along the fibre $S^{1} \times 1$ is homotopy equivalent to the bouquet $S^{2} \vee S^{1}$.
44.10x. Prove that the torus $S^{1} \times S^{1}$ with two disks attached along the meridian $\{1\} \times S^{1}$ and parallel $S^{1} \times 1$, respectively, is homotopy equivalent to S^{2}.
44.11x. Consider three circles in $\mathbb{R}^{3}: S_{1}=\left\{x^{2}+y^{2}=1, z=0\right\}, S_{2}=\left\{x^{2}+y^{2}=\right.$ $1, z=1\}$, and $S_{3}=\left\{z^{2}+(y-1)^{2}=1, x=0\right\}$. Since $\mathbb{R}^{3} \cong S^{3} \backslash$ point, we can assume that S_{1}, S_{2}, and S_{3} lie in S^{3}. Prove that the space $X=S^{3} \backslash\left(S_{1} \cup S_{2}\right)$ is not homotopy equivalent to the space $Y=S^{3} \backslash\left(S_{1} \cup S_{3}\right)$.
44.Hx. Let X be a cellular space, $A \subset X$ a cellular subspace. Then the union $(X \times 0) \cup(A \times I)$ is a retract of the cylinder $X \times I$.
44.Ix. Let X be a cellular space, $A \subset X$ a cellular subspace. Assume that we are given a map $F: X \rightarrow Y$ and a homotopy $h: A \times I \rightarrow Y$ of the restriction $f=\left.F\right|_{A}$. Then the homotopy h extends to a homotopy $H: X \times I \rightarrow Y$ of F.
44.Jx. Let X be a cellular space, $A \subset X$ a contractible cellular subspace. Then the projection pr : $X \rightarrow X / A$ is a homotopy equivalence.

Problem 44.Jx implies the following assertions.
44. $K \mathbf{x}$. If a cellular space X contains a closed 1-cell e homeomorphic to I, then X is homotopy equivalent to the cellular space X / e obtained by contraction of e.
44.Lx. Any connected cellular space is homotopy equivalent to a cellular space with one-point 0-skeleton.
44.Mx. A simply connected finite 2-dimensional cellular space is homotopy equivalent to a cellular space with one-point 1-skeleton.
44.12x. Solve Problem 44.9x with the help of Theorem 44.Jx.
44.13x. Prove that the quotient space

$$
\mathbb{C} P^{2} /\left[\left(z_{0}: z_{1}: z_{2}\right) \sim\left(\overline{z_{0}}: \overline{z_{1}}: \overline{z_{2}}\right)\right]
$$

of the complex projective plane $\mathbb{C} P^{2}$ is homotopy equivalent to S^{4}.
Information. We have $\mathbb{C} P^{2} /[z \sim \tau(z)] \cong S^{4}$.
44. $N \mathrm{x}$. Let X be a cellular space, and let A be a cellular subspace of X such that the inclusion in : $A \rightarrow X$ is a homotopy equivalence. Then A is a deformation retract of X.

45. One-Dimensional Cellular Spaces

$\left\lceil 45^{\prime} 1\right\rfloor$ Homotopy Classification

45.A. Any connected finite 1-dimensional cellular space is homotopy equivalent to a bouquet of circles.
45.A.1 Lemma. Let X be a 1-dimensional cellular space, and let e be a 1-cell of X attached by an injective map $S^{0} \rightarrow X_{0}$ (i.e., e has two distinct endpoints). Prove that the projection $X \rightarrow X / e$ is a homotopy equivalence. Describe the homotopy inverse map explicitly.
45.B. A finite connected cellular space X of dimension one is homotopy equivalent to the bouquet of $1-\chi(X)$ circles, and its fundamental group is a free group of rank $1-\chi(X)$.
45.C Corollary. The Euler characteristic of a finite connected one-dimensional cellular space is invariant under homotopy equivalence. It is not greater than one. It equals one iff the space is homotopy equivalent to point.
45.D Corollary. The Euler characteristic of a finite one-dimensional cellular space is not greater than the number of its connected components. It is equal to this number iff each of its connected components is homotopy equivalent to a point.
45.E Homotopy Classification of Finite 1-Dimensional Cellular Spaces. Finite connected one-dimensional cellular spaces are homotopy equivalent, iff their fundamental groups are isomorphic, iff their Euler characteristics are equal.
45.1. The fundamental group of a 2 -sphere punctured at n points is a free group of rank $n-1$.
45.2. Prove that the Euler characteristic of a cellular space homeomorphic to S^{2} is equal to 2 .
45.3 The Euler Theorem. For any convex polyhedron in \mathbb{R}^{3}, the sum of the number of its vertices and the number of its faces equals the number of its edges plus two.
45.4. Prove the Euler Theorem without using fundamental groups.
45.5. Prove that the Euler characteristic of any cellular space homeomorphic to the torus is equal to 0 .

Information. The Euler characteristic is homotopy invariant, but the usual proof of this fact involves the machinery of singular homology theory, which lies far beyond the scope of our book.

「45'2」 Spanning Trees

A one-dimensional cellular space is a tree if it is connected, while the complement of each of its (open) 1-cells is disconnected. A cellular subspace A of a cellular space X is a spanning tree of X if A is a tree and is not contained in any other cellular subspace $B \subset X$ which is a tree.
45.F. Any finite connected one-dimensional cellular space contains a spanning tree.
45. G. Prove that a cellular subspace A of a cellular space X is a spanning tree iff A is a tree and contains all vertices of X.

Theorem 45.G explains the term spanning tree.
45.H. Prove that a cellular subspace A of a cellular space X is a spanning tree iff it is a tree and the quotient space X / A is a bouquet of circles.
45.I. Let X be a one-dimensional cellular space, A its cellular subspace. Prove that if A is a tree, then the projection $X \rightarrow X / A$ is a homotopy equivalence.

Problems 45.F, 45.I, and 45.H provide one more proof of Theorem 45.A.

$\left\lceil 45^{\prime} 3 \mathrm{x}\right\rfloor$ Dividing Cells

45.Jx. In a one-dimensional connected cellular space, each connected component of the complement of an edge meets the closure of the edge. The complement has at most two connected components.

A complete local characterization of a vertex in a one-dimensional cellular space is its degree. This is the total number of points in the preimages of the vertex under attaching maps of all one-cells of the space. It is more traditional to define the degree of a vertex v as the number of edges incident to v, counting with multiplicity 2 the edges that are incident only to v.
45.Kx. 1) Each connected component of the complement of a vertex in a connected one-dimensional cellular space contains an edge with boundary containing the vertex. 2) The complement of a vertex of degree m has at most m connected components.

$\left\lceil 45^{\prime} 4 \mathrm{x}\right\rfloor$ Trees and Forests

A one-dimensional cellular space is a tree if it is connected, while the complement of each of its (open) 1-cells is disconnected. A one-dimensional cellular space is a forest if each of its connected components is a tree.
45.Lx. Any cellular subspace of a forest is a forest. In particular, any connected cellular subspace of a tree is a tree.
45.Mx. In a tree, the complement of an edge has two connected components.
45.Nx. In a tree, the complement of a vertex of degree m has m connected components.
45.Ox. A finite tree has a vertex of degree one.
45.Px. Any finite tree collapses to a point and has Euler characteristic one.
45. Qx. Prove that any point of a tree is its deformation retract.
45.Rx. Any finite one-dimensional cellular space that can be collapsed to a point is a tree.
45.5 x . In any finite one-dimensional cellular space, the sum of degrees of all vertices is twice the number of edges.
45.Tx. A finite connected one-dimensional cellular space with Euler characteristic one has a vertex of degree one.
45.Ux. A finite connected one-dimensional cellular space with Euler characteristic one collapses to a point.

$\left\lceil 45^{\prime} 5 \mathrm{x}\right\rfloor$ Simple Paths

Let X be a one-dimensional cellular space. A simple path of length n in X is a finite sequence ($v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n}, v_{n+1}$) formed by vertices v_{i} and edges e_{i} of X such that each term appears in it only once and the boundary of every edge e_{i} consists of the preceding and subsequent vertices v_{i} and v_{i+1}. The vertex v_{1} is the initial vertex, and v_{n+1} is the final one. The simple path connects these vertices. They are connected by a path $I \rightarrow X$, which is a topological embedding with image contained in the union of all cells involved in the simple path. The union of these cells is a cellular subspace of X. It is called a simple broken line.
45.Vx. In a connected one-dimensional cellular space, any two vertices are connected by a simple path.
45.Wx Corollary. In a connected one-dimensional cellular space X, any two points are connected by a path $I \rightarrow X$ which is a topological embedding.
45.6x. Can a path-connected space contain two distinct points that cannot be connected by a path which is a topological embedding?
45.7x. Can you find a Hausdorff space with this property?
45.Xx. A connected one-dimensional cellular space X is a tree iff there exists no topological embedding $S^{1} \rightarrow X$.
45.Yx. In a one-dimensional cellular space X, there exists a non-nullhomotopic loop $S^{1} \rightarrow X$ iff there exists a topological embedding $S^{1} \rightarrow X$.
$45 . Z \mathbf{x}$. A one-dimensional cellular space is a tree iff any two distinct vertices are connected in it by a unique simple path.
45.8x. Prove that any finite tree has fixed point property.

Cf. 38.12, 38.13, and 38.14.
45.9 x . Is this true for each tree? For each finite connected one-dimensional cellular space?

46. Fundamental Group of a Cellular Space

「46'1」One-Dimensional Cellular Spaces

46.A. The fundamental group of a connected finite one-dimensional cellular space X is a free group of rank $1-\chi(X)$.

46.B. Let X be a finite connected one-dimensional cellular space, T a spanning tree of X, and $x_{0} \in T$. For each 1-cell $e \subset X \backslash T$, choose a loop s_{e} that starts at x_{0}, goes inside T to e, then goes once along e, and then returns to x_{0} in T. Prove that $\pi_{1}\left(X, x_{0}\right)$ is freely generated by the homotopy classes of s_{e}.

$\left\lceil 46^{\prime} 2\right\rfloor$ Generators

46.C. Let A be a topological space, $x_{0} \in A$. Let $\varphi: S^{k-1} \rightarrow A$ be a continuous map, $X=A \cup_{\varphi} D^{k}$. If $k>1$, then the inclusion homomorphism $\pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is surjective. Cf. 46. G.4 and 46.G.5.
46.D. Let X be a cellular space, let x_{0} be its 0 -cell, and let X_{1} be the 1skeleton of X. Then the inclusion homomorphism

$$
\pi_{1}\left(X_{1}, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective.
46. \boldsymbol{E}. Let X be a finite cellular space, T a spanning tree of X_{1}, and $x_{0} \in T$. For each cell $e \subset X_{1} \backslash T$, choose a loop s_{e} that starts at x_{0}, goes inside T to e, then goes once along e, and finally returns to x_{0} in T. Prove that $\pi_{1}\left(X, x_{0}\right)$ is generated by the homotopy classes of s_{e}.
46.1. Deduce Theorem 32.G from Theorem 46.D.
46.2. Find $\pi_{1}\left(\mathbb{C} P^{n}\right)$.

$\left\lceil 46^{\prime} 3\right\rfloor$ Relations

Let X be a cellular space, x_{0} its 0 -cell. Denote by X_{n} the n-skeleton of X. Recall that X_{2} is obtained from X_{1} by attaching copies of the disk
D^{2} via continuous maps $\varphi_{\alpha}: S^{1} \rightarrow X_{1}$. The attaching maps are circular loops in X_{1}. For each α, choose a path $s_{\alpha}: I \rightarrow X_{1}$ connecting $\varphi_{\alpha}(1)$ with x_{0}. Denote by N the normal subgroup of $\pi_{1}\left(X, x_{0}\right)$ generated (as a normal subgroup ${ }^{4}$) by the elements

$$
T_{s_{\alpha}}\left[\varphi_{\alpha}\right] \in \pi_{1}\left(X_{1}, x_{0}\right)
$$

46.F. N does not depend on the choice of the paths s_{α}.
46. G. The normal subgroup N is the kernel of the inclusion homomorphism $\mathrm{in}_{*}: \pi_{1}\left(X_{1}, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.

Theorem 46.G can be proved in various ways. For example, we can derive it from the Seifert-van Kampen Theorem (see $46.7 x$). Here we prove Theorem $46 . G$ by constructing a "rightful" covering space. The inclusion $N \subset \mathrm{Ker} \mathrm{in}_{*}$ is rather obvious (see 46.G.1). The proof of the converse inclusion involves the existence of a covering $p: Y \rightarrow X$ whose submap over the 1 -skeleton of X is a covering $p_{1}: Y_{1} \rightarrow X_{1}$ with group N, and the fact that $\mathrm{Ker} \mathrm{in}_{*}$ is contained in the group of each covering over X_{1} that extends to a covering over the entire X. The scheme of the argument suggested in Lemmas 1-7 can also be modified. The thing is that the inclusion $X_{2} \rightarrow X$ induces an isomorphism of fundamental groups. It is not difficult to prove this, but the techniques involved, though quite general and natural, nevertheless lie beyond the scope of our book. Here we just want to emphasize that this result replaces Lemmas 4 and 5 .
46.G.1 Lemma 1. $N \subset \operatorname{Ker} i_{*}$, cf. 32.J (3).
46.G.2 Lemma 2. Let $p_{1}: Y_{1} \rightarrow X_{1}$ be a covering with covering group N. Then for any α and any point $y \in p_{1}^{-1}\left(\varphi_{\alpha}(1)\right)$ the loop φ_{α} has a lift $\tilde{\varphi}_{\alpha}: S^{1} \rightarrow Y_{1}$ with $\tilde{\varphi}_{\alpha}(1)=y$.
46.G.3 Lemma 3. Let Y_{2} be a cellular space obtained by attaching copies of a disk to Y_{1} along all lifts of attaching maps φ_{α}. Then there exists a map $p_{2}: Y_{2} \rightarrow X_{2}$ that extends p_{1} and is a covering.
46.G.4 Lemma 4. Attaching maps of n-cells with $n \geq 3$ lift to any covering space. Cf. $41 . X x$ and 41.Yx.
46.G.5 Lemma 5. Covering $p_{2}: Y_{2} \rightarrow X_{2}$ extends to a covering of the whole X.
46.G.6 Lemma 6. Any loop $s: I \rightarrow X_{1}$ realizing an element of $\operatorname{Ker} i_{*}$ (i.e., null-homotopic in X) is covered by a loop of Y. The covering loop is contained in Y_{1}.
46.G.7 Lemma 7. $N=\operatorname{Ker~in~}_{*}$.

[^31]46.H. The inclusion $\mathrm{in}_{2}: X_{2} \rightarrow X$ induces an isomorphism between the fundamental groups of a cellular space and its 2 -skeleton.
46.3. Check that the covering over the cellular space X constructed in the proof of Theorem $46 . G$ is universal.

$\left\lceil 46^{\prime} 4\right\rfloor$ Writing Down Generators and Relations

Theorems $46 . E$ and $46 . G$ imply the following recipe for writing down a presentation for the fundamental group of a finite dimensional cellular space by generators and relations:

Let X be a finite cellular space, x_{0} a 0 -cell of X. Let T be a spanning tree of the 1 -skeleton of X. For each 1-cell $e \not \subset T$ of X, choose a loop s_{e} that starts at x_{0}, goes inside T to e, goes once along e, and then returns to x_{0} in T. Let g_{1}, \ldots, g_{m} be the homotopy classes of these loops. Let $\varphi_{1}, \ldots, \varphi_{n}: S^{1} \rightarrow X_{1}$ be the attaching maps of 2-cells of X. For each φ_{i}, choose a path s_{i} connecting $\varphi_{i}(1)$ with x_{0} in the 1 -skeleton of X. Express the homotopy class of the loop $s_{i}^{-1} \varphi_{i} s_{i}$ as a product of powers of generators g_{j}. Let r_{1}, \ldots, r_{n} be the words in letters g_{1}, \ldots, g_{m} obtained in this way. The fundamental group of X is generated by g_{1}, \ldots, g_{m}, which satisfy the defining relations $r_{1}=1, \ldots, r_{n}=1$.
46.I. Check that this rule gives correct answers in the cases of $\mathbb{R} P^{n}$ and $S^{1} \times$ S^{1} for the cellular presentations of these spaces provided in Problems 42.H and 42.E.

In assertion 44.Mx proved above, we assumed that the cellular space is 2 -dimensional. The reason for this was that at that moment we did not know that the inclusion $X_{2} \rightarrow X$ induces an isomorphism of fundamental groups.
46.J. Each finite simply connected cellular space is homotopy equivalent to a cellular space with one-point 1 -skeleton.

$\left\lceil 46^{\prime} 5\right\rfloor$ Fundamental Groups of Basic Surfaces

46.K. The fundamental group of a sphere with g handles admits the following presentation:

$$
\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle .
$$

46.L. The fundamental group of a sphere with g cross-caps admits the following presentation:

$$
\left\langle a_{1}, a_{2}, \ldots a_{g} \mid a_{1}^{2} a_{2}^{2} \ldots a_{g}^{2}=1\right\rangle
$$

46.M. Spheres with different numbers of handles have non-isomorphic fundamental groups.

When we want to prove that two finitely presented groups are not isomorphic, one of the first natural moves is to abelianize the groups. (Recall that to abelianize a group G means to quotient G out by the commutator subgroup. The commutator subgroup $[G, G]$ is the normal subgroup generated by the commutators $a^{-1} b^{-1} a b$ for all $a, b \in G$. Abelianization means adding relations $a b=b a$ for any $a, b \in G$.)

Abelian finitely generated groups are well known. Any finitely generated Abelian group is isomorphic to a product of a finite number of cyclic groups. If the abelianized groups are not isomorphic, then the original groups are not isomorphic as well.
46.M.1. The abelianized fundamental group of a sphere with g handles is a free Abelian group of rank $2 g$ (i.e., is isomorphic to $\mathbb{Z}^{2 g}$).
46.N. Fundamental groups of spheres with different numbers of cross-caps are not isomorphic.
46.N.1. The abelianized fundamental group of a sphere with g cross-caps is isomorphic to $\mathbb{Z}^{g-1} \times \mathbb{Z}_{2}$.
46.O. Spheres with different numbers of handles are not homotopy equivalent.
46.P. Spheres with different numbers of cross-caps are not homotopy equivalent.
46.Q. A sphere with handles is not homotopy equivalent to a sphere with cross-caps.

If X is a path-connected space, then the abelianized fundamental group of X is the 1 -dimensional (or first) homology group of X and denoted by $H_{1}(X)$. If X is not path-connected, then $H_{1}(X)$ is the direct sum of the first homology groups of all path-connected components of X. Thus 46.M. 1 can be rephrased as follows: if F_{g} is a sphere with g handles, then $H_{1}\left(F_{g}\right)=\mathbb{Z}^{2 g}$.

$\left\lceil 46^{\prime} 6 \mathrm{x}\right.$ 」 Seifert-van Kampen Theorem

To calculate fundamental group, one often uses the Seifert-van Kampen Theorem, instead of the cellular techniques presented above.
46.Rx Seifert-van Kampen Theorem. Let X be a path-connected topological space, let A and B be its open path-connected subspaces covering X. and let $C=A \cap B$ be also path-connected. Then $\pi_{1}(X)$ can be presented as the amalgamated product of $\pi_{1}(A)$ and $\pi_{1}(B)$ with identified subgroup $\pi_{1}(C)$. In other words, if $x_{0} \in C$,

$$
\pi_{1}\left(A, x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{p} \mid \rho_{1}=\cdots=\rho_{r}=1\right\rangle,
$$

$$
\pi_{1}\left(B, x_{0}\right)=\left\langle\beta_{1}, \ldots, \beta_{q} \mid \sigma_{1}=\cdots=\sigma_{s}=1\right\rangle
$$

$\pi_{1}\left(C, x_{0}\right)$ is generated by its elements $\gamma_{1}, \ldots, \gamma_{t}$, and $i_{A}: C \rightarrow A$ and in $_{B}: C \rightarrow B$ are inclusions, then $\pi_{1}\left(X, x_{0}\right)$ can be presented as

$$
\begin{aligned}
& \left\langle\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right| \\
& \qquad \rho_{1}=\cdots=\rho_{r}=\sigma_{1}=\cdots=\sigma_{s}=1 \\
& \\
& \left.\quad \operatorname{in}_{A *}\left(\gamma_{1}\right)=\operatorname{in}_{B *}\left(\gamma_{1}\right), \ldots, \operatorname{in}_{A *}\left(\gamma_{t}\right)=\operatorname{in}_{B *}\left(\gamma_{t}\right)\right\rangle .
\end{aligned}
$$

Now we consider the situation where the space X and its subsets A and B are cellular.
$46 . S \mathrm{x}$. Assume that X is a connected finite cellular space, and A and B are two cellular subspaces of X covering X. Denote $A \cap B$ by C. How are the fundamental groups of X, A, B, and C related to each other?
46.Tx Seifert-van Kampen Theorem. Let X be a connected finite cellular space, let A and B be two connected cellular subspaces covering X, and let $C=A \cap B$. Assume that C is also connected. Let $x_{0} \in C$ be a 0 -cell,

$$
\begin{aligned}
& \pi_{1}\left(A, x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{p} \mid \rho_{1}=\cdots=\rho_{r}=1\right\rangle, \\
& \pi_{1}\left(B, x_{0}\right)=\left\langle\beta_{1}, \ldots, \beta_{q} \mid \sigma_{1}=\cdots=\sigma_{s}=1\right\rangle,
\end{aligned}
$$

and let the group $\pi_{1}\left(C, x_{0}\right)$ be generated by the elements $\gamma_{1}, \ldots, \gamma \gamma_{t}$. Denote by $\xi_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ and $\eta_{i}\left(\beta_{1}, \ldots, \beta_{q}\right)$ the images of the elements γ_{i} (more precisely, their expression via the generators) under the inclusion homomorphisms

$$
\pi_{1}\left(C, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right) \text { and, respectively, } \pi_{1}\left(C, x_{0}\right) \rightarrow \pi_{1}\left(B, x_{0}\right) .
$$

Then

$$
\begin{aligned}
& \pi_{1}\left(X, x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right| \\
& \rho_{1}=\cdots=\rho_{r}=\sigma_{1}=\cdots=\sigma_{s}=1, \\
& \left.\xi_{1}=\eta_{1}, \ldots, \xi_{t}=\eta_{t}\right\rangle .
\end{aligned}
$$

46.4x. Let X, A, B, and C be as above. Assume that A and B are simply connected and C has two connected components. Prove that $\pi_{1}(X)$ is isomorphic to \mathbb{Z}.
46.5x. Is Theorem 46.Tx a special case of Theorem $46 . R x$?
46.6x. May the assumption of openness of A and B in $46 . R x$ be omitted?
46.7x. Deduce Theorem $46 . G$ from the Seifert-van Kampen Theorem 46.Rx.
46.8x. Compute the fundamental group of the lens space, which is obtained by pasting together two solid tori via the homeomorphism $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$: $(u, v) \mapsto\left(u^{k} v^{l}, u^{m} v^{n}\right)$, where $k n-l m=1$.
46.9x. Determine the homotopy and the topological type of the lens space for $m=0,1$.
46.10x. Find a presentation for the fundamental group of the complement in \mathbb{R}^{3} of a torus knot K of type (p, q), where p and q are relatively prime positive integers. This knot lies on the revolution torus T, which is described by parametric equations

$$
\left\{\begin{array}{l}
x=(2+\cos 2 \pi u) \cos 2 \pi v \\
y=(2+\cos 2 \pi u) \sin 2 \pi v \\
z=\sin 2 \pi u
\end{array}\right.
$$

and K is described on T by equation $p u=q v$.
46.11x. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be two simply connected topological spaces with marked points, and let $Z=X \vee Y$ be their bouquet.
(1) Prove that if X and Y are cellular spaces, then Z is simply connected.
(2) Prove that if x_{0} and y_{0} have neighborhoods $U_{x_{0}} \subset X$ and $V_{y_{0}} \subset Y$ that admit strong deformation retractions to x_{0} and y_{0}, respectively, then Z is simply connected.
(3) Construct two simply connected topological spaces X and Y with a non-simply connected bouquet.

$\left\lceil 46^{\prime} 7 \mathrm{x}\right\rfloor$ Group-Theoretic Digression: Amalgamated Product of Groups

At first glance, description of the fundamental group of X given above in the statement of the Seifert-van Kampen Theorem is far from being invariant: it depends on the choice of generators and relations of other groups involved. However, this is actually a detailed description of a grouptheoretic construction in terms of generators and relations. After solving the next problem, you will get a more complete picture of the subject.
46. $U \mathbf{x}$. Let A and B be two groups:

$$
\begin{aligned}
& A=\left\langle\alpha_{1}, \ldots, \alpha_{p} \mid \rho_{1}=\cdots=\rho_{r}=1\right\rangle, \\
& B=\left\langle\beta_{1}, \ldots, \beta_{q} \mid \sigma_{1}=\cdots=\sigma_{s}=1\right\rangle,
\end{aligned}
$$

and let C be a group generated by $\gamma_{1}, \ldots \gamma_{t}$. Let $\xi: C \rightarrow A$ and $\eta: C \rightarrow B$ be arbitrary homomorphisms. Then

$$
\begin{aligned}
& X=\left\langle\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right| \\
& \rho_{1}=\cdots=\rho_{r}=\sigma_{1}=\cdots=\sigma_{s}=1, \\
& \left.\xi\left(\gamma_{1}\right)=\eta\left(\gamma_{1}\right), \ldots, \xi\left(\gamma_{t}\right)=\eta\left(\gamma_{t}\right)\right\rangle,
\end{aligned}
$$

and homomorphisms $\phi: A \rightarrow X: \alpha_{i} \mapsto \alpha_{i}, i=1, \ldots, p$ and $\psi: B \rightarrow X:$ $\beta_{j} \mapsto \beta_{j}, j=1, \ldots, q$ take part in commutative diagram

and for each group X^{\prime} and homomorphisms $\varphi^{\prime}: A \rightarrow X^{\prime}$ and $\psi^{\prime}: B \rightarrow X^{\prime}$ involved in commutative diagram

there exists a unique homomorphism $\zeta: X \rightarrow X^{\prime}$ such that diagram

is commutative. The latter determines the group X up to isomorphism.
The group X described in $46 . U x$ is a free product of A and B with amalgamated subgroup C. It is denoted by $A *_{C} B$. Notice that the name is not quite precise, since it ignores the role of the homomorphisms ϕ and ψ and the possibility that they may be not injective.

If the group C is trivial, then $A *_{C} B$ is denoted by $A * B$ and called the free product of A and B.
46.12x. Is a free group of rank n a free product of n copies of \mathbb{Z} ?
46.13x. Represent the fundamental group of Klein bottle as $\mathbb{Z} * \mathbb{Z} \mathbb{Z}$. Does this decomposition correspond to a decomposition of Klein bottle?
46.14x. Riddle. Define a free product as a set of equivalence classes of words in which the letters are elements of the factors.
46.15x. Investigate algebraic properties of free multiplication of groups: is it associative, commutative and, if it is, then in what sense? Do homomorphisms of the factors determine a homomorphism of the product?
46.16x*. Find decomposition of the modular group

$$
\operatorname{Mod}=S L(2, \mathbb{Z}) /\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

as a free product $\mathbb{Z}_{2} * \mathbb{Z}_{3}$.

$\left\lceil 46^{\prime} 8 \mathrm{x}\right.$ 」 Addendum to Seifert-van Kampen Theorem

The Seifert-van Kampen Theorem appeared and is used mostly as a tool for calculation of fundamental groups. However, it does not help in many situations. For example, it does not work under the assumptions of the following theorem.
46.Vx. Let X be a topological space, A and B open sets covering X, and $C=A \cap B$. Assume that A and B are simply connected and C has two connected components. Then $\pi_{1}(X)$ is isomorphic to \mathbb{Z}.

Theorem 46. $V x$ also holds true if we assume that C has two pathconnected components. The difference seems to be immaterial, but the proof becomes incomparably more technical.

Seifert and van Kampen needed a more universal tool for calculation of fundamental groups, and theorems they published were much more general than Theorem $46 . R x$. Theorem $46 . R x$ is all that could find its way from the original papers to textbooks. Theorem $46.4 x$ is another special case of their results. The most general formulation is rather cumbersome, and we restrict ourselves to one more special case that was distinguished by van Kampen. Together with $46 . R x$, it allows one to calculate fundamental groups in all situations that are available with the most general formulations by van Kampen, although not that fast. We formulate the original version of this theorem, but first we recommend starting with a cellular version, in which the results presented in the beginning of this section allow one to obtain a complete answer about calculation of fundamental groups. After that is done consider the general situation.

First, let us describe the situation common for both formulations. Let A be a topological space, B its closed subset, and U a neighborhood of B in A such that $U \backslash B$ is the union of two disjoint sets, M_{1} and M_{2}, open in A. Put $N_{i}=B \cup M_{i}$. Let C be a topological space that can be represented as $(A \backslash U) \cup\left(N_{1} \sqcup N_{2}\right)$ and such that the sets $(A \backslash U) \cup N_{1}$ and $(A \backslash U) \cup N_{2}$ with the topology induced from A form a fundamental cover of C. There are two copies of B in C, which come from N_{1} and N_{2}. The space A can be identified with the quotient space of C obtained by identifying the two copies of B via the natural homeomorphism. However, our description begins with A, since this is the space whose fundamental group we want to calculate, while the space B is auxiliary constructed out of A (see Figure 1).

Figure 1
In the cellular version of the statement formulated below, it is supposed that the space A is cellular and B is its cellular subspace. Then C is also equipped with a natural cellular structure such that the natural map $C \rightarrow A$ is cellular.
46. Wx. In the situation described above, assume that C is path-connected and $x_{0} \in C \backslash\left(B_{1} \cup B_{2}\right)$. Let $\pi_{1}\left(C, x_{0}\right)$ be presented by generators $\alpha_{1}, \ldots, \alpha_{n}$ and relations $\psi_{1}=1, \ldots, \psi_{m}=1$. Assume that base points $y_{i} \in B_{i}$ are mapped to the same point y under the map $C \rightarrow A$, and σ_{i} is a homotopy class of a path connecting x_{0} with y_{i} in C. Let $\beta_{1}, \ldots, \beta_{p}$ be generators of $\pi_{1}(B, y)$, and let $\beta_{1 i}, \ldots, \beta_{p i}$ be the corresponding elements of $\pi_{1}\left(B_{i}, y_{i}\right)$. Denote by $\varphi_{l i}$ a word representing $\sigma_{i} \beta_{l i} \sigma_{i}^{-1}$ in terms of $\alpha_{1}, \ldots, \alpha_{n}$. Then $\pi_{1}\left(A, x_{0}\right)$ has the following presentation:

$$
\left\langle\alpha_{1}, \ldots, \alpha_{n}, \gamma \mid \psi_{1}=\cdots=\psi_{m}=1, \gamma \varphi_{11}=\varphi_{12} \gamma, \ldots, \gamma \varphi_{p 1}=\varphi_{p 2} \gamma\right\rangle .
$$

46.17x. Using $46 . W x$, calculate the fundamental groups of the torus and the Klein bottle.
46.18x. Using $46 . W x$, calculate the fundamental groups of basic surfaces.
46.19x. Deduce Theorem $46.4 x$ from $46 . R x$ and 46 . Wx.
46.20x. Riddle. Develop an algebraic theory of the group-theoretic construction contained in Theorem 46.Wx.

Proofs and Comments

42.A Let A be a cellular subspace of a cellular space X. For $n=$ $0,1, \ldots$, we see that $A \cap X_{n+1}$ is obtained from $A \cap X_{n}$ by attaching the $(n+1)$-cells contained in A. Therefore, if A is contained in a certain skeleton, then A certainly is a cellular space and the intersections $A_{n}=A \cap X_{n}$, $n=0,1, \ldots$, are the skeletons of A. In the general case, we must verify that the cover of A by the sets A_{n} is fundamental, which follows from assertion 3 of Lemma 42.A.1 below, Problem 42.1, and assertion 43.Fx.
42.A.1 We prove only assertion 3 because it is needed for the proof of the theorem. Assume that a subset $F \subset A$ intersects each of the sets A_{i} along a set closed in A_{i}. Since $F \cap X_{i}=F \cap A_{i}$ is closed in A_{i}, it follows that this set is closed in X_{i}. Therefore, F is closed in X since the cover $\left\{X_{i}\right\}$ is fundamental. Consequently, F is also closed in A, which proves that the cover $\left\{A_{i}\right\}$ is fundamental.
42.B This is true because by attaching D^{n} to a point along the boundary sphere we obtain the quotient space $D^{n} / S^{n-1} \cong S^{n}$.
42.C These (open) cells are: a point, the ($n-1$)-sphere S^{n-1} without this point, the n-ball B^{n} bounded by $S^{n-1}: e^{0}=x \in S^{n-1} \subset D^{n}, e^{n-1}=$ $S^{n} \backslash x$, and $e^{n}=B^{n}$.
42.D Indeed, factorizing the disjoint union of segments by the set of all of their endpoints, we obtain a bouquet of circles.
42.E We present the product $I \times I$ as a cellular space consisting of 9 cells: four 0 -cells, the vertices of the square; four 1 -cells, the sides of the square; and a 2-cell, the interior of the square. After the standard factorization under which the square becomes a torus, from the four 0 -cells we obtain one 0 -cell, and from the four 1 -cells we obtain two 1-cells.
42.F Each open cell of the product is a product of open cells of the factors, see Problem 42.3.
42.G Let $S^{k}=S^{n} \cap \mathbb{R}^{k+1}$, where

$$
\mathbb{R}^{k+1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k+1}, 0, \ldots, 0\right)\right\} \subset \mathbb{R}^{n+1}
$$

If we present S^{n} as the union of the constructed spheres of smaller dimensions: $S^{n}=\bigcup_{k=0}^{n} S^{k}$, then for each $k \in\{1, \ldots, n\}$ the difference $S^{k} \backslash S^{k-1}$ consists of exactly two k-cells: open hemispheres.
42.H Consider the cellular partition of S^{n} described in the solution to Problem 42. G. Then the factorization $S^{n} \rightarrow \mathbb{R} P^{n}$ identifies both cells in each dimension into one. Each of the attaching maps is the projection $D^{k} \rightarrow \mathbb{R} P^{k}$ mapping the boundary sphere S^{k-1} onto $\mathbb{R} P^{k-1}$.
42.I 0-cells are all integer points, and 1-cells are the open intervals $(k, k+1), k \in \mathbb{Z}$.
42.J Since $\mathbb{R}^{n}=\mathbb{R} \times \cdots \times \mathbb{R}$ (n factors), a cellular structure of \mathbb{R}^{n} can be determined by those of the factors (see 42.3). Thus, the 0 -cells are the points with integer coordinates. The 1 -cells are open intervals with endpoints $\left(k_{1}, \ldots, k_{i}, \ldots, k_{n}\right)$ and $\left(k_{1}, \ldots, k_{i}+1, \ldots, k_{n}\right)$, i.e., segments parallel to the coordinate axes. The 2-cells are squares parallel to the coordinate 2-planes, etc.
42.K See the solution to Problem 42.J.
42.L This is obvious: each infinite countable 0-dimensional space is homeomorphic to $\mathbb{N} \subset \mathbb{R}$.
42.M We map 0 -cells to integer points $A_{k}(k, 0,0)$ on the x axis. The embeddings of 1 -cells will be piecewise linear and performed as follows. Take the nth 1 -cell of X to the pair of points with coordinates $C_{n}(0,2 n-1,1)$ and $D_{n}(0,2 n, 1), n \in \mathbb{N}$. If the endpoints of the 1 -cell are mapped to A_{k} and A_{l}, then the image of the 1-cell is the three-link polyline $A_{k} C_{n} D_{n} A_{l}$ (possibly, closed). We easily see that the images of distinct open cells are disjoint (because their outer third parts lie on two skew lines). We have thus constructed an injection $f: X \rightarrow \mathbb{R}^{3}$, which is obviously continuous. The inverse map is continuous because it is continuous on each of the constructed polylines, which in addition constitute a closed locally-finite cover of $f(X)$, which is fundamental by $10 . U$.

42.N Use induction on skeletons and 42.N.2. The argument is simplified a great deal in the case when the cellular space is finite.
42.N. 1 We assume that $X \subset \mathbb{R}^{p} \subset \mathbb{R}^{p+q+1}$, where \mathbb{R}^{p} is the coordinate space of the first p coordinate lines in \mathbb{R}^{p+q+1}, and $Y \subset \mathbb{R}^{q} \subset \mathbb{R}^{p+q+1}$, where \mathbb{R}^{q} is the coordinate space of the last q coordinate lines in \mathbb{R}^{p+q+1}. Now we define a map $f: X \sqcup Y \rightarrow \mathbb{R}^{p+q+1}$. Set $f(x)=x$ if $x \in X$, and $f(y)=(0, \ldots, 0,1, y)$ if $y \notin V=h^{-1}(A \times[0,1 / 2))$. Finally, if $y \in U$, $h(y)=(a, t)$, and $t \in[0,1 / 2]$, then we define

$$
f(y)=((1-2 t) \varphi(a), 2 t, 2 t y) .
$$

We easily see that f is a proper map. The quotient map $\widehat{f}: X \cup_{\varphi} Y \rightarrow \mathbb{R}^{p+q+1}$ is a proper injection, and, therefore, \widehat{f} is an embedding by 19.Ox (cf. 19.Px).
42.N.2 By the definition of a cellular space, X is obtained by attaching a disjoint union of closed k-disks to the $(k-1)$-skeleton of X. Let Y be a countable union of k-balls, A the union of their boundary spheres. (The assumptions of Lemma 42.N. 1 is obviously fulfilled: let the neighborhood U be the complement of the union of concentric disks with radius $1 / 2$.) Thus, Lemma 42.N.2 follows from 42.N.1.
42.O This follows from $42 . N .2$ by the definition of the cellular topology.
42.P This follows from 42.0 and $42 . N$.
42.Q This follows from 42.P.
42.R Try to prove this assertion at least for 1-dimensional spaces.
42.S This can be proved by somewhat complicating the argument used in the proof of $43 . A x$.

42.T See, [FR, p. 93].

42.Ux We easily see that the closure of any open simplex is canonically homeomorphic to the closed n-simplex, and, since any simplicial space Σ is Hausdorff, Σ is homeomorphic to the quotient space obtained from a disjoint union of several closed simplices by pasting them together along entire faces via affine homeomorphisms. Since each simplex Δ is a cellular space and the faces of Δ are cellular subspaces of Δ, it remains to use Problem 43.Gx.
43. $\boldsymbol{A x}$ Let X be a cellular space, $x, y \in X$. Let n be the smallest number such that $x, y \in X_{n}$. We construct their disjoint neighborhoods U_{n} and V_{n} in X_{n}. Let, for example, $x \in e$, where e is an open n-cell. Then let U_{n} be a small ball centered at x, and let V_{n} be the complement (in X_{n}) of the closure of U_{n}. Now let a be the center of an $(n+1)$-cell, $\varphi: S^{n} \rightarrow X_{n}$ the corresponding attaching map. Consider the open cones over $\varphi^{-1}\left(U_{n}\right)$ and $\varphi^{-1}\left(V_{n}\right)$ with vertex a. Let U_{n+1} and V_{n+1} be the unions of the images of such cones over all $(n+1)$-cells of X. Clearly, they are disjoint neighborhoods of x and y in X_{n+1}. The sets $U=\bigcup_{k=n}^{\infty} U_{k}$ and $V=\bigcup_{k=n}^{\infty} V_{k}$ are disjoint neighborhoods of x and y in X.
43.Bx Let X be a cellular space, let $e \subset X$ be a cell of X, and let $\psi: D^{n} \rightarrow X$ be the characteristic map of e. As usual, $B=B^{n} \subset D^{n}$ is the open unit ball. Since the map ψ is continuous, we have $\bar{e}=\psi\left(D^{n}\right)=$ $\psi(\mathrm{Cl} B) \subset \mathrm{Cl}(\psi(B))=\mathrm{Cl}(e)$. On the other hand, $\psi\left(D^{n}\right)$ is a compact set, which is closed by $43 . A x$, whence $\bar{e}=\psi\left(D^{n}\right) \supset \mathrm{Cl}(e)$.
43.Cx Let X be a cellular space, X_{n} the n-skeleton of $X, n \in \mathbb{N}$. The definition of the quotient topology easily implies that X_{n-1} and closed n-cells of X form a fundamental cover of X_{n}. Starting with $n=0$ and
reasoning by induction, we prove that the cover of X_{n} by closed k-cells with $k \leq n$ is fundamental. Also, since the cover of X by the skeletons X_{n} is fundamental by the definition of the cellular topology, so is the cover of X by closed cells (see 10.31).
43.Dx This follows from assertion 43.Cx, the fact that, by the definition of a cellular subspace, each closed cell is contained in an element of the cover, and assertion 10.31.
43.Ex Let X be a cellular space, X_{k} the k-skeleton of X. First, we prove that each compact set $K \subset X_{k}$ meets only a finite number of open cells in X_{k}. We use induction on the dimension of the skeleton. Since the topology on the 0 -skeleton is discrete, each compact set can contain only a finite number of 0 -cells of X. Let us perform the step of induction. Consider a compact set $K \subset X_{n}$. For each n-cell e_{α} meeting K, take an open ball $U_{\alpha} \subset e_{\alpha}$ such that $K \cap U_{\alpha} \neq \varnothing$. Consider the cover $\Gamma=\left\{e_{\alpha}, X_{n} \backslash \cup \mathrm{Cl}\left(U_{\alpha}\right)\right\}$. Clearly, Γ is an open cover of K. Since K is compact, Γ contains a finite subcovering. Therefore, K meets finitely many n-cells. The intersection of K with the ($n-1$)-skeleton is closed, and, therefore, it is compact. By the inductive hypothesis, this set (i.e., $K \cap X_{n-1}$) meets finitely many open cells. Therefore, the set K also meets finitely many open cells.

Now let $\varphi: S^{n-1} \rightarrow X_{n-1}$ be the attaching map for the n-cell, $F=$ $\varphi\left(S^{n-1}\right) \subset X_{n-1}$. Since F is compact, F can meet only a finite number of open cells. Thus, we see that each closed cell meets only a finite number of open cells.
43.Fx Let A be a cellular subspace of X. By 43. $C x$, it is sufficient to verify that $A \cap \bar{e}$ is closed for each cell e of X. Since a cellular subspace is a union of open (as well as of closed) cells, i.e., $A=\bigcup e_{\alpha}=\bigcup \bar{e}_{\alpha}$, it follows from 43.Ex that we have

$$
A \cap \bar{e}=\left(\bigcup_{\alpha} e_{\alpha}\right) \cap \bar{e}=\left(\bigcup_{i=1}^{n} e_{\alpha_{i}}\right) \cap \bar{e} \subset\left(\bigcup_{i=1}^{n} \bar{e}_{\alpha_{i}}\right) \cap \bar{e} \subset A \cap \bar{e}
$$

and, consequently, the inclusions in this chain are equalities. Consequently, by 43.Bx, the set $A \cap \bar{e}=\bigcup_{i=1}^{n}\left(\bar{e}_{\alpha_{i}} \cap \bar{e}\right)$ is closed as the union of a finite number of closed sets.
43.Hx Since, by 43.Ex, each closed cell meets only a finite number of open cells, it follows that the intersection of any closed cell \bar{e} with A is finite and consequently (since cellular spaces are Hausdorff) closed, both in X, and a fortiori in \bar{e}. Since, by $43 . C x$, closed cells constitute a fundamental cover, the set A itself is also closed. Similarly, each subset of A is also closed in X and a fortiori in A. Thus, indeed, the induced topology on A is discrete.
43.Ix Let $K \subset X$ be a compact subset. In each of the cells e_{α} meeting K, we take a point $x_{\alpha} \in e_{\alpha} \cap K$ and consider the set $A=\left\{x_{\alpha}\right\}$. By 43.Hx, the set A is closed, and the topology on A is discrete. Since A is compact as a closed subset of a compact set, it follows that A is finite. Consequently, K meets only a finite number of open cells.
43.Jx \Leftrightarrow Use 43.Ix. \Leftrightarrow A finite cellular space is compact as the union of a finite number of compact sets - closed cells.
43.Kx We can use induction on the dimension of the cell because the closure of any cell meets finitely many cells of smaller dimension. Notice that the closure itself is not necessarily a cellular subspace.
43.Lx This follows from 43.Ix, 43.Kx, and 42.2.
$43 . M \mathbf{x} \Leftrightarrow$ Let K be a compact subset of a cellular space. Then K is closed because each cellular space is Hausdorff. Assertion 43.Ix implies that K meets only a finite number of open cells.
\approx If K meets finitely many open cells, then by $43 . K x K$ lies in a finite cellular subspace Y, which is compact by $43 . J x$, and K is a closed subset of Y.
43.Nx Let X be a cellular space. \Leftrightarrow We argue by contradiction. Let X contain an uncountable set of n-cells e_{α}^{n}. Denote e_{α}^{n} by U_{α}^{n}. Each of the sets U_{α}^{n} is open in the n-skeleton X_{n} of X. Now we construct an uncountable collection of disjoint open sets in X. Let a be the center of a certain $(n+1)$-cell, $\varphi: S^{n} \rightarrow X_{n}$ the attaching map of the cell. We construct the cone over $\varphi^{-1}\left(U_{\alpha}^{n}\right)$ with vertex at a and denote by U_{α}^{n+1} the union of such cones over all $(n+1)$-cells of X. Clearly, $\left\{U_{\alpha}^{n+1}\right\}$ is an uncountable collection of sets open in X_{n+1}. Then the sets $U_{\alpha}=\bigcup_{k=n}^{\infty} U_{\alpha}^{k}$ constitute an uncountable collection of disjoint sets that are open in the entire X. Therefore, X is not second countable and, therefore, nonseparable.
\Leftrightarrow If X has a countable set of cells, then, taking in each cell a countable everywhere dense set and uniting them, we obtain a countable set dense in the entire X (check this!). Thus, X is separable.
43.Ox Indeed, any path-connected component Y of a cellular space together with each point $x \in Y$ entirely contains each closed cell containing x, and, in particular, it contains the closure of the open cell containing x.
43. Qx Cf. the argument used in the solution to Problem 43.Nx.
43. $Q \times$ This is so because a cellular space is locally path-connected, see 43.Px.
43.Rx This follows from 43.Qx.
$43.5 \mathrm{x} \Leftrightarrow$ Obvious. \Leftrightarrow We show by induction that the number of cells in each dimension is countable. For this purpose, it is sufficient to prove that each cell meets finitely many closed cells. It is more convenient
to prove a stronger assertion: any closed cell \bar{e} meets finitely many closed cells. Clearly, any neighborhood meeting the closed cell also meets the cell itself. Consider the cover of \bar{e} by neighborhoods each of which meets finitely many closed cells. It remains to use the fact that \bar{e} is compact.
43.T× By Problem 43.Sx, the 1 -skeleton of X is connected. The result of Problem $43 . S x$ implies that it is sufficient to prove that the 0 -skeleton of X is countable. Fix a 0 -cell x_{0}. Denote by A_{1} the union of all closed 1-cells containing x_{0}. Now we consider the set A_{2}-the union of all closed 1-cells meeting A_{1}. Since X is locally finite, each of the sets A_{1} and A_{2} contains a finite number of cells. Proceeding in a similar way, we obtain an increasing sequence of 1-dimensional cellular subspaces $A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \ldots$, each of which is finite. Let $A=\bigcup_{k=1}^{\infty} A_{k}$. The set A contains countably many cells. The definition of the cellular topology implies that A is both open and closed in X_{1}. Since X_{1} is connected, we have $A=X_{1}$.
43.Ux \Leftrightarrow Assume the contrary: let the 1-skeleton X_{1} be disconnected. Then X_{1} is the union of two closed sets: $X_{1}=X_{1}^{\prime} \cup X_{1}^{\prime \prime}$. Each 2-cell is attached to one of these sets, whence $X_{2}=X_{2}^{\prime} \cup X_{2}^{\prime \prime}$. A similar argument shows that for each positive integer n the n-skeleton is a union of its closed subsets. Let $X^{\prime}=\bigcup_{n=0}^{\infty} X_{n}^{\prime}$ and $X^{\prime \prime}=\bigcup_{n=0}^{\infty} X_{n}^{\prime \prime}$. By the definition of the cellular topology, X^{\prime} and $X^{\prime \prime}$ are closed, and, consequently, X is disconnected. \Leftrightarrow This is obvious.
44.A This immediately follows from the obvious equality $c_{i}(A \cup B)=$ $c_{i}(A)+c_{i}(B)-c_{i}(A \cap B)$.
44.B Here we use the following artificial trick. We introduce the polynomial $\chi_{A}(t)=c_{0}(A)+c_{1}(A) t+\cdots+c_{i}(A) t^{i}+\ldots$. This is the Poincaré polynomial, and its most important property for us here is that $\chi(X)=\chi_{X}(-1)$. Since $c_{k}(X \times Y)=\sum_{i=0}^{k} c_{i}(X) c_{k-i}(Y)$, we have

$$
\chi_{X \times Y}(t)=\chi_{X}(t) \cdot \chi_{Y}(t),
$$

whence $\chi(X \times Y)=\chi_{X \times Y}(-1)=\chi_{X}(-1) \cdot \chi_{Y}(-1)=\chi(X) \cdot \chi(Y)$.
44. C Set $X^{\prime}=X \backslash(e \cup f)$. It follows from the definition that the union of all open cells in X^{\prime} coincides with the union of all closed cells in X^{\prime}, and, consequently, X^{\prime} is a cellular subspace of X.
44.D The deformation retraction of D^{n} to the lower closed hemisphere S_{-}^{n-1} determines a deformation retraction $X \rightarrow X \backslash(e \cup f)$.
44. \boldsymbol{E} The assertion is obvious because each elementary combinatorial collapse decreases by one the number of cells in each of two neighboring dimensions.
44.F Let $p: X \rightarrow X^{\prime}$ be the factorization map. The space X^{\prime} has the same open cells as X except e and f. The attaching map for each of them is the composition of the initial attaching map and p.
44.G.1 Let $Y=X_{n-1} \cup_{\varphi_{e}} D^{n}$. Clearly, $Y^{\prime} \cong Y \backslash(e \cup f)$, and so we identify these spaces. Then the projection $p^{\prime}: Y \rightarrow Y^{\prime}$ is a homotopy equivalence by 44.D.
44.G.2 Let $\left\{e_{\alpha}\right\}$ be a collection of n-cells of X distinct from the cell e, and let φ_{α} be the corresponding attaching maps. Consider the map $p^{\prime}: Y \rightarrow Y^{\prime}$. Since

$$
X_{n}=Y \cup_{\left(\sqcup_{\alpha} \varphi_{\alpha}\right)}\left(\bigsqcup_{\alpha} D_{\alpha}^{n}\right),
$$

we have

$$
X_{n}^{\prime}=Y^{\prime} \cup_{\left(\sqcup_{\alpha} p^{\prime} \circ \varphi_{\alpha}\right)}\left(\bigsqcup_{\alpha} D_{\alpha}^{n}\right) .
$$

Since p^{\prime} is a homotopy equivalence by 44.G.1, the result of $44.6 \times$ implies that p^{\prime} extends to a homotopy equivalence $p_{n}: X_{n} \rightarrow X_{n}^{\prime}$. Using induction on skeletons, we obtain the required assertion.
44.Hx We use induction on the dimension. Clearly, we should consider only those cells which do not lie in A. If there is a retraction

$$
\rho_{n-1}:\left(X_{n-1} \cup A\right) \times I \rightarrow\left(X_{n-1} \times 0\right) \cup(A \times I),
$$

and we construct a retraction

$$
\widetilde{\rho}_{n}:\left(X_{n} \cup A\right) \times I \rightarrow\left(X_{n} \times 0\right) \cup\left(\left(X_{n-1} \cup A\right) \times I\right),
$$

then it is obvious how, using their "composition", we can obtain a retraction

$$
\rho_{n}:\left(X_{n} \cup A\right) \times I \rightarrow\left(X_{n} \times 0\right) \cup(A \times I) .
$$

We need the standard retraction $\rho: D^{n} \times I \rightarrow\left(D^{n} \times 0\right) \cup\left(S^{n-1} \times I\right)$. (It is most easy to define ρ geometrically. Place the cylinder in a standard way in \mathbb{R}^{n+1} and consider a point p lying over the center of the upper base. For $z \in D^{n} \times I$, let $\rho(z)$ be the point of intersection of the ray starting at p and passing through z with the union of the base $D^{n} \times 0$ and the lateral area $S^{n-1} \times I$ of the cylinder.) The quotient map ρ is a map $\bar{e} \times I \rightarrow\left(X_{n} \times 0\right) \cup\left(X_{n-1} \times I\right)$. Extending it identically to $X_{n-1} \times I$, we obtain a map

$$
\rho_{e}:(\bar{e} \times I) \cup\left(X_{n-1} \times I\right) \rightarrow\left(X_{n} \times 0\right) \cup\left(X_{n-1} \times I\right) .
$$

Since the closed cells constitute a fundamental cover of a cellular space, the retraction $\widetilde{\rho}_{n}$ is thus defined.
44.Ix The formulas $\widetilde{H}(x, 0)=F(x)$ for $x \in X$ and $\widetilde{H}(x, t)=h(x, t)$ for $(x, t) \in A \times I$ determine a map $\widetilde{H}:(X \times 0) \cup(A \times I) \rightarrow Y$. By 44.Hx, there
is a retraction $\rho: X \times I \rightarrow(X \times 0) \cup(A \times I)$. The composition $H=\widetilde{H} \circ \rho$ is the required homotopy.
44.Jx Let $h: A \times I \rightarrow A$ be a homotopy between the identity map of A and the constant map $A \rightarrow A: a \mapsto x_{0}$. Consider the homotopy $\widetilde{h}=i \circ h: A \times I \rightarrow X$. By Theorem 44.Ix, \widetilde{h} extends to a homotopy $H: X \times I \rightarrow X$ of the identity map of the entire X. Consider the map $f: X \rightarrow X: x \mapsto H(x, 1)$. By the construction of the homotopy \widetilde{h}, we have $f(A)=\left\{x_{0}\right\}$. Consequently, the quotient map of f is a continuous $\operatorname{map} g: X / A \rightarrow X$. We prove that pr and g are mutually inverse homotopy equivalences. To do this we must verify that $g \circ \mathrm{pr} \sim \mathrm{id}_{X}$ and $\mathrm{pr} \circ g \sim \mathrm{id}_{X / A}$. 1) We observe that $H(x, 1)=g(\operatorname{pr}(x))$ by the definition of g. Since $H(x, 0)=$ x for all $x \in X$, it follows that H is a homotopy between id_{X} and the composition $g \circ$ pr.
2) If we factorize each fiber $X \times t$ by $A \times t$, then, since $H(x, t) \in A$ for all $x \in A$ and $t \in I$, the homotopy H determines a homotopy $\widetilde{H}: X / A \rightarrow X / A$ between $\operatorname{id}_{X / A}$ and the composition $p \circ g$.
44.Mx Let X be the space. By 44.Lx, we can assume that X has one 0 -cell, and therefore the 1 -skeleton X_{1} is a bouquet of circles. Consider the characteristic map $\psi: I \rightarrow X_{1}$ of a certain 1-cell. Instead of the loop ψ, it is more convenient to consider the circular loop $S^{1} \rightarrow X_{1}$, which we denote by the same letter. Since X is simply connected, the loop ψ extends to a map $f: D^{2} \rightarrow X$. Now consider the disk D^{3}. To simplify the notation, we assume that f is defined on the lower hemisphere $S_{-}^{2} \subset D^{3}$. Let $Y=X \cup_{f} D^{3} \simeq X$. The space Y is cellular and is obtained by adding two cells to X : a 2 - and a 3 -cell. The new 2 -cell e, i.e., the image of the upper hemisphere in D^{3}, is a contractible cellular space. Therefore, we have $Y / e \simeq Y$, and Y / e contains one 1-cell less than the initial space X. Proceeding in this way, we obtain a space with one-point 2 -skeleton. Notice that our construction yielded a 3 -dimensional cellular space. Actually, in our assumptions the space is homotopy equivalent to: a point, a 2 -sphere, or a bouquet of 2 -spheres, but the proof of this fact involves more sophisticated techniques (the homology).
44.Nx Let $f: X \rightarrow A$ be a map homotopically inverse to the inclusion in_{A}. By assumption, the restriction of f to the subspace A, i.e., the composition $f \circ$ in, is homotopic to the identity map id_{A}. By Theorem 44.Ix, this homotopy extends to a homotopy $H: X \times I \rightarrow A$ of f. Set $\rho(x)=H(x, 1)$; then $\rho(x)=x$ for all $x \in A$. Consequently, ρ is a retraction. It remains to observe that, since ρ is homotopic to f, it follows that in $\circ \rho$ is homotopic to the composition $\operatorname{in}_{A} \circ f$, which is homotopic to id ${ }_{X}$ because f and in are homotopically inverse by assumption.
45.A Prove this by induction, using Lemma 45.A.1.
45.A.1 Certainly, the fact that the projection is a homotopy equivalence is a special case of assertions $44 . K x$ and 44.G. However, here we present an independent argument, which is more visual in the 1-dimensional case. All homotopies will be fixed outside a neighborhood of the 1-cell e of the initial cellular space X and outside a neighborhood of the 0 -cell x_{0}, which is the image of e in the quotient space $Y=X / e$. For this reason, we consider only the closures of such neighborhoods. Furthermore, to simplify the notation, we assume that the spaces under consideration coincide with these neighborhoods. In this case, X is the 1-cell e with the segments $I_{1}, I_{2}, \ldots, I_{k}$ (respectively, $J_{1}, J_{2}, \ldots, J_{n}$) attached to the left endpoint, (respectively, to the right endpoint). The space Y is simply a bouquet of all these segments with a common point x_{0}. The map $f: X \rightarrow Y$ has the following structure: each of the segments I_{i} and J_{j} is mapped onto itself identically, and the cell e is mapped to x_{0}. The map $g: Y \rightarrow X$ sends x_{0} to the midpoint of e and maps a half of each of the segments I_{s} and J_{t} to the left and to the right half of e, respectively. Finally, the remaining half of each of these segments is mapped (with double extension) onto the entire segment. We prove that the described maps are mutually homotopically inverse. Here it is important that the homotopies be fixed on the free endpoints of I_{s} and J_{t}. The composition $f \circ g: Y \rightarrow Y$ has the following structure. The restriction of $f \circ g$ to each of the segments in the bouquet is, strictly speaking, the product of the identical path and the constant path, which is known to be homotopic to the identical path. Furthermore, the homotopy is fixed both on the free endpoints of the segments and on x_{0}. The composition $g \circ f$ maps the entire cell e to the midpoint of e, while the halves of each of the segments I_{s} and J_{t} adjacent to e are mapped to a half of e, and their remaining parts are extended twice and mapped onto the entire corresponding segment. Certainly, the map under consideration is homotopic to the identity.
45.B By 45.A.1, each connected 1-dimensional finite cellular space X is homotopy equivalent to a space X^{\prime}, where the number of 0 - and 1-cells is one less than in X, whence $\chi(X)=\chi\left(X^{\prime}\right)$. Reasoning by induction, we obtain as a result a space with a single 0 -cell and with Euler characteristic equal to $\chi(X)(c f .44 . E)$. Let k be the number of 1 -cells in this space. Then we have $\chi(X)=1-k$, whence $k=1-\chi(X)$. It remains to observe that k is precisely the rank of $\pi_{1}(X)$.
45. C This follows from $45 . B$ because the fundamental group of a space is invariant with respect to homotopy equivalences.
45.D This follows from 45.C.
45. \boldsymbol{E} By $45 . B$, if two finite connected 1-dimensional cellular spaces have isomorphic fundamental groups (or equal Euler characteristics), then each
of them is homotopy equivalent to a bouquet consisting of one and the same number of circles. Therefore, the spaces are homotopy equivalent. If the spaces are homotopy equivalent, then, certainly, their fundamental groups are isomorphic, and, by 45.C, their Euler characteristics are also equal.
45.Jx Let e be an open cell. If the image $\varphi_{e}\left(S^{0}\right)$ of the attaching map of e is a singleton, then $X \backslash e$ is obviously connected. Assume that $\varphi_{e}\left(S^{0}\right)=\left\{x_{0}, x_{1}\right\}$. Prove that each connected component of $X \backslash e$ contains at least one of the points x_{0} and x_{1}.
45.Kx 1) Let X be a connected 1-dimensional cellular space, $x \in X$ a vertex. If a connected component of $X \backslash x$ contains no edges whose closure contains x, then, since cellular spaces are locally connected, the component is both open and closed in the entire X, contrary to the connectedness of X. 2) This follows from the fact that a vertex of degree m lies in the closure of at most m distinct edges.
46. \boldsymbol{A} See 45.B.
46.B This follows from 45.I (or 44.Jx) because of 36.L.
46.C It is sufficient to prove that each loop $u: I \rightarrow X$ is homotopic to a loop v with $v(I) \subset A$. Let $U \subset D^{k}$ be the open ball with radius $2 / 3$, and let V be the complement in X of a closed disk with radius $1 / 3$. By the Lebesgue Lemma 17. W, the segment I can be subdivided into segments I_{1}, \ldots, I_{N} so that the image of each of them lies entirely in one of the sets U or V.

Assume that $u\left(I_{l}\right) \subset U$. Since any two paths in D^{k} with the same starting and ending points are homotopic, it follows that the restriction $\left.u\right|_{I_{l}}$ is homotopic to a path that does not meet the center $a \in D^{k}$. Therefore, the loop u is homotopic to a loop u^{\prime} whose image does not contain a. It remains to observe that the space A is a deformation retract of $X \backslash a$, and, therefore, u^{\prime} is homotopic to a loop v with image lying in A.
46.D Let s be a loop at x_{0}. Since the set $s(I)$ is compact, $s(I)$ is contained in a finite cellular subspace Y of X. It remains to apply assertion $46 . C$ and use induction on the number of cells in Y.
46.E This follows from 46.D and 46.B.
46.F If we take another collection of paths s_{α}^{\prime}, then the elements $T_{s_{\alpha}}\left[\varphi_{\alpha}\right]$ and $T_{s_{\alpha}^{\prime}}\left[\varphi_{\alpha}\right]$ are conjugate in $\pi_{1}\left(X_{1}, x_{0}\right)$, and since the subgroup N is normal, N contains the collection of elements $\left\{T_{s_{\alpha}}\left[\varphi_{\alpha}\right]\right\}$ iff N contains the collection $\left\{T_{s_{\alpha}^{\prime}}\left[\varphi_{\alpha}\right]\right\}$.
46.G We can assume that the 0 -skeleton of X is the singleton $\left\{x_{0}\right\}$. so that the 1 -skeleton X_{1} is a bouquet of circles. Consider a covering $p_{1}: Y_{1} \rightarrow X_{1}$ with group N. Its existence follows from the more general Theorem 41.Dx on the existence of a covering with given group. In the
case considered, the covering space is a 1-dimensional cellular space. Now the proof of the theorem consists of several steps, each of which is the proof of one of the following seven lemmas. It is also convenient to assume that $\varphi_{\alpha}(1)=x_{0}$, so that $T_{s_{\alpha}}\left[\varphi_{\alpha}\right]=\left[\varphi_{\alpha}\right]$.
46.G.1 Since, clearly, $\operatorname{in}_{*}\left(\left[\varphi_{\alpha}\right]\right)=1$ in $\pi_{1}\left(X, x_{0}\right)$, we have $\operatorname{in}_{*}\left(\left[\varphi_{\alpha}\right]\right)=1$ in $\pi_{1}\left(X, x_{0}\right)$, and, therefore, each of the elements $\left[\varphi_{\alpha}\right]$ lies in $\operatorname{Ker} i_{*}$. Since the subgroup $\operatorname{Ker} i_{*}$ is normal, it contains N, which is the smallest subgroup generated by these elements.
46.G.2 This follows from 41.Px.
46.G.3 Let $F=p_{1}^{-1}\left(x_{0}\right)$ be the fiber over x_{0}. The map p_{2} is a quotient map

$$
Y_{1} \sqcup\left(\bigsqcup_{\alpha} \bigsqcup_{y \in F_{\alpha}} D_{\alpha, y}^{2}\right) \rightarrow X_{1} \sqcup\left(\bigsqcup_{\alpha} D_{\alpha}^{2}\right)
$$

whose submap $Y_{1} \rightarrow X_{1}$ is p_{1}, and the maps $\bigsqcup_{y \in F_{\alpha}} D_{\alpha}^{2} \rightarrow D_{\alpha}^{2}$ are identities on each of the disks D_{α}^{2}. Clearly, the entire interior of the disk is a trivially covered neighborhood for each point $x \in \operatorname{Int} D_{\alpha}^{2} \subset X_{2}$. Now assume that for point $x \in X_{1}$ the set U_{1} is a trivially covered neighborhood of x with respect to the covering p_{1}. Let $U=U_{1} \cup\left(\bigcup_{\alpha^{\prime}} \psi_{\alpha^{\prime}}\left(B_{\alpha^{\prime}}\right)\right)$, where $B_{\alpha^{\prime}}$ is the open cone with vertex at the center of $D_{\alpha^{\prime}}^{2}$ and base $\varphi_{\alpha^{\prime}}^{-1}(U)$. The set U is a trivially covered neighborhood of x with respect to p_{2}.
46.G.4 First, we prove this for $n=3$. So, let $p: X \rightarrow B$ be an arbitrary covering, $\varphi: S^{2} \rightarrow B$ an arbitrary map. Consider the subset $A=S^{1} \times 0 \cup 1 \times I \cup S^{1} \times 1$ of the cylinder $S^{1} \times I$, and let $q: S^{1} \times I \rightarrow S^{1} \times I / A$ be the factorization map. We easily see that $S^{1} \times I / A \cong S^{2}$. Therefore, we assume that $q: S^{1} \times I \rightarrow S^{2}$. The composition $h=\varphi \circ q: S^{1} \times I \rightarrow B$ is a homotopy between one and the same constant loop in the base of the covering. By the Path Homotopy Lifting Theorem 35.C, the homotopy h is covered by the map \widetilde{h}, which also is a homotopy between two constant paths, and, therefore, the quotient map of \widetilde{h} is the map $\widetilde{\varphi}: S^{2} \rightarrow X$ covering φ. For $n>3$, use $41 . Y x$.
46.G.5 The proof is similar to that of Lemma 3.
46.G.6 Since the loop in os: $I \rightarrow X$ is null-homotopic, it is covered by a loop, the image of which automatically lies in Y_{1}.
46.G.7 Let s be a loop in X_{1} such that $[s] \in \operatorname{Ker}\left(i_{1}\right)_{*}$. Lemma 6 implies that s is covered by a loop $\widetilde{s}: I \rightarrow Y_{1}$, whence $[s]=\left(p_{1}\right)_{*}([\widetilde{s}]) \in N$. Therefore, Ker in ${ }_{*} \subset N$, whence $N=$ Ker in $_{*}$ by Lemma 1 .
46.I For example, $\mathbb{R} P^{2}$ is obtained by attaching D^{2} to S^{1} via the map $\varphi: S^{1} \rightarrow S^{1}: z \mapsto z^{2}$. The class of the loop φ in $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ is the doubled generator, whence $\pi_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z}_{2}$, as it should have been expected. The torus $S^{1} \times S^{1}$ is obtained by attaching D^{2} to the bouquet $S^{1} \vee S^{1}$ via a map
φ representing the commutator of the generators of $\pi_{1}\left(S^{1} \vee S^{1}\right)$. Therefore, as expected, the fundamental group of the torus is \mathbb{Z}^{2}.
46.K See 42.12 (h).
46.L See 42.12 (i).
46.M.1 Indeed, the single relation in the fundamental group of the sphere with g handles means that the product of g commutators of the generators a_{i} and b_{i} equals 1 , and so it "vanishes" after the abelianization.
46.N.1 Taking the elements a_{1}, \ldots, a_{g-1}, and $b_{n}=a_{1} a_{2} \ldots a_{g}$ as generators in the commuted group, we obtain an Abelian group with a single relation $b_{n}^{2}=1$.
46.O This follows from 46.M.1.
46.O This follows from 46.N.1.
46.Q This follows from 46.M.1 and 46.N.1.
46.Rx We do not assume that you can prove this theorem on your own. The proof can be found, for example, in [5].
46.Sx Draw a commutative diagram that contains all inclusion homomorphisms induced by all inclusions occurring in this situation.
46.Tx In Section $46^{\prime} 7 \mathrm{x}$ we will see that the group presented as above up to canonical isomorphism does not depend on the choice of generators and relations in $\pi_{1}\left(A, x_{0}\right)$ and $\pi_{1}\left(B, x_{0}\right)$ and the choice of generators in $\pi_{1}\left(C, x_{0}\right)$. Therefore we can use the presentation which is most convenient for us. We derive the theorem from Theorems 46.D and 46.G. First of all, it is convenient to replace X, A, B, and C by homotopy equivalent spaces with one-point 0 -skeletons. We do this with the help of the following construction. Let T_{C} be a spanning tree in the 1 -skeleton of C. We complete T_{C} to a spanning tree $T_{A} \supset T_{C}$ in A, and also complete T_{C} to a spanning tree $T_{B} \supset T_{C}$. The union $T=T_{A} \cup T_{B}$ is a spanning tree in X. It remains to replace each of the spaces under consideration with its quotient space by a spanning tree. Thus, the 1 -skeleton of each of the spaces X, A, B, and C either coincides with the 0 -cell x_{0}, or is a bouquet of circles. Each of the circles of the bouquets determines a generator of the fundamental group of the corresponding space. The image of $\gamma_{i} \in \pi_{1}\left(C, x_{0}\right)$ under the inclusion homomorphism is one of the generators, let it be $\alpha_{i}\left(\beta_{i}\right)$ in $\pi_{1}\left(A, x_{0}\right)$ (respectively, in $\pi_{1}\left(B, x_{0}\right)$). Thus, we have $\xi_{i}=\alpha_{i}$ and $\eta_{i}=\beta_{i}$. The relations $\xi_{i}=\eta_{i}$ and, in this case, $\alpha_{i}=\beta_{i}, i=1, \ldots, t$, arise because each of the circles lying in C determines a generator of $\pi_{1}\left(X, x_{0}\right)$. Assertion $46 . G$ implies that all remaining relations are determined by the attaching maps of the 2 -cells of X, each of which lies in at least one of the sets A or B and, hence, is a relation between the generators of the fundamental groups of these spaces.
46. $\boldsymbol{U x}$ Let \mathcal{F} be a free group with generators $\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}$. By definition, the group X is the quotient group of F by the normal hull N of the elements

$$
\left\{\rho_{1}, \ldots, \rho_{r}, \sigma_{1}, \ldots, \sigma_{s}, \xi\left(\gamma_{1}\right) \eta\left(\gamma_{1}\right)^{-1}, \ldots, \xi\left(\gamma_{t}\right) \eta\left(\gamma_{t}\right)^{-1}\right\}
$$

Since the first diagram is commutative, it follows that the subgroup N lies in the kernel of the homomorphism $F \rightarrow X^{\prime}: \alpha_{i} \mapsto \varphi^{\prime}\left(\alpha_{i}\right), \beta_{i} \mapsto \psi^{\prime}\left(\alpha_{i}\right)$. Consequently, there is a homomorphism $\zeta: X \rightarrow X^{\prime}$. Its uniqueness is obvious. Prove the last assertion of the theorem on your own.
46. $V \mathrm{x}$ Construct a universal covering of X.

Hints, Comments, Advices, Solutions, and Answers

1.1 The set $\{\varnothing\}$ consists of one element, which is the empty set \varnothing. Certainly, this element itself is the empty set and contains no elements, but the set $\{\varnothing\}$ consists of a single element \varnothing.
1.2 1) and 2) are correct, while 3) is not.
1.3 Yes, the set $\{\{\varnothing\}\}$ is a singleton: its single element is the set $\{\varnothing\}$.
$1.42,3,1,2,2,2,1,2$ for $x \neq 1 / 2$ and 1 if $x=1 / 2$.
1.5 (a) $\{1,2,3,4\}$; (b) $\}$; (c) $\{-1,-2,-3,-4,-5,-6, \ldots\}$
1.8 The set of solutions for a system of equations is equal to the intersection of the sets of solutions of individual equations in the system.
2.1 The solution involves the equality $\bigcup_{\alpha}\left(a_{\alpha} ;+\infty\right)=\left(\inf a_{\alpha} ;+\infty\right)$. Prove it. By the way, the collection of closed rays $[a ;+\infty)$ is not a topological structure since it may happen that $\bigcup_{\alpha}\left[a_{\alpha} ;+\infty\right)=\left(a_{0} ;+\infty\right)$ (give an example).
2.2 Yes, it is. The proof almost literally coincides with the solution to the preceding problem.
2.3 The main point here is to realize that the axioms of topological structure are conditions on the collection of subsets, and if these conditions are fulfilled, then the collection is a topological structure. The second collection is not a topological structure because it contains the sets $\{a\}$ and $\{b, d\}$, but does not contain $\{a, b, d\}=\{a\} \cup\{b, d\}$. Find two elements of
the third collection such that their intersection does not belong to it. By this you would prove that this is not a topology. Finally, we easily see that all unions and intersections of elements of the first collection still belong to the first collection, which thus is a topological structure.
2.10 The following sets are closed
(1) in a discrete space: all sets;
(2) in an indiscrete space: only the sets that are also open, i.e., the empty set and the whole space;
(3) in the arrow: \varnothing, the whole space and segments of the form $[0, a]$;
(4) in \forall : the sets $X, \varnothing,\{b, c, d\},\{a, c, d\},\{b, d\},\{d\}$, and $\{c, d\}$;
(5) in $\mathbb{R}_{T_{1}}$: all finite sets and the whole \mathbb{R}.
2.11 Here it is important to overcome the feeling that the question is completely obvious. Why is $(0,1]$ not open? If $(0,1]=\bigcup_{\alpha}\left(a_{\alpha}, b_{\alpha}\right)$, then $1 \in\left(a_{\alpha_{0}}, b_{\alpha_{0}}\right)$ for some α_{0}, whence $b_{\alpha_{0}}>1$, and it follows that $\bigcup_{\alpha}\left(a_{\alpha}, b_{\alpha}\right) \neq$ $(0,1]$. The set

$$
\mathbb{R} \backslash(0,1]=(-\infty, 0] \cup(1,+\infty)
$$

is not open for similar reasons. On the other hand, we have

$$
(0,1]=\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 1\right]=\bigcap_{n=1}^{\infty}\left(0, \frac{n+1}{n}\right) .
$$

2.13 Verify that $\Omega=\{U \mid X \backslash U \in \mathcal{F}\}$ is a topological structure.
2.14 A control sum: the number of such collections is 14 .
2.15 By this point, you must already know everything needed for solving this problem, so solve it on your own. Please, don't be lazy.
3.1 Certainly not! A topological structure is determined by its base as the set of unions of all collections of sets in the base.
3.2
(1) A discrete space admits the base consisting of all one-point subsets of the space, and this base is minimal. (Why?)
(2) For a base in \forall, we can take, say, $\{\{a\},\{b\},\{a, c\},\{a, b, c, d\}\}$.
(3) The minimal base in an indiscrete space is formed by a single set: the whole space.
(4) In the arrow, $\{[0,+\infty),(r,+\infty)\}_{r \in \mathbb{Q}_{+}}$is a base.
3.3 We show that by removing any element from any base of the standard topology of the line we obtain a base of the same topology! Let U be an arbitrary element of a base \mathcal{B}. Obviously, U is a union of open intervals that are shorter than the distance between some two points of U.

We would need at least two such intervals. Each of them, in turn, is a union of sets in \mathcal{B}. U is not involved in these unions since U is not contained in such short intervals. Hence, U is a union of elements in \mathcal{B} distinct from U, and it can be replaced by this union in any presentation of an open set as a union of elements of the base.
3.4 The whole topological structure is its own base. So, the question is, when is this the only base. No open set in such a space is the union of two open sets distinct from the entire space. Hence, open sets are linearly ordered by inclusion. (The notion of linear order is discussed in detail in Section $7^{\prime} 6$ below.) Furthermore, the space should contain no increasing infinite sequence of open sets since, otherwise, an open set could be obtained as a union of sets in such a sequence.
3.5, 3.6 The following easy lemma may be of use in the solution to each of these problems: $A=\bigcup_{\alpha} B_{\alpha}$, where $B_{\alpha} \in \mathcal{B}$, iff $\forall x \in A \exists B_{x} \in \mathcal{B}$: $x \in B_{x} \subset A$.
3.7 The statement: " \mathcal{B} is a base of a topological structure" is equivalent to the following: the set of unions of all collections of sets in \mathcal{B} is a topological structure. Σ^{1} is a base of some topology by 3.B and 3.6. So, you must prove analogs of 3.6 for Σ^{2} and Σ^{∞}. To prove that the structures determined, say, by the bases Σ^{1} and Σ^{2} coincide, you need to prove that each union of disks is a union of squares, and vice versa. Is it sufficient to prove that a disk is a union of squares? What is the simplest way to do this? (Cf. our advice concerning problems 3.5 and 3.6.)
3.9 Observe that a nonempty intersection of several arithmetic progressions is an arithmetic progression.
3.10 Since the sets $\{i, i+d, i+2 d, \ldots\}, i=1, \ldots, d$, are open and pairwise disjoint and their union is the entire \mathbb{N}, it follows that each of them is closed. In particular, for each prime number p the set $\{p, 2 p, 3 p, \ldots\}$ is closed. The union of all sets of the form $\{p, 2 p, 3 p, \ldots\}$ is $\mathbb{N} \backslash\{1\}$. Hence, if the set of prime numbers were finite, then the set $\{1\}$ would be open. However, it is not a union of arithmetic progressions.
3.11 The inclusion $\Omega_{1} \subset \Omega_{2}$ means that a set open in the first topology (i.e., a set in Ω_{1}) also belongs to Ω_{2}. Therefore, you must only prove that $\mathbb{R} \backslash\left\{x_{i}\right\}_{i=1}^{n}$ is open in the canonical topology of the line.

4.2 Cf. Problem 4.B.

4.4 Look for the answer to 4.7.
4.7 Squares with sides parallel to the coordinate axes and bisectors of the coordinate angles, respectively.
4.8 We have $D_{1}(a)=X, D_{1 / 2}(a)=\{a\}$, and $S_{1 / 2}(a)=\varnothing$.
4.9 For example, let $X=D_{1}(0) \subset \mathbb{R}^{1}$. Then $D_{3 / 2}(5 / 6) \subset D_{1}(0)$.
4.10 Three points suffice.
4.11 Let $R>r$ and let $D_{R}(b) \subset D_{r}(a)$. Take $c \in D_{R}(b)$ and use the triangle inequality $\rho(b, c) \leq \rho(b, a)+\rho(a, c)$.
4.12 Put $u=b-x$ and $t=x-a$. The Cauchy inequality becomes an equality iff the vectors u and t have the same direction, i.e., x lies on the segment connecting a and b.
4.13 For the metric $\rho^{(p)}$ with $p>1$, this set is the segment connecting a and b, while for the metric $\rho^{(1)}$ it is a rectangular parallelepiped whose opposite vertices are a and b.
4.14 See the proof of 4.F.
4.19 The discrete one.
4.20 Just recall that you need to prove that $X \backslash D_{r}(a)=\{x \mid \rho(x, a)>$ $r\}$ is open.
4.23 Use the obvious equality $X \backslash S_{r}(a)=B_{r}(a) \cup\left(X \backslash D_{r}(a)\right)$ and the result of 4.20.
4.25 Only the line and discrete spaces.
4.26 By 3.7, the metrics $\rho^{(2)}, \rho^{(1)}$, and $\rho^{(\infty)}$ are equivalent for $n=2$; similar arguments work for $n>2$, too. Cf. 4.30.
4.27 First, we prove that $\Omega_{2} \subset \Omega_{1}$ provided that $\rho_{2}(x, y) \leq C \rho_{1}(x, y)$. Indeed, the inequality $\rho_{2} \leq C \rho_{1}$ implies $B_{r}^{\left(\rho_{1}\right)}(a) \subset B_{C r}^{\left(\rho_{2}\right)}$. Now let us use Theorem 4.I. The inequality $c \rho_{1}(x, y) \leq \rho_{2}(x, y)$ can be written as $\rho_{1}(x, y) \leq \frac{1}{c} \rho_{2}(x, y)$. Hence, $\Omega_{1} \subset \Omega_{2}$.
4.28 The metrics $\rho_{1}(x, y)=|x-y|$ and $\rho_{2}(x, y)=\arctan |x-y|$ on the line are equivalent, but obviously there is no constant C such that $\rho_{1} \leq C \rho_{2}$.
4.29 Two metrics ρ_{1} and ρ_{2} are equivalent if there exist $c, C, d>0$ such that $\rho_{1}(x, y) \leq d$ implies $c \rho_{1}(x, y) \leq \rho_{2}(x, y) \leq C \rho_{1}(x, y)$.
4.30 Use the result of Problem 4.27. Show that for any pair of metrics $\rho^{(p)}, 1 \leq p \leq \infty$, there exist appropriate constants c and C.
4.31 We have $\Omega_{1} \subset \Omega_{C}$ because $\rho_{1}(f, g) \leq \rho_{C}(f, g)$. On the other hand, no ρ_{1}-ball centered at the origin is contained in $B_{1}^{\left(\rho_{C}\right)}(0)$ since for each $\varepsilon>0$ there is a function f such that $\int_{0}^{1}|f(x)| d x<\varepsilon$ and $\max _{[0,1]}|f(x)| \geq 1$. Therefore, $\Omega_{C} \not \subset \Omega_{1}$.
4.32 Clearly, the only thing in all five cases which is to be proved and is not completely obvious is the triangle inequality. It is also obvious for
$\rho_{1}+\rho_{2}$. Furthermore,

$$
\begin{aligned}
& \rho_{1}(x, y) \leq \rho_{1}(x, z)+\rho_{1}(z, y) \\
& \quad \leq \max \left\{\rho_{1}(x, z), \rho_{2}(x, z)\right\}+\max \left\{\rho_{1}(y, z), \rho_{2}(y, z)\right\}
\end{aligned}
$$

A similar inequality holds true for $\rho_{2}(x, y)$, and, therefore, $\max \left\{\rho_{1}, \rho_{2}\right\}$ is a metric. Construct examples which would prove that neither $\min \left\{\rho_{1}, \rho_{2}\right\}$, nor ρ_{1} / ρ_{2}, nor $\rho_{1} \rho_{2}$ is a metric. (To do this, it would suffice to find three points with appropriate pairwise distances.)
4.33 Assertion (c) is quite obvious. Assertions (a) and (b) follow from (c) for $f(t)=t /(1+t)$ and $f(t)=\min \{1, t\}$, respectively. Thus, it suffices to check that these functions satisfy the assumptions of assertion (c).
4.34 Since we have $\rho /(1+\rho) \leq \rho$ and the inequality $\frac{1}{2} \rho(x, y) \leq$ $\rho(x, y) /(1+\rho(x, y))$ holds true for $\rho(x, y) \leq 1$, the statement follows from the result of 4.29.
5.1 In the same way as the relative topology: if Σ is a base in X, then $\Sigma_{A}=\{A \cap V \mid V \in \Sigma\}$ is a base of the relative topology on A.
5.2
(1) Discrete because $(n-1, n+1) \cap \mathbb{N}=\{n\}$;
(2) $\Omega_{\mathbb{N}}=\{(k, k+1, k+2, \ldots)\}_{k \in \mathbb{N}}$;
(3) discrete;
(4) $\Omega=\{\varnothing,\{2\},\{1,2\}\}$.
5.3 Yes, it is open since $[0,1)=(-1,1) \cap[0,2]$, and $(-1,1)$ is open on the line.
$5.5 \Leftrightarrow$ Set $V=U . \Leftrightarrow$ Use Problem 5.E.
5.6 Consider the interval $(-1,1) \subset \mathbb{R} \subset \mathbb{R}^{2}$ and the open disk with radius 1 and center at $(0,0)$ on the plane \mathbb{R}^{2}. Another solution is suggested by the following general statement: any open set is locally closed. Indeed, if U is open in X, then U is a neighborhood of each of its points, while $U \cap U$ is closed in U.
5.7 The metric topology on A is determined by the base $\Sigma_{1}=\left\{B_{r}^{A}(a) \mid\right.$ $a \in A\}$, where $B_{r}^{A}(a)=\{x \in A \mid \rho(x, a)<r\}$ is the open ball in A with center a and radius r. The second topology is determined by the base $\Sigma_{2}=\left\{A \cap B_{r}(x) \mid x \in X\right\}$, where $B_{r}(x)$ is an open ball in X. Obviously, $B_{r}^{A}(a)=A \cap B_{r}(a)$ for $a \in A$. Therefore, $\Sigma_{1} \subset \Sigma_{2}$, whence $\Omega_{1} \subset \Omega_{2}$. However, it may happen that $\Sigma_{1} \neq \Sigma_{2}$. It remains to prove that elements of Σ_{2} are open in the topology determined by Σ_{1}. For this purpose, check that for each point x of an element $U \in \Sigma_{2}$, there is $V \in \Sigma_{1}$ such that $x \in V \subset U$.
6.1 We have $\operatorname{Int}\{a, b, d\}=\{a, b\}$ since this is really the greatest set that is open in \forall and contained in $\{a, b, d\}$.
6.2 The interior of the interval $(0,1)$ on the line with the Zariski topology is empty because no nonempty open set of this space is contained in $(0,1)$.
6.3 Indeed, we have

$$
\mathrm{Cl}_{A} B=\bigcap_{\substack{F \supset B, A \backslash F \in \Omega_{A}}} F=\bigcap_{\substack{H \supset B, X \backslash H \in \Omega}}(H \cap A)=A \cap \bigcap_{\substack{H \supset B, X \backslash H \in \Omega}} H=A \cap \mathrm{Cl}_{X} B
$$

The second equality may obviously be violated. Indeed, let $X=\mathbb{R}^{2}$ and let $A=B=\mathbb{R}^{1}$. Then $\operatorname{Int}_{A} B=\mathbb{R}^{1} \neq \varnothing=\left(\operatorname{Int}_{X} B\right) \cap A$.
6.4 $\mathrm{Cl}\{a\}=\{a, c, d\}$.
6.5 $\operatorname{Fr}\{a\}=\{c, d\}$.
6.6 1) This follows from 6.K. 2) See 6.7.
6.8 The space $\left(X, \Omega_{1}\right)$ contains less open sets, and hence less closed sets than $\left(X, \Omega_{2}\right)$. Therefore, the intersection of all sets closed in $\left(X, \Omega_{1}\right)$ and containing A cannot be smaller than the intersection of all sets closed in $\left(X, \Omega_{2}\right)$ and containing A.

6.9 $\operatorname{Int}_{1} A \subset \operatorname{Int}_{2} A$.

6.10 Since $\operatorname{Int} A$ is an open set contained in B, it is also contained in Int B, which is the greatest one of such sets.
6.11 Since the set $\operatorname{Int} A$ is open, it coincides with its interior.
6.12 (8) The obvious inclusion Int $A \cap \operatorname{Int} B \subset A \cap B$ implies Int $A \cap$ Int $B \subset \operatorname{Int}(A \cap B)$. Further, we have $\operatorname{Int} A \supset \operatorname{Int}(A \cap B)$ since $A \supset A \cap B$. Similarly, $\operatorname{Int} B \supset \operatorname{Int}(A \cap B)$. Therefore, $\operatorname{Int} A \cap \operatorname{Int} B \supset \operatorname{Int}(A \cap B)$. (9) The second statement is false, see Problem 6.13.
6.13 Let $A=[-1,0]$ and $B=[0,1]$. Then we have $\operatorname{Int}(A \cup B)=$ $\operatorname{Int}[-1,1]=(-1,1) \neq(-1,0) \cup(0,1)=\operatorname{Int} A \cup \operatorname{Int} B$.
6.14 We always have $\operatorname{Int} A \cup \operatorname{Int} B \subset \operatorname{Int}(A \cup B)$ because $\operatorname{Int} A \cup \operatorname{Int} B$ is an open set contained in $A \cup B$.
6.15 We have $A \subset B \Longrightarrow \mathrm{Cl} A \subset \mathrm{Cl} B, \mathrm{ClCl} A=\mathrm{Cl} A, \mathrm{Cl} A \cup \mathrm{Cl} B=$ $\mathrm{Cl}(A \cup B)$, and $\mathrm{Cl} A \cap \mathrm{Cl} B \supset \mathrm{Cl}(A \cap B)$.
6.16 $\operatorname{Cl}\{1\}=[0,1], \operatorname{Int}[0,1]=\varnothing$, and $\operatorname{Fr}(2,+\infty)=[0,2]$.
6.17 $\operatorname{Int}((0,1] \cup\{2\})=(0,1), \operatorname{Cl}\{1 / n \mid n \in \mathbb{N}\}=\{0\} \cup\{1 / n \mid n \in \mathbb{N}\}$, and $\operatorname{Fr} \mathbb{Q}=\mathbb{R}$.
6.18 $\mathrm{Cl} \mathbb{N}=\mathbb{R}, \operatorname{Int}(0,1)=\varnothing$, and $\operatorname{Fr}[0,1]=\mathbb{R}$. Indeed, any closed set in $\mathbb{R}_{T_{1}}$ is either a finite set or the whole line. Therefore, the closure of any infinite set is ...
6.19 Yes, it does. Indeed, since $D_{r}(x)$ is closed, we have $\mathrm{Cl} B_{r}(x) \subset$ $D_{r}(x)$, whence

$$
\operatorname{Fr} B_{r}(x)=\mathrm{Cl} B_{r}(x) \backslash B_{r}(x) \subset D_{r}(x) \backslash B_{r}(x)=S_{r}(x) .
$$

6.20 Yes, it does. Indeed, since $B_{r}(x)$ is open, we have $\operatorname{Int} D_{r}(x) \supset$ $B_{r}(x)$, whence

$$
\operatorname{Fr} D_{r}(x)=D_{r}(x) \backslash \operatorname{Int} D_{r}(x) \subset D_{r}(x) \backslash B_{r}(x)=S_{r}(x) .
$$

6.21 Let $X=[0,1] \cup\{2\}$ with metric $\rho(x, y)=|x-y|$. Then $S_{2}(0)=\{2\}$ and $\mathrm{Cl} B_{2}(0)=[0,1]$.
6.22.1 For instance, $A=[0,1)$.
6.22.2 Take $A=[0,1) \cup(1,2] \cup(\mathbb{Q} \cap[3,4]) \cup\{5\}$.
6.22.3 Since $\operatorname{Int} A \subset \mathrm{Cl} \operatorname{Int} A$ and $\operatorname{Int} A$ is open, it follows that $\operatorname{Int} A \subset$ $\operatorname{Int} \mathrm{Cl} \operatorname{Int} A$. Therefore, $\mathrm{Cl} \operatorname{Int} A \subset \mathrm{Cl} \operatorname{Int} \mathrm{Cl} \operatorname{Int} A$.
Since $\operatorname{Int} \mathrm{Cl} \operatorname{Int} A \subset \mathrm{Cl} \operatorname{Int} A$ and $\mathrm{Cl} \operatorname{Int} A$ is closed, it follows that $\mathrm{Cl} \operatorname{Int} A \supset$ $\mathrm{Cl} \operatorname{Int} \mathrm{Cl} \operatorname{Int} A$.
6.23 We construct consecutively sets $J_{n}, n \geq 1$, such that J_{n} is a union of intervals of length 3^{-n}. Put $J_{0}=\bigcup_{n \in \mathbb{Z}}(2 n, 2 n+1)$. If the sets J_{0}, \ldots, J_{n-1} are constructed, then let J_{n} be the union of the open middle thirds of the segments constituting $\mathbb{R} \backslash \bigcup_{k=0}^{n-1} J_{k}$. If $A=\bigcup_{k=0}^{\infty} J_{3 k}, B=\bigcup_{k=0}^{\infty} J_{3 k+1}$, and $C=\bigcup_{k=0}^{\infty} J_{3 k+2}$, then $\operatorname{Fr} A=\operatorname{Fr} B=\operatorname{Fr} C=\mathrm{Cl}\left(\bigcup_{k=0}^{\infty} \mathrm{Cl} J_{k}\right)$. (In a similar way, we easily construct an infinite family of open sets with common boundary.)
6.24 If the two segments have close endpoints, then each point on one of the segments is close to some point on the other one. If two points belong to the interior of a convex set, then the convex set contains a cylindric neighborhood of the segment connecting the points.
6.27 By (1), we have $X \in \Omega$. From (2) it follows that $\mathrm{Cl}_{*} X=X$, whence $\varnothing \in \Omega$. For $U_{1}, U_{2} \in \Omega$, (3) implies that $U_{1} \cap U_{2} \in \Omega$. Prior to checking that the 1st axiom of topological structure is fulfilled, show that it implies monotonicity of Cl_{*} : if $A \subset B$, then $\mathrm{Cl}_{*} A \subset \mathrm{Cl}_{*} B$; and deduce that $\mathrm{Cl}_{*}\left(\bigcap_{\alpha} A_{\alpha}\right) \subset \bigcap_{\alpha} \mathrm{Cl}_{*} A_{\alpha}$ for any family of sets A_{α}.
To prove that the operations Cl_{*} and Cl coincide, we recommend, as usual, to replace equality of sets by two inclusions and use the fact that a set F is closed iff $F=\mathrm{Cl}_{*} F$. (You must use property (4) somewhere!)
6.29 1) Nonempty sets; 2) unbounded sets; 3) infinite sets.
$6.30 \Leftrightarrow$ Since each set in a discrete space is closed, the only everywhere dense set is the whole space.
\qquad Argue by contradiction. If the space X is not discrete, then there
exists a point x such that the singleton $\{x\}$ is not open, and hence $X \backslash x$ is everywhere dense, as well as the entire X.
6.31 There are many ways to formulate this property. For example: the intersection of all nonempty open sets is nonempty. See 2.6.
6.32 1) Yes, it is. This follows from monotonicity of closure. 2) No, it is not. The simplest counterexample can be constructed in an indiscrete space. We recommend constructing a counterexample in \mathbb{R} and taking \mathbb{Q} as one of the sets.
6.33 Let A and B be two open everywhere dense sets, U an open set. Hint: $U \cap(A \cap B)=(U \cap A) \cap B$.
6.34 Only one of two sets needs to be open.
6.35 1) Let $\left\{U_{k}\right\}$ be a countable family of open everywhere dense sets, V a nonempty open set on the line. Construct a sequence of nested intervals $\left[a_{1}, b_{1}\right] \supset \cdots \supset\left[a_{n}, b_{n}\right] \supset \ldots$ such that $\left[a_{n}, b_{n}\right] \subset V \cap \bigcap_{k=1}^{n} U_{k}$ and $b_{n}-a_{n} \rightarrow 0$. The point $\sup \left\{a_{n}\right\}=\inf \left\{b_{n}\right\}$ belongs to each of the segments. Therefore, $V \cap \bigcap_{k=1}^{\infty} U_{k} \neq \varnothing$, and hence $\bigcap_{k=1}^{\infty} U_{k}$ is everywhere dense. 2) The second question is answered in the negative.
6.36 Let $U_{n} \supset \mathbb{Q}, n \in \mathbb{N}$, be open sets. Since they contain \mathbb{Q}, all of them are everywhere dense. First, we enumerate all rational numbers: let $\mathbb{Q}=\left\{x_{n} \mid n \in \mathbb{N}\right\}$. After that, we find a segment $\left[a_{1}, b_{1}\right] \subset U_{1}$ such that $x_{1} \notin$ U_{1}. Since U_{2} is everywhere dense, it contains a segment $\left[a_{2}, b_{2}\right] \subset\left[a_{1}, b_{1}\right] \cap U_{2}$ such that $x_{2} \notin\left[a_{2}, b_{2}\right]$. Proceeding further in this way, we obtain a sequence $\left\{\left[a_{n}, b_{n}\right]\right\}$ of nested intervals such that 1) $\left[a_{n}, b_{n}\right] \subset U_{n}$ and 2) $x_{n} \notin\left[a_{n}, b_{n}\right]$. By a standard theorem of Calculus, there exists a point $c \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$. Obviously, $c \in\left(\bigcap_{n=1}^{\infty} U_{n}\right) \backslash \mathbb{Q}$.
6.37 Of course, it cannot because the exterior of an everywhere dense set is empty. (We assume that $X \neq \varnothing$.)
6.38 It is empty.
6.39 Yes , it is.
6.40 It suffices to observe that $X \backslash \operatorname{Int~} \mathrm{Cl} A=\mathrm{Cl}(X \backslash \mathrm{Cl} A)=\mathrm{Cl} \operatorname{Int}(X \backslash$ A) $=X$.
6.41 1) Let F be a closed set in a space X. Then $\operatorname{Fr} F$ has the exterior $X \backslash \operatorname{Int} \operatorname{Fr} F=(X \backslash F) \cup \operatorname{Int} F$, whence $\mathrm{Cl}(X \backslash \operatorname{Int} \operatorname{Fr} F)=\mathrm{Cl}((X \backslash F) \cup$ Int $F)=X$ because $\mathrm{Cl}(X \backslash F)=(X \backslash F) \cup \mathrm{Fr} F$.
2) Yes, this is also true. The boundary of an open set U is nowhere dense since $\operatorname{Fr} U$ is also the boundary of the closed set $X \backslash U$.
3) In general, the statement is not true for arbitrary sets: for instance, $\operatorname{Fr} \mathbb{Q}=\mathbb{R}$.
6.42 Clearly,

$$
X \backslash \mathrm{Cl}\left(\bigcup_{i=1}^{n} A_{i}\right)=X \backslash \bigcup_{i=1}^{n} \mathrm{Cl} A_{i}=\bigcap_{i=1}^{n}\left(X \backslash \mathrm{Cl} A_{i}\right) .
$$

Now the result follows from 6.33.

6.43 This set is $\operatorname{Int} \mathrm{Cl} A$.

6.44 Let $Y_{n} \subset \mathbb{R}, n \in \mathbb{N}$, be nowhere-dense sets. Since Y_{1} is nowhere dense, there is a segment $\left[a_{1}, b_{1}\right] \subset \mathbb{R} \backslash Y_{1}$. Since Y_{2} also is nowhere dense, $\left[a_{1}, b_{1}\right]$ contains a segment $\left[a_{2}, b_{2}\right] \subset \mathbb{R} \backslash Y_{2}$, and so on. Proceeding further in this way, we obtain a sequence $\left\{\left[a_{n}, b_{n}\right]\right\}$ of nested intervals such that $\left[a_{n}, b_{n}\right] \subset \mathbb{R} \backslash Y_{n}$. By a standard theorem of Calculus, there exists a point $c \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$. Obviously, $c \in \mathbb{R} \backslash \bigcap_{n=1}^{\infty} Y_{n} \neq \varnothing$.
6.45 For example, each point of a finite set A on the line is an adherent point of A, but not a limit point.
6.47 The set of limit points of \mathbb{N} in $\mathbb{R}_{T_{1}}$ is the whole $\mathbb{R}_{T_{1}}$.
$6.48(1) \Longrightarrow(2)$: Consider $V=\bigcup_{x \in A} U_{x}$, where U_{x} are the neighborhoods that exist by the definition of local closeness, and show that $A=V \cap \mathrm{Cl} A$.
$(2) \Longrightarrow(3)$: Use the definition of the relative topology induced on a subset. $(3) \Longrightarrow(1)$: For neighborhoods U_{x}, one can take a set independent of x.
7.1 No because it is not antisymmetric. Indeed, $-1 \mid 1$ and $1 \mid-1$, but $-1 \neq 1$.
7.2 The hypotheses of Theorem 7.J turn into the following restrictions on $C: C$ is closed with respect to addition, contains the zero, and no nontrivial translation bijectively maps C onto C.
7.6 1) Obviously, the greatest element is maximal and the smallest one is minimal, but the converse statements are not true. 2) These notions coincide for any subset of a poset iff any two elements of the poset are comparable (i.e., one of them is greater than the other).
\Leftrightarrow Indeed, consider, e.g., a two-element subset. If the two elements were incomparable, then each of them would be maximal, and hence, by assumption, the greatest one. However, the greatest element is unique. A contradiction.
\Leftrightarrow Comparability of any two elements obviously implies that in any subset any maximal element is the greatest one, and any minimal element is the smallest one.
7.9 The relation of inclusion on the set of all subsets of X is a linear order iff X is either empty or a singleton.
7.11 Consider, say, the following condition: for arbitrary a, b, and c such that $a \prec c$ and $b \prec c$, there is an element d such that $a \preceq d, b \preceq d$, and
$d \prec c$. Show that this condition implies that the right rays form a base of a topology; show that it holds true in any linearly ordered set. Also show that this condition holds true if the right rays form a base of a topology.
7.13 A point open in the poset topology is maximal in the entire poset. Similarly, a point closed in the poset topology is minimal in the entire poset.
7.14 Rays of the forms (a, ∞) and $[a, \infty)$, the empty set, and the whole line.
7.16 The lower cone of the point.
7.17 A singleton consisting of an element that is greater than any other element of the entire poset.
9.1 Yes, they do. Let us prove, for example, the latter equality. Let $x \in$ $f^{-1}(Y \backslash A)$. Then $f(x) \in Y \backslash A$, whence $f(x) \notin A$. Therefore, $x \notin f^{-1}(A)$ and $x \in X \backslash f^{-1}(A)$. We have thus proved that $f^{-1}(Y \backslash A) \subset X \backslash f^{-1}(A)$. Each step in this argument is reversible. This gives rise to the opposite inclusion.
9.2 Let us prove (13). If $y \in f(A \cup B)$, then we can find $x \in A \cup B$ such that $f(x)=y$. If $x \in A$, then $y \in f(A)$, while if $x \in B$, then $y \in f(B)$. In both cases, we have $y \in f(A) \cup f(B)$. The opposite inclusion admits an even simpler proof. The inclusion $A \subset A \cup B$ implies $f(A) \subset f(A \cup B)$. Similarly, $f(B) \subset f(A \cup B)$. Thus, $f(A) \cup f(B) \subset f(A \cup B)$. The other two equalities may happen to be wrong, see 9.3 and 9.4 .
9.3 Consider the constant map $f:\{0,1\} \rightarrow\{0\}$. Let $A=\{0\}$ and $B=\{1\}$. Then $f(A) \cap f(B)=\{0\}$, while $f(A \cap B)=f(\varnothing)=\varnothing$. Similarly, $f(X \backslash A)=f(B)=\{0\} \neq \varnothing$, although $Y \backslash f(A)=\varnothing$.
9.4 We have $f(A \cap B) \subset f(A) \cap f(B)$. (Prove this!) However, there is no natural inclusion between $f(X \backslash A)$ and $Y \backslash f(A)$. Indeed, we can arbitrarily change a map on $X \backslash A$ without changing it on A, and hence without changing $Y \backslash f(A)$.
9.5 The bijectivity of f suffices for any equality of this kind. The injectivity is necessary and sufficient for (14), while the surjectivity is necessary for (15). Thus, the bijectivity of f is necessary to make all equalities of 9.2 correct.
9.6 First, let us prove inclusion $B \cap f(A) \subset f\left(f^{-1}(B) \cap A\right)$. Let $y \in B \cap f(A)$. Then $y=f(x)$, where $x \in A$. On the other hand, $x \in f^{-1}(B)$, whence $x \in f^{-1}(B) \cap A$, and therefore $y \in f\left(f^{-1}(B) \cap A\right)$. Prove the opposite inclusion on your own.
9.7 No, not necessarily. Example: $f:\{0\} \rightarrow\{0,1\}, g:\{0,1\} \rightarrow\{0\}$. Surely, f must be injective (see $9 . K$), and g surjective (see $9 . M$).
10.1 The map id is continuous iff $U=\operatorname{id}^{-1}(U) \in \Omega_{1}$ for each $U \in \Omega_{2}$, i.e., $\Omega_{2} \subset \Omega_{1}$.
10.2 (1), (4): Yes, it is. (2), (3): Not necessarily.
10.3 1) Any map $X \rightarrow Y$ is continuous. 2) A map $Y \rightarrow X$ is continuous iff the preimage of each point is open. Only constant maps $Y \rightarrow X$ (i.e., the maps that map the whole Y to a single point of X) are necessarily continuous.
10.4 1) All maps $Y \rightarrow X$ are continuous. 2) A map $X \rightarrow Y$ is continuous iff its image is indiscrete. Therefore, only constant maps $X \rightarrow Y$ are continuous independently of the topology on Y.
$10.5 \Omega^{\prime}=\left\{f^{-1}(U) \mid U \in \Omega\right\}$ is a topology on A. Furthermore, this is the coarsest topology on A with respect to which f is continuous.
10.6 \Leftrightarrow We have $A \subset \mathrm{Cl} A$ for any A, whence $f^{-1}(A) \subset f^{-1}(\mathrm{Cl} A)$. If f is continuous, then $f^{-1}(\mathrm{Cl} A)$ is closed, and $f^{-1}(A) \subset f^{-1}(\mathrm{Cl} A)$ implies $\mathrm{Cl} f^{-1}(A) \subset f^{-1}(\mathrm{Cl} A) . \Leftrightarrow$ For closed A, we have $\mathrm{Cl} f^{-1}(A) \subset f^{-1}(A)$. Therefore, the set $f^{-1}(A)$ coincides with its closure and hence is closed. Thus, the preimage of any closed set is closed. By 10.A, the map f is continuous.
$10.7 f$ is continuous, iff

- $\operatorname{Int} f^{-1}(A) \supset f^{-1}(\operatorname{Int} A)$ for each $A \subset Y$, iff
- $\mathrm{Cl} f(A) \supset f(\mathrm{Cl} A)$ for each $A \subset X$, iff
- $\operatorname{Int} f(A) \subset f(\operatorname{Int} A)$ for each $A \subset X$.
$10.8 \Leftrightarrow$ By definition. \Leftrightarrow Use the fact that the preimage of an open set is a union of preimages of base sets.
10.9 An experience with continuous functions gained in Calculus and a natural expectation that the continuity studied in Calculus is not too different from the continuity studied here give strong evidence in favor of a negative answer. The following argument based on the above definition also provides it: the set $U=(1,2]$ is open in $[0,2]$, but its preimage $f^{-1}((1,2])=$ $[1,2)$ is not.
10.10 Yes, f is continuous. Indeed, what can the set $f^{-1}(a,+\infty)$ (i.e., the preimage of a set open in the arrow) be? By the way, what about continuity of the map g that coincides with f everywhere except at $x=1$ and has $g(1)=2$?
10.11 Constant maps. If, for instance, $0,1 \in f\left(\mathbb{R}_{Z}\right)$, then consider the sets $f^{-1}((-\infty, 1 / 2))$ and $f^{-1}((1 / 2,+\infty))$. Can both of them be open?
10.12 Constant maps and maps such that the preimage of each point is finite.
10.13 The functions that are monotonically increasing and continuous from the left. (Recall that a monotonically increasing function f is continuous from the left if $\sup \{f(x) \mid x<a\}=f(a)$ for each a.)
10.14 The map f is continuous, while g^{-1} is not. Indeed, the topology on \mathbb{Z}_{+}is discrete, while the singleton $\{0\}$ is not open in the topology on $f\left(\mathbb{Z}_{+}\right)$.
10.15 Let A be an everywhere dense subset of a space X, and let $f: X \rightarrow Y$ be a continuous surjection. By Theorem 6.M, it suffices to prove that $f(A)$ meets each nonempty open subset U of Y. Since f is surjective and continuous, the preimage $f^{-1}(U)$ of such a set is also nonempty and open. Therefore, its intersection with A is nonempty. Hence, $U \cap f(A)=$ $f\left(f^{-1}(U) \cap A\right)$ is also nonempty.
10.16 Of course, this is not true. For example, the projection $\mathbb{R}^{2} \rightarrow$ $\mathbb{R}:(x, y) \mapsto x$ maps the line $\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}$, which is nowhere dense in \mathbb{R}^{2}, onto the whole target space.
10.17 Yes, such a set exists. Let A be the Cantor set and consider the map that sends the number $\sum_{i=1}^{+\infty} \frac{a_{i}}{3^{i}}$, where $a_{i}=0 ; 2$, to the number $\sum_{i=1}^{+\infty} \frac{a_{i}}{2^{i-1}}$. It must be checked that this map is continuous. Please, do this on your own.
10.18 Let us prove the first statement. Let U_{a} be a neighborhood of $a \in X$ such that $f\left(U_{a}\right) \subset(-\varepsilon / 2+f(a), f(a)+\varepsilon / 2)$, and let V_{a} be a similar neighborhood for g. Taking $W_{a}=U_{a} \cap V_{a}$, we obtain $(f+g)\left(W_{a}\right) \subset$ $(-\varepsilon+f(a), f(a)+\varepsilon)$.
10.20 Let

$$
f_{i}(x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
i x & 0 \leq x \leq 1 / i \\
1 & x \geq 1 / i
\end{array}\right.
$$

Then the formula $x \mapsto \sup \left\{f_{i}(x) \mid i \in \mathbb{N}\right\}$ determines a function that takes value 0 at $x \leq 0$ and 1 at $x>0$.
10.21 The topology on \mathbb{R}^{n} is generated by the metric

$$
\rho^{(\infty)}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\}
$$

(see 4.26). Observe that $\rho^{(\infty)}(f(x), f(a))<\varepsilon$ iff $\left|f_{i}(x)-f_{i}(a)\right|<\varepsilon$ for all $i=1,2, \ldots, n$.
10.22 Use 10.21 and 10.18 .
10.23 Use 10.21, 10.18, and 10.19 .
10.24 If Ω^{\prime} is a topology such that the $\operatorname{map} x \mapsto \rho(x, A)$ is continuous for each A, then Ω^{\prime} contains all open balls. Therefore, Ω^{\prime} contains all sets open in the metric topology.
10.25 If $\rho(x, a)<\varepsilon$, then $\rho(f(x), f(a)) \leq \alpha \varepsilon<\varepsilon$.
10.27 Where we deal with closed sets.
10.28 Use the following property of polynomials: a polynomial P with real coefficients that takes value 0 on a nonempty open set identically vanishes. For polynomials in one variable, this property easily follows from Bezout's theorem, while for polynomials in many variables it is proved by induction on the number of variables. The continuity of the function $x \mapsto$ $P(x)$ on R^{n} implies that the set of zeros $\{x \mid P(x)=0\}$ of P is closed. Cf. 10.0.
10.29 In cases (1), (3), and (4), this is not true. Consider functions constant on each element of these covers, but not constant on the whole space.
In case (2), this is true. Try to prove this using arguments that you know from calculus. (Cf. 10.T.)
10.31 If the intersection of a set U with each element of Γ is open in this element, then the same is true for any element of Γ^{\prime}. Since, by assumption, Γ^{\prime} is a fundamental cover, it follows that U is open in the whole space. Thus, the cover Γ is fundamental.
10.32 If $B \cap U$ is open in U for each $U \in \Gamma$, and $A \in \Delta$, then $(B \cap U) \cap A=(B \cap A) \cap(U \cap A)$ is open in $U \cap A$. Hence, $B \cap A$ is open in A. Since the cover Δ is fundamental, B is open in X.
10.33 This follows from the preceding statement. What cover should be taken as Δ ?
10.34x Consider map $f:[0,2] \rightarrow \mathbb{R}$ with $f(x)=x$ for $x \in[0,1]$ and $f(x)=x+1$ for $x \in(1,2]$.
10.35x No. Here are two of many counterexamples. First, the map $f:\{ \pm 1 / n, 0\}_{n=1}^{\infty} \rightarrow\{-1,0,1\}$, which sends positive numbers to 1 , negative to -1 , and 0 to 0 . Secondly, consider \mathbb{R}^{2} with the following relation:

$$
(a, b) \prec\left(a^{\prime}, b^{\prime}\right) \text { if } a<a^{\prime} \text { or }\left(a=a^{\prime} \text { and } b<b^{\prime}\right) .
$$

This is a linear order (check!). The projection $\mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto x$ is monotone (but not strictly monotone) with respect to \prec and $<$, but the preimage of any proper open subset $U \subset \mathbb{R}$ is not open in the interval topology determined by \prec.
10.36x Yes, it is. Furthermore, it suffices to require only that f be non-strictly monotone.
10.37x Construct Z as the disjoint union of X and Y. In the union, define the distance between two points in (the copy of) X (respectively, Y) to be equal to the distance between the corresponding points in X (respectively, $Y)$. To define the distance between points of different copies, choose points
$x_{0} \in X$ and $y_{0} \in Y$, and set $\rho(a, b)=\rho_{X}\left(a, x_{0}\right)+\rho_{Y}\left(y_{0}, b\right)+1$ for $a \in X$ and $b \in Y$. Check (this is easy, really) that this determines a metric.
10.38x Yes. For example, consider a singleton and any unbounded space.
10.39x Although, as we have seen when solving the previous problem, the Gromov-Hausdorff distance can be infinite, while the symmetry and the triangle inequality were formulated above (in Section 4) only for functions with finite values, the two properties make sense if infinite values are admitted. (The triangle inequality should be considered fulfilled if two or three of the quantities involved are infinite, and not fulfilled if only one of them is infinite.) The following construction helps to prove the triangle inequality. Let metric spaces X and Y be isometrically embedded in a metric space A, and let metric spaces Y and Z be isometrically embedded in a metric space B. Construct a new metric space in which A and B would be isometrically embedded and meeting along Y. To do this, add to A all points of $B \backslash A$. Define the distances between these points to be equal to the distances between them in B. Define the distance between $x \in A \backslash B$ and $z \in B \backslash A$ to be equal to $\inf \left\{\rho_{A}(x, y)+\rho_{B}(y, z) \mid y \in A \cap B\right\}$. Compare this construction with the construction from the solution to Problem 10.37x. Prove that this gives a metric space and use the triangle inequality for the Hausdorff distance between X, Y, and Z in this space.
10.40x Partially, the answer is obvious. The Gromov-Hausdorff distance is certainly nonnegative! But what if it is zero? In what sense should the spaces be equal then? First, the most optimistic idea is that there should exist an isometric bijection between the spaces. However, this is not true, as we can see looking at the spaces \mathbb{Q} and \mathbb{R} equipped with standard distances. Nevertheless, this is true for compact metric spaces.
11.1 Statements 11.C-11.E imply that homeomorphism is an equivalence relation: 11.C implies reflexivity of homeomorphism, 11.D implies transitivity, and $11 . E$ implies symmetry.
11.2 Show that $\tau \circ \tau=\mathrm{id}$, whence $\tau^{-1}=\tau$. To see that the inversion is continuous, write τ down in coordinates and use 10.18, 10.19, and 10.21.
11.3 Show that $\operatorname{Im}(f(x+i y))=(a d-b c) y /|c z+d|^{2}$, whence $f(\mathcal{H}) \subset$ \mathcal{H}. Find the inverse map (it is determined by a similar formula). Use 10.18, 10.19, and 10.21 to prove the continuity.
11.4 \Leftrightarrow Use Intermediate Value Theorem. \Leftrightarrow Use 11.M.
11.5 (f. 11.H. 1), 2) This is obvious. 3) Any bijection $\mathbb{R}_{Z} \rightarrow \mathbb{R}_{Z}$ establishes a one-to-one correspondence between finite (i.e., closed!) subsets.
11.6 Only the identity map of \mathfrak{V} is a homeomorphism.
11.7 Use 10.13 and 11.M.
11.8 Let $X=Y=\bigcup_{k=0}^{\infty}[2 k, 2 k+1)$ and consider the bijection

$$
X \rightarrow Y: x \mapsto \begin{cases}\frac{x}{2} & \text { if } x \in[0,1) \\ \frac{x-1}{2} & \text { if } x \in[2,3) \\ x-2 & \text { if } x \geq 4\end{cases}
$$

11.10 To solve all assertions, except (6) and (9), apply maps used in the solution to Problem 11.O. To solve (6) and (9), use polar coordinates.
11.11 In assertion (2): each nonempty open convex set in \mathbb{R}^{2} is homeomorphic to \mathbb{R}^{2}.
11.12 Every such set is homeomorphic to one of the following sets: a point, a segment, a ray, a disk, a strip, a half-plane, a plane. (Prove this!)
11.13 In Problems 11.T and 11.11, it is sufficient to replace the 2-disk D^{2} by the n-disk D^{n} and the open 2-disk B^{2} by the open n-ball B^{n}. The situation with Problem 11.12 is more complicated. Let $K \subset \mathbb{R}^{n}$ be a closed convex set. First, we can assume that $\operatorname{Int} K \neq \varnothing$ because, otherwise, K is isometric to a subset of \mathbb{R}^{k} with $k<n$. Secondly, we assume that K is unbounded. (Otherwise, K is homeomorphic to a closed disk, see above.) If K does not contain a line, then K is homeomorphic to a half-space. If K contains a line, then K is isometric to a "cylinder" with convex closed "base" in \mathbb{R}^{n-1} and "elements" parallel to the nth coordinate axis, which allows us to use induction on dimension. Try to formulate a complete answer.
11.14 Map each link of the polygon homeomorphically to a suitable arc of the circle.
11.15 Map each link of the polyline homeomorphically to a suitable part of the segment. (Cf. the preceding problem. The homeomorphism can easily be chosen piecewise linear.)
11.16 Accurately plug in the definitions!
11.17 Combining the techniques of Problems $11 . S$ and 11.0 (assertion (e)), show that the "infinite cross" is homeomorphic to the set $K=\{|x|+$ $|y| \leq 2\} \backslash\{(0, \pm 2),(\pm 2,0)\}$ (another square without vertices).
11.18 The proof is elementary, but rather complicated!
11.19 Using homeomorphisms of Problem 11.O, you can construct, e.g., the following homeomorphisms: $(1) \cong(4) \cong(6),(4) \cong(5) \cong(8) \cong(2)$, $(8) \cong(7) \cong(3)$.
11.20 Using homeomorphisms of Problem 11.O, you can construct, e.g., the following homeomorphisms: $(\mathrm{c}) \cong(\mathrm{b}) \cong(\mathrm{a}) \cong(\mathrm{d}) \cong(\mathrm{e}) \cong(\mathrm{g})$. This proves that, e.g., (d) $\cong(f)$.
11.21 For the case of one segment, this is assertion 11.20 (6). In the general case, use 11.19 (i.e., the fact that $(\mathrm{l}) \cong(\mathrm{h})$; observe that the
homeomorphism can be fixed on the boundary of the square). Surround the segments by disjoint rhombi and apply the above homeomorphism in each of them.
11.22 Use induction on the number of links of the polyline X. Each time, applying the argument used in the solution of Problem 11.21 to the outer link of X, we homeomorphically map $\mathbb{R}^{2} \backslash X$ onto the complement of a polyline with a smaller number of links.
11.23 Prove that for any $p, q \in \operatorname{Int} D^{2}$ there is a homeomorphism $f: D^{2} \rightarrow D^{2}$ such that $f(p)=f(q)$ and $\mathrm{ab}(f): S^{1} \rightarrow S^{1}$ is the identity. After that, use induction.
Here is a more explicit construction. Let $K=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$. We can assume that x_{i} 's are pairwise distinct. (Why?) Take any continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(x_{i}\right)=y_{i}, i=1, \ldots, n$. Then $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:$ $(x, y) \mapsto(x, y-f(x))$ is a homeomorphism with $F(K) \subset \mathbb{R}^{1}$. There is a homeomorphism $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g\left(x_{i}\right)=i, i=1, \ldots, n$. Consider the homeomorphism $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}:(x, y) \mapsto(g(x), y)$. Then we have $(G \circ F)(K)=\{1, \ldots, n\}$, whence $\mathbb{R}^{2} \backslash K \cong \mathbb{R}^{2} \backslash\{1, \ldots, n\}$.
11.24 Use the homeomorphism (b) $\cong(c)$ in Problem 11.20.
11.25 Use Problems 11.24 and 11.23.
11.26 Use the homeomorphism $(x, t) \mapsto(x,(1-t) f(x)+t g(x))$.
11.27 The first question is as follows: what is the mug from the mathematical point of view? How is it presented? Actually, there is a precise approach to describing similar objects and introducing the corresponding class of spaces ("manifolds"), but for now we use "common sense". We start with a cylinder, which is homeomorphic to a closed 3-disk, which in turn is homeomorphic to a half-disk, is not it? Further, if we delete from the half-disk a concentric half-disk of smaller radius, then the rest (i.e., the "skin of a half of a watermelon") is still homeomorphic to the half-disk. (We can prove this quite rigorously, and even give the required formulas.) The remaining "skin" is a mug without a handle, which is thus homeomorphic to a cylinder. Furthermore, we can assume that the "disks" along which the handle adjoins the mug correspond to the bases of the cylinder, cf. 11.25, while the handle is a (deformed) cylinder itself. "Pasting together" two cylinders, we certainly obtain a doughnut as a result!
11.28 The following objects are homeomorphic to a coin: a saucer, a glass, a spoon, a fork, a knife, a plate, a nail, a screw, a bolt, a nut, a drill. The remaining objects are homeomorphic to a wedding ring: a cup, a flower pot, a key.
11.29 Formulate and prove the plane version of the problem. After that, use rotation. An intermediate shape here is a 3 -disk in which a thin
cylinder is drilled out. We can also single out the following useful lemma. Let C_{0} be a cylinder, $C \subset C_{0}$ a smaller cylinder with upper base lying inside that of C_{0}. Then there exists a homeomorphism $f: \mathrm{Cl}\left(C_{0} \backslash C\right) \rightarrow C_{0}$ identical on $\mathrm{Fr} C_{0} \backslash C$.
11.30 Our argument is close to that used in the solution of Problem 11.27. Repeating the first step of the solution to Problem 11.29, we "get rid" of the large spherical hole at the end of the "tube". After that, we observe that the knotted tube has a neighborhood homeomorphic to a cylinder. Applying the lemma formulated in the above solution, we obtain a homeomorphism between the ball with a knotted hole and the whole ball.
11.33 Both spaces are homeomorphic to $S^{3} \backslash\left(S^{1} \cup\right.$ point $)$. To see this, use the homeomorphism $\mathbb{R}^{3} \cong S^{3} \backslash$ point of Problem 11.R. (The second time, take the point to be deleted on the circle S^{1}.) This argument also works in the general case of \mathbb{R}^{n}. But what happens if we replace S^{1} by S^{k} ?
11.34 The stereographic projection $S^{n} \backslash(0, \ldots, 0,1) \rightarrow \mathbb{R}^{n}$ maps our set to a (spherically symmetric) neighborhood of S^{k-1}, which is easily seen to be homeomorphic to $\mathbb{R}^{n} \backslash \mathbb{R}^{n-k}$.
11.35 Here are properties that distinguish each of the spaces from the remaining ones: \mathbb{Z} is discrete, \mathbb{Q} is countable, each proper closed subset of $\mathbb{R}_{T_{1}}$ is finite, and, finally, any two nonempty open sets in the arrow have nonempty intersection.
11.36 Set $X=\{k\}_{-\infty}^{-1} \cup \bigcup_{k=0}^{\infty}[2 k ; 2 k+1)$ and $Y=X \cup\{1\}$ and consider the bijections

$$
\begin{aligned}
& X \rightarrow Y: x \mapsto \begin{cases}x+1 & \text { if } x \leq-2, \\
1 & \text { if } x=-1, \\
x & \text { if } x \geq 0\end{cases} \\
& Y \rightarrow X: x \mapsto \begin{cases}x & \text { if } x<0, \\
x / 2 & \text { if } x \in[0,1], \\
(x-1) / 2 & \text { if } x \in[2,3), \\
x-2 & \text { if } x \geq 4 .\end{cases}
\end{aligned}
$$

Similar tricks are called "Hilbert's hotel". Guess why.
11.37 This is indeed very simple. Take $[0,1]$ and \mathbb{R}. (Actually, any two nonhomeomorphic subsets of \mathbb{R} with nonempty interiors would do.)
11.38 The topology on \mathbb{Q} is not discrete.
11.39 1), 2) If the discrete space is not a singleton, this is impossible.
11.40 See 11.35.
12.1 1)-3) Yes: in each of these spaces, two nonempty open sets always have nonempty intersection.
12.2 The empty space and a singleton.
12.3 A disconnected two-element space is obviously discrete.
12.4 1) No, \mathbb{Q} is not connected since, for instance,

$$
\mathbb{Q}=(\mathbb{Q} \cap(-\infty, \sqrt{2})) \cup(\mathbb{Q} \cap(\sqrt{2},+\infty)) .
$$

2) $\mathbb{R} \backslash \mathbb{Q}$ is also disconnected for a similar (and even simpler) reason.
12.5 1) Yes, if $\left(X, \Omega_{1}\right)$ is connected, then so is $\left(X, \Omega_{2}\right)$: if $X=U \cup V$, where $U, V \in \Omega_{1}$, then $U, V \in \Omega_{2}$. 2) No, the connectedness of (X, Ω_{1}) does not imply that of (X, Ω_{2}): consider the case where Ω_{1} is indiscrete, Ω_{2} is discrete, and X contains more than one point.
12.6 A subset A of a space X is disconnected iff there exist open subsets $U, V \subset X$ such that $A \subset U \cup V, U \cap V \cap A=\varnothing, U \cap A \neq \varnothing$, and $V \cap A \neq \varnothing$.
12.7 1), 3): No, it is not, because the relative topology on $\{0,1\}$ is discrete (see 12.2). 2): Yes, it is, because the relative topology on $\{0,1\}$ is not discrete (see 12.3).
12.8 1) Every subset of the arrow is connected. 2) A subset of $\mathbb{R}_{T_{1}}$ is connected iff it is empty, a singleton, or an infinite set.
12.9 Show that $[0,1]$ is both open and closed in $[0,1] \cup(2,3]$.
12.10 Given $x, y \in A \subset \mathbb{R}, z \in(x, y)$, and $z \notin A$, produce two nonempty sets open in A that partition A. Cf. 12.4.
$12.11 \Leftrightarrow$ Let B and C be two nonempty subsets of A open in A that partition A.
\Leftrightarrow Use the fact that if $B \cap \mathrm{Cl}_{X} C=\varnothing$, then $B=A \cap\left(X \backslash \mathrm{Cl}_{X} C\right)$.
12.12 Let $X=A \cup x_{*}, x_{*} \notin A$, and let Ω_{*} consist of the empty set and all sets containing x_{*}. Is this a topological structure in X ? What topology does it induce on A ?
12.13 Let A be disconnected, and let B and C satisfy the hypothesis of 12.11. Then we can set

$$
U=\left\{x \in \mathbb{R}^{n} \mid \rho(x, B)<\rho(x, C)\right\} \text { and } V=\left\{x \in \mathbb{R}^{n} \mid \rho(x, B)>\rho(x, C)\right\}
$$

Notice that the conclusion of 12.13 would still hold true if in the hypothesis we replaced \mathbb{R}^{n} by an arbitrary space where every open subspace is normal, see Section 15.
12.15 Obvious. (Cf. 12.6.)
12.15 The set A is dense in B equipped with the relative topology induced from the ambient space. Therefore, we can apply 12.B.
12.16 Assume the contrary: let $A \cup B$ be disconnected. Then the ambient space contains open subsets U and V such that $A \cup B \subset U \cup V$, $U \cap(A \cup B) \neq \varnothing, V \cap(A \cup B) \neq \varnothing$, and $U \cap V \cap(A \cup B)=\varnothing$ (cf. the solution to Problem 12.6). Since $A \cup B \subset U \cup V$, the set A meets at least one of the sets U and V. Without loss of generality, we can assume that $A \cap U \neq \varnothing$. Then $A \cap V=\varnothing$ by the connectedness of A, whence $A \subset U$. Since U is a neighborhood of each point in $A \cap \mathrm{Cl} B$, it meets B. The set V also meets B since $V \cap(A \cup B) \neq \varnothing$, while $A \cap V=\varnothing$. This contradicts the connectedness of B since $B \cap U$ and $B \cap V$ form a partition of B into two nonempty sets open in B.
12.17 If $A \cup B$ is disconnected, then X contains open sets U and V such that $U \cup V \supset A \cup B, U \cap(A \cup B) \neq \varnothing, V \cap(A \cup B) \neq \varnothing$, and $U \cap V \cap(A \cup B)=\varnothing$. Since A is connected, A is contained in U or V. Without loss of generality, we may assume that $A \subset U$. Set $B_{1}=B \cap V$. Since B is open in $X \backslash A$ and $V \subset X \backslash A$, the set B_{1} is open in V. Therefore, B_{1} is open in X. Furthermore, we have $B_{1} \subset X \backslash U \subset X \backslash A$, and, therefore, B_{1} is closed in $X \backslash U$ and hence also in X. Thus, B_{1} is both open and closed in X, contrary to the connectedness of X.
12.18 No, it does not. Example: put $A=\mathbb{Q}$ and $B=\mathbb{R} \backslash \mathbb{Q}$.
12.19 1) If A and B are open and A is disconnected, then $A=U \cup V$, where U and V are disjoint nonempty sets open in A. Since $A \cap B$ is connected, then either $A \cap B \subset U$, or $A \cap B \subset V$. Without loss of generality, we can assume that $A \cap B \subset U$. Then $\{V, U \cup B\}$ is a partition of $A \cup B$ into nonempty open sets. (U and V are open in $A \cup B$ because an open subset of an open set is open.) This contradicts the connectedness of $A \cup B$.
2) In the case when A and B are closed, the same arguments work if openness is everywhere replaced by closedness.
12.20 Not necessarily. Consider the closed sets $K_{n}=\{(x, y) \mid x \geq$ $0, y \in\{0,1\}\} \cup\{(x, y) \mid x \in \mathbb{N}, x \geq n, y \in[-1,1]\}, n \in \mathbb{N}$. (An infinite ladder, railroad, fence, hedge, handrail, balustrade, or banisters, whichever you prefer.) Their intersection is the union of the rays $\{y=1, x \geq 0\}$ and $\{y=-1, x \geq 0\}$.
12.21 Let C be a connected component of X, and let $x \in C$ be an arbitrary point. If U_{x} is a connected neighborhood of x, then U_{x} lies entirely in C, and so x is an interior point of C, which is thus open.
12.22 Theorem 12.I allows us to transform the statement under consideration into the following obvious statement: if a set M is connected and A is both open and closed, then either $M \subset A$, or $M \subset X \backslash A$.
12.23 See the next problem.
12.24 Prove that no two points in the Cantor set belong to the same connected component.
12.25 If $\operatorname{Fr} A=\varnothing$, then $A=\mathrm{Cl} A=\operatorname{Int} A$ is a nontrivial open-closed set.
12.26 If $F \cap \operatorname{Fr} A=\varnothing$, then $F=(F \cap \mathrm{Cl} A) \cup(F \cap \mathrm{Cl}(X \backslash A))$ and $F \cap \mathrm{Cl} A \cap \mathrm{Cl}(X \backslash A)=\varnothing$.
12.27 If $\mathrm{Cl} A$ is disconnected, then $\mathrm{Cl} A=F_{1} \cup F_{2}$, where F_{1} and F_{2} are nonempty disjoint sets closed in X. Each of them meets A since $F_{1} \cup F_{2}$ is the smallest closed set containing A. Therefore, A splits into the union of nonempty sets $A_{1}=A \cap F_{1}$ and $A_{2}=A \cap F_{2}$, whose boundaries $\operatorname{Fr} A_{1}$ and $\operatorname{Fr} A_{2}$ are nonempty by 12.25. This contradicts the connectedness of $\mathrm{Fr} A=\operatorname{Fr} A_{1} \cup \operatorname{Fr} A_{2}$.
12.30 Combine $12 . N$ and 12.10 .
12.31 Let M be the connected component of unity. For each $x \in M$, the set $x \cdot M$ is connected and contains $x=x \cdot 1$. Therefore, $x \cdot M$ meets M, whence $x \cdot M \subset M$. Thus, M is a subgroup of X. Furthermore, for each $x \in X$ the set $x^{-1} \cdot M \cdot x$ is connected and contains the unity. Consequently $x^{-1} \cdot M \cdot x \subset M$. Hence, the subgroup M is normal.
12.32 Let $U \subset \mathbb{R}$ be an open set. For each $x \in U$, let $\left(m_{x}, M_{x}\right) \subset U$ be the largest open interval containing x. (Take the union of all open intervals in U that contain x.) Any two such intervals either coincide or are disjoint, i.e., they constitute a partition of U.
12.33 1) Certainly, it is connected because if l is the spiral, then $\mathrm{Cl} l=l \cup S^{1}$. 2) Obviously, the answer will not change if we add to the spiral only a part of the limit circle.
12.34 (1) This set is disconnected since, for example, so is its projection to the x axis.
(2) This set is connected because any two of its points are joined by a polyline (with at most two segments).
(3) This set is connected. Consider the set $X \subset \mathbb{R}^{2}$ defined as the union of lines $y=k x$ with $k \in \mathbb{Q}$. Clearly, the coordinates (x, y) of any point in X are either both rational or both irrational. Obviously X is connected, while the set under consideration is contained in the closure of X (coinciding with the whole plane).
14.17 Let $A \subset \mathbb{R}^{n}$ be the connected set. Use the fact that balls in \mathbb{R}^{n} are connected by $12 . U$ (or by $12 . V$) and apply $12 . E$ to the family $\{A\} \cup\left\{B_{\varepsilon}(x)\right\}_{x \in A}$.
12.36 For $x \in A$, let $V_{x} \subset U$ be a spherical neighborhood of x. Consider the neighborhood $\bigcup_{x \in A} V_{x}$ of A. To show that it is connected, use the fact
that balls in \mathbb{R}^{n} are connected by $12 . U$ (or by $12 . V$) and apply $12 . E$ to the family $\{A\} \cup\left\{V_{x}\right\}_{x \in A}$.
12.37 Let

$$
X=\{(0,0),(0,1)\} \cup\left\{(x, y) \mid x \in[0,1], y=\frac{1}{n}, n \in \mathbb{N}\right\} \subset \mathbb{R}^{2} .
$$

Prove that any open and closed set contains both points $A(0,0)$ and $B(1,0)$.
13.1 This immediately follows from Theorem 13.A. Indeed, any real polynomial of odd degree takes both positive and negative values (for values of the argument with sufficiently large absolute values).
13.2 Combine 12.Z, 13.B, and 13.E.
13.3 There are nine topological types, namely: (1) A, R; (2) B; (3) C, G, I, J, L, M, N, S, U, V, W, Z; (4) D, O; (5) E, F, T, Y; (6) H, K; (7) P; (8) Q; (9) X. Notice that the answer depends on the graphics of the letters. For example, we can draw letter R homeomorphic not to A , but to Q . To prove that letters of different types are not homeomorphic, use arguments similar to that in the solution of 13.E.
13.4 A square with any of its points removed is still connected (prove this!), while the segment is not. (We emphasize that the sentence, "Because a square cannot be partitioned into two nonempty open sets", cannot serve as a proof of the mentioned fact. The simplest approach would be to use 12.I.)
13.5 Use 11.R.
13.7x This is so because for any $x_{0} \in X$ the set $\left\{x \mid f(x)=f\left(x_{0}\right)\right\}$ is both open and closed (prove this!). Here is another version of the argument. Each point y in the source space has open preimage $f^{-1}(y)$.
13.9x Fix $h \in H$ and consider the map $x \mapsto x h x^{-1}$. Since H is a normal subgroup, the image of G is contained in H. Since H is discrete, this map is locally constant. Therefore, by 13.7x, it is constant. Since the unity is mapped to h, it follows that $x h x^{-1}=h$ for any $x \in G$. Therefore, $g h=h g$ for any $g \in G$ and $h \in H$.
13.10x Consider the union of all sets with property \mathcal{E} containing a point a. (Is it not natural to call this set a component of a in the sense of \mathcal{E} ?) Prove that such sets constitute an open partition of X. Therefore, if X is connected, any such a set is the whole X.
13.12x Introduce a coordinate system with y axis l, and consider the function f sending $t \in \mathbb{R}$ to the area of the part A that lies to the left of the line $x=t$. Prove that f is continuous. Observe that the set of values of f is the segment $[0 ; S]$, where S is the area of A, and apply the Intermediate Value Theorem.
13.13x If A is connected, then the function introduced in the solution to Problem $13.12 x$ is strictly monotone on $f^{-1}((0, S))$.
13.14x Fix a Cartesian coordinate system on the plane and, for any $\varphi \in$ $[0, \pi]$, consider also the coordinate system obtained by rotating the fixed one through an angle of φ around the origin. Let f_{A} and f_{B} be functions defined by the following property: the line defined by $x=f_{A}(\varphi)$ (respectively, $x=$ $\left.f_{B}(\varphi)\right)$ in the corresponding coordinate system divides A (respectively, B) in two parts of equal areas. Put $g(\varphi)=f_{A}(\varphi)-f_{B}(\varphi)$. Clearly, $g(\pi)=-g(0)$. Hence, if we proved the continuity of f_{A} and f_{B}, then the Intermediate Value Theorem would imply existence of φ_{0} such that $g\left(\varphi_{0}\right)=0$. The corresponding line $x=f_{A}\left(\varphi_{0}\right)$ divides each of the figures in two parts of equal areas. Prove continuity of f_{A} and f_{B} !
13.15x The idea of solution is close to the idea of solution to the preceding problem. Find an appropriate function whose zero would give rise to the required lines, while the existence of a zero follows from the Intermediate Value Theorem.
14.1 Combine $12 . R$ and 12.N.
14.2 Combine 14.1 and 12.26.
$14.3 \Longrightarrow$ This is obvious since in_{A} is continuous.
\Leftrightarrow Indeed, u is continuous as a submap of the continuous map $\operatorname{in}_{A} \circ u$.
14.4 A one-point discrete space, an indiscrete space, the arrow, and $\mathbb{R}_{T_{1}}$ are path-connected. Also notice that the points a and c in \forall are connected by a path!

14.5 Use 14.3.

14.6 Combine (the formula of) $14 . C$ and 14.5.
14.7 Use (the formula of) $14 . C, 14 . A$, and 14.5 .
14.8 Indeed, let $u: I \rightarrow X$ be a path. Then any two points $u(x), u(y) \in$ $u(I)$ are connected by the path defined as the composition of u and $I \rightarrow I$: $t \mapsto(1-t) x+t y$.
14.9 A path in the space of polygons looks like a deformation of a polygon. Let us join an arbitrary polygon P with a regular triangle T. We take a vertex V of P and move it to (say, the midpoint of) the diagonal of P joining the neighboring vertices of V, thus reducing the number of vertices of P. Proceeding by induction, we come to a triangle, which is easy to deform into T.
It is also easy to see that any convex n-gon can be deformed into a regular n-gon in the space of convex n-gons.
14.11 We consider the case where A and B are open and prove that A is path-connected. Let $x, y \in A$, and let u be a path joining x and y in
$A \cup B$. If $u(I) \not \subset A$, then we set $\bar{t}=\sup \{t \mid u([0, t]) \subset A\}$. Since A is open, $u(\bar{t}) \in B$. Since B is open, there is $t_{0}<\bar{t}$ with $u\left(t_{0}\right) \in B$, whence $u\left(t_{0}\right) \in A \cap B$. In a similar way, we find $t_{1} \in I$ such that $u\left(t_{1}\right) \in A \cap B$ and $u\left(\left[t_{1}, 1\right]\right) \subset A$. It remains to join $u\left(t_{0}\right)$ and $u\left(t_{1}\right)$ by a path in $A \cap B$.
14.12 1), 2) The assertion about the boundary is trivial, and an example is easy to find in \mathbb{R}^{1}. It is also easy to find a path-connected set in \mathbb{R}^{2} with disconnected interior. (Why are there no such examples in \mathbb{R}^{1} ?)
14.13 Let $x, y \in \mathrm{Cl} A$. Assume that $x, y \in \operatorname{Int} A$. (Otherwise, the argument becomes even simpler.) Then we join x and y with points $x^{\prime} . y^{\prime} \in$ Fr A by segments and join x^{\prime} and y^{\prime} by a path in $\operatorname{Fr} A$.
$14.16 \Leftrightarrow$ This is $14 . M$.
\Leftrightarrow Combine the result of $12 . Y$ with 14.6 (or $14 . B$).
14.17 Combine Problem 12.35 and Theorem 14.U.
14.18 Combine Problem 12.36 and Theorem 14.U.
14.19x Use multiplication of paths.
14.20x Obvious.
14.21x Obvious.
14.22x Define polyline-connected components and show that they are open for open sets in \mathbb{R}^{n}.
14.23x For example, set $A=S^{1}$.
14.24x Let $x, y \in \mathbb{R}^{2} \backslash X$. Draw two nonparallel lines through x and y that do not meet X.
14.25x Let $x, y \in \mathbb{R}^{n} \backslash X$. Draw a plane through x and y that intersects each of the affine subspaces at most at one point and apply Problem 14.24x. (In order to find such a plane, use the orthogonal projection of \mathbb{R}^{n} to the orthogonal complement of the line through x and y.)
14.26x Let $w_{1}, w_{2} \in \mathbb{C}^{n} \backslash X$. Observe that the complex line through w_{1} and w_{2} meets each of the algebraic subsets at a finite number of points and apply Problem 14.24x.
14.27x The set $\operatorname{Symm}(n ; \mathbb{R})=\left\{\left.A\right|^{t} A=A\right\}$ is a linear subspace in the space of all matrices, and, hence, it is path-connected. To handle the other subspaces, use the function $A \mapsto \operatorname{det} A$. Since (obviously) it is continuous and in each case takes both positive and negative values, but never vanishes, it immediately follows that $G L(n ; \mathbb{R}), O(n ; \mathbb{R}), \operatorname{Symm}(n ; \mathbb{R}) \cap G L(n ; \mathbb{R})$, and $\left\{A \mid A^{2}=\mathbb{E}\right\}$ are disconnected. In fact, each of them has two path-connected components. Let us show, for example, that $G L_{+}(n ; \mathbb{R})=\{A \mid \operatorname{det} A>0\}$ is path-connected. The following assertion is of use here, as well as below. For each basis $\left\{e_{i}\right\}$ in \mathbb{R}^{n}, there exist paths $e_{i}: I \rightarrow \mathbb{R}^{n}$ such that: 1) for
each $t \in[0,1]$ the collection $\left\{e_{i}(t)\right\}$ is a basis; 2) $\left.e_{i}(0)=e_{i}, i=1, \ldots, n ; 3\right)$ $\left\{e_{i}(1)\right\}$ is an orthonormal basis. (Prove this.)
$14.28 \mathrm{x} G L(n, \mathbb{C})$ is even polyline-connected by $14.26 \times \operatorname{since} \operatorname{det} A=0$ is an algebraic equation in $\mathbb{C}^{n^{2}}$. The other spaces are path-connected.
15.1 Only the discrete space is Hausdorff (and, formally, indiscrete singletons).
15.2 Read the following formula written with quantifiers: $\exists U_{b} \forall N \in$ $\mathbb{N} \exists n>N: a_{n} \in X \backslash U_{b}$.
15.4 Let $f, g: X \rightarrow Y$ be two continuous maps, and let Y be a Hausdorff space. To prove that the coincidence set $C(f, g)$ is closed, we show that its complement is open. If $x \in X \backslash C(f, g)$, then $f(x) \neq g(x)$. Since Y is Hausdorff, $f(x)$ and $g(x)$ have disjoint neighborhoods U and V. For each $y \in f^{-1}(U) \cap g^{-1}(V)$, we obviously have $f(y) \neq g(y)$, whence $f^{-1}(U) \cap$ $g^{-1}(V) \subset X \backslash C(f, g)$. Since f and g are continuous, this intersection is a neighborhood of y.
15.5 Consider the following two maps from I to the arrow: $x \mapsto 1$ and $x \mapsto \operatorname{sgn} x$. (Here, sgn : $\mathbb{R} \rightarrow \mathbb{R}$ is the function that sends negative numbers to $-1,0$ to 0 , and positive numbers to 1 .)
15.6 This follows from 15.4 because, obviously, the fixed point set of f is $C\left(f, \mathrm{id}_{X}\right)$.
15.7 Let X be the arrow. Consider the map $f: X \rightarrow X: x \mapsto x+\sin x$. What is the fixed point set of f ? Is it closed in X ?
15.8 By 15.4 , the coincidence set $C(f, g)$ of f and g is closed in X. Since $C(f, g)$ contains the everywhere dense set A, it coincides with the entire X.
15.10 Only the first two properties are hereditary.
15.11 We have $\{x\}=\bigcap_{U \ni x} U$ iff for each $y \neq x$ the point x has a neighborhood U that does not contain y, which is precisely T_{1}.
15.12 This is obvious.
15.13 See 15.J.
15.14 Consider a neighborhood of $f(a)$ that does not contain $f(b)$ and take its preimage.
15.15 Otherwise, the indiscrete space would contain nontrivial closed subsets (preimages of singletons).
15.16 This is a complete analog of the topology on $\mathbb{R}_{T_{1}}$: only finite sets and the entire space are closed.
15.17 Consider the coarsest topology on \mathbb{R} that contains the usual topology and is such that the set $A=\{1 / n \mid n \in \mathbb{N}\}$ is closed. Show that in this space the point 0 and the set A cannot be separated by neighborhoods.
15.18 An obvious example is the indiscrete space. A more instructive example is the "real line with two zeros", which is also of interest in some other cases: let $X=\mathbb{R} \cup 0^{\prime}$, and let the base of the topology on X consist of all usual open intervals $(a, b) \subset \mathbb{R}$ and of "modified intervals" $(a, b)^{\prime}=$ $(a, 0) \cup 0^{\prime} \cup(0, b)$, where $a<0<b$. (Verify that this is indeed a base.) Axiom T_{3} is fulfilled, but 0 and 0^{\prime} have no disjoint neighborhoods in X.
$15.19 \Leftrightarrow$ Let a space X satisfy T_{3}. If $b \in X$ and W is a neighborhood of b, then, applying T_{3} to b and $X \backslash W$, we obtain disjoint open sets U and V such that $b \in U$ and $X \backslash W \subset V$. Obviously, $\mathrm{Cl}(U) \subset X \backslash V \subset W$.
\Leftrightarrow Let X be the space, $F \subset X$ a closed set, and $b \in X \backslash F$. Then $X \backslash F$ is a neighborhood of x, and we can find a neighborhood U of x with $\mathrm{Cl}(U) \subset X \backslash F$. Then $X \backslash \mathrm{Cl}(U)$ is the required neighborhood of F disjoint with U.
15.20 Let X be a space, $A \subset X$ a subspace, and B a closed subset of A. If $x \notin B$, then $x \notin F$, where F is closed in X and $F \cap A=B$. The rest is obvious.
15.21 For example, consider an indiscrete space or the arrow.
15.22 Cf. the proof of assertion 15.19 . \Longleftrightarrow Let a space X satisfy T_{4}. If $F \subset X$ is a closed set and W is a neighborhood of F, then, applying T_{4} to F and $X \backslash W$, we obtain disjoint open sets U and V such that $F \subset U$ and $X \backslash W \subset V$. Obviously, $\mathrm{Cl}(U) \subset X \backslash V \subset W$.
\Leftrightarrow Let X be the space, $F, G \subset X$ two disjoint closed sets. Then $X \backslash G$ is a neighborhood of F, and we can find a neighborhood U of F with $\mathrm{Cl}(U) \subset$ $X \backslash G$. Then $X \backslash \mathrm{Cl}(U)$ is the required neighborhood of F disjoint with U.
15.23 Use the fact that a closed subset of a closed subspace is closed in the entire space and recall the definition of the relative topology.
15.25 For example, consider $A=\mathbb{N}$ and $B=\{n+1 / n\}_{1}^{\infty}$ in \mathbb{R}.
15.26 Let $F_{1}, F_{2} \subset Y$ be two disjoint closed sets. Since f is continuous, their preimages $f^{-1}\left(F_{1}\right)$ and $f^{-1}\left(F_{2}\right)$ are also closed in X. Since X satisfies T_{4}, the preimages have disjoint neighborhoods W_{1} and W_{2}. By assumption, the closed sets $A_{i}=X \backslash W_{i}, i=1,2$, have closed images B_{i}. Since $B_{1} \cup B_{2}=$ $f\left(A_{1}\right) \cup f\left(A_{2}\right)=f\left(A_{1} \cup A_{2}\right)=f(X)=Y$, the open sets $U_{1}=Y \backslash B_{1}$ and $U_{2}=Y \backslash B_{2}$ are disjoint. Check that $F_{i} \subset U_{i}, i=1,2$.
15.27x Let $x, y \in \mathcal{N}$ be two distinct points. If at least one of them lies in \mathcal{H}, then, obviously, they have disjoint neighborhoods. Now if $x, y \in \mathbb{R}^{1}$, then they are separated by certain disjoint disks D_{x} and D_{y}.
15.28x Verify that if an open disk $D \subset \mathcal{H}$ touches \mathbb{R}^{1} at a point x, then $\mathrm{Cl}(D \cup x)=\mathrm{Cl} D$. After that, use 15.19.
15.29x The discrete structure.
15.30x Since \mathbb{R}^{1} is closed in \mathcal{N} and the relative topology on \mathbb{R}^{1} is discrete, each subset of \mathbb{R}^{1} is closed in \mathcal{N}. Let us prove that the closed sets $\{(x, 0) \mid x \in \mathbb{Q}\}$ and $\{(x, 0) \mid x \in \mathbb{R} \backslash \mathbb{Q}\}$ have no disjoint neighborhoods in \mathcal{N}. Let U be a Nemytskii neighborhood of $\mathbb{R}^{1} \backslash \mathbb{Q}$. For each $x \in \mathbb{R}^{1} \backslash \mathbb{Q}$, fix an $r(x)$ such that an open disk $D_{r(x)} \subset U$ of radius $r(x)$ touches \mathbb{R}^{1} at x. Define $Z_{n}=\left\{x \in \mathbb{R}^{1} \mid r(x)>1 / n\right\}$. Since, obviously, $\mathbb{Q} \cup \bigcup_{n=1}^{\infty} Z_{n}=\mathbb{R}^{1}$, the result of 6.44 implies that there is (sufficiently large) n such that Z_{n} is not nowhere dense. Therefore, $\mathrm{Cl} Z_{n}$ contains a segment $[a, b] \subset \mathbb{R}^{1}$, whence it follows that $U \cup[a, b]$ contains a whole neighborhood of $[a, b]$, which meets each neighborhood in \mathcal{N} of any rational in $[a, b]$. Hence, U meets each neighborhood of \mathbb{Q}, and so, indeed, \mathcal{N} is not normal.
15.32x Add a point x_{*} to $\mathcal{N}: \mathcal{N}^{*}=\mathcal{N} \cup x_{*}$. The topology Ω^{*} on \mathcal{N}^{*} is obtained from the topology Ω on \mathcal{N} by adding sets of the form $x_{*} \cup U$, where $U \in \Omega$ contains all points in \mathbb{R}^{1} except a finite number. Verify that $\left(\mathcal{N}^{*}, \Omega^{*}\right)$ is a normal space.
15.34x $\operatorname{Set} f(x)=\frac{\rho(x, A)}{\rho(x, A)+\rho(x, B)}$.
15.35x. 1 Set $A=f^{-1}([-1,-1 / 3])$ and $B=f^{-1}([1 / 3,1])$. Use $15.34 x$ to prove that there exists a function $g: X \rightarrow[-2 / 3,2 / 3]$ such that $g(A)=$ $-1 / 3$ and $g(B)=1 / 3$.
15.35x By $15.35 \times .1$, there is a function $g_{1}: X \rightarrow[-1 / 3,1 / 3]$ such that $\left|f(x)-g_{1}(x)\right| \leq 2 / 3$ for every $x \in F$. Put $f_{1}(x)=f(x)-g_{1}(x)$. Slightly modifying the proof of $15.35 \times .1$ we obtain a function $g_{2}: X \rightarrow[-2 / 9,2 / 9]$ such that $\left|f_{1}(x)-g_{2}(x)\right| \leq 4 / 9$ for every $x \in F$, i.e., $\left|f(x)-g_{1}(x)-g_{2}(x)\right| \leq$ $4 / 9$. Repeating this process, we construct a sequence of functions $g_{n}: X \rightarrow$ $\left[-2^{n-1} / 3^{n}, 2^{n-1} / 3^{n}\right]$ such that

$$
\left|f(x)-g_{1}(x)-\cdots-g_{n}(x)\right| \leq \frac{2^{n}}{3^{n}} .
$$

Use 25.Hx to prove that the sum $g_{1}(x)+\cdots+g_{n}(x)$ converges to a continuous function $g: X \rightarrow[-1,1]$. Obviously, $\left.g\right|_{F}=f$.
16.1 This is obvious.
16.2 Sending each curve C in Σ to a pair of points in $\mathbb{Q}^{2} \subset \mathbb{R}^{2}$ lying inside two "halves" of C, we obtain an injection $\Sigma \rightarrow \mathbb{Q}^{4}$. It remains to observe that \mathbb{Q}^{4} is countable and use 16.1. (In order to show that \mathbb{Q}^{4} is countable, use $16 . C$ and 16.D.)
16.3 The arrow is second countable: $\{(x,+\infty) \mid x \in \mathbb{Q}\}$ is a countable base. (Use 16.C.) Use $16 . E$ to show that $\mathbb{R}_{T_{1}}$ is not second countable.
16.4 Yes, they are: \mathbb{N} is dense both in the arrow and in $\mathbb{R}_{T_{1}}$.
16.5 Consider the space from Problem 2.6.
16.6 Take an uncountable set (e.g., \mathbb{R}) with all distances between distinct points equal to 1. (See 4.A.)
16.7 Let X be a separable space, let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be a collection of pairwise disjoint open sets of X, and let $A \subset X$ be a countable everywhere-dense subset. Taking for each $\alpha \in J$ a point $p(\alpha) \in A \cap U_{\alpha} \neq \varnothing$, we obtain an injection $J \rightarrow A$.
16.8 Use 12.H, 14.U, 14.S, 16.K, and 16.7.
16.9 Consider id : $\mathbb{R} \rightarrow \mathbb{R}_{T_{1}}$ and use $16 . K$ and the result of 16.3 .
16.10 Let X be the space, B_{0} a countable base of X, and B an arbitrary base of X. By the Lindelöf Theorem 16.M, each set in B_{0} is the union of countably many sets in B. It remains to use 16.D.
16.12 Obviously, it suffices to prove only the last assertion. If U is an open set and $a \in U$, then there is $r>0$ such that $B_{r}(a) \subset U$. Since $r_{n} \rightarrow 0$, there is $k \in \mathbb{N}$ such that $r_{k}<r$, whence $B_{r_{k}}(a) \subset U$.
16.13 If X is a discrete (respectively, indiscrete) space, then the minimal base at a point $x \in X$ is $\{\{x\}\}$ (respectively, $\{X\}$).
16.14 All spaces except $\mathbb{R}_{T_{1}}$, cf. 16.3.
16.15 Equip \mathbb{R} with the topology determined by the base $\{[a, b) \mid a, b \in$ $\mathbb{R}, a<b\}$.
16.16 If $\left\{V_{i}\right\}_{1}^{\infty}$ is a countable neighborhood base, then let $U_{i}=\bigcap_{i=1}^{n} V_{i}$.
16.17 In this space, $x_{n} \rightarrow a$ iff $x_{n}=a$ for all sufficiently large n. It follows that $\operatorname{SCl} A=A$ for each $A \subset \mathbb{R}$. Check that $\operatorname{SCl}[0,1]=[0,1] \neq$ $\mathrm{Cl}[0,1]=\mathbb{R}$.
16.18 Consider the identical map of the space from Problem 16.17 to \mathbb{R}.
17.1 1) If (X, Ω_{2}) is compact, then, obviously, so is $\left(X, \Omega_{1}\right)$. 2) The converse is wrong in general.
17.2 The arrow is compact. (Which set must belong to each cover of the arrow?) The space $\mathbb{R}_{T_{1}}$ is also compact: if Γ is an open cover of $\mathbb{R}_{T_{1}}$, then any nonempty element of Γ covers the entire $\mathbb{R}_{T_{1}}$ except a finite number of points, each of which, in turn, is covered by an element of Γ.
17.3 This set is not compact in \mathbb{R} since, e.g., the cover $\{(0,2-1 / n)\}_{n \in \mathbb{N}}$ contains no finite subcovering.
17.4 The set $[1,2)$ is compact in the arrow because any open set containing 1 (i.e., a ray $(a,+\infty)$ with $a<1$, or even $[0,+\infty)$ itself) contains
the entire $[1,2)$. Notice that the set $(1,2]$ is not compact (to prove this, use 17.D).
17.5 A is compact in the arrow iff $\inf A \in A$.
17.6 See the solution to 17.2.
17.7 1) If Γ covers $A \cup B$, then Γ covers both A and B. Therefore, Γ contains both a finite subcovering of A and a finite subcovering of B, whose union is a finite cover of $A \cup B$. 2) The set $A \cap B$ is not necessarily compact (use 17.5 to construct the corresponding example). Unfortunately, sometimes students present a "proof" of the fact that $A \cap B$ is compact. Here is a typical argument. "Since A is compact, A has a finite cover, and since B is compact, B also has a finite cover. Taking pairwise intersections of the elements of these covers, we obtain a finite cover of the intersection $A \cap B$." Why doesn't this argument imply in any way that the intersection of two compact sets is compact?
17.8 Take an open cover Γ of A, and let $U_{0} \in \Gamma$ be an open set containing 0 . Then U_{0} covers the entire A except for a finite number of points, each of which, in turn, is covered by an element of Γ. (Cf. the solution to 17.2.)
17.9 Consider an indiscrete two-element space and its one-point subset.
17.10 Combine 17.K, 2.F, and 17.J.
17.11 Take any $\lambda_{0} \in \Lambda$. Then $\left\{X \backslash K_{\lambda}\right\}_{\lambda \in \Lambda}$ is an open cover of the compact set $K_{\lambda_{0}} \backslash U$. If $\left\{X \backslash K_{\lambda_{i}}\right\}_{1}^{n}$ is a finite subcovering, then $U \supset \bigcap_{i=1}^{n} K_{\lambda_{i}}$.
17.12 By $17 . K$, all sets K_{n} are closed subsets of K_{1}. Since the collection $\left\{K_{n}\right\}$ obviously has the finite intersection property and K_{1} is compact, we have $\bigcap_{n=1}^{\infty} K_{n} \neq \varnothing$ is nonempty (see Theorem 17.G). Assume the contrary: let $\bigcap_{n=1}^{\infty} K_{n}=F_{1} \cup F_{2}$, where F_{1} and F_{2} are two disjoint nonempty closed sets. By Theorem 13.17 and 17.O, they have disjoint neighborhoods U_{1} and U_{2}. Applying 17.11 to $U_{1} \cup U_{2}$, we see that for some n we have $U_{1} \cup U_{2} \supset$ $K_{n} \supset F_{1} \cup F_{2}$, which contradicts the connectedness of K_{n}.

17.13 Only if the space is finite.

17.14 From 17. T it follows that S^{1}, S^{n}, and the ellipsoid are compact. The remaining sets are not compact: $[0,1)$ and $[0,1) \cap \mathbb{Q}$ are not closed in \mathbb{R}, while the ray and the hyperboloid are unbounded.
17.15 $G L(n)$ is not even closed in $L(n, n)=\mathbb{R}^{n^{2}}$, while $S L(n)$ and space (4) are not bounded. Therefore, only $O(n)$ is compact because it is both closed and bounded (check this).
17.16 By 13.C and Theorems $17 . P$ and $17 . U, f(I)$ is a compact interval, i.e., a segment.
$17.17 \Leftrightarrow$ This is $17 . \mathrm{V}$.
Since the function $A \rightarrow \mathbb{R}: x \mapsto \rho(0, x)$ is bounded, A is bounded. Let us prove that A is closed. Assume the contrary: let $x_{0} \in \mathrm{Cl} A \backslash A$. Then the function $A \rightarrow \mathbb{R}: x \mapsto 1 / \rho\left(x, x_{0}\right)$ is unbounded, a contradiction. Since A is closed and bounded, it is compact by 17.T.
17.18 Consider the function $f: G \rightarrow \mathbb{R}: x \mapsto \rho(x, F)$. By 4.35, f is continuous. Since $\rho(G, F)=\inf _{x \in G} f(x)$, it remains to apply 17.V. Recall that f takes only positive values! (See 4.L.)
17.19 Use 17.18 and, e.g., let $\varepsilon=\rho(A, X \backslash U)$.
17.20 Prove that if $A \subset \mathbb{R}^{n}$ is a closed set, then for each $x \in \mathbb{R}^{n}$ there is $y \in A$ such that $\rho(x, y)=\rho(x, A)$, whence $V=\bigcup_{x \in A} D_{\varepsilon}(x)$. The set $\bigcup_{x \in A} B_{\varepsilon}(x)$ is path-connected as a connected open subset of \mathbb{R}^{n}, which implies that V is also path-connected.
17.22 Consider the function $\varphi: X \rightarrow \mathbb{R}: x \mapsto \rho(x, f(x))$. If $f(x) \neq x$, then, by assumption, we have $\varphi(f(x))=\rho(f(x), f(f(x)))<\rho(x, f(x))=$ $\varphi(x)$. Prove that φ is continuous. Since X is compact, φ attains its minimal value at a certain point x_{0} by 17.V. However, if $f\left(x_{0}\right) \neq x_{0}$, then $\varphi\left(f\left(x_{0}\right)\right)<$ $\varphi\left(x_{0}\right)$, and so $\varphi\left(x_{0}\right)$ is not the minimal value of φ, a contradiction.
17.23 Let U_{1}, \ldots, U_{n} be a finite subcovering of the initial cover. We put $f_{i}(x)=\rho\left(x, X \backslash U_{i}\right)$. Since the functions $f_{i}(x)$ are continuous, so is the function $\varphi: x \mapsto \max \left\{f_{i}(x)\right\}_{1}^{n}$. Since X is compact, φ attains its minimal value r. Since U_{i} cover X, we have $r>0$.
17.24 Obvious.
17.25 If X is not compact, then use, e.g., 11.B. If Y is not Hausdorff, then consider, e.g., the identical map id of I with the usual topology to I with the Zariski topology, or simply the identical map of a discrete space to the same set with indiscrete topology.
17.26 No, there is no such subspace. Let $A \subset \mathbb{R}^{n}$ be a noncompact set. If A is not closed, then the inclusion in : $A \rightarrow \mathbb{R}^{n}$ is not a closed map. If $A=\mathbb{R}^{n}$, then there exists a homeomorphism $\mathbb{R}^{n} \rightarrow\left\{x \in \mathbb{R}^{n} \mid x_{1}>0\right\}$. If A is closed, but not bounded, then take $x_{0} \notin A$ and consider an inversion with center x_{0}.
17.27 Use 5.F: closed sets of a closed subspace are closed in the ambient space.
17.29x Let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a norm. The inequality

$$
p(x)=p\left(\sum x_{i} e_{i}\right) \leq \sum p\left(x_{i} e_{i}\right)=\sum\left|x_{i}\right| p\left(e_{i}\right)=\sum \lambda_{i}\left|x_{i}\right|
$$

implies that p is continuous at zero (here, $\left\{e_{i}\right\}$ is the standard basis in \mathbb{R}^{n}). Show that p is also continuous at each other point of \mathbb{R}^{n}.
17.30x Since the sphere is compact, there are real numbers $c, C>0$ such that $c|x| \leq p(x) \leq C|x|$, where $|\cdot|$ is the usual Euclidean norm. Now use 4.27.
17.31x Certainly not!
17.32x Consider a cover of X by neighborhoods on which f is bounded.
18.1 This obviously follows from 18.E.
18.2 By Zorn's lemma, there exists a maximal set in which the distances between the points are at least ε; this set is the required ε-net.
18.3x No, they are not compact. Consider the sequence $\left\{e_{n}\right\}$, where e_{n} is the unit basis vector. What are the pairwise distances between these points?
18.4 x This set is compact because the set

$$
A=\left\{x \in l^{\infty}| | x_{n} \mid \leq 2^{-n} \text { for } n \leq k, x_{n}=0 \text { for } n>k\right\}
$$

is a 2^{-k}-net in the set.
18.6 x No, there does not exist such normed space. Prove that if E is a finite-dimensional subspace of a normed space $(X, p), x \notin E$, and $y \in E$ is a point in E closest to x, then the point $x_{0}=(x-y) /|x-y|$ is such that $p\left(x_{0}-z\right) \geq 1$. (This fact is called the "Lemma on a Perpendicular".) Using this assertion, we can construct by induction a sequence $x_{n} \in X$ such that $p\left(x_{n}\right)=1, p\left(x_{n}-x_{k}\right) \geq 1$ for $n \neq k$. Clearly, it has no convergent subsequence.
18.7x See 4.Ux.
$18.8 \mathbf{x}$ If $x=a_{0}+a_{1} p+\ldots$ and $y=a_{0}+a_{1} p+\cdots+a_{k} p^{k}$, then $\rho(x, y) \leq p^{-k-1}$.
18.9 x Yes, \mathbb{Z}_{p} is complete. To prove this, use the following assertion: if $x=a_{0}+a_{1} p+\ldots, y=b_{0}+b_{1} p+\ldots$, and $\rho(x, y)<p^{-k}$, then $a_{i}=b_{i}$ for all $i=1, \ldots, k$.
18.10x Yes, \mathbb{Z}_{p} is compact. Since the finite set $A=\left\{y=a_{0}+a_{1} p+\right.$ $\left.\cdots+a_{k} p^{k}\right\}$ is a p^{-k-1}-net in \mathbb{Z}_{p}, the completeness of Z_{p} proved in $18.9 \times$ implies that it is compact.
18.11x Use the Hausdorff metric.
18.12x We can view $\mathbb{R}^{2 n}$ as the space of n-tuples of points in the plane. Each n-tuple has a convex hull, which is a convex polygon with at most n vertices. Let $\mathcal{K} \subset \mathbb{R}^{2 n}$ be the set of all n-tuples with convex hulls contained in \mathcal{P}_{n}. We easily see that \mathcal{K} is bounded and closed, i.e., \mathcal{K} is compact. The map $\mathcal{K} \rightarrow \mathcal{P}_{n}$ taking an n-tuple to its convex hull is obviously continuous and surjective, whence it follows that \mathcal{P}_{n} is compact.
18.13x Use the fact that \mathcal{P}_{n} is compact and the area determines a continuous function $S: \mathcal{P}_{n} \rightarrow \mathbb{R}$.
18.14x It is sufficient to show that if a polygon $P \subset D$ is not regular, then we can find a polygon $P^{\prime} \subset D$ that has perimeter at most p and area greater than that of P, or perimeter less than p and area at least that of P. 1) First, it is convenient to assume that P (as well as P^{\prime}) contains the center of D. 2) If P has two neighboring sides of different length, then we can make them equal of smaller length without changing the area. 3) If P is equilateral, but has different angles, we once more enlarge the area, this time even decreasing the perimeter.
18.15x As in 18.11x, the Hausdorff metric would do.
18.16x Consider a sequence consisting of regular polygons of perimeter p with increasing number of vertices. Show that this sequence has no limit in \mathcal{P}_{∞}. Therefore, no such sequence contains a convergent sequence, and so \mathcal{P}_{∞} is not even sequentially compact.
18.17x Once more, use the Hausdorff metric, as in $18.11 x$ and $18.15 x$.
18.18 x By $18 . N$, it suffices to show that 1) \mathcal{P} contains a compact ε-net for each (arbitrarily small) $\varepsilon>0$, and 2) \mathcal{P} is complete. 1) \mathcal{P}_{n} with sufficiently large n would do. (What finite ε-net would you suggest?) 2) Let K_{1}, K_{2}, \ldots be a Cauchy sequence in \mathcal{P}. Show that $K_{*}=$ $\mathrm{Cl}\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty} K_{i}\right)\right)$ is a convex set in \mathcal{P}, and $K_{i} \rightarrow K_{*}$ as $i \rightarrow \infty$.
18.19 x This follows from 18.18 x and the continuity of the area function $S: \mathcal{P} \rightarrow \mathbb{R}$. (Cf. 18.13x.)
18.20x Similarly to $18.14 x$, it suffices to show that we can increase the area of a compact set X distinct from a disk without increasing the perimeter of X. 1) First, we take two points $A, B \in \operatorname{Fr} X$ that divide $\operatorname{Fr} X$ in two parts of equal length. 2) The line $A B$ splits X into two parts, X_{1} and X_{2}. Suppose that the area of X_{1} is at least that of X_{2}. Then, if we replace X_{2} by a mirror reflection of X_{1}, we do not decrease $S(X)$. If X_{1} is not a half-disk, then there is a point $C \in X_{1} \cap \operatorname{Fr} X$ such that $\angle A C B \neq \pi / 2$, and we easily increase $S(X)$.
19.1x Obvious.
19.2x All of them, except \mathbb{Q}.
19.3x Let $A=\bigcup_{n=1}^{\infty}(1 /(n+1), 1 / n)$ and $B=\{0\}$. The sets A and B are locally compact, but the point $0 \in A \cup B$ has no neighborhood with compact closure (in $A \cup B$).
19.4x See 19.Lx.
19.7x This is obvious since an open set U meets an $A \in \Gamma$ iff U meets Cl A.
19.8x This immediately follows from 19. $Q x$.
19.9x Use 19.8x.
19.11x Let X be a locally compact space. Then X has a base consisting of open sets with compact closures. By the Lindelöf theorem, the base (being an open cover of X) contains a countable subcovering of X. It remains to use assertion 19.Xx.
19.12x Repeat the proof of a similar fact about compactness.
19.13 x This is obvious. (Recall the definitions.)
19.14x Consider the cover $\Gamma^{\prime}=\left\{X \backslash F, U_{\alpha}\right\}$ of X. Let $\left\{V_{\alpha}\right\}$ be a locally finite refinement of Γ^{\prime}. Then $\Delta=\left\{V_{\alpha} \mid V_{\alpha} \cap F \neq \varnothing\right\}$ is a cover of F. Let $W=\bigcup_{V_{\alpha} \in \Delta} V_{\alpha}$. Since Δ is locally finite, $K=\bigcup_{V_{\alpha} \in \Delta} \mathrm{Cl} V_{\alpha}$ is a closed set. Then W and $X \backslash K$ are the required disjoint neighborhoods of F and M.
19.15x This immediately follows from $19.14 x$ (or 19.16x).
19.16x This immediately follows from $19.14 x$.
19.17 x Since X is Hausdorff and locally compact, each point $x \in U_{\alpha} \in$ Γ has a neighborhood $V_{\alpha, x}$ with compact closure lying in U_{α}. Since X is paracompact, the open cover $\left\{V_{\alpha, x}\right\}$ of X has a locally finite refinement Δ, as required.
19.18x The argument involves Zorn's lemma. Consider the set \mathcal{M} of all open covers Δ of X such that for each $V \in \Delta$ either $V \in \Gamma$, or $\mathrm{Cl} V$ is contained in an element of Γ. We assign to $\Delta \in \mathcal{M}$ the subset $A_{\Delta}=\left\{V_{\alpha} \mid\right.$ $\left.\mathrm{Cl} V_{\alpha} \subset U_{\alpha}\right\} \subset \Gamma$. Introduce a natural order on the set $\left\{A_{\Delta} \mid \Delta \in \mathcal{M}\right\}$ and show that this set has a largest element $A_{\Delta_{0}}$, which coincides with the entire Γ, and, therefore, Δ_{0} is the required cover.
19.20x This is next to obvious.
$20.1 \operatorname{pr}_{Y}^{-1}(B)=X \times B$.
20.2 We have:

$$
\operatorname{pr}_{Y}\left(\Gamma_{f} \cap(A \times Y)\right)=\operatorname{pr}_{Y}(\{(x, f(x)) \mid x \in A\})=\{f(x) \mid x \in A\}=f(A)
$$

Prove the second identity on your own.
20.3 Indeed, we have
$(A \times B) \cap \Delta=\{(x, y) \mid x \in A, y \in B, x=y\}=\{(x, x) \mid x \in A \cap B\}$.
$\left.20.4 \operatorname{pr}_{X}\right|_{\Gamma_{f}}:(x, f(x)) \leftrightarrow x$.
20.5 Indeed, $f\left(x_{1}\right)=f\left(x_{2}\right)$ iff $\operatorname{pr}_{Y}\left(x_{1}, f\left(x_{1}\right)\right)=\operatorname{pr}_{Y}\left(x_{2}, f\left(x_{2}\right)\right)$.
20.6 This obviously follows from the relation $T(x, f(x))=(f(x), x)=$ $\left(y, f^{-1}(y)\right)$.
20.7 Use the following relation:

$$
A \times B \cap \bigcup_{\alpha} U_{\alpha} \times V_{\alpha}=\bigcup_{\alpha}(A \times B) \cap\left(U_{\alpha} \times V_{\alpha}\right)=\bigcup_{\alpha}\left(A \cap U_{\alpha}\right) \times\left(B \cap V_{\alpha}\right) .
$$

20.8 Use the third formula of 20.A:

$$
(X \times Y) \backslash(A \times B)=((X \backslash A) \times Y) \cup(X \times(Y \backslash B)) \in \Omega_{X \times Y}
$$

20.9 As usual, for proving equality of sets, we prove the two inclusions. \subset Use 20.8. \supset If x and y are adherent points of A and B, respectively, then, obviously, (x, y) is an adherent point of $A \times B$.
20.10 Yes, this is true. Once again, prove two inclusions. \subset This is obvious. \supset If $z=(x, y) \in \operatorname{Int}(A \times B)$, then z has an elementary neighborhood: $z \in W=U \times V \subset A \times B$, which means that x has a neighborhood $U_{x} \subset A$ and y has a neighborhood $V_{y} \subset B$, i.e., $x \in \operatorname{Int} A$ and $y \in \operatorname{Int} B$, whence $z=(x, y) \in \operatorname{Int} A \times \operatorname{Int} B)$.
20.11 Certainly not! For instance, the boundary of the square $I \times I \subset$ \mathbb{R}^{2} is the contour of the square, while the product $\operatorname{Fr} I \times \operatorname{Fr} I$ consists of four points.
20.12 No, it is not in general; consider the set $(-1,1) \times(-1,1) \subset \mathbb{R}^{2}$.
20.13 Since A and B are closed, we have $\operatorname{Fr} A=A \backslash \operatorname{Int} A$ and $\operatorname{Fr} B=$ $B \backslash \operatorname{Int} B$. The set $A \times B$ is also closed by 20.8 , whence by the third formula in 20. A we have

$$
\begin{align*}
& \operatorname{Fr}(A \times B)=(A \times B) \backslash \operatorname{Int}(A \times B)=(A \times B) \backslash(\operatorname{Int} A \times \operatorname{Int} B) \\
= & ((A \backslash \operatorname{Int} A) \times B) \cup(A \times(B \backslash \operatorname{Int} B))=(\operatorname{Fr} A \times B) \cup(A \times \operatorname{Fr} B) \tag{23}
\end{align*}
$$

20.14 Using 20.9, 20.10, and the third formula of 20.A, we obtain

$$
\begin{aligned}
& \operatorname{Fr}(A \times B)= \mathrm{Cl}(A \times B) \backslash \operatorname{Int}(A \times B) \\
&=(\mathrm{Cl} A \times \mathrm{Cl} B) \backslash(\operatorname{Int} A \times \operatorname{Int} B) \\
&=((\mathrm{Cl} A\mathrm{Int} A) \times \mathrm{Cl} B) \cup(\mathrm{Cl} A \times(\mathrm{Cl} B \backslash \operatorname{Int} B)) \\
&=(\operatorname{Fr} A \times \mathrm{Cl} B) \cup(\mathrm{Cl} A \times \operatorname{Fr} B) \\
&=(\operatorname{Fr} A \times(B \cup \operatorname{Fr} B)) \cup((A \cup \operatorname{Fr} A) \times \operatorname{Fr} B) \\
&=(\operatorname{Fr} A \times B) \cup(\operatorname{Fr} A \times \operatorname{Fr} B) \cup(A \times \operatorname{Fr} B)
\end{aligned}
$$

20.15 It is sufficient to show that each elementary open set in the product topology of $X \times Y$ is a union of sets of such form. Indeed,

$$
\bigcup_{\alpha} U_{\alpha} \times \bigcup_{\beta} V_{\beta}=\bigcup_{\alpha, \beta}\left(U_{\alpha} \times V_{\beta}\right)
$$

20.16 \Longrightarrow The restriction $\left.\operatorname{pr}_{X}\right|_{\Gamma_{f}}$ is obviously a continuous bijection. The inverse map $X \rightarrow \Gamma_{f}: x \mapsto(x, f(x))$ is continuous iff so is the map g : $X \rightarrow X \times Y: x \mapsto(x, f(x))$, which is true because $g^{-1}(U \times V)=U \cap f^{-1}(V)$. \Leftrightarrow Use the relation $f=\operatorname{pr}_{Y} \circ\left(\operatorname{pr}_{X} \mid \Gamma_{f}\right)^{-1}$.
20.17 Indeed, $\operatorname{pr}_{X}(W)=\operatorname{pr}_{X}\left(\bigcup_{\alpha}\left(U_{\alpha} \times V_{\alpha}\right)\right)=\bigcup_{\alpha} \operatorname{pr}_{X}\left(U_{\alpha} \times V_{\alpha}\right)=$ $\bigcup_{\alpha} U_{\alpha}$. (We assumed that $V_{\alpha} \neq \varnothing$.)
20.18 No, it is not; consider the projection of the hyperbola $A=$ $\{(x, y) \mid x y=1\} \subset \mathbb{R}^{2}$ to the x axis.
20.19 Let $F \subset X \times Y$ be a closed set, and let $x \notin \operatorname{pr}_{X}(F)$. Then $(x \times Y) \cap F=\varnothing$, and for each $y \in Y$ the point (x, y) has an elementary neighborhood $U_{x}(y) \times V_{y} \subset(X \times Y) \backslash F$. Since the fiber $x \times Y$ is compact, there is a finite subcovering $\left\{V_{y_{i}}\right\}_{i=1}^{n}$. The neighborhood $U=\bigcap_{i=1}^{n} U_{x}\left(y_{i}\right)$ is obviously disjoint with $\operatorname{pr}_{X}(F)$. Therefore, the complement of $\operatorname{pr}_{X}(F)$ is open, and so $\operatorname{pr}_{X}(F)$ is closed.
20.20 Plug in the definitions.
20.21 This is rather straightforward.
20.22 This is also quite straightforward.
20.23 Recall the definition of the product topology and use 20.21.
20.24 Let us check that ρ is continuous at each point $\left(x_{1}, x_{2}\right) \in X \times X$. Indeed, let $d=\rho\left(x_{1}, x_{2}\right), \varepsilon>0$. Then, using the triangle inequality, we easily see that $\rho\left(B_{\varepsilon / 2}\left(x_{1}\right) \times B_{\varepsilon / 2}\left(x_{2}\right)\right) \subset(d-\varepsilon, d+\varepsilon)$.
20.25 This is quite straightforward.
$20.26 \Leftrightarrow$ Let $(x, y) \notin \Delta$. Then the points x and y are distinct, and so they have disjoint neighborhoods: $U_{x} \cap V_{y}=\varnothing$. Then $\left(U_{x} \times V_{y}\right) \cap \Delta=\varnothing$ by 20.3, i.e., $U_{x} \times V_{y} \subset X \times X \backslash \Delta$. Therefore, $(X \times X) \backslash \Delta$ is open.
\Leftrightarrow Let x and y be two distinct points of X. Then $(x, y) \in(X \times X) \backslash \Delta$, and, since Δ is closed, (x, y) has an elementary neighborhood $U_{x} \times V_{y} \subset$ $X \times X \backslash \Delta$. It follows that $U_{x} \times V_{y}$ is disjoint with Δ, whence $U_{x} \cap V_{y}=\varnothing$ by 20.3, as required.
20.27 Combine 20.26 and 20.25.
20.28 The projection $\mathrm{pr}_{X}: X \rightarrow Y$ is a closed map by 20.19. Therefore, the restriction $\left.\operatorname{pr}_{X}\right|_{\Gamma}: \Gamma \rightarrow X$ is also closed by 17.27, it is a homeomorphism by 17.24, and so f is continuous by 20.16.
Another option: use 20.19 and the identity $f^{-1}(F)=\operatorname{pr}_{X}\left(\Gamma_{f} \cap(X \times F)\right)$.
20.29 Consider the map $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto \begin{cases}0 & \text { if } x=0, \\ 1 / x, & \text { otherwise. }\end{cases}$
20.32 Only the path connectedness implies the continuity. The functions described in Problem 20.31 provide counterexamples to other assertions.
20.36 No, they are not.
20.37 It is convenient to use the following property, which is equivalent to the regularity of a space (see 15.19). For each neighborhood W of (x, y), there is a neighborhood U of (x, y) such that $\mathrm{Cl} U \subset W$. It is sufficient to consider the case where W is an elementary neighborhood. Use the regularity of X and Y and Problem 20.9.
20.38.1 Let A and B be two disjoint closed sets. For each $a \in A$. there exists an open set $U_{a}=\left[a, x_{a}\right) \subset X \backslash B$. Put $U=\bigcup_{a \in A} U_{a}$. The neighborhood $V \supset B$ is defined similarly. If $U \cap V \neq \varnothing$, then for some $a \in A$ and $b \in B$ we have $\left[a, x_{a}\right) \cap\left[b, y_{b}\right) \neq \varnothing$. Let, say, $a<b$. Then $b \in\left[x, x_{b}\right)$, a contradiction.
20.38.2 The set ∇ is closed in \mathbb{R}^{2}, a fortiori ∇ is closed in $\mathcal{R} \times \mathcal{R}$. Since $\{(x,-x)\}=\nabla \cap([x, x+1) \times[-x,-x+1))$, it follows that each point of ∇ is open in ∇.

20.38.3 See 15.30x.

20.39 Modify the argument used in the proof of assertion 20.S.
20.40 This follows from $20 . U$ and 20.9.
$20.43 \mathbb{R}^{n} \backslash \mathbb{R}^{k} \cong\left(\mathbb{R}^{n-k} \backslash 0\right) \times \mathbb{R}^{k} \cong\left(S^{n-k-1} \times \mathbb{R}\right) \times \mathbb{R}^{k} \cong S^{n-k-1} \times \mathbb{R}^{k+1}$.
20.45 The space $O(n)$ is the union of $S O(n)$ and a disjoint open subset homeomorphic to $S O(n)$. Therefore, $O(n)$ is homeomorphic to $S O(n) \times$ $\{-1,1\} \cong S O(n) \times O(1)$.
20.46 It is sufficient to show that $G L_{+}(n)=\{A \mid \operatorname{det} A>0\}$ is homeomorphic to $S L(n) \times(0,+\infty)$. The required homeomorphism sends a matrix $A \in G L_{+}(n)$ to the pair $\left(\frac{1}{\sqrt[n]{\operatorname{det} A}} A\right.$, $\left.\operatorname{det} A\right)$.
20.48 The existence of such a homeomorphism is directly connected with the existence of quaternions (see the last subsection in 23), and therefore in the proof we also use properties of quaternions. Let $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ be a quadruple of pairwise orthogonal unit quaternions determining a point in $S O(4)$. The required homeomorphism sends this quadruple to the pair consisting of the unit quaternion $x_{0} \in S^{3}$ and the triple $\left\{x_{0}^{-1} x_{1}, x_{0}^{-1} x_{2}, x_{0}^{-1} x_{3}\right\}$ of pairwise orthogonal vectors in \mathbb{R}^{3}, which determines an element in $S O(3)$. (Notice that, e.g., $S O(5)$ is not homeomorphic to $S^{4} \times S O(4)$!)
21.2 The map pr sends each point to the element of the partition (regarded as an element of the quotient set) containing the point, and so the preimage $\mathrm{pr}^{-1}($ point $)=\operatorname{pr}^{-1}(\operatorname{pr}(x))$ is also the element of the partition containing the point $x \in X$.
21.3 Let $X / S=\{a, b, c\}$, where $p^{-1}(a)=[0,1 / 3], p^{-1}(b)=(1 / 3,2 / 3]$, and $p^{-1}(c)=(2 / 3,1]$. Then $\Omega_{X / S}=\{\varnothing,\{c\},\{b, c\},\{a, b, c\}\}$.
21.4 All elements of the partition are open in X.
21.6 Let $X=\mathbb{N} \times I$. Let the partition S consist of the fiber $N=\mathbb{N} \times 0$ and singletons. Let $\operatorname{pr}(N)=x_{*} \in X / S$. We prove that the point x_{*} has no countable neighborhood base. Assume the contrary: let $\left\{U_{k}\right\}$ be a countable neighborhood base at x_{*}. Each of the sets $\operatorname{pr}^{-1}\left(U_{k}\right)$ is open in X and contains each of the points $x_{n}=(n, 0) \in X$. For each $(n, 0)$ choose a neighborhood V_{n} in $n \times I$ that is strictly smaller than $\operatorname{pr}^{-1}\left(U_{n}\right) \cap n \times I$. It remains to observe that $W=\operatorname{pr}\left(\bigcup_{n} V_{n}\right)$ is a neighborhood of x_{*} which does not contain any of the neighborhoods U_{n} of x_{*}, a contradiction.
21.7 For each open set $U \subset X / S$, the image $f / S(U)=f\left(\operatorname{pr}^{-1}(U)\right)$ is open as the image of the open set $\operatorname{pr}^{-1}(U)$ under the open map f.
21.9x \Longrightarrow If F is a closed set in X, then the set $\operatorname{pr}^{-1}(\operatorname{pr}(F))$ is closed. $\quad \Longleftrightarrow$ For each closed set F in X the set $\operatorname{pr}(F)$ is closed by assumption that pr is a closed map. Its preimage $\mathrm{pr}^{-1}(\operatorname{pr}(F))$ is closed because pr is continuous. This is the saturation of F.
21.10x Let A be the non-one-point closed element of the partition. The saturation of any closed set F is either F itself, or the union $F \cup A$, i.e., a closed set.
21.11x This is similar to 21.9x.
21.12x If A is saturated, then for each subset $U \subset A$ the saturation of U is also a subset of A. Consequently, the saturation of $\operatorname{Int} A$ lies in A, and, since the saturation is open, it coincides with Int A. Since $X \backslash A$ is also saturated, $\operatorname{Int}(X \backslash A)=X \backslash \mathrm{Cl} A$ is saturated, too, and so $\mathrm{Cl} A$ is also saturated.
22.1 Here is a partition of the segment with quotient space homeomorphic to the letter A. It consists of two-element sets: $\{1 / 6,2 / 3\}$ and $\{2 / 3-x, 2 / 3+x\}$ for $x \in(0,1 / 6]$; the other elements are singletons. The idea of the proof is the same as that used in 22.2: we construct a continuous surjection of the segment onto the letter A. Consider the map defined by the following formulas:

$$
f(t)= \begin{cases}(3 t, 6 t) & \text { if } x \in[0,1 / 3] \\ (3 t, 4-6 t) & \text { if } x \in[1 / 3,1 / 2] \\ (9 / 2-6 t, 1) & \text { if } x \in[1 / 2,2 / 3] \\ (6 t-7 / 2,1) & \text { if } x \in[2 / 3,5 / 6] \\ (3 t-1,6-6 t) & \text { if } x \in[5 / 6,1]\end{cases}
$$

Show that $f(I)$ is precisely the letter A , and the partition into the preimages under f is the partition described in the beginning of the solution.
22.2 Let $u: I \rightarrow I \times I$ be a Peano curve, i.e., a continuous surjection. Then the injective factor of the map u is a homeomorphism of a certain quotient space of the segment onto the square.
22.3 Let S be the partition of A into $A \cap B$ and singletons in $X \backslash B=$ $A \backslash B$, let T be the partition of X into B and singletons in $X \backslash B$, and let $\operatorname{pr}_{A}: A \rightarrow A / S$ and $\operatorname{pr}_{X}: X \rightarrow X / T$ be the projections. Since the quotient $\operatorname{map} q: A / A \cap B \rightarrow X / B$ is obviously a continuous bijection, to prove that q is a homeomorphism, it suffices to check that q is an open map. Let $U \subset A / A \cap B$ be an open set, $V=\operatorname{pr}_{A}^{-1} U$. Then V is open in A and saturated in X. If $V \cap B=\varnothing$, then V is also open in X because $\{A, B\}$ is a fundamental cover of X, and so $q(U)=\operatorname{pr}_{X}(V)$ is open in X / T. If $V \cap B \neq \varnothing$, then, obviously, $V \supset A \cap B$, and so the saturated set $W=V \cup B$ is open in X. In this case, $q(U)=\operatorname{pr}_{X}(W)$ is also open in X / B.
22.4 Consider the map $f: I \rightarrow I$, where

$$
f(x)= \begin{cases}\frac{3}{2} x & \text { if } x \in[0,1 / 3], \\ 1 / 2 & \text { if } x \in[1 / 3,2 / 3], \\ (3 x-1) / 2 & \text { if } x \in[2 / 3,1],\end{cases}
$$

and prove that $S(f)$ is the given partition. Therefore, $f / S(f): I / S(f) \cong I$.
22.5 Consider the function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$that vanishes for $t \in[0,1]$ and is equal to $t-1$ for $t \geq 1$ and the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $f(x, y)=$ $\left(\frac{\varphi(r)}{r} x, \frac{\varphi(r)}{r} y\right)$; here, as before, $r=\sqrt{x^{2}+y^{2}}$. By construction, $\mathbb{R}^{2} / D^{2}=$ $\mathbb{R}^{2} / S(f)$. The map $f / S(f)$ is a continuous bijection. In order to see that $f / S(f)$ is a homeomorphism, use $19.0 \times(19 . P x)$. In order to see that \mathbb{R}^{2} is also homeomorphic to other spaces, use the constructions described in the solutions of Problems 11.20-11.22.
22.6 Let S be the partition of X into A and singletons in $X \backslash A$. Let T be the partition of Y into $f(A)$ and singletons in $Y \backslash f(A)$. Show that $f /(S, T)$ is a homeomorphism.
22.7 No, it is not. The quotient space \mathbb{R}^{2} / A has no countable base at the image of A, while $\operatorname{Int} D^{2} \cup\{(0,1)\}$ is first countable as a subspace of \mathbb{R}^{2}. We can construct a continuous map $\mathbb{R}^{2} \rightarrow \operatorname{Int} D^{2} \cup\{(0,1)\}$ that maps A to $(0,1)$ and determines a homeomorphism $\mathbb{R}^{2} \backslash A \rightarrow \operatorname{Int} D^{2}$. This map determines a continuous map $\mathbb{R}^{2} / A \rightarrow D^{2} \cup\{(0,1)\}$, but the inverse map is not continuous.
22.8 The partition $S(\varphi)$, where $\varphi: S^{1} \rightarrow S^{1} \subset \mathbb{C}: z \mapsto z^{3}$, is precisely the partition into given triples, whence $S^{1} / S \cong S^{1}$.
22.9 For the first equivalence relation, consider the $\operatorname{map} \varphi(z)=z^{2}$.
22.10 Notice: the quotient space of D^{n} by the equivalence relation $x \sim y \Longleftrightarrow x_{i}=-y_{i}$ is not homeomorphic to $D^{n}!$
22.11 Consider $f: \mathbb{R} \rightarrow S^{1}: x \mapsto(\cos 2 \pi x, \sin 2 \pi x)$. Clearly, $x \sim$ $y \Longleftrightarrow f(x)=f(y)$, and so the partition $S(f)$ is the given one. Unfortunately, here we cannot simply apply Theorem $17 . Y$ because \mathbb{R} is not compact. Prove that, nevertheless, this quotient space is compact.
22.12 The quotient space of the cylinder by the equivalence relation $(x, p) \sim(y, q)$ if $x+y=1$ and $p=-q$ (here $x, y \in[0,1]$ and $\left.p, q \in S^{1}\right)$, is homeomorphic to the Möbius strip.
22.13 Use the transitivity of factorization (Theorem 22.H). Let S be the partition of the square into pairs of points on vertical sides lying on one horizontal line; all of the remaining elements of the partition are singletons. We see that the quotient space I^{2} / S is homeomorphic to the cylinder. Now let S^{\prime} be the partition of the cylinder into pairs of points on the bases symmetric with respect to the center of the cylinder; the other elements are singletons. Then the partition T of the square into the preimages under the $\operatorname{map} p: I^{2} \rightarrow I^{2} / S$ of the preimages of elements of S^{\prime} coincides with the partition the quotient space by which is the Klein bottle.
22.17 The first assertion follows from the fact that the open sets in the topology induced from $\bigsqcup_{\alpha \in A} X_{\alpha}$ on the image $\operatorname{in}_{\beta}\left(X_{\beta}\right)$ have the form $\{(x, \beta) \mid x \in U\}$, where U is an open set in X_{β}, and so abin ${ }_{\beta}: X_{\beta} \rightarrow \operatorname{in}_{\beta}\left(X_{\beta}\right)$ is a homeomorphism. Furthermore, each of these images is open in the sum of the spaces (because each of its in_{α}-preimages is either empty, or equal to X_{β}), and hence is also closed.
22.18 The separation axioms and the first axiom of countability are inherited. The separability and the second axiom of countability require that the index set be countable. The space $\bigsqcup_{\alpha \in A} X_{\alpha}$ is disconnected if the number of summands is greater than one. The space is compact if the number of summands is finite and each of the summands is compact.
22.19 The composition $\varphi=\mathrm{pr} \circ \mathrm{in}_{2}$ is injective because each element of the partition in $X_{1} \sqcup X_{2}$ contains at most one point in $\mathrm{in}_{2}\left(X_{2}\right)$. The continuity of φ is obvious. Consider an open set $U \subset X_{2}$. The set $\operatorname{in}_{1}\left(X_{1}\right) \cup$ $\operatorname{in}_{2}(U)$ is open in $X_{1} \sqcup X_{2}$ and saturated, and so its image W is open in $X_{2} \cup_{f} X_{1}$. Since the intersection $W \cap \varphi\left(X_{2}\right)=\varphi(U)$ is open in $\varphi\left(X_{2}\right)$, it follows that φ is a topological embedding.
22.20 Thus, $X=\{*\}$. Put $Y^{\prime}=Y \sqcup\{*\}$ and $A^{\prime}=A \sqcup\{*\}$. Clearly, the factor $g: Y / A \rightarrow Y^{\prime} / A^{\prime}$ of the injection in $: Y \rightarrow Y^{\prime}$ is a continuous bijection. Prove that the map g is open.
22.21 The Klein bottle is obtained by factorization of the square, as shown in the left picture on the next page. Cut the square as shown in the middle. Glue the upper and lower triangles along the horizontal sides marked with letter c. We get two parallelograms shown on the right hand
side.

To obtain from the parallelograms the Klein bottle, one needs to glue in each of them the vertical sides to each other, and then attach them to each other along the cuts which we made at the beginning. The gluing of the vertical sides turns the parallelograms to Möbius strips. The last operation is gluing the Möbius strips to each other along their boundary circles.
22.22 Use the map

$$
\left(\mathrm{id}_{S^{1}} \times i_{+}\right) \sqcup\left(\mathrm{id}_{S^{1}} \times i_{-}\right):\left(S^{1} \times I\right) \sqcup\left(S^{1} \times I\right) \rightarrow S^{1} \times S^{1}
$$

where $i_{ \pm}$are embeddings of I in S^{1} onto the upper and, respectively, lower semicircle.
22.23 See 22.M and 22.22.
22.24 If the square, whose quotient space is the Klein bottle, is cut by a vertical segment in two rectangles, then by gluing together the horizontal sides we obtain two cylinders.
22.25 Let $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right)| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2}$. The subset of the sphere determined by the equation $\left|z_{1}\right|=\left|z_{2}\right|$ consists of all pairs $\left(z_{1}, z_{2}\right)$ such that $\left|z_{1}\right|=\left|z_{2}\right|=1 / \sqrt{2}$, and, therefore, the set is a torus. Now consider the subset T_{1} determined by the inequality $\left|z_{1}\right| \leq\left|z_{2}\right|$ and the map taking $\left(z_{1}, z_{2}\right) \in T_{1}$ to $(u, v)=\left(z_{1} /\left|z_{2}\right|, z_{2} /\left|z_{2}\right|\right) \in \mathbb{C}^{2}$. Show that this map is a homeomorphism of T_{1} onto $D^{2} \times S^{1}$ and complete the argument on your own.
22.26 The cylinder or the Möbius strip. Consider a homeomorphism g between the vertical sides of the square, let $g:(0, x) \mapsto(1, f(x))$. The map f is a homeomorphism $I \rightarrow I$, and, therefore, f is a (strictly) monotone function. Assume that the function f is increasing, in particular, $f(0)=0$ and $f(1)=1$. We show that there is a homeomorphism $h: I^{2} \rightarrow I^{2}$ such that $h(0, x)=x$ and $h(1, x)=(1, f(x))$ for all $x \in I$. For this purpose, we subdivide the square by the diagonals into four parts, and define h on the right-hand triangle by the formula

$$
h\left(\frac{1+t}{2}, \frac{1-t}{2}+t x\right)=\left(\frac{1+t}{2}, \frac{1-t}{2}+t f(x)\right),
$$

$t, x \in I$. On the remaining three triangles, h is identical. Clearly the homeomorphism sends the element $\{(0, x),(1, x)\}$ of the partition to the element $\{(0, x),(1, f(x))\}$, and, therefore, we obtain a continuous bijection
(and, consequently, a homeomorphism) of the cylinder onto the result of gluing the square together via the homeomorphism g of its vertical sides. If the function f is decreasing, then, arguing in a similar way, we see that the result of this gluing is the Möbius strip.
22.27 The torus and the Klein bottle; similarly to 22.26.
22.28 Show that each homeomorphism of the boundary circle extends to the entire Möbius strip.
22.29 See 22.27.
22.30 Show that each autohomeomorphism of the boundary circle of a handle extends to an autohomeomorphism of the entire handle. (Compare Problem 22.28. When solving both problems, it is convenient to use the following fact: each autohomeomorphism of the outer boundary circle of a ring extends to an autohomeomorphism of the entire ring that is fixed on the inner boundary circle or determines a mirror symmetry of it.)
22.31 See the solutions to Problems 22.28 and 22.30.
22.32 We can assume that the holes are split into the pairs of holes connected by "tubes". (Compare the solution to Problem 22.V.) Together with a disk surrounding such a pair, each tube either forms a handle or a Klein bottle with a hole. If each of the tubes forms a handle, then we obtain a sphere with handles. Otherwise, we transform all handles into Klein bottles with holes (see the solution to Problem 22.V) and obtain a sphere with films.
23.1 There exists a natural one-to-one correspondence between lines in the plane that are determined by equations of the form $a x+b y+c=0$ and points $(a: b: c)$ in $\mathbb{R} P^{2}$. Observe that the complement of the image of the set of all lines is the singleton $\{(0: 0: 1)\}$.
24.1x Yes, it is. A number a always divides a (formally speaking, even 0 divides 0). Further, if a divides b and b divides c, then a divides c.
24.2x $a \sim b$ iff $a= \pm b$.
24.3x This is obvious because $A \subset \mathrm{Cl} B$ iff $\mathrm{Cl} A \subset \mathrm{Cl} B$.
25.1x This is obvious. (Cf. Problem 25.2x.)
25.2x Sending each point $y \in Y$ to the constant map $X \rightarrow Y: x \mapsto y$, we obtain an injection $Y \rightarrow \mathcal{C}(X, Y)$.
25.4x The formula $f \mapsto f^{-1}(0)$ determines a bijection $\mathcal{C}(X, Y) \rightarrow \Omega_{X}$.
25.5x Since X is a discrete space, each map $f: X \rightarrow Y$ is continuous. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then f is uniquely determined by the collection $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\} \in Y^{n}$.
25.6x The set X has two connected components.
25.7x It is clear (prove this) that the topological structures $\mathcal{C}(I, I)$ and $\mathcal{C}^{(p w)}(I, I)$ are distinct, and, consequently, the identical map of the set $\mathcal{C}(I, I)$ is not a homeomorphism. In order to prove that the spaces considered are not homeomorphic, we must find a topological property such that one of the spaces satisfies it, while the other does not. Show that $\mathcal{C}(I, I)$ satisfies the first axiom of countability, while $\mathcal{C}^{(p w)}(I, I)$ does not.
25.8x We identify Y with $\operatorname{Const}(X, Y)$ via the map $y \mapsto f_{y}: x \mapsto$ y. Consider the intersections of sets in the subbase with the image of Y under the above map. We have $W(x, U) \cap \operatorname{Const}(X, Y)=U$, and, hence, the intersection of Y with any subbase set in the topology of pointwise convergence is open in Y. Conversely, for each open set U in Y and for each $x \in X$ we have $U=W(x, U) \cap \operatorname{Const}(X, Y)$. The same argument is also valid in the case of the compact-open topology.
25.9x The mapping $f \mapsto\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)$ maps the subbase set $W\left(x_{1}, U_{1}\right) \cap W\left(x_{2}, U_{2}\right) \cap \cdots \cap W\left(x_{n}, U_{n}\right)$ to the base set $U_{1} \times U_{2} \times \cdots \times U_{n}$ of the product topology. Finally, it is clear that if X is finite, then the topologies $\Omega^{c o}(X, Y)$ and $\Omega^{p w}(X, Y)$ coincide.
25.10x \Leftrightarrow Use 25. Wx. \Leftrightarrow Since X is a path-connected space, any two paths in X are freely homotopic. Consider a homotopy $h: I \times I \rightarrow X$. By 25.Vx, the map $\widetilde{h}: I \rightarrow \mathcal{C}(I, X)$ defined by the formula $\widetilde{h}(t)(s)=h(t, s)$, is continuous. Therefore, any two paths in X are joined by a path in the space of paths, which precisely means that the space $\mathcal{C}(I, X)$ is path-connected.
25.11x The space $\mathcal{C}^{(p w)}(I, I)$ is noncompact since the sequence of functions $f_{n}(x)=x^{n}$ has no accumulation points in this space. The same sequence has no limit points in $\mathcal{C}(I, I)$, and, hence, this space is also not compact.
25.12x Let

$$
d_{n}(f, g)=\max \{|f(x)-g(x)|: x \in[-n, n]\}, n \in \mathbb{N} .
$$

Let

$$
d(f, g)=\sum_{n=1}^{\infty} \frac{d_{n}(f, g)}{2^{n}\left(1+d_{n}(f, g)\right)} .
$$

We easily see that d is a metric. Show that d generates the compact-open topology.
25.13x The proof is similar to that of assertion 25.12x. We only need to observe that since, obviously, $X=\bigcup_{i=1}^{\infty} \operatorname{Int} X_{i}$, for each compact set $K \subset X$ there is n such that $K \subset X_{n}$.
26.1x 1) No, it cannot. 2) Yes, it can.
27.1x Use the fact that 1) $\beta(x, y)=\omega(x, \alpha(y))$, and 2) $\alpha(x)=\beta(1, x)$ and $\omega(x, y)=\beta(x, \alpha(y)) . \Leftrightarrow$ Use the continuity of compositions. \Leftrightarrow Write $b^{-1}=1 \cdot b^{-1}$ and $a b=a \cdot\left(1 \cdot b^{-1}\right)^{-1}$.
27.2x In the notation used in the proof of assertion 27.1x, α is a continuous map inverse to itself. Therefore, α is a homeomorphism.
27.3x Use the fact that the former map is the composition $\omega \circ(f \times g)$, while the latter is the composition $\alpha \circ f$ (in the notation used in the proof of 27.1x).
27.4x Yes, it is. In order to prove this, use the fact that any autohomeomorphism of an indiscrete space is continuous.
$27.5 x$ If the topology on a group is induced by the standard topology of the Euclidean space, then in order to verify that the maps $(x, y) \mapsto x y$ and $x \mapsto x^{-1}$ are continuous it suffices to check that they are determined by continuous functions. If $x=a+i b$ and $y=c+i d$, then $x y=(a c-$ $b d)+i(a d+b c)$. Therefore, the multiplication is determined by the function $(a, b, c, d) \mapsto(a c-b d, a d+b c)$, which is obviously continuous. The passage to the inverse element is also determined by the continuous function (on $\mathbb{R}^{2} \backslash 0$)

$$
\mathbb{R}^{2} \backslash 0 \rightarrow \mathbb{R}^{2} \backslash 0:(a, b) \mapsto\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right) .
$$

27.6x Use the idea of the solution to Problem 27.5x and the fact that addition, multiplication, and their compositions are continuous.
27.7x Consider, e.g., the cofinite topology of Problem 2.5, or, what would be more interesting, the topology of an irrational flow $\mathbb{R} \rightarrow T^{2}$. (See 29.1x (f).)
27.8x Consider any two (algebraically) nonisomorphic discrete finite groups of equal order. Here is a more meaningful example: the topological group $G L_{+}(2, \mathbb{R}) \subset G L(2, \mathbb{R})$ of invertible 2×2 matrices with positive determinant is homeomorphic to $O_{+}(2) \times \mathbb{R}^{3}$. (Here, $O_{+}(2)=O(2) \cap G L_{+}(2, \mathbb{R})$.) The two groups are not isomorphic because the first one is not Abelian, while the second one is.
27.10x Yes, it does. (For the same reason as in 27.Ex.)
27.11x Use the fact that $U V=\bigcup_{x \in V} U x$ and $V U=\bigcup_{x \in V} x U$.
27.12x No, it will not. A counterexample is given by a point by point sum $U+V$ of a singleton $U \subset \mathbb{R}$ with an open interval $V \in \mathbb{R}$. A counterexample in which both U and V are closed is given in 27.13x
27.13x (a), (b) Yes. (c) No. This group is everywhere dense, but obviously does not coincide with \mathbb{R}. (e.g., because it is countable, while \mathbb{R} is not.)
27.14x Let $x \notin U V$. Then U and $x V^{-1}$ are disjoint. Apply 27.14x.1 and take a neighborhood W of 1_{G} such that $W U$ does not meet $x V^{-1}$. Then $W^{-1} x$ does not meet $U V$.
27.14x.1 For each $x \in C$, the unity 1_{G} has a neighborhood V_{x} such that $x V_{x}$ does not meet F. By 27.Hx, 1_{G} has a neighborhood W_{x} such that $W_{x}^{2} \subset V_{x}$. Since C is compact, C is covered by finitely many sets of the form $W_{1}=x_{1} W_{x_{1}}, \ldots, W_{n}=x_{n} W_{x_{n}}$. Put $V_{1}=\bigcap_{i=1}^{n} W_{x_{i}}$. Then $C V_{1} \subset \bigcup_{i=1}^{n} W_{i} V \subset \bigcup_{i=1}^{n} x_{i} W_{x_{i}}^{2} \subset \bigcup_{i=1}^{n} x_{i} V_{x_{i}}$, so that $C V$ does not meet F. In a similar way, we construct a neighborhood V_{2} of 1_{G} such that $V_{2} C$ does not meet F. The neighborhood $V=V_{1} \cap V_{2}$ possesses the required property. If G is a locally compact group, then we choose the neighborhood V_{x} with compact closure and then proceed as before.
27.15x By 27.Hx, 1_{G} has a neighborhood V^{\prime} with $V^{\prime} V^{\prime} \subset U$. By 27. $G x$, V^{\prime} contains a symmetric neighborhood V_{2} of 1_{G}. Then $V_{2} V_{2} \subset V^{\prime} V^{\prime} \subset U$. After that, proceed by induction, replacing U by V_{2} and choosing as V_{n} a symmetric neighborhood V of 1_{G} such that $V^{n-1} \subset V_{2}$. Then $V^{n} \subset V_{2}^{2} \subset U$. Observe that $V \subset V V$.
27.16x The set $H=\bigcup_{n=1}^{\infty} V^{n}$ is open. Clearly, we have $1 \in H$, $H^{-1} \subset H$, and $H H \subset H$. Hence, H is a subgroup. It remains to observe that an open subgroup is always closed (see 28.3x).
27.18x Let N be the intersection of all neighborhoods of 1_{G}. Since G is finite, there are only finitely many neighborhoods involved, and hence N is open. From 27. $G x$ and 27.Hx it follows that $N=N^{-1}$ and $N^{2}=N$. Hence, N is a subgroup. It is normal since otherwise $N \cap g N g^{-1}$ would be a smaller neighborhood of 1_{G} than N.
28.2x \Leftrightarrow Obvious. (Consider the unity.) \Leftrightarrow Let H be the subgroup, U an open set, $g \in U \subset H$. Then $h \in h g^{-1} U \subset H$ for each $h \in H$, and, therefore, each point of H is inner.
28.3x For any subgroup H and any $g \notin H$, the sets H and $g H$ are disjoint. Hence, the complement of H is the union of $g H$ over all $g \notin H$. Therefore, the complement of H is open if H is open.
28.4x Use the same argument as in the solution to Problem 28.3x and observe that in the case of finite index there are only finitely many distinct cosets $g H$ such that $g \notin H$.
28.5x Consider $\mathbb{Z} \subset \mathbb{R}$ and, respectively, $\mathbb{Q} \subset \mathbb{R}$.
28.6x Show that if H contains an isolated point, then all points of H are isolated.
28.7x Let $U \subset G$ be an open set such that $U \cap H=U \cap \mathrm{Cl} H \neq \varnothing$. If $g \notin$ H and $g H \cap U \neq \varnothing$, then g belongs to the open set $\bigcup_{h \in H} h(U \backslash H)$ disjoint with H. If $g H$ is disjoint with U, take $h^{\prime} \in H \cap U$ and a symmetric open
neighborhood V of 1 such that $V h^{\prime} \subset U$. Then $V g$ is an open neighborhood of g disjoint with H. (Otherwise, $v g=h$ implies $g h^{-1} h^{\prime}=v^{-1} h^{\prime} \in V h^{\prime}$.)
28.8x By 28.7x, the closure of $\mathrm{Cl} H \backslash H$ contains H.
28.9x Use the fact that $(\mathrm{Cl} H)^{-1}=\mathrm{Cl} H^{-1}$ and $\mathrm{Cl} H \cdot \mathrm{Cl} H \subset \mathrm{Cl}(H$. $H)=\mathrm{Cl} H$.
28.10x This is true if the interior is nonempty, see $28.2 x$.
28.12x Repeat the argument used in the solution to 28.Fx.
28.13x We identify elements of $S O(n)$ with positively oriented orthonormal bases in \mathbb{R}^{n}. The map $p: S O(n) \rightarrow S^{n-1}$ sends each basis to its last vector. The preimage of a point $x \in S^{n-1}$ is the right coset of $S O(n-1)$ (prove this). Clearly, p is continuous. The quotient map of p is a continuous bijection $\widehat{p}: S O(n) / S O(n-1) \rightarrow S^{n-1}$. Since $S O(n)$ is compact and S^{n-1} is Hausdorff, \widehat{p} is a homeomorphism.
28.14x 1) The groups $S O(n), U(n), S U(n)$, and $S p(n)$ are bounded closed subsets of the corresponding matrix spaces. Therefore, they are compact.
2) To check that $S O(n)$ is connected, combine $28.13 x$ and 28.Fx, and then use induction (we observe that the group $S O(2) \cong S^{1}$ is connected). (Another, more hand-operated, method consists in using normal forms. For example, for any $x \in S O(n)$, there is $g \in S O(n)$ such that the matrix $g x g^{-1}$ consists of diagonal blocks of $S O(1)$ and $S O(2)$ matrices. The latter block matrices belong to the connected component C of the unity in $S O(n)$. Since C is a normal subgroup (see 28. $H x$), it follows that $x \in C$.) In order to prove that $U(n), S U(n)$, and $S p(n)$ are connected, state and prove the corresponding counterparts of 28.13x and then use 28.Fx.
3) The group $O(n)$ has two connected components: $S O(n)$ and its complement (the only nontrivial coset of $S O(n)$). The group $O(p, q)$ has four connected components if $p>0$ and $q>0$. To check this, use induction on p and q, at each step using 28.12x and 19.Ox.
28.15x See the solution to 28. $H x$.
28.16x Let $h \in H$. Since H is normal, we have a map $\eta: G \rightarrow H$: $g \mapsto g h g^{-1}$. Since G is connected, the image of η is a connected subset of H. Since H is discrete, it is a point, and so η is constant. Since $\eta(1)=h$, we have $g h g^{-1}=\eta(g)=h$ for all $g \in G$. Therefore, $g h=g h$ for all $g \in G$, i.e., $h \in C(G)$.
28.19x Consider the exponential map $\mathbb{R} \rightarrow S^{1}: x \mapsto e^{2 \pi x i}$ and an open interval in \mathbb{R} containing 0 and $1 / 2$.
28.20x Let U and V be neighborhoods of unity in topological groups G and H, respectively. Let $f: U \rightarrow V$ be a homeomorphism such that
$f(x y)=f(x) f(y)$ for any $x, y \in U$. By 27.Hx, 1_{G} has a neighborhood \widehat{U} in G such that $\widehat{U}^{2} \subset U$. Since $\widehat{U} \subset U$, we have $f(x y)=f(x) f(y)$ for any $x, y \in \widehat{U}$ with $x y \in \widehat{U}$. Put $\widehat{V}=f(\widehat{U})$ and consider $z, t \in \widehat{V}$ with $z t \in \widehat{V}$. Then $z=f(x)$ and $t=f(y)$, where $x, y \in \widehat{U}$, whence $x y \in U$, and so $f(x y)=f(x) f(y)=z t$. Therefore, we have $x=f^{-1}(z)$ and $y=f^{-1}(t)$, whence $f^{-1}(z) f^{-1}(t)=x y=f^{-1}(z t)$.
28.21x This follows from 28.Ox because the projection $\operatorname{pr}_{G}: G \times H \rightarrow$ G is an open map.
28.23x The map is continuous as a restriction of the continuous map $G \times G \rightarrow G:(x, y) \mapsto x y$. As an example, consider the case where $G=\mathbb{R}$, $A=\mathbb{Q}$, and B is generated by the irrational elements of a Hamel basis of \mathbb{R} (i.e., a basis of \mathbb{R} as of a vector space over \mathbb{Q}). The inverse group isomorphism $\mathbb{R} \rightarrow A \times B$ here is not continuous since, e.g., \mathbb{R} is connected, while $A \times B$ is not.
28. Ux Let a compact Hausdorff group G be the direct product of two closed subgroups A and B. Then A and B are compact and Hausdorff, and so $A \times B \rightarrow G:(a, b) \mapsto a b$ is a continuous bijection from a compact space to a Hausdorff one. By 17.Y, it is a homeomorphism.
28.24x An isomorphism is $S^{0} \times \mathbb{R}_{>0} \rightarrow \mathbb{R} \backslash 0:(s, r) \mapsto r s$.
28.25 x An isomorphism is $S^{1} \times \mathbb{R}_{>0} \rightarrow \mathbb{C} \backslash 0:(s, r) \mapsto r s$.
$28.26 \mathrm{x} \quad \mathrm{An}$ isomorphism is $S^{3} \times \mathbb{R}_{>0} \rightarrow \mathbb{H} \backslash 0:(s, r) \mapsto r s$.
28.27x This is obvious because the 3 -sphere S^{3} is connected, while S^{0} is not. However, the subgroup $S^{0}=\{1,-1\}$ of $S^{3}=\{z \in \mathbb{H}:|z|=1\}$ is not a direct factor even group-theoretically. Indeed, otherwise any value ± 1 of the projection $S^{3} \rightarrow S^{0}$ on the standard generators i, j, and k would lead to a contradiction.
28.28x Take the quotient group in 28.27x.
29.1x In (1) and (2), the map $G \rightarrow \operatorname{Top} X$ is continuous (see the solution to 29. $G x$). However, if we require $\operatorname{Top} X$ to be a topological group, then we need additional assumptions, e.g., the Hausdorff axiom and local compactness.
29.2x Each of the angles has the form $\pi / n, n \in \mathbb{N}$. Therefore, there are only two solutions: $(\pi / 2, \pi / 3, \pi / 6)$ and $(\pi / 3, \pi / 3, \pi / 3)$.
29.3x Such examples are given by the irrational flow (see 29.1x (f)), or by the action of $\mathbb{Z}+\sqrt{2} \mathbb{Z}$ regarded as a discrete group acting by translations on \mathbb{R}. In the latter case, we have $G=G / G^{x}$, while $G(x)$ is not discrete. (Cf. 27.13x.)
29.4x Let A be closed. In order to prove that $G(A)$ is closed, consider an orbit $G(x)$ disjoint with $G(A)$. For each $g \in G$, let $U(g) \subset X$ and
$V(g) \subset G$ be neighborhoods of x and g, respectively, such that $V(g) U(g)$ is disjoint with $G(A)$. Since G is compact, there is a finite number of elements $g_{k} \in G$ such that $V\left(g_{k}\right)$ cover G. Then the saturation of $\bigcap_{k=1}^{n} U\left(g_{k}\right)$ is an open set disjoint with $G(A)$ and containing $G(x)$.
If A is compact, then so is $G(A)$ as the image of the compact space $G \times A$ under the continuous action $G \times A \rightarrow X$.
29.5x There are two orbits: $\{0\}$ and $\mathbb{R} \backslash 0$. The corresponding isotropy subgroups are G and $\left\{1_{G}\right\}$. The quotient space is a two-element set, say $\{0,1\}$, with nontrivial topology (neither discrete, nor indiscrete).
29.6x The quotient space is canonically homeomorphic to the rectangle itself. A homeomorphism is induced by the inclusion of the rectangle to \mathbb{R}^{2} (a continuous section of the quotient map). The group G is described in Problem 29.7x.
29.7x Using the transitivity of factorization, replace \mathbb{R}^{2} / G by the quotient of two adjacent rectangles that is obtained by identifying the points on their distinct edges via the reflection in their common edge. The latter quotient is homeomorphic to S^{2} (a "pillow").
The group G is the direct square $C \times C$ of the free product C of two copies of $\mathbb{Z} / 2$ (see $46^{\prime} 7 \mathrm{x}$), and $H \subset G$ is a subgroup of elements of even degree.
29.8x Two points belong to the same orbit iff their vectors of absolute values $\left|z_{0}\right|, \ldots,\left|z_{n}\right|$ are proportional. In other words, the orbits correspond in a one-to-one manner to "positive quadrant" directions in \mathbb{R}^{n+1}. The isotropy subgroups are coordinate subtori, i.e., the subtori of G where some of the coordinates vanish: the same coordinates as the zero coordinates of the points in the orbit. By transitivity of factorization, X / G is homeomorphic to the projectivization of the "positive quadrant" $\mathbb{R}_{>0}^{n+1} / \mathbb{R}_{>0}$. The latter is a closed n-simplex.
29.9x Two points belong to the same orbit iff all symmetric functions of their coordinates coincide. Thus, at least set-theoretically, the Vieta map evaluating the unitary (i.e., with leading coefficient 1) polynomial equation of degree n with given n roots identifies X / G with the space of unitary polynomials of degree n, i.e., \mathbb{C}^{n}. Since both spaces are locally compact and the group $G=\mathbb{S}_{n}$ is compact (even finite), the quotient map $X / G \rightarrow \mathbb{C}^{n}$ is a homeomorphism.
29.10x Two such matrices belong to the same orbit iff the matrices have the same eigenvalues, counting the multiplicities. Thus, at least set-theoretically, the map evaluating the eigenvalues in decreasing order, $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$, identifies X / G with the subspace of \mathbb{R}^{3} determined by the above inequalities and the relation $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. Since this map has a continuous section (that given by diagonal matrices), it follows that X / G is homeomorphic to the above subspace of \mathbb{R}^{3}, which is a plane region bounded
by two rays making an angle of $2 \pi / 3$. The isotropy group of an interior point in the region is $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$. For interior points of the rays, the isotropy group is the normalizer of $S O(2)$, and the orbits are real projective planes. For $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$, the isotropy group is the entire $S O(3)$, while the orbit is a singleton.
29.11x The sphere $S^{n} \subset \mathbb{R}^{n+1}$ (respectively, $S^{2 n-1} \subset \mathbb{C}^{n}$) is a Hausdorff homogeneous G-space, on which $G=O(n+1)$ (respectively, $G=U(n)$) acts naturally. For any point $x \in S^{n}$ (respectively, $x \in S^{2 n-1}$), the isotropy group is a standardly embedded $O(n) \subset O(n+1)$ (respectively, $U(n-1) \subset$ $U(n))$. So, it remains to apply 29.Mx.
29.12x The above action of $O(n+1)$ (respectively, $U(n)$) descends to $\mathbb{R} P^{n}$ (respectively, $\mathbb{C} P^{n-1}$). For any point $x \in S^{n}$ (respectively, $x \in S^{2 n-1}$), the isotropy group is $O(n) \times O(1)$ (respectively, $U(n-1) \times U(1)$).
29.13x Similarly to 29.11x, this follows from the representation of $S^{4 n-1} \subset \mathbb{H}^{n}$ as a homogeneous $S p(n)$-space.
29.14x The torus is \mathbb{R}^{2} / H, where $H=\mathbb{Z}^{2} \subset \mathbb{R}^{2}$. To obtain the Klein bottle in the form \mathbb{R}^{2} / G, add to H the reflection $(x, y) \mapsto(1-x, y)$.
29.15 x 1) The space of n-tuples $\left(L_{1}, \ldots, L_{n}\right)$ of pairwise orthogonal vector lines L_{k} in \mathbb{R}^{n}.
2) The Grassmannian of (non-oriented) vector k-planes in \mathbb{R}^{n}.
3) The Grassmannian of oriented vector k-planes in \mathbb{R}^{n}.
4) The Stiefel variety of $(n-k)$-orthogonal unit frames in \mathbb{R}^{n}.
29.16x 1) Use the fact that the product of two homogeneous spaces is a homogeneous space. (Over what group?) 2) A more interesting option: show that $S^{2} \times S^{2}$ is homeomorphic to the Grassmannian of oriented vector 2 -planes in \mathbb{R}^{4}.
29.17x By definition, the group $S O(n, 1)$ acts transitively on the quadric Q in \mathbb{R}^{n+1} given by the equation $-x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}=0$. The isotropy group of any point of Q is the standardly embedded $S O(n) \subset S O(n, 1)$. By 29. Mx, the quotient space $S O(n, 1) / S O(n)$ is homeomorphic to Q, which in turn is homeomorphic to a disjoint sum of two open n-balls.
30.1 For each continuous map $f: X \rightarrow I$, the map $H: H(x, t)=$ $(1-t) f(x)$ is a homotopy between f and the constant map $h_{0}: x \mapsto 0$.
30.2 Let $f_{0}, f_{1}: X \rightarrow Y$ be two constant maps with $f_{0}(X)=\left\{x_{0}\right\}$ and $f_{1}(X)=\left\{x_{1}\right\} . \quad \Rightarrow$ If H is a homotopy between f_{0} and f_{1}, then for any $z_{*} \in X$ the path $u: t \mapsto H\left(z_{*}, t\right)$ joins x_{0} and x_{1}, which thus lie in the same path-connected component of Y.
\Leftarrow If x_{0} and x_{1} are joined by a path $u: I \rightarrow Y$, then $X \times I \rightarrow Y:(z, t) \mapsto$ $u(t)$ is a homotopy between f_{0} and f_{1}.
30.3 Let us show that an arbitrary map $f: I \rightarrow Y$ is null-homotopic. Indeed, if $H(s, t)=f(s \cdot(1-t))$, then $H(s, 0)=f(s)$ and $H(s, 1)=f(0)$. Consider two continuous maps $f, g: I \rightarrow Y$. We show that if $f(I)$ and $g(I)$ lie in one and the same path-connected component of Y, then they are homotopic. Each of the maps f and g is null-homotopic, and, therefore, they are homotopic due to the transitivity of the homotopy relation and the result of Problem 30.2. To make the picture complete, we present an explicit homotopy joining f and g :

$$
H(s, t)= \begin{cases}f(s \cdot(1-3 t)) & \text { for } t \in[0,1 / 3] \\ u(3 s-1) & \text { for } t \in[1 / 3,2 / 3] \\ g(s \cdot(3 t-2)) & \text { for } t \in[2 / 3,1]\end{cases}
$$

30.4 Prove that each continuous map to a star-shaped set is homotopic to the constant map with image equal to the center of the star.
30.5 Let $f: C \rightarrow X$ be a continuous map, a the center of the set C. Then the required homotopy $H: C \times I \rightarrow X$ is defined by the formula $H(c, t)=f(t a+(1-t) c)$.
30.6 The space X is path-connected.
30.7 Use assertion 30.F and the fact that $S^{n} \backslash$ point $\cong \mathbb{R}^{n}$.
30.8 If a path $u: I \rightarrow \mathbb{R}^{n} \backslash 0$ joins $x=f(0)$ and $y=g(0)$, then u determines a homotopy between f and g because $0 \times I \cong I$.
30.9 Consider the maps f and g defined by the formulas $f(0)=-1$ and $g(0)=1$. They are not homotopic because the points 1 and -1 lie in distinct path-connected components of $\mathbb{R} \backslash 0$.
30.10 If $n>1$, then there is a unique homotopy class. For $n=1$, there are $(k+1)^{m}$ such classes.
30.11 Since for each point $x \in X$ and each real $t \in I$ we have the inequality

$$
|(1-t) f(x)+t g(x)|=|f(x)+t(g(x)-f(x))| \geq|f(x)|-|g(x)-f(x)|>0
$$

it follows that the image of the rectilinear homotopy joining f and g lies in $\mathbb{R}^{n} \backslash 0$, and, therefore, these maps are homotopic.
30.12 For simplicity, we assume that the leading coefficients of p and q are equal to 1 . Use 30.11 to show that the maps determined by the polynomial $p(x)$ of degree n and the monomial z^{n} are homotopic.
30.13 The required homotopy is given by the formula

$$
H(x, t)=\frac{(1-t) f(x)+\operatorname{tg}(x)}{\|(1-t) f(x)+\operatorname{tg}(x)\|} .
$$

Where have we used the assumption $|f(x)-g(x)|<2$?
30.14 This immediately follows from 30.13.
31.1 To shorten the notation, put $\alpha=(u v) w$ and $\beta=u(v w)$; by assumption, $\alpha(s)=\beta(s)$ for all $s \in[0,1]$. In the proof of assertion 31.E.2, we construct a function φ such that $\alpha \circ \varphi=\beta$. Consequently, $\alpha(s)=\alpha(\varphi(s))$, whence $\alpha(s)=\alpha\left(\varphi^{n}(s)\right)$ for all $s \in[0,1]$ and $n \in \mathbb{N}$ (here φ^{n} is the n fold composition of φ). Since $\varphi(s)<s$ for $s \in(0,1)$, it follows that the sequence $\varphi^{n}(s)$ is monotone decreasing, and we easily see that it tends to zero for each $s \in(0,1)$. By assumption, we have $\alpha: I \rightarrow X$. Therefore, $\alpha(s)=\alpha\left(\varphi^{n}(s)\right) \rightarrow \alpha(0)=x_{0}$ for all $s \in[0,1)$, whence $\alpha(s)=x_{0}$ also for all $s \in[0,1)$. Consequently, we also have $\alpha(1)=x_{0}$.
31.2 The solution to Problem 31.D implies that we must construct three paths u, v, and w in a certain space such that $\alpha(\varphi(s))=\alpha(s)$ for all $s \in[0,1]$ (here, as in 31.1, $\alpha=(u v) w$). Consider, for example, the paths $I \rightarrow[0,3]$ defined by the formulas $u(s)=s, v(s)=s+1$, and $w(s)=s+2$; the path $\alpha:[0,1] \rightarrow[0,3]$ is a bijection. We introduce in $[0,3]$ the following equivalence relation: $x \sim y$ if there are $n, k \in \mathbb{N}$ such that $x=\alpha\left(\varphi^{k}(s)\right)$ and $y=\alpha\left(\varphi^{n}(s)\right)$. Let X be the quotient space of $[0,3]$ by this relation. Then the paths $u^{\prime}=\operatorname{prou}, v^{\prime}=\operatorname{prov}$, and $w^{\prime}=\operatorname{prow}$ satisfy $\left(u^{\prime} v^{\prime}\right) w^{\prime}=u^{\prime}\left(v^{\prime} w^{\prime}\right)$.
31.4 If $u(s)=e_{a} u(s)$, then

$$
u(s)= \begin{cases}a & \text { if } s \in[0,1 / 2] \\ u(2 s-1) & \text { if } s \in[1 / 2,1]\end{cases}
$$

Thus, $u(s)=a$ for all $s \in[0,1 / 2]$. Further, if $s \in[1 / 2,3 / 4]$, then $2 s-$ $1 \in[0,1 / 2]$, whence it follows that $u(s)=u(2 s-1)=a$ also for all $s \in$ $[1 / 2,3 / 4]$. Reasoning further in a similar way, we see as a result that $u(s)=$ a for all $s \in[0,1)$. If we put no restrictions on the space X, then it is quite possible that $u(1)=x \neq a$ (show this). Also show that the assumptions of the problem imply that $u(1)=a$ (cf. 31.1).
31.5 This is quite obvious.
32.1 The homotopies h such that $h(0, t)=h(1, t)$ for all $t \in I$.
32.2 See Problem 32.3.
32.3 If $z=e^{2 \pi i s}$, then

$$
u v\left(e^{2 \pi i s}\right)=\left\{\begin{array}{ll}
u\left(e^{4 \pi i s}\right) & \text { if } s \in[0,1 / 2] \\
v\left(e^{4 \pi i s}\right) & \text { if } s \in[1 / 2,1]
\end{array}= \begin{cases}U\left(z^{2}\right) & \text { if } \operatorname{Im} z \geq 0 \\
V\left(z^{2}\right) & \text { if } \operatorname{Im} z \leq 0\end{cases}\right.
$$

32.4 Consider the set of homotopy classes of circular loops at a certain point x_{0}, where the operation is defined as in Problem 32.3.
32.5 The group is trivial because any map to such a space is continuous, and so any two loops (at the same point) are homotopic.
32.6 This group is trivial because the quotient space in question is homeomorphic to D^{2}.
32.7 Up to homeomorphism, a two-element set admits only three topological structures: the indiscrete one, the discrete one, and the topology where only one point of the two is open. The first case is considered in 32.5, while the discrete space is not path-connected. Therefore, we should only consider the case where $\Omega_{X}=\{\varnothing, X,\{a\}\}, a \in X$. Let u be a loop at a. Then the formula

$$
h(s, t)= \begin{cases}u(s) & \text { if } t=0, \\ a & \text { if } t \in(0,1]\end{cases}
$$

determines a homotopy between u and a constant loop. Indeed, the continuity of h follows from the fact that the set $h^{-1}(a)=\left(u^{-1}(a) \times I\right) \cup(I \times(0,1])$ is open in the square $I \times I$.
32.9 Use Theorem 32.H, the fact that $\mathbb{R}^{n} \backslash 0 \cong \mathbb{R} \times S^{n-1}$, and Theorem 32.G.
32.10 A discrete space is simply connected iff it is a singleton. An indiscrete space, \mathbb{R}^{n}, a convex set. and a star-shaped set are simply connected. The sphere S^{n} is simply connected iff $n \geq 2$. The space $\mathbb{R}^{n} \backslash 0$ is simply connected iff $n \geq 3$.
32.11 We observe that since the space X is path-connected, we have $U \cap V \neq \varnothing$. Consider a loop $u: I \rightarrow X$; for the sake of definiteness, let $u(0)=u(1)=x_{0} \in U$. By 32.G.3, there is a sequence of points $a_{1}, \ldots a_{N} \in$ I, where $0=a_{1}<a_{2}<\cdots<a_{N-1}<a_{N}=1$, such that for each i the image $u\left(\left[a_{i}, a_{i+1}\right]\right)$ is contained in U or in V. Furthermore, (uniting the segments) we can assume that if $u\left(\left[a_{k-1}, a_{k}\right]\right) \not \subset U$ (or $\left.V\right)$, then $u\left(\left[a_{k}, a_{k+1}\right]\right) \subset U$ (respectively, U), whence $u\left(a_{k}\right) \in U \cap V$ for all $k=1,2, \ldots, N-1$. Consider the segment $\left[a_{k}, a_{k+1}\right]$ such that $u\left(\left[a_{k}, a_{k+1}\right]\right) \subset V$. The points $u\left(a_{k}\right)$ and $u\left(a_{k+1}\right)$ are joined by a path $v_{k}:\left[a_{k}, a_{k+1}\right] \rightarrow U \cap V$. Since V is simply connected, $\left.u\right|_{\left[a_{k}, a_{k+1}\right]}$ and v_{k} are joined by a homotopy $h_{k}:\left[a_{k}, a_{k+1}\right] \times I \rightarrow$ V, and, consequently, u is homotopic to a loop $v: I \rightarrow U$. Since the set U is also simply connected, it follows that v is null-homotopic, thus, X is simply connected.
32.12 Actually, at the moment we cannot give a complete solution of the problem because up to now we have not seen any example of a nonsimply connected space. In what follows, we prove, e.g., that the circle is not simply connected. Let

$$
U=\left\{(x, y) \in S^{1} \mid y>0\right\} \cup\{(1,0)\}, \quad V=\left\{(x, y) \in S^{1} \mid y \leq 0\right\} .
$$

Each of the sets is homeomorphic to an interval. Therefore, they are simply connected, and their intersection is a singleton, which is path-connected. However, the space $U \cup V=S^{1}$ is not simply connected.
32.13 Consider an arbitrary loop $s: I \rightarrow U$. Since $U \cup V$ is simply connected, it follows that this loop is null-homotopic in $U \cup V$, and, therefore, s is connected with a constant path by a homotopy $H: I \times I \rightarrow U \cup V$. We subdivide the unit square $I \times I$ by segments parallel to its sides into smaller squares K_{n} so that the image of each of the squares lies entirely in U or V. Consider the union K of those squares of the partition whose images are contained in V. Let L be a contour consisting of the boundaries of the squares in K and enclosing a certain part of K. Clearly, $L \subset U \cap V \subset U$, and, therefore, the homotopy H extends from L to the set bounded by L so that the image of the set be contained in U. Reasoning further in a similar way, we obtain a homotopy $H^{\prime}: I \times I \rightarrow U$.
33.1 It is easy to describe a family of loops a_{t} constituting a free homotopy between the loop a and a loop representing the element $T_{s}(\alpha)$. Namely, the loop a_{t} starts at $s(t)$, it reaches the point $x_{0}=s(0)$ at the moment $t / 3$, after that it runs along the path a and returns to the point x_{0} at the moment $1-t / 3$, and, finally, returns to the point $s(t)$. In this case, the loop a_{0} is the initial loop a. The loop a_{1} is defined by the formulas

$$
a_{1}(\tau)= \begin{cases}s(1-3 \tau) & \text { if } \tau \in[0,1 / 3], \\ a(3 \tau-1) & \text { if } \tau \in[1 / 3,2 / 3], \\ s(3 \tau-2) & \text { if } \tau \in[2 / 3,1],\end{cases}
$$

and, consequently, the homotopy class of a_{1} is that of $\sigma^{-1} \alpha \sigma$. To complete the argument, we present a formula for the above homotopy:

$$
H(\tau, t)= \begin{cases}s(t-3 \tau) & \text { if } \tau \in[0, t / 3], \\ a\left(\frac{3 \tau-t}{3-2 t}\right) & \text { if } \tau \in[t / 3,1-t / 3], \\ s(3 \tau+t-3) & \text { if } \tau \in[1-t / 3.1] .\end{cases}
$$

33.2 Consider the homotopy defined by the formula

$$
H^{\prime}(\tau, t)= \begin{cases}s(1-3 \tau) & \text { if } \tau \in[0,(1-t) / 3] \\ H\left(\frac{3 \tau+t-1}{2 t+1}, t\right) & \text { if } \tau \in[(1-t) / 3,(t+2) / 3] \\ s(3 \tau-2) & \text { if } \tau \in[(t+2) / 3,1]\end{cases}
$$

and verify that $H^{\prime}(\tau, 1)=b(\tau)$, and the correspondence $\tau \mapsto H^{\prime}(\tau, 0)$ determines a path in the homotopy class $\left[s^{-1} a s\right]$.
33.3x This immediately follows from assertion 33.Lx.
34.1 If $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow U$ is a homeomorphism, then p homeomorphically maps $V_{\alpha} \cap p^{-1}\left(U^{\prime}\right)$ onto U^{\prime}.
34.2 See the proof of assertion 34.F; the coverings p and q are said to be isomorphic.
34.3 This follows from 34.H and 34.E because $\mathbb{C} \backslash 0 \cong S^{1} \times \mathbb{R}$ and $p^{\prime}: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto n x$ is a trivial covering. Also sketch a trivially covered neighborhood of a point $z \in \mathbb{C} \backslash 0$.
34.4 Consider the following two partitions of the rectangle $K=[0,2] \times$ $[0,1]$. The partition R consists of the two-element sets $\{(0, y),(2, y) \mid y \in$ $[0,1]\}$, all the remaining sets in R are singletons. The partition R^{\prime} consists of the two-element sets $\{(x, y),(x+1,1-y) \mid x \in(0,1), y \in[0,1]\}$ and the three-element sets $\{(0, y),(1,1-y),(2, y) \mid x \in(0,1), y \in[0,1]\}$. Since each element of the first partition is contained in a certain element of the second partition, it follows that a quotient $\operatorname{map} p: K / R \rightarrow K / R^{\prime}$ is defined, which is the required covering of the Möbius strip by a cylinder. There is also a simpler option. We introduce an equivalence relation on $S^{1} \times I:(z, t) \sim$ $(-z, 1-t)$. Verify that the quotient space by this relation is homeomorphic to the Möbius strip, and the factorization projection is a covering.
34.5 The solution is similar to that of Problem 34.4. Consider two partitions of the rectangle $K=[0,3] \times[0,1]$. The two-point elements of the first one are the pairs $\{(0, y),(3,1-y) \mid y \in[0,1]\}$, and the four-point elements of the second one are quadruples $\{(0, y),(1,1-y),(2, y),(3,1-y) \mid$ $x \in(0,1), y \in[0,1]\}$.
34.6 Modify the solution to Problem 34.4, including into the partition R the quadruple of the vertices of the rectangle K and the pairs $\{(x, 0),(x, 1) \mid x \in(0,2)\}$. Another approach to constructing the same covering involves introducing the following equivalence relation on $S^{1} \times S^{1}$: $(z, w) \sim(-z, \bar{w})$ (see the solution to Problem 34.4).
34.7 There are standard coverings $\mathbb{R} \times S^{1} \rightarrow S^{1} \times S^{1}$ and $\mathbb{R} \times \mathbb{R} \rightarrow S^{1} \times$ S^{1} such that their compositions with the covering outlined in the solution to Problem 34.6 are coverings of the Klein bottle by a cylinder and by the plane. Modifying the solution of Problem 34.5, we obtain a nontrivial covering of the Klein bottle by the Klein bottle. We also present a more geometric description of the required covering. Let $q: M \rightarrow M$ be a covering of the Möbius strip by the Möbius strip, let M_{1} and M_{2} be two copies of the Möbius strip, and let $q_{1}: M_{1} \rightarrow M_{1}$ and $q_{2}: M_{2} \rightarrow M_{2}$ be two copies of q. If we paste M_{1} and M_{2} together along their common boundary, then we obtain the Klein bottle. Clearly, as a result we construct a covering of the Klein bottle by the Klein bottle.
34.8 The preimages of points have the form $\left\{\left(x+k, 1 / 2+(-1)^{k-1}(1 / 2-\right.\right.$ $y)+l) \mid k, l \in \mathbb{Z}\}$.
34.9 We already have coverings $S^{2} \rightarrow \mathbb{R} P^{2}$ and $S^{1} \times S^{1} \rightarrow K$, where K is the Klein bottle. Thus, we have coverings of the sphere with k crosscaps by a sphere with $k-1$ handles for $k=1,2$. We prove that such a covering exists for each k. Let S_{1} and S_{2} be two copies of the sphere with
k holes. Denote by S the "basic" sphere with k holes and consider the map $p^{\prime}: S_{1} \sqcup S_{2} \rightarrow S$. Now we fill the holes in S by cross-caps (i.e., by Möbius strips), and we fill the corresponding pairs of holes in S_{1} and S_{2} by the cylinders $S^{1} \times I$. As a result, we obtain K, which is a sphere with k crosscaps, and $S_{1} \sqcup S_{2}$ with k attached cylinders is homeomorphic to the sphere M with $k-1$ handles. Since the Möbius strip is covered by a cylinder, p^{\prime} extends to a two-fold covering $p: M \rightarrow K$.
34.10 Actually, we prove that each local homeomorphism is an open map, and, as it follows from 34.11, each covering is a local homeomorphism. So, let the set V be open in X, and let $V^{\prime}=p(V)$. Consider a point $b=p(x) \in V^{\prime}$, where $x \in V$. By the definition of a local homeomorphism, x has a neighborhood U such that $p(U)$ is an open set and $p \mid: U \rightarrow p(U)$ is a homeomorphism. Therefore, the set $p(U \cap V)$ is open in V^{\prime}, thus, it is open in B, and hence it is a neighborhood of b lying in $p(V)$. Thus, $p(U)$ is an open set.
34.11 If $x \in X, U$ is a trivially covered neighborhood of the point $b=p(x)$, and $p^{-1}(U)=\bigcup_{\alpha} V_{\alpha}$, then there is a set V_{α} containing x. By the definition of a covering, $\left.p\right|_{V_{\alpha}}: V_{\alpha} \rightarrow U$ is a homeomorphism.

34.12 See, e.g., 34.K.

34.13 Let $f: X \rightarrow Y$ be a local homeomorphism, let G be an open subset of X, and let $x \in G$. Assume that U is a neighborhood of x (in $X)$ such that $f(U)$ is open in Y and the restriction $\left.f\right|_{U}: U \rightarrow f(U)$ is a homeomorphism. If $V=W \cap U$, then $f(W)$ is open in $f(U)$, and, therefore, $f(W)$ is also open in Y. Clearly, $\left.f\right|_{W}: W \rightarrow f(W)$ is a homeomorphism.
34.14 Only for the entire line. We show that if A is a proper subset of \mathbb{R}, then $\left.p\right|_{A}: A \rightarrow S^{1}$ is not a covering. Indeed, A has a boundary point x_{0}, let $b_{0}=p\left(x_{0}\right)$. We easily see that b_{0} has no trivially covered (for $\left.p\right|_{A}$) neighborhood.
34.15 See, for example, 34.H.
34.16 For example, the covering of Problem 34.I is $p q$-fold. In many examples. the number of sheets is infinite (countable).
34.17 All even positive integers and only them. The first assertion is obvious (cf. 34.4), but at the moment we actually cannot prove the second one. The argument below involves methods and results presented in subsequent sections (cf. 40.3). Consider the homomorphism $p_{*}: \pi_{1}\left(S^{1} \times I\right) \rightarrow$ $\pi_{1}(M)$, which is a monomorphism. It is known that $\pi_{1}\left(S^{1} \times I\right) \cong \mathbb{Z} \cong \pi_{1}(M)$. and, furthermore, the generator of $\pi_{1}\left(S^{1} \times I\right)$ is sent to the $2 k$-fold generator of $\pi_{1}(M)$. Consequently, by $40 . G$ (or $40 . H$), the covering has an even number of sheets.
34.18 All odd positive integers (cf. 34.5) and only them (see 40.4).
34.19 All even positive integers (cf. 34.6) and only them (see 40.5).
34.20 All positive integers (cf. 34.7).
34.21 Consider the covering $T_{1}=S^{1} \times S^{1} \rightarrow T_{2}=S^{1} \times S^{1}:(z, w) \mapsto$ $\left(z^{d}, w\right)$. Denote by S_{2} the surface obtained from the torus T_{2} by making $p-1$ holes. The preimage of S_{2} under this covering is a surface S_{1} homeomorphic to a torus with $d(p-1)$ holes. Let us fill each of the holes (in S_{1} and S_{2}) by a handle. Then we attach $p-1$ handles to S_{2}, and as a result we obtain a surface M_{2}, which is a sphere with p handles. We also attach $d(p-1)$ handles to S_{1}, thus obtaining a surface M_{1}, which is a sphere with $d(p-1)+1$ handles. Clearly, the covering $S_{1} \rightarrow S_{2}$ extends to a d-fold covering $M_{1} \rightarrow M_{2}$.
34.22 Consider an arbitrary point $z \in Z$, let $q^{-1}(z)=\left\{y_{1}, y_{2}, \ldots, y_{d}\right\}$. If a neighborhood V of z is trivially covered with respect to the projection q, and W_{k} are neighborhoods of the points $y_{k}, k=1,2, \ldots, d$, trivially covered with respect to the projection p, then $U=\bigcap_{k=1}^{d} q\left(W_{k} \cap q^{-1}(V)\right)$ is a neighborhood of z trivially covered with respect to the projection $q \circ p$. Therefore, $q \circ p: X \rightarrow Z$ is a covering.
34.23 Let Z be the union of an infinite set of the circles determined by the equations $x^{2}+y^{2}=2 x / n, n \in \mathbb{N}$, and let Y be the union of the y axis and the "twice" infinite family $x^{2}+(y-k)^{2}=2 x / n$, where $n \in \mathbb{N}, n>1, k \in \mathbb{Z}$. The covering $q: Y \rightarrow Z$ has the following structure: the y axis covers the outer circle of Z, while the restrictions of q to the other circles are parallel translations. Construct a covering $p: X \rightarrow Y$ whose composition with q is not a covering. Furthermore, the covering p can even be two-fold.
34.24 1) We observe that the topology on the fiber (induced from X) is discrete. Therefore, if X is compact, then the fiber $F=p^{-1}(b)$ is closed in X and, consequently, is compact. Therefore, the set F is finite, thus the covering is finite-sheeted. 2) Since B is compact and Hausdorff, it follows that B is regular, and, therefore, each point has a neighborhood U_{x} such that the compact closure $\mathrm{Cl} U_{x}$ lies in a certain trivially covered neighborhood. Since the base is compact, we have $B=\cup U_{x_{i}}$ and $X=\cup p^{-1}\left(\mathrm{Cl} U_{x_{i}}\right)$. Since the covering is finite-sheeted, X is thus covered by a finite number of compact sets, and, therefore, X is compact itself.
34.25 Let $U \cap V=G_{0} \cup G_{1}$, where G_{0} and G_{1} are open subsets. Consider the product $X \times \mathbb{Z}$ and the subset

$$
Y=\{(x, k) \mid x \in U, k \text { even }\} \cup\{(x, k) \mid x \in V, k \text { odd }\},
$$

which is a disjoint union of countably many copies of U and V. We introduce in Y the following relation:

$$
\begin{array}{ll}
(x, k) \sim(x, k+1) & \text { if } x \in G_{1}, k \text { even } \\
(x, k) \sim(x, k-1) & \text { if } x \in G_{0}, k \text { odd. }
\end{array}
$$

Consider the partition of Y into pairs of points equivalent to each other and into singletons in $(Y \backslash(U \cap V)) \times \mathbb{Z}$. Denote by Z the quotient space by this partition. Let $p: Z \rightarrow X$ be the factorization of the restriction $\left.\mathrm{pr}_{X}\right|_{Y}$, where $\operatorname{pr}_{X}: X \times \mathbb{Z} \rightarrow X$ is the standard projection. Verify that $p: Z \rightarrow X$ is an infinite-sheeted covering. Apply the described construction to the circle S^{1}, which is the union of two open arcs with disconnected intersection; what covering will result?
35.1 By assumption, we have $X=B \times F$, where F is a discrete space, and $p=\operatorname{pr}_{B}$. Let $y_{0} \in F$ be the second coordinate of the point x_{0}. The correspondence $a \mapsto\left(f(a), y_{0}\right)$ determines a continuous lift $\widetilde{f}: A \rightarrow X$ of f.
35.2 Let $x_{0}=\left(b_{0}, y_{0}\right) \in B \times F=X$. Consider the map $g=\operatorname{pr}_{F} \circ \tilde{f}$: $A \rightarrow F$. Since the set A is connected and the topology on F is discrete, it follows that g is a constant map. Therefore, $\tilde{f}(a)=\left(f(a), y_{0}\right)$, and, consequently, the lifting is unique.
35.3 Consider the coincidence set $G=\{a \in A \mid f(a)=g(a)\}$ of f and g; by assumption, $G \neq \varnothing$. For each point $a \in A$, take a connected neighborhood $V_{a} \subset \varphi^{-1}\left(U_{b}\right)$, where U_{b} is a certain trivially covered neighborhood of $b=\varphi(a)$. If $V_{a} \cap G \neq \varnothing$, then $V_{a} \subset G$ by 35.2. In particular, if $a \in G$, then $V_{a} \subset G$, and, consequently, the set G is open. Similarly, if $a \notin G$, then $V_{a} \cap G=\varnothing$, i.e., $V_{a} \subset A \backslash G$, and, therefore, the set $A \backslash G$ is also open. By assumption, A is connected and $G \neq \varnothing$, whence $A=G$.
35.5 Show that if $b_{0}=-1$ and $x_{0}=1 / 2$, then the path $u: t \mapsto e^{3 \pi i t}$ has no lifts.
35.6 We have: $\widetilde{u}(t)=\ln (2-t), \widetilde{v}(t)=\ln (1+t)+2 \pi i t, \widetilde{u v}=\widetilde{u} \widetilde{v}$, and $\widetilde{v u}=\widetilde{v} \widetilde{\widetilde{u}}$, where $\widetilde{\widetilde{u}}=\ln (2-t)+2 \pi i$.
35.F If the covering is nontrivial and the covering space is pathconnected, then there is a path s joining two distinct points $x_{0}, x_{1} \in p^{-1}\left(b_{0}\right)$. By assertion 35.E, the loop $p \circ s$ is not null-homotopic, and, therefore, B is not simply connected.
35.7 This follows from 35.F.
35.8 For example, $\mathbb{R} P^{2}$ is not simply connected.
35.9 For example, generalize Theorem 35.C to the case of maps f : $S^{n} \rightarrow B$ with $n>1$. (Cf. 41.Xx and 41.Yx.)
36.1 This is the class α. Indeed, the path $\widetilde{s}(t)=t^{2}$ covering the loop ends at the point $1 \in \mathbb{R}$, and, therefore, \widetilde{s} is homotopic to s_{1}.
36.2 If $[s]=\alpha^{n}$, then $s \sim s_{n}$, and, therefore, the paths \widetilde{s} and \widetilde{s}_{n} end at the same point.
36.3 The universal covering space for the n-dimensional torus is \mathbb{R}^{n}, the covering p is defined by the formula $p\left(x_{1}, \ldots, x_{n}\right)=\left(e^{2 \pi i x_{1}}, \ldots, e^{2 \pi i x_{n}}\right)$.

The map deg : $\pi_{1}\left(\left(S^{1}\right)^{n},(1,1, \ldots, 1)\right) \rightarrow \mathbb{Z}^{n}$ is defined as follows. If u is a loop on the torus and \widetilde{u} is the path covering u and starting at the origin, then $\operatorname{deg}([u])=\widetilde{u}(1) \in \mathbb{Z}^{n} \subset \mathbb{R}^{n}$. Prove that this map is well defined and is an isomorphism.
36.4 This assumption was used when we used the fact that the n-sphere is simply connected, in other words, the covering $S^{n} \rightarrow \mathbb{R} P^{2}$ is universal only for $n \geq 2$.
32.7 Consider the following three cases, where $X: 1)$ contains no open singletons (i.e., no "open points"); 2) contains a unique open singleton; 3) contains two open singletons.
36.7 For example, construct an infinite-sheeted covering (in the narrow sense) of X (see 7.V).
36.8 Let us show that $\pi_{1}(X) \cong \mathbb{Z}$. The universal covering space of X is $\mathcal{Z}=\left(\mathbb{Z}, \Omega_{4}\right)$, where the topology Ω_{4} is determined by the base consisting of singletons $\{2 k\}, k \in \mathbb{Z}$, and 3-element sets $\{2 k, 2 k+1,2 k+2\}, k \in \mathbb{Z}$. The projection $p: \mathcal{Z} \rightarrow X$ is such that

$$
\begin{gathered}
p^{-1}(a)=\{4 k \mid k \in \mathbb{Z}\} . \quad p^{-1}(b)=\{4 k+1 \mid k \in \mathbb{Z}\}, \\
p^{-1}(c)=\{4 k+2 \mid k \in \mathbb{Z}\}, \quad p^{-1}(d)=\{4 k+3 \mid k \in \mathbb{Z}\} .
\end{gathered}
$$

As when calculating the fundamental group of the circle, it suffices to show that \mathcal{Z} is simply connected. We can start, e.g., with the fact that the sets $U=\{0,1,2\}$ and $V=\{2,3,4\}$ are open in $U \cup V$ and simply connected, and their intersection $U \cup V$ is path-connected. Therefore, their union $U \cup V$ is also simply connected (see 32.11). After that, use induction. Here is another argument showing that \mathcal{Z} is simply connected. Let $J_{n}=\{0,1, \ldots, 2 n\}$ and define $H_{n}: J_{n} \times I \rightarrow J_{n}$ as follows:

$$
\begin{gathered}
H_{n}(x, t)=x \text { for } x \in J_{n-1}, \quad H_{n}(2 n-1, t)= \begin{cases}2 n-1 & \text { if } t=0 \\
2 n-2 & \text { if } t \in(0,1]\end{cases} \\
H_{n}(2 n, t)= \begin{cases}2 n & \text { if } t \in[0,1 / 3) \\
2 n-1 & \text { if } t \in[1 / 3,2 / 3] \\
2 n-2 & \text { if } t \in(2 / 3,1]\end{cases}
\end{gathered}
$$

Let u be a loop at 0 with image lying in J_{n}. Then the formula $h_{n}(s, t)=$ $H_{n}(u(s), t)$ determines a homotopy between u and a loop with image lying in J_{n-1}. Using induction, we see that u is null-homotopic.
36.9 1) The results of Problems 32.7, 36.6, and 36.7 imply that $n_{0}=4$. 2) The computation presented in the solution to Problem 36.8 implies that \mathbb{Z} is the fundamental group of a certain 4 -element space. Show that this is the only option.
36.10 1) Consider the 7 -element space $Z=\{a, b, c, d, e, f, g\}$, where the topology is determined by the base $\{\{a\},\{b\},\{c\},\{a, b, d\},\{b, c, e\}$, $\{a, b, f\},\{b, c, g\}\}$. To see that Z is not simply connected, observe that the universal covering of Z is constructed in the same way as that of the bouquet of two circles, with minor changes only. Instead of the "cross" K, use the space $\widetilde{K}=\left\{a, b_{+}, b_{-}, c_{+}, c_{-}, d, e, f, g\right\}$. 2) By 36.9, at least five points are needed. Consider the 5 -element space $Y=\{a, b, c, d, e\}$, where the topology is determined by the base $\{\{a\},\{c\},\{a, b, c\},\{a, c, d\},\{a, c, e\}\}$. Verify that the fundamental group of Y is a free group with two generators.
36.11 Consider a topological space

$$
X=\left\{a_{0}, b_{0}, c_{0}, a_{1}, a_{1}^{\prime}, b_{1}, b_{1}^{\prime}, c_{1}, c_{1}^{\prime}, a_{2}, b_{2}, c_{2}, d_{2}\right\}
$$

with topology determined by the base

$$
\begin{array}{llll}
\left\{a_{0}\right\}, & \left\{a_{0}, b_{0}, c_{1}\right\}, & \left\{a_{0}, b_{0}, c_{1}^{\prime}\right\}, & \left\{a_{0}, b_{0}, c_{0}, a_{1}, b_{1}^{\prime}, c_{1}^{\prime}, a_{2}\right\}, \\
\left\{b_{0}\right\}, & \left\{a_{0}, b_{1}, c_{0}\right\}, & \left\{a_{0}, b_{1}^{\prime}, c_{0}\right\}, & \left\{a_{0}, b_{0}, c_{0}, a_{1}^{\prime}, b_{1},,_{1}^{\prime}, b_{2}\right\}, \\
\left\{c_{0}\right\}, & \left\{a_{1}, b_{0}, c_{0}\right\}, & \left\{a_{1}^{\prime}, b_{0}, c_{0}\right\}, & \left\{a_{0}, b_{0}, c_{0}, a_{1}^{\prime}, b_{1}^{\prime}, c_{1}, c_{2}\right\}, \\
& \left\{a_{0}, b_{0}, c_{0}, a_{1}, b_{1}, c_{1}, d_{2}\right\} .
\end{array}
$$

37.1 First of all, we observe that, since the fundamental group of the punctured plane is Abelian, the operator of translation along any loop is the identity homomorphism. Consequently, two homotopic maps $f, g: \mathbb{C} \backslash 0 \rightarrow$ $\mathbb{C} \backslash 0$ induce the same homomorphism on the level of fundamental groups. Let f be the map $z \mapsto z^{3}$. The generator of the group $\pi_{1}(\mathbb{C} \backslash 0,1)$ is the class α of the loop $s(t)=e^{2 \pi i t}$. The image of $f_{*}(\alpha)$ is the class of the loop $f_{\#}(u)=f \circ u$, and, therefore, $f_{\#}(u)(t)=e^{6 \pi i t}$, whence $f_{*}(\alpha)=\alpha^{3} \neq \alpha$. Consequently, $f_{*} \neq \mathrm{id}_{\pi_{1}(\mathbb{C} \backslash 0,1)}$, whence it follows that f is not homotopic to the identity.
37.2 Denote by i the inclusion $X \rightarrow \mathbb{R}^{n}$. If the map f extends to $F: \mathbb{R}^{n} \rightarrow Y$, then $f=F \circ i$, whence $f_{*}=F_{*} \circ i_{*}$. However, since \mathbb{R}^{n} is simply connected, it follows that the homomorphism F_{*} is trivial, and, consequently, so is the homomorphism f_{*}.
37.3.1 Denote by φ a homeomorphism of an open set $U \subset X$ onto $S^{1} \times S^{1} \backslash(1,1)$. If $X=U$, then the assertion is obvious because the group $\pi_{1}\left(S^{1} \times S^{1} \backslash(1,1)\right)$ is a free group with two generators. Otherwise, we define $f: X \rightarrow S^{1} \times S^{1}$ by letting

$$
f(x)= \begin{cases}\varphi(x) & \text { for } x \in U, \\ (1,1) & \text { for } x \notin U .\end{cases}
$$

Verify that f is a continuous map. Now we take a point $x_{0} \in U$ and consider the homomorphism

$$
f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(S^{1} \times S^{1}, f\left(x_{0}\right)\right) .
$$

We easily see that f_{*} is an epimorphism.
37.4 Let $f(z)=\operatorname{diag}\{z, 1,1, \ldots, 1\}$ for each point $z \in S^{1}$, and let $g(A)=\frac{\operatorname{det}(A)}{|\operatorname{det}(A)|}$ for each matrix $A \in G L(n, \mathbb{C})$. We have thus defined two maps $f: S^{1} \rightarrow G L(n, \mathbb{C})$ and $g: G L(n, \mathbb{C}) \rightarrow S^{1}$, whose composition $g \circ f$ is the identity map. Since $g_{*} \circ f_{*}=(g \circ f)_{*}=\mathrm{id}_{\pi_{1}\left(S^{1}\right)}$, it follows that g_{*} is an epimorphism, and, consequently, the fundamental group of $G L(n, \mathbb{C})$ is infinite.
37.5x This is assertion 37.Kx.
37.6 x By $37.5 x$, it is sufficient to check that if $a \in \operatorname{Int} D^{2}$ and i is the standard embedding of the standard circle S^{1} in $\mathbb{R}^{2} \backslash a$, then the circular loop i determines a nontrivial element in the group $\pi_{1}\left(\mathbb{R}^{2} \backslash a\right)$. Indeed, the formula $h(z, t)=z+t a$ determines a homotopy between i and a circular loop whose class obviously generates the fundamental group of $\mathbb{R}^{2} \backslash a$.
37.7x Take an arbitrary point $a \in \mathbb{R}^{2}$, let $R>|a|+m$. Consider the circular loops $\varphi: S^{1} \rightarrow \mathbb{R}^{2} \backslash a: z \mapsto f(R z)$ and $i_{R}: S^{1} \rightarrow \mathbb{R}^{2} \backslash a: z \mapsto R z$. If $h(z, t)=t \varphi(z)+(1-t) i_{R}(z)$, then

$$
|h(z, t)|=|R z+t(f(R z)-R z)| \geq R-|f(R z)-r z| \geq R-m>|a|,
$$

and, therefore, h determines a homotopy between φ and i_{R} in $\mathbb{R}^{2} \backslash a$. Since the loop i_{R} is not null-homotopic in $\mathbb{R}^{2} \backslash a$, it follows that φ is also not null-homotopic. By $37.5 x, a=f(R z)$, where $|z|<1$. Thus, the point a belongs to the image of f.
37.8 x .1 The easiest way here would be to check that the corresponding circular loop is not null-homotopic in $\mathbb{R}^{2} \backslash 0$ and to use Theorem $37.5 x$. (Certainly, the latter theorem concerns a disk, and not a square, but the square is homeomorphic to a disk, so that from the topological point of view there is no difference between the pairs $\left(I^{2}, \operatorname{Fr} I^{2}\right)$ and $\left(D^{2}, S^{1}\right)$.) However, in order to help the reader better grasp the main idea of the proof of Theorem $37.5 x$, we also present a solution making no use of the theorem. Assume that $w(x, y) \neq 0$ for all $(x, y) \in I^{2}$. Consider the following paths going along the sides of the square:

$$
s_{1}(\tau)=(1, \tau) ; s_{2}(\tau)=(1-\tau, 1) ; s_{3}(\tau)=(0,1-\tau) ; s_{4}(\tau)=(\tau, 0) .
$$

Clearly, the product $s=s_{1} s_{2} s_{3} s_{4}$ is defined, which is a null-homotopic loop in the square I^{2}. Now we consider the loop $w \circ s$ and show that it is not null-homotopic in the punctured plane $\mathbb{R}^{2} \backslash 0$. Since $w\left(s_{1}(\tau)\right)=u(1)-v(\tau)$, the image of the path $w \circ s_{1}$ lies in the first quadrant. It starts at the point $u(1)-v(0)=(1,0)$ and ends at the point $u(1)-v(1)=(0,1)$. Since the first quadrant is a simply connected set, it follows that the path $w \circ s_{1}$ is homotopic there to any path joining the same points, for example, to the path $\varphi_{1}(t)=e^{\pi i t / 2}$. Similarly, the path $w \circ s_{2}$ lies in the second quadrant and is homotopic there to the path $\varphi_{2}(t)=e^{\pi i(t+1) / 2}$. Thus, the path $w \circ s$ is
homotopic in $\mathbb{R}^{2} \backslash 0$ to the path $\varphi=\varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}: \tau \mapsto e^{2 \pi i \tau}$. Consequently, the class of the loop $w \circ s$ generates $\pi_{1}\left(\mathbb{R}^{2} \backslash(1,0)\right)$, and, in particular, this loop is not null-homotopic. On the other hand, the loop $w \circ s$ is nullhomotopic in $\mathbb{R}^{2} \backslash 0$ by 37.G.4. The contradiction obtained proves that $u(x)-v(y)=w(x, y)=0$ for certain $x \in I$ and $y \in I$ (i.e., the paths u and v intersect).
37.9x For example, consider the sets

$$
\begin{aligned}
& F=\{(1,1)\} \cup([0,1) \times 0) \cup \bigcup_{n=1}^{\infty}\left(\frac{2 n-1}{2 n} \times\left[0, \frac{2 n-1}{2 n}\right]\right) \\
& G=\{(1,0)\} \cup([0,1) \times 1) \cup \bigcup_{n=1}^{\infty}\left(\frac{2 n}{2 n+1} \times\left[\frac{1}{2 n+1}, 1\right]\right) .
\end{aligned}
$$

37.10x No, we cannot. We argue by contradiction. Let $\varepsilon=\rho(F, G)>$ 0 . The result of Problem 14.17 implies that the points $(0,0),(1,1) \in F$ are joined by a path u with image in the $\varepsilon / 2$-neighborhood of F, and the points $(0,1),(1,0) \in G$ are joined by a path v with image in the $\varepsilon / 2$-neighborhood of G. Furthermore, $u(I) \cap v(I)=\varnothing$ by our choice of ε, which contradicts the assertion of Problem 37.8x.
Now we also present another solution to this problem. The result of Problem 14.22x implies that there exists a simple polyline joining $(0,0)$ and $(1,1)$ and disjoint with G. Consider the polygon $K_{0} \ldots K_{n} P Q R$. One of the remaining vertices lies inside the polygon, while the other one lies outside, whence these points cannot belong to a connected set disjoint with the polygon.
37.12x We prove that if x and y are joined by a path that does not intersect the set $u\left(S^{1}\right)$, then $\operatorname{ind}(u, x)=\operatorname{ind}(u, y)$. Indeed, if there exists such a path s, then the formula

$$
h(z, t)=\varphi_{u, s(t)}(z)=\frac{u(z)-s(t)}{|u(z)-s(t)|}
$$

determines a homotopy between $\varphi_{u, x}$ and $\varphi_{u, y}$; we proceed further as in the proof of $37 . L x$. Thus, if $\operatorname{ind}(u, x) \neq \operatorname{ind}(u, y)$, then x and y cannot be joined by a path whose image not meet the set $u\left(S^{1}\right)$.
37.13 x Assume for the simplicity that the disk contains the origin. The formula

$$
h(z, t)=\frac{(1-t) u(z)-x}{|(1-t) u(z)-x|}
$$

shows that $\varphi_{u, x}$ is null-homotopic, whence $\operatorname{ind}(u, x)=0$.
37.14 x (a) $\operatorname{ind}(u, x)=1$ if $|x|<1$, and $\operatorname{ind}(u, x)=0$ if $|x|>1$. (b) $\operatorname{ind}(u, x)=-1$ if $|x|<1$, and $\operatorname{ind}(u, x)=0$ if $|x|>1$. (c) $\{\operatorname{ind}(u, x) \mid x \in$ $\left.\mathbb{R}^{2} \backslash u\left(S^{1}\right)\right\}=\{0,1,-1\}$.
37.15x The lemniscate L splits the plane in three components. Any loop with image L has zero index with respect to any point in the unbounded component. For each pair (k, l) of integers, there is a loop u having index k with respect to points in one bounded component, and having index l with respect to points in the other bounded component.
37.16x See the solution of Problem37.15x.
37.17x We can assume that x is the origin and the ray R is the positive half of the x axis. It is more convenient to consider the loop $u: I \rightarrow S^{1}$, $u(t)=f\left(e^{2 \pi i t}\right) /\left|f\left(e^{2 \pi i t}\right)\right|$. Assume that the set $f^{-1}(R)$ is finite and consists of n points. Consequently, $u^{-1}(1)=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$, and we have $t_{0}=0$ and $t_{n}=1$. The loop u is homotopic to the product of loops $u_{i}, i=1,2, \ldots, n$, each of which has the following property: $u_{i}(t)=1$ only for $t=0,1$. Prove that $\left[u_{i}\right]$ is equal either to zero, or to a generator of $\pi_{1}\left(S^{1}\right)$. Therefore, if the integers k_{i} and $k=\operatorname{ind}(f, x)$, respectively, are the images of $\left[u_{i}\right]$ and $[u]$ under the isomorphism $\pi_{1}\left(S^{1}\right) \rightarrow \mathbb{Z}$, then we have

$$
|k|=\left|k_{1}+k_{2}+\ldots k_{n}\right| \leq\left|k_{1}\right|+\left|k_{2}\right|+\cdots+\left|k_{n}\right| \leq n
$$

because each of the numbers k_{i} is 0 or ± 1.
37.18 x Apply the Borsuk-Ulam Theorem to the function taking each point on the surface of Earth to the pair of numbers (t, p), where t is the temperature at the point and p is the pressure.
38.1 If $\rho_{1}: X \rightarrow A$ and $\rho_{2}: A \rightarrow B$ are retractions, then $\rho_{2} \circ \rho_{1}: X \rightarrow B$ is also a retraction.
38.2 If $\rho_{1}: X \rightarrow A$ and $\rho_{2}: Y \rightarrow B$ are retractions, then so is $\rho_{1} \times \rho_{2}: X \times Y \rightarrow A \times B$.
38.3 Put $f(x)=a$ for $x \leq a, f(x)=x$ for $x \in[a, b]$, and $f(x)=b$ for $x \geq b$ (i.e., $f(x)=\max \{a, \min \{x, b\}\}$). Then $f: \mathbb{R} \rightarrow[a, b]$ is a retraction.
38.4 This follows from 38.6, or, in a more customary way: if $f(x)=x$ for all $x \in(a, b)$, then the continuity of f implies that $f(b)=b$, and, thus, there exists no continuous function on \mathbb{R} with image (a, b).
38.5 The properties that are transferred from topological spaces to their subspaces and (or) to continuous images. For example, the Hausdorff axiom, connectedness, compactness, etc.
38.6 This follows from 15.4.
38.7 Since this space is not path-connected.
38.8 No, it is not. Indeed, the group $\pi_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z}_{2}$ is finite, while the $\operatorname{group} \pi_{1}\left(\mathbb{R} P^{1}\right)=\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ is infinite, and, consequently, the former group admits no epimorphism onto the latter one (there also is no monomorphism in the opposite direction). Therefore, by assertion 38.F, there exists no retraction $\mathbb{R} P^{2} \rightarrow \mathbb{R} P^{1}$.
38.9 Let L be the boundary circle of a Möbius strip M. Clearly, $\pi_{1}(L) \cong \pi_{1}(M) \cong \mathbb{Z}$. However (cf. 34.4), we easily see (verify this!) that the homomorphism i_{*} induced by the inclusion $i: L \rightarrow M$ sends the generator $\alpha \in \pi_{1}(L)$ to the element 2β, where β is the generator of $\pi_{1}(M) \cong \mathbb{Z}$. If there is a retraction $\rho: M \rightarrow L$, then the composition $\rho_{*} \circ i_{*}$ sends the generator $\alpha \in \pi_{1}(L)$ to the element $2 \rho_{*}(\beta) \neq \alpha$, contrary to the fact that the composition is the identical isomorphism of $\pi_{1}(L)$.
38.10 Let L be the boundary circle of a handle K. Clearly, we have $\pi_{1}(L) \cong \mathbb{Z}$, and $\pi_{1}(K)$ is a free group with two generators a and b. Furthermore, it can be checked (do it!) that the inclusion homomorphism $i_{*}: \pi_{1}(L) \rightarrow \pi_{1}(K)$ sends the generator $\alpha \in \pi_{1}(L)$ to the commutator $a b a^{-1} b^{-1}$. Assume the contrary: let $\rho: K \rightarrow L$ be a retraction. Then the composition $\rho_{*} \circ i_{*}$ sends the generator $\alpha \in \pi_{1}(L)$ to the neutral element of $\pi_{1}(L)$ because the element

$$
\rho_{*} \circ i_{*}(\alpha)=\rho_{*}\left(a b a^{-1} b^{-1}\right)=\rho_{*}(a) \rho_{*}(b) \rho_{*}(a)^{-1} \rho_{*}(b)^{-1}
$$

is neutral since the group \mathbb{Z} is Abelian. On the other hand, this composition must coincide with $\mathrm{id}_{\pi_{1}(L)}$. A contradiction.
38.11 The assertion is obvious because each property stated in topological terms is topological. However, the following question is of interest. Let a space X have the fixed point property, and let $h: X \rightarrow Y$ be a homeomorphism. Thus, we know that each continuous map $f: X \rightarrow X$ has a fixed point. How, knowing this, can we prove that an arbitrary continuous map $g: Y \rightarrow Y$ also has a fixed point? Show that one of the fixed points of g is $h(x)$, where x is a fixed point of a certain map $X \rightarrow X$.
38.12 Consider a continuous function $f:[a, b] \rightarrow[a, b]$ and the auxiliary function $g(x)=f(x)-x$. Since $g(a)=f(a)-a \geq 0$ and $g(b)=f(b)-b \leq 0$, there is a point $x \in[a, b]$ such that $g(x)=0$. Thus, $f(x)=x$, i.e., x is a fixed point of f.
38.13 Let $\rho: X \rightarrow A$ be a retraction. Consider an arbitrary continuous $\operatorname{map} f: A \rightarrow A$ and the composition $g=\operatorname{in} \circ f \circ \rho: X \rightarrow X$. Let x be a fixed point of g, whence $x=f(\rho(x))$. Since $\rho(x) \in A$, we also have $x \in A$, so that $\rho(x)=x$, whence $x=f(x)$.
38.14 Denote by ω the point of the bouquet which is the image of the pair $\left\{x_{0}, y_{0}\right\}$ under the factorization map. \Leftrightarrow This follows from 38.13. \Leftrightarrow Consider an arbitrary continuous map $f: X \vee Y \rightarrow X \vee Y$. For the sake of definiteness, assume that $f(\omega) \in X$. Let $i: X \rightarrow X \vee Y$ be the standard inclusion, and let $\rho: X \vee Y \rightarrow X$ be a retraction mapping the entire Y to the point ω. By assumption, the map $\rho \circ f \circ i$ has a fixed point $x \in X$. $\rho(f(i(x)))=x$, so that $\rho(f(x))=x$. If $f(x) \in Y$, then $\rho(f(x))=\omega$, so that $x=\omega$. On the other hand, we assumed that $f(\omega) \in X$, and, consequently,
$f(\omega)=\omega$ is a fixed point of f. Now we assume that $f(x) \in X$. In this case, we have

$$
x=(\rho \circ f \circ i)(x)=\rho(f(x))=f(x),
$$

and, therefore, x is a fixed point of f.
38.15 Since the segment has the fixed point property (see 38.12), hence, by 38.14 , reasoning by induction, we see that each finite tree has this property. An arbitrary infinite tree does not necessarily have this property; an example is the real line. However, try to state an additional assumption under which an infinite tree also has the fixed point property.
38.16 For example, a parallel translation has no fixed points.
38.17 For example, the antipodal map $x \mapsto-x$ has no fixed points.
38.18 Let $n=2 k-1$. For example, the map

$$
\left(x_{1}: x_{2}: \cdots: x_{2 k-1}: x_{2 k}\right) \mapsto\left(-x_{2}: x_{1}: \cdots:-x_{2 k}: x_{2 k-1}\right)
$$

has no fixed points.
38.19 Let $n=2 k-1$. For example, the map

$$
\left(z_{1}: z_{2}: \cdots: z_{2 k-1}: z_{2 k}\right) \mapsto\left(-\bar{z}_{2}: \bar{z}_{1}: \cdots:-\bar{z}_{2 k}: \bar{z}_{2 k-1}\right)
$$

has no fixed points.
39.1 The map $f:[0,1] \rightarrow\{0\}$ is a homotopy equivalence; the corresponding homotopically inverse map is, for example, the inclusion $i:\{0\} \rightarrow$ $[0,1]$. The composition $i \circ f$ is homotopic to id_{I} because any two continuous maps $I \rightarrow I$ are homotopic, and the composition $f \circ i:\{0\} \rightarrow\{0\}$ is the identity map itself. Certainly, f is not a homeomorphism.
39.2 Let X and Y be two homotopy equivalent spaces and denote by $\pi_{0}(X)$ and $\pi_{0}(Y)$ the sets of path-connected components of X and Y, respectively. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two mutually inverse homotopy equivalences. Since f is a continuous map, it maps pathconnected sets to path-connected ones. Consequently, f and g induce maps $\widehat{f}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$ and $\widehat{g}: \pi_{0}(Y) \rightarrow \pi_{0}(X)$. Since the composition $g \circ f$ is homotopic to id ${ }_{X}$, it follows that each point $x \in X$ lies in the same pathconnected component as the point $g(f(x))$. Consequently, the composition $\widehat{g} \circ \hat{f}$ is the identity map. Similarly, $\widehat{f} \circ \widehat{g}$ is also identical. Consequently, \widehat{f} and \hat{g} are mutually inverse maps; in particular, the sets $\pi_{0}(X)$ and $\pi_{0}(Y)$ have equal cardinalities.
39.3 The proof is similar to that of 39.2.
39.4 For example, consider: a point, a segment, a bouquet of n segments with $n \geq 3$.
39.5 We prove that the midline L of the Möbius strip M (i.e., the image of the segment $I \times \frac{1}{2}$ under factorization $\left.I \times I \rightarrow M\right)$ is a strong
deformation retract of M. The geometric argument is obvious: we define h_{t} as the contraction of M towards L with ratio $1-t$. Thus, h_{0} is identical, while h_{1} maps M to L. Now we present the corresponding formulas. Since M is a quotient space of the square, first, consider the homotopy

$$
H: I \times I \times I \rightarrow I \times I:(u, v, t) \mapsto\left(u,(1-t) v+\frac{t}{2}\right) .
$$

Furthermore, we have $H(u, 1 / 2, t)=(u, 1 / 2)$ for all $t \in I$. Since $(1-t) v+$ $t / 2+(1-t)(1-v)+t / 2=1$, it follows that this homotopy is compatible with the factorization and thus induces a homotopy $h: M \times I \rightarrow M$. We have $H(u, v, 0)=(u, v)$, whence $h_{0}=\operatorname{id}_{M}$ and $H_{1}(u, v)=(u, 1 / 2)$.
39.6 The letters $E, F, G, H, I, J, K, L, M, N, S, T, U, V, W, X, Y, Z$ are homotopy equivalent to a point; A, O, P, Q, R are homotopy equivalent to a circle; finally, B is homotopy equivalent to a bouquet of two circles.
39.7 This can be proved in various ways. For example, we can produce circles lying in the handle \mathcal{H} whose union is a strong deformation retract of \mathcal{H}. For this purpose, we present the handle as a result of factorizing the annulus $A=\left\{z|1 / 2 \leq|z| \leq 1\}\right.$ by the following relation: $e^{i \varphi} \sim-e^{-i \varphi}$ for $\varphi \in[-\pi / 4, \pi / 4]$, and $e^{i \varphi} \sim e^{-i \varphi}$ for $\varphi \in[\pi / 4,3 \pi / 4]$. The image of the standard unit circle under the factorization by the above equivalence relation is the required bouquet of two circles lying in of the handle. The formula $H(z, t)=(1-t) z+t z /|z|$ determines a homotopy between the identity map of A and the map $z \mapsto z /|z|$ of A onto the outer rim of A, and $H(z, t)=z$ for all $z \in S^{1}$ and $t \in I$. The quotient map of H is the required homotopy.
39.8 This follows from 39.7 and 39.I.
39.9 Embed each of these spaces in $\mathbb{R}^{3} \backslash S^{1}$ so that the image of the embedding be a deformation retract of $\mathbb{R}^{3} \backslash S^{1}$. We present one more space homotopy equivalent to our two spaces: the union X of S^{2} with one of the diameters. This X can also be embedded in $\mathbb{R}^{3} \backslash S^{1}$ as a deformation retract.
39.10 Put $A=\left\{\left(z_{1}, z_{2}\right) \mid 4 z_{2}=z_{1}^{2}\right\} \subset \mathbb{C}^{2}$. Consider the map f : $\mathbb{C} \times(\mathbb{C} \backslash 0) \rightarrow \mathbb{C}^{2} \backslash A:\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, z_{2}+z_{1}^{2} / 4\right)$. Verify that f is a homeomorphism and $\mathbb{C}^{2} \backslash A \simeq \mathbb{C} \times(\mathbb{C} \backslash 0) \simeq S^{1}$. Furthermore, the circle can be embedded in $\mathbb{C} \backslash A$ as a deformation retract.
39.11 We prove that $O(n)$ is a deformation retract of $G L(n, \mathbb{R})$. Let $\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{n}\right)$ be the collection of columns of a matrix $A \in G L(n, \mathbb{R})$, each of which is regarded as an element of \mathbb{R}^{n}. Let $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)$ be the result of the Gram-Schmidt orthogonalization procedure. Thus, the columns formed by the coordinates of these vectors constitute an orthogonal matrix. The
vectors \mathbf{e}_{k} are expressed in terms of the vectors \mathbf{f}_{k} by the formulas

$$
\begin{aligned}
& \mathbf{e}_{1}=\lambda_{11} \mathbf{f}_{1}, \\
& \mathbf{e}_{2}=\lambda_{21} \mathbf{f}_{1}+\lambda_{22} \mathbf{f}_{2}, \\
& \vdots \\
& \mathbf{e}_{n}=\lambda_{n 1} \mathbf{f}_{1}+\lambda_{n 2} \mathbf{f}_{2}+\cdots+\lambda_{n n} \mathbf{f}_{n},
\end{aligned}
$$

where $\lambda_{k k}>0$ for all $k=1,2, \ldots, n$.
We introduce the vectors

$$
\mathbf{w}_{k}(t)=t\left(\lambda_{n 1} \mathbf{f}_{1}+\lambda_{n 2} \mathbf{f}_{2}+\cdots+\lambda_{k k-1} \mathbf{f}_{k-1}\right)+\left(t \lambda_{k k}+1-t\right) \mathbf{f}_{k}
$$

and consider the matrix $h(A, t)$ with columns consisting of the coordinates of these vectors. Clearly, the correspondence $(A, t) \mapsto h(A, t)$ determines a continuous map $G L(n, \mathbb{R}) \times I \rightarrow G L(n, \mathbb{R})$. We easily see that $h(A, 0)=A$, $h(A, 1) \in O(n)$, and $h(B, t)=B$ for all $B \in O(n)$. Thus, the map $A \mapsto$ $h(A, 1)$ is the required deformation retraction.
39.13 Use, e.g., 20.43.
39.14 We need the notion of the cylinder Z_{f} of a continuous map $f: X \rightarrow Y$. By definition, Z_{f} is obtained by attaching the ordinary cylinder $X \times I$ to Y via the map $X \times 0 \rightarrow Y:(x, 0) \mapsto f(x)$. Hence, Z_{f} is a result of factorization of the disjoint union $(X \times I) \sqcup Y$, under which the point $(x, 0) \in X \times 0$ is identified with the point $f(x) \in Y$. We identify X and $X \times 1 \subset Z_{f}$, and it is also natural to assume that the space Y lies in the mapping cylinder. There is an obvious strong deformation retraction $p_{Y}: Z_{f} \rightarrow Y$, which leaves Y fixed and sends the point $(x, t) \in X \times(0,1)$ to $f(x)$. It remains to prove that if f is a homotopy equivalence, then X is also a deformation retract of Z_{f}. Let $g: Y \rightarrow X$ be a homotopy equivalence inverse to f. Thus, there exists a homotopy $H: X \times I \rightarrow X$ such that $H(x, 0)=g(f(x))$ and $H(x, 1)=x$. We define the retraction $\rho: Z_{f} \rightarrow X$ as a quotient map of the map $(X \times I) \sqcup Y \rightarrow X:(x, t) \mapsto h(x, t), y \mapsto g(y)$. It remains to prove that the map ρ is a deformation retraction, i.e., to verify that $\operatorname{in}_{X} \circ \rho$ is homotopic to $\operatorname{id}_{Z_{f}}$. This follows from the chain below, where the \sim sign denotes a homotopy between compositions of homotopic maps:

$$
\begin{aligned}
& \operatorname{in}_{X} \circ \rho=\bar{\rho}=\bar{\rho} \circ \operatorname{id}_{Z_{f}} \sim \bar{\rho} \circ p_{Y}=g \circ p_{Y}=\operatorname{id}_{Z_{f}} \circ\left(g \circ p_{Y}\right) \sim \\
& \sim p_{Y} \circ\left(g \circ p_{Y}\right)=\left(p_{Y} \circ g\right) \circ p_{Y}=(f \circ g) \circ p_{Y} \sim \operatorname{id}_{Y} \circ p_{Y}=p_{Y} \sim \operatorname{idd}_{Z_{f}} .
\end{aligned}
$$

39.15 Use rectilinear homotopies.
39.16 Let $h: X \times I \rightarrow X$ be a homotopy between id $_{X}$ and the constant map $x \mapsto x_{0}$. The formula $u_{x}(t)=h(x, t)$ determines a path joining (an arbitrary) point x in X with x_{0}. Consequently, X is path-connected.
39.17 Assertions (a)-(d) are obviously pairwise equivalent. We prove that they are also equivalent to assertions (e) and (f).
(a) $\Longrightarrow(\mathrm{e})$: Let $h: X \times I \rightarrow X$ be a homotopy between id_{X} and a constant map. For each continuous map $f: Y \rightarrow X$, the formula $H=h \circ\left(f \times \operatorname{id}_{I}\right)$ (or, in a different way: $H(y, t)=h(f(y), t)$) determines a homotopy between f and a constant map.
$(\mathrm{e}) \Longrightarrow(\mathrm{a})$: Put $Y=X$ and $f=\operatorname{id}_{X}$.
$(\mathrm{a}) \Longrightarrow(\mathrm{f}):$ Let h be the same as before. The formula $H=f \circ h$ determines a homotopy between $f: X \rightarrow Y$ and a constant map. $(\mathrm{f}) \Longrightarrow(\mathrm{a})$: Put $Y=X$ and $f=\operatorname{id}_{X}$.
39.18 Assertion (b) is true; assertion (a) holds true iff Y is pathconnected.
39.19 Each of the spaces (a)-(e) is contractible.
$39.20 \Leftrightarrow$ Let H be a homotopy between $\operatorname{id}_{X \times Y}$ and a constant $\operatorname{map}(x, y) \mapsto\left(x_{0}, y_{0}\right)$. Then $X \times I:(x, t) \mapsto \operatorname{pr}_{X}\left(H\left(x, y_{0}, t\right)\right)$ is a homotopy between id_{X} and the constant map $x \mapsto x_{0}$. The contractibility of Y is proved in a similar way.
\Leftrightarrow Assume that X and Y are contractible, h is a homotopy between id_{X} and the constant map $x \mapsto x_{0}$, and g is a homotopy between id_{Y} and the constant map $y \mapsto y_{0}$. The formula $H(x, y, t)=(h(x, t), g(y, t))$ determines a homotopy between $\operatorname{id}_{X \times Y}$ and the constant map $\left.(x, y) \mapsto\left(x_{0}\right), y_{0}\right)$.
39.21 (a) Since $X=\mathbb{R}^{3} \backslash \mathbb{R}^{1} \cong\left(\mathbb{R}^{2} \backslash 0\right) \times \mathbb{R}^{1} \simeq S^{1}$, we have $\pi_{1}(X) \cong \mathbb{Z}$. (b) Clearly, $X=\mathbb{R}^{N} \backslash \mathbb{R}^{n} \cong\left(\mathbb{R}^{N-n} \backslash 0\right) \times \mathbb{R}^{n} \simeq S^{N-n-1}$. Consequently, if $N=n+1$, then $X \simeq S^{0}$; if $N=n+2$, then $X \simeq S^{1}$, whence $\pi_{1}(X) \cong \mathbb{Z}$; if $N>n+2$, then X is simply connected.
(c) Since $S^{3} \backslash S^{1} \cong \mathbb{R}^{2} \times S^{1}$, we have $\pi_{1}\left(S^{3} \backslash S^{1}\right) \cong \mathbb{Z}$.
(d) If $N=n+1$, then $X=\mathbb{R}^{N} \backslash S^{N-1}$ has two components, one of which is an open N-ball, and hence is contractible, while the second one is homotopy equivalent to S^{N-1}. If $N>n+1$, then X is homotopy equivalent to the bouquet $S^{N-1} \vee S^{N-n-1}$. Consequently, for $N=2$ and $n=0 \pi_{1}(X)$ is a free group with two generators; for $N>2$ or $N=n+2$, we obtain the group \mathbb{Z}; in all remaining cases, X is simply connected.
(e) $\mathbb{R}^{3} \backslash S^{1}$ admits a deformation retraction to a sphere with two points identified, which is homotopy equivalent to the bouquet $X=S^{1} \vee S^{2}$ by 39.9. The universal covering of X is the real line \mathbb{R}^{1}, to which at all of the integer points 2 -spheres are attached (a "garland"). Therefore, we have $\pi_{1}\left(\mathbb{R}^{3} \backslash\right.$ $\left.S^{1}\right) \cong \pi_{1}(X) \cong \mathbb{Z}$.
(f) If $N=k+1$, then $S^{N} \backslash S^{N-1}$ is homeomorphic to the union of two open N-balls, so that each of its two components is simply connected. Certainly, this fact is a consequence from the following general result: $S^{N} \backslash S^{k} \cong$ $S^{N-k-1} \times \mathbb{R}^{k+1}$, whence $\pi_{1}\left(S^{N} \backslash S^{k}\right) \cong \mathbb{Z}$ for $N=k+2$ and this group is trivial in other cases.
(g) It can be shown that $\mathbb{R} P^{3} \backslash \mathbb{R} P^{1} \cong \mathbb{R}^{2} \times S^{1}$, but it is easier to show that
this space admits a deformation retraction to S^{1}. In both cases, it is clear that $\pi_{1}\left(\mathbb{R} P^{3} \backslash \mathbb{R} P^{1}\right) \cong \mathbb{Z}$.
(h) Since a handle is homotopy equivalent to a bouquet of two circles, it has free fundamental group with two generators.
(i) The midline (the core circle) of the Möbius strip M is a deformation retract of M, and, therefore, the fundamental group of M is isomorphic to \mathbb{Z}.
(j) The sphere with s holes is homotopy equivalent to a bouquet of $s-1$ circles and so has free fundamental group with $s-1$ generators (which, certainly, is trivial for $s=1$).
(k) The punctured Klein bottle is homotopy equivalent to a bouquet of two circles, and so has free fundamental group with two generators.
(l) The punctured Möbius strip is homotopy equivalent to the letter θ, which, in turn, is homotopy equivalent to a bouquet of two circles. The Möbius strip with s punctures is homotopy equivalent to a bouquet of $s+1$ circles and thus has free fundamental group with $s+1$ generators.
39.22 Let K be the boundary circle of a Möbius strip M, L the midline of M, and T a solid torus whose boundary contains K. Consider the embeddings $i: K \rightarrow T \backslash S$ and $j: T \backslash S \rightarrow \mathbb{R}^{3} \backslash S$. Since $T \backslash S \cong\left(D^{2} \backslash 0\right) \times S^{1}$, we have $\pi_{1}(T \backslash S) \cong \mathbb{Z} \oplus \mathbb{Z}$. Denote by a and b the generators of the group $\pi_{1}(T \backslash S)$. Let α be the generator of $\pi_{1} K \cong \mathbb{Z}$, then $i_{*}(\alpha)=a+2 b$. Furthermore, $j_{*}(a)$ is a generator of $\pi_{1}\left(\mathbb{R}^{3} \backslash S\right)$, and $j_{*}(b)=0$. Therefore, $j_{*}\left(i_{*}(\alpha)\right) \neq 0$. If there existed a disk D spanning K and having no other common points with M, then we would have $D \subset \mathbb{R}^{3} \backslash S$. Consequently, K would determine a null-homotopic loop in $\mathbb{R}^{3} \backslash S$. However, $j_{*}\left(i_{*}(\alpha)\right) \neq 0$.
39.23 1) Using the notation introduced in 39.10 , consider the map

$$
Q \rightarrow(\mathbb{C} \backslash 0) \times\left(\mathbb{C}^{2} \backslash A\right) \simeq S^{1} \times S^{1}:(a, b, c) \mapsto\left(a, \frac{b}{a}, \frac{c}{a}\right)
$$

This is a homeomorphism. Therefore, the fundamental group of Q is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
2) The result of Problem 39.10 implies that Q_{1} is homotopy equivalent to the circle, and, consequently, has fundamental group isomorphic to \mathbb{Z}.
40.1 This follows from 40.H since the group $p_{*}\left(\pi_{1}\left(X, x_{0}\right)\right)$ of the universal covering is trivial, and, therefore, its index is equal to the order of the fundamental group $\pi_{1}\left(B, b_{0}\right)$ of the base of the covering.
40.2 This follows from 40.H because a group having a subgroup of nonzero index is obviously nontrivial.
40.3 All even positive integers. It can be proved that each of the boundary circles of the cylinder is mapped onto the boundary S of the Möbius strip M. Let α be the generator of the group $\pi_{1}\left(S^{1} \times I\right)$. Then $p_{*}(1)=b^{k}$, where the element $b \in \pi_{1}(M)$ is the image of the generator
of $\pi_{1}(S)$ under the homomorphism induced by the embedding $S \rightarrow M$. It remains to observe that $b=a^{2}$, where a is the generator of the group $\pi_{1}(M) \cong \mathbb{Z}$. Thus, $p_{*}(\alpha)=a^{2 k}$, and, consequently, the index of $p_{*}\left(\pi_{1}\left(S^{1} \times\right.\right.$ $I)$) is an even positive integer. We easily see that there are coverings with an arbitrary even number of sheets (see 34.4).
40.4 All odd positive integers, see 41.10x.
40.5 All even positive numbers, see 41.10x.
40.6 All positive integers, see 41.10x.
40.7 If the base of the covering is compact, while the covering space is not, then the covering is infinite sheeted by 34.24.
40.8 See the hint to Problem 40.7.
40.9 The class of the identity map.
41.1x For example, consider the union of the standard unit segments on the x and y axes and of the segments $I_{n}=\{(\nVdash / n, y) \mid y \in I\}, n \in \mathbb{N}$ (the "hair comb").
41.4 x This is obvious because the group $\pi_{1}(X, a)$ is trivial, and we can put $U=X$.
41.5x Consider the circle.
41.6x Let V be the smallest neighborhood of a. Therefore, the topology on V is indiscrete. Let $h_{t}(x)=x$ for $t<1$, and let $h_{1}(x)=a$. Prove that $h: V \times I \rightarrow V$ is a homotopy.
41.7x This is true because if U and V are the neighborhood of a point a which are involved in the definition local contractibility, then the inclusion homomorphism $\pi_{1}(V, a) \rightarrow \pi_{1}(U, a)$ is trivial.
41.8x For example, $D^{2} \backslash\{(1 / n, 0) \mid n \in \mathbb{N}\}$ is such a space (consider the point $(0,0))$.
41.9x Consider the cone over the space of Problem 41.8x.
41.10x By Theorem 41.Fx, it suffices to describe the hierarchy of the classes of conjugate subgroups in the fundamental group of the base and present coverings with a given subgroup. In all examples except (e), the fundamental group of the space in question (the base) is Abelian. Therefore, it is sufficient to list all subgroups of the fundamental group and to determine their order with respect to the inclusion. In each case, all coverings are subordinated to the universal covering, and the trivial covering is subordinated to all coverings.
(a) The universal covering is the map $p: \mathbb{R} \rightarrow S^{1}$. The covering $p_{k}: S^{1} \rightarrow$ $S^{1}: z \mapsto z^{k}$, where $k \in \mathbb{N}$, is subordinated to the covering p_{l} iff k divides l. and the subordination is the covering $p_{l / k}$.
(b) Since $\mathbb{R}^{2} \backslash 0 \cong S^{1} \times \mathbb{R}$, the answer is similar to the preceding one.
(c) If M is a Möbius strip, then $\pi_{1}(M) \cong \mathbb{Z}$. Thus, as in the first example, all subgroups of the fundamental group of the base have the form $k \mathbb{Z}$. The difference is as follows: if k is odd, then the covering space is the Möbius strip, while if k is even, then the covering space is the cylinder $S^{1} \times I$.
(d) The universal covering was constructed in the solution of Problem 36.7. Since the fundamental group of this space is isomorphic to \mathbb{Z}, it is sufficient to present coverings with group $k \mathbb{Z} \subset \mathbb{Z}$. Construct them on your own. In contrast to example (a), the total spaces are not homeomorphic because each of them has its own number of points.
(e) The universal covering of the torus is the map $p: \mathbb{R}^{1} \times \mathbb{R}^{1} \rightarrow S^{1} \times S^{1}$: $(x, y) \mapsto\left(e^{2 \pi i x}, e^{2 \pi i y}\right)$. An example of a covering with group $k \mathbb{Z} \oplus l \mathbb{Z}$ is the following map of the torus to itself:

$$
p_{k} \times p_{l}: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}:(z, w) \mapsto\left(z^{k}, w^{l}\right) .
$$

More generally, for each integer matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we can consider the covering $p_{A}: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}:(z, w) \mapsto\left(z^{a} w^{b}, z^{c} w^{d}\right)$, the group of which is the lattice $L \subset \mathbb{Z} \oplus \mathbb{Z}$ with basis vectors $\mathbf{a}(a, c)$ and $\mathbf{b}(b, d)$. The covering p_{A} is subordinated to the covering $p_{A^{\prime}}$ determined by the matrix $A^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ if the lattice L^{\prime} with basis vectors $\mathbf{a}^{\prime}\left(a^{\prime}, c^{\prime}\right)$ and $\mathbf{b}^{\prime}\left(b^{\prime}, d^{\prime}\right)$ is contained in the lattice L. In this case, the bases $\{\mathbf{a}, \mathbf{b}\}$ in L and $\left\{\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right\}$ in L^{\prime} can be chosen to be coordinated, i.e., so that $\mathbf{a}^{\prime}=k \mathbf{a}$ and $\mathbf{b}^{\prime}=l \mathbf{b}$ for certain $k, l \in \mathbb{N}$. The subordination here is the covering $p_{k} \times p_{l}$. Infinite-sheeted coverings are described up to equivalence by cyclic subgroups in $\mathbb{Z} \times \mathbb{Z}$, i.e., by the cyclic vectors $\mathbf{a}(a, c) \in \mathbb{Z} \times \mathbb{Z}$. Every such a vector determines the map $p_{\mathrm{a}}: S^{1} \times \mathbb{R} \rightarrow S^{1} \times S^{1}:(z, t) \mapsto\left(z^{a} e^{2 \pi i t}, z^{b}\right)$. The covering $p_{\mathbf{a}}$ is subordinated to the covering $p_{\mathbf{b}}$ if $\mathbf{b}=k \mathbf{a}, k \in \mathbb{Z}$. In this case, the subordination has the form $S^{1} \times \mathbb{R} \rightarrow S^{1} \times \mathbb{R}:(z, t) \mapsto\left(z^{k}, t\right)$. Description of subordinations between finite-sheeted and infinite-sheeted coverings is left to the reader as an exercise.
41.11x See the figure.

41.12x Indeed, any subgroup of an Abelian group is normal. We can also verify directly that for each loop $s: I \rightarrow B$ either each path in X
covering s is a loop (independently of the starting point), or none of these paths is a loop.
41.13x This is true because any subgroup of index two is normal.
41.15x See the example constructed in the solution to Problem 41.11x.
41.16x This follows from assertion 41.Px, (d).
42.3 The cellular partition of Z is obvious: if e^{m} is an open cell in X and e^{n} is an open cell in Y, then $e^{m} \times e^{n}$ is an open cell in Z because $B^{m} \times B^{n} \cong$ B^{m+n}. Thus, the n-skeleton of Z is formed by pairwise products of all cells in X and Y with sums of dimensions at most n. Now we must describe the attaching maps of the corresponding closed cells. In order to construct the cellular space X, we start with a discrete topological space X_{0}, and then for each $m \in \mathbb{N}$ we construct the space X_{m} by attaching to X_{m-1} the disjoint union of m-disks $D_{X, \alpha}^{m}$ via an attaching map $\bigsqcup_{\alpha} S_{X, \alpha}^{m-1} \rightarrow X_{m-1}$. Clearly, X is a result of a simultaneous factorization of the disjoint union $\bigsqcup_{m, \alpha} D_{X, \alpha}^{m}$ by a certain single identification. The same is true for Y. Since in the present case the operations of factorization and multiplication of topological spaces commute (see 25.Tx), the product $X \times Y$ is homeomorphic to the result of factorizing the disjoint union

$$
\bigsqcup_{\substack{m, \alpha \\ n, \beta}} D_{X, \alpha}^{m} \times D_{Y, \beta}^{n}
$$

of pairwise products of disks involved in the construction of X and Y. It remains to observe that this factorization, in turn, can be performed "by skeletons", starting with a discrete topological space $Z_{0}=\bigsqcup\left(D_{X, \alpha}^{0} \times D_{Y, \beta}^{0}\right)$. Attaching to $Z_{0} 1$-cells of the form $D_{X, \alpha}^{1} \times D_{Y, \beta}^{0}$ and $D_{X, \alpha}^{0} \times D_{Y, \beta}^{1}$, we obtain the 1 -skeleton Z_{1}, etc. In dimensions grater than 1 , description of the attaching maps can cause difficulties. Consider a cell of the form $e^{m} \times e^{n}$. Its characteristic map $D^{m} \times D^{n} \rightarrow X \times Y$ is simply the product of the characteristic maps of the cells e^{m} and e^{n}, which maps the image of the boundary sphere of the "disk" $D^{m} \times D^{n}$ to the skeleton Z_{n+m-1}, which is already constructed. We have thus defined the attaching map $\omega: S^{n+m-1} \rightarrow Z_{n+m-1}$. We can also give an explicit description of ω. To do this, we need the standard homeomorphism $\kappa: D^{m+n} \rightarrow D^{m} \times D^{n}$ with $\kappa\left(S^{m+n-1}\right)=\left(S^{m-1} \times D^{n}\right) \cup\left(D^{m} \times S^{n-1}\right)$. Let $\varphi_{1}: S^{m-1} \rightarrow X_{m-1}$ and $\varphi_{2}: S^{n-1} \rightarrow Y_{n-1}$ be the attaching maps of the cells e^{m} and e^{n}. Then ω can be described as a composition

$$
\begin{aligned}
& S^{m+n-1} \rightarrow\left(D^{m} \times S^{n-1}\right) \cup\left(S^{m-1} \times D^{n}\right) \rightarrow \\
& \quad \rightarrow\left[\left(X_{m-1} \cup_{\varphi_{1}} D^{m}\right) \times Y_{n-1}\right] \cup\left[X_{m-1} \times\left(Y_{n-1} \cup_{\varphi_{2}} D^{n}\right)\right] \hookrightarrow Z_{m+n-1},
\end{aligned}
$$

where the first map is a submap of the homeomorphism κ, the second one is the obvious map defined on each part as the product of the characteristic and the attaching map, and the third one is an inclusion.
42.4 No, it does not. Show that the product topology on the product of two copies of the cellular space of Problem 42.9 is not cellular.
42.5 Actually, when solving Problem $42 . H$, we used, firstly, the presentation $\mathbb{R} P^{n}=\bigcup_{k=0}^{n} \mathbb{R} P^{k}$, and, secondly, the fact that $\mathbb{R} P^{k} \backslash \mathbb{R} P^{k-1}$ is an open k-cell. Use the presentation $\mathbb{C} P^{n}=\bigcup_{k=0}^{n} \mathbb{C} P^{k}$. Prove that for all integer $k \geq 0$ the difference $\mathbb{C} P^{k} \backslash \mathbb{C} P^{k-1} \cong B^{2 k}$. Furthermore, it is clear that the attaching map $S^{2 k-1} \rightarrow \mathbb{C} P^{k-1}$ is the factorization map.
42.6 (a) Delete from the square a set homeomorphic to the open disk and bounded by a curve starting and ending at a certain vertex of the square I^{2}. The rest splits into 10 cells, and the quotient space of the complement splits into 5 cells and is homeomorphic to a handle.
(b) The Möbius strip is the quotient space of the square, which has a cellular partition consisting of 9 cells. After factorization, we obtain a partition of the Möbius strip consisting of 6 cells.
(c) As well as the space in the preceding item, $S^{1} \times I$ is a quotient space of the square. Another solution can be extracted from 42.3.
(d)-(e) See 42.12.
42.7 (a) 4 cells: present the Möbius strip as a result of factorization of a triangle under which all three vertices are identified into one. Show that one 1 -cell is insufficient.
(b) $2 p+2$ cells; (c) $q+2$ cells. See 42.12. In order to show that this number of cells is the smallest possible, use the computation of the fundamental groups of the above spaces, see $46^{\prime} 5$.
42.8 We need at least three cells: a 0-cell, a 1-cell, and one more cell.
42.9 See 21.6.
42.11 Notice that since any two points in \mathbb{R}^{∞} lie in a certain subspace \mathbb{R}^{N}, the distance between them is easy to define. Thus, we have a metric on \mathbb{R}^{∞}, but it generates on \mathbb{R}^{∞} a wrong topology. To show that the topology on \mathbb{R}^{∞} is not generated by any metric, use the fact that \mathbb{R}^{∞} is not first countable (prove this).
42.12 We prove several assertions in this list.
(a) The word $a a^{-1}$ describes the quotient space of D^{2} by the partition into pairs of points of S^{1} that are symmetric with respect to one of the diameters. This quotient space is homeomorphic to S^{2}. The cellular partition has two 0 -cells, a 1-cell, and a 2-cell.
(b) The word aa describes the quotient space of D^{2} by the partition into pairs of centrally symmetric points of the circle (and singletons formed by
the remaining points). It is homeomorphic to the projective plane. The cellular partition has three cells: a 0 -cell, a 1 -cell, and a 2 -cell.
(g) Consider the p-gon P with vertices at the common endpoints of the pairs of edges marked by a_{1} and b_{p}^{-1}, a_{2} and $b_{1}^{-1}, \ldots, a_{p}$ and b_{p-1}^{-1}, and cut the initial $4 p$-gon along the sides of P. Factorizing P, we obtain a sphere with p holes. Factorizing the remaining pentagons, we obtain p handles.
42.13 For example, consider the so-called complete 5 -graph K_{5}, i.e., the space with 5 vertices pairwise joined by edges. To prove that it cannot be embedded in \mathbb{R}^{2}, use the Euler Theorem 45.3.
44.1x Let $\psi: D^{n} \rightarrow X$ be the characteristic map of the attached cell, and let $i: A \rightarrow X$ be the inclusion. We can assume that $x=\psi(0)$, where 0 is the center of D^{n}. We introduce the map

$$
g: X \backslash x \rightarrow A: g(z)=\left\{\begin{array}{cl}
z & \text { if } z \in A, \\
\varphi\left(\psi^{-1}(z) /\left|\psi^{-1}(z)\right|\right) & \text { if } z \notin A .
\end{array}\right.
$$

We prove that the maps $\operatorname{id}_{X \backslash x}$ and $i \circ g$ are A-homotopic. Consider the rectilinear homotopy $\widetilde{h}:\left(D^{n} \backslash x\right) \times I \rightarrow D^{n} \backslash x$ between the identity map and the projection $\rho: D^{n} \backslash x \rightarrow D^{n} \backslash x: z \mapsto z /|z|$. We define the homotopy

$$
h:\left(A \sqcup\left(D^{n} \backslash x\right)\right) \times I \rightarrow A \sqcup\left(D^{n} \backslash x\right)
$$

by letting

$$
h(z, t)=\left\{\begin{array}{cl}
z & \text { if } z \in A \\
\widetilde{h}(z, t) & \text { if } z \in D^{n}
\end{array}\right.
$$

The quotient map $H:(X \backslash x) \times I \rightarrow X \backslash x$ of h is the required A-homotopy between $\operatorname{id}_{X \backslash A}$ and $i \circ g$.
44.2x This follows from 44.1× because closed n-cells together with X_{n-1} constitute a fundamental cover of X.
44.3x The assertion on $\mathbb{R} P^{n}$ follows from 44.1x because $\mathbb{R} P^{n}$ is a result of attaching an n-cell to $\mathbb{R} P^{n-1}$, see 42.H. The assertion about $\mathbb{C} P^{n}$ is proved in a similar way; see 42.5. On the other hand, try to find explicit formulas for deformation retractions $\mathbb{R} P^{n} \backslash$ point $\rightarrow \mathbb{R} P^{n-1}$ and $\mathbb{C} P^{n} \backslash$ point $\rightarrow \mathbb{C} P^{n-1}$.
44.4x Consider a cellular partition of the solid torus that has one 3cell and 2 -skeleton homeomorphic to a torus with a disk attached along the meridian $S^{1} \times 1$, and apply assertion 44.1x.
44.5x Let $e_{\varphi}: D^{n+1} \rightarrow X_{\varphi}$ and $e_{\psi}: D^{n+1} \rightarrow X_{\psi}$ be the characteristic maps of the $(n+1)$-cell attached to Y. Let $h: S^{n} \times I \rightarrow Y$ be a homotopy joining φ and ψ. Consider the maps $f^{\prime}: Y \sqcup D^{n+1} \rightarrow X_{\varphi}$ and $g^{\prime}: Y \sqcup D^{n+1} \rightarrow$ X_{ψ} that are the standard embeddings on Y, and are defined on the disks
D^{n+1} by the formulas

$$
\begin{aligned}
f^{\prime}(x) & = \begin{cases}e_{\psi}(2 x) & \text { for }|x| \leq 1 / 2, \\
h\left(\frac{x}{|x|}, 2(1-|x|)\right) & \text { for } 1 / 2 \leq|x| \leq 1,\end{cases} \\
g^{\prime}(x) & = \begin{cases}e_{\varphi}(2 x) & \text { for }|x| \leq 1 / 2, \\
h\left(\frac{x}{|x|}, 2|x|-1\right) & \text { for } 1 / 2 \leq|x| \leq 1 .\end{cases}
\end{aligned}
$$

We easily see that the quotient maps $f: X_{\varphi} \rightarrow X_{\psi}$ and $g: X_{\psi} \rightarrow X_{\varphi}$ of f^{\prime} and g^{\prime} are defined. Show that f and g are mutually inverse homotopy equivalences.
44.6x Slightly modify the argument used in the solution to Problem 44.5x.
44.7x Let A be the space obtained by attaching a disk to the circle via the map $\alpha: S^{1} \rightarrow S^{1}: z \mapsto z^{2}$. Then we have $A \cong \mathbb{R} P^{2}$, whence $\pi_{1}(A) \cong \mathbb{Z}_{2}$. Consequently, the map $\varphi: S^{1} \rightarrow A: z \mapsto z^{3}$ is homotopic to $\psi=\mathrm{id}_{S^{1}}$. By 44.5x, X is homotopy equivalent to the space $A \cup_{\psi} D^{2}$, which coincides with $D^{2} \cup_{\alpha} D^{2}$. Since the map $\alpha: S^{1} \rightarrow D^{2}$ is null-homotopic, it follows (also by $44.5 x$) that X is homotopy equivalent to the bouquet $D^{2} \vee S^{2}$, which is homotopy equivalent to S^{2} :

$$
X \simeq A \cup_{\psi} D^{2} \simeq D^{2} \cup_{\alpha} D^{2} \simeq D^{2} \vee S^{2} \simeq S^{2} .
$$

The sphere has a partition consisting of two cells, which, obviously, is the smallest possible number of cells.
44.9 x The torus $S^{1} \times S^{1}$ is obtained from the bouquet $S^{1} \vee S^{1}$ by attaching a 2 -cell via a certain map $\varphi: S^{1} \rightarrow S^{1} \vee S^{1}$. We let $i: S^{1} \vee S^{1} \rightarrow$ $A=\left(1 \times S^{1}\right) \cup\left(D^{2} \times 1\right)$ be the inclusion and show that the composition $i \circ \varphi: S^{1} \rightarrow A$ is null-homotopic. Indeed, let α, β be the standard generators of $\pi_{1}\left(S^{1} \vee S^{1}\right)$. Then $[\varphi]=\alpha \beta \alpha^{-1} \beta^{-1}$, and

$$
\begin{aligned}
& {[i \circ \varphi]=i_{*}([\varphi])=i_{*}\left(\alpha \beta \alpha^{-1} \beta^{-1}\right)=} \\
& \qquad i_{*}(\alpha) i_{*}(\beta) i_{*}(\alpha)^{-1} i_{*}(\beta)^{-1}=i_{*}(\alpha) i_{*}(\alpha)^{-1}=1,
\end{aligned}
$$

because $i_{*}(\beta)=1 \in \pi_{1}(A)$. By Theorem 44.5x, we have

$$
A \cup_{\varphi} D^{2} \simeq A \vee S^{2}=S^{1} \vee D^{2} \vee S^{2} \simeq S^{1} \vee S^{2}
$$

44.10x Use the result of Problem 44.9x and assertion 44.5x.
44.11x Prove that $X \simeq S^{1} \vee S^{1} \vee S^{2}$, whence $\pi_{1}(X) \cong \mathcal{F}_{2}$, while $Y \simeq S^{1} \times S^{1}$, so that $\pi_{1}(Y) \cong \mathbb{Z}^{2}$. Since $\pi_{1}(X) \neq \pi_{1}(Y)$, it follows that X and Y are not homotopy equivalent.
44.13x Consider a cellular partition of $\mathbb{C} P^{2}$ consisting of one 0 -cell, one 1 -cell, two 2 -cells, and one 4 -cell. Furthermore, we can assume that the 2 skeleton of the cellular space obtained is $\mathbb{C} P^{1} \subset \mathbb{C} P^{2}$, while the 1 -skeleton is
the real part $R P^{1} \subset \mathbb{C} P^{1}$. Let $\tau: \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}$ be the involution of complex conjugation, by which we factorize. Clearly, $\mathbb{C} P^{1} /[z \sim \tau(z)] \cong D^{2}$. Consider the characteristic map $\psi: D^{4} \rightarrow \mathbb{C} P^{1}$ of the 4 -cell of the initial cellular partition. The quotient space $D^{4} /[z \sim \tau(z)]$ is obviously homeomorphic to D^{4}. Therefore, the quotient map

$$
D^{4} /[z \sim \tau(z)] \rightarrow \mathbb{C} P^{1} /[z \sim \tau(z)]
$$

is the characteristic map for the 4 -cell of X. Thus, X is a cellular space with 2 -skeleton D^{2}. Therefore, by $44 . J x$, we have $X \simeq S^{4}$.

45.1 See 39.21.

45.2 Let $X \cong S^{2}$. Denote by $v=c_{0}(X), e=c_{1}(X)$, and $f=c_{2}(X)$ the number of $0-, 1$-, and 2 -cells in X, respectively. Deleting a point in each 2 -cell of X, we obtain a space X^{\prime} admitting a deformation retraction to its 1 -skeleton. On the one hand, by $45.1, \pi_{1}\left(X^{\prime}\right)$ is a free group of rank $f-1$. On the other hand, we have $\pi_{1}\left(X^{\prime}\right) \cong \pi_{1}\left(X_{1}\right)$, and the rank of the latter group is equal to $1-\chi\left(X_{1}\right)=1-v+e$ by 45.B. Thus, $f-1=1-e+v$, whence it follows that $\chi(X)=v-e+f=2$.
45.3 This follows from 45.2.
46.1 The fundamental group of S^{n} with $n>1$ is trivial because S^{n} has a cellular partition with one-point 1 -skeleton.
46.2 The group $\pi_{1}\left(\mathbb{C} P^{n}\right)$ is trivial for the same reason.
46.4x Take a point (x_{0} and x_{1}) in each connected component of C so that we could join them in the 1 -skeleton X_{1} by two embedded segments $\bar{e}_{A} \subset A$ and $\bar{e}_{B} \subset B$, whose only common points are x_{0} and x_{1}. The idea is to replace all spaces by homotopy equivalent ones so that the 1 -skeleton of X be the circle formed by the segments \bar{e}_{A} and \bar{e}_{B}. For this purpose, we can use the techniques used in the solution to Problem 44.Mx. As a result, we obtain a space having 1 -skeleton with fundamental group isomorphic to \mathbb{Z}. It remains to observe that the image of the attaching $\operatorname{map} \varphi$ of a 2 -cell cannot be the whole 1 -skeleton since this cell lies either in A, or B, but not in both. Therefore, φ is null-homotopic, and, consequently, when we attach a 2-cell, no relations arise.
46.5 x No, because in Theorem 46.Rx the sets A and B are open in X, while in Theorem $46.5 x$ they are cellular subspaces, which are open only in exceptional cases. On the other hand, we can derive Theorem 46.Tx from $46 . R x$ if we construct neighborhoods of the cellular subspaces A, B, and C that admit deformation retractions to the spaces themselves.
46.6x Generally speaking, no, it may not (give an example).
46.7x Let us see how the fundamental group changes when we attach 2 -cells to the 1 -skeleton of X. We assume that the 0 -skeleton is $\left\{x_{0}\right\}$. At
the first step, we attach a 2-cell e to X_{1}, let $\varphi: S^{1} \rightarrow X_{1}$ be the attaching map, and let $\chi: D^{2} \rightarrow X_{2}$ be the characteristic map of e. Let $F \subset D^{2}$ be a closed disk (for example, of radius $1 / 2$), let S be the boundary of F, let $A=\chi\left(D^{2} \backslash \operatorname{Int} F\right) \cup X_{1}$, and let $B=\chi(F)$. Then $C=\chi(S) \cong S^{1}$. Clearly, X_{1} is a (strong) deformation retract of the set A. Therefore, the group $\pi_{1}(A) \cong \pi_{1}\left(X_{1}\right)$ is a free group with generators α_{i}. On the other hand, we have $B \cong D^{2}$. Therefore, B is simply connected. The map $\left.\chi\right|_{S}$ is homotopic to φ, and, consequently, the image of the generator of $\pi_{1}(C)$ is the class $\rho=[\varphi] \in \pi_{1}\left(X, x_{0}\right)$ of the attaching map of e. Consequently, in the fundamental group $\pi_{1}\left(X, x_{0}\right)$ we have a relation $\rho=1$. When we attach cells of the highest dimension, no new relations in this group arise, since in this case the space $C \cong S^{k}$ is simply connected because $k>1$. The Seifert-van Kampen Theorem implies that the relations $\left[\varphi_{i}\right]=1$ exhaust all relations between the standard generators of the fundamental group of the space.
46.8 x If $m \neq 0$, then the fundamental group is a cyclic group of order $|m|$; if $m=0$, then the fundamental group is isomorphic to \mathbb{Z}.
46.9x These spaces are homeomorphic to $S^{2} \times S^{1}$ and S^{3}, respectively.
46.10x Instead of the complement of K, we consider the complement of a certain open neighborhood U of K homeomorphic to $\operatorname{Int} D^{2} \times S^{1}$, for which K is the axial circle. It is more convenient to assume that all sets under consideration lie not in \mathbb{R}^{3}, but in S^{3}. We set $X=S^{3} \backslash U$. The torus T splits S^{3} into two solid tori $G=D^{2} \times S^{1}$ and $F=S^{1} \times D^{2}$. Put $A=G \backslash U$ and $B=F \backslash U$. Then $X=A \cup B$, and $C=A \cap B$ is the complement in T of the open strip, which is a neighborhood of the curve determined on T by the equation $p u=q v$, whence $\pi_{1}(C) \cong \pi_{1}(A) \cong \pi_{1}(B) \cong \mathbb{Z}$. By the Seifert-van Kampen Theorem, we have $\pi_{1}(X)=\left\langle\alpha, \beta \mid i_{*}(\gamma)=j_{*}(\gamma)\right\rangle$, where i and j are the inclusions $i: C \rightarrow A$ and $j: C \rightarrow B$. The loop in C representing the generator of $\pi_{1}(C) p$ times passes the torus along the parallel and q times along the meridian, whence $i_{*}(\gamma)=a^{p}$ and $j_{*}(\gamma)=b^{q}$. Therefore, $\pi_{1}(X)=\left\langle a, b \mid a^{p}=b^{q}\right\rangle$. Show that $H_{1}(X) \cong \mathbb{Z}$ (do not forget that p and q are co-prime).
46.11x (a) This immediately follows from Theorem 46 (or 46.Tx). (b) Since the sets $A=X \vee V_{y_{0}}$ and $B=U_{x_{0}} \vee Y$ constitute an open cover of Z and their intersection $A \cap B=U_{x_{0}} \vee V_{y_{0}}$ is connected, we see that the fact that Z is simply connected follows from the result of Problem 32.11. (c)* Let $X \subset \mathbb{R}^{3}$ be the cone with vertex $(-1,0,1)$ over the union of the circles determined in the plane \mathbb{R}^{2} by the equations $x^{2}+2 x / n+y^{2}=0$, $n \in \mathbb{N}$, and let Y be symmetric to X with respect to the z axis. Both X and Y are obviously contractible and, therefore, simply connected. Try to prove (which is not easy at all) that their union $X \cup Y$ is not simply connected.
46.12x Yes, it is.
46.13x The Klein bottle is the union of two Möbius strips pasted together along their the boundary circles.
46.16x Verify that the class of the matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ has order 2 , and the class of $\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$ has order 3 .
46.17x We cut the torus (respectively, the Klein bottle) along a circle B so that as a result we obtain a cylinder, which will be our space C. Denote by β the generator of $\pi_{1}(B) \cong \mathbb{Z}$, and by α the generator of $\pi_{1}(C) \cong \mathbb{Z}$. In the case of a torus, we have $\varphi_{1}=\varphi_{2}=\alpha$, while for the Klein bottle we have $\varphi_{1}=\alpha=\varphi_{2}^{-1}$. Thus, by Theorem $46 . W x$, we obtain a presentation of the fundamental group of the torus: $\langle\alpha, \gamma \mid \gamma \alpha=\alpha \gamma\rangle$, and of the Klein bottle: $\left\langle\alpha, \gamma \mid \gamma \alpha=\alpha \gamma^{-1}\right\rangle$.

Bibliography

[1] A. V. Arkhangel'skii, V. I. Ponomarev, Fundamentals of General Topology: Problems and Exercises, Kluwer Academic Print, 2001.
[2] D. B. Fuks, V. A. Rokhlin, Beginner's Course in Topology, Geometric Chapters, Springer-Verlag, 1984.
[3] R. L. Graham, B. L. Rotschild, and J. H. Spencer, Ramsey Theory, John Wiley, 1990.
[4] A. G. Kurosh, The Theory of Groups, Vol. 1-2, Chelsea, New York, 1956, 1960.
[5] W. S. Massey, Algebraic Topology: An Introduction, Hartcourt, Brace \& World, Inc., 1967.
[6] J. R. Munkres, Topology, Prentice Hall, Inc., 2000.
[7] L. A. Steen, J. A. Seebach, Jr., Counterexamples in Topology, Springer-Verlag, 1978.
[8] O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov, Problems in Topology, Leningrad State University Press, 1988. - 92 p. [In Russian]

Index

```
\varnothing
@14
Br(a)}1
C}
C}\mp@subsup{P}{}{n}15
Cl }3
D 
Fr 30
H157
H}\mp@subsup{P}{}{n}15
Int 29
N 5
Q 5
\mathbb{R}5
\mp@subsup{\mathbb{R}}{}{n}18
\mathbb{R}\mp@subsup{P}{}{n}155
\mp@subsup{\mathbb{R}}{\mp@subsup{T}{1}{}}{}14
Sn}2
```

$\mathbb{Z} 5$
abbreviation of a map 58
accumulation point 114
action
properly discontinuous 197
group in a set 196
transitive 196
effective 196
faithful 196
continuous 197
of a fundamental group in a fiber 265
adherent point 30
Alexandrov compactification 118
arrow 11
asymmetric 25
attaching map 151, 281
attaching of a space 151
automorphism of covering 265
axioms of countability 103
first 105
second 104
separability 104
axioms of group 181
axioms of topological structure 11
ball
open 19
closed 19
baricentric subdivision 162
of a poset 162
base for a topological structure 16
base at a point 105
base of a covering 231
basic surfaces 153,284
bicompactness 108
bijection 55
Borsuk Theorem 254
Borsuk-Ulam Theorem 252
bouquet 255, 238
boundary
of a set 30,86
point of a set 29
bounded set 21
Brower Theorem 255
Cantor set 15
cardinality 103
Cartesian product 135, see product
Cauchy sequence 115
cell 279
closed 279
dividing 292
n-cell 279
cellular
decomposition 281
space 279

0-dimensional 279
1-dimensional 291
subspace 281
center of a group 192
circular loop 216
closed
set 13
in a subspace 27
map 112
closure
of a set 30
in a metric space 30
operation of 31,32
sequential of a set 106
coincidence set of maps 98
collapse 288
compact
cellular space 287
set 109
space 108
compactification 118
Alexandrov 118
one-point 118
complement of a set 10
complete metric space 115
complex projective line 156
component 85
connected 85
path connected 94
composition of maps 57
cone 37
conjugation 188
connected
cellular space 287
component 85
set 84
space 83
contraction of a set 145,146
coset 185
countability axiom 103
the first 105
the second 104
in a topological group 189
cover 63
closed 64
dominates a partion of unity 120
fundamental 63,286
inscribed 64, 119
locally finite 64,119
open 64
refinement of other one 64
covering 231, 63
base of 231
n-fold 234
induced 267
in narrow sense 232
of a bouquet of circles 240
projection 231
regular 266
space 231
trivial 231
universal 234
coverings
equivalent 262
multiplicity of 233
number of sheets of 233, 261
of Klein bottle 233
of basic surfaces 233
of a projective space 232
of a torus 232
of Möbius strip 233
cube 110
de Morgan formulas 13
degree of a point with respect to a loop 251
diagonal 136, 138
diameter of a set 21
difference of sets 10
direct product 135, see product
discrete space 11
disjoint sets 8
disjoint sum 150
distance $18,4^{\prime} 1$
Gromov-Hausdorff 65
between sets 24
asymmetric 25
between a point and a set 23
edge 279
embedding
topological 74, 121
isometric 65
element 3
maximal 38
minimal 38
greatest 38
smallest 38
elementary set 136
epimorphism 184
equivalence class 141
equivalence relation 141
equivalent
embeddings 75
metrics 22
coverings 262
Euler characteristic 288
exterior of a set 29
exterior point 29
factor
group 185
set 141
map 143
fiber
of a product 135
finite intersection property 109
fixed point 98, 254
set 98
property 254
forest 292
function 55
fundamental group 215
of a bouquet of circles 238
of a cellular space 295,298
of a finite space 216,241
of a lens space 299
of circle 237
of a product 217
of a projective space 238
of $\mathbb{R}^{n} 216$
of S^{n} with $n>1216$
of a sphere with crosscaps and handles 297
of a topological group 218
of a torus 237
of a knot complement 300
fundamental theorem of algebra 248
G-set
left (right) 196
homogeneous 196198
generators of a group 185
gluing $145,148,151$
graph of a map 136
group 90, 181
Abelian 182
axioms 181
of homeomorphisms 195
fundamental 215
homology 1-dimensional 298
of a covering 261
operation 181
free 238
topological 187
trivial 182
cyclic 185
handle 72, 152
Hasse diagram 40
Hausdorff axiom 97
heriditary property $99,109,102$
hierarchy of coverings 262
Hölder
inequality 19
map 62
homeomorphic 67
homeomorphism 67
homeomorphism problem 73
homogeneous G-set 196
homogeneous coordinates 155
homomorphism
group 183
topological group 193
induced by a continuous map 247
induced by a covering projection 261
A-homotopy 211
homotopy 208
free 211, 216
stationary 211
rectilinear 209
of paths 211
homotopy
class of a map 209
equivalence 256
of cellular spaces 289
equivalent spaces 256
groups 215, 219
of a covering space 268
type of a space 256,259
identity map 57
image
continuous 86
of a point 55
of a set 56
inclusion (map) 57
index
of a subgroup 185,261
of a point with respect to a loop 251
indiscrete space 11
induction
on compactness 113
on connectedness 90
inequality
triangle 18
ultrametric 25
Hölder 19
injection 55
injective factor
of a continuous map 143
of a homomorphism of topological groups
193
interior
of a set 29
operation of 31,32
point 29
intermediate value theorem 89, 249
intersection of sets 8
Inverse Function Theorem 74
inverse map 57
irrational flow 197
isolated point 34
isometry 62
isomorphism 184
of topological groups 193
local 193
kernel of a homomorphism 184
Klein bottle 73, 149
knot 75
Kolmogorov axiom 100
Kuratowski problem 31
Lagrange Theorem 185
Lebesgue Lemma 112
lifting problem 235, 261
limit
of a sequence 98
point of a set 33
Lindelöf Theorem 104
line
real 12,87
digital 41
with T_{1}-topology 12
list of a covering 234
local
homeomorphism 233
isomorphism 193
loop 215
map 55
antimonotone 64
bijective 55
characteristic of a cell 281
closed 112, 137
continuous 59
at a point 61
contractive 62
equivariant 196
factorization 141
graph of 136
homotopy inverse 256
homotopy invertible 256
identity 57
image of 56
inclusion 57
injective 55
inverse 57
invertible 57
locally bounded 113
locally constant 90
monotone 64
null-homotopic 209
one-to-one 55
open 137
proper 118
surjective 55
mapping 55
maximal T_{0}-quotient of a space 160
metric 18
$\rho^{(p)} 18$
p-adic 25
equivalent 22
Euclidean 18
Hausdorff 24
of uniform convergence 164
space 18
complete 115
Möbius band 148
Möbius strip 148
monomorphism 184
multiplicity of a covering 233
naive set theory 3
neighborhood
base at a point 105
of a point 14
trivially covered 231
symmetric 188
ε-neighborhood of a set 111
ε-net 114
norm 21, 112
normalizer 196
notation
additive 182
multiplicative 182
one-point compactification 118
open
set 11,13
in a subspace 27
orbit 198
order
cyclic 42,42
linear 38
nonstrict partial 35
strict partial 35
of a group 185
of a group element 185
p-adic numbers 115
pantaloons 153
partition 83,141
closed 144
of unity 120
to a cover 120
of a set 83
open 144
path 92,211
inverse 92
lifting homotopy theorem 235
lifting theorem 235
simple 293
stationary 92
path-connected
cellular space 287
component 94
set 93
space 93
Peano curve 66
plane
with holes 72
with punctures 72
Poincaré group 215
point 11
polygon-connectedness 95
poset 36
preimage of a set 56
preorder 159
pretzel 153
product
free 301
with amalgamated subgroup 301
cellular spaces 282
fiber of 135
of coverings 232
of homotopy classes of paths 212
of maps 138,138
of paths 92,212
of sets 135
of topological groups 194
of topological spaces 136,139
semidirect 195
projection
of a product to a factor 136
onto a quotient space 141
projective plane 150
projective space
real 155
complex 156
quaternionic 158
quaternion 157
quaternionic projective line 158
quotient
group 185
set 141
space 142
map 143
topology 142
relation
equivalence 141
linear order 38
nonstrict partial order 35
reflexive 35
strict partial order 35
transitive 35,159
restriction of a map 58
retract 253
deformation 257
strong 257
retraction 253
deformation 257
strong 257
saturation of a set 141
skeleton of a cellular space 281
Seifert-van Kampen Theorem 298, 303
separation axiom
T_{0} (Kolmogorov axiom) 100
T_{1} (Tikhonov axiom) 99
T_{2} (Hausdorff axiom) 97
$T_{3} 101$
$T_{4} 101$
in a topological group 189
sequentially
compact 114
continuous 106
sequential closure 106
set 3
algebraic 96
cardinality of 103
connected 84
countable 103
compact 109
dense in a set 32
empty 5
everywhere dense 32
bounded 21
closed 13
coincidence of maps 98
convex 21, 70
countable 103
cyclicly ordered 42
fixed point 98
linearly ordered 38
locally closed 34
locally finite 119
nowhere dense 33
open 11
partially ordered 36
path-connected 93
saturated 141
star-shaped 209
sets
disjoint 8
of matrices 96,111
simple path 293
simply connected space 217
simplicial
scheme 161
space 161
singleton 5
skeleton 281
space
arcwise connected 93
asymmetric 26
cellular 279
countable 281
finite 281
locally finite 281
compact 108
connected 83
contractible 258
covering 231
disconnected 83
discrete 11
finite 160
first countable 105
Hausdorff 97
indiscrete 11
locally compact 117
locally contractible 264
locally path-connected 263
metric 18
complete 115
metrizable 22, 107
micro simply connected 263
Niemyski 102
normal 101
normed 21
of continuous maps 163
of convex figures 116
of cosets 191
of simplices 161
paracompact 119
path-connected 93
regular 101
second countable 104
separable 104
sequentially compact 114
Sierpinski 12
simplicial 161
simply connected 217
smallest neighborhood 39
topological 11
totally disconnected 86
triangulated 161
ultrametric 25
spaces
homeomorphic 67
homotopy equivalent 256
sphere 19
with crosscups 153
with handles 153
with holes 152
spheroid 219
subbase 17
subcover, subcovering 108
subgroup 184
isotropy 196
normal 185
of a topological group 192
of a topological group 191
submap 58
subordination of coverings 262
subset 6
proper 6
subspace
cellular 281
of a metric space 20
of a topological space 27
sum
of sets 150
of spaces 150
support of a function 120
surjection 55
symmetric difference of sets 10
Tietze Theorem 102
Tikhonov axiom 99
topological space 11 , see space
topological structure 11
coarser than another one 17
induced by a metric 22
interval 39
cellular 281
compact-open 163
finer than another one 17
left (right) ray 39
metric 22
of cyclic order 44
of pointwise convergence 163
particular point 12
relative 27
subspace 27
poset 39
topological invariant 73
topological property 73
hereditary 99
topology 11, see topological structure
torus 140
translation (left or right) 188
translation along a path 220
for homotopy groups 222
in a topological group 222
tree 292, 292
spanning 292
ultrametric 25
union of sets 8
Urysohn Lemma 102
Venn diagram 9
vertex 279
winding number 251

Thin textbook on clementary topology contains adetailed introJuction to gencral topology and anf introduction to algebraic topology via its most classical and elementary segment centefed at the notions of fundamental group and covering space.

The book is tailoned for the reader who is determined to work actively. The proofs of theotems are separated from their formulations and are gatbered at the end of each chapter. This makes the book look lile a pure problem book and encouragos thè reader to think through each formulation, A reader who prefers a more traditional atyle can either find the proofs at the end' of the chipter er skip them sitogether. This syle-dso aters to the expert who needs a handbook anid prefers formulitions not overshadowed by proofs. Most of the proofs are simple and easy to discover. .
:The book can be useful and exjoyable for readers, with guite different background rand interests. The text is structured in such a way thaf it is casy to determine what to expect from' each piece and how to use it. There is core material, which males up a relatively small part of the book. The cove material is intespersed with ecamples, illistrative and triining problems, and relevint discussioní:
The reader who has matered the core material acquires a strong background in clementary topology and will fetl at home in the environimenf of abstract mathematics With almost no prenequisites (except real numbers), the book can vine as atext for a courie on general and beginining ajgetraic topology:

$$
\frac{\text { AMS on the Web }}{\text { www.ams.org }}
$$

[^0]: ${ }^{1}$ A person who is looking for such elementary topology will easily find it in numerous books with beautiful pictures on visual topology.

[^1]: ${ }^{1}$ Other designations，like Λ ，are also in use，but \varnothing has become a common one．

[^2]: ${ }^{2}$ To make formulas clearer, sometimes we slightly abuse the notation and instead of, say, $A \cup\{x\}$, where x is an element outside A, we write just $A \cup x$. The same agreement holds true for other set-theoretic operations.
 ${ }^{3}$ Here, as usual, iff stands for "if and only if".

[^3]: ${ }^{4}$ Thus, Ω is important: it is called by the same word as the whole branch of mathematics. Certainly, this does not mean that Ω coincides with the subject of topology, but nearly everything in this subject is related to Ω.

[^4]: 2.8. List all topological structures in a two-element set, say, in $\{0,1\}$.

[^5]: ${ }^{5}$ The letter Ω stands for the letter O which is the initial of the words with the same meaning: Open in English, Otkrytyj in Russian, Offen in German, Ouvert in French.

[^6]: ${ }^{6}$ The notions of function (mapping) and Cartesian square, as well as the corresponding notation, are discussed in detail below, in Sections 9 and 20. Nevertheless, we hope that the reader is acquainted with them, so we use them in this section without special explanations.

[^7]: ${ }^{7}$ Recall that a set A is convex if for any $x, y \in A$ the segment connecting x and y is contained in A. Certainly, this definition involves the notion of segment, so it makes sense only for subsets of those spaces where the notion of segment connecting two points makes sense. This is the case in vector and affine spaces over \mathbb{R}.

[^8]: ${ }^{8}$ Although we assume that the notion of a bounded polygon is well known from elementary geometry, nevertheless, we recall the definition. A bounded plane polygon is the set of the points of a simple closed polygonal line γ and the points surrounded by γ. A simple closed polygonal line (or polyline) is a cyclic sequence of segments each of which starts at the point where the previous one ends and these are the only pairwise intersections of the segments.

[^9]: ${ }^{9}$ Quite a bit of confusion was brought into the terminology by Bourbaki. At that time, linear orders were called orders, nonlinear orders were called partial orders, and, in occasions when it was not known if the order under consideration was linear, the fact that this was unknown was explicitly stated. Bourbaki suggested to drop the word partial. Their motivation for this was that a partial order is a phenomenon more general than a linear order, and hence deserves a shorter and simpler name. This suggestion was commonly accepted in the French literature, but in English literature it would imply abolishing a nice short word, poset, which seems to be an absolutely impossible thing to do.

[^10]: ${ }^{10}$ This class of topological spaces was introduced and studied by P. S. Alexandrov in 1935. Alexandrov called them discrete. Nowadays, the term discrete space is used for a much narrower class of topological spaces (see Section 2). The term smallest neighborhood space was introduced by Christer Kiselman.

[^11]: ${ }^{1}$ Certainly, the rule (as everything in set theory) may be thought of as a set. Namely, we consider the set of the ordered pairs (x, y) with $x \in X$ and $y \in Y$ such that the rule assigns y to x. This is the graph of f. It is a subset of $X \times Y$. (Recall that $X \times Y$ is the set of all ordered pairs (x, y) with $x \in X$ and $y \in Y$.)

[^12]: ${ }^{2}$ Although this problem can be solved by using theorems that are well known from Calculus, we have to mention that it would be more appropriate to solve it after Section 17. Cf. Problems 17.P, 17.U, and 17.K.

[^13]: ${ }^{3}$ This phenomenon was used as a basis for defining the subject of topology in the first stages of its development, when the notion of topological space had not yet been developed. At that time, mathematicians studied only subspaces of Euclidean spaces, their continuous maps, and homeomorphisms. Felix Klein, in his famous Erlangen Program, classified various geometries that had emerged up to that time, like Euclidean, Lobachevsky, affine, and projective geometries, and defined topology as a part of geometry that deals with properties preserved by homeomorphisms. In fact, it was not assumed to be a program in the sense of something being planned, although it became a kind of program. It was a sort of dissertation presented by Klein for receiving a professor position at the Erlangen University.

[^14]: ${ }^{1}$ The letter T in these designations originates from the German word Trennungsaxiom, which means separation axiom.

[^15]: ${ }^{2}$ You can also rephrase this as follows：each（arbitrarily small）neighborhood of b contains all members of the sequence that have sufficiently large indices．

[^16]: ${ }^{3}$ Axiom T_{1} is also called the Tikhonov axiom.

[^17]: ${ }^{4}$ The exceptions which one may find in the standard curriculum of a mathematical department can be counted on two hands.

[^18]: ${ }^{1}$ At first glance. the definition of a quotient set contradicts one of the very profound principles of the set theory, which states that a set is determined by its elements. Indeed, according to this principle, we have $X / S=S$ since S and X / S have the same elements. Hence, there seems to be no need to introduce X / S. The real sense of the notion of a quotient set lies not in its literal set-theoretic meaning. but in our way of thinking about elements of partitions. If we remember that they are subsets of the original set and want to keep track of their internal structure (or. at least, of their elements). then we speak of a partition. If we think of them as atoms. getting rid of their possible internal structure. then we speak about the quotient set.

[^19]: ${ }^{2}$ Recall that a partition is closed if the saturation of each closed set is closed.

[^20]: ${ }^{1}$ Recall that the multiplication in $G \times H$ is defined by the formula $(x, u)(y, v)=(x y, u v)$.

[^21]: ${ }^{1}$ Warning：there is a similar，but different kind of homotopy，which is also called relative．

[^22]: ${ }^{2}$ Of course, when the initial point of paths in the first class is the final point of paths in the second class.

[^23]: ${ }^{3}$ Recall that S^{1} is regarded as a subset of the plane R^{2}, and the latter is identified with \mathbb{C} in a canonical way. Hence, $1 \in S^{1}=\{z \in \mathbb{C}:|z|=1\}$.

[^24]: ${ }^{4}$ Recall that this means that $T_{s}(\alpha \beta)=T_{s}(\alpha) T_{s}(\beta)$.

[^25]: ${ }^{1}$ We remind the reader that a map is open if the image of any open set is open.

[^26]: ${ }^{2}$ This sounds like a story about a battle with Hydra, but the happy ending demonstrates that modern mathematicians have a magic power of the sort that the heroes of myths and tales could not even dream of. Indeed, we meet a Hydra K with 4 heads, chop off all the heads, but, according to the old tradition of the genre, 3 new heads appear in place of each of the original heads. We chop them off, and the story repeats. We do not even try to prevent this multiplication of heads. We just chop them off. But contrary to the real heroes of tales, we act outside Time and hence have no time limitations. Thus, after infinitely many repetitions of the exercise with an exponentially growing number of heads, we succeed! No heads left!

 This is a typical success story about an infinite construction in mathematics. Sometimes, as in our case, such a construction can be replaced by a finite one, which, however, deals with infinite objects. Nevertheless, there are important constructions where an infinite fragment is unavoidable.

[^27]: 40.1 Number of Sheets in Universal Covering. The number of sheets of a universal covering equals the order of the fundamental group of the base space.
 40.2 Nontrivial Covering Means Nontrivial π_{1}. Any topological space that has a nontrivial path-connected covering space has a nontrivial fundamental group.

[^28]: ${ }^{1}$ Recall that a map $\varphi: G \rightarrow H$ from a group G to a group H is an antihomomorphism if $\varphi(a b)=\varphi(b) \varphi(a)$ for any $a, b \in G$.

[^29]: ${ }^{1}$ This class of spaces was introduced by J. H. C. Whitehead. He called these spaces $C W$ complexes, and they are known under this name. However, it is not a good name for plenty of reasons. With very rare exceptions (one of which is $C W$-complex, the other is simplicial complex), the word complex is used nowadays for various algebraic notions, but not for spaces. We have decided to use the term cellular space instead of $C W$-complex following D. B. Fuchs and V. A. Rokhlin [2].

[^30]: ${ }^{2}$ One-dimensional cellular spaces are also associated with the word graph. However, rather often, this word is used for objects of other classes. For example, one can call in this way onedimensional cellular spaces in which attaching maps of different one-cells cannot coincide, or the boundaries of one-cells cannot consist of a single vertex. When one-dimensional cellular spaces are to be considered anyway, inspite of this terminological disregard, they are called multigraphs or pseudographs. Furthermore, sometimes one includes an additional structure into the notion of graph-say. a choice of orientation on each edge. Certainly, all of these variations contradict a general tendency in mathematical terminology to give simple names to decent objects of a more general nature, passing to more complicated terms while adding structures and imposing restrictions. However, in this specific situation there is no hope to implement that tendency. Any attempt to fix a meaning for the word graph apparently only contributes to this chaos, and we just keep this word away from important formulations, using it as a short informal synonym for the more formal term of one-dimensional cellular space. (Other overused common words, like curve and surface, also deserve this sort of caution.)
 ${ }^{3}$ In the above definition of a 1 -dimensional cellular space, the attaching maps φ_{α} were also continuous, although their continuity was not required since any map of S^{0} to any space is continuous.

[^31]: ${ }^{4}$ Recall that a subgroup N is normal if N coincides with all conjugate subgroups of N. The normal subgroup N generated by a set A is the minimal normal subgroup containing A. As a subgroup, N is generated by elements of A and elements conjugate to them. This means that each element of N is a product of elements conjugate to elements of A.

