EQUIVALENCE OF METRICS

Theorem 1 (Munkres, Lemma 13.3). Let Ω and Ω' be two topologies on a set X, with bases Σ and Σ' respectively. Then Ω' is finer than Ω (i.e., $\Omega \subseteq \Omega'$) if and only if for each $B \in \Sigma$, and each $x \in B$, there is $B' \in \Sigma'$ such that $x \in B' \subseteq B$.

Proof. \Rightarrow : Suppose Ω' is finer than Ω . Let $x \in B \in \Sigma$. Then $B \in \Sigma \subseteq \Omega \subseteq \Omega'$, hence $B = \bigcup_{i \in I} B'_i$ for some $B'_i \in \Sigma'$. Since $x \in \bigcup_{i \in I} B'_i$, there is $i_0 \in I$ such that $x \in B'_{i_0}$, and then $x \in B'_{i_0} \subseteq B$ with $B'_{i_0} \in \Sigma'$.

 \Leftarrow : Let *U* ∈ Ω. Take arbitrary *x* ∈ *U*. Since *U* is a union of elements of Σ, there is $B_x ∈ Σ$ such that $x ∈ B_x ⊆ U$. Then there is $B'_x ∈ Σ'$ such that $x ∈ B'_x ⊆ B_x$. Then

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} B'_x \subseteq \bigcup_{x \in U} B_x \subseteq U,$$

i.e., $U = \bigcup_{x \in U} B'_x$, and $U \in \Omega'$. Consequently, $\Omega \subseteq \Omega'$.

Definition 1. Two metric spaces (X, ρ_1) and (X, ρ_2) are called *topologically equivalent*, if they induce the same topology on *X*.

Lemma 1 (Munkres, Lemma 20.2). Let ρ and ρ' be two metrics on the set X. Then the topology induced by ρ' is finer than the topology induced by ρ , if and only if for each $x \in X$, and each $\varepsilon > 0$, there is $\delta > 0$ such that $B_{\delta}^{\rho'}(x) \subseteq B_{\varepsilon}^{\rho}(x)$.

Proof. \Rightarrow : Suppose the topology induced by ρ' is finer than the topology induced by ρ . Fix $x \in X$ and $\varepsilon > 0$. By Theorem 1, there is a ball B' with respect to the metric ρ' , such that $x \in B' \subseteq B_{\varepsilon}^{\rho}(x)$. Inside B' we can find a ball $B_{\delta}^{\rho'}(x)$ with the center x.

 \Leftarrow : Let *B* is a ball with respect to the metric *ρ*, and *x* ∈ *B*. Then there is a ball $B_{\varepsilon}^{\rho}(x) \subseteq B$ with the center *x*. Then there is $\delta > 0$ such that $B_{\delta}^{\rho'}(x) \subseteq B_{\varepsilon}^{\rho}(x)$. By Theorem 1, the topology induced by ρ' is finer than the topology induced by *ρ*.

Definition 2. Two metric spaces (X, ρ_1) and (X, ρ_2) are called *metrically equivalent*, if there are c, C > 0 such that

(1)

$$c\boldsymbol{\rho}_1(x,y) \leq \boldsymbol{\rho}_2(x,y) \leq C\boldsymbol{\rho}_1(x,y)$$

for any $x, y \in X$.

Theorem 2. *Metric equivalence is an equivalence relation.*

Proof. The condition (1) is equivalent to

$$\frac{1}{C}\rho_2(x,y) \le \rho_1(x,y) \le \frac{1}{c}\rho_2(x,y)$$

for any $x, y \in X$, what implies symmetricity. The reflexivity and transitivity are obvious.

Theorem 3. If two metric spaces are metrically equivalent, then they are topologically equivalent.

Proof. The condition (1) implies $B_{\varepsilon}^{\rho_1}(x) \subseteq B_{\varepsilon}^{\rho_2}(x)$ for any $x \in X$ and $\varepsilon > 0$. By Lemma 1, the topology induced by ρ_1 is finer than the topology induced by ρ_2 . By Theorem 2, we can interchange ρ_1 and ρ_2 , and then the topology induced by ρ_2 is finer than the topology induced by ρ_1 . Hence these two topologies are equivalent.

Date: October 30, 2021; last modified October 12, 2022.