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Preface

This book is intended as a text for a one- or two-semester introduction to topology, at
the senior or graduate level.

The subject of topoLogy is of interest in its own right, and it also serves to lay the
foundations for future study in analysis, in geometry, and in algebraic topology. There
is no universal agreement among mathematicians as to what a first course in topology
should include; there are many topics that are appropriate to such a course, and not all
are equally relevant to these differing purposes. In the choice of material to be treated,
I have tried to strike a balance among the various points of view.

Prerequisites. There are no formal subject matter prerequisites for studying most of
this book. I do not even assume the reader knows much set theory. Having said that,
I must hasten to add that unless the reader has studied a bit of anaLysis or "rigorous
calculus:' much of the motivation for the concepts introduced in the first part of the
book will be missing. Things will go more smoothly if he or she already has had some
experience with continuous functions, open and closed sets, metric spaces. and the
like, although none of these actually assumed. In Part II, we do assume familiarity
with the elements of group theory.

Most students in a topology courst have, in my experience, some knowledge of
the foundations of mathematics. But the amount varies a great deal from one student
to another. Therefore, I begin with a fairly thorough chapter on set theory and logic. It
starts at an elementary level and works up to a level that might be described as "semi-
sophisticated." It treats those topics (and only those) that will be needed later in the
book. Most students will already be familiar with the material of the first few sections,
but many of them will find their expertise disappearing somewhere about the middle

xi



xii Preface

of the chapter. How much time and effort the instructor 11 need to spend on this
chapter wilL thus depend Largely on the mathematical sophistication and experience of
the students. Ability to do the exercises fairly readily (and correctly!) should serve as
a reasonable criterion for determining whether the student's mastery of set theory is
sufficient for the student to begin the study of topology.

Many students (and instructors!) would prefer to skip the foundational material
of Chapter 1 and jump right in to the study of topology. One ignores the foundations,
however, only at the risk of later confusion and error. What one can do is to treat
initially only those sections that are needed at once, postponing the remainder until
they are needed. The first seven sections (through countability) are needed throughout
the book; I usually assign some of them as reading and lecture on the rest. Sections 9
and 10, on the axiom of choice and well-ordering, are not needed until the discussion
of compactness in Chapter 3. Section 11, on the maximum principle, can be postponed
even longer; it is needed only for the Tychonoff theorem (Chapter 5) and the theorem
on the fundamental group of a linear graph (Chapter 14).

How the book is organized. This book can be used for a number of different courses.
I have attempted to organize as flexibly as possible. so as to enabLe the instructor to
follow his or her own preferences in the matter.

Part I, consisting of the first eight chapters, is devoted to the subject commonly
called general topology. The first four chapters deal with the body of material that,
in my opinion, should be included in any introductory topology course worthy of the
name. This may be considered the "irreducible core" of the subject, treating as it does
set theory, topological spaces, connectedness, compactness (through compactness of
finite products), and the countability and separation axioms (through the Urysohn
metrization theorem). The remaining four chapters of Part I explore additional topics;
they are essentially independent of one another, depending on only the core material
of Chapters 1-4. The instructor may take them up in any order he or she chooses.

Part II constitutes an introduction to the subject of Algebraic Topology. It depends
on only the core material of Chapters 1—4. This part of the book treats with some
thoroughness the notions of fundamental group and covering space, along with their
many and varied applications. Some of the chapters of Part II are independent of one
another; the dependence among them is expressed iii the foLlowing diagram:

Chapter 9 The Fundamental Group

Chapter 10 Separation Theorems in the PLane

Chapter 11 The Seifert-van Kampen Theorem

Chapter 12 Classification of Surfaces

Chapter 13 Classification of Covering Spaces

Chapter 14 Applications to Group Theory
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Certain sections of the book are marked with an asterisk; these sections may be
omitted or postponed with no loss of continuity. Certain theorems are marked sim-
ilarly. Any dependence of later material on these asterisked sections or theorems is
indicated at the time, and again when the results are needed. Some of the exercises
also depend on earlier asterisked material, but in such cases the dependence is obvious.

Sets of supplementary exercises appear at the ends of several of the chapters. They
provide an opportunity for exploration of topics that diverge somewhat from the main
thrust of the book; an ambitious student might use one as a basis for an independent
paper or research project. Most are fairly self-contained, but the one on topological
groups has as a sequel a number of additional exercises on the topic that appear in later
sections of the book.

Possible course outlines. Most instructors who use this text for a course in general
topology will wish to cover Chapters 1—4, along with the theorem in Chap-
ter 5. Many will cover additional topics as well. Possibilities include the following:
the Stone-tech compactification metrization theorems (Chapter 6), the Peano
curve Ascoli's theorem and/or §47), and dimension theory I have,
in different semesters, followed each of these options.

For a one-semester course in algebraic topology, one can expect to cover most of
Part H.

It is also possible to treat both aspects of topology in a single semester, although
with some corresponding loss of depth. One feasible outline for such a course would
consist of Chapters 1—3, followed by Chapter 9; the latter does not depend on the
material of Chapter 4. (The non-asterisked sections of Chapters 10 and 13 also are
independent of Chapter 4.)

Comments on this edition. The reader who is familiar with the first edition of this
book will find no substantial changes in the part of the book dealing with general
topology. I have confined myself largely to "fine-tuning" the text material and the
exercises. However, the final chapter of the first edition, which dealt with algebraic
topology, has been substantially expanded and rewritten. It has become Part II of this
book. In the years since the first edition appeared, it has become increasingly common
to offer topology as a two-term course, the first devoted to general topology and the
second to algebraic topology. By expanding the treatment of the latter subject, I have
intended to make this revision serve the needs of such a course.

Acknowledgments. Most of the topologists with whom I have studied, or whose
books I have read, have contributed in one way or another to this book; I mention
only Edwin Moise, Raymond Wilder, Gail Young, and Raoul Bott, but there are many
others. For their helpful comments concerning this book, my thanks to Ken Brown,
Russ McMillan, Robert Mosher, and John Hemperly, and to my colleagues George
Whitehead and Kenneth Hoffman.

The treatment of algebraic topology has been substantially influenced by the excel-
lent book by William Massey EM], to whom I express appreciation. Finally, thanks are
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due Adam Lewenberg of MacroTeX for his extraordinary skill and patience in setting
text and juggling figures.

But most of aLl, to my students go my most heartfelt thanks. From them I learned
at least as much as they did from me; without them this book would be very different.

JR.M.



A Note to the Reader

Two matters require comment—the exercises and the examples.
Working problems is a crucial part of learning mathematics. No one can learn

topology merely by poring over the definitions, theorems, and examples that are worked
out in the text. One must work part of it out for oneself. To provide that opportunity is
the purpose of the exercises.

They vary in difficulty, with the easier ones usually given first. Some are routine
verifications designed to test whether you have understood the defInitions or examples
of the preceding section. Others are less routine You may, for instance, be asked to
generalize a theorem of the text. Although the result obtained may be interesting in its
own right, the main purpose of such an exercise is to encourage you to work carefully
through the proof in question, mastering its ideas thoroughly—more thoroughly (I
hope!) than mere memorization would demand.

Some exercises are phrased in an "open-ended" fashion Students often fInd this
practice frustrating. When faced with an exercise that asks, "Is every regular Lindelöf
space normal?" they respond in exasperation, "I don't know what I'm supposed to do!
Am I suppose to prove it or find a counterexarnple or what?" But mathematics (outside
textbooks) is usually like this. More often than not, all a mathematician has to work
with is a conjecture or question, and he or she doesn't know what the correct answer
is. You should have some experience with this situation.

A few exercises that are more difficult than the rest are marked with asterisks. But
none are so difficult but that the best student in my class can usually solve them.

xv



xvi A Note to the Reader

Another important part of mastering any mathematical subject is acquiring a reper-
toire of usefuL examples. One should, of course, come to know those major examples
from whose study the theory itself derives, and to which the important applications
are made. But one should aLso have a few counterexampLes at hand with which to test
plausible conjectures.

Now it is all too easy in studying topology to spend too much time dealing with
"weird counterexamples." Constructing them requires ingenuity and is often great
fun. But they are not really what topology is about. Fortunately, one does not need
too many such counterexamples for a first course; there is a fairly short list that will
suffice for most purposes. Let me give it here:

the product of the real line with itself, in the product, uniform, and box topolo-
gies.

Re the reaL line in the topology having the intervals [a, b) as a basis.

Sc2 the minimal uncountable well-ordered set.

the closed unit square in the dictionary order topology.

These are the examples you should master and remember; they will be exploited
again and again.
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GENERAL TOPOLOGY





Chapter 1

Set Theory and Logic

We adopt, as most mathematicians do, the naive point of view regarding set theory.
We shall assume that what is meant by a set of objects i5 intuitively clear, and we shall
proceed on that basis without analyzing the concept further. Such an analysis properly
belongs to the foundations of mathematics and to mathematfcal logEc, and it is not our
purpose to initiate the study of those fields.

Logicians have analyzed set theory in great detail, and they have formulated ax-
ioms for the subject. Each of their axioms expresses a property of sets that mathe-
maticians commonly accept, and collectively the axioms provide a foundation broad
enough and strong enough that the rest of mathematfcs can be built on them.

It is unfortunately true that careless use of set theory, relying on intuition alone,
can lead to contradictions. Indeed, one of the reasons for the axiomatization of set
theory was to formulate rules for dealing with sets that would avoid these contradic-
tions. Although we shall not deal with the axioms explicitly, the rules we follow in
dealing with sets derive from them. In this book, you will learn how to deal with sets
in an "apprentice" fashion, by observing how we handle them and by working with
them yourself. At some point of your studies, you may wish to study set theory more
carefully and in greater detail; then a course in logic or foundations will be in order.

3



4 Set Theory and Logic Ch. 1

§1 Fundamental Concepts

Here we introduce the ideas of set theory, and establish the basic terminology and
notation. We also discuss some points of elementary logic that, in our experience, are
apt to cause confusion.

Basic Notation

Commonly we shall use capital letters A, B,... to denote sets, and lowercase letters
a, b, ... to denote the objects or elements belonging to these sets. If an object a
belongs to a set A, we express this fact by the notation

a E A.

If a does not belong to A, we express this fact by writing

a A.

The equality symbol = is used throughout this book to mean logical identity. Thus,
when we write a = b, we mean that "a" and "b" are symbols for the same object. This
is what one means in arithmetic, for example, when one writes = Similarly, the
equation A = B states that "A" and "B" are symboLs for the same set; that is, A and B
consist of precisely the same objects.

If a and b are different objects, we write a b; and if A and B are different sets,
we write A B. For example, if A is the set of all nonnegative real numbers, and B
is the set of all positive real numbers, then A B, because the number 0 belongs to A
and not to B.

We say that A is a subset of B if every element of A is also an element of B; and
we express this fact by writing

A C B.

Nothing in this definition requires A to be different from B; in fact, if A = B, it is true
that both A c B and B c A. If A C B and A is different from B, we say that A is a
proper subset of B, and we write

A ç B.

The relations c and ç are called inclusion and proper inclusion, respectively. If
A C B, we also write B A, which is read "B contains A."

How does one go about specifying a set? If the set has only a few elements, one
can simply list the objects in the set, writing "A is the set consisting of the elements a,
b, and c." In symbols, this statement becomes

A =(a,b,c),

where braces are used to enclose the list of eLements.
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The usual way to specify a set, however, is to take some set A of objects and some
property that elements of A may or may not possess, and to form the set consistfng
of all elements of A having that property. For instance, one might take the set of
real numbers and form the subset B consisting of all even integers. In symbols, this
statement becomes

B = {x
I
x is an even integer).

Here the braces stand for the words "the set of," and the vertical bar stands for the
words "such that." The equation is read "B is the set of all x such that x an even
integer."

The Union of Sets and the Meaning of "or"

Given two sets A and B, one can form a set from them that consists of all the elements
of A together with all the elements of B. This set is called the union of A and B and
is denoted by A U B. Formally, we define

A U B = {x
I
x E A orx E B).

But we must pause at this point and make sure exactly what we mean by the statement
"x E A orx E B."

In ordinary everyday English, the word "or" is ambiguous. Sometimes the state-
ment "P or Q" means "P or Q, or both" and sometimes it means "P or Q, but not
both." Usually one decides from the context which meaning is intended. For example,
suppose I spoke to two students as follows:

"Miss Smith, every student registered for this course has taken either a course in
linear algebra or a course rn analysis."

"Mr. Jones, either you get a grade of at least 70 on the final exam or you will flunk
this course"

In the context, Miss Smith knows perfectly well that I mean "everyone has had linear
algebra or analysis, or both:' and Mr. Jones knows I mean "either he gets at least 70
or he flunks, but not both." Indeed, Mr. Jones wouLd be exceedingly unhappy if both
statements turned out to be true!

In mathematics, one cannot tolerate such ambiguity. One has to pick just one
meaning and stick with it, or confusion will reign. Accordingly, mathematicians have
agreed that they will use the word "or" in the first sense, so that the statement "P or Q"
always means "P or Q, or both." If one means "P or Q, but not both," then one has to
include the phrase "but not both" explicitly.

With this understanding, the equation defining A U B is unambiguous; it states that
A U B is the set consisting of all elements x that belong to A or to B or to both.
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The Intersection of Sets, the Empty Set, and the Meaning of "If... Then"

Given sets A and B, another way one can form a set is to take the common part of A
and B. This set is called the intersection of A and B and is denoted by AflB. Formally,
we define

A flB —{x xE Aandx E B).

But just as with the definition of A U B, there is a difficulty. The difficulty is not in the
meaning of the word "and"; it is of a different sort. It arises when the sets A and B
happen to have no elements in common. What meaning does the symbol A fl B have
in such a case?

To take care of this eventuality, we make a special convention. We introduce a
special set that we call the empty set, denoted by 0, which we think of as "the set
having no elements."

Using this convention, we express the statement that A and B have no elements in
common by the equation

Afl B = e.

We also express this fact by saying that A and B are disjoint.
Now some students are bothered by the notion of an "empty set." "How," they say,

"can you have a set with nothing in it?" The problem is similar to that which arose
many years ago when the number 0 was first introduced.

The empty set is only a convention, and mathematics could very well get along
without it. But it is a very convenient convention, for it saves us a good deal of
awkwardness in stating theorems and in proving them. Without this convention, for
instance, one would have to prove that the two sets A and B do have elements in
common before one could use the notation A fl B. Similarly, the notation

C = {x
I
x E A and x has a certain property)

could not be used if it happened that no element x of A had the given property. It is
much more convenient to agree that A fl B and C equal the empty set in such cases.

Since the empty set 0 is merely a convention, we must make conventions relating
it to the concepts already introduced. Because 0 is thought of as "the set with no
elements," it is clear we should make the convention that for each object x, the relation
x E 0 does not hold. Similarly, the definitions of union and intersection show that for
every set A we should have the equations

AUO=A and AflO=0.

The inclusion relation is a bit more tricky. Given a set A, should we agree that
0 C A? Once more, we must be careful about the way mathematicians use the English
language. The expression 0 C A is a shorthand way of writing the sentence, "Every
element that belongs to the empty set also belongs to the set A ." Or to put it more
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formally, "For every object x, if x belongs to the empty set, then x also belongs to the
set A."

Is this statement true or not? Some might say "yes" and others say 'no." You
will never settle the question by argument, only by agreement. This is a statement of
the form "If P, then Q," and in everyday English the meaning of the "if... then'
construction is ambiguous. It always means that if P is true, then Q is true also.
Sometimes that is all it means; other times it means something more: that if P is false,

Q must be false. Usually one decides from the context which interpretation is correct.
The situation is similar to the ambiguity in the use of the word "or." One can refor-

mulate the examples involving Miss Smith and Mr. Jones to illustrate the anibiguity.
Suppose I said the following:

"Miss Smith, if any student registered for this course has not taken a course in
linear algebra. then he has taken a course in analysis."

"Mr. Jones, if you get a grade below 70 on the final, you are going to flunk this
course."

In the context, Miss Smith understands that if a student in the course has not had linear
algebra, then he has taken analysis, but if he has had linear algebra, he may or may not
have taken analysis as well. And Mr. Jones knows that if he gets a grade below 70, he
will flunk the course, but he gets a grade of at least 70, he will pass.

Again, mathematics cannot tolerate ambiguity, so a choice of meanings must be
made. Mathematicians have agreed always to use "if... then" in the first sense, so
that a statement of the form "If P. then Q" means that if P is true, Q is true also, but
if P is false, Q may be either true or false.

As an example, consider the following statement about real numbers:

If x > 0. then x3 0.

It is a statement of the form, "If P, then Q," where P is the phrase "x > 0" (called
the hypothesis of the statement) and Q is the phrase "x3 0" (called the conclusion
of the statement). This is a true statement, for in every case for which the hypothesis
x > 0 holds, the conclusion x3 0 holds as well.

Another true statement about real numbers is the following:

If x2 <0, then x = 23;

in every case for which the hypothesis holds, the conclusion holds as well. Of course,
it happens in this example that there are no cases for which the hypothesis holds. A
statement of this sort is sometimes said to be vacuously true.

To return now to the empty set and inclusion, we see that the inclusion 0 C A
does hold for every set A. Writing 0 C A is the same as saying, "If x E 0, then
x E A?' and this statement is vacuously true.
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Contrapositive and Converse

Our discussion of the "if... then" construction leads us to consider another point of
elementary logic that sometimes causes difficulty. It concerns the relation between a
statement, its contrapositive, and its converse.

Given a statement of the form "If P, then Q," its contrapositive is defined to be
the statement "If Q is not true, then P is not true." For example, the contrapositive of
the statement

if x > 0, then x3 0,

is the statement

If x3 = 0, then it is not true that x > 0.

Note that both the statement and its contrapositive are true. Similarly, the statement

If x2 <0. then x = 23,

has as its contrapositive the statement

If x 23, then it is not true that x2 <0.

Again, both are true statements about real numbers.
These examples may make you suspect that there is some relation between a state-

ment and its contrapositive. And indeed there is; they are two ways of saying precisely
the same thing. Each is true if and only if the other is true; they are logically
lent.

This fact is not hard to demonstrate. Let us introduce some notation first. As a
shorthand for the statement "If P, then Q' we write

P Q,

which is read "P implies Q." The contrapositive can then be expressed in the form

(not Q) . (not P),

where "not Q" stands for the phrase "Q is not true."
Now the only way in which the statement "P Q" can fail to be correct is if the

hypothesis P is true and the conclusion Q is false. Otherwise it is correct. Similarly,
the only way in which the statement (not Q) (not P) can fail to be correct is if
the hypothesis "not Q" is true and the conclusion "not P" is false. This is the same
as saying that Q is false and P is true. And this, in turn, is precisely the situation in
which P Q fails to be correct. Thus, we see that the two statements are either both
correct or both incorrect; they are logically equivalent. Therefore, we shaLl accept a
proof of the statement "not Q not P" as a proof of the statement "P Q."

There is another statement that can be formed from the statement P Q. It is
the statement

Q . P,
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which is called the converse of P Q. One must be careful to distinguish between a
statement's converse and its contrapositive. Whereas a statement and its contrapositive
are logically equivalent, the truth of a statement says nothing at all about the truth or
falsity of its converse. For example, the true statement

If x > 0, then x3 0,

has as its converse the statement

If x3 0, then x > 0,

which is false. Similarly, the true statement

If x2 <0, then x = 23,

has as its converse the statement

If x = 23, then

which is false.
If it should happen that both the statement P Q and its converse Q P are

true, we express this fact by the notation

P Q,

which is read "P holds if and only if Q holds."

Negation

If one wishes to form the contrapositive of the statement P Q, one has to know
how to form the statement "not P," which is called the negation of P. In many cases,
this causes no difficulty; but sometimes confusion occurs with statements involving the
phrases "for every" and "for at least one." These phrases are called logical quantifiers.

To illustrate, suppose that X is a set, A is a subset of X, and P is a statement about
the general element of X. Consider the following statement:

(*) For every x E A, statement P holds.

How does one form the negation of this statement? Let us translate the problem into
the language of sets. Suppose that we let B denote the set of all those elements x
of X for which P holds. Then statement (*) is just the statement that A is a subset
of B. What is its negation? Obviously, the statement that A is not a subset of B; that
is, the statement that there exists at least one element of A that does not belong to B.
Translating back into ordinary language, this becomes

For at least one x E A, statement P does not hold

Therefore, to form the negation of statement (*), one replaces the quantifier "for every"
by the quantifier "for at least one," and one replaces statement P by its negation.
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The process works in reverse just as well; the negation of the statement

is the statement

For at least one x E A, statement Q holds,

For every x E A, statement Q does not hold.

The Difference of Two Sets

We return now to our discussion of sets. There is one other operation on sets that is
occasionally useful. It is the difference of two sets, denoted by A — B, and defined as
the set consisting of those elements of A that are not in B. Formally,

A — B ={x xE A andx B).

It is sometimes called the complement of B relative to A, or the complement of B in A.
Our three set operations are represented schematically in Figure 1.1.

Al

Rules of Set Theory

Given several sets, one may form new sets by applying the set-theoretic operations to
them. As in algebra, one uses parentheses to indicate in what order the operations are
to be performed. For example, A U (B fl C) denotes the union of the two sets A and
B fl C, while (A U B) fl C denotes the intersection of the two sets A U B and C. The
sets thus formed are quite different, as Figure 1.2 shows.

Figure 1.2

B

Figure 1.1
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Sometimes different combinations of operations lead to the same set; when that
happens, one has a rule of set theory. For instance, it is true that for any sets A, B,
and C the equation

Afl(BUC) = (Afl B)U(AflC)

holds. The equation is illustrated in Figure 1.3; the shaded region represents the set in
question, as you can check mentally. This equation can be thought of as a "distributive
law" for the operations fl and U.

A

Other examples of set-theoretic rules include the second "distributive law,"

AU (BflC) = (A U B) fl (A UC),

and DeMorgan 's laws,

A —(BUC)=(A — B)fl(A —C),

A —(BflC)=(A —B)U(A —C).

We leave it to you to check these rules. One can state other rules of set theory, but
these are the most important ones. DeMorgan's laws are easier to remember if you
verbalize them as follows:

The complement of the union equals the intersection of the complements.
The complement of the intersection equals the union of the complements.

Collections of Sets

The objects belonging to a set may be of any sort. One can consider the set of all even
integers, and the set of all blue-eyed people in Nebraska, and the set of all decks of
playing cards in the world. Some of these are of limited mathematical interest, we
admit! But the third example illustrates a point we have not yet mentioned: namely,
that the objects belonging to a set may themselves be sets. For a deck of cards is itself
a set, one consisting of pieces of pasteboard with certain standard designs printed on
them. The set of all decks of cards in the world is thus a set whose elements are
themselves sets (of pieces of pasteboard).

C

Figure 1.3
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We now have another way to form new sets from old ones. Given a set A, we can
consider sets whose elements are subsets of A. In particular, we can consider the set
of all subsets of A. This set is sometimes denoted by the symbol and is called
the power set of A (for reasons to be explained later).

When we have a set whose elements are sets, we shall often refer to it as a collec-
tion of sets and denote it by a script letter such as A or £. This device will help us
in keeping things straight in arguments where we have to consider objects, and sets of
objects, and collections of sets of objects, all at the same time. For example, we might
use A to denote the collection of all decks of cards in the world, letting an ordinary
capital letter A denote a deck of cards and a lowercase letter a denote a single playing
card.

A certain amount of care with notation is needed at this point. We make a distinc-
tion between the object a, which is an element of a set A, and the one-element set {a},
which is a subset of A. To illustrate, if A is the set {a, b, c), then the statements

aEA, {a)CA, and

(a) E A a A

and Intersections

We have already defined what we mean by the union and the intersection of two sets.
There is no reason to limit ourselves to just two sets, for we can just as well form the
union and intersection of arbitrarily many sets.

Given a collection A of sets, the union of the elements of A is defined by the
equation

U A = {x
I
x E A for at least one A E A).

The intersection of the elements of A is defined by the equation

fl A = {x
I
x E A forevery A A).

A€A

There is no problem with these definitions if one of the elements of A happens to be
the empty set. But it is a bit tricky to decide what (if anything) these definitions mean
if we allow A to be the empty collection. Applying the definitions literally, we see that
no element x satisfies the defining property for the union of the elements of A. So it is
reasonable to say that

U A =0
A€A

if A is empty On the other hand, every x satisfies (vacuously) the defining property for
the intersection of the elements of A. The question is, every x in what set? If one has a
given large set X that is specifIed at the outset of the discussion to be one's "universe of
discourse," and one considers only subsets of X throughout, it is reasonable to let

flA=x
A€A
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when A is empty Not all mathematicians follow this convention, however. To avoid
difficulty, we shall nor define the intersection when A is empty.

Cartesian Products

There is yet another way of forming new sets from old ones; it involves the notion of an
"ordered pair" of objects. When you studied analytic geornetiy, the first thing you did
was to convince yourself that after one has chosen an x-axis and a y-axis in the plane,
every point in the plane can be made to correspond to a unique ordered pair (x, y) of
real numbers. (In a more sophisticated treatment of geometry, the plane is more likely
to be defined as the set of all ordered pairs of real numbers!)

The notion of ordered pair carries over to general sets. Given sets A and B, we
define their cartesian product A x B to be the set of all ordered pairs (a, b) for which a
is an element of A and b is an element of B. Formally,

A x B ={(a,b)Ia E AandbE B).

This definition assumes that the concept of "ordered pair" is already given. It can be
taken as a primitive concept, as was the notion of "set'; or it can be given a definition in
terms of the set operations already introduced. One definition in terms of set operations is
expressed by the equation

(a, b) = ffaj, fa, bJJ;

it defines the ordered pair (a, b) as a collection of sets. If a b, this definition says that
(a, b) is a collection containing two sets, one of which is a one-element set and the other
a two-element set. The first coordinate of the ordered pair is defined to be the element
belonging to both sets, and the second coordinate is the element belonging to only one of
the sets. If a = b, then (a, b) is a collection containing only one set fa}, since (a, bJ =
a, aJ = (aJ in this case. Its first coordinate and second coordinate both equal the element

in this single set.
I think it is fair to say that most mathematicians think of an ordered pair as a pnmitive

concept rather than thinking of it as a collection of sets!

Let us make a comment on notation. It is an unfortunate fact that the notation (a, b)
is firmly established in mathematics with two entirely different meanings. One mean-
ing, as an ordered pair of objects, we have just discussed. The other meaning is the
one you are familiar with from analysis; if a and bare real numbers, the symbol (a, b)
is used to denote the interval consisting of all numbers x such that a <x <b. Most of
the time, this conflict in notation will cause no difficulty because the meaning will be
clear from the context. Whenever a situation occurs where confusion is possible, we
shall adopt a different notation for the ordered pair (a, b), denoting it by the symbol

axb

instead.
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Exercises

1. Check the distributive laws for U and fl and DeMorgan's laws.

2. Determine which of the following statements are true for all sets A, B, C, and D.
If a double implication fails, determine whether one or the other of the possible
implications holds. If an equality fails, determine whether the statement be-
comes true if the "equals" symbol is replaced by one or the other of the inclusion
symbols C or J.
(a) AC BandA CC Ac (BUC).
(b) AC BorA CC Ac (BUC).
(c) Ac BandA cc AC (BflC).
(d) AcBorA c(BflC).
(e) A — (A — B) = B.
(f) A—(B—A)=A—B.
(g) Afl(B—C)=(AnB)—(AflC).
(h) AU(B—C)=(AUB)---(AUC).
(1) (AflB)U(A —B)= A.
(j)
(k) The converse of (j).
(1) The converse of (j), assuming that A and B are nonernpty.
(ru) (A x B)U(C x D) =(AuC) x (BUD).
(n) (Ax B)fl(C x D) =(A flC) x (BflD).
(o) Ax(B—C)=(A xB)—(A xc).
(p)(A—B)x(C--D)=(AxC—BxC)—AxD.
(q) (A x B) — (C x D) = (A — C) x (B — D).

3. (a) Write the contraposit.ive and converse of the following statement: "If x <0,
then x2 — x > 0," and determine which (if any) of the three statements are
true.

(b) Do the same for the statement "If x > 0, then x2 — x > 0."

4. Let A and B be sets of real numbers. Wnte the negation of each of the following
statements:
(a) For every a E A, it is true that a2 E B.
(b) Foratleastonea E A, it is truethata2 E B.
(c) For every a E A, it is true that a2 B.
(d) For at least one a A, it is true that a2 E B.

5. Let A be a nonempty collection of sets. Deternune the truth of each of the
following statements and of their converses:
(a) x E UA€A A x E A for at least one A E A.
(b) x E UAEA A x E A forevery A E A.
(c) x E flA€A A x E A for at least one A E A.
(d)

6. Write the contrapositive of each of the statements of Exercise 5.
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7. Given sets A, B, and C, express each of the following sets in terms of A, B,
and C, using the symbols U, fl, and —.

D={xfx E Aand (x E Borx EC)),
E = {x I(x E A andx E B)orx E C),

F ={x Ix EAand(x E B EC)).

8. If a set A has two elements, show that has four elements. How many
elements does have if A has one element? Three elements? No elements?
Why is called the power set of A?

9. Formulate and prove DeMorgan's laws for arbitrary unions and intersections.

10. Let IR denote the set of real numbers. For each of the following subsets of IR x IR,
determine whether it is equal to the cartesian product of two subsets of R.
(a) {(x, y) x is an integer).
(b)

{(x, y)
I
x is not an integer and y is an integer).

(e) {(x, y) I x2 + y2 < 1).

§2 Functions

The concept of frnction is one you have seen many times already, so it is hardly nec-
essary to remind you how central it is to all mathematics. In this section, we give the
precise mathematical definition, and we explore some of the associated concepts.

A function is usually thought of as a rule that assigns to each element of a set A,
an element of a set B. In calculus, a function is often given by a simple formula such
as f(x) = 3x2 + 2 or perhaps by a more complicated formula such as

f(x) =

One often does not even mention the sets A and B explicitly, agreeing to take A to be
the set of all real numbers for which the rule makes sense and B to be the set of all real
numbers.

As one goes further in mathematics, however, one needs to be more precise about
what a function is. Mathematicians think of functions in the way we just described,
but the definition they use is more exact. First, we define the following:

Definition. A rule of assignment is a subset r of the cartesian product C x D of two
sets, having the property that each element of C appears as the first coordinate of at
most one ordered pair belonging to r.
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Thus, a subset r of C x D is a rule of assignment if

j(c, d) E r and (c, d') E r] . Ed = d'l.

We think of r as a way of assigning, to the element c of C, the element d of D for
which (c, d) E r.

Given a rule of assignment r, the domain of r is defined to be the subset of C
consisting of all first coordinates of elements of r, and the image set of r is defined as
the subset of D consisting of all second coordinates of elements of r. Formally,

domain r = {c
I

there exists d E D such that (c, d) E r},
image r = {d

I
there exists c E C such that (c, d) E r}.

Note that given a rule of assignment r, its domain and image are entirely determined.
Now we can say what a function is.

Definition. Afunction f is a rule of assignment r, together with a set B that contains
the image set of r. The domain A of the rule r is also called the domain of the
function f; the image set of r is also called the image set of f; and the set B is called
the range of

f is a function having domain A and range B, we express this fact by writing

f: A —÷ B,

which is read "f is a function from A to B," or "f is a mapping from A into B," or
simply "f maps A into B." One sometimes visualizes f as a geometnc transformation
physically carrying the points of A to points of B.

1ff. A -+ B and if a is an element of A, we denote by f(a) the unique element
of B that the rule determining f assigns to a; it is called the value of f at a, or
sometimes the image of a under f. Formally, if r is the rule of the function f, then
f(a) denotes the unique element of B such that (a, f(a)) E r.

Using this notation, one can go back to defining functions almost as one did before,
with no lack of rigor. For instance, one can write (letting R denote the real numbers)

"Let f be the function whose rule is {(x, x3 + 1) I
x E R} and whose

range is R,"

or one can equally well write

"Let f IR —* IR be the function such that f(x) = x3 + 1."

Both sentences specify precisely the same function. But the sentence "Let f be the
function f(x) = x3 + 1" is no longer adequate for specifying a function because it
specifies neither the domain nor the range of f.

tAnalysts are apt to use the word "range" to denote what we have called the "image set' of I
They avoid giving the set B a name.
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Definition. If 1: A -+ B and if Ao is a subset of A, we define the restriction of f
to A0 to be the function mapping A0 into B whose rule is

{(a,f(a))jaEAo}.

It is denoted by hA0, which is read "f restricted to A0."

EXAMPLE I. Let JR denote the real numbers and let JR÷ denote the nonnegative reals.
Consider the functions

definedby f(x)=x2,
g R÷ —+ JR defined by g(x) = x2,
h . JR —+ R÷ defined by h(x)
k . —+ defined by k(x) =

The function g is different from the function f becausetheir rules are different subsets of
JR x JR; it is the restriction of f to the set JR+. The function h is also different from f, even
though their rules are the same set, because the range specified for h is different from the
range specified for f. The function k is different from all of these. These functions are
pictured in Figure 2 1

Figure 2.1

Restricting the domain of a function and changing its range are two ways of form-
ing a new function from an old one. Another way is to form the composite of two
functions.

Definition. Given functions f: A -+ B and g : B -+ C, we define the composite
g o f off and g as the function g o f: A —÷ C defined by the equation (g o f)(a) =
g(f(a)).

Formally, g o f: A —÷ C is the function whose rule is

((a, c)
I
For some b E B, f(a) = band g(b) = c}.

We often picture the composite g o f as involving a physical movement of the point a
to the point f(a), and then to the point g(f(a)), as illustrated in Figure 2.2.

Note that g o f is defined only when the range of f equals the domain of g.
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EXAMPLE 2. The composite of the function f JR —+ JR given by f(x) = 3x2 + 2 and
the function g 1k JR given by g(x) = 5x is the function g o f JR —* JR given by

(g o f)(x) = g(f(x)) = g(3x2 + 2) = 5(3x2 + 2).

The composite f o g can also be formed in this case; it is the quite different function
1 o g : JR —÷ JR given by

(f o g)(x) = f(g(x)) f(5x) = 3(5x)2 + 2.

Definition. A function f: A —+ B is said to be injective (or one-to-one) if for each
pair of distinct points of A, their images under f are distinct. It is said to be surfective
(or f is said to map A onto B) if every element of B is the image of some element
of A under the function f. If f is both injective and surjective, it is said to be bjjective
(or is called a one-to-one correspondence).

More formally, f is injective if

[f(a) = f(a')l . [a = a'l,

and f is surjective if

[bE B] [b f(a)foratleastonea A].

Injectivity of f depends only on the rule of f; surjectivity depends on the range
of f as well. You can check that the composite of two injective functions is injec-
tive, and the composite of two surjective functions is surjective; it follows that the
composite of two bijective functions is bijective.

If f is bijective, there exists a function from B to A called the inverse of f. It is
denoted by f' and is defined by letting f'(b) be that unique element a of A for
which f(a) = b. Given b E B, the fact that f is surjective implies that there exists
such an element a E A; the fact that f is injective implies that there is only one such
element a. It is easy to see that ff is bijective, is also bijective.

EXAMPLE 3. Consider again the functions 1, g, h, and k of Figure 2.1. The function
f : JR —* JR given by f(x) = x2 is neither injective nor surjective. fts_restnction g to the
nonnegative reals is injective but not surjective. The function h : JR —* JR+ obtained from f

B

Figure 2.2
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by changing the range is surjective but not injective. The function k IR÷ obtained
from f by restricting the domain and changing the range is both injective and surjective,
so it has an inverse. Its inverse is, of course, what we usually call the square-root fisnction.

A useful criterion for showing that a given function f is bijective is the following,
whose proof is left to the exercises:

Lemma 2.1. Letf A -+ B. If there are functionsg : B —+ A andh : B A

such that g(f(a)) = a for everya in A andf(h(b)) = b for everyb in B, then! is
bijectiveandg = h = f'.

Definition. Let f : A -+ B. If A0 is a subset of A, we denote by f(Ao) the set
of all images of points of A0 under the function f; this set is called the image of A0

under f. Formally,

f(Ao) = (bib = f(a) forat least onea E A0).

On the other hand, if B0 is a subset of B, we denote by f (B0) the set of all elements
of A whose images under f lie in B0; it is called the preimage of B0 under f (or the
"counterimage," or the "inverse image," of B0). Formally,

f'(Bo) = (a
I
f(a) E Bo).

Of course, there may be no points a of A whose images lie in B0; in that case, f1(Bo)
is empty.

Note that if f A —+ B is bijective and Bo C B, we have two meanings for the
notation f'(Bo). It can be taken to denote the preimage of B0 under the f
or to denote the image of B0 under the function f1 : B A. These two meanings
give precisely the same subset of A, however, so there is, in fact, no ambiguity.

Some care is needed if one is to use the f and notation correctly. The opera-
tion for instance, when applied to subsets of B, behaves very nicely; it preserves
inclusions, unions, intersections, and differences of sets. We shall use this fact fre-
quently. But the operation f, when applied to subsets of A, preserves only inclusions
and unions. See Exercises 2 and 3.

As another situation where care is needed, we note that it is not in general true that
= A0 and f(ft(Bo)) = B0. (See the following example.) The relevant

rules, which we leave to you to check, are the following: If 1: A -÷ B and if Ao C A
and B0 C B, then

Ao C f'(f(Ao)) and f(f'(Bo)) C Bo.

The first inclusion is an equality if f is injective, and the second inclusion is an equality
1ff is surjective.
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EXAMPLE 4 Consider the function I JR —+ JR given by f(x) = 3x2 + 2 (Figure 2.3)
Let [a, b] denote the closed interval a x b. Then

f1(f([O, 1])) = ft([2,5)) = [—1, 1),

f(ft([O 5])) = f([—1, 1]) = [2, 5].

and

Exercises

1. Letf:A—+ B.LetA0CAandB0CB.
(a) Show that A0 C f1 (f(Ao)) and that equality holds if f is injective.
(b) Show that f(f (B0)) C Bo and that equality holds if f is surjective.

2. Let 1: A —+ B and let A, C A and B1 C B for I = 0 and i = 1. Show that
preserves inclusions, unions, intersections, and differences of sets:
(a) B0 C B1 C f'(B1).
(b) f1(Bo U B1) = f'(Bo) U f'(B1).
(c) f'(Bo fl B1) =

f'(Bo — B1) = f'(Bo) —

f preserves inclusions and unions only:
(e) A0 C A1 f(Ao) C f(A1).

y = f(x)

Figure 2.3
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(f) f(Ao U A1) = f(Ao) U f(A1).
(g) f(A0 fl A1) C f(A0) fl f(A show that equality holds if f is irijective.
(h) f(Ao — A1) J f(A0) — f(A show that equality holds 1ff is injective.

3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and inter-
sections.

4. Let f: A Bandg : B —÷ C.
(a) IfC0 CC,showthat(gof)1(Co) = f1(g1(Co)).
(b) If f and g are injective, show that g o f is injective.
(c) If g o f is injective, what can you say about injectivity off and g?
(d) If f and g are surjective, show that g o f is surjective.
(e) If g o f is surjective, what can you say about surjectivity of f and g?
(f) Summarize your answers to (b)—(e) in the form of a theorem.

5. In general, let us denote the identity function for a set C by ic. That is, define
ic : C —+ C to be the function given by the rule ic(x) = x for all x E C.
Given f : A —+ Bwesaythatafunctiong : B —* A isaleft inverse for fif
gof =IA;andwesaythath : B —+ A isaright inverse forfiffoh =i8.
(a) Show that if f has a left inverse, f is injective; and if f has a right inverse,

f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(c) Give an example of a function that has a right inverse but no left inverse.
(d) Can a function have more than one left inverse? More than one right inverse?
(e) Show that if f has both a left inverse g and a right inverse h, then f is

bijective and g = h =
f : IR —+ IR be the function f(x) = x3 — x. By restricting the doniain and

range of f appropriately, obtain from f a bijective function g. Draw the graphs
of g and g1. (There are several possible choices for g.)

§3 Relations

A concept that is, in some ways, more general than that of function is the concept of
a relation. In this section, we define what mathematicians mean by a relation, and
we consider two types of relations that occur with great frequency in mathematics:
equivalence relations and order relations. Order relations will be used throughout the
book; equivalence relations will not be used until §22.

Definition. A relation on a set A is a subset C of the cartesian product A x A.

If C is a relation on A, we use the notation xCy to mean the same thing as (x, y) E
C. We read it "x is in the relation C to y."

A rule of assignment r for a function f: A —+ A is also a subset of A x A. But it
is a subset of a very special kind: namely, one such that each element of A appears as
the first coordinate of an element of r exactly once. Any subset of A x A is a relation
on A.
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EXAMPLE 1. Let P denote the set of all people in the world, and define D C P x P by
the equation

D= f(r,y) xisadescendantofyj.

Then D is a relation on the set P. The statements "x is in the relation D to y" and "x is
a descendant of y" mean precisely the same thing, namely, that (x, y) E D. Two other
relations on P are the following

B = f(x, y) x has an ancestor who is also an ancestor of yJ,

S = ((x, y) I the parents of x are the parents of y}.

We can call B the "blood relation" (pun intended), and we can call S the "sibling relation."
These three relations have quite different properties. The blood relationship is symmetric,
for instance (if x is a blood relative of y, then y is a blood relative of x), whereas the
descendant relation is not. We shall consider these relations again shortly.

Equivalence Relations and Partitions

An equivalence relation on a set A is a relation C on A having the following three
properties:

(I) (Reflexivity) xCx for every x in A.

(2) (Symmetry) If xCy, then yCx.

(3) (Transitivity) If xCy and yCz, then xCz.

EXAMPLE 2. Among the relations defined in Example 1, the descendant relation D is
neither reflexive nor symmetric, while the blood relation B is not transitive (I am not a
blood relation to my wife, although my children are!) The sibling relation S is, however,
an equivalence relation, as you may check.

There is no reason one must use a capital letter—or indeed a letter of any sort—
to denote a relation, even though it is a set. Another symbol will do just as well.
One symbol that is frequently used to denote an equivalence relation is the "tilde"
symbol Stated in this notation, the properties of an equivalence relation become

(1) x x for every x in A.

(2)

(3)

There are many other symbols that have been devised to stand for particular equiva-
lence relations; we shall meet some of them in the pages of this book.

Given an equivalence relation on a set A and an element x of A, we define a
certain subset E of A, called the equivalence class determined by x, by the equation

E = {y
I

y x}.

Note that the equivalence class E deternuned by x contains x, since x x. Equiva-
lence classes have the following property:
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Lemma 3.1. Two equivalence classes E and E' are either disjoint or equaL

Pmof Let E be the equivalence class determined by x, and let E' be the equivalence
class determined by x'. Suppose that E fl E' is not empty, let y be a point of E fl E'.
See Figure 3.1. We show that E E'.

By definition, we have y x and y x'. Symmetry allows us to conclude that
x y and y x'; from transitivity it follows that x x'. If now w is any point of E,
we have w x by definition; it follows from another application of transitivity that
w x'. We conclude that E C E'.

The symmetry of the situation allows us to conclude that E' C E as well, sb that
E=E'.

Given an equivalence relation on a set A, let us denote by & the collection of all
the equivalence classes determined by this relation. The preceding lemma shows that
distinct elements of & are disjoint. Furthermore, the union of the elements of & equals
all of A because every element of A belongs to an equivalence class. The collection &
is a particular example of what is called a partition of A

Definition. A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is all of A.

Studying equivalence relations on a set A and studying partitions of A are really
the same thing. Given any partition of A, there is exactly one equivalence relation
on A from which it is derived.

The proof is not difficult. To show that the partition comes from some equiv-
alence relation, let us define a relation C on A by setting xCy if x and y belong to
the same element of Symmetry of C is obvious; reflexivity follows from the fact
that the union of the elements of £ equals all of A; transitivity follows from the fact
that distinct elements of are disjoint It is simple to check that the collection of
equivalence classes determined by C is precisely the collection

To show there is only one such equivalence relation, suppose that C1 and C2 are
two equivalence relations on A that give nse to the same collection of equivalence
classes Given x E A, we show that yCix if and only if yC2x, from which we
conclude that C1 = C2. Let E1 be the equivalence class determined by x relative to
the relation Cj: let E2 be the equivalence class determined by x relative to the relation
C2. Then E1 is an element of so that it must equal the unique element D of £ that

Figure 3.1
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contains x. E2 must equal D. Now by definition, E1 consists of all y such
that yCix; and E2 consists of all y such that Since E1 = D = E2, our result is
proved.

EXAMPLE 3 Define two points in the plane to be equivalent if they lie at the same
distance from the ongin. Reflexivity, symmetry, and transitivity hold trivially. The collec-
tion S of equivalence classes consists of all circles centered at the ongin, along with the set
consisting of the origin alone.

EXAMPLE 4 DefIne two points of the plane to be equivalent if they have the same
y-coordinate. The collection of equivalence classes is the collection of all straight lines in
the plane parallel to the x-axis.

EXAMPLE 5. Let C be the collection of all straight lines in the plane parallel to the line
y = —x. Then C is a partition of the plane, since each point lies on exactly one such line.
The partition C comes from the equivalence relation on the plane that declares the points
(xo, yo) and (x,, yi)to be equivalent if xo + Yo = Xi + Y1

EXAMPLE 6 Let C' be the collection of all straight lines in the plane. Then C' is not
a partition of the plane, for distinct elements of C' are not necessarily disjoint; two lines
may intersect without being equal.

Order Relations

A relation C on a set A is called an order relation (or a simple order, or a linear order)
if it has the following properties:

(1) (Comparability) For every x and y in A for which x y, either xCy or yCx.

(2) (Nonrellexivity) For no x in A does the relation xCx hold.

(3) (Transitivity) If xCy and yCz, then xCz.
Note that property (1) does not by itself exclude the possibility that for some pair of
elements x and y of A, both the relations xCy and yCx hold (since "or" means "one
or the other, or both"). But properties (2) and (3) combined do exclude this possibil-
ity; for if both xCy and yCx held, transitivity would imply that xCx, contradicting
nonreflexivity.

EXAMPLE 7. Consider the relation on the real line consisting of all pairs (x, y) of real
numbers such that x < y. It is an order relation, called the "usual order relation," on the
real line. A less familiar order relation on the real line is the following: Define x Cy if
x2 <y2, or if x2 = y2 and x <y. You can check that this is an order relation.

EXAMPLE 8. Consider again the relationships among people given in Example I. The
blood relation B satisfIes none of the properties of an order relation, and the sibling rela-
tion S satisfies only (3). The descendant relation D does somewhat better, for it satisfies
both (2) and (3); however, comparability still fails. Relations that satisfy (2) and (3) occur
often enough in mathematics to be given a special name. They are called strict partial
order relations; we shall consider them later (see § 11).
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As the tilde, -S--, is the generic symbol for an equivalence relation, the "less than"
symbol, <,is commonly used to denote an order relation. Stated in this notation, the
properties of an order relation become

(1) If x y, then either x <y or y <x.
(2) If x <y,thenx
(3) If x <y and y <z, then x <z.

We shall use the notation x < y to stand for the statement "either x < y or x = y";
and we shall use the notation y > x to stand for the statement "x < y." We write
x <y <ztomean"x <yandy <z."

Definition. If X is a set and < is an order relation on X, and if a < b, we use the
notation (a, b) to denote the set

fx I a <x

it is called an open interval in X. If this set is empty, we call a the immediate prede-
cessor of b, and we call b the immediate successor of a.

Definition. Suppose that A and B are two sets with order relations <A and <B
respectively. We say that A and B have the same order type if there is a bijective
correspondence between them that preserves order; that is, if there exists a bijective
function 1: A —* B such that

aj <A a2 f(ai) <B f(a2).

EXAMPLE 9. The interval (— 1, 1) of real numbers has the same order type as the set JR
of real numbers itself, for the function f (—1, 1) —* JR given by

is an order-preserving bijective correspondence, as you can check. It is pictured in Fig-
ure 3.2.

EXAMPLE 10. The subset A f0} U (1, 2) of JR has the same order type as the subset

lJ

of 1k. The function f. A —* [0. 1) defined by

f(0)=0,
f(x)=x—l forxE(1,2)

is the required order-preserving correspondence.

One interesting way of defining an order relation, which will be useful to us later
in dealing with some examples, is the following:
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y= x/(1 —x2)

Definition. Suppose that A and B are two sets with order relations <A and <B
respectiveLy. Define an order relation <on A x B by defining

ai x <a2 X 1,2

if <A (12, or if — and b1 <B b2. It is called the dictiona,y order relation on
A x B.

Checking that this is an order reLation involves looking at several separate cases;
we leave it to you.

The reason for the choice of terminology is fairly evident. The rule defining < is

the same as the rule used to order the words in the dictionary. Given two words, one
compares their first letters and orders the words according to the order in which their
first letters appear in the alphabet. If the first letters are the same, one compares their
second letters and orders accordingly. And so on.

EXAMPLE 11. Consider the dictionary order on the plane R x R. In this order, the
point p is less than every point lying above it on the vertical line through p. and p is less
than every point to the right of this vertical line.

EXAMPLE 12 Consider the set (0, 1) of real numbers and the setZ÷ of positive integers,
both in their usual orders; give Z÷ x (0, 1) the dictionary order. This set has the same order
type as the set of nonnegative reals; the function

f(n x t) = n + t —

is the required bijective order-preserving correspondence. On the other hand, the set
[0. 1) x in the dictionary order has quite a different order type; for example, every
element of this ordered set has an immediate successor. These sets are pictured in
ure3.3.

Figure 3.2



§3 Relations 27

.

.

1111•••
Z÷x [0,1)

[0,1) x Z÷

Figure 3.3

One of the properties of the real numbers that you may have seen before is the
"least upper bound property." One can define this property for an arbitrary ordered set.
First, we need some preliminary definitions.

Suppose that A is a set ordered by the relation <. Let A0 be a subset of A. We
say that the element b is the largest element of A0 if b Ao and if x b for every
x Ao. Similarly, we say that a is the smallest element of Ao if a A0 and if a x
for every x Ao. It is easy to see that a set has at most one largest element and at
most one smallest element.

We say that the subset A0 of A is bounded above if there is an element b of A such
that x b for every x A0; the eLement b is caLLed an upper bound for A0. If the
set of all upper bounds for A0 has a smaLLest element, that element is called the least
upper bound, or the supremum, of A0. It is denoted by sup Ao; it may or may not
belong to A0. If it does, it is the largest eLement of A0.

Similarly, Ao is bounded below if there is an eLement a of A such that a x for
every x E Ao; the element a is caLled a lower bound for A0. If the set of all lower
bounds for Ao has a largest element, that element is called the greatest lower bound,
or the infimum, of Ao. It is denoted by inf A0, it may or may not belong to A0. If it
does, it is the smallest element of Ao.

Now we can define the least upper bound property.

Definition. An ordered set A is said to have the least upperbound property if every
nonempty subset A0 of A that is bounded above has a least upper bound. Analogously,
the set A is said to have the greatest lower bound property if every nonempty subset
Ao of A that is bounded below has a greatest lower bound.

We leave it to the exercises to show that A has the least upper bound property if
and only if it has the greatest lower bound property.

EXAMPLE 13. Consider the set A = (—1, 1) of real numbers in the usual order. As-
suming the fact that the real numbers have the least upper bound property, it follows that
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the set A has the least upper bound property. For, given any subset of A having an upper
bound in A, it follows that its least upper bound (in the real numbers) must be in A. For
example, the subset (—l/2n I n E Z÷) of A, though it has no largest element, does have a
least upper bound in A, the number 0.

On the other hand, the set B = (—1, 0) U (0. 1) does not have the least upper bound
property. The subset (—1/2n I n E Z÷) of B is bounded above by any element of (0, 1),
but it has no least upper bound in B.

Exercises

Equivalence Relations

1. Define two points (xo, Yo) and (xi, of the plane to be equivalent if — =
— Check that this is an equivalence relation and describe the equivalence

classes

2. Let C be a relation on a set A. If A0 C A, define the restriction of C to A0 to be
the relation C fl (Ao x A0). Show that the restnction of an equivalence relation
is an equivalence relation.

3. Here is a "proof" that every relation C that is both symmetnc and transitive is
also reflexive: "Since C is symmetnc, aCb implies bCa. Since C is transitive,
aCb and bCa together impLy aCa, as desired." Find the flaw in this argument.

4. Let f: A —÷ B be a surjective function. Let us define a relation on A by setting
ao if

f(ao) =

(a) Show that this is an equivalence relation.
(b) Let A* be the set of equivalence classes. Show there is a bijective correspon-

dence of A* with B.

5. Let S and S' be the following subsets of the plane.

5= ((x,y) I y =x+ 1 andO <x <2),
5' = {(x, y) I y — x is an integer}.

(a) Show that S' is an equivalence relation on the real line and 5' S. Descnbe
the equivalence classes of 5'.

(b) Show that given any collection of equivalence relations on a set A, their
intersection is an equivalence relation on A.

(c) Descnbe the equivalence relation T on the real line that is the intersection
of all equivalence relations on the real line that contain S. Descnbe the
equivalence classes of T.
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Order Relations

6. Define a relation on the plane by setting

(xo,yo) <

ifeithery0 = —x? andx0 <xi. Show that this
is an order relation on the plane, and descnbe it geometncally.

7. Show that the restnction of an order relation is an order reLation.

8. Check that the relation defined in Example 7 is an order relation.

9. Check that the dictionary order is an order relation.

10. (a) Show that the map f: (—1, 1) —÷ IR of Example 9 is order preserving.
(b) Show that the equation g(y) = 2y/[l + (1 + 4y2)1"2] defines a function

g IR —÷ (—1, 1) that is both a left and a nght inverse for f.

11. Show that an element in an ordered set has at most one immediate successor and
at most one immediate predecessor. Show that a subset of an ordered set has at
most one smallest element and at most one largest element.

12. Let Z÷ denote the set of positive integers. Consider the following order relations
on Z÷ x

(i) The dictionary order.

(ii) (xO, YO) < (xi, if either xo — < x1 — orxo — yo = — yi and
yo <yt.

(iii) (xO, YO) < (x1, Yt) if either xo + yo + orxo + yo = + and

yo <yl.
In these order relations, which elements have immediate predecessors? Does the
set have a smallest element? Show that aLl three order types are different.

13. Prove the following:
Theorem. If an ordered set A has the least upper bound pmperty, then it has the

greatest lower bound pmperty.

14. If C is a relation on a set A, define a new relation D on A by letting (b, a) D
if(a,b) C.
(a) Show that C is symmetnc if and only if C = D.
(b) Show that if C is an order relation, D is also an order relation.
(c) Prove the converse of the theorem in Exercise 13.

15. Assume that the real line has the least upper bound property.
(a) Show that the sets

l},
[0, 1) = {x 0 <x < 1)

have the least upper bound property.
(b) Does [0, 1] x [0, in the dictionary order have the least upper bound prop-

erty? What about [0, 1] x [0, 1)? What about [0, 1) x [0, 1]?
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§4 The Integers and the Real Numbers

Up to now we have been discussing what might be called the logical foundations for
our study of topology—the elementary concepts of set theory. Now we turn to what
we might call the mathematical foundations for our study—the integers and the real
number system. We have already used them in an informal way in the examples and
exercises of the preceding sections. Now we wish to deal with them more formally.

One way of establishing these foundations is to construct the real number system,
using only the axioms of set theory—to build them with one's bare hands, so to speak.
This way of approaching the subject takes a good deal of time and effort and is of
greater logical than mathematical interest.

A second way is simply to assume a set of axioms for the real numbers and work
from these axioms. In the present section, we shall sketch this approach to the real
numbers. Specifically, we shall give a set of axioms for the real numbers and shall
indicate how the familiar properties of real numbers and the integers are denved from
them. But we shall leave most of the proofs to the exercises. If you have seen all
this before, our description should refresh your memory. If not, you may want to
work through the exercises in detail in order to make sure of your knowledge of the
mathematical foundations.

First we need a definition from set theory.

Definition. A binary operation on a set A is a function f mapping A x A into A.

When dealing with a binary operation f on a set A, we usually use a notation
different from the standard functional notation introduced in §2. Instead of denoting
the value of the function f at the point (a, a') by f(a, a'), we usually write the symbol
for the function between the two coordinates of the point in question, writing the value
of the function at (a, a') as afa'. Furthermore (just as was the case with relations),
it is more common to use some symbol other than a letter to denote an operation.
Symbols often used are the plus symbol +, the multiplication symbols . and o, and the
astensk *; however, there are many others.

Assumption

We assume there exists a set R, called the set of realnumbers, two binary operations +
and on R, called the addition and multiplication operations, respectively, and an order
relation <on R, such that the following properties hold:

Algebraic Properties
(1) (x+y)+z=x+(y+z),

(x y) =x (y z) for all x, y, z in JR.

(2) x+y=y+x,
x .y = y .x forallx,y in JR.
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(3) There exists a unique element of JR called zero, denoted by 0, such thatx+0 = x
forallx ER.
There exists a unique element of JR called one, different from 0 and denoted by 1,
such that x 1 = x for all x E R.

(4) For each x in IR, there exists a unique y in R such that x + y = 0.

For each x in JR different from 0, there exists a unique y in JR such that x. y = 1.

(5) x (y +z) = (x y) +(x z) forallx, y,Z E JR.

A Mixed Algebraic and Order Pmperty

(6) If x > y,thenx+z> y+z.
If x > y and z > 0, thenx z > y z.

Order Pmperties
(7) The order relation <has the least upper bound property.

(8) If x < y, there exists an element z such that x < z and z < y.

From properties (1 )—(5) follow the familiar "laws of algebra." Given r, one de-
notes by —x that number y such that x + y = 0; it is called the negative of x. One
defines the subtraction operation by the formula z — x z + (—x). Similarly, given
x 0, one denotes by 1 /x that number y such that x y = 1; it is called the reciprocal
of x. One defines the quotient z/x by the formula z/x = z (1/x). The usual laws of
signs, and the rules for adding and multiplying fractions, follow as theorems. These
laws of algebra are listed in Exercise 1 at the end of the section. We often denote x y
simply by xy.

When one adjoins property (6) to properties (L)—(5), one can prove the usual "laws
of inequalities," such as the following:

If x >v and z < 0, then x < yz.
—1<0 and 0<1.

The laws of inequalities are listed in Exercise 2.
We define a number x to be positive if x > 0, and to be negative if x < 0. We

denote the positive reals by R+ and the nonnegative reals (for reasons to be explained
later) by JR÷. Properties (l)—(6) are familiar properties in modern algebra. Any set
with two binary operations satisfying (1 )—(5) is called by algebraists afield; if the field
has an order relation satisfying (6), it is called an orderedfield.

Properties (7) and (8), on the other hand, are familiar properties in topology. They
involve only the order relation; any set with an order relation satisfying (7) and (8) is
called by topologists a linear continuum.

Now it happens that when one adjoins to the axioms for an ordered field [proper-
ties (l)—(6)] the axioms for a linear continuum [properties (7) and (8)], the resulting
list contains some redundancies. Property (8), in particular, can be proved as a conse-
quence of the others; given x < y one can show that z = (x + y)/(l + 1) satisfies
the requirements of (8). Therefore, in the standard treatment of the real numbers,
properties (1 )—{7) are taken as axioms, and property (8) becomes a theorem. We have
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included (8) in our list merely to emphasize the fact that it and the least upper bound
property are the two crucial properties of the order relation for JR. From these two
properties many of the topological properties of JR may be denved, as we shall see in
Chapter 3.

Now there is nothing in this list as it stands to tell us what an integer is. We now
define the integers, using only properties (1 )—(6).

Definition. A subset A of the real numbers is said to be Inductive if it contains the
number 1, and if for every x in A, the numberx+ 1 is also in A. Let A be the collection
of all inductive subsets of R. Then the set Z÷ of positive integers is defined by the
equation

= fl A.
A €A

Note that the set R÷ of positive real numbers is inductive, for it contains 1 and
the statement x > 0 implies the statement x + 1 > 0. Therefore, Z÷ C JR+, so the
elements of are indeed positive, as the choice of terminology suggests. Indeed, one
sees readily that 1 is the smallest element of Z÷, because the set of all real numbers x
for which x > 1 is inductive.

The basic properties of Z÷, which follow readily from the definition, are the fol-
lowing:

(1) Z÷ is inductive.

(2) (Principle of induction). If A is an inductive set of positive integers, then A =
z+.

We define the set Z of integers to be the set consisting of the positive integers Z÷,
the number 0, and the negatives of the elements of Z÷. One proves that the sum,
difference, and product of two integers are integers, but the quotient is not necessarily
an integer. The set Q of quotients of integers is called the set of rational numbers.

One proves also that, given the integer n, there is no integer a such that n < a <
n +1.

lf n is a positive integer, we use the symbol to denote the set of all positive
integers less than n; we call it a section of the positive integers. The set Si is empty,
and denotes the set of positive integers between 1 and n, inclusive. We also use
the notation

(1 n}=Sn÷i

for the latter set.
Now we prove two properties of the positive integers that may not be quite so

familiar, but are quite useful. They may be thought of as alternative versions of the
induction pnnciple.

Theorem 4.1 (Well-ordering property). Every nonempty subset of Z÷ has a small-
est element.
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Proof We first prove that, for each n E Z÷, the following statement holds: Every
nonempty subset of (1 n } has a smallest element.

Let A be the set of all positive integers n for which this statement holds. Then A
contains 1, since if n = 1, the only nonempty subset of (1, . n } is the set { I

} itself.
Then, supposing A contains n, we show that it contains n + 1. So let C be a rionempty
subset of the set (1 n + 1}. If C consists of the single element n + 1, then that
element is the srnalLestelernentofC. Otherwise, considerthe set Cfl(1, ... ,z}, which
is nonernpty. Because n E A, this set has a smallest element, which will automatically
be the smallest element of C also. Thus A is inductive, so we conclude that A =
hence the statement is true for all n E Z÷.

Now we prove the theorem. Suppose that D is a nonernpty subset of Z÷. Choose
an element n of D. Then the set A = D fl (1 n} is nonernpty, so that A has a
smallest element k. The element k is automatically the smallest element of U as well.

U

Theorem 4.2 (Strong induction principle). Let A be a set of positive integers.
Suppose that for each positive integer n, the statement C A implies the statement
n E A. Then A = Z÷.

Pmof If A does not equal all of Z÷, let n be the smallest positive integer that is not
in A. Then every positive integer less than n is in A, so that C A. Our tiypothesis
implies that n A, contrary to assumption. U

Everything we have done up to now has used only the axioms for an ordered field,
properties (1 ).-{6) of the real numbers. At what point do you need (7), the least upper
bound axiom?

For one thing, you need the least upper bound axiom to prove that the set Z÷ of
positive integers has no upper bound in JR. This is the Archimedean ordering property
of the real line. To prove it, we assume that Z÷ has an upper bound and derive a
contradiction. If Z÷ has an upper bound, it has a least upper bound b. There exists
n E Z÷ such that n > b — 1; for otherwise, b — 1 would be an upper bound for Z÷
smaller than 1,. Then n + 1 > b, contrary to the fact that b is an upper bound for Z÷.

The least upper bound axiom is also used to prove a number of other things
about R. It is used for instance to show that JR has the greatest lower bound prop-
erty. It is also used to prove the existence of a unique positive square root for
every positive real number. This fact, in turn, can be used to demonstrate the existence
of real numbers that are not rational numbers; the number is an easy example.

We use the symbol 2 to denote 1 + 1, the symbol 3 to denote 2 + 1, and so on
through the standard symbols for the positive integers. It is a fact that this procedure
assigns to each positive integer a unique symbol, but we never need this fact and shall
not prove it.

Proofs of these properties of the integers and real numbers, along with a few other
properties we shall need later, are outlined in the exercises that follow.
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Exercises

1. Prove the following "laws of algebra" for R, using only axioms (l)—(5)
(a) lfx+y=x,theny=O.
(b) 0 x = 0. [Hint: Compute (x + 0) x.]
(c) —0=0.
(d)
(e) x(—y) = —(xy) = (—x)y.
(f) (—1)x = —x.

(g) x(y — z) = xy — xz.
(h) —(x +y) = —x — y; —(x — y) —x + y.
(i) If x 0 and x y = x, then y = 1.

(j)

(k) x/1=x.
(1)

(ru) (1/y)(1/z) = 1/(yz) if y,z
(n)

(x/y) + (w/z) = (xz + wy)/(yz) if y, z 0.

(p) x 1/x
(q) 1/(w/z) = z/w if w, z 0.

(r) (x/y)/(w/z) = if y, w, z 0.

(s) (ax)/y = a(x/y) if y 0.

(t) (—x)/y = x/(—y) = —(x/y) if y 0.

2. Prove the following "laws of inequalities" for JR. using axioms (1 )—(6) along with
the results of Exercise 1:
(a)

x > 0
x >

0 x
<0

x y are both positive or both negative.
(i)

x x < (x + y)/2 <y.
3. (a) Show that if A is a collection of inductive sets, then the intersection of the

elements of A is an inductive set.
(b) Prove the basic properties (I) and (2) of Z÷.

4. (a) Prove by induction that given n E Z÷, every nonempty subset of (1 n}

has a largest element.
(b) Explain why you cannot conclude from (a) that every nonempty subset of

has a largest element.
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5. Prove the following properties of Z and Z÷:
(a) a, b E a + b E Z÷. [Hint: Show that given a E Z÷, the set

X = {x
I
x E JR and a + x E Z÷ } is inductive.]

(b)
a E a E Z÷ U (0). [Hint: Let X = (x I

x IR and
x — I E Z÷ U (O}; show that X is inductive.]

(d) c, d Z C + d E Z and c — d E Z. [Hint. Prove it first for d 1.]

(e)

6. Let a E JR. Define inductively

a1 =a,
a

for n E Z÷. (See §7 for a discussion of the process of inductive definition.)
Show that for n, m E Z÷ and a, b E JR.

=
aflm

ambm =

These are called the laws ofexponents [Hint: For fixed n, prove the formulas
by induction on m.]

7. Let a E R and a 0. Define a0 = 1, and for n Z÷, = 1/an. Show that
the laws of exponents hold for a, b 0 and n, m E Z.

8. (a) Show that JR has the greatest lower bound property.
(b) Show that inf( 1/n n E Z÷} = 0.

(c) Show that given a with 0 < a < 1, inf(a" n E Z÷} = 0. [I-lint: Let
h = (1 —a)/a,andshow that (1 > I +nh.]

9. (a) Show that every nonempty subset of Z that is bounded above has a largest
element.

(b) Ifx Z,showthereisexactlyonen E Zsuchthatn <x <n +1.
(c) If x — y > 1, show there is at least one n E Z such that y <n <x.
(d) If y <x, show there is a rational number z such that y <z <x.

10. Show that every positive number a has exactly one positive square root, as
lows:
(a) Show that if x > 0 and 0 h < 1, then

(x+h)2 <x2 +h(2x+ 1),
(x —h)2 —h(2x).

(b) Letx >0. Showthatifx2 <a,then(x+h)2 <a forsomeh > O;andif
x2 > a, then (x — h)2 > a for some h > 0.
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(c) Given a > 0, let B be the set of all real numbers x such that x2 < a.

Show that B is bounded above and contains at least one positive number.
Let b = sup B; show that b2 = a.

(d) Show that if b and c are positive and b2 = C2, then b = c.

11. Given rn E Z, we say that rn is even if rn/2 E Z, and rn is odd otherwise.
(a) Show that if rn is odd, rn = 2n + 1 for some n E Z. [Hint: Choose n so that

n <rn/2 <n + 1.]
(b) Show that if p and q are odd, so are p q and p", for any n E Z÷.
(c) Show that if a > 0 is rational, then a = rn/n for some rn, n E Z÷ where

not both m and n are even. [Hint: Let n be the smallest element of the set
(xx EZ÷}.]

(d) Theorern. is irrational.

§5 Cartesian Products

We have already defined what we mean by the cartesian product A x B of two sets.
Now we introduce more general cartesian products.

Definition. Let A be a nonempty collection of sets. An indexing function for is
a surjective function f from some set J, called the index set, to A. The collection A,
together with the indexing function f, is called an indexed family of sets. Given
a E J, we shaLl denote the set f(a) by the symbol Aa. And we shall denote the
indexed family itself by the symbol

(Aa}a€j,

which is read "the family of all Aa, as a ranges over J." Sometimes we write merely
(Aa}, if it is clear what the index set is.

Note that although an indexing function is required to be surjective, it is not re-
quired to be injective. It is entirely possible for Aa and to be the same set of d4,
even though a

One way in which indexing functions are used is to give a new notation for arbi-
trary unions and intersections of sets. Suppose that f J —÷

A; let Aa denote f(a). Then we define

U Aa = (x
I
for at least one a E J, x E Aa },

aEJ

and

fl = (x I foreverya E J,x E Aal.
aEJ
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These are simply new notations for previously defined concepts; one sees at once
(using the surjectivity of the index function) that the first equals the union of all the
elements of and the second equals the intersection of all the elements of .4.

Two especially useful index sets are the set (1 n} of positive integers from 1
to n, and the set Z÷ of all positive integers. For these index sets, we introduce some
special notation. If a collection of sets is indexed by the set (1 n}, we denote the
indexed family by the symbol (A1 and we denote the union and intersection,
respectiveLy, of the members of this family by the symbols

and

In the case where the index set is the set Z÷, we denote the indexed family by the
symbol (A1, A2, ... }, and the union and intersection by the respective symtols

A1UA2U and A1flA2fl

Definition. Let m be a positive integer. Given a set X, we define an in-tuple of
elements of X to be a function

x:{1,. .,m}—÷X.

If x is an m-tuple, we often denote the value of x at i by the symbol x rather than x(i)
and call it the ith coordinate of x. And we often denote the function x itself by the
symbol

(Xi

Now let (A1 Am} be a family of sets indexed with the set (1 m}. Let X =
A1 U • U Am. We define the cartesian product of this indexed family, denoted by

flAI or AtxxAm,

to be the set of all m-tupLes (x1 xm) of elements of X such thatx, E A foreach i.

EXAMPLE 1. We now have two definitions for the symbol A x B. One definition is,
of course, the one given earlier, under which A x B denotes the set of all ordered pairs
(a, b) such that a E A and b E B. The second definition, just given, defines A x B as
the set of all functions x (1, 2} —+ A U B such that x(l) E A and x(2) E B. There
is an obvious bijective correspondence between these two sets, under which the ordered
pair (a, b) corresponds to the function x defined by x(1) = a and x(2) = b. Since we
commonly denote this function x in "tuple notation" by the symbol (a, b), the notation
itself suggests the correspondence. Thus for the cartesian product of two sets, the general
definition of cartesian product reduces essentially to the earlier one.

EXAMPLE 2. How does the cartesian product A x B x C differ from the cartesian products
A x (B x C) and (A x B) x C" Very little. There are obvious bijective correspondences
between these sets, indicated as follows

(abc) (a,(b,c)) #—+ ((a,b),c).
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Definition. Given a set X, we define an cü-tuple of elements of X to be a function

x: Z÷ —+ X;

we also call such a function a sequence, or an infinite sequence, of elements of X. If
x is an w-tuple, we often denote the value of x at i by x rather than x(i), and call it the
ith coordinate of x. We denote x itself by the symbol

(xI,x2, . .) or

Now let (A1, A2, ... } be a family of sets, indexed with the positive integers; let X be
the union of the sets in this family. The cartesian product of this indexed family of
sets, denoted by

flAI or A1xA2x.,

is defined to be the set of all w-tuples (xl, X2, ...) of elements of X such that x c A
for each 1.

Nothing in these definitions requires the sets A to be different from one another.
Indeed, they may all equal the same set X In that case, the cartesian product A1 x

X Am is just the set of all m-tuples of elements of X, which we denote by xm.
Similarly, the product A1 x A2 x is just the set of all w-tuples of elements of X,
which we denote by Xw.

Later we will define the cartesian product of an arbitrary indexed family of sets.

EXAM PLE 3 If R is the set of real numbers, then R" denotes the set of all m-tuples of
real numbers; ii is often called euclidean rn-space (although Euclid would never recognize
it). Analogously, RW is sometimes called infinite-dimensional euclidean space"; it is the
set of all w-tuples (x1, x2,. . ) of real numbers, that is, the set of all functions x : —+ R.

Exercises

1. Show there is a bijective correspondence of A x B with B x A.

2. (a) Show that if n > 1 there is bijective correspondence of

with

(b) Given the indexed family (A1, A2, ... }, let B = A2_1 x A21 for each
positive integer i. Show there is bijective correspondence of A1 x A2 x
with B1 x B2 x

3. Let A = A1 x A2 x .. and B = B1 x B2 x ....
(a) Show that if B c A for all i, then B C A. (Strictly speaking, if we are

given a function mapping the index set Z÷ into the union of the sets B, we
must change its range before it can be considered as a function mapping Z÷
into the union of the sets A. We shall ignore this technicality when dealing
with cartesian products).
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(b) Show the converse of (a) holds if B is nonempty.
(c) Show that if A is nonempty, each A is nonempty. Does the converse hold?

(We will return to this question in the exercises of § 19.)
(d) What is the relation between the set A U B and the cartesian product of the

sets A U B? What is the relation between the set A fl B and the cartesian
product of the sets A fl B,?

4. Let m, n E Z+. Let X 0.
(a) If m n, find an injective map f Xm —÷ X'7.

(b) Find a bijective map g: Xm x X" -÷
(c) Find an injective map h X" —* Xw.

(d) Find a bijective map k : X" x XW Xw.

(e) Find a bijective map!: XW x XW Xw.

(f) If A C B, find an injective map m: —÷ Bw.

5. Which of the following subsets of RW can be expressed as the cartesian product
of subsets of R?
(a) {x I x is an integer for all i }.
(b) {x

I
x i foralli}.

(c) {x x is an integer for all I 100}.

(d) {xIx2=x3}.

§6 Finite Sets

Finite sets and infinite sets, countable sets and uncountable sets, these are types of sets
that you may have encountered before. Nevertheless, we shall discuss them in this
section and the next, not only to make sure you understand them thoroughly, but also
to elucidate some particular points of logic that will arise later on. First we consider
finite sets.

Recall that if n is a positive integer, we use to denote the set of positive integers
less than n; it is called a section of the positive integers. The sets are the prototypes
for what we call the finite sets.

Definition. A set is said to be finite if there is a bijective correspondence of A with
some section of the positive integers. That is, A is finite if it is empty or if there is a
bijection

f:A—+{l n}

for some positive integer n. In the former case, we say that A has cardinality 0; in the
latter case, we say that A has cardinalily n.

For instance, the set (1 n} itself has cardinality n, for it is in bijective corre-
spondence with itself under the identity function.
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Now note carefully: We have not yet shown that the cardinality of a finite set is
uniquely determined by the set. It is of course clear that the empty set must have
cardinality zero. But as far as we know, there might exist bijective correspondences
of a given nonempty set A with two different sets (1,. . , n} and (1 m}. The
possibility may seem ridiculous, for it is like saying that it is possible for two people
to count the marbles in a box and come out with two different answers, both correct.
Our expenence with counting in everyday life suggests that such is impossible, and in
fact this is easy to prove when n is a small number such as 1, 2, or 3. But a direct proof
when n is 5 million would be impossibly demanding.

Even empirical demonstration would be difficult for such a large value of n. One
might, for instance, construct an experiment by taking a freight car full of marbles and
hinng 10 different people to count them independently. If one thinks of the physical
problems involved, it seems likely that the counters would not all arrive at the same
answer. Of course, the conclusion one could draw is that at least one person made a
mistake. But that would mean assuming the correctness of the result one was trying
to demonstrate empincally An alternative explanation could be that there do exist
bijective correspondences between the given set of marbles and two different sections
of the positive integers

In real life, we accept the first explanation. We simply take it on faith that our
expenence in counting comparatively small sets of objects demonstrates a truth that
holds for arbitrarily large sets as well.

However, in mathematics (as opposed to real life), one does not have to take this
statement on faith. If it is formulated in terms of the existence of bijective correspon-
dences rather than in terms of the physical act of counting, it is capable of mathemat-
ical proof. We shall prove shortly that if n m, there do not exist bijective functions
mapping a given set A onto both the sets (1 n) and (1, ... , m}.

There are a number of other "intuitively obvious" facts about finite sets that are
capable of mathematical proof, we shall prove some of them in this section and leave
the rest to the exercises. Here is an easy fact to start with:

Lemma 6.1. Let n be a positive integer. Let A be a set; let ao be an element of A.
Then there exists a bijective correspondence f of the set A with the set (1 n + 1}
if and only if there exists a bijective correspondence g of the set A — (ao} with the set
(1 n}.

Pmof There are two implications to be proved. Let us first assume that there is a
bijective correspondence

g:A—(ao}———÷(1 n}.

We then define a function f: A —+ {1 n + 1} by setting

f(x) = g(x) forx E A — {ao},

f(ao) = n + 1.

One checks at once that f is bijective.
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To prove the converse, assume there is a bijective correspondence

n+1}.

If f maps ao to the number n + 1, things are especially easy; in that case, the restric-
tion I IA — (ao} is the desired bijective correspondence of A — (ao} with (I n}.

Otherwise, let f(ao) = m, and let at be the point of A such that f(a1) = n +- 1. Then

ai ao. Define a new function

n+l}

by setting

h(a0) = n + 1,

h(a1)=m,
h(x) = f(x) forx E A — (a0} — (a1).

See Figure 6.1. It is easy to check that h is a bijection.
Now we are back in the easy case; the restnction hIA —(aol is the desired bijection

ofA—(ao}with(1 n}. U

h><
m, . . .,

Figure 6.1

From this lemma a number of useful consequences follow:

Theorem 6.2. Let A be a set; suppose that there exists a bijection f. A —÷ (1 n
for some n Z÷. Let B be a proper subset of A Then there exists no bijection
g : B —÷ (1 n}; but (provided B 0) there does exist a bijection h : B —÷
(1 m}forsomem<n.

Proof The case in which B = 0 is trivial, for there cannot exist a bijection of the
empty set B with the nonempty set (1,.. n }.

We prove the theorem "by induction." Let C be the subset of Z÷ consisting of
those integers n for which the theorem holds. We shall show that C is inductive. From
this we conclude that C = Z÷, so the theorem is true for all positive integers n.

First we show the theorem is true for n = 1. In this case A consists of a single
element (a), and its only proper subset B is the empty set.
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Now assume that the theorem is true for n; we prove it true for n + 1. Suppose
that f A —÷ (1 n + l} is a bijection, and B is a nonempty proper subset of A.
Choose an element ao of B and an element ai of A — B. We apply the preceding
lemma to conclude there is a bijection

g:A—(ao}—--+(1 n}.

Now B — (ao} is a proper subset of A — (ao}, for a1 belongs to A — (aol and not to
B — (ao}. Because the theorem has been assumed to hoLd for the integer n, we conclude
the following

(1) There exists no bijection h B — (ao) (1 n}.

(2) Either B — {ao} = 0, or there exists a bijection

k:B—(ao}—-÷(1 p} forsomep<n.

The preceding lemma, combined with (1), implies that there is no bijection of B with
(1, . .. n + 1). This is the first half of what we wanted to proved. To prove the second
half, note that if B — (ao} 0, there is a bijection of B with the set (1}; while if
B — (ao} 0, we can apply the preceding lemma, along with (2), to conclude that
there is a bijection of B with (1 p + 1 }. In either case, there is a bijection of B
with (1 m } for some m < n + 1, as desired. The induction principle now shows
that the theorem is true for all n E Z÷. U

Corollary 6.3. If A is finite, there is no bijection of A with a proper subset of itself.

Proof Assume that B is a proper subset of A and that f: A —÷ B is a bijection. By
assumption, there is a bijection g: A —÷ (1 n) for some n. The composite gof1
is then a bijection of B with (1 n}. This contradicts the preceding theorem. U

Corollary 6.4. Z÷ is not finite.

Proof The function f : —÷ — (1} defined by f(n) = n + 1 is a bijection
of Z÷ with a proper subset of itself. U

Corollary 6.5. The cardinality of a finite set A is uniquely determined by A.

Proof Let m <n. Suppose there are bijections

f:A—÷(l n},

g:A—+(1 m).

Then the composite

gof1 : (1 n} —÷ (1 m}

is a bijection of the finite set (1 n } with a proper subset of itself, contradicting the
corollary Just proved. U



§6 Finite Sets 43

Corollary 6.6. If B is a subset of the finite set A, then B is finite. If B is a proper
subset of A, then the cardinality of B is less than the cardinality of A.

Corollary 6.7. Let B be a nonempty set. Then the following are equivalent

(1) Bis finite.
(2) There is a surjective function from a section of the positive integers onto B.

(3) There is an injecdve function from B into a section of the positive integers.

Proof (1) (2). Since B is nonernpty, there is, for some n, a bijective function
f:{1 n)—÷B.

(2) (3). 1ff : (1 n) —÷ B is surjective, defineg . B —÷ (1 n} by
the equation

g(b) = smallest element of ({b}).

Because f is surjective, the set f1{(b)} is nonempty; then the well-ordenng property
of Z÷ tells us that g(b) is uniquely defined. The map g is injective, for if b b',
then the sets f'({b}) and f'({b'}) are disjoint, so their smallest elements must be
different.

(3) (1). If g : B —÷ (1 n} is injective, then changing the range ofg gives
a bijection of B with a subset of (1 n}. It follows from the preceding corollary
that B is finite. U

Corollary 6.8. Finite unions and finite cartesian products of finite sets are finite.

Proof We first show that if A and B are finite, so is A U B. The result is trivial
if A or B is empty. Otherwise, there are bijections f : (1 m} —÷ A and g

1 n } —÷ B for some choice of m and n. Define a function h . (1 m +
n} —÷ A U B by setting h(i) f(i) for i = 1, 2 m and h(i) = g(i — m) for

= m + 1 m + n. It is easy to check that h is surjective, from which it follows
that A U B is finite.

Now we show by induction that finiteness of the sets A1 implies finiteness
of their union. This result is trivial for n = 1 Assuming it true for n — 1, we note that
A1 U • U is the union of the two finite sets A1 U . . U and so the result
of the preceding paragraph applies.

Now we show that the cartesian product of two finite sets A and B is finite. Given
a E A, the set {a} x B is finite, being in bijective correspondence with B. The set
A x B is the union of these sets; since there are only finitely many of them, A x B is
a finite union of finite sets and thus finite.

To prove that the product A1 x .. x A is finite, one proceeds
by induction. U
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Exercises

1. (a) Make a list of all the injective maps

{l,2,3,4}.

Show that none is bijective. (This constitutes a direct proof that a set A of
cardinality three does not have cardinality four.)

(b) How many injective maps

f.{1 8}—9{1 1O}

are there? (You can see why one would not wish to try to prove directly that
there is no bijective correspondence between these sets.)

2. Show that if B is not finite and B C A, then A is not finite.
3. Let X be the two-element set (0, 1 }. Find a bijective correspondence between

XW and a proper subset of itself.

4. Let A be a nonempty finite simply ordered set.
(a) Show that A has a largest element. [Hint: Proceed by induction on the

cardinality of A.]
(b) Show that A has the order type of a section of the positive integers.

5. If A x B is finite, does it follow that A and B are finite?

6. (a) Let A = (1 n). Show there is a bijection of with the cartesian
product X'1, where X is the two-element set X = (0, 1}.

(b) Show that if A is finite, then is finite.

7. If A and B are finite, show that the set of all functions f: A —÷ B is finite.

§7 Countable and Uncountable Sets
Just as sections of the positive integers are the prototypes for the finite sets, the set of
all the positive integers is the prototype for what we call the countably infinite sets. In
this section, we shall study such sets; we shaLl also construct some sets that are neither
finite nor countably infinite. This study will lead us into a discussion of what we mean
by the process of "inductive definition."

Definition. A set A is said to be infinite if it is not finite. It is said to be countably
infinite if there is a bijective correspondence

EXAMPLE 1. The set Z of all integers is countably infinite. One checks easily that the
function f Z —+ Z÷ defined by

2n ifn>O,f(n) =
—2n+1 ifn<O

is a bijection.
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EXAMPLE 2. The produccZ+ x Z÷ iscountably infinite. If we represent the elements of
the product Z÷ x Z÷ by the integer points in the first quadrant, then the left-hand portion
of Figure 7.1 suggests how to "count" the points, that is, how to put them in bijective
correspondence with the positive integers. A picture is not a proof, of course, but this
picture suggests a proof. First, we define a bijection f : x Z÷ —+ A, where A is the
subset of Z÷ x consisting of pairs (x, y) for which y x, by the equation

f(x,y)=(x +y— l,y).

Then we construct a bijection of A with the positive integers, defining g . A by the
formula

g(x,y)= 1)x+y.

We leave it to you to show that f and g are bijections.
Another proof chat Z÷ x Z÷ is countably infinite will be given later.

a10. • • •

a. a9. . . . .

a3. a5. a6. • • . .ttt
a1. a2. a4. a7. . . . .

Figure 7.1

Definition. A set is said to be countable if it is either finite or countably infinite. A
set that is not countable is said to be uncounlable.

There is a very useful critenon for showing that a set is countable. It is the follow-
ing:

Theorem 7.1. Let B be a nonempty set. Then the following are equivalent:
(1) B is countable

(2) There is a surjective funcLion f: Z÷ —÷ B.

(3) There is an injective function g: B —÷ Z÷.

Proof (1) (2). Suppose that B is countable. If B is countably infinite, there is
a bijection f : —÷ B by definition, and we are through. If B is finite, there is a
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bijection h : (1 n) -+ B for some n ? 1. (Recall that B 0.) We can extend h
to a surjection f Z÷ —÷ B by defining

h(i) forl<i<nf(i)= • —
h(1) for: > n.

(2) (3). Let f : —÷ B be a surjection. Define g: B —÷ Z÷ by the equation

g(b) = smallest element of f'({b)).

Because f is surjective, f'((b)) is nonempty; thus g is well defined. The map g is
injective, for if b b', the sets I ((b)) and ((b')) are disjoint, so their smallest
elements are different.

(3) (1). Let g : B —÷ Z÷ be an injection; we wish to prove B is countable.
By changing the range of g, we can obtain a bijection of B with a subset of Thus
to prove our result, it suffices to show that every subset of Z÷ is countable. So let C
be a subset of Z+.

If C is finite, it is countable by definition. So what we need to prove is that every
infinite subset C of is countably infinite. This statement is certainly plausible. For
the elements of C can easily be arranged in an infinite sequence; one simply takes the
set Z÷ in its usual order and "erases" all the elements of that are not in C!

The plausibility of this argument may make one overlook its informality. Provid-
ing a format proof requires a certain amount of care. We state this result as a separate
lemma, which follows.

Lemma 7.2. if C is an infinite subset of Z÷, then C is countabiy infinite.

Proof We define a bijection h Z÷ C. We proceed by induction. Define h(1) to
be the smallest element of C; it exists because every nonempty subset C of has a
smallest element. Then assuming that h(l), . . . ,h(n — 1) are defined, define

h(n) = smallest element of [C — h({l n — 1))].

The set C — h({ 1 n — 11) is not empty; for if it were empty, then h : (1 n —

1) -+ C would be surjective, so that C would be finite (by Corollary 6.7). Thus h(n)
is well defined. By induction, we have defined h(n) for all n E Z÷.

To show that h isinjective is easy. Given m <n, note that h(m) belongs to the set
h((l n — 1}), whereas h(n), by definftion, does not. Hence h(n) h(m).

To show that h is surjective, let c be any element of C; we show that c lies in the
image set of h. First note that h(Z÷) cannot be contained in the fimte set (1 C),

because h(Z÷) is infinite (since h is injective). Therefore, there is an n in Z÷, such
that h(n) > c. Let m be the smallest element of Z÷, such that h(m) > c. Then for all
i < m, we must have h(i) <c. Thus, c does not belong to the set h((l m — 1)).
Since h(m) is defined as the smallest element of the set C — h({1, .. m — 1)), we
must have h(m) c. Putting the two inequalities together, we have h(m) = c, as
desired. U
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There is a point in the preceding proof where we stretched the principles of logic
a bit. It occurred at the point where we said that "using the induction principle" we
had defined the function h for all positive integers n. You may have seen asguments
like this used before, with no questions raised concerning their legitimacy. We have
already used such an argument ourselves, in the exercises of §4, when we de fined a".

But there is a problem here. After all, the induction principle states only that if A
is an inductive set of positive integers, then A = Z÷. To use the principle to prove a
theorem "by induction," one begins the proof with the statement "Let A be the set of
all positive integers n for which the theorem is true," and then one goes ahead to prove
that A is inductive, so that A must be all of

In the preceding theorem, however, we were not really proving a theorem by in-
duction, but defining something by induction. How then should we start the proof?
Can we start by saying, "Let A be the set of all integers n for which the function h is
defined"? But that's silly; the symbol h has no meaning at the outset of the proof. It
only takes on meaning in the course of the proof. So something more is needed.

What is needed is another principle, which we call the principle of recursive defi-
nition. In the proof of the preceding theorem, we wished to assert the following:

Given the infinite subset C of Z÷, there is a unique function h : -+ C
satisfying the formula:

h(1) = smallest element of C,
(*)

= smallest element of [C — h((l — 1))] for all : > 1.

The formula (*) is called a recursion formula for h; it defines the function h in
terms of itself. A definition given by such a formula is called a recursive definition.

Now one can get into logical difficulties when one tries to define something
sively. Not all recursive formulas make sense. The recursive formula

h(i) = smallest element of (C — h({ I i + 1))],

for example, is self-contradictory; although h(i) necessarily is an element of the set
h({ 1 i + 1)), this formula says that it does not belong to the set. Another example
is the classic paradox:

Let the barber of Seville shave every man of Seville who does not shave himself.
Who shall shave the barber'

In this statement, the barber appears twice, once in the phrase "the barber of Seville"
and once as an element of the set "men of Seville", this definition of whom the barber
shall shave is a recursive one. It also happens to be self-contradictory.

Some recursive formulas do make sense, however Specifically, one has the fol-
lowing principle:

Principle of recursive definition. Let A be a set. Given a formula that defines h(l)
as a unique element of A. and for i > 1 defines h(i) uniquely as an element of A
in tenns of the values of h for positive integers less than i, this formula determines a
unique functionh : -+ A.
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This pnnciple is the one we actually used in the proof of Lemma 7.2. You can
simply accept it on faith if you like. It may however be proved rigorously, using the
principle of induction. We shall formulate it more precisely in the next section and
Endicate how it is proved. Mathematicians seldom refer to this pnnciple specifically.
They are much more likely to wnte a proof like our proof of Lemma 7.2 above, a proof
in which they invoke the "induction principle" to define a function when what they are
really using is the pnnciple of recursive definition. We shall avoid undue pedantry in
this book by following their example.

Corollary 7.3. A subset of a countable set is countable.

Proof Suppose A C B, where B is countable. There is an injection f of B into Z÷;
the restriction of I to A is an injection of A into

Corollary 7.4. The set Z÷ x Z÷ is countably infinite.

Proof In view of Theorem 7.1, it suffices to construct an injective map f : x
-+ We define f by the equation

f(n, m) =

It is easy to check that f is injecuve. For suppose that 2n3m = 2p3q• If n < p, then
= 2p—n3q, contradicting the fact that 3m is odd for all m. Therefore, n = p. As

a result, 3m = 3q Then if m < q, it follows that 1 = 3q—m another contradiction.
Hencem=q.

EXAMPLE 3. The sd Q÷ of positive rational numbers is countably infinite. For we can
define a surjection g Z÷ x Q+ by theequation

g(n, rn) = rn/n

Because 1÷ x is countable, there is a surjection f : x Then the
composite g o f . Q+ is a surjection, so that Q+ is countable. And, of course, Q+
is infinite because it contains

We leave it as an exercise to show the set Q of all rational numbers ts countably infinite.

Theorem 7.5. A countable union of countable sets is countable.

Pmof Let be an indexed family of countable sets, where the index set J is
either (1 N} or Z÷. Assume that each set is nonempty, for convenience; this
assumption does not change anything.

Because each An is countable, we can choose, for each n, a surjective function
f, : -+ Similarly, we can choose a surjective function g Z÷ -+ J. Now
define

h : x U A,
nEJ
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by the equation

h(k, m) = fg(k)(m).

It is easy to check that h is surjective. Since Z÷ x Z÷ is in bijective correspondence
with Z÷, the countability of the union follows from Theorem 7.1. U

Theorem 7.6. A finite product of countable sets is countable.

Proof First let us show that the product of two countable sets A and B is countable.
The result is tnvial if A or B is empty. Otherwise, choose surjective func tions f

—÷ A and g Z÷ —÷ B. Then the function h : x —÷ A x B defined by the
equation h(n, m) = (f(n), g(m)) is surjective, so that A x B is countable.

In general, we proceed by induction. Assuming that A1 x x
A is countable, we prove the same thing for the product A1 x x First,

note that there is a bijective correspondence

defined by the equation

g(x1 = ((Xl

Because the set A1 x x is countable by the induction assumption and is
countable by hypothesis, the product of these two sets is countable, as proved in the
preceding paragraph. We conclude that A1 x x is countable as well. U

It is very tempting to assert that countable products of countable sets should be
countable; but this assertion is in fact not true:

Theorem 7.7. Let X denote the two element set (0, 1). Then the set is uncount-
able.

Pmof We show that, given any function

g : —k

g is not surjective. For this purpose, let us denote g(n) as follows:

g(n) = . . ...),

where each is either 0 or 1. Then we define an element y = (Yi Y2

of XW by letting

0 = 1,
yn=

I = 0.
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(If we wnte the numbers x,1 in a rectangular array, the particular elements appear
as the diagonal entries in this array, we choose y so that its nth coordinate differs from
the diagonal entry

Now y is an element of Xw, and y does not he in the image of g; given n, the
point g(n) and the point y differ in at least one coordinate, namely, the nth. Thus, g is
not surjective. U

The cartesian product {O, 1 is one example of an uncountable set. Another is the
set D'(Z+), as the following theorem implies:

Theorem 7.8. Let A be a set. There is no injective map f -+ A, and there is
nosurjectivemapg: A —÷

Pmof In general, if B is a nonempty set, the existence of an injective map 1: B —+
C implies the existence of a surjective map g C —+ B; one defines g(c) = f1(c)
for each c in the image set of f, and defines g arbitranly on the rest of C.

Therefore, it suffices to prove that given a map g A -+ the map g is not
surjective For each a E A, the image g(a) of a is a subset of A, which may or may
not contain the point a itself. Let B be the subset of A consisting of all those points a
such that g(a) does not contain a;

B ={a a E A —g(a)}.

Now, B may be empty, or it may be all of A, but that does not matter. We assert that B
is a subset of A that does not lie in the image of g. For suppose that B = g(ao) for
some ao E A. We ask the question: Does aO belong to B or not? By definition of B,

UOE B

In either case, we have a contradiction.

Now we have proved the existence of uncountable sets. But we have not yet men-
tioned the most familiar uncountable set of all—the set of real numbers. You have
probably seen the uncountability of JR demonstrated already. If one assumes that every
real number can be represented uniquely by an infinite decimal (with the proviso that a
representation ending in an infinite string of 9's is forbidden), then the uncountability
of the reals can be proved by a variant of the diagonal procedure used in the proof of
Theorem 7.7. But this proof is in some ways not very satisfying. One reason is that
the infinite decimal representation of a real number is not at all an elementary
quence of the axioms but requires a good deal of labor to prove. Another reason is
that the uncountability of JR does not, in fact, depend on the infinite decimal expansion
of JR or indeed on any of the algebraic properties of JR; it depends on only the order
properties of JR. We shall demonstrate the uncountability of JR. using only its order
properties, in a later chapter.



§7 Countable and Uncountable Sets 51

Exercises

1. Show that Q is countably infinite.

2. Show that the maps f and g of Examples 1 and 2 are bijections.

3. Let X be the two-element set (0, 1). Show there is a bijective correspondence
between the set ?(Z+) and the cartesian product Xcv.

4. (a) A real number x is said to be algebraic (over the rationals) if it satisfies some
polynomial equation of positive degree

x' + +'.• + aix + ao = 0

with rational coefficients a. Assuming that each polynomial equation has
only finitely many roots, show that the set of algebraic numbers is countable.

(b) A real number is said to be transcendental if it is not algebraic. Assuming
the reals are uncountable, show that the transcendental numbers are uncount-
able. (It is a somewhat surprising fact that only two transcendental numbers
are familiar to us: e and ir. Even proving these two numbers transcendental
is highly nontnvial.)

5. Determine, for each of the following sets, whether or not it is countable. Justify
your answers.
(a) The set A of all functions f: (0, 1} —÷ Z÷.
(b) The set of all functions f: (1 n} Z÷.
(c) The set C =
(d) The set D of all functions f : -+
(e) The set E of all functions f : —÷ (0, 1).

(f) The set F of all functions f : -+ (0, 1) that are "eventually zero."
[We say that f is eventually zero if there is a positive integer N such that
f(n) =Oforalln N]

(g) The set G of all functions f : -+ that are eventually 1.
(h) The set H of all functions f -+ that are eventually constant.
(i) The set I of all two-element subsets of Z÷.
(j) The set J of all finite subsets of

6. We say that two sets A and B have the same cardinality if there is a bijection
of A with B.
(a) Show that if B C A and if there is an injection

f: A —+ B,

then A and B have the same cardinality. [Hint: Define A1 = A, B1 = B,
and for n > 1, = and = (Recursive definition
again!) Note that A1 3 Bi D A2 D B2 D A3 j •... Define a bijection
h : A -÷ B by the rule

f(x) if x E — for somen,h(x)=
x otherwise.]
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(b) Theorem (Schroeder-Bernstein theorem). If there are injections 1: A -+
C and g : C -÷ A, then A and C have the same cardinality.

7. Show that the sets D and E of Exercise 5 have the same cardinality.

8. Let X denote the two-element set (0, 1); let 2 be the set of countable subsets of
XW. Show that and 2 have the same cardinality.

9. (a) The formula

h(1) = 1,
(*) h(2) 2,

h(n)=[h(n+l)]2—[h(n—l)]2 forn>2
is not one to which the principle of recursive definition applies. Show that
nevertheless there does exist a function h : -+ JR satisfying this formula.
[Hint. Reformulate (*) so that the principle will apply and require h to be
positive.]

(b) Show that the formula (*) of part (a) does not determine h uniquely. [Hint:
If h is a positive function satisfying (*), let f(i) = h(i) for i 3, and let
f(3) = —h(3)j

(c) Show that there is no function h -+ JR satisfying the formula

h(l) = 1,

h(2) — 2,

h(n) = (h(n + 1)12 + [h(n — 1)12 forn > 2.

The Principle of Recursive Definition

Before considering the general form of the principle of recursive definition, let us first
prove it in a specific case, that of Lemma 7.2. That should make the underlying idea
of the proof much clearer when we consider the general case.

So, given the infinite subset C of let us consider the following recursion for-
mula for a function h : —÷ C:

h( 1) = smallest element of C,

h(i) = smallest element of [C — h(( 1 i — 1))] for i > 1.

We shall prove that there exists a unique function h : -+ C satisfying this recursion
formula.

The first step is to prove that there exist functions defined on sections (1 n)
of that satisfy (*):

Lemma 8.1. Given n E there exists a function

f:(l
that satisfies (*) for all i in its domain.
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Proof The point of this lemma is that it is a statement that depends on n; therefore, it
is capable of being proved by induction. Let A be the set of all n for which the lemma
holds. We show that A is inductive. It then follows that A = Z÷.

The lemma is true for n = 1, since the function f : (1) —÷ C defined by the
equation

f(1) = smallest element of C

satisfies (*).
Supposing the lemma to be true for n — 1, we prove it true for n. By hypothesis,

there is a function f' : (1 n — 1) -+ C satisfying (*) for all i in its domain.
Define f: {l n} -+ C by the equations

1(i) = f'(i) fori E (l,...,n— 1},

f(n) = smallest element of [C — f'({ 1, . . , n — 1))].

Since C is infinite, f' is not surjective; hence the set C — f'({l, ... n — is not
empty, and f(n) is well defined. Note that this definition is an acceptable one; it does
not define f in terms of itself but in terms of the given function f'.

It is easy to check that f satisfies (*) for all i in its domain. The ftinction f
satisfies (*) for i n — 1 because it equals f' there. And f satisfies (*) for i = n

because, by definition,

f(n) = smallest element of [C — f'({l n — 1))]

andf'({l, n—I)). U

Lemma 8.2. Suppose that f . (1 n} -÷ C and g : {l m) C both
satisfy (*) for all i in their respective domains. Then f(i) = g(i) for all i in both
domains.

Proof Suppose not. Let i be the smallest integer for which f(i) g(i). The inte-
ger i is not 1, because

f(l) = smallest element of C = g(l),

by (*). Now for all j < i, we have f(j) = g(j). Because f and g satisfy (*),

f(i) = smallest element of [C — f({1 i — 1))],

g(i) = smallest element of [C — g({ 1,. . , i —

Since f({l i — 1)) = g({l i — 1)), we have f(i) = g(i), contrary to the
choice of i.
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Theorem 8.3. There exists a unique function h : —+ C satisfying (*) for all
i E Z÷.

Proof By Lemma 8.1, there exists for each n a function that maps (1 n) into C
and satisfies (*) for all i in its domain. Given n, Lemma 8.2 shows that this func-
tion is unique; two such functions having the same domain must be equal. Let
(1,.. ii) -+ C denote this unique function.

Now comes the crucial step. We define a function h —÷ C by defining its
rule to be the union U of the rules of the functions The rule for is a subset of
(1 n) x C; therefore, U is a subset of Z÷ x C. We must show that U is the rule
for a function h : -+ C

That is, we must show that each element i of Z÷ appears as the first coordinate of
exactly one element of U. This is easy. The integer i lies in the domain of if and
only if ii > i. Therefore, the set of elements of U of which i is the first coordinate is
precisely the set of all pairs of the form (i, for ii > i. Now Lemma 8.2 tells us
that fn(i) = if n, m i. Therefore, all these elements of U are equal; that is,
there is only one element of U that has i as its first coordinate.

To show that h satisfies (*) is also easy; it is a consequence of the following facts:

fori
satisfies (*) for all i in its domain.

The proof of uniqueness is a copy of the proof of Lemma 8.2.

Now we formulate the general pnnciple of recursive definition. There are no new
ideas involved in its proof, so we leave it as an exercise.

Theorem 8.4 (Principle of recursive definition). Let A be a set; let ao be an cl-
ement of A. Suppose p is a function that assigns, to each function f mapping a
nonernpty section of the positive integers into A, an element of A. Then there exists a
unique function

h : A

such that

h(1) = aO,

h(i) = i — 1}) fori > 1.

The formula (*) is called a recursion formula for h. It specifies h(l), and it
expresses the value of h at i > 1 in terms of the values of h for positive integers less
than i.

EXAMPLE 1. Let us show that Theorem 8.3 is a special case of this theorem. Given the
infinite subset C of let ao be the smallest element of C, and define p by the equation

p(f) = smallest element of [C — (image set of 1)1.
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Because C is infinite and f is a function mapping a finite set into C, the image set of f is
not all of C, therefore, p is well defined. By Theorem 8.4 there exists a function h Z÷ .-+
C such that h( 1) = ao, and for i > 1,

h(i) = i — 1))

=smallestelementof[C — (imagesetofhl{1 i — I))]
= smallest element of [C — h({1 ..., I — 1))],

as desired.

EXAMPLE 2. Given a R, we "defined" a", in the exercises of §4, by the recursion
formula

a' =a

We wish to apply Theorem 8.4 to define a function h : —+ R ngorously such that
h(n) = a". To apply this theorem, let ao denote the element a of R, and define p by the
equation p(f) = f(m).a, where f. (1 m} JR Then theie exists a unique function
h : —+ R such that

h(l) = ao,

h(i) i — 1)) fori > 1.

This means that h(1) — a, and h(i) = h(i — 1) a for i > 1. If we denote h(i) by a', we
have

a1 =a,

a' a,

as desired.

Exercises

1. Let (b1, b2,..) be an infinite sequence of real numbers. The sum bk is
defined by induction as follows:

>bk=b, forn=1,

>bk_(>bk)+bfl forn>1.

Let A be the set of real numbers; choose p so that Theorem 8.4 applies to define
this sum ngorously. We sometimes denote the sum bk by the symbol
b1+b2+ +b,1.
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2. Let (b1, ...) be an infinite sequence of real numbers. We define the product

fl bk = (fl bk) for n> 1.

Use Theorem 8.4 to define this product rigorously. We sometimes denote the
product bk by the symbol b1b2

3. Obtain the definitions of a'1 and n! for n E Z÷ as special cases of Exercise 2.

4. The Fibonacci numbers of number theory are defined recursively by the formula

A1 = A2 = 1,

An = An_i + forn > 2.

Define them rigorously by use of Theorem 8.4.

5. Show that there is a unique function h : -+ IR÷ satisfying the formula

h(l) = 3,

h(i) = [h(i — 1)-f- 111/2 fori > 1.

6. (a) Show that there is no function h : —f IR+ satisfying the formula

h(1) = 3,

h(i) = (h(i — 1)— 111/2 fori > 1.

Explain why this example does not violate the pnncipte of recursive defini-
tion.

(b) Consider the recursion formula

h(l) = 3,

[h(i — 1) — 111/2 if h(i — 1) > 1

for: >1.
5

Show that there exists a unique function h : -+ IR÷ satisfying this for-
mula.

7. Prove Theorem 8.4.

8. Verify the following version of the principle of recursive definition: Let A be
a set. Let p be a function assigning, to every function f mapping a section 5n
of Z÷ into A, an element p(f) of A. Then there is a unique function h : -+ A

such that h(n) = for each n E Z+.
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§9 Infinite Sets and the Axiom of Choice

We have already obtained several cntena for a set to be infinite. We know, for instance,
that a set A is infinite if it has a countably infinite subset, or if there is a bijection of A
with a proper subset of itself. It turns out that either of these properties is sufficient
to charactenze infinite sets. This we shall now prove. The proof will lead us into a
discussion of a point of logic we have not yet mentioned—the axiom of choice.

Theorem 9.1. Let A be a set. The following statements about A are equivalent:
(1) There exists an injective function!: Z+ —÷ A.

(2) There exists a bijection of A with a proper subset of itself.

(3) A is infinite.

Proof We prove the implications (1) (2) (3) (1). To prove that (1) (2),
we assume there is an injective function f : Z÷ -+ A. Let the image set f(Z÷) be
denoted by B; and let f(n) be denoted by Because f is injective, if
n m. Define

g: A —p A — (a1)

by the equations

= for E B,

g(x)=x forxEA—B.

The map g is indicated schematically in Figure 9.1; one checks easily that it is a
bijection.

B

Figure 9.1

The implication (2) (3) is just the contrapositive of Corollary 6.3, so it has
already been proved. To prove that (3) (1), we assume that A is infinite and
construct "by induction" an injective function f : -+ A.

First, since the set A is not empty, we can choose a point at of A; define f(1) to
be the point so chosen.

Then, assuming that we have defined f(1) f(n — 1), we wish to define f(n).
The set A—f((1, . . . , n—fl) isnotempty; for if it wereempty, thernapf : (1

1) —÷ A would be a surjection and A would be finite. Hence, we can choose an

a1 a2 a3 a4 a5

A-B
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element of the set A — f((1 ii — 1}) and define f(n) to be this element. "Using
the induction pnnciple", we have defined f for all n E Z÷.

It is easy to see that f is injective. For suppose that m <n. Then f(m) belongs to
the set f({l n — 1}), whereas f(n), by definition, does not. Therefore, f(n)
f(m). U

Let us try to reformulate this "induction" proof more carefully, so as to make
explicit our use of the principle of recursive definition.

Given the infinite set A, we attempt to define f A recursively by the
formula

f(1)=ai,
(*)

f(,) = an arbitrary element of [A — f({1 — WI for: > 1.

But this is not an acceptable recursion formula at all! For it does not define f(i)
uniquely in terms offl{1 i — 1).

In this respect this formula differs notably from the recursion formula we consid-
ered in proving Lemma 7.2. There we had an infinite subset C of and we defined h
by the formula

h(1) = smallest element of C,

h(i) =smallestelementof[C —h({I i — 1))1 fori > 1.

This formula does define h(i) uniquely in terms of hI{ I i — 1).

Another way of seeing that (*) is not an acceptable recursion formula is to note
that if it were, the pnnciple of recursive definition would imply that there is a unique
function f Z÷ -+ A satisfying (*). But by no stretch of the imagination does (*)
specify f uniquely. In fact, this "definition" of f involves infinitely many arbitrary
choices.

What we are saying is that the proof we have given for Theorem 9.1 is not actually
a proof. Indeed, on the basis of the properties of set theory we have discussed up to
now, it is not possible to prove this theorem. Something more is needed.

Previously, we described certain definite allowable methods for specifying sets:
(1) Defining a set by listing its elements, or by taking a given set A and specifying a

subset B of it by giving a property that the elements of B are to satisfy.

(2) Taking unions or intersections of the elements of a given collection of sets, or
taking the difference of two sets.

(3) Taking the set of all subsets of a given set.

(4) Taking cartesian products of sets.
Now the rule for the function f is really a set: a subset of Z÷ x A. Therefore, to prove
the existence of the function f, we must construct the appropnate subset of Z÷ x A,
using the allowed methods for forming sets. The methods already given simply are not
adequate for this purpose. We need a new way of asserting the existence of a set. So,
we add to the list of allowed methods of forming sets the following:
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Axiom of choice. Given a collection A of disjoint nonempty sets, there exists a set C
consisting of exactly one element from each element of 4; that is, a set C such that C
is contained in the union of the elements of A, and for each A E A, the set C fl A
contains a single element.

The set C can be thought of as having been obtained by choosing one element
from each of the sets in A.

The axiom of choice certainly seems an innocent-enough assertion. And, in fact,
most mathematicians today accept it as part of the set theory on which they base their
mathematics. But in years past a good deal of controversy raged around this particular
assertion concerning set theory, for there are theorems one can prove with its aid that
some mathematicians were reluctant to accept. One such is the well-ordenng theorem,
which we shall discuss shortly. For the present we shall simply use the choice axiom
to clear up the difficulty we mentioned in the preceding proof. First, we prove an easy
consequence of the axiom of choice:

Lemma 9.2 (Existence of a choice function). Given a collection 2 of nonempty
sets (not necessarily disjoint), there exists a function

c :2 —f U B
BE2

such that c(B) is an element of B, foreach BE 2.

The function c is called a choice function for the collection 2.
The difference between this lemma and the axiom of choice is that in this lemma

the sets of the collection are not required to be disjoint. For example, one can
allow 2 to be the collection of all nonernpty subsets of a given set.

Proof of the lemma. Given an element B of 2, we define a set B' as follows

B' = {(B,x)
I

XE B).

That is, B' is the collection of all ordered pairs, where the first coordinate of the ordered
pair is the set B, and the second coordinate is an element of B. The set B' is a subset
of the cartesian product

2 x U B.
B€2

Because B contains at least one element X, the set B' contains at least the element
(B, X), so it is nonempty.

Now we claim that if Bi and B2 are two different sets in 2, then the corresponding
sets and are disjoint. For the typical element of is a pair of the form (B1,
and the typical element of is a pair of the form (B2, x2). No two such elenients can
be equal, for their first coordinates are different. Now let us form the collection

C = {B'
I

B E 2];
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it is a collection of disjoint nonempty subsets of

2 x B.
B€2

By the choice axiom, there exists a set c consisting of exactly one element from each
element of C. Our claim is that c is the rule for the desired choice function.

In the first place, c is a subset of

2 U B.
B€2

In the second place, c contains exactly one element from each set B'; therefore, for
each B E 2, the set c contains exactly one ordered pair (B, x) whose first coordinate
is B. Thus c is indeed the rule for a function from the collection 2 to the set UBE2 B.
Finally, if (B, x) E c, then x belongs to B, so that c(B) E B, as desired.

A second proof of Theorem 9.1. Using this lemma, one can make the proof of
Theorem 9.1 more precise. Given the infinite set A, we wish to construct an injective
function f : —÷ A. Let us form the collection 2 of all nonempty subsets of A. The
lemma just proved asserts the existence of a choice function for 2; that is, a function

c 2 —f U B = A

B E 2. Let us now define a function f : -+ A by the
recursion formula

f(l) =
f(i) = c(A — f((l i — I))) fori > 1.

Because A is infinite, the set A — f({l i — 1)) is nonempty; therefore, the nght
side of this equation makes sense. Since this formula defines f(i) uniquely in terms of
f 1(1 i — 1), the pnnciple of recursive definition applies. We conclude that there
exists a unique function f Z÷ -+ A satisfying (*) for all i E Injectivity of f
follows asbefore. U

Having emphasized that in order to construct a proof of Theoreni 9.1 that is logi-
cally correct, one must make specific use of a choice function, we now backtrack and
admit that in practice most mathematicians do no such thing. They go on with no
qualms giving proofs like our first version, proofs that involve an infinite number of
arbitrary choices. They know that they are really using the choice axiom; and they
know that if it were necessary, they could put their proofs into a logically more sat-
isfactory form by introducing a choice function specifically. But usually they do not
bother.

And neither will we. You will find few further specific uses of a choice function
in this book; we shall introduce a choice function only when the proof would become
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confusing without it. But there will be many proofs in which we make an infinite
number of arbitrary choices, and in each such case we will actually be using the choice
axiom implicitly.

Now we must confess that in an earlier section of this book there is a proof in
which we constructed a certain function by making an infinite number of arbitrary
choices. And we slipped that proof in without even mentioning the choice axiom. Our
apologies for the deception. We leave it to you to ferret out which proof it was!

Let us make one final comment on the choice axiom. There are two forms of
this axiom. One can be called the finite axiom of choice; it asserts that given afinite
collection A of disjoint nonempty sets, there exists a set C consisting of exactly one
element from each element of 4. One needs this weak form of the choice axiom
all the time; we have used it freely in the preceding sections with no comment. No
mathematician has any qualms about the finite choice axiom; it is part of everyone's
set theory. Said differently, no one has qualms about a proof that involves only finitely
many arbitrary choices.

The stronger form of the axiom of choice, the one that applies to an arbitrary col-
lection A of nonempty sets, is the one that is properly called "the axiom of choice."
When a mathematician wntes, "This proof depends on the choice axiom," it is invari-
ably this stronger form of the axiom that is meant.

Exercises

1. Define an injective map f : Xw, where X is the two-element set (0, l},
without using the choice axiom.

2. Find if possible a choice function for each of the following collections, without
using the choice axiom:
(a) The collection A of nonempty subsets of Z÷.
(b) The collection of nonempty subsets of Z.
(c) The collection C of nonempty subsets of the rational numbers Q.
(d) The collection of nonempty subsets of Xw, where X = {O, 1).

3. Suppose that A is a set and (fn}nEZ+ is a given indexed family of injective func-
tions

n)—÷A.

Show that A is infinite. Can you define an injective function f Z÷ —÷ A

without using the choice axiom?

4. There was a theorem in §7 whose proof involved an infinite number of arbitrary
choices. Which one was it? Rewnte the proof so as to make explicit the use of
the choice axiom. (Several of the earlier exercises have used the choice axiom
also.)
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5. (a) Use the choice axiom to show that if f : A B is surjective, then f has a
right inverse h B —÷ A.

(b) Show that if f A -+ B is injective and A is not empty, then f has a left
inverse. Is the axiom of choice needed?

6. Most of the famous paradoxes of naive set theory are associated in some way or
other with the concept of the "set of all sets." None of the rules we have given for
forming sets allows us to consider such a set. And for good reason—the concept
itself is For suppose that A denotes the "set of all sets."
(a) Show that C 4; denve a contradiction.
(b) (Russell's paradox.) Let 2 be the subset of A consisting of all sets that are

not elements of themselves;

EAandA WA).

(Of course, there may be no set A such that A E A; if such is the case, then
= 4.) Is an element of itself or not?

7. Let A and B be two nonempty sets. If there is an injection of B into A, but no
injection of A into B, we say that A has greater cardinality than B.
(a) Conclude from Theorem 9.1 that every uncountable set has greater cardinal-

ity than Z+.
(b) Show that if A has greater cardinality than B, and B has greater cardinality

than C, then A has greater cardinality than C.
(c) Find a sequence A1, A2,... of infinite sets, such that for each n E Z÷, the

set has greater cardinality than
(d) Find a set that for every n has cardinality greater than

*8. Show that D'(Z+) and IR have the same cardinality. [Hint: You may use the fact
that every real number has a decimal expansion, which is unique if expansions
that end in an infinite stnng of 9's are forbidden.]

A famous conjecture of set theory, called the continuum hypothesis, asserts
that there exists no set having greater cardinality than and lesser cardinality
than JR. The generalized continuum hypothesis asserts that, given the infinite
set A, there is no set having greater cardinality than A and lesser cardinality
than Y(A). Surprisingly enough, both of these assertions have been shown to
be independent of the usual axioms for set theory. For a readable expository
account, see [Sm].

§ 10 Well-Ordered Sets

One of the useful properties of the set of positive integers is the fact that each of
its nonempty subsets has a smallest element. Generalizing this property leads to the
concept of a well-ordered set.
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Definition. A set A with an order relation < is said to be well-ordered if every
nonempty subset of A has a smallest element.

EXAMPLE 1. Consider the set (1, 2) x in the dictionary ordenng. Scheimatically, it
can be represented as one infinite sequence followed by another infinite sequen ce:

al,a2,a3 b1,b2b3,...

with the understanding that each element is less than every element to the right of it. It is
not difficult to see that every nonempty subset C of this ordered set has a smallest element:
If C contains any one of the elements we simply take the smallest eleriient of the
intersection of C with the sequence a1 az,.. while if C contains no then it is a
subset of the sequence b1, and as such has a smallest element.

EXAMPLE 2 Consider the set x in the dictionary order. Schematically, it can be
represented as an infinite sequence of infinite sequences. We show that it is well-ordered.
Let X be a nonempty subset of x Z4. Let A be the subset of consisting of all first
coordinates of elements of X Now A has a smallest element; call it ao. Then the collection

(b I a0 x b X)

is a nonempty subset of Z÷; let b0 be its smallest element. By definition of the dictionary
order, ao x b0 is the smallest element of X. See Figure 10.1.

I III
I I

EXAMPLE 3. The set of integers is not well-ordered in the usual order, the subset
consisting of the negative integers has no smallest element. Nor is the set of real numbers in
the interval 0 x 1 well-ordered; the subset consisting of those x for which 0 <x < 1

has no smallest element (although it has a greatest lower bound, of course).

There are several ways of constructing well-ordered sets. Two of them are the
following:

(1) If A is a well-ordered set, then any subset of A is well-ordered in the restncted
order relation.

. x

I

I I

. . . .

a0

Figure 10.1
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(2) If A and B are well-ordered sets, then A x B is well-ordered in the dictionary
order.

The proof of (1) is tnvial; the proof of (2) follows the pattern given in Example 2.
It follows that the set Z÷ x x Z÷) is in the dictionary order; it

can be represented as an infinite sequence of infinite sequences of infinite sequences.
Similarly, (Z+)4 is well-ordered in the dictionary order. And so on. But if you try to
generalize to an infinite product of Z÷ with itself, you will run into trouble. We shall
examine this situation shortly.

Now, given a set A without an order relation, it is natural to ask whether there
exists an order relation for A that makes it into a well-ordered set. If A is finite, any
bijection

,n}

can be used to define an order relation on A; under this relation, A has the same order
type as the ordered set {1 n). In fact, every order relation on a finite set can be
obtained in this way:

Theorem 10.1. Every nonempty finite ordered set has the order type of a section
{l n) of Z÷, so it is well-ordered.

Proof This was given as an exercise in §6; we prove it here. First, we show that
every finite ordered set A has a largest element. If A has one element, this is trivial.
Supposing it true for sets having ii 1 elements, let A have ii elements and let E A.
Then A — tao) has a largest element ai, and the larger of (ao, ai) is the largest element
of A.

Second, we show there is an order-preserving bijection of A with (1 n) for
some ii. If A has one element, this fact is trivial. Suppose that it is true for sets
having ii — 1 elements. Let b be the largest element of A. By hypothesis, there is an
order-preserving bijection

f':A—{b}—--÷{1 n—I).

Define an bijection 1: A -+ { 1 n } by setting

f(x) = f'(x) forx b,

f(b)=n.

Thus, a finite ordered set has only one possible order type. For an infinite set,
things are quite different. The well-ordered sets

(1 n)xZ÷,
x

Z÷ x x Z÷)
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are all countably infinite, but they all have different order types, as you can check.
All the examples we have given of well-ordered sets are ordenngs of countable

sets. It is natural to ask whether one can find a well-ordered uncountable set.
The obvious uncountable set to try is the countably infinite product

of Z÷ with itself. One can generalize the dictionary order to this set in a natural way,
by defining

(al,a2,...) <(b1,b2,...)

ifforsomen 1,

a = b, for : <n and <ba.

This is, in fact, an order relation on the set X; but unfortunately it is nota well-ordering.
Consider the set A of all elements x of X of the form

x=(1,.. 1,2,1,1,...),

where exactly one coordinate of x equals 2, and the others are all equal to 1. The set A
clearly has no smallest element.

Thus, the dictionary order at least does not give a of the set (Z+)w.
Is there some other order relation on this set that is a well-ordenng? No one has ever
constructed a specific well-ordering of (Z+)w. Nevertheless, there is a famous theorem
that says such a well-ordering exists:

Theorem (Well-ordering theorem). if A is a set, there exists an order relation on
A that is a well-ordering.

This theorem was proved by Zermelo in 1904, and it startled the mathematical
world. There was considerable debate as to the correctness of the proof; the lack of
any constructive procedure for well-ordering an arbitrary uncountable set led many to
be skeptical. When the proof was analyzed closely, the only point at which it was found
that there might be some question was a construction involving an infinite number of
arbitrary choices, that is, a construction involving—the choice axiom.

Some mathematicians rejected the choice axiom as a result, and for many years a
legitimate question about a new theorem was: Does its proof involve the choice axiom
or not? A theorem was considered to be on somewhat shaky ground if one had to use
the choice axiom in its proof. Present-day mathematicians, by and large, do not have
such qualms. They accept the axiom of choice as a reasonable assumption about set
theory, and they accept the theorem along with it.

The proof that the choice axiom implies the theorem is rather long
(although not exceedingly difficult) and primanly of interest to logicians, we shall omit
it. If you are interested, a proof is outlined in the supplementary exercises at the end
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of the chapter. Instead, we shall simply assume the well-ordering theorem whenever
we need it. Consider it to be an additional axiom of set theory if you like!

We shall in fact need the full strength of this assumption only occasionally. Most
of the time, all we need is the following weaker result:

Corollary. There exists an uncountable well-ordered set.

We now use this result to construct a particular well-ordered set that will prove to
be very useful.

Definition. Let X be a well-ordered set Given a E X, let 5a denote the Set

Sa = (xix E Xandx <a).

It is called the section of X by a.

Lemma 10.2. There exists a well-ordered set A having a largest element such that
the section Sc� of A by is uncountable but every other section of A is countable.

Proof We begin with an uncountable well-ordered set B Let C be the well-ordered
set { 1, 2) x B in the dictionary order; then some section of C is uncountable. (Indeed,
the section of C by any element of the form 2 x b is uncountable.) Let be the
smallest element of C for which the section of C by is uncountable Then let A
consist of this section along with the element

Note that Sc� is an uncountable well-ordered set every section of which is count-
able Its order type is in fact uniquely determined by this condition. We shall call it a
minimal uncountable well-ordered set. Furthermore, we shall denote the well-ordered
set A = Sc2 U by the symbol SQ (for reasons to be seen later)

The most useful property of the set SQ for our purposes is expressed in the follow-
ing theorem

Theorem 103. If A is a countable subset of SQ, then A has an upper bound in SQ

Proof Let A be a countable subset of For each a E A, the Section 5a is count-
able. Therefore, the union B = UaEA 5a is also countable Since is uncountable,
the set B is not all of let x be a point of that is not in B. Then x is an upper
bound for A. For if x < a for some a in A, then x belongs to 5a and hence to B,
contrary to choice. U

Exercises

1. Show that every well-ordered set has the least upper bound property.
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2. (a) Show that in a well-ordered set, every element except the Largest (if one
exists) has an immediate successor.

(b) Find a set in which every element has an immediate successor that is not
well-ordered.

3. Both {l, 2] x Z÷ and Z+ x (1, 2) are well-ordered in the dictionary order. Do
they have the same order type9

4. (a) Let Z. denote the set of negative integers the usual order. Show that
a simply ordered set A fails to be well-ordered if and only if it c ontains a
subset having the same order type as Z..

(b) Show that if A is simply ordered and every countable subset of A is well-
ordered, then A is well-ordered.

5. Show the well-ordering theorem implies the choice axiom.

6. Let SQ be the minimal uncountable well-ordered set.
(a) Show that SQ has no Largest element.
(b) Show that for every a E SQ. the subset fx I

a <x} is uncountable.
(c) Let Xo be the subset of consisting of all elements x such that x has no

immediate predecessor. Show that Xo is uncountable.

7. Let J be a well-ordered set. A subset Jo of J L5 saLd to be inductive if for every
a E J,

(5cr C J0) a E Jo

Theorem (The principle of trans finite induction). If J is a well-ordered set
and is an inductive subset of J, then J0 = J.

8. (a) Let A1 and A2 be disjoint sets, well-ordered by and respectively.
Define an order relation on U A2 by lettLng a <b either if a, b E and
a b, or if a, b A2 and a <2 b, or if a E and b E A2. Show that this
is a well-ordering

(b) Generalize (a) to an arbitrary family of disjoint well-ordered sets, indexed
by a well-ordered set.

9. Consider the subset A consisting of all infinite sequences of positive in-
tegers x = (xl, x2, ...) that end in an infinite string of l's. Give A the following
order: x <y if x = va for i > n. We call this the "antidictionary
order" on A.
(a) Show that for every n, there is a section of A that has the same order type as

in the dictionary order.
(b) Show A is well-ordered.

10. Theorem. Let J and C be well-ordered sets; assume that there is no surjective
function mapping a section of J onto C. Then there exists a unique function
h J —÷ C satisfying the equation

(*) h(x) = smallest [C —
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for each x c J, where S, is the section off by x.
Proof

(a) If h and k map sections of f, or all of f, into C and satisfy (*) for all x in
their respective domains, show that h(x) = k(x) for all x in both domains.

(b) If there exists a function h : Sa C satisfying (*), show that there exists a
function k Sa U (a) —÷ C satisfying (*).

(c) If K C f and for all a E K there exists a function ha • -÷ C satisfying
(*), show that there exists a function

k: U Sa —* C
aEK

satisfying (*).
(d) Show by transfinite induction that for every /3 E f, there exists a function

: —÷ C satisfying (*). (Hint: If /3 has an immediate predecessor a,
then = Sa U (a). If not, is the union of all Sa with a </3.]

(e) Prove the theorem.

11. Let A and B be two sets Using the well-ordering theorem, prove that either they
have the same cardinality, or one has cardinality greater than the other. [Hint: If
there is no surjection f A -÷ B, apply the preceding exercise.]

The Maximum Principlet

We have already indicated that the axiom of choice leads to the deep theorem that ev-
ery set can be well-ordered. The axiom of choice has other consequences that are even
more important in mathematics. Collectively referred to as "maximum pnnciples,"
they come in many versions Formulated independently by a number of mathemati-
cians, including F. Hausdot-ff, K. Kuratowslu, S. Bochner, and M. Zorn, dunng the
years 1914—1935, they were typically proved as consequences of the well-ordering
theorem. Later, it was realized that they were in fact equivalent to the well-ordering
theorem. We consider several of them here.

First, we make a definition. Given a set A, a relation -< on A is called a strict
partial order on A if it has the following two properties:

(1) (Nonreflexivity) The relation a -< a never holds.

(2) (Transitivity) if a -< b and b -< c, then a -< c.

These are just the second and third of the properties of a simple order (see §3); the
comparability property is the one that is omitted. In other words, a strict partial order
behaves just like a simple order except that it need not be true that for every pair of
distinct points x and y in the set, either x -< y or y -< x.

If -.< is a strict partial order on a set A, Lt can easily happen that some subset B
of A is simply ordered by the relation; all that L5 needed is for every pair of elements
of B to be comparable under

section will be assumed in Chapters 5 and 14



§ 11 The Maximum Pnnciple 69

Now we can state the following principle, which was first formulated by Hausdorif
in 1914.

Theorem (The maximum principle). Let A be a set; let be a strict partial order
on A. Then there exists a maximal simply ordered subset B of A.

Said differently, there exists a subset B of A such that B is simply ordered by -<
and such that no subset of A that properly contains B is simply ordered by -<.

EXAMPLE I If .4 is any collection of sets, the relation "is a proper subset of" is a
strict partial order on .4. Suppose that .4 is the collection of all circular regions (interiors
of circles) in the plane. One maximal simply ordered subcollection of .4 consists of all
circular regions with centers at the origin Another maximal simply ordered subcollection
consists of all circular regions bounded by circles tangent from the nght to the y—axis at the
ongin See FLgure 111.

Figure 11.1

EXAMPLE 2. If (xO, and (xi, yi) are two points of the plane R2, define

(xo,yo) (x1,y1)

Lf yo = Yl and xo < x1 This is a partial ordenng of R2 under which two points are
comparable only if they lie on the same honzontal line The maximal simply ordered sets
are the honzontal lines in R2

One can give an intuitive "proof' of the maximum principle that is rather appeal-
ing. It involves a step-by-step procedure, which one can describe in physical terms as
follows. Suppose we take a boX, and put into it some of the elements of A according
to the following plan: First we pick an arbitrary element of A and put it Lfl the box.
Then we pick another element of A. If it is comparable with the element in the boX,
we put it in the boX too; otherwise, we throw it away. At the general step, we will have
a collection of elements in the boX and a collection of elements that have been tossed
away. Take one of the remaining elements of A If it is comparable with everything
in the box, toss it in the box, too, otherwise, throw it away. Similarly continue. After
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you have checked all the elements of A, the elements you have in the box will be com-
parable with one another, and thus they will form a simply ordered set. Every element
not in the box will be noncomparable with at least one element in the box, for that was
why it was tossed away. Hence, the simply ordered set in the box is maximal, for no
larger subset of A can satisfy the comparability condition

Now of course the weak point in the preceding "proof" comes when we said,
"After you have checked all the elements of A." How do you know you ever "get
through" checking all the elements of A? If A should happen to be countable, it is not
hard to make this intuitive proof into a real proof. Let us take the countably infinite
case; the finite case is even easier. Index the elements of A bijectively with the positive
integers, so that A fai, a2. .). This indexing gives a way of deciding what order
to test the elements of A in, and how to know when one has tested them all.

Now we define a function h : —÷ (0, 1), by letting it assign the value 0 to
I if we "put a in the box," and the value I if we "throw a away." This means that
h(1) 0, and for I > I, we have h(i) = 0 if and only if a is comparable with every
element of the set

f <iandh(j)=O}.
By the principle of recursive definition, this formula determines a unique function
h . —÷ (0, 1} It is easy to check that the set of those a

maximal simply ordered subset of A.
If A is not countable, a variant of this procedure will work, if we allow ourselves to

use the well-ordering theorem. Instead of indexing the elements of A with the set Z÷,
we index them (in a bijective fashion) with the elements of some well-ordered set J, so
that A = faa I a E J}. For this we need the well-ordenng theorem, so that we know
there is a bijection between A and some well-ordered set J. Then we can proceed as
in the previous paragraph, letting a replace i in the argument. Strictly speaking, you
need to generalize the principle of recursive definition to well-ordered sets as well, but
that is not particularly difficult. (See the Supplementary Exercises.)

Thus, the well-ordering theorem implies the maximum principle.
Although the maximum principle of Hausdorif was the first to be formulated and

is probably the simplest to understand, there is another such principle that is nowadays
the one most frequently quoted. It is popularly called "Zorn's Lemma," although Ku-
ratowski (1922) and Bochner (1922) preceded Zorn (1935) enunciating and proving
versions of it. For a hLstory and discussion of the tangled history of these ideas, see [C]
or [Moj. To state this principle, we need some terminology.

Definition. Let A be a set and let -< be a strict partial order on A. If B is a subset
of A, an upper bound on B is an element c of A such that for every b in B, either
b c or b c. A maximal element of A is an element m of A such that for no
element a of A does the relation m a hold.

Zorn's Lemma. Let A be a set that is strictly partially ordered. If every simply
ordered subset of A has an upper bound in A, then A has a maximal element.
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Zorn's lemma is an easy consequence of the maximum principle: Given A, the
maximum principle implies that A has a maximal simply ordered subset B. 'The hy-
pothesis of Zorn's lemma tells us that B has an upper bound c in A. The elenient c is
then automatically a maximal element of A. For if c -< d for some element d of A,
then the set B U fd), which properly contains B, is simply ordered because b -< d for
every b E B. This fact contradicts maximality of B.

It is also true that the maximum principle is an easy consequence of Zorn's lemma.
See Exercises 5—7.

One final remark. We have defined what we mean by a stnct partial order on a set,
but we have not said what a partial order itself is. Let -< be a strict partial order on a
set A Suppose that we define a b if either a b or a = b. Then the relation is

called a partial order on A For example, the inclusion relation C on a collection of
sets is a partial order, whereas proper inclusion is a strict partial order.

Many authors prefer to deal with partial orderings rather than strict partial order-
ings, the maximum principle and Zorn's lemma are often expressed in these terms.
Which formulation is used is simply a matter of taste and convenience.

Exercises

1. If a and b are real numbers, define a -< b if b — a is positive and rational. Show
this is a strict partial order on IR. What are the maximal simply ordered subsets9

2. (a) Let -< be a strict partial order on the set A. Define a relation on A by letting
a b if either a -< b or a b. Show that this relation has the following
properties, which are called the partial orderaxioms:

(i) a -<aforalla EA.
(ii) a -<bandb -<a

a relation on A that satisfies properties (i)—(iii). Define a relation S
on A by letting aSb ifaPb and a b. Show that S is a strict partial order
on A.

3. Let A be a set with a strict partial order -<; let x A. Suppose that we wish to
find a maximal simply ordered subset B of A that contains x. One plausible way
of attempting to define B is to let B equal the set of all those elements of A that
are comparable with x;

B=(yly€Aandeitherx-<yory-<x}.

But this will not always work. In which of Examples 1 and 2 will this procedure
succeed and in which will it not?

4. Given two points (xo, yo) and (Xi, yl) of 1R2, define

(xo,yo) (x1, yi)
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if < and yo yi. Show that the curves y = x3 and y = 2 are maximal
simply ordered subsets of R2, and the curve y = x2 is not. Find all maximal
simply ordered subsets.

5. Show that Zorn's lemma implies the following:
Lemma (Kuratowski). Let 4 be a collection of sets. Suppose that for every
subcollection of 4 that is simply ordered by proper inclusion, the union of the
elements of belongs to A Then 4 has an element that is properly contained
in no other element of A.

6. A collection A of subsets of a set X is said to be of finite type provided that a
subset B of X belongs to 4 if and only if every finite subset of B belongs to 4.
Show that the Kuratowski lemma implies the following.
Lemma (Tukey, 1940). Let 4 be a collection of sets. If 4 is of finite type, then
A has an element that is properly contained in no other element of 4.

7. Show that the Tukey lemma implies the Hausdorif maximum principle. [Hint:
If -< is a stnct partial order on A, let A be the collection of all subsets of A that
are simply ordered by Show that A is of finite type.]

8. A typical use of Zorn's lemma in algebra is the proof that every vector space
has a basis. Recall that if A is a subset of the vector space V. we say a vector
belongs to the span of A if it equals a finite linear combination of elements of A.
The set A is independent if the only finite linear combination of elements of A
that equals the zero vector is the trivial one having all coefficients zero. If A is
independent and if every vector in V belongs to the span of A, then A is a basis
for V.
(a) If A is independent and v V does not belong to the span of A, show A U(v)

is independent.
(b) Show the collection of all independent sets in V has a maximal element.
(c) Show that V has a basis.

Exercises: Well-Ordering

In the following exercises, we ask you to prove the equivalence of the choice axiom,
the well-ordering theorem, and the maximum principle. We comment that of these
exercises, only Exercise 7 uses the choice axiom.

1. Theorem (General principle of recursive definition). Let J be a well-ordered
set; let C be a set. Let Y be the set of all functions mapping sections off into C.
Given a function p : —* C, there exists a unique function h : f C such
thath(a) = for eacha E f.

[Hint. Follow the pattern outlined in Exercise 10 of §10.]

2. (a) Let f and E be well-ordered sets, let h : f -÷ E. Show the following two
statements are equivalent:

(i) h is order preserving and its image is E or a section of E.
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(ii) h(a) = smallest [E — h(Sa)] for all a.

[Hint: Show that each of these conditions implies that h(Sa) is a section of
E, conclude that it must be the section by h(a).]

(b) If E is a well-ordered set, show that no section of E has the order type of E,
nor do two different sections of E have the same order type. [Hint: Given J,
there is at most one order-preserving map of J into E whose image is E or
a section of E.j

3. Let J and E be well-ordered sets; suppose there is an order-preserving map
k : J —÷ E. Using Exercises 1 and 2, show that J has the order type of E or
a section of E. [Hint: Choose E E. Define h : J —÷ E by the recursion
formula

h(a)=smallest[E—h(Sa)] if

and h(a) = otherwise. Show that h(a) k(a) for all a; conclude that

h(Sa) E for all a.]
4. Use Exercises 1—3 to prove the following

(a) If A and B are well-ordered sets, then exactly one of the following three

conditions holds: A and B have the same order type, or A has the order type
of a section of B, or B has the order type of a section of A. [Hint: Form
a well-ordered set containing both A and B, as in Exercise 8 of § 10; then
apply the preceding exercise.]

(b) Suppose that A and B are well-ordered sets that are uncountable, such that
every section of A and of B is countable. Show A and B have the same order
type.

5. Let X be a set; let A be the collection of all pairs (A, <), where A is a subset
of X and <is a well-ordering of A. Define

(A, <) -< (A', <')

if(A, <) equalsasectionof (A', <').
(a) Show that -< is a stnct partial order on A.
(b) Let 2 be a subcollection of A that is simply ordered by Define B' to be

the union of the sets B, for all (B, <) 2; and define <'to be the union
of the relations <,for all (B, <) Show that (B', <') a well-ordered
set.

6. Use Exercises 1 and 5 to prove the following:
Theorem. The maximum principle is equivalent to the well-ordering theorem.

7. Use Exercises 1—5 to prove the following.
Theorem. The choice axiom is equivalent to the well-ordering theorem.
Proof Let X be a set, let c be a fixed choice function for the nonerupty subsets
of X. If T is a subset of X and <is a relation on T, we say that (T, <)is a tower
in X if < is a well-ordenng ofT and if for each x E T,

x = c(X —
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where is the section of T by x.
(a) Let (T1, <i) and (T2, <2) be two towers in X. Show that either these two

ordered sets are the same, or one equals a section of the other. [Hint: Switch-
ing indices if necessary, we can assume that h : T1 -.÷ T2 is order preserving
and h(T1) equals either T2 or a section of 1'2. Use Exercise 2 to show that
h(x) = x for all x.j

(b) If (T, <) is a tower in X and T X, show there is a tower in X of which
(T, <)is a section.

(c) Let ((Tk, <k)Ik K] be the collection of all towers in X. Let

T=UTk and
k€K k€K

Show that (T, <)is a tower in X. Conclude that T = X.

8. Using Exercises 1-4, construct an uncountable well-ordered set, as follows. Let
4 be the collection of all pairs (A, <),where A is a subset of Z÷ and <isa well-
ordering of A. (We allow A to be empty.) Define (A, <) (A', <') if (A, <)
and (A', <') have the same order type. It is trivial to show this is an equivalence
relation. Let [(A, <)j denote the equivalence class of (A, <); let E denote the
collection of these equivalence classes. Define

[(A, <)j [(A', <')j

if (A, <)has the order type of a section of (A', <').
(a) Show that the relation <<is well defined and is a simple order on E. Note

that the equivalence class [(0, 0)] is the smallest element of E.
(b) Show that if a = [(A, <)] is an element of E, then (A, <) has the same

order type as the section Sa(E) of E by a. [Hint. Define a map 1: A —÷ E
by setting f(x) = restriction of <)j for each x E A.]

(c) Conclude that E is well-ordered by <<.
(d) Show that E is uncountable. [Hint: If h : E -÷ is a bijection, then h

gives rise to a well-ordering of
This same argument, with Z÷ replaced by an arbitrary well-ordered set X,

proves (without use of the choice axiom) the existence of a well-ordered set E
whose cardinality is greater than that of X.

This exercise shows that one can construct an uncountable well-ordered set,
and hence the minimal uncountable well-ordered set, by an explicit construction
that does not use the choice axiom. However, this result is less interesting than it
might appear. The crucial property of Sc2, the one we use repeatedly, is the fact
that every countable subset of Sc2 has an upper bound in Sc�. That fact depends,
in turn, on the fact that a countable union of countable sets is countable. And the
proof of that result (if you examine it carefulLy) involves an infinite number of
arbitrary choices—that is, it depends on the choice axiom.

Said differently, without the choice axiom we may be able to construct the
minimal uncountable well-ordered set, but we can't use it for anything!



Chapter 2

Topological Spaces
and Continuous Functions

The concept of topological space grew out of the study of the real line and euclidean
space and the study of continuous functions on these spaces. In this chapter, we de-
fine what a topological space is, and we study a number of ways of constructing a
topology on a set so as to make it into a topological space. We also consider some
of the elementary concepts associated with topological spaces. Open and closed sets,
limit points, and continuous functions are introduced as natural generalizations of the
corresponding ideas for the real line and euclidean space.

§12 Topological Spaces

The definition of a topological space that is now standard was a long time in being
formulated. Various mathematicians—Fréchet, Hausdorff, and others—proposed dif-
ferent definitions over a period of years during the first decades of the twentieth cen-
tury, but it took quite a while before mathematicians settled on the one that seemed
most suitable. They wanted, of course, a definition that was as broad as possible,
so that it would include as special cases all the various examples that were useful
in mathematics—euclidean space, infinite-dimensional euclidean space, and function
spaces among them—but they also wanted the definition to be narrow enough that the
standard theorems about these familiar spaces would hold for topological spaces in

75
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general. This is always the problem when one is trying to formulate a new mathe-
matical concept, to decide how general its definition should be. The definition finally
settled on may seem a bit abstract, but as you work through the various ways of con-
structing topological spaces, you will get a better feeling for what the concept means.

Definition. A topology on a set X is a collection 7 of subsets of X having the
following properties:
(1) øandXare in 7.
(2) The union of the elements of any subcollection of 7 is in 7.

(3) The intersection of the elements of any finite subcollection of 7 is in 7.
A set X for which a topology T has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X, 7) consisting of a
set X and a topology 7 on X, but we often omit specific mention of 7 if no confusion
will anse.

If X is a topological space with topology 7, we say that a subset U of X is an
open set of X if U belongs to the collection 7. Using this terminology, one can say
that a topological space is a set X together with a collection of subsets of X, called
open sets, such that 0 and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

EXAMPLE I Let X be a three-element set, X = (a, b, C) There are many possible
topologies on X, some of which are indicated schematically in Figure 12.1. The diagram
tn the upper nght-hand corner indicates the topology in which the open sets are X, 0,
(a, b), (b), and (b, cJ The topology in the upper left-hand corner contains only X and 0,
while the topology in the lower nghc-hand corner contains every subset of X. You can get
other topologies on X by permuting a, b, and c

Figure 12.1

From this example, you can see that even a three-element set has many different
topologies. But not every collection of subsets of X is a topology on X Neither of the
collections indicated in Figure 12 2 is a topology, for instance.
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Figure 12.2

EXAMPLE 2. If X is any set, the collection of all subsets of X is a topology on X, it is
called the discrete topology The collection consisting of X and 0 only is also a topology
on X; we shall call it the indiscrete topology, or the trivial topology

Ex AMPLE 3. Let X be a set, let Tj be the collection of all subsets U of X such that X — U
either is finite or is all of X Then Tj is a topology on X, called the finile complement
topology. Both X and 0 are in Tj, since X — X is finite and X — 0 is all of X If {Ua} i5
an indexed family of nonempty elements of Tj, to show that U Ua is in TJ, we compute

X_UUa fl(X —Us).

The latter set is finite because each set X — is finite If U1, , are nonempty
elements of Tj, to show that fl U is in Tj, we compute

x_flu, =U(X—Ui).

The latter set is a finite union of finite sets and, therefore, finite

EXAMPLE 4 Let X be a set, let be the collection of all subsets U of X such that
X — U either is countable or is all of X. Then is a topology on X, as you can check

Definition. Suppose that 7 and 7' are two topologies on a given set X. If 7' J 7,
we say that 7' is finer than 7; if 7' properly contains 7, we say that 7' is strictly
finer than 7. We also say that 7 is coarser ihan 7', or strictly coarser, in these two
respective situations. We say 7 is comparable with 7' if either 7' 7 or T 7'.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12 1
ing, the topology in the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology is sometimes used for this concept. If 7' 7, some math-
ematicians would say that 7' is larger than 7, and 7 is smaller than 7' This is
certainly acceptable terminology, if not as vivid as the words "finer" and "coarser."
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Many mathematicians use the words "weaker" and "stronger" in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that 7' is stronger
than 7 if 7' 7, while others (particularly topologists) are apt to say that 7' is
weaker than 7 in the same situation! if you run across the terms "strong topology"
or "weak topology" in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection 7 of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection of subsets of X
(called basis elements) such that

(1) For each x X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basEs elements B1 and B2, then there is a
basis element B3 containing x such that B3 C B1 fl B2.

If satisfies these two conditions, then we define the topology 7 generated by as
follows: A subset U of X is said to be open in X (that is, to be an element of 7) if for
each x U, there is a basis element B E such that x B and B C U. Note that
each basis element is itself an element of 7.

We will check shortly that the collection 7 is indeed a topology on X. But first let
us consider some examples.

EXAMPLE 1 Let 2 be the collection of all circular regions (intenors of drcles) in the
plane. Then 2 satisfies both conditions for a basis The second condition is illustrated in
Figure 13 1. In the topology generated by 2, a subset U of the plane is open if every x
in U lies in some circular region contained in U

Figure 13.1 Figure 13.2

B'2
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EXAMPLE 2. Let 2' be the collection of all rectangular regions (intenors of rectangles)
in the plane, where the rectangles have sides parallel to the coordinate axes Then 2'
satisfies both conditions for a basis. The second condition is illustrated in Figure 13 2; in
this case, the condition is trivial, because the intersection of any two basis elements is itself
a basis element (or empty) As we shall see later, the basis 2' generates the same topology
on the plane as the basis 2 given in the preceding example

EXAMPLE 3 If X is any set, the collection of all one-point subsets of X is a basis for
the discrete topology on X

Let us check now that the collection 7 generated by the basis is, in fact, a
topology on X. if U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in 7, since for each x E X there is some basis element
B containing x and contained in X Now let us take an indexed family of
elements of 7 and show that

U = U Ua
aEJ

belongs to 7. Given x E U, there is an index a such that x Ua. Since (4 is open,
there is a basis element B such that x E B C 11a• Then x E B and B c U, so that U
is open, by definition.

Now let us take two elements U1 and (/2 of 7 and show that U1 fl U2 belongs to 7.
Given x E U1 flU2, choose a basis element B1 containing x such that B1 C U1; choose
also a basis element B2 containing x such that 82 C U2. The second condition for a
basis enables us to choose a basis element B3 containing x such that B3 C B1 fl B2.
See Figure 13.3. Then x E B3 and 83 C U1 fl U2, so U1 fl U2 belongs to 7, by
definition.

Finally, we show by induction that any finite intersection U1 fl . . fl of elements
ofT in 7. This fact is trivial for n = 1; we suppose it true for n — I and prove it
forn. Now

((/1fl .

Figure 13.3
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By hypothesis, U1 fl • fl belongs to 7; by the result just proved, the inter-
section of U1 fl .. fl and also belongs to 7

Thus we have checked that collection of open sets generated by a basis is, in
fact, a topology.

Another way of describing the topology generated by a basis is given in the
lowing lemma.

Lemma 13.1. Let X be a set; let be a basis for a topology 7 on X. Then 7 equals
the collection of all unions of elements of

Proof Given a collection of elements of they are also elements ofT. Because 7
is a topology, their union is in 7. Conversely, given U E 7, choose for each X E U
an element of such that x E C U. Then U = UXEU so U equals a union
of elements of

This lemma states that every open set U in X can be expressed as a union of
basis elements. This expression for U is not, however, unique. Thus the use of the
term "basis" in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology
it generates. Sometimes we need to go in the reverse direction, from a topology to a
basis generating it. Here is one way of obtaining a basis for a given topology; we shall
use it frequently.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x E C C U. Then C is a basis for the topology of X.

Proof We must show that C is a basis. The first condition for a basis is easy: Given
x E X, since X is itself an open set, there is by hypothesis an element C of C such
that x E C C X. To check the second condition, let x belong to C1 fl C2, where C1
and C2 are elements of C. Since C1 and C2 are open, so is C1 fl C2. Therefore, there
exists by hypothesis an element C3 in C such that x C3 C Ci fl C2.

Let 7 be the collection of open sets of X; we must show that the topology 7'
generated by C equals the topology 7. First, note that if U belongs to 7 and if x E U,
then there is by hypothesis an element C of C such that x E C C U. It follows that U
belongs to the topology 7', by definition. Conversely, if W belongs to the topology 7',
then W equals a union of elements of C, by the preceding lemma. Since each element
of C belongs to 7 and 7 is a topology, W also beLongs to 7.

When topologies are given by bases, it is useful to have a criterion in terms of the
bases for determining whether one topology is finer than another. One such criterion
is the following.
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Lemma 13.3. Let and B' be bases for the topologies 7 and T', respectively, on
X. Then the following are equivalent:
(1) 7' is liner than 7.
(2) For each x E X and each basis element B E containing x, there is a basis

element B' E B'suchthatx B' C B.

Proof (2) (I). Given an element U of 7, we wish to show that U E 7'. Let
x U. Since generates 7, there is an element B such that x E B C U.
Condition (2) tells us there exists an element B' E such that x B' C B. Then
x E B' C U, so U E 7', by definition.

(1) (2). We are given x X and B E withx E B. Now B belongs toT
by definition and 7 C 7' by condition (1); therefore, B 7' Since 7' is generated
by there is an element B' E B' such that x B' C B.

Some students find this condition hard to remember. "Which way does the inclu-
sion go?" they ask. It may be easier to remember if you recall the analogy between
a topological space and a truckload full of gravel. Think of the pebbles as the basis
elements of the topology; after the pebbles are smashed to dust, the dust particles are
the basis elements of the new topology. The new topology is finer than the old one,
and each dust particle was contained inside a pebble, as the criterion states.

EXAMPLE 4. One can now see that the collection 2 of all circular regions in the plane
generates the same topology as the collection 2' of all rectangular regions, Figure 13 4
illustrates the proof We shall treat this example more formally when we study metnc
spaces

L®B

Figure 13.4

We now define three topologies on the real line JR. all of which are of interest.

Definition. If is the collection of all open intervals in the real line,

(a,b)=fxja <x
the topology generated by is called the standard topology on the real line. Whenever
we consider IR, we shall suppose it is given this topology unless we specifically state
otherwise. If is the collection of all half-open intervals of the form

<b},
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where a < b, the topology generated by B' is called the lower limit topology on JR.
When JR is given the lower limit topology, we denote it by JR1 . Finally let K denote the
set of all numbers of the form 1/n, for n E Z÷, and let be the collection of all open
intervals (a, b), along with all sets of the form (a, b) — K. The topology generated
by B" will be called the K-topology on JR. When JR is given this topology, we denote
it by IRK.

It is easy to see that all three of these collections are bases; in each case, the
intersection of two basis elements is either another basis element or is empty. The
relation between these topologies is the following

Lemma 13.4. The topologies of 1R1 and IRK are strictly liner than the standard topol-
ogy on JR. but are not comparable with one another.

Proof Let 7, 7', and 7" be the topologies of IR, JR1. and RK, respectively. Given
a basis element (a, b) for 7 and a point x of (a, b), the basis element [x, b) for 7'
contains x and lies in (a, b). On the other hand, given the basis element [x, d) for 7',
there is no open interval (a, b) that contains x and lies in [x, d). Thus 7' is strictly
finer than 7

A similar argument applies to Given a basis element (a, b) for 7 and a
point x of (a, b), this same interval is a basis element for 7" that contains x. On the
other hand, given the basis element B = (—1, 1) — K for 7" and the point 0 of B,
there is no open interval that contains 0 and lies in B.

We leave it to you to show that the topologies of JR1 and IRK are not comparable.
U

A question may occur to you at this point. Since the topology generated by a
basis may be described as the collection of arbitrary unions of elements of what
happens if you start with a given collection of sets and take finite intersections of
them as well as arbitrary unions? This question leads to the notion of a subbasis for a
topology

Definition. A subbasis S for a topology on X is a collection of subsets of X whose
union equals X. Thetopology generated by the subbasis S is defined to be the collec-
tion 7 of all unions of finite intersections of elements of S.

We must of course check that 7 is a topology. For this purpose it will suffice to
show that the collection of all finite intersections of elements of S is a basis, for
then the collection 7 of all unions of elements of is a topology, by Lemma 13.1.
Given x X, it belongs to an element of S and hence to an element of this is the
first condition for a basis. To check the second condition, let

B1=S1fl flSm and

be two elements of Their intersection
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is also a finite intersection of elements of S. so it belongs to

Exercises

1. Let X be a topological space; let A be a subset of X. Suppose that for each x E A

there is an open set U containing x such that U C A. Show that A is open in X

2. Consider the nine topologies on the set X = ta, b, c) indicated in Example
of § 12. Compare them, that is, for each pair of topologies, determine whether
they are comparable, and if so, which is the finer.

3. Show that the collection given in Example 4 of § 12 is a topology on the set X.
Is the collection

= (U I
X — U is infinite orempty orall of X)

a topology on X?

4. (a) If (Ta) is a family of topologies on X, show that fl is a topology on X.
ISIJTa atopologyonX?

(b) Let (Ta) be a family of topologies on X. Show that there is a unique small-
est topology on X containing all the collections Ta. and a unique largest
topology contained in all Ta•

(c) If X = (a,b,cJ, let

Ti = (0, X, (a), (a, b)) and -'2 = (0, X, (a), {b, c)).

Find the smallest topology containing Ti and 72, and the largest topology
contained in Ti and T2.

5. Show that if A is a basis for a topology on X, then the topology generated by A
equals the intersection of all topologies on X that contain A. Prove the same if
4 is a subbasis.

6. Show that the topologies of R1 and IRK are not comparable.

7. Consider the following topologies on IR:

Ti = the standard topology,

T2 = the topology of IRK,

T3 = the finite complement topology,

T4 = the upper limit topology, having all sets (a, b] as basis,

T5 = the topology having all sets (—oo, a) = (x I x <a} as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

= ((a, b) a <b, a and b rational)



84 Topological Spaces and Continuous Functions Ch. 2

is a basis that generates the standard topology on JR.
(b) Show that the collection

C = ([a, b) I a <b, a and b rational)

is a basis that generates a topology different from the lower limit topology
onR.

§14 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order
relation. It is called the order topology; in this section, we consider it and study some
of its properties.

Suppose that X is a set having a simple order relation <. Given elements a and b
of X such that a < b, there are four subsets of X that are called the intervals deter-
mined by a and b. They are the following:

(a,b) =(x Ia <x
(a,b]= (x a <x b},

[a,b)=(xla <b},
[a,b]=(x a

The notation used here is familiar to you already in the case where X is the real line,
but these are intervals in an arbitrary ordered set. A set of the first type is called an
open interval in X, a set of the last type is called a closed interval in X, and sets of the
second and third types are called half-open intervals. The use of the term "open" in
this connection suggests that open intervals in X should turn out to be open sets when
we put a topology on X. And so they will.

Definition. Let X be a set with a simple order relation; assume X has more than one
element. Let be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [ao, b), where ao is the smallest element (if any) of X.

(3) All intervals of the form (a, boJ, where b0 is the largest element (if any) of X.
The collection is a basis for a topology on X, which is called the order topology.

if X has no smallest element, there are no sets of type (2), and if X has no largest
element, there are no sets of type (3).

One has to check that satisfies the requirements for a basis. First, note that every
element x of X lies in at least one element of The smallest element (if any) lies
in all sets of type (2), the largest element (if any) lies in all sets of type (3), and every
other element lies in a set of type (I). Second, note that the intersection of any two sets
of the preceding types again a set of one of these types, or is empty. Several cases
need to be checked; we leave it to you.
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EXAMPLE 1 The standard topology on R, as defined in the preceding section. is just ihe
order topology denved from the usual order on JR.

EXAMPLE 2. Consider the set JR x JR in the dictionary order, we shall denote the general
element of JR x JR by x x y, to avoid difficulty with notation The set R x R has neither a
largest nor a smallest element, so the order topology on R x R has as basis the collection
ofallopenintervalsoftheform (a x b,c x d)fora <c,andfora =candb <d. These
two types of intervals are indicated in Figure 14.1. The subcollection consisting of only
intervals of the second type is also a basis for the order topology on JR x R, as you can
check

I
ax b

cx d

Figure 14.1

EXAMPLE 3 The positive integers Z÷ form an ordered set with a smallest element. The
order topology on Z÷ is the discrete topology, for every one-point set is open If n > 1,

then the one-point set (n} = (n — 1, n + 1) is a basis element; and if n = 1, the one-point
set(1J = [1,2) isabasis element.

EXAMPLE 4 The set X = (1, 2) x in the dictionary order is another example of
an ordered set with a smallest element Denoting I x n by and 2 x n by we can
represent X by

aI,a2,.
The order topology on X is nor the discrete topology. Most one-point sets are open, but
there is an exception—the one-point set (b1 J. Any open set containing b1 must contain a
basis element about b1 (by definition), and any basis element containing b1 contains points
of the sequence.

Definition. If X is an ordered set, and a is an element of X, there are four subsets
of X that are called the rays determined by a They are the following

(a, +oo) = fx x > a),
(—oo, a) = fx I x <a),
[a, +oo) = fx I x a),

(—oo, a] = (x
I
x a).

a xd

axb
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Sets of the first two types are called open rays, and sets of the last two types are called
closed rays.

The use of the term "open" suggests that open rays in X are open sets in the order
topology. And so they are. Consider, for example, the ray (a, +oo). If X has a largest
element b0, then (a, +oo) equals the basis element (a, bo]. If X has no largest element,
then (a, +00) equals the union of all basis elements of the form (a, x), for x > a. In

either case, (a, +oo) is open. A similar argument applies to the ray (—oo, a).
The open rays, in fact, form a subbasis for the order topology on X, as we now

show Because the open rays are open in the order topology, the topology they gen-
erate is contained in the order topology. On the other hand, every basis element for
the order topology equals a finite intersection of open rays; the interval (a, b) equals
the intersection of (—oo, b) and (a, +00), while lao, b) and (a, b0], if they exist, are
themselves open rays. Hence the topology generated by the open rays contains the
order topology

§15 The Product Topology on X x Y

If X and Y are topological spaces, there is a standard way of defining a topology on
the cartesian product X x Y. We consider this topology now and study some of its
properties.

Definition. Let X and Y be topological spaces. The product topology on X x Y is
the topology having as basis the collection of all sets of the form U x V, where U
is an open subset of X and V is an open subset of Y.

Let us check that is a basis. The first condition is trivial, since X x Y is itself
a basis element. The second condition is almost as easy, since the intersection of any
two basis elements U1 x V1 and (12 x V2 is another basis element. For

(U1 x V1) fl (U2 x V2) = (U1 fl U2) x (V1 fl V2),

and the latter set is a basis element because U1 fl U2 and V1 fl V2 are open in X and Y,
respectively. See Figure 15.1.

Note that the collection is not a topology on X x Y. The union of the two
rectangles pictured in Figure 15.1, for instance, is not a product of two sets, so it
cannot belong to however, it is open in X x Y.

Each time we introduce a new concept, we shall try to relate it to the concepts that
have been previously introduced. In the present case, we ask: What can one say if the
topologies on X and Y are given by bases9 The answer is as follows:

Theorem 15.1. If 2 is a basis for the topology of X and C is a basis for the topology
of Y, then the collection

2)— (B x Cl BE andC E C)

is a basis for the topology of X x Y
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vi

Pmof We apply Lemma 13.2. Given an open set W of X x Y and a point x x y
of W, by definition of the product topology there is a basis element U x V such that
x x y E U x V c W. Because and C are bases for X and Y, respectively, we can
choose an element B of such that x E B C U, and an element C of C such that
y E C C V. Then x x y E B x C C W. Thus the collection 2) meets the criterion of
Lemma 13.2, 50 2) is a basis for X x Y.

EXAMPLE 1. We have a standard topology on JR the order topology The product of
this topology with itself is called the standard topology on JR x JR = JR2. It has as basis
the collection of all products of open sets of JR, but the theorem just proved tells us that the
much smaller collection of all products (a, b) x (c, d) of open intervals in JR will also serve
as a basis for the topology of JR2 Each such set can be pictured as the intenor of a rectangle
in JR2. Thus the standard topology on JR2 is just the one we considered in Example 2 of § 13

It is sometimes useful to express the product topology in terms of a subbasis. To
do this, we first define certain functions called projections.

Definition. Let . X x Y —+ X be defined by the equation

311(x, y) = x;

let X x Y —+ Y be defined by the equation

7(2(x, y) = y.

The maps and jr2 are called the projections of X x Y onto its first and second
factors, respectively.

We use the word "onto" because 211 and jr2 are surjective (unless one of the
spaces X or Y happens to be empty, in which case X x Y is empty and our whole
discussion is empty as well!).

If U is an open subset of X, then the set is precisely the set U x Y, which
is open in X x Y. Similarly, if V is open in Y, then

= X x V.

U1

Figure 15.1
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which is also open in X x Y. The intersection of these two sets is the set U x V, as
indicated in Figure 15.2. This fact leads to the following theorem:

Theorem 15.2. The collection

VopeninY)

is a subbasis for the product topology on X x Y.

Proof Let 7 denote the product topology on X x Y, let 7' be the topology gener-
ated by S. Because every element of S belongs to T, so do arbitrary unions of finite
intersections of elements of S. Thus 7' C 7. On the other hand, every basis element
U x V for the topology T is a finite intersection of elements of 5, since

U x

V belongs to T', so that T C T' as well

§16 The Subspace Topology

I

Definition. Let X be a topological space with topology 7. If Y is a subset of X, the
collection

= {Y fl U I U E

is a topology on Y, called the subspace topology. With this topology, Y is called a
subspace of X; its open sets consist of alt intersections of open sets of X with Y.

U

Figure 15.2
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It is easy to see that 7y is a topology. It contains 0 and Y because

ø=Yflø and Y—YflX,

where 0 and X are elements of T. The fact that it is closed under finite intersections
and arbitrary unions follows from the equations

cv€J cv€J

Lemma 16.1. If B is a basis for the topology of X then the collection

B E

is a basis for the subspace topology on Y.

Proof Given U open in X and given y E U fl Y, we can choose an element B of 2
such thaty E BC U. Theny E BflY C UflY. ItfollowsfromLernma 13.2 that
is a basis for the subspace topology on Y. I

When dealing with a space X and a subspace Y, one needs to be careful when
one uses the term "open set". Does one mean an element of the topology of Y or an
element of the topology of X? We make the following definition If Y is a subspace
of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the
topology of Y; this implies in particular that it is a subset of Y. We say that U is open
in X if it belongs to the topology of X

There is a special situation in which every set open in Y is also open in X.

Lemma 16.2. Let Y be a subspace of X. If U is open in Y and Y is open in X, then
U is open inX.

Proof Since U is open in Y, U = Y fl V for some set V open in X. Since Y and V
are both open in X, so is Y fl V

Now let us explore the relation between the subspace topology and the order and
product topologies For product topologies, the result is what one might expect; for
order topologies, it is not.

Theorem 16.3. If A is a subspace of X and B is a subspace of Y, then the product
topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.

Pmof The set U x V is the general basis element for X x Y, where U is open in X
and V is open in Y. Therefore, (U x V) fl (A x B) is the general basis element for the
subspace topology on A x B. Now

(U x V)fl(A x B)=(UflA)x(VflB).
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Since U fl A and V fl B are the general open sets for the subspace topologies on A
and B, respectively, the set (U fl A) x (V fl B) is the general basis element for the
product topology on A x B.

The conclusion we draw is that the bases for the subspace topology on A x B and
for the product topology on A x B are the same. Hence the topologies are the same. I

Now let X be an ordered set in the order topology, and let Y be a subset of X. The
order relation on X, when restricted to Y, makes Y into an ordered set. However, the
resulting order topology on Y need not be the same as the topology that Y inherits as
a subspace of X. We give one example where the subspace and order topologies on Y
agree, and two examples where they do not.

EXAMPLE 1 Consider the subset Y = [0, 1] of the real line JR. in the subspace topology.
The subspace topology has as basis all sets of the form (a, b) fl Y, where (a, b) is an open
interval in JR Such a set is of one of the following types.

(a, b) if a and bare in Y,

(a b)
[0, b) if only b is in Y,

(a, I] ifonlya isin Y,
Y or 0 if neither a nor b is in Y.

By definition, each of these sets is open in Y But sets of the second and third types are not
open in the larger space JR.

Note that these sets form a basis for the order topology on Y Thus, we see that in the
case of the set Y = [0, 1], its subspace topology (as a subspace of JR) and its order topology
are the same.

EXAMPLE 2 Let Y be the subset [0, 1) U (2J of JR. In the subspace to9ology on Y the
one-point set (2J is open, because it is the intersection of the open set with Y But in
the order topology on Y, the set (2) is not open. Any basis element for the order topology
on Y that contains 2 is of the form

(xix Y anda <x <2)

for some a Y, such a set necessanly contains points of Y less than 2

EXAMPLE 3 Let I = [0, 1] The dictionary order on I x I is just the restnction to
I x I of the dictionary order on the plane JR x JR. However, the dictionary order topology
on I x us not the same as the subspace topology on! x I obtained from the dictionary
order topology on JR x For example, the set (l/2J x (1/2, 1] is open in I x I in the
subspace topology, but not in the order topology, as you can check. See Figure 16.1.

The set! x I in the dictionary order topology will be called the ordered square, and
denoted by

The anomaly illustrated in Examples 2 and 3 does not occur for intervals or rays
in an ordered set X. This we now prove.

Given an ordered set X, let us say that a subset Y of X is convex in X if for each
pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that
intervals and rays in X are convex in X.
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Subspace

Figure 16.1

Theorem 16.4. Let X be an ordered set in the order topology; Jet Y be a subset
of X that is convex in X Then the order topology on Y is the same as the topology Y
inherits as a subspace of X.

Proof Consider the ray (a, +00) in X. What is its intersection with Y? If a E Y,
then

(a, +oo) fl Y = {x I x E Y and x > a);

this is an open ray of the ordered set Y. If a Y, then a is either a lower bound on Y
or an upper bound on Y, since Y is convex. In the former case, the set (a, ±00) fl Y

equals all of Y; in the latter case, it is empty.
A similar remark shows that the intersection of the ray (—00, a) with Y is either

an open ray of Y, or Y itself, or empty. Since the sets (a, +00) fl Y and a) fl Y
form a subbasis for the subspace topology on Y, and since each is open in the order
topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of Y equals the intersection of an open
ray of X with Y, so it is open in the subspace topology on Y. Since the open rays of Y
are a subbasis for the order topology on Y, this topology is contained in the subspace
topology. U

To avoid ambiguity, let us agree that whenever X is an ordered set in the order
topology and Y is a subset of X, we shall assume that Y is given the subspace topology
unless we specifically state otherwise. If Y is convex in X, this is the same as the order
topology on Y, otherwise, it may not be.

Exercises

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A

Order
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inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

2. If T and T' are topologies on X and T' is strictly finer than T, what can you
say about the corresponding subspace topologies on the subset Y of X?

3. Consider the set Y = [—1, 1] as a subspace of IR. Which of the following sets
are open in Y? Which are open in JR?

A = {x < lxi < 1),

B = (x
I <lxi 1),

C = {x lxi < 1),

D=(xi 1L

E=(xIO<IxI < land

4. A map f : X —+ Y is said to be an open map if for every open set U of X, the
set f(U) is open in Y. Show that X x Y —÷ X and jr2 X x Y —+ Y are
open maps.

5. Let X and X' denote a single set in the topologies T and 7', respectively; let Y
and Y' denote a single set in the topologies 'LI and 'LI', respectively. Assume
these sets are nonempty.
(a) Show that if T' T and 'LI' D 'LI, then the product topology on x Y' is

finer than the product topology on X x Y.
(b) Does the converse of (a) hold? Justify your answer.

6. Show that the countable collection

((a, b) x (c, d) J a <b and c <d, and a, b, c, d are rational)

is a basis for 1R2

7. Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it
follow that Y is an interval or a ray in X?

8. If L is a straight line in the plane, describe the topology L inherits as a subspace
of JRt x R and as a subspace of IRt x IRt. In each case it is a familiar topology.

9. Show that the dictionary order topology on the set JR x JR is the same as the
product topology IR1j x IR, where IRd denotes JR in the discrete topology. Compare
this topology with the standard topology on R2.

10. Let I = [0, 1]. Compare the product topology on I x I, the dictionary order
topology on I x I, and the topology! x I inhents as a subspace of JR x JR in the
dictionary order topology.

§17 Closed Sets and Limit Points

Now that we have a few examples at hand, we can introduce some of the basic concepts
associated with topological spaces. In this section, we treat the notions of closed set,
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closure of a set, and limit point. These lead naturally to consideration of a certain
axiom for topological spaces called the Hausdorff axiom.

Closed Sets

A subset A of a topological space X is said to be closed if the set X — A is open.

EXAMPLE I. The subset [a, b) of JR is closed because its complement

JR — [a, b) = (—00, a) U (b, +00),

is open. Similarly, [a, +00) is closed, because its complement a) is open. These
facts justify our use of the terms "closed interval" and "closed ray" The subset [a b) of JR

is neither open nor closed.

EXAMPLE 2. In the plane JR2, the set

(x x ylx ?Oandy

is closed, because its complement is the union of the two sets

(—00, 0) x JR and JR x 0),

each of which is a product of open sets of JR and is, therefore, open in JR2

EXAMPLE 3 In the finite complement topology on a set X, the closed sets consist of X
itself and all finite subsets of X

EXAMPLE 4 In the discrete topology on the set X, every set is open, it follows that
every set is closed as well.

EXAMPLE 5 Consider the following subset of the real line:

Y=[0, l)U(2,3),

in the subspace topology. In this space, the set [0, 1] is open, since it is the intersection of
the open set (— of JR with Y Similarly, (2, 3) is open as a subset of Y; it is even open
as a subset of JR. Since [0, 1] and (2, 3) are complements in Y of each other, we conclude
that both [0, 1] and (2, 3) are closed as subsets of Y

These examples suggest that an answer to the mathematician's riddle: "How is
a set different from a door?" should be: "A door must be either open or closed, and
cannot be both, while a set can be open, or closed, or both, or neither!"

The collection of closed subsets of a space X has properties similar to those satis-
fied by the collection of open subsets of X:
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Theorem 17.1. Let X be a topological space. Then the following conditions hold:
(1) 0 andX are closed.
(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

Pmof (1) 0 and X are closed because they are the complements of the open sets X
and 0, respectively.

(2) Given a collection of closed sets we apply DeMorgan's law,

x- flAg = U(x An).
aEJ a€J

Since the sets X — are open by definition, the right side of this equation represents
an arbitrary union of open sets, and is thus open. Therefore, fl

A is closed i = 1 n, consider the equation

X_(JA,

The set on the right side of this equation is a finite intersection of open sets and is
therefore open. Hence U A is closed. I

Instead of using open sets, one couLd just as well specify a topology on a space by
giving a collection of sets (to be called "closed sets') satisfying the three properties of
this theorem. One could then define open sets as the complements of closed sets and
proceed just as before. This procedure has no particular advantage over the one we
have adopted, and most mathematicians prefer to use open sets to define topologies.

Now when dealing with subspaces, one needs to be careful &n using the term
"closed set." If Y is a subspace of X, we say that a set A is closed in Y if A is a
subset of Y and if A is closed in the subspace topology of Y (that is, if Y — A is open
in Y). We have the following theorem:

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if
it equals the intersection of a closed set of X with Y.

Pmof Assume that A = C fl Y, where C is closed in X. (See Figure 17.1.) Then
X — C is open in X, so that (X — C) fl Y is open in Y, by definition of the subspace
topology. But (X — C) fl Y = Y — A. Hence Y —A is open in Y, so that A is closed in
Y. Conversely, assume that A is closed in Y. (See Figure 17.2.) Then Y — A is open
in Y, so that by definition it equals the intersection of an open set U of X with Y The
set X — U is closed in X, and A — Y fl (X — U), so that A equals the intersection of
a closed set of X with Y, as desired.

A set A that is closed in the subspace Y may or may not be closed in the larger
space X. As was the case with open sets, there is a critenon for A to be closed in X;
we leave the proof to you.
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Theorem 17.3. Let Y be a subspace of X. If A is closed in Y and Y is closed in X,
then A is closed in X.

Closure and Interior of a Set

Given a subset A of a topological space X, the interior of A is defined as the union of
all open sets contained in A, and the closure of A is defined as the intersection of all
closed sets containing A.

The interior of A is denoted by mt A and the closure of A is denoted by Cl A or
by A. Obviously mt A is an open set and A is a closed set; furthermore,

IntA CA CA.

If A is open, A = mt A; while if A is closed, A = A.
We shall not make much use of the intenor of a set, but the closure of a set will be

quite important.
When dealing with a topological space X and a subspace Y, one needs to exercise

care in taking closures of sets If A is a subset of Y, the closure of A in Y and the
closure of A in X will in general be different In such a situation, we reserve the
notation A to stand for the closure of A in X. The closure of A in Y can be expressed
in terms of A, as the following theorem shows:

Theorem 17.4. Let Y be a subspace of X, let A bea subset of Y, let A denote the
closure of A in X. Then the closure of A in Y equals A fl Y.

Proof Let B denote the closure of A in Y. The set A is closed in x, so A n Y is
closed in Y by Theorem 17.2. Since AflY contains A, and since by definition B equals
the intersection of all closed subsets of Y containing A, we must have B C (A fl Y).

On the other hand, we know that B is closed in Y. Hence by Theorem 17.2,
B = C fl Y for some set C closed in X. Then C is a closed set of X containing A;
because A is the intersection of all such closed sets, we conclude that A c C. Then
(AflY)C(CflY)=B. I

Figure 17.1 Figure 17.2
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The definition of the closure of a set does not give us a convenient way for actually
finding the closures of specific sets, since the collection of all closed sets in X, like
the collection of all open sets, is usually much too big to work with. Another way of
descnbing the closure of a set, useful because it involves only a basis for the topology
of X, is given in the following theorem.

First let us introduce some convenient terminology. We shall say that a set A
intersects a set B if the intersection A fl B is not empty.

Theorem 17.5. Let A be a subset of the topological space X.
(a) Then x E A if and only if every open set U containing x intersects A.

(b) Supposing the tofx)logy of X is given by a basis, then x A if and only if every
basis element B containing x intersects A.

Pmof Consider the statement in (a). It is a statement of the form P * Q. Let
us transform each implication to its contrapositive, thereby obtaining the logically
equivalent statement (not P) * (not Q). Written out, it is the following.

x A there exists an open set U containing x that does not intersect A.

In this form, our theorem is easy to prove. If x is not in A, the set U = X — A is an
open set containing x that does not intersect A, as desired Conversely, if there exists
an open set U containing x which does not intersect A, then X — U is a closed set
containing A By definition of the closure A, the set X — U must contain A, therefore,
x cannot be in A.

Statement (b) follows readily If every open set containing x intersects A, so does
every basis element B containing x, because B is an open set. Conversely, if every
basis element containing x intersects A, so does every open set U containing x, be-
cause U contains a basis element that contains x. I

Mathematicians often use some special terminology here. They shorten the state-
ment "U is an open set containing x" to the phrase

"U is a neighborhood of x."

Using this terminology, one can write the first half of the preceding theorem as follows:

If A is a subset of the topological space X, then x E A if and only if every
neighborhood of x intersects A.

EXAMPLE 6 Let X be the real line JR. If A = (0, 1], then A = [0, 1), for every
neighborhood of 0 intersects A, while every point outside [0, 1] has a neighborhood disjoint
from A Similar arguments apply to the following subsets of X -

If B = (1/n E Z÷), then B = (O)U B If C = (0) U (1,2), then C = (OJU [1,2]
If Q is the set of rational numbers, then Q = JR If Z÷ is the set of positive integers, then

= Z÷. If JR÷ is the set of positive reals, then the closure of R÷ is the set JR÷ U (OJ.
(This is the reason we introduced the notation JR÷ for the set JR÷ U (0), back in §2)
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EXAMPLE 7 Consider the subspace Y (0, 1) of the real line JR. The set A = (0, is

a subset of Y, its closure in JR is the set [0, and its closure in Y is the set [0, fl y =
(0,

Some mathematicians use the term "neighborhood" differently. They say that A
is a neighborhood of x if A merely contains an open set containing x. We shall not
follow this practice.

Limit Points

There is yet another way of describing the closure of a set, a way that involves the
important concept of limit point, which we consider now.

If A is a subset of the topological space X and if x is a point of X, we say thatx is a
limit point (or "cluster point," or "point of accumulation") of A if every neighborhood
of x intersects A in some point other than x itself Said differently, x is a limit point
of A if it belongs to the closure of A — (x} The point x may lie in A or not; for this
definition it does not matter.

EXAMPLE 8 Consider the real line JR. If A = (0, 1), then the point 0 is a limit point
of A and so is the point In fact, every point of the interval [0, 1] is a limit point of A, but
no other point of JR is a limit point of A

lfB = jl/n In E Z÷J,thenOistheonlylinutpointofB. EveryotherpointxofJRhas
a neighborhood that either does not intersect B at all, or it intersects B only in the point x
itself. If C = jO) U (1, 2), then the limit points of C ate the points of the interval [1, 2). If

Q is the set of rational numbers, every point of JR is a limit point of Q. If Z÷ is the set of
positive integers, no point of JR is a limit point of Z÷ If is the set of positive reals, then
every point of (0} U JR÷ is a limit point of

Comparison of Examples 6 and 8 suggests a relationship between the closure of a
set and the limit points of a set. That relationship is given in the following theorem:

Theorem 17.6. Let A be a subset of the topological space X, let A' be the set of all
limit points of A. Then

A = A U A'.

Proof If x is in A', every neighborhood of x intersects A (in a point different from x).
Therefore, by Theorem 17.5, x belongs to A Hence A' C A. Since by definition
A C A, it follows that A U A' C A. -

To demonstrate the reverse inclusion, we let x be a point of A and show that
X E A U A'. If x happens to lie in A, it is trivial that x E A U A'; suppose that x
does not lie in A. Since x E A, we know that every neighborhood U of x intersects A;
because x A, the set U must intersect A in a point different from x. Then x E A',
so that x E A U A', as desired. I
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Corollary 17.7. A subset of a topological space is closed if and only if it contains all
its limit points.

Proof The set A is closed if and only if A A, and the latter holds if and only if
A'CA. U

Hausdorff Spaces

One's expenence with open and closed sets and limit points in the real line and the
plane can be misleading when one considers more general topological spaces. For
example, in the spaces JR and JR2. each one-point set (xO) is closed. This fact is easily
proved; every point different from xo has a neighborhood not intersecting {xo}, so
that (xO) is its own closure. But this fact is not true for arbitrary topological spaces.
Consider the topology on the three-point set (a, b, c} indicated in Figure 17.3. In this
space, the one-point set (b) is not closed, for its complement is not open.

Figure 17.3

Similarly, one's experience with the properties of convergent sequences in JR and
can be misleading when one deals with more general topological spaces. In an

arbitrary topological space, one says that a sequence x1, x2,... of points of the space
X converges to the point x of X provided that, corresponding to each neighborhood U
of x, there is a positive integer N such that E U for all n N. In IR and 1R2, a
sequence cannot converge to more than one point, but in an arbitrary space, it can. In
the space indicated in Figure 17.3, for example, the sequence defined by setting = b

for all n converges not only to the point b, but also to the point a and to the point c!
Topologies in which one-point sets are not closed, or in which sequences can con-

verge to more than one point, are considered by many mathematicians to be somewhat
strange. They are not really very interesting, for they seldom occur in other branches
of mathematics And the theorems that one can prove about topological spaces are
rather limited if such examples are allowed. Therefore, one often imposes an addi-
tional condition that will rule out examples like this one, bringing the class of spaces
under consideration closer to those to which one's geometric intuition applies. The
condition was suggested by the mathematician Felix Hausdorff, so mathematicians
have come to call it by his name.

Definition. A topological space X is called a Hausdorff space if for each pair x1, x2
of distinct points of X, there exist neighborhoods U1, and U2 of x1 and x2, respectively,
that are disjoint.
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Theorem 17.8. Every finite point set in a Hausdorff space X is closed.

Pmof It suffices to show that every one-point set (xO) is closed. If x is a point of X
different from xo, then x and xo have disjoint neighborhoods U and V, respectively.
Since U does not intersect {xo}, the point x cannot belong to the closure of the set (xO).
As a result, the closure of the set {xO) is (xO) itself, so that it is closed. U

The condition that finite point sets be closed is in fact weaker than the Hausdorif
condition For example, the real line JR in the finite complement topology is not a
Hausdorif space, but it is a space in which finite point sets are closed The condition
that finite point sets be closed has been given a name of its own: it is called the T1 ax-
iom. (We shall explain the reason for this strange terminology &n Chapter 4.) The
T1 axiom will appear in this book in a few exercises, and in just one theorem, which is
the following:

Theorem 17.9. Let X be a space satisfying the T1 axiom; let A be a subset of X.
Then the point x is a limit point of A if and only if every neighborhood of x contains
infinitely many points of A.

Pmof If every neighborhood of x intersects A in infinitely many points, t certainly
intersects A in some point other than x itself, so that x is a limit point of A

Conversely, suppose that x is a limit point of A, and suppose some neighbor-
hood U of x intersects A in only finitely many points. Then U also intersects A — (x}
in finitely many points; let (xi,. be the points of U fl (A — {x}). The set
X — {XI 'm) is an open set of X, since the finite point set Xm) is closed;
then

Ufl(X—{x1, ..,Xm))

is a neighborhood of x that intersects the set A — (x } not at all. This contradicts the
assumption that x is a limit point of A. I

One reason for our lack of interest in the T1 axiom is the fact that many of the
interesting theorems of topology require not just that axiom, but the full strength of
the Hausdorff axiom. Furthermore, most of the spaces that are important to mathe-
maticians are Hausdorif spaces. The following two theorems give some substance to
these remarks.

Theorem 17.10. If X is a Hausdorff space, then a sequence of X con verges
to at most one point of X

Proof Suppose that is a sequence of points of X that converges to x If y x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U contains
for all but finitely many values of n, the set V cannot Therefore, cannot converge
toy. I
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If the sequence of points of the Hausdorif space X converges to the point x
of X, we often write x, x is the limit of the sequence

The proof of the following result is left to the exercises.

Theorem 17.11. Every simply ordered set is a Hausdorff space in the order topology.
The product of two Hausdor-if spaces is a Hausdorff space. A subspace of a Hausdorff
space is a Hausdorff space.

The Hausdorif condition is generally considered to be a very mild extra condition
to impose on a topological space. Indeed, in a first course in topology some
maticians go so far as to impose this condition at the outset, refusing to consider spaces
that are not Hausdorff spaces. We shall not go this far, but we shall certainly assume
the Hausdorif condition whenever it is needed in a proof without having any qualms
about limiting seriously the range of applications of the results.

The Hausdorif condition is one of a number of extra conditions one can impose on
a topological space. Each time one imposes such a condition, one can prove stronger
theorems, but one limits the class of spaces to which the theorems apply. Much of the
research that has been done in topology since beginnings has centered on the prob-
lem of finding conditions that will be strong enough to enable one to prove interesting
theorems about spaces satisfying those conditions, and yet not so strong that they limit
severely the range of applications of the results.

We shall study a number of such conditions in the next two chapters. The
dorif condition and the T1 axiom are but two of a collection of conditions similar to one
another that are called collectively the separation axioms. Other conditions include the
countability axioms, and various compactness and connectedness conditions. Some of
these are quite stringent requirements, as you will see.

Exercises

1. Let C be a collection of subsets of the set X. Suppose that 0 and X are in C,
and that finite unions and arbitrary intersections of elements of C are in C. Show
that the collection

= (X - C C C)

is a topology on X.

2. Show that if A is closed in Y and Y is closed in X, then A is closed in X.

3. Show that if A is closed in X and B is closed in Y, then A x B is closed in X x Y.

4. Show that if U is open in X and A is closed in X, then U — A is open in X, and
A — U isclosedinX.

5. Let X be an ordered set in the order topology. Show that (a,b) C [a, bJ. Under
what conditions does equality hold?
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6. Let A, B, and Aa denote subsets of a space X. Prove the following.
(a) If A C B, then A C B.
(b) AuB=AUB.
(c) U Aa U give an example where equality fails.

7. Criticize the following "proof" that UAa C U if (An) is a collection of
sets in X and if x E U then every neighborhood U of x intersects U Aa.
Thus U must intersect some so that x must belong to the closure of some Aa.
Therefore,x E UAa.

8. Let A, B, and Aa denote subsets of a space X. Determine whether the following
equations hold; if an equality fails, determine whether one of the inclusions j
or C holds.
(a) AflB=AflB.
(b)

(c) A — B = A — B.

9. Let A C X and B C Y. Show that in the space X x

A x B = A x B.

10. Show that every order topology is Hausdorif.

11. Show that the product of two Hausdorif spaces is Hausdorff.

12. Show that a subspace of a Hausdorff space is Hausdorff.

13. Show that X is Hausdorif if and only if the diagonal = (x x x I x X} is
closed in X x X.

14. In the finite complement topology on 1k, to what point or points does the se-
quence = 1/n converge?

15. Show the T1 axiom is equivalent to the condition that for each pair of points of X,
each has a neighborhood not containing the other.

16. Consider the five topologies on R given in Exercise 7 of § 13.
(a) Determine the closure of the set K = (i/n

I
n Z+) under each of these

topologies.
(b) Which of these topologies satisfy the Hausdorif axiom? the T1 axiom?

17. Consider the lower limit topology on JR and the topology given by the basis C
of Exercise 8 of § 13. Determine the closures of the intervals A = (0, and
B = 3) in these two topologies.

18. Determine the closures of the following subsets of the ordered square:

Az((1/n)xOfn €Z÷J,
B={(l—1/n)xflnEZ÷),
C = (x x 0 0 <x < 1),

D = (x x 0 <x < 1),

E = x y 0 < y < 1).
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19. If A c X, we define the boundary of A by the equation

BdA = A fl(X— A).

(a) Show that mt A and Bd A are disjoint, and A = mt A U Sd A.
(b) Show that Sd A = e * A is both open and closed.
(c) Show that U is open * Bd U = U — U.
(d) If U is open, is it true that U = Int(U)? Justify your answer.

20. Find the boundary and the interior of each of the following subsets of 1R2
(a) A = {x x y I y = 0)
(b) B=(x xylx >Oandy
(c) C = A U B
(d) D = (x x y I x is rational)
(e)
(f) Fz—(x xylx l/x}

*21. (Kuratowski) Consider the collection of all subsets A of the topological space X.
The operations of closure A —+ A and complementation A —÷ X — A are func-
tions from this collection to itself.
(a) Show that starting with a given set A, one can form no more than 14 distinct

sets by applying these two operations successively.
(b) Find a subset A of IR (in its usual topology) for which the maximum of 14 is

obtained

§18 Continuous Functions

The concept of continuous function is basic to much of mathematics. Continuous
functions on the real line appear in the first pages of any calculus book, and continuous
functions in the plane and in space follow not far behind. More general kinds of
continuous functions arise as one goes further in mathematics. In this section, we shall
formulate a definition of continuity that will include all these as special cases, and we
shall study various properties of continuous functions. Many of these properties are
direct generalizations of things you learned about continuous functions in calculus and
analysis.

Continuity of a Function

Let X and Y be topological spaces. A function f : X —+ Y is said to be continuous if
for each open subset V of Y, the set f'(V) is an open subset of X.

Recall that f (V) is the set of all points x of X for which f(x) E V; it is empty
if V does not intersect the image set f(X) of f.

Continuity of a function depends not only upon the function f itself, but also on
the topologies specified for its domain and range. If we wish to emphasize this fact,
we can say that f is continuous relative to specific topologies on X and Y.
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Let us note that if the topology of the range space Y is given by a basis then to
prove continuity of f it suffices to show that the inverse image of every basis element
is open. The arbitrary open set V of Y can be wntten as a union of basis elements

V = (J
aE J

Then

f'(V) is open if each set f'(Ba) is open.
If the topology on Y is given by a subbasis S. to prove continuity of it will even

suffice to show that the inverse image of each subbasis element is open. The arbitrary
basis element B for Y can be written as a finite intersection Sj fl ... fl of subbasis
elements; it follows from the equation

= . . fl

that the inverse image of every basis element is open.

EXAMPLE 1 Let us consider a function like those studied in analysis, a "real-valued
function of a real variable,"

f JR—+JR.

In analysis, one defines continuity of f via the definition" a bugaboo over the years
for every student of mathematics. As one would expect, the E-(5 definition and ours are
equivalent To prove that our definition implies the E-(5 definition, for instance, we proceed
as follows

Given xo in IR, and given E > 0, the interval V (f(xo) — E, f(xo) + E) is an open set
of the range space JR Therefore, 11(V) is an open set in the domain space R. Because
f 1(V) contains the point xo, it contains some basis element (a, b) about We choose (5
to be the smaller of the two numbers xo — a and b — x0 Then if Ix — xol <&the point x
must be in (a, b), so that f(x) E V, and 1(x) — f(xo)I <E, as desired.

Proving that the E-(5 definition implies our definition is no harder; we leave it to you.
We shall return to this example when we study metric spaces

EXAMPLE 2. In calculus one considers the property of continuity for many kinds of
functions. For example, one studies functions of the following types:

I . JR —+ JR2 (curves in the plane)

1. JR —+ JR3 (curves in space)

f JR2 —+ JR (functions f(x, y) of two real variables)

f . JR3 —+ JR (functions f(x, y, z) of three real variables)

f. JR2 —+ JR2 (vector fields v(x, y) in the plane).

Each of them has a notion of continuity defined for it. Our general definition of continuity
includes all these as special cases, this fact will be a consequence of general theorems we
shall prove concerning continuous functions on product spaces and on metric spaces.
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EXAMPLE 3 Let JR denote the set of real numbers in its usual topology, and let
denote the same set in the lower limit topology. Let

I
be the identity function, f(x) = x for every real number x. Then f is not a continuous
function, the inverse image of the open set [a, b) of equals itself, which is not open
in JR. On the other hand, the identity function

g IRt —p JR

is continuous, because the inverse image of (a, b) is itself, which is open in

In analysis, one studies several different but equivalent ways of formulating the
definition of continuity. Some of these generalize to arbitrary spaces, and they are
considered in the theorems that follow. The familiar "€-ä" definition and the "con-
vergent sequence definition" do not generalize to arbitrary spaces; they will be treated
when we study metric spaces.

Theorem 18.1. Let X and Y be topological spaces; let f X —+ Y. Then the
following are equivalent:
(1) f is continuous.
(2) For every subset A of X, one has f(A) C 1(A).
(3) For every closed set B of Y, the set ft(B) is closed in X

(4) For each x E X and each neighborhood V of f(x), there is a neighborhood U
of x such that f(U) C V.

If the condition in (4) holds for the point x of X, we say that f is continuous at
the point x.

Pmof We show that (1) (2) (3) (1) and that (1) (4) (1).
(1) (2). Assume that f is continuous. Let A be a subset of X. We show that if

x E A, then f(x) E f(A). Let V be a neighborhood of f(x). Then f'(V) is an open
set of X containing x; it must intersect A in some point y. Then V intersects f(A) in
the point f(y), so that f(x) f(A), as desired.

(2) (3). Let B be closed in Y and let A = We wish to prove that A
is closed in X; we show that A = A. By elementary set theory, we have f(A) =
f(f'(B)) C B. Therefore, if x E A,

f(x)€ f(A)Cf(A)CB=B,

so that x E 1(B) = A. Thus A c A, so that A = A, as desired.
(3) (1). Let V be an open set of Y. Set B = Y — V. Then

= — = X —

Now B is aclosed set of Y. Then (B) is closed in X by hypothesis, so that f (V)
is open in X, as desired.
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(1) (4). Let x E X and let V be a neighborhood of f(x). Then the set
U = f'(V) is a neighborhood of x such that f(U) C V.

(4) (1). Let V be an open set of Y; let x be a point of f1(V) Then E V.
so that by hypothesis there is a neighborhood (J of x such that C V. Then

C f'(V). It follows that can be written as the union of the open sets
so that it is open.

Homeomorphisms

Let X and Y be topological spaces; let f . X —÷ Y be a bijection. If both the function f
and the inverse function

f1 : Y -+ X

are continuous, then f is called a homeomorphism.
The condition that be continuous says that for each open set U of X, the

inverse image of U under the map : Y —÷ X is open in Y But the inverse
image of U under the map is the same as the image of U under the map f. See
Figure 18.1. So another way to define a homeomorplusm is to say that it is a bijective
correspondence f: X —÷ Y such that f(U) is open if and only if U is open.

This remark shows that a homeomorphism f X —+ Y gives us a bijective cor-
respondence not only between X and Y but between the collections of open sets of X
and of Y. As a result, any property of X that is entirely expressed in terms of the
ogy of X (that is, in terms of the open sets of X) yields, via the correspondence f, the
corresponding property for the space Y. Such a property of X is called a topological
property of X.

You may have studied in modern algebra the notion of an isomorphism between al-
gebraic objects such as groups or nngs. An isomorphism is a bijective correspondence
that preserves the algebraic structure involved. The analogous concept in topology is
that of homeomorphism; it is a bijective correspondence that preserves the topological
structure involved.

Now suppose that f X —÷ Y is an injective continuous map, where X and Y
are topological spaces. Let Z be the image set f(X), considered as a subspace of Y;
then the function f' : X —÷ Z obtained by restricting the range of f is bijective. If f'
happens to be a homeomorphism of X with Z, we say that the map f X —p Y is a
topological imbedding, or simply an imbedding, of X in Y.

Figure 18.1



EXAMPLE 4. The function f . JR -+ JR given by 1(x) = 3x + 1 is a homeomorphism
See Figure 18 2. If we define g JR —+ JR by the equation

g(y) = — 1)

then one can check easily that f(g(y)) = y and g(f(x)) = x for all real numbers x andy
It follows that I is bijective and that g = I the continuity off and g is a familiar result
from calculus.

EXAMPLE 5 The function F. (—1, 1) -# JR defined by

x
F(x) =

1 —x

is a homeomorphism See Figure 18.3 We have already noted in Example 9 of §3 that F
is a bijective order-preserving correspondence, its inverse is the function G defined by

2v

The fact that F is a homeomorphism can be proved in two ways One way is to note that
because F is order preserving and bijective, F cames a basis element for the order topology
in (— I, 1) onto a basis element for the order topology in JR and vice versa As a result, F is
automatically a homeomorphism of (—1, 1) with JR (both in the order topology) Since the
order topology on (—1, 1) and the usual (subspace) topology agree, F is a homeomorphism
of(—l, l)withJR

A second way to show F a homeomorphism is to use the continuity of the algebraic
functions and the square-root function to show that both F and G are continuous These
are familiar facts from calculus

EXAMPLE 6 A bijective function f. X Y can be continuous without being a home-
omorphism One such function is the identity map g JR considered in Example 3
Another is the following Let S' denote the unit circle,

S' = (x x y 1x2 + y2 = 1),
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f(x) = 3x + 1/
Figure 18.2

xF(s)
=

Figure 18.3
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considered as a subspace of the plane JR2, and let

F [0, 1) —* S'

be the map delined by f(t) = sin 2jrt). The fact that f is bijective and continu-
ous follows from familiar properties of the trigonometric functions. But the function
is not continuous The image under f of the open set U = [0, of the domain, for in-
stance, is not open in S', for the potnt p = f(0) lies in no open set V of JR2 such that
V fl S' C f(U). See Figure 18.4.

U f
E-I
01 1

Figure 18.4

EXAMPLE 7. Consider the function

g: [0, 1) —* JR2

obtained from the function f of the preceding example by expanding the range. The map g
is an example of a continuous injective map that is not an imbedding

Constructing Continuous Functions

How does one go about constructing continuous functions from one topological space
to another? There are a number of methods used in analysis, of which some generalize
to arbitrary topological spaces and others do not. We study first some constructions
that do hold for general topological spaces, deferring consideration of the others until
later.

Theorem 18.2 (Rules for constructing continuous functions). Let X, Y, and Z be
topological spaces.

(a) (Constant function) 1ff . X —+ Y maps all of X into the single point Yo of Y,
then f is continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function j : A —* X is contin-
uous.

(c) (Composites) If f X -+ Y and g Y —* Z are continuous, then the map
g o 1: X —÷ Z is continuous.



108 Topological Spaces and Continuous Functions Ch. 2

(d) (Restricting the domain) If f X —* Y is continuous, and if A is a subspace
of X, then the restricted function f IA A -+ Y is continuous.

(e) (Restricting or expanding the range) Let f • X —+ Y be continuous. If Z is a
subspace of Y containing the image set 1(X), then the function g : X -+ Z
obtained by restricting the range of f is continuous. If Z is a space having Y as
a subspace, then the function h : X —+ Z obtained by expanding the range off
is continuous.

(1) (Local formulation of continuity) The map f : X Y is continuous if X can be
written as the union of open sets 11a such that 1 is continuous for each a.

Proof (a) Let f(x) = yo for every x in X. Let V be open in Y. The set
equals X or 0, depending on whether V contains yo or not. In either case, it is open.

(b) If U is open in X, then (U) = U fl A, which is open in A by definition of
the subspace topology.

(c) If U is open in Z, then g1 (U) is open in Y and f (g1 (U)) is open in X.
But

=

by elementary set theory.
(d) The function f A equals the composite of the inclusion map j : A —* X and

the map 1: X —÷ Y, both of which are continuous.
(e) Let f X —÷ Y be continuous. If f(X) C Z C Y, we show that the function

g: X —÷ Z obtained from f is continuous. Let B be open in Z. Then B = Z fl U for
some open set U of Y. Because Z contains the entire image set f(X),

f'(U) =g'(B),
by elementary set theory. Since f'(U) is open, so is g1(B).

To show h : X —÷ Z is continuous if Z has Y as a subspace, note that h is the
composite of the map f: X —+ Y and the inclusion map j : Y —÷ Z.

(f) By hypothesis, we can wnte X as a union of open sets such that I is
continuous for each a. Let V be an open set in Y. Then

f'(V) fl = (ff
because both expressions represent the set of those points x lying in for which
f(x) E V. Since is continuous, this set is open in and hence open in X But

U(f'(V) fl Un),

so that f'(V) is also open in X.

Theorem 18.3 (The pasting lemma). Let X = A U B, where A and B are closed
inX. Letf : A -+ Yandg B -+ Ybe continuous. Iff(x) = g(x)forevery
x E A fl B, then f and g combine to give a continuous function h : X —÷ Y, defined
by setting h(x) = f(x) if x E A, andh(x) = g(x) if x E B.
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Pmof Let C be a closed subset of Y. Now

h'(C) = f'(C) Uf'(C),

by elementary set theory. Since f is continuous, is closed in A and, therefore,
closed in X. Similarly, g'(C) is closed in B and therefore closed in X. Their union
h' (C) is thus closed in X.

This theorem also holds if A and B are open sets in X; this is just a special case of
the "local formulation of continuity" rule given in preceding theorem.

EXAMPLE 8 Let us define a function h : JR JR by setting

x forx<O,
h(x)= —

x/2 forx?O

Each of the "pieces" of this definition is a continuous function, and they agree on the
overlapping part of their domains, which is the one-point set (0). Since their domains are
closed in JR. the function h is continuous. One needs the "pieces" of the function to agree
on the overlapping part of their domains in order to have a function at all. The equations

x—2 forx<0,
k(x)= x+2 forx>0,

for instance, do not define a function On the other hand, one needs some limitations on
the sets A and B to guarantee continuity. The equations

x—2 forx<O,
1(x) = x+2

for instance, do define a function 1 mapping R into JR, and both of the pieces are continuous.
But 1 is not continuous; the inverse image of the open set (1, 3), for instance, is the nonopen
set [0, 1) See Figure 18.5

Figure 18.5
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Theorem 18.4 (Maps into products). Let f : A -÷ X x Y be given by the equation

f(a) = 12(a)).

Then f is continuous if and only if the functions

f1.A—÷X and f2:A—+Y

are continuous.

The maps and 12 are called the coordinate functions of f.

Pmof Let . X x Y —÷ X and 7r2 : X x Y —* Y be projections onto the first and
second factors, respectively. These maps are continuous. For (U) = U x Y and

(V) = X x V. and these sets are open if U and V are open. Note that for each
a E A,

fi(a) = and 12(a) = 7r2(f(a)).

If the function f is continuous, then and 12 are composites of continuous func-
tions and therefore continuous. Conversely, suppose that Ii and 12 are continuous. We
show that for each basis element U x V for the topology of X x Y, its inverse image
f'(U x V) is open. A point a is in f'(U x V) if and only if f(a) E U x V. that
is,ifandonlyiff1(a) E Uandf2(a) E V. Therefore,

f'(U x V) = fl

Since both of the sets and (V) are open, so is their intersection. U

There is no useful cntenon for the continuity of a map f A x B —+ X whose
domain is a product space. One might conjecture that I is continuous if it is continuous
"in each vanable separately," but this conjecture not true. (See Exercise 12.)

EXAMPLE 9 In calculus, a parametrized curve in the plane is defined to be a continuous
map f [a, bl -÷ JR2 It is often expressed in the form f(t) = (x(t), y(t)): and one
frequently uses the fact that f is a continuous function of t if both x and y are Similarly,
a vectorfield in the plane

v(x,y) = P(x,y)i+ Q(x,y)j
= (P(x, y), Q(x, y))

is said to be continuous if both P and Q are continuous functions, or equivalently, if v is
continuous as a map of JR2 into JR2. Both of these statements are simply special cases of
the preceding theorem.

One way of forming continuous functions that is used a great deal in analysis is to
take sums, differences, products, or quotients of continuous real-valued functions. It
is a standard theorem that if f, g . X —+ IR are continuous, then I + g, f — g, and
f g are continuous, and f/g is continuous if g(x) 0 for all x. We shall consider
this theorem in §21.
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Yet another method for constructing continuous functions that is familiar from
analysis is to take the limit of an infinite sequence of functions. There is a theorem to
the effect that if a sequence of continuous real-valued functions of a real vanable con-
verges uniformly to a limit function, then the limit function is necessarily continuous.
This theorem is called the Uniform Limit Theorem. It is used, for instance, to demon-
strate the continuity of the trigonometric functions, when one defines these functions
ngorously using the infinite senes definitions of the sine and cosine. This theorem
generalizes to a theorem about maps of an arbitrary topological space X into a metric
space Y. We shall prove it in §21.

Exercises

1. Prove that for functions f . R —* IR, the E-8 definition of continuity implies the
open set definition.

2. Suppose that 1: X —÷ Y is continuous. If x is a limit point of the subset A of X,
is it necessarily true that f(x) is a limit point of 1(A)?

3. Let X and X' denote a single set in the two topologies 7 and 7', respectively.
Let i : X' —÷ X be the identity function.
(a) Show that i is continuous 7' is finer than T.
(b) Show that i is a homeomorphism * 7' = 7.

4. Given E X and yo E Y, show that the maps f : X —÷ X x Y and g : Y —÷
Xx Ydefinedby

f(x) = x x y

are imbeddings.

5. Show that the subspace (a, b) of IRis homeomorphic with (0, 1) and the subspace
[a, b] of JR is homeomorphic with [0, 1]

6. Find a function f R —+ R that is continuous at precisely one point.

7. (a) Suppose that f . JR —+ IR is "continuous from the right," that is,

lim f(x)=f(a),
x—pa+

for each a E R. Show that f is continuous when considered as a function
from R, to IR.

(b) Can you conjecture what functions f R R are continuous when con-
sidered as maps from IR to IR,? As maps from 1R1 to IR,? We shall return to
this question in Chapter 3.

8. Let Y be an ordered set in the order topology. Let f, g : X —* Y be continuous.
(a) Show that the set (x I f(x) g(x)} is closed in X
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(b) Let h : X —+ Y be the function

h(x) = min(f(x), g(x)}.

Show that h is continuous [Hint: Use the pasting lemma.]

9. Let be a collection of subsets of X; let X = Aa. Let f : X —+
suppose that f is continuous for each a.
(a) Show that if the collection (Aa} is finite and each set Aa is closed, then f is

continuous.
(b) Find an example where the collection is countable and each is

closed, but f is not continuous.
(c) An indexed family of sets (An) is said to be locally finite if each point x

of X has a neighborhood that intersects for only finitely many values of
a. Show that if the family is locally finite and each Aa is closed, then
f is continuous.

10. Let f A —+ B and g C —* D be continuous functions. Let us define a map
f x g : A x C B x D by the equation

(f x g)(a x c) = f(a) x g(c).

Show that f x g is continuous.

11. Let F : X x Y —÷ Z. We say that F is continuous in each variable separately if
for each in Y, the map h : X —÷ Z defined by h(x) = F(x x yo) is continuous,
and for each in X, the map k Y —÷ Z defined by k(y) F(x0 x y) is
continuous. Show that if F is continuous, then F is continuous in each variable
separately.

12. Let F . JR x R —÷ JR be defined by the equation

xy/(x2+y2) ifxxy5éOxO.F(xxy)=
0 ifxxy=OxO

(a) Show that F is continuous in each variable separately.
(b) Compute the function g R —÷ IR defined by g(x) = F(x x x).
(c) Show that F is not continuous

13. Let A C X; let f : A —+ Y be continuous; let Y be Hausdorff. Show that
if f may be extended to a continuous function g . A —÷ Y, then g is uniquely
determined by f

§ 19 The Product Topology

We now return, for the remainder of the chapter, to the consideration of various meth-
ods for imposing topologies on sets



§19 The Product Topology 113

Previously, we defined a topology on the product X x Y of two topological spaces.
In the present section, we generalize this definition to more general cartesian products.

So let us consider the cartesian products

X1 a topological space There are two possible ways to proc eed. One
way is to take as basis all sets of the form U1 x x in the first case, and of the
form U1 x U2 x in the second case, where U1 is an open set of X for each i. This
procedure does indeed define a topology on the cartesian product; we shall call it the
box topology.

Another way to proceed is to generalize the subbasis formulation of the definition,
given in §15. In this case, we take as asubbasis all sets of the form Jrr'(Uj), 'where i is
any index and U, is an open set of X,. We shall call this topology the pmducz topology.

How do these topologies differ9 Consider the typical basis element B for the
second topology. It is a finite intersection of subbasis elements say for i =
it ik. Then a point x belongs to B if and only if (x) belongs to U, for i =
ii,. . there is no restnction on for other values of i.

It follows that these two topologies agree for the finite cartesian product and differ
for the infinite product. What is not clear is why we seem to prefer the second topology.
This is the question we shall explore in this section

Before proceeding, however, we shall introduce a more general notion of cartesian
product. So far, we have defined the cartesian product of an indexed family of sets
only in the cases where the index set was the set (1, .. n) or the set Z÷ Now we
consider the case where the index set is completely arbitrary.

Definition. Let J be an index set. Given a set X, we define a J-tuple of elements
of X to be a function x : J —÷ X. If a is an element off, we often denote the value
of x at a by rather than x(a); we call it the ath coordinate of x. And we often
denote the function x itself by the symbol

which is as close as we can come to a "tuple notation" for an arbitrary index set f. We
denote the set of all f-tuples of elements of X by

Definition. Let be an indexed family of sets; let X Ua€j The
cartesian product of this indexed family, denoted by

flAa,
a€J

is defined to be the set of all f-tuples of elements of X such that Xq E Aa for
each a E f That is, it is the set of all functions

x: U Aa
trEJ

such that x(a) E Aa for each a E f.
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Occasionally we denote the product simply by fl Aq, and its general element
by (Xa), if the index set is understood

If all the sets Aq are equal to one set X, then the cartesian product Aa is just
the set of all J-tuples of elements of X. We sometimes use "tuple notation" for
the elements of and sometimes we use functional notation, depending on which is
more convenient.

Definition. Let (Xa)aEJ be an indexed family of topological spaces. Let us take as
a basis for a topology on the product space

flXa
cr€J

the collection of all sets of the form

crE J

where is open in for each a E J. The topology generated by this basis is called
the box topology

This collection satisfies the first condition for a basis because fl is itself a basis
element; and it satisfies the second condition because the intersection of any two basis
elements is another basis element.

(flUcr)fl(fl fl(UanVa).
ci€J crEJ crEJ

Now we generalize the subbasis formulation of the definition. Let

Jrfl: fl -+
ci€J

be the function assigning to each element of the product space its ,6th coordinate,

=

it is called the projection mapping associated with the index ,6.

Definition. Let denote the collection

Sfl = I open in Xfl},

and let S denote the union of these collections,

S = S13.

flEJ

The topology generated by the subbasis S is called the product topology. In this topol-
ogy is called a product space.
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To compare these topologies, we consider the basis 2 that S generates. The col-
lection 2 consists of all finite intersections of elements of S. If we intersect elements
belonging to the same one of the sets we do not get anything new, because

Jrfl'(Ufl) fl Vfl);

the intersection of two elements of or of finitely many such elements, is again an
element of We get something new only when we intersect elements from different
sets The typical element of the basis 2 can thus be described as follows Let

be a finite set of distinct indices from the index set J, and let I/fl be an open
n.Then

—I —1 —IB = (Ufl1) fl (I/fl2) fl • fl

is the typical element of 2.
Now a point x = (xv) is in B if and only if its ,61th coordinate is in I/fl1, its ,62th

coordinate is in Up,, and so on. There is no restriction whatever on the ath coordinate
of x if a is not one of the indices ,6i,. ., As a result, we can wnte B as the product

B = fl
a€J

where denotes the entire space if a
All this is summanzed in the following theorem:

Theorem 19.1 (Comparison of the box and product topologies). The box topol-
ogy on fl has as basis all sets of the form fl where I/a is open in for
each a. The product topology on fl Xa has as basis all sets of the form fl where
11a is open in Xa for each a and equals Xa except for finitely many values of a.

Two things are immediately clear First, for finite products the two
topologies are precisely the same. Second, the box topology is in general finer than
the product topology.

What is not so clear is why we prefer the product topology to the box topology. The
answer will appear as we continue our study of topology. We shall find that a number
of important theorems about finite products will also hold for arbitrary products if we
use the product topology, but not if we use the box topology. As a result, the product
topology is extremely important in mathematics. The box topology is not so important;
we shall use it pnmarily for constructing counterexamples. Therefore, we niake the
following convention:

Whenever we consider the product fl we shall assume it is given the
pmduct topology unless we specifically state otherwise.

Some of the theorems we proved for the product X x Y hold for the product fl Xa
no matter which topology we use. We list them here; most of the proofs are left to the
exercises.
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Theorem 19.2. Suppose the topology on each space Xa is given by a basis The
collection of all sets of the form

rEf

where E for each a, will serve as a basis for the box topology on Xa.
The collection of all sets of the same form, where E for finitely many

indices a and = for all the remaining indices, will serve as a basis for the
product topology RrEJ

EXAMPLE 1. Consider euclidean n-space JR". A basis for JR consists of all open intervals
in IR; hence a basis for the topology of JR" consists of all products of the form

(a1,b1) x (a2,b2) x x

Since is a finite product, the box and product topologies agree Whenever we
sider we will assume that it is given this topology, unless we specifically state other-
wise

Theorem 19.3. Let be a subspace of for each a E J. Then fl is a
subspace of fl if both products are given the box topology, or if both products are
given the product topology.

Theorem 19.4. If each space Xa is a Hausdorif space, then fl is a Hausdorif
space in both the box and product topologies.

Theorem 19.5. Let be an indexed family of spaces; let C for each a. If
fl is given either the product or the box topology, then

Pmof Let x = (xv) be a point of fl we show that x E flAa. Let U = fl
a basis element for either the box or product topology that contains x. Since E Aa,
we can choose a point y U

fl U is arbitrary, it follows that x belongs to the closure of fl
Conversely, suppose x = (xv) lies in the closure of fl in either topology. We

show that for any given index ,6, we have xfl E Afi. Let Vfl be an arbitrary open set
of Xfl containing xfl. Since 7T1(Vfl) is open in fj in either topology, it contains a

pointy = of fl Aa. Then belongs to fl Afi. It follows that E Afi. U

So far, no reason has appeared for preferring the product to the box topology. It is
when we try to generalize our previous theorem about continuity of maps into product
spaces that a difference first arises. Here is a theorem that does not hold if fl is
given the box topology:
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Theorem 19.6. Let f : A —* ftEJ be given by the equation

f(a) =

where A —* for each a. Let fl have the product topology. Then the
function f is continuous if and only if each function is continuous.

Pmof Let Jrfl be the projection of the product onto its ,6th factor. The function Jrfl
is continuous, for if is open in Xfl, the set is a subbasis element for the
product topology on Now suppose that f A —+ fl is continuous. The
function ffl equals the composite Jrfl o f; being the composite of two continuous
functions, it is continuous.

Conversely, suppose that each coordinate function
f is prove that f

is on this fact when we defined continuous functions.
A typical subbasis element for the product topology on fl is a set of the form
Jrfl'(Ufl). where ,6 is some index and is open in Xfl. Now

=

because = o f. Since is continuous, this set is open in A, as desired. U

Why does this theorem fail if we use the box topology? Probably the most con-
vincing thing to do is to look at an example.

EXAMPLE 2 Consider JRW, the countably infinite product of JR with itself. Recall that

JR= fl X,,,
n€Z,.

where = JR for each n Let us define a function f JR -+ by the equation

f(t)=(r,t,t,...),

the nth coordinate function off is the function = t Each of the coordinate functions

f, . JR —+ JR is continuous; therefore, the function f is continuous if is given the
product topology. But f is not continuous if is given the box topology Consider, for
example, the basis element

11 Il
B = (—1, 1) x (—i, x (—i, x

for the box topology. We assert that I (B) is not open in JR. If f1(B) were open
in JR. it would contain some interval (—6,6) about the point 0. This would mean that
f((—6, 8)) C B, so that, applying it,, to both sides of the inclusion,

f,,((—8, 8)) = 8) C (—i/n 1/n)

for all n, a contradiction
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Exercises

1. Prove Theorem 19.2

2. Prove Theorem 19.3.

3. Prove Theorem 19.4
4. Show that (X1 x. x i) x is homeomoi-phic with X1 x • x

5. One of the implications stated in Theorem 19.6 holds for the box topology.
Which one?

6. Let x2,... be a sequence of the points of the product space fl Show that
this sequence converges to the point x if and only if the sequence (Xi),

converges to (x) for each a. Is this fact true if one uses the box topology
instead of the product topology?

7. Let JR°° be the subset of RW consisting of all sequences that are "eventually zero,"
that is, all sequences (xi, x2,...) such that x 0 for only finitely many values
of i. What is the closure of IR°° in IRA' in the box and product topologies? Justify
your answer.

8. Given sequences (at, a2,...) and (b1, ...) of real numbers with a > 0 for
all i, define h : IRW —÷ by the equation

h((x1,x2,...))=(a1xi +bi,a2x2+b2,...).
Show that if RW is given the product topology, h is a homeomorphism of RW with
itself. What happens if RW is given the box topology?

9. Show that the choice axiom is equivalent to the statement that for any indexed
family of nonempty sets, with J 0, the cartesian product

flAg
cr€J

is not empty.

10. Let A be a set; let be an indexed family of spaces; and let be
an indexed family of functions : A —+

(a) Show there is a unique coarsest topology 7 on A relative to which each of
the functions is continuous.

(b) Let

=
I

is open in Xfl},

and let S = U Sfl. Show that S is a subbasis for 7
(c) Show that a map g : Y —* A is continuous relative to 7 if and only if each

map o g is continuous.
(d) Let f: A —+ fl be defined by the equation

f(a) =

let Z denote the subspace f(A) of the product space fl Show that the
image under f of each element of 7 is an open set of Z.
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§20 The Metric Topology

One of the most important and frequently used ways of imposing a topology on a set is
to define the topology in terms of a metric on the set. Topologies given in this way lie
at the heart of modem analysis, for example. In this section, we shall define the metric
topology and shall give a number of examples. In the next section, we shall consider
some of the properties that metric topologies satisfy.

Definition. A metric on a set X is a function

d: X x X —÷ R

having the following properties:
(1) d(x, y) 0 for alIx, y E equality holds if and only if x = y.

(2) d(x,y) —d(y,x) for aIlx,y E X.
(3) (Triangle inequality) d(x, y) + d(y, z) 2 d(x, z), for all x, y, z E X.

Given a metric d on X, the number d(x, y) is often called the distance between x
and y in the metric d Given E > 0, consider the set

Bd(X,E) = (y Id(x,y)

of all points y whose distance from x is less than E.It is called the E-ball centered
aix. Sometimes we omit the metric d from the notation and wnte this bail simply as
B(x, E), when no confusion will arise.

Definition. If d is a metnc on the set X, then the collection of all E-balls Bd(X,E), for
x E X and E > 0, is a basis for a topology on X, called the metric topology induced
by d.

The first condition for a basis is trivial, since x E B(x, E) for any E > 0. Before
checking the second condition for a basis, we show that if y is a point of the basis
element B(x, E), then there is a basis element B(y, 8) centered at y that &s contained
in B(x, E). Define 8 to be the positive number E — d(x, y). Then B(y, 8) C B(x, E),
for if z E B(y, 8), then d(y, z) < — d(x, y), from which we conclude that

d(x,z) <E.

See Figure 20.1.
Now to check the second condition for a basis, let B1 and B2 be two basis elements

and let y E B1 fl B2. We have just shown that we can choose positive numbers 8i and 82
so that B(y, C B1 and B(y, 82) C B2. Letting 8 be the smaller of and 82, we
conclude that B(y, 8) C B1 fl B2.

Using what we have just proved, we can rephrase the definition of the metric topol-
ogy as follows:
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A set U is open in the metric topology induced by d if and only iffor each
y E U, there is a 8 > 0 such that Bd(y, 8) C U.

Clearly this condition implies that U is open. Conversely, if U is open, it contains
a basis element B = Bd(X, E) containing y, and B in turn contains a basis element

8) centered at y

EXAMPLE 1 Given a set X, define

d(x,y)=l
d(x,y)=O ifx=y

It is trivial to check that d is a metric. The topology it induces is the discrete topology; the
basis element B(x, 1), for example, consists of the point x alone.

EXAMPLE 2. The standard metric on the real numbers JR is defined by the equation

d(xy)=Ix—yl

It is easy to check that d is a metric. The topology it induces is the same as the order
topology: Each basis element (a, b) for the order topology is a basis element for the metric
topology, indeed,

(a,b) =

where = (a + b)/2 and = (b — a)/2. And conversely, each (-ball B(x, ) equals an
open interval the interval (x — E,x +

Definition. If X is a topological space, X is said to be metrizable if there exists a
metric d on the set X that induces the topology of X. A metric space is a metnzable
space X together with a specific metnc d that gives the topology of X.

Many of the spaces important for mathematics are metnzable, but some are not.
Metrizability is always a highly desirable attribute for a space to possess, for the exis-
tence of a metnc gives one a valuable tool for proving theorems about the space.

Figure 20.1
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It is, therefore, a problem of fundamental importance in topology to fi nd condi-
tions on a topological space that will guarantee it is metrizable. One of our goals in
Chapter 4 will be to find such conditions; they are expressed there in the fanious the-
orem called Urysohn 's metrization theorem. Further metrization theorems appear in
Chapter 6. In the present section we shall content ourselves with proving merely that
JR" and are metrizable.

Although the metrizability problem is an important problem in topology. the study
of metnc spaces as such does not properly belong to topology as much as it does
to analysis Metnzability of a space depends only on the topology of the space in
question, but properties that involve a specific metric for X in general do not. For
instance, one can make the following definition in a metnc space.

Definition. Let X be a metric space with metnc d. A subset A of X is said to be
bounded if there is some number M such that

d(a1,a2) <M

for every pair at, a2 of points of A. If A is bounded and nonempty, the diameter of A
is defined to be the number

diamA sup(d(af,a2) I E A).

Boundedness of a set is not a topological property, for it depends on the particular
metric d that is used_for X. For instance, if X is a metric space with metric d, then
there exists a metric d that gives the topology of X, relative to which every subset of X
is bounded. It is defined as follows

Theorem 20.1. Let X be a metric space with metric d. Define d: X x K -+ R by
the equation

d(x, y) min(d(x, y), 1)

Then d is a metric that induces the same topology as d.

The metnc d is called the standard bounded metric corresponding to d.

Pmof Checking the first two conditions for a metric is trivial. Let Us check the
triangle inequality:

d(x, z) <d(x, y) + d(y, z).

Now if either d(x, y) 1 or d(y, z) > 1, then the nght side of this inequality is at
least 1. since the left side is (by definition) at most 1, the inequality holds. It remains
to consider the case in which d(x, y) < 1 and d(y, z) < 1. In this case, we have

d(x,z)

d(x, z) <d(x, z) by definition, the tnangle inequality holds ford.
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Now we note that in any metric space, the collection of E-balls with E < I forms
a basis for the metric topology for every basis element containing x contains such an
E-ball centered at x. It follows that d and d induce the same topology on X, because
the collections of E-balls with < 1 under these two metrics are the same collection.

U

Now we consider some familiar spaces and show they are metrizable.

Definition. Given x = (x1, ... in W', we define the norm of x by the equation

lixO = + +

and we define the euclidean metric d on JR" by the equation

d(x,y) = fix — = [(x1 — yi)2+ + —

We define the square metric p by the equation

p(x, y) = max(Ixi — yil —

The proof that d is a metnc requires some work; it is probably already familiar to
you. If not, a proof is outlined in the exercises. We shall seldom have occasion to use
this metnc on 1W'

To show that p is a metric is easier. Only the tnangle inequality is nontrivial. From
the triangle inequality for IR it follows that for each positive integer i,

— zi fx1 — >1 + IYi — Z11.

Then by definition of p,

— p(x, Y) + p(y, z).

As a result

p(x, z) = max(Ix — zi} < p(x, y) + p(y, z),

as desired.
On the real line JR = IR', these two metrics coincide with the standard metnc

for IR. In the plane R2, the basis elements under d can be pictured as circular regions,
while the basis elements under p can be pictured as square regions.

We now show that each of these metrics induces the usual topology on We
need the following lemma:

Lemma 20.2. Let d and d' be two metrics on the set X; let 7 and T' be the topologies
they induce, respectively. Then 7' is finer than T if and only if for each x in X and
each E > 0, there exists a 8 > 0 such that

Bd'(X, 8) C Bd(X, E)
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Proof Suppose that 7' is finer than 7 Given the basis element Bd(x, E) forT, there
is by Lemma 13.3 a basis element B' for the topology 7' such that x E B' C Bd(X, E).

Within B' we can find a ball Bd'(X, 8) centered at x.
Conversely, suppose the 8-E condition holds Given a basis element B for 7 con-

taining x, we can find within B a ball Bd(x, E) centered at x. By the given condition,
there is a 8 such that Bd'(X, 8) C Bd(X, E). Then Lemma 13.3 applies to show 7' is
finer than 7.

Theorem 20.3. The topologies on R" induced by the euclidean metric d and the
square metric p are the same as the product topology on R".

Pmof Let x = (xf, . , and y = (Yi be two points of 1W'. It is simple
algebra to check that

p(x,y) d(x,y)

The first inequality shows that

Bd(x, E) C E)

for all x and E, since if d(x, y) < then p(x, y) < also. Similarly, the second
inequality shows that

C

for all x and E. It follows from the preceding lemma that the two metnc topologies are
the same.

Now we show that the product topology is the same as that given by the metnc p.
First, let

B=(aj,bi)x . x(a,,,b,,)

be a basis element for the product topology, and let x = (xi be an element
of B. For each i, there is an such that

(x +E) C (a1,b),

choose E = min(E1, .. Then E) C B, as you can readily check. As a
result, the p-topology is finer than the product topology.

Conversely, let E) be a basis element for the p-topology. Given the element

y E E), we need to find a basis element B for the product topology such that

Bc

But this is tnvial, for

E) = (x1 — E, x E)

is itself a basis element for the product topology. I
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Now we consider the infinite cartesian product It is natural to try to generalize
the metncs d and p to this space. For instance, one can attempt to define a metric d
on by the equation

d(x, y) = — Y)2]

But this equation does not always make sense, for the senes in question need not
converge. (This equation does define a metnc on a certain important subset of
however; see the exercises.)

Similarly, one can attempt to generalize the square metric p to by defining

p(x, y) = sup(Ixn — ynI}.

Again, this formula does not always make sense. If however we replace the usual
metnc d(x, y) = Ix — yl on IR by its bounded counterpart d(x, y) = min(Ix — yi, l},
then this definition does make sense; it gives a metric on called the uniform metric.

The uniform metric can be defined more generally on the cartesian product for
arbitrary J, as follows:

Definition. Given an index set J, and given points x = and y =
of IR', let us define a metric ,5 on by the equation

y) = a E J},

where d is the standard bounded metric on JR. It is easy to check that is indeed a
metric; it is called the uniform metric on and the topology it induces is called the
uniform topology.

The relation between this topology and the product and box topologies is the fol-
lowing:

Theorem 20.4. The uniform topology on is finer than the product topology and
coarser than the box topology; these three topologies are all different 1ff is infinite.

Pmof Suppose that we are given a point x = and a product topology basis
element fl about x. Let al be the indices for R. Then for
each i, choose > 0 so that the E-ball centered at in the d metnc is contained
in this we can do because is open in JR. Let E = mintEl }; then the

E-baIl centered at x in the metric is contained in fl For if z is a point of such
that z) < then z that the

uniform topology is finer than the product topology.
On the other hand, let B be the E-ball centered at x in the metnc. Then the box

neighborhood

U = — +
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of x is contained in B. For if y E U, then < for all a, so that ,t5(X, y)

Showing these three topologies are different if J is infinite is a task we leave to
the exercises. U

In the case where J is infinite, we still have not determined whether JRJ is metriz-
able in either the box or the product topology. It turns out that the only one of these
cases where is metnzable is the case where J is countable and JRJ has the product
topology. As we shall see.

Theorem 20.5. Let d(a, b) = minf Ia — bI, 1) be the standard bounded metric on IR.
If x and y are two points of IRW, define

D(x, y) = sup f

Then D is a metric that induces the product topology on Re'.

Proof The properties of a metric are satisfied tnvially except for the triangle inequal-
ity, which is proved by noting that for all i,

d(x, z) d(x,
+

Zj) <D(x, y) + D(y, z),

so that

Id(x1,z1)supj
j

D gives the product topology requires a little more work. First, let U
be open in the metric topology and let x E U; wefind an open set V in the product
topology such that x E V C U. Choose an E-ball BD(X, E) lying in U. Then choose N
large enough that 1/N <E. Finally, let V be the basis element for the product topology

V = (Xi —E,xj +E) x ... x (xN —E,XN +E) x JR x R x....
We assert that V C BD(X, E): Given any y in

d(x1,
for i N.

Therefore,

Id(xi,yi) d(XN,yN) 1

D(x,y)<max1
1 N

If y is in V. this expression is less than E, so that V C BD(X, E), as desired.
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Conversely, consider a basis element

U = U1

for the product topology, where UL is open in JR for i = at and = JR for all
other indices i. Given x E U, we find an open set V of the metric topology such that
X E V C U. Choose an interval (x, — E, X, + E,) in JR centered about x and lying
in U, fori = aj 1. Then define

C =
I
i = . ..

We assert that

X E BD(X, e) C U.

Let y be a point of BD(X, e). Then for all i,

d(x,
<D(x, y) <C.

Now if i at, . ., then e e,/ i, so that d(x1, y,) < E < I; it follows that
Ix — y, I

<C1. Therefore, y E fl U, as desired.

Exercises

1. (a) In define

d'(x, y) = lxi — yi . + —

Show that d' is a metric that induces the usual topology of JRr?. Sketch the
basis elements under d' when n = 2.

(b) More generally, given p 1, define

d'(x, y) = [txi —

for x, y E JR". Assume that d' is a metric. Show that it induces the usual
topology on lRtt.

2. Show that JR x JR in the dictionary order topology is metrizable.

3. Let X be a metric space with metric d.
(a) Show that d: X x X -+ JR is continuous.
(b) Let X' denote a space having the same underlying set as X. Show that if

d : x X' -+ JR is continuous, then the topology of X' is finer than the
topology of X.
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One can summarize the result of this exercise as follows: If X has a metric d,
then the topology induced by d is the coarsest topology relative to which the
function d is continuous.

4. Consider the product, uniform, and box topologies on Rw.

(a) In which topologies are the following functions from JR to IRW continuous?

f(t)=(t,2t,3t,...),
g(t) = (t,t,t,...),
h(t) = (t, . . ).

(b) In which topologies do the following sequences converge?

w1=(l,l,1,1,...),
w2=(0,2,2,2,...),
W3 = (0,0,3,3,...), x3 = (0,0, i..),

yi=(lO'O'O...) z1=(1,l,0O,...),ii I..),

.),

5. Let JR°° be the subset of RW consisting of all sequences that are eventually zero.
What is the closure of JR°° in IRW in the uniform topology? Justify your answer.

6. Let 5 be the uniform metric on JRW. Given x = (XI X2,...) E and given
0 < E < 1, let

U(x,E)=(x1 —E,xj +E) x x +E) x

(a) Show that U(x, E) is not equal to the E-ball E).

(b) Show that U(x, E) is not even open in the uniform topology.
(c) Show that

= UUx,8.
Is

7. Consider the map h : IRW JR() defined in Exercise 8 of §19, give R'° the uni-
form topology. Under what conditions on the numbers a and b is h continuous?
a homeomorphism?

8. Let X be the subset of JRW consisting of all sequences x such that > converges.
Then the formula

d(x, y) = — yi)2]
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defines a metnc on X. (See Exercise 10.) On X we have the three topologies it

inherits from the box, uniform, and product topologies on JRW. We have also the
topology given by the metric d, which we call the e2-topology. (Read "little eli
two.")
(a) Show that on X, we have the inclusions

box topology e2-topology J uniform topology.

(b) The set JR°° of all sequences that are eventually zero is contained in X. Show
that the four topologies that JR°° inherits as a subspace of X are all distinct.

(c) The set

H = fl [0, I/n]
n

is contained in X, it is called the Hubert cube. Compare the four topologies
that H inherits as a subspace of X.

9. Show that the euclidean metric d on JR" is a metric, as follows: If x, y E JR'S and
C E JR, define

x+y(x1+yi Xn+yn),
cx=(cxi

Xy=XlVI+ +XnYn

(a) Show that x (y + z) = (x y) + (x . z).
(b) Show that xyl lixil Ily II. [Hint: If x, y 0, let a = 1/lixil and b = 1/Ilyll,

and use the fact that lax ± byll > 0.1

(c) Show that + lix Ii + Ilyll. [Hint: Compute (x + y) . (x + y) and
apply (b).1

(d) Verify that d is a metric.

10. Let X denote the subset of RW consisting of all sequences (xj X2,...) such that
> x2 converges. (You may assume the standard facts about infinite senes. In
case they are not familiar to you, we shall give them in Exercise 11 of the next
section.)
(a) Show that if x, y E X, then > Ix Yi i converges. [Hint: Use (b) of Exercise 9

to show that the partial sums are bounded.1
(b) Let c E JR. Show that if x, y E X, then so are x + y and cx.
(c) Show that

11/2

d(x, y) = — Yi)2j

is a well-defined metric on X.
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*11. Show that if d is a metric for X, then

d'(x,y) =d(x,y)/(I +d(x,y))

is a bounded metric that gives the topology of X. [Hint: If 1(x) = x/( I + x) for
x > 0, use the mean-value theorem to show that f(a + b) — f(b) <f(a).]

§21 The Metric Topology (continued)

In this section, we discuss the relation of the metric topology to the concepts we have
previously introduced.

Subspaces of metric spaces behave the way one would wish them to; if A is a
subspace of the topological space X and d is a metric for X, then the restriction of d
to A x A is a metric for the topology of A. This we leave to you to check.

About order topologies there is nothing to be said; some are metnzable (for in-
stance, Z÷ and R), and others are not, as we shall see

The Hausdorff axiom is satisfied by every metric topology. If x and y are distinct
points of the metric space (X, d), we let E = y); then the triangLe inequality
implies that Bd(X, E) and Bd(y, E) are disjoint.

The product topology we have already considered in special cases; we have proved
that the products W' and JRW are metrizable. It is true in general that countable products
of metrizable spaces are metrizable; the proof follows a pattern similar to the proof
for Rw, so we leave it to the exercises.

About continuous functions there is a good deal to be said. Consideration of this
topic will occupy the remainder of the section.

When we study continuous functions on metric spaces, we are about as close to
the study of calculus and analysis as we shall come in this book. There are two things
we want to do at this point.

First, we want to show that the familiar "E-5 definition" of continuity carries over
to general metric spaces, and so does the "convergent sequence definition" of continu-
ity.

Second, we want to consider two additional methods for constructing continuous
functions, besides those discussed in § 18. One is the process of taking sunis, differ-
ences, products, and quotients of continuous real-valued functions. The other is the
process of taking limits of uniformly convergent sequences of continuous functions.

Theorem 21.1. Let 1: X Y; let X and Y be metnzable with metrics cix anddy,
respectively. Then continuity of f is equivalent to the requirement that given x E X
and given E > 0, there exists > 0 such that

y) dy(f(x), f(y)) <E.

Proof Suppose that f is continuous. Given x and E, consider the set

E)),
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which is open in X and contains the point x. It contains some 8-ball B(x, 8) centered
at x. If y is in this 6-ball, then f(y) is in the E-ball centered at f(x), as desired.

Conversely, suppose that the E-6 condition is satisfied. Let V be open in Y; we
show that f'(V) is open in X. Let x be a point of the set f'(V). Since f(x) c
V, there is an €-ball B(f(x), E) centered at f(x) and contained in V. By the E-
6 condition, there is a 8-ball B(x, 8) centered at x such that f(B(x, 6)) C B(f(x), E).
Then B(x,8) isaneighborhoodofx contained in f'(V),sothatf'(V) is open, as
desired. I

Now we turn to the convergent sequence definition of continuity. We begin by
considering the relation between convergent sequences and closures of sets. It is cer-
tainly believable, from one's experience in analysis, that if x lies in the closure of a
subset A of the space X, then there should exist a sequence of points of A converging
to x. This is not true in general, but it is true for metrizable spaces.

Lemma 21.2 (The sequence lemma). Let X be a topological space; let A C X. If
there is a sequence of points of A converging to x, then x E A; the converse holds if X
is metrizable.

Proof Suppose that —+ x,where E A. Then every neighborhood U of x
contains a point of A, so x E A by Theorem 17.5. Conversely, suppose that X is
metrizable and x E A. Let d be a metric for the topology of X. For each positive
integer n, take the neighborhood Bd(x, 1/n) of radius 1/n of x, and choose to be
a point of its intersection with A. We assert that the sequence converges to x: Any
open set U containing x contains an E-ball Bd(x, E) centered at x; if we choose N so
that i/N <E, then U contains x for all I N. U

Theorem 21.3. Let f: X —÷ Y. If the function f is continuous, then for every con-
vergent sequence x in X, the sequence converges to f(x). The converse
holds if X is metnzable.

Proof Assume that f is continuous. Given x, we wish to show that —+

f(x). Let V beaneighborhoodoff(x). Then isaneighborhoodofx,andso
there is an N such that E I 1(V) for n N. Then E V for n N.

To prove the converse, assume that the convergent sequence condition is satisfied.
Let A be a subset of X; we show that f(A) C f(A). If x E A, then there is a
sequence x (by the preceding lemma). By assumption,
the sequence converges to f(x). Since E f(A), the preceding lemma
implies that 1(x) E f(A). (Note that metrizability of Y is not needed.) Hence f(A) C
f(A),as desired.

Incidentally, in proving Lemma 21.2 and Theorem 21 3 we did not use the full strength
of the hypothesis that the space X is metrizable. All we really needed was the countable
collection Bä(x, 1/n) of balls about x. This fact leads us to make a new definition

A space X is said to have a countable basis at the point x if there is a countable
collection (Ufl}flEz÷ of neighborhoods oft such that any neighborhood U of x contains a
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least one of the sets A space X that has a countable basis at each of its points is said to
satisfy the first countability axiom.

If X has a countable basis ((Jo) at x, then the proof of Lemma 21 2 goes through, one
simply replaces the ball Bä(x, 1/n) throughout by the set

B,=U1flU2fl

The proof of Theorem 21 3 goes through unchanged
A metrizable space always satisfies the first countability axiom, but the converse is not

true, as we shall see. Like the Hausdorif axiom, the first countability axiom is a requirement
that we sometimes impose on a topological space in order to prove stronger theorems about
the space. We shall study it in more detail in Chapter 4

Now we consider additional methods for constructing continuous functions. We
need the following lemma:

Lemma 21.4. The addition, subtraction, and multiplication operations are continu-
ous functions from JR x JR into JR; and the quotient operation is a continuous function
from JR x (JR — (0)) intoJR.

You have probably seen this lemma proved before; it is a standard "c-8 argument."
If not, a proof is outlined in Exercise 12 below; you should have no trouble filling in
the details.

Theorem 21.5. If X is a topological space, and if f, g : X -+ JR are continuous
functions, then f + g, f — g, and f . g are continuous. If g(x) 0 for allx, then f/g
is continuous.

Proof The map h : X -+ JR x JR defined by

h(x) = f(x) x g(x)

is continuous, by Theorem 18.4. The function f + g equals the composite of h and
the addition operation

therefore f + g is continuous. Similar arguments apply to f — g, f . g, and f/g. U

Finally, we come to the notion of uniform convergence.

Definition. Let : X —÷ Y be a sequence of functions from the set X to the metric
space Y. Let d be the metric for Y. We say that the sequence converges uniformly
to the function f : X —÷ Y if given c > 0, there exists an integer N such that

f(x)) <E

for all n > N and all x in X.

Uniformity of convergence depends not only on the topology of Y but also on its
metric. We have the following theorem about uniformly convergent sequences:
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Theorem 21.6 (Uniform limit theorem). Let : X —* Y be a sequence of contin-
uous functions from the topological space X to the metric space Y. If (In) converges
uniformly to f, then f is continuous.

Proof Let V be open in Y; letxo be a point of We wish to find a neighbor-
hood U of xo such that f(U) C V.

Let yo = f(xo). First choose E so that the E-baLl B(yo, E) is contained in V. Then,
using uniform convergence, choose N so that for all n N and all x E X,

d(fn(x), f(x)) <E/3.

Finally, using continuity of choose a neighborhood U of xo such that IN carries U
into the E/3 ball in Y centered at fN(xo).

We claim that I carries U into B(yo. E) and hence into V. as desired. For this
purpose, note that if x E U, then

d(I(x), .fN(x)) <E/3 (by choice of N),

.fN(xo)) <E/3 (by choice of U),

(xo), f(xo)) <E/3 (by choice of N).

Adding and using the triangle inequality, we see that d(f(x), f(xo)) < E, as
desired. I

Let us remark that the notion of uniform convergence is related to the definition of
the uniform metric, which we gave in the preceding section. Consider, for example,
the space Rx of all functions f: X —+ JR. in the uniform metric ,5. It is not difficult to
see that a sequence of functions f

converges to f when they are considered as elements of the metric
space We leave the proof to the exercises.

We conclude the section with some examples of spaces that are not metrizable.

EXAMPLE 1 RW in the box topology is not metrizable.
We shall show that the sequence lemma does not hold for Rw. Let A be the subset of

IRS' consisting of those points all of whose coordinates are positive:

A = ((XL,X2,...) Ix, > Oforalli

Let 0 be the "ongin" in Rw, chat is, the point (0, 0, .) each of whose coordinates is zero.
In the box topology, 0 belongs to A; for if

B = (a1,b1) x (a2,b2) x

is any basis element containing 0, then B intersects A. For instance, the point

belongsto BflA.
But we assert that there is no sequence of points of A converging to 0. For let (a,,) be

a sequence of points of A, where

a, =
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Every coordinate is positive, so we can construct a basis element B' for the box topol-
ogy on JR by setting

B' = (—xij,xii) x (—x22,x22) x

Then B' contains the ongin 0, but it contains no member of the sequence (an); the
point an cannot belong to B' because its nth coordinate x,, does not belong to the interval
(—xnn, xnn). Hence the sequence (an) cannot converge to 0 in the box topology.

EXAMPLE 2. An uncountable product of JR with itself is not metriz.able.
Let J be an uncountable index set; we show that JRJ does not satisfy the sequence

lemma (in the product topology)
Let A be the subset of JRJ consisting of all points (xa) such that xa = 1 for all but

finitely many values of a Let 0 be the "origin" in the point each of whose coordinates
isO.

We assert that 0 belongs to the closure of A Let fl be a basis element containing 0.
Then Ua JR for only finitely many values of a, say for a = a1, .. a,. Let (Xa) be the
point of A defined by letting Xa = 0 for a = a an and Xa = I for all other values of
a, then (xe) e A fl fl as desired.

But there is no sequence of points of A converging to 0. For let an be a sequence of
points of A. Given n, let i,, denote the subset of i consisting of those indices for which
the ath coordinate of an is different from 1. The union of all the sets in is a countable
union of finite sets and therefore countable. Because i itself is uncountable, there is an
index in i, say that does not lie in any of the sets in. This means that for each of the
points an, its coordinate equals 1.

Now let be the open interval (—1, 1) in IR, and let U be the open set

in The set U is a neighborhood of 0 that contains none of the points an; therefore, the
sequence cannot converge to 0.

Exercises

1. Let A C X. If d is a metric for the topology of X, show that dIA x A is a metric
for the subspace topology on A.

2. Let X and Y be metric spaces with metrics and dy, respectively. Let f
X —÷ Y have the property that for every pair of points XI, of X,

dy(f(x1), f(x2)) dX(x1,x2).

Show that f is an imbedding. It is called an isometric imbedding of K in Y.

3. Let be a metric space with metric for n E Z÷.
(a) Show that

is a metric for the product space X1 x . x
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(b) Let d1 = min{d, 1). Show that

D(x, y) = sup{d(xt, y)/i}

is a metric for the product space fl X1.

4. Show that JR1 and the ordered square satisfy the first countabiLity axiom. (This
result does not, of course, imply that they are metrizable.)

5. Theorem. Let x and y in the space JR. Then

xn + yn —+ x + y,
xn — yn —p — y,

XnYn

and provided that each 0 andy 0,

Xn/yn X/)1.

[Hint: Apply Lemma 21.4; recall from the exercises of §19 that if x
x —÷ x x y.]

6. Define [0, 11 —+ JR by the equation = x". Show that the sequence

converges for each x E [0, 11, but that the sequence does not con-
verge uniformly.

7. Let X be a set, and let : X -÷ JR be a sequence of functions. Let be
the uniform metric on the space JRX• Show that the sequence converges
uniformly to the function 1: X —p JR if and only if the sequence converges
to I as elements of the metric space (JRX,

8. Let X be a topological space and let Y be a metric space. Let X —p Y

be a sequence of continuous functions. Let be a sequence of points of X
converging to x. Show that if the sequence converges uniformly to f, then
(fn(xn)) converges to f(x).

9. Let JR —÷ JR be the function

f JR -+ JRbe the zero function.
(a) Show that f(x) for each x E JR.

(b) Show that does not converge uniformly to f. (This shows that the con-
verse of Theorem 21.6 does not hold; the limit function f may be continuous
even though the convergence is not uniform.)

10. Using the closed set formulation of continuity (Theorem 18.1), show that the
following are closed subsets of JR2.

A = (x x y I xy = 1),

S' ={x
x y x2 + y2 1).
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The set 82 is called the (closed) unit ball in JR2

11. Prove the following standard facts about infinite series:
(a) Show that if (sn) is a bounded sequence of real numbers and Sn for

each n, then (Sn) converges.

(b) Let (an) be a sequence of real numbers; define

=

If 5n we say that the infinite series

converges to s also. Show that if > a converges to S and > b converges
to t, then + b) converges to cs + t.

(c) Prove the comparison test for infinite series: If lati b- for each i, and if
the series > b converges, then the series > a converges. (Hint: Show that
the series E Ia1 I

and > c, converge, where c =
I + a .1

(d) Given a sequence of functions : X —p JR. let

Sn(X) =

Prove the Weierstrass M-test for uniform convergence: If f (x)I U for
all x E X and all i, and if the series > U converges, then the sequence (sn)
converges uniformly to a function s. [Hint: Let rn = Show
that jfk > n, then lSk(x) — Sn (x)I conclude that s(x) — (x)I

12. Prove continuity of the algebraic operations on JR. as follows: Use the metric
d(a, b) = a — on JR and the metric on 1R2 given by the equation

p((x, y), (xo, YO)) = max{Ix — xol, ly — yoU.

n+1

Si

Figure 2!.!
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(a) Show that addition is continuous. [Hint: Given E, let 8 = E/2 and note that

d(x+y,xo+yo) Ix—xol+Iy—yol.1

(b) Show that multiplication is continuous. [Hint: Given (xo, and 0 < E <
1, let

15 = E/(1X0I + IyoI + 1)

and note that

d(xy, xoyo) Ixolly — yol + yolix — xol + Ix — xojy — yol.]

(c) Show that the operation of taking reciprocals is a continuous map from
JR — {O} to JR. [Hint: Show the inverse image of the interval (a, b) is open.
Consider five cases, according as a and b are positive, negative, or zero.1

(d) Show that the subtraction and quotient operations are continuous.

The Quotient Topologyt

Unlike the topologies we have already considered in this chapter, the quotient topology
is not a natural generalization of something you have already studied in analysis. Nev-
ertheless, it is easy enough to motivate. One motivation comes from geometry, where
one often has occasion to use "cut-and-paste" techniques to construct such geometric
objects as surfaces. The torus (surface of a doughnut), for example, can be constructed
by taking a rectangle and "pasting" its edges together appropriately, as in Figure 22.1.
And the sphere (surface of a ball) can be constructed by taking a disc and collapsing
its entire boundary to a single point; see Figure 22 2. Formalizing these constructions
involves the concept of quotient topology.

Figure 22.1

section will be used throughout Part ii of the book. it also is referred to in a number of
exercises of Part I
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Definition. Let X and Y be topological spaces; let p : X Y be a surjective map.
The map p is said to be a quotient map provided a subset U of Y is open in Y if and
only if p (U) is open in X.

This condition is stronger than continuity; some mathematicians call it "strong
continuity." An equivalent condition is to require that a subset A of Y be closed in Y
if and only if p (A) is closed in X. Equivalence of the two conditions follows from
equation

Another way of describing a quotient map is as follows: We say that a subset C
of X is saturated (with respect to the surjective map p X —÷ Y) if C contains every
set that it intersects. Thus C is saturated if it equals the complete inverse
image of a subset of Y. To say that p is a quotient map is equivalent to saying that p is
continuous and p maps saturated open sets of X to open sets of Y (or saturated closed
sets of X to closed sets of Y).

Two special kinds of quotient maps are the open maps and the closed maps. Recall
that a map f X —+ Y is said to be an open map if for each open set U of X, the
set f(U) is open in Y. It is said to be a closed map if for each closed set A of X, the
set f(A) is closed in Y. It follows immediately from the definition that if p X —÷ Y

is a surjective continuous map that is either open or closed, then p is a quotient map.
There are quotient maps that are neither open nor closed. (See Exercise 3.)

EXAMPLE 1. Let X be the subspace [0, 11 U[2, 3] of R, and let Y be the subspace [0, 2J
of JR. The map p: X Y defined by

x forxE[0,1J,
p(x)

= x — i forx E [2,31

is readily seen to be surjective, continuous, and closed. Therefore it is a quotient map. It is
not, however, an open map; the image of the open set [0, 11 of X is not open in Y.

Note that if A is the subspace [0, 1) U [2, 3J of X, then the map q A Y obtained
by restricting p is conttnuous and surjective, but it is not a quotient map. For the set [2, 3J
is open in A and is saturated with respect to q, but its image is not open in Y.

Figure 22.2
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EXAMPLE 2. Let In : JR x JR JR be projection onto the first coordinate: then In is

Continuous and surjective. Furthermore, In is an open map. For if U x V iS a nonempty
basis element for JR x JR, then In1 (U x V) = U is open in JR; it follows that In carries open
sets of JR x JR to open Sets of JR. However, In1 is not a closed map. The subset

C = (x x y I xy = I)

of JR x JR is closed, but ,n1(C) = JR — (0), which is not closed in JR.
Note that if A is the subspace of JR x JR that is the union of C and the ongin (0), then

the map q A —+ JR obtained by restricting In1 is continuous and sunjective, but it is not a
quotient map. For the one-point set (0) is open in A and is saturated with respect to q, but
its image is not open in JR.

Now we show how the notion of quotient map can be used to construct a topology
on a set.

Definition. If X is a space and A is a set and if p: X —+ A is a surjective map, then
there exists exactly one topology T on A relative to which p is a quotient map; it is
called the quotient topology induced by p.

The topology T is of course defined by letting it consist of those subsets U of A
such that is open in X. It is easy to check that T is a topology. The sets 0
and A are open because = 0 and p1(A) = X. The other two conditions
follow from the equations

P'(U Ua) = U p(Ua),
aEJ cr€J

p be the map of the real line JR onto the three-point set A = (a, b, c}
defined by

a ifx>0,
p(x)= b ifx<0,

c ifx=0.
You can check that the quotient topology on A induced by p is the one indicated in Fig-
ure 22.3

Figure 22.3

There is a special situation in which the quotient topology occurs particularly fre-
quently. It is the following:
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Definition. Let X be a topological space, and let X* be a partition of X into disjoint
subsets whose union is X. Let p : X —÷ X* be the surjective map that carries each
point of X to the element of X* containing it. In the quotient topology induced by p.
the space is called a quotient space of X.

Given X*, there is an equivalence relation on X of which the elements of X* are
the equivalence classes. One can think of as having been obtained by "ide ntifying"
each pair of equivalent points. For this reason, the quotient space is often called an
identification space, or a decomposition space, of the space X.

We can describe the topology of in another way. A subset U of X* is a col-
lection of equivalence classes, and the set p'(U) is just the union of the equivalence
classes belonging to U. Thus the typical open set of X* is a collection of equivalence
classes whose union is an open set of X.

EXAMPLE 4. Let X be the closed unit ball

(xx y 1x2+y2 1)

in JR2. and let X* be the partition of X consisting of all the one-point sets (r x y} for
which x2 + y2 < I, along with the set S' = (x x y)

I
x2 + y2 = lJ. saturated

open sets in X are pictured by the shaded regions in Figure 22.4. One can show that
homeomorphic with the subspace of JR3 called the unit 2.sphere, defined by

S2=((x,y,z)1x2+y2+z2=l}.

EXAMPLE 5. Let X be the rectangle [0, ljx [0, 1J. Define a partition X* of X as follows:
It consists of all the one-point sets (x x y} where 0 <x < I and 0 < y < I, the following
types of two-point sets:

(x xO,x x 1) where0 <x < I,
(Oxy,lxy} where0<y<l,

and the four-point set

(Ox 0,0 x 1,1 x 0,1 x 1).

Typical saturated open sets in X are pictured by the shaded regions in Figure 22.5; each is
an open set of X that equals a union of elements of X*.

x p(V)

Figure 22.4
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The image of each of these sets under p is an open set of as indicated in Fig-
ure 22.6. This description of X* is just the mathematical way of saying what we expressed
in pictures when we pasted the edges of a rectangle together to form a torus.

OxO

Now we explore the relationship between the notions of quotient map and quo-
tient space and the concepts introduced previously. It is interesting to note that this
relationship is not as simple as one might wish.

We have already noted that subspaces do not behave well; if p : X —+ Y is a
quotient map and A is a subspace of X, then the map q A —÷ p(A) obtained by
restricting p need not be a quotient map. One has, however, the following theorem:

Theorem 22.1. Let p: X —÷ Y be a quotient map; let A be a subspace of X that is
saturated with respect to p; let q : A —+ p(A) be the map obtained by restricting p.

(I) If A is either open or closed in X, then q is a quotient map.

*(2) If p is either an open map or a closed map, then q is a quotient map.

Pmof Step 1. We verify first the following two equations:

= p1(V) if V C p(A);
p(UflA)=p(U)flp(A) ifUCX.

Figure 22.5

Figure 22.6
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To check the first equation, we note that since V C p(A) and A is saturated, p1(V)
is contained in A. It follows that both (V) and q1 ( V) equal all points of A that
are mapped by p into V. To check the second equation, we note that for any two
subsets U and A of X, we have the inclusion

p(U fl A) C p(U) fl p(A).

To prove the reverse inclusion, suppose y = p(u) p(a), for u E U and a E A.
Since A is saturated, A contains the set p'(p(a)), so that in particular A contains u.
Then y = p(u), where u EU fl A.

Step 2. Now suppose A is open or p is open. Given the subset V of p(A), we
assume that q1(V) is open in A and show that V is open in p(A).

Suppose first that A is open. Since is open in A and A is open in X, the
set q1(V) is open in X. Since q'(V) = p1(V), the latter set is open in X, so that
V is open in Y because p is a quotient map. In particular, V is open in p(A).

Now suppose p is open. Since = and q1(V) is open in A, we
have (V) = U fl A for some set U open in X. Now p

V = = p(U fl A) = p(U) fl p(A).

The set p(U) is open in Y because p is an open map; hence V is open in p(A).

Step 3. The proof when A or p is closed is obtained by replacing the word "open"
by the word "closed" throughout Step 2.

Now we consider other concepts introduced previously. Composites of maps be-
have nicely; it is easy to check that the composite of two quotient maps is a quotient
map; this fact follows from the equation

p'(q'(U)) (q o

On the other hand, products of maps do not behave well; the cartesian product of
two quotient maps need not be a quotient map. See Example 7 following. One needs
further conditions on either the maps or the spaces in order for this statement to be
true. One such, a condition on the spaces, is called local compactness; we shall study
it later. Another, a condition on the maps, is the condition that both the maps p and q
be open maps. In that case, it is easy to see that p x q is also an open map, so it is a
quotient map.

Finally, the Hausdorff condition does not behave well; even if X is Flausdorff,
there is no reason that the quotient space X* needs to be Hausdorif. There is a simple
condition for to satisfy the axiom; one simply requires that each element of the
partition be a closed subset of X. Conditions that will ensure X* is Hausdorff are
harder to find. This is one of the more delicate questions concerning quotient spaces;
we shall return to it several times later in the book.

Perhaps the most important result in the study of quotient spaces has to do with the
problem of constructing continuous functions on a quotient space. We consider that
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problem now. When we studied product spaces, we had a criterion for determining
whether a map f Z —÷ fj into a product space was continuous. Its counterpart in
the theory of quotient spaces is a criterion for determining when a map f —÷ Z
out of a quotient space is continuous. One has the following theorem:

Theorem 22.2. Let p : X —p Y be a quotient map. Let Z be a space and let
g: X —* Z beamapthat is constant on eachset fory E Y. Then ginduces
a map f: Y —÷ Z such that f o p = g. The induced map f is continuous if and only
if g is continuous: f is a quotient map if and only if g is a quotient map.

Y

Proof For each y E Y, the set g(p1({y})) is a one-point set in Z (since g is constant
on If we let f(y) denote this point, then we have defined a mapf: Y —÷ Z
such that for each x E X, f(p(x)) = g(x). If f is continuous, then g = f o p is
continuous. Conversely, suppose g is continuous. Given an open set V of Z,
is open in X. But = because p is a quotient map, it follows
that f'(V) is open in Y. Hence f is continuous.

If f is a quotient map, then g is the composite of two quotient maps and is thus a
quotient map. Conversely, suppose that g is a quotient map. Since g is surjective, so
is f. Let V be a subset of Z; we show that V is open in Z if f'(V) is open in Y.
Now the set (V)) is open in X because p is continuous. Since this set equals
g1(V), the latter is open in X. Then because g is a quotient map, V is open in Z. •

Corollary 22.3. Let g : X —* Z be a surjective continuous map. Let X* be the
following collection of subsets of X:

= I z E Z}.

Give X* the quotient topology.
(a) The map g induces a bijective continuous map f : —÷ Z, which is a homeo-

morphism if and only if g is a quotient map.

Z

(b) If Z is Hausdorif, sois

Proof By the preceding theorem, g induces a continuous map f —p Z; it is
clear that f is bijective. Suppose that f is a homeomorphism. Then both f and the
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projection map p: X —p are quotient maps, so that their composite q is a quotient
map. Conversely, suppose that g is a quotient map Then it follows from the preceding
theorem that f is a quotient map. Being bijective, f is thus a homeornorphisrn.

Suppose Z is Hausdorif. Given distinct pomts of X*, their images under f are
distinct and thus possess disjoint neighborhoods U and V. Then f'(U) and f'(V)
are disjoint neighborhoods of the two given points of X*. •

EXAMPLE 6. Let X be the subspace of JR2 that is the union of the line segments [0, 11 x
(si}, for n E Z+, and let Z be the subspace of R2 consisting of all points of the form
x x (x/n) for x E [0, lJ and n E Z÷. Then X is the union of countably many disjoint
line segments, and Z is the union of countably many line segments having an cad point in
common. See Figure 22.7.

Define a map g . X Z by the equation g(x x si) = x x (x/n); then g is surjeCtive
and continuous. The quotient space whose elements are the sets is simply the
space obtained from X by identifying the subset (0) x Z÷ to a point. The map g induces a
bijeccive continuous map f . Z. But f is not a homeomorphism.

To venfy this fact, it suffices to show that g is not a quotient map. Consider the
= (1/n) x si of X. The set A = isaclosedsubsetofX because

it has no limit points. Also, it is saturated with respect tog On the other hand, the set g(A)
is not closed in Z, for it consists of the potnts = (1/n) x (I/n2); this set has the origin
as a limit point.

Figure 22.7

EXAMPLE 7. The product of rwo quotient maps need not be a quotient map
We give an example that involves non-Hausdorif spaces in the exercises. Here is an-

other involving spaces that are nicer.
Let X = JR and let X be the quotient space obtained from X by identifying the

subset Z+ to a point b; let p X -+ be the quotient map. Let Q be the subspace of JR
consisting of the rational numbers; let i : Q -+ Q be the identity map. We show that

p xi. X x Q x Q

is not a quotient map.
For each n, let = and consider the straight lines in JR2 with slopes I and —1,

respectively, through the point n x c, Let consist of all points of X x Q that lie above
both of these lines or beneath both of them, and also between the vertical lines x = n — 1/4
andx = si + 1/4. Then isopen in X x Q; it contains the set(n} x Qbecause c,, is not
rational. See Figure 22.8
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Let U be the union of the sets then U is open in X x Q. It is saturated with respect
to p x i because it contains the set Z÷ x (q} for each q C Q. We assume that
U' = (p x i)(U) is open in x Q and denve a contradiction

Because U contains, in particular, the set x 0, the set U' contains the point b x 0.
Hence U' contains an open set of the form W x 13, where W is a neighborhood of b in
and 13 consists of all rational numbers y with <8. Then

p'(W) x 13 C U.

Choose n large enough that c,, <8. Then since is open in X and contains Z÷,
we can choose E < 1/4 so that the interval (si — ,n + €) is contained in Then
U contains the subset V = (a — Efl + €) X of X x Q. But the figure makes clear that
there are many points x x y of V that do not lie in U! (One such is the point x x y, where
x = n + and y is a rational number with — <

Exercises

1. Check the details of Example 3.

2. (a) Let p: X —÷ Y be a continuous map. Show that if there is a continuous map
1: Y —* X such that pof equals the identity map of Y, then p is a quotient
map.

(b) If A C X, a retraction of X onto A is a continuous map r : X A such
that r(a) = a for each a E A. Show that a retraction is a quotient map.

I I

I I

6

Un

I I I

I I I

I I I

I I I

I I

I
I

Figure 22.8
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3. Let JR x JR —+ JR be projection on the first coordinate Let A be the subspace
of JR x JR consisting of all points x x y for which either x 0 or y = 0 (or both);
let q : A —÷ JR be obtained by restricting In. Show that q is a quotient map that
is neither open nor closed.

4. (a) Define an equivalence relation on the plane X = JR2 as follows:

xyf

Let X* be the corresponding quotient space. It is homeomorphic to a familiar
space; what is it? [Hint: Set g(x x y) = x +

(b) Repeat (a) for the equivalence relation

5. Let p : X —÷ Y be an open map. Show that if A is open in X, then the map
q : A —÷ p(A) obtained by restricting p is an open map.

6. Recall that JRK denotes the real line in the K-topology. (See §13.) Let Y be
the quotient space obtained from JRK by collapsing the set K to a point; let
p : JRK —÷ Y be the quotient map.
(a) Show that Y satisfies the T1 axiom, but is not Hausdorif.
(b) Show that p x p . RK x —÷ Y x Y is not a quotient map. [Hint: The

diagonal is not closed in Y x Y, but its inverse image is closed in JRK x JRK .1

*Supplementary Exercises: Topological Groups

In these exercises we consider topological groups and some of their properties. The
quotient topology gets its name from the special case that arises when one forms the
quotient of a topological group by a subgroup.

A topological group G is a group that is also a topological space satisfying the
T1 axiom, such that the map of G x G into G sending x x y into x y, and the
map of G into G sending x into are continuous maps. Throughout the following
exercises, let G denote a topological group.

1. Let H denote a group that is also a topological space satisfying the T1 axiom.
Show that H is a topological group if and only if the map of H x If into H
sending x x y into x is continuous.

2. Show that the following are topological groups:
(a) (Z,+)
(b) (JR,+)
(c) (JR÷,)
(d) (S'. ), where we take S' to be the space of all complex numbers z for which

Izi = 1.
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(e) The general linear group GL(n), under the operation of matrix multiplica-
tion. (GL(n) is the set of all nonsingular n by n matrices, topologized by
considering it as a subset of euclidean space of dimension n2 in the obvious
way.)

3. Let H be a subspace of G. Show that if H is also a subgroup of G, then both H
and H are topological groups.

4. Let cr be an element of G. Show that the maps : G —÷ G defined by

= a x and = x a

are homeomorphisms of G. Conclude that G is a homogeneous space. (This
means that for every pair x, y of points of G, there exists a homeomorphism
of G onto itself that cames x to y.)

5. Let H be a subgroup of G. Ifx E G, definexH = (x h
I

h H); this set is
called a left coset of H in G. Let G/H denote the collection of left cosets of H
in G; it is a partition of G. Give G/H the quotient topology.
(a) Show that if x G, the map of the preceding exercise induces a home-

omorphism of G/H carrying xH to (cr . x)H. Conclude that G/H is a
homogeneous space.

(b) Show that if H is a closed set in the topology of G, then one-point sets are
closed Ln G/N.

(c) Show that the quotient map p : G —÷ G/H is open.
(d) Show that if H is closed in the topology of G and is a normal subgroup of G,

then G/H is a topological group.

6. The integers Z are a normal subgroup of (JR. +). The quotient IR/Z is a familiar
topological group; what is it?

7. IfA and B are subsets of G, let A B denote the set of all pointsa . b fora E A
andb E B. Let A' denotethesetofallpointsa',fora A.
(a) A neighborhood V of the identity element e is said to be symmetric if V =

V '. If U is a neighborhood of e, show there is a symmetric neighborhood
V of e such that V . V C U. [Hint: If W is a neighborhood of e, then
W W1 is symmetric.]

(b) Show that G is Hausdorif. In fact, show that if x y, there is a neighbor-
hood V of e such that V . x and V . are disjoint.

(c) Show that G satisfies the following separation axiom, which is called the
regularity axiom: Given a closed set A and a point x not in A, there ex-
ist disjoint open sets containing A and x, respectively. [Hint: There is a
neighborhood V of e such that V . x and V . A are disjoint.]

(d) Let H be a subgroup of G that is closed in the topology of G; let p: G —÷
G/H be the quotient map. Show that G/H satisfies the regularity axiom.
(Hint. Examine the proof of (c) when A is saturated.]



Chapter 3

Connectedness
and Compactness

In the study of calculus, there are three basic theorems about continuous functions,
and on these theorems the rest of calculus depends. They are the following:

lnter,nediate value theorem. If f : [a, b} —÷ IR is continuous and if r is a real
number between f(a) and f(b), then there exists an element c E [a, b] such that
f(c)=r.

Maximum value theorem. If f [a, b] —+ R is continuous, then there exists an
element c E [a, b] such that 1(x) f(c) for every x [a, b].

Uniform continuity theorem. If f : [a, b] —÷ IR is continuous, then given E > 0,
there exists 8 > 0 such that If(xi) — f(x2)I < E for every pair of numbers xl, X2
of[a,b]forwhich lxi —x21 <8.

These theorems are used in a number of places. The intermediate value theorem is
used for instance in constructing inverse functions, such as and arcsinx; and the
maximum value theorem is used for proving the mean value theorem for derivatives,
upon which the two fundamental theorems of calculus depend. The uniform continuity
theorem is used, among other things, for proving that every continuous function is
integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed interval [a, 1'] of real
numbers. The theorems depend not only on the continuity of f but also on properties
of the topological space [a. b].

The property of the space [a, bJ on which the intermediate value theorem depends

147
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is the property called connectedness, and the property on which the other two depend
is the property called compactness. In this chapter, we shall define these properties for
arbitrary topological spaces, and shall prove the appropriate generalized versions of
these theorems.

As the three quoted theorems are fundamental for the theory of calculus, so are the
notions of connectedness and compactness fundamental in higher analysis, geometry,
and topology—indeed, in almost any subject for which the notion of topological space
itself is relevant.

§23 Connected Spaces

The definition of connectedness for a topological space is a quite natural one. One says
that a space can be "separated" if it can be broken up into two "globs"—disjoint open
sets. Otherwise, one says that it is connected. From this simple idea much follows.

Definition. Let X be a topological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be connected
if there does not exist a separation of X.

Connectedness is obviously a topological property, since it is formulated entirety
in terms of the collection of open sets of X. Said differently, if X is connected, so is
any space homeomorphic to X.

Another way of formulating the definition of connectedness is the following:

A space X is connected if and only if the only subsets of X that are both
open and closed in X are the empty set and X itself

For if A is a nonempty proper subset of X that is both open and closed in X, then the
sets U = A and V = X — A constitute a separation of X, for they are open, disjoint,
and nonempty, and their union is X. Conversely, if U and V form a separation of X,
then U is nonempty and different from X, and it is both open and closed in X.

For a subspace Y of a topological space X, there is another useful way of formu-
lating the definition of connectedness:

Lemma 23.1. If Y is a subspace of X, a separation of Y isa pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other.
The space Y is connected if there exists no separation of Y.

Proof Suppose first that A and B form a separation of Y. Then A is both open and
closed in Y. The closure of A in Y is the set A fl Y (where A as usual denotes the
closure of A in X). Since A is closed in Y, A = A fl Y; or to say the same thing,
A fl B = 0. Since A is the union of A and its limit points, B contains no limit points
of A. A similar argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y,
neither of which contains a limit point of the other. Then A fl B = 0 and A fl B = 0;
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therefore, we conclude that A fl Y = A and B fl Y = B. Thus both A and B are closed
in Y, and since A = Y — B and B = Y — A, they are open in Y as well. I

EXAMPLE 1. Let X denote a two-point space in the indiscrete topology. Obviously there
is no separation of X, so X is connected.

EXAMPLE 2. Let Y denote the subspace [—I, 0) U (0, 11 of the real line R. Each of the
sets [—1,0) and (0, 11 is nonempty and open in Y (although not in IR); therefore, they form
a separation of Y. Alternatively, note that neither of these sets contains a limit point of the
other. (They do have a limit point 0 in common, but that does not matter.)

EXAMPLE 3. Let X be the subspace [—1, 11 of the real line. The sets [—1, 0) and (0, 11
are disjoint and nonempty, but they do not form a separation of X, because the first set is
not open in X. Alternatively, noie that the first set contains a limit point, 0, of the second.
Indeed, there exists no separation of the space [—1, 11. We shall prove this fact shortly

EXAMPLE 4. The rationals Q are not connected. Indeed, the only connected subspaces
of Q are the one-point sets If Y is a subspace of Q containing two points p and q, one can
choose an irrational number a lying between p and q, and write Y as the union cf the open
sets

Yfl(—oo,a) and Yfl(a,+oo).

EXAMPLE 5. Consider the following subset of the plane R2:

X (x x y I y = OJU(x x y Ix > Oandy = 1/x}.

Then X is not connected, indeed, the two indicated sets form a separation of X because
neither contains a limit point of the other. See Figure 23.1.

Figure 23.1

We have given several examples of spaces that are not connected. How can one
construct spaces that are connected? We shall now prove several theorems that tell
how to form new connected spaces from given ones. In the next section we shall apply
these theorems to show that some specific spaces, such as intervals in IR, and balls and
cubes in 1W', are connected. First, a lemma:

Lemma 23.2. If the sets C and D form a separation of X, and if Y is a connected
subspace of X, then Y lies entirely within either C or D.

Proof Since C and D are both open in X, the sets C fl Y and D fl Y are open in Y.
These two sets are disjoint and their union is Y; if they were both nonempty, they
would constitute a separation of Y. Therefore, one of them is empty. Hence Y must
lie entirely in C or in D I
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Theorem 23.3. The union of a collection of connected subspaces of X that have a
point in common is connected.

Proof Let (An) be a collection of connected subspaces of a space X; let p be a point
of fl We prove that the space Y = U is connected. Suppose that Y = C U D
is a separation of Y. The point p is in one of the sets C or D: suppose p E C.
Since is connected, it must lie entirely in either C or D, and it cannot lie in D
because it contains the point p of C. Hence Aa C C for every cv, so that U C C,
contradicting the fact that D is nonempty. I
Theorem 23.4. Let A be a connected subspace of X. If A C B C A, then B is also
connected.

Said differently: If B is formed by adjoining to the connected subspace A some or
all of its limit points, then B is connected.

Pmof Let A be connected and let A C B c A. Suppose that B = C U D is a
separation of B. By Lemma 23.2, the set A must lie entirely in C or in D; suppose
that A C C. Then A C C; since C and D are disjoint, B cannot intersect D. This
contradicts the fact that D is a nonempty subset of B. I
Theorem 23.5. The image of a connected space under a continuous map is con-
nected.

Proof Let f : X —÷ Y be a continuous map; let X be connected. We wish to
prove the image space Z = f(X) is connected. Since the map obtained from f by
restricting its range to the space Z is also continuous, it suffices to consider the case
of a continuous surjective map

g : X -+ Z.

Suppose that Z = A U B is a separation of Z into two disjoint nonempty sets open
in Z. Then g1(A) and g1(B) are disjoint sets whose union is X; they are open in X
because g is continuous, and nonempty because g is surjective. Therefore, they form
a separation of X, contradicting the assumption that X is connected. I
Theorem 23.6. A finite cartesian product of connected spaces is connected.

Proof We prove the theorem first for the product of two connected spaces X and Y.
This proof is easy to visualize. Choose a "base point" a x b in the product X x Y.
Note that the "horizontal slice" X x b is connected, being homeomorphic with X, and
each "vertical slice" x x Y is connected, being homeornorphic with Y. As a result,
each "1-shaped" space

=(X xb)U(x x Y)

is connected, being the union of two connected spaces that have the point x x b in
common. See Figure 23.2. Now form the union of all these spaces.
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This union is connected because it is the union of a collection of connected spaces that
have the point a x b in common. Since this union equals X x Y, the space X x Y is
connected.

V xxV
ax b

S Xxb

. IL
x a

x

Figure 23.2

The proof for any finite product of connected spaces follows by induction, using
the fact (easily proved) that X1 x• x is homeomorphic with (X1 x x x
xn.

It is natural to ask whether this theorem extends to arbitrary products of connected
spaces. The answer depends on which topology is used for the product, as the follow-
ing examples show.

EXAMPLE 6. Consider the cartesian product R" in the box topology. We can write
as the union of the set A consisting of all bounded sequences of real numbers, and the set B
of all unbounded sequences. These sets are disjoint, and each is open in the box topology
ForifaisapointoflRw,theopen set

U = — + 1) x (a2 — la2 + 1) x

consists entirely of bounded sequences if a is bounded, and of unbounded sequences if a if
unbounded. Thus, even though 1R is connected (as we shall prove in the next section), RW
is not connected in the box topology.

EXAMPLE 7. Now consider JRW in the product topology. Assuming that JR is
nected, we show that IR" is connected. Let R' denote the subspace of 1RW consisting of
all sequences x = (xl, x2,...) such that x = 0 for i > n The space is clearly
homeomorphic to 1R" so that it is connected, by the preceding theorem. It follows that the
space that is the union of the spaces R" is connected, for these spaces have the point
o = (0, 0,...) in common. We show that the closure of equals all of R"', from which
it follows that is connected as well.

Let a = (at (12,...) be a point of 1R"'. Let U = fl be a basis element for the
product topology that conta&ns a. We show that U intersects 1R°°. There is an integer N
such that U = JR for i > N. Then the point

)

of belongs to U, since a E U for all i, and 0 E U for i > N.
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The argument just given generalizes to show that an arbitrary product of connected
spaces is connected in the product topology. Since we shall not need this result, we
leave the proof to the exercises.

Exercises

1. Let 7 and 7' be two topologies on X. If 7' D 7, what does connectedness
of X in one topology imply about connectedness in the other7

2. Let be a sequence of connected subspaces of X, such that fl 0
for all n. Show that U is connected.

3. Let {Aa} be a collection of connected subspaces of X; let A be a connected
subspace of X. Show that if A flAg 0 for all a, then AU(U is connected.

4. Show that if X is an infinite set, it is connected in the finite complement topology.

5. A space is totally disconnected if its only connected subspaces are one-point
sets. Show that if X has the discrete topology, then X is totally disconnected.
Does the converse hold?

6. Let A C X Show that if C is a connected subspace of X that intersects both A
and X — A, then C intersects Bd A.

7. Is the space connected7 Justify your answer.

8. Detennine whether or not RW is connected in the uniform topology.

9. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are
connected, show that

(X x Y) — (A x B)

is connected.

10. Let be an indexed family of connected spaces; let X be the product
space

X =
crEJ

Let a = (an) be a fixed point of X.
(a) Given any finite subset K of J, let XK denote the subspace of X consisting

of all points x = (xv) such that = a K. Show that XK is
connected.

(b) Show that the union Y of the spaces XK is connected.
(c) Show that X equals the closure of Y; conclude that X is connected

11. Let p: X —÷ Y be a quotient map. Show that if each set is connected,
and if Y is connected, then X is connected.

12. Let Y C X; let X and Y be connected. Show that if A and B form a separation
of X — Y, then Y U A and Y U B are connected.
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§24 Connected Subspaces of the Real Line

The theorems of the preceding section show us how to construct new connected spaces
out of given ones. But where can we find some connected spaces to start The
best place to begin is the real line. We shall prove that IR is connected, and so are the
intervals and rays in IR.

One application is the intermediate value theorem of calculus, suitably general-
ized. Another is the result that such familiar spaces as balls and spheres in euclidean
space are connected; the proof involves a new notion, called path connectedness,
which we also discuss.

The fact that intervals and rays in IR are connected may be familiar to you from
analysis. We prove it again here, in generalized form. It turns out that this fact does
not depend on the algebraic properties of IR, but only on its order properties. To make
this clear, we shall prove the theorem for an arbitrary ordered set that has the order
properties of IR. Such a set is called a linear continuum.

Definition. A simply ordered set L having more than one element is called a linear
continuum if the following hold:

(1) L has the least upper bound property.

(2) Ifx < y,thereexistszsuchthatx < z < y

Theorem 24.1. If L is a linear continuum in the order topology, then L is connected,
and so are intervals and rays in L.

Pmof Recall that a subspace Y of L is said to be convex if for every pair of points
a, b of Y with a < b, the entire interval [a, b] of points of L lies in Y. We prove that
if Y is a convex subspace of L, then Y is connected.

So suppose that Y is the union of the disjoint nonempty sets A and B, each of
which is open in Y Choose ci E A and b E B; suppose for convenience that a < b.

The interval [a, b] of points of L is contained in Y. Hence [a, b] is the union of the
disjoint sets

Ao=Afl[a,bJ and B0=Bfl[a,b],

each of which is open in [a, b] in the subspace topology, which is the same as the order
topology. The sets Ao and B0 are nonempty because a E A0 and b E B0. Thus, A0
and B0 constitute a separation of [a, b}.

Let c = sup Ao. We show that c belongs neither to A0 nor to B0, which contradicts
the fact that [a, b] is the union of A0 and B0.

Case 1. Suppose that c E B0. Then c a, so either c = b or a < c < b. In

either case, it follows from the fact that is open in [a, b] that there is some interval
of the form (d, c] contained in B0. If c = b, we have a contradiction at once, for d is a
smaller upper bound on Ao than c. If c < b, we note that (c, b] does not intersect A0
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(because c is an upper bound on A0). Then

(d,b] = (dc]U(c,b]

does not intersect A0. Again, d is a smaller upper bound on Ao than c, contrary to
construction. See Figure 24.1.

d c C e

a b aZ b

d c C •
[ ( I [
a b a b

Figure 24.1 Figure 24.2

Case 2. Suppose that c E Ao. Then c b, so either c = a or a < c < b.

Because A0 is open in (a, b], there must be some interval of the form [c, e) contained
in Ao. See Figure 24.2. Because of order property (2) of the linear continuum L, we
can choose a point z of L such that c < z < e. Then z E A0, contrary to the fact that
c is an upper bound for A0.

Corollary 24.2. The real line R is connected and so are intervals and rays in IR.

As an application, we prove the intermediate value theorem of calculus, suitably
generalized.

Theorem 24.3 (Intermediate value theorem). Let I X —+ Y be a continuous
map, where X is a connected space and Y is an ordered set in the order topology. If a
and b are two points of X and if r is a point of Y lying between f(a) and 1(b), then
there exists a point c of X such that f(c) = r.

The intermediate value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in JR and Y to be IR.

Proof Assume the hypotheses of the theorem. The sets

A = f(X) fl (—oo, r) and B = f(X) fl (r, +00)

are disjoint, and they are nonempty because one contains f(a) and the other con-
tains 1(b). Each is open in 1(X), being the intersection of an open ray in Y with 1(X).
If there were no point c of X such that f(c) = r, then 1(X) would be the union of the
sets A and B. Then A and B would constitute a separation of 1(X), contradicting the
fact that the image of a connected space under a continuous map is connected. I
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EXAMPLE 1. One example of a linear continuum different from R is the ordered square.
We check the least upper bound property. (The second property of a linear continuum is
tnvial to check.) Let A be a subset of I x I, let 7r1 I x I —+ I be projection on the first
coordinate; let b = sup ,r1(A). If b E (A), then A intersects the subset b x I of I x I
Because b x I has the order type of I, the set A fl (b x I) will have a least upper bound
b x c, which will be the least upper bound of A. See Figure 24.3. If b (A), then b x 0
is the least upper bound of A; no element of the form b' x c with b' < b can be an upper
bound for A, for then b' would be an upper bound for ir1 (A).

EXAMPLE 2. If X is a well-ordered set, then X x [0, 1) is a linear continuum in the
dictionary order; this we leave to you to check. This set can be thought of as having been
constructed by "fitting in" a set of the order type of (0, 1) immediately following each
element of X.

Connectedness of intervals in IR gives rise to an especially useful criterion for
showing that a space X is connected; namely, the condition that every pair of points
of X canbejoinedby apcuhin X:

Definition. Given points x and y of the space X, a path in X from x to y is a
continuous map I : [a, b] —* X of some closed interval in the real line into X, such
that f(a) = x and f(b) = y. A space X is said to be path connected if every pair of
points of X can be joined by a path in X.

It is easy to see that a path-connected space X is connected. Suppose K = A U B
is a separation of X. Let f [a, b] X be any path in X. Being the continuous
image of a connected set, the set f([a, b]) is connected, so that it lies entirely in either
A or B. Therefore, there is no path in X joining a point of A to a point of B, contrary
to the assumption that X is path connected.

The converse does not hold; a connected space need not be path connected. See
Examples 6 and 7 following.

Figure 24.3
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EXAMPLE 3. Define the unit ball in JR' by the equation

= (x
I lxii 11

where

lxii = ll(xi x,,)iI = (x? + .

The unit ball is path connected; given any two points x and y of B", the straight-line path
1: [0, 1] —÷ JR" defined by

f(t) = (1 —r)x+ty

lies in B". For if x andy are in B" and t is in [0, 1],

iIf(t)iI (1 — t)iixii +tiiyli 1.

A similar argument shows that every open ball Bd(x, e) and every closed ball Bd(x, E)

in JR" is path connected.

EXAMPLE 4. Define punctured euclidean space to be the space IR" — (0J, where 0 is
the origin in JR". If n > 1, this space is path connected. Given x andy different from 0,
we can join x and y by the straight-line path between them if that path does not go through
the origin. Otherwise, we can choose a point z not on the line joining x andy, and take the
broken-line path from x to z, and then from z to y

EXAMPLE 5. Define the unit sphere in JR' by the equation

(x I lxii = 11.

If n > 1, it is path connected. For the map g : IR" — (0) —÷ S"t defined by g(x) = x/iixii
is continuous and surjective; and it is easy to show that the continuous image of a path-
connected space is path connected.

EXAMPLE 6. The ordered square is connected but not path connected.
Being a linear continuum, the ordered square is connected. Let p = 0 x 0 and q =

lx 1. We suppose there is a path f : [a, bI —÷ p and q and derive a contradiction.
The image set f([a, bI) must contain every point x x y of by the intermediate value
theorem. Therefore, for each x I, the set

x (0,1))

is a nonempty subset of [a, b]; by continuity, it is open in [a, bI. See Figure 24.4. Choose,
for each x E 1. a rational number qx belonging to Since the sets are disjoint, the
map x —÷ is an injective mapping of I into Q. This contradicts the fact that the interval I
is uncountable (which we shall prove later)

EXAMPLE 7. Let S denote the following subset of the plane.

S = (x x sin(l/x) I 0 <x l}.

Because S is the image of the connected set (0, 11 under a continuous map, S is connected.
Therefore, its closure S in JR2 is also connected. The set S is a classical example in topology
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x(O,1)

[( ) ]
a b

called the topologist's sine curve. It is illustrated in Figure 24.5; it equals the union of S
and the vertical interval 0 x [—1, II. We show that S is not path connected.

Suppose there is a path I . [a, c] —+ S beginning at the ongin and ending at a point
of S. The set of those (for which f(t) E Ox [—1, 1] is closed, so it has a largest elementb.
Then f : [b, c) —+ S is a path that maps b into the vertical interval 0 x [—1, 1] and maps
the other points of [b, Cl to points of S.

Replace [b, Cl by [0, 11 for convenience; let f(t) = (x(t), y(t)). Then = 0,

while x(t) > 0 and y(r) = sin(1/x(r)) fort > 0. We show there is a sequence of points
—+ 0 such that = (—1)". Then the sequence does not converge, contradicting

continuity of f.
To find t,,, we proceed as follows: Given n, choose u with 0 < u <x(1/n) such that

sin(1/u) = (—I)". Then use the intermediate value theorem to find with 0 < r,, < 1/n
such that = u.

Figure 24.5

Exercises

1. (a) Show that no two of the spaces (0, 1), (0, 11, and [0, 1] are homeomorphic.
(Hint: What happens if you remove a point from each of these spaces?)I

(b) Suppose that there exist imbeddings f X —÷ Y and g : Y -÷ X. Show by
means of an example that X and Y need not be homeomorphic.

(C) Show IR'1 and IR are not homeomorphic if n > 1.

Figure 24.4
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2. Let f : S1 -+ IR be a continuous map. Show there exists a point x of S' such
that 1(x) = f(—x).

3. Let f : X —÷ X be continuous. Show that if X = [0, 11, there is a point x such
that 1(x) = x. The point x is called a fixed point of f. What happens if X
equals [0, 1) or (0,

4. Let X be an ordered set in the order topology. Show that if X is connected, then
X is a linear continuum.

5. Consider the following sets in the dictionary order. Which are linear continua?
(a) x [0, 1)
(b) [0, 1) x

(c) [0, 1) x [0, 1]

(d) [0, 1] x [0, 1)

6. Show that if X is a well-ordered set, then X x [0, 1) in the dictionary order is a

linear continuum.

7. (a) Let X and Y be ordered sets in the order topology. Show that if 1: X —+ Y

is order preserving and surjective, then f is a homeomorphism.
(b) Let X Y = Given a positive integer n, show that the function f(x) =

x" is order preserving and surjective. Conclude that its inverse, the nth mot
function, is continuous.

(c) Let X be the subspace (—oo, —1) U [0, oo) of JR. Show that the function
f: X —+ IR defined by setting 1(x) = x + 1 if x < —1, and f(x) = x if
x 0, is order preserving and surjective. Is f a homeomorphism7 Compare
with (a).

8. (a) Is a product of path-connected spaces necessarily path connected?
(b) If A C X and A is path connected, is A necessarily path connected7
(c) If f X —÷ Y is continuous and X is path connected, is 1(X) necessarily

path connected?
(d) If is a collection of path-connected subspaces of X and if fl

is IJ necessarily path connected7

9. Assume that IR is uncountable. Show that if A is a countable subset of 1R2, then
JR2 — A is path connected. [Hint: How many lines are there passing through a
given point of

10. Show that if U is an open connected subspace of 1R2, then U is path connected.
[Hint: Show that given E U, the set of points that can be joined to x0 by a
path in U is both open and closed in U.]

11. If A is a connected subspace of X, does it follow that mt A and Bd A are con-
nected? Does the converse hold? Justify your answers.

*12. Recall that Sc2 denotes the minimal uncountable well-ordered set. Let L denote
the ordered set Sc2 x [0 1) in the dictionary order, with its smallest element
deleted. The set L is a classical example in topology called the long line.
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Theorem. The long line is path connected and locally homeomorphic to R, but
it cannot be imbedded in R.
(a) Let X be an ordered set; let a <c be points of X. Show that [a, C) has

the order type of [0, 1) if and only if both [a, b) and [b, c) have the order
type of[O, 1)

(b) Let X be an ordered set. Let xo < < ... be an increasing sequence of
points of X; suppose b = sup(x1) Show that {xo, b) has the order type of
(0, 1) if and only if each interval [x1 x+i) has the order type of [0, I).

(c) Let ao denote the smallest element of Sc2. For each element a of Sc2 different
from ao, show that the tnterval [ao x 0, a x 0) of Sc2 x [0, 1) has the order
type of [0, 1). [Hint: Proceed by transfinite induction. Either a has an
immediate predecessor in Sc2, or there is an increasing sequence a, in Sc2
with a = sup{a}.}

(d) Show that L is path connected.
(e) Show that every point of L has a neighborhood homeomorphic with an open

interval in JR.
(f) Show that L cannot be imbedded in R, or indeed in for any n. [Hint.

Any subspace of has a countable basis for its topology.]

Components and Local Connectednesst

Given an arbitrary space X, there is a natural way to break it up into pieces that are
connected (or path connected). We consider that process now.

Definition. Given X, define an equivalence relation on X by setting x y if there
is a connected subspace of X containing both x and y. The equivalence classes are
called the components (or the "connected components") of X.

Symmetry and reflexivity of the relation are obvtous. Transitivity follows by not-
ing that if A is a connected subspace containing x and y, and if B is a connected
subspace containing y and z, then A U B is a subspace containing x and z that is
connected because A and B have the point y in common.

The components of X can also be described as follows:

Theorem 25.1. The components of X are connected disjoint subspaces of X whose
union is X, such that each nonempty connected subspace of X intersects only one of
them.

Pmof Being equivalence classes, the components of X are disjoint and their union
is X. Each connected subspace A of X intersects only one of them. For if A intersects
the components C1 and C2 of X, say in points and x2, respectively, then x1
by definition; this cannot happen unless Ci = C2.

section will be assumed in Part II of the book
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To show the component C is connected, choose a point xo of C. For each point x
of C, we know that x, so there is a connected subspace containing xo and x.
By the result just proved, c C. Therefore,

C = tJ
XEC

Since the subspaces are connected and have the point xo in common, their union is
connected. I
Definition. We define another equivalence relation on the space X by defining x y
if there is a path in X from x to y. The equivalence classes are called the path compo-
nents of X.

Let us show this is an equivalence relation. First we note that if there exists a path
f : [a, bl —* X from x to y whose domain is the interval (a, b], then there is also
a path g from x to y having the closed interval [c, d] as its domain. (This follows
from the fact that any two closed intervals in JR are homeomorphic.) Now the fact that

x for each x in X follows from the existence of the constant path f : [a, b] —÷ X
defined by the equation f(t) = x for all t. Symmetry follows from the fact that if
f : [0, I] —÷ X is a path from x to y, then the "reverse path" g : [0, 1] —f X defined
by g(t) = f(1 — a') is a path from y to x. Finally, transitivity is proved as follows: Let
f : [0, 11 —÷ X be a path from x to y, and let g . [1, 2] —÷ X be a path from y to z.
We can "paste f and g together" to get a path h : [0, 2] —÷ X from x to z; the path h
will be continuous by the "pasting lemma," Theorem 18.3.

One has the following theorem, whose proof is similar to that of the theorem pre-
ceding:

Theorem 25.2. The path components of X are path-connected disjoint subspaces
of X whose union is X, such that each nonempty path-connected subspace of X inter-
sects only one of them.

Note that each component of a space X is closed in X, since the of a
connected subspace of X is connected. If X has only finitely many components, then
each component is also open in X, since its complement is a finite union of closed sets
But in general the components of X need not be open in X.

One can say even less about the path components of X, for they need be neither
open nor closed in X. Consider the following examples:

EXAMPLE 1. If Q is the subspace of R consisting of the rational numbers, then each
component of Q consists of a single point. None of the components of Q are open in Q.

EXAMPLE 2. The "topologist's sine curve" S of the preceding section is a space that has
a single component (since it is connected) and two path components One path component
is the curve S and the other is the vertical interval V = 0 x [—1, 1]. Note that S is open
in S but not closed, while V is closed but not open

If one forms a space from S by deleting all points of V having rational second co.
ordinate, one obtains a space that has only one component but uncountably many path
components.
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Connectedness is a useful property for a space to possess. But for some purposes,
it is more important that the space satisfy a connectedness condition locally. Roughly
speaking, local connectedness means that each point has "arbitrarily small' neighbor-
hoods that are connected. More precisely, one has the following definition:

Definition. A space X is said to be locally connected at x if for every
hood U of x, there is a connected neighborhood V of x contained in U If K is locally
connected at each of its points, it is said simply to be locally connected. S imilarly, a
space X is said to be locally path connected at x if for every neighborhood U of x,
there is a path-connected neighborhood V of x contained in U. If X is locally path
connected at each of its points, then it is said to be locally path connected.

EXAMPLE 3. Each interval and each ray in the real line is both connected and locally
connected The subspace [—1, 0) U (0, 1] of IR is not connected, but it is locally connected
The topologist's sine curve is connected but not locally connected. The rationals Q are
neither connected nor locally connected.

Theorem 25.3. A space X is locally connected if and only if for every open set U
of X, each component of U is open in X.

Pmof Suppose that X is locally connected; let U be an open set in X; let C be a
component of U If x is a point of C, we can choose a connected neighborhood V of x
such that V C U. Since V is connected, it must lie entirety in the component C of U.
Therefore, C is open in X.

Conversely, suppose that components of open sets in X are open. Given a point x
of X and a neighborhood U of x, let C be the component of U containing x. Now C
is connected; since it is open in X by hypothesis, X is locally connected at x. I

A similar proof holds for the following theorem:

Theorem 25.4. A space X is locally path connected if and only if for every open
set U of X, each path component of U is open in X.

The relation between path components and components is given in the following
theorem:

Theorem 25.5. If X is a topological space, each path component of X lies in a
component of X If X is locally path connected, then the components and the path
components of X are the same.

Proof Let C be a component of X; let x be a point of C; let P be the path component
of X containing x. Since P is connected, P C C. We wish to show that if X &s locally
path connected, P = C. Suppose that P ç C. Let Q denote the union of all the path
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components of X that are different from P and intersect C, each of them necessarily
lies in C, so that

C = P U Q.

Because X is locally path connected, each path component of X is open in X. There-
fore, P (which is a path component) and Q (which is a union of path components)
are open in X, so they constitute a separation of C. This contradicts the fact that C is
connected.

Exercises

1. What are the components and path components of Rt? What are the continuous
maps f : IR —÷

2. (a) What are the components and path components of RW (in the product topol-
ogy)?

(b) Consider RW in the uniform topology. Show that x and y lie in the same
component of RW if and only if the sequence

x—y=(xI—yl,x2—y2,...)

is bounded. [Hint: It suffices to consider the case where y = 0.]
(c) Give the box topology. Show that x and y lie in the same component

of IRA' if and only if the sequence x — y is "eventually zero." [Hint: If x — y is
not eventually zero, show there is homeomorphism h of R(u with itself such
that h(x) is bounded and h(y) is unbounded.]

3. Show that the ordered square is locally connected but not locally path connected.
What are the path components of this space7

4. Let X be locally path connected. Show that every connected open set in X is
path connected.

5. Let X denote the rational points of the interval [0, 1] x 0 of 1R2. Let T denote the
union of all line segments joining the point p = 0 x I to points of X.
(a) Show that T is path connected, but is locally connected only at the point p.
(b) Find a subset of R2 that is path connected but is locally connected at none

of its points.

6. A space X is said to be weakly locally connected at x if for every neighbor-
hood U of x, there is a connected subspace of X contained in U that contains
a neighborhood of x. Show that if X is weakly locally connected at each of its
points, then X is locally connected. [Hint: Show that components of open sets
are open.]

7. Consider the "infinite broom" X pictured in Figure 25.1. Show that X is not lo-
cally connected at p. but is weakly locally connected at p. [Hint: Any connected
neighborhood of p must contain all the points a.]
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Figure 25.1

8. Let p X —÷ Y be a quotient map. Show that if X is locally connected, then Y
is locally connected. [Hint: If C is a component of the open set U of Y, show
that p'(C) is a union of components of p1(U).]

9. Let G be a topological group: let C be the component of G containing the identity
element e. Show that C is a normal subgroup of G. [Hint: If x G, then xC is
the component of G containing x.]

10. Let X be a space. Let us define x y if there is no separation X A U B of X
into disjoint open sets such that x E A and y E B.
(a) Show this relation is an equivalence relation. The equivalence classes are

called the quasicomponents of X.
(b) Show that each component of X lies in a quasicomponent of X, and that

the components and quasicomponents of X are the same if X is locally con-
nected.

(c) Let K denote the set fl/n nE Z÷} andlet —K denotetheset(—l/n In E
Z+). Determine the components, path components, and quasicomponents of
the following subspaces of 1R2:

A=(Kx[O,1])U{OxO}U(OxI}.
B=AU([O, 1] x (0)).
C =(K x [0, l1)U(—K x [—l,O])U([O, lix —K)U([—l,O] x K).

§26 Compact Spaces

The notion of compactness is not nearly so natural as that of connectedness. From the
beginnings of topology, it was clear that the closed interval [a, bi of the real line had
a certain property that was crucial for proving such theorems as the maximum value
theorem and the uniform continuity theorem. But for a long time, it was not clear
how this property should be formulated for an arbitrary topological space It used to
be thought that the crucial property of [a, b] was the fact that every infinite subset
of [a, b] has a limit point, and this property was the one dignified with the name of
compactness. Later, mathematicians realized that this formulation does not lie at the
heart of the matter, but rather that a stronger formulation, in terms of open coverings
of the space, is more central. The latter formulation is what we now call compactness.
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It is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition. A collection 4 of subsets of a space X is said to cower X, or to be a
cowering of X, if the union of the elements of A is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering A of X contains
a finite subcollection that also covers X.

EXAMPLE I. The real line 1R is not compact, for the covenng of R by open intervals

A = ((n,n +2fln E ZJ

contains no finite subcollection that covers lit

EXAMPLE 2 The following subspace of JR is compact:

X=(O}U(1/n In EZ÷J.

Given an open covenng A of X, there is an element U of A containing 0. The set U
contains all but finitely many of the points 1/n; choose, for each point of X not in U, an
element of A containing it. The collection consisting of these elements of A, along with
the element U, is a finite subcollection of A that covers X.

EXAMPLE 3. Any space X containing only finitely many points is necessanly compact,
because in this case every open covenng of X is finite.

EXAMPLE 4. The interval (0, 11 is not compact; the open covenng

A=((1/n,1IInEZ+)

contains no finite subcollection covenng (0, 1]. Nor is the interval (0, 1) compact; the
same argument applies. On the other hand, the interval [0, 11 is compact; you are probably
already familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or
not. First we shall prove some general theorems that show us how to construct new
compact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of

Let us first prove some facts about subspaces. If Y is a subspace of X, a collec-
tion A of subsets of X is said to cower Y if the union of its elements contains Y.

Lemma 26.1. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollecLion covering Y.
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Proof Suppose that Y is compact and A = is a covering of Y by sets open
in X. Then the collection

fl Y I a J)

is a covering of Y by sets open in Y; hence a finite subcollection

fl Y fl Y)

covers Y. Then } is a subcollection of A that covers Y.
Conversely, suppose the given condition holds; we wish to prove Y conipact. Let

A' = be a covering of Y by sets open in Y. For each a, choose a set open
in X such that

A = Y by sets open in X By hypothesis, some
finite subcollection ..., } covers Y. Then ) is a subcollection
of A' that covers Y

Theorem 26.2. Every closed subspace of a compact space is compact.

Pmof Let Y be a closed subspace of the compact space X. Given a covering A of Y
by sets open in X, let us form an open covering of X by adjoining to A the single
open set X — Y, that is,

=AU(X- Y}.

Some finite subcollection of covers X. If this subcollection contains the set X —
discard X — Y; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of A that covers Y. I
Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof Let Y be a compact subspace of the Hausdorif space X. We shall prove that
X — Y is open, so that Y is closed.

Let xo be a point of X — Y. We show there is a neighborhood of xo that is disjoint
from Y. For each point y of Y, let us choose disjoint neighborhoods and of the
points xo and y, respectively (using the Hausdorif condition). The collection y E
Y} is a covering of Y by sets open in X; therefore, finitely many of them
cover Y. The open set

v=vyIu. uvyfl

contains Y, and it is disjoint from the open set

formed by taking the intersection of the corresponding neighborhoods of xo. For if z
is a point of V, then z for some i, hence z and so z U. See Figure 26.1.

Then U is a neighborhood of xo disjoint from Y, as desired. I
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The statement we proved in the course of the preceding proof will be useful to us
later, so we repeat it here for reference purposes:

Lemma 26.4. If Y is a compact subspace of the Hausdorff space X andx0 is not in Y,
then there exist disjoint open sets U and V of X containing x0 and Y, respectively.

EXAMPLE 5. Once we prove that the interval [a, b] in JR is compact, it follows from
Theorem 26 2 that any closed subspace of [a, b] is compact. On the other hand, it follows
from Theorem 26.3 that the intervals (a, b) and (a, b) in JR cannot be compact (which we
knew already) because they are not closed in the Hausdorif space JR

EXAMPLE 6. One needs the Hausdorif condition in the hypothesis of Theorem 26 3
Consider, for example, the finite complement iopology on the real line The only proper
subsets of JR that are closed in this topology are the finite sets. But every subset of JR is
compact in this topology, as you can check.

Theorem 26.5. The image of a compact space under a continuous map is compact.

Pmof Let f: X —p Y be continuous; let X be compact. Let A be a covenng of the
set 1(X) by sets open in Y. The collection

{f'(A) A E A)

is a collection of sets covenng X; these sets are open in X because I is continuous.
Hence finitely many of them, say

f1(A1)

cover X. Then the sets A1 cover f(X). U

V,3

Figure 26.1
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One important use of the preceding theorem LS as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let I : X —÷ Y be a bijective continuous function If X is compact
and Y IS Hausdorff, then f is a homeomorphism

Pmof We shall prove that images of closed sets of X under I are closed in Y; this
will prove continuity of the map f'. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorif, f(A) is closed in Y, by Theorem 26.3. U

Theorem 26.7. The product of finitely many compact spaces is compact.

Pmof We shall prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and Y, with Y compact. Suppose that
xo is a point of X, and N is an open set of X x Y containing the "slice" x0 x Y of
X x Y We prove the following

There is a neighborhood W of xo in X such that N contains the entire set
WxY

The set W x Y is often called a tube about x
x Y x x

x to
x Y by finitely many such basis elements

U1xV1

(We assume that each of the basis elements U1 x V actually intersects xo x Y, since
otherwise that basis element would be superfluous; we could discard it froni the finite
collection and still have a covering of xo x Y.) Define

w=u1n nu,,

The set W is open, and it contains xo because each set U x V1 intersects xo x Y.
We assert that the sets (I, x V1. which were chosen to cover the slice xO x Y,

actually cover the tube W x Y. Let x x y be a point of W x Y. Consider the point
x x the same y-coordinate as this point. NGw x0 x y

belongstoU, xV1 forsomei,sothaty E V1. Butx E foreveryj(becausex E W).
Therefore, we have x x y E U x V1. as desired.

Since all the sets U x V1 lie in N, and since they cover W x Y, the tube W x Y
lies in N also. See Figure 26.2.

Step 2. Now we prove the theorem. Let X and Y be compact spaces. Let A
be an open covering of X x Y. Given X, the slice x Y is compact and
may therefore be covered by finitely many elements A1 Am of A. Their union
N = A1 U . . U Am is an open set containing x Y; by Step 1, the open set N contains
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Figure 26.2

a tube W x Y about xo x Y, where W is open in X. Then W x Y is covered by finitely
many elements A1 Am of it.

Thus, for each x in X, we can choose a neighborhood of x such that the tube
W, x Y can be covered by finitely many elements of A. The collection of all the
neighborhoods is an open covering of X; therefore by compactness of X, there
exists a finite subcollection

(W1 Wk}

covering X. The union of the tubes

W1xY, ..,WkXY

is all of X x Y; since each may be covered by finitely many elements of A, so may
X x Y be covered. U

The statement proved in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x Y of X x Y, then N
contains some tube W x Y about xo x Y, where W is a neighborhood of in X.

EXAMPLE 7 The tube lemma is certainly not true if Y is not compact For example. let
Y be the y-axis in R2 and lei

N is an open set containing the set 0 x R, but it contains no tube about 0 x IR It is
illustrated in Figure 26 3
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There is an obvious question to ask at this point. Is the product of infinitely many
compact spaces compact? One would hope that the answer is "yes," and in fact it is.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is ito way to
go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of its difficulty, and alsG to avoid
losing the main thread of our discussion in this chapter, we have decided to postpone it
until later. However, you can study it now if you wish; the section in which it is proved

can be studied immediately after this section without causing any disruption in
continuity.

There is one final criterion for a space to be compact, a critenon that is formulated
in terms of closed sets rather than open sets It does not look very natural nor very
useful at first glance, but it in fact proves to be useful on a number of occasions. First
we make a definition.

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection

{C1

of C, the intersection Ci fl fl is nonempty.

Theorem 26.9. Let X be a topological space. Then X is compact if and only if
for every collection C of closed sets in X having the finite intersection property, the
intersection flc€e C of all the elements of C is nonempty.

Figure 26.3
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Pmof Given a collection A of subsets of X, let

C = {X — A A E A)

be the collection of their complements. Then the following statements hold:
(1) A is a collection of open sets if and only if C is a collection of closed sets.

(2) The collection A covers X if and only if the intersection C of all the
elements of C is empty

(3) The finite subcollection (A1 of A covers X if and only if the intersec-
tion of the corresponding elements C = X — A of C is empty.

The first statement is trivial, while the second and third follow from DeMorgan's law:

—(U Aa) = fl(X — Aa).
cv€J a€J

The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!

The statement that X is compact is equivalent to saying: "Given any collection 4
of open subsets of X, if A covers X, then some finite subcollection of A covers X."
This statement is equivalent to its contrapositive, which is the following: "Given any
collection A of open sets, if no finite subcollection of A covers X, then A does not
cover X." Letting C be, as earlier, the collection {X — A

I A A} and applying
we see that this statement is in turn equivalent to the following: "Given any

collection C of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of C is nonempty." This is just the condition
of our theorem. U

A special case of this theorem occurs when we have a nested sequence C1 C2

... of closed sets in a compact space X. If each of the sets
C the finite intersection

property. Then the intersection

nCn
n€Z÷

is nonempty.
We shall use the closed set criterion for compactness in the next section to prove

the uncountability of the set of real numbers, in Chapter 5 when we prove the
chonoff theorem, and again in Chapter 8 when we prove the Baire category theorem.

Exercises

1. (a) Let 7 and 7' be two topologies on the set X; suppose that 7' 7. What
does compactness of X under one of these topologies imply about
ness under the other?

(b) Show that if X is compact Hausdorif under both 7 and 7', then either 7
and 7' are equal or they are not comparable.
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2. (a) Show that in the finite complement topology on IR, every subspace is com-
pact.

(b) If IR has the topology consisting of all sets A such that IR — A is either
countable or all of 1k, is [0, 1] a compact subspace?

3. Show that a finite union of compact subspaces of X is compact.

4. Show that every compact subspace of a metric space is bounded in that metric
and is closed. Find a metric space in which not every closed bounded subspace
is compact.

5. Let A and B be disjoint compact subspaces of the Hausdorif space X. Show that
there exist disjoint open sets U and V containing A and B, respectively.

6. Show that if f: X Y is continuous, where X is compact and Y is 1-Lausdorif,
then f is a closed map (that is, f cames closed sets to closed sets).

7. Show that if Y is compact, then the projection : X x Y —* X is a closed map.

8. Theorem. Let f : X —÷ Y; let Y be compact Hausdorff. Then f is continuous

if and only if the graph of

Gj={xx f(x) lxEX),

is closed in X x Y. [Hint: If G1 is closed and V is a neighborhood of f(xo),
then the intersection of G1 and X x (Y — V) is closed. Apply Exercise 7.]

9. Generalize the tube lemma as follows:
Theorem. Let A and B be subspaces ofX and Y, respectively; let N be an open
set in X x Y containing A x B. If A and B are compact, then there exist open
sets U and V in X and Y, respectively, such that

A x B C U x V C N.

10. (a) Prove the following partial converse to the uniform limit theorem:
Theorem. Let X —÷ JR be a sequence of continuous functions, with

(x) —+ f(x) for each x E X. 1ff is continuous, and if the sequence is
monotone increasing, and if X is compact, then the convergence is uniform.
[We say that is monotone increasing if for all n and x.]

(b) Give examples to show that this theorem fails if you delete the requirement
that X be compact, or if you delete the requirement that the sequence be
monotone. [Hint: See the exercises of §21.]

11. Theorem. Let X be a compact Hausdorif space. Let A be a collection of closed
connected subsets of X that is simply ordered by proper inclusion. Then

Y = fl A
AEA

is connected. [Hint: If C U D is a separation of Y, choose disjoint open sets U
and V of X containing C and D, respectively, and show that

fl(A_(UuV))
A€A
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is not empty.]

12. Let p : X —+ Y be a closed continuous surjective map such that is
compact, for each y E Y. (Such a map is called a perfect map) Show that if Y
is compact, then X is compact. [Hint: If U is an open set containing p1((y)),
there is a neighborhood W of y such that p1( W) is contained in U

13. Let G be a topological group.
(a) Let A and B be subspaces of G. If A is closed and B is compact, show A B

is closed. [Hint: If c is not in A. B, find a neighborhood W of c such that
W. B' isdisjointfromA.]

(b) Let H be a subgroup of G; let p G —÷ G/H be the quotient map. If H is
compact, show that p is a closed map.

(c) Let H be a compact subgroup of G. Show that if G/H is compact, then G
is compact.

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line; we shall prove that every closed inter-
val in JR is compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization
of all compact subspaces of and a proof of the uncountability of the set of real
numbers.

It turns out that in order to prove every closed interval in IR is compact, we need
only one of the order properties of the real line—the least upper bound property. We
shall prove the theorem using only this hypothesis; then it will apply not only to the
real line, but to well-ordered sets and other ordered sets as well.

Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Pmof Step I. Given a <b, let A be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of A covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of A

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, that it can be covered by at most two
elements of 4. If x has no immediate successor in X, choose an element A of A
containing x. Because x b and A is open, A contains an interval of the form [x, c),
for some c in [a, b]. Choose a point y in (x, C); then the interval [x, y] is covered by
the single element A of A.
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Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y]
can be covered by finitely many elements of A Applying Step 1 to the case x = a,
we see that there exists at least one such y, so C is not empty. Let c be the least upper
bound of the set C; then a <c b.

Step 3. We show that c belongs to C; that is, we show that the interval (a, c} can
be covered by finitely many elements of A. Choose an element A of A containing C;
since A is open, it contains an interval of the form (d, c] for some d in [a, b]. If c is
not in C, there must be a point z of C lying in the interval (d, C), because otherwise d
would be a smaller upper bound on C than c. See Figure 27.1. Since z is in C, the
interval [a, zi can be covered by finitely many, say n, elements of A. Now [z, cJ lies
in the single element A of A, hence [a, c] = [a, z] U [z, c] can be covered by n + 1
elements of A. Thus c is in C, contrary to assumption.

z yory

Figure 27.1 Figure 27.2

Step 4. Finally, we show that C = b, and our theorem is proved. Suppose that
c <b. Applying Step I to the case x c, we conclude that there exists a point y > c

of [a, b] such that the interval [c, y] can be covered by finitely many elements of .4.
See Figure 27.2. We proved in Step 3 that c is in C, so [a, c] can be covered by finitely
many elements of A. Therefore, the interval

[a,y]=[a,c]U[c,y]

can also be covered by finitely many elements of A. This means that y is in C, con-
tradicting the fact that c is an upper bound on C. U

Corollary 27.2. Every closed interval in JR is compact.

Now we charactenze the compact subspaces of IR":

Theorem 27.3. A subspace A of JR" is compact if and only if it is closed and is
bounded in the euclidean metric d or the square metric p.

Proof It will suffice to consider only the metnc p; the inequalities

p(x, y) d(x, y) y)

imply that A is bounded under d if and only if it is bounded under p.
Suppose that A is compact. Then, by Theorem 26.3, it is closed. Consider the

collection of open sets

{Bp(O,m) I mE



174 Connectedness and Compactness Ch. 3

whose union is all of Some finite subcollection covers A It follows that A C
M) for some M. Therefore, for any two points x andy of A, we have p(x, y) <

2M. Thus A is bounded under p.
Conversely, suppose that A is closed and bounded under p; suppose that p(x, y)

N for every pair y of points of A. Choose a point xo of A, and let p(xo, 0) = b.

The triangle inequality implies that p(x, 0) N + b for every x in A. If P = N + b,
then A is a subset of the cube [—P, p]fl, which is compact. Being closed, A is also
compact. U

Students often remember this theorem as stating that the collection of compact
sets in a metric space equals the collection of closed and bounded sets. This statement
is clearly ridiculous as it stands, because the question as to which sets are bounded
depends for its answer on the metric, whereas which sets are compact depends only on
the topology of the space.

EXAMPLE 1 The unit sphere S"' and the closed unit ball in R" are compact
because they are closed and bounded. The set

A=(xx(l/x)IO<x< 1)

is closed in R2, but it is not compact because it is not bounded. The set

S = (xx (sin(l/x)) 10< x I)

as bounded in R2, but it is not compact because it is not closed

Now we prove the extreme value theorem of calculus, in suitably generalized form.

Theorem 27.4 (Extreme value theorem). Let f X -+ Y be continuous, where Y
is an ordered set in the order topology. If X is compact, then there exist points c and d
inX such thatf(c) f(x) f(d) for everyx E X.

The extreme value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in JR and Y to be JR.

Proof Since f is continuous and X is compact, the set A = f(X) is compact. We
show that A has a largest element M and a smallest element m. Then since m and M
belong to A, we must have m = f(c) and M = f(d) for some points c and d of X.

If A has no largest element, then the collection

Ia E A}

forms an open covering of A. Since A is compact, some finite subcollection

((—oo, as), . (—oo, an))

covers A If a is the largest of the elements a1, . . . then a belongs to none of these
sets, contrary to the fact that they cover A.

A similar argument shows that A has a smallest element. U
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Now we prove the uniform continuity theorem of calculus. In the process, we
are led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space. First, a preliminary notion:

Definition. Let (X, d) be a metric space; let A be a nonempty subset of X. For each
X E X, we define the distance from x to A by the equation

d(x, A) = inf{d(x, a) a E A}.

It is easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y X, one has the inequalities

for each a E A. It follows that

d(x, A) — d(x, y) infd(y, a) = d(y, A),

so that

d(x, A) — d(y, A) <d(x, y).

The same inequality holds with x and y interchanged; continuity of the function
d(x, A) follows.

Now we introduce the notion of Lebesgue number. Recall that the diarrieter of a

bounded subset A of a metric space (X, d) is the number

sup{d(al,a2) al,a2 A).

Lemma 27.5 (The Lebesgue number lemma). Let A be an open coveiing of the
metric space (X, d). If X is compact, there is a S > 0 such that for each subset of X
having diameter less than 8, there exists an element of A containing it.

The number 8 is called a Lebesgue number for the covering

Proof Let 4 be an open covering of X. If X itself is an element of A, then any
positive number is a Lebesgue number for A. So assume X is not an element of A.

Choose a finite subcollection {A1 of A that covers X. For each i, set
C = X — A, and define f X —+ IR by letting f(x) be the average of the numbers
d(x, C). That is,

f(x) = ! C).

We show that f(x) > 0 for allx. Given x X, choose i so thatx E A. Then choose
so the €-neighborhood of x lies in A. Then d(x, C) €, so that f(x) > €/n.
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Since f is continuous, it has a minimum value 8; we show that 8 is our required
Lebesgue number Let B be a subset of X of diameter less than cS. Choose a point
of B, then B lies in the 8-neighborhood of xo. Now

8 < f(xo) <d(xo,

where d(x0, Cm) is the largest of the numbers d(x0, C). Then the 8-neighborhood
of is contained in the element Am = X — Cm of the covering A.

Definition. A function f from the metric space (X, to the metnc space (Y, dy)
is said to be uniformly continuous if given > 0, there is a cS > 0 such that for every
pair of points of X,

<E

Theorem 27.6 (Uniform continuity theorem). Let f . X —÷ Y be a continuous
map of the compact metric space (X, to the metric space (Y, dy). Then f is
uniformly continuous.

Proof Given E > 0, take the open covering of Y by balls B(y, E/2) of radius (/2.
Let 4 be the open covering of X by the inverse images of these balls under f. Choose
to be a Lebesgue number for the covering A. Then if and X2 are two points of X
such that x2) < 8, the two-point set {x1, x2} has diameter less than cS, so that
its image ff(xi), f(x2)) lies in some ball B(y, E/2). Then dv (f (x1), f(x2)) < as

desired U

Finally, we prove that the real numbers are uncountable. The interesting thing
about this proof is that it involves no algebra at all—no decimal or binary expansions
of real numbers or the like—just the order properties of JR.

Definition. If X is a space, a point x of X is said to be an isolated point of X if the
one-point set (x} is open in X

Theorem 27.7. Let X be a nonempry compact Hausdorif space. if X has no isolated
points, then X is uncountable.

Proof Step 1. We show first that given any nonempty open set U of X and any
point x of X, there exists a nonempty open set V contained in U such that x V

Choose a point y of U different from x; this is possible if x is in U because x is not
an isolated point of X and it is possible if x is not in U simply because U is nonempty.
Now choose disjoint open sets W1 and W2 about x and y, respectively. Then the set
V = W2 fl U is the desired open set, it is contained in U, it is nonempty because it
contains y, and its closure does not contain x See Figure 27.3

Step 2. We show that given f : —+ X, the function is not surjective. It
follows that X is uncountable
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Wi

Let = 1(n). Apply Step 1 to the nonempty open set U = X to choose a
nonempty open set V1 C X such that V1 does not contain In general, given
open and nonempty, choose to be a nonempty open set such that C and
does not contain x,,. Consider the nested sequence

J 2 J

of nonempty closed sets of X. Because X is compact, there is a pointx E fl by
Theorem 26.9. Now x cannot equal x belongs to and does
not. U

Corollary 27.8. Every closed interval in JR is uncountable.

Exercises

1. Prove that if X is an ordered set in which every closed interval is compact. then X
has the least upper bound property.

2. Let X be a metric space with metric d; let A cx be nonempty.
(a) Show that d(x, A) = 0 if and only if x E A.
(b) Show that if A is compact, d(x, A) = d(x, a) for some a E A.
(c) Define the of A in X to be the set

<E}.

Show that U(A, E) equals the union of the open balls Bd(a, for a E A

(d) Assume that A is compact: let U be an open set containing A. Show that
some c-neighborhood of A is contained in U.

(e) Show the result in (d) need not hold if A is closed but not compact.

3. Recall that IRK denotes R in the
(a) Show that [0, 1] is not compact as a subspace of iRK.

Figure 27.3
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(b) Show that IRK is connected. [Hint (—00, 0) and (0, oo) inherit their usual
topologies as subspaces of IRK.}

(c) Show that IRK is not path connected.

4. Show that a connected metric space having more than one point is uncountable.

5. Let X be a compact Hausdorif space, let be a countable collection of closed
sets of X. Show that if each set A, has empty intenor in X, then the union U
has empty interior in X. [Hint: Imitate the proof of Theorem 27.7.]

This is a special case of the Baire category theorem, which we shall study in
Chapter 8.

6. Let A0 be the closed interval [0, 1] in JR. Let A1 be the set obtained from A0 by
deleting its "middle third" 4). Let A2 be the set obtained from A1 by deleting

its "middle thirds" and In general, define by the equation

°°1f1+3k 2+3k
=

— —f—

The intersection

C= fl

is called the Cantor set; it is a subspace of [0, 1]
(a) Show that C is totally disconnected.
(b) Show that C is compact.
(c) Show that each set is a union of finitely many disjoint closed intervals of

length 1/3"; and show that the end points of these intervals lie in C.
(d) Show that C has no isolated points.
(e) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides with compactness for
metnzable spaces.

Definition. A space X is said to be limit point compact if every infinite subset of X
has a limit point.

In some ways this property is more natural and intuitive than that of compactness.
In the early days of topology, it was given the name "compactness," while the open
covering formulation was called "bicompactness." Later, the word "compact" was
shifted to apply to the open covering definition, leaving this one to search for a new
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name It still has not found a name on which everyone agrees On historical grounds,
some call it "Fréchet compactness", others call it the "Bolzano-Weierstrass property"
We have invented the term "limit point compactness" It seems as good a term as any;
at least it describes what the property is about.

Theorem 28.1. Compactness implies limit point compactness, but not con versely

Proof Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limit
point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a E A we can choose a neighborhood 11a of a such that
Ua intersects A in the point a alone The space X is covered by the open set X — A

and the open sets (Ia; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set t1a contains only one point of A, the
set A must be finite. U

EXAMPLE 1 Let Y consist of two points, give Y the topology consisting of Y and
the empty set Then the space X Z÷ x Y is limit point compact, for every nonempty
subset of X has a limit point, it is not compact, for the covenng of X by the open sets

= (n) x Y has no finite subcollection covering X

EXAMPLE 2 Here is a less trivial example Consider the minimal uncountable well-
ordered set Sci, in the order topology The space Sci is not compact, since it has no largest
element However, it is limit point compact Let A be an infinite subset of Sc�. Choose a
subset B of A that is countably infinite Being countable, the set B has an upper bound b
in Sc2; then B is a subset of the interval [ao, b] of Sc2, where ao is the smallest element
of Sc�. Since Sc2 has the least upper bound property, the interval [aO, bi is compact By the
preceding theorem, B has a limit point x in [aO, b]. The point x is also a limit point of A
Thus Sci is limit point compact

We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential
compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If is a sequence of points of X, and if

nJ<n2<..
is an increasing sequence of positive integers, then the sequence (yj) defined by setting
y = is called a subsequence of the sequence The space X is said to be
sequentially compact if every sequence of points of X has a convergent subsequence.

Theorem 28.2. Let X be a metnzable space. Then the following are equivalent:
(1) X is compact.

(2) X is limit point compact.

(3) X is sequentially compact.
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Proof We have already proved that (1) (2). To show that (2) (3), assume
that X is limit point compact. Given a sequence of points of X, consider the set
A = I n E Z+). If the set A is finite, then there is a point x such that x = for
Lnfinitely many values of n. In this case, the sequence has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of converging to x as follows: First
choose n1 so that

E B(x, 1).

Then suppose that the positive integer n.1 is given. Because the bait B(x, 1/i) inter-
sects A in infinitely many points, we can choose an index n > n_1 such that

E B(x, 1/i).

Then the subsequence converges to x.
Finally, we show that (3) (1). This is the hardest part of the proof.
First, we show that if X is sequentially compact, then the Lebesgue number lemma

holds for X. (This would follow from compactness, but compactness is what we are
trying to prove!) Let A be an open covenng of X. We assume that there is no 8 > 0
such that each set of diameter less than S has an eiement of A containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a
set of diameter less than 1/n that is not contained in any element of A; let be such a
set. Choose a point E for each n. By hypothesis, some subsequence of the
sequence converges, say to the point a. Now a belongs to some element A of the
collection 4; because A is open, we may choose an 0 such that B(a, €) C A. If i
is large enough that 1/ne <E/2, then the set lies in the of if
i is also chosen large enough that a) <€/2, then lies in the E-neighborhood
of a. But this means that C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given 0, there exists
a finite covering of X by open E-balls. Once again, we proceed by contradiction.
Assume that there exists an E > 0 such that X cannot be covered by finitely many
€-balls. Construct a sequence of points of X as follows: First, choose to be any
point of X. Noting that the ball B(xi, €) is not all of X (otherwise X could be covered
by a single choose x2 to be a point of X not in B(x1, €). In general, given
x1 choose to be a point not in the union

€) U U E),

using the fact that these bails do not cover X. Note that by construction x) ?
E for i = 1 n. Therefore, the sequence can have no convergent subsequence;
in fact, any ball of radius €/2 can contain for at most one value of n.

Finally, we show that if X L5 sequentially compact, then X is compact. Let 4 be
an open covering of X. Because X is sequentially compact, the open covering A has
a Lebesgue number S. Let 8/3; use sequential compactness of X to find a finite
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covenng of X by open Each of these balls has diameter at most 28/3, so it
lies in an element of A. Choosing one such element of A for each of these -balls, we
obtain a finite subcollection of 4 that covers X.

EXAMPLE 3. Recall that Sc� denotes the minimal uncountable well-ordered set Sci with
the point adjoined. (In the order topology, is a limit point of Sci, which is why we
introduced the notation Sci for Sci U back in § 10) It is easy to see that the space Sc�
5 not metrizable, for it does not satisfy the sequence lemma: The point is a limit point

of Sc�, but it is not the limit of a sequence of points of for any sequence of points of
has an upper bound in Sci The space Sci, on the other hand, does satisfy the sequence
lemma, as you can readily check Nevertheless, Sci is not metnzable, for it is limit point
compact but not compact.

Exercises

1. Give [0, 1 ]W the uniform topology. Find an infinite subset of this space that has
no limit point

2. Show that [0, 1] is not limit point compact as a subspace of IRe.

3. Let X be limit point compact.
(a) 1ff X Y is continuous, does it follow that 1(X) is limit point compact?
(b) If A is a closed subset of X, does it follow that A is limit point compact?
(c) If X is a subspace of the Hausdorif space Z, does it follow that K is closed

in Z?
We comment that it is not in general true that the product of two limit point com-
pact spaces is limit point compact, even if the Hausdorif condition is assumed.
But the examples are fairly sophisticated. See [S-S], Example 112.

4. A space X is said to be countably compact if every countable open covering
of X contains a finite subcollection that covers X. Show that for a T1 space X,
countable compactness is equivalent to limit point compactness. [Hint: If no
finite subcollection of covers X, choose U1 U U for each n.]

5. Show that X is countably compact if and only if every nested sequence C1 J
C2 D . of closed nonempty sets of X has a nonempty intersection.

6. Let (X, d) be a metric space. If f: X X satisfies the condition

d(f(x), f(y)) = d(x, y)

for all x, y E X, then f is called an isometry of X. Show that if f is an isometry
and X is compact, then f is bijective and hence a homeomorphism. [Hint: If
a f(X), choose E so that the E-neighborhood of a is disjoint from f(X) Set
x1 = a , and = f(x,,) in general. Show that xm) for n m.]

7. Let (X, d) be a metnc space. If f satisfies the condition

d(f(x), f(y)) y)
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for alt x, y E X with x y, then f is called a shrinking map If there is a
number cx < 1 such that

d(f(x), 1(Y)) ad(x, y)

for all x, y X, then f is called a contraction. A fixed point of f is a point x
such that 1(x) = x
(a) If f is a contraction and X is compact, show f has a unique fixed point.

[Hint: Define f1 = f and 1n+1 = o 1". Consider the intersection A of
the sets =

(b) Show more generally that if I is a shrinking map and X is compact, then I
has a unique fixed point. [Hint. Let A be as before. Given x E A, choose

x = (Xn). If a is the limit of some subsequence of the sequence
= show that a E A and 1(a) = x. Conclude that A = 1(A), 50

that diamA =0.]
(c) Let X = [0, 1]. Show that 1(x) = x — x2/2 maps X into X and is a

shrinking map that is not a contraction. [Hint Use the theorem
of calculus.]

(d) The result in (a) holds if X is a complete metric space, such as IR; see the
exercises of §43. The result in (b) does not. Show that the map f JR —+

JR given by f(x) [x + (x2 + is a shnnking map that is not a
contraction and has no fixed point.

§29 Local Compactness

In this section we study the notion of local compactness, and we prove the basic the-
orem that any locally compact Hausdorif space can be imbedded in a certain compact
Hausdorif space that is called its one-point compactifi cation.

Definition. A space X is said to be locally compact at x Lf there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of
its points, X is said simply to be locally compact.

Note that a compact space is automatically locally compact.

EXAMPLE 1 The real line R is locally compact. The point x lies in some interval (a, b),
which in turn is contained in the compact subspace [a, bi The subspace Q of rational
numbers is not locally compuci, as you can check.

EXAMPLE 2 The space JR" is locally compact, the point x lies in some basis element
(ai,bi)x .

The space 1RW is not locally compact, none of its basis elements are contained in compact
subspaces For if

xIRx
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were contained in a compact subspace, then its closure

B =[aj,bjI x x x R x.

would be compact, which it is not.

EXAMPLE 3. Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,
which is compact.

Two of the most well-behaved classes of spaces to deal with in mathematics are the
metrizable spaces and the compact Hausdorff spaces. Such spaces have many useful
properties, which one can use in proving theorems and making constructions and the
like. If a given space is not of one of these types, the next best thing one can hope for is
that it is a subspace of one of these spaces. Of course, a subspace of a metrizable space
is itself metnzable, so one does not get any new spaces in this way. But a subspace of a
compact Hausdorif space need not be compact. Thus arises the question: Under what
conditions is a space homeomorphic with a subspace of a compact Hausdorif space?
We give one answer here. We shall return to this question in Chapter 5 when we study
compactifications in general.

Theorem 29.1. Let X be a space. Then X is locally compact Hausdorff if and only
if there exists a space Y satisfying the following conditions:
(1) X is a subspace of Y.

(2) The set Y — X consists of a single point.

(3) Y is a compact Hausdorff space.
If Y and Y' are two spaces satisfying these conditions, then there is a homeornorphism
of Y with Y' that equals the identity map on X.

Pmof Step 1. We first venfy uniqueness. Let Y and Y' be two spaces satisfying
these conditions. Define h : Y —÷ Y' by letting h map the single point p of Y — X to
the point q of Y' — X, and letting h equal the identity on X. We show that if U is open
in Y, then h(U) is open in Y'. Symmetry then implies that h is a homeomorphisrn.

First, consider the case where U does not contain p. Then h(U) = U. Since U is
open in Y and is contained in X, it is open in X. Because X is open in Y', the set U is
also open in Y', as desired.

Second, suppose that U contains p. Since C = Y — U is closed in Y, it is compact
as a subspace of Y. Because C is contained in X, it is a compact subspace of X.
Then because X is a subspace of Y', the space C is also a compact subspace of Y'.
Because Y' is Hausdorff, C is closed in Y', so that h(U) = Y' — C is opeit in Y', as
desired

Step 2 Now we suppose X is locally compact Hausdorif and construct the space Y.
Step 1 gives us an idea how to proceed. Let us take some object that is not a point
of X, denote it by the symbol oc for convenience, and adjoin it to X, forming the set
Y = X U {oo}. Topologize Y by defining the collection of open sets of Y to consist
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of (1) all sets U that are open in X, and (2) all sets of the form Y — C, where C is a
compact subspace of X.

We need to check that this collection is, in fact, a topology on Y The empty set is
a set of type (1), and the space Y is a set of type (2). Checking that the intersection of
two open sets is open involves three cases:

U1 flU2 is of type (1).

(Y — C1) fl (Y — C2) = Y — (C1 U C2) is of type (2).

U1 fl(Y —C1)= U1 fl(X—C1) isoftype(1),

because C1 is closed in X. Similarly, one checks that the union of any collection of
open sets is open.

U Ua = U is of type (1).

isoftype(2).

— UU(Y — C)= Y —(C— U),

which is of type (2) because C — U is a closed subspace of C and therefore compact.
Now we show that X is a subspace of Y. Given any open set of Y, we show its

intersection with X is open in X. If U is of type (1), then U fl X = U; if Y — C is of
type (2), then (Y — C) fl X = X — C; both of these sets are open in X. Conversely,
any set open in X is a set of type (1) and therefore open in Y by definition.

To show that Y is compact, let A be an open covering of Y. The collection A must
contain an open set of' type (2), say Y — C, since none of the open sets of type (1) con-
tain the point oo. Take all the members of A different from Y — C and intersect them
with X; they form a collection of open sets of X covering C. Because C is compact,
finitely many of them cover C; the corresponding finite collection of elements of A
will, along with the element Y — C, cover all of Y

To show that Y is Hausdorff, let x and y be two points of Y. If both of them lie
in X, there are disjoint sets U and V open in X containing them, respectively. On the
other hand, if x E X and y = we can choose a compact set C in X containing
a neighborhood U of x. Then U and Y — C are disjoint neighborhoods of x and
respectively, in Y.

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions
(1 )—(3) exists. Then X is Hausdorif because it is a subspace of the Hausdorif space Y.
Given x X, we show X is locally compact at x Choose disjoint open sets U and V
of Y containing x and the single point of Y — X, respectively Then the set C = Y — V

is closed in Y, so it is a compact subspace of Y Since C lies in X, it is also compact
as a subspace of X; it contains the neighborhood U of x. U

If X itself should happen to be compact, then the space Y of the preceding theorem
is not very interesting, foi it is obtained from X by adjoining a single isolated point.
However, if X is not compact, then the point of Y — X is a limit point of X, so that
x=y
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Definition. If Y is a compact Hausdorff space and X is a proper subspace of Y whose
closure equals Y, then Y is said to be acompactifi cation of X. If Y — X equals a single
point, then Y is called the one-point compactification of X.

We have shown that X has a compactification Y if and only if X is
a locally compact Hausdorif space that is not itself compact. We speak of Y as "the"
one-point compactification because Y is uniquely determined up to a homeorriorphism.

EXAMPLE 4 The one-point compactitication of the real line R is horneomorphic with
the circle, as you may readily check Similarly, the one-point compactitication of R2 is
homeomorphic to the sphere S2. If R2 is looked at as the space C of complex numbers,
then C U (oc) is called the Riemann sphere, or the extended complex plane

In some ways our definttion of local compactness is not very satisfying. Usually
one says that a space X satisfies a given property "locally" if every x E X has "arbi-
trarily small" neighborhoods having the given property. Our definition of local com-
pactness has nothing to do with 'arbitrarily small" neighborhoods, so there is some
question whether we should call it local compactness at all.

Here is another formulation of local compactness, one more truly "local" in nature;
it is equivalent to our definition when X is Hausdorff.

Theorem 29.2. Let X be a Hausdorff space Then X is locally compact if and only
if given x in X, and given a neighborhood U of x, there is a neighborhood V of x such
that V is compact and V C U

Pmof Clearly this new formulation implies local compactness; the set C V is the
desired compact set containing a neighborhood of x. To prove the converse, suppose X
is locally compact, let x be a point of X and let U be a neighborhood of x. Take the
one-point compactification Y of X, and let C be the set Y — U Then C is closed
in Y, so that C is a compact subspace of Y. Apply Lemma 264 to choose disjoint
open sets V and W containing x and C, respectively. Then the closure V of V in Y is
compact, furthermore, V is disjoint from C, so that V C U, as desired. U

Corollary 29.3. Let X be locally compact Hausdorif, let A be a subspace of X If A
is closed in X or open in X, then A is locally compact.

Pmof Suppose that A is closed in X. Given x E A, let C be a compact subspace
of X containing the neighborhood U of x in X. Then C fl A is closed in C and thus
compact, and it contains the neighborhood U fl A of x in A. (We have not used the
Hausdorif condition here.)

Suppose now that A is open in X. Given x E A, we apply the preceding theorem
to choose a neighborhood V of x in X such that V is compact and V C A. Then
C = V is a compact subspace of A containing the neighborhood V of x in A. U

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact
Hausdorif space if and only if X is locally compact Hausdorif.

Pmof This follows from Theorem 29 1 and Corollary 29.3.
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Exercises

1. Show that the rationals Q are not locally compact.

2. Let { } be an indexed family of nonempty spaces.
(a) Show that if fl Xa is locally compact, then each Xci is locally compact and

Xa is compact for all but finitely many values of a.
(b) Prove the converse, assuming the Tychonoff theorem.

3. Let X be a locally compact space. If I - X —* Y is continuous, does it follow
that 1(X) is locally compact? What if f is both continuous and open? Justify
your answer.

4. Show that [0, is not locally compact in the uniform topology.

5. If f X1 —* X2 is a homeomorphism of locally compact Hausdorif spaces,
show f extends to a homeomorphism of their one-point compactifications.

6. Show that the one-point compactification of R is homeomorphic with the
cle S'.

7. Show that the one-point compactification of Sc� is homeomorphic with Sc2.

8. Show that the compactification of Z÷ is homeomorphic with the sub-
space {O} U {1/n I n Z÷) of JR.

9. Show that if G is a locally compact topological group and H is a subgroup, then
G/H is locally compact.

10. Show that if X is a Hausdorif space that is locally compact at the point x, then
for each neighborhood U of x, there is a neighborhood V of x such that V is
compact and V C U.

*11. Prove the following:

(a) Lemma. If p • X —÷ Y is a quotient map and if Z is a locally compact
Hausdorff space, then the map

71 = p x iz : X x Z —+ Y x Z

is a quotient map.

[Hint: If 71 (A) is open and contains x x y, choose open sets U1 and V
with V compact, such thatx x y E U1 x V and U1 x V C ir'(A). Given
U xV C (A), use the tube lemma to choose an open set containing

such that U1÷1 xV C Let U = U U1; show that U xV
is a saturated neighborhood of x x y that is contained in r1 (A).]

An entirely different proof of this result will be outlined in the exercises
of §46.

(b) Theorem. Letp: A -+ B andq . C D be quotient maps. If B andC
are locally compact Hausdorff spaces, then p x q A x C -+ B x D is a
quotient map.
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*Supplementary Exercises: Nets

We have already seen that sequences are "adequate" to detect limit points, Continuous
functions, and compact sets in metnzable spaces. There is a generalization of the
notion of sequence, called a net, that will do the same thing for an arbitrary topological
space. We give the relevant definitions here, and leave the proofs as exercises. Recall
that a relation on a set A is catted a partial order relation if the following conditions
hold:

(1)

(3)

Now we make the following definition:
A directed set J is a set with a partial order such that for each pair a, of

elements of J, there exists an element y of J having the property that a y and

1. Show that the following are directed sets:
(a) Any simply ordered set, under the relation
(b) The collection of all subsets of a set S, partially ordered by inclusion (that

is, A B if AC B).
(c) A collection 4 of subsets of S that is closed under finite intersections, par-

tially ordered by reverse inclusion (that is A B if A D B).
(d) The collection of all closed subsets of a space X, partially ordered by inclu-

sion.

2. A subset K of J is said to be cofinal in J if for each a E J, there exists K
such that a ,6. Show that if J is a directed set and K is cofinal in J, then K is
a directed set.

3. Let X be a topological space. A net in X is a function f from a directed set J
into X. If a E J, we usually denote f(a) by Xa. We denote the net f itself by
the symbol (xa)a€j, or merely by (xv) if the index set is understood.

The net (xv) is said to converge to the point x of X (wntten 1a —÷ x) if for
each neighborhood U of x, there exists a E J such that

a E U.

Show that these definitions reduce to familiar ones when J = Z÷.

4. Suppose that

(Xa)a€j —+ x in X and (Ya)a€J Y in Y.

Show that (Xa X y x

X X converges to at most one point.

6. Theorem. Let A E X. Then x E A if and only if there is a nez of points of A
converging to x.

[Hint: To prove the implication take as index set the collection of all neigh-
borhoods of x, partially ordered by reverse inclusion.]
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7. Theorem Let f: X —+ Y. Then f is continuous if and only if for every con-
vergent net (Xa) in X, converging to x, say, the net converges to f(x).

8. Let f : J —+ X be a net in X; let f(a) = xa. If K is a directed set and
g: K —+ J is a function such that

(i)

(ii) g(K) is cofinal in J,
then the composite function f o g : K —÷ X is called a subnet of (xa). Show
that if the net (Xa) converges to x, so does any subnet.

9. Let be a net in X. We say that x is an accumulation point of the net (Xa)
if for each neighborhood U of x, the set of those a for which c U is cofinal
in J.
Lemma. The net (xv) has the point x as an accumulation point if and only if
some subnet of (xv) converges to x.

[Hint: To prove the implication let K be the set of all pairs (a, U) where
a E J and U is a neighborhood of x containing xa. Define (a, U) (,6, V) if
a -< ,6 and V C U. Show that K is a directed set and use it to define the subnet.]

10. Theorem. X is compact if and only if every net in X has a convergent subnet.
[Hint: To prove the implication Let Ba = I a and show that

(Ba } has the finite intersection property. To prove let A be a collection of
closed sets having the finite intersection property, and let 2 be the collection of
all finite intersections of elements of A, partially ordered by reverse inclusion.]

11. Corollary. Let G be a topological group; let A and B be subsets of G. If A is
closed in G and B is compact, then A B is closed in G.

[Hint: First give a proof using sequences, assuming that G is metrizable.]

12. Check that the preceding exercises remain correct if condition (2) is omitted from
the definition of directed set. Many mathematicians use the term "directed set"
in this more general sense.



Chapter 4

Countability and Separation
Axioms

The concepts we are going to introduce now, unlike compactness and connectedness,
do not anse naturally from the study of calculus and analysis. They arise instead from a
deeper study of topology itself. Such problems as imbedding a given space in a metric
space or in a compact Hausdorif space are basically problems of topology rather than
analysis. These particular problems have solutions that involve the countability and
separation axioms.

We have already introduced the first countability axiom; it arose in connection with
our study of convergent sequences in §21. We have also studied one of the separation
axioms—the Hausdorif axiom, and mentioned another—the Ti axiom. In this chapter
we shall introduce other, and stronger, axioms like these and explore some of their
consequences. Our basic goal is to prove the Urysohn metrization theorem. It says
that if a topological space X satisfies a certain countability axiom (the second) and a
certain separation axiom (the regularity axiom), then X can be imbedded in a metric
space and is thus metrizable.

Another imbedding theorem, important to geometers, appears in the last section
of the chapter. Given a space that is a compact manifold (the higher-dimensional
analogue of a surface), we show that it can be imbedded in some finite-dimensional
euclidean space.

189
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§30 The Countability Axioms

Recall the definition we gave in §21.

Definition. A space X is said to have a countable basis at x if there is a countable
collection of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of A space that has a countable basis at each of its points is
said to satisfy thefirst countability axiom, or to be first-countable.

We have already noted that every metnzable space satisfies this axiom; see §21.
The most useful fact concerning spaces that satisfy this axiom is the fact that in

such a space, convergent sequences are adequate to detect limit points of sets and to
check continuity of functions. We have noted this before; now we state it formally as
a theorem:

Theorem 30.1. Let X be a topological space.
(a) Let A be a subset of X. If there is a sequence of points of A conveiging to x,

then x E A; the converse holds if X is first-countable.

(b) Let f: X —÷ Y. 1ff is continuous, then for every convergent sequence x
in X, the sequence converges to f(x). The converse holds if X is first-
countable.

The proof is a direct generalization of the proof given in §21 under the hypothesis
of metrizability, so it will not be repeated here.

Of much greater importance than the first countability axiom is the following:

Definition. If a space X has a countable basis for its topology, then X is said to
satisfy the second countability axiom, or to be second-countable.

Obviously, the second axiom implies the first: if is a countable basis for the
topology of X, then the subset of consisting of those basis elements containing the
point x is a countable basis at x. The second axiom is, in fact, much stronger than the
first; it is so strong that not even every metnc space satisfies it.

Why then is this second axiom interesting? Well, for one thing, many familiar
spaces do satisfy it. For another, it is a crucial hypothesis used in proving such theo-
rems as the Urysohn metnzation theorem, as we shall see.

EXAMPLE 1 The real line R has a countable basis—the collection of all open
vals (a, b) with rational end points. Ltkewise, JR'1 has a countable basis—the collection of
all products of intervals having rational end points. Even JRW has a countable basis—the
collection of all products U,1, where is an open interval with rational end points
for finitely many values of n, and U,, = JR for all other values of n.

EXAMPLE 2 In the uniform topology, JRW satisfies the first countability axiom (being
metrizable). However, it does not satisfy the second. To venfy this fact, we first show that
if X is a space having a countable basis then any discrete subspace A of X must be
countable Choose, for each a E A, a basis element Ba that intersects A in the point a
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alone. If a and b are distinct points of A, the sets Ba and are different, since the first
Contains a and the second does not It follows that the map a -+ Ba is an injection of A
into .B, so A must be countable.

Now we note that the subspace A of Re" consisting of all sequences of Os and l's is
uncountable; and it has the discrete topology because b) = 1 for any two distinct
points a and b of A. Therefore, in the uniform topology does not have a countable
basis.

Both countability axioms are well behaved with respect to the operations of taking
subspaces or countable products:

Theorem 30.2. A subspace of a first-countable space is first-countable, and a count-
able product of first-countable spaces is first-countable. A subspace of a second-
countable space is second-countable, and a countable product of second-countable
spaces is second-countable.

Proof Consider the second countability axiom. If 2 iS a countable basis for X, then
{B fl A I B E 2) is a countable basis for the subspace A of X If 2, is a countable
basis for the space X, then the collection of all products fl U, where U c 2 for
finitely many values of i and U, = X for all other values of i, is a countable basis for
H Xi.

The proof for the first countability axiom is similar.

Two consequences of the second countability axiom that will be useful to us later
are given in the following theorem. First, a definition:

Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 30.3. Suppose that X has a countable basis. Then:
(a) Every open covering of X contains a countable subcollecuon covering X.

(b) There exists a countable subset of X that is dense in X.

Proof Let } be a countable basis for X.
(a) Let A be an open covenng of X. For each positive integer n for which it is pos-

sible, choose an element A containing the basis element The collection A'
of the sets is countable, since it is indexed with a subset J of the positive integers.
Furthermore, it covers X: Given a point x c X, we can choose an element A of A
containing x. Since A is open, there is a basis element such that x E C A.
Because lies in an element of A, the index n belongs to the set J, so is defined;
since contains it contains x. Thus A' is a countable subcollection of A that
covers X.

(b) From each nonempty basis element choose a point Let D be the set
consisting of the points Then D is dense in X: Given any point x of X, every basis
element containing x intersects D, so x belongs to D.
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The two properties listed in Theorem 30.3 are sometimes taken as alternative
countability axioms. A space for which every open covenng contains a countable
subcovering is called a Lindelbf space A space having a countable dense subset is
often said to be separable (an unfortunate choice of terminology).t Weaker in general
than the second countability axiom, each of these properties is equivalent to the second
countability axiom when the space is metnzable (see Exercise 5). They are less impor-
tant than the second countability axiom, but you should be aware of their existence, for
they are sometimes useful. It is often easier, for instance, to show that a space X has a
countable dense subset than it is to show that X has a countable basis. If the space is
metnzable (as it usually is in analysis), it follows that X is second-countable as well.

We shall not use these properties to prove any theorems, but one of them—the
Lindelbf condition—will be useful in dealing with some examples. They are not as
well behaved as one might wish under the operations of taking subspaces and cartesian
products, as we shall see in the examples and exercises that follow.

EXAMPLE 3. The space satisfies all the countability axioms but the second.
Given .t E IRE, the set of all basis elements of the form [x, x + 1/n) is a countable

basis at x. And it is easy to see that the rational numbers are dense in
To see that has no countable basis, let be a basis for Re. Choose for each x, an

element B x x x
y = Therefore, must be uncountable
To show that is Lindelof requires more work. It will suffice to show that every open

covering of by basis elements contains a countable subcollection covering (You can
check this) So let

4 = ([an, ba))a€j

be a covenng of R by basis elements for the lower limit topology We wish to find a
countable subcollection that covers R.

Let C be the set

C=

which s a subset of R. We show the set R — C is countable.
Let x be a point of R — C. We know that x belongs to no open interval (aa, ba),

therefore x = ap for some index Choose such a and then choose to be a rational
number belonging to the interval (ap. bp). Because (ap, bfi) is contained in C, so is the
interval (afi, = (x, q1). It follows that if x and y are two points of R — C with x <y,
then < (For otherwise, we would have x < y <qy so that y would lie in the
interval (x, and hence in C.) Therefore the map x -+ of R — C into Q is injective,
so that R — C is countable.

Now we show that some countable subcollection of A covers R To begin, choose for
each element of R — C an element of A containing it; one Obtains a countable
tion A' of A that covers R — C. Now take the set C and topologize it as a subspace of R;
in this topology, C satisfies the second countability axiom. Now C is covered by the sets
(aa, ba), which are open in R and hence open in C Then some countable subcollection

tTh15 is a good example of how a word can be overused. We have already defined what we mean
by a separation of a space, and we shall discuss the separation axioms shortly
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covers C. Suppose this subcollection consists of the elements (aa, ba) for a = a2,...
Then the collection

is a countable subcollection of A that covers the set C, and A' U A" is a countable subcol-
lection of A that covers

EXAMPLE 4 The product of two Lindelof spaces need no: be Lindelof. Although the
space is Lindelóf, we shall show that the product space x = is not. The space

is an extremely useful example in topology called the Sorgenfrey plane
The space has as basis all sets of the form [a, b) x [c, d) To show it is not Lindelöf,

consider the subspace

L=(x

It is easy to check that L is closed in Let us cover by the open set — L and by
all basis elements of the form

[ab) x [—ad).

Each of these open sets interSects L in at most one point. Since L is uncountable, no
countable subcollection covers See Figure 30 1.

EXAMPLE 5 A subspace of a Lindelof space need no: be L4ndelof The ordered square
is compact; therefore it is Lindelóf, trivially However, the subspace A = I x (0, 1) is not
Lindelóf. For A as the union of the disjoint sets = (x} x (0, 1), each of which is open
in A. This collection of sets is uncountable, and no proper subcollection covers A.

a x (—a) [a,b) x (—a,d)

Figure 30.1
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Exercises

1. (a) A set in a space X is a set A that equals a countable intersection of open
sets of X. Show that in a first-countable T1 space, every one-point set is a

set.
(b) There is a familiar space in which every one-point set is a set, which

nevertheless does not satisfy the first countability axiom. What is it?
The terminology here comes from the German. The "G" stands for "Gebiet,"
which means "open set:' and the "8" for "Durchschnitt," which means "intersec-
tion."

2. Show that if X has a countable basis then every basis C for X contains
a countable basis for X. [Hint. For every pair of indices n, m for which it is
possible, choose Cn,m E C such that 8n C Cnm C 8m]

3. Let X have a countable basis; let A be an uncountable subset of X. Show that
uncountably many points of A are limit points of A.

4. Show that every compact metnzabLe space X has a countable basis. [Hint:
Let be a finite covenng of X by 1/n-balls.]

5. (a) Show that every metnzable space with a countable dense subset has a count-
able basis.

(b) Show that every metnzable Lindelöf space has a countable basis.

6. Show that Rt and are not metnzabLe.

7. Which of our four countability axioms does SQ satisfy? What about

8. Which of our four countability axioms does RW in the uniform topology satisfy?

9. Let A be a closed subspace of X. Show that if X is Lindelöf, then A is Lindelöf.
Show by example that if X has a countable dense subset, A need not have a
countable dense subset.

10. Show that if X is a countable product of spaces having countable dense subsets,
then X has a countable dense subset.

11. Let f : X —* Y be continuous. Show that if X is Lindelöf, or if X has a
countable dense subset, then 1(X) satisfies the same condition.

12. Let f : X —* Y be a continuous open map. Show that if X satisfies the first or
the second countability axiom, then 1(X) satisfies the same axiom.

13. Show that if X has a countable dense subset, every collection of disjoint open
sets in X is countable.

14. Show that if X is Lindelöf and Y is compact, then X x Y is Lindelöf.

15. GiveR' the uniform metric, where I = [0, 1]. Let C(!, R) be the subspace con-
sisting of continuous functions. Show that C(1, IR) has a countable dense subset,
and therefore a countable basis. [Hint: Consider those continuous functions
whose graphs consist of finitely many line segments with rational end points.]
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16. (a) Show that the product space R', where / = [0, 1], has a countable dense
subset.

(b) Show that if f has cardinality greater than then the product space
does not have a countable dense subset. [Hint: If D is dense in define
f : f by the equation 1(a) = D fl iç' ((a, b)), where (a, b) is a
fixed interval in JR.]

*17. Give TRW the box topology. Let denote the subspace consisting of sequences
of rationals that end in an infinite stnng of 0's. Which of our four countability
axioms does this space satisfy?

*18. Let G be a first-countable topological group. Show that if G has a countable
dense subset, or is Lindelóf, then G has a countable basis. [Hint: Let { } be a
countable basis at e If D is a countable dense subset of G, show the sets

d for for each n a countable set
such that the sets c E cover G. Show that as n ranges over

these sets form a basis for G.]

§31 The Separation Axioms

In this section, we introduce three separation axioms and explore some of their prop-
erties. One you have already seen—the Hausdorif axiom. The others are similar but
stronger. As always when we introduce new concepts, we shall examine the relation-
ship between these axioms and the concepts introduced earlier in the book.

Recall that a space X is said to be Hausdorif if for each pair x, y of distinct points
of X, there exist disjoint open sets containing x and y, respectively.

Definition. Suppose that one-point sets are closed in X. Then X is said to be reg-
ular if for each pair consisting of a point x and a closed set B disjoint from x, there
exist disjoint open sets containing x and B, respectively. The space X is said to be
normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets
containing A and B, respectively.

It is clear that a regular space is Hausdorif, and that a normal space is regular.
(We need to include the condition that sets be closed as part of the definition
of regularity and normality in order for this to be the case. A two-point space in the
indiscrete topology satisfies the other part of the definitions of regularity and normality,
even though it is not Hausdorif.) For examples showing the regulanty axiom stronger
than the Hausdorif axiom, and normality stronger than regularity, see Examples 1
and 3.

These axioms are called separation axioms for the reason that they involve "sepa-
rating" certain kinds of sets from one another by disjoint open sets. We have used the
word "separation" before, of course, when we studied connected spaces. But in that
case, we were trying to find disjoint open sets whose union was the entire space.
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The present situation is quite different because the open sets need not satisfy this
condition.

The three separation axioms are illustrated in Figure 31.1.
There are other ways to formulate the separation axioms. One formulation that is

sometimes useful is given in the following lemma:

Lemma 31.1. Let X be a topological space. Let one-point sets in X be closed.
(a) X is regular ii and only if given a point x of X and a neighborhood U of x,

there is a neighborhood V of x such that V C U.
(b) X is normal if and only if given a closed set A and an open set U containing A,

there is an open set V containing A such that V C U.

Proof (a) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x axe given. Let B = X — U; then B is a closed set. By hypothesis, there
exist disjoint open sets V and W containing x and B, respectively. The set V is disjoint
from B, since if y E B, the set W is a neighborhood of y disjoint from V. Therefore,
V C U, as desired.

To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X — B. By hypothesis, there is a neighborhood V of x such
that V C U. The open sets V and X — V are disjoint open sets containing x and B,
respectively. Thus X is regular.

(b) This proof uses exactly the same argument; one just replaces the point x by the
set A throughout.

Now we relate the separation axioms with the concepts previously introduced.

Theorem 31.2. (a) A subspace of a Hausdorif space is Hausdorff a product of Haus-
dorff spaces is Hausdorff.

(b) A subspace of a regular space is regular; a product of regular spaces is regular.

Figure 31.1
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Proof (a) This result was an exercise in § 17. We provide a proof here. Let X be
Hausdorif. Let x and y be two points of the subspace Y of X. If U and V are disjoint
neighborhoods in X of x and y, respectively, then U fl Y and V fl Y are disjoint
neighborhoods of x and y in Y.

Let (Xa } be a family of Hausdorif spaces. Let x = (xv) and y = be distinct
points of the product space fl Because x y, there is some index fi such that

Choose disjoint open sets U and V in containing xp and respectively.
Then the sets and are disjoint open sets in fl Xa containing x and y,
respectively.

(b) Let Y be a subspace of the regular space X. Then one-point sets are closed
in Y. Let x be a point of Y and let B be a closed subset of Y disjoint from x. Now
B fl Y = B, where B denotes the closure of B in X. Therefore, x B, so, using
regulanty of X, we can choose disjoint open sets U and V of X containing x and B,
respectively. Then U fl Y and V fl Y are disjoint open sets in Y containing x and B,
respectively.

Let { } be a family of regular spaces; let X = fl X is Haiisdorff, so
that one-point sets are closed in X. We use the preceding lemma to prove regularity
of X. Let x = (Xa) be a point of X and let U be a neighborhood of x in X. Choose a
basis element fl about x contained in U. Choose, for each a, a neighborhood Va
of Xa in Xa such that Va C Ua; if it happens that Ua Xa, choose Va = Xa. Then
V = fl Va isa neighborhood of x in X. Since V = fl by Theorem 19.5, it follows
at once that V C fl Ua C U, so that X is regular.

There is no analogous theorem for normal spaces, as we shall see shortly, in this
section and the next.

EXAMPLE 1 The space Hausdorff but not regular. Recall that denotes the reals
in the topology having as basis all open intervals (a, b) and all sets of the form (a, b) — K,
where K = (1/n n E Z+}. This space is Hausdorif, because any two distinct points have
disjoint open intervals containing them.

But it is not regular. The set K is closed in RK, and it does not contain the point 0.
Suppose that there exist disjoint open sets U and V containing 0 and K, respectively.
Choose a basis element containing 0 and lying in U. It must be a basis element of the form
(a, b) — K, since each basis element of the form (a, b) containing 0 intersects K. Choose n
large enough that 1/n (a, b). Then choose a basis element about 1/n contained in V;
it must be a basis element of the form (c, d). Finally, choose z so that z < I/n and

> max(c, 1/(n + 1)). Then z belongs to both U and V, so they are not disjoint. See
Figure 31.2

Figure 31.2
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EXAMPLE 2. The space is normal It is immediate that one-point sets are closed
in since the topology of is finer than that of JR. To check normality, suppose that A
and B are disjoint closed sets in For each point a of A choose a basis element [a, not
intersecting B, and for each point b of B choose a basis element [b, xb) not intersecting A.
The open sets

U = Ua,xa) and V = Ub,xb
a€A b€B

are disjoint open Sets about A and B, respectively.

EXAMPLE 3 The Sorgenfrey plane is not normal
The space is regular (in fact, normal), so the product space is also regular. Thus

this example serves two purposes. It shows that a regular space need not be normal, and it
shows that the product of two normal spaces need not be normal

We suppose is normal and denve a contradiction Let L be the subspace of
consisting of all points of the form x x (—x) Then L is closed in and L has the
discrete topology. Hence every subset A of L, being closed in L, is closed in Because
L — A is also closed in this nieans that for every nonempty proper subset A of L, one
can find disjoint open sets UA and VA containing A and L — A, respectively

Let D denote the set of points of having rational coordinates; it is dense in We
define a map 6 that assigns, to each subset of the line L, a subset of the set D, by setting

6(A)=DflUA ifeçAçL,
6(0) =0,
6(L) = D.

We show that 6 —+ is injective.
Let A be a proper nonempty subset of L. Then 6(A) = DflUA is neither empty (since

UA is open and D is dense in nor all of D (since D fl VA nonempty). It remains to
show that if B is another proper nonempty subset of L, then 6(A) 9(B).

One of the sets A, B contains a point not in the other; suppose that x A and x B.
Then x E L — B, so that x E UA fl VB; since the latter set is open and nonempty, it must
contain points of D These points belong to UA and not to UB, therefore, DflUA DflUB,
as desired. Thus 6 is injective

Now we show there exists an injective map 4 —+ L. Because D is countably
infinite and L has the cardinality of IR, it suffices to define an injective map of
into R. For that, we let assign to the subset S of Z÷ the infinite decimal .ala2. . ., where
a =Oifi E Sanda, = 1 if i S. That is,

i/i(S) =

Now the composite

_-L L

is an injective map of into L. But Theorem 7.8 tells us such a map does not exist!
Thus we have reached a contradiction
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This proof that is not normal is in some ways not very satisfying. We showed
only that there must exist some proper nonempty subset A of L such that the sets A and
B = L — A are not contained in disjoint open sets of But we did not actually find such
a set A. In fact, the set A of points of L having rational coordinates is such a set, but the
proof is not easy. It is left to the exercises.

Exercises

1. Show that if X is regular, every pair of points of X have neighborhoods whose
closures are disjoint.

2. Show that if X is normal, every pair of disjoint closed sets have

whose closures are disjoint.

3. Show that every order topology is regular

4. Let X and X' denote a single set under two topologies T and 7', respectively;
assume that 7' T. If one of the spaces is Hausdorff (or regular, or normal),
what does that imply about the other?

5. Let f, g : X Y be continuous; assume that Y is Hausdorff. Show that (x
I

f(x) = g(x)} is closed in X.

6. Let p: X —+ Y be a closed continuous surjective map. Show that if X is normal,
then so is Y. [Hint: If U is an open set containing p1({y}), show there is a
neighborhood W of y such that

p : X —+ Y be a closed continuous surjective map such that p' ({y}) is
compact for each y E Y. (Such a map is called a perfect map.)
(a) Show that if X is Hausdorif, then so is Y.
(b) Show that if X is regular, then so is Y.
(c) Show that if X is locally compact, then so is Y.
(d) Show that if X is second-countable, then so is Y. [Hint: Let be a countable

basis for X. For each finite subset J of let Uj be the union of all sets of
the form '(W), for W open in Y, that are contained in the union of the
elements of J.]

8. Let X be a space; let G be a topological group. An action of G on X is a
continuous map a: G x X -+ X such that, denoting a(g x x) by g . x, one has:

(i) e.x=xforallxEX.
(ii) . x) = x for allx E X and E G.

Define x g x for all x and g; the resulting quotient space is denoted X/G and
called the orbit space of the action a.
Theorem. Let G be a compact group; let X be a topological space;
let a be an action of G on X. If X is Hausdorff, or regular, or normal, or locally
compact, or second-countable, so is X/ G.

[Hint: See Exercise 13 of §26.]
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Let A be the set of all points of of the form x x (—x), forx rational; let B be
the set of all points of this form for x irrational. If V is an open set of con-
taining B, show there exists no open set U containing A that is disjoint from V.
as follows:
(a) Let consist of all irrational numbers x in [0, 1) such that [x, x + 1/n) x

[—x, —x + 1/n) is contained in V. Show [0, his the union of the sets
and countably many one-point sets. -

(b) Use Exercise 5 of §27 to show that some set contains an open interval
(a, b) of JR.

(c) Show that V contains the open parallelogram consisting of all points of the
form x x (—x + e) for which a <x <b and 0 <e < 1/n.

(d) Conclude that if q is a rational number with a < q < b, then the point
q x (—q) of is a limit point of V.

§32 Normal Spaces

Now we turn to a more thorough study of spaces satisfying the normality axiom. In
one sense, the term "normal" is something of a misnomer, for normal spaces are not as
well-behaved as one might wish. On the other hand, most of the spaces with which we
are familiar do satisfy this axiom, as we shall see. Its importance comes from the fact
that the results one can prove under the hypothesis of normality are central to much of
topology. The Urysohn metnzation theorem and the Tietze extension theorem are two
such results; we shall deal with them later in this chapter.

We begin by proving three theorems that give three important sets of hypotheses
under which normality of a space is assured.

Theorem 32.1. Every regular space with a countable basis is normal.

Proof Let X be a regular space with a countable basis B be disjoint
closed subsets of X. Each point x of A has a neighborhood U not intersecting B. Using
regulanty, choose a neighborhood V of x whose closure lies in U; finally, choose an
element of 2 containing x and contained in V. By choosing such a basis element for
each x in A, we construct a countable covenng of A by open sets whose closures do
not intersect B. Since this covenng of A is countable, we can index it with the positive
integers; let us denote it by (Un).

Similarly, choose a countable collection } of open sets covering B, such that
each set is disjoint from A. The sets U = U U

and B, respectively, but they need not be disjoint. We perform the following
simple trick to construct two open sets that are disjoint. Given n, define

and V,=Vn-UUi.
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Note that each set is open, being the difference of an open set and a closed set
V1. Similarly, each set V, is open. The collection {

} covers A, because each
x in A belongs to for some n, and x belongs to none of the sets V. Similarly, the
collection (V,1'} covers B. See Figure 32.1.

Finally, the open sets

and
nEZ+ nEZ+

V.3

are disjoint. For if x E U' fl V', then x E fl for some j and k. Suppose that

j k. It follows from the definition of that x E and since j < k it follows

from the definition of VL that x A similar contradiction anses if j > k. U

Figure 32.1
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Theorem 32.2. Every metrizable space is normal.

Proof Let X be a metrizable space with metric d. Let A and B be disjoint closed
subsets of X. For each a E A, choose Ea so that the ball B(a, does not intersect B.
Similarly, for each b in B, choose Eb so that the ball B(b, Eb) does not intersect A.
Define

U B(a, e0/2) and V = U B(b, eb/2).
a€A b€B

Then U and V are open sets containing A and B, respectively; we assert they are
disjoint. For ifz E Un V, then

z E B(a, €a/2) fl B(b, Eb/2)

for some a E A and some b E B The triangle inequality applies to show that
d(a, b) < (Ea + eb)/2. If Eb, then d(a, b) < so that the ball B(b, Eb)

contains the point a. If Ea, then d(a, b) < so that the ball B(a, Ea) contains
the point b. Neither situation is possible.

Theorem 32.3. Every compact Hausdorff space is normal.

Pmof Let X be a compact Hausdorif space. We have already essentially proved
that X is regular. For if x is a point of X and B is a closed set Lfl X not containing x,
then B is compact, so that Lemma 26.4 applies to show there exist disjoint open sets
about x and B, respectively.

Essentially the same argument as given in that lemma can be used to show that X
is normal: Given disjoint closed sets A and B in X, choose, for each point a of A,
disjoint open sets and Va containing a and B, respectively. (Here we use regularity
of X.) The collection { } covers A; because A is compact, A may be covered by
finitely many sets Ua,..., tjam Then

and V=VaiflflVam

are disjoint open sets containing A and B, respectively.

Here is a further result about normality that we shall find useful in dealing with
some examples.

Theorem 32.4. Every well-ordered set X is normal in the order topology.

It is, in fact, true that every order topology is normal (see Example 39 of [S-S]);
but we shall not have occasion to use this stronger result.

Pmof Let X be a well-ordered set. We assert that every interval of the form (x, y]
is open in X. If X has a largest element and y is that element, (x, y] is just a basis
element about y. If y is not the largest element of X, then (x, y] equals the open set
(x, y'), where y' is the immediate successor of y.
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Now let A and B be disjoint closed sets in X, assume for the moment that neither A
nor B contains the smallest element ao of X. For each a E A, there exists a basis
element about a disjoint from B; it contains some interval of the form (x, a]. (Here
is where we use the fact that a is not the smallest element of X.) Choose, for each
a E A, such an interval (Xa, a] disjoint from B. Similarly, for each b B, choose an
interval b] disjoint from A. The sets

U = U(Xa, a] and V = UYb, b]
uEA beB

are open sets containing A and B, respectively; we assert they are disjoint. For suppose
that z E U fl V. Then z E (Xa, a] fl (Yb b] for some a E A and some b E Assume
that a < b. Then if a the two intervals are disjoint, while if a > ye,, we have
a E b], contrary to the fact that (Yb. b] is disjoint from A. A similar contradiction
occurs if b <a.

Finally, assume that A and B are disjoint closed sets in X, and A contains the
smallest element ao of X. The set tao) is both open and closed in X. By the result of
the preceding paragraph, there exist disjoint open sets U and V containing the closed
sets A — {a0} and B, respectively. Then UU{a0) and V are disjoint open sets containing
A and B, respectively I

EXAMPLE 1. If J is uncountable, the product space is not normal. The proof is
fairly difficult; we leave it as a challenging exercise (see Exercise 9).

This example serves three purposes It shows that a regular space R1 need not be
normal. It shows that a subspace of a normal space need not be normal, for R1 is home-
omorphic to the subspace (0, of [0, which (assuming the Tychonoff theorem) is
compact Hausdorif and therefore normal And it shows that an uncountable product of
normal spaces need not be normal. It leaves unsettled the question as to whether a finite or
a countable product of normal spaces might be normal.

EXAM PLE 2. The product space Sc2 x 5c� is not normal.t
Consider the well-ordered set Sc2, in the order topology, and consider the subset in

the subspace topology (which is the same as the order topology). Both spaces are normal,
by Theorem 32.4. We shall show that the product space Sc2 x is not normal.

This example serves three purposes. First, it shows that a regular space need not be
normal, for Sc2 x Sc2 is a product of regular spaces and therefore regular. Second, it shows
that a subspace of a normal space need not be normal, for Sc2 x Sc2 is a subspace of Sc2 x
which is a compact Hausdorif space and therefore normal Third, it shows that the product
of two normal spaces need not be normal. -

First, we consider the space 5c2 x and its "diagonal" = (x x x x E Sc2).
Because 5c2 is Hausdorif, is closed in 5c2 X 5c2• If U and V are disjoint neighborhoods
of x andy, respectively, then U x V is a neighborhood of x x y that does not intersect

Therefore, in the subspace x Sc2, the set

x x

tKelley [K] attnbutes this example to J. Dieudonné and A. P Morse independently
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Sri

is closed. Likewise, the set

B = Sri x

xc�

is closed in Sri x Sri, being a "slice" of this product space. The sets A and B are disjoint.
We shall assume there exist disjoint open sets U and V of Sri x Sri containing A and B,
respectively, and derive a contradiction. See Figure 32.2.

Given x Sri, consider the vertical slice x x Sri. We assert that there is some point
with x < < such that x x lies outside U For if U contained all points x x for
x < then the top point x x c� of the slice would be a limit point of U, which it is
not because V is an open set disjoint from U containing this top point

Choose to be such a point; just to be definite, let be the smallest element
of Sri such that x < < and x x lies outside U. Define a sequence of points
of Sri as follows: Letx1 be any point of Sri Letx2 = and in =
We have

X1<X2<

because > x for all x. The set is countable and therefore has an upper bound
in Sri; let b E Sri be its least upper bound. Because the sequence is increasing, it must
converge to its least upper bound; thus x,, —÷ b But = so that -.+ b

also. Then

x,, x —÷ b x b

in the product space. See Figure 32.3. Now we have a contradiction, for the point b x b
lies in the set A, which is contained in the open set U; and U contains none of the points
x,, x

Figure 32.2
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x1 x

Exercises

bxb

1. Show that a closed subspace of a normal space is normal.

2. Show that if fl Xa is Hausdorff, or regular, or normal, then so is (Assume
that each Xa iS nonempty.)

3. Show that every locally compact Hausdorif space is regular.

4. Show that every regular Lindelóf space is normal.

5. Is RW normal in the product topology? In the uniform topology?
It is not known whether RW is normal in the box topology. Rudin

has shown that the answer is affirmative if one assumes the continuum hypothe-
sis [RM]. In fact, she shows it satisfies a stronger condition called paracompact-
ness.

6. A space X is said to be completely normal if every subspace of X is normal.
Show that X is completely normal if and only if for every pair A, B of separated
sets in X (that is, sets such that A fl B — 0 and A fl B = 0), there exist
disjoint open sets containing them. [Hint: If X is completely normal, consider
X—(AflB).]

7. Which of the following spaces are completely normal? Justify your answers.
(a) A subspace of a completely normal space.
(b) The product of two completely normal spaces.
(c) A well-ordered set in the order topology.
(d) A metrizable space.

x1

Figure 32.3
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(e) A compact Hausdorff space.
(f) A regular space with a countable basis.
(g) The spaceRf.

*8. Prove the following:
Theorem. Every linear continuum X is normal.
(a) Let C be a nonempty closed subset of X. If U is a component of X — C, show

that U is a set of the form (c, c') or (c, oo) or (—oo, c), where c, c' E C.
(b) Let A and B be closed disjoint subsets of X. For each component W of

X — A U B that is an open interval with one end point in A and the other
in B, choose a pointcw of W. Show that the set C of the points cw is closed.

(c) Show that if V is a component of X — C, then V does not intersect both A
and B.

*9• Prove the following:
Theorem. If J is uncountable, then is not normal.
Proof (This proof is due to A. H. Stone, as adapted in [S-SI.) Let X = it

will suffice to show that X is not normal, since X is a closed subspace of IRS. We
use functional notation for the elements of X, so that the typical element of X is
a function x: J —÷
(a) If x E X and if B is a finite subset of J, let U(x, B) denote the set consisting

of all those elements y of X such that y(a) = x(a) for a E B. Show the sets
U(x, B)are a basis for X.

(b) Define to be the subset of X consisting of those x such that on the set
J — (n), the map x is injective. Show that P1 and P2 are closed and
disjoint.

(c) Suppose U and V are open sets containing P1 and P2, respectively. Given a
sequence al, az,... of distinct elements of J, and a sequence

0 = flØ <nf <fl2 <

of integers, for each i I let us set

and define x E X by the equations

for all other values of cr.

Show that one can choose the sequences and so that for each i, one
has the inclusion

U(x1, B) C U.

[Hint: To begin, note that x1 (a) = 1 for all a; now choose B1 so that
U(x1, B1) C U.]
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(d) Let A be the set (cri, } constructed in (c) Define y J —* Z÷ by the
equations

for aU other values of a.

Choose B so that U(y, B) C V. Then choose i so that B fl A is contained
in the set B. Show that

U(x1÷1, fl U(y, B)

is not empty.

10. Is every topological group normal?

§33 The Urysohn Lemma

Now we come to the first deep theorem of the book, a theorem that is commonly
called the "Urysohn lemma." It asserts the existence of certain real-valued continuous
functions on a normal space X. It is the crucial tool used in proving a number of
important theorems. We shall prove three of them—the Urysohn metrization theorem,
the Tietze extension theorem, and an imbedding theorem for manifolds—in succeeding
sections of this chapter.

Why do we call the Urysohn lemma a "deep" theorem? Because its proof involves
a really original idea, which the previous proofs did not. Perhaps we can explain
what we mean this way: By and large, one would expect that if one went through this
book and deleted all the proofs we have given up to now and then handed the book
to a bright student who had not studied topology, that student ought to be able to go
through the book and work out the proofs independently. (It would take a good deal of
time and effort, of course; and one would not expect the student to handle the trickier
examples.) But the Urysohn lemma is on a different level. It would take considerably
more originality than most of us possess to prove this lemma unless we were given
copious hints'

Theorem 33.1 (Urysohn lemma). Let X be a normal space, let A and B be disjoint
closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a
continuous map

f : X —p [a,bJ

such that f(x) = a for every x in A, and f(x) = b for every x in B.

Proof We need consider only the case where the interval in question is the interval
[0, 1]; the general case follows from that one. The first step of the proof is to con-
struct, using normality, a certain family of open sets of X, indexed by the rational
numbers. Then one uses these sets to define the continuous function f.
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Step 1. Let P be the set of all rational numbers in the interval [0, 1] We shall
define, for each p in P. an open set of X, in such a way that whenever p <q, we
have

Up C Uq

Thus, the sets will be simply ordered by inclusion in the same way their subscripts
are ordered by the usual ordering in the real line.

Because P is countable, we can use induction to define the sets (or rather, the
principle of recursive definition). Arrange the elements of P in an infinite sequence in
some way; for convenience, let us suppose that the numbers 1 and 0 are the first two
elements of the sequence.

Now define the sets U,,, as follows. First, define U1 = X — B. Second, because A
is a closed set contained in the open set U1, we may by normality of X choose an open
set such that

ACU0 and U0CU1

In general, let denote the set consisting of the first n rational numbers in the
sequence. Suppose that is defined for all rational numbers p belonging to the
set satisfying the condition

p <q C Ui,.

Let r denote the next rational number in the sequence; we wish to define (Jr
Consider the set = U {r}. It is a finite subset of the interval [0, 1], and, as

such, it has a simple ordenng derived from the usual order relation < on the real line.
In a finite simply ordered set, every element (other than the smallest and the largest)
has an immediate predecessor and an immediate successor. (See Theorem 10.1) The
number 0 is the smallest element, and 1 is the largest element, of the simply ordered
set and r is neither 0 nor 1 So r has an immediate predecessor p in and an
immediate successor q in The sets and Uq are already defined, and c Uq
by the induction hypothesis. Using normality of X, we can find an open set Ur of X
such that

and UrCUq.

We assert that (*) now holds for every pair of elements of If both elements lie
in (*) holds by the induction hypothesis. If one of them is r and the other is a point
s of then either s < p, in which case

U5 C Up C Ur,

ors q, in which case

Or C Uq C Us.

tActually, any countable dense subset of[O, 1) will do, providing it contains the poInts 0 and 1.
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Thus, for every pair of elements of relation (*) holds.
By induction, we have defined for all p E P.

To illustrate, let us suppose we started with the standard way of arranging the elements
of P in an infinite sequence

— 11213123
I

After defining Uo and U1, we would define U112 so that c Ui12 and U112 C U1 Then
we would fit in U113 between Uo and U112, and U213 between U112 and U1. And soon. At
the eighth step of the proof we would have the situation pictured in Figure 33 1 And the
ninth step would consist of choosing an open set U215 to fit in between U113 and U112 And
soon

Step 2. Now we have defined for all rational numbers p in the interval [0, 1].
We extend this definition to all rational numbers p in R by defining

Up=ø ifp<O,
Up=X ifp>l

It is still true (as you can check) that for any pair of rational numbers p and q,

p <q . U, C Uq

Step 3. Given a point x of X, let us define Q(x) to be the set of those rational
numbers p such that the corresponding open sets contain x

Q(x) = (p Ix E

U3
4

Figure 33.1
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This set contains no number less than 0, since no x is in for p < 0. And it contains
every number greater than 1, since every x is in U,, for p > 1. Therefore, Q(x) is
bounded below, and its greatest lower bound is a point of the interval [0, 1]. Define

f(x) infQ(x) = inf{p I x E

Step 4 We show that f is the desired function. If x A, then x E for every
p 0,so that Q(x) equals the set of all nonnegative rationals, and f(x) = infQ(x) =
0. Similarly, if x E B, then x U,, for no p 1,so that Q(x) consists of all rational
numbers greater than 1, and f(x) = 1.

All this is easy. The only hard part is to show that f is continuous. For this
purpose, we first prove the following elementary facts:
(1) x f(x) <r
(2) x f(x) r.

To prove (1), note that if x E Or, then x for every s > r. Therefore, Q(x)
contains all rational numbers greater than r, so that by definition we have

f(x) infQ(x) r

To prove (2), note that if x Ur, then x is not in (4 for any s < r. Therefore, Q(x)
contains no rational numbers less than r, so that

1(x) = infQ(x) r.

Now we prove continuity of f. Given a point xo of X and an open interval (c, d)
in IR containing the point f(xo), we wish to find a neighborhood U of xo such that
f(U) C (C, d). Choose rational numbers p and q such that

C < p <q <d.
We assert that the open set

U = Uq —

is the desired neighborhood of xo. See Figure 33.2.

p q

( )
c f(x0) d

FLrst, we note that E U For the fact that f(xo) < q implies by condition (2)
that xo E Uq, while the fact that f(xo) > p implies by (1) that xo

Second, we show that f(U) C (C, d). Let x E U. Then x E Uq C Uq, 50
that f(x) q, by (1). And x so that x and f(x) p, by (2). Thus,
f(x) E [p, q] C (c, d), as desired. U

f

Figure 33.2
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Definition. If A and B are two subsets of the topological space X, and if there is a
continuous functLon f X —÷ [0, 11 such that f(A) = (0) and f(B) = (1), we say
that A and B can be separated by a continuous function.

The Urysohn lemma says that if every pair of disjoint closed sets in X can be
separated by disjoint open sets, then each such pair can be separated by a continuous
function. Theconverseistrivial,foriff : X —* [0,1] is the function, thenf'([O,

and 1 11) are disjoint open sets containing A and B, respectively
This fact Leads to a question that may already have occurred to you. Why cannot

the proof of the Urysohn lemma be generalized to show that in a regular space, where
you can separate points from closed sets by disjoint open sets, you can also separate
points from closed sets by continuous functions9

At first glance, it seems that the proof of the Urysohn lemma should go through.
You take a point a and a closed set B not containing a, and you begin the proof
just as before by defining Uf = X — B and choosing Uo to be an open set about a
whose closure is contained in Uf (using regularity of X). But at the very next step
of the proof, you run into difficulty. Suppose that p is the next rational number in
the sequence after 0 and 1. You want to find an open set U,, such that Uo C U,, and

C U1. For this, regularity is not enough.
Requiring that one be able to separate a point from a closed set by a continuous

function is, in fact, a stronger condition than requinng that one can separate them by
disjoint open sets. We make this requirement into a new separation axiom:

Definition. A space X is completely regular if one-point sets are closed in X and
if for each point xo and each closed set A not containing xo, there is a continuous
function f : X —÷ [0, 1] such that f(xo) = 1 and f(A) = (OJ.

A normal space is completely regular, by the Urysohn lemma, and a completely
regular space is regular, since given f, the sets f'([O, and 1]) are dis-
joint open sets about A and x0, respectively As a result, this new axiom fits in between
regularity and normality in the list of separation axioms. Note that in the definition one
could just as well require the function to map toO, and A to (1), for g(x) = 1—1(x)
satisfies this condition. But our definition is at times a bit more convenient.

In the early years of topology, the separation axioms, listed in order of increasing
strength, were labelled T1, T2 (Hausdorff), T3 (regular), T4 (normal), and 7'5 (com-
pletely normal), respectively. The letter "T" comes from the German "Trennungsax-
iom," which means "separation axiom." Later, when the notion of complete regular-
ity was introduced, someone suggested facetiously that it should be called the
axiom," since it lies between regularity and normality. This terminology is in fact
sometimes used in the literature

Unlike normality, this new separation axiom is nicely behaved with regard to sub-
spaces and products:

Theorem 33.2. A subspace of a completely regular space is completely regular. A
product of completely regular spaces is completely regular.
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Proof Let X be completely regular; let Y be a subspace of X. Let xo bea point of Y,
and let A be a closed set of Y disjoint from xo. Now A = A fl Y, where A denotes the
closure of A in X. Therefore, x0 A. Since X is completely regular, we can choose
a continuous function f : X —* [0, 1] such that f(xo) = 1 and f(A) = {O}. The
restriction of f to Y is the desired continuous function on Y.

Let X = fl be a product of completely regular spaces. Let b = (be) be a point
of X and let A be a closed set of X disjoint from b. Choose a basis element fl
containing b that does not intersect A; then (Ia = Xe except for finitely many Cr, say
a = Given i = 1 n, choose a continuous function

J,: —+ [0, 1]

such that f, (be,) = 1 and f (X — Lie1) = (0). Let 0(x) = (x)); then maps X
continuously into IR and vanishes outside 7ç' (('a). The product

is the desired continuous function on X, for it equals 1 at b and vanishes outside fi Ue.

I. The spaces and Sc2 x Sc2 are completely regular but not normal For
they are products of spaces that are completely regular (in fact, normal).

A space that is regular but not completely regular is much harder to find. Most of
the examples that have been constructed for this purpose are difficult, and require consid-
erable familiarity with cardinal numbers. Fairly recently, however, John Thomas m has
constructed a much more elementary example, which we outline in Exercise II.

Exercises

1. Examine the proof of the Urysohn lemma, and show that for given r,

fl Up
— U Uq,

p>r q<r

p, q rational.

2. (a) Show that a connected normal space having more than one point is uncount-
able.

(b) Show that a connected regular space having more than one point is uncount-
able.t [Hint: Any countable space is Lindelöf.]

3. Give a direct proof of the Urysohn lemma for a metric space (X, d) by setting

d(x,A)f(x)= d(x,A)+d(x,B)

tSurprisingly enough, there does exist a connected Hausdorff spaoe that is countably infinite See
Example 75 of [S-SI
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4. Recall that A is a "G8 set" in X if A is the intersection of a countable collection
of open sets of X.
Theorem. Let X be normal. There exists a continuous function f : X —÷ [0, 1]

such that f(x) = 0 for x A, and f(x) > 0 for x A, if and only if A is a
closed G8 set in X.

A function satisfying the requirements of this theorem is said to vanish pre-
cisely on A.

5. Prove:
Theorem (Strong form of the Urysohn lemma). Let X be a normal space. There
is a continuous function f X —+ [0, 1] such that f(x) = 0 for x E A, and
f(x) = I for x E B, and 0 < f(x) < 1 otherwise, if and only if A and B are
disjoint closed G8 sets in X.

6. A space X is said to be perfectly normal if X is normal and if every closed set
in X is a G8 set in X.
(a) Show that every metnzable space is perfectly normal.
(b) Show that a perfectly normal space is completely normal. For this reason the

condition of perfect normality is sometimes called the "T6 axiom." [Hint:
Let A and B be separated sets in X. Choose continuous functions f, g
X —+ [0, 1] that vanish precisely on A and B, respectively. Consider the
function f — g.]

(c) There is a familiar space that is completely normal but not perfectly normal.
What is

7. Show that every locally compact Hausdorff space is completely regular.

8. Let X be completely regular, let A and B be disjoint closed subsets of X. Show
that if A is compact, there is a continuous function f : X —+ [0, 1] such that
f(A) = (0) (1).

9. Show that in the box topology is completely [Hint. Show that it
suffices to consider the case where the box neighborhood (— I, is disjoint
from A and the point is the ongin. Then use the fact that a function continuous
in the uniform topology is also continuous in the box topology.]

*10. Prove the following:
Theorem. Every topological group is completely regular.
Proof Let V0 be a neighborhood of the identity element e, in the topological
group G. In general, choose to be a neighborhood of e such that C
v,1..1. Consider the set of all dyadic rationals p, that is, all rational numbers of
the form k/2", with k and n integers. For each dyadic rational p in (0, 1], define
an open set U(p) inductively as follows: U(l) = V0 and = V1 Given ii,
if U(k/2'1) is defined for 0 <k/2" 1, define

=

U((2k + =
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for 0 <k <2". For p 0, let U(p) = 0, and for p> 1, let U(p) = G. Show
that

C U((k +

for all k and n. Proceed as in the Urysohn lemma.
This exercise is adapted from [M-Z], to which the reader is referred for further

results on topological groups.
*11. Define a set X as follows: For each even integer m, let Lm denote the line seg-

ment m x [—1, 0] in the plane. For each odd integer n and each integer k 2,
let C,,k denote the union of the line segments (n + 1 — 1/k) x [—1, 0] and
(n — 1 + I/k) x [—1,0] and the semicircle

(xx y (x —n)2+y2 =(1 — 1/k)2 andy

in the plane. Let Pn.k denote the topmost point n x (1 — I/k) of this semicircle.
Let X be the union of all the sets Lm and Cn,k, along with two extra points a
and b. Topologize X by taking sets of the following four types as basis elements:

(i) The intersection of X with a horizontal open line segment that contains
none of the points Pn,k

(ii) A set formed from one of the sets by deleting finitely many points

(iii) For each even integer m, the union of (a} and the set of points x x y of
Xforwhichx <m.

(iv) For each even integer m, the union of {bJ and the set of points x x y of
X for which x > m.

(a) Sketch X; show that these sets form a basis for a topology on X.
(b) Let f be a continuous real-valued function on X. Show that for any c, the

set is a G8 set in X. (This is true for any space X.) Conclude that
the set consisting of those points p of for which f(p) f(pnk)
is countable. Choose d E [—1, 0] so that the line y = d intersects none of
the sets Snk. Show that for n odd,

f((n— 1) xd)= lim f(Pn,k)=f(('i+l) xd).
k—+oo

Conclude that f(a) = f(b).
(c) Show that X is regular but not completely regular.

§34 The Urysohn Metrization Theorem

Now we come to the major goal of this chapter, a theorem that gives us conditions
under which a topological space is metrizable. The proof weaves together a number
of strands from previous parts of the book; it uses results on metric topologies from
Chapter 2 as well as facts concerning the countability and separation axioms proved in
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the present chapter. The basic construction used in the proof is a simple one, but very
useful. You will see it several times more in this book, in vanous guises.

There are two versions of the proof, and since each has useful generalizations that
will appear subsequently, we present both of them here. The first version generalizes
to give an imbedding theorem for completely regular spaces. The second version will
be generalized in Chapter 6 when we prove the Nagata-Smirnov metnzation theorem.

Theorem 34.1 (Urysohn metrization theorem). Every regular space X with a
countable basis is metnzable.

Proof We shall prove that X is metrizable by imbedding X in a metrizable space Y,
that is, by showing X homeomorphic with a subspace of Y. The two versions of
the proof differ in the choice of the metrizable space Y. In the first version, Y is
the space IRW in the product topology, a space that we have previously proved to be
metnzable (Theorem 20.5) In the second version, the space Y is also but this
time in the topology given by the uniform metric (see §20). In each case, it turns out
that our construction actually imbeds X in the subspace [0, 11W of RW

Step 1 We prove the following: There exists a countable collection of continuous
functions : X —+ [0, 1] having the property that given any point xo of X and
any neighborhood U of xo, there exists an index n such that is positive at xo and
vanishes outside U.

It is a consequence of the Urysohn lemma that, given xo and U, there exists such a
function. However, if we choose one such function for each pair (xo, U), the resulting
collection will not in general be countable. Our task is to cut the collection down to
size. Here is one way to proceed:
- Let be a countable basis for X. For each pair n, m of indices for which

C 8m, apply the Urysohn lemma to choose a continuous function . X
[0, 1] such that = (1) and gn,m(X — Bm) = {0J. Then the collection
satisfies our requirement: Given xo and given a neighborhood U of xo, one can choose
a basis element Bm containing xo that is contained in U. Using regulanty, one can then
choose so that and C Bm. Then n, m is a pair of indices for which the
function gn,m is defined; and it is positive at xo and vanishes outside U. Because the
collection {gn,,n } is indexed with a subset of Z÷ x Z÷, it is countable; therefore it can
be reindexed with the positive integers, giving us the desired collection

Step 2 (First version of the proof) Given the functions of Step 1, take IRW in the
product topology and define a map F . X —÷ RW by the rule

F(x) = (fi(x), f2(x),. .).

We assert that F is an imbedding.
First, F is continuous because RW has the product topology and each is contin-

uous. Second, F is injective because given x y, we know there is an index n such
that > 0 and = 0; therefore, F(x) F(y)

Finally, we must prove that F is a homeomorphism of X onto its image, the sub-
space Z = F(X) of RW. We know that F defines a continuous bijection of X with Z,
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so we need only show that for each open Set U Lfl X, the Set F(U) is open in Z. Let
be a point of F(U). We Shall find an open set W of Z such that

zo E W C F(U).

Let xo be the point of U such that F(x0) Choose an index N for which
fN(xo) > 0 and fN(X — U) = (0). Take the open ray (0, in IR, and let V be the
open set

V

of Let W V fl Z; then W is open in Z, by definition of the subspace topology.
See Figure 34.1. We assert that zo W C F(U). First, Zü W because

JrN(zO) = JTN(F(XO)) = fN(XO) > 0.

Second, W C F(U). For if z E W, then z = F(x) for some x X, and JrN(z) E

(0, Since JrN(Z) = = fN(x), and IN vanishes outside U, the point x
must be in U. Then z = F(x) is in F(U), as desired.

Thus F L5 an imbedding of X in IRW.

F

Step 3 (Second version of the proof). In this version, we imbed X in the metric
space (W", Actually, we imbed X in the subspace [0, on which equals the
metric

p(x, y) = supflx1 — yfl.

0

Figure 34.1
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We use the countable collection of functions X —+ [0, 1] constructed in Step 1.
But now we impose the additional condition that 1/n for all x (This condi-
tion is easy to satisfy; we can just divide each function by n.)

Define F: X —÷ [0, 11W by the equation

F(x) = 12(X), ..)
as before. We assert that F is now an imbedding relative to the metnc p on [0, 11W. We
know from Step 2 that F is injective. Furthermore, we know that if we use the product
topology on [0, 11w, the map F carries open sets of X onto open sets of the subspace
Z = F(X). This statement remains true if one passes to the finer (larger) topology on
[0, 11W induced by the metric p

The one thing left to do is to prove that F is continuous. This does not follow from
the fact that each component function is continuous, for we are not using the product
topology on 1kW now. Here is where the assumption 1/n comes in.

Let xo be a point of X, and let > 0. To prove continuity, we need to find a
neighborhood U of such that

x E U p(F(x), F(x0))

First choose N large enough that 1/N < Then for each n = 1, . ., N use the
continuity of to choose a neighborhood of such that

— fn(xo)I

for x E U = U1 fl . fl UN; we show that U is the desired neighborhood
ofxo. Letx EU. lfn <N,

— fn(xo)I

by choice of U. And if n > N, then

— < 1/N

because maps X into [0, 1/n]. Therefore for all x E U,

p(F(x), F(x0))

as desired. U

In Step 2 of the preceding proof, we actually proved something stronger than the
result stated there. For later use, we state it here.

Theorem 34.2 (Imbedding theorem). Let X be a space in which one-point sets are
closed. Suppose that (fw}WEJ is an indexed family of continuous functions X —+

JR satisfying the requirement that for each point xO of X and each neighborhood U
of xo, there is an index a such that is positive at xo and vanishes outside U. Then
the function F: X R' defined by

F(x) = (fa(X))cr€j

is an imbedding of X in If maps X into [0, ii for each a, then F imbeds X in
[0,
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The proof is almost a copy of Step 2 of the preceding proof; one merely replaces n
by a, and by IRS, throughout. One needs sets in X to be closed in order
to be sure that, given x y, there is an index a such that

A family of continuous functions that satisfies the hypotheses of this theorem is
said to separate points 1mm closed sets in X. The existence of such a family is readily
seen to be equivalent, for a space X in which one-point sets are closed, to the re-
quirement that X be completely regular. Therefore one has the following immediate
corollary:

Theorem 34.3. A space X is completely regular if and only if it is homeomorphic to
asubspace of [0, for somef.

Exercises

1. Give an example showing that a Hausdorff space with a countable basis need not
be metrizable.

2. GLve an example showing that a space can be completely normal, and satisfy
the first countability axiom, the Lindelöf condition, and have a countable dense
subset, and still not be metrizable.

3. Let X be a compact Hausdorif space. Show that X is metrizable if and only if X
has a countable basis.

4. Let X be a locally compact Hausdorif space. Is it true that if X has a countable
basis, then X is metrizable? Is it true that if X is metrizable, then X has a
countable basis9

5. Let X be a locally compact Hausdorif space. Let Y be the one-point compactifi-
cation of X. Is it true that if X has a countable basis, then Y is metrizable9 Is it
true that if Y is metrizable, then X has a countable basis9

6. Check the details of the proof of Theorem 34.2.

7. A space X is locally metrizable if each point x of X has a neighborhood that is
metrizable in the subspace topology. Show that a compact Hausdorff space X is
metnzable if it is locally metnzable. [Hint. Show that X is a finite union of open
subspaces, each of which has a countable basis.]

8. Show that a regular Lindelof space is metrizable if it is locally metrizable. [Hint:
A closed subspace of a Lindelof space is Lindelöf.] Regularity is essential; where
do you use it in the proof?

9. Let X be a compact Hausdorif space that is the union of the closed subspaces X1
and X2. If Xf and X2 are metrizable, show that X is metrizable. [Hint Construct
a countable collection 4 of open sets of X whose intersections with X form a

basis for X, for i = 1, 2. Assume X1 — X2 and X2 — X1 belong to 4. Let
consist of finite intersections of elements of 4]
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The Tietze Extension Theoremt

One immediate consequence of the Urysohn lemma is the useful theorem called the
Tietze extension theorem. It deals with the problem of extending a continuous real-
valued function that is defined on a subspace of a space X to a continuous function
defined on all of X. This theorem is important in many of the applications of topology.

Theorem 35.1 (Tietze extension theorem). Let X be a normal space; let A be a
closed subspace of X.

(a) Any continuous map of A into the closed interval [a, b] of IR may be extended
to a continuous map of all of X into [a, b]

(b) Any continuous map of A into JR may be extended to a continuous map of all
of X intoR.

Proof The idea of the proof is to construct a sequence of continuous functions
defined on the entire space X, such that the sequence converges uniformly, and such
that the restnction of to A approximates f more and more closely as n becomes

large. Then the limit function will be continuous, and its restriction to A will equal f.

Step 1. The first step is to construct a particular function g defined on all of X such
that g is not too large, and such that g approximates f on the set A to a fair degree of
accuracy To be more precise, let us take the case f • A —f [—r, r]. We assert that
there exists a continuous function g: X -+ JR such that

for allx X,

g(a) — f(a)I 4r for alla E A.

The function g is constructed as follows:
Divide the interval [—r, r] into three equal intervals of length

= [_r, '2 = 13 =

Let B and C be the subsets

and

of A. Because f is continuous, B and C are closed disjoint subsets of A. Therefore,

they are closed in X. By the Urysohn lemma, there exists a continuous function

g : x —+

having the property that g(x) = for each x in B, and g(x) = for each x in C.
Then < for all x. We assert that for each a in A,

g(a) — f(a)I

section will be assumed in §62. It as also used in a number of exercises
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There are three cases. If a E B, then both f(a) and g(a) belong to If a C, then
f(a) and g(a) are in 13. And if a B U C, then f(a) and g(a) are in '2. In each case,
g(a) — f(a)l 4r. See Figure 35.1.

Step 2. We now prove part (a) of the Tietze theorem. Without loss of generality,
we can replace the arbitrary closed interval [a, bi of JR by the interval [—1, 1].

Let f X [—1, 1] be a continuous map. Then f satisfies the hypotheses
of Step 1, with r = 1. Therefore, there exists a continuous real-valued function
defined on all of X, such that

lgi(x)I 1/3 forx X,

11(a) —gi(a)I 2/3 fora E A.

Now consider the function f This function maps A into the interval [—2/3, 2/3],
so we can apply Step I again, letting r = 2/3. We obtain a real-valued function

H

x

Figure 35.1
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defined on all of X such that

1g2(x)I forx E X,

12\2
11(a) — gi(a) — g2(a)I fora E A

Then we apply Step 1 to the function f — — And so on.
At the general step, we have real-valued functions defined on all of X

such that

—gn(a)l

for a E A. Applying Step 1 to the function f — — — gn, with r = (4)1z, we
obtain a real-valued function defined on all of X such that

forx X,

11+1

f(a)—gi(a)— foraEA.

By induction, the functions are defined for all n.
We now define

g(x) =

for all x in X. Of course, we have to know that this infinite series converges. But that
follows from the cornpanson theorem of calculus, it converges by comparison with the
geometnc senes

To show that g is continuous, we must show that the sequence converges to g
uniformly. This fact follows at once from the "Weierstrass M-test" of analysis. With-
out assuming this result, one can simply note that if k > n, then

Sk(X) — = > g(x)
1=n -4-1

1

1



222 Countability and Separation Axioms Ch. 4

Holding n fixed and letting k —÷ we see that

Ig(x) —

for all x c X. Therefore, converges to g uniformly
We show that g(a) = f(a) for a E A Let = g(x), the nth partial

sum of the series. Then g(x) is by definition the limit of the infinite sequence (x) of
partial sums. SLnce

11(a) — = f(a) —

for all a in A, it follows that —÷ f(a) for all a A. Therefore, we have
f(a) = g(a) fora E A.

Finally, we show that g maps X into the interval [—1, 1]. This condition is in fact
satisfied automatically, since the series (1/3) converges to 1. However, this
is just a lucky accident rather than an essential part of the proof. If all we knew was
that g mapped X into 1k, then the map r o g, where r —÷ [—1, 1] is the map

r(y) =y
if 1,

would be an extension of f mapping X into [—1, 1].

Step 3 We now prove part (b) of the theorem, in which f maps A into R. We can
replace R by the open interval (—1, 1), since this interval is homeomorphic to IR.

So let f be a continuous map from A into (—1, 1). The half of the Tietze theorem
already proved shows that we can extend f to a continuous map g : X —+ [—1, 1]

mapping X into the closed interval. How can we find a map h carrying X into the
open interval9

Given g, let us define a subset D of X by the equation

D =

g is continuous, D is a closed subset of X. Because g(A) = f(A), which is
contained in (—1, 1), the set A is disjoint from D. By the Urysohn lemma, there is a
continuous function 0 . X —÷ [0, 1] such that 0(D) = (0) and 0(A) = (1). Define

h(x) = Ø(x)g(x).

Then h is continuous, being the product of two continuous functions. Also, h is an
extension of f, since for a in A,

h(a) = Ø(a)g(a) = 1 . g(a) = f(a).

Finally, h maps all of X into the open interval (—1, 1). For if x D, then h(x) =
O.g(x)0.Andifx < I;itfollowsthatlh(x)I <1 •
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Exercises

1. Show that the Tietze extension theorem implies the Urysohn lemma.

2. In the proof of the Tietze theorem, how essential was the clever decision in Step 1
to divide the interval [—r, r] into three equal pieces? Suppose instead that one
divides this interval into the three intervals

Ii = [—r, —ar], 12 [—ar, ar], 13 = Ear, rJ,

for some a with 0 < a < 1. For what values of a other than a = 1/3 (if any)
does the proof go through?

3. Let X be metrizable. Show that the following are equivalent:
(i) X is bounded under every metric that gives the topology of X.

(ii) Every continuous function 0 X —÷ IR is bounded.

(iii) X is limit point compact.
[Hint: If 0 : X —÷ JR is a continuous function, then F(x) = x x is an
imbedding of X in X x JR If A is an infinite subset of X having no limit point,
let 0 be a surjection of A onto Z÷ I

4. Let Z be a topological space. If Y is a subspace of Z, we say that Y is a retract
of Z if there is a continuous map r : Z —÷ Y such that r(y) = y for each y Y

(a) Show that if Z is Hausdorif and Y is a retract of Z, then Y is closed in Z.
(b) Let A be a two-point set in JR2. Show that A is not a retract of JR2.
(c) Let S' be the unit circle in 1R2; show that S' is a retract of JR2 — (0), where 0

is the origin. Can you conjecture whether or not S' is a retract of 1R2?

5. A space Y is said to have the universal extension property if for each triple
consisting of a normal space X, a closed subset A of X, and a continuous function
f : A —+ Y, there exists an extension of f to a continuous map of X into Y.
(a) Show that has the universal extension property.
(b) Show that if Y is homeornorphic to a retract of then Y has the universal

extension property

6. Let Y be a normal space Then Y is said to be an absolute retract if for every
pair of spaces (Y0, Z) such that Z is normal and Yo is a closed subspace of Z
homeornorphic to Y, the space Yo is a retract of Z.
(a) Show that if Y has the universal extension property, then Y is an absolute

retract.
(b) Show that if Y is an absolute retract and Y is compact, then Y has the univer-

sal extension property. [Hint. Assume the Tychonoff theorem, so you know
[0, is normal. Imbed Y in [0,

7. (a) Show the logarithmic spiral

C = (0 x 0) U (e' cos a' x e' sin a' a' c IR)

is a retract of JR2. Can you define a specific retraction r JR2 C?
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Figure 35.2

(b) Show that the "knotted x-axis" K of FLgure 35.2 is a retract of R3.

*8. Prove the following.
Theorem. Let Y be a normal space. Then Y is an absolute retract if and only
if Y has the universal extension property.

[Hint: If X and Y are disjoint normal spaces, A is closed in X, and f : A Y

is a continuous map, define the adj unction space Zj- to be the quotient space ob-
tained from X U Y by identifying each point a of A with the point f(a) and with
all the points of ({f(a)}). Using the Tietze theorem, show that Zj is normal.
If X U Y -+ Zj is the quotient map, show that plY is a homeomorphism of
Y with a closed subspace of Zj.]

9. Let X1 c X2 C .. be a sequence of spaces, where X is a closed subspace
of X + for each i. Let X be the union of the X; let us topologize X by declanng
a set U to be open in X if U fl X is open in X for each i.
(a) Show that this is a topology on X and that each space X is a subspace (in

fact, a closed subspace) of X in this topology. This topology is called the
topology coherent with the subspaces X.

(b) Show that! X —* Y is continuous if f IX is contLnuous for each i.
(c) Show that if each space X is normal, then X is normal. [Hint: Given disjoint

closed sets A and B in X, set f equal to 0 on A and 1 on B, and extend f
successively to AU B U X1 for i = 1,2,... 1

Imbeddings of Manifoldst

We have shown that every regular space with a countable basis can be imbedded in the
euclidean space RW It is natural to ask under what conditions a

space X can be unbedded in some finite-dimensional euclidean space One answer
to this question is given in this section. A more general answer will be obtained in
Chapter 8, when we study dimension theory.

tThjs section will be assumed when we study paracompactness in §41 and when we study dimen-
sion theory in §50
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Definition. An is a Hausdorff space X with a countable basis such that
each point x of X has a neighborhood that is homeomorphic with an open subset
of IRtm.

A 1-manifold is often called a curve, and a 2-manifold is called a surface. Man-
ifolds form a very important class of spaces; they are much studied in differential
geometry and algebraic topology.

We shall prove that if X is a compact manifold, then X can be imbedded in a finite-
dimensional euclidean space. The theorem holds without the assumption of compact-
ness, but the proof is a good deal harder.

First, we need some terminology.
If 0 : X —+ IR, then the support of is defined to be the closure of the set

— (O}). Thus if x lies outside the support of 0, there is some neighborhood of x
on which vanishes

Definition. Let (U1 J be a finite indexed open covering of the space X. An
indexed family of continuous functions

01:X—÷[O,11 fori=l
is said to be apartition of unity dominated by (U) if
(1) (supportØ) C (I foreachi.
(2) = 1 foreach.t.

Theorem 36.1 (Existence of finite partitions of unity). Let (U1,..., (Jo) be a finite
open covering of the normal space X. Then there exists a partition of unity dominated
by (U1)

Proof Step 1. First, we prove that one can "shrink" the covering (U1) to an open
covering(Vi,.. V1 CU1 foreachi.

We proceed by induction. First, note that the set

A=X—(U2U

is a closed subset of X. Because (U1 covers X, the set A is contained in the
open set U1. Using normality, choose an open set V1 containing A such that V1 C U1.
Then the collection { V1, U2 (Ia) covers X

In general, given open sets V1 Vk_1 such that the collection

fV1, .., Vk_1,Uk,Uk÷f,..

covers X, let

A=X—(VLUUVk_f)—(Uk+IUUUn).

Then A is a closed subset of X which L5 contained in the open set Uk. Choose Vk to be
an open set contaLning A such that Vk C Uk. Then (V1.. Vk,

covers X. At the nth step of the induction, our result is proved.
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Step 2 Now we prove the theorem. Given the open covering (U1 of X,
choose an open covering {

} of X such that V1 C U, for each i. Then choose
an open covenng (W1 of X such that W1 C V1 for each i Using the Urysohn
lemma, choose for each I a continuous function

: X —* [0, 13

suchthat(,1(W1) = {1) and(,1(X— V1) = (0). Since is contained in V,
we have

(support C C Ui.

Because the collection {W1} covers X, the sum (11(x) = 1', (x) is positive for
each x. Therefore, we may define, for each j,

=

It is easy to check that the functions form the desired partition of unity. •

There is a comparable notion of partition of unity when the open covenng and the
collection of functions are not finite, nor even countable. We shall consider this matter
in Chapter 6, when we study paracompactness.

Theorem 36.2. If X is a compact rn-manifold, then X can be imbedded in RN for
some positive integer N.

Proof Cover X by finitely many open sets {U1 U,j, each of which may be
imbedded in IRtm. Choose imbeddings g1 : U, —÷ JRtm for each I. Being compact and
Hausdorff, X is normal. Let be a partition of unity dominated by {U1 }; let
A = Foreachi 1 n,defineafunctionh1 X —+ by the rule

h (x) —
g(x) forx E U,

— O=(O 0) forxEX—A1.

[Here is a real number c and g(x) isa pointy = (Yi of Rtm; the product
c y denotes of course the point , Cym) of IRm.] The function h is well defined
because the two definitions of h agree on the intersection of their domains, and h1 is
continuous because its restrictions to the open sets U1 and X — A are continuous.

Now define

F:X—*(Rx•xRxlRtmxxRm)
n times n times

by the rule
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Clearly, F is continuous. To prove that F is an imbedding we need only to show that
F is injective (because X is compact). Suppose that F(x) = F(y). Then =

and h(x) for all i. Now > 0 for some i [since >çA, (x) = 13

Therefore, (y) > 0 also, so that x, y E U. Then

g,(x) = h(x) = h(y) = . g(y)

Because (x) = > 0, we conclude that g(x) = g (y). But g U1 —+ R" is
injective, so that x = y, as desired.

In many applications of partitions of unity, such as the one just given, all one needs
to know is that the sum > is positive for each x. In others, however, one needs
the stronger condition that that /, (x) = 1. See §50.

Exercises

1. Prove that every manifold is regular and hence metrizable. Where do you use the
Hausdorif condition7

2. Let X be a compact Hausdorff space. Suppose that for each x E X, there is a
neighborhood U of x and a positive integer k such that U can be imbedded in Rk.
Show that X can be imbedded in for some positive integer N.

3. Let X be a Hausdorif space such that each point of X has a neighborhood that is
homeomorphic with an open subset of Show that if X is compact, then X is
an rn-manifold.

4. An indexed family {Aa} of subsets of X is said to be apoint-finiteindexedfamily
if each x E X belongs to Aa for only finitely many values of a.
Lemma (The shrinking lemma). Let X be a normal space, let (U1, U-,,.. be
a point-finite indexed open covenng of X Then there exists an indexed open
covering {V1, V2, .. . } of X such that C U,, for eachn.

5. The Hausdorff condition is an essential part of the definition of a manifold; it is
not implied by the other parts of the definition. Consider the following space:
Let X be the union of the set IR — (0) and the two-point set {p, q}. Topologize X
by taking as basis the collection of all open intervals in JR that do not contain 0,
along with alt sets of the form (—a, 0) U {p} U (0, a) and all sets of the form
(—a, 0) U {q} U (0, a), for a > 0. The space X is called the line with two
origins
(a) Check that this is a basis for a topology
(b) Show that each of the spaces X — (p} and X — {q) is homeomorphic to IR.
(c) Show that X satisfies the T1 axiom, but is not Hausdorff.
(d) Show that X satisfies all the conditions for a 1-manifold except for the Haus-

dorff condition.
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•Supplementary Exercises: Review of the Basics

Consider the following properties a space may satisfy:
(1) connected

(2) path connected

(3) locally connected

(4) locally path connected

(5) compact

(6) limit point compact

(7) locally compact Hausdorif

(8) Hausdorff

(9) regular

(10) completely regular

(11) normal

(12) first-countable

(13) second-countable

(14) Lindelöf

(15) has a countable dense subset

(16) locally metnzable

(17) metrizable

1. For each of the following spaces, determine (if you can) which of these properties
it satisfies. (Assume the Tychonoff theorem if you need it.)
(a)

(b) Scz
(c) Scz x
(d) The ordered square
(e)

(0
(g) IRW in the product topology
(h) RW in the uniform topology
(i) RW in the box topology
(j) R1 in the product topology, where! = [0, 1)

(k) IRK

2. Which of these properties does a metric space necessarily have?

3. Which of these properties does a compact Hausdorff space have?

4. Which of these properties are preserved when one passes to a subspace? To a
closed subspace? To an open subspace?

5. Which of these properties are preserved under finite products? Countable prod-
ucts? Arbitrary products?
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6. Which of these properties are preserved by continuous maps7

7. After studying Chapters 6 and 7, repeat Exercises 1—6 for the following proper-
ties:

(18) paracompact

(19) topologically complete

You should be able to answer all but one of the 340 questions involved in Exer-
cises 1—6, and all but one of the 40 questions involved in Exercise 7. These two are
unsolved; see the remark in Exercise 5 of §32.



Chapter 5

The Tychonoff Theorem

We now return to a problem we left unresolved in Chapter 3. We shall prove the
Tychonoff theorem, to the effect that arbitrary products of compact spaces are compact.
The proof makes use of Zorn's Lemma (see § 11). An alternate proof, which relies
instead on the well-ordering theorem, is outlined in the exercises.

The Tychonoff theorem is of great usefulness to analysts (less so to geometers).
We apply it in §38 to construct the compactification of a completely regu-
lar space, and in §47 in proving the general version of Ascoli's theorem.

§37 The ilychonoff Theorem

Like the Urysohn lemma, the Tychonoff theorem is what we call a "deep" theorem. Its
proof involves not one but several original ideas; it is anything but straightforward. We
shall discuss the crucial ideas of the proof in some detail before turning to the proof
itself.

In Chapter 3, we proved the product X x Y of two compact spaces to be compact.
For that proof the open covering formulation of compactness was quite satisfactory.
Given an open covering of X x Y by basis elements, we covered each slice x x Y by
finitely many of them, and proceeded from that to construct a finite covering of X x Y.

It is quite tricky to make this approach work for an arbitrary product of com-
pact spaces; one must the index set and use transfinite induction. (See

230
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Exercise 5.) An alternate approach is to abandon open covenngs and to approach the
problem by applying the closed set formulation of compactness, using Zorn' s lemma.

To see how this idea might work, let us consider first the simplest possible case:
the product of two compact spaces Xi x X2. Suppose that A is a collection of closed
subsets of X1 x X2 that has the finite intersection property. Consider the projection
map 7r1 : X1 x X2 —* X1. The collection

{2r1(A) I A E

of subsets of X1 also has the finite intersection property, and so does the collection of
their closures (A). Compactness of X1 guarantees that the intersection of all the sets
JrI (A) is nonempty. Let us choose a point xi belonging to this intersection. Similarly,
let us choose a point x2 belonging to all the sets 7r2(A). The obvious conclusion we
would like to draw is that the point xi x x2 lies in flA€A A, for then our theorem would
be proved.

But that is unfortunately not true. Consider the following example, in which X1
= [0, 1] and the collection A consists of all closed elliptical regions bounded by

ellipses that have the points p and q as their foci. See Figure 37.1.
Certainly A has the finite intersection property. Now let us pick a point xI in the
intersection of the sets

I
A E A) Any point of the interval will do;

suppose we choose xI = Similarly, choose a point X2 in the intersection of the sets

{7r2(A) I A E A). Any point of the interval will do; suppose we pick X2 =
This proves to be an unfortunate choice, for the point

XI X X2 X

does not lie in the intersection of the sets A.

x2

Figure 37.1

"Aha!" you say, "you made a bad choice. If after choosing xI = you had chosen

x2 = then you would have found a point in flA€A A." The difficulty with our

2

1 1

3 2
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tentative proof is that it gave us too much freedom in picking and x2; it allowed us
to make a "bad" choice instead of a "good" choice.

How can we alter the proof so as to avoid this difficulty?
This question leads to the second idea of the proof: Perhaps if we expand the

collection A (retaining the finite intersection property, of course), that expansion will
restnct the choices of x1 and x2 sufficiently that we will be forced to make the "nght"
choice. To illustrate, suppose that in the previous example we expand the collection 4
to the collection £ consisting of all closed elliptical regions bounded by ellipses that
have p = as one focus and any point of the line segment pq as the other focus.
This collection is illustrated in Figure 37.2. The new collection still has the finite
intersection property. But if you try to choose a point in

the only possible choice for xI is Similarly, the only possible choice for x2 is
And x does belong to every set D, and hence to every set A. In other words,
expanding the collection A to the collection forces the proper choice on us.

Figure 37.2

Now of course in this example we chose carefully so that the proof would work.
What hope can we have for choosing £ correctly in general? Here is the third idea of
the proof: Why not simply choose to be a collection that is "as large as possible"—
so that no larger collection has the finite intersection property—and see whether such
a will work? It is not at all obvious that such a collection exists; to prove it, we
must appeal to Zorn's lemma. But after we prove that exists, we shall in fact be
able to show that is large enough to force the proper choices on us.

A final remark. The assumption that the elements of the collection A were closed
sets was irrelevant in this discussion. For even if the set A E A is closed, the set (A)
need not be closed, so we had to take its closure in order to apply the closed set formu-

1 1

3 2
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lation of compactness. Therefore, we may as well begin with an arbitrary collection
of subsets of X having the finite intersection property, and prove that the intersection
of their closures is nonempty. This approach actually proves to be more convenient.

Lemma 37.1. Let X be a set; let A be a collection of subsets of X having the
finite intersection property. Then there is a collection 2) of subsets of X such that 2)
contains A, and 2) has the finite intersection property, and no collection of subsets
of X that properly contains 2) has this property.

We often say that a collection 2) satisfying the conclusion of this theorem is max-
imal with respect to the finite intersection property

Proof As you might expect, we construct 2) by using Zorn's lemma. It states that,
given a set A that is stnctly partially ordered, in which every simply ordered subset
has an upper bound, A itself has a maximal element.

The set A to which we shall apply Zorn's lemma is not a subset of X, nor even a
collection of subsets of X, but a set whose elements are collections of subsets of X.
For purposes of this proof, we shall call a set whose elements are collections of subsets
of X a 'superset" and shall denote it by an outline letter. To summanze the notation:

c is an element of X.

C is a subset of X

C is a collection of subsets of X

C is a superset whose elements are collections of subsets of X.
Now by hypothesis, we have a collection A of subsets of X that has the finite

intersection property. Let A denote the superset consisting of all collections 2 of
subsets of X such that 2 J A and 2 has the finite intersection property We use
proper inclusion as our stnct partial order on A. To prove our lemma, we need to
show that A has a maximal element 2).

In order to apply Zorn's lemma, we must show that if B is a "subsuperset" of A
that is simply ordered by proper inclusion, then has an upper bound in A. We shall
show in fact that the collection

C = U 2,

which is the union of the collections belonging to B, is an element of A, then it is the
required upper bound on B.

To show that C is an element of A, we must show that C A and that C has
the finite intersection property. Certainly C contains A, since each element of B con-
tains A. To show that C has the finite intersection property, let

C. Because C is the union of the elements of B, there is, for each i, an element 2
of B such that C E The superset (2k, .. ., is contained in B, so it is simply
ordered by the relation of proper inclusion. Being finite, it has a largest element; that
is, there is an index k such that 2 C 2k for i = I n. Then all the sets C1
are elements of Since 2k has the finite intersection property, the intersection of
the sets C1 is nonempty, as desired. U
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Lemma 37.2. Let X be a set; let £ be a collection of subsets of X that is maximal
with respect to the finite intersection property. Then:

(a) Any finite intersection of elements of
is a element of A is

of

the of finitely many elements of Define a
collection by adjoining B to 2), so that = 2) U { B). We show that has the finite
intersection property; then maximality of 2) implies that 2), so that B E £) as

desired
Take finitely many elements of If none of them is the set B, then their intersec-

tion is nonempty because 2) has the finite intersection property. If one of them is the
set B, then their intersection is of the form

D1fl flDmflB

Since B equals a finite intersection of elements of 2), this set is nonempty.
(b) Given A, define = U {A} We show that has the finite intersection

erty, from which we conclude that A belongs to 2). Take finitely many elements of
If none of them is the set A, their intersection is automatically nonempty. Otherwise,
it is of the form

D1 fl . fl belongs to 2), by (a); therefore, this intersection is nonempty, by
hypothesis.

Theorem 37.3 (Tychonoff theorem). An arbitrary product of compact spaces is
compact in the product topology

Proof Let

x =
crEJ

where each space is compact. Let A be a collection of subsets of X having the
finite intersection property. We prove that the intersection

flA
A€.4

is nonempty. Compactness of X follows.
Applying Lemma 37.1, choose a collection of subsets of X such that 2) A

and 2) is maximal with respect to the finite intersection property It will suffice to
show that the intersection D is nonempty.

Given cr E J, let : X —÷ be the projection map, as usual Consider the
collection

I D 2))
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of subsets of Xa. This collection has the finite intersection property because 2) does.
By compactness of Xa, we can for each cv choose a point xa of such that

XaE

Let x be the point of X. We shall show that x E D for every D E 2); then our
proof will be finished.

First we show that if is any subbasis element (for the product topology

on X) containing x, then (Up) intersects every element of 2). The set Up is a

neighborhood of xp in Xp. Since xp E 7(p(D) by definition, Up intersects in

some point Jrp(y), where y E D Then it follows that y E fl D.
It follows from (b) of Lemma 37.2 that every subbasis element containing x be-

longs to 2). And then it follows from (a) of the same lemma that every basis element
containing x belongs to 2). Since 2) has the finite intersection property, this means
that every basis element containing x intersects every element of 2); hence x E D for
every D c 2) as desired.

Exercises

1. Let X be a space. Let 2) be a collection of subsets of X that is maximal with
respect to the finite intersection property
(a) Show that x E D for every D E 2) if and only if every neighborhood of x

belongs to 2). Which implication uses maximality of 2)?
(b) Let D E 2). Show that if A J D, then A E 2).
(c) Show that if X satisfies the T1 axiom, there is at most one point belonging

to D.

2. A collection A of subsets of X has the countable intersection property if every
countable intersection of elements of A is nonempty. Show that X is a Lindelöf
space if and only if for every collection A of subsets of X having the countable
intersection property,

flA
A v.4

is nonempty.

3. Consider the three statements:
(i) If X is a set and A is a collection of subsets of X having the count-

able intersection property, then there is a collection 2) of subsets of X
such that 2) A and 2) is maximal with respect to the countable
intersection property
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(ii) Suppose is maximal with respect to the countable intersection prop-
erty Then countable intersections of elements of 2) are in 2). Further-
more, if A is a subset of X that intersects every element of 2), then A
is an element of 2).

(iii) Products of Lindelöf spaces are Lindelöf.
(a) Show that (i) and (ii) together imply (iii).
(b) Show that (ii) holds.
(c) Products of Lindelöf spaces need not be Lindelöf (see §30). Therefore (i)

does not hold. If one attempts to generalize the proof of Lemma 37.1 to the
countable intersection property, at what point does the proof break down?

4. Here is another theorem whose proof uses Zorn's lemma. Recall that if A is a
space and if x, y E A, we say that x and y belong to the same quasicomponent
of A if there is no separation A = C U D of A into two disjoint sets open in A
such that x E C and y E D.
Theorem. Let X be a compact Hausdorif space. Then x and y belong to the
same quasicomponent of X if and only if they belong to the same component
of X.
(a) Let A be the collection of all closed subspaces A of X such that x andy lie in

the same quasicomponent of A. Let be a subcollection of A that is simply
ordered by proper inclusion. Show that the intersection of the elements of
belongs to 4. [Hint: Compare Exercise 11 of §26.]

(b) Show A has a minimal element D.
(c) Show D is connected.

*5• Here is a proof of the Tychonoff theorem that relies on the well-ordenng theo-
rem rather than on Zorn's lemma. First, prove the following version of the tube
lemma; then prove the theorem.
Lemma. Let A be a collection of basis elements for the topology of the product
space X x Y, such that no finite subcollection of A covers X x Y. If X is
compact, there is a point x E X such that no finite subcollection of 4 covers the
slice {x} x Y.
Theorem. An arbitrary product of compact spaces is compact in the product
topology.
Proof Let j be an indexed family of compact spaces, let

= fl
X —+ Xa be the projection map. Well-order J, once and for all, in such

a way that J has a largest element.
(a) Let ,6 E J Suppose points P E X are given, for all i <ft. For any a

let Ya denote the subspace of X defined by the equation

= {x I ,r(x) = p• fori

a that if a finite collection of
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basis elements for X that covers the space

Zp fl Ya = fori

then A actually covers for some a < ,6. [Hint. If has an immediate
predecessor in J, let a be that immediate predecessor Otherwise, for each
A E A, let JA denote the set of those indices i <fJ for which jr (A)
the union of the sets 1A. for A E A, is finite; let a be the largest element of
this union.]

(b) Assume A is a collection of basis elements for X such that no finite subcol-
lection of A covers X. Show that one can choose points p X, for all i,
such that for each a, the space Ya defined in (a) cannot be finitel y covered
by A. When a is the largest element of J, one has a contradiction. [Hint: If
a is the smallest element of J, use the preceding lemma to choose If P1
is defined for all i < note that (a) implies that the space cannot be
finitely covered by A and use the lemma to find pp J

§38 The Stone-tech Compactification

We have already studied one way of compactifying a topological space X, the one-
point compactification it is in some sense the minimal compactification of X.
The Stone-Cech compactification of X, which we study now, is in some sense the
maximal compactification of X. It was constructed by M. Stone and E. Cech, inde-
pendently, in 1937 It has a number of applications in modern analysis, but these lie
outside the scope of this book

We recall the following definition

Definition. A compactifi cation of a space X is a compact Hausdorff space Y con-
taining X as a subspace such that X = Y. Two compactifications Y1 and Y2 of X are
said to be equivalent if there is a homeomorphism h Y1 —+ Y2 such that h(x) = x
for everyx E X.

If X has a compactification Y, then X must be completely regular, being a sub-
space of the completely regular space Y. Conversely, if X is completely regular, then
X has a compactification. For X can be imbedded in the compact Hausdorif space
[0, for some J, and any such imbedding gives rise to a compactification of X, as
the following lemma shows

Lemma 38.1. Let X be a space; suppose that h X -÷ Z is an imbeddirig of X in
the compact Hausdorif space Z. Then there exists a corresponding compactiElcation Y
of X; it has the property that there is an imbedding H : Y -÷ Z that equals h on X.
The compactification Y is uniquely determined up to equivalence.
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We call Y the compactification induced by the imbedding h.

Proof Given h, let X0 denote the subspace h(X) of Z, and let Yo denote its clo-
sure in Z. Then Yo is a compact Hausdorff space and Xo = Y0; therefore, Yo is a
compactification of Xo.

We now construct a space Y containing X such that the pair (X, Y) is homeomor-
phic to the pair (Xo, Y0). Let us choose a set A disjoint from X that is in bijective
correspondence with the set Yo — Xo under some map k : A —÷ — X0. Define
Y = X U A, and define a bijective correspondence H: Y —÷ Yo by the rule

H(x)=h(x) forxEX,
H(a)=k(a) foraEA.

Then topologize Y by declaring U to be open in Y if and only if H(U) is open in Yo.
The map H is automatically a homeomorphism; and the space X is a subspace of Y
because H equals the homeomorphism h when restricted to the subspace X of Y. By
expanding the range of H, we obtain the required imbedding of Y into Z.

Now suppose Y is a compactification of X and that H1: Y1 —÷ Z is an imbedding
that is an extension of h, for i 1, 2. Now maps X onto h(X) = Xo Because
H, is continuous, it must map Y into Xo; because H1 (Y1) contains Xo and is closed
(being compact), it contains X0. Hence H(Y) = Xo, and o H1 defines a home-
omorphism of Y1 with Y2 that equals the identity on X.

In general, there are many different ways of compactifying a given space X. Con-
sider for instance the following compactifications of the open interval X = (0, 1):

EXAMPLE 1 Take the unit circle S' in JR2 and let h . (0, 1) S1 be the map

h(t) = (cos2irt) x (sin 2irt).

The compactification induced by the imbedding h is equivalent to the one-point compacti-
fication of X

EXAMPLE 2 Let V be the space [0, 1] Then Y is a compacufication of X, it is obtained
by "adding one point at each end of (0, 1)"

EXAMPLE 3. Consider the square [—1, 1)2 in JR2 and let h (0, 1) —÷ [—1, 112 be the
map

h(x) = x x sin(l/x).

The space Vo = /i(X) i5 the topologist's sine curve (see Example 7 of §24). The imbed-
ding h gives rise to a compactification of (0, 1) quite different from the other two. it is
obtained by adding one point at the right-hand end of (0, 1), and an entire line segment of
points at the left-hand end'

A basic problem that occurs in studying compactifications is the following:

If Y is a compactification of X, under what conditions can a continuous
real-valued function f defined on X be extended continuously to Y?



§38 The Stone-Cech Compactification 239

The function f will have to be bounded if it is to be extendable, since its extension
will carry the compact space Y into IR and will thus be bounded. But boundedness is
not enough, in general. Consider the following example

EXAMPLE 4 Let X (0, 1) Consider the one-point compactification of X given
in Example I A bounded continuous function f (0, 1) —+ JR is extendable to this
compactzfication if and only if the limits

lim f(x) and lim f(x)
x—'O+ r—'l—

exist and are equal.
For the "the two-point compactification" of X considered in Example 2, the function f

is extendable if and only if both these limits simply exist
For the compactification of Example 3, extensions exist for a still broader class of

functions It is easy to see that f is extendable if both the above limits exist But the func-
tion f(x) = sin(l/x) is also extendable to this compactification Let H be the imbedding
of V in JR2 that equals h on the subspace X Then the composite map

H
V JR x JR JR

is the desired extension off. For if x E X, then H(x) = h(x) x x sin(1/x), so that
1r2(H(x)) = sin(l/x), as desired

There is something especially interesting about this last compactification. We con-
structed it by choosing an imbedding

h . (0, 1) —* 1R2

whose component functions were the functions x and sin(1/x) Then we found that
both the functions x and sin(1/x) could be extended to the cornpactification This
suggests that if we have a whole collection of bounded continuous functions defined
on (0, 1), we might use them as component functions of an imbedding of (0, 1) into
for some J, and thereby obtain a compactification for which every function in the
collection is extendable.

This idea is the basic idea behind the Stone-Cech compactification. It is defined as
follows:

Theorem 38.2. Let X be a completely regular space. There exists a compactifica-
tion V of X having the property that every bounded continuous map f : X —÷ JR

extends uniquely to a continuous map of V into IR.

Proof Let { be the collection of all bounded continuous real-valued functions
on X, indexed by some index set J For each a E J, choose a closed interval 'a in JR

containing fa(X). To be definite, choose

= sup fa(X)J.

Then define h . X —+ flaEJ by the rule

h(x) = (fa(X))a€j.
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By the Tychonoff theorem, is compact Because X is completely regular, the
collection } separates points from closed sets in X. Therefore, by Theorem 34.2,
the map h is an imbedding.

Let Y be the compactification of X induced by the imbedding h. Then there is
an imbedding H : Y —÷ fl that equals h when restricted to the subspace X of Y.
Given a bounded continuous real-valued function f on X, we show it extends to Y.
The function f belongs to the collection so it equals for some index ,6.

Let up fl —÷ Ip be the projection mapping Then the continuous map o H
Y —+ is the desired extension of f. For if x E X, we have

jr1j(H(x)) = =

Uniqueness of the extension is a consequence of the following lemma. U

Lemma 38.3. Let A C X; let f : A —p Z be a continuous map of A into the
Hausdorff space Z. There is at most one extension of I to a continuous function
g : A Z.

Pmof This lemma was given as an exercise in §18; we give a proof here. Suppose
that g, g' A —+ X are two different extensions of f, choose x so that g(x) g'(x).
Let U and U' be disjoint neighborhoods of g(x) and g'(x), respectively. Choose a
neighborhood V ofx so that g(V) C U and g'(V) C U' Now V intersects A in some
point y; then g(y) E U and g'(y) E U'. But since y E A, we have g(y) = f(y) and
g'(y) = f(y). This contradicts the fact that U and U' are disjoint.

Theorem 38.4. Let X be a completely regular space; let Y be a compactification
of X satisfying the extension property of Theorem 38.2 Given any continuous map
f. X —÷ C of X into a compact Hausdorif space C, the map f extends uniquely to a
continuous map Y —÷ C.

Proof Note that C is completely regular, so that it can be imbedded in [0, for
some J So we may as well assume that C C [0, l]J• Then each component function

f is a bounded continuous real-valued function on X, by hypothesis,
can be extended to a continuous map g Y

g the product topology. Now
in tact g maps Y into the subspace C of For continuity of g implies that

g(Y) = g(X) C g(X) = f(X) C C = C.

Thus g is the desired extension of f

Theorem 38.5. Let X be a completely regular space. If Y1 and Y2 are two
ifications of X satisfying the extension property of Theorem 38.2, then Y1 and Y2 are
equivalent.
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Proof Consider the inclusion mapping J2 : X —+ Y2. It is a continuous niap of X
into the compact Hausdorif space Y2. Because Y1 has the extension property, we may,
by the preceding theorem, extend J2 to a continuous map 12 Y1 Y2. Similarly,
we may extend the inclusion map Il : X —+ Y1 to a continuous map : Y2 .-+
(because Y2 has the extension property and Y1 is compact Hausdorff).

XCY1 XCY2
i4/ /

The composite Ii ° 12 Y1 —p Y1 has the property that for every x E X, one has
ff(12(x)) = x Therefore, Ii ° 12 is a continuous extension of the identity map
ix : X —* X. But the identity map of Yi is also a continuous extension of ix. By
uniqueness of extensions (Lemma 38.3), fi ° 12 must equal the identity map of Y1.
Similarly, 12 o Ii must equal the identity map of Y2 Thus Ii and 12 are homeomor-
phisms.

Definition. For each completely regular space X, let us choose, once and for all,
a compactification of X satisfying the extension condition of Theorem 38.2. We will
denote this compactification of X by and call it the Stone-tech compactifi cation
of X. It is charactenzed by the fact that any continuous map f . X —÷ C of X into a
compact Hausdorff space C extends uniquely to a continuous map g —÷ C.

Exercises

1. Venfy the statements made in Example 4.

2. Show that the bounded continuous function g (0, 1) —÷ IR defined by g(x) =
cos(l/x) cannot be extended to the compactification of Example 3. Define an
imbedding h : (0, 1) —÷ [0, such that the functions x, sin(l/x), and cos(l/x)
are all extendable to the compactification induced by h.

3. Under what conditions does a metnzable space have a metrizable compactifica-
tion?

4. Let Y be an arbitrary compactification of X; let be the com-
pactification. Show there is a continuous surjective closed map g —÷ Y

that equals the identity on X
[This exercise makes precise what we mean by saying that is the "maxi-

mal" compactification of X. It shows that every compactification of X is equiv-
alent to a quotient space

5. (a) Show that every continuous real-valued function defined on Sc2 is "eventu-
ally constant." [Hint First prove that for each c, there is an element a of SQ
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such that If C6) — f(a)I < e for all ,6 > a Then let e = 1/n for n E Z÷
and consider the corresponding points an.]

(b) Show that the one-point compactification of S0 and the Stone-tech corn-
pactification are equivalent.

(c) Conclude that every compactification of Sc1 is equivalent to the one-point
compactification.

6. Let X be completely regular. Show that X is connected if and only if is

connected. [Hint. If X = A U B is a separation of X, let f(x) = 0 for x E A

and f(x) 1 forx E B.]

7. Let X be a discrete space; consider the space ,6(X).
(a) Show that if A C X, then A and X — A are disjoint, where the closures are

taken in -
(b) Show that if U is open in then U is open in ,6(X).
(c) Show that ,6(X) is totally disconnected.

8. Show that has cardinality at least as great as I", where! = [0, 1]. [Hint:
The space !' has a countable dense subset.]

9. (a) If X is normal and y is a point of — X, show that y is not the limit of
a sequence of points of X.

(b) Show that if X is completely regular and noncompact, then is not
metrizable.

10. We have constructed a correspondence X that assigns, to each com-
pletely regular space, its Stone-Cech compactification. Now let us assign, to each
continuous map f : X —* Y of completely regular spaces, the unique continuous
map ,6(Y) that extends the map i o f, where i Y —+ is

the inclusion map. Verify the following:
(i) If lx : X —+ X is the identity map of X, then 16(lx) is the identity

map of

(ii) If f: X Y and g: Y Z, then ,6(g o 1) = ,6(g) o ,6(f).
These properties tell us that the correspondence we have constructed is what is

called afunctor; it is a functor from the "category" of completely regular spaces
and continuous maps of such spaces, to the "category" of compact Hausdorif
spaces and continuous maps of such spaces. You will see these properties again
in Part II of the book; they are fundamental in algebra and in algebraic topology.



Chapter 6

Metrization Theorems
and Paracompactness

The Urysohn metnzation theorem of Chapter 4 was the first step—a giant one—toward
an answer to the question: When is a topological space metnzable? It gives conditions
under which a space X is metrizable. that it be regular and have a countable basis. But
mathematicians are never satisfied with a theorem if there is some hope of proving a
stronger one. In the present case, one can hope to strengthen the theorem by finding
conditions on X that are both necessary and sufficient for X to be metnzable, that is,
conditions that are equivalent to metnzability.

We know that the regulanty hypothesis in the Urysohn metnzation theorem is a
necessary one, but the countable basis condition is not. So the obvious thing to do is try
to replace the countable basis condition by something weaker. Finding such condition
is a delicate task. The condition has to be strong enough to imply metnzability, and yet
weak enough that all metnzable spaces satisfy it. In a situation like this, discovenng
the nght hypothesis is more than half the battle.

The condition that was eventually formulated, by J. Nagata and Y. Srnirnov inde-
pendently, involves a new notion, that of local finiteness. We say that a collection A
of subsets of a space X is locally finite if every point of X has a neighborhood that
intersects only finitely many elements of 4.

Now one way of expressing the condition that the basis 2 is countable is to say
that can be expressed in the form

U
n€Z÷

243
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where each collection is finite. This is an awkward way of saying that 2 is count-
able, but it suggests how to formulate a weaker version of it. The Nagata-Smirnov
condition is to require that the basis 2 can be expressed in the form

2= U

where each collection is locally finite. We say that such a collection 2 is count-
ably locally finite. Surpnsingly enough, this condition, along with regularity, is both
necessary and sufficient for metrizability of X. This we shall we prove.

There is another concept in topology that involves the notion of local finiteness. It
is a generalization of the concept of compactness called "paracompactness." Although
of fairly recent origin, it has proved useful in many parts of mathematics. We introduce
it here so that we can give another set of necessary and sufficient conditions for a
space X to be metrizable. It turns out that X is met.nzable if and only if it is both
paracompact and locally metrizable. This we prove in §42.

Some of the sections of this chapter are independent of one another. The depen-
dence among them is expressed in the following diagram.

§39 Local finiteness

§40 The Nagata-Smirnov metnzation theorem

§41 Paracompactness

§42 The Smirnov metrization theorem

§39 Local Finiteness

In this sections we prove some elementary properties of locally finite collections and
a crucial lemma about metrizable spaces.

Definition. Let X be a topological space. A collection A of subsets of X is said to be
locally finite in X if every point of X has a neighborhood that intersects only finitely
many elements of A

EXAMPLE 1 The collection of intervals

A = ((n,n+2) In E ZJ

is locally finite in the topological space R, as you can check. On the other hand, the
collection

2 = ((0, 1/n) I n E

is locally finite in (0, 1) but not in R, as is the collection

C ((l/(n + 1), 1/n) In E Z÷}
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Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:
(a) Any subcollection of A is locally finite.

(b) The collection 2 = {A)AEA of the closures of the elements of A is locally finite.

(c) UAEA A = UAEA A.

Proof Statement (a) is tnvial. To prove (b), note that any open set U that intersects
the set A necessarily intersects A. Therefore, if U is a neighborhood of x that intersects
only finitely many elements A of A, then U can intersect at most the same number of
sets of the collection 2. (It might intersect fewer sets of since A and A2 can be
equal even though A1 and A2 are not).

To prove (c), let Y denote the union of the elements of A:

U A =
AE.4

In general, U A c Y; we prove the reverse inclusion, under the assumption of local
finiteness. Let x E Y; let U be a neighborhood of x that intersects only finitely many
elements of A, say A1, .. , ._ We assert that x belongs to one of the sets A1,

Ak, and hence belongs to U A. For otherwise, the set U — A1 —. — Ak would
be a neighborhood of x that intersects no element of 4 and hence does not intersect Y,
contrary to the assumption that x E Y.

There is an analogous concept of local finiteness for an indexed family of subsets
of X. The indexed family {Aa}a€j is said to be a locally finite indexed family in X
if every x E X has a neighborhood that intersects Aa for only finitely many values
of a. What is the relation between the two formulations of local finiteness? It is easy
to see that {Aa kEJ is a locally finite indexed family if and only if it is locally finite
as a collection of sets and each nonempty subset A of X equals Aa for at most finitely
many values of a.

We shall be concerned with locally finite indexed families only in §41, when we
deal with partitions of unity.

Definition. A collection 2 of subsets of X is said to be countably locally finite if 2
can be wntten as the countable union of collections each of which is locally finite.

Most authors use the term 'a-locally finite" for this concept. The a comes from
measure theory and stands for the phrase "countable union of" Note that both a count-
able collection and a locally finite collection are countably locally finite.

Definition. Let 4 be a collection of subsets of the space X. A collection 2 of subsets
of X is said to be a refinement of A (or is said to refine A) if for each element B of 2,
there is an element A of A containing B. If the elements of 2 are open sets, we call
an open refinement of A; if they are closed sets, we call a closed refinement
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Lemma 39.2. Let X be a metrizable space. if 4 is an open covering of X, then there
is an open covering of X refining A that is countably locally finite.

Proof We shall use the well-ordering theorem in proving this theorem. Choose a
well-ordering <for the collection A. Let us denote the elements of 4 generically by
the letters U, V, W

Choose a metric for X. Let n be a positive integer, fixed for the moment. Given an
element U of A, let us define to be the subset of U obtained by "shrinking" U
a distance of 1/n. More precisely, let

= (x
I

B(x, 1/n) C U}.

(It happens that is a closed set, but that is not important for our purposes.) Now
we use the weIl-ordenng <of A to pass to a still smaller set. For each U in A, define

U V.
v<U

The situation where A consists of the three sets U < V < W is pictured in
Figure 39.1. Just as the figure suggests, the sets we have formed are disjoint.

In fact, they are separated by a distance of at least 1/n. This means that if V and W
are distinct elements of A, then d(x, y) 1/n whenever x E and y E

To prove this fact, assume the notation has been so chosen that V < W. Since x
is in then x is in so the 1/n-neighborhood of x lies in V. On the other
hand, since V < W and y is in the definition of the latter set tells us that y is
not in V. It follows that y is not in the 1/n-neighborhood of x.

The sets (U) are not yet the ones we want, for we do not know that they are
open sets. (In fact, they are closed.) So let us expand each of them slightly to obtain

U <V< W

Figure 39.1
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an open set Specifically, let be the 1/3n-neighborhood of that
is, let be the union of the open balls B(x, l/3n), forx E

In the case U < V < W, we have the situation pictured in Figure 392. As the
figure suggests, the sets we have formed are disjoint. Indeed, if V and W are distinct
elements of 4, we assert that d(x, y) 1/3n whenever x and y
this fact follows at once from the triangle inequality. Note that for each V E 4, the set

is contained in V.

Now let us define

=
I

U E A}

We claim that is a locally ñnite collection of open sets that refines 4. The fact
that refines 4 comes from the fact that E A. The fact that

is locally finite comes from the fact that for any x in X, the l/6n-neighborhood of
x can intersect at most one element of

Of course, the collection will not cover X. (Figure 39 2 illustrates that fact.)
But we assert that the collection

= U

does cover X.
Let x be a point of X. The collection 4 with which we began covers X; let us

choose U to be the first element of A (in the well-ordering <) that contains x. Since U
is open, we can choose n so that B(x, 1/n) C U Then, by deñnition, x E
Now because U is the first element of that contains x, the point x belongs to
Then x also belongs to the element of as desired.

Figure 39.2
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Exercises

1. Check the statements in Example 1.

2. Find a point-finite open covering A of JR that is not locally finite. (The collec-
Lion A is point-finite if each point of JR lies in only finitely many elements of A.)

3. Give an example of a collection of sets A that is not locally finite, such that the
collection 2 = {A

I
A E A) is locally finite.

4. Let A be the following collection of subsets of R:

A = {(n,n+2) In Z}

Which of the following collections refine A?

2 = ((x,x+ l)Ix ER),
C=((n,n+4) nEZ),

= ((x,x + ER).

5. Show that if X has a countable basis, a collection A of subsets of X is countably
locally finite if and only if it is countable

6. Consider IRW in the uniform topology. Given n, let be the collection of all
subsets of JRW of the form fl A, where A JR for i n and A equals either {O}
or (I } otherwise. Show that the collection 2 = U is countably locally finite,
but neither countable nor locally finite.

§40 The Nagata-Smirnov Metrization Theorem

Now we prove that regularity of X and the existence of a countably locally finite basis
for X are equivalent to metnzability of X.

The proof that these conditions imply metrizability follows very closely the second
proof we gave of the Urysohn metrization theorem. In that proof we constructed a map
of the space X into JRW that was an imbedding relative to the uniform metric 5 on JRW
So let us review the major elements of that proof. The first step of the proof was
to prove that every regular space X with a countable basis is normal. The second
step was to construct a countable collection } of real-valued functions on X that
separated points from closed sets. The third step was to use the functions to define
a map imbedding X in the product space And the fourth step was to show that if

(x) 1/n for all x, then this map actually imbeds X in the metric space
Each of these steps needs to be generalized in order to prove the general metnza-

tion theorem. First, we show that a regular space X with a basis that is countably
locally finite is normal. Second, we construct a certain collection of real-valued func-
tions lfa} on X that separates points from closed sets. Third, we use these functions
to imbed X in the product space JRJ, for some J. And fourth, we show that if the
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functions fa are sufficiently small, this map actually mbeds X in the metric space
(IRs,

Before we start, we need to recall a notion we have already introduced in the
exercises, that of a G8 set.

Definition. A subset A of a space X is called a set in X if it equals the intersection
of a countable collection of open subsets of X.

EXAMPLE 1. Each open subset of X is a set, invially In a first-countable Hausdorff
space, each one-point set is a G8 set The one-point subset (Q} of Sc2 is not a set, as
you can check

EXAMPLE 2 In a metric space X, each closed Set is a set. Given A C X, let U(A, E)
denote the E-neighborhood of A If A is closed, you can check that

A fl U(A, i/n)
flEZ÷

Lemma 40.1. Let X be a regular space with a basis that is countably locally finite.
Then X is normal, and every closed set in X is a G8 set in X

Proof Step 1. Let W be open in X. We show there is a countable collection of
open sets of X such that

w

Since the basis for X is countably locally finite, we can write = U where
each collection is locally finite. Let be the collection of those basis elements B
such that B E and B C W. Then is locally finite, being a subcollection of
Define

= U B.
BEe,,

Then is an open set, and by Lemma 39 1,

U, = U

Therefore, C W, so that

U Un C U C
We assert that equality holds. Given x E W, there is by regularity a basis element
B such that x E B and B C W. Now B E for some n. Then 3 E en by
definition, so that x E Thus W C U as desired.

Step 2. We show that every closed set C in X is a G8 set rn X Given C, let
W = X — C. By Step 1, there are sets U Then

c = fl(x -
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so that C equals a countable intersection of open sets of X.

Step 3. We show X is normal Let C and D be disjoint closed sets in X. Applying
Step 1 to the open set X — D, we construct a countable collection }of open sets
such that U U = X — D. Then covers C and each set is disjoint
from D. Similarly, there is a countable covering } of D by open sets whose closures
are disjoint from C.

Now we are back in the situation that arose in the proof that a regular space with a
countable basis is normal (Theorem 32.1). We can repeat that proof verbatim. Define

U,=Un_UV and

Then the sets

and

nEZ+

are disjoint open sets about C and D, respectively.

Lemma 40.2. Let X be normal; let A be a closed G8 set in X. Then there is a
continuous function f X —÷ [0, 1] such that f(x) = 0 forx E A and f(x) > 0 for
x

Proof We gave this as an exercise in §33, we provide a proof here. Write A as the
intersection of the open sets for n E Z+ For each n, choose a continuous function

X —÷ [0, such that f(x) = 0 for x E A and f(x) = 1 for x E X — Define
f(x) The series converges uniformly, by comparison with
so that f is continuous. Also, f vanishes on A and is positive on X — A

Theorem 40.3 (Nagata-Smirnov metrization theorem). A space X is metrizable
if and only if X is regular and has a basis that is countably locally finite.

Proof Step 1. Assume X is regular with a countably locally finite basis Then
X is normal, and every closed set in X is a G8 set in X. We shall show that X is
metrizable by imbedding X in the metric space (IRs, for some J

Let = U where each collection is locally finite. For each positive
integer n, and each basis element B E choose a continuous function

fn.B X —p [0, 1/n]

such that > 0 for x E B and = 0 for x B. The collection
separates points from closed sets in X. Given a point xo and a neighborhood U of xO,
there is a basis element B such that xO E B C U. Then B E for some n, so that
fnB(XO) > 0 and mB vanishes outside U.

Let J be the subset of Z÷ x consisting of all pairs (n, B) such that B is an
Define

F X —+ [0,
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by the equation

F(x) = (fn,B(x))n.b)EJ.

Relative to the product topology on [0, 1)', the map F is an imbedding, by Theo-
rem 34.2.

Now we give [0, the topology induced by the uniform metric and show that
F is an imbedding relative to this topology as well. Here is where the condition
fnB(X) < i/n comes in. The uniform topology is finer (larger) than the product
topology. Therefore, relative to the uniform metric, the map F is injective and carries
open sets of X onto open sets of the image space Z = F(X) We must give a separate
proof that F is continuous.

Note that on the subspace [0, of IRS, the uniform metric equals the metric

(yq)) = sup(Ixr — yal}.

To prove continuity, we take a point xo of X and a number E > 0, and find a neighbor-
hood W of xO such that

x E W p(F(x), F(x0)) <€

Let n be fixed for the moment. Choose a neighborhood of xo that intersects
only finitely many elements of the collection This means that as B ranges over
all but finitely many of the functions mB are identically equal to zero on (.4. Because
each function mB is continuous, we can now choose a neighborhood of x0 con-
tained in on which each of the remaining functions mB' for B E vanes by at
most E/2.

Choose such a neighborhood of xo for each n E Then choose N so that
1/N and define W = V1 fl • . fl We assert that W is the desired neighbor-
hood of xo. Let x E W. If n N, then

IfnB(x) — E/2

because the function B either vanishes identically or vanes by at most E/2 on W. If
n > N, then

If,1,B(x) — < 1/n <E/2

because mB maps X into [0, 1/n]. Therefore,

p(F(x), F(x0)) E/2 < E,

as desired.

Step 2. Now we prove the converse. Assume X is metrizable. We know X is
regular; let us show that X has a basis that is countably locally finite.

Choose a metric for X. Given m, let Am be the covering of X by all open balls
of radius 1/rn. By Lemma 39.2, there is an open covering of X refining 1.,,, such
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that 2m is countably locally finite. Note that each element of has diameter at
most 2/rn Let be the union of the collections for m c Z÷. Because each
collection is countably locally finite, so is We show that is a basis for X.

Given x c X and given e > 0, we show that there is an element B of contain-
ing x that is contained in B(x, E). First choose m so that 1/rn < Then, because

covers X, we can choose an element B of that contains x. Since B contains x
and has diameter at most 2/rn < it is contained in B(x, E), as desired. U

Exercises

1. Check the details of Examples 1 and 2.

2. A subset W of X is said to be an "Fa set" in X if W equals a countable union of
closed sets of X. Show that W is an Fa set in X if and only if X — W is a set
in X.

[The terminology comes from the French. The "F' stands for "fermé," which
means "closed," and the "a" for "somme," which means "union."}

3. Many spaces have countable bases; but no T1 space has a locally finite basis
unless it is discrete. Prove this fact.

4. Find a nondiscrete space that has a countably locally finite basis but does not
have a countable basis.

5. A collection A of subsets of X is said to be locally discrete if each point of X
has a neighborhood that intersects at most one element of A. A collection 2 is
countably locally discrete (or "a-locally discrete") if it equals a countable union
of locally discrete collections. Prove the following:
Theorem (Bing metrization theorem). A space X is metrizable if and only if it
is regular and has a basis that is countably locally discrete.

§41 Paracompactness

The concept of paracompactness is one of the most useful generalizations of compact-
ness that has been discovered in recent years. It is particularly useful for applications
in topology and differential geometry We shall give just one application, a metnzation
theorem that we prove in the next section.

Many of the spaces that are familiar to us already are paracompact. For instance,
every compact space is paracompact, this will be an immediate consequence of the
definition. It is also true that every metnzable space is paracompact, this is a theorem
due to A. H. Stone, which we shall prove. Thus the class of paracompact spaces
includes the two most important classes of spaces we have studied. It includes many
other spaces as well.
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To see how paracompactness generalizes compactness, we recall the definition of
compactness: A space X is said to be compact if every open covering A of X contains
a finite subcollection that covers X. An equivalent way of saying this is the following:

A space X is compact if every open covering A of X has a finite open
refinement that covers X

This definition is equivalent to the usual one, given such a refinement one can
choose for each element of an element of A containing it; in this way one obtains a
finite subcollection of A that covers X.

This new formulation of compactness is an awkward one, but it suggests a way to
generalize.

Definition. A space X is paracompact if every open covering 4 of X has a locally
finite open refinement that covers X.

Many authors, following the lead of Bourbaki, include as part of the definition of
the term paracompact the requirement that the space be Hausdorff. (Bourbaki also
includes the Hausdorif condition as part of the definition of the term compact.) We
shall not follow this convention.

EXAMPLE 1. The space W' is paracompac: Let X = Let A be an open covenng
of X. Let B0 0, arid for each positive integerm, let 8m denote the open ball of radius m
centered at the origin. Given m, choose finitely many elements of A that cover Bm and

intersect each one with the open set X — 8m — , let this finite collection of open sets be
denoted Cm Then the collection C = U Cm is a refinement of A It is clearly locally finite,
for the open set Bm intersects only finitely many elements of C, namely those elements
belonging to the collection C1 U U C,,. Finally, C covers X For, given x, let m be the
smallest integer such that x Then x belongs to an element of Cm, by definition.

Some of the properties of a paracompact space are similar to those of a compact
space. For instance, a subspace of a paracompact space is not necessarily paracompact;
but a closed subspace is paracompact. Also, a paracompact Hausdorif space is normal.
In other ways, a paracompact space is not similar to a compact space; in particular, the
product of two paracompact spaces need not be paracompact. We shall verify these
facts shortly.

Theorem 41.1. Every paracompact Hausdorif space X is normal

Proof The proof is somewhat similar to the proof that a compact Hausdorif space is
normal.

First one proves regularity Let a be a point of X and let B be a closed set of X
disjoint from a. The Hausdorif condition enables us to choose, for each b in B, an open
set (lb about b whose closure is disjoint from a. Cover X by the open sets Ub, along
with the open set X — B; take a locally finite open refinement C that covers X. Form
the subcollection £ of C consisting of every element of C that intersects B. Then 2)
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covers B. Furthermore, if D E then D is disjoint from a. For D intersects B, so it
lies in some set Ub, whose closure is disjoint from a. Let

V = U D;

then V is an open set in X containing B. Because is locally finite,

= U b,

so that V is disjoint from a. Thus regularity is proved.
To prove normality, one merely repeats the same argument, replacing a by the

closed set A throughout and replacing the Hausdorif condition by regularity. •

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Pmof Let Y be a closed subspace of the paracompact space X; let A be a covering
of Y by sets open Lfl Y. For each A E A, choose an open set A' of X such that
A' n Y = A. Cover X by the open sets A', along with the open set X — Y. Let be a
locally finite open refinement of this covering that covers X. The collection

C = (B fl Y
I

B E

is the required locally finite open refinement of A

EXAMPLE 2. A paracompac: subspace of a Hausdorff space X need nor be closed in X.
Indeed, the open interval (0, 1) is paracompact, being homeomorphic to IR, but it is not
closed in R

EXAMPLE 3 A subspace of a paracompact space need not be paracompac: The space
Sc2 X Sc2 is compact and, herefore, paracompact. But the subspace Sc2 x Sc2 is not para-
compact, for it is Hausdorif but not normal.

To prove the important theorem that every metrizable space is paracompact, we
need the following lemma, due to E. Michael, which is also useful for other purposes:

Lemma 41.3. Let X be regular. Then the following conditions on X are equivalent:
Every open covering of X has a refinement that is:

(I) An open covering of X and countably locally finite.

(2) A covering of X and locally finite.

(3) A closed covering of X and locally finite.

(4) An open covering of X and locally finite.

Pmof It is trivial that (4) (1). What we need to prove our theorem is the converse
In order to prove the converse, we must go through the steps (1) (2) (3) (4)
anyway, so we have for convenience listed these conditions in the statement of the
lemma.
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(1) (2). Let A be an open covering of X. Let be an open refinement of
that covers X and is countably locally finite; let

= U
where each is locally finite.

Now we apply essentially the same sort of shnnking trick we have used before to
make sets from different disjoint. Given i, let

= U.

Then for each n E and each element U of define

= U — U v1.
i<n

[Note that is not necessarily open, nor closed.] Let

C U
C is refinement of

be a We that of
x a of C. Ccnsider the

covering = U let N be the smallest integer such that x lies in an element of
Let U be an element of containing x. First, note that since x lies in no element of

for i <N, the point x lies in the element SN(U) of C. Second, note that since each
collection is locally finite, we can choose for each n = 1 N a neighborhood

of x that intersects only finitely many elements of Now if intersects
the element ( V) of Cn, it must intersect the element V of since Sn C V) C V.
Therefore, intersects only finitely many elements of Furthermore, because U
is in 2N. U intersects no element of C, for n > N As a result, the neighborhood

WlflW2fl...flWN flU

of x intersects only finitely many elements of C.
(2) (3) Let A be an open covering of X. Let be the collection cf all open

sets U of X such that U is contained in an element of 4. By regularity, covers X.
Using (2), we can find a refinement C of that covers X and is locally finite. Let

= (C I C E C).

Then also covers X; it is locally finite by Lemma 39.1; and it refines A.
(3) (4). Let A be an open covering of X. Using (3), choose to be a refine-

ment of that covers X and is locally finite (We can take to be a closed refinement
if we like, but that is irrelevant.) We seek to expand each element B of slightly to
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an open set, making the expansion slight enough that the resulting collection of open
sets will still be locally finite and will still refine A.

This step involves a new trick. The previous trick, used several times, consisted of
ordering the sets in some way and forming a new set by subtracting off all the previous
ones. That trick shrinks the sets; to expand them we need something different. We
shall introduce an auxiliary locally finite closed covering C of X and use it to expand
the elements of 2.

For each point x of X, there is a neighborhood of x that intersects only finitely
many elements of 2. The collection of all open sets that intersect only finitely many
elements of 2 is thus an open covering of X. Using (3) again, let C be a closed
refinement of this covering that covers X and is locally finite. Each element of C
intersects only finitely many elements of 2.

For each element B of 2, let

Then define

C(B)=(CICECandCCX—B}

E(B)=X— C.
CEe(B)

Because C is a locally finite collection of closed sets, the union of the elements of any
subcollection of C is closed, by Lemma 39.1. Therefore, the set E(B) is an open set.
Furthermore, E(B) B by definition. (See Figure 411, in which the elements of 2
are represented as closed circular regions and line segments, and the elements of C are
represented as closed square regions.)

Figure 41.1
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Now we may have expanded each B too much; the collection (E(B)} may not be
a refinement of A. This is easily remedied. For each B E choose an element F(B)
of A containing B. Then define

= (E(B) n F(B)
I

B E

The collection is a refinement of A. Because B C (E(B) fl F(B)) and covers X,
the collection also covers X

We have finally to prove that 2) is locally finite. Given a point x of K, choose a
neighborhood W of x that Entersects only finitely many elements of C, say C1 Ck
We show that W intersects only finitely many elements of 2). Because e covers X,
the set W is covered by C1,.. , Thus, it suffices to show that each element C of C
intersects only finitely many elements of 2). Now if C intersects the set E(B) fl F(B),
then it intersects E(B), so by definition of E(B) it is not contained in X — B, hence C
must intersect B. Since C intersects only finitely many elements of it can intersect
at most the same number of elements of the collection 2)

Theorem 41.4. Every metnzable space is paracompact

Proof Let X be a metrizable space. We already know from Lemma 39.2 that, given
an open covering A of X, it has an open refinement that covers X and is countably
locally finite. The preceding lemma then implies that A has an open refinement that
covers X and is locally finite

Theorem 41.5. Every regular Lindelôf space is paracom pact

Pro of Let X be regular and Lindelof. Given an open covering of X, it has a
countable subcollection that covers X, this subcollection is automatically countably
locally finite The preceding lemma applies to show has an open refinement that
covers X and is locally finite.

EXAMPLE 4 The product of two paracompact spaces need not be paraccmpact The
space is paracompact, for it is regular and Lindelof However, Re x Re is riot paracom-
pact, for it is Hausdorif but not normal

EXAMPLE 5. The space RW isparacompact in both the product and topologies.
Thts result follows from the fact that R'° is metnzable in these topologies. It s not known
whether RW is paracoiupact in the box topology (See the comment in Exercise 5 of §32)

EXAMPLE 6. The product space is not paracompact if J is uncountable For is

Hausdorff but not normal

One of the most useful properties that a paracompact space X possesses has to do
with the existence of partitions of unity on X. We have already seen the finite version
of this notion in §36, we discuss the general case now. Recall that if 0 K —÷ IR, the
support of 0 is the closure of the set of those x for which 0(x) 0.
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Definition. Let be an indexed open covering of X. An indexed family of
continuous functions

X -÷ [0, 11

is said to be apartition of unity on X, dominated by ((Jq}, if:
(1) (SupportØq) C for each a.

(2) The indexed family (Support is locally finite

(3) >0r(x) = 1 foreachx.

Condition (2) implies that each x E X has a neighborhood on which the func-
tion vanishes identically for all but finitely many values of a. Thus we can make
sense of the "sum" indicated in (3); we interpret it to mean the sum of the terms
that do not equal zero.

We now construct a partition of' unity on an arbitrary paracompact Hausdorif
space. We begin by proving a "shrinking lemma," just as we did for the flmte case
in §36.

Lemma 41.6. Let X be a paracompact Hausdorff space; let be an in-

dexed family of open sets covering X. Then there exists a locally finite indexed family
of open sets covering X such that Vq C for each a.

The condition that C for each a is sometimes expressed by saying that the
family { is a precise refinement of the family CUr).

Pmof Let A be the collection of all open sets A such that A is contained in some
element of the collection ((fr). Regularity of X implies that A covers X. Since X
is paracompact, we can find a locally finite collection of open sets covering X that
refines A Let us index bijectively with some index set K, then the general element
of 2 can be denoted Bfl, for ,6 E K, and is a locally finite indexed family.
Since refines A, we can define a function f : K —÷ J by choosing, for each ,6 in K,
an element E J such that

C

Then for each a E J, we define to be the union of the elements of the collection

=(Bfl
I

=cr}.

(Note that is empty if there exists no index ,6 such that f(,6) = cr.) For each
element Bfl of the collection we have Bfl C by definition. Because the collec-
tion is locally finite, equals the union of the closures of the elements of 50

that C
Finally, we check local finiteness Given x E X, choose a neighborhood W of x

such that W intersects Bfl for only finitely many values of say ,6 =
Then W can intersect only if a is one of the indices f(,6K).
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Theorem 41.7. Let X be a para compact Hausdorff space; let f }a€J an indexed
open covering of X. Then there exists a partition of unity on X dominated by (Ur}.

Proof We begin by applying the shrinking lemma twice, to find locally finite indexed
familes of open sets and covering X, such that C and C
for each a Since X is normal, we may choose, for each a, a continuous function

X —÷ [0, 1] such that = (1) and — Vr) = (O}. Since is
nonzero only at points of we have

C C (Jr.

Furthermore, the indexed family {Vr) is locally finite (since an open set intersects
only if it intersects Vr); hence the indexed family (Support is also locally finite.
Note that because { } covers X, for any given x at least one of the functions
positive at x.

We can now make sense of the formally infinite sum

=

Since each x X has a neighborhood that intersects the set (Support for
only finitely many values of a, we can interpret this infinite sum to mean the sum of
its (finitely many) nonzero terms. It follows that the restriction of to equals a
finite sum of continuous functions, and is thus continuous. Then since is continuous
on for each x, it is continuous on X. It is also positive. We now define

=

to obtain our desired partition of unity.

Partitions of unity are most often used in mathematics to "patch together"
tions that are defined locally so as to obtain a function that is defined globally. Their
use in §36 illustrates this process. Here is another such illustration

Theorem 41.8. Let X be a paracompact Hausdorff space: let C be a collection of
subsets of X; for each C E C, let EC be a positive number If C is locally finite, there
is a continuous function f X —÷ JR such that f(x) > 0 for all x, and f(x)

E C.

Proof Cover X by open sets each of which intersects at most finitely many elements
of C; index this collection of open sets so that it becomes an indexed family
Choose a partition of unity on X dominated by (Ur}. Given a, let 8r be the
minimum of the numbers EC, as C ranges over all those elements of C that intersect
the support of if there are no such elements of C, set = 1. Then define

f(x) =
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Because all the numbers 8a are positive, so is f. We show that f(x) E C.
It will suffice to show that for x E C and arbitrary cr, we have

&rØr(x) 5

then the desired inequality follows by summing, as > = 1. If x Support Ør,
then inequality (*) is trivial because Ør(x) = 0. And if x E and X E C,
then C intersects the support of so that &r EC by construction; thus (*) holds.

Exercises

1. Give an example to show that if X is paracompact, it does not follow that for
every open covering 4 of X, there is a locally finite subcollection of A that
covers X.

2. (a) Show that the product of a paracompact space and a compact space is para-
compact. [Hint: Use the tube lemma.]

(b) Conclude that Sc2 is not paracompact.

3. Is every locally compact Hausdorif space paracompact?

4. (a) Show that if X has the discrete topology, then X is paracompact.
(b) Show that if f : X —÷ Y is continuous and X is paracompact, the sub-

space f(X) of Y need not be paracompact.
5. Let X be paracompact. We proved a "shnnking lemma" for arbitrary indexed

open coverings of X. Here is an lemma" for arbitrary locally finite
indexed families in X.
Lemma. Let be a locally finite indexed family of subsets of the para-
compact Hausdorif space X. Then there is a locally finite indexed family (Ui,
of open sets in X such that C (4 for each a.

6. (a) Let X be a regular space. If X is a countable union of compact subspaces
of X, then X is paracompact.

(b) Show IR°° is paracompact as a subspace of RW in the box topology.

*7• Let X be a regular space.
(a) If X is a finite union of closed paracompact subspaces of X, then X is para-

compact.
(b) If X is a countable union of closed paracompact subspaces of X whose inte-

riors cover X, show X is paracompact.

8. Let p X —÷ Y be a perfect map. (See Exercise 7 of §3 1.)
(a) Show that if Y is paracompact, so is X. [Hint. If A is an open covering of X,

find a locally finite open covering of Y by sets B such that can be
covered by finitely many elements of A; then intersect with these
elements of 4.]

(b) Show that if X is a paracompact Hausdorif space, then so is Y. [Hint: If
is a locally finite closed covering of X, then {p(B)

I
B E is a locally

finite closed covering of Y.]
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9. Let G be a locally compact, connected topological group Show that G is para-
compact [Hint. Let U1 be a neighborhood of e having compact closure. In
general, define = . Ui. Show the union of the sets is both open and
closed in G.J

This result holds without assuming G is connected, but the proof requires more
effort.

10. Theorem. if X is a Hausdorif space that is locally compact and paracompact,
then each component of X has a countable basis.
Proof If Xo is a component of X, then Xo is locally compact and paracompact.
Let C be a locally finite covering of Xo by sets open in Xo that have compact
closures Let U1 be a nonempty element of C, and in general let be the union
of all elements of C that intersect Un_f. Show is compact, and the sets
cover X0.

§42 The Smirnov Metrization Theorem

The Nagata-Smirnov metrization theorem gives one set of necessary and sufficient
conditions for metnzability of a space In this section we prove a theorem that gives
another such set of conditions. It is a corollary of the Nagata-Smirnov theorem and
was first proved by Smirnov.

Definition. A space X is locally metrizable if every point x of X has a neighbor-
hood U that is metnzable in the subspace topology

Theorem 42.1 (Smirnov metnzation theorem). A space X is metnzable if and
only if it is a paracompact Hausdorff space that is locally metrizable.

Proof Suppose that X is metrizable. Then X is locally metrizable; it is also para-
compact, by Theorem 41 4.

Conversely, suppose that X is a paracompact Hausdorif space that is locally metnz-
able. We shall show that X has a basis that is countably locally finite. Since X is
regular, it will then follow from the Nagata-Smirnov theorem that X is metrizable.

The proof is an adaptation of the last part of the proof of Theorem 40.3. Cover X
by open sets that are metnzable; then choose a locally finite open refinement C of
this covering that covers X. Each element C of C is metrizable; let the function
C x C —÷ R be a metric that gives the topology of C. Given x E C, let E)

denote the set of all points y of C such that dc(x, y) < E. Being open iii C, the set
BC(X, €) is also open in X.

Given rn E Z÷, let be the covering of X by all these open balls of radius 1/rn;
that is, let

= i/rn)
I
x E C and C C).
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Let be a locally finite open refinement of Am that covers X (Here we use para-
compactness.) Let £ be the union of the collections Then £ is countably locally
finite. We assert that £ is a basis for X; our theorem follows

Let x be a point of X and let U be a neighborhood of x. We seek to find an
element D of £ such that x E D C U. Now x belongs to only finitely many elements
of C, say to C1,. ., Then U fl is a neighborhood ofx in the set C1, so there is
an E > 0 such that

Bc(x,E) C (UflC1).

Choose rn so that 2/rn < rmn(Ei Ek). Because the collection covers X, there
must be an element D of containing x. Because refines there must be
an element 1/rn) of for some C E C and some y E C, that contains D.
Because

x E D C 1/rn),

the point x belongs to C, so that C must be one of the sets C1,. , C = C.
Since 1/rn) has diameter at most 2/rn < E, it follows that

x E Dc 1/rn) C BC,(X,EI) CU,

as desired.

Exercises

1. Compare Theorem 42.1 with Exercises 7 and 8 of §34.

2. (a) Show that for each x E Sc2, the section of Sc2 by x has a countable basis and
hence is metrizable.

(b) Conclude that Sc2 is not paracompact.



Chapter 7

Complete Metric Spaces
and Function Spaces

The concept of completeness for a metric space is one you may have seen already. It is
basic for all aspects of analysis. Although completeness is a metric property rather than
a topological one, there are a number of theorems involving complete metric spaces
that are topological in character. In this chapter, we shall study the most important
examples of complete metric spaces and shall prove some of these theorems.

The most familiar example of a complete metric space is euclidean space in either
of its usual metrics. Another example, just as important, is the set C(X, Y) of all
continuous functions mapping a space X into a metric space Y This set has a metric
called the metric, analogous to the uniform metric defined for in §20. If Y
is a complete metric space, then C(X, Y) is complete in the uniform metric. This we
demonstrate in §43. As an application, we construct in §44 the well-known Peano
space-filling curve

One theorem of topological character concerning complete metric spaces is a the-
orem relating compactness of a space to completeness. We prove it in §45 An im-
mediate corollary is a theorem concerning compact subspaces of the function space
C(X, W'); it is the classical version of a famous theorem called Ascoli's theorem

There are other useful topologies on the function space C(X, Y) besides the one
derived from the uniform metric. We study some of them in §46, leading to a proof of
a general version of Ascoli's theorem in §47.

263
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§43 Complete Metric Spaces

In this section we define the notion of completeness and show that if Y is a complete
metric space, then the function space C(X, Y) is complete in the uniform metric. We
also show that every metric space can be imbedded isometrically in a complete metric
space.

Definition. Let (X, d) be a metric space A sequence of points of X is said to
be a Cauchy sequence in (X, d) if it has the property that given E > 0, there is an
integer N such that

d(Xn,Xm) <E whenevern,m N

The metric space (X, d) is said to be complete if every Cauchy sequence in X con-
verges.

Any convergent sequence in X is necessanly a Cauchy sequence, of course; com-
pleteness requires that the converse hold

Note that a closed subset A of a complete metric space (X, d) is necessanly
plete in the restricted metric. For a Cauchy sequence in A is also a Cauchy sequence
in X, hence it converges in X. Because A is a closed subset of X, the limit must lie in
A.

Note also that if X is complete under the metric d, then X is complete under the
standard bounded metric

d(x, y) = min(d(x, y), 1)

corresponding to d, and conversely. For a sequence is a Cauchy sequence under d
if and only if it is a Cauchy sequence under d And a sequence converges under d if
and only if it converges under d.

A useful criterion for a metric space to be complete is the following:

Lemma 43.1. A metric space X is complete if every Cauchy sequence in X has a
convergent subsequence.

Pmof Let be a Cauchy sequence in (X, d) We show that if has a sub-
sequence that converges to a point x, then the sequence itself converges
to x.

Given E > 0, first choose N large enough that

d(Xn,Xm) <E/2

for all n, m N [using the fact that is a Cauchy sequence]. Then choose an
integer i large enough that n1 > N and

x) <E/2
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[using the fact that n < n2 < is an increasing sequence of integers and
converges to x]. Putting these facts together, we have the desired result that for n N,

x) x) <E.

Theorem 43.2. Euclidean space IRk is complete in either of its usual metrics, the
euclidean metric d or the square metric p.

Pmof To show the metric space (IRk, p) is complete, let be a Cauchy sequence
in (IRk, p). Then the set is a bounded subset of (IRk, p). For if we choose N so
that

P(Xn,Xrn) 1

for all n, m > N, then the number

M = 0),..., p(xN_1,O), p(xN, 0) + l}

is an upper bound for 0). Thus the points of the sequence all lie ri the cube
[—M, M]k. Since this cube is compact, the sequence has a convergent subse-
quence, by Theorem 28.2. Then (IRk, p) is complete.

To show that (IR", d) is complete, note that a sequence is a Cauchy sequence rela-
tive to d if and only if it is a Cauchy sequence relative to p, and a sequence converges
relative to d if and only if it converges relative to p.

Now we deal with the product space We need a lemma about sequences in a
product space.

Lemma 43.3. Let X be the product space X = fl Xe,; let be a sequence of points
of X. Then x if and only if —* for each a.

Proof This result was given as an exercise in § 19; we give a proof here. Because the
projection mapping JTr X —* Xa is continuous, it preserves convergent sequences;
the "only if" part of the lemma follows. To prove the converse, suppose Ira +
JTr(x) for each E J. Let U = fl be a basis element for X that contains x. For
each a for which Ua does not equal the entire space Xr, choose so that YTa E

for n Na. Let N be the largest of the numbers then for all n N, we have

Theorem 43.4. There is a metric for the product space 1kW relative to which IRW

complete.

Proof Let d(a, b) = minf Ia — bI, 1) be the standard bounded metnc on IR. Let D be
the metric on IRW deñned by

D(x,y) = sup{d(xt, y)/i}.
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Then D induces the product topology on Rw; we verify that RW is complete under D.
Let be a Cauchy sequence in (Rw, D). Because

ID(x,y),

we see that for fixed i the sequence is a Cauchy sequence in R, so it converges,
say to a. Then the sequence converges to the point a = (ai, a2, .. .) of Rw.

EXAMPLE 1. An example of a noncompLete metric space is the space Q of rational
numbers in the usual metric d(x, y) Ix — yl. For instance, the sequence

1.4, 1.41, 1.414, 1 4142, 1.41421,..

of finite decimals converging (in IR) to is a Cauchy sequence in Q that does not converge
(inQ).

EXAMPLE 2. Another noncomplete space is the open interval (—1, 1) in JR. in the metric
d(x, y) = Ix — yl. In this space the sequence (x,) defined by

= 1 — I/n

is a Cauchy sequence that does not converge This example shows that completeness is
not a topological property, that is. it is not preserved by homeomorphisms For (—1, 1) ts
homeomorphic to the real line IR, and JR is compLete in its usual metric.

Although both the product spaces 1W' and RW have metncs relative to which they
are complete, one cannot hope to prove the same result for the product space in
general, because is not even metrizable if J is uncountable (see §21). There is,
however, another topology on the set R', the one given by the uniform metnc. Relative
to this metric, R' is complete, as we shall see.

We define the uniform metnc in general as follows:

Definition. Let (Y, d) be a rnetnc space; let d(a, b) = min(d(a, b), 1} be the stan-
dard bounded metnc on Y denved from d. If x = (Xa)a€J andy = are points
of the cartesian product Y1, let

E J).

It is easy to check that p is a metric; it is called the uniform metric on Y1 correspond-
ing to the metnc d on Y.

Here we have used the standard "tuple" notation for the elements of the cartesian
product yJ• Since the elements of Y1 are simply functions from J to Y, we could
also use functional notation for them. In this chapter, functional notation will be more
convenient than tuple notation, so we shall use it throughout. In this notation, the
definition of the uniform metric takes the following form: If f, g J —÷ Y, then

,5(f, g) sup{d(f(a), g(a)) a E J).
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Theorem 43.5. If the space Y is complete in the metric d, then the space Y' is
complete in the uniform metric corresponding to d.

Pmof Recall that if (Y, d) is complete, so is (Y, d), where d is the bounded metric
corresponding to d. Now suppose that is a sequence of points of Y1 that is
a Cauchy sequence relative to /5. Given a in J, the fact that

d(fn(a) fm(a)) f5(fn, fm)

for all n, m means that the sequence fi(a), f2(a),... is a Cauchy sequence in (Y, d).
Hence this sequence converges, say to a point Let I : J —k Y be the function
defined by f(a) = We assert that the sequence converges to fin the metnc 5.

Given e > 0, first choose N large enough that <E/2 whenever n, m>
N. Then, in particular,

fm(a)) <E/2

for n, m N and a E J. Letting n and a be fixed, and letting m become arbitranly
large, we see that

f(a)) e/2.

This inequality holds for all a in J, provided merely that n N. Therefore,

for n N, as desired.

Now let us specialize somewhat, and consider the set yX where X is a topological
space rather than merely a set. Of course, this has no effect on what has gone before;
the topology of X is irrelevant when considenng the set of all functions f X —k Y.

But suppose that we consider the subset C(X, Y) of consisting of all continuous
functions f : X —p Y. It turns out that if Y is complete, this subset is also complete
in the uniform metric. The same holds for the set Y) of all bounded functions

f X —+ Y. (A function f is said to be bounded if its image f(X) is a bounded
subset of the metric space (Y, d).)

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The
set C(X, Y) of continuous functions is closed in under the uniform metric. So is
the set (X, Y) of bounded functions. Therefore, If Y is complete, these spaces are
complete in the uniform metric.

Proof The first part of this theorem is just the uniform limit theorem (Theorem 2 L .6)
in a new guise. First, we show that if a sequence of elements

f of yX to the metric on yX, then it converges to f uniformly
in the sense defined in §21, relative to the metnc d on Y. Given e > 0, choose an
integer N such that
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for all n > N. Then for all x X and all n ? N,

f(x)) 1) <e.

Thus converges uniformly to f.
Now we show that C(X, Y) is closed in yX relative to the metric Let f be

an element of yX that is a limit point of C(X, Y). Then there is a sequence of
elements of C(X, Y) converging to f in the metric /5. By the uniform limit theorem,
f is continuous, so that f E C(X, Y).

Finally, we show that 2(X, Y) is closed in yX If f is a limit point of Y),
there is a sequence of elements of Y) converging to 1. Choose N so large
that f) < 1/2. Then forx E X, we have d(fN(x), f(x)) < 1/2, which implies
that d(fN(x), f(x)) < 1/2. It follows that if M is the diameter of the set fN(X), then

f(X) has diameter at most M + I. Hence f E Y).

We conclude that C(X, Y) and Y) are complete in the metric if Y is com-
plete in d.

Definition. If (Y, d) is a rnetnc space, one can define another metnc on the set
Y) of bounded functions from X to Y by the equation

p(f, g) = sup(d(f(x), g(x)) I x E X}.

It is easy to see that p is well-defined, for the set f(X) Ug(X) is bounded if both f(X)
and g(X) are. The metnc p is called the sup metric.

There is a simple relation between the sup metric and the uniform metric. Indeed,
if g E Y), then

g) = min(p(f, g), 11.

For if p(f, g) > 1, then d(f(xo), g(xo)) > 1 for at least one xo E X, so that
d(f(xo), g(xo)) = 1 and ,5(f, g) = 1 by definition. On the other hand, if p(f, g) 1,

then d(f(x), g(x)) = d(f(x), g(x)) 1 for all x, so that ,5(f, g) p(f, g). Thus on
Y), the metnc /5 is just the standard bounded metnc derived from the metric p.

That is the reason we introduced the notation for the uniform metric, back in §20!
If X is a compact space, then every continuous function f X —+ Y is bounded;

hence the sup metric is defined on C(X, Y). If Y is complete under d, then C(X, Y)
is complete under the corresponding uniform metric /5, so it is also complete under
the sup metric p. We often use the sup metric rather than the uniform metric in this
situation.

We now prove a classical theorem, to the effect that every metnc space can be
imbedded isometncally in a complete metric space. (A different proof, somewhat
more direct, is outlined in Exercise 9.) Although we shall not need this theorem, it is
useful in other parts of mathematics.
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Theorem 43.7. Let(X, d) be a metric space. There is an isometric imbedding of X
into a complete metric space.

Proof Let IR) be the set of all bounded functions mapping X into IR. Let xO be
a fixed point of X. Given a E X, define cha : X —÷ JR by the equation

(Pa(X) = d(x, a) — d(x, xo).

We assert that /a is bounded. For it follows, from the inequalities

d(x, a) d(x, b) + d(a, b),

d(x, b) <d(x, a) + d(a, b),

that

Id(x, a) — d(x, b)I d(a, b).

Setting b = we conclude that d(a, xO) for all x.
Define X IR) by setting

We show that ct is an isometric imbedding of (X, d) into the complete metric space
IR), p). That is, we show that for every pair of points a, b E X,

=d(a,b).

By definition,

= — (Pb(x)1 x E X}

=sup(ld(x,a)—d(x,b)1; XE X}.

We conclude that

_<d(a,b).

On the other hand, this inequality cannot be strict, for when x a,

Id(x,a) —d(x,b)l =d(a,b).

Definition. Let X be a metnc space. If h X Yisan isometric imbedding of X
into a complete metnc space Y, then the subspace h(X) of Y is a complete metric
space. It is called the completion of X.

The completion of X is uniquely determined up to an isometry. See Exercise 10.
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Exercises

1. Let X be a metnc space.
(a) Suppose that for some 0, every c-ball in X has compact closure. Show

that X is complete.
(b) Suppose that for each x E X there is an > 0 such that the ball B(x, e)

has compact closure. Show by means of an example that X need not be
complete.

2. Let (X, and (Y, dy) be metnc spaces; let Y be complete. Let A C X. Show
that if f : A —÷ Y is uniformly continuous, then f can be uniquely extended to
a continuous function g A —p Y, and g is uniformly continuous.

3. Two metrics d and d' on a set X are said to be metrically equivalent if the identity
map i . (X, d) —÷ (X, d') and its inverse are both uniformly continuous. -
(a) Show that d is metrically equivalent to the standard bounded metric d de-

rived from d
(b) Show that if d and d' are metrically equivalent, then X is complete under d

if and only if it is complete under d'

4. Show that the metnc space (X, d) is complete if and only if for every nested
sequence A1 D A2 of nonempty closed sets of X such that diam An —+ 0,

the intersection of the sets An is nonempty.

5. If (X, d) is a metnc space, recall that a map I : X —* X is called a contraction
if there is a number a < I such that

d(f(x), 1(Y)) ad(x, y)

for all x y E X. Show that if f is a contraction of a complete metric space, then
there is a urnque point x E X such that f(x) = x. Compare Exercise 7 of §28.

6. A space X is said to be topologically complete if there exists a metric for the
topology of X relative to which X is complete.
(a) Show that a closed subspace of a topologicaUy complete space is topologi-

cally complete.
(b) Show that a countable product of topologically complete spaces is topologi-

cally complete (in the product topology).
(c) Show that an open subspace of a topologically complete space is topolog-

ically complete. [Hint: If U C X and X is complete under the metnc d,
define U —+ JR by the equation

1/d(x,X—U).

Imbed U in X x IR by setting 1(x) = x x
(d) Show that if A is a G8 set in a topologically complete space, then A is

topologically complete. [Hint: Let A be the intersection of the open sets
for n E Consider the diagonal imbedding 1(a) = (a, a,...) of A

into fj .1 Conclude that the irrationals are topologically complete.
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7. Show that the set of all sequences (xl, x2, .. ) such that > converges is
complete in the £2-metnc. (See Exercise 8 of §20.)

8. If X and Y are spaces, define

e

by the equation e(x, f) = 1(x); the map e is called the evaluation map. Show
that if d is a metric for Y and C(X, Y) has the corresponding uniform topology,
then e is continuous. We shall generalize this result in §46.

9. Let (X, d) be a metnc space. Show that there is an isometric imbedding h of X
into a complete metnc space (Y, D), as follows: Let X denote the set of all
Cauchy sequences

x=(xI,x2,...)
of points of X. y if

—+ 0.

Let [x] denote the equivalence class of x; and let Y denote the set of these equiv-
alence classes. Define a metric D on Y by the equation

D([x], [y]) = lim
n—*oo

(a) Show that is an equivalence relation, and show that D is a well-defined
metric.

(b) Define h X —÷ Y by letting h(x) be the equivalence class of the constant
sequence(x,x,...):

h(x) = [(xx,..)].
Show that h is an isometric imbedding.

(c) Show that h(X) is dense in Y; indeed, given x = (xl, x2,...) E X, show
the sequence of points of Y converges to the point [x] of Y.

(d) Show that if A is a dense subset of a metnc space (Z, p), and if every Cauchy
sequence in A converges in Z, then Z is complete.

(e) Show that (Y, D) is complete.

10. Theorem (Uniqueness of the completion) Leth : X —+ Y and h': X Y' be
isometric imbeddings of the metric space (X, d) in the complete metric spaces
(YE)) and (Y', D'), respectively. Then there is an isometry of (h(X), D) with
(h'(X), D') that equals h'h' on the subs pace h(X).

A Space-Filling Curve

As an application of the completeness of the metric space C(X, Y) in the uniform
metric when Y is complete, we shall construct the famous "Peano space-filling curve."
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Theorem 44.1. Let I = 1]. There exists a continuous map f : / —÷ j2 whose

image tills up the entire square j2•

The existence of this path violates one's naive geometric intuition in much the
same way as does the existence of the continuous nowhere-differentiable function
(which we shall come to later).

Proof Step 1. We shall construct the map f as the limit of a sequence of continuous
functions First we describe a particular operation on paths, which will be used to
generate the sequence

Begin with an arbitrary closed interval [a, b] in the real line and an arbitrary square
in the plane with sides parallel to the coordinate axes, and consider the triangular path g
pictured in Figure 44.1. It is a continuous map of [a, b] into the square. The operation
we wish to describe replaces the path g by the path g' pictured in Figure 44.2. It is
made up of four triangular paths, each half the size of g. Note that g and g' have the
same initial point and the same final point You can wnte the equations for g and g' if
you like.

g

a b

Figure 44.1

g•

f
I I I LI_1

Figure 44.2

This same operation can also be applied to any tnangular path connecting two
adjacent corners of the square. For instance, when applied to the path h pictured in
Figure 44 3, it gives the path h'

Step 2. Now we define a sequence of functions / —+ j2• The first function,
which we label fo for convenience, is the tnangular path pictured in Figure 44.1, letting
a 0 and b = 1. The next function Ii is the function obtained by applying the
operation described in Step I to the function fo; it is pictured in Figure 44.2. The next
function 12 is the function obtained by applying this same operation to each of the four
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I I

h

tnangular paths that make up li It is pictured in Figure 44.4. The next function
is obtained by applying the operation to each of the 16 triangular paths that make up
12; it is pictured in Figure 44.5. And so on. At the general step, is a path made
up of '4" triangular paths of the type considered in Step 1, each lying in a square of
edge length I/21z. The function is obtained by applying the operation of Step I
to these tnangular paths, replacing each one by four smaller triangular paths.

I .1.. I. .1

Figure 44.4

f3

Figure 44.5

> < > <
\J

> < \/
> K

> < > < > K > <

2

Figure 44.3
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Step 3. For purposes of this proof, let d(x, y) denote the square metric on 1R2,

d(x, y) = max(1x1 — yil 1x2 — .v211.

Then we can let p denote the corresponding sup metric on C(1, 12):

p(f, g) = sup(d(f(t), g(t))
I
t E 1).

Because ,2 is closed in R2, it is complete in the square metric; then C(1, J2) is com-
plete in the metric p.

We assert that the sequence of functions (f,,) defined in Step 2 is a Cauchy se-
quence under p. To prove this fact, let us examine what happens when we pass from f,,
to fn+i. Each of the small triangular paths that make up lies in a square of edge
length 1/2". The operation by which we obtain replaces each such triangular
path by four triangular paths that lie in the same square. Therefore, in the square
metric on j2 the distance between and is at most 1/2". As a result,
P(fn, fn+i) 1/2". It follows that (f,,) isa Cauchy sequence, since

P(fn' fn+m) 1/2" + + ... + l/2n+m_1 2/2"

for all n and m.

Step 4. Because C(1, 12) is complete, the sequence converges to a continuous
function f : I —÷ We prove that f is surjective.

Let x be a point of /2; we show that x belongs to f(I). First we note that, given n,
the path comes within a distance of 1/2" of the point x. For the path touches
each of the little squares of edge length 1/2" into which we have divided

Using this fact, we shall prove that, given 0, the c-neighborhood of x inter-
sects f(1). Choose N large enough that

1) <e/2 and 112N <€/2.

By the result of the previous paragraph, there is a point to e I such thatd(x, fN(to))
112N Then since d(fN(t), f(t)) <e/2 for all t, it follows that

d(x,f(to)) <e,

so the c-neighborhood of x intersects f(1).
It follows that x belongs to the closure of f(1). But / is compact, so f(1) is

compact and is therefore closed. Hence x lies in f(1), as desired.

Exercises

1. Given n, show there is a continuous surjective map g: I —÷ 1". [Hint: Consider
f x -÷ x

2. Show there is a continuous surjective map f IR —÷ IR".
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3. (a) If RW is given the product topology, show there is no continuous surjective
map f : JR —÷ [Hint: Show that RW is not a countable union of compact
subspaces.]

(b) If is given the product topology, determine whether or not there is a
continuous surjective map of JR onto the subspace JR°°.

(c) What happens to the statements in (a) and (b) jf JRW is given the uniform
topology or the box topology?

4. (a) Let X be a Hausdorif space. Show that if there is a continuous surjective
map f : / —+ X, then X is compact, connected, weakly locally connected,
and rnetnzable. [Hint: Show f is a perfect map.]

(b) The converse of the result in (a) is a famous theorem of point-set topology
caLled the Hahn -Mazurkiewicz theorem (see [H-Y1, p. 129). Assuming this
theorem, show there is a continuous surjective map f I

A Hausdorif space that is the continuous image of the closed unit interval is
often called a Peano space.

§45 Compactness in Metric Spaces

We have already shown that compactness, limit point compactness, and sequential
compactness are equivalent for metric spaces. There is still another formulation of
compactness for metric spaces, one that involves the notion of completeness. We
study it in this section. As an application, we shall prove a theorem charactenzing
those subspaces of C(X, IR") that are compact in the uniform topology.

How is compactness of a metnc space X related to completeness of X? It follows
from Lemma 43 1 that every compact metric space is complete. The converse does not
hold—a complete metric space need not be compact. It is reasonable to ask what extra
condition one needs to impose on a complete space to be assured of its compactness.
Such a condition is the one caLled total boundedness.

Definition. A metric space (X, d) is said to be totally bounded if for every E > 0,

there is a finite covering of X by E-balls.

EXAMPLE 1. Total boundedness clearly implies boundedness. For if B(xi, 1/2)
1/2) is a finite covenng of X by open balls of radius 1/2, then X has diameter at

most 1 + max(d(x, The converse does not hold, however. For example. in the metnc
d(a, b) = min{ 1, Ia — bi), the real line R is bounded but not totally bounded.

EXAMPLE 2. Under the metric d(a, b) = a — bI, the real line JR is complete but
not totally bounded, while the subspace (—1, 1) is totally bounded but not complete. The
subspace [—1, 1] is both complete and totally bounded.
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Theorem 45.1. A metric space (X, d) is compact if and only if it is complete and
totally bounded.

Proof If X is a compact metric space, then X is complete, as noted above. The fact
that X is totally bounded is a consequence of the fact that the covering of X by all
open e-balls must contain a finite subcovering.

Conversely, let X be complete and totally bounded. We shall prove that X is
sequentially compact. This will suffice.

Let be a sequence of points of X. We shall construct a subsequence of
that is a Cauchy sequence, so that it necessarily converges. First cover X by finitely
many balls of radius 1. At least one of these balls, say Bf, contains for infinitely
many values of n. Let if be the subset of Z÷ consisting of those indices n for which

X by finitely many balls of radius 1/2. Because i1 is infinite, at
least one of these balls, say B2, must contain for infinitely many values of n in if.
Choose to be the set of those indices n for which n E i1 and E 82. In general,
given an infinite set ik of positive integers, choose ik+ to be an infinite subset of ik
such that there is a ball Bk÷1 of radius 1/(k + I) that contains for all n E ik+1.

Choose 'if E i1. Given 'ik, choose 'ik÷l E such that 'ik÷l > ni; this we
can do because ik+1 is an infinite set. Now for i, j k, the indices ri and n, both
belong to ik (because i1 12 is a nested sequence of sets). Therefore, for all
i, j > k, the points and are contained in a ball Bk of radius 1/k. It follows that
the sequence is a Cauchy sequence, as desired. I

We now apply this result to find the compact subspaces of the space C(X, IR"), in
the uniform topology. We know that a subspace of IR" is compact if and only if it is
closed and bounded. One might hope that an analogous result holds for C(X, W'). But
it does not, even if X is compact. One needs to assume that the subspace of C(X, IR")
satisfies an additional condition, called equicontinuity. We consider that notion now.

Definition. Let (Y, d) be a metric space. Let Y be a subset of the function space
C(X, Y). If E X, the set Y of functions is said to be equicontinuous at xO if given

> 0, there is a neighborhood U of such that for all x E U and all f E Y,

d(f(x), f(xo)) <E.

If the set Y is equicontinuous at xo for each E X, it is said simply to be equicon-
tinuous.

Continuity of the function I at xo means that given I and given > 0, there exists
a neighborhood U of such that d(f(x), f(xo)) < e for x E U. Equicontinuity
of Y means that a single neighborhood U can be chosen that will work for all the
functions f in the collection F.

Note that equicontinuity depends on the specific metric d rather than merely on
the topology of Y.
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Lemma 45.2. Let X be a space; let (Y, d) be a metric space. If the subset Y
of C(X, Y) is totally bounded under the uniform metric corresponding to d, then Y is
equicontinuous under d.

Proof Assume Y is totally bounded. Given 0 < E < 1, and given xo, we find a
neighborhood U of xo such that d(f(x), f(xo) for x E U and f e Y.

Set 8 = E/3; cover Y by finitely many open S-balls

B(fi,8)

in C(X, Y). Each function 1 is continuous; therefore, we can choose a neighbor-
hoodUofx0suchthatfori = I

d(f1(x),f(xo)) <8

wheneverx E U.
Let f be an arbitrary element of Y. Then I belongs to at least one of the above

8-balls, say to B(f, 8). Then for x E U, we have

d(f(x), <8,
d(f1(x),f(xo)) <8,
d(f,(xo), f(xo)) <8.

The first and third inequalities hold because f) < 8, and the second holds be-
cause x E U. Since 8 < 1, the first and third also hold if d is replaced by d; then the
triangle inequality implies that for all x E U, we have d(f(x), f(xo)) <E, as desired.

Now we prove the classical version of Ascoli's theorem, which concerns compact
subspaces of the function space C(X, IR"). A more general version, whose proof does
not depend on this one, is given in §47. The general version, however, relies on the
Tychonoff theorem, whereas this one does not.

We begin by proving a partial converse to the preceding lemma, which holds
when X and Y are compact.

Lemma 45.3. Let X be a space; let (Y, d) be a metric space; assume X and Y are
compact. If the subset Y of C(X, Y) is equiconLinuous under d, then Y is totally
bounded under the uniform and sup metrics to d.

Proof Since X is compact, the sup metnc p is defined on C(X, Y). Total bounded-
ness under p is equivalent to total boundedness under for whenever e < 1, every
e-ball under p is also an under and conversely. Therefore, we may as well
use the metric p throughout.

Assume Y is equicontinuous. Given e > 0, we cover Y by finitely many sets that
are open E-balls in the metric p.
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Set 8 = E/3. Given any a E X, there is a corresponding neighborhood of a
such that d(f(x), f(a)) < 8 for all x E U0 and all f E Cover X by finitely
many such neighborhoods Ua, for a = at denote Ua, by U1. Then cover Y by
finitely many open sets Vm of diameter less than S.

Let J be the collection of all functions a: { 1 k) —÷ (1 m). Given a E J,
if there exists a function f of Y such that f(a1) E for each i = 1 k, choose
one such function and label The collection (fe,) is indexed by a subset i' of the
set J and is thus finite We assert that the open balls Bp(fq, E), for a E J', cover 5.

Let f be an element of Y. For each I = 1 k, choose an integer a(i) such
that f(a) E Vr(j). Then the function a is in f. We assert that f belongs to the ball

e).
Let x be a point of X. Choose i so that x E U. Then

d(f(x), f(a)) <8,
d(f(a1), fa(a)) <8,

<8.

The first and third inequalities hold because x E LI1, and the second holds because
and are in Vr(,). We conclude that d(f(x), < e. Because this

inequality holds for every x E X,

p(f, fe,) = max{d(f(x), fa(x)))

Thus I belongs to E), as asserted.

Definition. If (Y, d) is a metric space, a subset of C(X, Y) is said to be pointwise
bounded under d if for each x E X, the subset

= {f(a)
I f E

of Y is bounded under d.

Theorem 45.4 (Ascoli's theorem, classical version). Let X be a compact space;
let d) denote euclidean space in either the square metric or the euclidean metric;
give C(X, R") the corresponding uniform topology. A subspace Y of C(X, W') has
compact closure if and only if Y is equicontinuous and pointwise bounded under d.

Proof Since X is compact, the sup metric p is defined on C(X, IR") and gives
the uniform topology on C(X, 1W'). Throughout, let 9 denote the closure of Y in
C(X,Rlz).

Step 1. We show that if 9 is compact, then 9 is equicontinuous and pointwise
bounded under d. Since Y C 9, it follows that is also equicontinuous and pointwise
bounded under d. This proves the "only if" part of the theorem.

Compactness of 9 implies that 9 is totally bounded under p and 5 by Theo-
rem 45.1, this in turn implies that 9 is equicontinuous under d, by Lemma 45.2.
pactness of 9 also implies that 9 is bounded under p; this in turn implies that 9 is



§45 Compactness in Metric Spaces 279

pointwise bounded under d. For if p(f, g) M for all f, g E 9, then in particular
d(f(a), g(a)) < M for f, g E 9, so that 9a has diameter at most M.

Step 2. We show that if is equicontinuous and pointwise bounded under d, then
so is 9.

First, we check equicontinuity. Given xo E X and given e > 0, choose a neigh-
borhood U of xo such that d(f(x), f(xo)) < e/3 for all x E U and f E Y. Given
g E 9, choose f E Y so that p(f, g) < E/3 The triangle inequality implies that
d(g(x), g(xo)) < e for all x E U. Since g is arbitrary, equicontinuity of 9 at xo
follows.

Second, we verify pointwise boundedness. Given a, choose M so that ciiam Fa
M. Then, given g, g' E 9, choose f, f' E Y such that p(f, g) < 1 and p(f", g') < 1.

Since d(f(a), f'(a)) M, it foljows that d(g(a), g'(a)) M + 2. Then since g
and g' are arbitrary, it follows that diam 9a M + 2.

Step 3. We show that if 9 is equicontinuous and pointwise bounded, then there is
a compact subspace Y of that contains the union of the sets g(X), for g E 9.

Choose, for each a E X, a neighborhood Ua of a such that d(g(x), g (a)) < 1

for x E Ua and g E 9. Since X is compact, we can cover X by finitely many such
neighborhoods, say for a = a1 Because the sets 9a, are bounded, their union
is also bounded; suppose it lies in the ball of radius N in LW' centered at the ongin.
Then for all g E 9, the set g(X) is contained in the ball of radius N + I centered at
the origin. Let Y be the closure of this ball.

Step 4. We prove the "if" part of the theorem. Assume that Y is equicontinuous
and pointwise bounded under d. We show that 9 is compLete and totally bounded
under p; then Theorem 45.1 implies that 9 is compact.

Completeness is easy, for 9 is a closed subspace of the complete rnetnc space
(C(X, IRn), p).

We verify total boundedness. First, Step 2 implies that 9 is equicontinuous and
pointwise bounded under d; then Step 3 tells us that there is a compact subspace Y
of R" such that 9 C C(X, Y). Equicontinuity of 9 now implies, by Lemma 45.3, that
9 is totally bounded under p. as desired.

Corollary 45.5. Let X be compact; let d denote either the square metric or the
euclidean metric on 1W'; give C(X, the corresponding uniform topology. A sub-
space F of C(X, W') is compact if and only if it is closed, bounded under the sup
metric p, and equicontinuous under d.

Pmof If Y is compact, it must be closed and bounded; the preceding theorem im-
plies that it is also equicontinuous. Conversely, if is closed, it equals its closure 9; if
it is bounded under p. it is pointwise bounded under d; and if it is also equicontinuous,
the preceding theorem implies that it is compact. U
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Exercises

1. If is metnzable with metric then

D(x, y) = sup{d1(x1, y1)/i)

is a metric for the product space X = fl Show that X is totally bounded
under D if each is totally bounded under Conclude without using the Ty-
chonoff theorem that a countable product of compact metrizable spaces is com-
pact.

2. Let (Y, d) be a metric space; let Y be a subset of C(X, Y).
(a) Show that if Y is finite, then is equicontinuous.
(b) Show that if is a sequence of elements of C(X, Y) that converges uni-

formly, then the collection (f,,) is equicontinuous.
(c) Suppose that .F is a collection of differentiable functions I : IR —÷ IR such

that each x E R lies in a neighborhood U on which the denvatives of the
functions in Y are uniformly bounded. [This means that there is an M such
that lf'(x)I M for all f in and all x E U.] Show that is equicontin-
uous.

3. Prove the following:
Theorem (Arzela 's theorem). Let X be compact; let E C (X, IRk). If the
collection J is point wise bounded and equicontinuous, then the sequence
has a uniformly convergent subsequence.

4. (a) Let : / IR be the function = x". The collection =
is pointwise bounded but the sequence has no uniformly convergent
subsequence; at what point or points does Y fail to be equicontinuous?

(b) Repeat (a) for the functions of Exercise 9 of §21.

5. Let X be a space. A subset Y of C(X, IR) is said to vanish at infinity
if given E > 0, there is a compact subspace C of X such that f(x)l < E for
X E X — C and f E If Y consists of a single function f, we say simply
that f vanishes at infinity. Let Co(X, IR) denote the set of continuous functions
1: X -÷ IR that vanish at infinity.
Theorem. Let X be locally compact Hausdorff give C0(X, IR) the uniform
topology. A subset of C0(X, IR) has compact closure if and only if it is point-
wise bounded, equicontinuous, and vanishes uniformly at infinity.

[Hint: Let Y denote the one-point cornpactification of X. Show that C0(X, R)
is isometric with a closed subspace of C(Y, R) if both are given the sup metric.]

6. Show that our proof of Ascoli's theorem goes through if IRIZ is replaced by any
metric space in which all closed bounded subspaces are compact.

Let (X, d) be a metric space. If A C X and E > 0, let U(A, e) be the e-
neighborhood of A. Let R be the collection of all (nonempty) closed, bounded
subsets ofX. If A, B E define

D(A,B)=inffr IA C U(B,e)andB C
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(a) Show that D is a metnc on R; it is called the Hausdorff metric.
(b) Show that if (X, d) is complete, so is (R, D). [Hint: Let be a Cauchy

sequence in R; by passing to a subsequence, assume
A to be the set of all points x that arethe limits of sequences xi, X2,

such that x E A for each i and d(x1, x+i) < 1/2. Show —+ A.]
(c) Show that if (X, d) is totally bounded, so is D). [Hint: Given E, choose

8 < e and let S be a finite subset of X such that the collection { 8)
I

x E S) covers X. Let 4 be the collection of all nonempty subsets of 5; show

that {BD(A, e)
I A E A) covers

(d) Theorem. If X is compact in the metric d, then the space R is compact in
the Hausdorffmetnc D.

*8, Let (X, and (Y, dy) be metnc spaces; give X x Y the corresponding square
metnc; let R denote the collection of all nonempty closed, bounded subsets of
X x Y in the resulting Hausdorif metric. Consider the space C(X, Y) in the
uniform metnc; let gr : C(X, Y) —÷ R be the function that assigns, to each
continuous function f: X —p Y, its graph

Gj= (xxf(x)Ix EX).

(a) Show that the map gr is injective and uniformly continuous.
(b) Let Jt'o denote the image set of the map gr; let g : C(X, Y) -+ be the

surjective map obtained from gr. Show that if f X —+ Y is uniformly
continuous, then the map g1 is continuous at the point Gj.

(c) Give an example where g1 is not continuous at the point Gf.
(d) Theorem. If X is compact, then gr C(X, Y) —÷ R is an imbedcling.

§46 Pointwise and Compact Convergence

There are other useful topologies on the spaces yX and C(X, Y) in addition to the
uniform topology. We shall consider three of them here; they are called the topology
of pointwise convergence, the topology of compact convergence, and the compact-open
topology.

Definition. Given a point x of the set X and an open set U of the space Y, let

S(x, U) = LI I f e yX and f(x) E U).

The sets S(x, U) are a subbasis for topology on yX, which is called the topology of
pointwise convergence (or the point-open topology).

The general basis element for this topology is a finite intersection of subbasis
elements S(x, U). Thus a typical basis element about the function f consists of all
functions g that are "close" to f at finitely many points. Such a neighborhood is
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illustrated in Figure 46.1; it consists of all functions g whose graphs intersect the three
vertical intervals pictured.

The topology of pointwise convergence on is nothing new. It is just the product
topology we have already studied. If we replace X by f and denote the general element
off by a to make it look more familiar, then the set S(a, U) of all functions x: f —÷ Y

such that x(a) E U is just the subset 7ç'(U) of Y', which is the standard subbasis
element for the product topology.

The reason for calling it the topology of pointwise convergence comes from the
following theorem:

Theorem 46.1. A sequence f
of pointwise convergence if and only if for each x in X, the sequence (x) of

points of Y converges to the point f(x).

Proof This result is just a reformulation, in function space notation, of a standard
result about the product topology proved as Lemma 43.3.

EXAMPLE 1. Consider the space IR', where I = [0, 11. The sequence of continuous
functions given by (x) = converges in the topology of pointwise convergence to the
function f defined by

0f(x)=
1 forx=1.

This example shows that the subspace C(!, R) of continuous functions is not closed in R'
in the topology of pointwise convergence.

Figure 46.1
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We know that a sequence of continuous functions that converges in the uni-
form topology has a continuous limit, and the preceding example shows that a se-
quence that converges only in the topology of pointwise convergence need not. One
can ask whether there is a topology intermediate between these two that will suffice
to ensure that the limit of a convergent sequence of continuous functions i s continu-
ous. The answer is "yes", assuming the (fairly mild) restnction that the space X be
compactly generated, it will suffice if converges to f in the topology of compact
convergence, which we now define.

Definition. Let (Y, d) be a metric space; let X be a topological space. Given an
element f of a compact subspace C of X, and a number e > 0, let Bc(f e)
denote the set of all those elements g of for which

sup{d(f(x), g(x)) I x E C) <€.

The sets Bc(f, E) form a basis for a topology on It is called the topology of com-
pact convergence (or sometimes the "topology o uniform convergence on compact
sets").

It is easy to show that the sets Bc(f, E) satisfy the conditions for a basis. The
crucial step is to note that if g E E), then for

8 = e — sup(d(f(x), g(x)) I x C),

we have Bc(g,8) C Bc(f,e).
The topology of compact convergence differs from the topology of pointwise con-

vergence in that the general basis element containing f consists of functions that are
"close" to f not just at finitely many points, but at all points of some compact set.

The justification for the choice of terminology comes from the following theorem,
whose proof is immediate.

Theorem 46.2. A sequence X —÷ Y of functions converges to the function f
in the topology of compact convergence if and only if for each compact subspace C
of X, the sequence f IC.

Definition. A space X is said to be compactly generated if it satisfies the following
condition: A set A is open in X if A fl C is open in C for each compact subspace C
of X.

This condition is equivalent to requiring that a set B be closed in X if B fl C is
closed in C for each compact C. It is a fairly mild restriction on the space; many
familiar spaces are compactly generated. For instance:

Lemma 46.3. If X is locally compact, or if X satisfies the first countability axiom,
then X is compactly generated.
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Proof Suppose that X is locally compact. Let A fl C be open in C for evezy compact
subspace C of X. We show A is open in X. Given x E A, choose a neighborhood U
of x that lies in a compact subspace C of X. Since A fl C is open in C by hypothesis,
AflU is open in U, and hence open in X. Then A flU is a neighborhood of x contained
in A, so that A is open in X.

Suppose that X satisfies the first countability axiom. If B fl C is closed in C for
each compact subspace C of X, we show that B is closed in X. Let x be a point of B;
we show that x E B. Since X has a countable basis at x, there is a sequence of
points of B converging to x. The subspace

C = (x) U I n E

is compact, so that B fl C is by assumption closed in C. Since B fl C contains
x x as desired.

The crucial fact about compactly generated spaces is the following:

Lemma 46.4. If X is compactly generated, then a function f : X —÷ Y is continuous
if for each compact subspace C of X, the restricted function f IC is continuous.

Proof Let V be an open subset of Y; we show that f'(V) is open in X. Given any
subspace C of X,

f1(V) fl C = (fICY'(V).

If C is compact, this set is open in C because f C is continuous. Since X is compactly
generated, it follows that f'(V) is open in X.

Theorem 46.5. Let X be a compactly generated space: let (Y, d) be a metric space.
Then C(X, Y) is closed in in the topology of compact convergence.

Proof Let f be a limit point of C(X, Y); we wish to show f is continuous.
It suffices to show that f IC is continuous for each compact subspace C of X. For
each n, consider the neighborhood Bc(f, 1/n) of f; it intersects C(X, Y), so we can
choose a function C(X, Y) lying in this neighborhood. The sequence of functions

C —÷ Y converges uniformly to the function f IC, so that by the uniform limit
theorem, f IC is continuous.

Corollary 46.6. Let X be a compactly generated space; let (Y, d) be a metric space.
If a sequence of continuous functions f in the topology of
compact convergence, then f is continuous.

Now we have three topologies for the function space when Y is metnc. The
relation between them is stated in the following theorem, whose proof is straightfor-
ward.
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Theorem 46.7. Let X be a space; let (Y, d) be a metric space. For the function
space yX one has the following inclusions of topologies:

(uniform) (compact convergence) D (pointwise convergence).

If X is compact, the first two coincide, and if X is discrete, the second two coincide.

Now the definitions of the uniform topology and the compact convergence topol-
ogy made specific use of the metric d for the space Y. But the topology of pointwise
convergence did not; in fact, it is defined for any space Y. It is natural to ask whether
either of these other topologies can be extended to the case where Y is an arbitrary
topological space. There is no satisfactory answer to this question for the space
of all functions mapping X into Y. But for the subspace C(X, Y) of continuous func-
tions, one can prove something. It turns out that there is in general a topology on
C(X, Y), called the compact-open topology, that coincides with the compact conver-
gence topology when Y is a metric space. This topology is important in its own right,
as we shall see.

Definition. Let X and Y be topological spaces. If C is a compact subspace of X
and U is an open subset of Y, define

S(C,U)=ff I fE C(X, Y)andf(C)c U).

The sets S(C, U) form a subbasis for a topology on C(X, Y) that is called the compact-
open topology.

It is clear from the definition that the compact-open topology is finer than the
pointwise convergence topology. The compact-open topology can in fact be defined
on the entire function space It is, however, of interest only for the subspace
C(X, Y), so we shall consider it only for that space.

Theorem 46.8. LetX beaspace and let(Y, d) bea metric space. On the set C(X, Y),
the compact-open topology and the topology of compact convergence coincide.

Proof If A is a subset of Y and e > 0, let U(A, e) be the E-neighborhood of A.
If A is compact and V is an open set containing A, then there is an e > 0 such
that U(A, E) c V. Indeed, the mimmum value of the function d(a, X — V) is the
required E.

We first prove that the topology of compact convergence is finer than the compact-
open topology Let S(C, U) be a subbasis element for the compact-open topology, and
let f be an element of S(C, U). Because f is continuous, f(C) is a compact subset
of the open set U. Therefore, we can choose e so that e-neighborhood of f(C) lies in
U. Then, as desired,

Bc(f, E) C S(C, U).

Now we prove that the compact-open topology is finer than the topology of com-
pact convergence. Let f C(X, Y). Given an open set about I in the topology of
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compact convergence, it contains a basis element of the form Bc(f, E). We shall find
a basis element for the compact-open topology that containsf and lies in Bc(f, E).

Each point x of X has a neighborhood such that lies in an open set
of Y having diameter less than E. [For example, choose so that lies in
the E/4-neighborhoOd of f(x). Then lies in the e/3-neighborhood of f(x),
which has diameter at most 2e/3.] Cover C by finitely many such sets say for
x = Let = fl C. Then is compact, and the basis element

contains f and lies in Bc(f, E), as desired. U

Corollary 46.9. Let Y be a metric space The compact convergence topology on
e(X, Y) does not depend on the metric of Y. Therefore if X is compact, the uniform
topology on C(X, Y) does not depend on the metric of Y.

The fact that the definition of the compact-open topology does not involve a met-
ric is just one of its useful features. Another is the fact that it satisfies the require-
ment of "joint continuity." Roughly speaking, this means that the expression f(x) is
continuous not only in the single "variable" x, but is continuous jointly in both the
"vanables" x and f More precisely, one has the following theorem.

Theorem 46.10. Let X be locally compact Hausdorff let C(X, Y) have the compact-
open topology. Then the map

e: X x e(X, Y) —+ Y

defined by the equation

e(x, f) = f(x)

is continuous

The map e is called the evaluation map.

Proof Given a point (x, f) of X x C(X, Y) and an open set V in Y about the image
point e(x, f) = f(x), we wish to find an open set about (x, f) that e maps into V.
First, using the continuity of f and the fact that X is locally compact Hausdorff, we
can choose an open set U about x having compact closure U, such that f carries U
into V. Then consider the open set U x S(U, V) in X x C(X, Y). it is an open set
containing (x, f). And if (x', f') belongs to this set, then e(x', f') f'(x') belongs
to V, as desired.

A consequence of this theorem is the theorem that follows. It is useful in algebraic
topology.
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Definition. Given a function f : X x Z —÷ Y, there is a corresponding function
F: Z -+ C(X, Y), defined by the equation

(F(z))(x) = f(x, z).

Conversely, given F Z —f C(X, Y), this equation defines a corresponding function
1: X x Z -÷ Y. We say that F is the map of Z into C(X, Y) that is induced by f.

Theorem 46.11. Let X and Y be spaces; give e(X, Y) the topology.
1ff : X x Z —+ Y is continuous, then so is the induced function F: Z —÷ C(X, Y).

The converse holds if X is locally compact Hausdorff.

Proof Suppose first that F is continuous and that X is locally compact Hausdorif. It
follows that f is continuous, since f equals the composite

x x x e(X,

where is the identity map of X.
Now suppose that f is continuous. To prove continuity of F, we take a point zo

of Z and a subbasis element S(C, U) for C(X, Y) containing F(zo), and find a neigh-
borhood W that is mapped by F into S(C, U). This wiLL suffice.

The statement that lies in S(C, U) means simpLy that (F(zo))(x) = f(x, zo)
is in U for all x E C. That is, f(C x zo) C U. Continuity of f impLies that (U)
is an open set in X x Z containing C x zo. Then

Z)

is an open set in the subspace C x Z containing the slice C x zo. The tube lemma of §26
implies that there is a neighborhood W of zo in Z such that the entire tube C x W lies
in f'(U). See Figure 46.2. Then forz E W andx E C, we have f(x, z) E U. Hence
F(W) C S(C, U), as desired.

Figure 46.2
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We discuss briefly the connections between the compact-open topology and the con-
cept of homoropy, which arises in algebraic topology

If f and g are continuous maps of X into Y, we say that f and g are homotopic if
there is a continuous map

h Xx[O,1]—+Y

such that h(x, 0) = f(x) and h(x, 1) = g(x) for each x E X. The map h is called a
homotopy between f and g.

Roughly speaking, a homotopy is a "continuous one-parameter family" of maps from
X to Y More precisely, we note that a homotopy h gives nse to a map

H . [0, 1] —+ C(X, Y)

that assigns, to each parameter value t in [0, 1], the corresponding continuous map from X
to Y. Assuming that X is locally compact Hausdorif, we see that h is continuous if and only
if H is continuous This means that a homotopy h between f and g corresponds precisely
to a path in the function space C(X, Y) from the point f of C(X, Y) to the point g

We shall return to a more detailed study of homotopy in Part H of the book.

Exercises

1. Show that the sets E) form a basis for a topology on

2. Prove Theorem 46.7.

3. Show that the set £(R, R) of bounded functions f IR —÷ IR is closed in IRR in
the umform topology, but not in the topology of compact convergence.

4. Consider the sequence of continuous functions : IR —f IR defined by

=x/n.

In which of the three topologies of Theorem 46.7 does this sequence converge?
Answer the same question for the sequence given in Exercise 9 of §21.

5. Consider the sequence of functions . (—1, 1) —+ IR, defined by

= >kxk.

(a) Show that converges in the topology of compact convergence; conclude
that the limit function is continuous. (This is a standard fact about power
senes.)

(b) Show that does not converge in the uniform topology

6. Show that in the compact-open topology, C(X, Y) is Hausdorif if Y is Hausdorif,
and regular if Y is regular. [Hint. If U C V. then S(C, U) C S(C, V).]
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7. Show that if Y is locally compact Hausdorff, then composition of maps

C(X, Y) x C(Y, Z) —÷ e(X, Z)

is continuous, provided the compact-open topology is used throughout. [Hint. If
gof E S(C, U), find V suchthatf(C) C V andg(V)c

8. Let C'(X, Y) denote the set C(X, Y) in some topology 7. Show that if the
evaLuation map

e: X x C'(X, Y) —÷ Y

is continuous, then 7 contains the compact-open topoLogy. [Hint: The induced
map E : C'(X, Y) —÷ C(X, Y) is continuous.]

9. Here is an (unexpected) application of Theorem 46 11 to quotient maps. (Com-

pare Exercise 11 of §29.)
Theorem. if p: A —* B is a quotient map and X is locally compact Hausdorif,
then x p X x A —÷ X x B is a quotient map.

Proof
(a) Let Y be the quotient space induced by 1x x p; let q : X x A Y be the

quotient map. Show there is a bijective continuous map f Y —+ X x B
such that f oq = ix x p.

(b) Letg = LetG. B -÷ C(X,Y)andQ : A C(X,Y)bethemaps
induced by g and q, respectively. Show that Q = G o p.

(c) Show that Q is continuous; conclude that G is continuous, so that g is con-
tinuous.

*10. A space is LocalLy compact if it can be covered by open sets each of which is
contained in a compact subspace of X It is said to be 7-compact if it can be
covered by countably many such open sets.
(a) Show that if X is locally compact and second-countable, it is a-compact.
(b) Let (Y, d) be a metric space. Show that if X is a-compact, there is a met-

nc for the topology of compact convergence on such that if (Y, d) is

complete, yX is complete in this metric. [Hint: Let A1, A2,. . be a count-
able collection of compact subspaces of X whose intenors cover X. Let V
denote the set of all functions from A to Y, in the uniform topology. De-
fine a homeomorphism of yX with a closed subspace of the product space
Y1xY2x ..]

11. Let (Y, d) be a metric space; let X be a space. Define a topology on Y) as
follows: Given f C(X, Y), and given a positive continuous function 8 : X
IR÷ on X, let

B(f, 8) = (g I d(f(x), g(x)) <8(x) for all x E X).

(a) Show that the sets B(f, 6) form a basis for a topology on C(X, Y). We caLl

it the fine topology.
(b) Show that the fine topology contains the uniform topology.
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(c) Show that if X is compact, the fine and uniform topologies agree.
(d) Show that if X is discrete, then C(X, Y) = yX and the fine and box topolo-

gies agree.

§47 Ascoli's Theorem

Now we prove a more general version of Ascoli's theorem. It characterizes the com-
pact subspaces of C(X, Y) in the topology of compact convergence. The proof, how-
ever, involves all three of our standard function space topologies: the topology of
pointwise convergence, the topology of compact convergence, and the uniform topol-
ogy.

Theorem 47.1 (Ascoli's theorem). Let X be a space and let (Y, d) be a metric space.
Give C(X, Y) the topology of compact convergence; let be a subset of C(X, Y).

(a) If :F is equicontinuous underd and the set

has compact closure for each a E X, then Y is contained in a compact subspace
of C(X, Y).

(b) The converse holds if X is locally compact Hausdorff.

Proof of (a). Throughout, we give yX the product topology, which is the same as
the topology of pointwise convergence. Then yX is a Hausdorif space. The space
C(X, Y), which has the topology of compact convergence, is not a subspace of yX•
Let 9 be the closure of :r in yX

Step I. We show that 9 is a compact subspace of Given a E X, let Ca denote
the closure of in Y; by hypothesis, Ca is a compact subspace of Y. The set .F is
contained in the product space

flCa,
aEX

since this product by definition consists of all functions f : X —* Y satisfying the
condition f(a) E Ca for all a. This product space is compact, by the Tychonoff
theorem; it is a closed subspace of the product space yX• Because 9 equals the closure
of :F in Y X, is contained in fl Ca, being closed, 9 is therefore compact.

Step 2. We show that each function belonging to is continuous, and indeed that 9
itself is equicontinuous under d.

Given E X and E > 0, choose a neighborhood U of xo such that

(*) d(f(x), f(xo)) < E/3 for aLl f Y and all x E U.

We shall show that d(g(x), g(xo)) <E for all g E and all x E U; it follows that is

equicontinuous.
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Letg 9andletxbeapointofU Define tobethesubsetofYX,openin yX

consisting of all elements h of yX such that

(**) d(h(x), g(x)) <E/3 and d(h(xo), g(xo)) <E/3.

Because g belongs to the closure of :F, the neighborhood of g must contain an
element f of Y. Applying the tnangle inequality to (*) and (**), it follows that
d(g(x), g(xo)) <E, as desired.

Step 3. We show that the product topology on yX and the compact convergence
topoLogy on C(X, Y) coincide on the subset

In general, the compact convergence topology is finer than the product topology.
We prove that the reverse hoLds for the subset Let g be an element of and
let Bc(g, E) be a basis element for the compact convergence topology on yX that
contains g. We find a basis element B for the pointwise convergence topology on yX
that contains g such that

[B fl 9j C [Bc(g, E) fl

Using equicontinuity of and compactness of C, we can cover C by finitely many
open sets U1, .. of X, containing points respectively, such that for
each i, we have

d(g(x), g(xj)) <E/3

for x U and g E 9. Then we define B to be the basis element for defined by the
equation

B =(h Ih E yX and <E/3 for i = 1 n}.

We show that if h is an element of B fl 9, then h belongs to Bc(g, E). That is, we show
thatd(h(x),g(x)) <E forx E C. Givenx E C,choosei sothatx EU. Then

d(h(x), h(x1)) <E/3 and

d(g(x), g(xj)) <E/3

because x U and g, h E 9, while

d(h(x),g(x)) <E/3

because h E B. It follows from the triangle inequality that d(h(x), g(x)) < as
desired.

Step 4. We complete the proof. The set contains and is contained in C(X, Y).
It is compact as a subspace of yX in the product topoLogy. By the result just proved, it
is also compact as a subspace of C(X, Y) in the compact convergence topology.

Pmofof(b). Let R be a compact subspace of C(X, Y) that contains We show
that R is equicontinuous and that Ra is compact for each a E X. It follows that F is
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equicontinuous (since Y C R), and that LPI lies in the compact subspace Ra of Y, so
that is compact.

To show Ra is compact, consider the composite of the map

j:C(X,Y)-+ XxC(X,Y)

defined by j (f) = a x f, and the evaluation map

e: X x C(X, Y) -+

given by the equation e(x x f) = 1(x). The map j is obviously continuous, and the
map e is continuous by Theorems 46.8 and 46.10. The composite e o j maps R to Ra;
since R is compact, so is Ra.

Now we show that R is equicontinuous at a, relative to the metric d. Let A be a
compact subspace of X that contains a neighborhood of a. It suffices to show that the
subset

fER}
of C(A, Y) is equicontinuous at a.

Give C(A, Y) the compact convergence topology. We show that the restriction
map

r : C(X, Y) —÷ C(A, Y)

is continuous. Let f be an eLement of C(X, Y) and let B = Bc(f IA, E) be a basis
element for C(A, Y) containing I IA, where C is a compact subspace of A. Then C
is a compact subspace of X, and r maps the neighborhood Bc(f, E) of f in C(X, Y)
into B.

The map r maps R onto because R is compact, so is Now is a subspace
of C(A, Y); because A is compact, the compact convergence and the uniform
gies on C(A, Y) coincide. It follows from Theorem 45.1 that is totally bounded in
the uniform metric on C(A, Y); then Lemma 45.2 implies that is equicontinuous
relative tod.

An even more general version of Ascoli's theorem may be found in [K] or [Wd].
There it is not assumed that Y is a metric space, but only that it has what is called a
uniform structure, which is a generalization of the notion of metnc.

Ascoli's theorem has many applications in analysis, but these lie outside the scope
of this book. Sec [K-F) for several such appLications.

Exercises

1. Which of the folLowing subsets of C(IR, R) are pointwise bounded? Which are
equicontinuous?
(a) The collection where = x + sinnx.
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(b) The collection (gn), where gn(x) = fl + SiflX.

(c) The collection where =
(d) The collection (ku), where = n sin(x/n).

2. Prove the following
Theorem. If X is a locally compact Hausdorff space, then a subspace :F of

IR'1) in the topology of compact convergence has compact closure if and
only if Y is point wise bounded and equicontinuous under either of the standard
metrics on 1W'.

3. Show that the general version of Ascoli's theorem implies the cLassical version
(Theorem 45.4) when X is Hausdorif.

4. Prove the following:
Theorem (Arzela 's theorem, general version). Let X be a Hausdoiff space that
is a -compact; let be a sequence of functions X —+ iRk. If the collec-
tion is point wise bounded and equicontinuous, then the sequence has a
subsequence that converges, in the topology of compact convergence, to a con-
tinuous function.

[Hint: Show C(X, IRk) is first-countable.]

5. Let (Y, d) be a metric space; let : X -+ Y be a sequence of continuous
functions; let f : X —+ Y be a function (not necessanly continuous). Suppose

f in the topoLogy of pointwise convergence. Show that if is
equicontinuous, then I is continuous and converges to f in the topology of
compact convergence.



Chapter 8

Baire Spaces and Dimension
Theory

In this chapter, we introduce a class of topological spaces called the Baire spaces.

The defining condition for a Baire space is a bit complicated to state, but it is often
useful in the applications, in both analysis and topology. Most of the spaces we have
been studying are Baire spaces. For instance, a Hausdorif space is a Baire space if
it is compact, or even locally compact. And a metnzable space X is a Baire space if
it is topologically complete, that is, if there is a metric for X relative to which X is
complete.

It follows that, since the space C (X, 1W') of all continuous functions from a space X
to 1W' is complete in the uniform metric, it is a Baire space in the uniform topology.
This fact has a number of interesting applications.

One application is the proof we give in §49 of the existence of a continuous
nowhere-differentiable real-valued function.

Another application arises in that branch of topology called dimension theory.
In §50, we define a topological notion of dimension, due to Lebesgue. And we prove
the classical theorem that every compact metrizable space of topological dimension rn
can be imbedded in euclidean space of dimension N = 2m + 1. It follows that
every compact rn-manifold can be irnbedded in This generalizes the imbedding
theorem proved in §36.

Throughout the chapter, we assume familianty with complete metric spaces
When we study dimension theory, we shall make use of §36, imbeddings of Manifolds,
as well as a bit of linear algebra.

294
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§48 Baire Spaces

The defining condition for a Baire space is probably as "unnatural looking" as any
condition we have yet introduced in this book. But bear with us awhile.

In this section, we shall define Baire spaces and shall show that two important
classes of spaces—the complete metric spaces and the compact Hausdorff spaces—
are contained in the class of Baire spaces. Then we shall give some applications,
which, even if they do not make the Baire condition seem any more natural, will at
least show what a useful tool it can be. In fact, it turns out to be a very useful and
fairly sophisticated tool in both analysis and topology.

Definition. Recall that if A is a subset of a space X, the interior of A is defined as the
union of all open sets of X that are contained in A. To say that A has empty interior is
to say then that A contains no open set of X other than the empty set. Equivalently, A
has empty intenor if every point of A is a limit point of the complement of A, that is,
if the complement of A is dense in X.

EXAMPLE 1 The set Q of rationals has empty intenor as a subset of JR. but the interval
[0, 1] has nonempty interior The interval [0, 11 x 0 has empty intenor as a subset of the
plane 1R2, and so does the subset Q x R.

Definition. A space X is said to be a Baire space if the foLlowing condition hoLds:
Given any countable collection (An) of closed sets of X each of which has empty
intenor in X, their union U also has empty interior in X.

EXAMPLE 2 The space Q of rationals is not a Baire space. For each one-point set in Q
is closed and has empty intenor in Q, and Q is the countable umon of its one-point subsets.

The space on the other hand, does form a Baire space Every subset of is
open, so that there exist no subsets of having empty interior, except for the empty set.
Therefore, satisfies the Baire condition vacuously.

More generally, every closed subspace of R, being a complete metric space, is a Baire
space. Somewhat surpnsing is the fact that the irrationals in R also form a Baire space; see
Exercise 6

The terminology onginally used by R. Baire for this concept involved the word
"category." A subset A of a space X was said to be of the first category in X if it
was contained in the union of a countable collection of closed sets of X having empty
interiors in X; otherwise, it was said to be of the second category in X. Using this
terminology, we can say the following:

A space X is a Baire space if and only if every nonempty open set in X is
of the second category

We shall not use the terms "first category" and "second category" in this book.
The preceding definition is the "closed set definition" of a Baire space. There

is also a formulation involving open sets that is frequently useful. It is given in the
following lemma.
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Lemma 48.1. X is a Baire space if and only if given any countable collection (Un)
of open sets in X, each of which is dense in X, their intersection fl is also dense
in X.

Proof Recall that a set C is dense in X if C = X. The theorem now follows at once
from the two remarks:

(1) A is closed in X ifandonlyifX — A isopenin X.
(2) B has empty interior in X if and only if X — B is dense in X.

There are a number of theorems giving conditions under which a space is a Baire
space. The most important is the following:

Theorem 48.2 (Baire category theorem). if X is a compact Hausdorff space or a
complete metric space, then X is a Bake space.

Proof Given a countable collection (An) of closed set of X having empty interiors,
we want to show that their union U also has empty intenor in X. So, given the
nonempty open set U0 of X, we must find a point x of that does not lie in any of
the sets

Consider the first set A1. By hypothesis, A1 does not contain U0. Therefore, we
may choose a point y of Uo that is not in A1. Regularity of X, along with the fact that
A1 is closed, enables us to choose a neighborhood U1 of y such that

U1 fl A1 = 0,
U1 c Uo.

If X is metric, we also choose U1 small enough that its diameter is less than 1.
In general, given the nonempty open set we choose a point of that is

not in the closed set and then we choose to be a neighborhood of this point
such that

fl =0,
C

< 1/n in the metnccase.

We assert that the intersection fl is nonempty. From this fact, our theorem will
follow. For if x is a point of fl (Jo, then x is in U0 because Uf C LI0. And for each n,
the point x is not in because is disjoint from

The proof that fl is nonempty splits into two parts, depending on whether X
is compact Hausdorif or complete metric. If X is compact Hausdorif, we consider
the nested sequence U1 U2 .. of nonempty subsets of X. The collection
has the finite intersection property; since X is compact, the intersection fl (4 must be
nonempty.

If X is complete metric, we apply the following lemma.
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Lemma 483. Let C1 C2 • be a nested sequence of nonempty closed sets in
the complete metric space X. If diam —÷ 0, then fl 0.

Proof We gave this as an exercise in §43. Here is a proof: Choose E for each
n. Because Xm E CN for n, m N, and because diam CN can be made less than
any given E by choosing N large enough, the sequence is a Cauchy sequence.

Suppose that it converges to x. Then for givenk, the subsequence xk, xk+1, ... also
converges to x. Thus x necessarily belongs to Ck = Ck. Then x E fl Ck, as desired.

Here is one application of the theory of Baire spaces; we shall give further ap-
plications in the sections that follow. This appLication is perhaps more amusing than
profound. It concerns a question that a student might ask concerning convergent se-
quences of continuous functions.

Let : [0, 11 IR be a sequence of continuous functions such that
1(x) for each x E [0, 11. There are examples that show the limit function f need
not be continuous. But one might wonder just how discontinuous f can be Could it
be discontinuous everywhere, for instance? The answer is "no." We shall show that
f must be continuous at infinitely many points of [0, 11. In fact, the set of points at
which f is continuous is dense in [0, 11!

To prove this result, we need the following lemma:

Lemma 48.4. Any open subspace Y of a Baire space X is itself a Baire space.

Proof Let be a countable collection of closed sets of Y that have empty intenors
in Y. We show that U has empty intenor mY. -

Let be the closure of in X; then fl Y = The set has empty
intenor in X. For if U is a nonempty open set of X contained in then U must

intersect Then U fl Y is a nonempty open set of Y contained in contrary to
hypothesis

If the uruon of the sets contains the nonempty open set W of Y, then the union
of the sets also contains the set W, which is open in X because Y is open in X. But
each set has empty intenor in X, contradicting the fact that X is a Baire space. •

Theorem 48.5. Let X be a space; let (Y, d) be a metric space. Let : X -÷ Y

be a sequence of continuous functions such that f(x)
f X X is a Baire space, the set of points at which f is continuous is dense

in X.

Pmof Given a positive integer N and given E > 0, define

AN(E)=(x Id(fn(x),fm(x)) for all n,m N).

NotethatAN(E)isclosedin X. Forthesetofthosex for fm(X)) E

is closed in X, by continuity of and fm. and AN(E) is the intersection of these sets
for all n,m N.
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For fixed E, consider the sets Ai(E) C A2(E) C The union of these sets
is all of X. For, given xo E X, the fact that (xo) —* f(xo) implies that the se-
quence is a Cauchy sequence; hence xo E AN(E) for some N.

Now let

U(E)= IntAN(E).

We shall prove two things:
(1) U(E) is open and dense in X.

(2) The function f is continuous at each point of the set

C=U(1)flU(1/2)flU(l/3)fl

Our theorem then follows from the fact that X is a Baire space.
To show that U(E) is dense in X, it suffices to show that for any nonempty open

set V of X, there is an N such that the set V flint AN(E) is nonempty. For this purpose,
we note first that for each N, the set V fi AN(E) is closed in V. Because V is a Baire
space by the preceding lemma, at least one of these sets, say V fl AM (E), must contain a
nonempty open set W of V Because V is open in X, the set W is open in X; therefore,
it is contained in mt AM(E).

Now we show that if E C, then f is continuous at Given E > 0, we shall
find a neighborhood W of xo such that d(f(x), f(xo)) <E for x E W.

First, choose k so that i/k <E/3. Since xo C, we have xo U(1/k);
there is an N such that E IntAN(1/k). Finally, continuity of the function IN
enables us to choose a neighborhood W of xo, contained in AN(1/k), such that

d(fN(x), fN(xo)) <E/3 forx E W.

The fact that W C A N (1 / k) implies that

1/k forn E W.

Letting n —+ 00, we obtain the inequality

d(f(x), fN(x)) i/k <e/3 forx E W.

In particular, since xo E W, we have

d(f(xo), fN(xo)) <E/3.

Applying the triangle inequality to (*), (**), and (***) gives us our desired result. I

Exercises

1. Let X equal the countable unon U Show that if X is a nonempty Baire
space, at least one of the sets has a nonempty interior.
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2. The Baire category theorem implies that R cannot be written as a countable union
of closed subsets having empty interiors. Show this fails if the sets are not re-
quired to be closed

3. Show that every locally compact Hausdorif space is a Baire space.

4. Show that if every point x of X has a neighborhood that is a Baire space, then X
is a Baire space. [Hint: Use the open set formulation of the Baire condition.J

5. Show that if Y is a G8 set in X, and if X is compact Hausdorif or compLete
metric, then Y is a Baire space in the subspace topology. [Hint: Suppose that

Y = fl where is open in X, and that is closed in Y and has empty
interior in Y. Given U0 open in X with Uo fl Y 0, find a sequence of open
sets of X with fl Y nonempty, such that

on C

Un fl Bn =0,
diam < 1/n in the metnc case,

Un C

6. Show that the irrationals are a Baire space.

7. Prove the following:
Theorem. If D is a countable dense subset of IR, there is no function f : IR —p IR

that is continuous precisely at the points of D
Proof

(a) Show that if f : IR -÷ IR, then the set C of points at which f is continuous
is a G8 set in IR. [Hint: Let be the union of all open sets U of IR such that
diam f(U) < 1/n. Show that C = fl

(b) Show that D is not a G8 set in IR. [Hint: Suppose D = fl where is
open in IR. Ford D, set Vd = IR — td). Show and Vd are dense in IR.]

8. If is a sequence of continuous functions : IR —f R such that (x) -+ f(x)
for each x E IR, show that f is continuous at uncountably many points of IR.

9. Let g : Q be a bijective function; let = g(n). Define f : R -.+ R as
follows:

= I/n for E Q,

f(x)=O

f is continuous at each irrational and discontinuous at each rational.
Can you find a sequence of continuous functions coverging to f?

10. Prove the following:
Theorem (Uniform boundedness principle). Let X be a complete metric space,
and let .7 be a subset of C(X, IR) such that for each a E X, the set

:Fa — (1(a) I f E 51
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is bounded. Then there is a nonempty open set U of X on which the functions
in are uniformly bounded, that is, there is a number M such that lf(x)I <M
forallxEUandallfEF.

11. Determine whether or not 1R1 is a Baire space

12. Show that is a Baire space in the box, product, and uniform topologies.

*13. Let X be a topological space; let Y be a complete metnc space. Show that
C(X, Y) is a Baire space in the fine topology (see Exercise 11 of §46). [Hint:
Given basis elements B(f, 8) such that 8i 1 and 8j÷i 8/3 and 11+1 E
B(f, 8/3), show that

flB(J,81)

A Nowhere-Differentiable Function

We prove the following result from analysis:

Theorem 49.1. Let h : [0, 11 —+ IR be a continuous function. Given E > 0, there is
a function g [0, 11 IR with lh(x) — g is continuous
and nowhere differentiable.

Proof Let I = [0, U. Consider the space C = C(l, IR) of continuous maps from I
to IR, in the metric

p(f, g) = max(lf(x) — g(x)I).

This space is a complete metnc space and, therefore, is a Baire space. We shall define,
for each n, a certain subset of C that is open in e and dense in C, and has the
property that the functions belonging to the intersection

nun
n€Z÷

are nowhere differentiable. Because C is a Baire space, this intersection is dense in C,
by Lemma 48.1. Therefore, given h and E, this intersection must contain a function g
such that p(h, g) <E. The theorem follows.

The tncky part is to define the set properly. We first take a function f and
consider its difference quotients. Given x E I and given 0 < h consider the
expressions

f(x+h) — f(x) f(x —h) —1(x)
h

and
—h

Since h at least one of the numbers x + h and x — h belongs to 1, so that at least
one of these expressions is defined. Let h) denote the larger of the two if both
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are defined; otherwise, let it denote the one that is defined, if the denvative f'(x) of f
at x exists, it equals the limit of these difference quotients, so that

lf'(x)I = h).

We seek to find a continuous function for which this limit does not exist. To be specific,
we shall construct f so that given x, there is a sequence of numbers converging toO
for which the numbers become arbitrarily large.

This gives us the idea for defining the set Given any positive number h 1/2,
let

Ix El)

Then for n 2, we define by declaring that a function f belongs to if and only
if for some positive number h < 1/n, we have > n.

EXAMPLE I Let a > 0 be given. The function f . [0, 11 —+ R given by the equation
f(x) = 4ax(1 — x), whose graph is a parabola, satisfies the condition h) > a for
h = 1/4 and all x, as you can check Geometncally speaking, what this says is that for
each x, at least one of the indicated secant lines of the parabola in Figure 49.1 has slope of
absolute value at least a. Hence if a > 4, the function f belongs to U4 The function g
pictured in Figure 49.1 satisfies the condition h) ? a for any h 1/4; hence g
belongs to provided a > n. The function k satisfies the condition k(x, h) a for any
h 1/8; hence k belongs to if a > n.

x 1 1

Figure 49.1

Now we prove the following facts about the set
(1) fl consists of nowhere-differentiable functions. Let f E fl We shall

prove that given x in [0, 1], the limit

lim h)

does not exist: Given n, the fact that f belongs to means that we can find a num-
1/nsuchthat

> n.
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Then the sequence (ha) converges to zero, but the sequence hn)) does not
converge. As a result, f is not differentiable at x.

(2) is open in C. Suppose that f we find a 8-neighborhood of I that is
contained in Because f there is a number h with 0 < h 1/n such that

n. Set M = and let

8 =h(M—n)/4.

We assert that if g is a function with p(f, g) <8, then

> n

forallx E 1,sothatg E

To prove the assertion, let us first assume that h) is equaL to the quotient
If(x + h) — f(x)i/h. We compute

f(x+h)—f(x) — g(x+h)—g(x) —

h h —

(l/h)I[f(x + h) — g(x + h)J — [f(x) — g(x)]i 28/h = (M — n)/2.

If the first difference quotient is at least M in absolute value, then the second is in
absolute value at least

A similar remark applies if h) equals the other difference quotient.

(3) Un is dense in C. We must show that given f in e, given E > 0, and given n,
we can find an element g of within E of f.

Choose a > n. We shall construct g as a "piecewise-linear" function, that is, a
function whose graph is a broken line segment; each line segment in the graph of g
will have slope at least a in absoLute vaLue. It follows at once that such a function g
belongs to For let

0X0<X1<X2< <Xkl

be a partition of the interval [0, 11 such that the restnction of g to each subinterval
I = x] is a linear function. Then choose h so that h 1/n and

..,k}.

If x is in [0, 11, then x belongs to some subinterval I. If x belongs to the first half of
the subinterval I, then x + h belongs to I and (g(x + h) — g(x))/h equals the slope
of the linear function gil Similarly, if x belongs to the second half of 1,, then x — h

belongs to 1 and (g(x — h) — g(x))/(—h) equals the slope of
g E as desired.
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Now given f, E, and a, we must show how to construct the desired piecewise-
linear function g. First, we use uniform continuity of I to choose a partition of the
interval

0t0<t1< <tm=l

having the property that f vanes by at most E/4 on each subinterval [t1— tJ of this
partition. For each i = I rn, choose a point a, E (t1_1, t,). We then define a
piecewise-linear function by the equations

gf(x) = forx c
f(t,_1) — a) forx c [at, t,J,

where rn = (f(t) — — a). The graphs of I and gf are pictured in
Figure 49.2.

We have some freedom of choice in choosing the point a. If f(t) we
require a to be close enough to t that

—
— a <

Then the graph of will consist entirely of line segments of slope zero and line
segments of slope at Least cr in absolute value.

Furthermore, we assert that f) E/2 On the interval 1, both
and f(x) vary by at most E/4 from therefore, they are within El2 of each
other. Then p(gf, f) = — f(x)I} E/2.

Figure 49.2
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The function is not yet the function we want. We now define a function g by
replacing each honzontal line segment in the graph of gi by a "sawtooth" graph that
lies within E/2 of the graph of gi and has the property that each edge of the sawtooth
has slope at least a in absolute value. We leave this part of the construction to you.
The result is the desired piecewise-linear function g. See Figure 49.3.

You may find this proof frustrating, in that it seems so abstract and noncon-
structive. Implicit in the proof, however, is a procedure for constructing a specific
sequence of piecewise-linear functions that converges uniformly to the nowhere-
differentiable function f. And defining the function f in this way is just as construc-
tive as the usual definition of the sine function, for instance, as the limit of an infinite
senes.

Exercises

1. Check the stated properties of the functions f, g, and k of Example 1.

2. Given n and E, define a continuous function f : I —f R such that f and
If(x)l <E for all x.

§50 Introduction to Dimension Theory

We showed in §36 that if X is a compact manifold, then X can be imbedded in
for some positive integer N. In this section, we generalize this theorem to arbitrary
compact metnzable spaces

Figure 49.3
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We shall define, for an arbitrary topological space X, a notion of topological di-
mension. It is the "covering dimension" originally defined by Lebesgue We shall
prove that each compact subset of has topological dimension at most rn. We shall
also prove that the topological dimension of any compact rn-manifold is at most rn. (It
is, in fact, precisely rn, but this we shall not prove.)

The major theorem of this section is the theorem, due to K. Menger and G. Nobel-
ing, that any compact metrizable space of topological dimension rn can be imbedded
in RN for N = 2m + 1. The proof is an application of the Baire theorem. It follows
that every compact rn-manifold can be imbedded in It follows also that a
compact metnzabLe space can be imbedded in for some N if and only if it has
finite topological dimension.

Much of what we shall do holds without requiring the space in question to be
compact. But we shall restnct ourselves to that case whenever it is convenient to do
so. Generalizations to the noncompact case are given in the exercises.

Definition. A collection A of subsets of the space X is said to have order m + I if
some point of X lies in rn + 1 elements of A, and no point of X lies in more than rn + I
elements of A.

Now we define what we mean by the topological dirnension of a space X Recall
that given a collection A of subsets of X, a coLlection is said to refine 4, or to be
a refinement of A, if for each element B of there is an element A of 4 such that
BC A.

Definition. A space X is said to be finite dimensional if there is some integer rn such
that for every open covering 4 of X, there is an open covenng of X that refines 4
and has order at most rn + 1. The topological dimension of X is defined to be the
smallest value of m for which this statement holds; we denote it by dim X.

EXAMPLE 1. Any compact subspace X of R has topological dimension a: most 1. We
begin by defining an open covenng of JR of order 2 Let Ai denote the collection of all open
intervals of the form (n, n + 1) in JR where n is an integer. Let denote the collectLon of
all open intervals of the form (n — 1/2, n + 1/2), for n an integer. Then A = U A1 is
an open covenng of JR by sets of diameter one Because no two elements of A0 intersect,
and no two elements of A1 intersect, A has order 2.

Now let X be a compact subspace of R. Given a covenng C of X by sets open in
this covering has a positive Lebesgue number 8. This means that any collection of subsets
of X that have diameter less than S is automatically a refinement of C. Consider the home-
omorphism f R —* JR defined by f(x) = The images under! of the elements of
the collection A form an open covenng of R oforder2 whose elements have diameter
their intersections with X form the required open covering of X.

EXAMPLE 2. The interval X [0, 1J has topological dimension 1. We know that
dim X 1. To show equality holds, let A be the covenng of X by the sets [0, 1) and (0, 1J.
We show that if £ is any open covering of X that refines A, then 2 has order at least 2.
Since 2 refines A, it must contain more than one element Let U be one of the elements
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of 2 and let V be the union of the others. If 2 had order 1, then the sets U and V would
be disjoint and would thus form a separation of X. We conclude that 2 has order at least 2.

EXAMPLE 3. Any compact subspace X of JR2 has topological dimension at most 2. To
prove this fact, we construct a certain open covering A of JR2 that has order 3 We begin by
defining A2 to be the collection of all open unit squares in JR2 of the following form:

A2 = ((n,n+ 1) x (m,m+ 1) In, m integers)

Note that the elements of A2 are disjoint. Then, we define a collection A1 by taking each
(open) edge e of one of these squares,

e=(n}x(m,m+l) or e=(n,n+1)x(m},
and expanding it slightly to an open set of JR2. being careful to ensure that if e e',
the sets and U,' are disjoint We also choose each LI, so that its diameter is at most 2.
Finally, we define to be the collection consisting of all open balls of radius about the
points n x m. See Figure 50.1

The collection of open sets A = A2 U A1 U A0 covers 1R2 Each of its elements has
diameter at most 2. And it has order 3, since no point of JR2 can lie in more than one set
from each A.

Figure 50.1

Now let X be a compact subspace of JR2 Given an open covering of X, it has a
positive Lebesgue numberS. Consider the homeomorphism f JR2 —÷ JR2 defined by the
equation f(x) = (S/3)x. The images under fof the open sets of the collection A form
an open covering of JR2 by sets of diameter less than 8, their intersections with X form the
required open covering of X.

We shall generalize this result to compact subsets of JR'S shortly.

Some basic facts about topological dimension are given in the following theorems:

Theorem 50.1. Let X be a space having finite dimension. If Y is a closed subspace
of X, then Y has finite dimension and dim Y dim X.

Pmof Let dimX = m. Let A be a covering of Y by sets open in Y. For each
A E A, choose an open set A' of X such that A' fl Y = A. Cover X by the open
sets A', along with the open set X — Y. Let 2 be a refinement of this covering that is
an open covering of X and has order at most m + 1. Then the collection

(BflYI B EB)

is a covering of Y by sets open in Y, it has order at most m + 1, and it refines A. •
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Theorem 50.2. Let X = Y U Z, where Y and Z are closed subspaces of K having
finite topological dimension. Then

dim K = max(dim Y, dim Z}.

Proof Let m = max(dim Y, dim Z}. We shall show that X is finite dimensional and
has topological dimension at most m. It then follows from the preceding theorem that
X has topological dimension precisely m.

Step 1. If A is an open covenng of X, we say that A has order at most m + 1 at
points of Y provided no point of Y lies in more than m + 1 elements of A.

We show that if A is an open covenng of X, then there is an open covenng of X
that refines A and has order at most m + 1 at points of Y.

To prove this fact, consider the collection

(A fl Y I A E A}.

It is an open covering of Y, so it has a refinement 2 that is an open covenng of Y
and has order at most m + 1. Given B E choose an open set Ujj of X such that
U8 fl Y = B. Choose also an element Ajj of A such that B C A8. Let C be the
collection consisting of all the sets U8 fl A8, for B E along with all the sets A —
for A E A. Then C is the desired open covenng of X.

Step 2. Now let A be an open covering of X. We construct an open covering
of X that refines A and has order at most m + 1. Let 2 be an open covering of X
refining A that has order at most m + I at points of Y. Then let C be an open covering
of X refining 2 that has order at most m + 1 at points of Z.

We form a new covering of X as follows: Define f: C —* 2 by choosing for
each C C an element 1(C) of such that C C f(C). Given B E define D(B)
to be the union of all those elements C of C for which f(C) = B. (Of course, D(B)
is empty if B is not in the image of f.) Let 2) be the collection of all the sets D(B),
for B E

B 2) refines
because C for each C C. We show that

has order at most m + 1. Suppose x E D(B1) fl fl where the sets D(B1)
are distinct. We wish to prove that k m + 1. Note that the sets B1 Bk must be
distinct because the sets D(B1) are. Because x E D(B1), we can choose for each i, a

set C, E C such that x E C and f(C1) = B. The sets C are distinct because the sets
B are. Furthermore,

X E [C1 fl . .. fl C [D(B1) fl .. . fl C [B1 fl.. fl Bk].

If x happens to lie in Y, then k m + 1 because 2 has order at most m + I at points
of Y; and ifx is in Z, then k m + 1 because C has order at most m + 1 at points
ofZ. U
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Corollary 50.3. Let X = Y1 U U where each Y, is a closed subspace of X and
is finite dimensional. Then

dimX =max(dimYi dimYk}.

EXAMPLE 4. Every compact 1-manifold X has topological dimension I. The space X
can be wntten as a finite union of spaces that are homeomorptuc to the unit interval [0, 1];
then the preceding corollary applies

EXAMPLE 5. Every compact 2-manifold X has topological dimension at most 2. The
space X can be written as a finite union of spaces that are homeomorphic to the closed unit
ball in JR2, then the preceding corollary applies.

An obvious question occurs at this point: Does a compact have topological
dimension precisely The answer is 'yes," but the proof is not easy; it requires the tools of
algebraic topology. We will prove in Part II of this book that every closed tnangular region
in JR2 has topological dimension at least 2. (See §55.) It then follows that any compact
subspace of JR2 that contains a closed triangular region has topological dimension 2, from
which it follows that every compact 2-manifold has topological dimension 2

EXAMPLE 6. An arc A is a space homeomorphic to the closed unit interval; the end
points of A are the points p and q such that A — (p} and A — (q} are connected A (finite)
linear graph G is a Hausdorif space that is written as the union of finitely many arcs, each
pair of which intersect in at most a common end point. The arcs in the collection are called
the edges of G, and the end points of the arcs are called the vertices of G Each edge
of G, being compact, is closed in G; the preceding corollary tells us that G has topological
dimension 1

Two panicular linear graphs are sketched in Figure 50.2. The first is a diagram of
the familiar "gas-water-electricity problem": the second is called the "complete graph on
five vertices." Neither of them can be imbedded in JR2. Although this fact is "intuitively
obvious," it is highly nontrivial to prove We shall give a proof in §64.

EXAMPLE 7. Every finite linear graph can be imbedded in JR3. The proof involves the
notion of position." A set S of points of JR3 is said to be in general position if no
three of the points of S are collinear and no four of them are coplanar. It is easy to find
such a set of points. For example, the points of the curve

S= ((r,t2,t3) It E JR}

Figure 50.2
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are in general position For if four of these points belonged to a single plane Ax + By +
Cz = D, then the polynomial equation

At + B:2 + C:3 = D

would have four distinct real roots1 And if three of these points belonged to a single line,
we could take an additional point of S and obtain four points that lie on a plane.

Now, given a finite linear graph G, with vertices VI, .., v,,, let us choose a set
(z1,.. , z,,} of points of R3 that is in general position. Define a map f G —÷ R3 by
letting f map the vertex v to the point Z, and map the edge joining v and vj homeo-
morphically onto the line segment joining z and Now each edge of G is closed in G
It follows that f is continuous, by the pasting lemma. We show that f is injective, from
which it follows that f is an imbedding. Let e and e' = VkVm be two edges of
G If they have no vertex in common, then the line segments f(e) and f(e') are disjoint,
for otherwise the points z, Zk, Zm would be coplanar. And if e and e' have a vertex in
common, so that i = k, say, then the line segments f(e) and f(e') intersect only in the
point z = Zk, for otherwise z,, and Zm would be collinear.

Now we prove our general imbedding theorem, to the effect that every compact
metrizable space of topological dimension m can be imbedded in This theorem
is another "deep" theorem; it is not at all obvious, for instance, why 2,n + I should be
the crucial dimension. That will come out in the course of the proof.

To prove the imbedding theorem, we shall need to generalize the notion of general
position to IRN. This involves a bit of the analytic geometry of RN, which is nothing
more than the usual linear algebra of translated into somewhat different language.

Definition. A set (xO,. , of points of is said to be geometrically indepen-
dent, or affinely independent, if the equations

k

a = 0 and > a = 0

hold only if each a = 0.

Obviously, a set consisting of only one point is geometrically independent. But
what does geometric independence mean in general? If we solve the second equa-
tion for a0 and plug the answer into the first equation, we see that this definition is
equivalent to the statement that the equation

— x0) = 0

holds only if each a = 0. This is just the definition of linear independence for the set
of vectors Xi — xO,.. , Xk — xO of the vector space RN. This gives us something to
visualize: Any two distinct points form a geometrically independent set. Three points
form a geometrically independent set if they are not collinear. Four points in R3 form
a geometrically independent set if they are not coplanar. And so on.
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It follows from these remarks that the points

0=(0,0,.. 0),

= (1,0 0),

EN=(O,O 1)

are geometrically independent in It also follows that any geometrically
in RN contains no more than N + 1 points

Definition. Let (xo Xk} be a set of points of RN that is geometrically indepen-
dent. The plane P determtned by these points is defined to be the set of all points x
of RN such that

x=>Jt1x1,

It is simple algebra to check that P can also be expressed as the set of all points x
such that

(*)

for some scalars at Thus P can be described not only as "the plane determined
by the points XO Xk," but also as "the plane passing through the point XO parallel
to the vectors Xi — XO Xk — XO.

Consider now the homeomorphism T : RN ..÷ RN defined by the equation
T(x) = x — xO. It is called a translation of RN. Expression (*) shows that this
map carries the plane P onto the vector subspace Vk of RN having as basis the vectors
x1 — Xgj,. ., — xO. For this reason, we often call P a k-plane in RN.

Two facts follow at once: First, if k < N, the k-plane P necessarily has empty
interior in RN (because Vk does). And second, if y is any point of RN not lying in P.
then the set

('co Xk,y)

is geometrically independent. For if y P, then T(y) = y — xO is not in By
a standard theorem of linear algebra, the vectors (x1 — xO,. . — xO, y — xO} are
linearly independent, from which our result follows.

Definition. A set A of points of RN is said to be in gen eral posilion in RN if every
subset of A containing N + 1 or fewer points is geometrically independent.

In the case of R3, this is the same as the definition given earlier, as you can check.
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Lemma 50.4. Given a finite set {xi } of points of RN and given 8 > 0,

there exists a set (yj } of points of RN in general position in RN such that
lxi — <S for alli.

Proof We proceed by induction. Set Yi = xl. Suppose that we are given Yi Yp
in general position in RN. Consider the set of all planes in RN determined by subsets
of (yi.. } that contain N or fewer elements. Every such subset is geometrically
independent and determines a k of these planes
has empty interior in RN Because there are only finitely many of them, their union
also has empty intenor in RN. (Recall that is a Baire space.) Choose Yp+I to be
a point of RN within S of that does not lie in any of these planes. It follows at
once that the set

C={y1 YpYp-t-i}

is in general position in RN. For let D be any subset of C containing N + 1 or fewer
elements. If D does not contain Yp+1' then D is geometrically independent by the
induction hypothesis. If D does Contain Yp+t then D — {Yp+i } contains N or fewer
points and Yp+1 is not in the plane determined by these points, by construction. Then
as noted above, D is geometrically independent. U

Theorem 50.5 (The imbedding theorem). Every compact metrizable space X of
topological dimension m can be imbedcied in

Proof Let N = 2m + 1. Let us denote the square metnc for RN by

i= 1 N).

Then we can use p to denote the corresponding sup metnc on the space C(K, R");

p(f, g) = sup{If(x) — g(x)l, x E X).

The space C(X, RN) is complete in the metnc p. since RN is complete in the square
metric

Choose a metric d for the space X; because X is compact, d is bounded. Given a
continuous map f: X —÷ RN, let us define

=sqp{diamf'({z)) I z E f(X)}.

The number measures how far f "deviates" from being injective; if (f) = 0,

each set consists of exactly one point, so f is injective.
Now, given E > 0, define Uf to be the set of all those continuous maps f X —÷

RN for which < it consists of all those maps that "deviate" from being
injective by less than E. We shall show that is both open and dense in C(X, RN).
It follows that the intersection

n
nEZ,.
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is dense in C(X, RN) and is in particular nonempty.
If f is an element of this intersection, then < 1/n for every n. Therefore,

= 0 and f is injective. Because X is compact, f is an imbedding. Thus, the
imbedding theorem is proved.

(1) Uf is open in C(X, RN) Given an element f of Uf, we wish to find some
ball 8) about f that is contained in First choose a number b such that

<b <e. Note that if f(x) = 1(Y) = z, then x andy belong to the set f'((z}),
so that d(x, y) must be less than b It follows that if we let A be the following subset
of Xx X,

A ={x x y b},

then the function 1(x) — f(y)1 is positive on A. Now A is closed in X x X and
therefore compact; hence the function 11(x) — f(y)I has a positive minimum on A.
Let

8 = min(If(x) — x x y c A).

We assert that this value of 8 will suffice.
Suppose that g is a map such that p(f, g) <8. If x x y E A, then 1(x) —

26 by definition; since g(x) and g(y) are within S of f(x) and f(y), respectively, we
must have Ig(x) — > 0. Hence the function g(x) — is positive on A. As a
result, if x and y are two points such that g(x) = g(y), then necessarily d(x, y) <b.
We conclude that <b <e, as desired.

(2) is dense in e(X, RN). This is the difficult part of the proof. We need to
use the analytic geometry of RN discussed earlier. Let f E C(X, Given E > 0
and given 8 > 0, we wish to find a function g E C(X, RN) such that g c and
p(f,g) <8.

Let us cover X by finitely many open sets (U1 } such that

(1) diam U <e/2 in X,
(2) d.iamf(U1) <8/2 in RN,

(3) {U1, ., has order < m + 1.
Let ((/ } be a partition of unity dominated by {U1) (see §36). For each i, choose a point
x E U. Then choose, for each i, a point z E RN such that z is within 8/2 of the
point f(x), and such that the set {zi is in general position in RN. Finally,
define g : X RN by the equation

g(x) =

We assert that g is the desired function.
First, we show that p(f, g) <3. Note that

g(x) — f(x) = —
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here we use the fact that > (x) = 1 Then

g(x) — 1(x) = — + — f(x)).

Now 1z1 — f(x)l < 8/2 for each i, by choice of the points z. And if i is an index
such that 0, then x E U1; because we have diam f(U) < 8/2, it follows that
lf(x1) — f(x)l < 8/2. Since = 1, we conclude that Ig(x) — f(x)I < 8.

Therefore, p(g, f) <8, as desired.
Second, we show that g We shall prove that if x, y E X and g(x) = g(y),

then x and y belong to one of the open sets U, so that necessarily d(x, v) < e/2
(since diam U <e/2). As a result, e/2 <E, as desired.

So suppose g(x) = g(y). Then

— = 0.

Because the covenng (U1 } has order at most m + 1, at most m + I of the numbers /, (x)
are nonzero, and at most m + 1 of the numbers (y) are nonzero. Thus, the sum

(x) — (y)]z has at most 2,n + 2 nonzero terms. Note that the sum of the
coefficients vanishes because

1—1=0.

The points z1 are in general position in RN, so that any subset of them having N + 1
or fewer elements is geometrically independent. And by hypothesis N + 1 = 2m +2.
(Aha!) Therefore, we conclude that

— = 0

for all i.
Now > 0 for some i, so thatx E U1. Since = we have y E U

also, as asserted. U

To give some content to the imbedding theorem, we need some examples of
spaces that are finite dimensional. We prove the following theorem.

Theorem 50.6. Every compact subspace of RN has topological dimension at most N.

Proof The proof is a generalization of the proof given in Example 3 for Let p
be the square metric on

Step 1. We begin by breaking RN up into "unit cubes." Define to be the
ing collection of open intervals in IR:

= {(n,n + 1)1 n Z},

and define X to be the following collection of one-point sets in R:

X = ({n}
I

n E Z}
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If M is an integer such that 0 < M N, let CM denote the set of all products

C=A1xA2x • XAN,

where exactly M of the sets A belong to and the remainder belong to X. If M > 0,
then C is homeomorphic to the product (0, 1)M and will be called an M-cube. If
M = 0, then C consists of a single point and will be called a 0-cube

Let C = Co U C1 U • U Note that each point x of lies in precisely one
element of C because each real number x1 lies in precisely one element of U X.
We shall expand each element C of C slightLy to an open set U(C) of of diameter
at most 3/2, in such a way that if C and D are two different M-cubes, then U(C)
and U(D) are disjoint.

Let x = (x1 xN) be a point of the C. We show that there is a number
e(x) > 0 such that the e(x)-neighborhood of x intersects no M-cube other than C. If
C is a 0-cube, we set e(x) = 1/2 and we are finished. Otherwise, M > 0, and exactly
M of the numbers x are not integers. Choose e 1/2 so that for each x that is not an
integer, the interval (x1 — e, x + E) contains no integer. If y = (yi... YN) is a point
lying in the E-neighbOrhood of x, then y, is nonintegral whenever x is nonintegral.
This means that y either belongs to the same M-cube as x does, or y belongs to some
L-cube for L > M. In either case, the e-neighborhood of x intersects no M-cube other
than C.

Given an C, we define the neighborhood U(C) of C to be the union of
the E (x)/2-neighborhoods of x for all x E C It is then immediate that if C and D are
different M-cubes, U(C) and U(D) are disjoint. Furthermore, if z is a point of U(C),
then d(z, x) < e(x)/2 < 1/4 for some point x of C. Since C has diameter 1, the
set U(C) has diameter at most 3/2.

Step 2. Given M with 0 < M N, define AM to be the collection of all
sets U(C), where C E CM. The elements of AM are disjoint, and each has diani-
eter at most 3/2. The remainder of the proof is a copy of the proof given in Example 3
forR2. U

Corollary 50.7. Every compact rn-manifold has topological dimension at most m

Corollary 50.8. Every compactm -manifold can be imbedded in

Corollary 50.9. Let X be a compact metnzable space. Then X can be imbedded in
some euclidean space RN if and only if X has finite topological dimension.

As mentioned earlier, much of what we have proved holds without assumption of
compactness. We ask you to prove the appropriate generalizations in the exercises that
follow

One thing we do not ask you to prove is the fact that the topological dimension
of an rn-manifold is precisely rn. And for good reason; the proof requires the tools of
algebraic topology.
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Nor do we ask you to prove that N = 2m + 1 is the smallest value of N such that
every compact metnzable space of topological dimension m can be imbedded in RN.
The reason is the same. Even in the case of a linear graph, where m = 1 , the proof is
nontrivial, as we remarked earlier.

For further results in dimension theory, the reader is referred to the classical book
of Hurewicz and Wailman [H-WI. In particular, this book discusses another, entirely
different, definition of topological dimension, due to Menger and Urysohn. It is an
inductive definition. The empty set has dimension — 1. And a space has dimension
at most n if there is a basis for its topology such that for each basis element B, the
boundary of B has dimension at most n — 1 The dimension of a space is the smallest
value of n for which this condition holds. This notion of dimension agrees with ours
for compact metnzable spaces.

Exercises

1. Show that any discrete space has dimension 0

2. Show that any connected T1 space having more than one point has dimension at
least 1.

3. Show that the topologist's sine curve has dimension 1.

4. Show that the points 0, E2, (3, and (1, 1, 1) are in general position in 1R3.
Sketch the corresponding imbedding into R3 of the complete graph on five ver-
tices.

5. Examine the proof of the inthedding theorem in the case m = 1 and show that
the map g of part (2) actually maps X onto a linear graph in R3.

6. Prove the following:
Theorem. Let X be a locally compact Hausdorff space with a countable basis,
such that every compact subspace of X has topological dimension at most m.
Then X is homeomorphic to a closed subspace of
Proof If f : X —÷ IRN is a continuous map, we say f(x) -+ as x —* x if
given n, there is a compact subspace C of X such that 1(x) > n for E X — C.
(a) Let be the uniform metric on C(X, RN). Show that if f(x) -+ x as

x —÷ and g) < I, then g(x) —* 00 as x —* 00.

(b) Show that if f(x) —p x as x —* 00, then f extends to a continuous map of

one-point compactifications. Conclude that if f is injective as well, then f

is a homeomorphism of X with a closed subspace of RN.
(c) Given f : X —p and given a compact subspace C of X, let

I

Show that is open in C(X, R1v).
(d) Show that if N = 2m + 1, then UE(C) is dense in C(X, [Hint Given f

and given e, 3 > 0, choose g : C IRN so that d(f(x), g(x)) < S for
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X E C, and <e. Extend f — g to h X —÷ [—8, 81N using the Tietze
theorem.]

(e) Show there exists a map f X —p R such that f(x) —÷ x as x —÷ x.
[Hint: Wnte X as the union of compact subspaces such that C
mt for each n.j

(1) Let be as in (e). Use the fact that fl dense in C(X, to
complete the proof.

7. Corollary. Every rn-manifold can be imbedded in as a closed subspace.

8. Recall that X is said to be a -compact if there is a countable collection of compact
subspaces of X whose interiors cover X
Theorem. Let X be a a -compact Hausdorff space. If every compact subspace
of X has topological dimension at most rn, then so does X.
Proof Let A be an open cover of X. Find an open cover 2 of X refining A that
has order at most rn + 1, as follows:
(a) Show that X = U where is compact and C tnt for each n.

Let X0 = 0.
(b) Find an open covering of X refining A such that for each n, each element

of that intersects lies in
(c) Suppose n 0 and is an open covering of X refining such that

has order at most m + I at points of Choose an open covering C
of X refining that has order at most rn + 1 at points of Choose
f C so that C C f(C). For B E let D(B) be the union of
those C for which 1(C) = B. Let 2n+1 consist of all sets B E for
which B fl 0, along with all sets D(B) for which B E and
B n = a Show that 2n+j is an open covenng of X that refines
and has order at most m + 1 at points of

(d) Define 2 as follows: Given a set B, it belongs to 2 if there is an N such
that B E for all n N.

9. Corollary. Every rn-manifold has topological dimension at most rn.

10. Corollary. Every closed subspace of RN has topological dimension at most N.

11. Corollary. A space X can be imbedded as a closed subspace of JR N for some N
if and only if X is locally compact and Hausdorif with a countable basis, and has
finite topological dimension.

•Supplementary Exercises: Locally Euclidean Spaces

A space X is said to be locally m-euclidean if for each x E X, there is a neighborhood
of x that is homeomorphic to an open set of Such a space X automaticalLy satisfies
the T1 axiom, but it need not be Hausdorif. (See the exercises of §36.) However, if X
is Hausdorff and has a countable basis, then X is called an rn-manifold.
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Throughout these exercises, let X be a space that is locally rn-euclidean.

I. Show that X is locally compact and locally metrizable.

2. Consider the following conditions on X:
(i) X is compact Hausdorif.

(ii) X is an rn-manifold.

(iii) X is metrizable.

(iv) X is normal.

(v) X is Hausdorif.
Show that (i) (ii) (iii) (iv) (v).

3. Show that IR is locally 1-euclidean and satisfies (ii) but not (i).

4. Show that IR x IR in the dictionary order topology is locally 1-euclidean and
satisfies (iii) but not (ii).

5. Show that the long line is locally 1-euclidean and satisfies (iv) but not (iii). (See
the exercises of §24.)

*6. There is a space that is locally 2-euclidean and satisfies (v) but not (iv). It is
constructed as follows. Let A be the following subspace of

A = {(x,y,O))x >0).

Given c real, let be the following subspace of R3:

=((x,y,c)(x 0).

Let X be the set that is the union of A and all the spaces for c real. Topologize
X by taking as a basis all sets of the following three types:

(i) U, where U is open in A.

(ii) V. where V is open in the subspace of consisting of points with x <0.
(iii) Foreach open interval / = (a, b) of IR, each real number c, and each E > 0,

the set e) U e), where

Ac(I, e) = ((x,y, 0) 10 <x <e and c+ax <y < c+ bx},

((x,y,c) —E <x Oanda <y <b).

The space X is called the 'Prüfer manifold."
(a) Sketch the sets e) and e).

(b) Show the sets of types (i)—(iii) form a basis for a topology on X.
(c) Show the map : R2 —* X given by

(x,c+xy,0) forx>0,
fC(X,Y)_

(x,y,c)

defines a homeomorphism of 1R2 with the subspace A U of X.
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(d) Show that A U is open in X; conclude that X is 2-euclidean.
(e) Show that X is Hausdorif.
(f) Show that X is not normal. [Hint. The subspace

L =((O,O,c)lc ER)

of X is closed and discrete. Compare Example 3 of §31.]

7. Show that X is Hausdorif if and only if X is completely regular.

8. Show that X is metrizable if and only if X is paracompact Hausdorif.

9. Show that if X is metnzable, then each component of X is an rn-manifold.
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Chapter 9

The Fundamental Group

One of the basic problems of topology is to determine whether two given topological
spaces are homeomorphic or not. There is no method for solving this problem in
general, but techniques do exist that apply in particular cases.

Showing that two spaces are homeomorphic is a matter of constructing a contin-
uous mapping from one to the other having a continuous inverse, and constructing
continuous functions is a problem that we have developed techniques to handle.

Showing that two spaces arc not homeomorphic is a different matter. For that,
one must show that a continuous function with continuous inverse does not exist. If
one can find some topological property that holds for one space but not for the other,
then the problem is solved—the spaces cannot be homeomorphic. The closed interval
[0, 1) cannot be homeomorphic to the open interval (0, 1), for instance, because the
first space is compact and the second one is not. And the real line JR cannot be home-
omorphic to the "long line" L, because JR has a countable basis and L does not. Nor
can the real line JR be homeomorphic to the plane JR2: deleting a point from JR2 leaves
a connected space remaining, and deleting a point from JR does not.

But the topological properties we have studied up to now do not carry us very far
in solving the problem. For instance, how does one show that the plane JR2 is not
homeomorphic to three-dimensional space JR3 As one goes down the list of topolog-
ical properties—compactness, connectedness, local connectedness, metnzability, and
so on—one can find no topological property that distinguishes between them. As an-
other example, consider such surfaces as the 2-sphere S2, the torus T (surface of a

321
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doughnut), and the double torus T#T (surface of a two-holed doughnut). None of the
topological properties we have studied up to now will distinguish between them.

So we must introduce new properties and new techniques. One of the most natural
such properties is that of simple connectedness. You probably have studied this notion
already, when you studied line integrals in the plane. Roughly speaking, one says that
a space X is simply connected if every closed curve in X can be shrunk to a point
in X. (We shall make this more precise later.) The property of simple connectedness,
it turns out, will distinguish between JR2 and 1R3, deleting a point from R3 leaves a
simply connected space remaining, but deleting a point from 1R2 does not. It will also
distinguish between S2 (which is simply connected) and the torus T (which is not).
But it will not distinguish between T and T#T; neither of them is simply connected.

There is an idea more general than the idea of simple connectedness, an idea that
includes simple connectedness as a special case. It involves a certain group that is
called the fundamental group of the space. Two spaces that are homeomorphic have
fundamental groups that are isomorphic. And the condition of simple connectedness
is just the condition that the fundamental group of X is the trivial (one-element) group.
Thus, the proof that and T are not homeomorphic can be rephrased by saying that
the fundamental group of is triviaL and the fundamental group of T is not. The
fundamental group will distinguish between more spaces than the condition of simple
connectedness will. It can be used, for example, to show that T and T#T are not
homeomorphic; it turns out that T has an abelian fundamental group and T#T does

In this chapter, we define the fundamental group and study its properties. Then
we apply it to a number of problems, including the problem of showing that various
spaces, such as those already mentioned, are not homeomorphic.

Other applications include theorems about fixed points and antipode-preserving
maps of the sphere, as well as the well-known fundamental theorem of algebra, which
says that every polynomial equation with real or complex coefficients has a root. Fi-
nally, there is the famous Jordan curve theorem, which we shall study in the next
chapter: it states that every simple closed curve C in the plane separates the plane into
two components, of which C is the common boundary.

Throughout, we assume familiarity with the quotient topology and local
connectedness

§51 Homotopy of Paths

Before defining the fundamental group of a space X, we shall consider paths on X and
an equivalence relation called path homotopy between them. And we shall define a
certain operation on the collection of the equivalence classes that makes it into what is
called in algebra a groupoid.
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Definition. If f and f' are continuous maps of the space X into the space Y, we say
that f is homotopic to 1' if there is a continuous map F X x I —p Y such that

F(x,O)=f(x) and F(x,1)=f'(x)

for each x. (Here I = [0, 1].) The map F is called a homotopy between f and f'. If
f is homotopic to 1" we write f 1'. If f f' and f' is a constant map, we say
that f is nulhomo topic.

We think of a homotopy as a continuous one-parameter family of maps from X
to Y If we imagine the parameter t as representing time, then the homotopy F rep-
resents a continuous "deforming" of the map f to the map f', as t goes from 0 to

Now we consider the special case in which f is a path in X. Recall that if f
[0, 1] —p X is a continuous map such that f(O) = xo and f(1) = x1, we say that f is
a path in Xfmm xo to We also say that xo is the initial point, and xl the final point,
of the path f. In this chapter, we shall for convenience use the interval I = [0, 1] as

the domain for all paths.
If f and f' are two paths in X, there is a stronger relation between them than mere

homotopy. It is defined as follows:

Definition. Two paths f and f', mapping the interval I = [0, 1] into X, are said to
be path homotopic if they have the same initial point xo and the same final point x1,
and if there is a continuous map F I x I -+ X such that

F(s,0)=f(s) and F(s,1)=f'(s),
F(0,t)=xo and F(1,t)=xi,

for each s E I and each t I. We call F a path homotopy between f and 1' See
Figure 51.1. If! is path homotopic to we wnte f 1'.

F

S
x

Figure 51.1
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The first condition says simply that F is a homotopy between f and f', and the
second says that for each t, the path defined by the equation It(s) = F(s, t) is a path
from xo to x1. Said differently, the first condition says that F represents a continuous
way of deforming the path f to the path f', and the second condition says that the end
points of the path remain fixed dunng the deformation.

Lemma 51.1. The relaions and are equivalence relations.

If f is a path, we shall denote its path-homotopy equivalence class by [11.

Proof Let us verify the properties of an equivalence relation.
Given f, it is trivial that f f; the map F(x, t) = 1(x) is the required homotopy.

1ff is a path, F is a path homotopy.
Given f f', we show that f' f. Let F be a homotopy between f and f'.

Then G(x, t) = F(x, 1 — t) is a homotopy between 1' and f. If Fis a path homotopy,
soisG.

Suppose that f f' and f' f". We show that f 1". Let F be a homotopy
between f and f', and let F' be a homotopy between f' and f". Define G : X x I —p
Y by the equation

F(x,2t) fortE [0,
F (x,2t —1) fort 1].

The map G is well defined, since if t = we have F(x, 2t) = f'(x) = F'(x, 2t — 1).

Because G is continuous on the two closed subsets Xx [0, and X 1] of Xx!, it
is continuous on all of X x I, by the pasting lemma. Thus G is the required homotopy
between f and f".

You can check that if F and F' are path homotopies, so is G. See Figure 51.2. I

EXAMPLE 1. Let f and g be any two maps of a space X into JR2 It is easy to see that f
and g are homotopic; the map

F(x, t) = (1 — t)f(x) + tg(x)

Figure 51.2
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is a homotopy between them. It is called a straight-line homotopy because it moves the
point f(x) to the point g(x) along the straight-line segment joining them.

1ff and g are paths from to x1, then F will be a path homotopy, as you can check.
This Situation is pictured in Figure 51.3.

More generally, let A be any convex subspace of JR". (This means that for any two
points a, b of A, the straight line segment joining a and b is contained in A.) Then any two
paths f, g in A from xo to xi are path homotopic in A, for the straight-line bomotopy F
between them has image set in A

EXAMPLE 2 Let X denote the punctured plane, JR2 — (0), which we shall denote by
JR2 —0 for short The following paths in X,

f(s) = (cos,rs,sin,rs),
g(s) = (cos,rs,2sinirs)

are path homotopic, the straight-line homotopy between them is an acceptable path homo-
topy But the straight-line homotopy between f and the path

h(s) = (cos,rs, —sinirs)

is not acceptable, for its image does not lie in the space X = JR2 — 0. See Figure 51.4.
Indeed, there exists no path homotopy in X between paths f and h This result is

hardly surprising, it is intuitively clear that one cannot "deform f past the hole at 0" with-
out introducing a discontinuity. But it takes some work to prove. We shall return to this
example later

This example illustrates the fact that you must know what the range space is before
you can tell whether two paths are path homotopic or not The paths f and h would be
path homotopic if they were paths in JR2

Now we introduce some algebra into this geometric situation. We define a certain
operation on path-homotopy classes as follows:

t(x)

Figure 51.3 Figure 51.4
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Definition. If f is a path in X from xo to and if g is a path in X from to X2,
we define the product f * g of f and g to be the path h given by the equations

h(s) — f(2s) fors E [0,

g(2s — 1) fors E 11.

The function h is well-defined and continuous, by the pasting lemma; it is a path in
X from to x2. We think of h as the path whose first half is the path f and whose
second half is the path g.

The product operation on paths induces a well-defined operation on path-homotopy
classes, defined by the equation

[f]*[g] = [f*g]

To verify this fact, let F be a path homotopy between f and f' and let G be a path
homotopy between g and g'. Define

F(2s,t) fors E [0,H(s,t)=
G(2s— it) fors E 1].

Because F(1, t) = = G(O, t) for all t, the map H is well-defined; it is continuous
by the pasting lemma. You can check that H is the required path homotopy between
f * g and 1' * g' It is pictured in Figure 51.5.

The operation * on path-homotopy classes turns out to satisfy properties that look
very much like the axioms for a group. They are called the gmupoid properties of *.
One difference from the properties of a group is that [f] * [g} is not defined for every
pair of classes, but only for those pairs [f], [g] for which f(1) = g(0).

Theorem 51.2. The operation * has the following properties:

(1) (Associativity) If[f] * ([g] * [h]) is defined, so is ([f] * [g]) * [h], and they are
equal.

Figure 51.5
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(2) (Right and left identities) Given x X, let denote the constant path ex /
X carrying all of! to the pointx. 1ff is apath in X fromx0 tox1, then

[f] * = [1] and * [1] = [1].

(3) (Inverse) Given the path I in X from xo to let f be the path defined by

f(s) = f(1 —s). It is called the reverse off Then

[1] * [f I [eq] and [f] * [1] = [efl].

Proof We shall make use of two elementary facts. The first is the fact that if k
X —* Y is a continuous map, and if F is a path homotopy in X between the paths f
and f', then k o F is a path homotopy in Y between the paths k o f and k o f'. See
Figure 51.6.

F

Figure 51.6

k

The second is the fact that if k : X —* Y is a continuous map and if f and g are
paths in X with f(1) = g(O), then

ko(f*g)_— (kof)*(kog).

This equation follows at once from the definition of the product operation *.

Step 1. We verify properties (2) and (3). To verify (2), we let eo denote the constant
path in I at 0, and we let I I —÷ I denote the identity map, which is a path in! from 0
to 1. Then eo * i is also a path in I from 0 to 1. (The graphs of these two paths are
pictured in Figure 51.7.)

u= (eo*i) (s)
Figure 51.7

x
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Because I is convex, there is a path homotopy G in I between i and e0 * i. Then
f o G is a path homotopy in X between the paths f o i = f and

fo(eo*i) *1.

An entirely similar argument, using the fact that if e1 denotes the constant path at 1,
then i * ei is path homotopic in Ito the path i, shows that [f] * = [f].

To verify (3), note that the reverse of i is i(s) I — s. Then i * us a path in I
beginning and ending at 0, and so is the constant path eo. (Their graphs are pictured
in Figure 51.8.) Because I is convex, there is a path homotopy H in I between eo and
i * 1. Then f o H is a path homotopy between f o eo = and

(foi)*(foi) = f *1.

An entirely similar argument, using the fact that i * i is path homotopic in I to ef,
shows that [f] * [11 = 1.

Figure 51.8

Step 2. The proof of (I), associativity, is a bit trickier. For this proof, and for later
use as well, it will be convenient to describe the product f * g in a different way.

If [a, b] and [c, d] are two intervals in IR, there is a unique map p: [a, b] —+ [c, d]
of the form p(x) = mx + k that carries a to c and b to d; we call it the positive linear
map of [a, b] to [c, d] because its graph is a straight line with positive slope. Note that
the inverse of such a map is another such map, and so is the composite of two such
maps.

With this terminology, the product f * g can be described as follows: On [0, it

equals the positive linear map of [0, to [0, I], followed by f; and on 1], it equals

the positive linear map of 1] to [0, 1], followed by g.
Now we verify (1). Given paths f, g, and h in X, the products f * (g * h) and

(f*g) *h aredefined precisely when f(1) = g(0) andg(I) = h(0). Assuming these
two conditions, we define also a "tnple product" of the paths f, g, and h as follows:
Choose points a and b of! so that 0 <a <b < 1. Define a path in X as follows:

x
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On [0, a] it equals the positive linear map of [0, a] to I followed by f; on [a, b] it
equals the positive linear map of [a, b] to I followed by g; and on [b, I] it equals the
positive linear map of[b, 1] to! followed by h. The path kab depends of course on the
choice of the points a and b. But its path-homotopy class does not! We show that if c
and d are another pair of points of! with 0 <c < d < 1, then is path homotopic
to

Let p: I —* 1 be the map whose graph is pictured in 51 9. When restricted
to [0, a], [a, b], and [b, 1], respectively, it equals the positive linear maps of these
intervals onto [0, c], [c, d], and [d, 1], respectively. It follows at once that p
equals ka,b. But p is a path in I from 0 to 1; and so is the identity map i : I —* I.
Hence, there is a path homotopy P in I between p and i. Then o P is a path
homotopy in X between kab and

S

Figure 51.9

What has this to do with associativity7 A great deal. For the product f * (g * h)
is exactly the tnple product kab in the case where a = 1/2 and b = 3/4, as you can
check, while the product (f *g)*h equals in the case wherec = 1/4 andd = 1/2.
Therefore these two products are path homotopic. U

The argument just used to prove associativity goes through for any finite product of
paths. Roughly speaking, it says that as far as the path-homotopy class of the result is
concerned, it doesn't matter how you chop up the interval when you form the product
of paths! This result will be useful to us later, so we state it formally as a theorem here:

Theorem 513. Let f be a path in X, and let aD be numbers such that
o = ao < < < = 1. Let f, : I —* X be the path that equals the positive
linear map of 1 onto [at_i, a] followed by f. Then

[f]=[ff]*..

U

d

C

a b 1
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Exercises

1. Show that if h, h' X —÷ Y are homotopic and k, k' Y —* Z are homotopic,
then k o h and k' o are homotopic.

2. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps
of X into Y.
(a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
(b) Show that if Y is path connected, the set [1, Y] has a single element.

3. A space X is said to be contractible if the identity map ix : X —* X is nuiho-
motopic.
(a) Show that I and IR are contractible.
(b) Show that a contractible space is path connected.
(c) Show that if Y is contractible, then for any X, the set [X, Y] has a single

element.
(d) Show that if X is contractible and Y is path connected, then [X, Y] has a

single element.

§52 The Fundamental Group

The set of path-homotopy classes of paths in a space X does not form a group under the
operation * because the product of two path-homotopy classes is not always defined.
But suppose we pick out a point X to serve as a "base point" and restrict ourselves
to those paths that begin and end at x0 The set of these path-homotopy classes does
form a group under *. It will be called the fundamental group of X.

In this section, we shall study the fundamental group and denve some of its prop-
erties. In particular, we shall show that the group is a topological invanant of the
space X, the fact that is of crucial importance in using it to study homeomoi-phism
problems.

Let us first review some tenninology from group theory. Suppose G and G' are
groups, written multiplicatively A homomorphism f G —÷ G' is a map such that
f(xy) = f(x).f(y) for allx, y; it automatically satisfies the equations f(e) e' and
f(x1) = where e and e' are the identities of G and G', respectively, and the
exponent — 1 denotes the inverse. The kernel of f is the set f (e'); it is a subgroup
of G. The image of f, similarly, is a subgroup of G'. The homomorphism f is called a
mononwrphism if it is injective (or equivalently, if the kernel of f consists of e alone).
It is called an epimorphism if it is surjective; and it is called an isomorphism if it is
bijective

Suppose G is a group and H is a subgroup of G. Let x H denote the set of all
products xh, for h E H; it is called a left coset of H in G. The collection of all such
cosets forms a partition of G. Similarly, the collection of all right cosets Hx of H in G
forms a partition of G. We call H a normal subgroup of G ifx . h

x E each E H. In this case, we have x H = Hx for each x, so that our two
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partitions of G are the same. We denote this partition by G/H; if one defines

(xH) (yH) = (x y)H,

one obtains a well-defined operation on G/H that makes it a group. This group is
called the quotient of G by H. The map f : G —* G/H carrying x to xH is an
epimorphism with kernel H Conversely, if 1: G —* G' is an epimoi-phism, then its
kernel N is a normal subgroup of G, and f induces an isomoi-phism GIN G' that
carries xN to f(x) for each x E G.

If the subgroup H of G is not normal, it will still be convenient to use the symbol
G/H; we will use it to denote the collection of right cosets of H in G.

Now we define the fundamental group.

Definition. Let X be a space; let be a point of X. A path in X that begins and
ends at is called a loop based at The set of path homotopy classes of loops based
at with the operation *, is called the fundamental group of X relative to the base
point It is denoted by xO).

It follows from Theorem 51.2 that the operation *, when restricted to this set,
satisfies the axioms for a group. Given two loops f and g based at x0, the product
f * g is always defined and is a loop based at xo. Associativity, the existence of an
identity element and the existence of an inverse [11 for [f] are immediate.

Sometimes this group is called thefirst homotopy group of X, which term implies
that there is a second homotopy group. There are indeed groups (X, for all
n E Z÷, but we shall not study them in this book. They are part of the general subject
called homotopy theory.

EXAMPLE 1 Let R' denote euclidean n-space. Then ,r1(R', is the trivia] group (the
group consisting of the identity aLone). For if f is a ioop in R" based at xo, the straight-line
homotopy is a path homotopy between f and the constant path at xo More generally, if X
is any convex subset of R', then iri(X, is the trivial group. In particular, the unit ball
B" in

has trivial fundamental group.

An immediate question one asks is the extent to which the fundamental group
depends on the base point. We consider that question now.

Definition. Let a be a path in X from xo to xf. We define a map

& —+

by the equation

The map &, which we call "a-hat," is well-defined because the operation * is well-
defined. 1ff is a loop based atxo, then i * (f *a) is a loop based atx1. Hence & maps

xo) into Jri (X, xf), as desired; note that it depends only on the path-homotopy
class of a. It is pictured in Figure 52 1.
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Proof To show that & is a homomorphism, we compute

* &([gJ) = ([a] * [1] * [a]) * ([a] * [g] * [a])
=[ã}*[f}*[gJ*[a]
=&([f]*[g]).

To show that & is an isomoi-phism, we show that if denotes the path a, which is
the reverse of a, then ,6 is an inverse for &. We compute, for each element [h] of
ir1(X, x1),

,6([h]) = [,6] * [h] * [,6] = [a] * [h] * [a],

[a] * ([cr] * [hJ * [ij) * [cr1 [h].

A similar computation shows that = [f] for each [f] xo). •
Corollary 52.2. If X is path connected and xo and xf are two points of X, then

(X, xo) is isomorphic to ,r1 (X, xi).

Suppose that X is a topological space. Let C be the path component of X contain-
ing It is easy to see that 711 (C, xo) = (X, xO), since all loops and homotopies
in X that are based at must lie in the subspace C. Thus (X, xo) depends on only
the path component of X containing it gives us no information whatever about the
rest of X. For this reason, it is usual to deal with only path-connected spaces when
studying the fundamental group

If X is path connected, all the groups ,r1(X, x) are isomorphic, so it is tempting
to try to "identify" all these groups with one another and to speak simply of the fun-
damental group of the space X, without reference to base point. The difficulty with
this approach is that there is no natural way of identifying xO) with (X, xi);
different paths cr and ,6 from xo to xi may give rise to different isomorphisms between
these groups. For this reason, omitting the base point can lead to error.

Figure 52.1

Theorem 52.1. The map & is a group isomorphism.
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It turns out that the isomoi-phism of xO) with (X, Xl) is independent of
path if and only if the fundamental group is abelian. (See Exercise 3.) This is a
stringent requirement on the space X.

Definition. A space X is said to be simply connected if it is a path-connected space
and if is the trivial (one-element) group for some X, and hence for
every xo E X. We often express the fact that xo) is the trivial group by writing
211(X,x0) = 0.

Lemma 52.3. In a simply connected space X, any two paths having the same initial
and fInal points are path homotopic.

Proof Let a and ,6 be two paths from xo to xf Then a * ,6 is defined and is a loop
on X based at Since X is simply connected, this loop is path homotopic to the
constant loop at Then

[a * ,6] * = * [,6],

from which it follows that [a] = [,6].

It is intuitively clear that the fundamental group is a topological invariant of the
space X. A convenient way to prove this fact formally is to introduce the notion of the
"homomorphism induced by a continuous map."

Suppose that h X —* Y is a continuous map that carries the point xo of X to the
point yo of Y. We often denote this fact by wnting

h: (X,xo) —+ (Y,yo).

1ff is a loop in X based atxo, then the composite h of: I —÷ Y is a loopin Y based
at yo. The correspondence f —+ h o f thus gives rise to a map carrying ,r1(X, xo) into

yo). We define it formally as follows:

Definition. Let h (X, xo) —÷ (Y Yo) be a continuous map. Define

. ,r1(X,x0) —÷ jr1(Y, YO)

by the equation

= [h o f].
The map is called the homomorphism induced by h, relative to the base point xo.

The map is welt-defined, for if F is a path homotopy between the paths f
and f', then h o F is a path homotopy between the paths h o f and h o f'. The fact
that is a homomorphism follows from the equation

(hof)*(hog) =ho(f*g).
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The homomorphism depends not only on the map h : X —÷ Y but also on the choice
of the base point xO. (Once xO is chosen, yo is deternuned by h.) So some notational
difficulty will arise if we want to consider several different base points for X. If xo and
x1 are two different points of X, we cannot use the same symbol to stand for two
different homomorphisms, one having domain (X, xO) and the other having domain

xi). Even if X is path connected, so these groups are isomorphic, they are still
not the same group. In such a case, we shall use the notation

—* 7T1(Y,y0)

for the first homomorphism and )* for the second. If there is only one base point
under consideration, we shalt omit mention of the base point and denote the induced
homomorphism merely by

The induced homomorphism has two properties that are crucial in the applications.
They are called its "functorial properties" and are given in the following theorem:

Theorem 52.4. If h (X, —÷ (Y, Yo) and k : (Y, Yo) (Z, Zo) are continuous,
then (k o = o If i : (X, x0) —÷ (X, xo) is the identity map, then is the
identity homomorphism.

Proof The proof is a triviality. By definition,

(k o = [(k oh) o f],
o = = o f}) = [k o o f)].

Similarly, = [1 a f] = [11 U

Corollary 52.5. If h : (X, xO) —* (Y, Yo) is a homeomorphism of X with Y, then
is an isomorphism of,ri(X, xO) with jr1(Y, Yo).

Pmof Letk (Y.yo) —* (X,xo) be the inverse of h. Then =
where i is the identity map of (X, xo); and o = (h o = where j is the
identity map of (Y, ye). Since and are the identity homomorphisms of the groups

xo) and ye), respectively, is the inverse of

Exercises

1. A subset A of W' is said to be star convex if for some point ao of A, all the line
segments joining ao to other points of A lie in A.
(a) Find a star convex set that is not convex.
(b) Show that if A is star convex, A is simply connected.

2. Let a be a path in X from xo to x1; Let ,6 be a path in X from to X2. Show that
ify =,6o&.
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3. Let xo and x1 be points of the path-connected space X. Show that is
abelian if and only if for every pair cr and ,6 of paths from x0 to x1, we have

4. Let A C X; suppose r X —* A is a continuous map such that r(a) = a for each
a E A. (The map r is called a retraction of X onto A ) If ao E A, show that

—÷

is surjective.

5. Let A be a subspace of 1k'; let h : (A, a0) —÷ (Y, yo). Show that if h is extend-
able to a continuous map of 1k'7 into Y, then is the tnvial homomorphism (the
homomorphism that maps everything to the identity element).

6. Show that if X is path connected, the homomorphism induced by a continuous
map is independent of base point, up to isomorphisms of the groups involved.
More precisely, let h : X —÷ Y be continuous, with h(x0) = and h(x1) =
Let a be a path in X from xo to xf, and let ,6 = h o a. Show that

=

This equation expresses the fact that the following diagram of maps

Yo)

&

7. Let G be a topological group with operation • and identity element xo Let
c�(G, denote the set of all loops in G based at If f, g E xo),
let us define a loop f 0 g by the rule

(1 0 g)(s) = f(s) . g(s).

(a) Show that this operation makes the set c�(G, x0) into a group.
(b) Show that this operation induces a group operation 0 on Jri (G, xe).
(c) Show that the two group operations * and 0 on (G, xo) are the same.

[Hint: Compute (f * 0 * g)]
(d) Show that (G, xo) is abelian.

§53 Covering Spaces

We have shown that any convex subspace of has a trivial fundamental group; we
turn now to the task of computing some fundamental groups that are not trivial. One
of the most useful tools for this purpose is the notion of covering space, which we
introduce in this section. Covenng spaces are also important in the study of Riemann
surfaces and complex manifolds. (See [A-S].) We shall study them in more detail in
Chapter 13.
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Definition. Let p E —+ B be a continuous surjective map. The open set U of B
is said to be evenly covered by p if the inverse image p (U) can be wntten as the
union of disjoint open sets Va in E such that for each a, the restriction of p to Va
is a homeomorphism of onto U The collection { will be called a partition of
p'(U) into slices

If U is an open set that is evenly covered by p. we often picture the set
as a "stack of pancakes," each having the same size and shape as U, floating in the air
above U; the map p squashes them all down onto U. See Figure 53.1. Note that if U
is evenly covered by p and W is an open set contained in U, then W is also evenly
covered by p.

Definition. Let p E —* B be continuous and surjective. If every point b of B has a
neighborhood U that is evenly covered by p, then p is called a cowering map, and E
is said to be a covering space of B

Note that if p E —* B is a covenng map, then for each b E B the sub-
space (b) of E has the discrete topology For each slice Va is open in E arid
intersects the set p1(b) in a single point; therefore, this point is open in p1(b).

Note also that if p E —* B is a covering map, then p is an open map. For
suppose A is an open set of E. Given x E p(A), choose a neighborhood U of x that is
evenly covered by p Let { be a partition of (U) into slices. There is a point y
of A such that p(y) = x; let be the slice containing y. The set fl A is open
in E and hence open in because p maps homeomorphically onto U, the set

fl A) is open in U and hence open in B; Lt is thus a neighborhood of x contained
in p(A), as desired.

Figure 53.1
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EXAMPLE 1. Let X be any space; let I X —+ X be the identity map. 'Then i is a
covering map (of the most trivial sort). More generally, let E be the space X x (1, n)
consisting of ii disjoint copies of X. The map p E —* X given by p(x, i) = x for all i
is again a (rather trivial) covenng map. In this case, we can picture the entire space E as a
stack of pancakes over X.

In practice, one often restricts oneself to covering spaces that are path connected,
to eliminate trivial coverings of the pancake-stack variety. An example of such a non-
trivial covering space is the following.

Theorem 53.1. The map p R given by the equation

p(x) = sin 23rx)

is a covering map.

One can picture p as a function that wraps the real line IR around the circ le and

in the process maps each interval [n, n + 1] onto S'.

Proof The fact that p is a covering map comes from elementary properties of the sine
and cosine functions. Consider, for example, the subset U of S' consisting of those
points having positive first coordinate. The set '(U) consists of those points x for
which cos 2jrx is positive, that is, it is the umon of the intervals

=(n— +

for all n E Z. See Figure 53.2. Now, restricted to any closed interval the map p
is injective_because sin is strictly monotonic on such an interval. Furthermore,
p carries surjectively onto U, and to U, by the intermediate value theorem.
Since is compact, p1 is a homeomoi-phism of with U. In particular, is a
homeomoi-phism of with U

—3 —2 —1 0 1 2 3

1) (1) (1) (I) (I) (1) (
v_3 v_2 v_1 V0 V1 V2 V3(.

Figure 53.2

Similar arguments can be applied to the intersections of S' with the upper and
lower open half-planes, and with the open left-hand half-plane. These open sets
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cover S'. and each of them is evenly covered by p. Hence p : IR S' is a cov-
ering map. U

If p. E —÷ B is a covering map, then p is a local homeomorphism of E with B.
That is, each point e of E has a neighborhood that is mapped homeomorphically by p
onto an open subset of B. The condition that p be a local homeomorphism does not
suffice, however, to ensure that p is a covering map, as the following example shows.

EXAMPLE 2. The map p . —+ S' given by the equation

p(x) = (cos2irx,sin2,rx)

is surjective, and it is a local homeomorphism. See Figure 53.3. But it is not a covering
map, for the point bo (1, 0) has no neighborhood U that is evenly covered by p. The
typical neighborhood U of bo has an inverse image consisting of small neighborhoods V,,
of each integer n for n > 0, along with a small interval Vo of the form (0, e). Each of the
intervals for ii > 0 is mapped homeomorphically onto U by the map p. but the interval
Vo is only imbedded in U by p.

V0 V1 V2

0 1 2

EXAMPLE 3. The preceding example might lead you to think that the real line R is the
only connected covering space of the circle S'. This is not so. Consider, for example, the
map p . S' —+ S1 given in equations by

p(z) = z2.

[Here we consider S' as the subset of the complex plane C consisting of those complex
numbers z with Izi = I I We leave it to you to check that p is a covering map.

Example 2 shows that the map obtained by restricting a covering map may not be
a covenng map. Here is one situation where it will be a covering map:

Theorem 53.2. Let p: E -+ B be a covering map. If Bo is a subspace of B, and if
E0 = (B0), then the map p is a covering
map.

U

Figure 53.3
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Proof Given E B0, let U be an open set in B containing b0 that is evenly covered
by p; let { Va) be a partition of p1 (U) into slices. Then UflB0 is a neighborhood of bo
in B0, and the sets fl E0 are disjoint open sets in E0 whose union is (U fl B0),
and each is mapped homeomorphically onto U fl B0 by p.

Theorem 53.3. ftp: E —÷ B and p': E' —p B' are covering maps, then

p x p': E x E' -+ B x B'

is a covering map.

Proof Given b E B and b' E B', let U and U' be neighborhoods of b and b',
respectively, that are evenly covered by p and p', respectively. Let (Va) and { be

partitions of pf (U) and respectively, into slices. Then the inverse image
under p x p' of the open set U x U' is the union of all the sets Va x These are
disjoint open sets of E x E', and each is mapped homeomorphically onto U x U' by
pxp'.

EXAMPLE 4. Consider the space T = S1 x S1 it is called the torus The product map

pxp RxR—.-÷S1xS1

is a covenng of the torus by the plane 1R2, where p denotes the covering map of Theo-
rem 53 I Each of the unit squares En, n + U x [m, m + 1] gets wrapped by p x p entirely
around the torus. See Figure 53 4

In this figure. we have piciured the torus not as the product S' x S', which isa subspace
of R4 and thus difficult to visualize, but as the familiar doughnut-shaped surface D in R3
obtained by rotating the circle C1 in the xz-plane of radius centered at (1,0, 0) about
the z-axis. It is not hard to see that S1 x S' is homeomorphic with the surface D Let C2
be the circle of radius 1 in the centered at the origin. Then let us map C1 x C2
into D by defining f(a x b) to be that point into which a is carned when one rotates the
circle Ci about the z-axis until its center hits the point b See Figure 53.5. The map f
will be a homeomorphism of C1 x C2 with D, as you can check mentally. If you wish,
you can write equations for f and check continuity, injectivity, and surJectivity directly.
(Continuity of I ' will follow from compactness of C1 x C2.)

Figure 53.4



340 The Fundamental Group Ch. 9

z

EXAMPLES. Consider the covenng map p x p of the preceding exampLe. Let b0 denote
the point p(O) of S'; and let B0 denote the subspace

B0=(S1 xbo)U(b0xS')

of S1 x S1. Then &j is the union of two circles that have a point in common, we sometimes
call it the figure-eightspace The space Eo = p1 (Bo) is the "infinite grid"

= (R x Z) U (Z x R)

pictured in Figure 53 4. The map P0 : E0 —÷ B0 obtained by restricting p x p is thus a
covering map.

The infinite grid is but one covering space of the figure eight; we shall see others later
on.

EXAMPLE 6 Consider the covering map

p x i : JR x JR4 —+ x

where i is the identity map of and p is the map of Theorem 53 1. If we take the standard
homeomorphism of x IR+ with JR2 — 0, sending x x t to tx, the composite gives us a
covering

JR x JR2 - o

of the punctured plane by the open upper half-plane. It is pictured in Figure 53.6. This cov-
ering map appears in the study of complex variables as the Riemann surface corresponding
to the complex logarithm function.

Figure 53.5
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Exercises

1. Let Y have the discrete topology. Show that if p : X x Y —* X is projection on
the first coordinate, then p is a covering map.

2. Let p: E —* B be continuous and surjective. Suppose that U is an open set of B
that is evenly covered by p. Show that if U is connected, then the partition of

into slices is unique.

3. Let p : E B be a covenng map; let B be connected. Show that if (!xj)
has k elements for some b0 E B, then p'(b) has k elements for every b E B.
In such a case, E is called a k-fold covering of B.

4. Let q : X —* Y and r : Y —p Z be covering maps; let p = r o q. Show that if
r (z) is finite for each z Z, then p is a covering map.

5. Show that the map of Example 3 is a covering map. Generalize to the map
p(z) = z".

6. Let p. E —* B be a covering map.
(a) If B is Hausdorif, regular, completely regular, or locally compact Hausdorff,

then so is E. [Hint: If {Vr) is a partition of into slices, and C is a
closed set of B such that C C U, then p'(C) fl is a closed set of E.]

(b) If B is compact and p1(b) is finite for each b E B, then E is compact.

§54 The Fundamental Group of the Circle

The study of covering spaces of a space X is intimately related to the study of the
fundamental group of X. In this section, we establish the crucial links between the
two concepts, and compute the fundamental group of the circle.

§54 The Fundamental Group of the Circle 341

R x

'R2 —o

Figure 53.6
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Definition. Let p E —* B bea map. 1ff is a continuous mapping of some space X
into B, a lifting of f is a map f : X —* E such that p o f = f.

X B

The existence of liftings when p is a covering map is an important tool in studying
covenng spaces and the fundamental group. First, we show that for a covering space,
paths can be lifted; then we show that path homotopies can be lifted as well. First, an
example:

EXAMPLE 1. Consider the covenng p R —+ S' of Theorem 53.1. The path f
[0,1] —+ S' beginning at bo = (1.0) given by f(s) = lifts to the path
f(s) = s/2 beginning atO and ending at The path g(s) = (cos irs, — sin irs) lifts to the
path i(s) = —s/2 beginning at 0 and ending at The path h(s) = (cos4irs, sin 4,rs)

lifts to the path h(s) = 2s beginning at 0 and ending at 2. Intuitively, h wraps the interval
[0, 1] around the circle twice; this is reflected in the fact that the lifted path h begins at zero
and ends at the number 2 These paths are pictured in Figure 54 1.

Lemma 54.1. Let p E -+ B be a covering map, let p(eo) b0. Any path

f . [0, 1] B beginning at b0 has a unique lifting to a path f in E beginning at eo.

Proof Cover B by open sets U each of which is evenly covered by p. Find a subdi-
vision of[O, 1), say . such that for each i the set s+1]) lies in such an
open set U. (Here we use the Lebesgue number lemma.) We define the lifting f step
by step. - -
- First, define f(0) = eo. Then, supposing f(s) is defined for 0 s we define

f on [se, s1÷i] as follows: The set s÷i]) lies in some open set U that is evenly
covered by p Let { } be a partition of (U) into slices; each set Va is mapped
homeomorphically onto U by p. Now f(s) lies in one of these sets, say in V0. Define
f(s) for S [se, by the equation

1s = (p I
Vo)1(f(s)).

I I I L
—1 12 —1 2

Figure 54.1
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Because V0: Vo —* U is a homeomorphism, I will be continuous on [se, s÷jI.
Continuing in this way, we define f on all of [0, 1]. Continuity off follows from

the pasting lemma; the fact that p o f = f is immediate from the definition of 1.
The uniqueness of f is also proved step by step. Suppose that / is another lifting

of f beginning at e0. Then f(O) = eo = J(0). Suppose that f(s) = for all S
such that 0 s s. Let Vo be as in the preceding paragraph; then_for s Es, s
f(s) is defined as V0) (f(s)). What can f(s) equal" Since f is a lifting of
it must carry the interval [si, s+i] into the set = U Vr. The slices are

open and disjoint; because the set is connected, it must lie entirely in one
of the sets Because f(s,) = which is in V0. I must carry all of Es s÷i]
into the set V0. Thus, for s in Es, s,+f], f(s) must equal some point y of V0 lying
in p1 (f(s)). But there is only one such point y, namely, (p1 V0) (f(s)). Hence
f(s) = f(s) fors E

Lemma 54%2. Let p E —+ B be a covering map; let p(eo) = b0. Let the map
F: I x I —* B be continuous, with F(0, 0) = bo. There is a unique lifting ofF to a
continuous map

such that F(0, 0) = eo. if F is a path homotopy, then F is a path homotopy.

Pmof Given F, we first define F(0, 0) = eo. Next, we use the preceding lemma to
extend F to the left-hand edge 0 x I and the bottom edge I x 0 of I x 1. Then we
extend F to all of! x I as follows:

Choose subdivisions

SO < 51 < < Sm,

to<tl<...<tn
of I fine enough that each rectangle

I x = — s] x — I

is mapped by F into an open set of B that is evenly covered by p. (Use the Lebesgue
number lemma.) We define the lifting F step by step, beginning with the rectangle

x continuing with the other rectangles x J1 in the "bottom row," then with the
rectangles I x J2 in the next row, and so on.

In general, given io and Jo. assume that F is defined on the set A which is the
union of 0 x I and I x 0 and all the rectangles "previous" to 10 x (those rectangles
I x for which j and those for which j = Jo and i <i0). Assume also that F
is a continuous lifting of F1A. We define F on x J0. Choose an open set U of B
that is evenly covered by p and contains the set F(10 x Let (Va) be a partition
of into slices; each set Va is mapped homeomorphically onto U by p. Now
F is already defined on the set C = A fl x This set is the union of the left
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and bottom edges of the rectangle x so it is connected. Therefore, F(C) is
connected and must lie entirely within one of the sets Va. Suppose it lies in V0 Then,
the situation is as pictured in Figure 54.2.

Figure 54.2

Let P0 : Vo —* U denote the restriction of p to V0. Since F is a lifting of FIA, we
know that for x C,

po(F(x)) = p(F(x)) = F(x),

so that F(x) = (F(x)). Hence we may extend F by defining

F(x) =

for x E x The extended map will be continuous by the pasting lemma.
Continuing in this way, we define F on all of j2• -

To check uniqueness, note that at each step of the construction of F, as we ex-
tend F first to the bottom and left edges of j2, and then to the rectangles 1, x one

by one, there is only one way to extend F continuously. Thus, once the value of F at
(0, 0) is specified, F is completely determined.

Now suppose that F is a path homotopy. We wish to show that F is a path homo-
topy. The_map F carries the entire left edge 0 x I of j2 into a single point b0 of B.
Because F is a lifting of F, it carnes this edge into the set p1(b0). But this set has the
discrete topology as a subspace of E. Since 0 x us connected and F is continuous,
F(0 x I) is connected and thus must equal a one-point set. Similarly, F(1 x I) must
be a one-point set. Thus F is a path homotopy. U

Theorem 54.3. Let p. E -+ B be a covering map; let p(eo) = b0. Let f and g
be two paths in B from b0 to b1, let f and be their respective liftings to paths in E
beginning at e0. 1ff and g are path homotopic, then f and end at the same point of
E and are path homotopic.

U
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Proof Let F: I x I B be the path homotopy between f and g. Then F(O, 0) =
b0 Let F : I x 1—4 E be the lifting of F to E such that F(O, 0) eO. By the
preceding lemma, F is a path homotopy, so that F(O x 1) = {eo) and F( 1 x 1) is a
one-point set {e1) -

The restnction FJ / x 0 of F to the bottom edge of! x! is a path on E beginning at
eo that is a lifting of Fl! x 0. By uniqueness of path liftings, we must have F(s, 0) =
f(s). Similarly, Fl! x 1 is a path on E that is a lifting of Fl! x 1, and it Fegins at eo
because F(0 x I) = {eO}. By uniqueness of path liftings, F(s, 1) = g(s) Therefore,
both f and end at ef, and F is a path homotopy between them. U

Definition. Let p : E —+ B be a covering map; let b0 E B Choose eo so that
p(eo) = b0. Given an element [1] of (B, b0), letf be the lifting off to a path in E
that begins at eo. Let denote the end point f(1) off. Then 0 is a well-defined
set map

,r1(B, b0) —*

We call 0 the lifting correspondence derived from the covering map p. It depends of
course on the choice of the point eo.

Theorem 54.4. Let p E B be a covering map; let p(eo) = b0. If E is path
connected, then the lifting correspondence S

-+ p1(bo)

is surjective. If E is simply connected, it is bijective.

Proof If E is path connected, then, given et E (bo), there is a path / in E from

eo to Thenf = pof is a loop in Bat b0, and Ø([f}) = by definition
Suppose E is simply connected. Let [f] and [g] be two elements of ,r1(B, b0)

such that Ø([g]). Let I and be the liftings of f and g, respectively, to
paths in E that begin at eo, then f(I) = g(1). Since E is simply connected, there is a
path homotopy F in E between f and Then F is a path homotopy in B between
fandg

Theorem 54.5. The fundamental group of S is isomorphic to the additive group of
integers.

Pmof Let p : IR —* be the covering map of Theorem 53.1, let eo = 0, and let
b0 p(eo). Then p1(bo) is the set Z of integers. Since IR is simply connected, the
lifting correspondence

Z

is bijective. We show that 0 is a homomorphism, and the theorem is provect
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Given [1] and [g] in yrj(B, b0), let f and be their respective liftings to paths
on JR beginning at 0. Let n = f(1) and m = g(1); then = n and =
by definition. Let be the path

i(s) =n +g(s)

on JR. Because p(n + x) = p(x) for all x E R, the path is a lifting of g; it begins
at n. Then the product f * is defined, and it is the lifting off * g that begins at 0, as
you can check. The end point of this path is = n + m. Then by definition,

* [g]) = n + m = Ø([í]) + U

Definition. Let G be a group; let x be an element of G. We denote the inverse of x
by The symbol x" denotes the n-fold product of x with itself, denotes the
n-fold product of x with itself, and x° denotes the identity element of G. If the set
of all elements of the form m E Z, equals G, then G is said to be a cyclic
group, and x is said to be a generator of G.

The cardinality of a group is also called the order of the group. A group is cyclic of
infinite order if and only if it is isomorphic to the additive group of integers; it is cyclic
of order k if and only if it is isomorphic to the group 7L/ k of integers modulo k. The
preceding theorem implies that the fundamental group of the circle is infinite cyclic.

Note that if x is a generator of the infinite cyclic group G, and if y is an element
of the arbitrary group H, then there is a unique homomorphism h of G into H such
that h(x) = y; it is defined by setting h(x") = yfl for all n.

For later use, in §65 and in Chapters 13 and 14, we prove here a strengthened
version of Theorem 54.4.

Theorem 54.6. Let p: E —÷ B be a covering map; let p(eo) = b0.

(a) The homomorphism 211 (E, eo) —÷ JTf(B, bo) is a monomorphism.

(b) Let H = eo)). The lifting correspondence induces an injective map

,r1(B,bo)/H —+ p1(bo)

of the collection of right cosets of H into p (b0), which is bijective if E is path
connected.

(c) 1ff is a loop in B based at b0, then [1] E H if and only if f lifts to a loop in E
based at eo.

Proof (a) Suppose h is a loop in E at eo, and is the_identity element. Let F
be a path homotopy between p_o h and the constant loop. If Fis the lifting of F to E
such that F(0, 0) = eo, then F is a path hornotopy between h and the constant loop
at eo.
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(b) Given loops f and g in B, let / and be liftings of them to E that begin at eo.
Then = f(1) and = We show that /([f]) = if and only
if(f]E H*[g].

First, suppose that [1] H * [g]. Then [f] = [h * g], where h = p o h for some
loop h in E based at eo. Now the product h* is defined, and it is a lifting of h * g.
Because [1] = [h * g], the liftings f and h * which begin at eo, must end at the
same point of E. Then f and end at the same point of E, so that —

See Figure 54.3.

p B

Figure 54.3

Now suppose that çh([f]) = Then f and end at the same point of E.
The product of f and the reverse of is defined, and it is a loop h in E based at eo.
By direct computation, [h * = [f]. If F is a path homotopy in E between the loops

andf,then poF isapathhomotopyin B between h*g and f, where h = poh.
Thus [f] E H * [g], as desired.

If E is path connected, then is surjective, so that is surjective as well.
(c) Injectivity of means that — Ø([g]) if and only if [f] H * (g].

Applying this result in the case where g is the constant loop, we see that =
if and only if [1] E H. But = precisely when the lift of f that begins at e0
alsoendsateo. a

Exercises

1. What goes wrong with the "path-lifting lemma" (Lemma 54.1) for the local
homeomorphism of Example 2 of §53?

2. In defining the map F in the proof of Lemma 54.2, why were we so careful about
the order in which we considered the small rectangles?

3. Let p: E —÷ B be a covering map. Let a and be paths in B with cr(1) =
let & and be liftings of them such that &(l) = Show that & is a lifting
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4. Consider the covenng map p R x IR÷ —÷ JR2 — 0 of Example 6 of §53. Find
liftings of the paths

f(t) =(2—t,O),
g(t) = ((1 +t)cos2irt,(1 +t)sin2nt)
h(t)= f*g.

Sketch these paths and their liftings.

5. Consider the covering map p x p R x JR S' x S' of Example 4 of §53.
Consider the path

f(t) = (cos2,rt,sin2,rt) x

in S1 x S'. Sketch what f looks like when S' x S' is identified with the doughnut
surface D. Find a lifting f off to R x IR, and sketch it.

6. Consider the maps g, h S' —÷ S' given g(z) = and h(z) = (Here
we represent S1 as the set of complex numbers z of absolute value 1.) Compute
the induced homomorphisms of the infinite cyclic group (S', b0) into
itself. [Hint: Recall the equation + i sin £1)1z = + i sin

7. Generalize the proof of Theorem 54.5 to show that the fundamental group of the
torus is isomorphic to the group Z x Z.

8. Let p : E —+ B be a covering map, with E path connected. Show that if B is
simply connected, then p is a homeomorphism.

§55 Retractions and Fixed Points
We now prove several classical results of topology that follow from our knowledge of
the fundamental group of S'.

Definition. If A C X, a retraction of X onto A is a continuous map r : X —÷ A such
that is the identity map of A. If such a map r exists, we say that A is a retract
of X.

Lemma 55.1. If A is a retract of X, then the homomorphism of fundamental groups
induced by inclusion j A —÷ X is injective.

Proof If r : X —p A is a retraction, then the composite map r o j equals the identity
map of A. It follows that o is the identity map of a), so that must be
injective.

Theorem 55.2 (No-retraction theorem). There is no retraction of B2 onto

Proof If S' were a retract of B2, then the homomorphism induced by inclusion
j : —÷ B2 would be injective. But the fundamental group of is nontrivial and
the fundamental group of 82 is trivial.
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Lemma 55.3. Let h : S' —÷ X be a continuous map Then the following conditions
are equivalent:
(1) h is nulhomotopic.

(2) h extends to a continuous map k: B2 —÷ X.

(3) h * is the trivial homomorphism of fundamental groups.

Proof (1) (2). Let H : x I —p X be a homotopy between h and a constant
map. Let : S' x I —p B2 be the map

,r(x, t) = (1 — t)x.

Then is continuous, closed and surjective, so it is a quotient map; it collapses S' x 1
to the point 0 and is otherwise injective. Because H is constant on S1 x 1, it induces,
via the quotient map a continuous map k : B2 —p X that is an extension of h. See
Figure 55.1.

SI x I

(2) (3). If j S1 B2 is the inclusion map, then h equals the composite k oj.
Hence = o But

: —÷

is trivial because the fundamental group of 82 is trivial. Therefore is trivial.

(3) (1). Let p : JR St be the standard covering map, and let ps:! —÷ S' be
its restriction to the unit interval. Then [ps] generates ,ri(S', !xj) because P0 is a loop
in S1 whose lift to JR begins at 0 and ends at 1.

Let = h(bo). Because h the identity
element of ,ri(X, xo). Therefore, there is a path homotopy F in X between f and the
constant path at xo. The map x id I x I —p S' x I is a quotient map, being
continuous, closed, and surjective; it maps 0 x t and 1 x t to ho x t for each t, but
is otherwise injective. The path homotopy F maps 0 x I and 1 x I and I x 1 to the
point of X, so it induces a continuous map H I x that is a homotopy
between h and a constant map. See Figure 55.2. U

Figure 55.1
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Z17
lxi

p0 x

Corollary 55.4. The inclusion map j S' —+ JR2 — 0 is not nulhomozopic. The
identity map i : S' —÷ is not nuihomotopic.

Proof There is a retraction of R2 — 0 onto S1 given by the equation r(x) = x/lIxII.
Therefore, is injective, and hence nontrivial. Similarly, is the identity homomor-
phism, and hence nontnvial.

Theorem 55.5. Given a nonvanishing vector field on B2, there exists a point of S'
where the vector field points directly inward and a point of where it points directly
outward.

Proof A vector field on B2 is an ordered pair (x, v(x)), where x is in B2 and v is a
continuous map of B2 into R2. In calculus, one often uses the notation

v(x) = v1(x)i + v2(x)j

for the function v, where i and j are the standard unit basis vectors in JR2. But we shall
stick with simple functional notation. To say that a vector field is nonvanishing means
that v(x) 0 for every x; in such a case v actually maps B2 into 1R2 — 0.

We suppose first that v(x) does not point directly inward at any point x of S' and
denve a contradiction. Consider the map v : B2 -+ R2 — 0; let w be its restriction to
S1. Because the map w extends to a map of B2 into R2 — 0, it is nulhomotopic.

On the other hand, w is homotopic to the inclusion map j S' —÷ — 0.

Figure 55.3 illustrates the homotopy; one defines it formally by the equation

F(x, t) = tx + (1 — t)w(x),

forx E S1. We must show that F(x, t) 0. Clearly, F(x, t) 0 fort = 0 and t = 1.
If F(x, t) = 0 for some t with 0 < t < 1, then tx + (1 — t)w(x) = 0, so that w(x)
equals a negative scalar multiple of x. But this means that w(x) points directly inward
at x! Hence F maps S' x I into JR2 — 0, as desired.

It follows that j is nuihomotopic, contradicting the preceding corollary.
To show that v points directly outward at some point of S1, we apply the result

just proved to the vector field (x, —v(x)).

F

0

SI x I

x

Figure 55.2
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We have already seen that every continuous map f : [0, 1] —p 10, 1] has a fixed
point (see Exercise 3 of §24). The same is true for the ball B2, although the proof is
deeper:

Theorem 55.6 (Brouwer fixed-point theorem for the disc). 1ff : B2 —p B2 is
continuous, then there exists a pointx E B2 such that 1(x) = x.

Proof We proceed by contradiction. Suppose that f(x) x for every x in B2. Then
defining v(x) = f(x) — x gives us a nonvanishing vector field (x, v(x)) on B2. But
the vector field v cannot point directLy outward at any point x of S', for that would
mean

1(x) — x = ax

for some positive real number a, so that f(x) — (I + a)x would lie outside the unit
baIl 82. We thus arrive at a contradiction.

One might well wonder why fixed-point theorems are of interest in mathematics. It
turns out that many problems, such as problems concerning existence of solutions for
systems of equations, for instance, can be formulated as fixed-point problems. Here is
one example, a classical theorem of Frobenius. We assume some knowledge of linear
algebra at this point.

Corollary 55.7. Let A be a 3 by 3 matrix of positive real numbers. Then A has a
positive real eigenvalue (characteristic value).

Proof Let T R3 —÷ R3 be the linear transformation whose matrix (relative to the
standard basis for R3) is A. Let B be the intersection of the 2-sphere S2 with the first

(x, w(x))

Figure 55.3
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octant

((xl,x2,x3) I > Oandx2 0 andx3 O}

of 1EV. It is easy to show that B is homeomorphic to the ball B2, so that the fixed-point
theorem holds for continuous maps of B into itself.

Now if x = (xl, x2, x3) is in B, then all the components of x are nonnegative and
at least one is positive. Because all entries of A are positive, the vector T(x) is a vector
all of whose components are positive. As a result, the map x —p T(x)/ILT(x)II is a
continuous map of B to itself, which therefore has a fixed point xo. Then

T(xo) = IIT(xo)lIxo,

so that T (and therefore the matrix A) has the positive real eigenvalue IT(xo)II. U

Finally, we prove a theorem that implies that the tnangular region

in R2 has topological dimension at least 2. (See §50.)

'Theorem 55.8. There is an E > 0 such that for every open covering 4 of T by sets
of diameter less than E, some point of T belongs to at least three elements of A.

Proof We use the fact that T is homeomorphic to B2, so that we can apply the results
proved in this section to the space T.

Choose E > 0 so that no set of diameter less than intersects all three edges of T.
(In fact, E = will do.) We suppose that 4 = {Uf is an open covering ofT
by sets of diameter less than E, such that no three elements of 4 intersect, and derive
a contradiction.

For each i = 1 n, choose a vertex v of T as follows: If U intersects two
edges of T, let v be the vertex common to these edges. If U intersects only one edge
of T, let v be one of the end points of this edge. If (I, intersects no edge of T, let v
be any vertex of T.

Now let } be a partition of unity dominated by {Uf Un). (See §36.) Define
k: T JR2 by the equation

k(x) =

Then k is continuous. Given a point x of T, it lies in at most two elements of 4; hence
at most two of the numbers (x) are nonzero. Then k(x) = v if x lies in only one
opensetU1,andk(x) forsometwithO <t < 1 ifxliesintwoopen
sets U and In either case, k(x) belongs to the union of the edges of T, which is
Bd T. Thus k maps T into Bd T.
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Furthermore, k maps each edge of T into itself. For if x belongs to the edge vw
of T, any open set U, containing x intersects this edge, so that v must equal either v
or w. The definition of k then shows that k(x) belongs to uw.

Let h : Bd T Bd T be the restriction of k to Bd T. Since h can be extended
to the continuous map k, it is nulhomotopic. On the other hand, h is hornotopic to
the identity map of Bd T to itself; indeed, since h maps each edge of T into itself, the
straight4ine homotopy between h and the identity map of Bd T is such a homotopy.
But the identity map i of Bd T is not nulhomotopic. U

Exercises

1. Show that if A is a retract of B2, then every continuous map f A —÷ A has a
fixed point.

2. Show that if h S' —÷ S' is nulhomotopic, then h has a fixed point and h maps
some point x to its antipode —x

3. Show that if A is a nonsingular 3 by 3 matnx having nonnegative entries, then A
has a positive real eigenvalue.

4. Suppose that you are given the fact that for each n, there is no retraction r
—+ Sn. (This result can be proved using more advanced techniques of

algebraic topology.) Prove the following:
(a) The identity map i :

—÷ is not nulhomotopic.
(b) The inclusion map j : 5" — 0 is not nuihomotopic.
(c) Every nonvanishing vector field on B" points directly outward at some

point of 5", and directly inward at some point of Sn.
(d) Every continuous map f: has a fixed point.
(e) Every n + I by n + I matrix with positive real entries has a positive eigen-

value.
(f) If h 5" 5n is nulhomotopic, then h has a fixed point and h niaps some

point x to its antipode —x.

The Fundamental Theorem of Algebra

It is a basic fact about the complex numbers that every polynomial equation

of degree n with real or complex coefficients has n roots (if the roots are counted
according to their multiplicities). You probably first were told this fact in high school
algebra, although it is doubtful that it was proved for you at that time.

The proof is, in fact, rather hard; the most difficult part is to prove that every
polynomial equation of positive degree has at least one root. There are various ways
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of doing this. One can use only techniques of this proof is long and arduous.
Or one can develop the theory of analytic functions of a complex variable to the point
where it becomes a trivial corollary of Liouville's theorem. Or one can prove it as a
relatively easy corollary of our computation of the fundamental group of the circle;
this we do now.

Theorem 56.1 (The fundamental theorem of algebra). A polynomial equation

x"

of degree n > 0 with real or complex coefficients has at least one (real or complex)
root.

Proof Step 1. Consider the map I : given by 1(z) = z", where z is a
complex number. We show that the induced homomorphism of fundamental groups
is injective.

Let I —÷ be the standard loop in

po(s) = = (cos sin 2irs).

Its image under is the loop

f(po(s)) = = sin

This loop lifts to the path s —÷ ns in the covering space R. Therefore, the loop f o
corresponds to the integer n under the standard isomorphism of (Si, bo) with the
integers, whereas corresponds to the number 1. Thus is "multiplication by n" in
the fundamental group of so that in particular, is injective.

Step 2. We show that if g R2 — 0 is the map g(z) = then g is not
nulhomotopic.

The map g equals the map f of Step 1 followed by the inclusion map j : —÷

— 0. Now is injective, and is injective because 51 is a retract of R2 — 0.

Therefore, g, = j, o is injective. Thus g cannot be nulhomotopic.

Step 3. Now we prove a special case of the theorem. Given a polynomial equation

+ + + a1x + ao = 0,

we assume that

<1

and show that the equation has a root lying in the unit ball B2.
Assume it has no such root. Then we can define a map k : B2 —÷ JR2 — 0 by the

equation

k(z) = Zn + + + aiz + ao.
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Let h be the restriction of k to S'. Because h extends to a map of the ball into
R2 — 0, the map h is nuihomotopic.

On the other hand, we shall define a homotopy F between h and the map g of
Step 2; since g is not nulhomotopic, we have a contradiction. We define F: S' x 1 —÷

— 0 by the equation

++ao).
See Figure 56.!; F(z, t) never equals 0 because

IF(z, t)I IznI — + ... +
1 — + + laol)

= 1 >0.

Figure 56.1

Step 4. Now we prove the general case. Given a polynomiaL equation

+ +.•• + aix + ao = 0,

let us choose a real number c > 0 and substitute x cy. We obtain the equation

(cy)" + an_i (cy)"1 + + (cy) + = 0

an_i _i at aoY +—Y
C C

If this equation has the root y = then the original equation has the root xo =
c large enough that

an_i an_2 at—+—+...+—-+—<1
C C

to reduce the theorem to the special case considered in Step 3.

9

Si R2- 0
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Exercises

1. Given a polynomial equation

x"+an_ix"'+•+aix+acj=O

with real or complex coefficients. Show that if + + lad + laol < 1,

then all the roots of the equation lie interior to the unit ball B2. [Hint: Let
E 82]

2. Find a circle about the origin containing all the roots of the polynomial equation
x7 +x2 + 1 = o.

The Borsuk-Ulam Theorem

Here is a "brain-teaser" problem: Suppose you are given a bounded polygonal region A
in the plane R2. No matter what shape A has, it is easy to show that there exists a
straight line that bisects A, that is, one that cuts the area of A in half. Simply take the
horizontal line y = c, let f(c) denote the area of that part of A that lies beneath this
line, note that f is a continuous function of c, and use the intermediate-value theorem
to find a value of c for which f(c) equals exactly half the area of A.

But now suppose instead that you are given two such regions A1 and A2, you are
asked to find a single line that bisects them both. It is not obvious even that there
exists such a line. Try to find one for an arbitrary pair of triangular regions if you have
doubts!

In fact, such a line always exists This result is a corollary of a well-known theorem
called the Borsuk-Ulam theorem, to which we now turn.

Definition. If x is a point of then its antipode is the point —x. A map h : S" —÷
Stm is said to be antipode-preserving if h(—x) = —h(x) for all x E S's.

Theorem 57.1. If h 51 is continuous and antipode-preserving, then h is not
nulhomotopic.

Proof Let b0 be the point (1, 0) of Let p: S' —p S' be a rotation of that maps
h (bo) to b0. Since p preserves antipodes, so does the composite p o h. Furthermore, if
H were a homotopy between h and a constant map, then p o H would be a homotopy
between p o h and a constant map. Therefore, it suffices to prove the theorem under
the additional hypothesis that h(bo) = ho.

Step 1. Let q : S' —÷ S' be the map q (z) = z2, where z is a complex number. Or
in real coordinates, q(cos(), sin 8) = (cos2(), sin 29). The map q is a quotient map,
being continuous, closed, and surjective. The inverse image under q of any point of
consists of two antipodal points z and —z of Because h(—z) = —h(z), one has the
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equation q(h(—z)) = q(h(z)). Therefore, because q is a quotient map, the map q o h

induces a continuous map k —÷ S' such that k o q = q o h.

h

Note that q(bo) = h(bo) = ho, so that k(bo) = b0 as well. Also, h(—bo) = —b0.

Step 2. We show that the homomorphism of (S'. b0) with itself is nontrivial.
For this purpose, we first show that q is a covering map. (We gave this as an

exercise in §53.) The proof is similar to the proof that the standard map p : 51 is

a covering map. If, for instance, U is the subset of consisting of those points having
positive second coordinate, then (U) consist of those points of lying in the first
and third quadrants of R2. The map q carries each of these sets homeoniorphically
onto U. Similar arguments apply when U is the intersection of with the open lower
half plane, or with the open right and left half-planes. -

Second, we note that if f is any path in S' fromb0 to —ho, then the loop f = q of
represents a nontrivial element of b0). For I is a lifting of f to that begins
at ho and does not end at b0. -

Finally, we show is nontrivial. Let f be a path in from b0 to —ho. and let f
be the loop q o 1. Then is not tnvial, for = [k o (q o f)] = [q o (h o f)];
the latter is nontrivial because h o f is a path in from ho to —b0.

Step 3. Finally, we show that the homomorphism h cannot
be nulhomotopic.

The homomorphism is injective, being a nontrivial homomorphism of an in-
finite cyclic group with itself. The homomorphism is also injective; indeed,
corresponds to multiplication by two in the group of integers. It follows that o is

injective. Since o = o the homomorphism must be injective as well.

Figure 57.1

Theorem 57.2. There is no continuous anti pode-preserving map g: S2 —* S'.

Pmof Suppose g : 52 S' is continuous and antipode preserving. Let us take S1 to
be the equator of S2. Then the restriction of g to S' is a continuous antipode-preserving
map h of S1 to itself. By the preceding theorem, h is not nuihomotopic. But the upper
hemisphere E of s2 is homeomorphic to the ball B2, and g is a continuous extension
of h to E! See Figure 57.1.
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Theorem 57.3 (Borsuk-UJam theorem for S2). Given a continuous map f:
R2 there is a pointx of S2 such that f(x) = f(—x).

Proof Suppose that 1(x) f(—x) for all x E Then the map

g(x) = [f(x) — f(—x)]/l(f(x)— f(—x)IL

is a continuous map g 51 such that g(—x) = —g(x) for all x.

Theorem 57.4 (The bisection theorem). Given two bounded polygonal regions
in JR2 there exists a line in 1R2 that bisects each of them.

Proof We take two bounded polygonal regions and A2 in the plane R2 x 1 in 1R3,
and show there is a line L in this plane that bisects each of them.

Given a point u of let us consider the plane P in R3 passing through the origin
that has u as its unit normal vector. This plane divides R3 into two let
f(u) equal the area of that portion of A that lies on the same side of P as does the
vector u.

If u is the unit vector k, then f(u) area A; and if u = —k, then f(u) = 0.

Otherwise, the plane P intersects the plane R2 x 1 in a line L that splits JR2 x 1 into
two half-planes, and f, (u) is the area of that part of A that lies on one side of this line.
See Figure 57.2.

Figure 57.2

Replacing u by —u gives us the same plane P. but the other half-space, so that
f1(—u) is the area of that part of A that lies on the other side of P from u. It follows
that

f (—u) = area A.

Now consider the map F : ..÷ given by F(u) = 12(u)). The
Borsuk-tJlam theorem gives us a point u of for which F(u) = F(—u). Then
f,(u) = f(—u) fori = 1,2, that f1(u) = A, as desired.
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We have proved the bisection theorem for bounded polygonal regions in the plane.
However, all that was needed in the proof was the existence of an additive area function
for A1 and A2. Thus, the theorem holds for any two sets A1 and A2 that are "Jordan-
measurable" in the sense used in analysis.

These theorems generalize to higher dimensions, but the proofs are con siderably
more sophisticated. The generalized version of the bisection theorem states that given
ii sets in RIZ, there exists a plane of dimension n — 1 that bisects
them all. In the case n = 3, this result goes by the pleasant name of the "ham sandwich
theorem." If one considers a ham sandwich to consist of two pieces of bread and a slab
of ham, then the bisection theorem says that one can divide each of them precisely in
half with a single whack of a cleaver'

Exercises

1. Prove the following "theorem of meteorology": At any given moment in time,
there exists a pair of antipodal points on the surface of the earth at which both
the temperature and the barometric pressure are equal.

2. Show that if g : S2 —÷ S2 is continuous and g(x) g(—x) for all x, then g is
surjective. [Hint: If p E S2. then S2 — fp} is homeomorphic to JR2.]

3. Let h : —* si be continuous and antipode-preserving with h(bo) = b0. Show
that carries a generator of (S', b0) to an odd power of itself. [Hint: If k is
the map constructed in the proof of Theorem 57.1, show that does the same.]

4. Suppose you are given the fact that for each n, no continuous antipode-preserving
map h : S" —÷ Sn is nulhomotopic. (This result can be proved using more
advanced techniques of algebraic topoLogy.) Prove the following:
(a) There is no retraction r : S".
(b) There is no continuous antipode-preserving map g -.+

(c) (Borsuk-Ulam theorem) Given a continuous map f: -+ IRP1+l, there

is a point x of 5n+1 such that f(x) = f(—x).
(d) If A1 An+i are bounded measurable sets in there exists an n-

plane in that bisects each of them.

§58 Deformation Retracts and Homotopy

As we have seen, one way of obtaining information about the fundamental group of
a space X is to study the covering spaces of X. Another is one we discuss in this
section, which involves the notion of homotopy type. It provides a method for reducing
the problem of computing the fundamental group of a space to that of computing the
fundamental group of some other space—preferably, one that is more familiar.

We begin with a lemma.
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Lemma 58.1. Let h, k . (X, x0) (Y, Yo) be continuous maps. If h and k are
homotopic, and if the image of the base point xo of X remains fixed at yo during the
homotopy, then the homomorphisms and are equal.

Proof The proof is immediate. By assumption, there is a homotopy H : X xl —*
between h and k such that t) = yo for all t. It follows that if f is a loop in X
based at xo, then the composite

fxid HI x 1 X x 1 Y

is a homotopy between h o f and k o 1; it is a path homotopy because f is a loop at
x 1 to yo. U

Using this lemma, we generalize a result about the space — 0 proved earlier,
proving that the homomorphism induced by inclusion j : —÷ — 0 is not only
injective but surjective as well. More generally, we prove the following:

Theorem 58.2. The inclusion map j : S" —* — 0 induces an isomorphism of
fundamental groups.

Proof Let X = — 0; let b0 = (1, 0 0). Let r X —÷ be the map
r(x) = x/IIxll. Then r o j is the identity map of Sn, so that o is the identity
homomorphism of 211 (51Z, bo).

Now consider the composite j o r, which maps X to itself;

x x.
This map is not the identity map of X, but it is homotopic to the identity map. Indeed,
the straight-line homotopy H : X x I —÷ X, given by

H(x,t) = (1 —t)x+tx/ltxIl,

is a homotopy between the identity map of X and the map j o r. For H(x, t) is
never equal to 0, because (1 — t) + t/IIxIL is a number between 1 and I/fix II.Note
that the point b0 remains fixed during the hornotopy, since = 1. It follows
from the preceding lemma that the homomorphism (j o = o is the identity
homomorphism of nf(X, bo).

What made the preceding proof work? Roughly speaking, it worked because we
had a natural way of deforming the identity map of — 0 to a map that collapsed
all of — 0 onto The deformation H gradually collapsed each radial line em-
anating from the origin to the point where it intersected 5"; each point of 5" remained
fixed during this deformation.

Figure 58.1 illustrates, in the case n = 1, how the deformation H gives rise to a
path hornotopy H(f(s), t) between the loop f in 1R2 — 0 and the loop g = 1/11111
in
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These comments lead us to formulate a more general situation in which the same
procedure applies.

Definition. Let A be a subspace of X. We say that A is a deformation retract of X if
the identity map of X is homotopic to a map that carries all of X into A, such that each
point of A remains fixed during the homotopy. This means that there is a continuous
map H : X x I —÷ X such that H(x, 0) = x and H(x, 1) E A for all x E X, and
H(a, t) = a for all a E A. The hornotopy H is called a deformation retraction of X
onto A. The map r . X —÷ A defined by the equation r(x) = H(x, 1) is a retraction
of X onto A, and H is a homotopy between the identity map of X and the map j o r,
where j : A —* X is inclusion.

The proof of the preceding theorem generalizes immediately to prove the follow-
ing:

Theorem 58.3. Let A be a deformation retract of X; let E A. Then the inclusion
map

j : (A,xo) —* (X,x0)

induces an isomorphism of fundamental groups.

Figure 58.1
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EXAMPLE 1. Let B denote the z-axis in JR3 Consider the space JR3 — B It has the

punctured xy-plane (JR2 — 0) x 0 as a deformation retract The map H defined by the
equation

H(x, y, z, t) = (x, V. (1 — t)z)

is a deformation retraction; it gradually collapses each line parallel to the z-axis into the
point where the line intersects the xy-plane. We conclqde that the space JR3 — B has an
infinite cyclic fundamental group.

EXAMPLE 2. Consider JR2 — p — q, the doubly punctured plane. We assert it has
the "figure eight" space as a deformation retract. Rather than wnting equations, we merely
sketch the deformation retraction; it is the three-stage deformation indicated in Figure 58.2.

Figure 58.2

EXAMPLE 3. Another deformation retract of JR2 — p — q is the "theta space"

8 = S' U(0 x [—1, 11);

we leave it to you to sketch the maps involved. As a result, the figure eight and the theta
space have isomorphic fundamental groups, even though neither is a deformation retract of
the other.

Of course, we do not know anything about the fundamental group of the figure eight
as yet. But we shall.

The example of the figure eight and the theta space suggests the possibility that
there might be a more general way of showing two spaces have isomorphic fundamen-
tal groups than by showing that one is homeomorphic to a deformation retract of the
other. We formulate such a notion now.
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Definition. Let I : X —÷ Y and g: Y —÷ X be continuous maps. Suppose that the
map go f : X —÷ X is homotopic to the identity map of X, and the map fog : Y —÷ Y

is homotopic to the identity map of Y. Then the maps f and g are called Jiomotopy
equivalences, and each is said to be a homotopy inverse of the other.

It is straightforward to show that if f X —+ Y is a homotopy equivalence of X
with Y and h Y —÷ Z is a homotopy equivalence of Y with Z, then h o I : X Z
is a hornotopy equivalence of X with Z. It follows that the relation of homotopy
equivalence is an equivalence relation. Two spaces that are homotopy equivalent are
said to have the same homotopy type.

Note that if A is a deformation retract of X, then A has the same homotopy type
as X. For let j : A —p X be the inclusion mapping and let r X —+ A be the retraction
mapping. Then the composite r o j equals the identity map of A, and the composite
j o r is by hypothesis homotopic to the identity map of X (and in fact each point of A
remains fixed during the homotopy).

We now show that two spaces having the same homotopy type have isomorphic
fundamental groups. For this purpose, we need to study what happens when we have
a homotopy between two continuous maps of X into Y such that the base point of X
does not remain fixed dunng the homotopy.

Lemma 58.4. Let h, k: X —p Y be continuous maps; let h(xo) = yo and k(x0) = Yl.
If h and k are homotopic, there is a path a in Y from yo to such that = & o

Indeed, if H : X x 1 —+ Y is the homotopy between h and k, then a is the path
a(t) = t).

Jrf(X,xo)

,r1(Y, Yi)

Proof Let 1: 1 —+ X be a ioop in X based at We must show that

=

This equation states that [k o f] = [a] * [h o f] * [a], or equivaLently, that

[a]*[kof) =[hof]*[a].

This is the equation we shall venfy.
To begin, consider the loops fo and Ii in the space X x I given by the equations

b(s) = (f(s),O) and fj(s) = (f(s), 1).

Consider also the path c in X x I given by the equation

c(t) = (xo, t).
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Then H ofo h of and H of1 = kof, while Hoc equals the path a. See Figure 58.3.
Let F I x / -+ X x I be the map F(s, t) — (f(s), t). Consider the following

paths in I x I, which run along the four edges of! x I:

f3o(s)=(s,0) and

yo(t)=(0,t) and y1(t) =(1,t).

Foy1 =c.
The broken-line paths * and * are paths in I x I from (0,0) to (1, 1);

since I x / is convex, there is a path homotopy G between them. Then F o G is a path
homotopy in X x 1 between fo * c and c * And H o (F o G) is a path homotopy
in Y between

(Hofo)*(Hoc)=(hof)*cr and

(Hoc)*(Hof1) =a*(kof),

as desired.

Corollary 58.5. Let h, k X —+ Y be homotopic continuous maps; let h(xo) =
and k(x0) = If is injective, or surjecrive, or trivial, so is

Corollary 58.6. Let h X —÷ Y. If h is nulhomotopic, then is the trivial homo-
morphism.

Proof The constant map induces the trivial homomorphism.

Theorem 58.7. Let f X —÷ Y be continuous; let f(xo) = yo. 1ff is a homotopy
equivalence, then

f. : —p Jrf(Y,yo)

is an isomorphism.

Xxi V

Figure 58.3
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Proof Let g: Y —+ X be a homotopy inverse for 1. Consider the maps

(X,x0) (Y, Yo) (X,x1) (Y,y1),

where = and Yi = f(xi). We have the corresponding induced homomor-
phisms:

JTf(Y, Yo)

Yi)

[Here we have to distinguish between the homomorphisms induced by f relative to
two different base points.] Now

gof: (X,x0) —÷ (X,x1)

is by hypothesis homotopic to the identity map, so there is a path a in X such that

=&o(ix). =a.

It follows that (g o = o is an isomorphisrn.
Similarly, because f o g is homotopic to the identity map iy, the homomorphism

(1 ° = o is an isomorphism.
The first fact implies that is surjective, and the second implies that is in-

jective. Therefore, is an isomorphism. Applying the first equation once again, we
conclude that

= o&,

so that (fxO)* is also an isomorphism.
Note that although g is a homotopy inverse for 1. the homomorphism is not an

inverse for the homomorphism

The relation of homotopy equivalence is clearly more general than the notion of
deformation retraction. The theta space and the figure eight are both deformation
retracts of the doubly punctured plane. Therefore, they are homotopy equivalent to the
doubly punctured plane, and hence to each other. But neither is horneomorphic to a
deformation retract of the other; in fact, neither of them can even be imbedded in the
other.

It is a striking fact that the situation that occurs for these two spaces is the standard
situation regarding homotopy equivalences. Martin Fuchs has proved a theorem to the
effect that two spaces X and Y have the same homotopy type if and only if they are
homeomorphic to deformation retracts of a single space Z. The proof, although it uses
only elementary tools, is difficult [F].
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Exercises

1. Show that if A is a deformation retract of X, and B is a deformation retract of A,
then B is a deformation retract of X.

2. For each of the following spaces, the fundamental group is either trivial, infinite
cyclic, or isomorphic to the fundamental group of the figure eight. Determine for
each space which of the three alternatives holds.
(a) The "solid torus," B2 x S1.
(b) The torus T with a point removed.
(c) The cylinder S' x 1.
(d) The infinite cylinder x JR.

(e) 1EV with the nonnegative x, y, and z axes deleted.
The following subsets of 1R2:
(f) (x

I lxii > 1)
(g) (x IIxII 1)

(h) {x
I fx!i < 1)

(i)
(j) S1U(IR+xIR)
(k)
(1) xO)

3. Show that given a collection C of spaces, the relation of homotopy equivalence
is an equivalence relation on C.

4. Let X be the figure eight and let Y be the theta space. Describe maps 1: X -.+ Y

and g Y X that are homotopy inverse to each other.

5. Recall that a space X is said to be contractible if the identity map of X to itself
is nulhomotopic. Show that X is contractible if and only if X has the homotopy
type of a one-point space.

6. Show that a retract of a contractible space is contractible.

7. LetA beasubspaceofX;letj : A —+ Xbetheinclusion map, and letf: X
A be a continuous map. Suppose there is a homotopy H : X x I X between
the map j o f and the identity map of X.
(a) Show that if f is a retraction, then is an isomorphism.
(b) Show that if H maps A x I into A, then is an isomorphism.
(c) Give an example in which is not an isomorphism.

*8. Find a space X and a point xo of X such that inclusion fxoJ X is a homotopy
equivalence, but fxo} is not a deformation retract of X. [Hint: Let X be the
subspace of 1R2 that is the union of the line segments (1/n) x I, for n E the
line segment 0 x I, and the line segment I x 0; let xo be the point (0, 1). If
is a deformation retract of X, show that for any neighborhood U of the path
component of U containing xo contains a neighborhood of x0.]

9. We define the degree of a continuous map h as follows:
Let b0 be the point (1, 0) of 51; choose a generator y for the infinite cyclic

group jr1(S1, b0). If xo is any point of S', choose a path a in from b0 to xo,
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and define y(xo) = &(y). Then y(xo) generates 71(S1, xo). The eleirient y(x0)
is independent of the choice of the path a, since the fundamental group of S' is
abelian.

Now given h : S1 —÷ S', choose S' and let h(xo) = Xl. Consider the
homomorphism

: jrj(S',x0) —+ 71(S1,x1).

Since both groups are infinite cyclic, we have

(*) = d

for some integer d, if the group is wntten additively. The integer d is called the
degree of h and is denoted by deg h.

The degree of h is independent of the choice of the generator y; choosing the
other generator would merely change the sign of both sides of (*).
(a) Show that d is independent of the choice of
(b) Show that if h, k: —+ are homotopic, they have the same degree.
(c) Show that deg(h o k) = (deg h) (deg k).

(d) Compute the degrees of the constant map, the identity map, the reflection

map p(xl, X2) = (xl, X2), and the map h(z) = z'1, where z is a complex

number.

*(e) Show that if h, k —p S' have the same degree, they are homotopic.

10. Suppose that to every map h : S" -+ Sn we have assigned an integer, denoted
by deg h and called the degree of h, such that:

(i) Homotopic maps have the same degree.

(ii) deg(h ok) = (degh). (degk).

(iii) The identity map has degree 1, any constant map has degree 0, and the
reflection map p(xl i) = (x1 xn, has degree —1.

[One can construct such a function, using the tools of algebraic topology. Intu-
itively, deg h measures how many times h wraps S" about itself; the sign tells
you whether h preserves orientation or not.] Prove the following:
(a) There is no retraction r : s".
(b) If h : —+ 5" has degree different from then h has a fixed point.

[Hint: Show that if h has no fixed point, then h is homotopic to the antipodal
mapa(x) = —x.]

(c) If h :
Sn Sn has degree different from 1, then h maps some point x to its

antipode —x.

(d) If
Sn has a nonvanishing tangent vector field v, then n is odd. [Hint: If v

exists, show the identity map is homotopic to the antipodal map.]
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§59 The Fundamental Group of
Now we turn to a problem mentioned at the beginning of the chapter, the problem
of showing that the sphere, torus, and double torus are surfaces that are topologically
distinct. We begin with the sphere; we show that S'1 is simply connected for n ? 2.
The crucial result we need is stated in the following theorem.

Theorem 59.1. Suppose X = UU V, where U and V are open sets of X. Suppose that
U fl V is path connected, and that xo E U fl V. Let i and j be the inclusion mappings
of U and V, respectively, into X. Then the images of the induced homomorphisms

and

generate jr1 (X, xe).

Proof This theorem states that, given any loop f in X based at it is path homo-
topic to a product of the form (gf * * (... * gn))), where each g is a loop in X
based at that lies either in U or in V.

Step I. We show there is a subdivision ao < < < of the unit interval
such that f(a) E U fl V and f([a1_j, a]) is contained either in U or in V. for each i.

To begin, choose a subdivision bo bm of [0, 1] such that for each i, the set
f([b,_i, b]) is contained in either U or V. (Use the Lebesgue number lemma.) If
f(b1) belongs to U fl V for each i, we are finished. If not, let i be an index such that
f(b1) U fl V. Each of the sets f([b_i, b]) and f([b1, lies either in U or
in V. If f(b1) E U, then both of these sets must lie in U; and if f(b) E V, both of
them must lie in V. In either case, we may delete b, obtaining a new subdivision Co.

Cm_i that still satisfies the condition that ci) is contained either in U or
in V,foreachi.

A finite number of repetitions of this process leads to the desired subdivision.

Step 2. We prove the theorem. Given 1' let be the subdivision con-
structed in Step 1. Define I to be the path in X that equals the positive linear map of
[0, 1] onto a path that lies either in U or in V, and
by Theorem 51.3,

[f]=[fl]*[f2]** [fm].
For each i, choose a path a in U fl V from xo to f(a). (Here we use the fact that
U fl V is path connected.) Since = = we can choose and to be
the constant path at xo. See Figure 59.1.

Now we set

g =
for each 1. Then g is a loop in X based at xo whose image lies either in U or in V
Direct computation shows that

U
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The preceding theorem is a special case of a famous theorem of topology called
the Seifert-van Kampen theorem, which expresses the fundamental group of the space
X = U U V quite generally, when U fl V is path connected, in terms of the fundamental
groups U and V. We shall study this theorem in Chapter 11.

Corollary 59.2. Suppose X = U U V, where U and V are open sets of K; suppose
U fl V is nonempty and path connected. If U and V are simply connected, then X is
simply connected.

Theorem 59.3. If n > 2, the n-sphere SIZ is simply connected.

Proof Let p = (0 0, 1) and q = (0 0, —1) be the "north pole"
and the "south pole" of S", respectively.

Step 1. We show that if n 1, the punctured sphere — p is homeomoi-phic
to IRA.

Define f (5fl
— p) by the equation

f(x)f(xj
1 — Xn+j

The map f is called stereographic projection. (If one takes the straight line in
passing through the north pole p and the point x of 5" — p. then this line intersects the
n-plane IR" x 0 C in the point 1(x) x 0.) One checks that I is a honieomorphism
by showing that the map g : —÷ (5" — p) given by

g(y) = g(yj = (t(y) . yj t(y) . 1 —

where t(y) = 2/(l + is a right and left inverse for f.
Note that the reflection map (xf + (Xj Xn+j) defines a

homeomorphism of S" — p with — q, so the latter is also homeomoi-phic to JR".

Figure 59.1
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Step 2. We prove the theorem. Let U and V be the open sets U = Sn — p and
V = —q of 5".

Note first that for n 1, the sphere is path connected. This follows from the
fact that U and V are path connected (being homeomorphic to IRIZ) and have the point
(1,0 0) of 5fl in common.

Now we show that for n > 2, the sphere S" is simply connected. The spaces U
and V are simply connected, being homeomorphic to R". Their intersection equals

— p — q, which is homeomorphic under stereographic projection to — 0. The
latter space is path connected, for every point of JR'1 — 0 can be joined to a point of

by a straight-line path, and is path connected if n 2. Then the preceding
corollary applies.

Exercises

1. Let X be the union of two copies of S2 having a single point in common. What
is the fundamental group of X? Prove that your answer is correct. [Be careful!
The union of two simply connected spaces having a point in common is not
necessarily simply connected. See [SI, p. 59.]

2. Criticize the following "proof" that is simply connected: Let f be a loop
in s2 based at xo. Choose a point p of 52 not lying in the image of f. Since
S2 — p is homeomoi-phic with 1R2, and R2 is simply connected, the loop f is path
homotopic to the constant loop.

3. (a) Show that IR' and IR'1 are not homeomorphic if n > 1.

(b) Show that R2 and JR'1 are not homeomoi-phic if n > 2.

It is, in fact, true that and R" are not homeomorphic if n m, but the proof
requires more advanced tools of algebraic topology.

4. Assume the hypotheses of Theorem 59.1.
(a) What can you say about the fundamental group of X if is the trivial ho-

momorphism? If both and are trivial7
(b) Give an example where and are trivial but neither U nor V have trivial

fundamental groups

§60 Fundamental Groups of Some Surfaces

Recall that a suiface is a Hausdorif space with a countable basis, each point of which
has a neighborhood that is homeomorphic with an open subset of JR2. Surfaces are of
interest in various parts of mathematics, including geometry, topology, and complex
analysis. We consider here several surfaces, including the torus and double torus, and
show by comparing their fundamental groups that they are not homeomorphic. In a
later chapter, we shall classify up to homeomorphism all compact surfaces.
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First, we consider the torus. In an earlier exercise, we asked you to compute
its fundamental group using the theory of covering spaces. Here, we compute its
fundamental group by using a theorem about the fundamental group of a product space.

Recall that if A and B are groups with operation , then the cartesian prod uct A x B
is given a group structure by using the operation

(a xb)(a' xb')=(aa') x(bb').

Recall also that if h : C —+ A and k : C —p B are group homomorphisms, then the
map 4): C -+ A x B defined by '1)(c) = h(c) x k(c) is a group homomorphism.

Theorem 60.1. (X x Y, x Yo) is isomorphic with jrj(X, xo) x (Y, yij).

Proof Let p : X x Y X and q : X x Y —÷ Y be the projection mappings. If
we use the base points indicated in the statement of the theorem, we have induced
homomorphisms

: nf(X x Y,x0 x —+

x Y,x0 xyo)—÷ 2r1(Y,yo).

We define a homomorphism

4): 2rf(X x x x Jri(Y,yo)

by the equation

= x = [p o f] x [q o f].
We shall show that 4) is an isomorphism.

The map (1) is surjective. Let g : 1 —÷ X be a loop based at xo; let h : I Y be
a loop based at We wish to show that the element [gJ x [h] lies in the image of 1.
Define f I X x Y by the equation

f(s) = g(s) x h(s).

Then I is a loop in X x Y based at x yo. and

4)([f])=[pof] x [qof]=[g]x [h],

as desired.
The kernel of CD vanishes. Suppose that 1: 1 —÷ X x Y is a loop in X x Y based

at xo x and CD((f]) = [p o f] x [q o 1] is the identity element. This means that
p o f and q o I let G and H be the respective path homotopies. Then
the map F: I x I —+ X x Y defined by

F(s,t) = G(s,t) x H(s,t)

is a path homotopy between I and the constant loop based at xo x yo.
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Corollary 60.2. The fundamental group of the torus T = x is isomorphic to
the groupZ x Z.

Now we define a surface called the projective plane and compute its fundamental
group.

Definition. The projective plane P2 is the quotient space obtained from S2 by iden-
tifying each point x of S2 with its antipodal point —x.

The projective plane may not be a space that is familiar to you; it cannot be imbed-
ded in JR3 and is thus difficult to visualize. It is, however, the fundamental object of
study in projective geometry, just as the euclidean plane 1R2 is in ordinary euclidean
geometry. Topologists are primarily interested in it as an example of a surface.

Theorem 60.3. The projective plane P2 is a compact surface, and the quotient map
p: P2 is a covering map.

Proof First we show that p is an open map. Let U be open in S2. Now the antipodal
map a : given by a(x) = —x is a homeomorphism of S2; hence a(U) is
open in Since

= U Ua(U),

this set also is open in Therefore, by definition, p(U) is open in P2. A similar
proof shows that p is a closed map.

Now we show that p is a covering map. Given a pointy of P2, choose x E
Then choose an E-neighborhOOd U of x in for some 1, using the euclidean
metnc d of iiV. Then U contains no pair {z, a(z)J of antipodal points of since
d(z, a(z)) = 2. As a result, the map

p : U —÷ p(U)

is bijective. Being continuous and open, it is a homeomorphism. Similarly,

p a(U) p(a(U)) = p(U)

is a homeomorphism. The set p'(p(U)) is thus the union of the two disjoint open
sets U and a(U), each of which is mapped homeomorphically by p onto p(U). Then
p(U) is a neighborhood of p(x) = y that is evenly covered by p.

Since has a countable basis the space P2 has a countable basis
The fact that P2 is Hausdorif follows from the fact that is normal and p is a

closed map. (See Exercise 6 of §31.) Alternatively, one can give a direct proof: Let
and be two points of P2. The set U consists of four points; let 2€
be the minimum distance between them. Let Ui be the €-neighborhood of one of the
points of p1 and let U2 be the €-neighborhood of one of the points of (Y2).
Then

UfUa(Uj) and U2Ua(U2)
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are disjoint. It follows that p(Uj) and are disjoint neighborhoods of yi and
respectively, in P2.

Since is a surface and every point of P2 has a neighborhood homeomorphic
with an open subset of S2, the space P2 is also a surface. U

Corollary 60.4. 7r1 (P2, y) is a group of order 2.

Proof The projection p —p P2 is a covering map. Since is simply connected,
we can apply Theorem 54.4, which tells us there is a bijective correspondence between
71(P2, y) and the set Since this set is a two-element set, y) is a group
of order 2.

Any group of order 2 is isomorphic to Z/2, the integers mod 2, of course. U

One can proceed similarly to define piz, for any n E as the space obtained
from by identifying each point x with its antipode —x; it is called projectiwe n-
space. The proof of Theorem 60.3 goes through without change to prove that the
projection p : 5" P" is a covenng map. Then because 5" is simply connected for
n 2, it follows that (p", y) is a two-element group for n 2. We leave it to you
to figure out what happens when n = 1.

Now we study the double torus. We begin with a lemma about the figure eight.

Lemma 60.5. The fundamental group of the figure eight is not abelian.

Proof Let X be the union of two circles A and B in 1R2 whose intersection consists
of the single point x0. We describe a certain covering space E of X.

The space E is the subspace of the plane consisting of the x-axis and the y-axis,
along with tiny circles tangent to these axes, one circle tangent to the x-axis at each
nonzero integer point and one circle tangent to the y-axis at each nonzero integer point.

The projection map p : E —+ X wraps the x-axis around the circle A and wraps
the y-axis around the other circle B; in each case the integer points are mapped by p
into the base point xo. Each circle tangent to an integer point on the x-axis is mapped
homeomorphically by p onto B, while each circle tangent to an integer point on the
y-axis is mapped homeomorphically onto A; in each case the point of tangency is
mapped onto the point xo. We leave it to you to check mentally that the map p is
indeed a covering map.

We could write this description down in equations if we wished, but the informal
descnption seems to us easier to follow

Now let f : I E be the path f(s) = s x 0, going along the x-axis from the
origin to the point 1 x 0. Let : I —÷ E be the path i(s) = 0 x s, going along the
y-axis from the origin to the pointOx 1. Let! = pof and g = then f andg are
loops in the figure eight based at going around the circles A and B, respectively.
See Figure 60.1.

We assert that f * g and g * f are not path homotopic, so that the fundamental
group of the figure eight is not abelian.
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ox i

Go
Figure 60.1

To prove this assertion, let us lift each of these to a path in E beginning at the
origin. The path f * g lifts to a path that goes along the x-axis from the origin to I x 0
and then goes once around the circle tangent to the x-axis at 1 x 0. On the other hand,
the path g * f lifts to a path in E that goes along the y-axis from the origin to 0 x 1,
and then goes once around the circle tangent to the at 0 x 1. Since the lifted
paths do not end at the same point, f * g and g * f cannot be path homotopic. •

We shall prove later that the fundamental group of the figure eight is, in fact, the
group that algebraists call the "free group on two generators."

Theorem 60.6. The fundamental group of the double torus is not abelian.

Proof The double torus T#T is the surface obtained by taking two copies of the
torus, deleting a small open disc from each of them, and pasting the remaining pieces
together along their edges. We assert that the figure eight X is a retract of T#T.
This fact implies that inclusion j X T#T induces a monomorphism so that

xo) is not abelian.
One can write equations for the retraction r T#T —* X, but it is simpler to

indicate it in pictures, as we have done in Figure 60.2. Let Y be the union of two tori
having a point in common. First one maps T#T onto Y by a map that collapses the
dotted circle to a point but is otherwise one-to-one; it defines a homeomorphism h of
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T#TV
Figure 60.2

the figure eight in T#T with the figure eight in Y. Then one retracts Y onto its figure
eight by mapping each cross-sectional circle to the point where it intersects the figure
eight. Then one maps the figure eight in Y back onto the figure eight in T #T by the
maph'.

Corollary 60.7. The torus, projective plane, and double torus are topolog-
ically distinct.

Exercises

1. Compute the fundamental groups of the "solid torus" S' x B2 and the product
space x

2. Let X be the quotient space obtained from B2 by identifying each point x of S'
with its antipode —x. Show that X is homeomoi-phic to the projective plane P2.

3. Let p: E X be the map constructed in the proof of Lemma 60.5. Let E' be
the subspace of E that is the union of the x-axis and the y-axis. Show that pIE'
is not a covering map.

4. The space P' and the covenng map p : —* P' are familiar ones. What are
they?

5. Consider the covering map indicated in Figure 60.3. Here, p wraps A around A
twice and wraps Bf around B twice; p maps A0 and B0 homeomorphically
onto A and B, respectively. Use this covenng space to show that the fundamental
group of the figure eight is not abelian.

A01

Figure 60.3



Chapter 10

Separation Theorems in the Plane

There are several difficult questions concerning the topology of the plane that arise
quite naturally in the study of analysis. The answers to these questions seem geomet-
rically quite obvious but turn out to be surprisingly hard to prove. They include the
Jordan curve theorem, the Brouwer theorem on invariance of domain, and the clas-
sical theorem that the winding number of a simple closed curve is zero or ±1. We
prove them in this chapter as consequences of our study of covering spaces and the
fundamental group

§61 The Jordan Separation Theorem

We consider first one of the classical theorems of mathematics, the Jordan curve theo-
rem. It states a fact that is geometrically quite believable, the fact that a simple closed
curve in the plane always separates the plane into two pieces, its "inside" and its "out-
side." It was onginally conjectured in 1892 by Camille Jordan, and several incorrect
proofs were published, including one by Jordan himself. Eventually, a correct proof
was provided by Oswald Veblen, in 1905. The early proofs were complicated, but over
the years, simpler proofs have been found. If one uses the tools of modern algebraic
topology, singular homology theory in particular, the proof is quite straightforward.
The proof we give here is the simplest one we know that uses only results from the
theory of covering spaces and the fundamental group.

376
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Our proof of the Jordan curve theorem divides into three parts. The first, which
we call the Jordan separation theorem, states that a simple closed curve in the plane
separates it into at least two components. The second says that an arc in the plane
does not separate the plane. And the third, the Jordan curve theorem proper, says that
a simple closed curve C in the plane separates it into precisely two components, of
which C is the common boundary. The first of these theorems will be treated in this
section.

In dealing with separation theorems, it will often be convenient to formulate them
as separation theorems for subsets of rather than 1R2. The separation theorems
for JR2 will follow. The connection between the two sets of theorems is provided by
the following lemma.

Recall that if b is any point of there is a homeomorphism h of — b with
one simply takes a rotation of that carries b to the north pole, and follows it by

stereographic projection.

Lemma 61.1. Let C be a compact subspace of S2; let b be a point of — C; and let
h be a homeomorphism of — b with 1R2. Suppose U isa component of S2 — C. If U
does not contain b, then h(U) isa bounded component of 1R2 — h(C). If U contains b,
then h(U — b) is the unbounded component of 1R2 — h(C).

In particular, ifS2 — C has n components, then 1R2 — h(C) has n components.

Proof We show first that if U is a component of S2 — C, then U — b is connected.
This result is trivial if b U, so suppose that b E U and suppose the sets A and B
form a separation of U — b. Choose a neighborhood W of b disjoint from C such that
W is homeomorphic to an open balL of 1R2. Since W is connected, it is contained in U;
since W — b is connected, it is contained entirely in A or in B. Say W — b C A. Then
b is not a limit point of B, for W is a neighborhood of b disjoint from B. It follows
that the sets A U (b} and B form a separation of U, contrary to hypothesis.

Let be the setof components of 52—C; let Va Because 52—C
is locally connected, the sets are connected, disjoint, open subsets of S2. Therefore,
the sets Va are connected, disjoint, open subsets of JR2 — h(C), so the sets are the
components of 1R2 — h(C).

Now the homeomorphism h of — b with 1R2 can be extended to a
phism H of with the one-point compactification JR2 U of JR2. merely by setting
11(b) = If Ujj isthecomponentofS2—Ccontainingb, then isa neighbor-
hood of in JR2 U Therefore is unbounded; since its complement 1R2 —
is compact, all the other components of JR2 — h(C) are bounded. See Figure 61.1.U

Lemma 61.2 (Nuihomotopy lemma). Let a and b be points of Let A be a
compact space, and let

f: A a — b

be a continuous map. If a and b lie in the same component of — f(A), then f is
nuihomotopic.
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b

h

Figure 61.1

Proof One can replace S2 by the one-point compactification 1R2 U {oo} of JR2. letting
a and b correspond to the points 0 and oo. Then our lemma reduces to the following:
Let A be a compact space and let g : A —÷ JR2 — 0 be a continuous map. If 0 lies in
the unbounded component of JR2 — g(A), then g is nuihomotopic.

This statement is easy to prove. Choose a ball B centered at the ongin, of suffi-
ciently large radius that it contains the set g(A). Choose a point p of JR2 lying out-
side B. Then 0 and p both lie in the unbounded component of JR2 — g(A).

Because JR2 is locally path connected, so is the open set JR2 — g(A). Therefore, the
components and path components of JR2 — g(A) are the same. Hence we can choose a
path a in JR2 — g(A) from 0 to p. We define a homotopy G : A x 1 —+ JR2 — 0 by the
equation

G(x, t) = g(x) —

it is pictured in Figure 61.2. The homotopy G is a homotopy between the map g and
the map k defined by k(x) = g(x) — p. Note that G(x, t) 0 because the path a does
not intersect the set g(A).

Now we define a homotopy H : A x 1 —÷ JR2 — 0 by the equation

H(x,t)=tg(x)—p.

It is a homotopy between the map k and a constant map. Note that H(x, t) 0

because tg(x) lies inside the ball B and p does not.
Thus we have proved that g is nuihomotopic. U

Now we prove the Jordan separation theorem. In general, if X is a connected space
and A C X, we say that A separates X if X — A is not connected; if X — A has n
components, we say that A separates X into n components.
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An arc A is a space homeomoi-phic to the unit interval [0, 1]. The endpoints of A
are the two points p and q of A such that A — p and A — q are connected; the other
points of A are called interior points of A.

A simple closed curve is a space homeomorphic to the unit circle S1.

Theorem 61.3 (The Jordan separation theorem). Let C be a simple closed curie
in S2. Then C separates S2.

Proof Because S2 — C is locally path connected, its components and path compo-
nents are the same. We assume that S2—C is path connected and derive a contradiction.

Let us write C as the union of two arcs A1 and A2 that intersect only iii their end
points a and b. Let X denote the space S2 — a — b. Let U be the open set S2 — A1

of X, and let V be the open set S2 — A2. Then X is the union of the sets U and V. and

un v= S2—(Ai UA2)=S2—C,

which by hypothesis is path connected Thus the hypotheses of Theoreni 59.1 are
satisfied.

Let be a point of U fl V. We will show that the inclusions

i : (U,xo) —+ (X,x0) and j (V,xij) —+ (X,x0)

induce trivial homomorphisms of the fundamental groups involved. It then follows
from Theorem 59.1 that the group xo) is trivial. But X = S2 — a — b, which is
homeomorphic to the punctured plane 1R2 — 0, so its fundamental group is not trivial.

Let us prove that is the trivial homomorphism; given a loop f I —÷ U based
at we show that is trivial. For this purpose, let p: I —p be t[e standard

Figure 61.2
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loop generating (Si, bo). The map f I —÷ U induces a continuous map h : S'
U such that h op = f. See Figure 61.3.

Consider the map ioh . S' —* S2 —a —b. By hypothesis, the set = h(S')
does not intersect the connected set containing a and b. Therefore, a and b lie in
the same component of S2 — i(h(S1)). By the preceding lemma, the map i o h is

nulhomotopic. It follows from Lemma 55.3 that (i o is the trivial homomorphism
of fundamental groups. But

(i o = [i oh o p] = [1 o f] =

Therefore, is trivial, as desired. N

F—

(Jo
Figure 61.3

Let us examine the preceding proof. What facts did we use about the simple
closed curve C? All we actually needed was the fact that C could be written as the
union of the two closed connected sets A1 and A2, whose intersection consisted of
the two points a and b. This remark leads to the following generalized version of the
separation theorem, which will be useful later.

Theorem 61.4 (A general separation theorem). Let A1 and A2 be closed con-
nected subsets of S2 whose intersection consists of precisely two points a and b. Then
the set C = A1 U A2 separates S2

Proof We must show first that C cannot equal all of S2. That fact was obvious in
the earlier proof. In the present case, we can see that C S2 because — a — b is

connected and C — a — b is not. (The sets A — a — b form a separation of C — a — b.)
The remainder of the proof is a copy of the proof of the preceding theorem. U

Exercises

1. Give examples to show that a simple closed curve in the torus may or may not
separate the torus.

U= X= S2-a--b
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2. Let A be the subset of JR2 consisting of the union of the topologist's sine curve
and the broken-line path from (0, —1) to (0, —2) to (1, —2) to (1, sin 1). See
Figure 61.4. We call A the closed topologist's sine curve. Show that if C is
a subspace of S2 homeomorphic to the closed topologist's sine curve, then C
separates S2.

Invariance of Domaint

One of the theorems of topology that is truly fundamental, because it expresses an
intrinsic property of euclidean space, is the theorem on "invariance of domain," proved
by L. E. J. Brouwer in 1912 It states that for any open set U of R'1 and any continuous
injective mapping f U —+ IR'1, the image set f(U) is open in and the inverse
function is continuous. (The Inverse Function Theorem of analysis derives this result
under the additional hypothesis that the map f is continuously differentiable with
singular Jacobian matrix.) We shall prove this theorem in the case n = 2.

Lemma 62.1 (Homotopy extension lemma). Let X be a space such that X x I is
normal. Let A be a closed subspace of X, and let f: A —p Y be a continuous map,
where Y is an open subspace of R1. 1ff is nuihomotopic, then f may be extended to
a continuous map g : X —p Y that is also nulhomotopic.

Proof Let F : A x I -÷ Y be a homotopy between I and a constant map. Then
F(a, 0) = f(a) and F(a, 1) = yo for all a. Extend F to the space X x 1 by setting
F(x, 1) = yo for x E X Then F is a continuous map of the closed subspace (A x
1) U (X x 1) of X x I into IR"; by the Tietze extension theorem, it may be extended to
a continuous map G X x I -+ JR'1.

this section, we use the Tietze extension theorem

Figure 61.4
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Now the map x —p G(x, 0) is an extension of 1' but it maps X into JR" rather
than into the subspace Y To obtain our desired map, we proceed as follows: Let U be
the open subset U G'(Y) of X x I. Then U contains (A x I) U (X x 1). See
Figure 62.1. Since I is compact, the tube lemma implies that there is an open set W
of X containing A such that W x I C U. Now the space X is itself normal, being
homeomorphic to the closed subspace X x 0 of X x 1. Therefore, we may choose a
continuous function 0 X —÷ [0, 1] such that 0(x) = 0 for x c A and 0(x) = 1 for
x E X — W. The map x x x 0(x) carries X into the subspace (W x 1) U (X x 1)
of X x 1, which lies in U. Then the continuous map g(x) = G(x, 0(x)) carries X
into Y. And for x E A, we have 0(x) = 0, so that g(x) = G(x, 0) = 1(x). Thus g is
the desired extension off. The map H : X x I —÷ Y given by

H(x, t) = G(x, (1 — t)/,(x) + t)

is a homotopy between g and a constant map. U

Xxi
F

II F
w

Figure 62.1

The following lemma is a partial converse to the nulhomotopy lemma of the pre-
ceding section.

Lemma 62.2 (Borsuk lemma). Let a and b be points of S2. Let A be a compact
space, and let f: A —÷ — a — b be a continuous injective map. 1ff is nulhomotopic,
then a and b lie in the same component of S2 — f(A).

Pro of Because A is compact and is Hausdorif, f(A) is a compact subspace of
that is homeomorphic to A. Because I is nulhomotopic, so is the inclusion mapping
of f(A) into 52 — a — b. Hence it suffices to prove the lemma in the special case where
f is simply an inclusion map. Furthermore, we can replace by R2 U letting a
correspond to 0, and b to 00 . Then our lemma reduces to the following statement:

Let A be a compact subspace of JR2 — 0. If the inclusion j : A -+ 1R2 — 0 is

nulhomotopic, then 0 lies in the unbounded component of JR2 — A.
This we now prove. Let C be the component of 1R2 — A containing 0; we suppose

C is bounded and denve a contradiction. Let D be the union of the other components

G
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of JR2 — A, including the unbounded component. Then C and D are disjoint open sets
of 1R2 and JR2 — A = C U D. See Figure 62.2.

We define a continuous map h JR2 ..÷ JR2 — 0 that equals the identity outside C.
Begin with the inclusion map j : A —÷ 1R2 — 0. Since j is by hypothesis nulho-

motopic, the preceding lemma implies that j can be extended to a continuous map k
of C U A into 1R2 — 0. Then k equals the identity at points of A. Extend k to a map
h JR2 ..÷ JR2 — 0 by setting h(x) = x for x E D U A, then h is continuous by the
pasting lemma.

Now we derive a contradiction. Let B be the closed ball in 1R2 of radius 14 centered
at the origin, where M is so large that mt B contains C U A. (Here, we use the fact
that C is bounded.) If we restrict h to B, we obtain a map g : B —* JR2 — 0 such that
g(x) = x for x c Bd B. If we follow g by the standard retraction x —÷ i%fx/lIxl! of
JR2 — 0 onto Bd B, we obtain a retraction of B onto Bd B. Such a retraction does not
exist.

A

Theorem 62.3 (Invariance of domain). If U is an open subset of JR2 and f: U -+
JR2 is continuous and injective, then j (U) is open in JR2 and the inverse function
f : f(U) U is continuous.

Proof As usual, we can replace JR2 by S2. We show that if U is an open subset of JR2
and f: U S2 is continuous and injective, then f(U) is open in S2 and the inverse
function is continuous.

Step 1. We show that if B is any closed ball in JR2 contained in U, then f(B) does
not separate S2.

Let a and b be two points of 52 — f(B). Because the identity map i : B —÷ B is

nuihomotopic, the map h : B 52_ a — b obtained by restricting f is nulhomotopic.
The Borsuk lemma then implies that a and b lie in the same component of —h(B) =
S2—f(B).

Figure 62.2
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Step 2. We show that if B is any closed ball of 1R2 lying in U, then f(Lnt B) is
open in S2.

The space C = f(Bd B) is a simple closed curve in so it separates Let V
be the component of — C that contains the connected set f(Int B), and let W be
the union of the others. Because is locally connected, V and W are open in We
show V = f(Int B), and we are through.

We suppose a is a point of V that is not in f(Int B) and denve a contradiction. Let
b be a point of W. Since the set D = 1(B) does not separate S2. the set D is
a connected set containing a and b. This set is contained in S2 — C (since D C);
it follows that a and b lie in the same component of — C, contrary to construction.
See Figure 62.3.

0
Step 3. We prove the theorem. Since, for any ball B contained in U, the set

f(Int B) is open in 52, the map f : U —+ 52 is an open map. It follows that f(U) is
open in and f1 is continuous.

Exercises

1. Give an example to show that the conclusion of the Borsuk lemma need not hold
if f is not injective.

2. Let A be a compact contractible subspace of Show that A does not sepa-
rate

3. Let X be a space such that X x I is normal. Let A be a closed subspace of X;
let f : A —* Y be a continuous map, where Y is an open subspace of 1W'. 1ff is
homotopic to a map that is extendable to a continuous map h : X —p Y, then f
itself is extendable to a continuous map g: X —÷ Y, such that g h.

4. Let C be a simple closed curve in 1R2 — 0; let j C — 0 be the inclusion
mapping. Show that is trivial if 0 lies in the unbounded component of 1R2 — C,
and is nontrivial otherwise. (In fact, is an isomorphism in the latter case, as
we shall prove in §65.)

Figure 62.3



§63 The Jordan Curve Theorem 385

5. Theorem. Let U be a simply connected open set in JR2. If C is a simple closed
curve lying in U, then each bounded component of 1R2 — C also lies in U.

(This condition actually charactenzes the simply connected open sets of 1R2.
See [RW]. The space — C has, of course, only one bounded component, as
we shall prove in the next section.)

6. Suppose you are given that there is no retraction of B" onto
(a) Show the Borsuk lemma holds for Sn.
(b) Show that no compact contractible subspace of S" separates S".
(c) Suppose you are given also that any subspace of 5" homeomoi-pkic to

separates Prove the invariance of domain theorem in dimension n.

§63 The Jordan Curve Theorem

The special case of the Seifert-van Kampen theorem that we used in proving the Jordan
separation theorem tells us something about the fundamental group of the space X =
U U V in the case where the intersection U fl V is path connected. In the next theorem,
we examine what happens when U fl V is not path connected. This result will enable
us to complete the proof of the Jordan curve theorem.

Theorem 63.1. Let X be the union of two open sets U and V. such that Un V can be
written as the union of two disjoint open sets A and B. Assume that there is a path cr
mU fromapointa ofA toapointbofB,andthatthereisapathf3 in V fromb toa.
Letf betheloopf=a*13.

(a) The path-homotopy class [f] generates an infinite cyclic subgroup of (X, a).
*(b) If jrj (X, a) is itself infinite cyclic, it is generated by [f].t

(c) Assume there is a path y in U from a to the point a' of A, and that there is a
path S in V from a' to a. Let g be the loop g = y * S. Then the subgroups of

(X, a) generated by [1] and [gJ intersect in the identity element alone.

Proof The proof is in many ways an imitation of the proof in §54 that the fundamen-
tal group of the circle is infinite cyclic. As in that proof, the crucial step is to find an
appropriate covenng space E for the space X.

Step 1. (Construction of E). We construct E by pasting together copies of the
subspaces U and V. Let us take countably many copies of U and countably many
copies of V, all disjoint, say

Ux(2n) and Vx(2n+t)

for all n E Z, where Z denotes the integers. Let Y denote the union of these spaces;
Y is a subspace of X x Z. Now we form a new space E as a quotient space of Y by

resuk uses Theorem 54.6, and will be used only when we deal with winding numbers
in §65
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identifying the points

xx(2n) and xx(2n—1) forxEA

and by identifying the points

xx(2n) and xx(2n+1) forxEB.

Let : Y —÷ E be the quotient map.
Now the map p : Y —÷ X defined by p(x x m) = x induces a map p E —+ X;

the map p is continuous because E has the quotient topology. The map p is also
surjective. We shall show that p is a covenng map. See Figure 63.1.

First let us show that the map is an open map. Since Y is the union of the disjoint
open sets (U x (2n)} and (V x (2n + 1)), it will suffice to show that 71 l(U x 2n) and
2r1(V x (2n + 1)) are open maps. And this is easy. Take an open set in U x 2n, for
example: it will be of the form W x 2n, where W is open in U. Then

x 2n))=[W x 2n]U[(WflB) x (2n+ 1)]
U[(WflA) x (2n— 1)],

which is the union of three open sets of Y and hence open in Y. By definition of the
quotient topology, 21(W x 2n) is open in E, as desired.

Now we prove that p is a covering map; we show that the open sets U and V
are evenly covered by p. Consider U, for example. The set p1(U) is the union of
the disjoint sets 2r(U x 2n) for n E Z. Each of these sets is open in E because is

an open map. Let JT2n denote the restriction of to the open set U x 2n, mapping
it onto 2r(U x 2n). It is a homeomorphism because it is bijective, continuous, and
open. Then when restricted to 2r(U x 2n), the map p is just the composite of the two
homeomorphisms

x 2n) U x 2n U

and is thus a homeomorphism. Therefore, p12r(U x 2n) maps this set homeomorphi-
cally onto U, as desired.

Step 2. Now we define a family of liftings of the loop f = a *
For each integer n, let be the point 71(a x 2n) of E. Then the points are

distinct, and they constitute the set (a). We define a lifting f that begins

a and and V. respectively, we can define

= 2r(a(s) x 2n),

x (2n+1));

then and are liftings of a and respectively. (The case n = 0 is illustrated in
Figure 63.1 ) The product is defined, since ends at 21(b x 2n) and begins at
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V

Figure 63.!

7(b x (2n+l)). We set = and note that begins at = 7(a x 2n) =
= 7r(a x (2n + 1)) =7r(a x (2n +2)) =

Step 3. We show that [f] generates an infinite cyclic subgroup of ir1(X, a). It
suffices to show that if m is a positive integer, then [f]m is not the identity element.
But this is easy. For the product

is defined and is a lifting of the rn-fold product

h=f * (f * (...* f)).

Nc

(—3)
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Because Ii begins at eo and ends at em, the class [h] = [f]m cannot be trivial.

*Step 4. Now we show that if (X, a) is infinite cyclic, it is generated by [f].
Consider the lifting correspondence : 2r1(X, a) —÷ p1 (a). We showed in Step 3
that for each positive integer m, the correspondence 0 carries to the point em of
p1(a). A similar argument shows that it carries to em. Thus 0 is surjective.
Now by Theorem 54.6, 0 induces an injective map

cIa: 211(X,a)/H —÷

where H = eo)); the map is surjective because 0 is surjective. It follows
that H is the trivial group, since the quotient of an infinite cyclic group by any non-
trivial subgroup is finite. Then the lifting correspondence itself is bijective; since
it maps the subgroup generated by [f] onto p1(a), this subgroup must equal all of
211(X, a).

Step 5. Now we prove (c). The picture in Figure 63.1 may mislead you into
thinking that the element [g] of JTf(X, a) considered in part (c) is in fact trivial. But
that figure is rather special. Figure 63.2 illustrates what can occur when A is itself
the union of two disjoint nonempty open sets. In this case (which will be useful to us
shortly) both [f] and [gJ generate infinite cyclic subgroups of a).

Given g = y * 8, we define a lifting of g to E as follows: Since y is a path in U,
we can define

since S is a path in V. we can define

p(s) = 21(y(s) x 0);

8(s) = x (—1)).

Figure 63.2
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Then and S are liftings of y and 8. The product = * S is defined, since ends
at x 0) and begins at jr(a' x (—1)); and it is a lifting of g. Note that is a loop
in E, for it begins and ends at 2r(a x 0) 2r(a x (—1)) =

It follows that the subgroups generated by If] and [g] have only the identity el-
ement in common. For the rn-fold product of f with itself lifts to a path that begins
at and ends at em, while every product of g with itself lifts to a path beginning and
ending at eo. Hence [gjk for every nonzero m and k.

Theorem 63.2 (A nonseparation theorem). Let D be an arc in S2. Then D does
not separate S2.

Proof We give two proofs of this theorem. The first uses the results of the preceding
section, and the second does not.

First proof Because D is contractible, the identity map i : D —+ D is nulhomo-
topic. Hence if a and b are any two points of not in D, the inclusion j : D —p
S2 — a — b is nulhomotopic. The Borsuk lemma then implies that a and b lie in the
same component of — D.

Second Proof. Let us write D as the union of two arcs D1 and D2 that intersect in
a single point d. Let a and b be points not in D. We show that if a and b can be joined
by paths in — D1 and in — D2, then they can be joined by a path in S2 — D.
Figure 63.3 illustrates the fact that this assertion is not entirely trivial.

We suppose that a and b cannot be joined by a path in S2 — D and derive a con-
tradiction. We apply Theorem 63.1. Let X be the space — d. Let U and V be the
open sets

U=52—D1 and V=52—D2.

Then X = U U V, and U fl V = — D. By hypothesis, a and b are points of — D

that cannot be joined by a path in S2 — D. Therefore, U Ii V is not path connected.

Figure 63.3
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Let A be the path component of U fl V containing a; let B be the union of the other
path components of U fl V. Since U fl V is locally path connected (being open in 52),
the path components of U fl V are open; hence A and B are open in X. We are given
that a and b can be joined by paths in U = S2 — D1 and V = S2 — D2. We conclude
from Theorem 63.1 that (X, a) is not tnvial. But X = — d, so its fundamental
group is trivial.

Now we prove the theorem Given the arc D and the points a and b of —

we suppose that a and b cannot be joined by a path in — D and derive a con-
tradiction. Choose a homeomorphism h : [0, 1] D; Let D1 = h([0, 1/2]) and
D2 = h([1/2, 1]). The result of the preceding paragraph shows that since a and b can-
not be joined by a path in — D, they cannot be joined by paths in both S2 — D1 and

— D2. To be definite, suppose that a and b cannot be joined by a path in D1.

Now repeat the argument, breaking D1 up into two arcs E1 = h([0, 1/4]) and
E2 = h([l/4, 1/21). We conclude, as before, that a and b cannot be joined by paths in
both — E1 and — E2

Continue similarly. In this way we define a sequence

1 J it J 12 J

of closed intervals such that has length (1/2)" and such that for each n, the points a
and b cannot be joined by a path in — Compactness of the unit interval
guarantees there is a point x in fl in; since the lengths of the intervals converge to
zero, there is only one such point.

Consider the space 52—h(x). Since this space is homeomorphic to R2 the points a
and b can be joined by a path a in — h(x). Because a(1) is compact, it is closed,
so some E-neighborhood of h(x) is disjoint from ci(!). Then because h is continuous,
there is some m such that h(lm) lies in this E-neighborhood. It follows that a is a path
in — h(lm) joining a and b, contrary to hypothesis.

Both proofs of this theorem are interesting. As we noted in §62, the first gener-
alizes to show that no compact contractible subspace of separates The second
generalizes in another direction. Let us examine this second proof, and ask ourselves
what properties of the sets D1 and D2 made it work? One readily sees that all that was
needed was the fact that D1 and D2 were closed subsets of and that — (D fl D2)
was simply connected. Hence we have the following result, which we shall use later:

Theorem 63.3 (A general nonseparation theorem). Let Df and D2 be closed sub-
sets of S2 such that S2 — D1 fl D2 is simply connected. If neither D1 nor D2 separates

then D1 U does not separate

Now we prove the Jordan curve theorem.

Theorem 63.4 (The Jordan curve theorem). Let C be a simple closed curve in
Then C separates into precisely two components W1 and W2. Each of the sets
and W2 has C as its boundary; thatis, C = W, — W1 fori = 1,2.
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Proof Step 1. We first prove that S2 — C has precisely two components. Write C as
the union of two arcs C1 and C2 that intersect in a two-point set {p, q). Let X be the
space — p — q, and let U and V be the open sets

U=52—C1 and V=52—C2.

Then X = UU V. and Ufl V = S2—C. The space Un V has at least two components,
by the Jordan separation theorem.

We suppose that U fl V has more than two components and derive a contradiction.
Let A1 and A2 be two of the components of U fl V, and let B be the union of the
others. Because — C is locally connected, each of these sets is open. Let a E A1
and a' E A2 and b E B. Because the arcs C1 and C2 do not separate S2. there are
paths a and y in U from a to b and from a to a', respectively, and there axe paths ,6
and S in V from b to a and from a' to a, respectively. Consider the loops f = cr *

andg = y*S. Wnting Un V as the unionof the open sets A1UA2 and B, we see that
Theorem 63.1 implies that [fl's a nontnvial element of a). Writing U fl V as
the union of the disjoint open sets A and A2 U B, we see that [g] is also a nontrivial
element of (X, a). Since a) is infinite cyclic, we must have [fjm = [g]k for
some nonzero integers m and k. This result contradicts (c) of Theorem 63.1 -

Step 2. Now we show that C is the common boundary of W1 and W2
Because is locally connected, each of the components W1 and W2 of — C

is open in In particular, neither contains a limit point of the other, so that both the
sets W1 — W1 and W2 — W2 must be contained in C.

To prove the reverse inclusion, we show that if x is a point of C, every neighbor-
hood U of x intersects the closed set W1 — W1. It follows that x is in the set W1 — W1.

So let U be a neighborhood of x. Because C is homeomorphic to the circle we
can break C up into two arcs C1 and C2 that intersect in only their end points, such
that C1 is small enough that it lies inside U. See Figure 63.4.

Figure 63.4
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Let a and b be points of W1 and W2, respectively. Because C2 does not separate S2.
we can find a path a in 52_ C2 joining a and b. The set a(1) must contain a point y of
the set W1 — W1, because otherwise a(I) would be a connected set lying in the union
of the disjoint open sets W1 and S2 — W1, and intersecting each of them. The point y
belongs to the closed curve C, since (Wi — W1) C C. Because the path cr does not
intersect the arc C2, the point y must therefore lie in the arc C1, which in turn lies in
the open set U. Thus, U intersects W1 — W1 in the point y, as desired.

Just as with the earlier theorems, we now ask ourselves what made the proof of
this theorem work. Examining Step 1 of the proof, we see that all we used were the
facts that C1 and C2 were closed connected sets, that C1 fl C2 consisted of two points,
and that neither C1 nor C2 separated The first two facts implied that C1 U C2
separated into at least two components; the third implied that there were only two
components. Hence one has, with no further effort, the following result:

Theorem 63.5. Let C1 and C2 be closed connected subsets of S2 whose intersection
consists of two points. If neither C1 nor C2 separates S2, then C1 U C2 separates S2
into precisely two components.

EXAMPLE 1. The second half of the Jordan curve theorem, to the effect that C is the
common boundary of W1 and W2, may seem so obvious as hardly to require comment. But
it depends crucially on the fact that C is homeomorphic to S1.

For instance, consider the space indicated in Figure 63 5. It is the union of two arcs
whose intersection consists of two points, so it separates S2 into two components W1
and W2 just as the circle does, by Theorem 63.5. But C does not equal the common
boundary of W1 and W2 in this case.

There is a fourth theorem that is often considered along with these three separation
theorems. It is called the Schoenflies theorem, and it states that if Cis a simple closed
curve in and U and V are the components of — C, then U and V are each
homeomorphic to the closed unit ball B2. A proof may be found in [H-S].

The separation theorems can be generalized to higher dimensions as follows:
(1) Any subspace C of 5" homeomorphic to 5" separates S".

Figure 63.5
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(2) No subspace A of homeomorphic to [0, 1] or to some ball separates Sn.

(3) Any subspace C of 5" homeomorphic to 5" separates 5" into two components,
of which C is the common boundary.

These theorems can be proved quite readily once one has studied singular ho-
mology groups in algebraic topology. (See [Mu], p. 202.) The Brouwer theorem on
invariance of domain for IR" follows as a corollary.

The Schoenflies theorem, however, does not generalize to higher dimensions with-
out some restrictions on the way the space C is imbedded in 5". This is shown by the
famous example of the "Alexander horned sphere:' a homeomorphic image of in
one of whose complementary domains is not simply connected! (See [H-Y], p. 176.)

The separation theorems can be generalized even further than this. The defini-
tive theorem along these lines is the famous Alexander-Pontryagin duality theorem, a
rather deep theorem of algebraic topology, which we shall not attempt to state here.
(See [Mu].) It implies that if the closed subspace C separates S" into k components,
so does any subspace of 5" that is homeomorphic to C (or even homotopy equivalent
to C). The separation theorems (1)—(3) are immediate corollaries.

Exercises

1. Let C1 and C2 be disjoint simple closed curves in
(a) Show that S2 — C1 — C2 has precisely three components. [Hint: If W1 is

the component of S2 — C1 disjoint from C2, and if W2 is the component of
— C2 disjoint from C1, show that W1 U W2 does not separate

(b) Show that these three components have boundaries C1 and C2 and C1 U C2,
respectively.

2. Let D be a closed connected subspace of that separates into n components.
(a) If A is an arc in whose intersection with D consists of one of its end

points, show that D U A separates into n components.
(b) If A is an arc in whose intersection with D consists of its end points,

show that D U A separates into n + 1 components.
(c) If C is a simple closed curve in S2 that intersects D in a single point, show

D U C separates into n + 1 components.

(a) Let D be a subspace of homeomorphic to the topologist's sine curve S.
(See §24.) Show that D does not separate S2. [Hint: Let h : S —+ D be the
homeomorphism. Given 0 < c < 1, let equal the intersection of S with
the set {(x, y) I

x c}. Show that given a, b e — D, there is, for some
value of c, a path in — from a to b. Conclude that there is a path in

— D from a to b.]
(b) Let C be a subspace of S2 homeomorphic to the closed topologist's sine

curve. Show that C separates S2 into precisely two components, of which C
is the common boundary. [Hint: Let h be the homeomorphism of the closed
topologist's sine curve with C. Let = h(0 x [—1, 1]). Show first, using
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the argument of Theorem 63.4, that each point of C — C0 lies in the boundary
of each component of S2 — C.]

§64 hnbedding Graphs in the Plane

A (finite) linear graph G is a Hausdorff space that is wntten as the union of finitely
many arcs, each pair of which intersect in at most a common end point. The arcs are
called the edges of the graph, and the end points of the arcs are called the vertices of
the graph.

Linear graphs are used in mathematics to model many real-life phenomena; how-
ever, we shall look at them simply as interesting spaces that in some sense are gener-
alizations of simple closed curves.

Note that any graph is determined completely (up to homeomoi-phism) by listing
its vertices and specifying which pairs of vertices have an edge joining them.

EXAMPLE I. If G contains exactly n vertices, and if for every pair of distinct vertices
of G there is an edge of G joining them, then G is called the complete graph on n vertices
and is denoted Several such graphs are pictured in Figure 64.1. Note that the first
three of these graphs are pictured as subspaces of 1R2, but the fourth is pictured instead as
a subspace of R3. A little experimentation will convince you that this graph cannot in fact
be imbedded in R2. We shall prove this result shortly.

Figure 64.1

EXAMPLE 2. Another interesting graph anses in considering the classical puzzle: "Given
three houses, h1, h2, and h3, and three utilities, g (for gas), w (for water), and e (for elec-
tricity), can you connect each utility to each house without letting any of the connecting
lines cross?" Formulated mathematically, this is just the question whether the graph pic-
tured in Figure 64.2, which is called the utilities graph. can be imbedded in JR2. Again, a
little experimentation will convince you that it cannot, a fact that we shall prove shortly

Definition. A theta space X is a Hausdorif space that is written as the union of three
arcs A, B, and C, each pair of which intersect precisely in their end points. (The
space X is of course homeomorphic to the Greek letter theta.)
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Note that as it stands, a theta space X is not a linear graph, for the arcs in question
intersect in more than a common end point. One can write it as a graph, however, by
breaking each of the arcs A, B, and C up into two arcs with an end point in common.

Lemma 64.1. Let X be a theta space that is a subspace of 52; let A, B, and C be the
arcs whose union is X. Then X separates into three components, whose boundaries
are AUB, BUC, and AUC, respectively. The component having AUB as its boundary
equals one of the components of — A U B.

Proof Let a and b be the end points of the arcs A, B, and C. Consider the simple
closed curve A U B; it separates S2 into two components U and U', each of which is
open in and has boundary A U B. See Figure 64.3.

U,

The space C — a — b is connected, soit is contained in one of these components,
say in U'. Then consider the two spaces U = U U A U B and C; each is connected.
Neither separates for C is an arc, and the complement of U is the connected set U'.
Since the intersection of these two sets consists of the two points a and b, their union
separates into two components V and W, by Theorem 63.5. It follows that —

(A U B U C) is the union of the three disjoint connected sets U, V. and W; because
they are open in they are the components of — (A U B U C). The component
U has A U B as its boundary. Symmetry implies that the other two have B U C and

Figure 64.2

Figure 64.3
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A U C as their boundaries. U

Theorem 64.2. Let X be the utilities graph. Then X cannot be imbedded in the plane.

Proof If X can be imbedded in the plane, then it can be imbedded in So suppose
X is a subspace of S2. We derive a contradiction.

We use the notation of Example 2, where g, w, e, h1, h2, and h3 are the vertices
of X. Let A, B, and C be the following arcs contained in X:

A =gh1w,
B = gh2w,

C = gh3w.

Each pair of these arcs intersect in their end points g and w alone; hence Y = AUBUC
is a theta space. The space Y separates into three components U, V, and W, whose
boundaries are A U B, B U C, and A U C, respectively. See Figure 64.4.

Now the vertex e of X lies in one of these three components, so that the arcs eh1
and eh2 and eh3 of X lie in the closure of that component. That component cannot
be U, for U is contained in U U A U B, a set that does not contain the point h3.
Similarly, the component containing e cannot be V or W, because V does not contain
h1, and W does not contain h2. Thus, we have reached a contradiction.

Lemma 64.3. Let X be a subs pace of S2 that is a complete graph on four vertices a1,
and a4. Then X separates into four components. The boundaries of these

components are the sets X1, X2, X3, and X4, where X, is the union of those edges
of X that do not have a as a vertex.

Proof Let Y be the union of all the arcs of X different from the arc a2a4. Then we
can write Y as a theta space by setting

A = a(a2a3,

B = a1a3,

C = a1a4a3.

Figure 64.4
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See Figure 64.5. The arcs A, B, and C intersect in their end points a1 and alone,
and their union is Y.

The space Y separates s2 into three components U, V. and W, whose boundaries
are A U B, B U C, and A U C, respectively. The space a2a4 — — a4, being connected,
must lie in one of them. It cannot lie in U, because A U B does not contain Q4. And it
cannot lie in V because B U C does not contain Hence it must lie in W.

Now U U V is connected because U and V are connected and have nonempty in-
tersection B. Furthermore, the set U U V does not separate 52, because its complement
is W.Similarly, the arc a2a4 is connected and does not separate And the sets a2a4
and U U V intersect in the points a2 and a4 alone. It follows from Theorem 63.5 that
a2a4 U U U V separates 52 into two components W1 and W2. Then s2 — Y is the union
of the four disjoint connected sets U, V. W1, and W2. Since these sets are open, they
are the components of — y.

Now one of these components, namely U, has the graph A U B = X4 as its bound-
ary. Symmetry implies that the other three have X1, X2, and X3 as their respective
boundaries.

Theorem 64.4. The complete graph on five vertices cannot be imbedded in the plane.

Proof Suppose that G is a subspace of S2 that is a complete graph on the five vertices
a4, and a5. Let X be the union of those edges of G that do not have a5 as

a vertex; then X is a complete graph on four vertices. The space X separates into
four components, whose respective boundanes are the graphs X1 X4, where X
consists of those edges of X that do not have a as a vertex. Now the point a5 must lie
in one of these four components. It follows that the connected space

a1a5 Ua2a5 Ua3a5 Ua4a5,

which is the union of those edges of G that have a5 as a vertex, must lie in the closure of
this component. Then all the vertices a1 a4 lie in the boundary of this component.

w

Figure 64.5
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But this is impossible, for none of the graphs X contains all four vertices a a4.
Thus we reach a contradiction.

It follows from these theorems that if a graph G contains a subgraph that is a

utilities graph or a complete graph on five vertices, then G cannot be imbedded in the
plane. It is a remarkable theorem, due to Kuratowski, that the converse is also true!
The proof is not easy.

Exercise

1. Let X be a space that is written as the union of finitely many arcs A1
each pair of which intersect in at most a common end point.
(a) Show that X is Hausdorif if and only if each arc A is closed in X.
(b) Give an example to show that X need not be Hausdorif. [Hint: See Exer-

cise 5 of §36.]

§65 The Winding Number of a Simple Closed Curve

If h : —0 is a continuous map, then the induced homomorphism carries a
generator of the fundamental group of to some integral power of a generator of the
fundamental group of R2 —0. This integral power n is called the winding nwnber of h
with respect to 0. It measures how many times h "wraps around the origin;" its sign
depends of course on the choice of generators. See Figure 65.1. We will introduce it
more formally in the next section.

n = ±2

Figure 65.1

For the present, we merely ask the question: What can one say about the winding
number of h if h is injective, that is, if h is a homeomorphism of 5' with a simple
closed curve C in 1R2 — 0? The illustrations in Figure 65.2 suggest the obvious con-
jecture: If 0 belongs to the unbounded component of R2 — C, then n = 0, while if 0
belongs to the bounded component, then n = ±1.

n=O
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- ti=O

Figure 65.2

The first conjecture is easy to prove, for Lemma 61.2 tells us that h is nulhomotopic
if 0 belongs to the unbounded component of 1R2 — C. On the other hand, the second
conjecture is surpnsingly difficult; it is in fact a rather deep result. We prove it in this
section.

As usual, we shall replace 1R2 U by letting p be the point corresponding
to 0 and q be the point corresponding to oo. Then our conjecture can be reformulated
as follows: If C is a simple closed curve in and if p and q belong to different
components of — C, then the inclusion mapping j C —p

— p — q induces an
isomorphism of fundamental groups. This is what we shall prove.

First, we prove our result in the case where the simple closed curve C is contained
in a complete graph on four vertices. Then we prove the general case.

Lemma 65.1. Let G be a subspace of S2 that is a complete graph on four vertices
a1 a4. Let C be the subgraph a1 a2a3a4af, which is a simple closed curve. Let p
and q be interior points of the edges afa3 and a2a4, respectively. Then:

(a) The points p and q lie in different components of —

(b) The inclusion j : C —÷ — p — q induces an isomorphism of fundamental
groups.

Proof (a) As in the proof of Lemma 64.3, the theta space C Ua1a3 separates into
three components U, V. and W. One of these, say W, has C as its boundary; it is the
only component whose boundary contains both a2 and a4. Therefore, a2a4 — a2 — a4

must lie in W, so that in particular, q belongs to W. Of course, p is not in W because p
belongs to the theta space C U a(a3. Now Lemma 64.1 tells us that W is one of the
components of — C; therefore, p and q belong to different components of —

(b) Let X — p — q. The idea of the proof is the following: We choose a
point x interior to the arc ala2, and a point y intenor to the arc a3a4. And we let a and
,6 be the broken-line paths

a=xa1a4y and

,6 a loop lying in the simple closed curve C. We shall prove that a * ,6 rep-
resents a generator of the fundamental group of X. It follows that the homomorphism
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: (C, x) —p jr1(X, x) is surjective, so that must be an isomorphism (since the
groups involved are infinite cyclic). See Figure 65.3.

Let Df and D2 be the arcs

= pa3a2q and D2 =

and let U = S2 — D1 and V = S2 — D2. See Figure 65.4. Then X = U U V, and
U fl V equals S2 — D, where D is the simple closed curve D = D1 U D2. Hence,
Un V has two components, by the Jordan curve theorem. Furthermore, since D equals
the simple closed curve ala3a2a4al, the result of (a) implies that the points x and y,
which lie intenor to the other two edges of the graph G, lie in different components of

- D

Figure 65.4

a1

I,'
/

/

y

The hypotheses of Theorem 63.1 are thus satisfied. The path a is a path in U
from x to y, while ,6 is a path in V from y to x. Because the fundamental group of X

a1

cx

Figure 65.3

a4

cx

a2 q a4 a2 q a4
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is infinite cyclic, the ioop a * represents a generator of this group.

Now we prove our main theorem.

Theorem 65.2. Let C be a simple closed curve in 52; let p and q Lie in different
components of — C. Then the inclusion mapping j : C —÷ — p — q induces an
isomorphism of fundamental groups.

Proof The proof involves constructing a complete graph on four vertices that con-
tains C as a subgraph.

Step 1. Let a, b, and c be three distinct points of 1R2. If A is an arc with end points
points a and b, and if B is an arc with end points b and c, then there exists an arc
contained in A U B with end points a and c.

Choose paths f : 1 -÷ A from a to b, and g I —÷ B from b to c, such that f
and g are homeomorphisms. Let tO be a smallest point of 1 such that f(to) E B; and
let t1 be the point of! such that g(ti) f(to). Then the set f([O, t0]) U g([ti, 1]) is
the required arc. (If tO = 0 or = 1, one of these sets consists of a single point.) See
Figure 65.5.

Step 2. We show that if U is an open set of 1R2, any two points of U that can be
connected by a path in U are the end points of an arc lying in U.

Ifx,y E U,setx yifx = yorifthereisan arc in U withendpoints x andy.
The result of Step 1 shows that this is an equivalence relation. The equivalence classes
are open, for if the E-neighborhood of x lies in U, it consists of points equivalent to x.
Since U is connected, there is only one such equivalence class.

Step 3. Let C be a simple closed curve in 1R2. We construct a subspace G of R2
that is a complete graph on four vertices ai a4 such that C equals the subgraph
ala2a3a4al.

For convenience, we assume that 0 lies in the bounded component of R2 — C.
Consider the x-axis R x 0 in R2; let a1 be the largest point on the negative x—axis that
lies in C, and let be the smallest point on the positive x-axis that lies in C. Then the
tine segment at lies in the closure of the bounded component of 1R2 — C.

Let us write C as the union of two arcs Ci and C2 with end points ai and a3.
Let a be a point of the unbounded component of R2 — C. Since C1 and C2 do not
separate 1R2, we can choose paths a : I -÷ R2 — C1 and 1 —÷ R2 — C2 from a

Figure 65.5
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to 0; in view of Step 2, we may assume that a and ,6 are injective. Let =
where t0 is the smallest number such that a(to) C; then a2 is a point interior to C2.
Similarly, let a4 = where t1 is the smallest number such that ,6(t1) C; then a4
is an interior point of C1. Then a((O, 10]) and ,6([O, ti]) are arcs joining a to and a4,
respectively; by Step 2, their union contains an arc with end points and a4; this arc
intersects C only in these two points. This arc, along with the line segment a(a3 and
the curve C, forms the desired graph. See Figure 65.6.

a

.4—. C2

Step 4. It follows from the result of Step 3 and the preceding lemma that for some
pair of points p. q lying in different components of S2 — C, the inclusion j C —÷
52

— p — q induces an isomorphisrn of fundamental groups. To complete the proof,
we need only show that the same holds for any pair p, q of points lying in different
components of S2 — C. For that purpose, it suffices to prove the following:

Let D be a simple closed curve in R2; suppose 0 lies in the bounded component of
— D. Let p be another point of this component. If inclusion j: D —÷ 1R2 —0 induces

an isomorphism of fundamental groups, then so does the inclusion k : D —÷ 1R2 — p
Let f . 1R2 — p — 0 be the homeomorphism 1(x) = x — p. It suffices to

show that the map

D 1R2 -0

indices an isomorphism of fundamental groups. Let a be a path in R2 — D from 0
to p. and let F : D x 1 — 0 be the map F(x, t) = x — a(t). Then F is a
homotopy between j and f o k; since j induces an isomorphism, so does f o k. (See
Corollary 58.5). I

Figure 65.6
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This theorem is a special case of a rather deep theorem of algebraic topology,
concerning the "linking number" of two disjoint subspaces of one homeo-
morphic to an rn-sphere and the other homeomorphic to an n-sphere; it is related to
the Alexander duality theorem. (See [Mu], p. 433.) The special case of our theorem is
that of a 0-sphere (i.e., a two-point space) and a 1-sphere (i.e., a simple closed curve)
in S2.

§66 The Cauchy Integral Formula

One of the central theorems in the study of functions of a complex variable is the one
concerning the Cauchy integral formula for analytic functions. For the classical ver-
sion of this theorem, one needs to assume not only the Jordan curve theorem, but also
the winding-number theorem of the last section. There is, however, a reformulation of
the Cauchy integral theorem that avoids using these results; this version of the theo-
rem, although it is rather less natural, is the one now commonly found in texts on the
subject.

Since we have the Jordan curve theorem at our disposal, we shall set ourselves the
task of denying the Cauchy integral formula in its classical version from the reformu-
lated version.

We begin by introducing the notion of "winding number" more formally.

Definition. Let f be a loop in R2, and let a be a point not in the image of f. Set

g(s) = [f(s) — a]/ If(s) — all;

then g is a loop in S'. Let p : IR -÷ S' be the standard covering map, and let be a
lifting of g to S1. Because g is a loop, the difference — is an integer. This
integer is called the winding number off with respect to a, and is denoted n(f, a).

Note that n(f, a) is independent of the choice of the lifting of g. For if is one
lifting of g, then uniqueness of liftings implies that any other lifting of g has the form
g(s) + rn for some integer rn.

Definition. Let F : I x 1 —÷ X be a continuous map such that F(0, t) = F(l, t)
for all t. Then for each t, the map f1(s) = F(s, t) is a loop in X. The map F is called
afree homotopy between the loops fo and It is a homotopy of loops in which the
base point of the loop is allowed to move during the homotopy.

Lemma 66.1. Let f be a loop in 1R2 — a.

(a) 1ff is the reverse off, then n(f, a) = —n(f, a).
(b) 1ff is freely homotopic to f', through loops lying in 1R2 — a, then rz(f, a) =

n(f', a).
(c) If a and b lie in the same component of R2 — f(1), then n(f, a) = n(f, b).
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Proof (a) To compute n(f, a), one replace s by I — s throughout the definition. This
has the effect of changing g(1) — g(O) by a sign

(b) Let F be a free homotopy between f and f'. Define G I x 1 S1 by the
equation

G(s, t) = [F(s, t) — a]/IIF(s, t) — all.

Let G be a Lifting of G to IR. Then G(I, t) — G(O, t) is an integer for each t; being
continuous, it is constant.

(c) Let a be a path in 1R2 — f(1) from a to b. Note that by definition, n(f, a) =
n(f — a, 0). Since f(s) — a(t) is a free homotopy in R2 —0 between f — a and f — b,
our result follows.

Definition. Let f be a loop in X. We call f a simple loop provided f(s) = f(s')
only if s = s' or if one of the points s, s' is 0 and the other is 1. If f is a simple loop,
its image set is a simple closed curve in X.

Theorem 66.2. Let! be a simple loop in 1R2. Ila lies in the unbounded component of
R2—f(1) thenn(f,a) = 0; while ifa lies in the bounded component,n(f,a) ±1.

Pmof Since n(f, a) = n(f — a, 0), we may restrict ourselves to the case a = 0.

Furthermore, we may assume that the base point of f ties on the positive x-axis. For
one can gradually rotate 1R2 —0 until the base point of f is such a point; this modifies f
by a free homotopy, so it does not affect the conclusion of the theorem.

So let f be a simple loop in X = 1R2 — 0 based at a point of the positive x-
axis. Let C be the simple closed curve f(1). We show that if 0 lies in the bounded
component of 1R2 — C, then [f] generates (X, x0), while if 0 lies in the unbounded
component, [f] is trivial.

The map f induces, via the standard quotient map p: 1 —÷ SI, a homeomorphism
h S' —÷ C. The element [p] generates the fundamental group of S'. so
generates the fundamental group of C. If 0 lies in the bounded component of 1R2 — C,
Theorem 65.2 tells us that = [fJ generates the fundamental group of 1R2 — 0,

where j : C -÷ — 0 is the inclusion. On the other hand, if 0 lies in the unbounded
component of 1R2 — C, then j oh is nulhomotopic by Lemma 61.2, so that [f] is trivial.

Now we show that if [f] generates 2r1(X, xo), then n(f, 0) = ±1, while if [1]
is trivial, n(f, 0) = 0. Since the retraction x —÷ x/lIxfl of R2 — 0 onto induces
an isomorphism of fundamental groups, the loop g(s) = f(s)/IIf(s)ll represents a
generator of b0) in the first case, and the identity element in the second case.
If we examine the isomorphism Jrf(St, b0) —÷ Z constructed in the proof of
Theorem 54.5, we see this means that when we lift g to a path in IR beginning at 0,
the path ends at ± I in the first case, and at 0 in the second.

Definition. Let f be a simple loop in 1R2. We say f is a counterclockwise ioop
if n(f, a) = + 1 for some a (and hence for every a) in the bounded component of
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— f(1). We say it is a clockwise loop if n(f, a) = —1. The standard loop p(s) =
(cos2jrs, sin 231s) is thus a counterclockwise loop.

Application to complex variables

We now relate winding numbers to complex line integrals.

Lemma 66.3. Let f be a piecewise-differentiable loop in the complex plane; let a
be a point not in the image off. Then

1 f dzn(f,a)=—2iri jj z — a

This equation is often used as the definition of the winding number of f.

Proof The proof is a simple exercise in computation. Let p : R —÷ S' be the
standard covering map. Let r(s) = hf(s) — all and g(s) = [f(s) — a]/r(s). Let be
a lifting of g to IR. Set 0(s) = Then f(s) — a = r(s) exp(iO(s)), so that

= +

= [log r(s) +
= i[0(1) — 0(0)]

= —

Theorem 66.4 (Cauchy integral formula-classical version). Let C be a simple
closed piecewise-differentiable curve in the complex plane. Let B be the bounded

component of 1R2 — C. II F(z) is analytic in an open set Q that contains B and C, then
for each point a of B,

1 f F(z)F(a)=±— ! —dz.
2211 Jc z — a

The sign is + if C is oriented counterclockwise, and — otherwise.

Proof We derive this formula from the version of it proved in Ahlfors [A], which is
the following:

Let F be analytic in a region Q. Let f be a piecewise-differentiable loop in Q.
Assume that n(f, b) = Ofor each b not in Q. If a E Q and a is not in the inwge off,
then

n(f,a) F(a)= I
2211 Jf Z — a
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We apply this result to a piecewise-differentiable parametrization f of our simple
closed curve C. The condition n(f, b) = 0 holds for each b not in Q, since any such b
lies in the unbounded component of 1R2 — C. Furthermore, n(f, a) = ± 1 whenever
a is in B, the sign depending on the orientation of C, by Theorem 66.2. The theorem
follows. U

Note that one cannot even state the classical version of the Cauchy integral theorem
without knowing the Jordan curve theorem. To prove it requires even more, namely,
knowledge of the winding number of a simple closed curve. It is of interest to note
that this latter result can be proved (at least in the differentiable case) by an entirely
different method, using the general version of Green 's Theorem, proved in analysis.
This proof is outlined in Exercise 2.

Exercises

1. Let f be a loop in JR2 — a; let g(s) = [f(s) —a]/IIf(s) —all The map g induces,
via the standard quotient map p : I a continuous map h : S' —÷ S'.
Show that n(f, a) equals the degree of h, as defined in Exercise 9 of §58.

2. This exercise assumes some familiarity with analysis on manifolds.
Theorem. Let C be a simple closed curve in JR2 that is a smooth submanifold
of 1R2; let f : I —÷ C be a simple loop smoothly parameterizing C. If 0 is a point
of the bounded component of 1R2 — C, then n(f, 0) = ±1.
Proof Let U be the bounded component of 1R2 — C. Let B be a closed e-ball
centered at 0 that lies in U; let S = Bd B. Let M equal the closure of U — B.
(a) Show M is a smooth 2-manifold with boundary C U S.
(b) Apply Green's theorem to show that dz/z = ± dz/z, the sign depend-

ing on the onentations of S and C. (Hint: Set P = —y/(x2 + y2) and
Q = x/(x2 + y2).]

(c) Show that the second integral equals ±2,ri.



Chapter 11

The Seifert-van Kampen
Theorem

§67 Direct Sums of Abelian Groups

In this section, we shall consider only groups that are abelian. As is usual, we shall
write such groups additively. Then 0 denotes the identity element of the group, —x
denotes the inverse of x, and nx denotes the n-fold sum x + + x.

Suppose G is an abelian group, and {GaIaEJ is an indexed family of subgroups
of G. We say that the groups Ga generate G if every element x of G can be written as
a finite sum of elements of the groups Ga. Since G is abelian, we can always rearrange
such a sum to group together terms that belong to a single Ga; hence we can always
write x in the form

where the indices are distinct. In this case, we often write x as the formal sum
x = xa, where it is understood that xa = 0 if a is not one of the indices ai,
• . .,

If the groups Ga generate G, we often say that G is the sum of the groups Ga,
writing G = >a€J Ga in general, or G = G1 + . •• + in the case of the finite
indexset{I n}.

Now suppose that the groups Ga generate G, and that for each x c G, the expres-
sion X = Xa for x is unique. That is, suppose that for each x c G, there is only one

407
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J-tuple with xa = 0 for all but finitely many a such thatx = Then G
is said to be the direct sum of the groups Ga, and we write

G = Ga,
aEJ

or in the finite case, G =

EXAMPLE 1. The cartesian product RW is an abelian group under the operation of
coordinate-wise addition. The set consisting of those tuples (x) such that x = 0 for
i n is a subgroup isomorphic to R. The groups generate ihe subgroup IR°° of Rw,
indeed, JR°° is their direct sum.

A useful characterization of direct sums is given in the following lemma, we call
it the extension condition for direct sums.

Lemma 67.1. Let G be an abelian group; let be a family of subgroups of G. If
G is the direct sum of the groups Ga, then G satisfies the following condition:

Given any abelian group H and any family of homomorphisms
(*) h G H whose

restriction to equals for each a.

Furthermore, h is unique. Conversely, if the groups generate G and the extension
condition (*) holds, then G is the direct sum of the groups Ga.

Pmof We show first that if G has the stated extension property, then G is the direct
sum of the Suppose x = >Xa = ya; we show that for any particular index ,6,
we have = Let H denote the group and let : —÷ H be the
trivial homomorphism for a and the identity homomorphism for a = ,6. Let
h : G —÷ H be the hypothesized extension of the homomorphisms ha. Then

h(x) =

h(x) = = Yfi'

so that =
Now we show that if G is the direct sum of the Ga, then the extension condition

holds. Given homomorphisms we define h(x) as follows: If x = >Xa, set h(x) =
(Xa). Because this sum is finite, it makes sense; because the expression for x is

unique, h is well-defined. One checks readily that h is the desired homomorphism.
Uniqueness follows by noting that h must satisfy this equation if it is a homomorphism
that equals on for each a. I

This lemma makes a number of results about direct sums quite easy to prove

Corollary 67.2. Let G = G G2. Suppose G1 is the direct sum of subgroups
forcr E J, and G2 is the direct sum of subgroups for(3 E K, where the index sets J
and K are disjoint. Then G is the direct sum of the subgroups for y E J U K.
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Proof If H H are families of homomorphisms, they
extend to homomorphisms h1 : Gf —÷ H and h2 G2 —÷ H by the preceding lemma.
Then hf and h2 extend to a homomorphism h : G —+ H. U

This corollary implies, for example, that

(G1

G = G1 G2 is isomorphic to G1.

Proof Let H = G1, let h1 G1 —÷ H be the identity homomorphism, and let
G2 —÷ H be the trivial homomorphism. Let h : G —÷ H be their extension to G.

Then h is surjective with kernel G2. U

In many situations, one is given a family of abelian groups (Gal and one wishes
to find a group G that contains subgroups isomorphic to the groups such that
G is the direct sum of these subgroups. This can in fact always be done, it leads to a
notion called the external direct sum.

Definition. Let be an indexed family of abelian groups Suppose that G is
an abelian group, and that : Ga —÷ G is a family of monomorphisms, such that G
is the direct sum of the groups ir(Ga). Then we say that G is the external direct sum
of the groups Ga, relative to the monomorphisms

The group G is not unique, of course; we show later that it is unique up to isomor-
phism. Here is one way of constructing G:

Theorem 67.4. Given a family of abelian groups {Ga}a€j, there exists an abelian
group G and a family of monomorphisms : Ga —+ G such that G is the direct sum
of the groups ja(Gcr).

Proof Consider first the cartesian product

fl Ga;
trE J

it is an abelian group if we add two by adding them coordinate-wise. Let G
denote the subgroup of the cartesian product consisting of those tuples such

that = the identity element of for all but finitely many values of a. Given
an index define G by letting be the tuple that has x as its
coordinate and as its ath coordinate for all a It is immediate that is a
monomorphism. It is also immediate that since each element x of G has only finitely
many nonzero coordinates, x can be written uniquely as a finite sum of elements from
the groups U
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The extension condition that characterizes ordinary direct sums translates imme-
diately into an extension condition for external direct sums:

Lemma 67.5. Let be an indexed family of abelian groups; let G be an
abelian group; let : G be a family of homomorphisms. If each is a
monomorphism and G is the threct sum of the groups then G satisfies the
following extension condition:

Given any abelian group H and any family of homomorphisms
(*) Ga —+ H, there exists a homomorphism h G —+ H such that

h o =

h is unique. Conversely, suppose the groups (Ga) generate G and the
extension condition (*) holds. Then each is a monomorphism, and G is the direct
sum of the groups

Proof The only part that requires proof is the statement that if the extension con-
dition holds, then each is a monomorphism. That is proved as follows. Given an
index ,6, set H = and let ha -+ H be the identity homomorphism if a =
and the trivial homomorphism if a Let h : G —÷ H be the hypothesized exten-
sion. Then in particular, h o = it follows that is injective. U

An immediate consequence is a uniqueness theorem for direct sums:

Theorem 67.6 (Uniqueness of direct sums). Let be a family of abelian
groups Suppose G and G' are abelian groups and : Ga —p G and : Ga -+ G'
are families of monomorphisms, such that G is the direct sum of the groups (Ga)
and G' is the direct sum of the groups Then there is a unique isomorphism

• G —÷ G' such that o = for each a.

Proof We apply the preceding lemma (four times!). Since G is the external direct
sum of the Ga and } is a family of homomorphisms, there exists a unique homomor-
phism : G -+ G' such that = for each a. Similarly, since G' is the external
direct sum of the and fir, } is a family of homomorphisms, there exists a unique
homomorphism fr. G' —÷ G such that o = foreacha. Now 1 o G —p G

has the property that 1r o o = a; since the identity map of G has
the same property, the uniqueness part of the lemma shows that 1 o must equal the
identity map of G. Similarly, o 1r must equal the identity map of G'. U

If G is the external direct sum of the groups Gr, relative to the monomorphisms
we sometimes abuse notation and write G = even though the groups are
not subgroups of G. That is, we identify each group Ga with its image under and

treat G as an ordinary direct sum rather than an external direct sum. In each case, the
context will make the meaning clear.

Now we discuss free abelian groups.
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Definition. Let G be an abelian group and let be an indexed family of elements
of G; let G generated by If the groups generate G, we
also say that the elements generate G. If each group G
is the direct sum of the groups then G is said to be afree abelian group having
the elements faa } as a basis.

The extension condition for direct sums implies the following extension condition
for free abelian groups:

Lemma 67.7. Let G be an abelian group; let be a family of elements of G
that generates G. Then G is a free abelian group with basis if and only if for any
abelian group H and any family of elements of H, there is a homomorphism h
of G into H such that h(aa) = for each a. In such case, h is unique.

Proof Let Ga denote the subgroup of G generated by cia. Suppose first that the
extension property holds. We show first that each group Ga is infinite cyclic. Suppose
that for some index the element generates a finite cyclic subgroup of G. Then
if we set H = Z, there is no homomorphism h G —+ H that maps each cia to the
number 1. For has finite order arid 1 does not! To show that G is the direct sum of
the groups Ga, we merely apply Lemma 67.1.

Conversely, if G is free abelian with basis far then given the elements of
H, there are homomorphisms -+ H such that ha (aa) = (because
infinite cyclic). Then Lemma 67.1 applies. U

Theorem 67.8. If G is a free abelian group with basis then n is uniquely
determined by G.

Proof The group G is isomorphic to the n-fold product Z x . x Z; the subgroup 2G
corresponds to the product (2Z) x x (2Z). Then the quotient group G/2G is
in bijective correspondence with the set (Z/2Z) x .. x (Z/2Z), so that G/2G has
cardinality 2". Thus n is uniquely determined by G. U

If G is a free abelian group with a finite basis, the number of elements in a basis
for G is called the rank of G.

Exercises

1. Suppose that G = Ga. Show this sum is direct if and only if the equation

Xa equals 0. (Here Xa E and the indices a are distinct.)

2. Show that if G1 is a subgroup of G, there may be no subgroup G2 of G such that
G=G1EBG2. [Hint: SetG=ZandG1 =2Z.]
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3. If G is free abelian with basis (x, y), show that f2x + 3y, x — y} is also a basis
for G.

4. The order of an element a of an abelian group G is the smallest positive integer m
such that ma = 0, if such exists; otherwise, the order of a is said to be infinite.
The order of a thus equals the order of the subgroup generated by a.
(a) Show the elements of finite order in G form a subgroup of G, called its

torsion subgroup.
(b) Show that if G is free abelian, it has no elements of finite order.
(c) Show the additive group of rationals has no elements of finite order, but is

not free abelian. [Hint: If {ar } is a basis, express in terms of this basis.]

5. Give an example of a free abelian group G of rank n having a subgroup H of
ranknforwhichH #G.

6. Prove the following:
Theorem. If A is a free abelian group of rank n, then any subgroup B of A is a
free abelian group of rank at most n.
Proof We can assume A Z with itself. Let

Z be projection on the ith coordinate. Given m < n, let B,,, consist
of all elements x of B such that (x) = 0 for i > m. Then Bm is a subgroup
of B.

Consider the subgroup JTm(Bm) of Z. If this subgroup is nontrivial, choose
Xm E 8m so that is a generator of this subgroup. Otherwise, set Xm 0.

(a) Show {x1 } generates B,,,, for each m.
(b) Show the nonzero elements of Xml form a basis for B,n, for each m.
(c) Show that Bn B is free abelian with rank at most n.

§68 Free Products of Groups

We now consider groups G that are not necessarily abelian. In this case, we write G
multiplicatively. We denote the identity element of G by 1, and the inverse of the
element x by x'. The symbol x" denotes the n-fold product of x with itself,
denotes the n-fold product of x1 with itself, and x0 denotes 1.

In this section, we study a concept that plays a role for arbitrary groups similar to
that played by the direct sum for abelian groups. It is called thefree product of groups.

Let G be a group. If is a family of subgroups of G, we say (as before)
that these groups generate G if every element x of G can be written as a finite product
of elements of the groups This means that there is a finite sequence (xL Xn)

of elements of the groups such that x = xi . . . Such a sequence is called a
word (of length n) in the groups Gr; it is said to represent the element x of G.

Note that because we lack commutativity, we cannot rearrange the factors in the
expression for x so as to group together factors that belong to a single one of the groups
Ga. However, if x and x÷1 both belong to the same group we can group them
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together, thereby obtaining the word

(xi Xj_f,XIXI+f,Xj÷2

of length n — 1, which also represents x. Furthermore, if any x equals 1, we can
delete x from the sequence, again obtaining a shorter word that represents

Applying these reduction operations repeatedly, one can in general obtain a word
representing x of the form (Yt where no group Ga contains both y1 and y + 1,
and where y 1 for all i. Such a word is called a reduced word. This discussion
does not apply, however, if x is the identity element of G. For in that case, one might
represent x by a word such as (a, a1), which reduces successively to the word (aa')
of length one, and then disappears altogether! Accordingly, we make the convention
that the empty set is considered to be a reduced word (of length zero) that represents the
identity element of G. With this convention, it is true that if the groups generate G,
then every element of G can be represented by a reduced word in the elements of the
groups

Note that if (xi and are words representing x and y, respec-
tively, then (xf is a word representing xy. Even if the first two
words are reduced words, however, the third will not be a reduced word unless none
of the groups contains both and yj.

Definition. Let G be a group, let (Ga }aEJ be a family of subgroups of G that gener-
ates G. Suppose that G fl consists of the identity element alone whenever a ,6.

We say that G is the free product of the groups G if for each x E G, there is only
one reduced word in the groups Ga that represents x. In this case, we write

G =

G G

G be the free product of the groups Ga, and let (Xl,.. be a word in the
groups Ga satisfying the condition x1 I for all i. Then, for each 1, there is a unique
index a such that x E Ga,; to say the word is a reduced word is to say simply that
a foreachi.

Suppose the groups generate G, where Ga fl = {1} for a In order
for G to be the free product of these groups, it suffices to know that the representation
of 1 by the empty word is unique. For suppose this weaker condition holds, and
suppose that (xf and (Yl Ym) are two reduced words that represent the
same element x of G. Let a, and be the indices such that x E arid y E
Since

xfxn=x=yfym,
the word
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represents 1. It must be possible to reduce this word, so we must have a = ,6i; the
word then reduces to the word

(y1,. . ,

Again, it must be possible to reduce this word, so we must have = 1. Then

xl = so that 1 is represented by the word

The argument continues similarly. One concludes finally that m = n and x = y for
all i.

EXAMPLE I. Consider the group P of bijections of the set (0, 1, 2) with itself. For
= 1, 2, define an element ir of P by setting it (i) = I — 1 and lr(i — 1) i and

ir(j) = j otherwise. Then Jr generates a subgroup G of P of order 2. The groups G1

and G2 generate P. as you can check. But P is not their free product. The reduced words
(in, 1r2, itt) and (7r2, in1, 1r2), for instance, represent the same element of P.

The free product satisfies an extension condition analogous to that satisfied by the
direct sum:

Lemma 68.1. Let G be a group; let {Ga} be a family of subgroups of G. If G is the
free product of the groups then G satisfies the following condition:

Given any group H and any family of homomorphisms ha Ga
(*) H, there exists a homomorphism h : G —÷ H whose restriction to Ga

equals ha, for each a.

Furthermore, h is unique.

The converse of this lemma holds, but the proof is not as easy as it was for direct
sums. We postpone it until later.

Proof Given x E G with x 1, let (xj be the reduced word that repre-
sents x. If h exists, it must satisfy the equation

h(x) = h(x1). = •.

where a is the index such that x E Gr. Hence h is unique.
To show h exists, we define it by equation (*) if x 1, and we set h(1) = 1.

Because the representation of x by a reduced word is unique, h is well-defined. We
must show it is a homomorphism.

We first prove a preliminary result. Given a word w = (xi of positive
length in the elements of the groups let us define to be the element of H
given by the equation

0(w) = ha1(Xi) .
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where is any index such that x E Ge,,. Now a is unique unless x = 1; hence P
is well-defined. If w is the empty word, let equal the identity element of H. We
show that if W' is a word obtained from w by applying one of our reduction operations,

= çb(W).

Suppose first that W' is obtained by deleting x = 1 from the word W. Then the
equation = f(W) follows from the fact that (x) = 1. Second, suppose that
a = and that

The fact that

hc,(Xi)hc,(Xi+i) = ha(XiX÷i),

where a = a = a÷i, implies that çh(w) =
It follows at once that if w is any word in the groups Gq that represents x, then

h(x) = For by definition of h, this equation holds for any reduced word w; and
the process of reduction does not change the value of

Now we show that h is a homomorphism. Suppose that U) = (x1, .

x and y, respectively. Let (W, w') denote
the word (xi y1 ym), which represents xy. It follows from equation (**)
that U)') = Then h(xy) = h(x)h(y). U

We now consider the problem of taking an arbitrary family of groups {Gr} and
finding a group G that contains subgroups isomorphic to the groups such that
G is the free product of the groups This can, in fact, be done; it leads to the notion
of externaifree product.

Definition. Let (Ga}a€j be an indexed family of groups. Suppose that G is a group,
and that a family of monomorphisms, such that G is the free product of
the groups (Ga). Then we say that G is the externaifree product of the groups Ga,
relative to the monomorphisms

The group G is not unique, of course; we show later that it is unique up to iso-
morphism. Constructing G is much more difficult than constructing the external direct
sum was:

Theorem 68.2. Given a family of groups, there exists a group G and a
family of monomorphisms G such that G is the free product of the groups

Proof For convenience, we assume that the groups are disjoint as sets. (This can
be accomplished by replacing by x (a} for each index a, if necessary.)

Then as before, we define a word (of length n) in the elements of the groups
to be an n-tuple U) = (xi of elements of U It is called a reduced word
if a, a+i for all i, where a is the index such that x E Ga,, and if for each i, x
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is not the identity element of We define the empty set to be the unique reduced
word of length zero. Note that we are not given a group G that contains all the Ga as
subgroups, so we cannot speak of a word "representing" an element of G.

Let W denote the set of all reduced words in the elements of the groups Gr. Let
P(W) denote the set of all bijective functions ir : W -+ W. Then P(W) is itself
a group, with composition of functions as the group operation. We shall obtain our
desired group G as a subgroup of P(W).

Step 1. For each index a and each x E we define a set map . W W. It
will satisfy the following conditions:

(1) If x identity element of then is the identity map of W.

(2) If x, y and z = xy, then lrz = 0 YTy.

We proceed as follows: Let x E Ga. For notational purposes, let w = (Xi
denote the general nonempty element of W, and let a denote the index such that
x1 E If x define as follows:

(i) = (x),

(ii) ifaj
(iii) irx(w)=(xxi if =aandx1
(iv) = (x2 if a and

x = define to be the identity map of W.
Note that the value of ,r, is in each case a reduced word, that is, an element of W.

In cases (i) and (ii), the action of jr, increases the length of the word; in case (iii) it
leaves the length unchanged, and in case (iv) it reduces the length of the word. When
case (iv) applies to a word w of length one, it maps w to the empty word.

Step 2. We show that if x, y E Ga and z = xy, then =
The result is trivial if either x or y equals since in that case or is the

identity map. So let us assume henceforth that x 'a and y L. We compute the
values of and of o on the reduced word w. There are four cases to consider.

(i) Suppose w is the empty word. We have = (y). If z = then y = x
and = 0 by (iv), while equals the same thing because is the
identity map. If z L, then

= (xy) = (z) =

In the remaining cases, we assume w = (x1 ... , with xi E
(ii)Supposea =(y,xi Ifz=

and (xi by (iv), while equals the same because is the
identity map If z then

=
= (z,xi =
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(iii) Suppose a = ai and Then = X2,. . , If xyxi =
then = (x2 while equals the same thing because ZXI —

xyxf = If xyxf

= (xyxl,x2
= (Zxl,x2,.. =

(iv) Finally, suppose a = and = L. Then = (x2 which is
empty if n = 1. We compute

= (x,x2
=(x(yx1),x2
= (ZxJ,x2

Step 3. The map is an element of p(W), and the map : -+ P(W) defined
by a monomorphism.

To show that is bijective, we note that if y = x1, then conditions (1) and (2)
imply that and equal the identity map of W. Hence belongs to P(W).
The fact that a homomorphism is a consequence of condition (2). To show that

a monomorphism, we note that if x then = (x), so that is not the
identity map of W.

Step 4. Let G be the subgroup of P(W) generated by the groups
G is the free product of the groups

First, we show that fl consists of the identity alone if a ,6. Let x E
and y E we suppose that neither nor is the identity map of W and show that

But this is easy, for = (x) and = (y), and these are different
words.

Second, we show that no nonempty reduced word

w' =

in the groups represents the identity element of G. Let a be the index such that
X E Ga, then a a+i and x L, for each i. We compute

• — (xi, .. .

so the element of G represented by w' is not the identity element of P(W). U

Although this proof of the existence of free products is certainly correct, it has the
disadvantage that it doesn't provide us with a convenient way of thinking about the
elements of the free product. For many purposes this doesn't matter, for the extension
condition is the crucial property that is used in the applications. Nevertheless, one
would be more comfortable having a more concrete model for the free product.

For the external direct sum, one had such a model. The external direct sum of
the abelian groups consisted of those elements (Xa) of the cartesian product fl Ga
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such that = for all but finitely many a. And each group was isomorphic to
the subgroup consisting of those (xa) such that xa = °r for all a ,6.

Is there a similar simple model for the free product? Yes. In the last step of the
preceding proof, we showed that if ,..., is a reduced word in the groups
then

=

This equation implies that if 71 is any element of P(W) belonging to the free prod-
uct G, then the assignment —+ (0) defines a bijective correspondence between G
and the set W itself! Furthermore, if r and are two elements of G such that

= (xf, .. . and = Yk)

then 21(Yr'(ø)) is the word obtained by taking the word (xi yf Yk) and
reducing it!

This gives us a way of thinking about the group G. One can think of G as being
simply the set W itself, with the product of two words obtained by juxtaposing them
and reducing the result. The identity element corresponds to the empty word. And
each group corresponds to the subset of W consisting of the empty set and all
words of length 1 of the form (x), for x E and x

An immediate question arises: Why didn't we use this notion as our definition of
the free product? It certainly seems simpler than going by way of the group P( W)
of permutations of W. The answer is this. Verification of the group axioms is very
difficult if one uses this as the definition; associativity in particular is horrendous. The
preceding proof of the existence of free products is a model of simplicity and elegance
by comparison!

The extension condition for ordinary free products translates immediately into an
extension condition for external free products:

Lemma 68.3. Let fGa} be a family of groups; let G be a group; let
a family of homomorphisms. If each is a monomorphism and G is the free product
of the groups ia(Ga), then G satisfies the following condition:

Given a group H and a family of homomorphisms ha : Ga -+ H,
(*) there exists a homomorphism h G —÷ H such that h o =

h

a uniqueness theorem for free products; the proof is
very similar to the corresponding proof for direct sums and is left to the reader.

Theorem 68.4 (Uniqueness of free products). Let (Ga}a€j be a family of groups.
Suppose G and G' are groups and : G and —÷ G' are families
of monomorphisms, such that the families and generate G and G',
respectively. If both G and G' have the extension property stated in the preceding
lemma, then there is a unique isomorphism G G' such that o = for all a.
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Now, finally, we can prove that the extension condition characterizes free products,
proving the converses of Lemmas 68.1 and 68.3.

Lemma 68.5. Let {Ga}aEJ be a family of groups; let G be a group; let
a family of homomorphisms. If the extension condition of Lemma 68.3 holds, then

each a monomorphism and G is the free product of the groups (Ga).

Proof We first show that each a rnonomorphism. Given an index let us set
H = Let ha : Ga -÷ H be the identity if a = and the tnvial homomorphism
if a Let h : G -+ H be the homomorphism given by the extension condition.
Then h o = so that is injective.

By Theorem 68.2, there exists a group G' and a family : Ga —+ G' of monornor-
phisms such that G' is the free product of the groups Both G and G' have the
extension property of Lemma 68.3. The preceding theorem then implies that there is
an isomorphism G —p G' such that o = It follows at once that G is the
free product of the groups ia(Ga). U

We now prove two results analogous to Corollaries 67.2 and 67.3.

Corollary 68.6. Let G = G1 * G2, where G1 is the free product of the subgroups
Ha }aEJ and G2 is the free product of the subgroups If the index sets J

and K are disjoint, then G is the free product of the subgroups }>, EJUK

Proof The proof is almost a copy of the proof of Corollary 67.2. U

This result implies in particular that

* G2 * G3 = G1 * (G2 * G3) = (G1 * G2) * G3.

In order to state the next theorem, we must recall some terminology from group
theory. If x and y are elements of a group G, we say that y is conjugate to x if y =

c E G. A normal subgroup of G is one that contains all conjugates of
its elements.

If S is a subset of G, one can consider the intersection N of all normal subgroups
of G that contain S. It is easy to see that N is itself a normal subgroup of G, it is called
the least normal subgroup of G that contains S.

Theorem 68.7. LetG = G1 * G2. Let N beanormalsubgroupofG1,fori = 1,2.
If N is the least normal subgroup of G that contains N1 and N2, then

G/N (GuN1) * (G2/N2).

Proof The composite of the inclusion and projection homomorphisms

—p * G2 —+ (G1 *
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carries N1 to the identity element, so that it induces a homomorphism

i1 Gf/Nf —+ (G1 * G2)/N.

Similarly, the composite of the inclusion and projection homomorphisms induces a
homomorphism

i2 : G2/N2 —+ (G1 * G2)/N.

We show that the extension condition of Lemma 68.5 holds with respect to and i2;

it follows that ii and i2 are monomorphisms and that (G1 *G2)/N is the external free
product of G1/N1 and G2/N2 relative to these monomorphisms.

So let h1 G1 /N1 H and h2 G2/N2 —÷ H be arbitrary homomorphisms.
The extension condition for G1 * G2 implies that there is a homomorphism of G1 * G2

into H that equals the composite

G —p G/N —÷ H

of the projection map and h on G, for i = 1, 2. This homomorphism carries the
elements of Nf and N2 to the identity element, so its kernel contains N. Therefore
it induces a homomorphism h : (G * G2)/N —+ H that satisfies the conditions
hf=hoi1andh2=hoi2. U

Corollary 68.8. If N is the least normal subgroup of * G2 that contains G1, then
(G1 * G2)/N

The notion of "least normal subgroup" is a concept that will appear frequently as
we proceed. Obviously, if N is the least normal subgroup of G contaimng the subset S
of G, then N contains S and all conjugates of elements of S. For later use, we now
verify that these elements actually generate N.

Lemma 68.9. Let S be a subset of the group G. if N is the least normal subgroup
of G containing 5, then N is generated by all conjugates of elements of S.

Proof Let N' be the subgroup of G generated by all conjugates of elements of S.
We know that N' C N; to verify the reverse inclusion, we need merely show that N'
is normal in G. Givenx E N' and c E G, we show that E N'.

We can write x in the form x = Xfx2 where each x, is conjugate to an
element of S. Then cx1c1 is also conjugate to s. Because

= (CX1C)(CX2C')(CXnC'),

is a product of conjugates of elements of S,so that E N', as desired. U



§69 Free Groups 421

Exercises

1. Check the details of Example 1.

2. Let G = G1 * G2, where G1 and G2 are nontrivial groups.
(a) Show G is not abelian.
(b) If x E G, define the length of x to be the length of the unique reduced word

in the elements of G1 and G2 that represents x. Show that if x has even
length (at least 2), then x does not have finite order. Show that if x has odd
length, then x is conjugate to an element of shorter length.

(c) Show that the only elements of G that have finite order are the elements
of G1 and G2 that have finite order, and their conjugates.

3. Let G = G1 * G2. Given c E G, let denote the set of all elements of
the form cxc1, for x E G1. It is a subgroup of G; show that its intersection
with G2 consists of the identity alone.

4. Prove Theorem 68.4.

§69 Free Groups

Let G be a group; let be a family of elements of G, for a E J. We say the
elements faa } generate G if every element of G can be written as a product of powers
of the elements aa. If the family } is finite, we say G is finitely generated.

Definition. Let {ar } be a family of elements of a group G. Suppose each generates
an infinite cyclic subgroup G of
G is the family (cia } is called a system offree generators
forG.

In this case, for each element x of G, there is a unique reduced word in the ele-
ments of the groups that represents x. This says that if x 1, then x can be written
uniquely in the form

x = (ar1)" ...
where a a+i and n 0 for each i. (Of course, n may be negative.)

Free groups are characterized by the following extension property:

Lemma 69.1. Let G be a group; let be a family of elements of G. If G
is a free group with system of free generators (cia }, then G satisfies the following
condition:

Given any group H and any family of elements of H, there is a
homomorphism h G —* H such that h(cia) = Ya for each a.

Furthermore, h is unique. Conversely, if the extension condition (*) holds, then G is a
free group with system of free generators {aa 1.
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Pmof If G is free, then for each a, the group generated by aa is infimte cyclic,
so there is a homomorphism —÷ H with ha (an) = Then Lemma 68.1
applies. To prove the converse, let be a fixed index. By hypothesis, there exists a
homomorphism h: G Z such that = 1 and = 0 for a It follows
that the group is infinite cyclic. Then Lemma 68.5 applies. U

The results of the preceding section (in particular, Corollary 68.6) imply the fol-
lowing:

Theorem 69.2. Let G = G1 * G2, where G1 and G2 are free groups with
and }aE K as respective systems of free generators. 1ff and K are disjoint, then G
is a free group with JUK as a system of free generators.

Definition. Let {aa}a€J be an arbitrary indexed family. Let denote the set of all
symbols of the form for n E Z. We make into a group by defining

•
= arm.

Then is the identity element of and is the inverse of We denote
simply by aa. The external free product of the groups } is called the free group
on the elements

If G is the free group on the elements aa, we normally abuse notation and identify
the elements of the group Ga with their images under the monomorphism :

G involved in the construction of the external free product. Then each aa is treated as
an element of G, and the family {aq} forms a system of free generators for G.

There is an important connection between free groups and free abelian groups. In
order to describe it, we must recall the notion of commutator subgroup from algebra.

Definition. Let G be a group. If x, y E G, we denote by (x, the element

(x, yl =

of G; it is called the commutator of x and y. The subgroup of G generated by the set
of all commutators in G is called the commutator subgroup of G and denoted [G, G].

The following result may be familiar; we provide a proof, for completeness:

Lemma 69.3. Given G, the subgroup [G, G] is a normal subgroup of G and the quo-
tient group G/[G, G] is abelian. If h : G —÷ H is any homomorphism from G to an
abelian group H, then the kernel of h contains [G, GJ, so h induces a homomorphism
k: G/[G, G] -+ H.
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Proof Step 1. First we show that any conjugate of a commutator is in [G, G]. We
compute as follows:

g[x, y]g1 = g(xyxtyt)g'
=

=

= ((gx)y(gx)1y)(ygy1gt)
=[gx,y].[y,gj,

which is in (G, G], as desired.

Step 2. We show that [G, G] is a normal subgroup of G. Let z be art arbitrary
element of [G, G]; we show that any conjugate of z is also in [G, G]. The
element z is a product of commutators and their inverses. Because

[x, = = [y,x],

z actually equals a product of commutators. Let z = z where each Z is a
commutator. Then

= ... (gzng1),

which is a product of elements of [G, G] by Step 1 and hence belongs to [G, G].

Step 3. We show that G/[G, G] is abelian. Let G' = [G, G]; we wish to show that

(aG')(bG') = (bG')(aG'),

that is, abG' = baG'. This is equivalent to the equation

a1b1abG' = G',

and this equation follows from the fact that a1btab = b1], which is an
element of G'.

Step 4. To complete the proof, we note that because H is abelian, h carries each
commutator to the identity element of H. Hence the kernel of h contains [G, G], so
that h induces the desired homomorphism k. U

Theorem 69.4. if G is a free group with free generators aa, then G/[G, G] is a free
abelian group with basis ["a], where [ar] denotes the coset of aa in G/[G, G].

Pmof We apply Lemma 67.7. Given any family of elements of the abelian
group H, there exists a homomorphism h : G —+ H such that h(aa) = Ya for each a.
Because H is abelian, the kernel of h contains [G, G]; therefore h induces a homo-
morphism k: G/[G, G] —+ H that carries [ar] to U

Corollary 69.5. If G is a free group with n free generators, then any system of free
generators for G has n elements.

Proof The free abelian group G/[G, G] has rank n. U
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The properties of free groups are in many ways similar to those of free abelian
groups. For instance, if H is a subgroup of a free abelian group G, then H itself is
a free abelian group. (The proof in the case where G has finite rank is outlined in
Exercise 6 of §67; the proof in the general case is similar.) The analogous result holds
for free groups, but the proof is considerably more difficult. We shall give a proof in
Chapter 14 that is based on the theory of covering spaces.

In other ways, free groups are very different from free abelian groups. Given a free
abelian group of rank n, the rank of any subgroup is at most n; but the analogous result
for free groups does not hold. If G is a free group with a system of n free generators,
then the cardinality of a system of free generators for a subgroup of G may be greater
than n; it may even be infinite' We shall explore this situation later.

Generators and relations

A basic problem in group theory is to determine, for two given groups, whether or not
they are isomorphic. For free abelian groups, the problem is solved; two such groups
are isomorphic if and only if they have bases with the same cardinality. Similarly, two
free groups are isomorphic if and only if their systems of free generators have the same
cardinality. (We have proved these facts in the case of finite cardinality.)

For arbitrary groups, however the answer is not so simple. Only in the case of an
abelian group that is finitely generated is there a clear-cut answer.

If G is abelian and finitely generated, then there is a fundamental theorem to the
effect that G is the direct sum of two subgroups, G = H T, where H is free abelian
of finite rank, and T is the subgroup of G consisting of all elements of finite order. (We
call T the torsion subgroup of G.) The rank of H is uniquely determined by G, since
it equals the rank of the quotient of G by its torsion subgroup. This number is often
called the betti number of G. Furthermore, the subgroup T is itself a direct sum; it
is the direct sum of a finite number of finite cyclic groups whose orders are powers of
primes. The orders of these groups are uniquely determined by T (and hence by G),
and are called the elementary divisors of G. Thus the isomorphism class of G is
completely determined by specifying its betti number and its elementary divisors.

If G is not abelian, matters are not nearly so satisfactory, even if G is finitely
generated. What can we specify that will determine G? The best we can do is the
following:

Given G, suppose we are given a family (aa}aEJ of generators for G. Let F be the
free group on the elements {1a }. Then the obvious map h(ar) = of these elements
into G extends to a homomorphism h F G that is surjective. If N equals the
kernel of h, then F/N G. So one way of specifying G is to give a family tar)
of generators for G, and somehow to specify the subgroup N. Each element of N is
called a relation on F, and N is called the relations subgroup. We can specify N by
giving a set of generators for N. But since N is normal in F, we can also specify N
by a smaller set. Specifically, we can specify N by giving a family of elements
of F such that these elements and their conjugates generate N, that is, such that N is
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the least normal subgroup of F that contains the elements In this case, we call the
family } a complete set of relations for G.

Each element of N belongs to F, so it can of course be represented uniquely by a
reduced word in powers of the generators faa }. When we speak of a relation on the
generators of G, we sometimes refer to this reduced word, rather than to the element
of N it represents. The context will make the meaning clear.

Definition. If G is a group, a presentation of G consists of a family of gen-
erators for G, along with a complete set of relations for G, wheit each is an
element of the free group on the set far }. If the family far } is finite, then G is finitely
generated, of course. If both the families faa) and are finite, then G is said to be
finitely presented, and these families form what is called afinite presentation for G.

This procedure for specifying G is far from satisfactory. A presentation for G does
determine G uniquely, up to isomorphism; but two completely different presentations
can lead to groups that are isomorphic. Furthermore, even in the finite case there is no
effective procedure for determining, from two different presentations, whether or not
the groups they determine are isomorphic. This result is known as the "unsolvability
of the isomorphism problem" for groups.

Unsatisfactory as it is, this is the best we can do!

Exercises

1. If G = G * G2, show that

G/[G, G] (G1/[G1, G1]) (G2/[G2, G2]).

[Hint: Use the extension condition for direct sums and free products to define
homomorphisms

G/[G, Gj (G1/[G1, G1]) (G2/[G2, G2])

that are inverse to each other.]

2. Generalize the result of Exercise 1 to arbitrary free products.

3. Prove the following:
Theorem. Let G = G1 * G1, where G and G2 are cyclic of orders m and n,
respectively. Then m and n uniquely determined by G.
Proof
(a) Show G/[G, G] has order mn.
(b) Determine the largest integer k such that G has an element of order k. (See

Exercise 2 of §68.)
(c) Prove the theorem.

4. Show that if G = G1 G2, where G1 and G2 are cyclic of orders
n are not uniquely determined by G in general. [Hint:

If m and n are relatively prime, show that G is cyclic of order mn.]
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§70 The Seifert-van Kampen Theorem
We now return to the problem of determining the fundamental group of a space X that
is written as the union of two open subsets U and V having path-connected intersec-
tion. We showed in §59 that, if xo E U fl V. the images of the two groups JrI (U, xo)
and ir1(V, xo) in ir1(X, xe), under the homomorphisms induced by inclusion, generate
the latter group. In this section, we show that ,r1(X, xO) is, in fact, completely deter-
mined by these two groups, the group 211 (U fl V, xo), and the various homomorphisms
of these groups induced by inclusion. This is a basic result about fundamental groups.
It will enable us to compute the fundamental groups of a number of spaces, including
the compact

Theorem 70.1 (Seifert-van Kampen theorem). Let X = U U V, where U and V
are open in X; assume U, V. and U fl V are path connected; letxo E U fl V. Let H
be a group, and let

7(f(U,Xo) H and : 21f(V,XO) —÷ H

be homomorphisms. Let i2, J2 be the homomorphisms indicated in the following
diagram, each induced by inclusion.

ir1(U,x0)

iri(Ufl >11

iri(V,xo)

If ° = ° i2, then there is a unique homomorphism (J) : JTf(X, xo) —÷ H such
that4)oj1 =øi and4)oj2

This theorem says that if øi and are arbitrary homomorphisms that are "com-
patible on U fl V," then they induce a homomorphism of 31L(X, x0) into H.

Proof Uniqueness is easy. Theorem 59.1 tells us that 71 (X, is generated by the
images of j1 and J2. The value of 4) on the generator ji(gi) must equal Øi(gi), and its
value on j2(g2) must equal Hence 4) is completely determined by and
To show 4) exists is another matter!

For convenience, we introduce the following notation: Given a path f in X, we
shall use [f] to denote its path-homotopy class in X. If f happens to lie in U, then
[f]u is used to denote its path-homotopy class in U. The notations [fly and [f]unv
are defined similarly.

Step 1. We begin by defining a set map p that assigns, to each loop f based at
that lies in U or in V. an element of the group H. We define

p(f) =øi([flu) iffliesinU,
p(f) = if f lies in V.
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Then p is well-defined, for if f lies in both U and V.

øi([flu) = øiii([f]unv) and = 4'2'2([flunv)

and these two elements of H are equal by hypothesis. The set map p satisfies the
following conditions:

(1) If [flu = [g]u, or if [fly = [g]v, then p(f) = p(g).
(2) If both f and g lie in U, or if both lie in V. then p(f * g) = p(f) p(g).

The first holds by definition, and the second holds because and 02 are homomor-
phisms.

Step 2. We now extend p to a set map a that assigns, to each path f lying in
U or V. an element of H, such that the map a satisfies condition (1) of Step 1, and
satisfies (2) when f * g is defined.

To begin, we choose, for each x in X, a path from to x, as follows: If x =
betheconstantpathatxo. Ifx E Ufl beapathinUfl V. Andifx is

in U or V but not in U fl V. let a path in U or V. respectively.
Then, for any path f in U or in V, we define a loop L(f) in U or V, respectively,

based at xo, by the equation

L(f)

where x is the initial point off and y is the final point of f. See Figure 70.1. Finally,
we define

Figure 70.1

a(f) = p(L(f)).



428 The Seifefl-van Kampen Theorem Ch. 11

First, we show that a is an extension of p. If f is a loop based at lying in either
U or V, then

L(f)

because is the constant path at Then L(f) is path homotopic to f in either U
or V. so that p(L(f)) = p(f) by condition (1) for p. Hence a(f) = p(f).

To check condition (1), let f and g be paths that are path homotopic in U or
in V. Then the loops L(f) and L(g) are also path homotopic either in U or in V. so
condition (1) for p applies. To check (2), let f and g be arbitrary paths in U or in V
such that f(1) = g(O). We have

L(f)*L(g) = *(f

for appropriate points x, y, and z; this loop is path homotopic in U or V to L(f * g).
Then

p(L(f * g)) = p(L(f) * L(g)) = p(L(f)) . p(L(g))

by conditions (1) and (2) for p. Hence a(f * g) = a(f) a(g).
Step 3. Finally, we extend a to a set map r that assigns, to an arbitrary path f

of X, an element of H. It will satisfy the following conditions:

(1) If[f] = [g], then r(f) = r(g).
(2) r(f*g) =r(f).r(g)iff*gisdefined.

Given f, choose a subdivision so < of [0, 1] such that f maps each of
the subintervals s] into U or V. Let I denote the positive linear map of [0, 1]
onto [s1_1, s], followed by f. Then f is a path in U or in V. and

[11= [If 1* * [In].

If r is to be an extension of a and satisfy (1) and (2), we must have

r(f) = .

So we shall use this equation as our definition of r.
We show that this definition is independent of the choice of subdivision. It suffices

to show that the value of r (f) remains unchanged if we adjoin a single additional point
p to the subdivision. Let i be the index such that < p <Si. If we compute t(f)
using this new subdivision, the only change in formula (*) is that the factor a
disappears and is replaced by the product a(ff) a(f"), where I' and f7 equal the
positive linear maps of [0, 1] to p1 and to (p, s], respectively, followed by I.
But J is path homotopic to * f" in U or V. so that a(f1) = a(f"), by
conditions (I) and (2) for a. Thus r is welt-defined.

It follows that r is an extension of a. For if f already lies in U or V, we can use
the trivial partition of [0, 1] to define r(f); then r(J) = a(f) by definition.
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Step 4. We prove condition (1) for the set map r This part of the proof requires
some care.

We first venfy this condition in a special case. Let f and g be paths in X from x
to y, say, and let F be a path homotopy between them. Let us assume the additional
hypothesis that there exists a subdivision so of [0, 1] such that F carries each
rectangle R = x I into either U or V. We show in this case that r(f) =
pg).

Given i, consider the positive linear map of [0. 1] onto s] followed by f
or by g; and call these two paths f and gj, respectively. The restriction of F to
the rectangle R gives us a homotopy between f and g that takes place iii either U
or V. but it is not a path homotopy because the end points of the paths may move
dunng the homotopy. Let us consider the paths traced out by these end points dunng
the homotopy. We define to be the path ,61(t) = F(51, t). Then ,6 is a path in X
from to g(Si). The paths fio and are the constant paths atx andy, respectively.
See Figure 70.2. We show that for each i,

rn—i *gj,

with the path homotopy taking place in U or in V.

0

In the rectangle R, take the broken-line path that runs along the bottom and right
edges of R, from x Otos1 x Otos1 x 1; if we follow this path by the map F, we
obtain the path * ,6. Similarly, if we take the broken-line path along the left and top
edges of R and follow it by F, we obtain the path ,6_ * g. Because R is convex,
there is a path homotopy in R between these two broken-line paths; if we follow by F,
we obtain a path homotopy between 1 * ,6 and * g that takes place in either U
or V. as desired.

It follows from conditions (1) and (2) for a that

a(f) . = .

so that

(**) a(f) = a(,6..f) . .

1 1 1 1

S0

Figure 70.2
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It follows similarly that since fio and are constant paths, a(,8o) = = 1. (For
the fact that * = fio implies that . aC6o) aC6o).)

We now compute as follows.

r(f) . . . .

Substituting (**) in this equation and simplifying, we have the equation

r(f) .a(g2)...a(gn)

= ag).
Thus, we have proved condition (1) in our special case.

Now we prove condition (1) in the general case. Given f and g and a path homo-
topy F between them, let us choose subdivisions so, .. , and to tm of [0, 1]
such that F maps each subrectangle [s_ S I x [t1 — into either U or V. Let
be the path (s) = F(s, ti); then fo = f and fm = g. The pair of paths fi... and
satisfy the requirements of our special case, so that =

r(f) = r(g), as desired.
Step 5. Now we prove condition (2) for the set map r. Given a path f * g in X,

let us choose a subdivision < < of [0, 1] containing the point 1/2 as a
subdivision point, such that f * g carries each subinterval into either U or V. Let k be
theindex such thatsk = 1/2.

For i = 1 k, the positive linear map of [0, 1] to s], followed by f * g,
is the same as the positive linear map of [0, 1] to 2sf] followed by f; call this
map Similarly, for i = k + 1 n, the positive linear map of [0, 1] to
followed by f * g, is the same as the positive linear map of [0, 1] to — 1, 2s — 1]

followed by g; call this map Using the subdivision for the domain of
the path f * g, we have

r(f * g) = a(fi). . . a(fk) . .

Using the subdivision for the path f, we have

And using the subdivision 25k — 1 2Sn — 1 for the path g, we have

r(g)

Thus (2) holds trivially.

Step 6. The theorem follows. For each loop f in X based at xO, we define

(D([fJ) = r(f).

Conditions (1) and (2) show that 4 is a well-defined homomorphism.
Let us show that 4 = 1ff is a loop in U, then

'D(ii([f]u))
= r(f)

p(f) (bi([f]u),
as desired. The proof that 4 o J2 = 02 is similar I
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The preceding theorem is the modern formulation of the Seifert-van Karnpen the-
orem. We now turn to the classical version, which involves the free product of two
groups. Recall that if G is the external free product G = G1 * G2, we often treat G1
and G2 as if they were subgroups of G, for simplicity of notation.

Theorem 70.2 (Seifert-van Kampen theorem, classical version). Assunie the hy-
potheses of the preceding theorem. Let

j : jrt(U,xo) *irt(V,xo) —+

be the homomorphism of the free product that extends the homomorphisms ji and J2
induced by inclusion. Then j is surjective, and its kernel is the least normal subgroup
N of the free product that contains all elements represented by words of the form

(ii(g)1, i2(g)),

forg E jrj(U fl V, xo).

Said differently, the kernel off is generated by all elements of the free product of
the form and their conjugates.

Proof The fact that (X, xo) is generated by the images of f

that f is normal, it is enough to show that
belongs to kerj for each g E i V —÷ X is

the inclusion mapping, then

jii(g) = = = j2i2(g) = ji2(g).

Then belongs to the kernel off.
It follows that f induces an epimorphism

k —÷ ir1(X,xo).

We show that N equals ker jby showing that k is injective. It suffices to show that k
has a left inverse.

Let H denote the group ir1(U,x0) * Let : irt(U,xo) —+ H
equal the inclusion of xo) into the free product followed by projection of the
free product onto its quotient by N. Let 02 : ir1 (V, xo) —* H be defined similarly.
Consider the diagram

irj(U,x0)
q

H

iri(V,x0)
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It is easy to see that o i1 = o For if g E (U fl V, xo), then (g)) is
the coset ij (g)N in H, and 02(i2(g)) is the coset i2(g)N. Because (g) 1i2(g) E N,
these cosets are equal.

It follows from Theorem 70.1 that there is a homomorphism 4): hi (X, xo) -÷ H
such that 4)0 jj = Øi and 4)o J2 = We show that 4) is a left inverse for k. It

suffices to show that 4) c k acts as the identity on any generator of H, that is, on any
coset of the form gN, where g is in htj (U, xo) or (V. xo). But if g (U, xo), we
have

k(gN) = j(g) = ji(g),

so that

(1)(k(gN)) = 4)(ji(g)) = Øi(g) = gN,

as desired. A similar remark applies if g E h1(V, xe). U

Corollary 70.3. Assume the hypotheses of the Seifert-van Kampen theorem. IfUflV
is simply connected, then there is an isomorphism

k ir1(U,x0) *211(V,XO) —p 211(X,x()).

Corollary 70.4. Assume the hypotheses of the Seifert-van Kampen theorem. If V is
simply connected, there is an isomorphism

k : 211(U,XO)/N —+

where N is the least normal subgroup of lit (U, xo) containing the image of the homo-
morphism

:ir1(Ufl V,xo) irj(U,xo).

EXAMPLE 1 Let X be a theta-space. Then X is a Hausdorff space that is the union of
three arcs A, B, and C, each pair of which intersect precisely in their end points p and q.
We showed earlier that the fundamental group of X is not abelian. We show here that this
group is in fact a free group on two generators.

Let a be an interior point of A and let b be an interior point of B. Write X as the union
of the open sets U = X —a and V = X —b. See Figure 70.3. The space UnV = X —a—b
is simply connected because it is contractible. Furthermore, U and V have infimte cyclic
fundamental groups, because U has the homotopy type of B U C and V has the homotopy
type of A U C. Therefore, the fundamental group of X is the free product of two infinite
cyclic groups, that is, it is a free group on two generators.
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a

p q

Exercises

In the following exercises, assume the hypotheses of the Seifert-van Kampen theo-
rem.

1. Suppose that the homomorphism induced by inclusion i : U fl V -÷ X is

trivial.
(a) Show that and J2 induce an epimorphism

h (7r1(U,xo)/Nj)*(ir1(V,xo)/N2) —+

where N1 is the least normal subgroup of 711 (U, xO) containing image i and

N2 is the least normal subgroup of xo) containing image i2.
(b) Show that h is an isomorphism. [Hint: Use Theorem 70.1 to define a left

inverse for h .1

2. Suppose that i2 is surjective.
(a) Show that induces an epimorphism

h irj(U,xo)/M —+

where M is the least normal subgroup of irj(U, xo) containing
[Hint: Show is surjective.]

(b) Show that h is an isomorphism. [Hint: Let H = 2r1(U, xo)/M. Let
(U, xo) —+ H be the projection. Use the fact that it1 (U fl V, xo)/ keri2 is

isomorphic to 211(V, xo) to define a homomorphism xo) —÷ H.
Use Theorem 70.1 to define a left inverse for h .1

3. (a) Show that if G1 and G2 have finite presentations, so does G1 * G2.
(b) Show that if ir1(Ufl V, xo) is finitely generated and ir1(U, xo) and in (V, xo)

have finite presentations, then ir1(X, xO) has a finite presentation. [Hint: If
N' is a normal subgroup of ir1(U, xo) * ir1(V, xo) that contains the elements

where g runs over a set of generators forir1(U fl V, xo), then
N' contains for arbitrary g.1

b

Figure 70.3
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§71 The Fundamental Group of a Wedge of Circles

In this section, we define what we mean by a wedge of circles, and we compute its
fundamental group.

Definition. Let X be a Hausdorif space that is the union of the subspaces Si
each of which is homeomorphic to the unit circle Assume that there is a point p
of X such that S fl S = (p} whenever i j. Then X is called the wedge of the
circles S1

Note that each space S,. being compact, is closed in X. Note also that X can be
imbedded in the plane; if C denotes the circle of radius i in R2 with center at (i, 0),
then X is homeomorphic to C1 U . . . U

Theorem 71.1. Let X be the wedge of the circles let p be the common
point of these circles. Then 3r1(X, p) is a free group. If is a loop in S1 that rep-
resents a generator of (S1, p), then the loops fj represent a system of free
generators for (X, p).

Proof The result is immediate if n = 1. We proceed by induction on n. The proof is
similar to the one given in Example 1 of the preceding section.

Let X be the wedge of the circles S1 with p the common point of these
circles. Choose a point q of S different from p, for each i. Set W1 = S1 — q, and let

U U U See Figure 71.1. Each of the spaces U, V, and Un V is
path connected, being the union of path-connected spaces having a point in common.

The space W1 is homeomorphic to an open interval, so it has the point p as a
deformation retract; let F1: W1 x I —÷ W1 be the deformation retraction. The maps F1
fit together to define a map F: (U fl V) x I U fl V that is a deformation retraction
of U fl V onto p. (To show that F is continuous, we note that because S1 is a closed
subspace of X, the space W, = — qj is a closed subspace of U fl V, so that W, x I

U V

Figure 71.1
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is a closed subspace of (U fl V) x I Then the pasting lemma applies.) It follows that
Un V is simply connected, so that irj(X, p) is the free product of the groups ir1(U, p)
and p), relative to the monomorphisms induced by inclusion.

A similar argument shows that S1 is a deformation retract of U and S2 U . . U is
a deformation retract of V. It follows that ir1 (U, p) is infinite cyclic, and the loop
represents a generator. It also follows, using the induction hypothesis, that ii 1(V, p) is
a free group, with the loops 12 fn representing a system of free generators. Our
theorem now follows from Theorem 69.2.

We generalize this result to a space X that is the union of infinitely many circles
having a point in common. Here we must be careful about the topology of K.

Definition. Let X be a space that is the union of the subspaces Xr, for cr E J The
topology of X is said to be coherent with the subspaces Xa provided a subset C of X
is closed in X if C fl Xa is closed in for each cr. An equivalent condition is that a
set be open in X if its intersection with each Xa is open in Xcr.

If X is the union of finitely many closed subspaces X1 Xn, then the topology
of X is automatically coherent with these subspaces, since if C fl X is closed in X, it
is closed in X, and C is the finite union of the sets C fl X.

Definition. Let X be a space that is the union of the subspaces for a E J, each
of which is homeomorphic to the unit circle. Assume there is a point p of X such that
Sa fl = fp) whenever a ,6. If the topology of X is coherent with the subspaces
Sa, then X is called the wedge of the circles

In the finite case, the definition involved the Hausdorif condition instead of the
coherence condition; in that case the coherence condition followed. In the infinite
case, this would no longer be true, so we included the coherence condition as part of
the definition. We would include the Hausdorif condition as well, but that is no longer
necessary, for it follows from the coherence condition:

Lemma 71.2. Let X be the wedge of the circles Sa, for a E J. Then X is normal.
Furthermore, any compact subspace of X is contained in the union of finitely many
circles Sa.

Proof It is clear that one-point sets are closed in X. Let A and B be disjoint closed
subsets of X; assume that B does not contain p Choose disjoint subsets Ua and Vtr
of that are open in Sa and contain {p) U (A fl Sa) and B fl respectively. Let

U = tJ U and V U
the and V fl = because set contains p. Hence U

and V are open in X, as desired. Thus X is normal.
Now let C be a compact subspace of X. For each Cr for which it is possible, choose

a point xa of C fl (Sa — p). The set D = {xa} is closed in X, because its intersection
with each space is a one-point set or is empty. For the same reason, each subset
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of D is closed in X. Thus D is a closed discrete subspace of X contained in C; since
C is limit point compact, D must be finite.

Theorem 71.3. Let X be the wedge of the circles Se,, fora E J; let p be the common
point of these circles. Then JTf (X, p) is a free group. If is a loop in representing
a generator of iij(Sa, p), then the loops (fa} represent a system of free generators for
ir1(X, p).

Proof Let : (Sa, p) —÷ (X, p) be the homomorphism induced by inclusion;
let Ga be the image of

Note that if f is any loop in X based at p. then the image set of f is compact,
so that I lies in some finite union of subspaces Furthermore, if I and g are two
loops that are path homotopic in X, then they are actually path homotopic in some
finite union of the subspaces

It follows that the groups (Ga } generate JTf(X, p). For if f is a loop in X, then
f lies in U U for some finite set of indices; then Theorem 71.1 implies
that [f] is a product of elements of the groups Similarly, it follows
that is a monomorphism. For if f is a ioop in Sfl that is path homotopic in X to a
constant, then f is path homotopic to a constant in some finite union of spaces so
that Theorem 71.1 implies that f is path homotopic to a constant in

Finally, suppose there is a reduced nonempty word

in the elements of the groups that represents the identity element of (X, p). Let
f be a loop in X whose class is represented by w. Then f is path
homotopic to a constant in X, so it is path homotopic to a constant in some finite union
of subspaces Sa. This contradicts Theorem 71.1.

The preceding theorem depended on the fact that the topology of X was coherent
with the subspaces Consider the following example:

EXAMPLE 1 Let be the circle of radius 1/n in 1R2 with center at the point (1/n, 0).
Let X be the subspace of R2 that is the union of these circles; then X is the union of a count-
ably infinite collectton of circles, each pair of which intersect in the origin p However, X
is not the wedge of the circles C,, we call X (for convenience) the infinite earring.

One can verify directly that X does not have the topology coherent with the
spaces C,; the intersection of the positive with X contains exactly one potnt from
each circle C,,, but it is not closed in X. Alternatively, for each a, let be a loop in that
represents a generator of Jr1 (C,,, p), we show that in (X, p) is not a free group with ([f,])
as a system of free generators Indeed, we show the elements [fe] do not even generate the
group in1(X, p).

Consider the loop g in X defined as follows For each n, define g on the interval
[l/(n + 1), 1/nJ to be the positive linear map of this interval onto [0, 1J followed by f,.
This specifies g on (0, 1J; define g(O) = p. Because X has the subspace topology derived
from R2, it is easy to see thatg is continuous. See Figure 71.2. We show that given a, the
element [g] does not belong to the subgroup G, of ,ri(X, p) generated by hi] [fe].
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Choose N > n, and consider the map h : X -÷ CN defined by setting h(x) = x for
x E CN and h(x) = p otherwise Then h is continuous, and the induced homomorphism

,r1(X, p) —+ lrl(CN, p) carries each element of to the identity element. On
the other hand, h o g is the loop in CN that is constant outside [l/(N + 1), 1/NJ and
on this interval equals the positive linear map of this interval onto [0, 1J followed by IN.
Therefore, h,([g]) = [IN1 which generates lri(CN. p)! Thus [gJ

f3 '2 '1

In the preceding theorem, we calculated the fundamental group of a space that is
an infinite wedge of circles. For later use, we now show that such spaces do exist! (We
shall use this result in Chapter 14.)

Lemma 71.4. Given an index set J, there exists a space X that is a wedge of
circles Sn for a E J.

Pmof Give the set J the discrete topology, and let E be the product space x J.
Choose a point b0 E si, and let X be the quotient space obtained from E by collapsing
the closed set P = b0 x J to a point p. Let 71 : E X be the quotient map; let

= 71(51 x a). We show that each Sn is homeomorphic to and X is the wedge of
the circles Sn.

Note that if C is closed in x a, then ir(C) is closed in X. For (C) = C
if the point b0 x a is not in C, and = C U P otherwise. In either case,
7rtlr(C) is closed in x J, so that ir(C) is closed in X.

It follows that 5n is itself closed in X, since x a is closed in S' x J, and that
ii maps S1 x a homeomorphically onto Sn. Let 71n be this homeomorphism.

To show that X has the topology coherent with the subspaces Sn, let D C X and
suppose that D fl 5n is closed in 5n for each a. Now

iit(D)fl(S1 x a) =

the latter set is closed in x a because 71e is continuous. Then is closed in
S1 x J, so that D is closed in X by definition of the quotient topology.

g

Figure 71.2
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Exercises

1. Let X be a space that is the union of subspaces S1 each of which is
homeomorphic to the unit circle. Assume there is a point p of X such that
S, flS3 =(p}fori j.
(a) Show that X is Hausdorif if and only if each space S is closed in X.
(b) Show that X is Hausdorif if and only if the topology of X is coherent with

the subspaces S
(c) Give an example to show that X need not be Hausdorif. [Hint: See Exer-

cises 5 of §36.1

2. Suppose X is a space that is the union of the closed subspaces X1
assume there is a point p of X such that X fl = (p} for i j. Then we call
X the wedge of the spaces X1 and write X = X1 V ... v Xn. Show
that if for each i, the point p is a deformation retract of an open set W1 of X,
then ir1(X, p) is the external free product of the groups 7r1(X, p) relative to the
monomorphisms induced by inclusion.

3. What can you say about the fundamental group of X V Y if X is homeomorphic
to S1 and Y is homeomorphic to S2?

4. Show that if X is an infinite wedge of circles, then X does not satisfy the first
countability axiom.

5. Let be the circle of radius n in JR2 whose center is at the point (n, 0). Let Y
be the subspace of JR2 that is the union of these circles; let p be their common
point.
(a) Show that Y is not homeomorphic to a countably infinite wedge X of circles,

nor to the space of Example 1.
(b) Show, however, that r1(Y, p) is a free group with as a system of free

generators, where is a loop representing a generator of (Sn, p).

§72 Adjoining a Two-cell

We have computed the fundamental group of the torus T = x in two ways. One
involved considering the standard covering map p x p : JR x JR —÷ x S1 and using
the lifting correspondence. Another involved a basic theorem about the fundamental
group of a product space. Now we compute the fundamental group of the torus in yet
another way.

If one restricts the covering map p x p to the unit square, one obtains a quotient
map :

j2 T. It maps Bd j2 onto the subspace A = (5' x b0) U (b0 x S1), which
is the wedge of two circles, and it maps the rest of j2 bijectively onto T — A. Thus, T
can be thought of as the space obtained by pasting the edges of the square j2 onto the
space A.
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The process of constructing a space by pasting the edges of a polygonal region
in the plane onto another space is quite useful. We show here how to compute the
fundamental group of such a space. The applications will be many and fruitful.

Theorem 72.1. Let X be a Hausdorff space; let A be a closed path-connected sub-
space of X. Suppose that there is a continuous map h : B2 —÷ X that maps mt B2

bijecti vely onto X — A and maps 5' = Bd B2 into A. Let p E and leta = h(p); let
k (S', p) -÷ (A, a) be the map obtained by restricting h. Then the homomorphism

irj(A,a) —+

induced by inclusion is surjective, and its kernel is the least normal subgroup of
71f(A, a) containing the image of p) —+ irj(A, a).

We sometimes say that the fundamental group of X is obtained from the funda-
mental group of A by "killing off" the class where [1] generates 7rj(S', p).

Pmof Step 1. The origin 0 is the center point of B2; let xo be the point h(O) of X. If
U is the open set U = X — xo of X, we show that A is a deformation retract of U. See
Figure 72.1.

U = X —

Let C = h(B2), and let ii : B2 —÷ C be the map obtained by restricting the range
of h. Consider the map

71 x id: B2 x 1 —+ C x 1;

it is a closed map because B2 x I is compact and C x 1 is Hausdorif; therefore, it is a
quotient map. Its restriction

it': (B2 —0) x 1 (C—xo) x!

is also a quotient map, since its domain is open in B2 x I and is saturated with respect
to x id. There is a deformation retraction of B2 — 0 onto S1; it induces, via the

h

x

Figure 72.1
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quotient map ir', a deformation retraction of C — xO onto ,r(S'). We extend this
deformation retraction to all of U x 1 by letting it keep each point of A fixed during
the deformation. Thus A is a deformation retract of U.

It follows that the inclusion of A into U induces an isomorphism of fundamental
groups. Our theorem then reduces to proving the following statement:

Let f be a loop whose class generates ut (S'. p). Then the inclusion of U into X
induces an epimorphism

ur1(U,a) —+

whose kernel is the least normal subgmup containing the class of the loop g = h o f.
Step 2. In order to prove this result, it is convenient to consider first the homomor-

phism (U, b) —÷ ur1(X, b) induced by inclusion relative to a base point b that does
not belong to A.

Let b be any point of U — A. Write X as the union of the open sets U and
V = X — A = ur(Int B2). Now U is path connected, since it has A as a deformation
retract. Because ur is a quotient map, its restriction to Int B2 is also a quotient map
and hence a homeomorphism; thus V is simply connected. The set U fl V = V — xo
is homeomorphic to Int B2 — 0, so it is path connected and its fundamental group is
infinite cyclic. Since b is a point of U fl V, Corollary 70.4 implies that the homomor-
phism

ur1(U,b) —+ url(X,b)

induced by inclusion is surjective, and its kernel is the least normal subgroup contain-
ing the image of the infinite cyclic group ur1(U fl V, b).

Step 3. Now we change the base point back to a, proving the theorem.
Let q be the point of B2 that is the midpoint of the line segment from 0 to p. and

let b = h(q); then b is a point of U fl V. Let fo be a loop in Int B2 — 0 based at q
that represents a generator of the fundamental group of this space; then go = h o fo
is a loop in U fl V based at b that represents a generator of the fundamental group of
U fl V. See Figure 72.2.

Step 2 tells us that the homomorphism 211(U, b) b) induced by inclusion
is surjective and its kernel is the least normal subgroup containing the class of the loop
go = h o fo. To obtain the analogous result with base point a we proceed as follows:

Let y be the straight-line path in B2 from q to p; let 6 be the path 6 =h o y in U
from b to a. The isomorphisms induced by the path 6 (both of which we denote by 6)
commute with the homomorphisms induced by inclusion in the following diagram:

ur1(U, b) ur1(X, b)

I I
uri(U,a) —k- ur1(X, a)

Therefore, the homomorphism of (U, a) into jr1 (X, a) induced by inclusion is sur-
jective, and its kernel is the least normal subgroup containing the element 8([goj).
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The loop fo represents a generator of the fundamental group of mt B2 — 0 based
at q. Then the loop * (fo * y) represents a generator of the fundamental group of
B2 — 0 based at p. Therefore, it is path homotopic either to f or its reverse; suppose
the former. Following this path homotopy by the map h, we see that 8 * * c5) is path
homotopic in U to g. Then 5([go]) = [gJ, and the theorem follows. U

There is nothing special in this theorem about the unit ball B2. The same result
holds if we replace B2 by any space B homeomorphic to B2, if we denote by Bd B the
subspace corresponding to S' under the homeomoi-phism. Such a space B is called a2-
cell. The space X of this theorem is thought of as having been obtained by "adjoining
a 2-cell" to A. We shall treat this situation more formally later.

Exercises

1. Let X be a Hausdorif space; let A be a closed subspace. Suppose
that h BIZ X is a continuous map that maps into A and maps mt BIZ
bijectively onto X — A. Let a be a point of If n > 2, what can you say
about the homomorphism of (A, a) into iri(X, a) induced by inclusion?

2. Let X be the adjunction space formed from the disjoint union of the normal,
path-connected space A and the unit ball B2 by means of a continuous map
f S' —÷ A. (See Exercise 8 of §35.) Show that X satisfies the hypotheses of
Theorem 72.1. Where do you use the fact that A is normal?

3. Let G be a group; let x be an element of G; let N be the least normal subgroup
of G containing x. Show that if there is a normal, space whose
fundamental group is isomorphic to G, then there is a normal, path-connected
space whose fundamental group is isomorphic to GIN.

Figure 72.2
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§73 The Fundamental Groups of the Torus and the Dunce
Cap

We now apply the results of the preceding section to compute two fundamental groups,
one of which we already know and the other of which we do not. The techniques
involved will be important later.

Theorem 73.1. The fundamental group of the torus has a presentation consisting of
two generators a, ,6 and a single relation

Proof Let X = S' x S1 be the torus, and let h: j2 —÷ X be obtained by restricting
the standard covering map p x p R x JR -÷ x S'. Let p be the point (0,0) of
Bd j2, let a = h(p), and let A = h(Bd Then the hypotheses of Theorem 72.1 are
satisfied.

The space A is the wedge of two circles, so the fundamental group of A is free.
Indeed, if we let ao be the path = (t, 0) and b0 be the path !,o(t) = (0, t) in
Bd 12, then the paths a = h o ao and ,6 = h o b0 are loops in A such that [a} and [,6]
form a system of free generators for irj (A, a). See Figure 73.1

Now let and b1 be the paths af (t) = (t, 1) and bf (t) = (1, t) in Bd j2 Consider
the loop f in Bd j2 defined by the equation

f=ao*(bi *(äf

Then f represents a generator of ir1(Bd j2, p); and the loop g = h o f equals the
product a * (,6 * (a * ,6)). Theorem 72.1 tells us that ir1(X, a) is the quotient of the
free group on the free generators [a] and [,6} by the least normal subgroup containing
the element U

Corollary 73.2. The fundamental group of the torus is a free abelian group of rank 2.

Proof Let G be the free group on generators a, ,6; and let N be the least normal
subgroup containing the element c Because this element is a commutator,
N is contained in the commutator subgroup [G, G] of G. On the other hand, G/N

x= S1 x S1

Figure 73.1
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is abelian; for it is generated by the cosets aN and and these elements of G/N
commute. Therefore N contains the commutator subgroup of G.

It follows from Theorem 69.4 that G/N is a free abelian group of rank 2. U

Definition. Let n be a positive integer with n > 1. Let r : S' —+ S' be rota-
tion through the angle 271/n, mapping the point (cos(), sin()) to the point (cos(() +
271/n), + 271/n)). Form a quotient space X from the unit ball B2 by identifying
each point x of with the points r(x), r2(x) r"1(x). We shall show that X is
a compact Hausdorif space; we call it the n-fold dunce cap.

Let 71 : B2 X be the quotient map; we show that 71 is a closed map In order
to do this, we must show that if C is a closed set of B2, then is also closed
in B2; it then will follow from the definition of the quotient topology that 71(C) is
closed in X. Let C0 = C fl it is closed in B2. The set 71171(C) equals the union
of C and the sets r(C0), all of which are closed in B2 because
r is a homeomorphism. Hence 3r171(C) is closed in B2, as desired.

Because 71 is continuous, X is compact. The fact that X is Hausdorif is a conse-
quence of the following lemma, which was given as an exercise in §31.

Lemma 73.3. Let : E —÷ X be a closed quotient map. if E is normal, then so
isX.

Proof Assume E is normal. One-point sets are closed in X because one-point sets
are closed in E. Now let A and B be disjoint closed sets of X. Then 71 and

are disjoint closed sets of E. Choose disjoint open sets U and V of E con-
taining — (A) and respectively. It is tempting to assume that ,r(U) and
21(V) are the open sets about A and B that we are seeking. But they are not. For they
need not be open (21 not necessarily an open map), and they need not be disjoint!
See Figure 73.2.

( >(
A

)
B

Figure 73.2

So we proceed as follows: Let C = E — U and let D = E — V. Because C and
D are closed sets of E, the sets 71(C) and 71(D) are closed in X. Because C contains
no point of r1(A), the set 71(C) is disjoint from A. Then U0 = X — 71(C) is an open

E

x
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set of X containing A. Similarly, V0 = X — ir(D) is an open set of X containing B.
Furthermore, U0 and V0 are disjoint. For if x E Uo, then is disjoint from C, so
that it is contained in U. Similarly, if x E Vo. then jr1 (x) is contained in V. Since U
and V are disjoint, so are U0 and V0. U

Let us note that the 2-fold dunce cap is a space we have seen before; it is home-
omorphic to the projective plane P2. To verify this fact, recall that P2 was defined
to be the quotient space obtained from S2 by identifying x with —x for each x. Let
p: S2 —p P2 be the quotient map. Let us take the standard homeomorphism i of B2
with the upper hemisphere of S2. given by the equation

i(x,y)=(x,y,(1—x2 —y2)112),

and follow it by the map p. We obtain a map B2 —÷ P2 that is continuous, closed,
and surjective. On mt B it is injective, and for each x E S'. it maps x and —x to the
same point. Hence it induces a homeomorphism of the 2-fold dunce cap with P2.

The fundamental group of the n-fold dunce cap is just what you might expect from
our computation for P2.

Theorem 73.4. The fundamental group of the n-ibid dunce cap is a cyclic group of
order n.

Proof Let h B2 —+ X be the quotient map, where X is the n-fold dunce cap.
Set A = h(S'). Let p = (1,0) E and let a h(p). Then h maps the arc C
of S1 running from p to r(p) onto A; it identifies the end points of C but is otherwise
injective. Therefore, A is homeomorphic to a circle, so its fundamental group is infinite
cyclic. Indeed, if y is the path

y(t) (cos(2irt/n), sin(2irt/n))

in S' from p to r(p), then a = h o y represents a generator of ir1(A, a). See Fig-
ure 73.3.

Now the class of the loop

oy)))

r2°Y h

x

r3oY

Figure 73.3
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generates 1S1, p). Since h(rm(x)) = h(x) for all x and m, the loop hof equals the
n-fold product cr * (a * * a)). The theorem follows.

Exercises

1. Find spaces whose fundamental groups are isomorphic to the following groups.
(Here Z/n denotes the additive group of integers modulo n.)
(a) Z/n x Z/m.
(b) Z/n1 x Z/n2 x ... x Z/nk.
(c) Z/n * Z/m. (See Exercise 2 of §7 1.)
(d) Z/nl*Z/n2*...*Z/nk.

2. Prove the following:
Theorem. If G is a finitely presented group, then there is a compact Hausdor-ff
space X whose fundamental group is isomorphic to G.
Proof Suppose G has a presentation consisting of n generators and iii relations.
Let A be the wedge of n circles; form an adjunction space X from the union
of A and m copies B1 Bm of the unit ball by means of a continuous map
f : UBdB -÷ A.
(a) Show that X is Hausdorif.
(b) Prove the theorem in the case m = 1.

(c) Proceed by induction on m, using the algebraic result stated in the following
exercise.

The construction outlined in this exercise is a standard one in algebraic topol-
ogy; the space X is called a two-dimensional CW complex.

3. Lemma. Let 1: G -+ H and g: H K be homomorphisms; assume f is
surjective. If E G, and if kerg is the least normal subgroup of H containing
f(xo), then ker(g o f) is the least normal subgroup N of G containing ker f
andxo.
Proof Show that f(N) is normal; conclude that ker(g o f) = (kerg) C
f'f(N) = N.

4. Show that the space constructed in Exercise 2 is in fact metrizable. [Hint: The
quotient map is a perfect map.]



Chapter 12

Classification of Surfaces

One of the earliest successes of algebraic topology was its role in solving the problem
of classifying compact surfaces up to homeornorphism. "Solving" this problem means
giving a list of compact surfaces such that no two surfaces on the list are homeomor-
phic, and such that every compact surface is homeomorphic to one of them. This is
the problem we tackle in this chapter.

§74 Fundamental Groups of Surfaces

In this section, we show how to construct a number of compact connected surfaces,
and we compute their fundamental groups We shall construct each of these surfaces
as the quotient space obtained from a polygonal region in the plane by "pasting its
edges together."

To treat this pasting process formally requires some care. First, let us define pre-
cisely what we shall mean by a "polygonal region in the plane." Given a point c of JR2.
and given a > 0, consider the circle of radius a in JR2 with center at c. Given a finite
sequence 0j < < .. < of real numbers, where n 3 and = + 2ir, con-
sider the points p = c which lie on this circle. They are numbered
in counterclockwise order around the circle, and = P0. The line through p.. and
p splits the plane into two closed half-planes; let be the one that contains all the

446
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points Pk• Then the space

is called the polygonal region determined by the points p. The points p are called
the vertices of P; the line segment joining Pj—f and p is called an edge of P; the
union of the edges of P is denoted Bd P; and P — Bd P is denoted mt P. It is not hard
to show that if p is any point of mt P. then P is the union of all line segments joining
p and points of Bd P, and that two such line segments intersect only in the point p.

Given a line segment L in 1R2, an orientation of L is simply an ordering of its end
points; the first, say a, is called the initial point, and the second, say b, is called the
final point, of the oriented line segment. We often say that L is orientedfrom a to b;
and we picture the orientation by drawing an arrow on L that points from a towards b.
If L' is another line segment, oriented from c to d, then the posilive linear map of L
onto L' is the homeomorphism h that carries the point x — (1 — s)a + sb of L to the
pointh(x) = (1 —s)c+sdofL'.

If two polygonal regions P and Q have the same number of vertices, P0
and qo qn, respectively, with po = and qo = qn, then there is an obvious
homeomorphism h of Bd P with Bd Q that carries the line segment from p
by a positive linear map onto the line segment from qj to q. If p and q are fixed
points of mt P and mt Q, respectively, then this homeomorphism may be extended to a
horneomorphism of P with Q by letting it map the line segment from p to the point x
of Bd P linearly onto the line segment from q to h(x). See Figure 74.1.

h

Figure 74.1

Definition. Let P be a polygonal region in the plane. A labelling of the edges of P is
a map from the set of edges of P to a set S called the set of labels. Given an onentation
of each edge of P, and given a labelling of the edges of P, we define an equivalence
relation on the points of P as follows: Each point of mt P is equivalent only to itself.
Given any two edges of P that have the same label, let h be the positive linear map
of one onto the other, and define each point x of the first edge to be equivalent to

q1

q3
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the point h(x) of the second edge. This relation generates an equivalence relation on
P. The quotient space X obtained from this equivalence relation is said to have been
obtained by pasting the edges of P together according to the given orientations and
labelling.

EXAMPLE 1 Consider the onentations and labelling of the edges of the triangular region
pictured in Figure 74.2. The figure indicates how one can show that the resulting quotient
space is homeomorphic to the unit bait.

EXAMPLE 2. The onentations and labelling of the edges of the square pictured in
Figure 74 3 give nse to a space that is homeomorphic to the sphere S2

We now describe a convenient method for specifying orientations and labels for
the edges of a polygonal region, a method that does not involve drawing a picture.

Definition. Let P be a polygonal region with successive vertices P0 where

po = Given orientations and a labelling of the edges of P. let at am be
the distinct labels that are assigned to the edges of P. For each k, let ak be the label
assigned to the edge Pk —1 and let Ek = +1 or —1 according as the orientation
assigned to this edge goes from pk—1 to Pk or the reverse. Then the number of edges
of P, the onentations of the edges, and the labelling are completely specified by the
symbol

w = . .

Figure 74.2

a

Figure 74.3



§74 Fundamental Groups of Surfaces 449

We call this symbol a labelling scheme of length n for the edges of P; it is simply a
sequence of labels with exponents +1 or —1.

We normally omit the exponents that equal +1 when giving a labelling scheme.
Then the orientations and labelling of Example I can be specified by the labelling
scheme atba, if we take po to be the top vertex of the triangle. If we take one of the
other vertices to be P0' then we obtain one of the labelling schemes baa1 oraa1b.

Similarly, the onentations and labelling indicated in Example 2 can be specified
(if we begin at the lower left corner of the square) by the symbol aa1bb-1.

It is clear that a cyclic permutation of the terms in a labelling scheme will change
the space X formed by using the scheme only up to homeomorphism. Later we will
consider other modifications one can make to a labelling scheme that will leave the
space X unchanged up to homeomorphism.

EXAMPLE 3. We have already showed how the torus can be expressed as a quotient
space of the unit square by means of the quotient map p x p 1 x I -+ S' >< S' This
same quotient space can be specified by the orientations and labelling of the edges of the
squ&e indicated in Figure 744 It can be specified also by ihe scheme abatb1

Figure 74.4

EXAMPLE 4. The projective plane P2 iS homeomorphic to the quotient space of the
unit ball 82 obtained by identifying x with —x for each x E S1. Because the unit square
is homeomorphic to the unit ball, this space can also be specified by the onentalions and
labelling of the edges of the unit square indicated Figure 74 5. It can be specified by the
scheme abab.

Figure 74.5

a

a

a
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Now there is no reason to restrict oneself to a single polygonal region when form-
ing a space by pasting edges together. Given a finite number P1 Pk of disjoint
polygonal regions, along with orientations and a labelling of their edges, one can form
a quotient space X in exactly the same way as for a single region, by pasting the edges
of these regions together. Also, one specifies orientations and a labelling in a simi-
lax way, by means of k labelling schemes. Depending on the particular schemes, the
space X one obtains may or may not be connected.

EXAMPLE 5. Figure 74.6 indicates a labelling of the edges of two squares for which the
resulting quotient space is connected; it is the space called the Möbiusband Of course,
this space could also be obtained from a single square by using the labelling scheme abac,
as you can check.

a a
b

EXAMPLE 6 Figure 74 7 indicates a labelling scheme for the edges of two squares for
which the resulting quotient space is not connected.

Theorem 74.1. Let X be the space obtained from a finite collection of polygonal
regions by pasting edges together according to some labelling scheme. Then X is a
compact Hausdorif space.

Proof For simplicity, we treat the case where X is formed from a single polygonal
region. The general case is similar.

It is immediate that X is compact, since the quotient map is continuous. To
show X is Hausdorff, it suffices to show that the quotient map ii is a closed map.
(See Lemma 73.3.) For this purpose, we must show that for each closed set C of P,

d

Figure 74.6

C

a

Figure 74.7
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the set irtir(C) is closed in P Now irtir(C) consists of the points of C and all
points of P that are pasted to points of C by the map it. These points are easy to
determine. For each edge e of P, let Ce denote the compact subspace C fl e of P. If e
is an edge of P that is pasted to e, and if h : e1 —p e is the pasting homeornorphism,
then the set = it tir(C) fl e contains the space Indeed, equals the
union of and the spaces h (Ce,), as e ranges over all edges of P that are pasted
to e. This union is compact; therefore, it is closed in e and in P.

Since irtir(C) is the union of the set C and the sets as e ranges over all edges
of P, it is closed in P, as desired.

Now we note that if X is obtained by pasting the edges of a polygonal region
together, the quotient map it may map all the vertices of the polygonal region to a
single point of X, or it may not. In the case of the torus of Example 3, the quotient
map does satisfy this condition, while in the case of the ball and sphere of Examples 1
and 2, it does not. We are especially happy when it satisfies this condition, for in this
case one can readily compute the fundamental group of X:

Theorem 74.2. Let P be a polygonal region; let

w = • . .

be a labelling scheme for the edges of P. Let X be the resulting quotient space; let
it : P —* X be the quotient map. If it maps all the vertices of P to a single point xo
of X, and if a1 are the distinct labels that appear in the labelling scheme, then

(X, xo) is isomorphic to the quotient of the free group on k generators at,. .,
by the least normal subgroup containing the element

)CI . .
.

Proof The proof is similar to the proof we gave for the torus in §73. Because it
maps all vertices of P to a single point of X, the space A = it(Bd P) is a wedge
of k circles. For each i, choose an edge of P that is labelled a; let f, be the positive
linear map of! onto this edge onented counterclockwise; and let g = it o Then the
loops represent a set of free generators for it1(A, x0). The loop I running
around Bd P once in the counterclockwise direction generates the fundamental group
of Bd P, and the loop ir o f equals the loop

*...*(gj"
The theorem now follows from Theorem 72.1. U

Definition. Consider the space obtained from a 4n-sided polygonal region P by
means of the labelling scheme

This space is called the n-fold connected sum of tori, or simply the n-fold torus, and
denoted
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The 2-fold torus is pictured in Figure 74.8. If we split the polygonal region P
along the indicated line c, each of the resulting pieces represents a torus with an open
disc removed If we paste these pieces together along the curve c, we obtain the space
we introduced in §60 and called there the double torus. A similar argument shows that
the 3-fold torus T#T#T can be pictured as the surface in Figure 74.9.

Figure 74.9

Theorem 74.3. Let X denote the n-fold torus. Then ir1(X, x0) is isomorphic to the
quotient of the free group on the 2n generators ai, ,6i,.. , by the least normal
subgroup containing the element

,6f1[a2, ,62] . .

[a, = as usual.

Proof In order to apply Theorem 74.2, one must show that under the labelling
scheme for X, all the vertices of the polygonal region belong to the same equivalence
class. We leave this to you to check.

Definition. Let m > 1 Consider the space obtained from a 2m-sided polygonal
region P in the plane by means of the labelling scheme

(afaf)(a2a2) . . .

This space is called the rn-fold connected sum of projective planes, or simply the
rn-fold projective plane, and denoted P2# . #P2.

The 2-fold projective plane P2#P2 is pictured in Figure 74.10. The figure in-
dicates how this space can be obtained from two copies of the projective plane by

Figure 74.8
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deleting an open disc from each and pasting the resulting spaces together along the
boundanes of the deleted discs. As with P2 itself, we have no convenient way for pic-
turing the rn-fold projective plane as a surface in JR3. for in fact it cannot be imbedded
in JR3. Sometimes, however, we can picture it in R3 as a surface that intersects itself.
(We then speak of an immersed surface rather than an imbedded one.) We explore this
topic in the exercises.

b

L

Theorem 74.4. Let X denote the rn-fold projective plane. Then (X, xo) is isomor-
phic to the quotient of the free group on rn generators am by the least normal
subgroup containing the element

(al)2(a2)2 . .

Pmof One needs only to check that under the labelling scheme for X, all the vertices
of the polygonal region belong to the same equivalence class. This we leave to you. U

There exist many other ways to form compact surfaces. One can for instance delete
an open disc from each of the spaces P2 and T, and paste the resulting spaces together
along the boundaries of the deleted discs. You can check that this space can be obtained
from a 6-sided polygonal region by means of the labelling scheme aabcb But
we shall stop at this point. For it turns out that we have already obtained a complete
list of the compact connected surfaces. This is the basic theorern for
surfaces, which we shall consider shortly.

Exercises

1. Find a presentation for the fundamental group of P2#T.

2. Consider the space X obtained from a seven-sided polygonal region by means of
the labelling scheme abaaab a — Show that the fundamental group of X is
the free product of two cyclic groups. [Hint: See Theorem 68.7.]

b

Figure 74.10

b
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3. The Klein bottle K is the space obtained from a square by means of the labelling
scheme aba1 b. Figure 74.11 indicates how K can be pictured as an immersed
surface in 1R3.
(a) Find a presentation for the fundamental group of K.
(b) Find a double covering map p: T —+ K, where T is the torus. Describe the

induced homomorphism of fundamental groups.

r\II Jb

Figure 74.11

4. (a) Show that the Klein bottle is homeomorphic to P2#P2 . [Hint: Split the
square in Figure 74.11 along a diagonal, flip one of the resulting tnangular
pieces over, and paste the two pieces together along the edge labelled b.J

(b) Show how to picture the 4-fold projective plane as an immersed surface
in JR3.

5. The Möbius band M is not a surface, but what is called a "surface with bound-
ary". Show that M is homeomorphic to the space obtained by deleting an open
disc from P2.

6. If n > 1, show that the fundamental group of the n-fold torus is not abelian.
[Hint: Let G be the free group on the set (a1, a,1, let F be the free
group on the set (y, Consider the homomorphism of G onto F that sends at
and to y and all other a1 and to S.]

7. If m > 1, show the fundamental group of the rn-fold projective plane is not
abelian. [Hint: There is a homomorphism mapping this group onto the group
Z/2 * Z/2.]

§75 Homology of Surfaces

Although we have succeeded in obtaining presentations for the fundamental groups of
a number of surfaces, we now pause to ask ourselves what we have actually accom-
plished. Can we conclude from our computations, for instance, that the double torus
and the triple torus are topologically distinct? Not immediately. For, as we know,
we lack an effective procedure for determining from the presentations for two groups

a
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whether or not these groups are isomorphic. Matters are much more satisfactory if we
pass to the abelian group jr1/[ir1, hf], where JTf hrf(X, xO). For then we have some
known invariants to work with We explore this situation in this section.

We know that if X is a path-connected space, and if a is a path in K from xo
to then there is an isomorphism & of the fundamental group based at with the
fundamental group based at xi, but the isornorphism depends on the choice of the path
a. A stronger result holds for the group irs]. In this case, the isornorphism of
the "abelianized fundamental group" based at xo with the one based at xl, induced by
a, is in fact independent of the choice of the path a.

To verify this fact, it suffices to show that if a and ,6 are two paths from to
then the path g = a * ,6 induces the identity isomorphisrn of Ill /ki with itself.
And this is easy. If [f] E (X, xo), we have

*[f]*[g].

When we pass to the cosets in the abelian group hrf/[hrf, we see that induces the
identity map.

Definition. If X is a path-connected space, let

H1 (X) = ,rj(X, xO)/[hrf (X, xO), (X, xo)1.

We call H1 (X) the first homology group of X. We omit the base point from the
notation because there is a unique path-induced isornorphism between the abelianized
fundamental groups based at two different points.

If you study algebraic topology further, you will see an entirely different defini-
tion of H1 (X). In fact, you will see groups called the homology groups of X
that are defined for all n > 0. These are abelian groups that are topological invariants
of X; they are of fundamental importance in applying results of algebra to problems
of topology. A theorem due to W. Hurewicz establishes a connection between these
groups and the homotopy groups of X. It implies in particular that for a
space X, the first homology group H1(X) of X is isomorphic to the abeliamzed funda-
mental group of X. This theorem motivates our choice of notation for the abelianized
fundamental group.

To compute H1 (X) for the surfaces considered earlier, we need the following re-
sult:

Theorem 75.1. Let F be a group; let N be a normal subgroup ofF; let q F —+ F/N
be the projection. The projection homomorphism

p: F F/[F, F]

induces an isomorphism

q(F)/[q(F), q(F)] —* p(F)/p(N).



456 Classification of Surfaces Ch. 12

This theorem states, roughly speaking, that if one divides F by N and then abelian-
izes the quotient, one obtains the same result as if one first abelianizes F and then
divides by the image of N in this abeliamzation.

Proof One has projection homomorphisms p, q, r, s, as in the following diagram,
where q(F) = F/N and p(F) = F/[F, F].

q(F) S —-q(F)/[q(F),q(F)]

p(F) V

r -p(F)/p(N)

Because r o p maps N to 1, it induces a homomorphism u q(F) p(F)/p(N).
Then because p(F)/p(N) is abelian, the homomorphism u induces a homomorphism
0 of q(F)/[q(F), q(F)]. On the other hand, because s o q maps F into an abelian
group, it induces a homomorphism v . p(F) q(F)/[q(F), q(F)J. Because s o q

cames N to 1, so does v o p; hence v induces a homomorphism ifr of p(F)/p(N).
The homomorphism can be described as follows: Given an element y of the

group q(F)/[q(F), q(F)], choose an element x of F such that s(q(x)) = y; then
0(y) = r(p(x)) The homomorphism can be described similarly. It follows that 0
and are inverse to each other.

Corollary 75.2. Let F be a free group with free generators a1 a,1; let N be
the least normal subgroup of F containing the element x of F; let G = F/N. Let
p . F F/[F, F] be projection. Then G/[G, G] is isomorphic to the quotient
of F/[F, F], which is free abelian with basis p(ai) p(an), by the subgroup
generated by p(x).

Pmof Note that because N is generated by x and all its conjugates, the group p(N)
is generated by p(x) The corollary then follows from the preceding theorem. •

Theorem 75.3. If X is the n-fold connected sum of tori, then Hf(X) is a free abelian
group of rank 2n.

Proof In view of the preceding corollary, Theorem 74.3 implies that H1(X) is iso-
morphic to the quotient of the free abelian group F' on the set at, by the
subgroup generated by the element [a1, . where [a, ,6] =
as usual. Because the group F' is abelian, this element equals the identity element. U

Theorem 75.4. If X is the rn-fold connected sum of projective planes, then the torsion
subgroup T(X) of Hf(X) has order 2, and H1 (X)/ T(X) isa free abelian group of rank
rn-i.
Pro of In view of the preceding corollary, Theorem 74.4 implies that H1 (X) is iso-
morphic to the quotient of the free abelian group F' on the set af am by the
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subgroup generated by (a1)2... (am)2. If we switch to additive notation (which is
usual when dealing with abelian groups), this is the subgroup generated by the element
2(cri + . Let us change bases in the group F'. If we let ,6 = + +am, then
the elements as,.. , am_f, ,6 form a basis for F', any element of F' can be written
uniquely in terms of these elements. The group H1 (X) is isomorphic to the quo-
tient of the free abelian group on a am_ i, by the subgroup genera ted by 2fi.
Said differently, H1(X) is isomorphic to the quotient of the rn-fold cartesian product
Z x. x Z by the subgroup 0 x x 0 x 2Z. The theorem follows U

Theorem 75.5. Let and Pm denote the n-fold connected sum of tori and the m -
fold connected sum of projective planes, respectively. Then the surfaces S2; T1 ,T2,
..; Pi, are topologically distinct.

Exercises

1. Calculate H1(P2#T). Assuming that the list of compact surfaces given in Theo-
rem 75.5 is a complete list, to which of these surfaces is P2#T homeomorphic?

2. If K is the Klein bottle, calculate H1 (K) directly.

3. Let X be the quotient space obtained from an 8-sided polygonal region P by
pasting its edges together according to the labelling scheme
(a) Check that all vertices of P are mapped to the same pouit of the quotient

space X by the pasting map.
(b) Calculate H1 (X).
(c) Assuming X is homeomorphic to one of the surfaces given in Theorem 75.5

(which it is), which surface is it?

Let X be the quotient space obtained from an 8-sided polygonal region P by
means of the labelling scheme . Let 71 : P —÷ X be the quotient
map.
(a) Show that ir does not map all the vertices of P to the same point of X.
(b) Determine the space A = ir(Bd P) and calculate its fundamental group.
(c) Calculate ir1(X, xO) and H1(X)
(d) Assuming X is homeomorphic to one of the surfaces given in Theorem 75.5,

which surface is it?

§76 Cutting and Pasting

To prove the classification theorem, we need to use certain geometric arguments in-
volving what are called "cut-and-paste" techniques. These techniques show how to
take a space X that is obtained by pasting together the edges of one or more polygonal
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regions according to some labelling scheme and to represent X by a different collection
of polygonal regions and a different labelling scheme.

First, let us consider what it means to "cut apart" a polygonal region. Let P be
a polygonal region with successive vertices P0 = as usual. Given k with
1 < k < n — 1, let us consider the polygonal regions Q with successive vertices

P0 P1 and with successive vertices p0. = P0. These
regions have the edge PoPk in common, and the region P is their union.

Let us move Qi by a translation of JR2 so as to obtain a polygonal region Q'1
that is disjoint from Q2; then Q'1 has successive vertices qo, q
is the image of p under the translation. The regions Q'1 and Q2 are said to have
been obtained by cutting P apart along the line from P0 to Pk. The region P is
homeomorphic to the quotient space of Q'1 and Q2 obtained by pasting the edge of Q'1
going from to to the edge of Q2 going from po to by the positive linear map
of one edge onto the other. See Figure 76.1.

Now let us consider how we can reverse this process. Suppose we are given two
disjoint polygonal regions Q'1 with successive vertices qo, . , qo, and Q2. with
successive vertices P0, Pk Pn P0. And suppose we form a quotient space by
pasting the edge of Q'1 from qo to qi onto the edge of Q2 by P0 to by the positive
linear map of one edge onto the other. We wish to represent this space by a polygonal
region P.

This task is accomplished as follows: The points of Q2 lie on a circle and are
arranged in counterclockwise fashion. Let us choose points Pt Pk—1 on this
same circle in such a way that po, Pt'.. , Pk— 1' Pk are arranged in counterclockwise
order, and let Q be the polygonal region with these as successive vertices. There is a
homeomorphism of Q'1 onto Q that carries q to p1 for each i and maps the edge qoqk
of linearly onto the edge poPk of Q2. Therefore, the quotient space in question
is homeomorphic to the region P that is the union of Qi and Q2. We say that P is
obtained by pasting Q'1 and Q2 together along the indicated edges. See Figure 76.2.

Now we ask the following question If a polygonal region has a labelling scheme,
what effect does cutting the region apart have on this labelling scheme? More

p4

Figure 76.1



§76 Cutting and Pasting 459

'p0

cisely, suppose we have a collection of disjoint polygonal regions Pf Pm and a
labelling scheme for these regions, say w Wm, where is a labelling scheme
for the edges of P1. Suppose that X is the quotient space obtained from this labelling
scheme. If we cut P1 apart along the line from P0 to what happens? We obtain
m + 1 polygonal regions Q'1, Q2. P2 Pm; to obtain the space X from these re-
gions, we need one additional edge pasting. We indicate the additional pasting that is
required by introducing a new label that is to be assigned to the edges qoqk and popk
that we introduced. Because the orientation from P0 to Pk is counterclockwise for
and the orientation from qo to is clockwise for this label will have exponent + 1
when it appears in the scheme for Q2 and exponent —1 when it appears in the scheme
for Q'1.

Let us be more specific. We can wnte the labelling scheme for Pi in the
form = where yo consists of the first k terms of and consists of the
remainder Let c be a label that does not appear in any of the schemes Wm.

Then give Q'1 the labelling scheme give Q2 the labelling scheme and for
i > 1 give the region P1 its old scheme W.

It is immediate that the space X can be obtained from the regions Q'1, Q2, P2,
Pm by means of this labelling scheme. For the composite of quotient maps is a

quotient map, so it does not matter whether we paste all the edges together at once, or
instead paste the edge P0Pk to the edge qoqk before pasting the others!

One can of course apply this procedure in reverse. If X is represented by a labelling
scheme for the regions Q2, P2 Pm and if the labelling scheme indicates that
an edge of the first is to be pasted to an edge of the second (and no other edge is to
be pasted to these), we can actually carry out the pasting so as to represent X by a
labelling scheme for them regions P1 Pm.

We state this fact formally as a theorem:

Theorem 76.1. Suppose X is the space obtained by pasting the edges of m polygonal

Figure 76.2
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regions together according to the labelling scheme

(*) yOyl,W2 Wm.

Let c be a label not appearing in this scheme. If both yo and have length at least
two, then X can also be obtained by pasting the edges of m + 1 polygonal regions
together according to the scheme

(**) Wm.

Conversely, if X is the space obtained from m + 1 polygonal regions by means of
the scheme (**), it can also be obtained from m polygonal regions by means of the
scheme (*), providing that c does not appear in scheme (*).

Elementary operations on schemes

We now list a number of elementary operations that can be performed on a labelling
scheme Wf Wm without affecting the resulting quotient space X. The first two
arise from the theorem just stated.

(i) Cut. One can replace the scheme WI = YOYI by the scheme and cyf,
provided c does not appear elsewhere in the total scheme and yo and have length at
least two.

(ii) Paste. One can replace the scheme and

c the total scheme.
(iii) Relabel. One can replace all occurrences of any given label by some other

label that does not appear elsewhere in the scheme. Similarly, one can change the
sign of the exponent of all occurrences of a given label a; this amounts to reversing
the orientations of all the edges labelled "a". Neither of these alterations affects the
pasting map.

(iv) Permute. One can replace any one of the schemes w by a cyclic permutation
of Specifically, if = we can replace w by yo. This amount to renum-
bering the vertices of the polygonal region P SO as to begin with a different vertex; it
does not affect the resulting quotient space.

(v) Flip. One can replace the scheme

= . . .

by its formal inverse

= . . . (a,1

This amounts simply to "flipping the polygonal region P1 over.". The order of the
vertices is reversed, and so is the orientation of each edge. The quotient space X is not
affected.

(vi) Cancel. One can replace the scheme = yoaa — by the scheme
provided a does not appear elsewhere in the total scheme and both yo and have
length at least two.
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This last result follows from the three-step argument indicated in Figure 76.3, only
one step of which is new. Letting b and c be labels that do not appear elsewhere in the
total scheme, one first replaces yoaa'yl by the scheme yoab and b using the
cutting operation (i). Then one combines the edges labelled a and b in each polygonal
region into a single edge, with a new label. This is the step that is new. The result is
the scheme yoc and c which one can replace by the single scheme yoyj, using
the pasting operation (ii).

Figure 76.3

(vii) Uncancel. This is the reverse of operation (vi). It replaces the scheme yoyi
by the scheme yoaa' where a is a label that does not appear elsewhere in the total
scheme. We shall not actually have occasion to use this operation.

Definition. We define two labelling schemes for collections of polygonal regions
to be equivalent if one can be obtained from the other by a sequence of elementary
scheme operations. Since each elementary operation has as its inverse another such
operation, this is an equivalence relation.

EXAMPLE I The Klein bottle K is the space obtained from the labelling scheme
In the exercises of §74, you were asked to show that K is homeomorphic to the

2-fold projective plane P2#P2. The geometnc argument suggested there in fact consists of

/
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the following elementary operations

aba1b —+ abc1 arid ca1b by cutting

—÷ ctab and b_lac_I by permuting the first

and flipping the second

c1aac1 by pasting

aacc by permuting and relabelling.

Exercises

1. Consider the quotient space X obtained from two polygonal regions by means of
the labelling scheme WI = and w2 =
(a) If one pastes these regions together along the edges labelled "a," one can

represent X as the quotient space of a single 7-sided region P. What is a
labelling scheme for What sequence of elementary operations is involved
in obtaining this scheme?

(b) Repeat (a), pasting along the edges labelled "b".
(C) Explain why one cannot paste along the edges labelled "c" to obtain the

scheme acbdba1d as a way of representing X.

2. Consider the space X obtained from two polygonal regions by means of the
labelling scheme WI abcc and w2 = The following sequence of
elementary operations:

abcc and ccab and by permuting

and flipping

ccaa1cc by pasting

cccc by cancelling

indicates that X is homeomorphic to the four-fold dunce cap. The sequence of
operations

abcc and —+ by pasting

abab by cancelling

indicates that X is homeornorphic to P2. But these two spaces are not homeo-
morphic. Which (if either) argument is correct?

§77 The Classification Theorem

We prove in this section the geometric part of our classification theorem for surfaces.
We show that every space obtained by pasting the edges of a polygonal region together
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in pairs is homeomorphic either to S2, to the n-fold torus or to the rn-fold projective
plane Pm. Later we discuss the problem of showing that every compact surface can be
obtained in this way.

Suppose w1 Wk is a labelling scheme for the polygonal regions Pk.
If each label appears exactly twice in this scheme, we call it aproper labelling scheme.
Note the following important fact:

If one applies any elementary operation to a pmper scheme, one obtains another
proper scheme.

Definition. Let w be a proper labelling scheme for a single polygonal region. We
say that w is of torus type if each label in it appears once with exponent +1 and once
with exponent —1. Otherwise, we say w is of projective type.

We begin by considering a scheme w of projective type. We will show that w
is equivalent to a scheme (of the same length) in which all labels having the same
exponent are paired and appear at the beginning of the scheme. That is, w is equivalent
to a scheme of the form

(afaf)(a2a2)

where is of torus type or is empty.
Because w is of projective type, there is at least one label, say a, such that both

occurrences of a in the scheme w have the same exponent. Therefore, we can assume
that w has the form

w yoaylay2.

where some of the y may be empty. We shall insert brackets in this expression for
visual convenience, writing it in the form

w = [yo]a[yl]a[y2].

We have the following result:

Lemma 77.1. Let w be a proper scheme of the form

w = [yo]a[yl]a[y2],

where some of the y may be empty. Then one has the equivalence

w ---

where denotes the formal inverse of

Proof Step 1. We first consider the case where Yo is empty. We show that

a[yl]a[y2]
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If is empty, this result is immediate, while if Y2 is empty, it follows from flipping,
permuting, and relabelling. If neither is empty, we apply the cutting and pasting argu-
ment indicated in Figure 77.1, followed by a relabelling. We leave it to you to wnte
down the sequence of elementary operations involved.

Step 2. Now we consider the general case. Let w = where yo is
not empty. If both and Y2 are empty, the lemma follows by permuting. Otherwise,
we apply the cutting and pasting argument indicated in Figure 77.2 to show that

It follows that

w

w by Step I

by flipping

by permuting and relabelling.

Corollary 77.2. If w is a scheme of projective type, then w is equivalent to a scheme
of the same length having the form

(alal)(a2a2) .

where k I and is either empty or of torus type.

y2

Figure 77.1

Figure 77.2

y2
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Proof The scheme w can be wntten in the form

w = [yo]a[yf]a[y2];

then the preceding lemma implies that w is equivalent to a scheme of the form w' =
aaw1 that has the same length as U). If Wf is of torus type, we are finished; otherwise,

we can write W' in the form

w' = aa[zo]b[z1]b[z2] = [aazo]b[z1]b[z2].

Applying the preceding lemma again, we conclude that ui' is equivalent to a scheme W"
of the form

= = bbaaW2,

where W" has the same length as W. If W2 is of torus type, we are finished; otherwise,
we continue the argument similarly. U

It follows from the preceding corollary that if W is a proper labelling scheme for a
polygonal region, then either (1) ui is of torus type, or (2) ui is equivalent to a scheme
of the form (a1aj) .. (akak)W1, where WI IS of torus type, or (3) ui is equivalent to a
scheme of the form (a1a1) . . . In case (3), we are finished, for such a scheme
represents a connected sum of projective planes. So let us consider cases (1) and (2).

At this point, we note that if ui is a scheme of length greater than four of the form
indicated in case (1) or case (2), and if ui contains two adjacent terms having the same
label but opposite exponents, then the cancelling operation may be applied to reduce ui
to a shorter scheme that is also of the form indicated in cases (1), (2), or (3). Therefore,
we can reduce W either to a scheme of length four, or to a scheme that does not contain
two such adjacent terms.

Schemes of length four are easy to deal with, as we shall see later, so let us assume
that ui does not contain two adjacent terms having the same label but opposite expo-
nents. In that case, we show that ui is equivalent to a scheme ui', of the same length
as U), having the form

U)' = in case (1) or

U)' = .. . in case (2),

where ui" is of torus type or is empty. This is the substance of the following lemma:

Lemma 77.3. Let ui be a proper scheme of the form W = WOWI, where is a
scheme of torus type that does not contain two adjacent terms having the same label.
Then W is equivalent to a scheme of the form W0W2, where W2 has the same length
as Wf and has the form

W2 =

where W3 is of torus type or is empty.
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Proof This is the most elaborate proof of this section; three cuttings and pastings are
involved. We show first that, switching labels and exponents if necessary, w can be
written in the form

(*) w =

where some of the y may be empty.
Among the labels appearing in let a be one whose two occurrences (with

opposite exponents of course) are as close together as possible. These occurrences
are nonadjacent, by hypothesis. Switching exponents if necessary, we can assume that
the term a occurs first and the term occurs second. Let b be any label appearing
between a and we can assume its exponent is + 1. Now the term b appears
in w1, but cannot occur between a and a' because these two are as close together as
possible. if b' appears following a', we are finished. If it appears preceding a, then
all we need to do is to switch exponents on the b terms, and then switch the labels a
and b, to obtain a scheme of the desired form.

So let us assume that w has the form (*).

First cutting and pasting. We show that w is equivalent to the scheme

= woa[y2]b(y3]at[yiy4]b1[y5].

To prove this result, we rewrite w in the form

w =

We then apply the cutting and pasting argument indicated in Figure 77.3 to conclude
that

w woc[y2by3]c1[yly4b'y5]

woa[y2]b[y3]a1[yly4]b1[y5],

by relabelling. Note that the cut at c can be made because both the resulting polygons
have at least three sides.

w' =

Figure 77.3

Second cutting and pasting. Given
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we show that w' is equivalent to the scheme

WI' = woa[yly4y3lbatbt[y2y5J.

if all the schemes and w0 are empty, then the argument is easy, since in
that case

WI = a[y2]b[y3la1b1,

b[y3]a1b1a[y2]

= W".

Otherwise, we apply the argument indicated in Figure 77.4 to conclude that

W' = woa[y2]b[y3]a1[yIy4lb1[ys]

Woc[yly4y3]a'c'a[y2ysl

Woa[yly4y3]ba'b'[y2ys],

by relabelling.
Third cutting and pasting. We complete the proof. Given

W" =

we show that W" is equivalent to the scheme

= Woaba'b'[y1y4y3y2y51.

If the schemes wo, and are empty, the argument is easy, since in that case

= a[yly4y3]ba1b1

batbta[yly4y3l by permuting

a

Figure 77.4
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Otherwise, we apply the argument indicated in Figure 77.5 to conclude that

WI' = woa[yly4y3]batb1[y2ys]

by relabelling, as desired.

y3 y4 y1 a wo Y5 Y2

The final step of our classification procedure involves showing that a connected
sum of projective planes and tori is equivalent to a connected sum of projective planes
alone.

Lemma 77.4. Let w be a proper scheme of the form

W = Wo(cc)(aba'b')Wl.

Then W is equivalent to the scheme

W' = uio(aabbcc)w1.

Proof Recall Lemma 77.1, which states that for proper schemes we have

(*)

a
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We proceed as follows:

w (cc)(aba1 b1)w by permuting

= cc[abl[ba]'[wiwo]
[ab]c[bajc[wi wO] by (*) read backwards

= [a]b[c]b[acw1 wO]

bb[ac1acw1w0] by (*)

= [bb]a[c] 1a[cwi wOl

aa[bbccwj wO] by (*)

woaabbccwi by permuting.

Theorem 77.5 (The classification theorem). Let X be the quotient space obtained
from a polygonal region in the plane by pasting its edges together in pairs. Then X is
homeomorphic either to S2. to the n-fold torus or to the rn-fold projective plane Pm.

Proof Let w be the labelling scheme by which one forms the space X from the
polygonal region P. Then w is a proper scheme of length least 4. We show that w is
equivalent to one of the following schemes:
(1) acr'bb',
(2) abab,

(3) (afal)(a2a2) with m 2,

(4) withn>1.

The first scheme gives rise to the space 52, and the second, to the space P2 , as we

noted in Examples 2 and 4 of §74. The third leads to the space Pm and the fourth to

the space

Step 1. Let w be a proper scheme of torus type. We show that w is equivalent

either to scheme (1) or to a scheme of type (4).
It w has length four, then it can be written in one of the forms

or aba1bt.

The first is of type (1) and the second of type (4).
We proceed by induction on the length of w. Assume w has length greater than

four. If w is equivalent to a shorter scheme of torus type, then the induction hypothesis
applies. Otherwise, we know that w contains no pair of adjacent terms having the
same label. We apply Lemma 77.3 (with wo empty) to conclude that w is equivalent
to a scheme having the same length as w, of the form

where W3 is of torus type. Note that W3 is not empty because w has length greater

than four. Again, W3 cannot contain two adjacent terms having the same label, since
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w is not equivalent to a shorter scheme of torus type. Applying the lemma again, with
= we conclude that w is equivalent toa scheme of the form

where W4 is empty or of torus type. If w4 is empty, we are finished; otherwise we
apply the lemma again. Continue similarly.

Step 2. Now let w be a proper scheme of projective type. We show that w is
equivalent either to scheme (2) or to a scheme of type (3).

If w has length four, Corollary 77.2 implies that w is equivalent to one of the
schemes aabb or The first is of type (3) The second can be wntten in the
form aayj'y2, with yi = Y2 = b; then Lemma 77.1 implies that it is equivalent to the
scheme = abab, which is of type (2).

We proceed by induction on the length of w. Assume w has length greater than
four. Corollary 77.2 tells us that w is equivalent to a scheme of the form

w' = (a1a1) (akak)w1,

where k 1 and Wi is of torus type or empty. If w1 is empty, we are finished. If Wi
has two adjacent terms having the same label, then W' is equivalent to a shorter scheme
of projective type and the induction hypothesis applies. Otherwise, Lemma 77.3 tells
us that w1 is equivalent to a scheme of the form

W" = (alaL) .

where W2 is either empty or of torus type. Then we apply Lemma 77.4 to conclude
that W11 is equivalent to the scheme

(afal) . . (akak)aabbW2

We continue similarly. Eventually we reach a scheme of type (3).

Exercises

1. Let X be a space obtained by pasting the edges of a polygonal region together in
pairs.
(a) Show that X is homeomorphic to exactly one of the spaces in the following

list: P2, K, where K is the Klein bottle and n? 1.
(b) Show that X is homeomorphic to exactly one of the spaces in the following

list: P2, P2#Km, where Km is the rn-fold connected sum of K
with itself and rn 1.

2. (a) Write down the sequence of elementary operations required to carry out the
arguments indicated in Figures 77.1 and 77.2.

(b) Write down the sequence of elementazy operations required to carry out the
arguments indicated in Figures 77.3, 77.4, and 77.5.
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3. The proof of the classification theorem provides an algorithm for taking a proper
labelling scheme for a polygonal region and reducing it to one of the four stan-
dard forms indicated in the theorem. The appropriate equivalences are the fol-
lowing:

(i) [yo]a[yl]a[y2] Cla[y0y11y2].

(ii) [yo]aa '[y,] IYOYI I if has length at least 4.

(iii) wo[yi ]a[y-2]b[y3]a1 [y4]b1 w0aba1 b' y4y3y2y5].

(iv)

Using this algorithm, reduce each of the following schemes to one of the standard
forms.
(a)
(b) abcatcb.
(c)
(d)
(e)

(f)
(g) abcdabdc.
(h) abcdabcd.

4. Let w be a proper labelling scheme for a 10-sided polygonal region. If w is of
projective type, which of the list of spaces in Theorem 77.5 can it represent?
What if w is of torus type?

§78 Constructing Compact Surfaces

To complete our classification of the compact surfaces, we must show that every com-
pact connected surface can be obtained by pasting together in pairs the edges of a
polygonal region. We shall actually prove something slightly weaker than this, for we
shall assume that the surface in question has what is called a triangulation. We define
this notion as follows:

Definition. Let X be a compact Hausdorif space. A curved triangle in X is a sub-
space A of X and a homeomorphism h : T —÷ A, where T is a closed triangular
region in the plane. If e is an edge of T, then h(e) is is said to be an edge of A; if
v is a vertex of T, then h(v) is said to be a vertex of A. A triangulation of X is a
collection of curved triangles A1 in X whose union is X such that for i j,
the intersection A fl is either empty, or a vertex of both A and or an edge of
both. Furthermore, if h1 : T -+ A is the homeomorphism associated with A, we
require that when fl is an edge e of both, then the map defines a linear

homeomorphism of the edge (e) of T with the edge of T1. If X has a

triangulation, it is said to be triangulable.
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It is a basic theorem that every compact surface is triangulable. The proof is long
but not exceedingly difficult. (See [A-SI or [D-MJ.)

Theorem 78.1. If X is a compact inangulable surface, then X is homeomorphic to
the quotient space obtained from a collection of disjoint triangular regions in the plane
by pasting their edges together in pairs.

Proof Let A1 be a triangulation of X, with corresponding homeomorphisms
—+ A. We assume the triangles T are disjoint; then the maps h combine to

define a map h : E = T1 U U —÷ X that is automatically a quotient map.
(E is compact and X is Hausdoi-ff.) Furthermore, because the map h' o h- is linear
whenever A and A1 intersect in an edge, h pastes the edges of T, and T1 together by
a linear homeornoi-phisrn.

We have two things to prove. First, we must show that for each edge e of a tnan-
gte A, there is exactly one other tnangle A1 such that A fl A1 = e. This will show
that the quotient map h pastes the edges of the triangles T together in pairs.

The second is a bit less obvious. We must show that if the intersection A fl A
equats a vertex v of each, then there is a sequence of triangtes having u as a vertex,
beginning with A and ending with A1, such that the intersection of each triangle of
the sequence with its successor equals an edge of each. See Figure 78.1.

If this were not the case, one might have a situation such as that pictured in Fig-
ure 78.2. Here, one cannot specify the quotient map h merely by specifying how the
edges of the mangles 7', are to be pasted together, but one must also indicate how the
vertices are to be identified when that identification is not forced by the pasting of
edges.

Step 1. Let us tackle the second problem first. We show that because the space X
is a surface, a situation such as that indicated in Figure 78.2 cannot occur.

Given v, let us define two triangles A, and A1 having u as a vertex to be equivalent
if there is a sequence of triangles having u as a vertex, beginning with A and ending
with such that the intersection of each triangle with its successor is an edge of each.
If there is more than one equivalence class, let B be the union of the triangtes in one

Figure 78.1
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class and let C be the union of the others. The sets B and C intersect in u alone because
no triangle in B has an edge in common with a triangle in C. We conclude that for
every sufficiently small neighborhood W of v in X, the space W — v is nonconnected.

On the other hand, if X is a surface, then v has a neighborhood homeorriorphic to
an open 2-ball. In this case, v has arbitrarily small neighborhoods W such that W — v

is connected.

Step 2 Now we tackle the first question. This is a bit more work. First, we show
that, given an edge e of the triangle A, there is at least one additional triangle
having e as an edge. This is a consequence of the following result:

If X is a triangular region in the plane and ifx is a point interior to one of the
edges of X, then x does not have a neighborhood in X homeomorphic to an open
2-ball.

To prove this fact, we note that x has arbitrarily small neighborhoods W for which
W — x is simply connected. Indeed, if W is the E-neighborhood of x in X, forE small,
then it is easy to see that W — x is contractible to a point. See Figure 78.3.

Figure 78.3

On the other hand, suppose there is a neighborhood U of x that is homeomorphic
to an open ball in 1R2, with the homeomorphism carrying x to 0. We show that x does
not have arbitrarily small neighborhoods W such that W — x is simply connected.

Indeed, let B be the open unit ball in JR2 centered at the origin, and suppose V is

V

Figure 78.2

x
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any neighborhood of 0 that is contained in B. Choose E so that the open ball of
radius e centered at 0 lies in V, and consider the inclusion mappings

The inclusion i is homotopic to the homeomoi-phism h(x) = x/E, so it induces an
isomoi-phism of fundamental groups. Therefore, is surjective; it follows that V — 0

cannot be simply connected. See Figure 78.4.

Step 3. Now we show that given an edge e of the triangle A, there is no more than
one additional triangle A1 having e as an edge. This is a consequence of the following
result:

Let X be the union of k triangles in each pair of which intersect in the common
edge e. Let x be an interior point of e. If k 3, then x does not have a neighborhood
in X homeomorphic to an open 2-ball.

We show that there is no neighborhood W of x in X such that W — x has abelian
fundamental group. It follows that no neighborhood of x is homeomorphic to an open
2-ball.

To begin, we show that if A is the union of all the edges of the triangles of X that
are different from e, then the fundamental group of A is not abelian. The space A is
the union of a collection of k arcs, each pair of which intersect in their end points. If
B is the union of three of the arcs that make up A, then there is a retraction r of A
onto B, obtained by mapping each of the arcs not in B homeomorphically onto one
of the arcs in B, keeping the end points fixed. Then is an epirnorphism. Since the
fundamental group of B is not abelian (by Example 1 of §70 or Example 3 of §58),
neither is the fundamental group of A.

It follows that the fundamental group of X — x is not abelian, for it is easy to see
that A is a deformation retract of X — x. See Figure 78.5.

Now we prove our result. For convenience, assume x is the origin in If W is an
arbitrary neighborhood of 0, we can find a "shrinking map" f(x) = that carries X

Figure 78.4
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into W. The space XE = f(X) is a copy of X lying inside W. Consider the inclusions

The inclusion i is homotopic to the homeomorphism h(x) x/E, so it induces an iso-
morphism of fundamental groups. It follows that is surjective, so the fundamental
group of W — 0 cannot be abelian.

Theorem 78.2. If X is a compact connected trianguiable surface, then X is homeo-
morphic to a space obtained from a polygonal region in the plane by pasting the edges
together in pairs.

Proof It follows from the preceding theorem that there is a collection T1,..., of
triangular regions in the plane, and orientations and a labelling of the edges of these
regions, where each label appears exactiy twice in the total labelling scheme, such that
X is homeomorphic to the quotient space obtained from these regions by means of this
labelling scheme.

We apply the pasting operation of §76. If two triangular regions have edges bear-
ing the same label, we can (after flipping one of the regions if necessary) paste the
regions together along these two edges. The result is to replace the two triangular
gions by a single four-sided polygonal region, whose edges still bear orientations and
labels. We continue similarly. As long as we have two regions having edges bearing
the same label, the process can be continued.

Eventually one reaches the situation where either one has a single polygonal re-
gion, in which case the theorem is proved, or one has several polygonal regions, no
two of which have edges bearing the same label. In such a case, the space formed by
carrying out the indicated pasting of edges is not connected; in fact, each of the regions

x

Figure 78.5
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gives rise to a component of this space. Since the space X is connected, this situation
cannot occur.

Exercises

1. What space is indicated by each of the following labelling schemes for a collec-
tion of four triangular regions?
(a) abc, dae, bef, cdi.
(b) abc, cba, del, dfe'.

2. Let H2 be the subspace of 1R2 consisting of all points (x1, x2) with x2 0. A 2-
manifold with boundary (or surface with boundary) is a Hausdorif space X with
a countable basis such that each point x of X has a neighborhood homeomorphic
with an open set of JR2 or H2. The boundary of X (denoted 0X) consists of
those points x such that x has no neighborhood homeomorphic with an open set
of JR2.

(a) Show that no point of H2 of the form (xi, 0) has a neighborhood (in H2)
that is homeomorphic to an open set of JR2.

(b) Show that x E 0X if and only if there is a homeomorphism h mapping a
neighborhood of x onto an open set of H2 such that h(x) E R x 0.

(c) Show that 8X is a 1-manifold.

3. Show that the closed unit ball in R2 is a 2-manifold with boundary.

4. Let X be a 2-manifold; let U1 Uk be a collection of disjoint open sets in
X; and suppose that for each i, there is a homeomoi-phism h of the open unit
ball 82 with Let E = 1/2 and let Bf be the open ball of radius E. Show that
the space Y = X — U h (Be) is a 2-manifold with boundary, and that 8Y has
k components. The space Y is called "X-with-k-holes."

5. Prove the following:
Theorem. Given a compact connected triangulable 2-manifold Y with bound-
ary, such that 8Y has k components, then Y is homeomorphic to X-with-k-holes,
where X is either S2 or the n-fold torus or the m -fold projective plane

[Hint: Each component of 8Y is homeornorphic to a circle.]



Chapter 13

Classification of Covering Spaces

Up to this point, we have used covering spaces primarily as a tool for computing
fundamental groups. Now we turn things around and use the fundamental group as a
tool for studying covering spaces.

To do this in any reasonable way, we must restrict ourselves to the case where B
is locally path connected. Once we have done this, we may as well require B to be
path connected as well, since B breaks up into the disjoint open sets that are its
path components, and the maps (Ba) —÷ obtained by restricting p are covering
maps, by Theorem 53.2. We may as well assume also that E is path connected. For if

is a path component of then the map —÷ obtained by restricting p
is also a covering map. (See Lemma 80.1.) Therefore, one can determine all cover-
ings of the locally path-connected space B merely by determining all

path component of B!
For this reason, we make the following:

Convention. Throughout this chapter, the statement that p : E —÷ B is a covering
map will include the assumption that E and B are locally path connected and path
connected, unless specifically stated otherwise.

With this convention, we now describe the connection between covering spaces
of B and the fundamental group of B.

477
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If p E —÷ B is a covering map, with p(eo) = b0, then the induced homomor-
phism is injective, by Theorem 54.6, so that

H0 =

is a subgroup of (B, b0) isomorphic to (E, eo). It turns out that the subgroup H0
determines the covering p completely, up to a suitable notion of equivalence of cover-
ings. This we shall prove in §79. Furthermore, under a (fairly mild) additional "local
niceness" condition on B, there exists, for each subgroup of b0), a covering
p: E —÷ B of B whose corresponding subgroup is H0. This we shall prove in §82.

Roughly speaking, these results show that one can determine all covering spaces
of B merely by examining the collection of all subgroups of (B, b0). This is the
classical procedure of algebraic topology; one "solves" a problem of topology by re-
ducing it to a problem of algebra, hopefully one that is more tractable.

Throughout the chapter, we assume the general lifting correspondence theorem,
Theorem 54.6.

§79 Equivalence of Covering Spaces

In this sectLon, we show that the subgroup H0 of b0) determines the covering
p: E —÷ B completely, up to a suitable notion of equivalence of coverings.

Definition. Let p : E B and p' : E' B be covering maps. They are said to
be equivalent if there exists a homeomorphism h : E E' such that p = p' o h.
The homeomorphism h is called an equivalence of covering maps or an equivalence
of covering spaces

E
h

B

Given two covering maps p E —+ B and p' E' —÷ B whose corresponding
subgroups and are equal, we shall prove that there exists an equivalence h
E —÷ E'. For this purpose, we need to generalize the lifting lemmas of §54.

Lemma 79.1 (The general lifting lemma). Let p E —÷ B be a covering map;
let p(eo) = b0. Let f : Y —÷ B be a continuous map, with = b0. Suppose
Y is path connected and locally path connected. The map f can be lifted to a map
1: Y —+ E such that = e0 if and only if

go)) C eO)).

Furthermore, if such a lifting exists, iris unique.
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Proof If the lifting I exists, then

Y0)) = C

This proves the "only if" part of the theorem.
Now we prove that if f exists, it is unique. Given E Y, choose a path a in Y

from Yo to yi. Take the path I o a in B and lift it to a path y in E beginning at e0. If
a lifting f of f exists, then f(y') must equal the end point y(l) of y, for f o a is a
lifting of f o a that begins at eo, and path liftings are unique.

Finally, we prove the "if" part of the theorem. The uniqueness part of the proof
gives us a clue how to proceed. Given yi E Y, choose a path a in Y from yo to
Lift the path f o a to a path y in E beginning at and define f(yi) = y(l). See
Figure 79.1. It is a certain amount of work to show that f is well-defined, independent
of the choice of a. Once we prove that, continuity of f is proved easily, as we now
show.

To prove continuity of I at the point of Y, we show that, given a neighbor-
hood N of there is a neighborhood W of such that f(W) C N. To be-
gin, choose a path-connected neighborhood U of f(Yi) that is evenly covered by p.
Break up into slices, and let Vo be the slice that contains the point
Replacing U by a smaller neighborhood of if necessary, we can assume that
V0 C N. Let Po : Vo U be obtained by restncting p; then p0 is a homeomor-
phism. Because f is continuous at yi and Y is locally path connected, we can find
a path-connected neighborhood W of such that f(W) C U. We shall show that
1(W) C Vo; then our result is proved. -

Given y E W, choose a path ,6 in W from Yi to y. Since f is well defined, 1(y)
can be obtained by taking the path a * ,6 from yo toy, lifting the path f o (a * ,6) to a
path in E beginning at and letting f(y) be the end point of this lifted path. Now y
is a lifting of a that begins at e0. Since the path fo,6 lies in U, the path 8 = o fo,6

,,

Figure 79.1
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is a lifting of it that begins at f(y'). Then y* 8 is a lifting of f o (a * ,6) that begins

at eo; it ends at the point 8(1) of V0. Hence f(W) C V0, as desired.
Finally, we show f is well defined. Let a and ,6 be two paths in Y from yo to

We must show that if we lift f o a and f o ,6 to paths in E beginning at then these
lifted paths end at the same point of E. -

First, we lift f o a to a path y in E beginning at then we lift f o ,6 to a path 8
in E beginning at the end point y(l) of y. Then y *5 is a lifting of the loop I o(a *,6).
Now by hypothesis,

C

Hence [f o (a * ,6)J belongs to the image of Theorem 54.6 now implies that its lift
y*8isaloopinE. -

It follows that f is well defined. For 8 is a lifting of f o ,6 that begins at eo,and y
is a lifting of f o a that begins at eo, and both liftings end at the same point of E. •

Theorem 79.2. Let p: E -+ B and p' E' B be covering maps; let p(e0) =
= b0. There is an equivalence h E -÷ E' such that h(e0) = if and only if

the groups

H0 = and =

are equal. If h exists, it is unique.

Proof We prove the "only if" part of the theorem. Given h, the fact that h is a
homeomorphism implies that

h = p. we have H0 =
Now we prove the "if' part of the theorem; we assume that H0 = and show

that h exists. We shall apply the preceding lemma (four times!). Consider the maps

Flip,

E B.

Because p' is a covering map and E is path connected and locally path connected,
there exists a map h : E —+ E' with h (eo) = that is a lifting of p (that is, such that
p' o h = p). Reversing the roles of E and E' in this argument, we see there is a map
k: E' E with k = p'. Now consider the maps

E—LB.
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The map koh : E E isa lifting of p (since pokoh = p'oh = p), with p(eo) =
The identity map E is another such lifting. The uniqueness part of the preceding
lemma implies that k o h = A similar argument shows that h o k equals the identity
map of E'.

We seem to have solved our equivalence problem. But there is a somewhat subtle
point we have overlooked. We have obtained a necessary and sufficient condition for
there to exist an equivalence h • E —÷ E' that carries the point e0 to the point
But we have not yet determined under what conditions there exists an equivalence in
general. It is possible that there may be no equivalence carrying e0 to but that there
is an equivalence carrying eo to some other point of (p'y'(b0). Can we determine
whether this is the case merely by examining the subgroups H0 and We consider
this problem now.

If H1 and H2 are subgroups of a group G, you may recall from algebra that they
are said to be conjugate subgroups if H2 = a H1 . for some element a of G.
Said differently, they are conjugate if the isomorphism of G with itself that maps x to
a x . carries the group H1 onto the group H2. It is easy to check that conjugacy
is an equivalence relation on the collection of subgroups of G. The equivalence class
of the subgroup H is called the conjugacy class of H.

Lemma 79.3. Let p: E B be a covering map. Let eo ande1 be points ofp' (bo),
and let H =

(a) If y is a path in E from eo to ei, and a is the loop p o y in B, then the equation
[a] * H1 * [a]1 = H0 holds; hence H0 and H1 are conjugate.

(b) Conversely, given and given a subgroup H of (B, bo) conjugate to H0,
there e.xistsapointei of such that H1 = H.

Proof (a) First, we show that[a]* H1 C Ho. Given an element [hJ of H1, we
have [h] = for some loop h in E based at Let k be the path k = (y *h) *
it is a loop in E based at eo, and

=[(a*h)*ã] [a]*[h]*[af',

so the latter element belongs to (E, eO)) = H0, as desired. See Figure 79.2.
Now we show that [a] * H1 * Ho. Note that is a path from el to and

a equals the loop p o By the result just proved, we have

[a] * H0 * [ã]_i C H1,

which implies out desired result.
(b) To prove the converse, let be given and let H be conjugate to Ho. Then

H0 = [a]*H*[a]' for some loop a in B based at b0. Let be the lifting of a to a path
in E beginning at eo, and let = y(l). Then (a) implies that H0 = [a] * *

We conclude that H = H1.
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Theorem 79.4. Let p: E —÷ B and p' E' —÷ B be covering maps; let p(eo) =
p and p' are equivalent if and only if the subgroups

H0 = and

of2r1(B, b0) are conjugate.

Proof If h : E —+ E' is an equivalence, let = h(eo), and let (E',
Theorem 79.2 implies that = H, while the preceding lemma tells us that is

conjugate to
Conversely, if the groups H0 and are conjugate, the preceding lemma implies

there is a point of E' such that H = H0. Theorem 79.2 then gives us an equivalence
h : E —+ E'suchthath(e0) =e'1.

EXAMPLE 1. Consider covering spaces of the circle B = S'. Because jr1 (B, bcj) is
abelian. two subgroups of JrL(B, brj) arc conjugate if and only if they are equal. Therefore
two coverings of B are equivalent if and only if they correspond to the same subgroup of
jr1(B,bo).

Now ,r1(B, b0) is isomorphic to the integers Z. What are the subgroups of V It is
standard theorem of modern algebra that, given a nontrivial subgroup of Z, it must be the
group consisting of all multiples of n, for some n E

We have studied one covering space of the circle, the covenng p : R —+ S' It
must correspond to the trivial subgroup of jrj(S1, bo), because JR is simply connected We
have also considered the covering p S' S' defined by = z", where z is a
complex number. In this case, the map carries a generator of it1 (S' bo) into n times
itself. Therefore, the group b0)) corresponds to the subgroup of Z under the
standard isomorphism of b0) with Z.

We conclude from the preceding theorem that every path-connected covering space
of S' is equivalent to one of these coverings.

Figure 79.2

JB
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Exercises

1. Show that if n > 1, every Continuous map f: S1 is nulhomotopic. [Hint:
Use the lifting lemma.]

2. (a) Show that evezy continuous map f : P2 —÷ S' is nuihomotopic.
(b) Find a Continuous map of the torus into S' that is not nulhomotopic.

3. Let p : E B be a covering map; let p(eo) = b0. Show that H0 =
eo)) is a normal subgroup of b0) if and only if for every pair

of points el, of (bo), there is an equivalence h : E —÷ E with h(e1) = e2.

4. Let T = 51 x the torus. There is an isomorphism of 2r1(T, b0 x b0) with
Z x Z induced by projections of T onto its two factors.
(a) Find a covering space of T corresponding to the subgroup of Z x Z generated

by the element m x 0, where m is a positive integer.
(b) Find a covering space of T corresponding to the trivial subgroup of Z x Z.
(c) Find a covering space of T corresponding to the subgroup of Z x Z generated

by m x 0 and 0 x n, where m and n are positive integers.

*5 Let T = 51 x 51 be the torus; let x b0.
(a) Prove the following

Theorem. Every isomorphism of x0) with itself is induced by a
homeomorphism of T with itself that maps xo to
[Hint: Let p : 1R2 —÷ T be the usual covering map. If A is a 2 x 2 matrix
with integer entries, the linear map TA JR2 R2 with matrix A induces a
continuous map f : T -+ T. Furthermore, f is a homeomorphism if A is
invertible over the integers.]

(b) Prove the following:
Theorem. If E is a covering space of T, then E is homeomorphic either
to to S1 x R, or to T.
[Hint: You may use the following result from algebra: If F is a free abelian
group of rank 2 and N is a nontrivial subgroup, then there is a basis ai, a2
for F such that either (1) mal is a basis for N, for some positive integer m,
or (2) mai, na2 is a basis for N, where m and n are positive integers.]

*6. Prove the following:
Theorem. Let G be a topological group with multiplication operation m : G x
G —+ G and identity element e. Assume p: G G is a covering map. Given ë
with p(i) = e, there is a unique multiplication operation on G that makes it into
a topological group such that ë is the identity element and p is a homomorphism.
Proof Recall that, by our convention, G and G are path connected and locally
path connected.
(a) Let I : G G be the map I(g) = Show there exist unique maps

th : G x G —+ G and I G —+ G with x ë) = ë and 1(ê) = ë such that
poñi =mo(px p)andpol = lop.

(b) Show the maps G -÷ G given by —÷ ñz(ë x and —÷ x i) equal
the identity map of G. [Hint: Use the uniqueness part of Lemma 79.1.]
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(c) Show the maps G .-+ G given by x and ñi(1(g) x
map G to ê.

(d) Show the maps G x G x G —÷ G given by

x g' x g" —+ x g') x

are equal.
(e) Complete the proof.

7. Let p : G —+ G be a homomorphism of topological groups that is a covering
map. Show that if G is abelian, so is G.

§80 The Universal Covering Space

Suppose p : E B is a covering map, with p(eo) = b0. If E is simply connected,
then E is called a universal covering space of B. Since (E, eo) is trivial, this
enng space corresponds to the trivial subgroup of 211 (B, b0) under the correspondence
defined in the preceding section. Theorem 79.4 thus implies that any two universal
covering spaces of B are equivalent. For this reason, we often speak of "the" universal
covering space of a given space B. Not every space has a universal covering space, as
we shall see. For the moment, we shall simply assume that B has a universal covering
space and derive some consequences of this assumption.

We prove two preliminary lemmas:

Lemma 80.1. Let B be path connected and locally path connected. Let p: E —p B
be a covering map in the former sense (so that E is not required to be path connected).
If E0 is a path component of E, then the map po: E0 B obtained by restricting p
is a covering map.

Proof We first show p0 is surjective. Since the space E is locally homeomoi-phic
to B, it is Locally path connected. Therefore E0 is open in E. It follows that p(Eo) is
open in B. We show that p(E0) is also closed in B, so that p(Eo) = B.

Let x be a point of B belonging to the closure of p(E0). Let U be a path-connected
neighborhood of x that is evenly covered by p. Since U contains a point of p(Eo),
some slice of (U) must intersect E0. Since is homeomoi-phic to. U, it is
path connected; therefore it must be contained in E0. Then = U is contained
in p(Eo), so that in particular, x E p(Eo).

Now we show P0 E0 —+ B is a covering map. Given x E B, choose a neigh-
borhood U of x as before. If Va is a slice of p (U), then is path connected; if it
intersects E0, it lies in E0. Therefore, (U) equals the union of those slices of
p1(U) that intersect E0; each of these is open in E0 and is mapped homeomorphi-
cally by P0 onto U. Thus U is evenly covered by po. I
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Lemma 80.2. Let p, q, and r be continuous maps with p = r oq, as in the following
diagram:

(a) If p and r are covering maps, so is q.

*(b) If p and q are covering maps, so is r.

Proof By our convention, X, Y, and Z are path connected and iocally path
nected. Letx0 E X; set yo = q(xo) and = p(x0).

(a) Assume that p and r are covering maps. We show first that q is surjective.
Given y E Y, choose a path a in Y from yo to y. Then a = r o & is a path in Z
beginning at zo; let & be a lifting of a to a path in X beginning at Thenq o & is a
lifting of a to Y that begins at By uniqueness of path liftings, a = q o &. Then q
maps the end point of a to the end point y of &. Thus q is surjective.

Given y E Y, we find a neighborhood of y that is evenly covered by q. Let z =
r(y). Since p and r are covering maps, we can find a path-connected neighborhood U
of z that is evenly covered by both p and r. Let V be the slice of (U) that contains
the point y; we show V is evenly covered by q. Let fUn) be the collection of slices
of p1(U). Now q maps each set t'a into the set (U); because is connected,
it must be mapped by q into a single one of the slices of r1 (U). Therefore, q1 (V)
equals the union of those slices that are mapped by q into V. It is easy to see that
each such is mapped homeomorphically onto V by q. For let Po. qo, rO be the maps
obtained by restricting p, q, and r, respectively, as indicated in the following diagram:

L

Because Po and ro are homeomorphisms, so is = ° P0.
*(b) We shall use this result only in the exercises. Assume that p and q are cover-

ing maps. Because p = r o q and p is surjective, r is also surjective.
Given z E Z, let U be a path-connected neighborhood of z that is evenly covered

by p. We show that U is also evenly covered by r. Let (Vp) be the collection of path
components of r1 (U); these sets are disjoint and open in Y. We show that for each ,6,
the map r carries Vp homeomorphically onto U.

Let (Un) be the collection of slices of p'(U); they are disjoint, open, and path
connected, so they are the path components of p (U). Now q maps each Ua into the
set r1 (U); because is connected, it must be mapped by q into one of the sets Vp.
Therefore (1 (Vp) equals the union of a subcollection of the collection (Ua). Theo-
rem 53.2 and Lemma 80.1 together imply that if Ua0 is any one of the path components
of q1 (Vp) then the map qo —+ Vp obtained by restricting q is a covering map.
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In particular, is surjective. Hence is a homeomorphism, being continuous, open,
and injective as well. Consider the maps

ao qo

P01

obtained by restricting p. q, and r. Because p0 and qo are homeomorphisms, so is ro.
U

Theorem 80.3. Let p: E B be a covering map, with E simply connected. Given
any covering mapr: Y B, there isacoveringmapq : E Ysuchthatroq = p.

E is called a universal covering space of B; it covers
every other covering space of B.

Proof Let b0 E B; choose eo and so that p(eo) = b0 and r(yo) = b0. We apply
Lemma 79.1 to construct q. The map r is a covering map, and the condition

C

is satisfied trivially because E is simply connected. Therefore, there is a map q : E -+
Y such that r o q = p and q(eo) = Yo It follows from the preceding lemma that q is
a covering map. U

Now we give an example of a space that has no universal covering space. We need
the following lemma.

Lemma 80.4. Let p : E B be a covering map; let p(eo) = bo. If E is simply
connected, then b0 has a neighborhood U such that inclusion I U —÷ B induces the
trivial homomorphism

i4 :irj(U,bo) —+

Proof Let U be a neighborhood of bo that is evenly covered by p; break (U) up
rnto slices; let be the slice containing eo. Let f be a loop in U based at Because

defines a homeomorphism of 1/a with U, the loop f lifts to a loop f in
at eo. Since E is simply connected, there is a path homotopy F in E between f and a
constant loop. Then p o F is a path homotopy in B between f and a constant loop. U
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EXAMPLE 1. Let X be our familiar "infinite earring" in the plane, if is the circle
of radius 1/n in the plane with center at the point (I/n, 0), then X is the union of the
circles C5. Let b0 be the origin; we show that if U is any neighborhood of in X, then
the homomorphism of fundamental groups induced by inclusion I U —÷ X is not trivial.

Given n, there is a retraction r : X —÷ C,, obtained by letting r map each circle C,
for I n to the point b0. Choose n large enough that C,, lies in U. Then in the following
diagram of homomorphisms induced by inclusion, is injective, hence i,, cannot be trivial.

ir1(C,,,bo)

,r1(U,

lt follows that even though X is path connected and locally path connected, it has no
universal covering space.

Exercise

1. Letq X Y andr: Y Zbe maps; letp = roq.
(a) Let q and r be covering maps. Show that if Z has a universal covering space,

then p is a covering map. Compare Exercise 4 of §53.
*(b) Give an example where q and r are covering maps but p is not.

Covering Transformations

Given a covering map p E —÷ B, it is of some interest to consider the set of all
equivalences of this covenng space with itself. Such an equivalence is called a cov-
ering transformation. Composites and inverses of covenng transformations are cov-
ering transformations, so this set forms a group; it is called the group of covering
transformations and denoted e(E, p, B).

Throughout this section, we shall assume that p : E —* B is a covering map
with p(eo) = b0; and we shall let H0 = (E, eO)). We shall show that the
group e(E, p, B) is completely determined by the group (B, b0) and the subgroup
H0. Specifically, we shall show that if N(H0) is the largest subgroup of (B, b0) of
which H0 is a normal subgroup, then e(E, p, B) is isomorphic to N(Ho)/Ho.

We define N(H0) formally as follows:

Definition. If H is a subgroup of the group G, then the normalizer of H in G is the
subset of G defined by the equation

N(H) = (g
I

= H).

It is easy to see that N(H) is a subgroup of G. It follows from the definition that it
contains H as a normal subgroup and is the largest such subgroup of G.
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The correspondence between the groups N(Ho)/Ho and e(E, p, B) is established
by using the lifting correspondence of §54 and the results about the existence of
alences proved in §79. We make the following definition:

Definition. Given p. E —* B with p(eo) = bo, let F be the set F = p1 (eo). Let

1): iri(B,bo)/Ho —÷ F

be the lifting correspondence of Theorem 54.6; it is a bijection. Define also a corre-
spondence

'F : e(E, B) F

by setting '4'(h) = h(eo) for each covering transformation h : E —÷ E. Since h is
uniquely determined once its value at is known, the correspondence '4' is injective.

Lemma 81.1. The image of the map '4' equals the image under 4) of the subgroup
N(Ho)/Ho of,ri(B, bo)/Ho.

Proof Recall that the lifting correspondence : (B, bo) —+ F is defined as fol-
lows: Given a loop a in B at b0, let y be its lift to E beginning at eo; let ef =
and define by setting = ej. To prove the lemma, we need to show that there
is a covering transformation h : E —+ E with h(eo) = ei if and only if [a] E N(Ho).

This is easy. Lemma 79.1 tells us that h exists if and only if H0 = HL, where
H1 = ej)). And Lemma 79.3 tells us that [a] * H1 * [a]' = H0. Hence h
exists if and only if [a) * H0 * [a]_1 = H0, which is simply the statement that [a] E
N(H0). U

Theorem 81.2. The bijection

o4' : e(E, B) N(Ho)/Ho

is an isomorphism of groups.

Proof We need only show that 4Y1 o '4' is a homomorphism. Let h, k : E —÷ E be
covering transformations. Let h(eo) = e1 and k(e0) = e2; then

4'(h)=e1 and '4'(k)=e2,

by definition. Choose paths y and 8 in E from eO toe1 and respectively. Ha = poy
and ,6 = p 08, then

= e1 and 4)([,6]Ho) = e2,

by definition. Let e3 = h(k(eo)); then '4'(h o k) = We show that

4)([a*8]Ho) =e3,
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and the proof is complete.
Since 8 is a path from eo to e2, the path h o tS is a path from h(eo) = et to

h(e2) = h(k(eo)) = e3. See Figure 81.1. Then the product y * (ho 8) is defined and is
a path from eo to It is a lifting of a * ,6, since p o y = a and p o h o = p o =
Therefore D([a * = e3, as desired. U

Corollary 81.3. The group is a normal subgroup ofir1 (B, b0) if and only if for
every pair of points ei and e2 of (b0), there is a covering transformation h: E —÷
E with h (e1) = e2. In this case, there is an isomorphism

(V1 o4' e(E, p, B) (B, bo)/Ho.

Corollary 81.4. Let p: E -÷ B be a covering map. If E is simply connected, then

e(E, p, B) (B, b0).

If H0 is a normal subgroup of ir1(B, b0), then p E B is called a regular
cowering map (Here is another example of the overuse of familiar terms. The words
"normal" and "regular" have already been used to mean quite different things!)

EXAMPLE 1. Because the fundamental group of the circle is abelian, every covering
of S' is regular. If p 1R —* S' is the stand&d covenng map, for instance, the covenng
transformations are the homeomorphisms x —+ x + n. The group of such transformations
is isomorphic to Z.

EXAMPLE 2 For an example at the other extreme, consider the covenng space of the
figure eight indicated in Figure 81.2. (We considered this covering earlier, in §60. The
x-axis is wrapped around the circle A and the is wrapped around B. The circles A
and B are mapped homeomorphically onto A and B, respectively.) In this case, we show
that the group C(E, p, B) is tnvial.

•0

Figure 81.1
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In general, if h E —+ E is a covering transformation, then any loop in the base space
that Lifts to a loop in E at also lifts to a ioop when the lift begins at h(e0). In the present
case, a loop that generates the fundamental group of A lifts to a non-loop when the lift
is based at and lifts to a loop when it is based at any other point of p1(bo) lying on
the y-axis. Similarly, a loop that generates the fundamental group of B lifts to a non-loop
beginning at en and to a loop beginning at any other point of p1(bo) lying on the x-axis.
It follows that h(eo) = en, so that h is the identity map.

A1

BOO
There is a method for constructing covering spaces that automatically leads to a

covering that is regular; and in fact every regular covenng space can be constructed by
this method. It involves the action of a group G on a space X.

Definition. Let X be a space, and let G be a subgroup of the group of homeomor-
phisms of X with itself. The orbit space X/G is defined to be the quotient space
obtained from X by means of the equivalence relation x g(x) for all x E X and all
g G. The equivalence class of x is called the orbit of x.

Definition. If G is a group of homeomorphisms of X, the action of G on X is said
to be properly discontinuous if for every x X there is a neighborhood U of x such
that g(U) is disjoint from U whenever g e. (Here e is the identity element of G.)
It follows that go(U) and g1(U) are disjoint whenever gi, for otherwise U and

would not be disjoint.

Theorem 81.5. Let X be path connected and locally path connected; let G be a group
of homeomorphisms of X. The quotient map 71 . X -+ X/G is a covering map if and
only if the action of G is properly discontinuous. In this case, the covering map 71 iS
regular and G is its group of covering transformations.

Figure 81.2
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Proof We show 71 is an open map. If U is open in X, then ir1ir(U) is the union of
the open sets g(U) of X, for g G. Hence is open in X, so that ,r(U) is
open in X/G by definition. Thus 71 is open.

Step 1. We suppose that the action of G is properly discontinuous and show that 71
is a covering map. Given x E X, let U be a neighborhood of x such that g0(U) and
gi(U) are disjoint whenever go gi. Then 71(U) is evenly covered by 71. Indeed,
7r171(U) equals the union of the disjoint open sets g(U), for g E G, each of which
contains at most one point of each orbit. Therefore, the map g(U) —÷ 71(U) obtained
by restricting 71 is bijective; being continuous and open, it is a homeornorphism. The
sets g(U), for g E G, thus form a partition of 71 171(U) into slices.

Step 2. We suppose now that 71 is a covering map and show that the action of G is
properly discontinuous. Given x E X, let V be a neighborhood of 71(x) that is evenly
covered by 71. Partition ir t(V) into slices; let (Ia be the slice containing .x. Given
g E G with g e, the set must be disjoint from for otherwise, two points
of Ua would belong to the same orbit and the restriction of to would not be
injective. It follows that the action of G is properly discontinuous.

Step 3. We show that if 71 is a covering map, then G is its group of covering
transformations and is regular. Certainly any g E G is a covering transformation,
for 71 0 g = 71 because the orbit of g(x) equals the orbit of x. On the other hand, let h
be a covering transformation with h(x1) = x2, say. Because 71 oh = 71, the points
and x2 map to the same point under therefore there is an element g E G such that
g(xi) = x2. The uniqueness part of Theorem 79.2 then implies that h = g.

It follows that 71 is regular. Indeed, for any two points and x2 lying in the same
orbit, there is an element g E G such that = x2. Then Corollary 81.3 applies. U

Theorem 81.6. If p X B is a regular covering map and G is its group of
covering transformations, then there is a homeomorphism k : X/ G —+ B such that
p = k 071, where 71 : X —+ X/G is the projection.

I F
Proof If g is a covenng transformation, then p(g(x)) = p(x) by definition. Hence
p is constant on each orbit, so it induces a continuous map k of the quotient space X/ G
into B. On the other hand, p is a quotient map because it is continuous, surjective, and
open. Because p is regular, any two points of (b) belong to the same orbit under
the action of G. Therefore, 71 induces a continuous map B —k X/ G that is an inverse
fork. U

EXAMPLE 3. Let X be the cylinder S1 x I; let h : X —+ X be the homeomorphism
h(x, t) = (—x, t); and let k : X —+ X be the homeomorphism k(x, r) — (—x, 1 — t).
The groups G1 = (e, h} and G2 = fe, k} are isomorphic to the integers modulo 2; both
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act properly discontinuously on X. But X/G1 is homeomorphic to X, while X/G2 is
homeomorphic to the Möbius band, as you can check. See Figure 81.3.

Exercises

Figure 81.3

1. (a) Find a group G of homeomorphisms of the torus T having order 2 such that
T/G is homeomorphic to the torus.

(b) Find a group G of homeomorphisms ofT having order 2 that T/G is home-
omorphic to the Klein bottle.

2. Let X = A V B be the wedge of two circles.
(a) Let E be the space pictured in Figure 81.4; let p E X wrap each arc A1

and A2 around A and map B1 and B2 homeomorphically onto B. Show p is
a regular covering map.

(b) Deermine the group of covering transformations of the covering of X indi-
cated in Figure 81.5 Is this covering regular?

Figure 81.5

A1

Figure 81.4
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(c) Repeat (b) for the covering pictured in Figure 81.6.
(d) Repeat (b) for the covenng pictured in Figure 81.7.

A_1 •0 A0

Figure 81.7

3. Let p : X —+ B be a covering map (not necessarily regular); let G be its group
of covenng transformations.
(a) Show that the action of G on X is properly discontinuous.
(b) Let 71 X —÷ X/ G be the projection map. Show there is a covering map

Bsuchthatko7r=p.

X/G

4. Let G be a group of homeomoi-phisms of X. The action of G on X is said to
befixed-pointfree if no element of G other than the identity e has a fixed point.
Show that if X is Hausdorif, and if G is a finite group of homeomoi-phisms of X
whose action is fixed-point free, then the action of G is properly discontinuous.

5. Consider S3 as the space of all pairs of complex numbers (ZL, z2) satisfying the
equation Izi 2 + 1Z212 = 1. Given relatively prime positive integers n and k,
define h —÷ by the equation

h(z1,z2) =

A2 82 A4

Figure 81.6
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(a) Show that h generates a subgroup G of the homeomorphism group of S3
that is cyclic of order n, and that only the identity element of G has a fixed
point. The orbit space S3/G is called the lens space L(n, k).

(b) Show that if L(n, k) and L(n', k') are homeomorphic, then n = n'. [It is a
theorem that L(n, k) and L(n', k') are homeomoi-phic if and only if n = n'
and either k k' (mod n) or kk' 1 (mod n). The proof is decidedly
nontrivial.]

(c) Show that L(n, k) is a compact 3-manifold.
6. Prove the following:

Theorem. Let X be a locally compact Hausdorff space; let G be a group of
homeomorphisms of X such that the action of G is fixed-point free. Suppose
that for each compact subspace C of X, there are only finitely many elements g
of G such that the intersection C fl g(C) is nonempty. Then the action of G is
properly discontinuous, and X/G is locally compact Hausdor-if.
Pmof
(a) For each compact subspace C of X, show that the union of the sets g(C), for

g E G, is closed in X. [Hint: If U is a neighborhood of x with U compact,
then U U C intersects g(U U C) for only finitely many g.]

(b) Show X/G is Hausdorff.
(c) Show the action of G is properly discontinuous.
(d) Show X/G is locally compact.

§82 Existence of Covering Spaces

We have shown that corresponding to each covering map p E —p B is a conjugacy
class of subgroups of (B, bo), and that two such covering maps are equivalent if and
only if they correspond to the same such class. Thus, we have an injective correspon-
dence from equivalence classes of coverings of B to conjugacy classes of subgroups of

(B, b0). Now we ask the question whether this correspondence is surjective, that is,
whether for every conjugacy class of subgroups of (B, bo), there exists a covenng
of B that corresponds to this class.

The answer to this question is "no," in general. In §80, we gave an example of a
path-connected, locally path-connected space B that had no simply connected cover-
ing space, that is, that had no covering space corresponding to the class of the trivial
subgroup. This example relied on Lemma 80.4, which gave a condition that any space
having a simply connected covering space must satisfy. We now introduce this condi-
tion formally.

Definition. A space B is said to be semilocally simply connected if for each b B,
there is a neighborhood U of b such that the homomorphism

iif(U,b)—+ ir1(B,b)

induced by inclusion is tnvial.
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Note that if U satisfies this condition, then so does any smaller neighborhood of b,
so that b has "arbitrarily small" neighborhoods satisfying this condition. Note also that
this condition is weaker than true local simple connectedness, which would require that
within each neighborhood of b there should exist a neighborhood U of b that is itself
simply connected.

Semilocal simple connectedness of B is both necessary and sufficient for there to
exist, for every conjugacy class of subgroups of 711 (B, b0), a corresponding covering
space of B. Necessity was proved in Lemma 80.4; sufficiency is proved in this section.

Theorem 82.1. Let B be path connected, locally path connected, and seinilocally
simply connected. Let b0 E B. Given a subgroup H of (B, bo), there exists a
covering map p: E B and a point eo E p (b0) such that

= H.

Proof Step 1. Construction of E. The procedure for constructing E is reminiscent
of the procedure used in complex analysis for constructing Riemann surfaces. Let
denote the set of all paths in B beginning at b0. Define an equivalence relation on
by setting a ,6 if a and end at the same point of B and

E H.

This relation is easily seen to be an equivalence relation. We will denote the equiva-
lence class of the path a by cr4t.

Let E denote the collection of equivalence classes, and define p : E —÷ B by the
equation

= a(1)

Since B is path connected, p is surjective. We shall topologize E so that p is a covering
map.

We first note two facts:

(1) If [a] = [a], then a# =

(2) If a# = then (a * = * 8)# for any pathS in B beginning at a( 1).
The first follows by noting that if [a] = [a], then [a * is the identity element, which
belongs to H. The second follows by noting that a *8 and $ * end at the same point
of B, and

[(a*tS)*(8*8)] [(a*5)*(tS*8)] = [a *8],

which belongs to H by hypothesis.

Step 2. Topologizing E. One way to topologize E is to give the compact-open
topology (see Chapter 7) and E the corresponding quotient topology. But we can
topologize E directly as follows
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Let a be any element of and let U be any path-connected neighborhood of
a(1). Define

B(U, a) = ((a *
I

is a path in U beginning at cr(l)).

Note that is an element of B(U, cr), since if b = a(l), then = (a * this
element belongs to B(U, a) by definition. We assert that the sets B(U, a) form a basis
for a topology on E.

First, we show that if E B(U, a), then E B(U, and B(U, a) = B(U,
If ,6# E B(U, cr), then = (a * for some path 8 in U. Then

= by(2)
= a# by(1),

so that E B(U, fi) by definition. See Figure 82.1. We show fIrst that B(U, fi) C
B(U, a). Note that the general element of B(U, ,6) is of the form (fi * y)#, where y
a path in U. Then note that

=(cr*(8*y))4t,

which belongs to B(U, a) by definition. Symmetry gives the inclusion B(U, a) C
B(U, ,6) as well.

Now we show the sets B(U, a) form a basis. If belongs to the intersection
B(U1, crj) fl B(U2, a2), we need merely choose a path-connected neighborhood V

Figure 82.1
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of contained in U1 fl U2. The inclusion

B(V,,6)C

follows from the definition of these sets, and the right side of the equation equals
B(U1, a1) fl B(U2, a2) by the result just proved.

Step 3. The map p is continuous and open. It is easy to see that p is open, for
the image of the basis element B(U, a) is the open subset U of B: Given x E U, we
choose a path 8 in U from a(l) to x; then (a * is in B(U, a) and p((a * = x.

To show that p is continuous, let us take an element a# of E and a neighborhood W
of p(cr#). Choose a path-connected neighborhood U of the point p(cr4t) = a( 1) lying
in W. Then B(U, a) is a neighborhood of a4t that p maps into W. Thus p is continuous
at a4t.

Step 4. Every point of B has a neighborhood that is evenly covered by p. Given
b1 E B, choose U to be a path-connected neighborhood of b1 that satisfies the further
condition that the homomorphism (U, b1) —+ (B, b1) induced by inclusion is
trivial. We assert that U is evenly covered by p.

First, we show that equals the union of the sets B(U, a), as a ranges
over all paths in B from bo to b1. Since p maps each set B(U, a) onto U, it is clear
that contains this union. On the other hand, if belongs to p'(U), then
,6(l) E U. Choose a path 8 in U from b1 to and let a be the path * from b0
to b1. Then = [a * so that = * which belongs to B(U, a). Thus

is contained in the union of the sets B(U, a).
Second, note that distinct sets B(U, a) are disjoint. For if belongs to B(U, cr1)fl

B(U, a2), then B(U, cry) = B(U, = B(U, a2), by Step 2.
Third, we show that p defines a bijective map of B(U, a) with U. It follows that

pIB(U, a) is a homeomorphism, being bijective and continuous and open. We already
know that p maps B(U, a) onto U. To prove injectivity, suppose that

p((a * = p((a

where and are paths in U. Then = 82(1). Because the homomorphism
ir1(U,bi) —÷ ir1(B, b1) induced by inclusion is trivial, tSI *62 is path homotopic in B
to the constant loop. Then [a * t5j] = [a * 82], 50 that (a * tSl)# = (a * as desired.

It follows that p : E —p B is a covering map in the sense used in earlier chapters.
To show it is a covering map in the sense used in this chapter, we must show E is path
connected. This we shall do shortly.

Step 5. Lifting a path in B. Let eo denote the equivalence class of the constant
path at b0; then p(eo) = b0 by definition. Given a path a in B beginning at b0, we
calculate its lift to a path in E beginning at eo and show that this lift ends at a#.

To begin, given c E [0, 1], let : 1 —* B denote the path defined by the equation

= a(tc) for 0 t 1.

Then a that runs from a(O) to a(c). In particular, ao is the
constant path at b0, and a itself. We define & : 1 —÷ E by the equation

ã(c) = (ac)4t
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and show that a is continuous. Then & is a lift of x, since p(ã(c)) = ac(l) =
furthermore, & begins at (cr0)4' = eo and ends at (cr1)4' =

To venfy continuity, we introduce the following notation. Given 0 c < d 1,

let 8c,d denote the path that equals the positive linear map of I onto [c, d] followed
by a. Note that the paths and * 8c,d are path homotopic because one is just a
reparametrization of the other. See Figure 82.2.

Figure 82.2

We now venfy continuity of & at the point c of [0, ii. Let W be a basis element
in E about the point ã(c). Then W equals B(U, crc) for some path-connected neigh-
borhood U of cr(c). Choose 0 so that for c — < the point cr(t) lies in U.
We show that if d is a point of [0, 1] with Ic — dl < e, then &(d) E W; this proves
continuity of & at c.

So suppose Ic — d > c. Set 8 = 8c.d; then since
[ad] = [crc * 8], we have

ã(d) = (ad)4' = (crc *

Since 8 hes in U, we have &(d) E B(U, ar), as desired. If d < c, set 8 = 8dc and
proceed similarly.

Step 6. The map p E —÷ B is a covering map. We need only venfy that E is
path connected, and this is easy. For if is any point of E, then the lift & of the path
cr is a path in E from eo to

Step 7. Finally, H = (E, eo). Let a be a loop in B at b0. Let & be its lift
to E beginning at eo. Theorem 54.6 tells us that [a] E p*(iri (E, e0)) if and only if &
is a loop in E. Now the final point of & is the point a#, and = eo if and only if a
is equivalent to the constant path at b0, i.e., if and only if [a * ëb0] H This occurs
precisely when [a] E H. U

Corollary 82.2. The space B has a universal covering space if and only if B is path
connected, locally path connected, and semAlocally simply connected.
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Exercises

1. Show that a simply connected space is semilocally simply connected.

2. Let X be the infinite earring in JR2. (See Example I of §80.) Let C(X) be the
subspace of JR3 that is the union of all line segments joining points of X x 0 to
the point p = (0, 0, 1). It is called the cone on X. Show that C(X) is simply
connected, but is not locally simply connected at the origin.

Exercises: Topological Properties and in

The results of the preceding section tell us that the appropriate hypotheses for classi-
fying the covering spaces of B are that B is path connected, locally path connected,
and semilocally simply connected. We now show that they are also the correct hy-
potheses for studying the relation between various topological properties of B and the
fundamental group of B.

1. Let X be a space; let A be an open covering of X. Under what conditions does
there exist an open covering of X refining A such that for each pair B, B'
of elements of that have nonempty intersection, the union B U B' lies in an
element of A?
(a) Show that such a covering exists if X is metnzable. [Hint: Choose €(x)

so B(x, 3E(x)) lies in an element of A. Let consist of the open sets
B(x, €(x)).]

(b) Show that such a covering exists if X is compact Hausdorif. [Hint: Let
A1 be a finite subcollectionof A that covers X. Choose an open
covering Ci of X such that C1 C A for each i. For each nonempty
subset J of { 1 n}, consider the set

Bj = fl A, — U Ci.]
JEJ

2. Prove the following:
Theorem. Let X be a space that is path connected, locally path connected,
and semilocally simply connected. If X is regular with a countable basis, then
r1(X, xo) is countable.
Proof Let A be a covering of X by path-connected open sets A such that for
each A E A and each a E A, the homomorphism iri(A, a) —p ir1(X, a) induced
by inclusion is trivial. Let be a countable open covenng of X by nonempty
path-connected sets that satisfies the conditions of Exercise I. Choose a point
p(B) E B for each B E For each pair B, B' of elements of
B fl B' 0, choose a path g(B, B') in B U B' from p(B) to p(B'). We call the
path g(B, B') a select path.
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Let B0 be a fixed element of 2; let xo = p(Bo). Show that if f is a loop in X
based at xo, then f is path homotopic to a product of select paths, as follows:
(a) Show that there is a subdivision

0=to<...<tn=1
of[0, 1] such that f maps into B0, and for each i = 1 n — 1,

f maps [ti_f, t1] into an element B of 2. Set = B0.

(b) Let f, be the positive linear map of [0, 1] onto t] followed by 1. Let
= g(B1_1, B). Choose a path a in B from f(t1) to if i = 0 or n,

let a be the constant path at xo. Show that

Eli] * [a] = *

(c) Show that [1] = *• * [gn].

3. Let p E —f X be a covenng map such that 711 (X, x0) is countable. Show
that if X is regular with a countable basis, so is E. [Hint: Let be a countable
basis for X consisting of path-connected sets Let C be the collection of path
components of p1(B), for B E 2. Compare Exercise 6 of §53.]

4. Prove the following:
Theorem. Let X be a space that is path connected, locally path connected,
and semilocally simply connected. If X is compact Hausdorff, then ir1(X, xo) is
finitely generated, and hence countable.
Proof Repeat the proof outlined in Exercise 2, choosing to be finite. One has
the equation

[11 = [gi] * ...

as before. Choose, for each x E X, a path from xo to x; let be the constant
path. If g = g(B, B'), define

L(g)

where x = p(B) and y = p(B'). Show that

[fJ = [L(gi)] * *

5. Let X be the infinite eamng (see Example I of §80). Show that X is a compact
Hausdorif space with a countable basis whose fundamental group is uncountable.
[Hint: Let : X —+ be a retraction. Given a sequence a1, ... of zeros
and ones, show there exists a loop f in X such that, for each n, the element

is trivial if and only if = 0.]



Chapter 14

Applications to Group Theory

In the preceding chapter, we showed how a problem of topology—classifying all cov-
ering spaces of a space B—can be reduced to a problem of algebra—classifying all
subgroups of the fundamental group of B. Now we consider the reverse process, that
of reducing a problem of algebra to one of topology. The problem of algebra in ques-
tion is that of showing that any subgroup of a free group is itself a free group. While
this statement is certainly believable, it is not one whose proof is obvious. We shall
proceed by applying the theory of covering spaces to certain topological spaces called
linear graphs.

§83 Covering Spaces of a Graph

We define here the notion of linear graph (introduced earlier in the finite case), and
prove the basic theorem that any covering space of a linear graph is itself a linear
graph.

Recall that an arc A is a space homeomorphic to the unit interval [0, 1]. The end
points of A are the points p, q corresponding to 0 and I under the homeomorphism;
they are the unique points of A such that A — p and A —q are connected. The interior
of an arc A consists of A with its end points deleted.

501
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Definition. A linear graph is a space X that is written as the union of a collection of
subspaces Aa, each of which is an arc, such that:

(1) The intersection Aa fl of two arcs is either empty or consists of a single point
that is an end point of each.

(2) The topology of X is coherent with the subspaces
The arcs Aa are called the edges of X, and their interiors are called the open edges
of X. Their end points are called the vertices of X; we denote the set of vertices of X
by X0.

If X is a linear graph, and if C is a subset of X that equals a union of edges and
vertices of X, then C is closed in X. For the intersection of C with Aa is closed in
Aa, since it is either empty, or it equals or it equals one or both vertices of Aa. It
follows that each edge of X is a closed subset of X. It also follows that X0 is a closed
discrete subspace of X, since any subset of X0 is closed in X.

In the case of a finite graph, considered earlier, we used the Hausdorff condition
in our definition in place of condition (2), it followed, in that case, that the topology
of X was coherent with the subspaces In the case of an infinite graph, this would
no longer be true, so we must assume the coherence condition as part of the definition.
We would assume the Hausdorif condition as well, but it is no longer necessary, for it
follows from the coherence condition:

Lemma 83.1. Every linear graph X is Hausdorff in fact, it is normal.

Proof Let B and C be disjoint closed subsets of X. Assume, without loss of gener-
ality, that every vertex of X belongs either to B or to C. For each a, choose disjoint
subsets and of that are open in Aa, containing B fl and C fl respec-
tively. Let U = U U Then U and V contain B and C, respectively.

We show the sets U and V are disjoint. If x E U fl V. then x E 11a fl for some
a ,6. This fact implies that and Afi contain the point x, which means that x is a
vertex of X. This is impossible, for if x E B, then x lies in no set Vfl, and if x E C,
then x lies in no set Ua.

Now we show U and V are open in X. To show U is open, we show that =
1/a for each a. By definition, U fl contains If x is a point of U fl Aa not in Ucr,
then x belongs to for some ,6 a. Then both Afi and contain x, so that x must
be a vertex of X. This is impossible, for if x E B, then x E by definition of Ua,
and if x C, then x cannot belong to U. U

EXAMPLE 1. If X is the wedge of the circles Sa, with common point p. then X can be
expressed as a linear graph. We need merely wnte each as a graph having three edges,
with p as one of its vertices; then X is a union of arcs. To show that the topology of the
wedge X is coherent with the resulting collection of arcs, we note that if D fl Aa is closed
in Aa for each &c Aa, then D fl Sgj is the union of three sets of the form D fl Aa and so is
closed in then Disclosed in X by definition. See Figure 83.1.
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EXAMPLE 2. Let J be a discrete space, and let E = [0, 1] x J. Then the quotient
space X obtained from E by collapsing the set (0} x J to a point p is a linear graph

The quotient map jr: E —÷ X is a closed map. For if C is closed in E, then
equals C U (f0} x J) if C contains a point of (0} x J, and equals C otherwise.
In either case, irtir(C) is closed in E, so that ,r(C) is closed in X. It follows that ir
maps each space [0, 1] x a homeomorphically onto its image Au, so that Au is an arc.
The topology of X is coherent with the subspaces Au because ir is a quotient map. See
Figure 83.2.

Figure 83.2

Definition. Let X be a linear graph. Let Y be a subspace of X that is a union of edges
of X. Then Y is closed in X and is itself a linear graph; we call it a subgraph of X.

To show that Y is a linear graph, we need to show that the subspace topology on Y
is coherent with the set of edges of Y. If the subset D of Y is closed in the subspace
topology, then D is closed in X, so that D fl Au is closed in Au for each edge of X,
and in particular for each edge of Y. Conversely, suppose D fl is closed in Afi for
each edge Afi of Y. We must show that D fl Au is closed in Au for each edge Au of X
that is not contained in Y. But in this case, D fl Au is either empty or a one-point set!
We conclude that Y has the topology coherent with its set of edges.

Lemma 83.2. Let X be a linear graph. If C is a compact subs pace of X, there exists
a finite subgraph Y of X that contains C. If C is connected, Y can be chosen to be
connected.

Proof First, note that C contains only finitely many vertices of X. For C fl X0 is a
closed discrete subspace of the compact space C; since it has no limit point, it must
be finite. Similarly, there are only finitely many values of a for which C contains an
interior point of the edge Au. For if we choose a point Xu of C interior to Au for
each index a for which it is possible to do so, we obtain a collection B = {Xu } whose
intersection with each edge Afi is a one-point set or empty. It follows that every subset
of B is closed in X, so that B is a closed discrete subspace of C and hence finite.

Form Y by choosing, for each vertex x of X belonging to C, an edge of X having x
as a vertex, and adjoining to these edges all edges Au whose interiors contain points

Figure 83.1
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of C. Then Y is a finite subgraph containing C. Note that if C is connected, then Y is
the union of a collection of arcs each of which intersects C, so that Y is connected. U

Lemma 83.3. If X is a linear graph, then X is locally path connected and semilocally
simply connected.

Proof Step 1. We show X is locally path connected. If x E X and x lies interior to
some edge of X, then within every neighborhood of x is a neighborhood of x homeo-
morphic to an open interval of JR. which is path connected. On the other hand, if x is a
vertex of X and U is a neighborhood of x, then we can choose, for each edge hav-
ing x as an end point, a neighborhood of x in Aa lying in U that is homeomorphic
to the half-open interval [0, 1). Then U is a neighborhood of x in X lying in U,
and it is a union of path-connected spaces having the point x in common.

Step 2. We show X is semilocally simply connected. Indeed, we show that if
x E X, then x has a neighborhood U such that In (U, x) is trivial.

If x lies interior to some edge of X, then the interior of this edge is such a neigh-
borhood. So suppose x is a vertex of X. Let Stx denote the union of those edges
of X that have x as an end point, and let St x denote the subspace of St x obtained by
deleting all vertices other than x. (Stx is called the star of x in X.) The set St x is open
in X, since its complement is a union of arcs and vertices. We show that (St x, x) is
trivial.

Let f be a loop in Stx based at x. Then the image set f(1) is compact, so it lies
in some finite union of arcs of Stx. Any such union is homeomorphic to the union of
a finite set of line segments in the plane having an end point in common. And for any
loop in such a space, the straight-line homotopy will shrink it to the constant loop at x.

U

Now if x is a vertex of X, it is in fact true that the one-point space {x) is a defor-
mation retract of St x. But there is a surprising amount of effort required to show that
the obvious deformation is continuous. One needs the fact that a map

F: (Stx) x / -+ Stx

is continuous if its restriction to each subspace x 1 is continuous. This result
follows from the pasting lemma in the case where St x is a union of only finitely many
arcs, but the general result requires one to show that the topology of (Stx) x 1 is
coherent with the subspaces Aa x 1. This in turn follows from a basic theorem about
products of quotient maps. (See Exercise 11 of §29.) These considerations do not anse
if one wishes merely to shrink a loop to a point (rather than shrinking the entire space
Stx), since any loop lies in the union of a finite number of edges, where there is no
problem.

Now we discuss covering spaces of linear graphs. Note that the convention that
every covenng space is assumed to be path connected and locally path connected,
which we assumed in the last chapter, no longer applies.
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Theorem 83.4. Let p: E -+ X be a covering map, where X is a linear graph. IfAa
is an edge of X and B is a path component of (Aa), then p maps B homeomorphi-
cally onto Furthermore, the space E is a linear graph, with the path components
of the spaces as its edges.

Proof Step 1. We show that p maps B homeomorphically onto Aa. Because the
arc is path connected and locally path connected, Theorems 53.2 and 80.1 tell us
that the map po: B —k Aa obtained by restricting p is a covering map Because B is
path connected, the lifting correspondence (An, a) —k (a) is surjective; be-
cause is simply connected, (a) consists of a single point. (See Theorem 54.4.)
Hence P0 is a horneomoi-phism.

Step 2. Because X is the union of the arcs Aa, the space E is the union of the
arcs B that are the path components of the spaces (Aa). Let B and B' be path
components of p'(Aa) and respectively, with B B'. We show B afld
B' intersect in at most a common end point. If and Afi are equal, then B and B'
are disjoint, and if Aa and Afi are disjoint, so are B and B'. Therefore, if B and B'
intersect, and Afi must intersect in an end point x of each; then B fl B' consists of
a single point, which must be an end point of each.

Step 3. We show that E has the topology coherent with the arcs B. This is the
hardest part of the proof. Let W be a subset of E such that W fl B is open in B, for
each arc B of E. We show that W is open in E.

First, we show that p(W) is open in X. If is an edge of X, then p(W) fl
is the union of the sets p(W fl B), as B ranges over all path components of
Each of these sets p(W fl B) is open in because p maps B homeomorphically
onto Aa; hence their union p(W) fl is open in Because X has the topology
coherent with the subspaces the set p(W) is open in X.

Second, we prove our result in the special case where the set W is contained in
one of the slices V of p1(U), where U is an open set of X that is evenly covered
by p. By the result just proved, we know that the set p(W) is open in X. It follows
that p(W) is open in U. Because the map of V onto U obtained by restricting p is a
homeomoi-phism, W must be open in V. and hence open in E.

Finally, we prove our result in general. Choose a covering A of X by open sets
U that are evenly covered by p. Then the slices V of the sets p'(U), for U E A,
cover E. For each such slice V. let W fl V. The set has the property that for
eacharcBofE,thesetWvflBisopeninB,forWvflB=(WflB)fl(VflB)and
both W fl B and V n B are open in B. The result of the preceding paragraph implies
that W is the union of the sets it also is open in E. U

Exercises

1. In the proof of normality of a linear graph X, why did we assume that every
vertex of X belongs either to B or to C?
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2. The Euler number of a finite Linear graph X equals the number of vertices of X
minus the number of edges of X. It is in fact a topological invariant of X, as we
shall see. What is the EuLer number of an arc? a circle? a wedge of n circles?
the complete graph on n vertices? If E is an n-fold covenng space of X, how are
the EuLer numbers of E and X related7

§84 The Fundamental Group of a Graph

Now we prove the basic theorem that the fundamental group of any linear graph is a
free group. Henceforth we shall refer to a linear graph simply as a graph.

Definition. An oriented edge e of a graph X is an edge of X together with an ordenng
of its vertices; the first is called the initial vertex, and the second, thefinal vertex, of e.
An edge path in X is a sequence eI of onented edges of X such that the final
vertex of e equals the initial vertex of e÷f, for i = 1 n — I. Such an edge path is
entirely specified by the sequence of vertices xo where xO is the initial vertex
of el and x is the final vertex of e for i = 1 n. It is said to be an edge path from
xo to It is caLled a closed edge path if x0 =

Given an onented edge e of X, let fe be the positive linear map of [0, 1] onto e; it
is a path from the initial point of e to the final point of e Then, corresponding to the
edge path ef from to one has the actual path

f=fl*(f2*(*fn))
from xo to where f1 = fe; it is uniquely determined by the edge path ef
We call it the path corresponding to the edge path eL If the edge path is
closed, then the corresponding path f is a Loop.

Lemma 84.1. A graph X is connected if and only if every pair of vertices of X can
be joined by an edge path in X.

Proof Suppose X is connected. Define x y if there is an edge path in X from x
to y. For any edge of X, its end points belong to the same equivalence class; let
denote the union of all edges whose end points are equivaLent to x. Then is a
subgraph of X and hence is closed in X. The subgraphs Y, form a partition of X into
disjoint closed subspaces; since X is connected, there must be only one such.

Conversely, suppose every pair of vertices of X can be joined by an edge path.
Then they can be joined by an actual path in X. Hence all the vertices of X belong
to the same component of X. Since each edge is connected, it aLso belongs to this
component. Thus X is connected. U
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Definition. Let eL be an edge path in the linear graph X. It can happen that
for some i, the oriented edges e and consist of the same edge of X, but with
opposite orientations. If this situation does not occur, then the edge path is said to be
a reduced edge path.

Note that if this situation does occur, then one can delete e and e1+j from the
sequence of onented edges and still have an edge path remaining (provided the onginal
sequence consists of at least three edges). This deletion process is called reducing the
edge path. It enables one to show that in any connected graph, every pair of distinct
vertices can be joined by a reduced edge path. See Figure 84.1.

Definition. A subgraph T of X is said to be a tree in X if T is connected and T
contains no closed reduced edge paths.

A linear graph consisting of a single edge is a tree. The graph in Figure 84.2 is not
a tree, but deletion of the edge e would make it a tree. The graph in Figure 84.3 is a
tree; deletion of the edge A would leave a tree remaining.

Figure 84.2 Figure 84.3

A

Lemma 84.2. If T isa tree in X, and if A is an edge of X that intersects T in a single
vertex, then T U A is a tree in X. Conversely, if T is a finite tree in X that consists of
more than one edge, then there is a tree T0 in X and an edge A of X that intersects T0
in a single vertex, such that T = T0 U A.

Figure 84.1
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Proof Suppose T is a tree in X and A is an edge that intersects T in a single vertex.
Clearly T U A is connected; we show it contains no closed reduced edge paths. Let a
andbbe theend pointsof A, with (a) = TflA. SeeFigure84.3. Supposexo =
x0 is the vertex sequence of a closed reduced edge path in T U A. If none of the
vertices x equals b, then the edge path lies in T, contrary to hypothesis. If x = b for
some i with 0 < i < n, then we must have X.1 = a and X1+I = a; hence the edge
path is not reduced, contrary to hypothesis. Finally, if x b for

= 1, ..., n — 1, then xI = a and = a, and the vertex sequence
specifies a closed reduced edge path in T, again contrary to hypothesis.

Now let T be a finite tree in X having more than one edge. First, we show that
some vertex b of T belongs to only one edge of T. If this is not the case, we can
construct an edge path in T as follows: Begin with a vertex x0 of T; then choose an
edge ei of T having x0 as an end point. Orient ei so xO is its initial vertex. Let be

the other end point of ei, and let be an edge of T different from et having xI as a
vertex. Orient e2 so is its initial vertex. SimiLarLy continue. No two successive terms
of the sequence ei, e2,... are opposite orientations of the same edge of T. Since T is
finite, there must be an index n such that x for some i <n. Then the sequence
of vertices x1, x- determines a closed reduced edge path in T, contrary to
hypothesis. See Figure 84.4.

Let b be a vertex of T belonging to only one edge A of T, and let T0 consist of
all edges of T different from A. Then T = T0 U A. Because T is connected, T0 must
intersect A in its other vertex a. We show T0 is a tree. Clearly T0 contains no closed
reduced edge paths, because T contains none. Furthermore, T0 is connected. For if
T0 were the union of two disjoint closed sets C and D, the point a would lie in one
of them, say C. Then C U A and D would be disjoint closed sets whose union is T,
contrary to the fact that T is connected. U

Theorem 84.3. Any tree T is simply connected.

Proof We first consider the case where T is a finite tree. If T consists of a single
edge, then T is simply connected. If T has n edges with n > 1, there is an edge A

Figure 84.4
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of T such that T = To U A, where T0 is a tree with n — 1 edges and T0 fl A is a single
vertex. Then T0 is a deformation retract of T. Since T0 is simply connected by the
induction hypothesis, so is T.

To prove the general case, let f be a loop in T. The image set of f is compact and
connected, so it is contained in a finite connected subgraph Y of T. Now Y contains
no closed reduced edge paths, because T contains none. Thus Y is a tree. Since Y is
finite, it is simpLy connected. Hence f is path homotopic to a constant in Y. U

Definition. A tree T in X is maximal if there is no tree in X that properly contains T.

Theorem 84.4. Let X be a connected graph. A tree T in X is maximal if and only if
it contains all the vertices of X.

Proof Suppose T is a tree in X that contains all the vertices of X. If Y is a subgraph
of X that properly contains T, we show that Y contains a closed reduced edge path; it
follows that T is maximal. Let A be an edge of Y that is not in T; by hypothesis, the
end points a and b of A beLong to T. Since T is connected, we can choose a reduced
edge path eL in T from a to b. If we follow this sequence by the edge A,
onented from b to a, we obtain closed reduced edge path in Y.

Now let T be a tree in X that does not contain all the vertices of X. We show T is
not maximal. Let x0 be a vertex of X not in T. Since X is connected, we may choose
an edge path in X from xo to a vertex of T, specified by the sequence of vertices xo,

Let i be the smallest index such that x E T. Let A be the edge of X with
vertices x-_L and x-. Then T U A is a tree in X, by the preceding lemma, and T U A
properly contains T. U

Theorem 84.5. If X is a linear graph, every tree T0 in X is contained in a maximal
tree in X.

Proof We apply Zorn's lemma to the collection 7 of all trees in X that contain T0,
strictly partially ordered by proper inclusion. To show this collection has a maximal
element, we need only prove the following:

If is a subcollection ofT that is simply ordered by proper inclusion,
then the union Y of the elements is a tree in X.

To begin, we note that since Y is a union of subgraphs of X, it is a subgraph of X.
Second, since Y is a union of connected spaces that contain the connected space T0,
the space Y is connected.

Finally, we suppose that is a closed reduced edge path in Y and denve
a contradiction. For each i, choose an element 7', of 7' that contains e. Because 7'
is simply ordered by proper incLusion, one of the trees T1 say contains
all the others. But then el is a closed reduced edge path in T1, contrary to
hypothesis. U
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Now we compute the fundamental group of a graph. We need the following result.

Lemma 84.6. Suppose X = U U V, where U and V are open sets of X. Suppose
that U fl V is the union of two disjoint open path-connected sets A and B, that a is a
path in U from the pointa ofA to the pointb of B, and is apath in V fromb
to a. If U and V are simply connected, then the class [a * ,6J generates (X, a).

Proof The situation is similar to that of Theorem 59.1, except that U fl V has two
path components instead of one. The proof is also similar.

Letf bealoopin X based ata. Chooseasubdivision 0 =ao <at < =
1 of [0, 11 such that for each i, f(a1) E U fl V and f maps a] into either U
or V. Let f, be the positive linear map of [0, 1] onto a] followed by f; then
[1] = [hi *.. * For i = 1 n — 1, choose a path in either A or B from
a or b to f(a); choose ao and to be the constant paths at a. Then set

g, = a_i * * ci).

By direct computation, [1] = * ... * [gn]. Because g is a path in U or in V
with end points in the set (a, b}, and because U and V are simply connected, g is path
homotopic either to a constant or to a, ,6, ci, or ,6. It follows that either [f] is trivial,
or it equals a positive power of [a * ,6] or [,6 * ci]. Hence [a * ,6] generates the group

(X, a). See Figure 84.5. U

Figure 84.5

V
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Theorem 84.7. Let X be a connected graph that is not a tree. Then the fundamental
group of X is a nontrivial free group. Indeed, if T is a maximal tree in X, then the fun-
damental group of X has a system of free generators that is in bijective correspondence
with the collection of edges of X that are not in T.

Proof Let T be a maximal tree in X; it contains all the vertices of X. Let be a
fixed vertex of T. For each vertex x of X, choose a path Yx in T from x0 to x. Then
for each edge A of X that is not in T, define a loop in X as follows. Orient A; let
IA be the linear path in A from its initial end point x to its final end point y; and set

= * (IA *

We show that the classes [ga] form a system of free generators for 711 (X, xe).

Step 1. We first prove the theorem when the edges of X not in T are finite in
number. We proceed by induction. The induction step is easy, so we consider it first.

Let A1 be the edges of X not in T, where n > 1. Orient these edges and
let g denote the ioop ga,. For each i, choose a point p interior to A,. Let

U and V and V X — Pi — — is simply
connected, since it has T as a deformation retract. Therefore, (X, xo) is the free
product of the groups (U, xo) and ir1(V, xo), by Corollary 70.3.

The space U has T U Af as a deformation retract, so (U, x0) is free on the
generator [gil, as we shalL prove in Step 2. The space V has T U A2 U • U as
a deformation retract, so it is free on the generators [ga] [gn], by the induction
hypothesis. It follows from Theorem 69.2 that ir1 (X, x0) is free on the generators [gil,

See Figure 84.6.

A3

Step 2. We now consider the case where there is only one edge D of X that is not
in T. This step is more difficult. Orient D. We show iri(X, xo) is infinite cyclic with
generator [gD]

A1

Figure 84.6
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Let a0 and af be the initial and final points of 1), respectively. Let us wnte 1) as
the union of three arcs: with end points a0 and a, D2, with end points a and b,
and 1)3, with end points b and a1. See Figure 84.7. Let 11' 12, and 13 be the linear
paths in 1) from ao to a, and a to b, and b to a1, respectively. We apply the preceding
theorem to compute ir1(X, a).

Choose a point p interior to the arc 1)2. Set U = 1) — ao — at and V = X — p.
Then U and V are open sets in X whose union is X. The space U is simply connected
because it is an open arc. And the space V is simply connected because it has the
tree T as a deformation retract. The space U fl V equals U — p; it has two path
components; let A be the one containing a and let B be the one containing b. Then the
hypotheses of the preceding lemma are satisfied. The path a = 12 is a path in U from
a to b. If we set = and = Yaj' then the path ,6 * * (yo * fr)) is a
path in V from b to a. Therefore, (X, a) is generated by the class

[a * ,6] = [121 * [131 * [Pt] * * [lii.

It follows that 711 (X, x0) is generated by 8[a * ,6], where 6 is the path * from a
to xo. We compute this path-homotopy class as follows:

* ,6] = [Yo * * [a * ,6] *

Therefore, [gD] generates (X, x0).

*(f2*f3)]*[P1]

=EgDl.

Figure 84.7
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It remains to show that the element [SD] has infinite order, so that Jr1(X,x0) is
infinite cyclic. One can apply Theorem 63.1 (which we used in proving the Jordan
curve theorem), which states that [a * has infinite order in 711 (X, a). AlternativeLy
(and more easily), one can consider the map 71 : X —+ that collapses the tree T to
a single point p and maps the open arc hit D homeomorphicaLly onto — p. Then
ir o ytj and 71 0 are constant paths, so that

= [ir ID].

This class generates ir1 (S', p). It follows that [ge,] has infinite order in 711 (X, xo).

Step 3. Now we consider the situation where the collection of edges of K not in T
is infinite. The proof in this case is so similar to the corresponding proof for an infinite
wedge of circles that we omit the details. (See Theorem 71.3.) The crucial facts are
these: Any loop in X based at xo lies in the space

X(a1 = T U Aaj U U

for some finite set of indices a, and any path homotopy between such loops also lies
in such a space. By this means the general case is reduced to the finite case. U

Exercises

1. Give an example to show that the second part of Lemma 84.2 need not hold if T
is infinite.

2. What is the cardinality of a system of free generators for the fundamental group
of the complete graph on n vertices? of the utilities graph? (See §64.)

3. Let X be the wedge of two circles; let p : E -÷ X be a covering map. The
fundamental group of E maps isomorphically under onto a subgroup H of
the fundamental group of X; the latter is free on two generators a and ,8.
(a) For each of the four covering spaces E given in Exercise 2 of §81, determine

the cardinality of a system of free generators for the fundamental group of E.
(b) For each of these covering spaces, find, in terms of a and ,6, a system of free

generators for the subgroup H of the fundamental group of X.

§85 Subgroups of Free Groups

We now prove our main theorem, to the effect that a subgroup H of a free group F is
free. The method of proof, remarkabLy enough, will give us some information about
the cardinahity of a system of free generators for H, when the cardinality of a system
of free generators for F is known.
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Theorem 85.1. If H is a subgroup of a free group F, then H is free.

Proof Let (a
I
a E J) be a system of free generators for F. Let X be a wedge of cir-

cles Sa, one for each a J; let be their common point. We can give X the structure
of a linear graph by breaking each circle into three arcs, two of which have as an
end point. The function that assigns to each a, a loop generating xo), induces
an isomorphism of F with iIf(X, xO). Therefore we may as well assume that F equals
the group ir1(X, x0).

The space X is path connected, locally path connected, and semilocally simply
connected. Therefore Theorem 82.1 applies to show that there exists a path-connected
covenng space p: E —+ X of X such that, for some point eo of p'(xo),

eo)) = H.

Since is a monomorphism, iri(E, eo) is isomorphic to H.
The space E is a linear graph, by Theorem 83.4. Then Theorem 84.7 implies that

its fundamental group is a free group. I

Definition. If X is a finite linear graph, we define the Euler number of X to be the
number of vertices of X minus the number of edges. It is commonly denoted by the
Greek letter chi, as x (X).

Lemma 85.2. If X isa finite, connected linear graph, then the cardinal ity ofa system
of free generators for the fundamental group of X is 1 — x (X).

Proof Step I. We first show that for any finite tree T, we have X(T) = 1. We
proceed by induction on the number n of edges in T. If n = 1, then T has one edge
and two vertices, so X(T) = 1. If n > 1, we can write T = T0 U A, where T0 is a
tree having n — 1 edges, and A is an edge that intersects T0 in a single vertex. We have

x (To) 1 by the induction hypothesis. The graph T has one more edge and one more
vertex than T0; hence =

Step 2. We prove the theorem. Given X, let T be a maximal tree in X. If X =
we are finished. Otherwise, let A be the edges of X that are not in T. Then
the fundamental group of X has a system of n free generators. On the other hand, X
and T have exactly the same vertex set, and X has n more edges than T. Hence,

X(X)=X(T)—n = 1—n,

I

Definition. Let H be a subgroup of the group G. If the collection G/H of right
cosets of H in G is finite, its cardinality is called the index of H in G. (The collection
of left cosets of H in G has the same cardinality, of course.)



§85 Subgroups of Free Groups 515

Theorem 853. Let F be a free group with n + 1 free generators; let H be a subgroup
ofF. If H has indexk in F, then H haskn + 1 free generators.

Pmof We apply the construction given in the proof of Theorem 85.1. We can assume
that F = 71L (X, x0), where X is a linear graph whose underlying space is a wedge of
n + I circles. Given H, we choose a path-connected covering space p : E —* X such
that p*(2rL (E, es)) = H. Now the lifting correspondence

cF —+

is a bijection. Therefore, E is a k-fold covenng of X.
The space E is also a linear graph. Given an edge A of X, the path components

of p (A) are edges of E, and each is mapped by p homeomorphically onto A. Thus
E has k times as many edges as X, and k times as many vertices. It follows that

= Since the fundamental group of X has n + 1 free generators, the
preceding lemma tells us that x (X) = —n. Then the number of free generators of the
fundamental group of E, which is isomorphic to H, is

1 1 = 1 +kn.

Note that if F is a free group with a finite system of free generators and H is a
subgroup of F such that F/H is infinite, then nothing can be said about the cardinality
of a system of free generators for H. It might be finite (for instance, if H is the trivial
subgroup) or infinite (for instance, if H is the fundamental group of the covering space
pictured in Example 2 of §81).

Exercises

1. Show that the Euler number of a finite linear graph X is a topological invariant
of X. [Hint: First consider the case where X is connected.]

2. Let F be a free group on two free generators a and Let H be the subgroup
generated by a. Show that H has infinite index in F.

3. Let p IR -+ S' be the standard covering map; consider the covering map

let E = (p x and let q : E —÷ X be the covenng map obtained by
restricting p x p. The fundamental group of X has free generators a and ,6,
where a is represented by a loop in b0 x S' and by a loop in S' x b0. Find a
system of free generators for the subgroup eo)), where e0 is the origin
inIR2.
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Index

A

A (closure), 95
Absolute retract, 223

vs. universal extension property,
223, 224

Accumulation point of a net, 188
Action of a group on a space, 199
Adjoining a 2-cell, 441

effect on fundamental group, 439
Adjunction space, 224
Affinely independent, 309
Alexander homed sphere, 393
Algebraic number, 51
&,331

independence of path, 335
is isomorphism, 332

Antipodal map, 372
Antipode, 356
Antipode-preserving, 356

519

Arc, 308, 379
does not separate S2. 389

Archimedean ordenng, 33
ArzeLa's theorem, 280, 293
Ascoli's theorem, 278, 290
Axiom of choice, 59

finite, 61
vs. nonemptiness of product, 118
vs. well-ordenng theorem, 73

B
Baire category theorem, 296

special case, 178
Baire space, 295

compact Hausdorif space, 296
complete metric space, 296
fine topoLogy on C(X, Y), 300
locally compact Hausdorff space,

299



520 Index

Baire space (conL)
open subspace of Baire space, 297

in box, product, uniform topolo-
gies, 300

Ball, unit, 135, 156 (see also B")
Barber of Seville paradox, 47
Base point, 331
Base point choice:

effect on 335

effect on 332
Basis:

for a free abelian group, 411
for a topology, 78, 80

BdA, 102
,6(X) (see Stone-Cech compactifica-

tion)
Betti number, 424
Bicompactness, 178
Bijective function, 18
Binary operation, 30
Bing metrization theorem, 252
Bisection theorem, 358, 359
B", 156

compactness, 174
fundamental group, 331
path connectedness, 156

Borsuk lenuna, 382, 385
Borsuk-Ulam theorem, 358, 359
Boundary:

ofa set, 102
of a surface with boundary, 476

Bounded above, 27
Bounded below, 27
Bounded function, 267
Bounded metric, 121, 129
Bounded set, 121
Box topology, 114

basis for, 115, 116
Hausdorif condition, 116
subspace, 116
vs. fine topology, 290
vs. product topology, 115
vs. uniform topology, 124, 289, 290

Brouwer fixed-point theorem, 351,353

B2, 135 (see also B")
B(x,E), 119

C
Cantor set, 178
Cardinality:

comparability, 68
of a finite Set, 39, 42
greater, 62
same, 51

Cartesian product:
countably infinite, 38
finite, 13, 37

general, 113

Cauchy integral formula, 405
Cauchy sequence, 264
e(E, p. B), 487 (see also Group of

covering transformations)
Choice axiom (see Axiom of choice)
Choice function, 59
Circle, unit (see
Classification:

of covering spaces, 482
of covering transformations, 488
of surfaces, 469

Clockwise loop, 405
Closed edge path, 566
Closed graph theorem, 171
Closed interval, 84
Closed map, 137
Closed ray, 86
Closed refinement, 245
Closed topologist's sine curve, 381

separates S2, 381, 393
Closed set, 93

in subspace, 94
vs. limit points, 98

Closure, 95
macartesian product, 101,116

of a connected subspace, 150
in a subspace, 95
ofaunion, 101,245
via basis elements, 96
via nets, 187



Closure (cont.)
via sequences, 130, 190
via limit points, 97

Coarser topology, 77
Cofinal, 187
Coherent topology, 224,435
Collection, 12
Commutator, 422
Commutator subgroup, 422
Compact, 164 (see also Compact

Hausdorif space, Compactness)
Compact convergence topology 283

convergent sequences in, 283
independence of metric, 286
vs. compact-open topology, 285
vs. pointwise convergence topology,

285
vs. uniform topology, 285

Compact Flausdorif space:
is Baire space, 296
components equal

quasicomponents, 236
metrizability, 218
normality, 202
paracompactness, 252

Compactification, 185, 237
induced by an imbedding, 238
one-point, 185
of (0, 1), 238

Compactly generated space, 283
Compactness, 164 (see also Compact

Hausdorif space)
of closed intervals in 1k, 173
closed set cnterion, 169
of continuous image, 166
of countable products, 280
in e(X, 1k"), 278, 279
in C(X, Y), 290, 293
in finite complement topology, 166
of finite products, 167
in Hausdorif metric, 281
and least upper bound property, 172
in order topology, 172
and perfect maps, 172

Index 521

of product space, 234, 236
in IRand 1k", 173
of subspace, 164
via nets, 188
vs. completeness, 276
vs. limit point compactness, 179
vs. sequential compactness, 179

Compact-open topology, 285
continuity of evaluation map, 286
vs. compact convergence topology,

285
Comparability:

of cardinaLities, 68
of topologies, 77
of well-ordered sets, 73

Comparison test for infinite senes, 135
Complement, 10
Complete graph, 394

on five vertices, 308, 397
Completely normal space, 205
Completely regular space, 211 (see

also Complete regularity)
Complete metnc space, 264 (see also

Completeness)
Completeness:

and Baire condition, 296
of Y) in uniform metric, 267
of closed subspace, 264
of C(X, Y) in uniform metric, 267
of C(X, Y) in sup metric, 268
of t2, 271
of 1k", 265
of IRW, 265

of in uniform metric, 267
of in compact-open topology,

289
of yf in uniform metric, 267
vs. compactness, 276

Complete regularity, 211
of locally compact Hausdorif space,

213
of product space, 211
of R1 in box topology, 213
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Complete regularity (cont.)
of 212

of subspace, 211
of topological group, 213
vs. normality, 211, 212
vs. regularity, 214

Complete set of relations, 425
Completion, 269

uniqueness, 271
Component, 159

of RW in box topology, 162
of RW in uniform topology, 162
vs. path component, 161
vs. quasicomponent, 163, 236

Composite:
of functions, 17
of continuous functions, 107
of covering maps, 34!, 485, 487
of quotient maps, 141

Conclusion, 7
Cone, 499
Conjugacy class, 481
Conjugate elements, 419
Conjugate subgroups, 481
Connected component, 159
Connectedness, 148

in box topology, 151
of closure, 150
of continuous image, 150
in finite complement topology, 152
of finite products, 150
in a linear continuum, 153
of long line, 159
of ordered square, 156
of a product space, 152
of JRK, 177
of JRW, 151

of subspace, 148
of topologist's sine curve, 156
vs. path connectedness, 156

Connected sum:
of projective planes, 452

of tori, 451
Connected space, 148 (see also Con-

nectedness)
Constant path, 327
Contains, 4
Continuity:

of algebraic operations in IR, 131,
135

basis criterion, 103
and change of range, 108
and closedness of graph, 171
closed set criterion, 104
closure criterion, 104
of composites, 107
of constant function, 107
E-8 formulation, 129
of inclusion, 107
local formulation, 108
of maps from quotient spaces, 142
of maps intoproducts, 110,117
of metric, 126
ofminff,g}, 112
atapoint, 104
of products of maps, 112
of restriction, 108
subbasis cntenon, 103
of uniform limit, 132
in variables separately, 112
via nets, 188
via sequences, 130, 190

Continuous function, 102 (see also
Continuity)

Continuous image:
of a compact space, 166
of a connected space, 150
of a Lindelöf space, 194
of a space with a countable dense

subset, 194
Continuum hypothesis 62, 205
Contractible space, 330

homotopy type, 366
Contraction, 182, 270

and fixed points, 182
vs. shrinking map, 182



Contrapositive, 8
Convergent net, 187
Convergent sequence, 98

in compact convergence topology,
283

in Flausdorif space, 99
in point-open topology, 282
in a product space, 118, 265

Converges uniformly, 131
Converse, 9
Convex set:

in an ordered set, 90, 153

in 1W', 325

Coordinate:
of J-tuple, 113
of m-tuple, 37
of w-tuple, 38

Coordinate function, 110
Coset, 146, 330
Countable basis, 190 (see also Second-

countability)
Countable basis at a point, 130, 190

(see also First-countability)
Countable compactness, 181
Countable dense subset, 192

effect of continuous function, 194
in R1, 195
in R', 195
in Re, 192
in subspace, 194

Countable intersection property, 235
Countable set, 45 (see also

ity)
Countability, 45

of algebraic numbers, 51
of countable unions, 48
of finite products, 49
of rationals, 48
of subsets, 48
via injective and surjective maps, 45
of Z, 44
of x Z÷, 45, 48

Countably infinite, 44
Countably locally discrete, 252

index 523

Countably locally finite, 245
Counterclockwise loop, 404
Countenmage, 19
Covering, 164

of subspace, 164
Covering dimension, 305
Covering map, 336

composite, 341,485,487
is local homeomorphism, 338
is open, 336
products of, 339
restnctions, 338, 484

Covering space, 336
classification, 482
equivalence, 478
existence, 495
of figure eight, 340, 374, 375, 492,

493
k-foLd, 341
of linear graph, 505
of P2,372
regular, 489
of 1R2 — 0, 340
of S'. 337, 338, 482
topoLogical properties, 341, 500
of torus, 339, 483
universal, 484

Covering transformation, 487
Cube in IRA, 314
Curve, 225

simple closed, 379
Curved triangle, 471
Cutting a region apart, 458
CW complex, 445
Cyclic group, 346

D
d, 121
Decomposition space, 139
Deformation retract, 361

fundamental group of, 361
Deformation retraction, 361

vs. homotopy equivalence, 365, 366
Degree of a map, 367
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DeMorgan's laws, 11
Dense subset, 191
Diagonal, 101
Diameter of a set, 121
Dictionary order, 26
Difference of two sets, 10
Dimension, topological, 305 (see also

Topological dimension)
Directed set, 187, 188
Direct sum, 408, 409

existence, 409
extension condition, 408, 410
umqueness, 410

Discrete topology, 77
metric for, 120

Disjoint sets, 6
Distance, 119
Distance from x to A, 175
Distributive laws for U and fl, 11

Domain, 16
Double torus, 374, 452

fundamental group, 374
Doubly punctured plane, 362
Dunce cap, 443

fundamental group, 444
d(x, A), 175

E
Edge:

of curved triangle, 471
of a linear graph, 308, 394, 502
of a polygonal region, 447

Edge path, 506
reduced, 507

Element of a set, 4
Elementary divisors, 424
Elementary operations on schemes,

460
Empty interior, 295
Empty set, 6
End points of arc, 308, 378
Epimorphism, 330

c-ball, 119
c-neighborhood of a set, 177

Equality symbol, 4
Equicontinuity, 276

vs. compactness, 278, 279
vs. total boundedness, 277

Equivalence class, 22
Equivalence of compactifications, 237
Equivalence of covering maps, 478

existence, 480, 482
Equivalence of labelling schemes, 461
Equivalence relation, 22
Euclidean metric, 122, 128
Euclidean space, 38
Euler number, 506, 514, 515
Evaluation map, 271, 286
Evenly covered, 336
Eventually zero, 51
ex (constant path), 327
Expansion lemma, 260
Extension condition:

for direct sums, 408, 410
for free abelian groups, 411
for free groups, 421
for free products, 414,418, 419

External direct sum, 409
External free product, 415
Extreme value theorem, 174

F
[f], 324
Family of sets, 36
f*g,326
Fibonacci numbers, 56
Field, 31
Figure-eight space, 340, 362

covering space, 340, 374, 375, 492,
493

fundamental group, 373
Final point:

of oriented line segment, 447, 506
of path, 323

Finer topology, 77
basis criterion, 81

Fine topology, 289
is Baire, 300



Finite axiom of choice, 61
Finite complement topology, 77

compactness, 166
connectedness, 152

Finite dimensional, 305
Finite intersection property, 169
Finitely generated group, 421
Finitely presented group, 425

as fundamental group, 445
Finiteness:

of cartesian products, 43
of subsets, 43
of unions, 43
vs. injective and surjective maps, 43

Finite presentation, 425
Finite set, 39
First category set, 295
First coordinate, 13
First-countability, 131, 190

implies compactly generated, 283
of metric space, 131
of product, 191
of subspace, 191
of IRt, 192

First-countable space
(see First-countability)

First homology group, 455
of rn-foLd projective plane, 456
of n-fold torus, 456

First homotopy group (see Fundamen-
tal group)

Fixed point, 158, 182
Fixed-point-free action, 493
Fixed point theorem:

for 353
for B2, 351
for a contraction, 182, 270
for retract of B2, 353
for a shrinking map, 182
for[0, 1], 158

Free abelian group, 411
extension condition, 411
rank, 411
subgroup is free abelian, 412

Index 525

Free generators for a group, 421
Free group, 421

extension condition, 421
on a set, 422
subgroup is free, 514

Free homotopy of Loops, 403
Free product, 413

existence, 415

extension condition, 414, 418, 419
external, 415
uniqueness, 418

Frobenius theorem, 351
Fa set, 252
Function, 16
Functor, 242
Functonal properties of 334
Fundamental group, 331

of dunce cap, 444
of deformation retract, 361
of double torus, 374, 452
of figure eight, 362, 373, 434
of infinite earring, 500
of linear graph, 511
of rn-fold projective plane, 453
of n-fold torus, 452
of a product, 371
of P2,373
of 1W1 — 0, 360

of S',345
of 369
of theta space, 362, 432
of torus, 371, 442
of wedge of circles, 434,436
of wedge of spaces, 438
when abelian, 335
when countable, 499, 500
when finitely generated, 500
when uncountable, 500

Fundamental theorem of algebra, 354

G
G6 set, 194, 249
Generalized continuum hypothesis, 62
General lifting lemma, 478
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General linear group, 146
General nonseparation theorem, 390
General position, 308, 310
General separation theorem, 380, 392
Generated:

by elements, 411,421.
by subgroups, 407, 412

Generator of cyclic group, 346
Geometrically independent, 309
[G, G],422
G/H, 146, 331

regularity, 146
as topological group, 146

Graph of a function, 171
Greater cardinality, 62
Greatest lower bound, 27

property, 27
Group of covering transformations,

487
Groupoid properties 326

H
333

dependence on base point, 335
functonal properties, 334

Hahn-Mazurkiewicz theorem, 275
Half-open interval, 84
Ham sandwich theorem, 359
Hausdorif condition, 98

for box topology, 116
and closedness of diagonal, 100
and convergent sequences, 99
for manifold, 227
for metric space, 129
for orbit space, 199
for order topology, 100
and perfect maps, 199
for product space, 100, 116, 196
for quotient space, 142
for subspace, 100, 196
for topological group, 146
and uniqueness of extensions, 112,

240
vs. regularity, 195, 197

vs. Tf axiom, 99
Hausdorif maximum principle, 69
Hausdorff metric, 281
Hausdorif space, 98 (see also Haus-

dorff condition)
Have the same cardinality, 51
Hubert cube, 128
Homeomorphism, 105

vs. continuous bijective map, 106,
167

Homogeneous space, 146
Homology group, 455
Homomorphism, 330

induced by a map, 333 (see aiw
induced by a path, 331 (see aLso a)

Homotopic maps, 323
Homotopy, 323

effect on 360, 363, 364
as path in function space, 288
straight-line, 325

Homotopy equivalence, 363
induces isomoi-phism of in, 364
vs. deformation retraction, 365, 366

Homotopy extension lemma, 381
Homotopy inverse, 363
Homotopy type, 363

of contractible space, 366
H1 (X) (see First homology group)
Hypothesis, 7

(see Ordered square)
Identification space, 139
Identity function, 21
"If... then," meaning of, 7
Image, 16, 19
Imbedding, 105

isometric, 133
Imbedding theorem:

for a compact manifold, 226, 314
for a completely regular space, 217
for a linear graph, 308
fora manifold, 316

for a space ofdimension m, 311



Immediate predecessor, 25
Immediate successor, 25
Inclusion, 4
Indexed family of sets, 36
Indexing function, 36
Index set, 36
Index of a subgroup, 514
Indiscrete topology, 77
Induction pnnciple, 32

strong, 33
transfinite, 67

Inductive definition, 47 (see also Re-
cursive definition)

Inductive dimension, 315
Inductive set, 32, 67
Inf A, 27
Infimum, 27
Infinite broom, 162
Infinite earring, 436

fundamental group, 500
no universal covering, 487

Infinite sequence, 38
Infinite senes, 135
Infinite set, 44

via injective and bijective functions,
57

Initial point:
of an oriented line segment, 447,

506
of a path, 323

Injective function, 18
tnt A, 95
Integers, 32
Interior point:

of an arc, 379
of a set, 95

Intermediate-value theorem, 147, 154
Intersection, 6, 12, 36
Interval, 25, 84
Intervals in IR:

compactness, 173
connectedness, 154
topological dimension, 305

Invariance of domain, 383, 385

Index 527

Inverse function, 18
Inverse image, 19
Isolated point, 176
Isometric imbedding, 133

in complete metric space, 269, 271
Isometry, 181
Isomorphism, 105, 330

J
Jordan curve theorem, 390
Jordan separation theorem, 379
J-tuple, 113

K
Kernel of homomorphism, 330
k-fold covering, 341
Klein bottle, 454
k-plane, 310
K-topology on IR, 82 (see also IRK)
Kuratowski 14-set problem, 102
Kuratowski lemma, 72

L
Labelling, 447
Labelling scheme, 449

(see also Scheme)
Labels, 447
Larger topology, 77
Largest element, 27
Least normal subgroup, 419

generators, 420
Lebesgue number, 175
Lebesgue number lemma, 175
Least upper bound, 27
Least upper bound property, 27

and compactness, 172, 177
and local compactness, 183
forR, 31
for well-ordered sets, 66
vs. greatest lower bound property, 29

Left coset, 146, 330
Left inverse, 21
Length of a word, 412
Lens space, 494
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Lifting, 342
Lifting correspondence, 345
Lifting lemma:

general, 478
for path homotopies, 343
for paths, 342

Limit point, 97
vs. T1 axiom, 99

Limit point compactness, 178
vs. compactness, 179
vs. countable compactness, 181

Limit of a sequence, 100
Lindelöf condition, 192 (see also Reg-

ular Lindelöf space)
for closed subspace, 194
effect of continuous function, 194
for products, 193
forRt, 192

for 193

Linear continuum, 31, 153
compact subspaces, 172
connected subspaces, 153
long line, 158
normality, 206
ordered square, 155

Linear graph, 308, 394, 502
covering space of, 505
fundamental group, 511
imbedding in 1R3, 308
local path connectedness, 504
local simple connectedness, 504
semilocal simple

connectedness, 504
topological dimension, 308

Linear order, 24
Line with two ongins, 227
Little eli-two topology, 128
Local compactness, 182

implies compactly generated, 283
and least upper bound property, 183
for orbit space, 199
and perfect maps, 199
of products, 186

of R and IR" and Wv, 182
of subspace, 185

Local connectedness, 161
of quotient space, 163
vs. weak local connectedness, 162

Local homeomorphism, 338
Locally compact Hausdorff space:

Baire condition, 299
complete regularity, 213
regularity, 205

Locally discrete, 254
Locally euclidean, 316
Locally finite collection, 244
Locally finite family, 112

vs. locally finite collection, 245
Local metnzability, 218, 261
Local path connectedness, 161
Local simple connectedness, 495

vs. simple connectedness, 499
Logical equivalence, 8
Logical quantifiers, 9
Long line, 158, 317

connectedness, 159

path connectedness, 159
Loop, 331
Lower bound, 27
Lower limit topology, 82 (see also IRE)

£2-topology, 128

M
Manifold 225, 316

imbedding in IR", 226, 314, 316
ruetrizability, 227
necessity of Hausdorif condition,

227
regularity, 227
topological dimension, 314, 316

Mapping, 16
Maximal element, 70
Maximal tree, 509
Maximum principle, 69

vs. well-ordering theorem, 73
vs. Zorn's lemma, 70, 72



Maximum value theorem:
of calculus, 147
general, 174

Metric, 119
bounded, 129

for discrete topology, 120
forR, 120
for IR1*, 122

for IR(u, 125

Metrically equivalent, 270
Metric space, 120
Hausdorif condition, 129

normality, 202
paracompactness, 257
subspace, 129

Metric topology, 119
Metnzable space, 120
Metrizability:

of compact Hausdorff space, 218
of manifolds, 227
of ordered square, 194
of products, 133, 134
of regular Lindelöf space, 218
of regular second-countable space,

215
of R', 133
of IRt, 194
of W1, 123
of 125, 132
of 181

of compactification, 242
rn-fold projective plane, 452

first homology group, 456
fundamental group, 453

Minimal uncountable well-ordered set,
66 (see also

Möbius band, 450
Monomorphism, 330
m-tuple, 37

N
Nagata-Smirnov metrization theorem,

250
Negation, 9

Index 529

Neighborhood, 96
Nested sequence of sets, 170
Net, 187
n(f, a) (see Winding number)
n-fold torus, 451

first homology group, 456
fundamental group, 452

Nonseparation theorem:
arc in S2. 389
general, 390
topologist's sine curve in S2. 393

No-retraction theorem, 348
Norm, 122
Normality, 195

ofadjunction space, 224
of closed subspace, 205
of coherent topology, 224
of compact Hausdorif space, 202
of linear continuum, 206
of linear graph, 502
of metric space, 202
of orbit space, 199
of product, 198, 203
of paracompact Hausdorif

space, 253
of quotient space, 199, 443
of regular Lindelöff space, 205
of regular second-countable space,

200
of IRt, 198

of R', 203
of subspace, 203
of topological group, 207
vs. complete regularity, 211, 212
vs. regularity, 195, 198, 203
of well-ordered set, 202

Normalizer, 487
Normal space, 195 (see also Normal-

ity)
Normal subgroup, 330
Nowhere-differentiable function, 300
Nuihomotopy lemma, 377
Nulhomotopic map, 323

induces trivial homomorphism, 364
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0
w-tuple, 38

One-point compactification, 185
uniqueness, 183

One-to-one correspondence, 18
"Onto" function, 18
Open covenng, 164
Open interval, 25, 84
Open map, 92, 137
Open ray, 86
Open refinement, 245
Open set, 76

relative to subspace, 89
Operation, binary, 30
Operation on schemes, 460
Orbit, 490
Orbit space, 199,490
Order of a covenng, 305
Ordered field, 31
Ordered pair, 13
Ordered square, 90

connectedness, 156
is linear continuum, 155
metrizability, 194
path connectedness, 156

Order of a group, 346
Order of a group element, 412
Order relation, 24
Order topology, 84

compact subspaces, 172
normality, 202, 206
Hausdorif condition, 100
subbasis, 86
vs. subspace topology, 91

Order type, 25
Oriented edge of a graph, 506
Oriented line segment, 447
"Or," meaning of, 5

P
D'(A), 12
Paracompactness, 253

of compact Hausdorif space, 252
of closed subspace, 254

of metric space, 257
and perfect maps, 260
of regular Lindelöf space, 257
of IRA, 253

of IR°° in box topology, 260
of IRS, 257
of Rw, 257
of 260, 261
of topological groups, 261
vs. normality, 253

Paracompact space, 253 (see also Para-
compactness)

Partial order, 71
axioms, 187
strict, 68

Partition of a set, 23
Partition of unity, 225, 258

existence, 225, 259
Pasting lemma, 108
Pasting edges together, 448
Pasting regions together, 458
Path, 155

corresponding to edge path, 506
Path component, 160

vs. component, 161
Path connectedness, 155

of 156

of long line, 159
of ordered square, 156
ofiR" —0,156
of S", 156
of topologist's sine curve, 157
vs. connectedness, 156

Path homotopy, 323
Path-homotopy class, 324
Path-induced homomorphism, 331
Peano curve, 271
Peano space, 275
Perfectly normal space, 213
Perfect map, 172, 199

and 172

and paracompactness, 260
Piecewise linear function, 302



irf(X, xO), 331 (see also Fundamental
group)

Plane in RN 310
Point-finite collection, 248
Point-finite family, 227
Point-open topology, 281

convergent sequences in, 282
equals product topology, 282
vs. compact convergence topology,

285
vs. compact-open topology, 285

Pointwise bounded, 278
Pointwise convergence topology, 281

(see also Point-open topology)
Polygonal region, 447
Positive integers, 32
Positive linear map:

of intervals in IR, 328
of oriented line segments, 447

Power set, 12
Precise refinement, 258
Preimage, 19
Presentation of a group, 425
Principle of induction, 32

transfinite, 67
Principle of recursive definition, 47, 54

general, 72
Product:

of continuous maps, 112
of covering maps, 339
of open maps, 141
of path-homotopy classes, 326
of paths, 326
of quotient maps, 141, 143, 145,

186, 289
Product space, 114 (see also Product

topology)
fundamental group, 371
Product topology, 86, 114

basis, 86, 115, 116
closures in, 101,116
compactness, 167, 234
complete regularity, 211
connectedness, 150, 152

Inde,c 531

convergent sequences, 118, 265
firstcountability, 191
Hausdorif condition, 100, 116, 196
Lindelöf condition, 193
local compactness, 186
metrizability, 133, 134
normality, 198, 203
paracompactness, 257
regularity, 196
second-countability, 191
subbasis, 88, 114
vs. box topology, 115
vs. point-open topology, 282
vs. quotient topology, 141, 143. 145,

186, 289
vs. subspace topology, 89, 116
vs. uniform topology, 124

Projection map, 87, 114
is open map, 92

Projective n-space, 373
Projective plane, 372 (see also P2)
Projective-type scheme, 463
Proper inclusion, 4
Proper labelling scheme, 463
Proper subset, 4
Properly discontinuous, 490
Prüfer manifold, 317
p2, 372

fundamental group, 373
is surface, 372

Punctured euclidean space, 156 (see
also R" — 0)

Punctured plane, 325 (see also R2 —0)

Q
Q°°, 195
Quantifiers, logical, 9
Quasicomponent, 163

vs. component, 163, 236
Quotient group, 331
Quotient map, 137

composites, 141
products, 141, 143, 145, 186, 289
restrictions, 137, 138, 140
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Quotient space, 139 (see also Quotient
topology)

Quotient topology, 138
and continuous functions, 142
Hausdorif condition, 142, 199
local compactness, 199
local connectedness, 163
normality, 199
regularity, 199
second-countability, 199
T1 condition, 141
vs. product topology, 141, 143, 145,

186, 289

IR

IR (reals), 30
algebraic properties, 30
compact subspaces, 173
connected subspaces, 154
local compactness, 182
K-topology, 82 (see also IRK)
lower limit topology, 82 (see also

metric for, 120
order properties, 31
second-countability, 190
standard topology, 81
uncountability, 177

Range of a function, 16
Rank of a free abelian group, 411
Rational number, 32
Ray in ordered set, 85
Recursive definition, principle, 47, 54

general principle, 72
Reduced edge path, 507
Reduced word, 413
Refinement, 245, 305
Regular covering space, 489

is orbit space, 491
Regularity, 195

of G/H, 146
of locally compact Hausdorff space,

205

of manifold, 227
of orbit space, 199
and perfect maps, 199
of products, 196
of subspaces, 196
of topological groups, 146
vs. complete regularity, 214
vs. Hausdorff condition, 195, 197
vs. metrizability, 215
vs. normality, 195, 198, 203

Regular Lindelöf space:
metrizability, 218
normality, 205
paracompactness, 257

Regular space, 195 (see also Regular-
ity)

Restriction:
of a covering map, 338, 484
ofa function, 17
ofaquotient map, 137, 138, 140
of a relation, 28

Retract, 223, 348
Retraction, 335, 348

as quotient map, 144
Represented by a word, 412
Reverse of a path, 327
Relation, 21
Relation on a free group, 424

complete set, 425
p, 122, 268 (see also sup metric)
5, 124, 266 (see also uniform metric)
IR", countable dense subset, 195
Right coset, 330
Right inverse, 21
IR°°, 118

closure in IR'° 118, 127
paracompactness, 260

in box topology:
is Baire, 300
complete regularity, 213

R' in product topology:
is Baire, 300
countable dense subset, 195
metnzability, 133



in product topology (cont.)
normality, 203
paracompactness, 257

in uniform topology, 124
is Baire, 300
completeness, 267

IRK, 82
connectedness, 178
separation axioms, 197
vs. standard topology, 82

R1, 82
countability axioms, 192
metnzability, 194
normality, 198
paracompactness, 257
vs. standard topology, 82

193
complete regularity, 212
Lindelöf condition, 193
paracompactness, 257
separation axioms, 198

38

basis, 116
compact subspaces, 173
local compactness, 182
metrics for, 122, 123
paracompactness, 253
second-countability, 190

— 0, 156
fundamental group, 360
path connectedness, 156

R'°, 38
in box topology:

components, 162
connectedness, 151
metnzability, 132
normality, 205
paracompactness, 205

RW in product topology:
completeness, 265
connectedness, 151
local compactness, 182
metrizability, 125
paracompactness, 257

second-countability, 190
IRW in uniform topology:

components, 162
paracompactness, 257
second-countability, 190

1R2 standard topology, 87
1R2—O,325

covering space, 340
fundamental group, 360

Rule of assignment, 15
Russell's paradox, 62

S

Index 533

Sa (section of well-ordered set), 66
Saturated set, 137
Scheme, 449

projective type, 463
proper, 463
torus type, 463

Schroeder-Bernstein theorem, 52
Schoenflies theorem, 392
Second category set, 295
Second coordinate of ordered pair, 13
Second-countability, 190

of compact metric space, 194
of C(1, R), 194
of orbit space, 199
and perfect maps, 199
of products, 191

of 1R1, 192

of RW in uniform topology, 190
of subspace, 191
of topological group, 195
vs. countable dense subset, 194
vs. Lindelöf condition, 194

Second-countable space, 190 (see also
Second-countability)

Section:
of the positive integers, 32
of a well-ordered set, 66

Seifert-van Kampen theorem 426
classical version, 431
special case, 369
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Semilocally simply connected, 494
Separable, 192 (see also Countable

dense subset)
Separates points from closed sets, 218
Separates a space, 378

into n components, 378
Separation, 148

by continuous functions, 211
Separation theorem:

closed topologist's sine curve in 52,
393

general, 380, 392
simple closed curve in S2, 379, 390
theta space in

Sequences, 38
and closure, 130, 190
and continuity, 130, 190

Sequence lemma, 130
Sequential compactness, 179

vs. compactness, 179
Shrinking lemma, 227

general, 258
Shrinking map, 182

and fixed points, 182
vs. contraction, 182

a-compact, 289, 316
a-locally discrete, 252
a-locally finite, 245
Simple closed curve, 379

generates Ill of R2 — 0, 401
separates S2, 379, 390
winding number, 404,406

Simply connected, 333
Sn, 369
star-convex set, 334
tree, 508
vs. locally simply connected, 499

Simple loop, 404
Simple order, 24
Slice:

in covering space, 336
in product space, 167

Smaller topology, 77
Smallest element of ordered set, 27

Smirnov metrization theorem, 261
S" (unit sphere), 156

compactness, 174
fundamental group, 369
path connectedness, 156
simple connectedness, 369

Sn,66
compactification, 242
countable subsets, 66, 74
existence, 74
metrizability, 181
paracompactness, 260, 261

- uniqueness, 73

Sn,66
metrizabiity, 181

Sn x
complete regularity, 212
normality, 203
paracompactness, 254

S1. 106

covering spaces, 337, 482
fundamental group, 345

Sphere, unit, 139, 156 (see also
Sorgenfrey plane, 193 (see also 1R2
Square metric, 122 (see also p)
Standard bounded metric, 121
Standard topology:
on IR, 81
on 1R2, 87

Star-convex set, 334
Stereographic projection, 369
Stone-tech compactification, 241

existence, 239
extension condition, 240
metrizability, 242
of Sn, 242
uniqueness, 240
of Z÷, 242

Straight-line homotopy, 325
Strictly coarser topology, 77
Strictly finer topology, 77
Strict partial order, 68
Strong continuity, 137
Stronger topology, 78



Strong induction principle, 33
139

as quotient space, 136, 139
Subbasis, 82

for order topology, 86
for product topology, 88, 114

Subgraph, 503
Subgroup:

of free abelian group, 412
of free group, 514

Subnet, 188
Subsequence, 179
Subset, 4
Subspace topology, 88

basis, 89
compactness, 164
complete regularity, 211
connectedness, 148
countable dense subset, 194
first-countability, 191
Hausdorif condition, 100, 196
Lindelöf condition, 193, 194
local compactness, 185
in metric space, 129
normality, 203, 205
paracompactness, 254
regularity, 196
second-countability, 191
topological dimension, 306
vs. box topology, 116
vs. order topology, 91
vs. product topology, 89, 116

Sum of groups, 407
Sup A, 27
Superset, 233
Sup metric, 268

vs. uniform metric, 268
Support, 225, 257
Supremum, 27
Surface, 225, 370

classification, 457,469
Surface with boundary, 476
Surjective function, 18
Symmetric neighborhood, 146

T
Theta space, 362, 394

fundamental group, 432
separates S2, 395
axioms, 211, 213

Tietze extension theorem, 219
T1 axiom, 99

vs. Hausdorif condition, 99
vs. limit points, 99
for quotient space, 141

Topological completeness, 270 (see
also Complete metric space)

Topological dimension, 305
of closed subspace, 306
of closed subspace of RN 316
of compact manifold, 314
of compact subspace of JR. 305
of compact subspace of R", 313
of compact subspace of R2, 306
of linear graph, 308
of manifold, 316
of I-manifold, 308
of triangular region, 352
of 2-manifold, 308, 352
of a union, 307, 308
of[0, l],305

Topological group, 145
closedness of A . B, 172, 188
complete regularity, 213
covering space of, 483
Hausdorff condition, 146
normality, 207

is abelian, 335
paracompactness, 261
regularity, 146
second-countability, 195

Topological imbedding, 105
Topological property, 105
Topological space, 76
Topologist's sine curve, 157

components, 160

Index 535

System of free generators, 42 1
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Topologist's sine curve (cont.)
connectedness, 156
does not separate S2, 393
path components, 160
path connectedness, 157

Topology, 76
generated by a basis, 78, 80
generated by a subbasis, 82

Torsion subgroup, 412, 424
Torus, 339

covering space of, 339, 483
equals doughnut surface, 339
fundamental group, 371, 442
as quotient space, 136, 140

Torus-type scheme, 463
Totally bounded, 275

vs. equicontinuity, 277
Totally disconnected, 152
Tower, 73
Transcendental number, 51
Transfinite induction, 67
Translation of RN 310
Tree, 507

fundamental group, 508
maximal, 509

Triangle inequality, 119
Triangulable, 471
Triangulation, 471
Trivial homomorphism, 335
Trivial topology, 77
Tube, 167
Tube lemma, 168

generalized, 171
Tukey lemma, 72
2-cell, 441
2-manifold, 225

topological dimension, 308, 352
2-manifold with boundary, 476
2-sphere, 139 (see also 52)
Tychonoff theorem, 234

for countable products, 280
for finite products, 167
via well-ordering theorem 236

U

U(A,e), 177
Uncountability:

of
of transcendental numbers, 51
of(0, l}w,49

Uncountable set, 45
Uncountable well-ordered set, 74 (see

also Sn)
Uniform boundedness principle, 299
Uniform continuity theorem, 147, 176
Uniform convergence, 131

on compact sets, 283
Weierstrass M-test for, 135

Uniform limit theorem, 132
converse fails, 134
partial converse, 171

Uniformly continuous, 176
Uniform metric, 124, 266 (see also

Uniform topology)
completeness, 267
vs. sup metric, 268

Uniform structure, 292
Uniform topology, 124, 266

vs. box topology, 124
vs. compact convergence topology,

285
Union, 5, 12, 36
Unit ball, 135, 331 (see also fi2
Unit circle, 106 (see also S')
Unit sphere, 156 (see also 5))
Universal covering space, 484

existence, 498
Universal extension property, 223
Upper bound, 27,70
Urysohn lemma, 207

strong form, 213
Urysohn metrization theorem, 215
Utilities graph, 308, 394

nonembeddability, 396

V
Vacuously true, 7



Value of a function, 16
Vanish at infinity, 280
Vanish precisely on A, 213
Vector field, 350
Vertex:

of a curved triangle, 471
of a linear graph, 308, 394, 502
of a polygonal region, 447

w
Weaker topology, 78
Weak local connectedness, 162

vs. connectedness, 162

Wedge of circles, 434,435
existence, 437
fundamental group, 434, 436

Wedge of spaces, 438
Weierstrass M-test, 135
Well-ordered set, 63

compact subspaces, 172
dictionary order, 64
finite, 64
normality, 202
subsets well-ordered, 63
uncountable, 66

32

Z÷ x Z÷,63
Well-ordering theorem, 65

applied, 236, 246
and axiom of choice, 67, 73
and maximum principle, 70,73

Winding number, 398,403
as an integral, 405
of simple closed curve, 404, 406

Word, 412,415
reduced, 413

x
113

Xm, 38

[X, Yl, 330

z
Z, 32

Z÷,32
not finite, 42
well-ordered, 32

Zermelo, 65
Zorn's lemma, 70

applied, 72, 233, 236, 509
vs. maximum principle, 72

Index
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