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Groups
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Groups

The notion of group embodies the idea of symmetry and is one of
the central notions in mathematics.

Z/5Z D6
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Algebraic structures

From the linear algebra course(s) you know the definition of vector
space: this is a set subject to given operations (addition,
multiplication on scalars) satisfying given axioms (commutativity,
associativity, existing of zero, etc.)

This is an instance of an algebraic structure: 〈X , f1, f2, . . . 〉; the set
X with a number of (generally, multiary) operations
fi : X × · · · × X → X , satisfying certain axioms.

Groups (and other things we will study in due course, like rings and
fields) is another instance of algebraic structures.
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Groups (cont.)

Definition
A group is a set G with a binary operation · : G × G → G (called
multiplication), and a distinguished element e ∈ G (called the unit,
or the neutral element) subject to the following axioms:

I For any a, b, c ∈ G , (a · b) · c = a · (b · c) (associativity).

I For any a ∈ G , a · e = e · a = a.

I For any a ∈ G there exists an element a−1 ∈ G (called the
inverse of a) such that a · a−1 = a−1 · a = e.

The cardinality of the set G is called an order of the group.
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Examples of groups
I The trivial group consisting of one element e.

I All symmetries of a geometric figure (i.e., continuous
transformations mapping the figure to itself) subject to
operation of composition from the first slide.

I All permutations of a finite set of n elements, called the
symmetric group Sn.

I All invertible transformations of a vector space V subject to
operation of composition, called the general linear group
GL(V ).

I (Q,+), (Q\{0},×).

Exercise 1
What are the orders of these groups?

Exercise 2
Can you give more examples? What is a general pattern for
constructing them?

See also Shafarevich, pp. 105,109–118,144-150.
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Multiplication table

Group can be given by enumerating elements, and specifying
explicitly the table of all products between them (called the
multiplication table).

Groups of order 2 and 3:

e a

e e a
a a e

e a b

e e a b
a a b e
b b e a

Exercise
Are there other groups of orders 2 and 3?

For a list of small groups, see Shafarevich, p. 152.
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Another exercise

What is the minimal number n such that if one removes n rows
and n columns from the multiplication table of an arbitrary finite
group, it is always possible to reconstruct the group from the
incomplete table?

(Proposed to, and, unfortunately, got rejected at the 2017 Vojtěch Jarńık International Mathematical Competition)



9/51

Subgroups

Generally, a substructure of an algebraic structure 〈X , f1, f2, . . . 〉 is
a subset of X closed with respect to all operations f1, f2, . . . .

Accordingly:

Definition
A subgroup of a group G is a subset closed with respect to
multiplication, and taking the inverse (and hence containing the
unit).

(Note that distinguished elements of an algebraic structure, if any,
can be interpreted as 0-ary operations, thus any substructure
should contain them).
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Homomorphisms and automorphisms

Generally, a homomorphism between two algebraic structures
〈X , f1, f2, . . . 〉 and 〈Y , f1, f2, . . . 〉 of the same signature (i.e.,
having the same number of operations of the same arity) is a map
X → Y which preserves any of the operations f1, f2, . . . . A
homomorphism is called an isomorphism (and X and Y are said
isomorphic, notationally X ' Y ), if it is bijective. An isomorphism
of an algebraic structure to itself is called automorphism.

Automorphisms of any algebraic structure X form a group with
respect to composition, denoted by Aut(X ). This is one of the
reasons groups occupy a central place among all possible algebraic
structures.
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Homomorphisms of groups

According to the general notion from the previous slide:

Definition
A homomorphism from a group G to a group H is a map
f : G → H such that f (a · b) = f (a) · f (b) for any a, b ∈ G , and
f (e) = e (note that, by abuse of notation, the multiplication and
unit in the groups G ,H are denoted by the same symbols).

Exercise
Prove that if f is a homomorphism of groups, then
f (a−1) = f (a)−1.

Examples of group homomorphisms

I For any a ∈ G , x 7→ a−1xa is an automorphism of a group G ,
called an inner automorphism.

I det : GLn(K )→ K ∗

I log : (R>0,×)→ (R,+)
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Normal subgroups

Definition
The kernel of a group homomorphism f : G → H is the set
{a ∈ G | f (a) = e}.

Definition
A subgroup N of a group G is called normal subgroup (denoted as
N / G ), if a−1xa ∈ N for any x ∈ N and a ∈ G .

In other words: N is stable under all inner automorphisms.

Yet in other words: any left coset is also a right coset: aN = Na
for any a ∈ G .

In any group G , the trivial subgroup, {e}, and the whole group G ,
are normal subgroups.

Definition
All normal subgroups besides {e} and G are called proper.
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Normal subgroups and quotients

Theorem
Normal subgroups are precisely kernels of group homomorphisms.

(That is, the kernel of any group homomorphism is a normal
subgroup, and any normal subgroup is the kernel of a suitable
group homomorphism).

For a given normal subgroup N of a group G , the homomorphism
from the theorem is constructed as follows. Define an equivalence
relation on G : a ∼ b if aN = bN. (Prove that this is an
equivalence relation!). On the set of equivalence classes – the
cosets – define multiplication as:

(aN) · (bN) = abN.

(Why this is well defined?). Thus obtained structure is a group,
denoted as G/N, and called the group of quotients of G by N.
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Examples of normal subgroups and group quotients

I nZ / Z for any integer n.

I GLn(K )/{scalar matrices} ' SLn(K ), the group of n × n
matrices with determinant 1.

For more examples, see Shafarevich, pp. 107,141 and
Lang, p. 15.
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Homomorphism theorems, 1 and 2

The first homomorphism theorem

If f : G → H is a group homomorphism, then there is a group
isomorphism G/Ker f ' Im f .

The second homomorphism theorem

If H is a normal subgroup in a group G , K a normal subgroup both
in H and in G , then H/K is a normal subgroup in G/K , and

(G/K )/(H/K ) ' G/H.

Warning

The relation of normality in groups is not transitive! That is, if
K / H / G , then not necessarily K / G . (Give an example!).
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Homomorphism theorem, 3

The third homomorphism theorem

If S is a subgroup in a group G , and N a normal subgroup in G ,
then N ∩ S is a normal subgroup in S , NS is a subgroup in G , and

S/(N ∩ S) ' NS/N.

These three homomorphism theorems are valid in a much more
general context, for general algebraic systems.
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Direct product of groups

Definition
A direct product of two groups G , H is the group formed by the
Cartesian product G × H with respect to multiplication defined as

(a, b) · (a′, b′) = (aa′, bb′)

for any a, a′ ∈ G , h, h′ ∈ H.

Lemma
G × {e} is a normal subgroup in G × H, and
(G × H)/(G × {e}) ' H. (Similarly for {e} × H).
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Cyclic groups

Definition
A group G is cyclic, if there is an element a ∈ G such that every
element of G is of the form an for some integer n.

Theorem
Any infinite cyclic group is isomorphic to Z. Any finite cyclic group
of order n is isomorphic to Z/nZ.
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Commutator and commutant

Definition
A commutator of two elements a, b of a group G is defined as
a−1b−1ab. A commutant of a group G , denoted by [G ,G ], is a
subgroup generated by all commutators.
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Abelian groups

Definition
A group G is called commutative, or abelian, if the multiplication
is commutative: a · b = b · a for any a, b ∈ G .

In other words, the commutator of G is trivial: [G ,G ] = {e}.
“Abelian” is in honor of Niels Henrik Abel (1802–1829):

Exercise
Which of the groups considered so far are abelian?
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Nilpotent groups

Definition
A lower central series Gn of a group G is defined inductively as:
G 1 = G , Gn+1 = [Gn,G ]. A group G is called nilpotent, if Gn = 0
for some n.

Example

The group of all upper-triangular n × n matrices over a field with
units on the diagonal.
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Solvable groups

Definition
A derived series G (n) of a group G is defined inductively as:
G (1) = G , G (n+1) = [G (n),G (n)]. A group G is called solvable, if
G (n) = 0 for some n.

The term “solvable” comes from Galois theory – named after
Évariste Galois (1811–1832) – which links properties of an
algebraic equation with the group of its symmetries: an algebraic
equation is solvable in radicals if and only if the group of all
permutations of its roots is solvable.
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Nilpotent and solvable groups

Lemma
Any nilpotent group is solvable.

Example of solvable groups

I S3, S4.

I The group of all upper-triangular n × n matrices over a field.

For more examples, see Shafarevich, p. 156.

Theorem
A subgroup and a homomorphic image of a cyclic, respectively
abelian, respectively nilpotent, respectively solvable group, is cyclic,
respectively abelian, respectively nilpotent, respectively solvable.
A direct product of abelian, respectively nilpotent, respectively
solvable groups, is abelian, respectively nilpotent, respectively
solvable.
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Simple groups

Definition
A group is called simple if all its normal subgroups are proper.

Theorem
An abelian group is simple if and only if it is isomorphic to Z/pZ.

Another example

The alternating group An consisting of even permutations in Sn,
for n ≥ 5.

For more examples, see Shafarevich, p. 157–160.
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Rings
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Rings

Definition
A ring is a set R with two binary operations +, · : R × R → R
(called addition and multiplication respectively) and distinguished
element 0 (called zero), subject to the following axioms:

I R is an abelian group with respect to addition and with 0 as a
neutral element.

I For any a, b, c ∈ R, (a · b) · c = a · (b · c) (associativity of
multiplication).

I For any a ∈ R, a · 0 = 0 · a = 0.

I For any a, b, c ∈ R, a · (b + c) = a · b + a · c and
(b + c) · a = b · a + c · a (distributivity).

Exercise
Give definitions: of a subring of a ring; of a homomorphism and
isomorphism of rings.
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Examples of rings
I Integers Z.

I GF (2), the ring consisting of two elements {0, 1}, where
1 · 1 = 1

Exercise
Are there other (nonisomorphic!) rings consisting of two elements?

I Polynomial ring K [x ]: all polynomials with coefficients in a
field K .

I Matrix ring Mn(K ) of all n× n matrices with coefficients in K .

I The set of continuous real-valued functions defined on the
same topological space.

Definition
A ring R is called commutative, if a · b = b · a for any a, b ∈ R.

Exercise
Give more examples. Which of all these rings are commutative?
Give examples of subrings in all these rings.
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Examples of homomorphisms of rings

I Z→ GF (2): even number 7→ 0, odd number 7→ 1.

I Evaluation homomorphism: from the ring of real functions to
R: f 7→ f (x0) for some fixed x0 in the domain.
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Ideals

The following goes very similarly with the group case.

Definition
The kernel of a ring homomorphism f : R → S is the set
{a ∈ R | f (a) = 0}.

Definition
An subring I of a ring R is called an ideal, if x · a ∈ I and a · x ∈ I
for any x ∈ I , a ∈ R.

In any ring R, {0} (denoted by abuse of notation just as 0), and
the whole R are always ideals.

Definition
All ideals besides 0 and R are called proper ideals.

Theorem
Ideals are precisely kernels of homomorphisms.
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Quotients

Let I be an ideal of a ring R. Define an equivalence relation on R:
a ∼ b if a− b ∈ I . On the set of equivalence classes define
addition and multiplication as:

(a + I ) + (b + I ) = (a + b) + I

(a + I ) · (b + I ) = ab + I .

Thus obtained structure is a ring, denoted as R/I , and called the
ring of quotients of R by I .

The three homomorphism theorems similar to those for groups, are
valid for rings.
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Direct sums

Definition
A direct sum of two rings R and S , denoted by R ⊕ S , is the ring
consisting of all pairs from R × S (cartesian product) with addition
an multiplication defined component-wise:

(r , s) + (r ′, s ′) = (r + r ′, s + s ′)

(r , s) · (r ′, s ′) = (r · r ′, s · s ′)

for any r , r ′ ∈ R, s, s ′ ∈ S .

Exercise
Establish a ring isomorphism R ⊕ S ' S ⊕ R.
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Fields
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Fields

Definition
A field is a set F with two binary operations +, · : F × F → F
(called addition and multiplication respectively) and two
distinguished elements 0 and 1 (called the zero and the unit
respectively), subject to the following axioms:

I F is a commutative ring with respect to addition and
multiplication.

I For any a ∈ F , a · 1 = a.

I For any a ∈ F , there is an element a−1 ∈ F (called the inverse
of a), such that a · a−1 = 1.
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Fields (cont.)

In other words, F is an abelian group with respect to addition
(called the additive group of F ), and F ∗ = F\{0} is an abelian
group with respect to multiplication (called the multiplicative
group of F ).

Yet in other words, F is a commutative ring with unit all whose
nonzero elements are invertible.

Exercise
Give definitions: of a subfield of a field; of an isomorphism of
fields. Why we do not speak about homomorphism of fields?

Theorem
A commutative ring with unit is a field if and only if it does not
have any proper ideals.
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Examples

Examples of fields

I Number fields: rational numbers Q, real numbers R, complex
numbers C. We have a chain of subfields: Q ⊂ R ⊂ C.

I GF (2) is actually a field, the smallest possible one.

I The polynomial ring K [x ] is not a field. (Prove this!). But if
we consider K (x), the set of all formal “fractions” with

elements from K [x ], i.e., all expressions of the form f (x)
g(x) ,

where f (x), g(x) ∈ K [x ], with the usual rules for addition and
multiplication of fractions, then it becomes a field. (Prove
this!)

Example of a field isomorphism

R[x ]/(x2 + 1) ' C
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Algebraically closed fields

Definition
A field F is called algebraically closed, if every polynomial with
coefficients in F has a root in F

Examples

C is algebraically closed, while R or finite fields are not.

Theorem
Any field has an algebraically closed extension.

Definition
Given a field F , such minimal extension is called an algebraic
closure of F , and is denoted by F .

Example

R = C
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Characteristic

Definition
A characteristic of a field is the minimal number n such that
1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0, or zero if such number does not exist.

Theorem
A characteristic of a field is either 0, or a prime number.

Examples

Characteristic of Q, R, and C is zero, characteristic of GF (2) is 2.
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Finite fields
We have already encountered a finite field of 2 elements, GF (2).

Theorem 1
The ring quotient Z/nZ is a field if and only if n is prime.

This field is denoted by GF (p).

Theorem 2

1. The number of elements of a finite field has the form pn,
where p is the characteristic of the field;

2. For each prime p and positive integer n there exists a field of
pn elements;

3. Two finite fields with the same number of elements are
isomorphic.

The unique, according to this theorem, field of pn elements is
denoted by GF (pn). (“GF” stands for “Galois field”).

Exercise
Draw multiplication tables for the field GF (4).
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Prime subfields

Theorem
Every field F contains a minimal subfield P (i.e., any other subfield
of F contains P), which is isomorphic either to Q (if characteristic
of F is zero), or to GF (p) (of characteristic of F is p).

Definition
This subfield P is called a prime subfield of F .
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Algebras
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Algebras

Algebra = ring + vector space.

Definition
An algebra over a field K is a vector space A over a field K with a
binary operation · : A× A→ A such that (A,+, ·) is a ring, and
additionally, the following axiom is satisfied: λ(a · b) = (λa) · b for
any a, b ∈ A, λ ∈ K .

Terminological warning

“Algebra” has (at least) two (related) meanings: first, a part of
mathematics, and second, a particular mathematical structure
(which is studied in the scope of algebra in the first sense).
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Example of algebras

I The polynomial ring K [x ], and the matrix ring Mn(K ) are,
actually, algebras over the field K .

I Power series K [[x ]] over a field K .
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Structure constants
If we fix a basis {ei}i∈I in an algebra A, then the multiplication in
A is uniquely determined by multiplication between all pairs of the
elements of the basis (“multiplication table”):

ei · ej =
∑
i∈I

C k
ij ek ,

where i , j ∈ I . The elements of the base field {C k
ij }i ,j ,k∈I are called

structure constants of A in the basis {ei}.
Example

The matrix units Eij , i , j = 1, . . . , n form a basis of the matrix
algebra Mn(K ). The multiplication table in this basis is

EijEk` = δjkEi`.

Exercise
Take a few low-dimensional algebras and write their structure
constants in some bases.
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Quaternions

Definition
The quaternion algebra H over a field K is the 4-dimensional
algebra with the basis {1, i , j , k}, where 1 is the unit, and the rest
of multiplication table is
i2 = j2 = k2 = −1, ij = k , ji = −k , jk = i , kj = −i , ki = j , ik = −j

For more about quaternions and why they are important, see
Shafarevich, pp. 65–66 and Mac Lane–Birkhoff,
pp. 281–283.
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Modules
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Modules

Modules is a generalization of the concept of vector space, where
instead of the underlying field we are taking a ring: the axioms are
exactly the same as for the vector space, with multiplication by
elements of a field being replaced by multiplication by element of a
ring.

Examples

I A ring is a module over itself.

I More generally, an ideal in a ring is module over that ring.

I The vector space of vector fields (say, in the 2-dimensional
real space) {f (x , y)∂/∂x + g(x , y)∂/∂y} is a module over a
ring of functions.

I Abelian groups are nothing but modules over Z.

For more examples see Shafarevich, pp. 34–36.
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Modules (cont.)

Exercise
Give definitions of a submodule, a homomorphism of modules, and
a quotient module.
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Tensor product
The tensor product is an analog of “multiplication” for modules.

Theorem
Let M, N be two modules over a ring R. Consider a class of
modules L such that there is a “multiplication” map M × N → L,
(x , y) 7→ xy satisfying the following bilinearity properties:

(x1 + x2)y = x1y + x2y for any x1, x2 ∈ M, y ∈ N

x(y1 + y2) = xy1 + xy2 for any x ∈ M, y1, y2 ∈ M

(ax)y = x(ay) = a(xy) for any a ∈ R, x ∈ M, y ∈ N.

Then there is a “universal” module in this class, denoted by
M ⊗R N with multiplication denoted by x ⊗ y : for any other
module L in the class, there exists a unique homomorphism
ϕ : M ⊗R N → L such that xy = ϕ(x ⊗ y).

Definition
The module M ⊗R N is called the tensor product of the modules
M and N.
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Tensor product (cont.)

The tensor product M ⊗R N can be constructed explicitly as a
submodule of the R-module generated by M × N subject to the
following relations:

(x1 + x2, y)− (x1, y)− (x2, y)

(x , y1 + y2)− (x , y1)− (x , y2)

a(x , y)− (x , ay)

a(x , y)− (ax , y).

Theorem
If R is a field (i.e., M and N are vector spaces over R, and {ei}i∈I
and {fi}i∈J are R-bases of M and N respectively, then
{ei ⊗ fj}i∈I ,j∈J is a basis of the R-vector space M ⊗R N.

Corollary

If R is a field, then dim(M ⊗R N) = dimM · dimN.
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Tensor product (cont.)

Warning

The intuition for the tensor product of vector spaces works badly in
the general case. For example, if n and m are relatively prime, then
Z/nZ⊗Z Z/mZ = 0. (Prove this!)

We can go further and iterate the tensor product construction. In
particular, tensoring the same module M with itself, and taking
direct sums of all tensor powers, we get the tensor algebra of M,
and taking in it various quotients and subspaces we get symmetric
and skew-symmetric powers, etc. See Shafarevich, pp. 38–39,
Lang, pp. 601–612, 632–637, and Mac Lane–Birkhoff,
pp. 522–547 for details.
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The End


