SIMPLICITY OF QUATERNIONS

Theorem. The quaternion algebra is simple.
Let us denote the quaternion algebra over a field K by $\mathbb{H}(K)$.
First proof. Extend the base field K to the algebraic closure \bar{K}, and consider the quaternion algebra over $\bar{K}: \mathbb{H}(\bar{K})=\mathbb{H}(K) \otimes_{K} \bar{K}$. We know that $\mathbb{H}(\bar{K}) \simeq M_{2}(\bar{K})$, and the latter algebra is simple. Hence $\mathbb{H}(K)$ is simple.
Second proof. Let I be a nonzero ideal of $\mathbb{H}(K)$. Take a nonzero element $\alpha 1+\beta i+\gamma j+\delta k \in I$, where $\alpha, \beta, \gamma, \delta \in K$. Multiply this element on i from the right and from the left we get, respectively, two elements lying in I :

$$
\begin{aligned}
& -\beta 1+\alpha i+\delta j-\gamma k \\
& -\beta 1+\alpha i-\delta j+\gamma k
\end{aligned}
$$

Taking the sum and the difference of these two elements and dividing by 2 (at this point we assume that characteristic of K is not 2 ; the proof in characteristic 2 can go along the same lines, but would be more cumbersome), we get, respectively, $-\beta 1+\alpha i \in I$ and $\delta j-\gamma k \in I$. Since not all of $\alpha, \beta, \gamma, \delta$ are zero, at least one of those two elements is not zero.

Case 1. I contains a nonzero element of the form $\lambda j+\mu k$ for some $\lambda, \mu \in K$.
Case 1a. $\lambda \neq 0$. Multiplying the element $\lambda j+\mu k$ on j from the right and from the left, and adding the results of multiplications, we get $-2 \lambda 1 \in I$, hence $1 \in I$ and $I=\mathbb{H}(K)$.

Case 1b. $\lambda=0$. Then $\mu \neq 0$, and $k \in I$. Then $k^{2}=-1 \in I$, and again $I=\mathbb{H}(K)$.
Case 2. I contains a nonzero element of the form $\lambda 1+\mu i$ for some $\lambda, \mu \in K$. Multiplying this element on j from the right, we get a nonzero element $\lambda j+\mu k$, i.e., we are in Case 1 .

A more systematic approach would consist of multiplying the initial element $\alpha 1+\beta i+\gamma j+\delta k$ on all i, j, k from the right and from the left, and collecting all the results:

$$
\begin{aligned}
& -\beta 1+\alpha i+\delta j-\gamma k \\
& -\beta 1+\alpha i-\delta j+\gamma k \\
& -\gamma 1-\delta i+\alpha j+\beta k \\
& -\gamma 1+\delta i+\alpha j-\beta k \\
& -\delta 1+\gamma i-\beta j+\alpha k \\
& -\delta 1-\gamma i+\beta j+\alpha k
\end{aligned}
$$

The linear span of the initial element and those 6 elements lies in I (actually, coincides with I) and its dimension is equal to the rank of the 4×7 matrix of the corresponding coefficients:

$$
\left(\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
-\beta & \alpha & \delta & -\gamma \\
-\beta & \alpha & -\delta & \gamma \\
-\gamma & -\delta & \alpha & \beta \\
-\gamma & \delta & \alpha & -\beta \\
-\delta & \gamma & -\beta & \alpha \\
-\delta & -\gamma & \beta & \alpha
\end{array}\right)
$$

One can check then (for example, using some computer algebra system) that if $\alpha, \beta, \gamma, \delta$ are not all zero, the rank of this matrix is always 4 . This approach is more laborious, but also more elegant.

