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Preface

My motivation for writing this book came from teaching a two year course
in algebra at the Mathematical College of the Independent University of
Moscow in 1992-1994. The students' enthusiasm and a relatively small class
allowed me to keep the level of presentation higher than it is usually done at
the Mechanics and Mathematics Department of Moscow State University,
and to touch on a number of subjects beyond a regular university course.
However, in writing this book I used my experience in teaching at Moscow
State University, and so the final version of the book is only partially related
to the course given at the Independent University.

Chapters 1-7 and part of Chapter 8 more or less correspond to the
first year algebra course at the Mechanics and Mathematics Department
of Moscow State University. The remaining chapters cover, and, in fact,
substantially exceed the second year algebra course. These chapters are
intended mainly for students specializing in algebra.

Note that Chapter 7 is devoted to geometry of Euclidean, affme, and pro-
jective spaces. However, this chapter should not be viewed as an exposition
of geometry; rather, it describes the algebraic approach to geometry.

In the first four chapters I tried to make the presentation sufficiently
detailed to be suitable for a reader such as a mathematics freshman at
Moscow State University. (However, the language of sets and maps is used
from the very beginning without any explanations.) In later chapters I
allowed myself to skip details that can be easily reconstructed, since I believe
that a reader should gradually acquire mathematical culture.

There are almost no technically difficult proofs in this book. Following
my point view on mathematics, I tried to replace calculations and difficult

ix



Preface

deductions with conceptual proofs. Some readers may find this style hard,
but the efforts spent in absorbing new ideas will pay off when the students
start solving problems not discussed in this book.

For the English edition, the bibliography at the end of the book was
revised. It is certainly not complete and, to some extent, arbitrary, but I
believe the reader might find it helpful.

I am grateful to all current and former members of the Chair of Higher
Algebra at the Mechanics and Mathematics Department of Moscow State
University who helped me to shape my approach to teaching algebra.

In the English translation a number of misprints and inaccuracies were
corrected and some explanations added.

Moscow, November 2002 E. B. Vinberg



Chapter 1

Algebraic Structures

When you are introduced to people, at first you only learn their names and
faces. Meeting them later, you begin to know them better, maybe even
become friends with them.

In the first chapter, you will be only introduced to most of the algebraic
structures considered in this book. A deeper understanding of them should
come later, through reading and problem-solving.

1.1. Introduction

If it is at all possible to define the subject of algebra precisely, then this is
the study of algebraic structures: sets on which operations are defined. By
an operation on a set M, we mean a map

MxM-M,

i.e., a rule that assigns to every two elements of M some element of the same
set M. These elements can be numbers or objects of a different kind.

The following number sets are well-known important examples of alge-
braic structures. They have the operations of addition and multiplication:

N, the set of all natural numbers,
Z, the set of all integers,
Z+ = N U {O}, the set of all nonnegative integers,

Q, the set of all rational numbers,
R, the set of all real numbers,
lR+, the set of all nonnegative real numbers.

I



2 1. Algebraic Structures

Remark that the operations of addition and multiplication are not de-
fined on every number set. For example, multiplication is not defined on
the set of negative numbers because the product of two negative numbers
is positive. On the set of irrational numbers, neither multiplication nor ad-
dition is defined, since the sum and the product of two irrational numbers
can be rational.

Here are some examples of algebraic structures whose elements are not
numbers:

Example 1.1. Let M, N, P be sets and let

g:P-4N
be maps between them. The product or composition of f and g is the map

fg:P--.M,
defined as

(fg)(a) = f(g(a)) Va E P,

i.e., the result of successive application of, first, g and, then, f . In particular,
when M = N = P, we obtain an operation on the set of all maps from M
to itself. This operation provides many important examples of algebraic
structures that are called groups. For example, according to the axioms
of Euclidean geometry, the product of two motions of the plane is again a
motion. When we consider the operation of multiplication on the set of all
such motions, we obtain the algebraic structure called the group of motions
of the plane.

Example 1.2. The set of all vectors in the three-dimensional space with
the operations of addition and cross product is an example of an algebraic
structure with two operations. Notice, however, that the inner product is
not an operation as defined above. Indeed, its result does not belong to the
same set as the original vectors. More general operations such as the inner
product are also considered in algebra but we will not concern ourselves with
them for now.

All the above examples are natural in the sense that they arose from
the studies of the real world or the internal progress in mathematics. But
actually, it is possible to consider any operation on any set. For instance,
one can consider the set Z.4. with the operation that assigns to a pair of
numbers the number of coinciding digits in their decimal representations.
However, only few algebraic structures are of real interest.

Also, an algebraist is interested only in such properties of algebraic struc-
tures and their elements that can be stated in terms of their particular
operations. This view is formally expressed in the concept of isomorphism.
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Definition 1.3. Let M be a set with an operation o and N a set with an
operation *. Algebraic structures (M, o) and (N, *) are called isomorphic if
there exists a bijective map

f:M-+N
such that

f(aob)=f(a)*f(b)
for any a, b E M. We denote this fact as (M, o) (N, *). The map f is
called an isomorphism between (M, o) and (N, *).

In a similar way we define an isomorphism between algebraic structures
with two or more operations.

Example 1.4. The map
ai--+2°

is an isomorphism between the set of all real numbers with the operation of
addition and the set of positive numbers with the operation of multiplication.
Indeed,

2a+b = 2°2b.

Instead of base 2 we can consider any other positive base different from 1.
This shows that there might exist many different isomorphisms between two
isomorphic algebraic structures.

Example 1.5. Let M be the set of parallel translations of the plane along a
fixed line. For a real number a, denote by to the translation from M defined
by the vector of length Iai with direction defined by the sign of a. (When
a = 0, to is the zero translation.) It is easy to see that

ta+b = to o t6,

where o denotes the product (composition) of parallel translations. Hence,
the map a -+ ta is an isomorphism between the algebraic structures (R, +)
and (M, o).

It is clear that if two algebraic structures are isomorphic, any statement
made only in terms of operations is valid for one of this structures if and
only if it is valid for the other.

For example, an operation o on a set M is called commutative if

a o b = b o a

for any a, b E M. If (M, o) is isomorphic to (N, *) and the operation o on
M is commutative, then the operation * on N is commutative too.

So, it does not matter which of the isomorphic structures to study: all of
them are models of the same object. However, the choice of a model might
be important for the solution of a specific problem. Sometimes a particular
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model turns out to be more useful. For instance, if a model has geometric
nature, one can study it with geometric methods.

1.2. Abelian Groups

Addition of real numbers has the following properties:

(Al) a + b = b + a (commutativity);

(A2) (a + b) + c = a + (b + c) (associativity);

(A3) a + 0 = a;

(A4) a + (-a) = 0.

One can logically deduce other properties from these ones. For instance,
they imply that there exists an operation inverse to addition, i.e., subtrac-
tion. This means that for any a, b, the equation

x+a=b
has a unique solution. Let us prove this. If c is a solution of this equation
(i.e.,c + a = b), then

(c + a) + (-a) = b + (-a).

From (A2)-(A4), we obtain

(c + a) + (-a) =c+(a+(-a)) =c+0=c.
Therefore,

c = b + (-a).
This shows that if a solution exists, it is unique and equals b + (-a). Con-
versely, after substituting x = b + (-a) in the original equation, we see that
b + (-a) is indeed a solution:

(b + (-a)) + a = b + ((-a) + a) = b + (a + (-a)) = b + 0 = b.

Multiplication of real numbers has properties similar to (A1)-(A4):

(Ml) ab = ba (commutativity);

(M2) (ab)c = a(bc) (associativity);

(M3) al = a;

(M4) aa-1=1fora34 0.
Properties (Ml)-(M4) differ from (Al)-(A4) almost exclusively in nota-

tion. The only small difference is that in (M4) we assume that a 96 0, while
in (A4) we make no assumptions about a. We deduced from (A1)-(A4) the
existence of the operation of subtraction. Translated into the language of
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multiplication, this deduction implies the existence of the operation of divi-
sion, inverse to that of multiplication. More precisely, we can deduce from
(M1)-(M4) that for any a 0 0 and any b, the equation xa = b has a unique
solution x = ba-1.

This discussion is put here not to teach you something new about real
numbers but to communicate an idea which is very important in algebra.
It is the idea of axiomatic approach. This means the simultaneous study
of whole classes of algebraic structures defined by various axioms, that is,
particular properties of operations on these structures. It does not matter
how these operations are defined in each specific case. As long as the axioms
are satisfied, each theorem deduced from these axioms is true.

Of course, only few systems of axioms are really interesting. It is im-
possible to come up off the top of one's head with a system of axioms that
will lead to a reasonable theory. All systems of axioms considered in mod-
ern algebra have a long history and are products of analysis of algebraic
structures that arose in a natural way. Such are the systems of axioms of a
group, ring, field, vector space, and other structures that you will encounter
in this book.

Properties (Al)-(A4), as well as (Ml)-(M4), are in fact the system of ax-
ioms of an abelian group. Before we state these explicitly, a few words about
terminology. Names and notation of operations on algebraic structures carry
no particular meaning; however, most often they are called addition or mul-
tiplication and are also denoted appropriately. This allows us to use the
well-developed terminology and notational system for operations with real
numbers. This also reminds us of sometimes helpful similarities between the
numbers and the structure we are considering.

First, we define an abelian group using the language of addition.

Definition 1.6. An additive abelian group is a set A with an operation of
addition that has the following properties:

(i) a + b = b + a for any a, b E A (commutativity);

(ii) (a + b) + c = a + (b + c) for any a, b, c E A (associativity);

(iii) there exists an element 0 E A (zero) such that a + 0 = a for any
a E A;

(iv) for any element a E A, there exists an element -a E A (an opposite)
such that a + (-a) = 0.

We will deduce a few simple properties from these axioms.

(i) Zero is unique. Indeed, let both Ol and 02 be zeros. Then

01=01+02= 02.
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(ii) The opposite is unique. Indeed, let both (-a)1 and (-a)2 be oppo-
sites of a. Then

(-a)i = (-a)1 + (a + (-a)2) = ((-a)1 + a) + (-a)2 = (-a)2-

(iii) For any a, b, the equation x + a = b has a unique solution equal to
b + (-a). For the proof, see the beginning of this section. This solution is
called the difference of b and a and is denoted b - a.

It is not difficult to deduce from the associativity property that the sum
of an arbitrary number of elements (not just three) does not depend on
where parentheses are put in the expression for the sum (try to prove this).
For this reason, parentheses are usually omitted altogether.

Example 1.7. The sets Z, Q, and lg are abelian groups with respect to the
ordinary addition.

Example 1.8. The set of vectors (on the plane or in space) is an abelian
group with respect to the standard addition of vectors.

Example 1.9. A row of length n is a sequence of n numbers. The set of
all rows of length n with entries from 1[t is denoted Rn. Define addition of
rows by the rule

(al, a2, . . ., an) + (bl,b2,...,bn) _ (al + bl,a2 + b2,...,an + bn).

Obviously, Rn is an abelian group with respect to the above operation. Its
zero is the zero row

0= (0,0,...,0).

Example 1.10. The set of all functions defined on a given subset of the real
line is an abelian group with respect to the standard addition of functions.

Now, we define abelian groups using the language of multiplication.

Definition 1.6'. A multiplicative abelian group is a set A with an operation
of multiplication that has the following properties:

(i) ab = ba for any a, b E A (commutativity);

(ii) (ab)c = a(bc) for any a, b, c E A (associativity);

(iii) there exists an element e E A (identity) such that ae = a for any
a E A;

(iv) for any element a E A, there exists an elemental E A (an inverse)
such that as-1 = e.

The identity of a multiplicative abelian group is sometimes denoted 1.
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The simplest corollaries of the axioms of an abelian group that we first
obtained in the additive language are translated into the multiplicative lan-
guage as follows:

(i) The identity is unique.

(ii) The inverse is unique.

(iii) For any a, b, the equation xa = b has a unique solution equal to
ba-1. It is called the ratio of b and a and is denoted a (or b/a).

Example 1.11. Sets Q _ Q \ {0} and R' = R \ {0} are abelian groups
with respect to the ordinary multiplication.

Later we define the general notion of a group (not necessarily abelian).
There the operation is not required to be commutative.

1.3. Rings and Fields

Unlike groups, fields and rings are algebraic structures with two operations,
which are usually called addition and multiplication. Their axioms are sug-
gested by the properties of operations over real numbers, just like the ax-
ioms of an abelian group. The axioms of a ring is a reasonably chosen set of
conditions on these operations. Such a choice allows us to consider other im-
portant examples of algebraic structures satisfying these axioms. Of these,
we have already mentioned the set of vectors of the Euclidean space with
the operations of addition and cross product.

Definition 1.12. A ring is a set K with the operations of addition and
multiplication that have the following properties:

(i) K is an abelian group with respect to addition (this group is called
the additive group of K);

(ii) a(b+c) = ab+bc and (a+b)c = ac+bc for any a, b, c E K (distributive
laws).

We deduce here several corollaries of the axioms of a ring which are not
among the corollaries of the axioms of an abelian group given already in
Section 1.2.

(i) a0 = Oa = 0 for any a E K. Indeed, let a0 = b. Then

b + b = a0+a0 = a(0+0) = a0 = b

implying
b = b - b = 0.

The proof of Oa = 0 is similar.
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(ii) a(-b) = (-a)b = -ab for any a, b E K. Indeed,

ab + a(-b) = a(b + (-b)) = aO = 0

and, similarly, ab + (-a)b = 0.

(iii) a(b - c) = ab - ac and (a - b)c = ac - be for any a, b, c E K. Indeed,

a(b-c)+ac= a(b-c+c) = ab
and, similarly, (a - b)c + be = ac.

A ring K is called commutative if its multiplication is commutative, i.e.,
if

ab = ba d a, b,

and associative if its multiplication is associative, i.e., if

(ab)c = a(bc) V a, b, c.

An element 1 of a ring is called a unity if

al=la=a Va.

Just as for the identity of a multiplicative abelian group, it can be shown
that a ring cannot possess more than one unity (but there might be none).

Remark 1.13. If 1 = 0, then for any a
a=al=a0=0,

i.e., the ring consists of zero only. Thus, if a ring has more than one element,
100.
Remark 1.14. If a ring is commutative, one of the distributive laws implies
the other. The same is true for the defining identities of unity.

Example 1.15. The number sets Z, Q, and R are commutative associative
rings with unities with respect to the ordinary addition and multiplication.

Example 1.16. The set 2Z of even integers is a commutative associative
ring without unity.

Example 1.17. The set of all functions defined on a given subset of the
real line is a commutative associative ring with unity with respect to the
ordinary addition and multiplication of functions.

Example 1.18. The set of vectors of the Euclidean space endowed with
operations of addition and cross product is a noncommutative and nonas-
sociative ring. Yet it satisfies the following identities which, in some sense,
replace commutativity and associativity:

a x b+ b x a= 0 (anticommutativity),

(a x b) x c + (b x c) x a + (c x a) x b = 0 (the Jacobi identity).
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Anticommutativity follows directly from the definition of the cross product.
As for the proof of the Jacobi identity, see Example 1.75.

Exercise 1.19. Let X be a set and 2X the set of all its subsets. Prove that
2X is a ring with respect to the operations of symmetric difference

MAN= (M \ N) U (N \ M)

and intersection, taken for addition and multiplication, respectively. Prove
that this ring is commutative and associative.

if
An element a-1 of a ring with unity is called an inverse of an element a

as-1 = a-la = 1.

(In a commutative ring, it suffices to require as 1 = 1.) As in the case of
a multiplicative abelian group, it can be proved that in an associative ring
with unity no element can have more than one inverse (but may have none).
An element that has an inverse is called invertible.

Definition 1.20. A field is a commutative associative ring with unity where
every nonzero element is invertible.

Remark 1.21. A ring that consists of only zero is not regarded as a field.

Examples of fields are the field of rational numbers Q and the filed of
real numbers R. The ring Z is not a field; its only invertible elements are
±1.

Exercise 1.22. Prove that there exists a field that consists of two elements.
(Hint: it is clear that one of these elements must be zero and the other unity.)

Every field has the following important property:

ab=O {a=Oorb=O}.

Indeed, if a 0 0, then when we multiply both sides of ab = 0 by a'1, we
obtain b = 0.

There exist other rings that have the above property, for example, the
ring Z. They are called rings without zero divisors. In a ring without zero
divisors, cancellations are possible:

{ac=bc(orca=cb) andc 0} a=b.
Indeed, the equality ac = be can be rewritten as (a - b)c = 0. Hence, if
c 54 0, we obtain a - b = 0, i.e., a = b.

Here is an example of a commutative associative ring with zero divisors:
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Example 1.23. In the ring of functions on a subset X of the real line (see
Example 1.17), there exist zero divisors if and only if X consists of more
than one point. Indeed, split X into two nonempty sets X1 and X2 (i.e.,
X1UX2=X,X1f1X2=0)andlet

A(x) -
1 for x E Xi,

{0 for x Xi,
for i = 1,2.

Then fl, f2 56 0 but f1 f2 = 0. When X consists of just one point, the ring
of real-valued functions on X is isomorphic to R.

Since there are no zero divisors in a field, the product of two nonzero
elements is nonzero. Nonzero elements of a field K form an abelian group
with respect to multiplication. It is called the multiplicative group of K and
is denoted K.

1.4. Subgroups, Subrings, and Subfields

Consider a set M with an operation o and a subset N of M. The subset N
is said to be closed with respect to the operation o if

a,bEN aobEN.

If this happens, the operation o is defined on N, thus making it an algebraic
structure. If the operation o on M has some property expressed as an
identity (e.g., commutativity or associativity), then it obviously has the
same property as an operation on N. However, some other properties of o
might not be inherited in N.

For instance, a subset of an abelian group closed with respect to addition
might not be an abelian group, since it does not necessarily contain zero
or opposites of all elements. Consider an example: the subset Z+ of the
abelian group Z. It is closed with respect to addition but it is not an
abelian group (not even a group) because it does not contain opposites of
any of its elements except for zero.

Definition 1.24. A subset B of an abelian group A is called a subgroup if

(i) B is closed with respect to addition;

(ii) a E B -aEB;
(iii) 0 E B.

Remark 1.25. It is easy to see that when B is not empty, the first two
conditions imply the third. Therefore, instead of the third condition, we
may require B to be nonempty.
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Obviously, every subgroup of an additive abelian group is also an abelian
group with respect to the same operation.

Example 1.26. The additive group IIt contains the following chain of sub-
groups:

ZcQCR.
Example 1.27. The set of vectors in space parallel to a given line or plane
is a subgroup.

There are two "trivial" subgroups in every abelian group: the group
itself and the subgroup that consists only of zero.

Exercise 1.28. Prove that every subgroup of Z has the form nZ, where
n E Z. (A solution of this exercise can be found in Section 4.3.)

Here is the multiplicative version of Definition 1.24.

Definition 1.24'. A subset B of a multiplicative abelian group A is called
a subgroup if

(i) B is closed with respect to multiplication;

(ii)aEB a-IE B;
(iii) e E B.

Example 1.29. The group R* contains the following chain of subgroups:

{±1}cQ*cIR*.

Discussion at the beginning of this section can also be extended to the
case of algebraic structures with several operations. In this way we arrive
at the definitions of a subring and a subfield.

Definition 1.30. A subset L of a ring K is called a subring if

(i) L is a subgroup of the additive group of the ring K.

(ii) L is closed with respect to multiplication.

Clearly, every subring is itself a ring with respect to the same operations.
It also inherits properties such as commutativity and associativity from the
larger ring.

Example 1.31. The chain of subgroups of the additive group ][t from Ex-
ample 1.26 is also a chain of subrings.

Example 1.32. For any n E Z+, the set nZ is a subring of Z.

Exercise 1.33. Prove that all finite subsets of a set X form a subring of
the ring 2X constructed in Exercise 1.19.



12 1. Algebraic Structures

Definition 1.34. A subset L of a field K is called a subfield if

(i) L is a subring of K;

(ii)aEL,a36 O a'EL;
(iii) 1 E L.

Clearly, every subfield is a field with respect to the same operations.

Example 1.35. The field Q is a subfield of R.

Exercise 1.36. Prove that a subset L of a field K is a subfield if and only
if

(i) L is closed with respect to subtraction and division;

(ii) L 9 0, 1.

Exercise 1.37. Prove that the field Q does not contain any nontrivial sub-
fields (i.e., subfields other than itself).

1.5. The Field of Complex Numbers

It is impossible to define division on the ring of integers, and this makes it
necessary to extend integers to the field of rational numbers. Similarly, since
it is impossible to extract square roots from negative numbers in the field
of real numbers, we are forced to extend this field to a bigger one called the
field of complex numbers.

To understand better what the field of complex numbers is, we should
first try to understand the nature of the field of real numbers. Its rigorous
construction is usually covered in a real analysis course. We will not con-
sider all the details here; however, we remark that there are several such
constructions (e.g., infinite decimal fractions, Dedekind cuts of rationals,
etc). Formally speaking, each method leads to a different field. Which one
is the "real" field of reals? The answer is that they are all isomorphic, and
we should simply view them as different models of the same object called
the field of real numbers.

In such a situation, the most satisfactory approach is always the ax-
iomatic one: first, we formulate as axioms the properties that our object
must have, and then prove that these properties define it uniquely up to
isomorphism. Finally, we prove the existence by constructing a model. In
the case of the field of real numbers such a choice of axioms (in addition to
the axioms of a field) may be the order axioms, the Archimedean postulate,
and the axiom of continuity.
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Remark 1.38. It is not difficult to prove that not only every two models of
the field of real numbers are just isomorphic, but that the isomorphism be-
tween them is unique. (The proof comes down to demonstrating that an iso-
morphism from 1[t to itself is the identity map. This demonstration, in turn,
relies on the observation that nonnegative numbers in R are squares, and
hence must be mapped to nonnegative numbers under any isomorphism.)
This means that every element of IIt is specific, i.e., in any model we can
identify numbers 10, f, x, etc.

Now we can state the axiomatic definition of the field of complex num-
bers.

Definition 1.39. The field of complex numbers is a field C such that

(i) it contains the field of real numbers R as a subfield;

(ii) it contains an element z such that z2 = -1;

(iii) it is minimal among the fields with properties (i) and (ii), i.e., if K
is a subfield of C containing R and z, then K = C.

Remark 1.40. Equality x2 + 1 = (x - z) (x + z) implies that the equation
x2 = -1 has exactly two solutions in C: z and -z. If a subfield of C contains
one of these solutions, it must contain the other.

Theorem 1.41. The field of complex numbers exists and is unique up to
an isomorphism that maps all real numbers to themselves. Every complex
number can be uniquely written as a + bz, where a, b E It and z is a (fixed)
element such that z2 = -1.

Proof. (i) Let C be a field of complex numbers (we assume for now that it
exists). Consider its subset

K = {a + bz : a, b E R}.

Properties of field operations and the identity z2 = -1 imply

(1.1) (al + biz) + (a2 + b2z) = (al + a2) + (bi + b2)z,
(1.2) (al + b1z)(a2 + b2z) = (aia2 - bib2) + (aib2 + bia2)z.

By solving appropriate equations, we also obtain

(1.3) -(a + bz) = (-a) + (-b)z,

(1.4) (a + bL) i = a2 + b+ (_a2)2 whenever a2 + b2 t 0.

Equations (1.1)-(1.4) show that K is a subfield of C. Since K obviously
contains z and R, K = C.
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Therefore, every element of C can be presented in the form a+ In, where
a, b E R. We have to show that such a presentation is unique. Let al + b1z =
a2 + b2z, al, b1 i a2, b2 E R. Then

al - a2 = (b2 - bl)z.

Taking squares of both sides, we get

(al - a2)2 = -(b2 - bl)2,

which implies
al-a2=b2-b1=0,

as required.
Now, let C' be another field of complex numbers and 2' E C' an element

such that (t')2 = -1. As equations (1.1) and (1.2) remain valid when z is
replaced with z', the map

f : C --s C', a + bz ,-+ a + bz' (a, b E IR),

is an isomorphism from C to C'.

(ii) The above discussion suggests a way of proving the existence of the
field of complex numbers. Consider the set C of pairs (a, b) with a, b E
R. Define addition and multiplication according to the following formulas
suggested by (1.1) and (1.2):

(al,bl) + (a2, b2) = (a1 + a2,bi + b2),

(al,b1)(a2,b2) = (ala2 - b1b2,a1b2 + bia2).

Obviously, C is an abelian group with respect to addition (see Example 1.9).
Moreover, its multiplication is commutative and satisfies the distributive
law. A direct calculation shows that it is also associative. Therefore, C is a
commutative associative ring.

Since
(a, b) (1, 0) = (a, b),

the element (1,0) is the unity of C. Equation (1.4) suggests a form of the
inverse of (a, b), whenever a2 + b2 9& 0. Indeed, we can check directly that

a b
(a, b) {a2+b2,-a2+b2 = (1,0).

Therefore, C is a field.
Furthermore,

(a1,0) + (a2,0) = (a1 + a2,0),

(a1, 0) (a2, 0) = (aja2, 0),
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i.e., operations on pairs of the form (a, 0) arise from corresponding opera,
tions on the pairs' first components. We identify each pair (a, 0) with a and
can claim now that C contains R as a subfield.

Put z = (0, 1). Then

2
2

a+bz=(a,b) fora,bER.

Therefore, every element of C can be (uniquely) presented in the form a+ Si,
where a, b E R. It follows that if a subfield K of C contains z and ]R, then
K = C. We conclude that C is indeed the field of complex numbers.

The decomposition of a complex number c E C as a + Si, a, b E ]R, is
called its algebraic form; a is called the real part of c and b the imaginary
part of c. Notation: a = 2 c, b = c. Complex numbers that are not real are
called imaginary; those of the form Si, b E R, are called purely imaginary.

If we substitute C for C' and -z for z' in the first part of the proof of
Theorem 1.41, we see that the map

c=a+bat--* 'c=a - bz (a,bE IR)

is an isomorphism of C into itself. This map is called complex conjugation.
In general, an isomorphism of an algebraic structure into itself is called an
automorphism. Thus, complex conjugation c '-+ c is an automorphism of
the field of complex numbers. It is clear that c = c.

Real numbers are precisely the complex numbers equal to their conju-
gates. It follows that for any c E C, c + c and cc are real. Indeed,

c+c=c+c=c+c, cc=cc=cc.

It is easy to see that if c = a + In, a, b E Ilk, then

(1.5) c + E = 2a, cE = a2 +b2 .

t& c=a+bz

Figure 1.1
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We can depict complex numbers as points or vectors on the plane.
Namely, a number c = a + In is represented as a point or vector with Carte-
sian coordinates (a, b) (Figure 1.1). In some cases it is easier to depict
complex numbers as points, in other cases, as vectors. In the vector form,
addition of complex numbers corresponds to the standard vector addition.

If

0 z

Figure 1.2

Notice also that the difference of complex numbers cl and c2 is repre-
sented by the vector connecting points that represent cl and c2 (Figure 1.2).

It is sometimes more convenient to use polar instead of Cartesian coor-
dinates. This leads to the introduction of the following concepts:

The absolute value of a complex number c = a + In is the length of the
vector representing c. The absolute value of c is denoted Icy. Clearly,

Icy = a2 + P.

The argument of a complex number is the angle formed by the corre-
sponding vector with the polar axis. The argument is determined up to 2ir
and is not defined for 0. The notation is arg c.

b
Y c=a+bs

z'

Figure 1.3

Let r and <p be the absolute value and argument of a complex number c
(Figure 1.3). Obviously,

a=rcoscp, b=rsinap,
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hence,

c = r(cos w + s sin ap).

The above representation of a complex number c is called its trigonometric
form. Since the trigonometric form of a complex number is determined up
to addition to W a multiple of 2ir,

rl (cos Bpi + 4 sin VI) = r2 (cos cp2 + t sin p2 )

4= {rl = r2, 'r = (p2 + 27rk, k E Z}, for rl, r2 > 0.

Expressing complex numbers in trigonometric form is useful for perform-
ing on them such operations as multiplication, division, raising to a power,
and root extraction. Namely, formulas for the sine and cosine of a sum of
two angles imply

rl (cospl + %sin VI) r2 (cos cp2 + s sin p2)

= r1r2(cos('pl +'p2) + t sin(Vl +'p2)),

i.e., when multiplying complex numbers, we multiply their absolute values
and add their arguments. Thus, we have the following formulas for the ratio
of complex numbers:

rr
(008M - IP2) + S s1A((pl - WO),

r2 (cos V2 + : sin <p2) r2

and for a positive integer power of a complex number:

[r (cos V + i sin V) I' = r" (cos n4p + z sin nip) (De Moivre's formula).

To extract a root of the nth degree from a complex number c = r(coscp+
t sin gyp) is to solve the equation z" = c. Put Izi = a, argz = r/i. Then s' = r,
ni,b = V + 2irk, k E Z. Hence,

$ = " r (positive root),
o +2rrk

n
Combining these formulas, we get

P + 27rk +%sin`p+27rk1z= "r (cos '
n n

With the above formula, we obtain the same answer for different values
of k if and only if they are congruent modulo n. It follows that for c A 0,
the equation z" = c has exactly n solutions corresponding to, say, k =
0,1, ... , n - 1. Represented geometrically, these numbers lie at the vertices
of a regular n-gon with its center at the origin (Figure 1.4 illustrates the
case n=8).
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Figure 1.4

1.6. Rings of Residue Classes

Extending the ring of integers, we obtain the chain

ZcQcRcC.
We will see later that this chain can be enlarged (and, in particular, con-
tinued to the right). Rings of residue classes are also constructed from the
integers; however, the approach is entirely different. It is a standard mathe-
matical method of "sticking together": forming a quotient by an equivalence
relation.

Consider a set M. Any subset R C M x M is called a relation on the
set M. If (a, b) E R, we say that a and b are related and denote this aRb.

Here are some examples of relations:

Example 1.42. M is the set of all people; aRb if a knows b.

Example 1.43. Same M; aRb if a is a friend of b's.

Example 1.44. Same M; aRb if a and b live in the same building.

Example 1.45. M = R; aRb if a < b.

Example 1.46. M is the set of circles on the plane; aRb if circles a and b
are congruent, i.e., if there exists a motion that identifies one with the other.

An equivalence relation R is a relation which is

(i) reflexive: aRa;

(ii) symmetric: aRb = bRa;

(iii) transitive: aRb and bRc aRc.

Among the relations in Examples 1.42-1.46 only the third and fifth are
equivalence relations: the first and fourth are not symmetric, whereas the
second is symmetric but not transitive.
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Equivalence relation is usually written as a R b or simply a - b.
Let R be an equivalence relation on a set M. For any a E M, put

R(a) _ {b E M : a R
b}.

Properties of equivalence relations clearly imply that a E R(a) and

R(a) fl R(b) 0 0 R(a) = R(b).

Therefore, the subsets R(a) form a partition of M, i.e., their union covers
M and the intersection of each pair is empty. These subsets are called
equivalence classes under R. Two elements of M are equivalent if and only
if they belong to the same class.

The set of equivalence classes under R is called the quotient set of M by
R and is denoted M/R. The map

M --+ M/R, a -+ R(a)

is called the quotient map.

For instance, in Example 1.44 an equivalence class is the set of tenants of
a building. We can identify the quotient set with the set of all buildings; then
the quotient map is a map that assigns to each person a building where this
person lives. In Example 1.46, equivalence classes are the sets of circles with
the same radius, the quotient set can be identified with the set of positive
real numbers, and the quotient map assigns to each circle its radius.

Consider a set M with an operation (x, y) ' -+ x * y. An equivalence
relation R agrees with the operation * if

{aRa', bRb'} . a*bRa'*b'.
In this case, we can define operation * on the quotient set M/R by the rule

(1.6) R(a) * R(b) = R(a * b).

Verbally the above definition goes as follows: to perform an operation
on two equivalence classes, one should choose an arbitrary representative in
each of them, perform this operation on the representatives, and take the
class where the result of this operation lies. This class does not depend
on the initial choice of representatives because the relation agrees with the
operation.

Obviously, the operation on M/R inherits all properties of the operation
on M that are expressed in the form of identities, for instance, commutativ-
ity or associativity. This is also true for the existence of zero (identity) and
inverse elements. More precisely, if we call an operation on M an addition
and M contains a zero element 0 for this operation, then R(0) is a zero
element in M/R. If -a is an opposite of a, then R(-a) is an opposite of
R(a) as an element of M/R.
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Now we are ready to construct rings of residue classes. Fix a natural
number n. Consider the following equivalence relation, called congruence
modulo n, on the set Z: a is congruent to b modulo n if a - b is divisible
by n or, equivalently, if a and b have the same remainder (residue) when
divided by n. (Notation: a - b (mod n).)

Clearly, this is an equivalence relation; moreover, equivalence classes can
be enumerated by numbers 0,1, ... , n - 1, so that the rth class consists of
all integers whose remainder after division by n is r.

The equivalence class that contains an integer a is called the residue
class of a (modulo n) and is denoted [a]n or, when it is clear what n is,
simply [a].

The quotient set of Z by the relation of congruence modulo n is denoted
Zn. We may write

Zn = {[0]n,[1]n,....[n - 1]n}

but should keep in mind that any element of Zn can be denoted differently.
For instance, element [1]n might as well be denoted by [2n+1]n, [-(n-1)]n,
etc.

We must prove now that the relation of congruence modulo n agrees
with the operations of addition and multiplication. Let

a - a' (mod n), b - b' (mod n).

Then

and, similarly,

a+b-a +b=-a'+b' (modn)

ab - a'b - a'b' (mod n).

Therefore, we can define operations of addition and multiplication on
the set Zn by the following formulas-

[a]n + N. = [a + bin, [a]n [b]n = [ab]n

(this is valid for all a, b E Z). Thus Zn becomes a commutative associative
ring with unity. It is called the ring of residue classes (or, sometimes, simply
the residue ring) modulo n.

Example 1.47. Here are the addition and multiplication tables for the ring
Z5. For simplicity, we omit brackets when writing elements of this ring.

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

x 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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Observe, in particular, that elements 2 and 3 are inverses of each other and
that 4 is the inverse of itself.

Example 1.48. Let us calculate [2]100 in the ring Z125:

[2]7 = [128] = [3], [2]-35 = ([2]7)5 = [3]5 = [243] = [-7],

[2]50 = [2]35([2]7)2[2] = [-7][3]2[2] = [-126] _ [-1],
[2]100

= ([2]50)2 = [1].

This means that

2100 - 1 (mod 125).

Given that 2100 is divisible by 8, we deduce that

2100 - 376 (mod 1000),

i.e., that the decimal representation of 2100 ends with 376.

The ring Zn has all properties of a field except, perhaps, the property
of having inverses for all its nonzero elements. Clearly, Z2 is the field of two
elements discussed in Exercise 1.22. The above multiplication table of the
ring Z5 shows that Z5 is a field as well. On the other hand, Zq is not a field
since its element [2] is not invertible.

Theorem 1.49. The ring Zn is a field if and only if n is a prime number.

Proof. (i) Let n be a composite number, i.e., n = ki for 1 < k, l < n. Then
[k]n, [1]n 9' 0, Yet

[k]n[l]n = [kiln = [n]n = 0.

Therefore, Zn contains zero divisors, hence it is not a field.

(ii) Conversely, let n be prime and [a]n # 0, i.e., let a be not divisible by
n. We should look for the inverse of [a]n by multiplying it by each element
of the ring. In the process, we obtain elements

(1.7) [0]n, An, [2a]n, ... , [(n - 1)a]n.

They are all distinct. Indeed, if [ka]n = [la]n, 0 < k < I < n - 1, then
[(1 - k)a],, = 0, i.e., (I - k)a is divisible by n, which is impossible as n
divides neither l - k nor a. (This is where we use that n is prime.) Hence,
sequence (1.7) contains all elements of Zn, and in particular, [1]n. This
means that [a]n is invertible.

Exercise 1.50. Prove that for any n, [k]n is invertible in the ring Zn if and
only if n and k are relatively prime.
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In fields of residue classes we encounter a new phenomenon that does not
appear in number fields (subfields of the field of complex numbers). Namely,
in the field Zn (n prime), the following equality is valid:

(1.8) 1 + 1 ± = 0.
n

(Of course, this is also true in a ring Zn for any n.) It leads to several specific
features of algebraic transformations in this field (see below).

In general, let K be a field. The least natural n such that equality (1.8)
is valid in K is called the characteristic of this field. If such n does not
exist, we call K the field of zero characteristic. Thus, Zn with n prime is a
field of characteristic n, while number fields have zero characteristic. The
characteristic of K is denoted char K.

If char K = n, then for any a E K,

+1+ +1 a=0a=0.
n n

When nonzero, the characteristic of a field is always prime. Indeed,
assume that char K = n = kl (1 < k, l < n). Then

+1+= 1+1+ +1 (1+1±
n k 1

hence either 1+1+---+ 1 = 0 or 1+1+..-+l = 0 contradicting the

k
definition of characteristic.

Most of the formulas of elementary algebra are valid in every field, as
their deductions use only properties of addition and multiplication that are
either axioms of a field or their corollaries. Specific features of fields of
positive characteristic emerge only in formulas that contain multiplication
or division by natural numbers.

For example, consider the formula

(a+ b)2 =a2 + 2ab + 0.

It is valid in any field if 2ab is understood as ab + ab. However, in a field of
characteristic 2, it acquires a simpler form

(a + b)2 = a2+0.

More generally, in a field of characteristic p the following is valid:

(a+b)7'=ap+V.
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Indeed, the binomial theorem gives

(a + b)' = P ()aT4cb1.

k=o

p p(p-1)...(p-k+1)

k
_

k! '

which is obviously divisible by p. Hence, all terms in the binomial formula
but the first and the last, equal zero.

Exercise 1.51. Conclude from the aforesaid that every a E Zp satisfies the
identity a = aP. (This fact is called Fermat's little theorem; for another
proof, see Section 2.5.)

Things get worse when we need to divide by a natural number, e.g., when
we try to calculate ab from the above formula for the sum's square. To make
this division meaningful in some sense, we may regard multiplication by a
natural k as multiplication by the element .1 + + 1- - + I of the given field.

k
Then division by k would be seen as division by this element. However, if k
is divisible by the field's characteristic, this element is zero and such division
is impossible.

For instance, the formula for solutions of a quadratic equation involves
a division by 2. So it is applicable (in the above sense) in every field of
characteristic not equal to 2 but not in a field of characteristic 2.

Example 1.52. Let us solve the quadratic equation
X2+x+1=0

in the field Z11. The standard formula yields

[-1] f [5]X1,2 =
[2]

Since [5] = [16] = [4]2, we can assume that [5] _ [4] (one of the values of
the square root). Hence,

[-1] + [4] [3] _ [14] - [7]
=

[-1] - [4] [-5] [6] - [3]
_X1 - , X2

- -
[2] [2] [2] [2] [2] [2]

1.7. Vector Spaces

In elementary geometry, we not only add vectors but also multiply them
by numbers. Analyzing properties of these two operations, we come to the
notion of a vector space.
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Before actually defining it, we should note that here we step away from
what we previously meant by an operation. Multiplication of a vector by
a number is not an operation on two elements of the same set. It is an
operation that assigns to each pair (number, vector) another vector. This
is how things also are in the general definition of a vector space; however,
there elements of an arbitrary (fixed) field replace real numbers.

Definition 1.53. A vector (or linear) space over a field K is a set V with
operations of addition and multiplication by elements of the field with the
following properties:

(i) V is an abelian group with respect to addition;

(ii) A(a + b) = Aa + Ab for any A E K, a, b E V;

(iii) (A + µ)a = Aa + pa for any A, p E K, a E V;

(iv) (Ap)a = A(pa) for any A, IL E K, a E V;

(v) la=a for anyaEV.

Elements of a vector space are called vectors. We will abuse language
sometimes and call elements of K numbers even when K is not a number
field.

From now on, vectors in the sense of elementary geometry will be called
geometric vectors. Their operations satisfy all axioms of a vector space; this
is, in fact, the reason for the above definition. We will denote the space
of vectors on the Euclidean plane (respectively, in the three-dimensional
Euclidean space) as E2 (respectively, E3). Observe that this is a vector
space over R. Here are a few other important examples of vector spaces:

Example 1.54. The set Kn of rows of length n with entries from a field K
is a vector space over K with respect to operations defined as follows:

(al, a2, ... , an) + (bl, b2, ... , bn) = (ai + bi, a2 + b2, ... , a. + bn),

A(a,, a2, ... an) _ (Aal, Aa2i ... , Aan)-

Example 1.55. The set F(X, K) of all functions on a set X with values in
a field K is a vector space with respect to standard operations on functions,
namely:

(f + g)(x) = f (x) + g(x), (Af)(x) = Af W.

Example 1.56. Let K be a subfield of a field L. Then L can be regarded
as a vector space over K with multiplication of elements of L by elements
of K defined simply as multiplication in L. In particular, this makes C a
vector space over R.



1.7. Vector Spaces 25

We continue with several corollaries of the axioms of a vector space. All
of them are proved similarly to analogous corollaries of the axioms of a ring
(see Section 1.3). Symbol 0 stands for both zero of the field K and the zero
vector, i.e., zero of the additive group V, but this should not be confusing.

(i) A0 = 0 for any A E K (here 0 is the zero vector).

(ii) A(-a) = -Aa for any A E K, a E V.

(iii) A(a - b) = Aa - Ab for any A E K, a, b E V.

(iv) Oa = 0 for any a E V (here 0 on the left is a number, and on the
right, a vector).

(v) (-1)a=-a for any aE V.
(vi) (A-ju)a=Aa-µa for any A,j.E K,aEV.

Definition 1.57. A subset U of a vector space V is called a subspace if

(i) U is a subgroup of the additive group V;

(ii)aEU AaEUforanyAEK.
Remark 1.58. The definition of a subgroup requires that

aEU -aEU.
One can note that condition (ii) automatically implies this, as -a = (-1)a.

A subspace of a vector space is itself a vector space with respect to the
same operations.

Example 1.59. In the space E3, the set of vectors parallel to a given plane
or line, is a subspace.

Example 1.60. In the space F(X, R) of all functions on a given interval X
of the real line, the set of continuous functions is a subspace.

Every vector space V contains two "trivial" subspaces: V itself and the
zero subspace (which consists of the zero vector only). We will denote the
latter simply by the symbol 0.

Definition 1.61. Vector spaces V and U over a field K are called isomor-
phic if there exists a bijective map

cp:V -U
such that

(i) cp(a + b) = W(a) + Wp(b) for any a, b E V;

(ii) w(Aa) = Acp(a) for any A E K, a E V.

If so, the map cp is called an isomorphism between V and U.
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We will see in Section 2.2 that it is quite easy to describe vector spaces
up to isomorphism. In particular, we will mostly concern ourselves in this
book with the so-called finite-dimensional vector spaces; and all of them are
isomorphic to spaces K. The key notion for this theory is the notion of a
basis.

An expression of the form

A1,A2,...,A,, E K,

is called a linear combination of vectors a1i a2, ... , an E V. We say that a
vector b can be expressed as a linear combination of vectors a 1, a2, ... , a. if
it equals a linear combination of them.

a2e2 a = alel+a2e2

Figure 1.5

Definition 1.62. A system of vectors {e1, e2, ... , e }C V is called a basis of
V if every vector a E V can be uniquely expressed as a linear combination
of e1i e2,- - -, en. Coefficients of this expression are called coordinates of a in
the basis {el, e2, ... ,

Example 1.63. Recall that geometric vectors are called collinear if they
are parallel to the same line and coplanar if they are parallel to the same
plane. It is known from geometry that any two noncollinear vectors e 1, e2
form a basis of E2 (Figure 1.5). Similarly, any three noncoplanar vectors
form a basis of E3.

Example 1.64. Unit rows

e1 = (1,0.....0),
e2 = (0,1, ... , 0),
.................
en = (0, 0'...' 1)

form a basis of the space Kn. A row a = (a1, a2, ... , a,,) has coordinates
al, a2, ... , an in this basis. Of course, K" has other bases as well.

Example 1.65. Take {1, z} as a basis of C regarded as a vector space over
R (see Example 1.56). The coordinates of a complex number in this basis
are its real and imaginary parts.
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Proposition 1.66. Any vector space V over afield K with a basis consisting
of n vectors is isomorphic to the space Kn.

Proof. Let {el, e2, ... , en} be a basis of V. Consider the map

cp: V - Kn

that assigns to each vector the row of its coordinates in the basis {e1, e2, ... ,
en}. Clearly, this map is bijective. Now, if

a=alel+a2e2+...+men, b=blel+b2e2+...+bnen,

then

a + b = (al + b1)el + (a2 + b2)e2 + - + (an + bn)en,

Aa = (Aal)el + (Aa2)e2 + ... + (Aan)e0.

Hence, p is an isomorphism. 0

Example 1.67. The space E2 (respectively, E3) is isomorphic to R2 (re-
spectively,1R3).

1.8. Algebras

Because their structure is so simple, vector spaces are not very interesting on
their own. However, the notion of a vector space is a part of many algebraic
(and not just algebraic) theories. For instance, by combining the notions of
a vector space and a ring, we arrive at the important notion of an algebra.

Definition 1.68. An algebra is a set over a field K with operations of
addition, multiplication, and multiplication by elements of K that have the
following properties:

(i) A is a vector space with respect to addition and multiplication by
elements of the field;

(ii) A is a ring with respect to addition and multiplication;

(iii) (Aa)b = a(Ab) = A(ab) for any A E K, a, b E A.

Remark 1.69. So far we have used the word algebra to describe a particular
branch of mathematics. In the above definition its meaning is, of course,
different.

Example 1.70. Every field L having K as a subfield can be regarded as an
algebra over K. In particular, C is an algebra over R.

Example 1.71. The space E3 is an algebra with respect to the operation
of cross product.
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Example 1.72. The set F(X, K) of functions on a set X with values in a
field K (see Example 1.55) is an algebra over K with respect to the standard
operations of addition and multiplication of functions and multiplication of
a function by a number. This algebra is commutative, associative, and has
unity (which is the constant function equal to 1).

Exercise 1.73. Prove that the ring 2X in Exercise 1.19 becomes an algebra
over the field Z2 if we define multiplication by elements of this field by the
following rules:

OM=t, 1M=M VME2X.

Assume that an algebra A regarded as a vector space over K has a basis
{el,e2,...,en}. Let

n

a=aiel+a2e2+.+anenaie{,
n

b=blei+b2e2+ +bnenEbiei
i=1

be two arbitrary elements of A. Then the distributive laws of multiplication
imply

n n n n

at, = ai(eib) _ ai bj(eiei)

=
aibj(eiej)

j=1

This shows that multiplication in an algebra is completely determined by
the products of basis vectors.

If multiplication of basis vectors is commutative, i.e., if

eiej = ejei Vi, j,

then multiplication in A is commutative in general. Indeed, in the above
notation, for every a, b E A, we have

ab = >aibj(eiej) _ E bjai(ejei) = ba.

Similarly, it is possible to prove that if multiplication of basis vectors is
associative, i.e., if

(eiej)ek = ei(ejek) di,j,k,
then multiplication in A is associative in general.

On the other hand, if V is a vector space with a basis lei, e2,.. . , en }

and eij, i, j = 1, 2, ... , n, are arbitrarily chosen vectors from this space, we
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can define multiplication on V by the following rule:

ab = E aibjeij,
io
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thus making V an algebra.

Example 1.74. The field C regarded as an algebra over R has the following
multiplication table for its basis vectors:

x

1

t

1 2

1 2

2 -1

To check that multiplication in C is commutative and associative, it suffices
to check that multiplication of 1 and i is commutative and associative, and
this is trivial.

Example 1.76. For an orthonormal basis {2, 3, k} of E3 (i.e., a basis that
consists of orthogonal unit vectors), the multiplication table for the cross
product looks like this:

X 2 3 k
2 0 k -3

-k 0 2

k 7 -2 0

This multiplication is anticommutative and satisfies the Jacobi identity (see
Example 1.18). It is enough to check the latter identity for the basis vectors,
which is not difficult (do this!).

Example 1.76. The algebra of quaternions E is given by its basis {1, 2,3, k}
with the following multiplication table:

X 1 2 k
1 1 2 k
2 2 -1 k -
J 7 -k -1 2

k k 3 -2 -1

This algebra is associative (check this!) but not commutative. It contains
the algebra of complex numbers as a subalgebra (see the definition in the
next paragraph). Later we will see that just as in a field, every nonzero
element of II$ is invertible. Thus, it is a "noncommutative field".

A subset of algebra is called a subalgebra if it is simultaneously a subring
and a subspace. A map between algebras is called an isomorphism if it is
simultaneously an isomorphism of vector spaces and of rings.



30 1. Algebraic Structures

1.9. Matrix Algebras

An m x n matrix over a field K is a rectangular table of elements from K
with m rows and n columns. Entries of a matrix are usually denoted by
the same letter with two subscripts, the first being the row number and the
second the column number:

ali a12 ... aln
A _ atl an ... an,,

aml amt . . amn

Sometimes for brevity we will simply write A = (aj ).
The sum of matrices A = (aj) and B = (b j) of the same size is the

matrix

A+B = (aj +bij).

The product of a matrix A = (ail) and an element .\ E K is the matrix

aA = (Aaij)

With respect to these two operation all m x n matrices form a vector space
that we will denote Klan. In fact, it is no different from the space Kmn
of rows of length mn. The special nature of matrices comes through in the
definition of their multiplication.

The product of an m x n matrix A = (aij) and an n x p matrix B = (6,j)
is the m x p matrix AB = (cik) whose entries are determined by the following
formula:

n

Cik = E aijbjk.
j=1

(We will explain the reason for this definition in Section 2.3.)
Observe that a product of two matrices is defined only when their sizes

agree, namely, when the number of columns of the first matrix equals the
number of rows of the second one.

Example 1.77.

C1 0 2) 2 -1

0 -1 3
5

1

_ 1.2+0.0+2.1 1

= 3 -2)'
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Example 1.78.

lCsinaa
-scow)

\scos/ -s0l
cos

cosacos/3-sinasin/ -cosasin/3-sinacos/3
sin a cos /3 + cos a sin /3 - sin a sin /3 + cos a cos /3

__ cos(a + sin(a + /3)
sin(a + /3) cos(a +,3))

Matrix multiplication is associative, meaning that

(1.9) (AB)C = A(BC),

whenever sizes of matrices A, B, C agree so that all these products make
sense.

Indeed, let

Then
(AB)C = (uj ), A(BC) = (vg).

ua = F, F aijbjk Ckl = E aijbjkCkl,
k j,k

vii = aij (E bjkckl J = E aijbjkckl,
k / j,k

hence uil = v.
An n x n matrix is called a square matrix of order n. A square matrix has

two diagonals. The one leading from the upper left corner to the lower right
corner is called the main diagonal or simply the diagonal and the other one
the secondary diagonal. A square matrix is called diagonal if all its entries
outside of the (main) diagonal are zero. Multiplication by a diagonal matrix
looks especially simple:

a1 0 ... 0 b11 b12 ... b1p aibll a1b12 ... albla

0 a2 ... 0 b21 b22 ... b2 = a2b21 a2b22 ... a2b2p I

o o ... an b 1 bnP anbnl anbn2 ...
(every row of the second matrix is multiplied by the respective diagonal
entry of the first matrix). Similarly,

all a12 ... aln bi 0 ... 0 alibi a12b2 ... alnbn

a21 a22 ... a2n 0 b2 ... 0 a21b1 ab2 ... a2nbn

................... .............. k........................

am1 am2 ... amn o o ... bn amlbl am2b2 ... amnbn
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(every column of the first matrix is multiplied by the respective diagonal
entry of the second matrix). We will denote the diagonal matrix

J

fal 0

0 a2

...

...

0

0

0 0 an

by diag(ai,a2,...,a.)

The diagonal matrix

1 0 ... 0

E _ 0 1 ... 0

0 0 ... 1

is called the identity matrix. The above formulas imply that for any m x n
matrix A,

(1.10) AE=A, EA=A,
where in the first equality E stands for the identity matrix of order n and
in the second, for the identity matrix of order in.

The following obvious properties relate matrix multiplication to other
operations:

(1.11) A(B+C) = AB+AC, (A+B)C = AC+BC,
(1.12) (AA)B = A(AB) = A(AB) VA E K.

(As in the statement concerning associativity, we assume here that the sizes
of matrices agree so that all operations make sense.)

The sum and product of square matrices of the same order n are well
defined; they are also square matrices of order n. Properties (1.9)-(1.12)
show that all square matrices of order n form an associative algebra with
unity. We denote it Ln(K).1

We notice below several "negative" properties of the algebra "(K) for
n > 2. (Ll(K) is the field K itself.)

(i) The algebra Ln(K) is not commutative. The following example
demonstrates this for n = 2:

1 1

(0 0)
(0

0) - (0 0)' (0 0) (0 0) -
(0 0

0)
Similar examples can be provided for n > 2.

1This algebra is often denoted In our notation the letter "L" comes from "linear",
and the reason for this choice is that matrices can be interpreted as linear maps (see Section 2.3).
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(ii) The algebra Ln(K) contains zero divisors. This follows, for instance,
from the second equality above. Moreover, there exist nonzero matrices with
zero squares, e.g.,

(iii) Not every nonzero element of Ln(K) is invertible. This follows from
the existence of zero divisors, since a zero divisor cannot be an invertible
element (see the proof of absence of zero divisors in a field in Section 1.3).
For instance, matrices (1

o)
and (o 1) are not invertible in L2(K).

Exercise 1.79. A matrix E,j that has 1 as the (i,j)th entry and zero in
all other places is called a matrix unit (not to be confused with the identity
matrix!). Matrix units E,3, i, j = I,-, n, form a basis of the vector space
Ln(K). Write down the multiplication table of the algebra Ln(K) in this
basis.

Exercise 1.80. Matrices of the type AE, A E K, are called scalar. Clearly,
any scalar matrix commutes with all other square matrices of the same order.
Prove the converse: a square matrix that commutes with all other square
matrices of the same order is scalar.

Exercise 1.81. Prove that in L2(R), matrices of the type

b a
b

form a subalgebra isomorphic to the algebra of complex numbers.

Exercise 1.82. Prove that in the algebra L2(C) regarded as an algebra over
IR, matrices of the type

form a subalgebra isomorphic to the algebra of quaternions (see Exam-
ple 1.76).

For any matrix

all a12 ... aln

a21 a22 ... a2nA= ,

amt amt .. am,,
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define the transposed matrix
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all a21 ... aml

A an ... am2

ksin a2n .. amn

whose columns are rows of A and vice versa. If we denote the (i,j)th entry
of the transposed matrix by a, then

a j = aji.

Obviously,

Also, it is true that

(AT)T = A,

(A + B)T = AT + BT,

(),A)T = AAT VA E K.

(AB)T = BT AT T.

Indeed, let AB = C = (cik). Then

Ck==CA
j j

implying that CT = BTAT.

Remark 1.83. Observe that all constructions in the last three sections
would remain unchanged if we replaced K with a commutative associative
ring with unity, for instance, the ring of integers or a ring of residue classes.
The only difference lies in terminology: in this more general situation the
term module is used instead of vector space (see Section 9.3).



Chapter 2

Elements of Linear
Algebra

2.1. Systems of Linear Equations

Fix a field K. We are going to abuse the language slightly and call elements
of K numbers. If it is difficult for you to think of a generic field, you can
assume that K = R; though, this case is not simpler than the generic one.

A linear equation with variables xl, x21... , In is an equation of the form

a1x1 + a2x2 + ... + anxn = b,

where coefficients al, a2,. . ., an and the free term b belong to K. A linear
equation is called homogeneous if b = 0.

A system of m linear equations with n variables has the following general
form:

aiixi + a12x2 + + alnxn = bl,
a21x1 + a22x2 + ... + a2nxn = b2,

amlxl + am2x2 +-+ amnxn = bm

The matrix

all a12 ... aln

a21 an ... a2nA=

aml amt ... amn

35
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is called the coefficient matrix and the matrix

fall a12 ... aln bl

a21 a22 ... a2n b2A=

aml am2 amn bm
the extended matrix of system (2.1).

A system of equations is called compatible if it has at least one solution
and incompatible otherwise. A compatible system can have one or more
solutions. To solve a system of equations means to find all its solutions.

Observe that a solution of a system of equations with n variables is an
ordered collection of n numbers, i.e., an element of Kn.

There exists a simple general method for solving systems of linear equa-
tions called Gaussian elimination. Its idea lies in reducing every system of
linear equations to an equivalent system that has a simple form and whose
solutions are easy to find. Recall that two systems of equations are called
equivalent if their sets of solutions coincide, i.e., if every solution of the first
system is a solution of the second and vice versa. Gaussian elimination is
performed using special transformations called elementary.

Definition 2.1. An elementary transformation of a system of linear equa-
tions is a transformation of one of the following three types:

(i) adding an equation multiplied by a number to another equation;

(ii) interchanging two equations;

(iii) multiplying an equation by a nonzero number.

Notice that a transformation of the first type changes only one equation,
the one to which the other, multiplied by a number, is being added.

Clearly, every solution of the original system of equations is a solution
of the system obtained using an elementary transformation. On the other
hand, the original system of equations can be reconstructed from the new
one using an appropriate elementary transformation of the same type. For
instance, if we add to the first equation the second one multiplied by c, we
can get back by adding to the first equation of the new system the second
equation (it is the same as in the original system) multiplied by -c. Thus,
under any elementary transformation we obtain a system that is equivalent
to the original one.

Since it is easier for us to work not with systems themselves but with
their (extended) matrices, here is the corresponding definition for matrices:

Definition 2.1'. An elementary row transformation of a matrix is a trans-
formation of one of the following three types:
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(i) adding a row multiplied by a number to another row;

(ii) interchanging two rows;

(iii) multiplying a row by a nonzero number.

Obviously, every elementary transformation of a system of equations
leads to a corresponding elementary row transformation of its extended ma-
trix and its coefficient matrix.

We can show now that every matrix can be reduced to quite a simple
form by elementary transformations.

Call the first nonzero element of a row (ar, a2,..., its pivotal element;
if this element is ak, then k is called the index of this pivotal element.

Definition 2.2. A matrix is in step form if

(i) the indices of pivotal elements of its nonzero rows form a strictly
increasing sequence;

(ii) zero rows, if exist, are at the bottom.

That is, a matrix in step form looks as follows:

0

QZJ2 .................

Here the entries alj a2j2, ... , aj, are nonzero and the entries to the left or
below them are zero. Also, jl < j2 < < jr.

Theorem 2.3. Every matrix can be reduced to step form by elementary
transformations.

Proof. If the given matrix is the zero one, it is already in step form. If it
is nonzero, let jl be the index of its first nonzero column. By exchanging
the rows, if necessary, we obtain a matrix where al # 0. Then, we add to
every row from the second down the first row multiplied by an appropriate
number, so that all entries of the jlth column, except the first one, become
zero. We obtain a matrix of the form

0...0 al., .....

Al
Applying the same procedure to the matrix Al, we finally obtain a matrix
of the form (2.2).
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Remark 2.4. In this proof we did not use elementary transformations of
the third type. But they can be useful in solving particular systems.

Example 2.5. Reduce the following matrix to step form:

1 2 1 0 2

1 3 2 -1 4

12 1 -1 3 -2
2 0 -2 3 1

By subtracting from the 2nd, 3rd, and 4th rows the 1st row multiplied by
1, 2, and 2, respectively, we obtain the matrix

1 2 1 0 2

0 1 1 -1 2

0 -3 -3 3 -6
0 -4 -4 3 -3

Then, by adding to the 3rd and 4th rows the 2nd row multiplied by 3 and
4, respectively, we get

1 2 1 0 2

0 1 1 -1 2

10 0 0 0 0
0 0 0 -1 5

Finally, by exchanging the 3rd and 4th rows, we obtain a matrix in step
form:

1 2 1 0 2

0 1 1 -1 2

0 0 0 -1 5

0 0 0 0 0

Remark 2.6. The previous example was specially designed so that jl,... , j,
would not be just the first r natural numbers. In some sense, this situation
is an exception. For example, jl 1 only when the first column of the
original matrix is zero. Usually,

ji=1, j2=2, ..., j,.=r.
In such a case matrix (2.2) is called trapezoidal.

Now we apply the above theorem to solving systems of linear equations.

Definition 2.7. A system of linear equations is said to be in step form if
its extended matrix is in step form.

Theorem 2.3 implies that every system of linear equations can be reduced
to step form by elementary transformations. Thus, it is enough to learn how
to solve systems already in step form.
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We need to introduce a few terms. A square matrix A = (aid) is called
upper triangular or simply triangular if aid = 0 for i > j and strictly trian-
gular if additionally aii 34 0 for all i. A system of linear equations is called
(strictly) triangular if its coefficient matrix is (strictly) triangular.

Remark 2.8. A square matrix A = (a 3) is called lower triangular if aid = 0
for i <j.

Consider an arbitrary system of linear equations in step form. Denote
the number of nonzero rows (number of steps) in this matrix by r and the
number of nonzero rows of its extended matrix by f. Clearly, r` = r or r + 1.

Three cases are possible.

First case: f = r + 1. In this case the system contains an equation of
the form

where b 36 0. Hence, it is incompatible.

Second case: f = r = n. In this case, after deleting zero equations (i.e.,
equations with all coefficients equal to zero), we obtain a strictly triangular
system. We can uniquely determine xn from the last equation, x._1 from
the next to last, and so on. Therefore, the system has a unique solution.

Third case: f = r < n. In this case, let jl, j2, ... , jr be the indices
of pivotal coefficients of nonzero equations in the system. Call variables
xy, , xh,... , xj,, principal and other variables free. Delete zero equations
and carry terms with free variables to the right-hand side. In this way we
obtain a strictly triangular system with respect to the principal variables.
By solving it just like the one in the second case, we can express principal
variables via the free ones. Together these expressions are called the general
solution of the system. All solutions of the system are obtained from the
general one by choosing some values for the free variables. Since these values
can be chosen arbitrarily, the system has more than one solution and, when
K is infinite, infinitely many solutions.

A compatible system of linear equations is called determined if it has
a unique solution and underdetermined if it has more than one solution.
As follows from the previous discussion, an underdetermined system has
infinitely many solutions whenever K is infinite. Up to renumeration of
variables, a general solution of such a system has the following form:

xl = C11xr+1 + C12xr+2 +'** + C1,n-rxn + d1,

(2.3)
x2 = C21xr+1 + C22xr+2 + + C2,n_rxn + d2,

Xr = CrlXr+1 + Cr2Xr+2 + ... + Cr,n_rxn + dr.
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Example 2.9. The matrix from Example 2.5 is the extended matrix of the
system

x1 + 2x2 + X3 = 2,

x1+3x2+2x3- x4= 4,

2x1 + X2 x3 + 3x4 = -2,
2x1 - 2x3 + x4 = 1.

Calculations in Example 2.5 show that this system is equivalent to the fol-
lowing system in step form:

XI +2X2 +x3 = 2,

x2 + x3 - x4 = 2,

-x4=5.
Taking variables XI, x2, and x4 as principal and variable x3 as free, we rewrite
this system as

x1+2x2 = -x3+2,
x2 - X4 = -x3+2,

- x4 = 5.

Solving it with respect to xl, x2i and x4, we find the general solution

X1 = x3+8,
x2 = -X3 - 3,

1x4= -5.
Remark 2.10. For consistency, we can think that for determined systems
all variables are principal and no variable is free. Then the general solution
is the unique solution of the system.

A strictly triangular matrix can be reduced to the identity matrix by
elementary row transformations. To achieve this, we add the last row mul-
tiplied by an appropriate coefficient to all other rows. This coefficient is
chosen here in such a way that all entries of the last column but the last
one become zero. Then, similarly, we add the penultimate row to others so
that all entries of the next to the last column (except for the diagonal entry)
become zero, etc. Finally, we obtain a diagonal matrix. By multiplying its
rows by appropriate numbers, we obtain the identity matrix. Using this
method, we do not stop at the step form when solving a system of linear
equations but continue with the transformations and reduce the coefficient
matrix for the principal variables to the identity matrix. Then the general
solution is easily obtained from the matrix we just got. This procedure is
called the reverse Gaussian elimination.
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Example 2.11. We continue reducing the matrix from Example 2.5. First,
we delete the zero row. Then, by subtracting the third row from the second,
we get

1 2 1 0 2

0 1 1 0 -3
0 0 0 -1 5

We subtract the doubled second row from the first, multiply the third row
by -1, and obtain

1 0 -1 0 8
0 1 1 0 -3
0 0 0 1 -5

Therefore, the system of equations from Example 2.9 is equivalent to

x1 - x3 = 8,

x2 + x3 = -3,
r

After carrying terms containing x3 to the right-hand side, we obtain the
general solution of this system (that we already found in Example 2.9).

A system of homogeneous linear equations is always compatible as it has
the zero solution. If it is determined, then it has just the zero solution, and
if it is underdetermined, it has at least one nonzero solution (even infinitely
many if K is infinite). In the preceding notation, the latter case holds when
r < n. Since r < m always, we arrive at the following theorem, which is an
important theoretical consequence of Gaussian elimination.

Theorem 2.12. Every system of homogeneous linear equations for which
the number of equations is less than the number of variables, has a nonzero
solution.

Underdetermined systems of linear equations differ by the degree of in-
determinacy, which is naturally defined as the number of free variables in
the general solution of a system. For instance, a line in three-dimensional
space is given by a system of (two) linear equations with one free variable,
and a plane by a system (of one equation) with two free variables. The
same system of linear equations can admit different general solutions with
different free variables, so it is natural to ask if the number of free variables
always remains constant. A positive answer to this question relies on the
concept of dimension introduced in the next section.

In the remaining part of this section, we will interpret Gaussian elimi-
nation in the language of matrix multiplication.
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First of all, if X denotes the column of variables and B the column of
free terms, system (2.1) can be rewritten in matrix form as follows:

(2.4) AX = B.

Indeed, according to the rules of matrix multiplication, the matrix AX is a
column of height m whose ith element equals

ati1x1 + ai2x2 + ... + ai.nxn.

Setting this element equal to the ith element of the column B, we obtain
exactly the ith equation of system (2.1).

Let U be a square matrix of order m. Multiplying both sides of equation
(2.4) by U on the left, we obtain the following equation:

(2.5) UAX = UB.

Obviously, every solution of (2.4) satisfies (2.5). Moreover, if U is invertible,
multiplication by U-1 on the left changes (2.5) back into (2.4); hence these
equations are equivalent.

Equation (2.5) corresponds to a system of linear equations with the
coefficient matrix UA and the column UB of free variables. It is easy to see
that the extended matrix of this system is UA.

Furthermore, a direct check shows that elementary transformations of
a matrix A are equivalent to multiplying it on the left by the so-called
elementary matrices of the following three types:

7

1

i 1 c ......

1 ......

= E+cEj,

1/
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= Pij, i = We),

where i # j, c # 0, and all entries in these matrices that are not written
down explicitly are the same as in the identity matrix.

For example, multiplication of a matrix A by E+cEij, i 34 j, on the left
adds the jth row of A multiplied by c to its ith row (and leaves other rows
unchanged).

All elementary matrices are invertible; moreover, their inverses are ele-
mentary matrices corresponding to inverse elementary transformations:

(E + cEij)-1 = E - cEij, Pij 1 = Pij, Qi(c)_1 = Qi(c 1).

In the language of matrices, Gaussian elimination consists of successive
multiplications on the left of equation (2.4) by elementary matrices with the
goal of reducing A (and also the extended matrix A) to step form.

Remark 2.13. Use of other matrices instead of elementary ones provides
us with different methods for solving systems of linear equations. Their
theoretical underpinnings may not be so obvious, yet they are sometimes
more useful for approximate calculations (when K = R). For instance, such
is the method of rotations; here matrices U are taken to be of the from

A

i

j

...... cos a ... -sina ......

...... sina ... cos a

\ 1/

2.2. Basis and Dimension of a Vector Space

The concept of dimension is one of the most fundamental ideas in mathe-
matics. In different branches of mathematics, it assumes various forms (as
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does the concept of space itself). In this section we will define the dimension
of a vector space and discuss questions related to this notion.

In Section 1.7, we introduced the notion of a basis of a vector space
and proved that a vector space over a field K with a basis of n vectors is
isomorphic to the space of rows Kn. The dimension of a vector space is
defined as the number of vectors in its basis. However, before we state the
definition precisely, two questions must be answered: which vector spaces
possess a basis and whether a vector space may have two bases with different
numbers of vectors.

To answer these questions, we need to introduce several new notions and
prove a few statements that are also of independent interest.

Let V be a vector space over a field K.
A linear combination

A1a1 + A2a2 + ... + Anan, A1, A2, ...,An E K,

of vectors al, a2,. .., an E V is called trivial if Al = A2 = _ An = 0 and
nontrivial otherwise.

Definition 2.14. Vectors al, a 2 ,-- . , an are said to be linearly dependent
if there exists a nontrivial linear combination of them that equals zero.
Otherwise, they are said to be linearly independent.

Note that the notion of linear dependence (or independence) refers not
to separate vectors but to their collections, or systems.

Remark 2.15. The notion of a system of vectors is different from that of
a set of vectors. First, vectors in a system are assumed to be numbered.
Second, some of them may be equal to each other. Thus, a system of n
vectors is actually a mapping of the set 11, 2, ... , n} into V. Notice, though,
that the property of being dependent or independent does not depend on
how vectors are numbered within the system.

Remark 2.16. The term "linear combination" actually has two meanings:
the description of an action performed on given vectors (same as listing the
coefficients A1, A 2 ,- .. , and the description of its result. In the statement
"a nontrivial linear combination of these vectors equals zero," the word
"nontrivial" is taken within the first meaning and "equals zero" within the
second.

In other words, linear independence of vectors al, a2i ... , an means that
equality

.\1a1 +.12a2 + ... + Anan = 0

holds only when Al = A2 = ... = An = 0.
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Example 2.17. A system that consists of exactly one vector is linearly
dependent if and only if this vector is zero.

Example 2.18. A system that consists of two vectors is linearly dependent
if and only if these vectors are proportional.

Example 2.19. Three geometric vectors (see Section 1.7) are linearly de-
pendent if and only if they are coplanar (parallel to the same plane).

Clearly, if a system of vectors contains a linearly dependent subsystem, it
is linearly dependent itself. For instance, any system of vectors that contains
proportional vectors is linearly dependent.

Lemma 2.20. Vectors al, a2, ... , an, n > 1, are linearly dependent if and
only if one of them is a linear combination of others.

Proof. (i) If, for instance,

al = ,2a2 + ... + µnan,

then

al - }A2a2 - ... - FAnan = 0,

which shows linear dependence of al, a2, ... , an.

(ii) Conversely, let

alal+A2a2+...+Anan=0,
where not all coefficients Al, )'2i ... , An equal zero. Assume al 0 0. Then

A2 Anal =-Al a2-...- flan,

i.e., al can be expressed as a linear combination of a2:... , an.

Remark 2.21. Not every vector in a linearly dependent system can be
expressed as a linear combination of others. For example, let a be a nonzero
vector. The system {a, 0} is linearly dependent because

Oa+1.0=0;
however, it is clear that a cannot be expressed via the zero vector.

Lemma 2.22. Let vectors al, a2, ... , an be linearly independent. A vector
b can be expressed as a linear combination of al, a2,. .., an if and only if
vectors al, a2,. .., an, b are linearly dependent.

Proof. If b can be expressed as a linear combination of al, a2, ... , an, then
al, a2,..., an, b are linearly dependent by the previous lemma. Conversely,
let

Alai +A2a2++Anan+µb=0,
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where not all coefficients Al i A2, ... , A,,, It are equal to zero. We claim that
p 0 0. Indeed, otherwise al, a2i ... , an would be linearly dependent, thus
contradicting the assumptions of the lemma. But then,

b=-alai- A2a2-...- Anan.
p p p

13

Lemma 2.23. Let b be a vector expressed as a linear combination of vectors
ai, a2,..., an. This expression is unique if and only if a1, a2, ... , a are
linearly independent.

Proof. (i) Assume that b has two distinct expressions in terms of the vectors
a1,a2,...,an:

b=Alai +A2a2+...+Anan=A al+A2a2+...+A;,an,

Then

()i -,1)at + (a2 - A2)a2 + ... + (A;, - An)a,, = 0

is an expression of linear dependence of al, a2.... , a,,.

(ii) Conversely, let

plat +p2a2+...+pnan =0

be an expression of linear dependence of ai, a2,..., an. Then, if

b=alai+A2a2+...+Anan,

we have

b=(Al+p1)al+(A2+p2)a2+...+(An+pn)an

as well, which is a different way of expressing bin terms of a1, a2, -,an.

Let S C V be a subset. The collection of all possible (finite) linear
combinations of vectors from S is called the linear span of S and is denoted
(S). It is the smallest subspace of V containing S (check this!). We say that
S spans V if V = (S).

Definition 2.24. A vector space is called finite-dimensional if it is spanned
by a finite number of vectors, and infinite-dimensional otherwise.

Proposition 2.25. If a vector space V is spanned by n vectors, then any
m > n vectors in V are linearly dependent.
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Proof. Let V = (al, a2i ... , an) and bl, b2, ... , b,,,, m > n, be some vectors
in V. We can express them in terms of al, a2i ... , an:

b1 = /zllal + /112a2 + + /Alnan,
b2 = /021a1 + /L22a2 + .. + /12nan,
.................................
bm = /imlal + /dm2a2 + .. ' + Amnan.

For any 1\1,,\2, ... , A,n E K, we have

A1b1 + A2b2 + ... + Ambm =(,\1p11 +,\M21 + + Am/lm1)al

+(A1."12 + .2/122 + ... + An/`m2)a2

+(71/zln + A2/12n +'' - + Am/1mn)an

Consider the following system of n homogeneous linear equations with
m variables:

/111X1 + /d21X2 + ... + /tm1Xm = 0,

1-612X1 + /L22X2 + ' + iLm2Xm = 0,

/61nX1 + /22nX2 + ... + /6mnXm = 0.

If (A1, A2, ... , Am) is a solution of this system, then

A1b1+A2b2+...+)lmbm=0.
On the other hand, this system has a nonzero solution by Theorem 2.12.
Therefore, vectors b1i b2, ... , bm are linearly dependent.

In view of Lemma 2.23, Definition 1.62 of a basis of a vector space can
be reformulated as follows:

Definition 2.26. A basis of a vector space V is a linearly independent
system of vectors that spans V.

Theorem 2.27. Every finite-dimensional subset V has a basis. More pre-
cisely, every finite subset S of V that spans V contains a basis of V.

Proof. If S is linearly dependent, it contains a vector that can be expressed
in terms of other vectors by Lemma 2.20. If we remove this vector from S,
we obtain a set that still spans V but contains a smaller number of vectors.
Continuing further, we will finally obtain a linearly independent set that
spans V, i.e., a basis of V.

Theorem 2.28. All bases of a finite-dimensional space V contain the same
number of vectors.

This number is called the dimension of V and is denoted dim V.



48 2. Elements of Linear Algebra

Proof. Assume V contains two bases with different numbers of vectors.
Then according to Proposition 2.25, the one with the greater number of
vectors is linearly dependent, contradicting the definition of basis.

Remark 2.29. The zero vector space (that consists of the zero vector only)
is regarded as having the "empty basis"; accordingly, its dimension is con-
sidered to be zero.

Example 2.30. The dimension of E2 (respectively, E3) is 2 (respectively, 3).

Example 2.31. It follows from Example 1.64 that K" has dimension n.

Example 2.32. The field of complex numbers regarded as a vector space
over Ilk has dimension 2, and the algebra of quaternions (see Example 1.76)
has dimension 4.

Example 2.33. If X is a finite set of n elements, then the vector space
F(X, K) of all functions on X with values in K (see Example 1.57) has
dimension n. Indeed, consider the so-called 6-function 6a (a E X) defined
as

6a(x) =
J1 ifx=a,

0 ifx54 a.
Clearly, any function o E F(X, K) can be uniquely expressed in terms of
6-functions, namely

'P = E rP(a)ba.
aE X

Therefore, the functions ba, a E X, form a basis of F(X, K), and in this
basis the coordinates of a function are its values.

If X is infinite, then for any n, F(X, K) contains n linearly independent
vectors, e.g., S a, , baa, ... , ba for distinct al, a2, ... , a" E X. Thus, in this
case F(X, K) is infinite-dimensional.

Example 2.34. The field R regarded as a vector space over Q is infinite-
dimensional. Indeed, if it were finite-dimensional, every real number would
be determined by its coefficients in some basis, i.e., by a finite collection of
rational numbers. But then the set of real numbers would be countable and
this is not so.

Exercise 2.35. Determine the number of vectors in an n-dimensional vector
space over a finite field with q elements.

Exercise 2.36. Prove that the space of all continuous functions on an in-
terval is infinite-dimensional.

Proposition 2.25 implies that a (finite or infinite) set S of vectors in a
finite-dimensional vector space V contains a maximal linearly independent
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subset, i.e., a linearly independent subset that becomes linearly dependent
when any vector in S is added to it. Moreover, each linearly independent
subset of S can be completed to a maximal linearly independent subset.

Proposition 2.37. Any maximal linearly independent subset {el, e2, ... , ek}
of a set S is a basis of the linear span (S) of S.

Proof. We need to show that every vector in (S) can be expressed as a
linear combination of el, e2, ... , ek. By definition, every vector in (S) can
be expressed as a linear combination of vectors from S. Hence, it suffices
to show that every vector a E S can be expressed as a linear combination
of el,... , ek. For a E {el,... , ek}, this is obvious. For a ¢ {el,... , ek}, this
follows from Lemma 2.22.

Applying the above considerations to S = V, we obtain the following
theorem:

Theorem 2.38. Any linearly independent system of vectors in a vector
space V can be completed to a basis.

In particular, any nonzero vector is contained in some basis and any n
linearly independent vectors in an n-dimensional vector space already form
a basis.

Exercise 2.39. Determine the number of bases of an n-dimensional space
over a field of q elements.

Theorem 2.40. Any subspace U of a finite-dimensional space V is also
finite-dimensional, and dim U < dim V. Moreover, if U 34 V, then dim U <
dim V.

Proof. Let {el, e2, ... , ek} be a maximal linearly independent system of
vectors in U. By Proposition 2.37, {el, e2, ... , ek} is a basis of U. There-
fore, dim U = k. The linearly independent system {el, e2i... , eh l can be
completed to a basis of V. Thus, if U # V, dim V > k.

Exercise 2.41. Determine the number of k-dimensional subspaces of an
n-dimensional vector space over a field of q elements.

The next theorem provides a complete description of all finite-dimen-
sional vector spaces.

Theorem 2.42. Finite-dimensional vector spaces over the same field are
isomorphic if and only if their dimensions are the same.

Proof. If f : V - U is an isomorphism of vector spaces and {el, e2, ... , en}
is a basis of V, then {f (el), f (C2),..., f (en)} is a basis of U, hence dim V =
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dim U. Conversely, by Proposition 1.66, every n-dimensional vector space
over a field K is isomorphic to Kn; therefore, all such spaces are isomorphic.

0

Thus in any of our statements, we can replace an n-dimensional vector
space over K with the space of rows Kn. The space Kn possesses a "dis-
tinguished" basis consisting of unit rows (see Example 1.64). On the other
hand, if we fix a basis in an n-dimensional space V, then by assigning to
each vector the row of its coordinates in this basis (as in the proof of Propo-
sition 1.66), we establish a canonical isomorphism between V and Kn. This
isomorphism maps basis vectors to unit rows. In this sense we can say that
the space of rows is nothing but a finite-dimensional space with a fixed basis.

The set of all bases of an n-dimensional vector space V can be described
in the following way. Fix a basis {e,.. . , en}. Any system {e'1, ... , en} of n
vectors is given by a square matrix C = (cu) whose entries are defined by
equalities

(2.6) eJ = eicij, j = 1, ... , n.
i

This matrix is called the transition matrix from the basis {el, ... , en} to the
system {el, ... , en}. According to its definition, the jth column of C is the
column of coordinates of ej' in the basis {el, ... , en}. Thus, vectors el, ... , el
are linearly independent (and hence form a basis) if and only if the columns
of C are linearly independent. Such a matrix is called nonsingular (see
also Definition 2.72). The aforesaid establishes a one-to-one correspondence
between the set of all bases of V and the set of nonsingular matrices of order
n.

We can extend the law of matrix multiplication to the case where entries
in one of the two matrices are vectors (this makes sense because of how op-
erations on a vector space are defined). Then equality (2.6) can be rewritten
in matrix form as follows:

(2.7) (ei,...,en) _ (el,...,en)C.

Let x E V be a vector. In bases {el,...,en} and {el,...,en}, it is

expressed as

x = xlel + ... + xnen = xllel + ... + xnen,

Put
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Then
x = (ei, ... , e;,)X' _ (el,... , e,,)CX'.

This gives the formula for the change of coordinates under the transition
from the basis {el, ... , to the basis {ei, ... , en}:

(2.8) X = CX'

or, in greater detail,

(2.9) xi = > c;ix'', i = 1, ... , n.

The notions of basis and dimension can be extended to infinite-dimensio-
nal vector spaces. For this, we need to define the linear combination of an
infinite system of vectors. In a purely algebraic situation there is no other
way but to restrict our attention to the case of linear combinations where
only finitely many coefficients are nonzero.

Let {ai : i E I} be a system of vectors enumerated by an infinite set
I. A linear combination of vectors aj, i E I, is an expression of the form
>1E1 Ajaj where only finitely many coefficients Ai are nonzero. Thus, the
sum is finite, hence it makes sense. Just as in the case of finite systems
of vectors, this definition leads to the notions of linear expression, linear
dependence, and basis.

The dimension of a space is the cardinality of its basis. In particular, a
vector space with a countable basis is called countable-dimensional.

Example 2.43. Consider the set of all sequences (infinite rows) of elements
of a field K. Clearly, it is a vector space with respect to operations of
addition and multiplication by elements of K that are defined just as they
are for rows of finite length. We say that a sequence is finitary if only a
finite number of its entries are nonzero. Finitary sequences form a subspace
in the space of all sequences. Denote it by K°°. As its basis vectors, we can
take sequences of the following form:

ei = (0,...,0,1,0,... ), i = 1,2,...

(the identity is in the ith place). Hence KO° is countable-dimensional.

Just as in Proposition 1.66, we can prove that every countable-dimensio-
nal space over K is isomorphic to K.

Exercise 2.44. Prove that R regarded as a vector space over Q is not
countable-dimensional.

Exercise 2.45. Prove that any countable set in K°° that spans K°O contains
a basis.
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Exercise 2.46. Prove that every uncountable set of vectors in a countable-
dimensional space is linearly dependent (hence, every basis of such a space
is countable).

Exercise 2.47. Prove that any (finite or countable) linearly independent
system of vectors in a countable-dimensional space can be completed to a
basis.

Exercise 2.48. Prove that a subspace of a countable-dimensional vector
space is at most countable-dimensional (i.e., either finite-dimensional or
countable-dimensional). Give an example of a countable-dimensional sub-
space of a countable-dimensional vector space that does not coincide with
the whole space.

Exercises 2.45-2.48 are analogues of Theorems 2.27, 2.28, 2.38, and 2.40
for countable-dimensional spaces. Similar statements can be proved for
spaces of uncountable dimension, but this requires the use of set theory
(transfinite induction or Zorn's lemma). On the other hand, this purely
algebraic approach has a restricted area of applications. Usually, a space of
uncountable dimension is endowed with a topology, which gives meaning to
infinite sums of vectors.

The notion of dimension is closely related to those of rank of a matrix
and rank of a system of vectors.

Definition 2.49. The rank of a system of vectors is the dimension of its
linear span. The rank of a matrix is the rank of the system of its rows.

The rank of a matrix A is denoted rk A.
Two systems of vectors {al, a2i ... , and {bl, b2, ... , bm} are called

equivalent if every vector bj can be expressed as a linear combination of
al, a 2 ,- .. , an and, vice versa, every vector aj can be expressed as a linear
combination of bl, b 2 ,. . . , bm. Obviously, this holds if and only if the corre-
sponding spans coincide:

(al, a2,. . ., (bi, b2,.. ., bm).

Thus, equivalent systems of vectors have the same rank.

The definition of an elementary transformation implies that rows of a
matrix A' obtained from another matrix A using an elementary transforma-
tion can be expressed as a linear combination of the rows of A. But as A
can be obtained from A' using the inverse transformation, its rows can be
expressed as a linear combination of the rows of A'. Therefore, the systems
of rows of A and A' are equivalent and the ranks of these matrices are equal.

This is useful for calculating the rank of a matrix.
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Proposition 2.50. The rank of a matrix is equal to the number of nonzero
rows of the matrix in step form to which it is reduced by elementary trans-
formations.

Proof. Since the rank of a matrix does not change under elementary trans-
formations, it suffices to prove that the rank of a matrix in step form equals
the number of its nonzero rows. This will follow if we can prove that nonzero
rows of a matrix in step form are linearly independent.

Consider a matrix in step form (2.2). Assume that a linear combina-
tion of its nonzero rows with coefficients Al, A2, ... , A,. equals 0. The jlth
coordinate of this linear combination is )qaj thus Al = 0. This, together
with the formula for the j2th coordinate, implies A2aiz = 0 making A2 = 0.
Continuing further, we see that all coefficients Al, A2, ... , Ar are zero, as
required.

In particular, the number of nonzero rows in a matrix in step form, to
which a given matrix is reduced, is constant, regardless of the sequence of
elementary transformations chosen.

Proposition 2.50 combined with the discussion of systems of linear equa-
tions in step form in Section 2.1 imply the following theorem:

Theorem 2.51. (i) (Kronecker-Cappelli Theorem.) A system of linear
equations is compatible if and only if the rank of its matrix of coefficients
equals the rank of its extended matrix.

(ii) A compatible system of linear equations is determined if and only if
the rank of its matrix of coefficients equals the number of variables.

2.3. Linear Maps

Every algebraic theory considers maps that are more general than isomor-
phisms. Usually, these maps are called homomorphisms or, in the case of
vector spaces, linear maps. While isomorphisms fully preserve inner proper-
ties of algebraic structures and their elements, homomorphisms do so only
partially.

Definition 2.52. Let U and V be vector spaces over a field K. A map

(P:U-+ V

is called linear if

(i) to(a + b) = w(a) + Wp(b) for any a, b E U;

(ii) cp(.1a) = Acp(a) for any A E K, a E U.
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This definition is different from that of an isomorphism between two
vector spaces only in that it does not require the map to be bijective.

Observe that under a linear map the zero vector is mapped into the zero
vector and the opposite of a vector into the opposite of its image. Indeed,

AP(O) = W(O.0) = %0(6) = 0,

v(-a) = V((-1)a) = (-l)'P(a) = -ca(a)

It is also easy to show that

w(a - b) = w(a) - o(b)-

Figure 2.1

Example 2.53. A rotation is a linear map (and even an isomorphism) from
E2 to itself (see Figure 2.1).

Example 2.54. An orthogonal projection onto a plane defines a linear map
(but not an isomorphism) from E3 to the space of geometric vectors on this
plane.

Example 2.55. Differentiation is a linear map from the space of all func-
tions continuously differentiable on a given interval of the real line to the
space of functions continuous on this interval.

Example 2.56. The map

f H f b f (x)dx

is a linear map of functions continuous on [a, b] to R regarded as a one-
dimensional vector space over R.
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A linear map V : U V is uniquely determined by the images of the
basis vectors of U. Indeed, let lei : i E I} be a basis of U. Then for every
vector x = Fi xiei, we have

v(x) _ xicp(ei)

On the other hand, if vi E V (i E I) are arbitrary vectors, then the map
W :U --+ V defined as

fi(x) _ xivi

is easily seen to be linear. Also, tp(ei) = vi.
These considerations lead us towards a more analytical description of

linear maps. We shall provide it for the spaces of rows. Let
p:K"-.K'

be a linear map. Apply it to the unit rows el, e2, ... , e, of the space K"
(see Example 1.64). We get rows

W(ej) _ (ajj,a2j,...,amj) E Km, j = 1,2,...,n.
The numbers aij (i = 1, 2, ..., m, j = 1, 2,. . ., n) form an m x n matrix A.
It is called the matrix of the linear map V. (Notice that the coordinates of
the row cp(ej) form the jth column of A.)

For any row

x = (xi, x2, ... , x,) xjej E K",

we have

W(x) _ xj`p(ej) = I aljxj, a2jxj,... , amjxj

Therefore, if we put

W(x) = y = (111, y2, ,Y.),
we can express y1, y2, ... , ym in terms of xl, x2, ... , x" as

"
(2.10) yi=>aijxj, i=1,2,...,m.

j=1

Conversely, if A = (aij) is an arbitrary m x n matrix, the map cp : K" -+
K"' defined by (2.10) is linear and has A as its matrix. Thus we established
a one-to-one correspondence between linear maps from K" into K'" and
m x n matrices.
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In a similar way, we can determine the matrix of a linear map W : U V
between two arbitrary finite-dimensional vector spaces. Namely, its jth
column contains coordinates of the image of the jth basis vector of U. Of
course, this matrix depends on the choices of bases in the spaces U and V.

Figure 2.2

Example 2.57. Choose an orthonormal basis {el, e2} in E2. Let p be a
rotation through an angle a (Figure 2.2). Then

cp(el) = el cos a + e2 sin a,

W(e2) = -el sin a + e2 cos a.

This means that the matrix of cp is

(2.11)
cosa -sins
sin a cos a

Observe that in this case U = V. Also, though not required by definition,
we used the same basis {el, e2} twice: first as the basis of U and then as the
basis of V.

Example 2.58. Here we will determine the matrix of the projection in
Example 2.54. Fix a basis {el,e2} in the plane of projection. Complete
it to a basis of the whole space with a vector e3 orthogonal to this plane.
Since under projection el and e2 are mapped to themselves and e3 to 0, the
matrix in question has the form

(1 0 0)
0 1 0

(for these choices of bases).

Unlike an isomorphism, a linear map might be neither injective nor
surjective. Violations of these two properties provide us with two subspaces
associated to any linear map: its kernel and image.
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Definition 2.59. The image of a linear map cp : U V is the subset

Imp={cp(a) aEU}CV,
and its kernel, the subset

Kercp={aE U cp(a) =0} C U.

It is easy to see that Im cP is a subspace of V and Ker cp, a subspace
of U. For example, let us prove the second claim. If a, b E Ker cp, i.e.,
V(a) = cp(b) = 0, then

cp(a+b) _ sp(a)+cp(b) = 0+0 = 0,

i.e., a + b E Ker V. Furthermore, if a E Ker,, then for any A E K,

V(Aa) = .tp(a) = A0 = 0,

i.e., as E Ker gyp. Finally, 0 E Ker cp, as we have already shown that V(O) = 0.

Example 2.60. The kernel of the projection map in Example 2.54 is the
set of vectors orthogonal to the plane of projection.

Example 2.61. The kernel of the differentiation map in Example 2.55 is the
set of constant functions. Its image is the space of all continuous functions.
The latter follows from the existence of antiderivative of any continuous
function (this is shown in advanced calculus).

Theorem 2.62. A linear map cp : U V is injective if and only if Ker V =
0. More precisely, for any b E Im cp, the set of solutions of the equation

(2.12) V(x) = b

is of the form a + Ker cp, where a is one of the solutions of this equation.

(Here a + Ker cP is understood as the collection of sums of the forma + y
with y E Ker cp. )

Notice immediately that by definition Ker cp is the set of solutions of the
equation

(2.13) V(x) = 0.

Proof. Injectivity of cp means that for any b E Imcp equation (2.12) has
a unique solution. Thus it suffices to prove only the second claim of the
theorem.

Let V(a) = b. If y E Ker co, then

p(a + y) = w(a) + co(y) = b + 0 = b.

Conversely, if w(x) = b, then

cp(x - a) = cp(x) - V(a) = b - b = 0,
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i.e., y = x - a E Ker W. Hence,

x=a+yEa+Kerc2.
0

Let cp : Kn -4 K'n be a linear map with matrix A and b = (bl, b2, ... , b,,,).
Then equation (2.12) in the coordinate form is simply the system of linear
equations (2.1), and equation (2.13) is the system of homogeneous linear
equations with the same coefficients:

allxl + a12x2 +, " + alnxn = 0,

(2.14)
a21x1 + a22x2 + "' + a2nxn = 0,

lamlx1 + am2x2 + + amnxn = 0.

In this way we see that the set of solutions of system (2.14) is a subspace of
Kn. Also, the set of solutions of system (2.1), if it is nonempty, is the sum
of one of its solutions and this subspace. But what is the dimension of the
space of solutions of (2.14)? The answer is given by the following theorem.

Theorem 2.63. Let cp : An --> K' be a linear map with matrix A. Then

dim Ker cp = n - rk A.

Proof. Using elementary transformations, we reduce system (2.14) to step
form. In view of Proposition 2.50, the number of nonzero equations in this
step form equals r = rk A. Hence, a generic solution of (2.14) has r principal
variables and, up to renumeration of variables, is of the following form (cf.
(2.3)):

(2.15)

xl = C11xr+1 + C12Xr+2 + + Cl.n-rxn,

X2 = C21xr+1 + C22Xr+2 + + C2.n-rxn,

xr = Crlxr+l + Cr2Xr+2 +'* ' + Cr,n-rxn

Assigning the value of 1 to one of the free variables xr+1, xr+2, .. , xn
and 0 to the rest of them, we obtain the following solutions of system (2.14):

ul = (Cll,C21,...,Cr1,1,0,...,0),
u2 = (C12,C22,...,Cr2,0,1,...,0),

...........................................
Un-r = (Cl,n-r, C2,n-r, ... , Cr,n-r, 0, 01 .... 1).

To prove the theorem, it remains to show that these solutions form a basis
of Ker W.
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For any A1, A2, ... , An-r E K, a linear combination

u = A1ul + A2u2 + ....} '\n-ran-r

is a solution of system (2.14) where the free variables assume values A1, )'2,
... , An_r. The values of the principal variables are uniquely determined by
the values of the free ones (in accordance with (2.15)). Thus, every solution
of system (2.14) is a linear combination of ul, u2, ... , un-,.. On the other
hand, if u = 0, then Al = 1 \ 2 = = An-r = 0; therefore, u1, u2, ... , un-r
are linearly independent.

Given a system of homogeneous linear equations, any basis of the space
of its solutions is called a fundamental system of solutions. The above proof
provides a working algorithm for constructing such a system of solutions.

Let cp : U - V be a linear map between finite-dimensional vector spaces
and {el, e2, ... , en} a basis of U. Then for any

E U,

we have

w(a) = alcp(el) + a2'0(e2) + ... + ancp(en)
Hence,

(2.16) Imcp= (cp(e1),cp(e2),...,'p(en))

Theorem 2.64. dim Im cp + dim Ker cp = dim U.

Proof. Choose a basis of U in a special way: first, choose a basis {el, ... , ek}
of Kercp and then complete it to a basis of U. Our choice implies <p(e1) _

cp(ek) = 0; thus it follows from (2.16) that

Im'p = ('p(ek+l ), ... ,'p(en))
We claim that the vectors cp(ek+1), . ,'p(en) are linearly independent; the
theorem will follow from this.

To prove this claim, assume

Al(a(ek+l) + ... +A.-Me.) = 0.
Consider a vector

a = Alek+1 + ... + )1n-ken-
The previous equality implies that cp(a) = 0, i.e.,

a E Kercp = (el,...,ek).

Since el.... , ek, ek+l, .... en are linearly independent, this is possible only
for Al = ... = .1n-k = 0 and the claim follows.

Corollary 2.65. If W: Kn -+ K'n is a linear map with a matrix A, then

dimlmcp = rkA.
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Proof. The proof follows from comparing the statement of Theorems 2.63
and 2.64.

Corollary 2.66. The rank of the system of columns of any matrix (column
rank) equals the rank of its system of rows (row rank).

Proof. Let ep : Kn KI be a linear map with a matrix A and e1, e2, ... , en
the unit rows of A. It follows from (2.16) that the dimension of Im (p equals
the rank of the system of columns of A. Comparing this result with the
previous corollary completes the proof.

Example 2.67. A field K can be viewed as a (one-dimensional) vector
space over itself. A linear map cp : V -+ K is called a linear function on
V. If W is a nonzero linear function, then Imcp = K. Thus, if dimV = n,
Theorem 2.64 implies that

dim Ker ip = n - 1.

Example 2.68. Let X be the set of tetrahedron's edges and Y the set of
its faces. To any function f on X with values in K, we assign a function g
on Y defined as

g(y) = E f(x)
zcv

That is, the value of g on a face equals the sum of the values of f on the
sides of this face. This defines the following linear map:

p : F(X, K) -- F(Y, K)

(see Example 1.55). It is not difficult to prove that whenever char K 0 2, 'p
is surjective. For this, it suffices to show that Im ep contains 6-functions of
all faces (see Example 2.33). A function f for which '(f) is a 6-function of
the bottom face is shown in Figure 2.3, left (its value on unmarked edges is
0).

Figure 2.3

We have
dim F(X, K) = 6, dim F(Y K) = 4;

therefore, according to Theorem 2.64,

dimKer'=6-4=2.
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Functions comprising a basis of Ker cp are shown in Figure 2.3, two pictures
on the right.

Exercise 2.69. For a linear map V in the above example, find dim Ker cp
when char K = 2.

Since the columns of a matrix A are the rows of its transposed matrix
AT (see Section 1.9), Corollary 2.66 implies that

rk AT = rkA.

We can define elementary column transformations just as we defined
elementary row transformations of a matrix. They correspond to elementary
row transformations of the transposed matrix. Thus the rank of a matrix
does not change not only under elementary row transformations but also
under elementary column transformations.

Remark 2.70. Elementary column transformations are equivalent to mul-
tiplying the matrix on the right by elementary matrices.

We turn now to operations on linear maps.
Linear maps U -+ V can be added together and multiplied by numbers,

just as functions:

+'0)(a) _ p(a) + V)(a),

They form a vector space with respect to these operations.

Also, if
W:V -+ W, -0:U--+V

are linear maps, then their product (composition)

is a linear map as well. Indeed,

( )(a + b) ='P(,O(a + b)) = gyp(,O(a) + fi(b))

_ ,(+G(a)) + )(a) +
( )(aa) = )u a( )(a)

Multiplication of linear maps is related to linear operations as follows:

W(b + w) = + Vpw, (<P + ab)w = cpw + ,bw,

daEK.

As an example, we prove the first distributive law. Let

cp:V-*W, O:U-+V, w:U-4V
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be linear maps. For any a E U we have

(W(ii + w))(a) = cp((,O + w)(a)) = cp(,O(a) + w(a))

= tP(,P(a)) +'P(w(a)) = (w'+')(a) + ( w)(a) _ ('PEG + )(a)
Multiplication of linear maps is associative, just as multiplication of

maps in general. Indeed, let M, N, P, Q be sets and

ca:P-,Q, -i:N-+P, w:M-*N
arbitrary maps. Then for any a E M we have

(J)(w(a)) _
'P(()(a)) _

thus

('P+G)w = P('d'w)

Operations on linear maps of spaces of rows correspond to the same
operations on matrices. This is clear for linear operations (addition and
multiplication by numbers). To prove this for multiplication, let

W : K" -4 K, V,: Kp -+ K"

be linear maps with matrices A = (aij) and B = (bjk), respectively. Let
e1, ... , ep be unit rows of the space Kp. Then

1(ek) = (b1k, b2k, ... , bk),

(Yw)(ek) _ (a1ibik>a2ibik. .., amjbjk

Therefore, the matrix of the map c* is C = (Cik), where

Cik = >aijbjk-
j

This means that C = AB as claimed.

Example 2.71. In the language of linear maps, the matrix equality proved
in Example 1.78 says that the product of rotations through angles a and ,3
is the rotation through the angle a +)3 (see Example 2.57). As the latter
statement is geometrically obvious, we thus proved the formulas for the sine
and cosine of the sum of two angles.

The properties of matrix operations obtained in Section 1.9 by direct
calculations can be deduced now from corresponding properties of operations
on linear maps.

Obviously, the identity map

id:V -+V
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is linear. The matrix of the identity map id : K" -- K" is the identity
matrix E of the nth order. Thus the properties of the identity matrix (1.10)
are simply a translation into the matrix language of obvious equalities

v id=gyp, =c,,
where gyp: K" -- K' is the linear map determined by a matrix A and "id"
stands for the identity maps of spaces K" and K"' in the first and second
equalities, respectively.

Recall that a map is invertible if and only if it is bijective. If co : U -+ V
is a bijective linear map, then the inverse map tp-1V -+ U is also linear.
Indeed, for any a, b E V, let c, d E U be vectors such that W(c) = a, W(d) = b.
Then cp(c + d) = a + b, hence

W-1 (a + b) = c + d = p 1(a) + W-1 (b).

The second condition for linearity is checked in the same way.

Definition 2.72. An n x n square matrix A is called nonsingular if rk A = n.

In other words, A is nonsingular if its rows (or columns) are linearly
independent.

Theorem 2.73. A square matrix is invertible if and only if it is nonsingular.

Proof. Let v : K" -+ K" be a linear map determined by a matrix A.
According to the discussion above, A is invertible if and only if the map p
is bijective. By Theorem 2.62 this happens if and only if

Im cp = K", Ker W = 0.

In view of Theorem 2.63 and Corollary 2.65 both of these conditions hold if
and only if rk A = n.

Finding the inverse matrix of A is the same as solving the matrix equa-
tion

AX=E
(where X is an unknown square matrix). Such an equation can be solved just
like equation (2.4) by multiplying it by elementary matrices on the left. This
is equivalent to elementary row transformations of the "extended" matrix
(AIE). Reducing the left half of this matrix to the identity matrix (which
is possible because A is nonsingular), we obtain the inverse matrix on the
right.

Example 2.74. Here we find a matrix inverse of

A=13 51.
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For this, we perform the following elementary transformations:

1 1 11 5

(3 5

2

I 0 1) -' (0 -1 I -3 1) -' (0
1

I 3 -1)
Thus,

A-' - ( 3 -1)
Exercise 2.75. Using linear maps, prove that the rank of the product of
two matrices (not necessarily square) does not exceed the rank of each of
them. Also prove that if one of these matrices is nonsingular, then the rank
of the product equals the rank of the other matrix.

2.4. Determinants

In the previous section we explained how to find out whether a matrix is
nonsingular or, equivalently, if a system of n vectors in an n-dimensional
space is linearly independent. In each particular case this question can be
answered by reducing the matrix to step form by elementary row trans-
formations. However, it is of interest to formulate a general condition for
matrix entries that would tell us when this matrix is nonsingular. We will
give an example of such a condition for geometric vectors.

A pair of noncollinear vectors a1, a2 E E2 is said to be positively oriented
if the turn from a1 to a2 (through the angle less than 7r) is in the positive
direction, i.e., counterclockwise. For any vectors al, a2 consider the paral-
lelogram with sides ax, a2. Denote by area(al, a2) the oriented area of this
parallelogram, i.e., its area taken with the positive sign if the pair {a1,a2}
is positively oriented, and with the negative sign otherwise. If the vectors
al and a2 are collinear, put area(al, a2) = 0. The value of Iarea(al, a2)I
measures, in some sense, the degree of linear independence of al and a2.

The function area(al, a2) with vector arguments al and a2 has the fol-
lowing properties:

(i) it is linear in a1 and a2 (see Example 2.67);

(ii) area(a2, a1) = -area(a1, a2);

(iii) if {e1, e2} is a positively oriented orthonormal basis, then area(e1, e2)
=1.

The last two properties are obvious. To prove the first, consider the area
of a parallelogram as the product of its base and height. Then,

area(a1, a2) = jai Ih2,

where jai I is the length of a1 and h2 is the signed length of the projection
of a2 onto the line orthogonal to a1 (Figure 2.4). Since projection is a linear
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h2

a2

0

V W
a1

.1

Figure 2.4

1

map, it follows that area(ai, a2) is linear in a2. Similarly, if we choose a2 as
the base, we can prove that area(ai, a2) is linear in ai.

Properties (i)-(iii) are sufficient to calculate area(ai,a2). Express vec-
tors a1, a2 in the positively oriented orthonormal basis {ei, e2}:

al = at lei + a12e2,

a2 = a21e1 + a22e2.

Then

area(al,a2) = area(ailel + a12e2,a2lel + a22e2)

= aiia2larea(ei,ei) + al ia22area(ei,e2) + al2a2larea(e2,el)

+ al2a22area(e2,e2) = alla22 - a12a21

The expression a11a22 - a12a21 is called the determinant of the matrix
A = (at3) of order 2. The discussion above implies that vectors a1 and a2 are
linearly independent if and only if the matrix composed of their coordinates
has a nonzero determinant.

Similarly, it can be shown that the oriented volume vol(ai, a2, a3) of a
parallelepiped formed by vectors at, a2, a3 has the following properties:

(i) it is linear in each of its three arguments at, a2, a3;

(ii) it changes the sign when any two arguments are interchanged;

(iii) vol(e 1, e2, e3) = 1 for an arbitrary positively oriented orthonormal
basis {e1,e2,e3}.

(A triple jai, a2, a3} is said to be positively oriented if the turn from ai
to a2 is in the positive direction if viewed from a3's side.)

Using these properties, we can express vol(al, (12, a3) in terms of the
coordinates of a1, a2, a3 in a positively oriented orthonormal basis as follows
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(try doing the calculations yourself!):

vol(al, a2, a3) =a11a22a33 + a12a23a31 + a13a21a32

- a11a23a32 - a13a22a31 -a12a21a33.

The expression on the right-hand side of this equality is called the deter-
minant of a matrix A = (ate) of order 3. Thus, vectors a1, a2, a3 are linearly
independent if and only if the matrix composed of their coordinates has a
nonzero determinant.

Figure 2.5

The determinant of a matrix A = (at1) of order 3 is an algebraic sum
of all possible products of three entries of A, each chosen from a different
row and different column. Two schemes in Figure 2.5 show which of these
products are taken with the plus and with the minus signs.

The determinant of a matrix A is denoted either by det A or by the same
matrix with parentheses replaced with vertical lines.

Example 2.76.

xample 2.77.

cosy
sin a

-sins
cos a

=cos2a+sin2a= 1.

1 2 3

4 5 6 = 1.5.9+2.6.7+3.4.8-357-249-1.68
7 8 9 =45+84+96-105-72-48=0.

In the case of arbitrary dimension and arbitrary field, we do not have the
notions such as area or volume. Hence it is natural to define the determinant
as a function with properties similar to (i)-(iii). We begin by introducing
necessary definitions.

Let V be a vector space over a field K and f (al, a2,. . .,a) a function
of m vectors in the space V that takes values in K.

Definition 2.78. The function f (al, a2,..., am) is called multilinear (more
precisely, m-linear) if it is linear in each argument.
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For example, linearity in the first argument means that

f(al +al,a2,...,am) = f(a',,a2,...,am)+f(a',,a2,...,am),
f(Aal,a2,...,am) = \f(al,a2,...,am).

Definition 2.79. A multilinear function f (al, a2,..., am) is said to be skew-
symmetric if its value is multiplied by -1 when any two of its arguments
are interchanged.

A skew-symmetric multilinear function has an important property: it
equals zero whenever any two of its arguments take the same value (if
char K 96 2). Indeed, when these two arguments are interchanged, the value
of the function does not change, and yet it is multiplied by -1. Hence, it
equals zero.

Remark 2.80. If char K = 2, the last property should be taken as the
definition of skew-symmetry. In fact, this property implies skew-symmetry
as defined above. To prove this, notice that when checking if a function is
skew-symmetric in any two of its arguments, the other arguments are fixed.
Thus it suffices to consider the case of a bilinear (i.e., 2-linear) function.
Let f be a bilinear function that becomes zero whenever the values of its
arguments are equal. Then for any a, b E V, we have

0= f(a + b, a + b) = f(a, a) + f(a, b) + f(b, a) + f(b, b) = f(a, b) + f(b, a),

implying f (b, a) = -f (a, b)

Now we will introduce notions necessary to define the explicit analytic
expression of the determinant of a matrix of order n (similar to those that
we obtained for n = 2, 3).

A sequence (k1, k2,..., kn) of numbers 1, 2, ... , n taken in any order is
called an arrangement of n elements. Notice that k1 can assume n possible
values; k2, n - 1 values if k1 is fixed; k3, n - 2 values if k1 and k2 are fixed,
etc. Hence, the total number of arrangements is

n(n - 1)(n - 2) ... 2. 1 = n!
The arrangement (1, 2, ... , n) is called trivial.

We say that a pair of numbers forms an inversion in a given arrangement
if the greater of them stands to the left of the lesser. An arrangement is called
even (respectively, odd) if it contains an even (respectively, odd) number of
inversions. We also define the sign of an arrangement which we set equal to
I if the arrangement is even and -1 if it is odd. The sign of an arrangement
(k1, k2,. .., kn) is denoted sign(k1, k2,. .., kn)

Example 2.81. For n = 3 the even arrangements are (1, 2,3) (no inver-
sions), (2,3, 1) (two inversions), and (3,1, 2) (two inversions). The odd
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arrangements are (1, 3, 2) (one inversion), (3, 2,1) (three inversions), and
(2, 1, 3) (one inversion).

Example 2.82. The trivial arrangement does not contain any inversions
and is thus even. Conversely, in the arrangement (n, n-1, ... , 2, 1) every pair
forms an inversion. Therefore, the number of inversions in this arrangement
equals

(mod 2).
(2) n(n2 1)

L2n

J

Hence,
sign(n, n - 2, 1) = (-1)n(n-1)/2 = (-l)[n/2).

The interchange of positions of two elements in an arrangement is called
a transposition of these elements.

Proposition 2.83. Any transposition changes the sign of an arrangement.

Proof. When a transposition is applied to adjacent elements, only their
relative position changes and the number of inversions decreases or increases
by 1. Hence, in this case the sign changes. A transposition of elements i
and j separated by s elements can be achieved by the application of 2s + 1
transpositions of adjacent elements: first interchange i with all intermediate
elements and j, then interchange j with all intermediate elements. As we
showed above, every time the sign of the arrangement will change; therefore,
in the end it will be the opposite of the original.

Corollary 2.84. For n > 1, the number of even arrangements of n elements
is equal to the number of odd arrangements.

Proof. Write down all even arrangements and transpose the first two ele-
ments in each of them. We will obtain all odd arrangements, once each.

Now we can state and prove the main theorem.

Theorem 2.85. For any c E K, there exists a unique skew-symmetric n-
linear function f on the space Kn that satisfies the following condition:

(2.17) f(el,e2,...,en) = c
(where e1 i e2, ... , en are the unit rows in Ks). This function has the follow-
ing form:

(2.18) f (al, a2, ... , an) = c sign(ki, k2, ... ,
kn)alk,a2k, ... and,

(kt,ks,. -,k..)

where aik denotes the kth component of the row ai and the sum is taken over
all arrangements of n elements.



2.4. Determinants 69

Proof. (i) Assume that f is a skew-symmetric n-linear function satisfying
condition (2.17). Then

f(a1,a2,...,an) = f (a1kieki,a2e
k1 k2 k,, f

E alk, a2k2 ... ank f (ek1, eke,... , ekn ).
k,,k2,. ,kn

Since f is skew-symmetric, if any of the numbers k1i k2, ... , kn are equal,
then f (ek1, ek, ... , ekn) = 0. If they are all distinct, then

f (ek1, ekz, ... , ek.) = c sign(k1, k2, ... , kn).

Indeed, if this equality holds for some arrangement (k1, k2,.. ., ku), then it
holds for any arrangement obtained from (k1, k2,..., kn) using a transposi-
tion, since under a transposition both sides of this equality are multiplied by
-1. By condition (2.17) this equality holds for the trivial arrangement. But
it is obvious that any arrangement can be obtained from the trivial one by
a successive application of transpositions. Therefore, this equality holds for
any arrangement and we obtain the expression (2.18) for f (al, a2, ... , an).
We conclude that if there is a function f that satisfies all conditions of the
theorem, then it has the form (2.18) and is thus unique.

(ii) We have to prove now that a function f determined by (2.18) is a
multilinear skew-symmetric function satisfying condition (2.17). Linearity
in each of the arguments is clear, since for any i formula (2.18) can be
represented as

f (al, a2, ... , an) = I:aijuj,
j

where n1,.. . , un do not depend on aj. Condition (2.17) is satisfied as well
because in the expression for f (el, e2, ... , en) the summand corresponding
to the trivial arrangement equals 1 and other summands are zero. It remains
to check that f is skew-symmetric.

Consider what happens when the arguments aj and aj are interchanged.
We can split the set of all arrangements into the pairs of arrangements ob-
tained from each other by the transposition of ki and kj. According to
Proposition 2.83, the products al k, a2k2 - ankn corresponding to arrange-
ments from such a pair appear in (2.18) with opposite signs. When ai is
interchanged with aj, the products interchange too, hence all of the expres-
sion is multiplied by -1. 0
Remark 2.86. If char K = 2, skew-symmetry should be understood in
the sense of Remark 2.80. The proof of the above theorem then says that
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whenever ai = a2, the summands in (2.18) that correspond to arrangements
from each of the above pairs cancel.

The function satisfying the conditions of Theorem 2.85 for c = 1 is
denoted det.

Definition 2.87. The determinant of a square matrix A = (a=3) of order n
is the number

det A = det(al, a2, ...,an),
where al, a2,. .., an are the rows of A.

Therefore,

(2.19) det A = sign(ki, k2,. .., kn)atk, a2kz ankn
(k,,k2,...,kn)

When n = 2 or 3, we recover the expressions provided in the first part of
this section.

Similarly, by identifying each matrix with the collection of its rows, we
can consider every function of n elements of Kn as a function of a square
matrix of order n and vice versa.

The uniqueness condition from Theorem 2.85 can be now stated as fol-
lows:

Corollary 2.88. If f is a skew-symmetric multilinear function of matrix
rows, then

(2.20) f (A) = f (E) det A.

When n > 4, it is rather difficult to calculate the determinant directly
from (2.19). There exist much simpler ways to calculate determinants. They
are based on determinants' properties that we will prove below.

Proposition 2.89. The determinant of a matrix does not change under an
elementary transformation of the first type.

Proof. We add to the first row of A the second row multiplied by c. Denote
the new matrix by A'. We have

det A' = det(al + ca2, a2,.. -, an)

= det(al, a2, ... , an) + c det(a2, a2i ... , an) = det A.

D

We know that when two rows are interchanged, the determinant is mul-
tiplied by -1. Also when a row is multiplied by a number, the determinant
is multiplied by this number. Thus, we know how the determinant changes
under any elementary row transformation of the given matrix. Since any
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matrix can be reduced to step form and every square matrix in step form is
triangular (but maybe not strictly triangular), it remains to figure out how
to calculate the determinant of a triangular matrix.

Proposition 2.90. The determinant of a triangular matrix equals the prod-
uct of its diagonal entries.

Proof. For any matrix, the product of diagonal entries is contained in (2.19)
with the `+' sign because it corresponds to the trivial arrangement. When
the matrix is triangular, all other summands in this expression are zero.
Indeed, if alk,a2k2 ank,, 36 0, then

kl > 1, k2 > 2, ..., kn > n.

However, since
kl+k2+ +kn=1+2+ +n,

this is possible only if

kl = 1, k2 = 2, ..., kn = n.

O

Besides providing us with a practical method of calculating determi-
nants, Propositions 2.89 and 2.90 allow us to answer the question which
prompted us to introduce the determinant in the first place.

Theorem 2.91. A square matrix A is nonsingular if and only if det A 0 0.

Proof. Reduce A to step form by elementary row transformations. If at
some point we used transformations of the second or third type, then the
determinant could have changed but its equality or inequality to zero would
have been preserved. A is nonsingular if and only if the matrix in step
form is strictly triangular, but this is equivalent to its having a nonzero
determinant. 0

We continue studying properties of the determinant.

Theorem 2.92. det AT = det A.

Proof. Just like the determinant of A, the determinant of AT is the alge-
braic sum of all possible products of n entries of A, one from each row and
each column. So, we have only to check that the each product appears in
the expressions for det A and det AT with the same sign.

Lemma 2.93. Let aj, j, a;h a;j be a product of n entries of the matrix
A, one from each row and each column. Then the product

Sign(il,i2,...,in)Sign(il,j2,...,jn)
does not change under the permutation of the factors in ail.i, a 2,2 ainjn
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Proof of Lemma 2.93. Each permutation of factors in aj, j,aj2j2 a+,..i
is achieved by subsequently exchanging two neighboring factors. At each
such exchange, each sign(il , i2, ... , in) and sign(jt, j2, ... , jn) changes to the
opposite one, hence their product remains the same.

We continue with the proof of Theorem 2.92. To find what sign with
which a product ai,j, at,?2 .. a;j enters det A, we must permute the factors
ordering them by row numbers, i.e., write a;,71 - - - ainj = a1k1 a,4,., and
then the sign in det A is sign(kj, k2,. .., kn). To find the sign of the same
product in detAT, we must order its factors by their column numbers, i.e.,
write ail,)1ai2h ... ain2,, = aj11a122 ... and then the sign in det AT is
sign(ll, l2, ... , In)- Since sign(1, 2, ... , n) = 1, Lemma 2.93 shows that

sign(k1, k2, ... , kn) = sign(l1, l2, ... , ln).

This means that the product we are considering appears in det A and det AT
with the same sign.

It follows from Theorem 2.92 that every property of the determinant still
holds if we replace rows by columns and columns by rows in its statement.
In particular, we have

Corollary 2.94. The determinant is a skew-symmetric multilinear function
of matrix columns.

Theorem 2.95. Let matrix A be of the form

A=1B D)\0 C/ '
where B and C are square matrices. Then

det A = det B det C.

Proof. When B and D are fixed, the determinant of A is a skew-symmetric
multilinear function of its lower rows, hence, a skew-symmetric multilinear
function of rows of C. By Corollary 2.84, we have

det A = det (

E)
det C.

Moreover, when D is fixed, the first multiplier in the above expression is a
skew-symmetric mulltilinearr\ function of columns of B. Hence,

det C
B E J = det \

E

E)
det B = det B

(because the matrix (o
E

)///is

triangular and has 1's on the diagonal).

Due to Theorem 2.92, a similar formula holds for matrices with a zero
upper right-hand corner.
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Example 2.96. Here we will calculate the so-called Vandermonde determi-
nant:

1 xl X12 ...
xi-1

1 X2 X22 ... x2-l
V (xl, X2,. - -, xn) =

I1 x x2n n ... xn-1
n

Subtracting from each column (starting with the last one) the previous col-
umn multiplied by xl and applying Theorem 2.95, we have

V (x1, x2, ... , xn) _

1 0 0 ... 0

1 x2 - xl x2(x2 - x1) ... x2-2(x2 - xl)

.............................................

1 xn - xl xn(xn - X0 ... xn-2(xn - xl)

= (x2 - xl)...(xn - xl)V(x2,...,xn).

Continuing further, we finally obtain

(2.21) V(xl,x2,...,xn) = fl(xi - xj).
i>j

Let A be an arbitrary (not necessarily square) matrix. Any matrix
formed by the entries of A whose positions are at the intersections of some
selected rows and columns is called a submatrix of A. We remark that the
selected rows and columns do not have to be adjacent.

The determinant of a square submatrix of order k is called a minor of
order k of the matrix A. Sometimes we will abuse the language and call
the square submatrix itself a minor. In particular, if A is a square matrix
of order n, then its minor of order n - 1 obtained by omitting the ith row
and jth column is called the complementary minor of the entry aij. It is
denoted Mij. The number

Aij = (-1)i+'Mij

is called the cofactor of the entry aij. Its meaning will become clear from
the following lemma.

Lemma 2.97.
aln

0

ann

= aijAij.

(The left-hand side is the determinant of the matrix obtained from A =
(aij) by replacing all elements of the ith row except for aij with zeros.)
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Proof. Exchange the ith row with all rows above it and the jth column
with all columns to its left. In doing this we will exchange rows i - 1 times
and columns j - 1 times, thus the determinant will be multiplied by

(-1)i-l+i-1 = (-1)i+j.

In the end, we will have the following determinant:

aij 0 ... 0

alj all ... aln

anj an1 ... ann

where the lower right-hand corner is the complementary minor of aij. By
Theorem 2.95, this determinant equals aijMij. Taking into account the
original sign change, we obtain the statement of the lemma.

Theorem 2.98. For any square matrix A,

detA=>aijAij =>aijAij.
j i

The first of these formulas is called the expansion of the determinant
along the ith row and the second the expansion of the determinant along the
jth column.

Proof. Since every summand in expression (2.19) of det A contains exactly
one element from the ith row, the previous lemma means that the sum of
terms that contain aij equals aijAij. The formula for the expansion along
a row follows. The formula for the expansion along a column is deduced in
the same way.

Remark 2.99. Signs (-1)i+j, when put onto the matrix, form a checker-
board pattern and the main diagonal consists of pluses.

Example 2.100. We calculate the determinant A from Example 2.77 ex-
panding it along the second row:

A=-4 2 9I+5I7 9I-611 821

Example 2.101. We will calculate the determinant of order n of the type

2 1 0 ... 0 0
1 2 1 ... 0 0

On - 0 1 2 ... 0 0

0 0 0 ... 2 1

0 0 0 ... 1 2
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Expanding along the first row and then expanding the second of the resulting
determinants along the first column, we obtain

1 1 ... 0 0
0 2 ... 0 0

On = 2An_1 - .= 2n_1 -
0 0 ... 1

0 0 ... 1 2

thus

A. - On-1 = On-1 - On-2
This means that the sequence (Al, 02, L3, ...) is an arithmetic progression.
Since Al = 2, A2 = 3, its difference is 1 and

On=n+1.
Theorem 2.102. For any two square matrices A, B,

det AB = det A det B.

Proof. It is easy to see that the rows c 1 , . . . , c of the matrix AB are ob-
tained from the rows a1,. .. , an of the matrix A by multiplication by B:

ci = aiB, i = 1, ... , n.

It follows that for a fixed matrix B, det AB is a skew-symmetric multilinear
function of the rows of A. Indeed, let al = a1 + a1 for some rows ai, a1.
Then

det(a1B, a2B,... , anB) = det((ai + a1)B, a2B,... , a,B)

= det(a'B + a1 B, a2B,... , a,,B)

= det(a'B, a2B,... , anB) + det(a1B, a2B,... , anB).

Other properties are checked similarly. Now, using Corollary 2.84, we have

det AB = det EB det A = det A det B.

0
Example 2.103. Consider the parallelepiped formed by vectors al, a2, a3 E
E3. We will express its nonoriented volume V in terms of the lengths
jail, 1a21,1a31 of its edges and the angles

al = a2a3, a2 = a3al, a3 = a1a2

(see Figure 2.6).

Let A = (ai,) be a matrix consisting of the coordinates of the vectors ai
in an orthonormal basis. We know (see the beginning of this section) that

V = f det A.
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a3

Figure 2.6

Thus
V2 = (det A)2 = det A det AT = det AAT T.

The rules for matrix multiplication imply that the (i, j)th entry of the matrix
AAT is the inner product

(ai,aj) = Iajllajlcos c .

Therefore,

1a112 Iai I Ia2I cos 013 lal I Ia3l cos a2
V2 = Ia2I Ial I cosa3 1a212 Ia2l Ia3I cos al

Ia3I Iai I cos a2 Ia3I Ia2I cos al 1a312

1 cos a3 COS a2

=1ai121a2121a312 cosa3 1 Cosal
COS a2 Cos a1 1

and we have

V = Ial I Ia2I Ia3I 1+2 cos al cos a2 cos a3- cos2 al - Cos2 a2- cos2 a3.

2.5. Several Applications of Determinants

As we saw in the previous section (Theorem 2.91), determinants tell us
whether a square matrix is nonsingular (and, hence, invertible); this is why
we introduced them. Variations on this theme lead to various applications
of determinants in the theory of linear equations and matrix theory. We
consider several such applications in this section.

Consider a system of linear equations

(2.22)

a11xi + a12x2 + ... + alnxn = b1,
a21x1 + a22X2 + + a2nxn = b2,

anlxl + an2x2 + ' ' ' + annXn = bn .
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Denote b y A its c o e f f i c i e n t matrix and by Ai (i 1, 2, ... , n) the matrix
obtained from A by replacing its ith column with the column of free terms.

Theorem 2.104. If det A # 0, then system (2.22) has a unique solution,
which can be expressed by the formulas

_ det Ai

z' det A '

These formulas are called Cramer's rules.

Proof. Under any elementary transformation of system (2.22), the corre-
sponding elementary row transformation acts on the matrices A and Ai
(i = 1, 2, ... , n). Hence the ratios on the right-hand sides of Cramer's rules
do not change. By elementary row transformations, A can be reduced to
the identity matrix. Therefore, it suffices to prove the theorem for the case
of A = E.

If A = E, the system is of the form

x2

=bi,
=b2,

x =b,,.
This system obviously has the unique solution xi = bi (i = 1, 2, ... , n). On
the other hand,

det A = det E = 1. det Ai = =bi,

hence Cramer's rules are valid in this case. 0

When det A = 0, A is reduced to a matrix in step form which is not
strictly triangular. If so, system (2.22) is either incompatible or underdeter-
mined. In this case it is dangerous to interpret Cramer's rules in any way.
They are simply inapplicable (and indeed, we obtained them assuming that
det A 94 0), and we should look for other ways to solve the system.

Exercise 2.105. Prove that if det A = 0 but det Ai 96 0 for some i, system
(2.22) is incompatible.

Exercise 2.106. Show that if

detA =detA1 = =detA,, =0,
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then system (2.22) can be either underdetermined or incompatible. (Con-
struct examples to show that either possibility might occur.)

We remark that Cramer's rules are not the best practical method for
solving systems of linear equations, except maybe in the case n = 2. Their
meaning is mostly theoretical. In particular, they allow us to obtain the
following explicit formulas for the entries of the inverse matrix.

Theorem 2.107. Let A = (ajj) be a nonsingular square matrix. Then

All A21 ... Ant

A-' 1 A12 A22 ... Ant
det A ...................

Aln A2n . . . Ann

(Here Ajj stands for the cofactor of a(j; see Section 2.4.)

Proof. The matrix A-1 is the solution of the matrix equation

AX=E.
This equation splits into n equations with respect to columns X1, X2, ... , Xn
of the matrix X:

(2.23) AXj = Ej,

where Ej is the jth column of E.
In its coordinate form, equation (2.23) is a system of n linear equations

with respect to entries z1 j, X21, ... , xnj of the column Xj. Its coefficient
matrix is A and the column of free terms, the column Ej. According to
Cramer's rules,

all ... 0 ... a1n

1 Aji
x'j = det A ajl . . I ... ajn

_
detA'

and . 0 ... ann

This completes the proof.

Example 2.108. For a nonsingular matrix of order 2,

A= (a
d)

we have
1 d -bA-1 = ad-bc -c a

It would be helpful if you remember this simple formula.
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Exercise 2.109. Let A be a nonsingular integer (= having integer entries)
square matrix. Prove that the matrix A-' is integer if and only if det A =
±1.

Finally note that the rank of a matrix can also be found by calculating
certain determinants.

Theorem 2.110. The rank of a matrix equals the largest of the orders of
its nonzero minors.

Proof. Let the rank of a matrix A be r and let s > r. Then every s rows of
A are linearly dependent and, moreover, so are the rows of any submatrix
of A of order s that we obtain from the corresponding rows of A. Therefore,
any minor of order s equals zero. Now, consider a submatrix formed by
some r linearly independent rows of A. Its rank equals r too; hence it
has r linearly independent columns. The minor of order r formed by these
columns is nonzero.

Exercise 2.111. Prove a stronger form of the above theorem: if a matrix
A contains a nonzero minor of order r and all minors of order r + 1 obtained
from it by adding to this minor a row and a column are zero, then rk A = r.

Exercise 2.112. Prove that in a matrix of rank r, any minor of rank r
that is formed by taking intersection of r linearly independent rows with r
linearly independent columns is nonzero.

Exercise 2.113. A corner minor of order k of a square matrix A is a
determinant of a submatrix of order k in the upper left-hand comer of A.
Prove that if all corner minors of A are nonzero, then we can reduce it to a
triangular matrix by adding to each row a linear combination of preceding
rows. Conclude from this that A can be uniquely presented as A = UB,
where U is a lower triangular matrix with ones on the main diagonal and B
is an upper triangular matrix.





Chapter 3

Elements of
Polynomial Algebra

3.1. Polynomial Algebra: Construction and Basic Properties

A function of a real variable x is called a polynomial if it can be presented
as

f(x) = ao + alx + a2x2 +... + anxn,

where ao, ai, a2,. .. , an are real numbers (some or even all of which can be
equal to zero). It can be shown-we will do this below in a more general
setup-that such a presentation is unique up to terms with zero coefficients,
i.e., if

VxER,

then ak = bk for k = 0,1,2,...,n.
It is obvious that the sum and the product of polynomials as well as the

product of a polynomial and a number, are also polynomials. This means
that polynomials form a subalgebra in the algebra of all functions of a real
variable (see Example 1.72). This subalgebra is called the polynomial algebra
over R and is denoted R[x].

It follows from the above discussion that the polynomials 1, x, x2, .. .
comprise a basis of the algebra R[x]. Its multiplication table looks quite
simple:

xkxI = xk+1

We can try to treat polynomials over any field K in a similar way, but
there is a natural difficulty in this approach: formally different polynomials
can be equal for all values of the variable. For instance, polynomials x and

81
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x2 over Z2 assume the same value 0 for x = 0 and 1 for x = 1. All the same,
we would like to view these polynomials as different. The solution lies in the
formal definition which, in fact, identifies a polynomial with the sequence of
its coefficients.

Consider the vector space K°O of finitary sequences of elements of a field
K (for definition, see Example 2.43). We will start enumerating the terms
of such sequences from 0. Also, let ek (k = 0, 1, 2, ...) denote a sequence
whose kth term is 1 and others are 0. Sequences eo, el, e2.... comprise a
basis of the space K°O.

We can turn this space K°° into an algebra by providing the following
rule for the multiplication of basis vectors:

ekes = ek+:.

Commutativity and associativity of integer addition imply that multipli-
cation of basis vectors, hence of all elements in the algebra we have just
obtained, is commutative and associative. The element eo is its identity.
This algebra is called the polynomial algebra over K and is denoted K[x]
(but any letter can be used in place of x).

In order to go back to the usual presentation of polynomials, we agree,
first, to identify elements of the type aeo, a E K, of the algebra K[x] with
the corresponding elements of the field K. Second, we denote the element el
as x (because the letter x was used in the notation for the algebra). Then,
according to the definition of operations in K[x], we see that ek = xk and

(ao,a,,a2,...,a.,0.... ) =aoeo+ales+a2e2+...+anen

= ao + alx + a2x2 + ... + axn.

The numbers ao, al, a2i ... are called the coefficients of the polynomial.
The last nonzero coefficient is called the leading coefficient and its index,
the degree of the polynomial. The degree of a polynomial f is denoted deg f .
The degree of the zero polynomial is not defined but sometimes it is useful
to assume that it equals -oo.

It is easy to see that

(3.1) deg(f + g) <_ max{deg f, degg},

(3.2) deg f g = deg f + degg.

As an example, let us prove the latter equality. Let

f = ao + alx + ... + anxn, an 0 0,
bm#0.

Then, when multiplying f by g, we get only one term of degree n + m,
namely anbmx"+', and no terms of a higher degree. As there are no zero
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divisors in the field, anb,n 0 0, hence

deg f g = n + m = deg f + deg g.

The above discussion shows that there are no zero divisors in the alge-
bra K[xj. It also implies that the only invertible elements of K[x] are the
polynomials of zero degree, i.e., nonzero elements of the field K.

Remark 3.1. It is customary to denote a polynomial as f (x) or even f if
it is clear from the context what letter stands for the variable.

Remark 3.2. It is often useful to order powers of x in a polynomial from
the highest one down:

.f = aox'a + alxn-l + ... + an-lx + an.

Remark 3.3. It is possible to consider any commutative associative ring
with unity in place of K (see Remark 1.83). In such a case, all of the previous
discussion remains valid except for the last part related to equality (3.2).
There we must additionally request that K contain no zero divisors.

Remark 3.4. The product of two finitary sequences (ao, a,, a2.... ) and
(bo, bl, b2, ...) in the ring K[x] is a sequence (co, cl, c2, ...) whose terms are
determined by the following formulas:

k

Ck = Eajbj,_j.
j=o

These formulas make sense for any two arbitrary (not necessarily finitary)
sequences. In this way, we obtain a commutative associative algebra with
unity called the algebra of formal power series over K. It is denoted K[[x]].
Its elements are usually written as formal infinite sums of the form

ao+alx+a2x2+ .

Just as K[x], the algebra K[[x]] has no zero divisors; however, the proof is
different (try to find it!).

Every polynomial

(3.3) f
determines a K-valued function on K, whose value at c E K is by definition
equal to

f(c) = as + alc + a2c2 + - + anon.

The sum and product of polynomials (and hence the product of a polyno-
mial and a number) can be rewritten in a canonical form (3.3) by applying
transformations that use only the properties of operations on K[x]. The
same properties are valid in K as well, thus we will obtain the same result
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whether we replace x = c before or after these transformations. This means
that

(f + g) (c) = f (c) + g(c), (f g) (c) = f (c)g(c), (.\f)(c) = Af (c),

i.e., operations over polynomials and the same operations over the corre-
sponding functions lead to equal answers.

As we showed in the beginning of this section, different polynomials can
sometimes determine the same function. However, this happens only if the
field K is finite.

Theorem 3.5. If the field K is infinite, different polynomials over K de-
termine different functions.

Proof. Choose polynomials f, g E K[x] that determine the same function.
Then their difference h = f - g determines the zero function, i.e., h(c) = 0
for all c E K. Assume h 34 0 and let

h = ao + a1x + a2x2 + ... + ai-lxn-1, an-1 # 0.

Consider distinct x1, X2i ... , xn E K (here we use the fact that K is infinite).
Regard the following collection of equalities:

ao+alxl+a2x?+...+an_1xi-1 =0,

ao + alxn + a2xn + ... + an-14-1 = 0,

as a (square) system of homogeneous linear equations with respect to ao, al,
a2i... , an_l. The determinant of the coefficient matrix of this system is
the Vandermonde determinant V (XI, X2,. - -, xn) (Example 2.96), hence it
is nonzero. Therefore, this system has only the zero solution, and this
contradicts our assumption.

Remark 3.6. Even when the field K is finite, the set of all polynomials over
K is infinite (but countable). However, the set of all K-valued functions
over K is finite. Thus, there must exist polynomials that determine the
same function. Nonetheless, Theorem 3.5 and its proof remain valid for
polynomials whose degree is less than the number of elements of K.

Exercise 3.7. The so-called interpolation problem consists in finding a poly-
nomial of degree < n that assumes given values yl, y2,. - -, yn E K at given
(distinct) points x1, x2i ... , xn E K. (In particular, when n = 2, this is
called linear interpolation.) Prove that the interpolation problem has a
unique solution for any x1, x2, , xn and yl, y2,. , Yn
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In the standard meaning of the word, it is usually impossible to divide
one polynomial by another in the algebra K[x]. However, the so-called
division with a remainder is possible, just as the similar procedure of division
with a remainder in the ring of integers.

Theorem 3.8. Let f, g E K[x] and g # 0. Then there exist polynomials q
and r such that f = qg + r and either r = 0 or deg r < degg. Moreover,
polynomials q and r are uniquely determined by the above conditions.

Assuming that deg 0 = -oo, we can write deg r < deg q in all the cases.
To find such polynomials q and r means exactly to divide f by g with a

remainder. Here q is called the incomplete quotient and r the remainder of
the division of f by g. A polynomial f is divisible by g in the algebra K[x]
if and only if r = 0.

Proof. (i) First we prove that it is always possible to divide with a remain-
der. If deg f < degg, then we can take q = 0, r = f . If deg f > degg, then q
and r can be found via the standard procedure of "long division." Namely,
let

f = aoxn + alx"-1 + ... + an-1x + an,

g=box' +blxm-1+...+b,n-1x+bm,

where ao, bo 0 0. Consider the polynomial
f, = f - xn-mg.

Its degree is less than that of f . If deg f, < degg, we can take
q = 22Xn-m r = Il

Otherwise, we deal with fl as we have just dealt with f. Finally, we obtain
a polynomial

q = ,Oxn-m + Clxn-m-1 + ... + Cn-m

such that deg(f - qg) < deg g. This is the incomplete quotient of the division
of f by g, and the polynomial r = f - qg is the remainder. (ii) Now we
have to prove that the polynomials q and r are uniquely determined by the
assumptions of the theorem. Let

f = q19 + rl = q29 + r2,
where deg r1 < degg and deg r2 < degg. Then

r1 - r2 = (q2 - q1)9

Thus, assuming q1 96 q2,

deg(rl - r2) = deg(q2 - q1) +degg > degg,
which is a contradiction. Hence, q1 = q2 and r1 = r2. 0
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Division with a remainder by a linear binomial x - c has a particular
meaning. In this case the remainder has degree < 1, i.e., it lies in the field
K. Therefore, when dividing with a remainder a polynomial f by x - c, we
obtain an expression of the form

f(x) = (x - c)q(x) + r, r E K.

This implies that
f(c)=r,

i.e., that the remainder equals the value of the polynomial f at the point c.
This statement is known as Bezout's Theorem.

There exists a simple algorithm for division with a remainder by x - c,
called Horner's Scheme.

Namely, let

aoxn+alxii-1 +.+an_lx+an
_ (x - c)(boxn-1 + blxn-2 + ... + bn-2x + bn-1) + r.

By comparing the coefficients at equal powers of x, we obtain the fol-
lowing chain of equalities:

ao = bo,

al = bl - cbo,

a2 = b2 - cbl,

an-1 = bn_1 - cbn-2,
an=r-cbn-1

From this we obtain the following recursive expressions for the coefficients
bo,bl,...,bn_1 and r:

bo = ao,

bl = al + cbo,

b2 = a2 + cbl,

bn-1 = an-l + cbn-2,
r=an+cbn_l.

It is useful to record the original data and the results of all calculations in
a table like this:

as al a2 ... an-1 an

c bo bl b2 ... bn-1 r

Starting with bl, every number in the second line of the table can be
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found as the sum of the number above it and the number to the left of it
multiplied by c.

Example 3.9. We determine here the value of the polynomial

f =2x6-11x4-19x3-7x2+8x+5
at x = 3. The Homer's Scheme gives us

2 0 -11 -19 -7 8 5

312 6 7 2 -1 5 20

Thus, f (3) = 20.

3.2. Roots of Polynomials: General Properties

An element c of a field K is called a root of a polynomial f E K[x] (or of the
corresponding algebraic equation f (x) = 0) if f (c) = 0. Bezout's theorem
(see the previous section) implies

Theorem 3.10. An element c of afield K is a root of a polynomial f E K[x]
if and only if f is divisible by x - c.

We can use this fact to prove the following theorem.

Theorem 3.11. The number of roots of a nonzero polynomial does not
exceed its degree.

Proof. Let cl be a root of our polynomial f. Then

f = (x - cl)fl, fl E K[x].
Let c2 be a root of the polynomial fl. Then

ffi = (x - c2)f2, f2 E K[x],

hence,

f = (x - ci)(x - c2)f2

Continuing further, we finally obtain the following presentation of f :

(3.4) f = (x - ci)(x - c2)...(x - cm)9,
where g E K[x] has no roots. Numbers c1, c2,..., c n are all the roots of the
polynomial f. Indeed, for any c E K, we have

AC) = (c - ci)(c - c2) ... (c - cm)9(c),

and as g(c) 54 0, f (c) = 0 only if c = c; for some i. Therefore, the number of
roots of f does not exceed m (it can be less than m since some of the roots
cl, c2,. .. , c,,, may coincide). However,

m=degf - degg<degf.
0
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Remark 3.12. We have actually proved this theorem while proving The-
orem 3.5. On the other hand, we can deduce Theorem 3.5 from this one
without using the theory of linear equations. Namely, if distinct polyno-
mials f and g over an infinite field K define the same function, then all
elements of K are the roots of the nonzero polynomial h = f - g. This
contradicts Theorem 3.11.

The proof of Theorem 3.11 suggests that some roots should be counted
several times. We state this idea more rigorously.

A root c of a polynomial f is called simple if f is not divisible by (x-c)2,
and multiple otherwise. The multiplicity of a root c is the maximum k such
that f is divisible by (x - c)k. Thus, a simple root is a root of multiplicity
1. Sometimes it is useful to assume that a number which is not a root of a
given polynomial has multiplicity 0.

Clearly, c is a root of a polynomial f of multiplicity k if and only if

(3.5) f = (x - c)kg,

where g(c) 34 0.

Now we can prove a refined version of Theorem 3.11.

Theorem 3.13. The number of roots of a polynomial, counted with multi-
plicities (i.e., a root of multiplicity k is counted k times), does not exceed
the degree of this polynomial. Moreover, these numbers are equal if and only
if the polynomial is a product of linear factors.

Proof. We can rewrite (3.4) by grouping together the same factors:

(3.6) f = (x - Cl )k, (x - C2)k2 ... (x - C,)k°g

f o r distinct cl, c2,. . ., c8. Clearly c1, c2, ... , c, are all the roots of the poly-
nomial f. Then, by distinguishing the factor (x - c,)ki in (3.6), we can
write

f = (x - cj)k`h=, where hi(c;) # 0.
Hence, c, is a root of multiplicity ki.

Therefore, the number of roots of f counted with multiplicities equals

kl+k2+ +k,=degf -degg,
which implies the theorem. 0
Remark 3.14. It is assumed that a polynomial of zero degree factors into
a product of zero linear terms.

If a polynomial

f = aoxn+alxn-1 +...+an_1x+an
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factors into linear terms, then it can be written as

f = ao(x - cl)(x - c2)...(x - c.),

where Cl, c2, ... , cn are the roots of f . Moreover, the number of occurrences
of each root in this expression equals its multiplicity. By comparing the
coefficients of the corresponding powers of x in these two presentations of a
polynomial f , we obtain the following Viete's formulas:

C1+C2+...+ al
1cn=-ǹ

o a2
CIC2 + ClC3 + + Cn-IC. = - ,

a0

[1 l k akCi.i Ci2 ... k = (_ )
a0

..........................

CjC2...Cn =

The left-hand side of the kth Viete's formula contains the sum of all products
of k roots of the polynomial f. Up to multiplication by -1, this is the
coefficient of xn-k in the product (x - cl)(x - c2) . (x - c,l).

Example 3.15. The complex roots of 1 of degree 5,

sk= cos 25k+%sin-, k=0,1,2,3,4

(see also Figure 3.1), are the roots of the polynomial x5 - 1.

Figure 3.1
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According to the first Viete's formula, their sum is 0. Hence the sum of
their real parts is also 0:

2cos45 +2cos25 +1=0.

Put cos = x. Then cos 45 = 2x2 - 1 and we have

4x2+2x-1 = 0.
This implies

27r V'-1 41r v/-5 +1cos 5 = 4 , cos 5 = - 4

Exercise 3.16. Let n be a prime number. Use Exercise 1.51 and the last
of Viete's formulas to prove Wilson's Theorem:

(n-1)!=--1(mod n).

A polynomial f is called monic if ao = 1. Vii te's formulas express the
coefficients of a monic polynomial in terms of its roots (whenever the number
of roots counted with multiplicities equals the degree of the polynomial).

Example 3.17. We can explicitly write out the monic polynomial of degree
4,

f = x4 + arx3 + a2x2 + a3X + a4,

which has the root 1 of multiplicity 2 and the simple roots 2,3. By Vi6te's
formulas,

-a1=1+1+2+3=7,
a2=11+ 1.2+1.3+1.2+1.3+2.3=17,

-a3=1.1.2+1.1.3+1.2.3+1.2.3= 17,
a4=1.1.2.3=6.

Thus,
f =x4-7x3+17x2-17x+6.

There exists another interpretation of the multiplicity of a root, at least
in the case char K = 0. To state it, we need to introduce differentiation of
polynomials.

The rules for differentiation of functions of a real variable imply that a
derivative of a polynomial is also a polynomial. Denote by D a map from
Rix] into itself that assigns to each polynomial its derivative. The map D
has the following properties:

(i) it is linear;

(ii) D(f9) = (Df)9+f(D9);
(iii) Dx = 1.
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This suggests how me may define differentiation of polynomials over any
field K, in particular when the definition from analysis does not make sense.

Proposition 3.18. There exists a unique map D: K[x] -a K[x] satisfying
properties (i)-(iii).

Proof. Let D be such a map. Then

Dl = 0. We will prove by induction that Dx" = nxn-1. For n = 1
this is true by assumption. The transition from n - 1 to n consists in the
following calculation:

Dx"=D(xn lx)=(Dxn 1)x+xn-1(Dx)=(n-1)xn-2 x+xn-1=nxn-1.

This means that the map D is uniquely determined for the basis vectors
1, x, x2, ... , hence on the whole space K[x] as well.

On the other hand, we can construct a linear map D : K[x] - K[x] by
defining it on the basis vectors by the following formulas:

D1 =0, Dxn =nxn-1, n= 1,2,... .
It remains to check that this map satisfies property (ii). By linearity it
suffices to check this property for basis vectors only. We have

D(xmxn) = Dxm+n = (m + n)x'+n-1

(Dxm)xn + xm(Dxn) = mxm-1xn + nxxn-1 = (m + n)xm+.'-1.

The polynomial D f is called the derivative of f and is denoted f' as
usual.

We can make a substitution x = c + y in a polynomial f E K[x] and
then express it as a polynomial in y = x - c (of the same degree):

(3.7) f = bo + bl(x - c) + b2(x - c)2 + ". + bn(x - c)'.

Obviously, if c is a root of the polynomial f, its multiplicity equals the
exponent of the first nonzero term in this presentation.

Proposition 3.19. If char K = 0, then the coefficients off E K[x] regarded
as a polynomial in x - c are

bk = .f (k) (c)
k!

(Here as usual f (k) stands for the kth derivative of f.)

Proof. Differentiate equality (3.7) k times and substitute x = c.
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Therefore,

f = f (C) + f (!C) (x - C) + f'2 C) (x - C)2 +... + fln' c) (x - C)n.

This expression is called Taylor's formula for polynomials.

Taylor's formula, together with the previous discussion, implies

Theorem 3.20. When char K = 0, the multiplicity of a root c of a polyno-
mial f E K[x] equals the least order of the derivative off that is nonzero at
C.

Corollary 3.21. Under the same condition, every root of multiplicity k of
a polynomial f is a root of multiplicity k - 1 of its derivative.

Remark 3.22. When char K > 0, the multiplicity of c can be less than
the number in Theorem 3.20. Actually, this number might not exist at all.
For instance, if n is a prime number, the first (and thus all other) derivative
of the polynomial xn E Zn [x] is zero, yet this polynomial has root 0 of
multiplicity n.

Y

k=1

Y#

k=2

X

Y

1

"'000000000000,0.,

O

Y

k=4

Figure 3.2

In the case K = R, Theorem 3.20 provides a geometric interpretation of
multiplicity. Namely, if the multiplicity of a root c of a polynomial f E K[x]
equals k, then f behaves like b(x - c)k, b 0 0, in a neighborhood of c. This
means that when k = 1, the graph of f simply crosses the x-axis at c, and
when k > 1, the graph and the axis are tangent of order k - 1. Moreover,



3.3. Fundamental Theorem of Algebra of Complex Numbers 93

the sign of f (x) changes when passing c for k odd and does not change for
k even (Figure 3.2).

When char K = 0, the coefficients in (3.7), and hence the values of
derivatives of f at c, can be found by successive divisions with a remainder
off by x - c. In particular, after the first division, we obtain the incomplete
quotient bo and the remainder

fl = bl + b2(x - c) + ... + bn(x - On-1;

after dividing fl by x - c we obtain the remainder bl; etc.

Example 3.23. We will express the polynomial

f =x5-5x4+7x3-2x2+4x-8 ER[x]

as a polynomial in the powers of x - 2. For this, we perform consecutive
divisions with remainder by x - 2 using Homer's Scheme. The result of each
division will be used as the top row for the next one:

1 -5 7 -2 4 -8
2 1 -3 1 0 4 0

1 -1 -1 -2 0
1 1 1 0

1 3 7

1 5

1

Thus,
f = 7(x - 2)3 + 5(x - 2)4 + (x - 2)5.

In particular, we see that as a root of f, 2 has multiplicity 3. Moreover,
f(4)(2)=4!.5=120,

3.3. Fundamental Theorem of Algebra of Complex Numbers

In the previous section we obtained the upper bound for the number of the
roots of a polynomial. However, the theory we developed does not help us
to determine whether this polynomial has any roots at all. Indeed, there
exist polynomials of positive degree that have no roots, e.g., the polynomial
x2+1 over the field R of real numbers. This situation is the reason behind the
construction of the field C of complex numbers. If there were polynomials of
positive degree over C having no roots, we would have needed to construct
further extensions, but fortunately, this is not so. This fact is actually a
theorem called the Fundamental Theorem of Algebra of Complex Numbers.

Theorem 3.24. Every polynomial of positive degree over the field of complex
numbers has a root.
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A field over which every polynomial of positive degree has at least one
root is called algebraically closed. Thus, Theorem 3.24 says that the field C
of complex numbers is algebraically closed.

There exist several proofs of this theorem. Each of them involves some
analysis as it must somehow use the definition of the field of real numbers,
which is not purely algebraic. The proof provided below is almost completely
analytical.

Figure 3.3

3. Elements of Polynomial Algebra

We need to introduce the notion of the limit of a sequence of complex
numbers. Before we do this, recall that the absolute value Izl of a complex
number z is the length of a vector representing this number. It follows that
Izi - z21 is the distance between the points representing the numbers zl and
z2. Geometry (Figure 3.3) implies that

IZ1+Z21<IZ1I+Ix21, 11Zl1-IZ211:5 Izl-Z21

(Equality is attained when the corresponding triangle degenerates into a line
segment.)

Definition 3.25. A sequence of complex numbers zk, k E N, converges to
a complex number z (notation: zk z) if Izk - zl 0.

Lemma 3.26. Let zk = xk + ykz, z = x + yz (xk, yk, x, y E R). Then

zk -z b xk-x and yk-+y.

yk

Iyk yI
- zl

zy

Figure 3.4



3.3. Fundamental Theorem of Algebra of Complex Numbers 95

Proof. Since (Figure 3.4)

Izk-z1= Ixk-x12+IYk-y12,

we have
xk --+ x and yk -, y - z k - z.

The converse follows from the inequalities

Ixk-X15 Izk - ZI, IYk - yI <- Izk-Z1

0
Lemma 3.27. zk --+ z IzkI - IzI.

Proof. This is a consequence of

Ilzki - 1 k I I <- Izk - zI.

Lemma 3.28. zk - z and wk -4 w zk + wk - z + w and zkwk -+ zw.

Proof. Same as for real number sequences:

I (zk+wk)-(z + w)I = I(zk-z)+(wk-w)I < Izk-xl+lwk-w1 -+ 0,
Izkwk-ZWI = I(zk-z)wk+z(wk-w)l < lzk-zllwkl+lzllwk-WI -+ 0.

0
Corollary 3.29. Let zk -+ z and let f E C[z] be a polynomial. Then
f(zk) f(z).

(Here we follow the standard convention from analysis: the variable and
its value are denoted by the same symbol.)

Lemma 3.30. If Izkl -+ oo and f E C[z] is a polynomial of positive degree,
then lf(zk)I -- 00.

Proof. Let

Then

f = aozn +a, Zn-1 + + an-1Z + an, ao # 0.

If(zk)I=IzkI"lao+Zk+...+a"_i+a"

k 2k

_ IaiI _ lan_il _ Ia,l
Ixkl" Iaol

Ixkl
- Izkli-t

Izkl"
The expression in parentheses tends to gaol. Therefore, the whole product
tends to oo, and so does If (zk)1 .

The following lemma is crucial for the proof of the main theorem.
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Lemma 3.31 (D'Alembert's Lemma). Let f E C[z] be a polynomial of
positive degree and f (zo) 54 0. Then in any neighborhood of zo, there exists
z such that If(z)I < If(zo)j.

Proof. Express f as a polynomial in z - zo and divide it by f (zo). In this
expression, some coefficients that immediately follow the free term can be
zero, so in general we have

(3.8) f(z) = 1+cp(z-zo)P+cp+1(z-zo)P+1+. ..+cn(z-zo)' (Cc 0 0).
f (zo)

We need to prove that there exists a z such that
f (zf() < 1.

The idea of the proof is that we choose z very close to zo; whether the
inequality holds or not, will now depend only on the first two terms in (3.8).

z0+zl

=zb+tzi

Figure 3.5

Let us look for z of the form

z=zo+tz1
(Figure 3.5), where t E (0, 1) and zl is a complex number satisfying the
condition cpzl = -1.

We now have
A z) P P+l
f(zo)

t= 1 - t + (p(t),

where cp is a polynomial of degree n - p - 1 (with complex coefficients). If
C is the maximum absolute value of coefficients of gyp, then

J<p(t)I < A = (n - p)C.

Hence
f(z) 1<1-tP+Atp+1=1-tP(1-At)<1
f(zo)

fort<A. 0
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Proof of Theorem 3.24. Let f E C[zI be a polynomial of positive degree.
Put

M=infIf(z)I.

By the definition of the greatest lower bound, there exists a sequence of
complex numbers zk such that

(3.9) If(zk)I - M.

If the sequence IzkI is unbounded, it contains a subsequence that tends
to infinity. This contradicts (3.9) by Lemma 3.30.

Therefore, there exists C > 0 such that

IzkI < C Vk.

Consider the algebraic form of zk:

Zk = Xk + yk2.

Then

IzkI<_IzkI<_C, IYkl<IzkI<C.
By the Bolzano-Weierstrass theorem, the sequence xk contains a converging
subsequence. Passing to this subsequence and changing notation, we can
assume that

xk -4 xo.

Similarly, by passing to another subsequence, we can assume that

llk -' YO-

Then by Lemma 3.26,

Zk - ZO = xo + yot,
hence

If(zk)I If(zo)I = M.
If M > 0, this contradicts the definition of M by D'Alembert's lemma.
Therefore, M = 0, i.e., f (zo) = 0. 0
Corollary 3.32. In the algebra C[x] every polynomial splits into a product
of linear factors.

Indeed, according to the main theorem the polynomial g from (3.4) must
have zero degree, i.e., it must be just a number.

In view of Theorem 3.13, we also have

Corollary 3.33. Every polynomial of degree n over C has n roots (counted
with multiplicities).
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3.4. Roots of Polynomials with Real Coefficients

A polynomial of degree n with real coefficients can have < n real roots (and
might have none at all). But as any polynomial with complex coefficients, it
always has exactly n complex roots (counted with multiplicities). Imaginary
roots of a polynomial with real coefficients have a special property.

Theorem 3.34. If c is an imaginary root of a polynomial f E R[x], then
c is also a root of this polynomial. Moreover, it has the same multiplicity
as c.

Proof. Let

f = aoxn +a, Xn-I + ... + an-Ix + an, ao, a1, ... , an E R.

Complex conjugation is an automorphism of the field C (Section 1.5), hence
if f (c) = 0, then

f(e) = aoc + a10-1 + ... + an-1e + an

= aoc + Qlcn-1 + ... + an-le + vn =7(-c) 0 = 0,

i.e., c is also a root of f. Similarly, we can prove that

f (k)(c) = 0 t=* f (k)(e) = 0.

Thus, the multiplicities of c and c are equal. 0
Corollary 3.35. In the algebra R[x] every nonzero polynomial factors into
a product of linear terms and quadratic terms utith negative discriminants.

Proof. Observe that if c is an imaginary number, then the quadratic poly-
nomial

(x-c)(x-e) =x2-(c+c)x+cc
has real coefficients. Its discriminant is obviously negative.

Now, let

C1,...,Cs,cs+II...,CB+t,es+It ...,es+t

be all (distinct) complex roots of the polynomial f ER[x] with

cl,... , cs E lie, cB+1, ... , ce+t d g R.

If the multiplicity of the root ct is k, then

f = ao(x - cl)kt ... (x - C8)ke

X [(x - ce+I)(x - es+I)]ks+1...[(x - Ce+t)(x - cs+t)]k'+e

(where ao is the leading coefficient of f). After multiplying linear factors in
square brackets, the corollary follows. 0
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Example 3.36.
\ /2x5-1=(x-1)Ix-(Cos2J +2sin 5) Jfx-(cos25 -xsin 5

479)X (x - (cos 5 + x sin5 )) (x - (cos 45 - t sin 5

=(x-1) (x2_2xcos25 +1I (x2 -2xcos45 +i I

=(x-1)(x2- 2 1x+1)
I

(see Example 3.15).

Example 3.37. The polynomial f in Example 3.23 factors as

f = (x - 2)3(x2 + x + 1).

Theorem 3.34 also implies that every polynomial f E R(xJ of odd degree
has at least one real root. Still, there is another easy proof of this. Namely,
if the leading coefficient of a polynomial f is positive, then

lim f (x) = +00, lim f (x) = -00.
x-»+oo x-.-oo

Hence, f assumes both positive and negative values. By the Intermediate
Value Theorem it follows that at some point f equals 0.

Clearly, it is useful to have a way of determining precisely the number
of real roots. By calculating the values of a polynomial at some points, we
can find that they have different signs at a and b. This means that there
exists at least one root in the interval (a, b). To be more precise, there exist
an odd number of roots there (counted with multiplicities). This reasoning
allows us to bound the number of real roots from below.

Example 3.38. Given the polynomial

f =x4+x2-4x+1,
we find that

f(0)=1>0, f(1)=-1 <0, f(2)=13>0.

Therefore, f has roots in both intervals (0, 1) and (1, 2). It is not hard to
show that f (x) > 0 for x < 0 and also for x > 2. Thus, all real roots of the
polynomial f lie in the interval (0, 2). However, their exact number remains
unknown because in either of the intervals (0, 1) and (0, 2) there might be
as many as three roots.
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There exist methods that, in principle, provide the number of real roots
of any polynomial as well as the number of its roots on any interval of the
real line. However, in practice they require a great deal of calculations.
Below we will state a theorem that-though it does not give the precise
number-requires none. Its subject is not just the number of all real roots
but also the number of positive (or negative) roots. This theorem general-
izes the following obvious statement: if all coefficients of a polynomial are
nonnegative, then it has no positive roots.

To formulate this theorem, we need a technical notion.
Consider a finite sequence of real numbers

ao, al, a2, ... , an.

We say that there is a change of sign in the kth position of this sequence
if ak 54 0 and the sign of ak is the opposite of the sign of the last nonzero
number that precedes it. (If ak is the first nonzero term in the sequence,
there is no change of sign in the kth position.)

Theorem 3.39 (Descartes Theorem). The number of positive roots (counted
with multiplicities) of a polynomial f E R[xl does not exceed the number of
changes of sign in the sequence of its coefficients and is comparable to it
modulo 2. If all complex roots off are real, then these numbers are equal.

Denote by N(f) the number of positive roots of f and by L(f) the
number of changes of sign in the sequence of its coefficients. Clearly, these
numbers do not change when f is multiplied by -1; therefore, we can assume
that the leading coefficient of f is positive. Moreover, if 0 is a root of f of
multiplicity k, then after dividing f by xk these numbers do not change
either. Thus we can assume that the free term of f is nonzero.

Lemma 3.40. N(f) - L(f) (mod 2).

Proof. Let

f = aoxn -1- alxn-1 + ... + an-lx + an (ao > 0, an # 0).

Then f (0) = an and f (x) > 0 for large enough x. When we move along
the real line to the right, f (x) changes its sign when we pass a simple root.
When we pass a root of multiplicity k, the sign of f (x) changes by (-1)k,
as if it changed k times. Thus N(f) is even if an > 0 and odd if an < 0.
The same can be said about L(f). 0
Lemma 3.41. N(f) < N(f) + 1.

Proof. By Rolle's theorem, the derivative of f has a root between any
two roots of f . Moreover, every root of f of multiplicity k is a root of
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the derivative of f of multiplicity k - I (Corollary 3.21). Thus, N(f') >
N(f) - 1.

Lemma 3.42. L(f') < L(f)

Proof. Clear.

The number of negative roots of a polynomial f equals the number of
positive roots of the polynomial

f(x) _ (-1)nf(-x).
Lemma 3.43. L(f)+L(f) <n=degf.

Proof. We obtain coefficients of the polynomial f from those off by multi-
plying every other one by -1. First assume that all coefficients ao, a1, ... , an
of the polynomial f are nonzero. Then if a change of sign occurs in the se-
quence ao, ai, ... , a in the kth position, it does not occur in the sequence
of coefficients of f and vice versa. Hence, in this case L(f) + L(f) = n.

In the general case, some of the coefficients ao, al, ... , an might be zero.
When we replace them with some arbitrary nonzero numbers, L(f) and L(j)
can only increase. We proved above that their sum will then become n, thus
L(f)+L(f) <n.

Proof of Theorem 3.39. We will prove the inequality N(f) < L(f) by
induction on degf. If degf = 0, then N(f) = L(f) = 0. Assume now
that degf = n > 0. Then deg f = n - 1. Lemmas 3.41 and 3.42 and the
induction assumption imply that

N(f) <N(f')+1 <L(f')+1 <L(f)+1.
But by Lemma 3.40, the equality N(f) = L(f) + 1 is impossible. Thus,
N(f) <- L(f).

Assume now that all roots of f are real. We can assume that 0 is not a
root. Then, by the above inequality and Lemma 3.43,

n = N(f)+N(f) < L(f)+L(f) < n,
hence

N(f) = L(f), N(f) = L(f)
0

Example 3.44. For the polynomial f of Example 3.38, we have L(f) = 2.
Thus N(f) < 2. But we have established already that N(f) > 2. Therefore,
N(f)=2.
Example 3.45. The polynomial f = x2 - x + 1 has no positive (and even
real) roots, yet L(f) = 2. So, in this case N(f) < L(f).
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By applying Descartes' theorem to the polynomial

g(x) = f (c + x) = f (c) + f (c) x
+ f'(c) x2 +... + f (c)x",

1! 2! n!
we can deduce certain facts about the number of roots of the polynomial f
on the interval (c, +oo). In particular, if all coefficients of g are nonnegative,
then it has no positive roots (this is the trivial case of Descartes' theorem),
hence no real root of f exceeds c.

Example 3.46. Here we will find the bounds for the real roots of the
polynomial

f = x5 - 5x3 - 10x2 + 2.
Using Horner's Scheme, we can calculate f (3):

1 0 -5 -10 0 2

3 1 3 4 2 6 20
We see that f (3) = 20 > 0. Moreover, all coefficients of the incomplete

quotient are positive. Hence, all derivatives of f are positive at x = 3 (see
Example 3.23), and so all its real roots are less than 3. Consider now the
polynomial

f(x)=-f(-x) =x5-5x3+10x2-2.
Again, we use Horner's Scheme to calculate the values off and its derivatives
atx=1:

1

1 0 -5 10 0 -2
1 1 -4 6 6 4
1 2 -2 4 10

1 3 1 5

We see that

f(1)=4>0, f'(1)=10>0, f"(1)=2.5>0.
The values of other derivatives at x = 1 are also positive because the last
row of the table contains only positive numbers. Therefore, all real roots of
f are less than 1. This means that all real roots of f are greater that -1.
Therefore, all real roots of f belong to the interval (-1, 3).

Exercise 3.47. By studying the derivative of the polynomial 1, prove that
the polynomial f of the previous example has only one negative root.

Now we turn to the approximate calculation of roots.
If a polynomial f E R[x] is known to have only one root on a given inter-

val, this root can be calculated with any precision by calculating the values
of the polynomial at particular points. We explain this in the following
example.
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Example 3.48. As we demonstrated (see Example 3.44), the polynomial
f in Example 3.38 has exactly one root in the interval (1, 2). We will find
this root within 0.01. We know that f (1) < 0. By calculating f (x) for
x = 1.1, 1.2,1.3, we see that

f(1.2)<0, f(1.3)>0.
Hence, this root lies in the interval (1.2,1.3). By calculating f (x) for x =
1.21, 1.22, 1.23, 1.24, 1.25, we see that

f(1.24) < 0, f(1.25) > 0.

Thus the root lies in the interval (1.24,1.25).

Certainly, there exist better methods for approximate calculations of
roots. They can be applied to algebraic equations of any degree and some
of them, even to transcendental equations. However, they lie beyond the
scope of this course: they belong to computational mathematics rather than
algebra.

Remark 3.49. If a polynomial has a multiple root but its coefficients are
known only approximately (but with any degree of precision), then we can-
not prove that this multiple root exists because under any perturbation of
the coefficients, however small, it may separate into simple roots or simply
cease to exist.

i

Figure 3.6

For instance in the case of a double root, we can never distinguish be-
tween situations shown in Figure 3.6, left, and in the case of a triple root,
in Figure 3.6, right.

3.5. Factorization in Euclidean Domains

Factorization of polynomials over C into linear factors, as well as factoriza-
tion of polynomials over R into products of linear and quadratic factors, is
similar to factorization of integers into primes. Such a factorization exists
for polynomials over any field but there factors can be of any degree. The
problem of finding such a factorization can be viewed as a generalization of
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the problem of finding all roots of a polynomial (they are equivalent over
C). This problem does not have a general solution which is valid over any
field. In this section we will prove that such a factorization is unique. Si-
multaneously we will prove that the factorization of an integer into primes
is unique; you probably learned the latter fact in high school but did not
see the proof.

To make an argument encompassing both cases, let us introduce several
additional notions.

Definition 3.50. A commutative and associative ring with unity and with-
out zero divisors is called an integral domain.

For instance, the rings Z of integers and K[x] of polynomials over a field
K are integral domains. Moreover, the polynomial ring over an integral
domain is itself an integral domain (see Remark 3.3).

Let A be an integral domain. We say that an element a E A is divisible
by b E A (notation a:b) or, equivalently, that b divides a (notation bla) if
there exists an element q E A such that a = qb. Elements a and b are called
associated (notation a - b) if either of the following equivalent conditions
holds:

(i) bla and aib;

(ii) a = cb, where c is invertible.

The next definition describes axiomatically the common property of the
ring of integers and the ring of polynomials over any field-division with a
remainder.

Definition 3.51. Let A be an integral domain which is not a field. We call
A Euclidean if there exists a function

N:A\{0}-.Z+
(called a norm) that satisfies the following conditions:

(i) N(ab) > N(a) and the equality holds if and only if b is invertible;

(ii) for any a, b E A, where b # 0, there exist q, r E A such that a = qb+r
and either r = 0 or N(r) < N(b).

Remark 3.52. Condition (ii) means that we can "divide with a remainder."
Uniqueness (i.e., the existence of only one such pair (q, r)) is not required
here.

Remark 3.53. The second part of condition (i) can be deduced from other
conditions. Indeed, assume that b is not invertible. Then a is not divisible
by ab. Divide a by ab with a remainder:

a = q(ab) + r.
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Since r = all - qb), we have

N(a) < N(r) < N(ab).

Our main examples of Euclidean domains are the ring Z of integers and
the ring K[x] of polynomials over a field K. In the first case, we can take
as a norm the absolute value of an integer and in the second, the degree of
a polynomial.

Other Euclidean domains exist as well.

Example 3.54. Complex numbers of the form c = a + In, where a, b E Z,
are called Gaussian integers. They form a subring of C denoted Z[a]. The
domain Z[t] is Euclidean with respect to the norm

N(c) = Icl2 = a2 + b2.

Figure 3.7

Indeed, it is clear that

N(cd) = N(c)N(d)

and, since N(1) = 1, the invertible elements of the ring Z[x] are the elements
with norm 1, i.e., ±1 and ±2. It follows that condition (i) of Definition 3.51
holds. Now we have to prove that it is possible to divide with a remainder
in Z[a]. Let c, d E Z[x], d i6 0. Consider a Gaussian integer q nearest to
It is easy to see that I3 - ql < 1/f (see Figure 3.7). Put r = c - qd.. Then
c = qd + r and

N(r) = Ic - gd12 = I d - gl21d12 < 2N(d) < N(d).

Exercise 3.55. Prove that the ring of rational numbers of the form 2-"m,
m E Z, n E Z+, is a Euclidean domain.

Definition 3.56. The greatest common divisor of elements a and b of an
integral domain is a common divisor of a and b divisible by all their common
divisors. It is denoted (a, b) or GCD{a, b}.



106 3. Elements of Polynomial Algebra

The greatest common divisor, if it exists, is defined up to association
relation (see above). However, it may not exist at all. For instance, elements
x5 and x6 in the ring of polynomials without a linear term do not possess
the greatest common divisor.

Theorem 3.57. For any two elements a, b of a Euclidean domain, there
exists the greatest common divisor d. It can be presented in the form d =
an + by, where u, v are some elements of the ring.

Proof. If b = 0, then d = a = a If b divides a, then d = b =
a b with a remainder, then b by this remainder, then

the first remainder by the second, etc. Since the norms of the remainders
decrease, at some point the remainder will be zero. We obtain the following
chain of equalities:

a=qlb+rl,
b = g2rl + r2,

rl = q3r2 + r3,

rn-2 = gnrn-1 + rn,

rn-1 = qn+lrn
We will prove that the last nonzero remainder r is in fact the greatest
common divisor of a and b.

By moving up this chain, we consecutively obtain the following:

rnlrn-l, rnlrn-2, ..., rnjrl, r,,Jb, r,,Ia.

Thus, rn is a common divisor of a and b.
Again, by moving up the chain, we consecutively obtain

rl = aul + bvl,
r2 = au2 + bv2,

r3 = au3 + bv3,
...............

rn = aun + bvn,

where uj, vi, i = 1, ... , n, are some elements of our ring (for example, ul = 1,
vl = -ql). Hence, rn can be presented in the form an + by. This implies
that any common divisor of a and b divides rn.

We now turn to factorization into prime factors.

Definition 3.58. A noninvertible element p of an integral domain is called
prime if it cannot be presented as p = ab, where a and b are noninvertible
elements.
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In other words, an element p is prime if its every divisor is associated
with either 1 or p. In this sense, prime elements of the ring Z are numbers
of the type hp, where p is a prime number.

Prime elements of the ring K[x] over a field K are traditionally called
irreducible polynomials. Thus, an irreducible polynomial is a polynomial of
positive degree that does not factor into two polynomials of positive degree.

Clearly, every polynomial of the first degree is irreducible. The funda-
mental theorem of algebra of complex numbers implies that these are the
only irreducible polynomials over C. In turn, Corollary 3.35 implies that
all irreducible polynomials over R are polynomials of the first degree and
polynomials of the second degree with negative discriminants. In the next
section we will discuss the question of irreducibility of polynomials over Q
and, in particular, we will see that they can be of any degree.

Now let A be any Euclidean domain.

Lemma 3.59. If a prime element p of A divides the product a1 a2 an,
then it divides at least one of the factors al, a2,. .. , a,,.

Proof. We will prove this statement by induction on n. For n = 2, assume
that p does not divide a1. Then (p, al) = 1, hence there exist u, v E A such
that pu + a1v = 1. Multiplying this equality by a2, we obtain

FUa2 + a1a2v = a2.

This implies that p divides a2.
For n > 2, consider the product ala2 an in the form al (a2 - . . a,).

According to the above, plat or pIa2 . an. In the second case, the induction
statement implies that pla;, where i is one of the indices 2, ... , n. 0
Theorem 3.60. In a Euclidean domain, every noninvertible nonzero el-
ement factors into prime factors. This factorization is unique up to an
arrangement of factors and multiplication by invertible elements.

Remark 3.61. When speaking of factorization into prime factors, we do
not exclude the case of factorization into just one factor.

Proof. Call a noninvertible nonzero element a E A good if it can be factored
into primes. Assume that there exist bad elements. Pick one with the least
norm and denote it by a. It cannot be prime. Hence a = bc, where b and c
are good elements. But then it is obvious that a is good, which contradicts
our assumption. Therefore, every noninvertible nonzero element of A can
be factored into prime factors.

We will now prove by induction that if

(3.10) a=p1p2...pn=g1g2...qm,
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where pi, qj are prime elements, then m = n and that, after renumbering
the factors, w e g e t pi - q i f o r i = 1, 2, ... , n.

F o r n = 1, this statement is obvious. When n > 1, w e have p1 i 1 2 qm
and by Lemma 3.59 there exists i such that p1 jqi. We can assume that i = 1
and p1 = Q1. After cancelling p1 in (3.10), we obtain

p2 ... pn = q2 ... qm

The induction assumption thus implies that m = n and, after a change of
indices, pi - qi for i = 2, ... , n. This completes the proof. t]

Corollary 3.62. Let a = pi I .. p; be a factorization of a E A into prime
factors such that pi ryL Pi for i # j. Then every divisor d of a has the
following form:

d = cpll ... ps',

where 0 < li < ki (i = 1, ... , s) and c is an invertible element.

Proof. Let a = qd. Factor q and d into prime factors. After multiplying
these factorizations, we will obtain a factorization of a. Comparing it with
the one in this corollary's statement completes the proof. 0
Exercise 3.63. Prove that in a Euclidean domain

a) bia, cia and (b, c) = 1 . bc1a;

b) c[ab and (b, c) = 1 . cia.

Exercise 3.64. The least common multiple of elements a and b of an integral
domain is their common multiple (i.e., an element divisible by both a and b)
that divides all their common multiples. It is denoted [a, b] or LCM{a, b}.
Prove that in a Euclidean domain every two elements a and b have the least
common multiple [a, b] and also that

(a, b) [a, b] - ab.

Exercise 3.65. Factor the elements 2, 3, and 5 of the ring Z[z] (see Exam-
ple 3.54) into primes. What is the principal difference between these three
cases?

It is well known that there exist infinitely many prime numbers. Recall
the argument that proves this. (Assume that p1, p2, ... , p, are the only
prime numbers. Then the number p1p2 . pn + 1 is not divisible by any of
them, which is clearly impossible.) The same argument shows that there
exist infinitely many monic irreducible polynomials over any field K. If K
is infinite, then this result if of little interest: clearly in this case there exist
infinitely many monic polynomials of the first degree. However, if K is finite,
this result implies that there exist irreducible polynomials of arbitrarily high
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degree. Actually, in this case there exist irreducible polynomials of any
degree.

Exercise 3.66. List irreducible polynomials of degree < 4 over the field Z2
and prove that there exist exactly 6 irreducible polynomials of degree 5.

3.6. Polynomials with Rational Coefficients

Every integer factors into primes uniquely, and this implies

Theorem 3.67. If a polynomial

f =aoxn+alxn-1+...+an-lx+a.EZ[x]

has a rational root v, where u, v E Z, (u, v) = 1, then Ulan, vlao.

Proof. By assumption,

= so1Ln - alun-lv + ....+. an-luvn-1 + anvno = vn f (UV)

All terms on the right-hand side, except for the last one, are divisible by u.
Therefore, the last term must be divisible by u as well. But as u and v are
relatively prime, an is divisible by u (see Exercise 3.63(b)). The proof that
ao is divisible by v is similar.

Corollary 3.68. If a monic polynomial with integer coefficients has a ra-
tional root, then this root is an integer.

Obviously, every polynomial with rational coefficients is proportional to
a polynomial with integer coefficients. Thus Theorem 3.67 suggests how one
can find all rational roots of a given polynomial with rational coefficients in
a finite number of steps. Of course, usually there exist no such roots. The
specially chosen example below is one of the exceptions that only prove the
rule.

Example 3.69. According to Theorem 3.67, the only candidates for the
rational roots of the polynomial

f =2x4-7x3+4x2-2x-3
are

11
±1, f2, ±3.

Tryouts provide two
rootls:

x1=3, x2=-2

The next theorem can be considered a generalization of Theorem 3.67.
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Theorem 3.70 (Gauss Lemma). If a polynomial with integer coefficients
factors into a product of two polynomials with rational coefficients, then it
factors into a product of polynomials with integer coefficients proportional
to the ones from the first factorization.

In other words, if f E Z[x] and f = gh, where g, h E Q[x], then there
exists A E Q" such that Ag, A-'h E Z[X]-

Before we prove this theorem, we need to introduce a few useful notions.

A polynomial f E Z[x] is called primitive if its coefficients taken together
are relatively prime, i.e., if they do not have a common divisor greater than 1.
If such a divisor exists, it can be carried out. Thus, every polynomial with
integer coefficients is proportional to a primitive polynomial (determined
uniquely up to multiplication by ±1). Hence so is every polynomial with
rational coefficients.

Let p be a prime number. We define reduction modulo p of a polynomial
f = aoxn + alxn-1 + ... + an-lx + an E Z[x]

as a polynomial

[.f]P = [aojpxn +
[al]Pxn-1 + ... + [an-1]Px + [an]P E Zp[x]

whose coefficients are residue classes modulo p of coefficients of f. From the
definition of operations on residue classes, it follows that

If + 91 P = [f]p + W]P,

[fg]P = [f]P[9]P

for any f, g E Z[x].

Proof of Theorem 3.70. Let f E Z[x] and f = gh, where g, h E Q[x].
The preceding discussion implies that g and h are proportional to some
primitive polynomials g, and h1. We have

f = µ91h1, µ E Q.

Let µ = v, where u, v E Z, (u, v) = 1. If we can show that v = f1, the
theorem will follow. Assume this is not so and let p be a prime divisor of v.
Reduce the equality

modulo p. We have
of = ug1h1

0 = [u]P[91]p[hl]p
However, [u]p 0 0 because u and v are relatively prime by assumption.
On the other hand, [g1]p 0 0 and [h1]p 0 0 because gl and h1 are primi-
tive polynomials, hence their coefficients cannot be all divisible by p. This
contradicts the absence of zero divisors in Zp[x].
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Corollary 3.71. If a polynomial f E Z(x] factors into a product of two
polynomials of positive degree in Q[x], then it factors into such a product in
Z(xJ.

This makes it much easier to determine whether a polynomial is irre-
ducible over Q[x].

Example 3.72. Let p be a prime number. We will prove that the "cyclo-
tomic polynomial,"

1f =xp_I+xP-2+...+x+ XP_1= x-1'
is irreducible over Q. (All complex roots of this polynomial are nontrivial
pth roots of 1. Together with 1 they cut the circle [zj = 1 into p equal parts.)
By the binomial formula (see, e.g., Section 1.6), the following equality holds
in Zp[x]:

Thus,
xP-1=(x-1)P.

[AP = (x - 1)P-1

If f = gh, where g, h E Z[x] are polynomials of positive degree, then [ f Jp =
[g]p[h]p. Therefore,

[9]P = (x - 1)k, [h]P = (x - 1)l, k,1>0, k + l = p - 1.
Hence,

[9(1)]P = [9]p(1) = 0, [h(1)]P = [h]P(l) = 0,

i.e., g(1) and h(1) are divisible by p. But then f(1) = g(1)h(1) is divisible
by p2, which is false as f (1) = p.

An algorithm due to Kronecker allows us to determine whether any given
polynomial with integer coefficients is irreducible over Q. It is based on the
following considerations.

Let f E Z[xl be a polynomial of degree n without integer roots. Assume
that it factors into a product of two polynomials of positive degree with
integer coefficients:

f = gh.
Then the degree of one of them, say g, does not exceed m = { 2 ] .

Let us assign in turn distinct integer values xo, xl,... , x,,, to the variable
x. Equalities

f(xi) = g(xi)h(xi)

imply that g(xi)[ f (xi) for i = 0, 1, ... , m. The polynomial g is uniquely de-
termined by its values at points xo, xj,... , x,,,. By considering all collections
of divisors do, dl, ... , dm of integers f (xo), f (xl ), ... , f (xm) and determin-
ing for each the interpolation polynomial of degree < m (a polynomial that
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assumes values do, dl, ... , dm at points xo, xl, . . . , xm), we will create the
list of all candidates for g (there will be a finite number of them). Those
that have fractional coefficients can be removed from the list immediately.
Checking others, we can determine if any of them divide f. This will solve
the question of f's irreducibility.

3.7. Polynomials in Several Variables

A function of real variables xl, x2i ... , xn is called a polynomial if it can be
presented as

(3.11) .f (x1, x2, ... , xn) = aklk2...k,.x1 22 ... xnn
k, ,k2,...,kn

where the summation is taken over a finite set of collections (k1, k2, ... , kn)
of nonnegative integers. (Formally, it can be said that the summation is
taken over all such collections but only finitely many coefficients ak, k2.. k
are nonzero.) Polynomials form a subalgebra of the algebra of all functions
of xl, x2i .... xn. It is called the algebra of polynomials in x1, x2, ... , xn over
R and is denoted 1R[xl, x2, ... , xnj.

We will show (see Theorem 3.76 below) that the presentation of a poly-
nomial in the form (3.11) is unique, i.e., that the coefficients of a polynomial
are determined by its values.

When we attempt to define polynomials in n variables over an arbitrary
field K, we hit the same problem as in the case of one variable. This makes
it necessary to give a formal definition such as the following one.

Consider an infinite-dimensional algebra over K with a basis

kl,k2,...,kn E Z+j
and the multiplication table

ekik2...knel,12...In = ek1+l1,k2+12,...,kn+ln

Obviously, this algebra is commutative and associative. Its identity is the
element e0o...0. This algebra is called the polynomial algebra over K and is
denoted K[xl, x2i ... , xn] .

We identify the elements of the form aeoo...0, a E K, with the corre-
sponding elements of K. Introduce the following notation:

elo...o = x1,
eol...o = x2,

eoo...I = xn

Then
eklk2...kn = 41 x22 ... xn
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and every element

E ak1k2...k. ek1k2...k E K[xi, x2, ... , xn]
k1.k2,- .,k,,

is presented in the usual form (3.11).
The polynomial (3.11) is called homogeneous of degree d if

ak1k2...k =0 for

Homogeneous polynomials of a fixed degree d form a finite-dimensional sub-
space. Indeed, there exist only a finite number of collections (ki, k2, ... , kn)
of nonnegative integers such that

kI + k2 + + kn = d.

Exercise 3.73. Prove that the dimension of the space of homogeneous
polynomials of degree d in n variables equals

n(n+1)...(n+d-1)
d!

(the number of d choices out of n with repetitions).

Every polynomial can be uniquely presented as a sum of homogeneous
polynomials of degrees 0, 1, 2, ... , called its homogeneous components. (Only
finitely many of them are nonzero.)

The (total) degree of a nonzero polynomial is the maximum degree of
its nonzero terms-which is the same as the maximum degree of its nonzero
homogeneous components. The degree of a polynomial f is denoted deg f .

It satisfies the following properties:

(3.12) deg(f + g) < deg f + deg g,
(3.13) deg(fg) = deg f + deg g.

The first is obvious; as for the second, we will prove it later.

On the other hand, every polynomial f E K[xi, X2i ... , xn] can be
uniquely presented as

cc

(3.14) f(xI,x2,...,xn) = > fk(x2,...,xn)xl,
k=0

where fo, fl, f2,... are some polynomials in x2, ... , xn and only finitely
many of them are nonzero. The greatest index among the nonzero polyno-
mials fk is called the degree of f in xI and is denoted degs1 f.

Using presentation (3.14), we can regard the ring K[x1i x2, ... , xn] as a
ring of polynomials in xI with coefficients from K[x2i ... , xn]:

(3.15) K[x1,x2,...,xn] = K[x2,---,xn][xI].
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Remark 3.74. We speak here about rings but not about algebras because
K[x1i x2, ... , xn] is by definition an algebra over K, while K[x2, ... , xn] [x1]
is an algebra over K[x2i ... , xn]. However, if we regard K[x2, .. . , xn] [x1]

as an algebra over K (this is possible because K[x2 i ... , xn] D K), we can
speak about equality between the algebras.

Proposition 3.75. The algebra K[x1, x2, ... , xn] has no zero divisors.

Proof. We actually proved in Section 3.1 that the ring of polynomials in one
variable over an integral domain is also an integral domain (and, in particu-
lar, has no zero divisors), see Remark 3.3. Therefore, we can prove the state-
ment by induction starting with the field K and using equality (3.15).

Now we can prove property (3.13). Write polynomials f and g as sums
of their homogeneous components:

f =fo+f1+...+fd, degfk=k, fd34 0,

g=9o+g1+ +ge, deggk=k, ge#0.
Clearly, when crossmultiplying, we will not get terms of degrees > d + e,
and the sum of all terms of degree d + e will be equal to fdge. By the above
proposition, fdge # 0. Hence,

deg fg = d + e = deg f +degg.

As in the case n = 1, every polynomial in n variables over a field K
determines a K-valued function on Kn.

Theorem 3.76. If the field K is infinite, then different polynomials in n
variables over K determine different functions.

Proof. As in the case of polynomials in one variable (see the proof of Theo-
rem 3.5), it suffices to prove that a nonzero polynomial determines a nonzero
function. We will prove this by induction on n.

For n = 1, our claim is Theorem 3.5. Assume now that a polynomial
f E K[x1, x2, ... , x,], n > 1, determines the zero function. Present it in
the f o r m (3.14) and assign some values to variables x2, ... , xn. We obtain
a polynomial in one variable x1 with coefficients in K that vanishes for
any value of Si. By Theorem 3.5, all its coefficients are zero. Thus, every
polynomial fk E K[x2i ... , xn] vanishes for any values of x2, ... , xn, i.e., it
determines the zero function. By the induction assumption, it follows that
fk = 0 for all k. But then f = 0 too.

Remark 3.77. If the field K is finite, the theorem and its proof remain
valid in the case of polynomials whose degree in every variable is less than
the number of elements of K (cf. Remark 3.6).
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Exercise 3.78. Prove that if a field K contains q elements, the functions
determined by monomials xi' xn for k1, ... , k < q form a basis in the
space of all K-valued functions on K".

If n > 1, the terms of a polynomial in n variables cannot be ordered
by degrees: there may be several terms of the same degree. However, it is
sometimes useful to have an order of some sort. In such a case, the lexico-
graphic (i.e., dictionary-style) order is used. For this, first the exponents of
x1 are compared, then, if they turn out to be equal, the exponents of x2i etc.
If a monomial u is lexicographically greater than a monomial v, we denote
this as u >- v. According to the definition, this means that the first variable
that has different exponents in u and v, has a greater exponent in u than
in v.

Proposition 3.79. The relation of lexicographic order of monomials has
the following properties:

(i) if u >- v and v >- w, then u >- w (transitivity);

(ii) if u >- v, then uw >- vw for any monomial w;

(iii) if ul >- vl and u2 > v2, then ulu2 >- v1v2.

The first property is the one that gives us the right to call the relation
>- an order.

Proof. (i) For the first variable that has different exponents in the mono-
mials u, v, w, denote these exponents by k, 1, m, respectively. Then

k>1>m,
and at least one of these inequalities is strict, thus k > m.

(ii) When we multiply by w, we add the same number to the exponent of
each variable in both u and v. Therefore, the inequality (or equality) rela-
tions between these exponents do not change, and in comparing monomials
we use these relations only.

(iii) The previous property implies

UIU2 r V1u2 Y- V1v2.

11

Example 3.80. The terms of the following polynomial are ordered lexico-
graphically:

2 2xix2 + x1x2x3 + 2x1x3 + x2x3 - x2x3 + 3.
Notice that the term x1x2x3 is lexicographically less than xix2, even though
the degree of the former is greater.
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Among nonzero terms of a nonzero polynomial f E K[xl, x2, ... , xn],
there exists one that is lexicographically greater than the others. It is called
the leading monomial of the polynomial f .

Proposition 3.81. The leading monomial of the product of nonzero poly-
nomials equals the product of their leading monomials.

Proof. It suffices to prove the statement for any pair of polynomials. Let
fl, f2 be nonzero polynomials. Let ul, u2 be the leading monomials of fl, f2i
and vl, v2 arbitrary terms of fl, f2. If vl 0 ul or v2 0 u2i then by Proposi-
tion 3.79,

u1u2 >- vlv2.

Therefore, after gathering terms in the product /1/2, we see that the product
ulu2 still remains a nonzero term that is greater than all others.

3.8. Symmetric Polynomials

Definition 3.82. A polynomial f E K[xi, x2, ... , xn] is called symmetric if
it remains the same for any arrangement of the variables.

Since any arrangement can be achieved as a sequence of permutations
of two elements, a polynomial is symmetric if it does not change when any
two variables are interchanged.

Clearly, a homogeneous component of a symmetric polynomial is also a
symmetric polynomial.

Example 3.83. Power sums

ak =X1 +x2+...+xn, k= 1,2,...,
are obviously symmetric polynomials.

Example 3.84. The following symmetric polynomials are called elementary
symmetric polynomials:

Q1 = x1 + X2 + + xn,

02

ak = xilxi2 ... xik e
it

an = X1X2...xn,
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Example 3.85. The Vandermonde determinant

V (X1, x2, ... , xn) _ [I(xi - xj)
i>j

(see Example 2.96) is a product of differences of two variables. Under a
permutation of variables, it can only change by ±1 and this happens when
the minuend and subtrahend change places. The number of such occurrences
equals the number of inversions in the arrangements. Therefore,

V (xk,, ak2, . . . , xk,,) = sign(ki, k2, ..., kn)V (xl, x2, ... , xn).

Hence, the Vandermonde determinant is not a symmetric polynomial itself
but its square is:

V(x1, x2, ..., xn)2 = II(xi - x3)2.
i>j

Example 3.86. Under any permutation of the variables xl, x2, x3, x4, the
polynomials

hl = xlx2 + a3a4, h2 = a1x3 + x2x4, h3 = X1X4 +x2x3

are themselves permuted. Therefore, any symmetric polynomial in hl, h2, h3
will be also symmetric in al, x2i X3, x4. In particular, their product is such:

h1h2h3 = (xlx2 + a3x4)(xlx3 + x2x4)(xlx4 + x2x3).

Exercise 3.87. Prove that the polynomial

(x1 + X2 - X3 - 24)(x1 - X2 + x3 - x4)(21 - x2 - X3 + X4)

is symmetric.

Symmetric polynomials are useful in the study of algebraic equations
in one variable. The key is Viete's formulas (see Section 3.2) that express
elementary symmetric polynomials of the roots of an algebraic equation via
its coefficients (if the number of the roots of the equation in the given field
equals its degree). Clearly, only symmetric polynomials in the roots of an
equation are well defined: the value of any other polynomial depends on
the order of roots. On the other hand, we will show that any symmetric
polynomial in the roots of an algebraic equation can be expressed via the
coefficients of this equation.

Example 3.88. The polynomial 82 = X1 + a2 + . + xn is symmetric. It is
clear that

(3.16) s2 = 02l - 202.

Thus, the sum of squares of roots of an algebraic equation

xn + alxn-1 + a2xn-2 + ... + an-1x + an = p

equals a1 - 2a2.
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Obviously, sums and products of symmetric polynomials as well as the
products of symmetric polynomials and numbers are symmetric polynomials.
In other words, symmetric polynomials form a subalgebra in the algebra of
all polynomials.

Therefore, if F E K[X1 i X2,..., X,,,] is a polynomial in m variables and
fi, f2, , f n E K[xi, x2, ... , x.) are symmetric polynomials, then F(fl, f2,
.... fm) is a symmetric polynomial in x1 i x2, ... , x,,. It is natural to ask if
there exist symmetric polynomials fl, f2,. . ., f,n such that any symmetric
polynomial can be expressed through them as above. It happens that they do
exist, and the elementary symmetric polynomials 01, Q2, ... , an are exactly
such.

Theorem 3.89. Any symmetric polynomial can be uniquely presented as a
polynomial in elementary symmetric polynomials.

Two lemmas are required for the proof.

Lemma 3.90. Let u = axl'x2 xnn be the leading monomial of a sym-
metric polynomial f. Then

(3.17) k1 > k2 > > kn.

Proof. Assume that ki < ki+l for some i. Apart from u, f must contain
the monomial

k' ki+1 ki kn1L = axI ... xi xi+1 ... xn

obtained from u by exchanging xi and xi+1 It is easy to see that u' >- u.
This contradicts the assumption that u is the leading monomial of f .

Lemma 3.91. For any monomial u = xi' x2 xn satisfying (3.17), there
exist nonnegative integers 11i12, ... , In such that the leading monomial of the
product of symmetric polynomials aIta2 Qnn equals u. Moreover, this
condition determines the numbers 11, 12, ... , In uniquely.

Proof. The leading monomial of ak equals x1 X2 xk. By Proposition 3.81,
the leading monomial of al' a2 ...a,,n equals

x11 (x1x2)12 ... (xix2 ... X, )in = +...+in ... xnn

Setting it equal to the monomial u, we obtain the following system of linear
equations:

{
12+...+ln=k2,

I, = kn,
which obviously has the unique solution

(3.18) li=ki-ki+1, i=1,2,...,n-1, In=kn.
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The assumptions of this lemma imply that the numbers 11,12i ... ,1n defined
by 3.18 are nonnegative. 0
Remark 3.92. The equation 11 + 12 + + 1 = kl shows that the total
degree of the monomial Xl'X2 Xn' equals the degree of u in xi.

Proof of Theorem 3.89. Let f E K[xi, x2,. - ., xn] be a symmetric poly-
nomial. We need to find F E K[X1, X2i ..., Xn] such that

F(al, a2,..., a.) = f.

If f = 0, then we can take F = 0. Otherwise, let ul = axi' x2 ... X'- be
the leading monomial of f. By Lemma 3.90 the inequalities (3.17) hold. By
Lemma 3.91, there exists a monomial F1 E K[X1, X2,..., such that the
leading monomial of the polynomial Fl (a1i o2,. .. , an) equals ul. Consider
the symmetric polynomial

fl = f - Fl (al, a2, ... , an).
If fl = 0, we can take F = F1. Otherwise, let u2 be the leading mono-
mial of fl. Clearly it is less than ul. There exists a monomial F2 E
K[X1i X2,..., Xn] such that the leading monomial of F2(Ql, a2,..., an) is
equal to u2. Consider the symmetric polynomial

f2 = f1 - F2 (al, a2, - - -, an)

If f2 = 0, we can take F = F1 + F2. Otherwise, continuing as above,
we obtain a sequence of symmetric polynomials f, fl, f2i ... whose leading
monomials satisfy the following inequalities:

u1>- u2>- .

By Lemma 3.90, the exponent of any variable in any monomial urn does
not exceed the exponent of xl in this monomial, which, in turn, does not
exceed k1. Therefore, there exist only finitely many possible collections of
exponents of variables in urn, and thus the algorithm we have just described
will stop at some point. This means that fm = 0 for some M. Then we can
take F= F, +F2+...+Fm.

It remains to prove that the polynomial F is uniquely determined. As-
sume that F and G are polynomials such that

F(al, a2,. .., an) = G(al, a2.... , an).

Consider their difference H = F - G. Then

H(al, a2, ... , an) = 0.

We have to prove that H = 0. Assume that this is not the case and let
H1i H2,..., H, be all nonzero terms of H. Denote by w;, i = 1,2,... , s, the
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leading monomial of the polynomial

Hi(al, a2,. - ., a.) E K[xl, x2, .... x,,].

By Lemma 3.91 neither monomial wl, w2, ... , w, is proportional to any
other. Consider the greatest of them. Assume it is wl. By construction, wl
is greater than all other monomials in Hl (al, a2, ... , an) and all monomials
in the polynomials HH(al, a2, ... , an), i = 2,.. . , s. Thus, after we gather
terms in

HI (al, a2,...,an)+H2(al,a2,...,an)+...+Ha(01,a2,...,a.)

= H(al, a2, ... , an),

the monomial wl will not disappear. Hence, this sum is nonzero, which
contradicts our assumption.

Remark 3.93. According to Remark 3.92, for any m we have

deg F. = deg., u,n < deg., ul = deg., f (= k1)

Thus,

(3.19) deg F = deg.,,f.

The proof of the above theorem provides an algorithm for expressing a
given symmetric polynomial as a polynomial in al, a2i ... , an.

Example 3.94. We express here the polynomial

f =83=xi+x2+...+xn

as a polynomial in al, o2,. .. , an. Our calculations are collected in the fol-
lowing table:

M UM Fm(al, a2, ... , an) fm
1 xl 1 = Ei i + 3 Ei#j xi xj

+6 E1<'<k xixjxk
-3 Fi#j xi xj

-6 Ei<'<k xixjxk
2 -3x1x2 -3ala2 = -3 Ei#j xi xj

-9 Ei<'<k xixjxk
3 .i<j<k xixjxk

3 3x1x2x3 3a3 = 3 Ei<'<k xixjxk 0

Therefore,

(3.20) 83 = al - 3a1a2 + 3a3.

There exists a more practical approach to homogeneous symmetric poly-
nomials, which we will explain in the next example.
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Example 3.95. Here we express/ the polynomial

f = (x1x2 + x3x4)(x1x3 + x2x4)(xlx4 + x2x3)

from Example 3.86 as a polynomial in al, 02, a3, a4. In the notation of the
proof of Theorem 3.89, we have ul = xix2x3x4. Without any calculation
we can find the candidates for u2i u3, ... up to coefficients. First of all,
their exponents should satisfy the inequalities in Lemma 3.90. Second, since
f is homogeneous of degree 6, the sum of the exponents must equal 6.
Third, they must be less than ul. We present the possible exponents of
monomials that satisfy these conditions in the table. They are ordered
lexicographically, starting with the exponents in ul. In the right column we
put the corresponding products of elementary functions in accordance with
(3.18):

3 1 1 1

2 2 2 0
2 2 1 1

al oa
23

0204

Thus, we can claim that

f = o1 o4 + aa3 + ba2a4.

In order to find the coefficients a and b, let us assign some values to the
variables xl, x2i x3, x4. The calculations are collected in the following table
with resulting equations in the rightmost column:

X1 X2 X3 X4 al a2 a3 a4 f
1

1

1

1

1

-1
0

-1
3

0

3
-2

1

0
0

1

1

8
a=1

-2b = 8

Thus, a = 1 and b = -4. We conclude that

f =oio4 + a3 - 4a2a4.

In the case of a nonhomogeneous symmetric polynomial, the above
method can be applied to each homogeneous component; then we add up
the expressions that we get.

Remark 3.96. Without any changes, this theory can be carried over to
the more general case of a commutative associative ring K with unity. For
instance, in the case K = Z, we obtain the following result: every symmetric
polynomial with integer coefficients can be presented as a polynomial with
integer coefficients in elementary symmetric polynomials.

Theorem 3.89 together with Viete's formulas allows us to find any sym-
metric polynomial in the roots of a given algebraic equation. Let f E
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K[xj, X2'..., x,a] be a symmetric polynomial and F E K[X1, X2,...,
a polynomial such that

f =
Now, let c1, c2, .... c,t be the roots of the following algebraic equation:

aox"+alx"-1+...+an-Ix '}'an=0, ao#0.
Then

(3.21)
ttltL1, L2'...'

(-ao ao ao

Remark 3.97. Let deg., f = k. Then deg F = k (see Remark 3.93). By
multiplying equality (3.21) by ao, we obtain on the right a homogeneous
polynomial in ao, al, a2, ... , an of degree k.

Example 3.98. Let cl, c2, c3: c4 be the roots of the equation

(3.22) x4+px2+qx+r=0.
We will find the equation of the third degree whose roots are the numbers

d1 = c1c2 + c3C4i d2 = C1 C3 + C2C4,

It has the form

d3 = C1C4 + C2C3.

y3+aly2+a2y+a3=0.
According to Viete's formulas

a1 = -(di + d2 + d3), a2 = d1d2 + d1d3 + d2d3, a3 = -d1d2d3.

We have di = hj(c1, c2i c3, c4), where his h2, h3 are the polynomials of Ex-
ample 3.86. Then

h1 + h2 + h3 = a2i

h1h2 + h1h3 + h2h3 = x?xjxk = 0103 -404,

i#j,k,a<k

hlh2h3 = 0104 + og - 40204.

(The last equality is the result of Example 3.95.) Viete's formulas give

o1(C1,C2,C3,C4) = 0,

o2(C1,C2,C3,C4) =p,

o3(C1,C2,C3,C4) = -q,

o4(C1,C2,C3,C4) = r.

Therefore,

al = -p, a2 = -4r, a3 = 4pr - q2
i.e., our equation has the form

(3.23) y3 - py2 - 4ry + (4pr - q2) = 0.
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Exercise 3.99. Prove that in the notation of Example 3.98,

(CL + C2 - C3 - C4)2 = 4(d1 - p),
(Cl

- c2 + C3 - C4)2 = 4(d2 - p),

(Cl - C2 - C3 + C4)2 = 4(d3 - p)

and

(3.24) (c1 + c2 - c3 - c4)(C1 - c2 + c3 - c4)(cl - c2 - c3 + c4) = -8q

(see Exercise 3.87).

Using the results of this exercise, we can reduce solving equation (3.22)
to solving equation (3.23) (assuming that char K # 2). Namely, by adding
up the following equalities taken with appropriate signs:

C1 + C2 + C3 + C4 = 0,

Cl+C2-C3-C4=2 dl-p,
cl-C2+c3-c4=2 d2-p,
Cl-C2-C3+C4=2 d3-p,

we obtain that

01234=2 (±y1 -pf d2-pf d3-P)

Here the number of minuses must be even. The values of square roots should
be chosen so that their product is equal to -q (see equation (3.24)).

Equation (3.23) is called the cubic resolution of equation (3.22).

3.9. Cubic Equations

In solving a quadratic equation, a major role is played by the discriminant.
Its turning into zero indicates a multiple root, and its sign (in the case of
the field of real numbers), the number of real roots.

Let us explain the meaning of the discriminant D(W) of a quadratic
polynomial

W =aox2+alx+a2 E C[x].
Let cl, c2 be its roots. Then

_ 4a2
D(ip) = a1-4aoa2 = a0

[(a)2
QO

]
= a[(Cl+c2)2-4c,C2j= a (cl-c2)2.

When ao, al, a2 E R, this formula explains very well the connection
between the discriminant and the properties of the roots that we mentioned
above. Namely, three possibilities can occur:
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(i) cl, c2 E R, cl # c2; then cl - c2 is a nonzero real number and
D(cp) > 0;

(ii) cl = c2 E R; then cl - c2 = 0 and D(W) = 0;

(iii) cl =aa ¢ R; then cl - c2 is a nonzero imaginary number and
D(cp) < 0.

More importantly, this formula shows how to determine the discriminant
of an arbitrary polynomial

ca=aox"+alx"-1+...+a"-lx+a" E K[x], ao #0.

Assume first that the polynomial cp has n roots cl, c2, ... , C. E K. We
define its discriminant D(W) by the formula

(3.25) D(,p) = ao2n-2 TT(ci - cj)2.
i>j

(The exponent of ao does not matter much; it will become clear later why
we chose this one.)

In other words, D(W) is a product of ao2n-2 and the value of the sym-
metric polynomial

f = jj(x, - xj)2
i>j

(see Example 3.85) computed at the roots of W. The procedure described in
Section 3.8 allows us to express D(ip) via the coefficients of gyp. Since

degxlf = 2n - 2,

by Remark 3.97, this expression will be a homogeneous polynomial A of
degree 2n - 2 in ao, al, ... , a":

(3.26) D('p) = A(ao,ai,...,an)

In order to find A, we do not need to know that the polynomial cp has
exactly n roots in K. This makes it possible to determine the discriminant
of any polynomial p by formula (3.26).

Remark 3.100. Since f has integer coefficients (see Remark 3.96), A has
integer coefficients too.

Remark 3.101. It can be shown (see Theorem 9.114) that for any poly-
nomial co E Kfx] of degree n, there exists a field extension L of K where cp
has n roots. (For instance, when K = R, one can take L = C.) The above-
described procedure for computing the discriminant does not depend on the
field over which the polynomial V is considered (provided its coefficients lie
in this field). Thus, formula (3.25) is valid for D(W) if we take the roots of
V in L as cl,c2i...,c".
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Definition (3.25) of the discriminant clearly implies that the polynomial
V E C[x] has multiple roots if and only if D(V) = 0. This shows that having
multiple roots is a special case: if one is to select coefficients of a polynomial
randomly, the probability of it having multiple roots is zero.

Now, let V be a cubic polynomial with real coefficients. Let cl, c2, c3 be
its complex roots. Then

D(cp) = ap(Ci - C2)2(Cl - C3)2(C2 - C3)2.

Three possibilities can occur (up to reordering the roots):

(i) cl, c2, c3 are distinct real numbers; then D(ip) > 0;

(ii) cl, c2i c3 E lit, c2 = c3; then D((p) = 0;

(iii) cl E 1k, c2 = CS lit; then

D(W) = a0[(cl - c2)(cl - C2)]2(C2 - C2)2

=a4IC1 -C2I4(C2-C2)2 <0.

Thus, we come to the same conclusion as in the case of the quadratic
equation: all roots of the polynomial W are real if and only if D(W) > 0.

Exercise S.102. Let cp be a polynomial of any degree with real coefficients,
and suppose it has no multiple complex roots. Prove that

sign D(v) = (-1)',

where t is the number of pairs of conjugate imaginary roots of V.

We will explicitly express the discriminant of a cubic equation through
its coefficients. First, let us make several general observations that will
simplify our calculations.

Any polynomial can be made monic by dividing it by its leading coeffi-
cient. This does not change its roots. Furthermore, any monic polynomial

V=n+alx°-l+a2xn-2+..+an-Ix +an
over a field of zero characteristic (or, more generally, over a field whose
characteristic does not divide n) can be transformed into a polynomial of
the form

I=V+b2e-2+...+bn-iy+bn
by substituting

aix=y--.n
Here the coefficient of y"-1 is zero. A polynomial of this type is called
depressed. When n = 2, this approach leads to the formula for the roots of
the quadratic equation. When n > 2, this is not so but at least the equation
(hence, the problem) looks simpler.
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Now we will find the discriminant of the depressed cubic polynomial

(3.27) W = x3 + px + q.

Using the method of Example 3.95, we express the symmetric polynomial

f = (xl - 22)2(x1 - x3)2(22 - x3)2
via elementary symmetric functions al, 02i a3. The polynomial f is homoge-
neous of degree 6. Its leading monomial is x1 2. The following table contains
all possible leading monomials of symmetric polynomials that can occur in
the process described in the proof of Theorem 3.89. The right column con-
tains the corresponding products of elementary symmetric polynomials:

4 2 0 io2
4 1 1 I a3

3 3 0 02

3 2 1 a1a2a3

2 2 2 203

We see that

(3.28) f = 012a22 + aa1 Q3 + b02 + cal0203 + da3.

To compute D(ip), we need to make the following substitution in (3.28):

ai = 0, 02 = P, 03 = -q-
Hence, coefficients a and c will not affect the final result and we do not have
to find them.

To find b and d, let us assign values from the left column of the following
table to variables xl, x2i x3. The rightmost column contains the resulting
equations:

X1 X2 X3 al a2 a3 f
1

2
-1
-1

0
-1

0
0

-1
-3

0
2

4

0

-b=4
-27b + 4d = 0

Thus, b = -4, d = -27, and

(3.29) D(,p) = -4p3 - 27q2.

Example 3.103. How many real roots does the polynomial

W =x3-0.3x2-4.3x+3.9
have? By substituting

y=x-0.1,
we obtain the depressed polynomial

0 = y3 - 4.33y + 3.468
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(its coefficients can be found from Homer's Scheme as in Example 3.23).
Now,

D(ip)=D(ib)=4.4.333-27.3.4682=0.0013>0.
Therefore, the polynomial cp has 3 distinct real roots.

Remark 3.104. The discriminant of a generic cubic equation

cp = aox3 + a1x2 + a2x + a3

equals

D(ip) = aia2 - 4a3la3 - 4aoa2 + l8aoala2a3 - 274a3.

We will explain now how to solve a cubic equation.

Assume that the base field K contains a nontrivial (i.e., different from
1) cubic root of unity; denote it w. Then 1, w, and w-1 are all cubic roots
of unity and by Viete's formula,

(3.30) w+w-1 = -1.

Consider linear polynomials

hl = X1 +Wx2 + W-1x3, h2 = xl +W-1x2 +Wx3.

They interchange when x2 and x3 are interchanged. When x1 and x2 are
interchanged, h1 becomes wh2 and h2 becomes w-1h1. It follows that the
polynomials

f =h3+h2, 9=h1h2
are symmetric. We can express them via elementary symmetric polynomials
as

f =2v?-9ala'2+27v3, g=01 -3a2.

Now let cl, c2i c3 be the roots of polynomial (3.27). Put

dl =cl+wc2+W-1C3, d2 =Cl+W-1C2+WC3.

The above implies

d3l +4=-27q, dld2=-3p,

hence

did2 = -27p3.

Therefore, d3l and dz are the roots of the quadratic equation

x2 + 27qx - 27p3 = 0.
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By solving it, we find

(3.31) d1 = 27 (- 2
+ V 27 + 4

(3.32) da=27[-2- P+ 42

Observe that the expression under the root sign differs from the discriminant
of (3.27) only by the factor of -1.

Adding up the equalities

ct+ c2+ C3 = 0,

c1+ wc2+m-tc3 = d1,

c1+w-1c2+ wc3 = d2

and taking (3.30) into account, we obtain

c1 = 1(d1 + d2).

Since the order of roots is chosen arbitrarily, this formula in fact produces all
three roots. We obtain them all when we assign to d1 and d2 different values
of cubic roots from expressions (3.31) and (3.32) such that the following
relation holds (we deduced it above):

(3.33) d1d2 = -3p-

Therefore, we obtain the following formula:

2 2

01,2,3 = -2 + 57 + 4 + 2
27

+
4

,

called Cardano'a Formula.

Remark 3.105. Cardano's Formula makes sense if it is possible to extract
all of its square and cubic roots. In particular, if we use this formula to
solve a cubic equation with real coefficients, in general we have to work with
complex numbers even if we are interested only in real roots. This happens,
for instance, in the case of a positive discriminant when all roots are real:
here the number under the square root is negative.

Example 3.106. We will find here the roots of the polynomial .0 of Exam-
ple 3.103. We have

3

27 + 4 = 108D(ry) ;t; -0.0000120,
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so under one of the cubic roots in Cardano's formula we have the following
number:

-1.734 + 0.00347

1.73400[cos(7r - 0.00200) + z sin(ir - 0.00200)].

Under the other cubic root we have this number's complex conjugate. Condi-
tion (3.33) means here that when we extract cubic roots, we need to combine
their conjugate values. Recall that when we add complex conjugates, we get
double their real part. Therefore,

cl ; 2 s
1.73400 cos

ir - 0.00200
szz 1.20278,

zr + 0.00200
c2 2

s
1.73400 cos 3 _- 1.20001,

c3 -2 s 1.73400cos
0.00200 N -2.40277.

3.10. Field of Rational Fractions

Just as the ring of integers can be extended to the field of rational numbers,
any integral domain can be extended to a field.

Let A be an integral domain. Consider the set of pairs (a, b), where
a, b E A, b 34 0. Define an equivalence relation on it by the following rule:

(al,bl) - (a2,b2) H alb2 = a2bl.
Clearly, this relation is symmetric and reflexive; let us prove that it is tran-
sitive. If (al, bl) (a2, b2) and (a2, b2) ^- (a3, b3), then

alb2b3 = a2blb3 = a3blb2

Cancelling b2, we have

alb3 = a3bl,

i.e., (al, bl) - (a3, b3).
The above definition implies that

(3.34) (a, b) - (ac, bc)

for any c 36 0. On the other hand, any equivalence (al, bl) - (a2, b2) is a
corollary of equivalences of the form (3.34), as the following chain of equiv-
alences demonstrates:

(al, bl) (alb2, blb2) = (a2bl, blb2) - (a2, b2)

(We first multiplied both entries in (a,, bl) by b2 and then cancelled bl in
both entries of the resulting pair.)
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Define now addition and multiplication of pairs by the following rules:

(at, bl) + (a2, b2) = (alb2 + a2bi, bib2),

(al,bl)(a2,b2) = (aia2,bib2)
We will prove that the equivalence relation defined above agrees with these
operations. By the preceding discussion, it suffices to show that when we
multiply both entries in one of the pairs (al, bl) or (a2, b2) by the same
element c, their sum and product get replaced by equivalent pairs. But it
is clear that when we do this, both entries in the sum and the product are
multiplied by c.

We write the equivalence class containing the pair (a, b) as a "fraction"
or a/b (these are just symbols for now; they do not imply the actual oper-

ation of division). By the above, operations of addition and multiplication
of fractions are performed in accordance with the following rules:

al 2! a, b2 +a2bl al a2 ala2
bl + b2 blb2 bl b2

blb2

We will prove now that fractions form a field with respect to these operations.

Any finite set of fractions has a common denominator, and the addition
of fractions with the same denominator comes down to the addition of their
numerators. Therefore, addition of fractions is commutative and associative.
The fraction I (= b for any b # 0) serves as the zero for addition of fractions,
and the fraction - is the opposite element of the fraction Thus, fractions
form an abelian group with respect to their addition.

Commutativity and associativity of multiplication of fractions is obvious.
The following chain of equalities proves the distributive law for the fractions:

(al __ (al + a2)a3 = alai + a2a3 _ al a3 a3

b + b
a2)

b3

a3

bb3 bb3 b b3 +
a2

b b3

The fraction I is the identity for multiplication of fractions. For a # 0, the
fraction o is the inverse of the fraction -°y.

The field we have just constructed is called the quotient field (or the
field of fractions) of the ring A and is denoted Q(A).

Addition and multiplication of fractions of the form i come down to the
corresponding operations on their numerators. Besides, af =

i
only if a = b.

Therefore, fractions of this form comprise a subring isomorphic to A. We
identify a fraction of the form i with the element a of A and thus obtain
the embedding of the ring A into the field Q(A). Moreover, since

ab_a
b l 1'

the fractions equals the ratio of elements a and b of the ring A in the field
Q(A). Thus, the notations acquires a real meaning.
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In view of (3.34), a fraction does not change when its numerator and
denominator are multiplied or divided (if possible) by the same element of
the ring A. If A is a Euclidean domain, then by cancelling their greatest
common divisor in the numerator and denominator, each fraction can be
presented as with (a, b) = 1. This form of a fraction is called reduced. (By
abuse of the language, the fraction itself is usually called reduced.)

Proposition 3.107. Any form of fraction over a Euclidean domain can be
obtained from. its reduced form by multiplying its numerator and denominator
by the same element.

Proof. Let b = with (ao, bo) = 1. The equality abo = a0b implies that
bojaob, hence bolb. Put b = cbo; then clearly a = cao. O

Corollary 3.108. The reduced form of a fraction over a Euclidean domain
is determined uniquely up to multiplication of the numerator and denomi-
nator by the same invertible element.

The quotient field of the ring Z of integers is the field Q of rational
numbers. The quotient field of the ring K[x] of polynomials over a field K
is called the field of rational fractions (or rational functions) over the field
K and is denoted K(x).

Every rational fraction determines a K-valued function on K defined
whenever its denominator (from its reduced form) is nonzero. Namely, the
value of the fraction f,g E K[x], at c E K is the number 9 C . It is
easy to see that the operations of addition and multiplication of fractions
correspond to similar operations on the functions that they determine (in
their common domain).

Exercise 3.109. Prove that if rational fractions a and f over an infinite
field K determine functions that coincide on their common domain, then

92

fi=1a
91 92

A rational fractions is called proper if deg f < degg. Obviously, the
sum and product of proper rational fractions are themselves proper.

Proposition 3.110. Every rational fraction can be uniquely presented as a
sum of a polynomial and a proper rational fraction.

Proof. Let f, g E K[x], g V1 0. Divide f by g with a remainder in the ring
K[x]:

(3.35) f = qg + r, q, r E K[x], deg r < degg.

Then
r

(3.36) f =q+ 9,
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where s is a proper rational fraction.
Now let

I r9 =gi+yi

be some other presentation of as a sum of a polynomial and a proper
rational fraction. Then

r1 r
q-q1=91

9
and we obtain a contradiction because a nonzero polynomial cannot be equal
to a proper rational fraction.

The polynomial q from equality (3.36) is called the regular part of the
rational fraction 9

Proposition 3.111. Every proper rational fraction of the form

f
where g1, g2,. .., g9 are pairwise relatively prime, can be presented as a sum
of proper rational fractions with denominators g1, g2,. . ., 9s

Proof. We will prove this proposition by induction on s. For s = 2, by
Theorem 3.60 there exist polynomials u1 and u2 such that 91u1 +g2u2 = f.
By dividing this equality by g, we obtain

f u2 u1

9 91 92

Since the fractions is proper, the sum of regular parts of the fractions s
and RL must be zero. We can delete them from our expression and thus
obtain the presentation of s as a sum of proper rational fractions with
denominators 91 and 92.

For s > 2, observe that the polynomials 91 and 92 g, are relatively
prime; hence the first part of the proof implies that s can be presented as
a sum of proper rational fractions with denominators g1 and 92 g,. By
induction, the latter fraction, in turn, can be presented as a sum of proper
rational fractions with denominators 92, .... g,.

Exercise 3.112. Prove that the presentation from Proposition 3.111 is
unique.

We will now describe a theory used in calculus for integrating rational
functions.

Definition 3.113. A rational fractions over a field K is called primitive
if g = pk, where p E K(x) is irreducible, and deg f < deg p.
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In particular any fraction of the form
a acEK

(x - C)k' , ,

is primitive. In the case of K = C, all primitive fractions are of this form.
In the case of K = R, there also exist primitive fractions of the form

ax+b
a b, ,p,-1 1(x2 + px + q)"

where p2 - 4q < 0.

Theorem 3.114. Every proper rational fraction
9

can be presented as a
sum of primitive fractions. More precisely, if g = pi' p2 p;' is the fac-
torization of the polynomial g into irreducible factors, the fraction

9

can be
presented as a sum of primitive fractions with denominators

pi,pi,...,Pi ,P2,p2,...,P2 ,...,ps,P;,...,pe

Proof. By Proposition 3.111, the fraction
9

can be presented as a sum of
proper fractions with denominators pi' , p22, ... , p . Thus, we only have to
prove the theorem for g = pk, where p is an irreducible polynomial. In this
case, after dividing f by p with a remainder, we obtain

f ft
+ pp r1 , degr < degp.

pk
pi -

The second summand is a primitive fraction and the first is a proper ratio-
nal fraction, since it is a difference of such. Continuing further, we finally
present the fraction as a sum of primitive fractions with denominators

R7p, ,pk.

Remark 3.115. By Exercise 3.112, the presentation from the above theo-
rem is unique.

Example 3.116. Let

g = (x - ci)(x - ci)...(x -
c are distinct. Then

f = al + a2 +...+ an

9 x - Cl x -C2 x - Cn

where al, a2,. . .,a, E K. Fix i, 1 < i < n. To find a;, multiply both sides
of the above equation by g and let x = c;. Then we obtain

f (CO

g'(c+)'
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Therefore,

(3 37) .f = f(c)
.

g i=1 g'(Ci)(x - Ci)

(assuming that deg f < degg). It is interesting to notice that by multiply-
ing both sides of this equality by g, we obtain the Lagrange Interpolation
Formula

n (x - C1)...(x - Ci-1)(x - Ci+1)...(x - Cn)f (ci-cl)...(Ci-Ci-1)(Ci-Ci+i)...(ci _Cn)

This formula defines the polynomial f of degree < n that assumes the values
bl, b2i ... , bn at the points C1, C2, ... , Cn-

Exercise 3.117. Prove the equality:

1 - 1n-:

Ci,xn-1 ni_ox
-

where Co, el, , en-i are complex roots of unity of degree n.

Exercise 3.118. Present the fraction x,txx as a sum of primitive fractions
over the field Z p, p prime.

Example 3.119. In the previous example, we used the method of undeter-
mined coefficients. It can be used in a more general situation. For example,
let us present the rational fraction

x
(x + 1)(x2 + 1)2

as a sum of primitive fractions over R. By Theorem 3.114,
x _ a bx+c dx+e

(x + 1)(x2 + 1)2 x + 1 + X2+1 + (x2 + 1)2

where a, b, c, d, a are some real numbers. To find them, we multiply the
above equality by (x + 1)(x2 + 1)2:

x = a(x2 + 1)2 + (bx + c)(x + 1)(x2 + 1) + (dx + e)(x + 1).

By subsequently assigning x = -1 and x = z in this equality, we obtain
-1 = 4a, z = (dz + e)(z + 1) = (e - d) + (d + e)z. Thus,

a=-4, d=e=2.

Also, by comparing free terms and coefficients of x4, we obtain 0 = a + c + e
and 0 = a + b, implying

1b=4, c=-4.
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Finally, we have

135

x 1 x-1 x+1
(x + 1)(x2 + 1)2 - - 4(x + 1) + 4(x2 + 1) + 2(x2 + 1)2'





Chapter 4

Elements of Group
Theory

4.1. Definitions and Examples

In the first chapter we introduced the concept of an abelian group. In par-
ticular, the additive group of a ring, the multiplicative group of a field, and
the additive group of a vector space are all abelian groups. Most important
examples of nonabelian groups come up as transformation groups.

Call a map of a set X into itself a transformation.

Definition 4.1. A transformation group of a set X is a collection G of
bijective transformations of X satisfying the following conditions:

(i)if cp,10 E 0, then po E G;

(ii) ifW EG, then W-1 EG;

(iii) id E G.

Example 4.2. The collection S(X) of all bijective transformations of a set
X is a transformation group. If X is infinite, this group is too big to be
interesting. If X is finite, we can assume that X = {1, 2,. .., n}. In this
case, S(X) is called the group of permutations or the symmetric group on
n elements and is denoted Sn. A permutation a E Sn can be written as a
table

i2 ... ina _
-

(il

21 j2 ... jn

where the top row contains numbers 1, 2,. ., n in some order and the bot-
tom row, their images, i.e., jk = a(ik). Fix the order of numbers in the

137
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top row (e.g., order them increasingly). Then we see that the number of
arrangements is n! (see Section 2.4). Every permutation can be written in
n! ways. Here is an example of multiplication of permutations:

1 2 3 41 2 3 4

(3 4 1 2) (4 1 3 2)

3 3 4

(2 3 1 4)
(4

1 3 2) -
(1 2 3 4

3 1 4)

(We first rewrote the second permutation so that its top row coincided with
the bottom row of the first permutation.)

Example 4.3. The motions of the Euclidean plane E2 (respectively, the
Euclidean space E3) form a group denoted Isom E2 (respectively, Isom E3).
This fact is an axiom in the version of axioms of Euclidean geometry that
takes the concept of a motion as the basic one. In the other version, where
the basic notion is the distance between points, a motion is defined as a
distance-preserving transformation. That the motions form a group is then
an easy theorem.

Remark 4.4. In the previous chapters, we denoted by E2 (respectively,
E3) the set of vectors on the Euclidean plane (respectively, in the Euclidean
space). Here the symbol E2 (respectively, E3) denotes the Euclidean plane
(respectively, space) itself. However, if we fix a point o on the plane (re-
spectively, in the space) which we will call the origin, then we can identify
points with their position vectors with respect to o. We will freely use this
identification in what follows.

Remark 4.5. In the version of axioms of Euclidean geometry that takes the
concept of motion as its basic concept, the statement that every bijective
distance-preserving transformation is a motion is a (not so difficult) theorem.

Example 4.6. The properties of linear maps proven in Section 2.3 imply
that the bijective linear maps of a vector space V form a transformation
group. It is called the general linear group of V and is denoted GL(V).

Example 4.7. Call the following transformation of a vector space V,

to: x'-9 x + a,

a parallel translation of V along the vector a E V. It is easy to see that

(4.1) tatb = to+b, to-' = t_a, id = t0.

These formulas show that the collection Tran V of all parallel translations
of V is a transformation group.
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Exercise 4.8. Consider the collection of all strictly monotone continuous
functions f on the interval (0, 1] such that f (0) = 0, f (1) = 1. Prove that it
is a transformation group of the interval [0, 1].

Studying properties of the operation of multiplication in transformation
groups, we come to the following notion of a group. The difference from the
notion of an abelian group is that there is no requirement of commutativity.

Definition 4.9. A group is a set G with an operation of multiplication that
satisfies the following properties:

(i) (ab)c = a(bc) for any a, b, c E G (associativity);

(ii) there exists an element e E G (the identity) such that ae = ea = a
for any a E G;

(iii) for any a E G, there exists an element a-1 E G (the inverse) such
that as-1 = a-la = e.

A group G is called abelian or commutative if

ab = ba da, b E G.

In the above definition of a group the operation is called a multiplication.
Addition is commonly used for abelian groups only (though, in principle, it
does not matter how we denote and call the group operation).

Just as in the case of abelian groups, we can prove that the identity
and inverse elements are unique in every group. As for division, in a non-
abelian group, one should distinguish between the left and the right division.
Namely, for any a, b E G, the equation ax = b has a unique solution a-lb
and the equation xa = b has a unique solution ba-1.

In any group,
(ab)-1 = b-la-1.

Indeed,
(ab)(b-'a1) = a(bb-1)a 1 = as-1

= e.

Every transformation group is a group with respect to the operation of
taking composition of transformations. Indeed, associativity of this opera-
tion is well known (see Section 2.3), the identity transformation serves as the
identity of the group, and the inverse element is the inverse transformation.

Example 4.10. Nonsingular square matrices of order n over a field K form
a multiplicative group denoted GL"(K). Since there exists a one-to-one cor-
respondence between the square matrices of order n and linear maps of the
space K" (where nonsingular matrices correspond to invertible linear maps
and matrix multiplication corresponds to composition of transformations),
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the group GL,,(K) is isomorphic to the group GL(K") and also to the group
GL(V) for any n-dimensional vector space V over K.

The group GL (K) is the group of invertible elements of the ring L,, (K)
of all matrices. If A is an associative ring with unity, the set of its invertible
elements is a multiplicative group as well. We denote this group as K.
A particular example of such a group is the multiplicative group K' of a
field K (which consists of all nonzero elements of this field). Note that
K` = GLl (K).

Example 4.11. According to formulas (4.1), the group Tran V is isomorphic
to the additive group of the space V.

Example 4.12. A finite group can be defined by its multiplication table.
For instance, the set G = {e, a, b, c} with the following multiplication table:

e

a

b

c

e a b c

e a b c

a e c b

b c e a

c b a e

is an abelian group. Indeed, e is the identity and every element is its own
inverse. Furthermore, it is easy to see that every permutation of elements
a, b, c is an automorphism of G with respect to the operation defined as
above. Thus, if we exclude the trivial cases involving the identity and take
commutativity into account, associativity is implied by the following equal-
ities:

alb = a(ab) = b, (ab)c = a(bc) = e.

Exercise 4.13. Prove that the set G = {A, B, C, D, E, F) with the follow-
ing multiplication table:

A B C D E F
A F E D C B A
B C D E F A B
C B A F E D C
D E F A B C D
E D C B A F E
F A B C D E F

is a group isomorphic to the group S3.

Exercise 4.14. Let G be a set with associative multiplication that contains
an element e (the right identity) such that ae = a for every a E G. Also
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assume that for each a E G, there exists an element a-1 (the right inverse)
such that as 1 = e. Prove that G is a group.

Definition 4.15. A subgroup of a group G is a subset H C G that satisfies
the following conditions:

(i) if a, b E H, then ab E H;

(ii) if a E H, then a1 EH;

(iii) e E H.

Remark 4.16. Since aa1 = e, we can request H to be nonempty instead
of using condition (iii).

Clearly, a subgroup is a group with respect to the same operation.
Comparing Definitions 4.1 and 4.15, we see that a transformation group

of a set X is just a subgroup of the group S(X).

Example 4.17. Let f be a polynomial in n variables. Then

Sym f = {Q E Sn: f(xQ(1),xo(2),...,xv(n)) = f(xl,x2,...,xn)}

is a subgroup of the group Sn. Indeed, let o, r E Sym f . Set xo(i) = yi.
Then

f(x,(1),xaT(2),...,xor(n)) = f(yr(1),Yr(2),...,yr(n)) = f(1!1,y2,...,yn)
= f (xo(1), xo(2), ... , X (n)) = f (x1, x2, ... , xn).

Other subgroup axioms are clearly satisfied. In particular, the polynomial f
is symmetric if and only if Sym f = Sn. As an example of a polynomial with
a smaller but nontrivial symmetry, consider the polynomial f = x1x2+x3x4
(in four variables). It is easy to see that Sym f consists of eight permutations
that preserve the partition of the set {1,2,3,4} into two subsets 11, 2} and
{3, 4}. (The subsets can be permuted as well as elements within each of
them; see also Example 4.81.)

Example 4.18. Similarly, linear transformations of the space Kn that pre-
serve a given polynomial in n variables form a subgroup of GLn(K). Linear
transformations of the space Itn that preserve the polynomial x2+x2+ +xn
are called orthogonal. They form a subgroup of GLn (R) called the orthogonal
group and denoted On. Since in Cartesian coordinates of E2 (respectively,
E3), the polynomial x2 +y2 (respectively, x2 +y2 + z2) expresses the square
of the length of a vector, the orthogonal transformations of E2 (respectively,
E3) are length-preserving linear transformations of E2. The condition

(a
d) E02
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Figure 4.1

means that
(ax + by)2 + (cx + dy)2 = x2 + y2,

a2+c2 = b2+d2 = 1, ab+cd= 0.
The equation a2 + c2 = 1 implies that there exists an angle a such that

a = cos a, c = sina.

The remaining two equations show that

b=±sina, d=:Fcosa.
Therefore,

or

(cosa -sina )
sina cosal

cos a sin a
sina -cosa

In the first case, we already know that 'P is a rotation through the angle
a (see Example 2.57). In the second case, p is a reflection through a line
l forming the angle * with the x-axis (see Figure 4.1). These two cases
differ in that W preserves the orientation of the plane in the first case and
changes it in the second. We will prove in Chapter 6 that every orientation-
preserving orthogonal transformation of the space E3 is a rotation about
some line.

Example 4.19. Motions of the Euclidean plane that preserve the origin o
form a subgroup of the group Isom E2. Denote it H. Since addition of vec-
tors and their multiplication by numbers can be defined in geometric terms,
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an origin-preserving motion is a linear map. Moreover, since it is distance-
preserving, it is orthogonal. Conversely, since the distance between points
a and b is the length of the vector a - b, every orthogonal transformation
preserves distances between points, hence is a motion. Thus, H = 02. Sim-
ilarly, the group of origin-preserving motions of the Euclidean space is 03.

Example 4.20. Let F be a figure on the Euclidean plane. Then

Sym F = {cp E Isom E2 : ca(F) = F}

is a subgroup of Isom E2. It is called the symmetry group of the figure F.
For instance, the symmetry group of a circle whose center is the origin o, is
the group 02. The symmetry group of a regular polygon with center at o
is a subgroup of 02. It contains rotations about o through angles that are
multiples of n and reflections through lines passing through o and a vertex
or a midpoint of an edge. Thus, this group contains 2n elements (n rotations
and n reflections). It is called the dihedral group and is denoted D.

Example 4.21. The expression for the determinant of a product (see The-
orem 2.102) implies that matrices with determinant 1 form a subgroup of
the group GLn(K). This subgroup is called the unimodular group (or the
special linear group) and is denoted SLn(K).

Example 4.22. Integer matrices with determinant 1 form a subgroup of
the group SLn(1R) denoted SLn(Z) (see Exercise 2.109).

Example 4.23. The set of nonsingular diagonal matrices of order n is an
abelian subgroup of the group GLn(K).

Exercise 4.24. Prove that the set of strictly upper triangular matrices of
order n is a subgroup of the group GLn(K).

4.2. Groups in Geometry and Physics

The goal of this section is to acquaint you with the role of groups in geometry
and physics.

In the nineteenth century mathematicians realized that Euclidean ge-
ometry is not the only possible one. Even if we accept that "the space we
live in" satisfies the laws of Euclidean geometry (this is true only as an ap-
proximation), it makes sense to study geometry of other spaces that appear
in mathematics. Thus, the question arises: what do we mean by a geome-
try? The answers are different, depending on which property of Euclidean
geometry we want to generalize.

In particular, one can generalize the concept of the group of motions.
In his 1872 lecture that became known as the Erlangen Program, the Ger-
man mathematician Felix Klein defined geometry as a science that studies
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properties of figures invariant under the action of a given transformation
group.

More precisely, let X be a set and G a group of transformations of X.
Call a figure F1 C X equivalent (or, in the language of elementary geometry,
congruent) to a figure F2 C X with respect to the group G if there exists
W E G such that F2 = c (Fj). The notation is F12F2. Let us check that this
is indeed an equivalence relation:

(i) FNF because F = id(F) and id E G;

(ii) if Fl G F2, i.e., F2 = cp(Fj) for some (p E G, then F2-F1 because
Fi=wP 1(F2)and wp IEG;

(iii) if F1 G F2 and F2 - F3, i.e., F2 = cp(F1) and F3 = &(F2) for
gyp, ,o E G, then F1 £ F3 because F3 = P p(F1) and OW E G.

So we see that the three axioms of an equivalence relation correspond
precisely to the three axioms of a transformation group. One of the princi-
pal problems of geometry is to find the necessary and sufficient conditions
for equivalence of figures (recall triangle congruence theorems in Euclidean
geometry). For this we have to consider quantities that are invariant under
the action of the group G (such as distances between points or the measure
of an angle in Euclidean geometry). Relations between these quantities are
provided by geometric theorems (such as, for instance, the Pythagorean the-
orem or the theorem stating that the medians of a triangle intersect at one
point).

Of course, not every transformation group leads to a geometry which is
interesting and also important for some applications. All such geometries
are connected to quite rich transformation groups, and there are not many
of them. The minimal condition here is transitivity.

Definition 4.25. A transformation group G of a set X is called transitive
if for any x, y E X there exists a transformation cp E G such that y = p(x).

(This means that in the corresponding geometry all points are equivalent
in the sense of the definition of equivalent figures given above.)

Example 4.26. The group Tran V of parallel translations of a vector space
V (see Example 4.7) is transitive. Indeed, for any x, y E V, we have

y = tg-xx.

However, the group 'Ian V is still too small to define an interesting
geometry. An example of an interesting geometry that is different from
Euclidean one is affine geometry.
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Let V be a vector space, W E GL(V), and a E V. Then

(4.2) cota(P-1 = tip(a)-

Indeed, for every x E /V, we have

1)(x) = cp(w-'(x) + a) = x + W(a) = tp(a)x.

Proposition 4.27. For each subgroup G C GL(V), the set

TranV G = {taco: a E V, cp E G}

is a transitive transformation group of the space V.

Proof. For a, b E V, 'p, IP E GL(V), formulas (4.1) and (4.2) imply

(taW)(tb+') = ta(cPtb(P_1) = to+,p(b)(iO?,b E Tran V G.

It follows that

(taW)_1 = t_w-'(a)co E Than V G.

Therefore, Dan V G is a transformation group. It is transitive because its
subgroup Dan V is transitive. 0

In particular, we can take G = GL(V). The resulting group

(4.3) GA(V) = Tran V GL(V)

is called the full affine group of V, and its elements, (bijective) affine trans-
formations. The corresponding geometry is called affine geometry.

In the case of V = E2, we obtain affine geometry of the Euclidean plane.

Proposition 4.28. The group of motions of the Euclidean plane is a sub-
group of the group GA(E2) equal to Than E2.02.

Proof. First of all, observe that all parallel translations and orthogonal
transformations are motions. Now pick a motion f . Let a = f (o). Then the
motion p = t;1 f does not move the point o and thus belongs to the group
02 (see Example 4.19). Therefore,

f =tarpETranE2.O2.

0

The group of motions of the Euclidean space is described similarly.

Corollary 4.29. If figures F1, F2 C E2 are congruent in Euclidean geome-
try, they are congruent in amine geometry.
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The group GA(E2) is larger than the group of motions. An example
of an affine transformation which is not a motion is a homothety (with a
coefficient 76 ±1) or a contraction along an axis. Thus, the group GA(E2)
is richer than the group of motions, and figures that are not congruent in
Euclidean geometry may become congruent in affine geometry. For instance,
all circles are congruent in affine geometry.

Exercise 4.30. Prove that in affine geometry all triangles are congruent.

Affine geometry lacks the notion of distance between two points. How-
ever, as the following exercise demonstrates, in affine geometry, there exists
an invariant of three points lying on the same line.

Exercise 4.31. Prove that an affine transformation preserves the ratio at
which a point divides an interval.

Affine geometry of the Euclidean space is defined similarly.

Within the framework of the transformation group approach to geome-
try, it is possible to construct projective, conformal, Lobachevsky, and other
geometries used in mathematics and its applications.

In physics, transformation groups describe the symmetry of physical
laws, in particular, the spacetime symmetry.

A point in spacetime is given by its three spatial coordinates x, y, z
and the temporal coordinate t, so that the spacetime with a fixed frame
of reference can be identified with l[14. A transition to another frame of
reference gives a transformation of the space JR4. In classical, as well as
relativistic, mechanics (more precisely, in special relativity), there exists
the notion of inertial frames of reference. In them, all mechanical laws
have the same form. Transitions from one inertial frame to others form a
group of transformations of It4. This group determines the laws of physics
uniquely. The difference between classical and relativistic mechanics is that
they consider different transformation groups.

The symmetry group of spacetime in classical mechanics is the Galileo
group defined as follows:

where 03 is the group of orthogonal transformations of spatial coordinates
and H, the group of transformations of the form

(x,y,z,t),- (x+at,y+bt,z +ct,t)
corresponding to transitions to a new frame of reference that moves at a
steady speed and in a straight line with respect to the old one. This descrip-
tion of the Galileo group shows that in classical mechanics time is absolute
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in the sense that the difference of temporal coordinates of two events is the
same in every inertial frame of reference.

According to the principles of relativistic mechanics, the symmetry group
of spacetime is the Poincare group

G = TranR4.03,1,

where 03,1 is the group of linear transformations preserving the polynomial

x2+y2+z2-t2
(in the unit system where the speed of light is 1). The group 03,1 contains
the group 03 that does not act on the temporal coordinate. Nontrivial
examples of transformations from 03,1 are the Lorentz transformations

(x, y, z, t) (x cosh a + t sinh a, y, z, x sink a + t cosh a),

which mix the temporal and the spacial coordinates. Their form shows that
time is not absolute in relativistic mechanics.

The Poincare group first appeared in the works of Lorentz and Poincare
as the symmetry group of the laws of electrodynamics (Maxwell's laws).
Einstein's role was in stating boldly that mechanical laws should have the
same symmetry group.

Transformation groups also lie at the foundation of crystallography and
the theory of elementary particles. For instance, in crystallography they
describe the symmetries of crystal structures, thus, of the physical properties
of crystals (for crystal structures of table salt, diamond, and graphite, see
Figure 4.2).

4.3. Cyclic Groups

Just as in the group llt`, the integer powers of an element g E G can be
defined in any group G as

-k

ifk=0,
ifk<0.

The following property holds:

(4.4)
9k91 = 9k+1

This is clear for k, l > 0. Consider the case of k > 0, 1 < 0, k + l > 0. Then

ykgl = -lyg 1... -1 = y...g = 9k+t

ifk>0,k
-19

k -1 k+!
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Figure 4.2

Other cases are proved similarly.
Equality (4.4) implies that

(9k)_1 = 9
k

Furthermore, by definition e = g°. Thus, the powers of an element g form
a subgroup of the group G. It is called the cyclic subgroup generated by g
and is denoted (g).
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Two distinct cases are possible: either all powers of g are different or
not. In the first case, the subgroup (g) is infinite. Let us concentrate on the
second case for now.

Let gk = g1, k > 1. Then gk-' = e. The least natural number n such
that gn = e is called the order of the element g and is denoted ord g.

Proposition 4.32. If ord g = n, then

(i)9'=e e n1m;
(ii) 9k = 9l k -1 (mod n).

Proof. (i) Divide m by n with a remainder:

m=qn+r, 0<r<n.
Then by the definition of the order,

g'"=(g )Q'9r=9r=e - r=0.
(ii) By the above,

gk=gt gk-c=e nl(k-1) k=1(modn).

Corollary 4.33. If ord g = n, then the subgroup (g) contains n elements.

Proof. Indeed,

(4.5) (g) _ {e, g, 9Z, ... , gn-' }

and all these elements are distinct.

When there does not exist a natural n such that gn = e (i.e., when we
are in the first of the two cases), we put ord g = oo. Observe that ord e = 1
and the orders of other group elements are greater than 1.

In an additive group, we do not speak about powers of an element g
but rather about its multiples and denote them kg. Thus, the order of an
element g of an additive group G is the least natural n such that

ng:=
n

(if such n exists).

Example 4.34. The characteristic of a field (see Section 1.6) is the order
of any nonzero element in its additive group.
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Example 4.35. Obviously, in a finite group the order of any element is
finite. Here we will show how to calculate the orders of elements of the
group S,,. A permutation r E S,, is called a cycle of length p if it cyclically
p e r m u t e s the numbers il, i2, ... , ip, i.e., if r (il) = i2, T (i2) = i3, ... ,-r(ip) _
il, and does not permute the other numbers. The notation is (ili2 ... ip).

6 2 5
R

4

t
3 7

Figure 4.3

Clearly, the order of a cycle of length p equals p. Cycles T1 and r2 are
called disjoint if the sets of numbers that they actually permute have an
empty intersection. In this case, r1Tr = Tyr,. Any permutation decomposes
into a product of disjoint cycles uniquely. For example,

1 2 3 4 5 6
o= (5 6 7 4 8 3 2

7 8)
_(2637)(158),

as shown in Figure 4.3, where the arrows show the action of or. If a permuta-
tion o decomposes into a product of disjoint cycles of lengths pl, p2, ... , Ps,
then

ord o = GCD{pl,p2i... ,p.}.
For example, for the permutation o in Figure 4.3, ord o = 12.

Exercise 4.36. Prove that the order of any element of the group S,, does
not exceed

e"/e 1.44".

Example 4.37. The order of a complex number c in the group C' is finite
if and only if this number is a root of unity. This happens if and only if
Icl = 1 and arg c is commensurable with 7r, i.e., -` E Q.

Exercise 4.38. Prove that tan-1 3 is not commensurable with 7r.

Example 4.39. Let us find the elements of finite order in the group Isom E2
of planar motions. Let p E Isom E2, cd = id. For any point p E E2, the
points

p,''p, W 2p, ... , 0n-1 p
are cyclically permuted by ,p, so their center of mass o is fixed under W.
Therefore, cp is either a rotation about o through an angle 2nk for some k
or a reflection through a line passing through o.
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Example 4.40. We will find here the order of the matrix

A = (0 -1)
1 1

in GL2(It). We have

A2 = (-1 -11 A3 = -E,
1 0 '

thus

A4=-A, A5=-A2, A6=-A3=E,
and ord A = 6. Of course, this example was not chosen randomly: the
probability that a randomly chosen matrix A in GL2(Ilt) has a finite order,
is zero.

Proposition 4.41. If ord g = n, then

(4.6) ord gk =
n

(n, k)

Proof. Let
(n, k) = d, n = nid, k = kid,

so that (ni,ki) = 1. We have

(gk)m =e 4-* nikm -t--* ni Ikim e=:> ni Im.

Therefore, ordgk = ni.

Definition 4.42. A group G is called cyclic if there exists an element g E G
such that G = (g). Every such element is called a generator of the group G.

Example 4.43. The additive group Z of integers is cyclic since it is gener-
ated by the element 1.

Example 4.44. The additive group Z, of residue classes modulo n is cyclic
since it is generated by the element [1].

Example 4.45. The multiplicative group C of complex roots of unity of
order n is cyclic. Indeed, these roots are the numbers

27rk 27rk
£k=cos-+2sin-, k=0,1,...,n-1.

n n

Clearly, ek = el . Therefore, the group Cn is generated by the element Fi .

Exercise 4.46. Prove that the group Zn of invertible elements of the ring
Z (see Exercise 1.50) is cyclic for n < 7 and is not cyclic for n = 8, 9.
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It is easy to see that in an infinite cyclic group G = (g), there are only
two generators: g and g-1. For instance, the only generators of the group
Z are 1 and -1.

We call the number of elements of a finite group G its order and denote
it JGJ. The order of a finite cyclic group equals the order of its generator.
Proposition 4.41 thus implies

Proposition 4.47. The element gk of a cyclic group G = (g) of order n is
a generator if and only if (n, k) = 1.

Example 4.48. The generators of the group C (see Example 4.45) are
called the nth primitive roots of unity. These are the roots of the form ek
for (n, k) = 1. For instance, the 12th primitive roots of unity are el, E5, e7,
ell.

Cyclic groups are the simplest groups imaginable. (In particular, they
are abelian.) The following theorem describes them completely.

Theorem 4.49. Every infinite cyclic group is isomorphic to the group Z.
Every finite cyclic group of order n is isomorphic to the group Z.

Proof. If G = (g) is an infinite cyclic group, then by (4.4), the map f : Z
G, k '-+ gk, is an isomorphism.

Now, let G = (g) be a finite cyclic group of order n. Consider the map

f : Z" -, G, [k] _ gk (k E Z).

Since

[k] = [l] b k =- I (mod n) gk = gt,

the map is well defined and bijective. The equality

f(k+l) = f(k)f(l)

follows from (4.4) as well. Thus, f is an isomorphism. 0

To understand the structure of a group, it is important to know its
subgroups. All subgroups of a cyclic group can be easily described.

Theorem 4.50. (i) Every subgroup of a cyclic group is cyclic.
(ii) In a cyclic subgroup of order n, the order of any subgroup divides n.

For any divisor q of n, there exists one and only one subgroup of order q.

Proof. (i) Let G = (g) be a cyclic group and H its subgroup, different from
{e}. (The trivial subgroup is obviously cyclic.) Observe that if g-m E H
for some m E N, then g'" E H as well. Let m be the least natural number
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such that gm E H. We will prove that H = (g'n). Let gk E H. Divide k by
m with a remainder:

k=qm+r, 0<r<m.
Then

9r = g" (g-) -9 E H,
hence r = 0 by definition of m. Thus, gk = (gm)9

(ii) If IGI = n, the above deduction applied to k = n (in this case
9k = e E H) shows that n = qm. Also,

(4.7) H = {e, gm, g2...... g(9-1)m}

and H is the only subgroup of order q in G. Conversely, if q is a divisor of n
and n = qm, then the subset H defined by (4.7) is a subgroup of order q.

Corollary 4.51. In a cyclic subgroup of a prime order, every nontrivial
subgroup coincides with the whole group.

Example 4.52. In the group Z, every subgroup is of the form mZ, where
m > 0.

Example 4.53. In the group Cn of roots of unity of order n, every subgroup
is a group C. of roots of unity of order q for some q such that q1n.

4.4. Generating Sets

Let S be a subset of a group G. Denote by (S) the collection of all products
of the form

(4.8) 9i`922 "' 9k k, 91,92,...,9k E Si - + - I....
This is the smallest subgroup of G that contains S. Indeed, if a subgroup
contains S, then it should contain all products of the form (4.8). Conversely,
(S) itself is a subgroup as the following equalities demonstrate:

(g1'19212
' ' ' 9kk) (9k+119k+2 ' ' ' 9k+i1) = 9i' 922 ' ' ' 9k+i` ,

I 9i 922... 94JEk)-1 = gk £k ... ga E29i el.

We say that (S) is a subgroup generated by S. In particular, if S consists
of just one element g, then (S) = (g) is a cyclic subgroup generated by the
element g (as defined in the previous section).

Remark 4.54. It is convenient to assume that the products (4.8) contain
the empty product (k = 0) that is equal to e by definition.

Definition 4.55. A group G is generated by a set S or, equivalently, S is
a generating set of G if G = (S).
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Of course, any group G is generated by the subset S = G. However, we
should look for smaller generating sets.

Example 4.56. The dihedral group D (see Example 4.20) is generated by
the rotation ' through the angle 2' and any reflection 0 E D. Indeed,
cp generates the cyclic subgroup C,, of all rotations in D,,. Multiplying
elements of this subgroup by ri, we obtain all reflections in D,,.

The following two theorems contain important examples of generating
sets.

A permutation which is a cycle of length 2 (see Example 4.35) is called
a transposition.

Theorem 4.57. The group S is generated by transpositions.

Proof. Notice that every transposition is the inverse of itself. Thus, the
theorem says that every permutation decomposes into a product of trans-
positions.

When multiplying a permutation

(4.9) o = 1 2 ... n
kl k2 ... kn

by the transposition (ij) from the left, we exchange i and j in the bottom
row. Recall that such an operation itself is called a transposition. Obvi-
ously, by applying successive transpositions, we can reduce any permutation
(ki, k2,. .., to the trivial one: first, if kl 0 1, exchange kl and 1 and
put 1 into the first place, then similarly put 2 into the second place, etc.
Therefore, there exist transpositions rl, T2, . . . , r8 such that

Hence,

U-r1T2...r8.

0

Exercise 4.58. Prove that the group S is generated by adjacent transpo-
sitions (12), (23), ..., (n - In) and that the minimum number of adjacent
transpositions required to produce a permutation o E S as their product
equals the number of inversions in the bottom row of the standard form (4.9)
of or.

Theorem 4.59. The group GL,,(K) is generated by elementary matrices.

(For the definition of elementary matrices, see Section 2.1.)
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Proof. Recall that the inverse of an elementary matrix is also an elementary
matrix (see Section 2.1). Thus, the theorem says that every nonsingular
matrix decomposes into a product of elementary matrices.

By multiplying a matrix A E GL,,(K) by an elementary matrix from
the left, we perform an elementary row transformation. We know that any
nonsingular matrix can be reduced to the identity matrix by elementary
row transformations. I.e., there exist elementary matrices U1, U2,. .., U,
such that

Ue...U2U1A=E.

Hence,
A=U11UZ1...U81.

0
Exercise 4.60. Prove that the group SL2(Z) (see Example 4.22) is gener-
ated by the matrices

ll ! \\R = (? lS= C0 J.
Exercise 4.61. Prove that the group of planar motions is generated by
reflections. (Hint: prove first that any rotation or parallel translation is a
product of two reflections.)

4.5. Cosets

Let G be a group and H its subgroup. We say that elements g1, g2 E G are
congruent modulo H if

(4.10) 91192EH,
i.e., if g2 = g1h for some h E H. The notation is

91 = 92 (mod H).

This definition generalizes that of congruence modulo n in the case of G = Z,
H = nZ.

Let us prove that the relation of congruence modulo H is an equivalence
relation:

(i) g - g (mod H) as g-1g = e E H;

(ii) if gl - g2 (mod H), i.e., gi 192 E H, then 92 - gl (mod H) because

92 191 = (91 192)-1 E H;

(iii) if g1 = 92 (mod H) and 92 = 93 (mod H), i.e., 91 192, 92 193 E H,
then gl - 93 (mod H) because

91 193 = (91 192)(92193) E H.
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The classes of this equivalence are called the (left) cosecs of the subgroup
H in the group G. Clearly, a coset that contains an element g is of the form

gH = {gh: h E H}.

The subgroup H itself is also one of the cosets.
Since multiplication in a group is not necessarily commutative, we ob-

tain, in general, another equivalence relation by considering, instead of
(4.10), a similar condition

(4.11) 9291 1 E H.

The classes of this equivalence are called the right cosets of the subgroup H
in the group G. They are of the form

Hg = {hg: h E H}.

Observe that the inversion g - g-1 establishes a one-to-one correspon-
dence between the sets of left and right cosets. Namely,

(gH)-1 = Hg-1

V

X W
Figure 4.4

Example 4.62. On the complex plane, cosets of the subgroup R in the
additive subgroup C are depicted as lines parallel to the real axis (Figure 4.4,
left).

Example 4.63. Cosets of the subgroup R* of positive numbers in the mul-
tiplicative group C' are rays pointing from the origin (Figure 4.4, center).

Example 4.64. Cosets of the subgroup

T_{zEC":IzI=1}
in the group C' are concentric circles with the center at the origin (Fig-
ure 4.4, right).
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Example 4.65. In the case of G = GL,,(K), H = SLn(K) (see Exam-
ple 4.21), condition (4.10), as well as (4.11), translates into detg1 = detg2.
Thus, the left and the right cosets coincide here (although GL,,(K) is not
abelian). Each of them is a collection of matrices with a fixed value of
determinant.

Example 4.66. In the group G = Sn, consider the subgroup H of permu-
tations that do not move the number n. Permutations al, a2 E Sn belong
to the same left coset of H if ai 1a2(n) = n, i.e., if

al(n) = a2(n).

Therefore, there exist n left cosets P1, P2,..., P,, where

Pk=for ESn:a(n)=k}.
On the other hand, permutations al, a2 E Sn belong to the same right coset
of H if alai 1(n) = n, i.e., if

al 1(n) = a21(n).

Therefore, there exist n right cosets Q1, Q2, ... , Qn, where

Qk = {a E Sn: a(k) = n}.

Observe that the right and left cosets are different (except for Qn = Pn =
H).

The set of left cosets of H in G is denoted G/H. If finite, the number
of cosets of H in G (it does not matter, left or right) is called the index of
the subgroup H and is denoted IG : HI.

Theorem 4.67 (Lagrange's Theorem). Let G be a finite group and H its
subgroup. Then

IGI _ IG: HIIHI.

Proof. All cosets gH contain the same number of elements, which is equal
to IHI. Since they are equivalence classes, they do not intersect, and the
order of G is equal to the product of the number of classes and CHI.

Corollary 4.68. The order of a subgroup of a finite group divides the order
of the group.

We have already proved this in the case of cyclic groups (in Theo-
rem 4.50).

Corollary 4.69. The order of any element of a finite group divides the
order of the group.

Proof. The order of an element equals the order of the cyclic subgroup that
it generates. Thus, this corollary follows from Corollary 4.68.
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Corollary 4.70. Every finite group of a prime order is cyclic.

Proof. In view of Corollary 4.68, such a group coincides with the cyclic
group generated by any element which is not the identity.

Corollary 4.71. If IGI = n, then g" = e for every g E G.

Proof. Let ordg = m. By Corollary 4.69, min. Hence, g" = e.

Example 4.72. If p is a prime number, then the multiplicative group Zp
of the field ZP is an abelian group of order p - 1. Therefore, gP-1 = 1 for
every g E Z. Hence,

aP-1 - 1 (modp)
for any integer a that is not divisible by p. The latter statement is known
as Fermat's Little Theorem. (For a different proof, see Exercise 1.43.)

For any n, the order of the group Zn of invertible elements of the ring Z
equals the number of elements in the sequence 1, 2, ... , n that are relatively
prime to n. Denote IZ;) by w(n). This defines a function cp on the set of
natural numbers. It is called Euler's function. Applying Corollary 4.71 to
the group Zn, we see that

ON =- 1 (mod n)

for any integer a which is relatively prime to n. This generalization of
Fermat's little theorem is known as Euler's Theorem.

It is easy to see that p(125) = 125-25 = 100. Thus, 2100 - 1 (mod 125).
We have already obtained this result in Example 1.48 by direct computation.

Cosets arise naturally in the study of transformation groups.
Let G be a transformation group of a set X. We say that points x, y E X

are equivalent with respect to G (notation: x c y) if there exists an element
g E G such that y = gx. This is a particular case of the equivalence of figures
defined in Section 4.2, thus it is an equivalence relation. The equivalence
class of a point x E X is called its orbit. In other words, the orbit of x is
the set

Gx={gx: pEG}.
In particular, transitive transformation groups (Definition 4.25) are groups
of transformations with only one orbit.

The subgroup
Gx={gcG:gx=x}

is called the stabilizer of x.

Example 4.73. The group of motions of the Euclidean plane is transitive.
The stabilizer of the origin is the orthogonal group 02 (see Example 4.19).
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Example 4.74. Orbits of the group 02 are circles centered at the origin o,
as well as o itself. The stabilizer of a point p # o consists of the identity
transformation and the reflection through the line op. The stabilizer of o is
all of 02.

Example 4.75. The group S,, is transitive on the set {1, 2, ... , n}. The
stabilizer of n is the subgroup H = Sn_1 considered in Example 4.66.

The following theorem generalizes (the first part of) Example 4.66.

Theorem 4.76. There exists a one-to-one correspondence between an orbit
Gx and the set G/Gx of cosets, which maps a point y = gx E Gx to the
coset gGx.

Proof. For gl,g2 E G, we have

91 = 92 (mod Gx) b 91 192 E Gx e=* gi 192x = x 91x = 92x.

Thus, all elements of the same cceet of Gx in G map the point x to the same
point. More precisely, all elements of the coset Gx map x to y = gx and
they are the only such elements. Thus we obtain the correspondence in the
theorem's statement. 0

If finite, the number of elements of an orbit Gx is called its length and
is denoted jGxl.

Corollary 4.77. If G is a finite group, then

(4.12) IGI = JGxIIGx,.

The above formula implies that the orders of stabilizers of all points
of an orbit are equal. Actually, there exists a precise relation between the
stabilizers of points of the same orbit, whether G is finite or not. We state
it as an exercise.

Exercise 4.78. Prove that

Ggx = 9G.9-1

Example 4.79. Let K C E3 be a cube. Consider its symmetry group

G=SymK= {gyp E IsomE3: W(K) = K}.

Clearly, this is a finite group. Moreover, a symmetry of a cube is fully
determined by how it permutes the vertices. Thus we can view G as a
transformation group of the set V of K's vertices. Since a cube is a regular
polyhedron, a vertex of a cube can be mapped into any other vertex by some
transformation in G, i.e., the group G is transitive on V. Therefore,

ICI = 81G,,l
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for a vertex v. Similarly, if we regard the group G as a transformation
group of the set of edges adjacent to v, we can show that

IGvI = 3IGv,eI,

where G,,,e is a subgroup of G that stabilizes the edge e. The group Gv,e
consists of the identity transformation and the reflection through the plane
passing through e and the center of the cube (see Figure 4.5). Thus,

ISymKI=8.3.2=48.
Exercise 4.80. Prove the result from Example 4.79 by treating the group
Sym K first as a transformation group of the set of faces of the cube, and
then as a transformation group of the set of edges of the cube.

Similarly, one can determine the orders of the symmetry groups of other
regular polyhedra (see Figure 4.6). (For the definition of regular polyhedra,
see Section 7.3).

Example 4.81. Let G be a transformation group of the polynomial algebra
K[xl, x2, x3, x4J consisting of all permutations of variables xl, x2, x3, x4 It
is isomorphic to S4, hence IGI = 4! = 24. Consider the polynomial f =
x1x2+x3x4. By permuting the variables, we can obtain from f the following
three polynomials:

x1x2 + x3x4, x1x3 + x2x4, X1X4+ x2x3

This implies that I G f I = 3. Using (4.12), we have

IGI
24

IGJI =
IGfI 3

=8.

Note that if we identify G with the group S4, Gf becomes exactly the sub-
group that we denoted Sym f in Example 4.17.



4.5. Cosets

Figure 4.6
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The relation of congruence modulo n in the additive group of integers
agrees with the operation of addition. This allows us to define addition on
the quotient set. Similarly, we can define an operation on the set of cosets
of a subgroup in some other cases; although, this is not always possible.

Definition 4.82. A subgroup H of a group G is called normal if

(4.13)

or, equivalently,

(4.14)

gH=Hg Vg EG

gHg-1=H V9EC.

The notation is H a G (or G D H).

In order for a subgroup H to be normal, it is sufficient (but not necessary)
that every element of the group G commute with every element of H. In
particular, every subgroup of an abelian group is normal.

Theorem 4.83. The relation of congruence modulo a subgroup H agrees
with the operation of multiplication on the group G if and only if H is
normal.
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Proof. Agreement of the operation of multiplication with the relation of
congruence modulo a subgroup H means the following:

gl = gi (mod H), g2 g2 (mod H) 9192 = 9i92 (mod H)

or, equivalently,
(9ihi)(92h2) = g1g2 (mod H)

for any gi, g2 E G and any h1, h2 E H. By definition, the last condition is
equivalent to

gz 1hi92 E H.
Since 92 can be taken to be any element of G and hl, any element of H, this
is equivalent to condition (4.14) of normality. 0
Exercise 4.84. Prove that every equivalence relation in a group that agrees
with the group operation is the relation of congruence modulo some (normal)
subgroup.

Therefore, if H a G, the operation of multiplication on the group G
defines the operation of multiplication on the set G/H as follows:

(g1H)(92H) = 9192H.

Associativity of the operation on group G survives the passage to the quo-
tient. It also possesses the identity: the coset eH. Every coset 9H has an
inverse, namely, the coset g-1H. Thus, G/H is a group. This group is called
the quotient group of G by H.

Clearly, every quotient group of an abelian group is also abelian.

Example 4.85. The quotient group Z/nZ is the group Z of residue classes.

Example 4.86. Cosets of the subgroup R in C (Example 4.62) are lines
L. = {z: 8'z = a} (a E R). The operation of addition in C/R is given by
La + Lb = La+b, hence the quotient group C/R is isomorphic to the group R.

Example 4.87. Cosets of the subgroup T in the group C' (Example 4.64)
are circles C,. = {z E C*: IzI = r}, r > 0. The operation of multiplication on
C'/T is given by C,.C, = C,.,, hence the quotient group C'/T is isomorphic
to the group R+.

Example 4.88. As we have seen earlier (Example 4.65), the left cosets of
the subgroup in the group coincide with the right cosets.
They are

Ma = {A E GLn(K) : det A = a}, a E K'.
Thus, SL.(K) is a normal subgroup. The operation of multiplication in
the quotient group is given by MaMb = Mab, hence the quotient group
GL,,(K)/SL,,(K) is isomorphic to the group K'.
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Example 4.89. In the group S,,, the subgroup H considered in Exam-
ple 4.65 (it is isomorphic to is not normal whenever n > 3.

Exercise 4.90. Prove that every quotient group of a cyclic group is cyclic.

Exercise 4.91. Prove that the group of diagonal matrices is not a normal
subgroup of whenever n ,-::f 2 and IKI > 3.

4.6. Homomorphisms

Relations between different algebraic structures of the same type are es-
tablished via homomorphisms. The notion of homomorphism is different
from that of isomorphism as it does not require maps to be bijective. We
have already encountered homomorphisms once. Namely, homomorphisms
of vector spaces are precisely their linear maps.

Let us define a group homomorphism rigorously.

Definition 4.92. A homomorphism of a group G into a group H is a map
f : G -+ H such that

f(ab) = f(a)f(b) `da,b E G.

Here are several general properties of group homomorphisms:

(i) f (e) = e. Indeed, let f (e) = h E H. Then

h2 = f (e)2 = 1(e2) = f (e) = h,
implying h = e.

(ii) f (a-') = f (a)-1 because
f(a)f(a-1)

= f(aa-1) = f(e) = e.

(iii) Im f = if (a) : a E G} is a subgroup of H (called the image of the
homomorphism f ). This follows from the definition of a homomorphism and
the above-mentioned properties.

(iv) Ker f = {a E G: f (a) = e} is a normal subgroup of G (called the
kernel of the homomorphism f). Indeed,

a, b E Ker f f (ab) = f (a) f (b) = e2 = e ; ab E Ker f,

a E Kerf
eEKerf,

f(a-1) = f(a)-1 = e-1 = e
a_'

E Kerf,

a E Ker f, g E G f (gag-1) = f (g)f (a)f (g)-1 = f (g)ef (g)-1

= f(g)f(g)-1 = e gag-1 E Ker f.
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(v) P91) = f(92) 91 = 92 (mod Ker f ); in particular, the homomor-
phism f is injective if and only if Kerf = {e}. Indeed,

f(91)=f(92) f(9i192)=e e gi192EKerf
ea 91=g2(mod Kerf).

Therefore, a homomorphism f : G -+ H is an isomorphism (i.e., a bijec-
tion) if and only if Imf = H and Ken f = {e}. This is sometimes written
as f : G Z+ H. If groups G and H are isomorphic (i.e., if there exists an
isomorphism f : G =+ H), we write G = H.

A homomorphism of a group into itself is called an endomorphism.
An isomorphism of a group into itself is called an automorphism.

Example 4.93. Let K be a ring. The distributive law a(b + c) = ab + ac
implies that the map x F-+ ax (left multiplication by a) is an endomorphism
of the additive group of the ring K (a similar statement holds for the right
multiplication).

Example 4.94. Let G be an additive (respectively, multiplicative) abelian
group. For any n E Z, the map x '-+ nx (respectively x -, xn) is an
endomorphism of the group G. (In general, this is not true for a nonabelian
group.) In the case G = G', the kernel of this homomorphism is the group
Cn of nth roots of unity.

Example 4.95. The basic identity for the exponential function implies that
the map x ex is a homomorphism of the additive group R to the multi-
plicative group R'. Its image is the subgroup R+ of positive numbers and
its kernel is trivial.

Example 4.96. The map x '-+ cos x + a sin x is a homomorphism of the
group R to the group C. Its image is T and the kernel, 2aZ.

Example 4.97. The formula for multiplication of determinants implies that
the map

det: GLn(K) -* K*, A det A

is a homomorphism. Its kernel is the unimodular group SLn(K).

Example 4.98. For an element o of the group S,

(il i2 ... in
O = ,

,11 ?2 ... jn
its sign, denoted sign Q, is the product of the signs of permutations in the
top and bottom rows:

signo = sign(il,i2,...,in) sign(j1,j2,...,jn)
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It does not depend on the way we present a since we can pass from any
presentation to another by interchanging columns, and any such interchange
reverses the signs of both the top and the bottom permutations. Hence,
their product is preserved. Note that this statement is basically the same
as Lemma 2.93.

The map
sign: Sn-4C2={fl}, aHsigna

is a homomorphism. Indeed, when multiplying a permutation or by T, we
can assume that the top row of a coincides with the bottom row of r:

a=

Hence,

and

71 j2 ... in

kl k2 ... kn)

xl i2
aT = kl k2

T =

sign aT = sign(il, i2, ... , in) sign(kl, k2, ... , kn)

=[sign(il, i2, ... , in) SAW 1, h, ... , 9n)]
x [sign(.71J2,... , Vin) sign(k1, k2, ... , kn)]

= sign T sign a = sign a sign r.

The kernel of the homomorphism sign is called the alternating group
and is denoted An. The following terminology is also used: a permutation a
such that sign or = 1 (respectively, sign a = -1) is called even (respectively,
odd). Thus A,, is the group of even permutations.

Exercise 4.99. Deduce the following formula for the sign of a cyclic per-
mutation:

sign(ili2 ... ip) = (-1)P-1

Using this, prove that the sign of any permutation a equals (-1)", where
s is the number of disjoint cycles into which a factors out and m, the number
of symbols that it actually permutes (i.e., does not leave in place).

Theorem 4.100 (Homomorphism Theorem). Let f : G --+ H be a group
homomorphism. Then

Im f =G/Ker f.
More precisely, there exists an isomorphism

cp: Im f -4 G/Ker f

that maps each element h = f (g) E Im f to the cosec g Ker f .
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Proof. The proof of this theorem is similar to that of Theorem 4.76. The
property (v) implies that the homomorphism f maps all elements of the
coset g Ker f , and only them, to the element h = f (g) E Im f . This shows
that the map V in the statement of the theorem is well defined and bijective.
It remains to show that cp is a homomorphism.

Let gi,g2 E G, f(gi) = hi, f(92) = h2. Then f(gig2) = hlh2 and

ca(hih2) = g1g2 Ker f = (gi Ker f)(92 Ker f) = W(hl)V(h2)-

Corollary 4.101. For a finite group G,

IGI = I Im f 11 Ker f 1.

(Compare this formula with (4.12).)

Example 4.102. Consider the homomorphism

f : C R, z Q` Z.

We have Im f =1R, Ker f = IR, thus

C/lR ^' R.

This was already shown in Example 4.86.

Example 4.103. Consider the homomorphism

f : C* , R+, z'-' (zI.
We have Imf =R+,Kerf =T= {zEC`: Jzj = 1}, thus

C'/T ^- K.
This was already shown in Example 4.87.

Example 4.104. The map
zf:C'-+T, z

is also a homomorphism. Here Im f = T, Ker f = ]R,.. Thus,

C* /1R+ ... T.

(The corresponding partition into cosets was described in Example 4.63.)

Example 4.105. Consider the homomorphism

f : R - T, x cos 21rx + z sin 2irx

(see Example 4.96). Since Ker f = Z, we obtain

R/Z ^e, T.
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Example 4.106. Just as above, by considering the homomorphism det from
Example 4.97, we see that

K'.
This was already shown in Example 4.88.

Example 4.107. By considering the homomorphism sign from Example
4.98, we see that

Sn/A C2.

In particular, this implies that

IAnI = 2n!.

Example 4.108. By definition, any affine transformation f is a composition
of a parallel translation and a linear map cp (see Section 4.2). The latter is
called the linear part or the differential of f and is denoted df . The formula

(taco)(tb?G) = 1a+,p(b)"aO

from the proof of Proposition 4.27 implies that the map

d: GA(V) GL(V), f - df
is a homomorphism. Clearly,

lm d = GL(V), Ker d = Tran V,

hence,

GA(V)/Tran V - GL(V).

Example 4.109. Let L = A1A2A3 be an equilateral triangle. Establish a
correspondence between Sym D and S3 by the following rule: tp E Sym A
corresponds to a E S3 if

o(Ai) = Ao(i).
We thus obtain a homomorphism

f: SyxA-*S3.

Figure 4.7
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If a planar motion preserves three points which do not lie on the same
line, then it is trivial; thus Ker f = {id}. We will prove now that Im f = S3.
Since Im f is a subgroup of S3 and S3 is generated by transpositions, it
suffices to check that every transposition belongs to Im f , i.e., it is achieved
by a motion Sp E Sym A. This is indeed so: for instance, the transposition
(12) is achieved by a reflection through l in Figure 4.7. Therefore,

Syrn i S3.
Similarly, one can prove that the symmetry group of a regular tetrahedron
is isomorphic to S4 (do this!).

Example 4.110. When we permute the variables x1, x2, X3, X4, we auto-
matically permute the polynomials

(4.15) 2122 + 2324, x123 + x2x4, x1x4 + x223.

By enumerating them in some way, we establish a homomorphism

f : S4 - S3.
Let us prove that Im f = S3. It suffices to check that every transposition
of polynomials (4.15) is performed by a permutation of the variables x1i x2,
X3, 24. This is indeed so: for instance, the transposition of the first two
polynomials (4.15) is performed by the interchange of the two variables x2
and x3.

The subgroup Ker f is the so-called Klein 4-group

V4 = {e, (12)(34), (13)(24), (14)(23)}.

By the homomorphism theorem V4 4 S4 and S4/V4 = S3. It is easy to see
that the group V4 is isomorphic to the group in Example 4.12.

Exercise 4.111. Prove that for any n E N, there exists the following "un-
usual" isomorphism:

C*/Cn - V.
Exercise 4.112. Let p be a prime number. Determine orders of the groups
GL2(Z,) and SL2(Z).

It is obvious that a composition of homomorphisms F -+ G and G H
is a homomorphism F H.

Example 4.113. Consider the composition of homomorphisms

det: GLn(lR) -+ 1R and sign: Ht` C2 = {±1},

where sign denotes the sign of a real number. In this way we obtain the
homomorphism

e : GLn (lit) - C2.
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For n = 2, it has the following geometric meaning. If e(A) = 1 (respectively,
e(A) _ -1), then the linear transformation of E2 determined by the ma-
trix A preserves (respectively, reverses) the orientation in the sense that it
maps every positively oriented basis to a positively (respectively, negatively)
oriented basis. A similar interpretation is possible for the case n = 3 as well.

Example 4.114. The composition of homomorphisms

d: GA(R) - GL(R") = GL"(R) and e: GL,,(R) - C2

is a homomorphism

(4.16) GA(R") C2.

For n = 2 and 3, this allows us to extend the notion of orientation preserving
linear transformations to affine transformations of the Euclidean plane and
space. Namely, an affine transformation preserves (respectively, reverses)
orientation if its differential preserves (respectively, reverses) orientation.
In particular, we can speak about orientation-preserving or orientation-
reversing motions. (We did this before but without defining these notions
rigorously.)

Example 4.115. Let G C Isom E" (n = 2 or 3) be a subgroup that contains
orientation-reversing motions. By restricting homomorphism (4.16) to G, we
see that the subset of orientation-preserving motions in G is a subgroup of
index 2. We denote it by G+.

Example 4.116. In particular, we call the subgroup Sym+ K C Sym K the
group of rotations of the cube K. Since I Sym KI = 48 (see Example 4.79)
and Sym+ K is a subgroup of index 2,

I Sym+ KI = 24.

We will now prove that
Sym+ K ^__ S4.

Enumerate the four diagonals of the cube K in some way. Then one can
associate to a motion ca E Sym+ K the permutation that it performs on the
set of diagonals. We obtain a homomorphism

f : Sym+ K -' S4
Let us prove that Im f = S4; this will imply that f is an isomorphism, since
I Sym+KI = IS4I. For this, it suffices to check that every transposition be-
longs to Im f. This is indeed so: for instance, transposition (12) is achieved
by rotation through rr about the line l in Figure 4.8.

Exercise 4.117. Prove that the group D4 (the symmetry group of a square)
is isomorphic to the group Sym(xlx2+x3x4) (see Examples 4.17 and 4.81).

Exercise 4.118. Prove that SL2(Z2) - S3.
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Figure 4.8

By the definition of the operation on the quotient group GIN, the map

ir: G -s G/N, g '-- gN

is a homomorphism. It is called the canonical homomorphism of the group
G onto the quotient group GIN. Obviously, its kernel is the subgroup N.

Let f : G H be a surjective homomorphism. Put Ker f = N. By
Theorem 4.100, H GIN. Also, if we identify H with GIN via the isomor-
phism in that theorem, the homomorphism f coincides with the canonical
homomorphism from G onto GIN. Thus, Theorem 4.100 can be interpreted
as a statement that the only surjective homomorphisms are the canonical
homomorphisms onto quotient groups.



Chapter 5

Vector Spaces

This and the next two chapters are devoted to linear algebra and related
geometric theory. We already began their study in Chapter 2. Linear alge-
bra is the most applied branch of algebra. Every mathematician needs its
machinery, just like the machinery of calculus.

We should warn you, though, against regarding linear algebra simply as
matrix manipulation. This approach ignores its ideology, in particular, the
geometric ideas that are hidden behind its concepts. A reader who decides
to choose this easy path will forfeit a lot. Such a reader will cover scores of
pages with formulas or overload the computer in situations that look obvious
to those who truly know linear algebra.

Except for the main definitions, several examples, and situations with
statements to the contrary, all vector spaces in the linear algebra chapters
are assumed to be finite-dimensional. Unless the base field is specified, it is
denoted by K.

5.1. Relative Position of Subspaces

Obviously the intersection U fl W of two subspaces U and W of a vector
space V is also a subspace. This is the largest space contained in both U
and W.

Definition 5.1. The sum of two subspaces U and W is the collection of
vectors of the form u + w, where u E U and w E W.

This is the smallest subspace containing both U and W.

171
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Definition 5.2. A basis of a space V agrees with a subspace U if U is a linear
span of some basis vectors (i.e., if it is one of the "coordinate subspaces"
with respect to this basis).

U

Figure 5.1

For instance, the basis lei, e2} agrees with the subspace U in Figure 5.1,
left, but not in Figure 5.1, right.

It is easy to see that for any subspace, there exists a basis that agrees
with it. The following amazing generalization is less obvious but still true.

Theorem 5.3. For any two subspaces U, W C V, there exists a basis of the
space V that agrees with both U and W.

Proof. Let lei, ... , ep} be a basis of UnW. We can complete it to a basis of
U with vectors e,+,,. - -, ek and to a basis of W with vectors ek+1, , ek+l-p
(here p = dim UnW, k = dim U, l = dim W). We will prove that the vectors
el,... , ek+l_p are linearly independent. Then we can complete them to a
basis of V and thus obtain a basis that agrees with both U and W.

Assume that
k+l-p

L.rei = O.

Consider the vector
k k+l-p

x = L:Aliei = - F Xei.
i=1 i=k+1

The first expression for x implies that it belongs to U, and the second means
that it belongs to W. Thus X E U n W and

p k+l-p
x=1: µiei= - E \iei

i=1 i=k+1

Since the vectors e1, ... , ep, ek+1, , ek+l-p are linearly independent, it
f o l l o w s that x = 0 and Ai = 0 f o r i = k + 1, ... ,k + 1 - p. Furthermore,
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since the vectors el, ... , ek are linearly independent, the equality
k

E,\iei = 0
i=1

implies that Ai = 0 for i = 1, ... , k.

Figure 5.2

11

Figure 5.2 illustrates the proof in the case of p = 1, k = l = 2.

Corollary 5.4. dim(U + W) = dim U + dim W - dim(U fl W).

Proof. In the notation of Theorem 5.3, the vectors e1,. .. , ek+t_p form a
basis of the subspace U + W. Hence,

dim(U + W) = k + l - p.

0

In the case of three subspaces, a similar theorem does not hold.

Exercise 5.5. Give an example demonstrating the preceding statement.

To describe the relative position of an arbitrary (finite) number of sub-
spaces is in general difficult (and, in some sense, impossible). However, we
are mostly interested in one particular case where this is easily done.

Definition 5.6. Subspaces U1,. .. , Uk are called linearly independent if the
equality u1+ +uk = 0, ui E Ui, implies that u1 uk = 0; otherwise,
the subspaces are called linearly dependent.
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For two subspaces U and W, the statement of linear independence is
equivalent to the statement U fl W = 0. An expected generalization of this
for a larger number of subspaces is not true.

Exercise 5.7. Give an example of three linearly dependent subspaces such
that the intersection of any two of them is zero.

Definition 5.8. The sum Ul + + Uk of subspaces Ul,... , Uk C V is the
collection of vectors of the form Ui + + Uk, where ui E U.

This is the smallest subspace containing all subspaces U1,. .. , Uk.

Proposition 5.9. The following properties of a system of subspaces U1, ... ,
Uk C V are equivalent:

(i) U1,. .. , Uk are linearly independent;

(ii) the union of bases of subspaces U1,.. . , Uk is linearly independent;

Proof. Let {ei,, ... , ein; } be a basis of the space Ui, i = 1, ... , k.
Assume that there exists a nontrivial linear dependence of vectors eij, i =
1, ... , k, j = 1, ... , ni, e.g.,

Aijeij = 0.
ij

Then the sum of vectors

xi = Jii1eii E Ui, i = 1, ... , k,

is zero and some of them are nonzero. Thus, the subspaces Ul,... , Uk are
linearly dependent.

Conversely, if the subspaces U1,..., Uk are linearly dependent, there
exist vectors xi E Ui, i = 1,... , k, whose sum is zero but some of them
are nonzero. By expressing each of them in the basis of their respective
subspaces, we obtain a nontrivial linear dependence of vectors ei,j.

(ii)b(iii). Since the union of bases of subspaces U1,.. . , Uk spans the
sum Ul+ +Uk, each of the properties (ii) and (iii) is equivalent to the fact
that this union is the basis of the space Ul + + Uk. Thus these properties
are equivalent.

The sum of linearly independent subspaces Ul,... , Uk is called their
direct sum and is denoted Ul ®. . . ® Uk. Every vector u of the direct sum
can be uniquely presented in the form u = Ui + + Uk, where ui E Ui.
Here the vector ui is called the projection of the vector u onto the subspace
Ui.
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Observe that the projection of a vector onto a subspace Ui depends
not only on this subspace but also on other summands in the direct sum
Ul(D ...a) Uk.

Example 5.10. A square matrix A is called symmetric if AT = A and
skew-symmetric if AT = -A. Symmetric (respectively, skew-symmetric)
matrices form a subspace L,+, (K) (respectively, Ln (K)) of the space L, ,(K)
of all matrices. If char K 0 2, every matrix A can be presented as a sum of
a symmetric and a skew-symmetric matrix:

A= 2(A+AT)+ 2(A- AT).

On the other hand, under the same restriction it is obvious that a matrix
which is simultaneously symmetric and skew-symmetric, must be zero. This
implies that

LR(K) = Ln (K) ® Ln (K)

Example 5.11. One can similarly prove that the space of all functions on
the real line is a direct sum of the subspaces of odd and even functions.
(In this example both subspaces and the vector space itself are infinite-
dimensional.)

Example 5.12. Let {el,... , e, } be a basis of a vector space V. Then
V=(ei)®...ED (en)-

The projection of a vector x E V onto (ei) equals xiei, where xi is the ith
coordinate of the vector x in the basis {el, ... , It depends not only on
ei but also on other basis vectors.

Definitions 5.6 and 5.8 can be generalized to the case of infinitely many
subspaces, but there we should consider sums of vectors with only a finite
number of nonzero summands.

Example 5.13. Consider the algebra A = K[xl,... , x"] of polynomials in n
variables. Denote by Ad the subspace of homogeneous polynomials of degree
d. Since any polynomial can be uniquely presented as a sum of homogeneous
polynomials of nonequal degrees, we have

00

A=Ao®AlED A2®...=®Ad
d=0

Moreover, here

(5.1) AdAe C Ad+e.

A presentation of an algebra A as a direct sum of subspaces Ad, d E Z,
that satisfy condition (5.1) is called a grading. An algebra with a grading
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is called a graded algebra. (Some of the subspaces Ad might be zero. For
instance, in the above example Ad = 0 for d < 0.)

Exercise 5.14. Consider the algebra A = Ln(K) of matrices. Denote by
Ad the linear span of matrix units Etj such that j - i = d. Prove that
the subspaces Ad determine a grading of the algebra A. (Here Ad = 0 for
Id]>n.)

5.2. Linear Functions

Vectors spaces and their subspaces are the world where the characters of
linear algebra dwell. Apart from vectors, the simplest of them are linear
functions which, as we will see, are in some sense dual to vectors.

Definition 5.15. A linear function (or a linear form) on a space V is a
function a : V K that satisfies the following properties:

(i) a(x + y) = a(x) + a(y);

(ii) a(Ax) = Aa(x).

In other words, a linear function is a linear map from the space V to the
field K regarded as a (one-dimensional) vector space.

Example 5.16. It is shown in elementary geometry that the function a(x)
= (a, x), a E E3, is a linear function on the space E3.

Example 5.17. The function a(f) = f (xo), xo E X, is a linear function on
the space F(X, K) of K-valued functions on the set X (see Example 1.55).

Example 5.18. The function a(f) = f'(xo), xo E R, is a linear function
on the space CI (R) of differentiable functions on the real line.

Example 5.19. The function a(f) = JQ f (x) dx is a linear function on the
space C[a, b] of continuous functions on the interval [a, b].

Example 5.20. The trace of a square matrix is the sum of entries on its
main diagonal. We denote the trace of a matrix X by tr X. The function
a(X) = trX is a linear function on the space Ln(K) of square matrices.

If xl,... , xn are the coordinates of a vector x in the basis lei,. .. ,
then

(5.2) a(x) = aixi + ... + axn,
where ai = a(ej). Thus, a linear function is completely determined by its val-
ues on the basis vectors. T h e s e a r e called the coefficients of a in this partic-
ular basis. C o e f f i c i e n t s m a y be arbitrary: f o r a n y collection al, ... , an E K,
the function a defined by (5.2) is linear.



5.2. Linear Functions 177

Linear functions form a subspace in the space F(V, K) of all K-valued
functions on V.

Definition 5.21. The space of linear functions on V is called the dual space
of V and is denoted V*.

Let {el, ... , e,) be a basis of the space V. Linear functions El, ... , En E
V' defined as

Ei(x) = xi

are called the coordinate functions with respect to the basis {e1,...,P.}.
They make up a basis of the space V* and we say that it is dual to the basis
{ei, ... , Its definition implies that for any vector x E V,

(5.3) x = EEi(x)ei.

The following condition also defines the dual basis:

Ei(ej) = bit :_
r 1 for i = j,
10 fori#j (Kronecker symbol).

The above discussion implies that dim V* = dim V, hence the spaces V
and V* are isomorphic, although there exists no natural (particular) iso-
morphism between them. However, the second dual space V" = (V*)* is
naturally isomorphic to the space V.

From the definition of the operations in the space V', it follows that for
any vector x E V, the function defined as

fa(a) = a(x)

is linear.

Theorem 5.22. The map x i-+ fz is an isomorphism from the space V to
the space V.

Proof. The definition of a linear function implies that f,,+y = f f + f V and
fk = Afs. It remains to check that the map x r--* fx is bijective. Let
{e1,. .. , e,a} be a basis of V a n d-lei, .. , En} the dual basis of V. Then

fei(Ej) = Ej(ei) = bij,

hence If, I ... , fen} is the basis of V" dual to {e,... , e,,}. The map x i- fx
sends a vector with coordinates xi,... , x in the basis {ei, ... , of V to
the vector with the same coordinates in the basis {el,... , of the space
V**. Therefore, this map is indeed bijective.
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In the sequel, we will identify the spaces V and V** via the above iso-
morphism, i.e., regard every vector x E V also as a linear function on V*
(and write x(a) instead of fr(a)). With this convention, the roles of spaces
V and V* are absolutely symmetric.

Corollary 5.23. Every basis of the space V* is dual to some basis of the
space V.

Exercise 5.24. Prove that linear functions (here n = dim V )
form a basis of the space V* if and only if there exists no nonzero vector
xEVsuch that ej(x)=...=en(x)=0.
Exercise 5.25. Let V be the space of polynomials of degree < n over a
field K. Prove that linear functions eo, el .... en, defined as

ea(f) = f(x=),
where xo, xl,... , x are some elements of K, form a basis of the space V*.
Determine the dual basis of V and show that in this case formula (5.3)
becomes Lagrange's interpolation formula.

Exercise 5.26. Here V is the same as in Exercise 5.25. Assume that
char K = 0. Prove that linear functions defined as

ei(f) = fM (xo),
where xo E K, form a basis of the space V*. Determine the dual basis of the
space V and show that in this case formula (5.3) becomes Taylor's formula.

Remark 5.27. Theorem 5.22 does not hold for infinite-dimensional spaces.
If the space V is infinite-dimensional, then the space V* and, furthermore,
the space V** are of larger dimensions. For instance, let V = K°°, the
space of finitary sequences (see Example 2.43). This space is of countable
dimension. Linear functions on V have the form

a(xi,x2,...) = alxl + a2x2 + ..

(since the sequence (XI, x2, ...) is finitary, the sum is actually finite). Here
al, a2, ... are arbitrary elements of the field K. Therefore, the space V * is
isomorphic to the space of all sequences, which can be shown (try to do it!)
to be of uncountable dimension.

There exists a one-to-one correspondence between the subspaces of the
spaces V and V*: a k-dimensional subspace of V corresponds to an (n - k)-
dimensional subspace of V* (here n = dim V).

Definition 5.28. The annihilator of a subspace U C V is the subspace

U°= {aEV*:a(x)=0dxEU}.
Theorem 5.29. dim U° = dim V - dim U.
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Proof. Let {el, ... , en} be a basis of V such that U = (e1,. .. , ek). Let
{E1, ... , En} be the dual basis of the space V`. Then U° _ (4+1, , en)

Since we identified the spaces V and V", we can assume that the anni-
hilator of a subspace W C V* lies in V. By definition,

W°={xE V:a(x)=0VaEW}.

Theorem 5.30. (U°)° = U for every subspace U C V.

Proof. We continue using the notation of Theorem 5.29. It is clear that
(U°)° _ (el, ... , ek) = U.

Corollary 5.31. Every subspace of V is the annihilator of some subspace
in V.

Consider the following system of homogeneous linear equations:
n

(5.4) E aijxj = 0, i = 1, ... , m.
j=1

W e interpret x1, ... , xn as coordinates of a vector x of an n-dimensional vec-
tor space V in a basis {el.... , en }. Then the system (5.4) can be rewritten
as

a=(x)=0, i=l,...,m,
where al, ... , a.,n E V* are the linear functions that appear on the left-
hand side of the equations in system (5.4). The set of solutions of this
system is the annihilator of the subspace (al, ... , a,,) C V. Observe that
the dimension of this subspace equals the rank of the coefficient matrix of
system (5.4). Thus Theorem 2.63 on the dimension of the space of solutions
of a homogeneous linear system is a direct corollary of Theorem 5.29.

In this context, Corollary 5.31 can be reformulated as follows:

Theorem 5.32. Every subspace is the set of solutions of some system of
homogeneous linear equations.

5.3. Bilinear and Quadratic Functions

Vector space axioms do not incorporate all elementary geometry of vectors in
the Euclidean space since they lack notions such as the length of a vector and
the angle between two vectors. The length and the angle can be expressed
via the inner product of vectors. One of the basic properties of the inner
product of geometric vectors is its linearity in every factor. In this section,
we will consider functions of two vector arguments which generalize the inner
product.
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Definition 5.33. A bilinear function (or a bilinear form) on a vector space
V is a function a : V x V - K that is linear in every argument.

Example 5.34. As shown in elementary geometry, the inner product of
geometric vectors is a bilinear function on the space E3.

Example 5.35. The function
b

a(f,g) _ f(x)g(x)dx
a

is a bilinear function on the space C[a, b].

Example 5.36. The function

a(X, Y) = tr XY

is a bilinear function on the space Ln(K).

Example 5.37. The determinant of matrices of order 2 regarded as a func-
tion of the rows of the matrix is a bilinear function on the space K2.

Let {el,... , en} be a basis of the space V. For vectors x = r_t xiei and
have

(5.5) a(x, y) _ as%X1y}, where a:i = a(ej, ei ).
is

The matrix A = (a=1) is called the matrix of the bilinear function a in the
basis {ej,... , en }. The above formula implies that every bilinear function is
uniquely determined by its matrix.

Formula (5.5) can be restated in matrix notation:

(5.6) a(x, y) = XTAY,

where X and Y are the columns of coordinates of vectors x and y, respec-
tively.

When the basis changes as follows:

(ej,...,en)C,

coordinates of vectors change too:

X = CX', Y = CY'.

Substituting this into (5.6), we obtain

a(x, y) = (X')T CT ACY'.

This implies that in the new basis {e'1, . . . , en}, the matrix of a becomes

(5.7) A' = CT AC.
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The main goal of the theory of bilinear functions is to reduce the matrix
of a bilinear function to the simplest possible form by choosing the right
basis. So, it is important to know the properties of the matrix of a bilinear
function that do not depend on the choice of a basis.

Definition 5.38. The kernel of a bilinear function a is the subspace

Kera={yE V: a(x,y) = 0 1xEV}.
The function a is called nondegenerate if Ker a = 0.

All bilinear functions in Examples 5.34-5.37 are nondegenerate. For
instance, the inner product is nondegenerate because (y, y) > 0 whenever
y 0 0. Nondegeneracy of the bilinear function in Example 5.35 is proved
similarly.

Exercise 5.39. Prove that the bilinear functions in Examples 5.36 and 5.37
are nondegenerate.

Clearly, if {el,... , is a basis of the space V, then

Ker a = {y E V : a(ei, y) = 0, i = 1, ... , n}.

Writing these conditions in the coordinate form, we obtain the system of
homogeneous linear equations whose coefficient matrix is the matrix A of
the function a. Therefore,

(5.8) dim Ker a = n - rk A.

In particular, Ker a = 0 if and only if rk A = n, i.e., when A is nonsingular.
Formula (5.8) implies that the rank of the matrix of a bilinear function a

does not depend on the choice of a basis. It is called the rank of the bilinear
function a and is denoted rk a.

Definition 5.40. A bilinear function a is called symmetric (respectively,
skew-symmetric) if a(x, y) = a(y, x) (respectively, a(x, y) = -a(y, x)) for
x,yEV.

For instance, bilinear functions in Examples 5.34 and 5.35 are symmetric.
The bilinear function in Example 5.36 is also symmetric. Indeed, if

X = (xil), Y = (yij), then

trXY = Exijyii = yyixij = 1/ijxii = trYX.
i,j ij ij

The bilinear function in Example 5.37 is skew-symmetric. Of course, there
also exist bilinear functions that are neither symmetric nor skew-symmetric.

A bilinear function is symmetric (respectively, skew-symmetric) if and
only if its matrix A is symmetric (respectively, skew-symmetric), i.e., AT =
A (respectively, AT = -A).
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Definition 5.41. Let a be a symmetric bilinear function over a field K of
characteristic # 2. The function q : V -+ K defined as

q(x) = a(x,x)

is called the quadratic function (or the quadratic form) associated to a.

In coordinate notation, a quadratic function is written as

(5.9) q(x) = E ai?xixj,

is

i.e., it is a homogeneous polynomial of the second degree.
A symmetric bilinear function a can be reconstructed from the corre-

sponding quadratic function q as follows:

(5.10) a(x, y) = 2 [q(x + y) - q(x) - q(y)]

This bilinear function a is called the polarization of the quadratic function
q

Thus, there exists a one-to-one correspondence between symmetric bilin-
ear and quadratic functions. Using this correspondence, we can transfer all
notions introduced for symmetric bilinear functions (matrix, rank, nonde-
generacy, etc.) to quadratic functions. In the future, speaking of a quadratic
function, we will have in mind the corresponding symmetric bilinear function
and vice versa.

The geometric picture associated with the inner product of vectors can
be useful in the study of arbitrary bilinear functions. This is the origin of
the terminology below.

Let a be a symmetric or a skew-symmetric bilinear function over a field
K of characteristic 34 2. Vectors x, y E V are called orthogonal (with respect
to a) if a(x, y) = 0; the notation is x 1 y. This relation is clearly symmetric:
if x 1 y, then y 1 x. Observe also that when a is skew-symmetric, every
vector is orthogonal to itself.

Definition 5.42. The orthogonal complement of a subspace U (with respect
to a) is the subspace

U1= {yEV:a(x,y)=0`dxEU}.

In particular, V1 = Ker a.

Proposition 5.43. If the function a is nondegenerate, then

dim U1 = dim V - dim U and (U1)1 = U.
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Proof. Fix a basis {e1, ... , ek} of U. Then

(5.11) U1 = {y E V : a(ei, y) = 0, i = 1, ... , k}.

Rewriting these conditions in the coordinate form, we obtain a system of
homogeneous linear equations. They are linearly independent because, for
any Al, ... , Ak some of which are nonzero, the linear function

k
//

k

Aia(ei, y) = a Aiei, y

is nonzero (due to the nondegeneracy of a). Hence,

dimU1=n-k,
where n = dim V.

This formula also implies

dim(U1)1 = n - (n - k) = k = dim U.

Clearly, (U1)1 D U. Thus, (U1)1 = U. 0

Definition 5.44. A subspace U is nondegenerate with respect to the func-
tion a if the restriction of a to U is nondegenerate.

Proposition 5.45. V = U ® U1 if and only if the subspace U is nondegen-
erate.

Proof. It follows from (5.11) that for any U,

dim U1 > dim V -dim U.

On the other hand,
UflU1 = Keralu.

Therefore, if U f1 U' = 0, the subspace U is nondegenerate. Conversely, if
U is nondegenerate, then U fl Ul = 0. Thus,

dim(U + Ul) = dim U + dim U1 > dim V,

implying U + Ul = V. 0

Consider now a symmetric bilinear function a.

A basis {ej, ... , en } of a space V is called orthogonal (with respect to a)
if all its vectors are pairwise orthogonal. The matrix of a is diagonal in an
orthogonal basis and the function or itself and the corresponding quadratic
function q have the form

(5.12) a(x,y) = a1x1y1 + ... + anxnyn,

(5.13) q(x) = aix2 + ... + anxn.
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Theorem 5.46. For every symmetric bilinear function, there exists an or-
thogonal basis.

Proof. We will prove this theorem by induction on n = dim V. When
n = 1, there is nothing to prove. Let n > 1. If a 0, again, there is nothing
to prove. If a # 0, then q # 0 by (5.10). That is, there exists a vector el
such that

a(el,el) = q(el) j4 0.

By Proposition 5.45,
V = (el) ® (el)l.

By the induction hypothesis, there exists an orthogonal basis {e2i ... , en }
of the space (el)l. By adding the vector el to it, we obtain an orthogonal
basis {e1, e2,...,en} of V. 0

The following theorem describes a more explicit way of constructing an
orthogonal basis (under some extra conditions).

First, let {el,... , en} be a basis of the space V and A the matrix of
the function a in this basis. For each k, we can restrict a to the subspace
Vk = (el,... , ek). Denote by Ak the matrix of this restriction in the basis
{ e 1 , . .{e1, . , ek} of Vk. Notice that Ak is the upper left comer of the matrix A.
Call the number 5k = det Ak the corner minor of A of order k. Also, let
Vo=0,5o=1.
Theorem 5.47. If all corner minors bl, ... , 5n of the matrix A are nonzero,
then there exists a unique orthogonal basis { f 1, ... , fn} of the space V such
that

(5.14) fk E ek + Vk_1i k = 1,...,n.

Also,

(5.15) q(fk) = a(fk, fk) = akk1 k = 1, ... , n.

Proof. We will prove this theorem by induction on n. For n = 1, we have

f1 = el, 9(h) = 61 (=
1810

For n > 1, apply first the induction hypothesis to the basis {e1,...,en_1}
of the space Vn_1. Let {f1i...,fn_1} be the basis of Vn_1 that satisfies the
conditions of the theorem. Now we have to construct the vector fn such
that

n-1
fn =en+EAifi E en+Vn_1.

i=1
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Observe that

q(f`)

_ b=

bi-1 # 0 for i = 1,...,n - 1.

Hence, the following orthogonality condition:

0 = (fn, fi) _ (en, fi) + Aiq(fi), i = 1, ... , n - 1,

must be satisfied for the right choice of al, ... , A.-, and this choice is unique.
Since fn 0 Vn_1i we see that {fl,..., fn} is a basis of V.

It remains to check that equality (5.15) holds when k = n. The transi-
tion matrix from the basis {el,... , en} to the basis { fl, ... , fn} is (upper)
unitriangular, i.e., triangular with l's on the diagonal. Hence, its determi-
nant equals 1 and formula (5.7) implies that the determinant of the matrix
of a does not change when the basis is changed. However, in the new basis
{fl, . . . , fn}, the matrix of a is diagonal and its diagonal entries are equal
to

Therefore,

q(fl), ..., q(fn-1), q(fn)

bn = q(fl)...q(fn-1)q(fn)-

The same argument applied to the restriction of a to the subspace Vn_1 (or,
for that matter, the induction hypothesis) implies that

a1.q(fn) =
J.

Figure 5.3

The algorithm for constructing the orthogonal basis that we described in
the above theorem is called the Gram-Schmidt orthogonalization procedure.
Figure 5.3 shows its application for the case of the inner product in E3.

Let {e1, ... , en} be an orthogonal basis of a space V with respect to a
function a. By scaling vectors e;, we can multiply the numbers ai = q(ei)
by squares of nonzero elements of the field K. Moreover, when permuting
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the basis vectors, we permute these numbers as well. However, as the proof
of Theorem 5.46 shows, there is much more freedom in the choice of an
orthogonal basis. How do the a='s change with all this freedom? The answer
to this question depends on the field K.

Let K = O. Then by scaling the basis vectors, we can make the a;'s
equal to either 0 or 1. Then, after a suitable permutation, the function q(x)
assumes the so-called normal form :

q(x)=xi+...+xr.

The number r is an invariant here, as r = rk q.
Now let K = R. Then by scaling the basis vectors, we can make the ai's

equal to either 0 or ±1. Again, after a suitable permutation, we obtain the
function in the normal form:

(5.16) q(x) = xi + ... + xk - xk+1 - x +i

The sum k + I = rk q is an invariant but are k and 1 invariants as well? To
answer this question, we need to introduce the following important notion.

Definition 5.48. A real quadratic function q is positive definite if q(x) > 0
for x > 0. A real symmetric bilinear function is positive definite if the
corresponding quadratic function is positive definite.

For example, the inner product of geometric vectors is a positive definite
symmetric bilinear function.

One similarly defines negative definite quadratic and symmetric bilinear
functions.

Obviously, a positive definite quadratic function has the normal form
1 1.

Theorem 5.49. The index k in the normal form (5.16) of a real quadratic
function q is the maximum dimension of a subspace on which q is positive
definite.

Proof. It is clear that q is positive definite on the k-dimensional subspace
(el, ... , ek). Now let U be a subspace on which q is positive definite. Let
W = (ek+l, ... , en). Since q(x) < 0 for every x E W, we have U n W = 0.
It follows that dim U < k.

Similarly, I is the maximum dimension of a subspace on which q is neg-
ative definite.

Corollary 5.50 (The Law of Inertia). The numbers k and l in the normal
form (5.16) of a real quadratic function q do not depend on the choice of a
basis in which this function has the normal form.
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These numbers are called, respectively, the positive and the negative in-
dices of inertia of the quadratic function q (and the corresponding symmetric
bilinear function a). The pair (k, 1) is called the signature of q (or a).

Example 5.51. Consider the quadratic function q(x) = x1x2. With the
following (nonsingular) change of coordinates:

X1 = xi + x2, x2 = x1 - x2,

it becomes q(x) =x'12 - x'22. Thus, its signature is (1, 1).

Exercise 5.52. Find the signature of the symmetric bilinear function from
Example 5.36 (when K = R).

If its assumptions are satisfied, Theorem 5.47 allows us to find indices
of inertia of a real quadratic function from the corner minors 61, ... , 5,a of
its matrix in some basis.

Theorem 5.53 (Jacobi Method). If all corner minors 5k of a matrix of a
real quadratic form q are nonzero, then the negative index of inertia of q
equals the number of changes of sign in the sequence

(5.17) 1, 61, b2, ..., bn.

(For the definition of the number of changes of sign in a sequence of real
numbers, see Section 3.4.)

Proof. The assertion follows directly from Theorem 5.47.

Observe that the function in the statement of this theorem is necessarily
nondegenerate, so the sum of its indices of inertia equals n.

Corollary 5.54. A real quadratic function is positive definite if and only if
all corner minors of its matrix are positive.

Proof. If all corner minors are positive, then, in particular, they are nonzero
and the Jacobi method shows that the function is positive definite. Con-
versely, if the function is positive definite, then its restriction to any of the
spaces Vk (in the notation of Theorem 5.47) is also positive definite and
thus nondegenerate. This implies that all of its corner minors are nonzero.
Applying the Jacobi method, we see that they all are positive.

Remark 5.55. We can modify the process of orthogonalization (try it) so
that the Jacobi method still work even when some of the corner minors
are zero. The only requirement is that no two consecutive numbers in the
sequence 61, b2, ... , 6n be both zero (in particular, bn = 0 is allowed but if
so, 8n_1 must be nonzero).
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As we saw in the cases K = C and K = R, the only possible changes in
the diagonal form of the matrix of a quadratic form come from scaling and
permutations of the basis vectors. However, this is not always the case.

Let K = Zp be the field of residue classes modulo a prime number p 0 2.
It is known (Theorem 9.34) that ZP is a cyclic group. Therefore, (Z;)2 =
{a2: a E Z;} is a subgroup of index 2. Its elements are called quadratic
residues and the elements of the other coset, quadratic nonresidues. Fix a
quadratic nonresidue e E ZP.

Theorem 5.56. Every nondegenerate quadratic function q over the field Zp
(p 34 2) can be reduced to one of the following two forms:

xl+...+x2 n_1+xn,
xl+-+x2 n_1+ex2 n.

The particular form depends on whether the determinant of the matrix of q
is a quadratic residue.

Lemma 5.57. For every nondegenerate quadratic function q in a vector
space of dimension n > 2 over the field Zp, the equation q(x) = 1 has a
solution.

Proof. It suffices to consider/ the case n = 2. We can assume that

q(x) = alx2 + a2x2,

where a1i a2 3A 0. The equation q(x) = 1 can be presented as

alxi = 1 - a2x2.

For all possible values of x1, the left-hand side of the above equation assumes
the total of 2 distinct values. Similarly, for all possible values of x2, the
right-hand side assumes the total of Y distinct values. Since

p21+p21
>p,

there exist x1 and x2 such that the left- and the right-hand side assume the
same value.

Proof of Theorem 5.56. Following the proof of Theorem 5.46, we will
choose the vector e1 so that q(e1) = 1. For n > 1 this is possible by the
above lemma. When we change the basis, the determinant of the matrix of
q gets multiplied by the square of the determinant of the transition matrix.
Hence q(en) will be a quadratic residue or nonresidue depending on whether
the determinant of the matrix of q is such in any basis.
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Exercise 5.58. Prove that a (not necessarily nondegenerate) quadratic
function q over the field Zp can be reduced to one of the following two
forms:

2 2X,

x12 2 2+ . + xr. + exr,
where r = rk q.

We now turn to skew-symmetric functions. Quite surprisingly, their
structure does not depend on the field K.

Consider a skew-symmetric bilinear function a on an n-dimensional vec-
tor space V.

A basis {el,... , e,,} of V is called symplectic (with respect to a) if

a(e2k_i, elk) = -a(e2k, e2k_,) = 1 for k = 1,. .. , m,

a(e;, ej) = 0 in all other cases.

In other words, in this basis the matrix of a is

1 0 1

-1 0

k

O

O 0

0/

where the number of blocks on the diagonal is m. Clearly, here rk a = 2m.

Theorem 5.59. For every skew-symmetric bilinear form, there exists a
symplectic basis.

Proof. We will prove this claim by induction on n. For n = 1, there is
nothing to prove. Let n > 1. If a - 0, again, there is nothing to prove.
If a ; 0, there exist vectors el and e2 such that a(el, e2) # 0. After
multiplying one of these vectors by a suitable number, we have

a(el,e2) = -a(e2,el) = 1.
The matrix of the restriction of a to (el, e2) has the form (_i o) in the basis
{el, e2}. In particular, it is nonsingular. By Proposition 5.45,

V = (el,e2) ® (el,e2)l.
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By the induction hypothesis, there exists a symplectic basis {e3, e4,. - ., en}
in (el, e2)l. By adding to it vectors el and e2, we obtain a symplectic basis
{el, e2, e3, e4, ... , of the space V. 0
Corollary 5.60. The rank of a skew-symmetric bilinear form is always
even.

5.4. Euclidean Spaces

The properties of operations on geometric vectors, including those of the
inner product, are most fully reflected in the concept of a Euclidean vector
space.

Definition 5.61. A Euclidean vector space is a real vector space with a
fixed positive definite symmetric bilinear function.

Usually this function is called the inner product and is denoted (, ).

Example 5.62. The space of geometric vectors with the standard inner
product.

Example 5.63. The space Rn with the inner product

(x,y) = xiyl + . + xnyn,

where x = (x1, ... , xn), Y = (Yi, ... , Yn).

Example 5.64. The space C2[0,11 of continuous functions on the interval
[0, 1] with the following inner product:

(5.18) (f,9) = j f(x)9(x)dx.1

It is possible to define the length of a vector and the angle between two
vectors in a Euclidean space. This is done so that in the case of geometric
vectors, these notions coincide with the standard length and angle. Namely,
the length lxi of a vector x is defined by the formula

IxI = (x, x).

To define the angle, we first have to prove the following

Proposition 5.65. For any two vectors x, y in a Euclidean space,

(5.19) I(x,y)I 5 ixIlyi,

and equality is attained if and only if x and y are proportional.

Inequality (5.19) is called the Cauchy-Schwarz inequality.
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Proof. If y = Ax, then

I (x,y)I = IAII(x,x)I = IAIIxI2 = IxIM.

If the vectors x and y are not proportional, then they form a basis of a
two-dimensional space. The matrix of the inner product on this space in the
basis {x, y} is

(X, X) (X, y))

(x, Y) (Y' y))

Since the inner product is positive definite, the determinant of this matrix
is positive, implying

1(x' y)1 < 1xIM.

13

The angle iy between two nonzero vectors x and y in a Euclidean space
is defined as

(x, y)

IxIIvI

In particular, the angle iy equals 0 or rr if and only if the vectors x and y
are proportional; iy = ' if and only if x and y are orthogonal.

The Cauchy-Schwarz inequality is a particular case of a more general
inequality that concerns an arbitrary finite system of vectors {a, i ... , ak} in
a Euclidean space.

Definition 5.66. The matrix

(al, al) (al, a2) ... (al, ak)

G(al,... , ak) = (a2, al) (a2, a2) ... (a2,ak)

(ak,al) (ak,a2) ... (ak,ak) I

is called the Gram matrix of the system jai,..., ak}.

Theorem 5.67. For any vectors al,..., ak in a Euclidean space,

det G(al,... , ak) > 0,

and equality is attained if and only if the vectors al, ... , ak are linearly de-
pendent.

Proof. If Fi Aia; = 0, then Ei A,(ai, aj) = 0 for all j, implying that the lin-
ear combination of rows of G(ai,... , ak) with coefficients A1, ... , Ak is zero.
Thus, if vectors a1i . . . , ak are linearly dependent, then det G(al, ... , ak) = 0.
If they are linearly independent, then just as in the case k = 2, we can prove
that det G(al, ... , ak) > 0.
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Exercise 5.68. Find the relation between the dihedral angles of a tetrahe-
dron by considering the Gram matrix corresponding to the system of unit
vectors orthogonal to the faces. Using this relation, determine the angle
between two faces of a regular tetrahedron.

Definition 5.69. A basis of a Euclidean space where the inner product has
the normal form (see Section 5.3) is called orthonormal.

A basis {el,... , en } is orthonormal if either of the following equivalent
conditions holds:

(i) the inner product in this basis is of the form

(x, y) = XIYI + + xnyn;

(ii) the inner square in this basis is of the form

(x,x)=xi+...+xn;

(iii) the matrix of the inner product in this basis (i.e., the Gram matrix
G(el,... , en)) is the identity matrix;

(iv) (ei, ej) = bij;
(v) the basis vectors are pairwise orthogonal and have length 1.

The general theory of Section 5.3 implies that every Euclidean space has
an orthonormal basis. Of course, such a basis is not unique. Let us describe
all orthonormal bases given a choice of one orthonormal basis {el,... , en}.

Let
(e...... en) _ (el,...,en)C.

Then the matrix of the inner product in the basis {ei, ... , e;,} is

CT EC=CTC

(cf. formula (5.7)). Therefore, the basis {e,.. . , e;, } is orthonormal if and
only if

(5.20) CTC = E.

Clearly, the following properties of the matrix C are equivalent:

(i) CTC = E;

(ii) Ek ckickj = bij for all i, j;

(iii) CT = C-1;
(iv) CCT = E;

(v) Ek cikcjk = bij for all i, j.
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Definition 5.70. Matrices satisfying these equivalent properties are called
orthogonal.

Observe that equality (5.20) implies that detC = ±1 (but not vice
versa).

The restriction of the inner product to any subspace U of a Euclidean
space V is also positive definite, hence it is nondegenerate symmetric bilinear
function. Proposition 5.45 implies that

V=U®Ul.

It follows that every vector x E V can be uniquely written as

(5.21) x=y+z, yEU, zEU1.

The vector y is called the orthogonal projection of x onto U and is
denoted pry x. The vector z is called the orthogonal component of x with
respect to U and is denoted ortu x.

If lei,. . -, ek} is an orthonormal basis of the subspace U, then the pro-
jection pru x can be found as follows:

(5.22)
k

prv x = E(x, ei)ei
i=1

More generally, if {e,.. . , ek} is an orthogonal (but not necessarily orthonor-
mal) basis of the subspace U, then

(5.23) prux
_ k (x, e)

i=1
(ei, e;)e,

To construct an orthogonal basis of a Euclidean space V, one can use
the method of orthogonalization described in Theorem 5.47. In the previous
notation, if lei,. .. , en} is a basis of the space V, then the basis If,,. .. , fn}
obtained in the process of orthogonalization is as follows:

(5.24) fk = ortvk-, ek, k = 1,...,n.

Since { f1i ..., fk_1} is an orthogonal basis of the subspace Vk_1i we can find
the projection prvk_, ek-and thus the vector fk-from formula (5.23).

Example 5.71. Let V be the space of polynomials of degree < 3 with the
inner product defined as in (5.18). We will apply orthogonalization to the
basis

3e4 = x.el = 1, e2 = x, e3 = x2,
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. We haveNotice that (ei, ei) = i+r-77
= 1,fi = el = 1, U1, fl)

f2 = e2 - (fi, h)
fl = x 2 (f2, f2) = (f2, e2) = 2,

1221:21f2 _ (e3, fl) 2 1 1

f3 = e3 -
(f2,f2)(fl,fl)fl

-
- x - x + 6, (f3,f3) _ (f3,e3) =

180'

_ (e4, f3)f3 _ (e4, f2)f2 _ (e4, fl) 3 3x2 3 I
A = ea

(f3, f3) (f2, f2)
(fl,fl)fl

_- x - 2 + 5x - 20,

(f4, f4) = (f4, e4) = 12800
Exercise 5.72. By applying orthogonalization to rows of a matrix prove
that every matrix A E can be uniquely presented as A = OB,
where 0 is an orthogonal matrix and B is a triangular matrix with positive
elements on the diagonal.

We define the distance p between two vectors of a Euclidean space as

P(x,y)=Ix-yI
The distance satisfies the axioms of a metric space. In particular, the triangle
axiom holds:

(5.25) P(x,z) : AX, Y) + P(y,z)

This inequality follows from

(5.26) Ix + yI <- IxI + IyI,

and, in turn, the latter inequality is easily deduced (do it!) from the Cauchy-
Schwarz inequality.

The distance between two subsets X and Y of a metric space is defined
as

p(X,Y) = inf p(x, y)
.EX,gEY

Theorem 5.73. The distance from a vector x in a Euclidean space V to a
subspace U C V equals I ortu xI, and pru x is the vector of U nearest to x.

Proof. In Figure 5.4, y = pru x, z = ortu x. For any y' E U, y' 34 y, we
have

P(x, Y) = Iz'I = 5? + Iul2 > IzI = P(x, Y)-
0

Example 5.74. Computations in Example 5.71 imply that the polynomial
Jx2 - 3x + 0 is the nearest one to x3 in the metric of the space C2[0, 1].
The distance between them is
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Figure 5.4

The following theorem contains the explicit expression for the distance
between a vector x and a subspace U determined by its basis {e], ..., ek}.

Theorem 5.75. (p(x, U))2 =
det G(el,... , ek, x)
det G(el, ... , ek)

Proof. If X E U, then p(x, U) = 0 and det G(el,... , ek, x) = 0. Thus, in
this case, the theorem is true.

Assume x 0 U and put z = ortt x. Applying Theorem 5.47 to the space
U ®(x), we have

IzI2 = (xe z) =
5k+l = det G(el,... , ek, x)

bk det G(el,...,ek)
0

This formula can be used to calculate the volume of a parallelepiped in
a Euclidean space.

A parallelepiped on vectors al,. .., a,a in a Euclidean space is the set

The base of this n-dimensional parallelepiped is the (n -1)-dimensional
parallelepiped P(al,... , a,a_i) and its height is the length of the vector
ort(a. .., an. For n = 2, 3, this definition agrees with the standard one
from elementary geometry. Keeping in mind the well-known formulas for
the area of a parallelogram and the volume of a three-dimensional paral-
lelepiped, we give the following inductive definition:

Definition 5.76. The volume of an n-dimensional parallelepiped (n > 1)
is the product of the volume of its base and its height. The volume of a
one-dimensional parallelepiped P(a) is the length of the vector a.

The volume of a parallelepiped P is denoted vol P.

Theorem 5.77. (vol P(al,... , det G(al,... $ an)-
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Proof. We will prove this theorem by induction on n. For n = 1, it holds
by definition. For n > 1, the definition says that

volP(a1i...,an) = volP(a1,...,an_1) h,

where his the length of the vector ort(a, . an_3) an, i.e., the distance from the
vector an to the subspace (a,,. . . , an-1). The induction hypothesis together
with Theorem 5.75 implies

(vol P(al, ... , an))2 = det G(a1,... , an-1) .
det G(al,... , an-1, an)

det G(al, ... ,
det G(al,. , an).

C3

In particular, we see that while the base of a parallelepiped depends on
what vector we count "last," the volume of the parallelepiped as defined
above depends only on the parallelepiped itself. Together with the expres-
sions for the area of a parallelogram and the volume of a three-dimensional
parallelepiped, this seems like a reasonable motivation for the above defini-
tion. However, the really convincing motivation comes from measure theory,
which explains what quantity in general should be called the volume of a
set.

Assume that vectors al,.. . , an are expressed via vectors of an orthonor-
mal basis {el, ... , en} with the help of a matrix A:

(a1,..., a,) _ (el,...,en)A.

Theorem 5.78. vol P(a1, . . , an) I det Al.

Proof. This follows from the equality

G(a1,...,an) = ATEA= AT A,

which implies
det G(al, ... , an) = (detA)2.

0

This equality can be regarded as the "geometric meaning" of I det Al.
As for the sign of det A, it can be interpreted as the orientation of the
system {a1i...,a,,} (with respect to the basis {e1,...,e,,}). Recall that
when introducing determinants of order n in Section 2.4, we relied on the fact
that determinants of order 2 and 3 give the oriented area of a parallelogram
and the oriented volume of a parallelepiped, respectively.

We showed in Section 2.2 that the structure of a vector space (over a
given field) depends only on its dimension. Is this also true for Euclidean
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spaces? To answer this question, we have to understand, first, which Eu-
clidean spaces should be considered "similar" or more precisely, isomorphic.
It is natural to accept the following definition:

Definition 5.79. Euclidean vector spaces V and U are isomorphic if there
exists a bijective map f : V - U which is an isomorphism of vector spaces
and satisfies the following condition:

(f (a), f (b)) = (a, b) da, b E V.

The map f is then called an isomorphism of the spaces V and U.

Clearly, if Euclidean spaces are isomorphic, their dimensions are the
same. The converse also turns out to be true.

Theorem 5.80. Two Euclidean vector spaces of the same (finite) dimension
are isomorphic.

Proof. Let V and U be n-dimensional Euclidean spaces. In each, we
choose an orthonormal basis {v1,.., , and {ul,... , respectively.
Let f : V U be an isomorphism of vector spaces that maps vi to ui
(i = I,-, n). Then

(.f(vi),f(v.7)) = (ui,uj) = ai.7 = (vi, VD,

implying that

(f(a),f(b)) = (a,b)

for any a, b E V.

In particular, any two-dimensional (respectively, three-dimensional) Eu-
clidean space is exactly like E2 (respectively, E3). Thus, when we are con-
sidering vectors that lie in a two- or three-dimensional subspace, we can
evoke theorems from elementary geometry. For instance, in this way we can
prove the Cauchy-Schwarz inequality (5.19), the triangle inequality (5.25),
and Theorem 5.73.

5.5. Hermitian Spaces

When we try to introduce metric in a complex vector space exactly as we
did it for real spaces, we encounter a difficulty: there are no positive definite
quadratic functions on a complex space. This difficulty can be circumvented
by the introduction of so-called sesquilinear functions (not a very good name
but nobody has come up with a better one).
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Definition 5.81. Let V be a complex vector space. A function a: V x V -
C is called sesquilinear if it is linear in the second argument and anti-linear
in the first. The latter means that

a(xl + x2, y) = a(xi, y) + a(x2, y),
a(.\x, y) = aa(x, y).

Remark 5.82. Sometimes a sesquilinear function is defined as linear in the
first and anti-linear in the second argument.

The theory of sesquilinear functions is similar to that of bilinear func-
tions. Thus, we are going to present it briefly and will fully discuss only
points of significant difference.

Let {el,... , en} be a basis of the space V. A sesquilinear function a is
determined by the numbers aij = a(ei, ej). Namely,

(5.27) a(x, y) _ aijxiyp
i,j

The matrix A = (aij) is called the matrix of the function a in the basis
{ei, ... , en}. A change of basis

induces the following change of A:

(5.28) A' = C' AC,

where C' = CT. (The bar stands for complex conjugation applied to every
entry of the matrix C.) The function a is called nondegenerate if

Kera:={yEV:a(x,y)=0VxEV}=0.
This condition is equivalent to A being nonsingular.

A sesquilinear function a is called Hermitian (respectively, skew-Hermi-
tian) if a(y, x) = a(x, y) (respectively, a(y, x) = -a(x, y)). Multiplication
by z makes a Hermitian function skew-Hermitian and vice versa.

A function a is Hermitian (respectively, skew-Hermitian) if and only if
its matrix A satisfies the condition A' = A (respectively, A' = -A). Such
matrices are called Hermitian (respectively, skew-Hermitian). Observe that
diagonal elements of a Hermitian matrix are real and of a skew-Hermitian
matrix, purely imaginary.

To each Hermitian sesquilinear function a corresponds the Hermitian
quadratic function

q(x) = a(x,x).
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It is easy to see that its values are real. Formulas

q(x + y) = q(x) + q(y) + a(x, y) + a(y, x),

q(x + ay) = q(x) + q(y) + za(x, y) - za(y, x)

allow us to recover a from q. In particular, if q =_ 0, then a = 0.
Let a be a Hermitian sesquilinear function. Just as in the case of sym-

metric bilinear functions, we define orthogonal vectors and the orthogonal
complement of a subspace with respect to a. The analogue of Proposi-
tion 5.45 holds. It implies that every Hermitian sesquilinear function to-
gether with the corresponding quadratic function can be presented in the
normal form:

(5.29) a(x,, y) = xiY1 + ' + xkYk - xk+lyk+i - ' ' ' - xk+lyk+l,

(5.30) q(x) = Ixi I2 + ....+ Ixk12 - Ixk+1 I2 - ... - Ixk+112.

An Hermitian quadratic function q (respectively, the corresponding Her-
mitian sesquilinear function) is said to be positive definite if q(x) > 0 for
x 36 0. This happens if and only if in the normal form (5.29), we have k = n,
1=0.

In general, the Law of Inertia holds. It says that numbers k and 1 are
determined uniquely. They are called the positive and the negative indices
of inertia of q.

Since for any complex matrix,

det A* = det A,

the determinant of a Hermitian matrix is always real. If all corner minors
of the matrix of a Hermitian sesquilinear function are nonzero, then just
as in the case of a bilinear function, one can perform the orthogonalization
and deduce the Jacobi method for determining indices of inertia from corner
minors.

A complex analogue of a Euclidean space is a Hermitian space. This is
a complex vector space with a fixed positive definite Hermitian sesquilinear
function called inner product and denoted (, ).

Example 5.83. The space Cn with the inner product

(x, y) = x1811 + ... + Znyn

Example 5.84. The space of continuous complex-valued functions on the
interval [0, 1] with the inner product

1-
(f, g) = f f(x)g(x)dx.
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In a Hermitian space, the length of a vector is defined as

Ixl = (x,x)-
The Cauchy-Schwarz inequality

I(x,y)I < 1xIM

and the triangle inequality

Ix+yJ S 1xI+Iyl
hold (prove this).

A basis {ei,... , en} of a Hermitian space is called orthonormal if the
inner product has the normal form in this basis, i.e.,

(ei,e.7) = diJ.

The matrix of transition from one orthonormal basis to another satisfies the
condition C' = C-1. Such complex matrices are called unitary.

Exercise 5.85. Express the condition of unitarity for matrices using matrix
entries (in two different ways).

Observe that the absolute value of the determinant of a unitary matrix
C equals 1. Indeed, by taking the determinants of both sides in C'C = E,
we have

det C det C = 1,
implying I det C1 = 1.

Just as in Euclidean spaces, for any subspace U of a Hermitian space V,
we have the following decomposition:

V=U®Ul.
If {el,... , ek} is an orthogonal basis of the subspace U, then the orthogonal
projection of a vector x E V onto U is expressed as

k
(ei,prux = x)

ei.
(ei,ei)

(Notice the difference between this formula and formula (5.23).)
Analogues of Theorems 5.73 and 5.75 also hold for Hermitian spaces.
From a mathematical standpoint, Hermitian spaces are as useful as com-

plex numbers. This will become clear in the next chapter. From a physical
standpoint, Hermitian spaces are necessary for constructing an adequate
quantum-mechanical view of the world.



Chapter 6

Linear Operators

The theory of linear operators is the crux of linear algebra and the main
source of its numerous applications. Just like bilinear functions, linear oper-
ators on a finite-dimensional vector space are described by square matrices.
So, in some sense, these objects are of equal difficulty (but a symmetric or
a skew-symmetric bilinear function is a simpler object than a generic linear
operator).

In this chapter, we continue using conventions introduced at the begin-
ning of Chapter 5.

6.1. Matrix of a Linear Operator

Definition 6.1. A linear operator (or a linear transformation) on a vector
space V is a linear map from V to itself.

Explicitly, a linear operator is a map A : V V such that

(i) A(x+y) =Ax+Ay for any X,yE V;

(ii) A(x)=XAx for any rEV, AEK.

(Usually, we will denote linear operators by script letters.)
Given a basis {el, ... , e,.} in the space V, a linear operator can be de-

scribed by a matrix.

Definition 6.2. The matrix of a linear operator A in a basis { e i, ... , e,}
is the matrix A = (aij) determined by the following equalities:

(6.1) Aej = >aijei.
i

201
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In other words, the jth column of A consists of the coordinates of the vector
Aej in the basis {el, ... , en}. (Note that unlike the definition of the matrix
of a linear map, this one features only one basis!)

Equalities (6.1) can be rewritten as

(6.2) (el,...,en)A

(cf. definition (2.7) of the transition matrix in Chapter 2).
Obviously, for vectors fl, ... , f E V, there exists a unique linear opera-

tor A that maps the basis vectors el,... , en to fl,..., fn, respectively. This
operator maps a vector x = Ei xiei to the vector Fi xi fi. Therefore, a lin-
ear operator is uniquely determined by its matrix and every square matrix
of order n is the matrix of a linear operator (in the given basis).

Let us find the explicit expression for coordinates of the image y = Ax
of a vector x. For x = Ej xjej, we have

y = xjAej = >aijxjei = y/iei,

where

(6.3) y/i = aijxj.
j

Denote by X and Y the columns of coordinates of vectors x and y, respec-
tively; then (6.3) can be rewritten in the matrix form as follows:

(6.4) Y = AX

(cf. expression (2.8) for the change of coordinates in Chapter 2).
Now we will describe how the matrix of a linear operator changes under

a transition to another basis. Let

Since the operator A is linear, we have

(Aei, ... , Ae'n) _ (Ael,... , Aen)C
i_ (el,... , en)AC = (ei, ... , en)C- AC.

Thus, if we denote by A' the matrix of A in the basis {e'1, ... , en},

(6.5) A' = C-' AC.

With a change of basis, the matrix of a linear operator on V can be
reduced to a simpler form. In particular, this is possible if we know an
invariant subspace of V.
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Definition 6.3. A subspace U C V is invariant with respect to an operator
A if

AUcU
(i.e., Au E U for any u E U).

The restriction Alu of a linear operator A to an invariant subspace U is
a linear operator on U.

If a basis {el, ... , en} of a space V is chosen so that U = (el,... , ek)
(which is always possible), then the matrix of the operator A is of the form

(6.6) A = (B D)
0 C '

where B is the matrix of the operator AIu in the basis {el, ... , ek}, C is a
square matrix of order n - k, and D is a k x (n - k) matrix. Conversely,
if the matrix of A in a basis lei.... , en} has the form (6.6), where B is a
square matrix of order k, then U = (e1r ... , ek) is an invariant subspace.

Things look even better when V splits into a direct sum of two invariant
subspaces U and W:

V =U®W.
If {el,... , ek} is a basis of U and {ek+1,... , en} is a basis of W, then
{el, ... , en} is a basis of V and in this basis, the matrix of the operator
A has the form

rB 0)0
C '

where B is the matrix of Al u in the basis {el,... , ek} and C is the matrix
of Al w in the basis {ek+1,... , en }

More generally, let the space V split into a direct sum of k invariant
subspaces V1, V2,. .., Vk. Then in the basis of V comprised of bases of these
subspaces, the matrix of A is of the form

Al

0

A2

0

An

where A; is the matrix of the operator Al V, .

Example 6.4. The rotation through an angle a is a linear operator on E2
(see Example 2.53). We proved in Example 2.56 that in the orthonormal
basis lei, e2}, its matrix is

(6.9) 11(a) =
cos a - sin a
sin a cos a
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In particular, the matrix of the rotation through ' in such a basis is

(1 0/

'e1

AeIl

2e2

Figure 6.1

1.

Let us find the matrix of this operator in the basis

(6.10) e1 = 2e2, e2 = el - e2.

Figure 6.1 shows that

Ae1 = -e1 - 2e2, Ae2 = el F e2.

This implies that

A'= (-2 1).

Of course, the matrix A' can be found using formula (6.5). It follows from
formula (6.10) that

C=
t i

C-1 = (1 ) .

Therefore,

`4' = (1 2
2 -2 1-1 1
0) (10 0) (2 -1) - (1 0) ( 0 1) = (-2 1)

Example 6.5. Similarly, the rotation about an axis through an angle a is
a linear operator on E3. In an orthonormal basis {el, e2, e3} such that e3 is
collinear with the axis of rotation, this operator has the following matrix:

cos a - sin a 0 - (11(a) 0)
sins cosa 0

0 1
0 0 1
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This agrees with the way E3 splits into the direct sum of two invariant
subspaces:

(6.11) E3 = (el, e2) ® (e3).

Example 6.6. In Example 2.54 we considered the orthogonal projection
onto a plane as a linear map from the space E3 to the space of vectors on
this plane. However, we may view this map as a linear operator on E3. In
an orthonormal basis chosen so that its first two vectors lie on this plane,
the matrix of this linear operator is of the form

1 0 0
0 1 0

0 0 0

The splitting (6.11) is a splitting into a direct sum of invariant subspaces in
this case as well.

Example 6.7. Differentiation is a linear operator on the space of polyno-
mials. Although this space is infinite-dimensional, it is a union of finite-
dimensional invariant subspaces that consist of polynomials whose degree is
no greater than some fixed bound. In the basis {1, x, x2, ... , x" } of the space
of polynomials of degree no greater than n, the operator of differentiation
has the following matrix:

0 1 0 ... 0 0

0 0 2 ... 0 0

A= 0 0 0 ... 0 0

0 0 0 ... 0 n
0 0 0 ... 0 0

(6.12)

0 1 0 ... 0 0
0 0 1 ... 0 0
0 0 0 ... 0 0

0 0 0 ... 0 1

0 0 0 ... 0 0
Example 6.8. Let cp be a bijective transformation of a set X. Then the
map <p. defined as

(6.13) f)(x) = f(v-' W)
is a linear operator on the space F(X, K) of K-valued functions on X. (One
could apply V rather than its inverse to the argument; the reason for our
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choice will be explained in Chapter 10.) For instance, let X = R, K = I8,
and V(x) = x + a, a E R. Then

(w.f)(x) = f (x - a).
(The graph of W. f is obtained from that of f by the shift to the right by a.)
Since

cos(x - a)
sin(x - a) = - sin a cos x + cos a sin x,

the subspace (coax, sin x) is invariant with respect to gyp.. In the basis
{cos x, sin x}, the matrix of the restriction of gyp. to this subspace is

cosa -sins
= II(a).

sin a cos a

Example 6.9. For any algebra A, the transformation

L.:x - ax, aEA,
called the left multiplication by a, is a linear operator. For example, regard
the field C as an algebra over R. Equalities

show that the matrix of the operator La+L, in the basis {1, z} is

a -b
(b a)

Exercise 6.10. Determine the matrix of the left multiplication by (a d) in
the algebra L2(K) in the basis that consists of matrix units. Prove that the
subspaces (Ell, E21) and (E12, E22) are invariant.

Linear operators on the same vector space can be added and multiplied
by one another and by numbers. These operations are defined just as they
are defined for general linear maps (see Section 2.3). They correspond to the
same operations on matrices, e.g., the matrix of the product of two linear
operators in some basis equals the product of their matrices in this basis.

The properties of operations on linear maps that we proved in Section 2.3
imply that the set of all linear operators on a vector space V is an associative
algebra. We denote it L(V). Observe that if dimV = n, then dimL(V) _

n2.

The algebra L(V) has a unity. This is the identity operator, which we
denote E. In each basis, the matrix of E is the identity matrix E.

A linear operator A E L(V) is invertible if and only if KerA = 0 and
ImA = V. In the finite-dimensional case, it follows from Theorem 2.64 that
if Ker A = 0, then automatically Im A = V and vice versa. On the other
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hand, it is clear that a linear operator is invertible if and only if its matrix
is invertible, i.e., nonsingular.

In the general case, the dimension of the space ImA is called the rank
of the linear operator A and is denoted rkA. By Corollary 2.65, it is equal
to the rank of the matrix A (in any basis).

Formula (6.5) implies that the determinant of the matrix of A does not
depend on the choice of a basis. It is called the determinant of the linear
operator A and is denoted det A.

6.2. Eigenvectors

The main goal of the theory of linear operators is to reduce the matrix
of a linear operator to the simplest possible form through the choice of a
particular basis.

As we have remarked, in order to achieve this goal, it is useful to know
invariant subspaces. Considering them, we come to the notion of an eigen-
vector.

Definition 6.11. A nonzero vector e E V is an eigenvector of an operator
A if Ae = Ae for some A E K. The number A E K is called the eigenvalue
of the operator A corresponding to the vector e.

Obviously, a nonzero vector e is an eigenvector if and only if the one-
dimensional subspace (e) is invariant. In a basis of eigenvectors (if such
exists), the matrix of the operator is diagonal, a dream come true.

Example 6.12. For the operator of differentiation on the space of poly-
nomials, the only (up to multiplication by a number) eigenvector is the
polynomial 1 with the eigenvalue 0. So in this case, there is no basis of
eigenvectors.

Example 6.13. Eigenvectors of a rotation through an angle a # kir in the
three-dimensional space are the vectors on the axis of rotation (and their
eigenvalue is 1). When a = k7r, the vectors orthogonal to the axis of rotation
are also eigenvectors (with eigenvalues (-I)k). Thus, in this example the
basis of eigenvectors exists only when a = 0 or or (if we are to consider only
0<a<27r).

An eigenvector with an eigenvalue A exists if and only if the operator
A - AE is singular, i.e., if det(A - AE) = 0. If A = (ate) is a matrix of A in
some basis, then

all -t a12 ... aln

det(A - tE) = a21 a22 - t ... a2n

and ant ... ann - t
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implying that det(A - tE) is a polynomial of degree n in t.

Definition 6.14. The polynomial

fA(t) = (-1)" det(A - tE) = det(tE - A)

is called the characteristic polynomial of A.

It is easy to see that the coefficient of t" in the polynomial fA(t) equals 1
and the coefficient of to-1 equals - tr A, where tr A is the trace of A (the sum
of diagonal entries of A). The free term of fA(t) equals fA(O) = (-1)" det A.

Exercise 6.15. Prove that the coefficient of tn_k in the polynomial fA(t)
equals (- 1)k x (sum of principal minors of A of order k). (A principal minor
of a square matrix is the determinant of a submatrix which is symmetric
with respect to the main diagonal.)

Observe that by definition, the characteristic polynomial of a linear op-
erator does not depend on the choice of a basis. In particular, it follows that
the trace of a linear operator does not depend on the choice of a basis.

Actually, we have proved the following

Theorem 6.16. The eigenvalues of a linear operator are exactly the roots
of its characteristic polynomial.

Corollary 6.17. Every linear operator on a complex vector space has an
eigenvector.

A linear operator on a real vector space may have no eigenvectors as the
example of a planar rotation through an angle a 0 0, ir shows. However,
the use of complex numbers allows us to obtain some useful information
concerning linear operators over reals as well. This is achieved by the so-
called complexlfication.

Let V be a real vector space. We will construct from it a complex vector
space V(C) just as we constructed the field C from R. That is, for elements
of V(C), we take the pairs (x, y), where x, y E V, and define the addition of
such pairs and their multiplication by complex numbers as follows:

(x1,1!1) + (x2, y2) = (x1 + x2, y1 + 112),

(A+sµ)(x,y) = (Ax-µy,px+Ay).
It is easy to check that in this way we obtain a vector space over C. By
definition, addition of pairs of the type (x, 0) and their multiplication by
real numbers comes down to the corresponding operations over their first
components. Identify every such pair (x, 0) with the vector x E V; then V
becomes embedded into V(C) as a real subspace. Moreover,

(x,y) = x + ay.
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Every basis of a space V (over R) is at the same time a basis of V(C)
(over C). However, V(C) possesses other bases.

Every linear operator A in the space V can be uniquely extended to the
operator AC on the space V(C). In a basis consisting of real vectors, the
operator AC has the same matrix as A.

The operator AC can have complex eigenvalues and corresponding com-
plex eigenvectors. What is their meaning in real terms?

Proposition 6.18. A vector x + ty, x, y E V, is an eigenvector of an
operator Ac with an imaginary eigenvalue A + tie. (A, p E R, µ 0 0) if and
only if U = (x, y) C V is a two-dimensional invariant subspace for the
operator A and

(6.14)
Ax=Ax - uy,
Ay = px + Ay.

The proof of this proposition is obtained via direct calculation. Equal-
ities (6.14) mean that in the basis {x, y} of the space U, the operator AIu
has the following matrix:

(6.15)

They also imply that the vector x - ty is an eigenvector of AC with the
eigenvalue A - tµ.

Example 6.19. The operator A of rotation of the Euclidean plane through
an angle a has the matrix II(a) in an orthonormal basis lei, e2} (see (6.9)).
Therefore, the vector el +te2 is an eigenvector of the operator AC with the
eigenvalue cos a - z sin a, and el - tee is an eigenvector with the eigenvalue
cos a + t sin a. Thus, the matrix of a rotation can be diagonalized in the
complex space.

As a corollary of Proposition 6.18, we obtain the following important

Theorem 6.20. Every linear operator over the field of real numbers has a
one- or two-dimensional invariant subspace.

For a given eigenvalue A, the corresponding eigenvectors can be found

from the system of homogeneous equations

(A - AE)X = 0,

where X denotes the column of coordinates of the unknown vector. Together
with the zero vector, they comprise the subspace

V\(A) = Ker(A - AE)

called the eigenspace of the operator A corresponding to the eigenvalue A.
Its dimension is n - rk(A - AE), where n = dim V.
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Theorem 6.21. Eigenspaces corresponding to distinct eigenvalues A1, ... ,
Ak of an operator A are linearly independent.

Proof. We will prove this theorem by induction on k. For k = 1 there is
nothing to prove. Assume k > 1 and let

ei EV,;(A).

Applying A, we obtain

By subtracting the original equality multiplied by Ak, we obtain

(Al - )tk)e1 + ... + (Ak-1 - )tk)ek-1 = 0.

It follows by induction that e1 = = ek_1 = 0. But then ek = 0.

Corollary 6.22. If the characteristic polynomial fA(t) has n distinct roots,
then there exists a basis of eigenvectors of A.

This condition is not necessary for the existence of a basis of eigenvectors.
For instance, all nonzero vectors are eigenvectors of the identity operator C,
hence any basis consists of its eigenvectors. Yet, its characteristic polynomial
f6(t) = (t - 1)° has only one root 1 (of multiplicity n).

Consider now two interesting (and important) examples.

Example 6.23. Let V = U ® W. The linear operator P defined as

P(y+z)=y, yEU, zEW,
is called the projection onto U along W. Obviously,

U = V1(P), W = Vo(P).

In a basis of V obtained from bases of U and W, the operator P has a
diagonal matrix with 0's and l's on the diagonal.

Exercise 6.24. Prove that a linear operator P is a projection (for some U
and W) if and only if p2 = p.

Example 6.25. In the same notation, the linear operator R defined as

R(y+z)=y-z, yEU, zEW,
is called the reflection through U along W. Obviously,

U=V1(R), W =V 1(R)
In a basis of V obtained from bases of U and W, the operator R has a
diagonal matrix with l's and -l's on the diagonal.

Exercise 6.26. Prove that a linear operator R is a reflection (for some U
and W) if and only if RZ = £.
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To obtain the necessary and sufficient conditions for the existence of a
basis consisting of eigenvectors, we need to prove the following proposition
first.

Proposition 6.27. The characteristic polynomial of the restriction of a
linear operator to an invariant subspace divides the characteristic polynomial
of this operator.

Proof. Let B be the restriction of A to an invariant subspace U C V. In a
basis of V whose first vectors form a basis of U, the matrix A of the operator
A is of the form (6.6), where B is the matrix of B. Therefore,

(6.16) fA(t) = f8(t) det(tE - C).

0
Corollary 6.28. The dimension of an eigenspace of a linear operator does
not exceed the multiplicity of the corresponding root of the characteristic
polynomial.

Proof. Let dim V\ (A) = k. Then the characteristic polynomial of the re-
striction of the operator A to VA(A) equals (t - \)k. Applying Proposi-
tion 6.27 to the subspace U = V \(A), we complete the proof. 0
Example 6.29. Consider the operator of differentiation on the space of
polynomials of degree not greater than n. We calculated its matrix in Ex-
ample 6.7 and can now conclude that its characteristic polynomial is t"+1
This polynomial has root 0 of multiplicity n + 1 but the dimension of the
corresponding eigenspace is 1 (see Example 6.12). This example shows that
the dimension of an eigenspace can be strictly less than the multiplicity of
the corresponding root of the characteristic polynomial.

Theorem 6.30. In order for a basis of eigenvectors of a linear operator A
to exist, the following conditions are necessary and sufficient:

(i) the characteristic polynomial fA(t) splits into linear factors;
(ii) the dimension of every eigenspace equals the multiplicity of the cor-

responding root of the polynomial fA(t).

Proof. Let al, ... , A be all roots of fA(t) with multiplicities k1,. .. , k
respectively. Denote the eigenspace corresponding to A, by

V

dim V < k; < n.
i

However, the only way to obtain a basis of eigenvectors is to take the union
of bases of eigenspaces. In order for this procedure to actually give us a
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basis of V, it is necessary and sufficient that

dim V = n.

By (6.17), it is equivalent to require that Ei ki = n and dim V = ki for
all i. The first condition means that fA(t) splits into linear factors and the
second is exactly condition (ii) of this theorem. 0

6.3. Linear Operators and Bilinear Functions on Euclidean
Space

Let V be a Euclidean space with an orthonormal basis lei,..., en}.
To each vector a E V, there corresponds the linear function

(6.18) cpa(x) = (x, a).

Moreover, the coefficients Wa(ej) = (ei,a) of the linear function cpa in the
basis {ei, ... , e,,} equal the coordinates of a in this basis. This implies that
the map a '-. Wa is an isomorphism between the spaces V and V. Notice
that this isomorphism does not depend on the choice of a basis. Thus,
one can say that for a finite-dimensional Euclidean space, the difference
between the space and its dual space disappears. Usually this is stated as
"the canonical isomorphism identifies V with its dual" (the isomorphism is
the one above).

Similarly, to each linear operator A on the space V, there corresponds
a bilinear function

(6.19) coA(x, y) = (x, Ay).

Also, the matrix of the bilinear function WA(x, y) in the basis. .lei, . , co-
incides with the matrix of the operator A in this basis. Indeed, WpA(ei, ej) =
(ei, Ae,) is nothing but the ith coordinate of the vector Ae,. It follows that
the map A ,-# WA is an isomorphism from the space of linear operators to
the space of bilinear functions on V. This isomorphism does not depend on
the choice of a basis. However, in a nonorthonormal basis, the matrix of OA
may differ from that of the operator A.

For any bilinear function gyp, one can define the "transposed" function

V T (x,11) =
W(y,

x),

whose matrix in every basis is the transposed matrix of W. The linear oper-
ator A* corresponding to the function SPA is called the adjoint operator of
A. In other words, the adjoint operator is defined by the following formula:

(6.20) (A*x, y) = (x, Ay).



6.3. Linear Operators on Euclidean Space 213

The matrix of the operator A` in an orthonormal basis is the transposed
matrix of A.

Symmetric (respectively, skew-symmetric) bilinear functions correspond
to the so-called symmetric (respectively, skew-symmetric) linear operators.
They are determined by the property A' = A (respectively, A' = -A)
or, in matrix terms, by the property that their matrices in an orthonormal
basis are symmetric (respectively, skew-symmetric). Symmetric operators
are also called selfadjoint.

Example 6.31. An orthogonal projection onto a subspace is a symmetric
operator (prove this).

Linear operators such that A' = A-' are called orthogonal. In other
words, an operator A is orthogonal if

(6.21) (Ax, Ay) = (x, y),

i.e., if A preserves the inner product of vectors. The identity

(x, y) = 2 (Ix + y12 -1x12 -1v12)

implies that an operator A is orthogonal if and only if it preserves the vector
length.

Example 6.32. A linear operator defined by a motion on the space of
geometric vectors is orthogonal.

Example 6.33. An orthogonal reflection with respect to a subspace (i.e., a
reflection along the orthogonal subspace) is an orthogonal operator.

In matrix terms, the orthogonal operators are characterized by the prop-
erty that their matrix in an orthonormal basis is orthogonal (see Defini-
tion 5.69).

Proposition 6.34. A linear operator of each of the three types described
above (i.e., symmetric, skew-symmetric, or orthogonal) has the following
property: if a subspace U is invariant with respect to this operator, then so
is its orthogonal complement U -L.

Proof. Consider the most difficult case: that of an orthogonal operator A.
Notice, first, that the operator Al u is also orthogonal, hence nonsingular.
Therefore, for any vector x E U, there exists a vector z E U such that
x = Az. Now, consider a vector y E U1. In the above notation, for any
x U, we have

(x, Ay) = (Az, Ay) = (z, y) = 0,

implying Ay E U. 0
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Using this proposition together with Theorem 6.20, we can obtain by
induction the canonical form of a matrix of a linear operator of either of
these three types.

Theorem 6.35. For any symmetric operator A, there exists an orthonormal
basis of eigenvectors.

Proof. It suffices to prove that at least one eigenvector exists. In view of
Theorem 6.20, it suffices to do this for a two-dimensional space. In this case,
the matrix of a symmetric operator in an orthonormal basis is (°a bc) . Its
characteristic polynomial is

fA(t) = t2 - (a + c)t + (ac - b2),

and its discriminant

D = (a + c)2 - 4(ac - b2) _ (a - c)2 + 4b2

is always nonnegative. Hence, fA(t) has real roots and thus A has eigenvec-
tors. 11

Corollary 6.36. The characteristic polynomial of a symmetric polynomial
splits into linear factors overlR. The dimension of each eigenspace equals the
multiplicity of the corresponding root. Eigenspaces corresponding to distinct
roots are orthogonal.

Proof. To prove the last claim of the corollary, it suffices to notice that if
lei, ... , e,} is a basis of eigenvectors of A and Aej = aiei, then VA(A) is
the linear span of the ei's such that Ai = A.

This can also be shown directly. Indeed, let x E VA(A), y E 1' (A),
A # µ. Then

A(x, y) = (Ax, y) = (x, Ay) = u(x, y),
implying (x, y) = 0. 0

Using the correspondence between symmetric operators and symmetric
bilinear functions, we obtain the following

Corollary 6.37. For any quadratic function q on a Euclidean space, there
exists an orthonormal basis when its matrix is diagonal, i.e.,

(6.22) q(x) _ .11x2 + ... + Anxn,

Notice that in the statement of the corollary, "orthonormal" is under-
stood in the sense of the inner product and not in the sense of the bilinear
function p corresponding to q. However, since the matrix of V in this basis
is diagonal, this basis is orthogonal (but not orthonormal) in the sense of W.

Observe that the numbers Al i ... , An are the eigenvalues of the corre-
sponding symmetric operator, hence they are defined up to a permutation.
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Expression (6.22) is called the canonical form of the quadratic function
q, and the determination of the orthonormal basis where q has such a form
is sometimes called the reduction to principal axes.

Using the correspondence between symmetric operators and quadratic
functions on a Euclidean space, we can obtain another proof of the existence
of an eigenvector of a symmetric operator.

Namely, let q be a quadratic function corresponding to a given symmetric
operator A, i.e.,

q(x) = (Ax, x).

Note that since q is a continuous function, it must have a maximum on the
unit sphere S in the space V defined as

(x, x) = 1.

Proposition 6.38. Every point where the function q reaches a maximum on
the sphere S is an eigenvector of the operator A. The value of this maximum
is equal to the corresponding eigenvalue.

Proof. The tangent space to the sphere S at a point x is determined as

(x,dx) = 0,

i.e., it is the orthogonal complement of the space (x). On the other hand,
the differential of q equals

dq(x) = (Adx, x) + (Ax, dx) = 2(Ax, dx).

If the function q attains its maximum at a point e E S, then its differential
is zero on the tangent space to S at this point. By the above, this implies
that the vector As is orthogonal to all vectors that are orthogonal to e, thus
A = Ae. Moreover,

q(e) = (Ae, e) = A(e, e) = A.

0

In this proof we used only the necessary condition of maximality. It also
holds at any critical point of the function q on S, in particular, at any point
of minimum. Clearly the maximum is attained at the eigenvector e E S only
if A is the maximum eigenvalue of A.

A symmetric operator is called positive definite if its corresponding qua-
dratic function is positive definite or, equivalently, if all its eigenvalues are
positive.

We now turn to discussing linear operators of other types.
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Theorem 6.39. For any skew-symmetric linear operator A, there exists an
orthonormal basis where its matrix is of the form

(H(al) 0

A=

0

where H(a) = (o ' )a 0

Proof. This is obvious since H(a) is the generic matrix form of a skew-
symmetric operator in an orthonormal basis of a two-dimensional Euclidean
space.

Theorem 6.40. For any orthogonal operator A, there exists an orthonormal
basis where its matrix is of the form

/R(ai)
0 I

II(ak)

-1

0)

H(ak)
0

A=

when 11(a) _ (1O8aairs

0

-sin
coea )'

1

1/

Observe that if we use matrices 11(7r) = (-o _°) and 11(0) = (o
°

), we
can have at most one free diagonal entry equal to -1 and at most one equal
to 1.

Proof. It suffices to consider orthogonal operators on one-dimensional and
two-dimensional spaces. On a one-dimensional space, an orthogonal opera-
tor is a multiplication by ±1.

On a two-dimensional space, every orthogonal operator a is either a
rotation through an angle a or a reflection through a line; this was shown
in Example 4.18. In the first case, the matrix of A in any orthonormal basis
is 11(a). In the second case, there exists an orthonormal basis where the
matrix of the operator A is of the form ( -o°)
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In particular, on a three-dimensional Euclidean space, the matrix of any
orthogonal operator A in an appropriate basis has one of the following forms:

.CH0 1) ,
(Hoa)

-1)
In the first case, the operator a is a rotation through a about an axis; in the
second, it is a mirror rotation, i.e., a rotation composed with a reflection
through the plane that is orthogonal to the axis of rotation.

It is clear that a mirror rotation cannot arise from a continuous motion
as it changes the space orientation. Hence, the end result of any real motion
of a convex solid with a fixed point, even a very complicated one, is still
just like the one after a simple rotation about an appropriate axis through
an appropriate angle. This quite nontrivial statement is known as Euler's
Theorem.

Orthogonal operators on a Euclidean space V form a subgroup of GL(V)
called the orthogonal group and denoted O(V). Accordingly, orthogonal
matrices form a subgroup of the group denoted 0,, (this agrees
with the notation introduced in Example 4.18).

As we remarked in Section 5.4, the determinant of an orthogonal matrix
equals ±1. Orthogonal matrices with determinant 1 form a subgroup of
index 2 in 0. It is denoted SO,,. So, orthogonal operators with determinant
1 form a subgroup of index 2 in O(V) called the special orthogonal group
and denoted SO(V). Geometrically, operators in SO(V) are interpreted as
orientation-preserving orthogonal operators (see Example 4.113).

Example 6.41. The group 02 = O(E2) consists of rotations (they form
the subgroup SO2 = SO(E2)) and reflections through lines.

Figure 6.2

Denote by as the rotation through a and by ra, the reflection through a
line making the angle a with some fixed line 1. Clearly, sasp = sa+d Next,
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Figure 6.3

Figure 6.4

the product of a rotation and a reflection changes the orientation, hence it
is a reflection. By tracking a single point (see Figures 6.2, 6.3), it is easy to
see that

sarp = rB+V' rasa = rd- I.

Finally, the product of two reflections preserves the orientation, hence it is
a rotation. Again, by tracking a single point (Figure 6.4), it is easy to see
that

rQr/9 = 82(a-3),

i.e., that the product of two reflections is a rotation through the double
angle between their axes.

In particular, it follows that reflections generate the group 02.

Exercise 6.42. Prove that the group O(V) is generated by reflections
through (n - 1)-dimensional subspaces (here n = dim V).

Every linear operator on a Euclidean space uniquely decomposes into
a sum of a symmetric and a skew-symmetric operator (see Example 5.10).
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There exists a multiplicative analog of this decomposition where an orthogo-
nal operator replaces the skew-symmetric one (why this happens will become
clear in Chapter 12).

Theorem 6.43. Every nonsingular linear operator on a Euclidean space
decomposes uniquely into a product of a positive definite symmetric operator
and an orthogonal operator.

This decomposition of a linear operator is called its polar decomposition.

Before proving this theorem, we will prove the following

Proposition 6.44. Every positive definite symmetric operator B can be
presented uniquely as B = C2 for a positive definite symmetric operator C.

.. ,Proof. Let A1,.. . , A. be (distinct) eigenvalues of the operator B and V1,.
V the respective eigenspaces. By assumption, the Ai's are positive. Put
laa = (the positive value of the square root). Then the linear operator
C acting on V as the multiplication by Aj satisfies all requirements of this
proposition. (In particular, it is symmetric because its matrix is diagonal in
an orthonormal basis of eigenvectors of B.)

Conversely, let the operator C satisfy all the requirements above. Let
µ1, ... ,. a, be its (distinct) eigenvalues and W1,... , W. its eigenspaces. Then
the operator C2 = B acts on W; as the multiplication by p?. Therefore, with
an appropriate reordering, lag = Ai and Wi = Vi. This shows that the
operator C is uniquely determined. 0

Proof of Theorem 6.43. Let A be a nonsingular linear operator. Assume
that A = CO, where C is a positive definite symmetric operator and 0, an
orthogonal operator. Then

AA' = COO'C' = C2.

By Proposition 6.44, this uniquely determines the operator C, hence O.
Conversely, the equality

(x, AA'y) = (A'x, A*y)

and the nonsingularity of the operator A (hence of A' as well) implies that
AA' is a positive definite symmetric operator. By Proposition 6.44, we can
find a positive definite symmetric operator C such that AA' = C2. Put
O=C-1A. ThenA=CO and

AA' = COO'C = C2.

After cancelling C in the above expression we obtain that 00' = C, i.e.,
that 0 is an orthogonal operator. 0



220 6. Linear Operators

Example 6.45. A deformation of a solid with a fixed point can be ap-
proximately taken to be a nonsingular linear operator. Let A = CO be the
polar decomposition of this operator. Then 0 is a rotation about an axis.
It is not a true deformation in the sense that it does not create tensions
within the solid. On the other hand, by Theorem 6.35 the operator C is a
combination of expansions (or contractions) in three mutually perpendicular
directions, i.e., a "pure deformation." It is this operator, called the tensor
of deformation, that is used in the statement of Hooke's law.

Exercise 6.46. Prove that every matrix A E GL (R) can be presented in
the form O1DO2, where 01, 02 are orthogonal matrices and D is a diagonal
matrix with positive entries. Is this presentation unique?

A similar theory can be developed for linear operators on a Hermitian
space. It is even simpler since in a Hermitian space every linear operator
has an eigenvector. We will outline this theory briefly, omitting the proofs
which are similar to those given in the Euclidean case.

For an operator A on a Hermitian space, one defines the adjoint op-
erator A* by formula (6.20). If an operator A has the matrix A in some
orthonormal basis, then in the same basis the operator A' has the matrix
A' (recall that A* = AT).

A linear operator A is called Hermitian (respectively, skew-Hermitian,
unitary) if A' = A (respectively, A* = -A, A' = A-'). This is equivalent
to its matrix being Hermitian (respectively, skew-Hermitian, unitary) in an
orthonormal basis. Hermitian operators are also called selfadjoint.

For any of these three types of operators, one can prove the existence
of an orthonormal basis of eigenvectors. The eigenvalues of a Hermitian
operator are real, of a skew-Hermitian operator, purely imaginary, and the
eigenvalues of a unitary operator have absolute value 1.

For instance, let us prove that the eigenvalues of a Hermitian operator
A are real. Let e be an eigenvector of A with the eigenvalue A. Then

A(e, e) = (Ae, e) = (e, Ae) = A(e, e),

implying A = A.

Formula (6.19) defines a bijection between the sets of Hermitian op-
erators and Hermitian sesquilinear functions. In every orthonormal basis
the matrices of a Hermitian operator and of the corresponding Hermitian
function coincide.

Since for every Hermitian operator there exists an orthonormal basis of
eigenvectors, we obtain that,for every Hermitian quadratic function q on a
Hermitian space, there exists an orthonormal basis in which the matrix of q
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is diagonal, i.e.,

(6.23) q(x)
=,\11X112 +... + AnIxnI2.

The values of al, ... , A1 are determined uniquely up to a permutation (as
the eigenvalues of the corresponding Hermitian operator). Expression (6.23)
is called the canonical form of the Hermitian quadratic function q.

A Hermitian operator is called positive definite if the corresponding Her-
mitian quadratic function is positive definite or, equivalently, if all its eigen-
values are positive.

Unitary operators on a Hermitian space V form a subgroup of the group
GL(V) called the unitary group and denoted U(V). Accordingly, unitary
matrices form a subgroup of the group GLn(C) denoted U,,.

Unitary operators (respectively, matrices) with determinant 1 form a
subgroup of U(V) (respectively, U,,) called the special unitary group and
denoted SU(V) (respectively, SUn).

Every nonsingular linear operator on a Hermitian space decomposes
uniquely into a product of a unitary and a positive definite Hermitian oper-
ator. Such decomposition of a linear operator is called the polar decomposi-
tion. In the one-dimensional case, a linear operator is just a complex number
and its polar decomposition is the trigonometric form of this number. The
trigonometric form of a complex number is related to polar coordinates on
the plane; this is why the decomposition is called "polar" in the general
case.

The complexification V(C) of a Euclidean space V becomes canonically
a Hermitian space if one defines the inner product as

(x1 + 8y1, x2 + 2y2) = [(x1, x2) + (y1, y2)) +1 [(xl, y2) - (y1, x2))

Here the complex extension Ac of a symmetric (respectively, skew-symmet-
ric, orthogonal) operator A becomes a Hermitian (respectively, skew-Hermi-
tian, unitary) operator.

With this in mind, we can prove in yet another way that for a symmetric
operator A on a Euclidean space V, there exists an eigenvector. Namely,
let x + :y, x, y E V, be an eigenvector of the operator Ac. Since Ac is
Hermitian, the corresponding eigenvalue A is real, hence

Ax = ax, Ay = Ay.

At least one of the vectors x, y is nonzero, so it is an eigenvector of A.

6.4. Jordan Canonical Form

It is possible to prove that matrices of special types of linear operators-
such as symmetric, Hermitian, and unitary ones that we considered in the
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previous section-can be reduced to the diagonal form. In general, there
exist obstructions to this reduction described in Theorem 6.30.

The first is that the characteristic polynomial may not split into linear
factors, i.e., have less than n roots. This does not happen with linear op-
erators over the field of complex numbers. In the case of an operator over
the reals, we can consider its complexification. This eliminates the problem
somewhat: a good choice of a basis of complex vectors allows us to under-
stand the action of the original operator on the real space. For instance, we
saw in Section 6.2 that to every imaginary eigenvector, there corresponds a
two-dimensional invariant subspace of the real space. In Section 9.5 we will
show that a similar extension is possible in the general case as well.

The second obstruction is that the dimension of an eigenspace can be less
than the multiplicity of the corresponding root of the characteristic polyno-
mial. Then we have to abandon the dream of completely diagonalizing the
matrix; however, if the characteristic polynomial splits into linear factors,
we can reduce to the so-called Jordan canonical form, which differs little
from the diagonal one. This is the theme of this section.

As long as the eigenvectors are not sufficient, we naturally have to con-
sider some more general vectors.

Definition 6.47. A root vector of a linear operator A corresponding to a
number A E K is a vector e E V such that

(A-)E)me=0
for some m E Z+. The least such m is called the height of the root vector e.

In particular, eigenvectors are root vectors of height 1. It is useful to
regard the zero vector as a root vector of height 0 (corresponding to any A).

Example 6.48. Consider the operator of differentiation on the space C°°(R)
of infinitely differentiable functions. The eigenvectors corresponding to A are
the functions proportional to e1, and the root vectors are the functions of
the form p(x)e-", where p(x) is a polynomial. The height of such a root
vector equals degp + 1. In particular, polynomials are the root vectors
corresponding to 0.

If e is a root vector of height m > 0, then the vector

f = (A - AE),.,-le

is an eigenvector with the eigenvalue A. Hence, A is a root of the character-
istic polynomial.

It is easy to see that the root vectors corresponding to a root A form a
subspace. It is called the mot subspace and is denoted Va(A). Clearly,

V,\(A) D Va(A).
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If e is a root vector of height m > 0, then (A - AE)e is a root vector
of height m - 1. It follows that the root subspace V"(A) is invariant under
A - AS, hence, under A.

The set of root vectors of height < m is nothing but the kernel of the
operator (A - AE)m. Thus, the root subspace VA(A) is the union of the
ascending chain of subspaces

Ker(A - AE) C Ker(A - AE)2 C

In the finite-dimensional case, this chain stabilizes at some place, hence,
VA(A) = Ker(A - .1E)' for some m. In the basis of the space VA(A)
that agrees with this chain, the operator A - At has a niltriangular matrix
(i.e., a triangular matrix with zeros on the diagonal), and the operator A,
a triangular matrix with A's on the diagonal. We come to the following two
conclusions:

(i) the characteristic polynomial of the restriction of the operator A to
VA(A) is (t - A)k, where k = dim0(A);

(ii) for p yl A, the operator A - p5 is nonsingular on V'(A).

Exercise 6.49. Prove that the height of a root vector corresponding to the
root A does not exceed dim Va (A).

Now we explain why the notion of a root vector is useful. The key is the
following

Proposition 6.50. The dimension of a root subspace equals the multiplicity
of the corresponding root of the characteristic polynomial.

Proof. Let-lei, .. , be a basis of the space V whose first k vectors form
a basis of the subspace VA(A). In this basis, the matrix A of the operator
A has the form (6.6), where B is the matrix of the operator 8 = AI v (A).
Therefore,

fA(t) = fB(t) det(tE - C) = (t - A)k det(tE - C).

Let C be the linear operator on the space W = (ek+i, determined
by the matrix C. We have to show that A is not a root of the polynomial
det(tE - C), i.e., not an eigenvalue of the operator C.

Assume the contrary. Then there exists a nonzero vector e E W such
that Ce = Joe. This means that

Ae = Ae + u, u E V ' (A),

hence (A - AE)e = u is a root vector. But then so is e, which contradicts
the definition of V"(A). 0
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Proposition 6.51. Root subspaces corresponding to different roots A1i
.... Ak are linearly independent.

Proof. The proof is similar to that of Theorem 6.21 (there we were con-
cerned with linear independence of eigenspaces). Let

el+...+ek-1+ek=0, e; EVa'(A).

Apply the operator (A-A5E)m, where m is the height of ek, to this equality.
We obtain

(A - Ak6)me1 + ... + (A - Ak£)mek-1 = 0.
If we are to use induction on k, the induction hypothesis implies

(A - Ak6)me1 = ... = (A - AkC)'ek-1 = 0.

Since the operator A - AkV is nonsingular on each of the subspaces Va' (A),
VAk-1(A), it follows that

e1 = ... = ek-1 = 0.

Thus, also ek = 0. 0
Together, Propositions 6.50 and 6.51 imply the following

Theorem 6.52. If the characteristic polynomial fA(t) splits into linear fac-
tors, then

V = V'" (A),
i=1

where \ ,. ... , Aa are (distinct) roots of the polynomial fA(t).

Let us study now the action of the operator A on each root subspace in
greater detail.

Definition 6.53. A linear operator N is nilpotent if there exists m E Z+
such that Nm = 0. The least such m is called the height of the nilpotent
operator N.

Example 6.54. The operator of differentiation on the space of polynomials
of degree no greater than n is a nilpotent operator of height n + 1.

Since VA(A) = Ker(A - At)' for some m, the operator

N = (A - AE) I VA(A)

is nilpotent. Thus, our discussion comes down to the study of nilpotent
operators.

Let N be a nilpotent operator on a vector space V.
The height of a vector e E V with respect to N is the least m such

that N"1e = 0, i.e., the height of the vector e viewed as a root vector of
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the operator N (corresponding to the root 0). Obviously, the height of any
vector is not greater than the height of N itself and there exist vectors whose
height is exactly the height of N. We denote the height of a vector e by
ht e.

Lemma 6.55. If e E V is a vector of height m, then the vectors

e, Ne, N2e, ... , Arm-le

are linearly independent.

Proof. Assume that there is a linear dependence

Let At be the first nonzero coefficient. Then, applying the operator Arm-k-1

we obtain
,\kNm-1e = 0,

which is not true. U

Definition 6.56. The subspace (e,Ne,N2e,...,A(--1e) (m = hte) is
called the cyclic subspace of the nilpotent operator N generated by the

vector e.

Clearly, a cyclic subspace is invariant under the action of N. The re-
striction of the operator N to the cyclic subspace (e, Ne, N2e, ... , A(--1 e)
is of height m. In the basis {N'"-1 e, Nin-2e, ... , Ne, e} it has the matrix

0 1 0 ... 0 0
0 0 1 ... 0 0

J(0) =
0 0 0 ... 0 0
.... . .... . . . . . . . .

0 0 0 ... 0 1

0 0 0 ... 0 0

called the nilpotent Jordan block (of order m) (cf. Example 6.7).
Any vector of a cyclic subspace (e, Ne, N2e, ... , N"'-1 e) that does not

belong to the subspace XU = (Ne, N2e, ... , Af -1 e) has height m, hence
generates the same cyclic subspace.

Theorem 6.57. The space V decomposes into a direct sum of cyclic sub-
spaces of the operator N. The number of summands in this decomposition
equals dim KerN.

Proof. We will prove this theorem by induction on n = dim V. For n = 1,
the statement is obvious. For n > 1, let U C V be an (n - 1)-dimensional
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subspace containing ImN. Obviously, U is invariant with respect to N. By
induction,

U= Ul®...®Uk,
where Ul,... , Uk are cyclic subspaces. Pick a vector e E V\U. We have

uiEU{.

If for some i,
ui=NviENUi, v,EUi,

then we can replace e with e - v, and make ui = 0. Therefore, we can assume
that for every i, either ui = 0 or ui NUi.

If ui = 0 for all i, i.e., Ne = 0, then
V=(e)®U1®...®Uk

is a decomposition of V into a direct sum of cyclic subspaces.
Now let Ne 0 0. Clearly,

htNe = maxhtui.
i

Without loss of generality, we can assume that

ht Are = ht u1 = m.

Then ht e = m + 1. Let us prove that

V = (e, Ne, N2e, ... , N'ne) ®U2 ®... ®Uk.

Since u1 V NU1, we have dim U1 = ht u1 = m, thus

Hence, it suffices to check that

(e, Me,N2e...... =0.
Assume that

Aoe+AINe+A2NZe+ +A,,,JP"e E U2ED ---ED Um.

Since e f U, Ao = 0. By projecting the remaining terms onto U1, we obtain

Aiui +A2Nu1 0,

implying Al = A2 = ... = A. = 0.
It remains to prove the second claim of the theorem. Let

V=V1ED ...®Vk

be a decomposition of the space V into a direct sum of cyclic subspaces of
the operator N. It is clear that

KerN = KerNIv, ED - ® KerNIvk.
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Since
dimKerNIv, = 1

for all i, we have dim Ker A(= k. 0

We resume our discussion of an arbitrary linear operator A. Observe that
restricted to a cyclic subspace of the nilpotent operator N = (A- AE) I VA(A),
the operator A has a matrix of the form

A 1 0 ... 0 0
0 A 1 ... 0 0

J(A) = J(O) + AE =
0 0 A ... 0 0

0 0 0 ... A l000...0a
Such a matrix is called a Jordan block with the eigenvalue A.

Definition 6.58. A Jordan matrix is a block-diagonal matrix

J2

where J1, J2,. .., Jk are Jordan blocks.

Combining Theorems 6.52 and 6.57, we obtain the following result.

Theorem 6.59. If the characteristic polynomial fA(t) splits into linear fac-
tors, then there exists a basis where the matrix of the operator A is Jordan.

Such a matrix is called the Jordan canonical form of A.

Corollary 6.60. The matrix of any linear operator over the field of complex
numbers reduces to a Jordan canonical form.

The basis where A has a Jordan matrix is also called Jordan. The proof
of Theorem 6.57 implies that in general there is a great freedom in selecting
such a basis. However, the Jordan canonical form of a linear operator is
determined uniquely up to a permutation of blocks. This will be shown in
Section 9.3.

Obviously, in the matrix of A in the Jordan canonical form of A, the sum
of orders of Jordan blocks with the eigenvalue A equals dim V(A), which is
the multiplicity of A viewed as a root of the characteristic polynomial. The
second part of Theorem 6.57 implies that the number of Jordan blocks with
the eigenvalue A equals dim Va (A).
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Exercise 6.61. Prove that in the Jordan canonical form of A, the maxi-
mum order of a Jordan block with the eigenvalue A equals the height of the
nilpotent operator Ar = (A - AE)I VA(A).

Matrices A and B are called similar if there exists a nonsingular matrix
C such that B = C-1AC. Similar matrices can be regarded as matrices
of the same linear operator in different bases. Corollary 6.52 can then be
reformulated as saying that every complex matrix is similar to a Jordan one.

Exercise 6.62. Prove that a complex matrix is similar to its transpose.

6.5. Functions of a Linear Operator

Let A be a linear operator on an n-dimensional vector space V.
For any polynomial

f (t) = cot' + altrn-1 + ... + an E K[t],

we can define its value at A as

f (A) = aoAm + aiAm-1 + ... + a,"-1A + amE.

It is clear that

(6.24) (f + g)(A) = f (A) + g(A), (fg)(A) = f (A)g(A).
Similarly, we can define f (A) where A is a matrix. If the matrix of an
operator A in some basis is A, then the matrix of the operator f (A) in this
basis is f (A).

Since the space of all linear operators is finite-dimensional (as long as
we stick to the agreement that the space V is finite-dimensional), there is
only a finite number of linearly independent powers of A. Therefore, there
exists a polynomial f such that f (A) = 0. Such a polynomial is called an
annihilating polynomial of A. An annihilating polynomial of the least degree
is called a minimal (annihilating) polynomial of A. We denote it mA.

Every annihilating polynomial f is divisible by MA. Indeed, if the re-
mainder of division of f by mA is nonzero, then it is an annihilating poly-
nomial of degree less than deg mA, contradicting the definition of a minimal
polynomial. It follows, in particular, that a minimal polynomial is unique
up to a constant factor. To define it uniquely, we assume that its leading
coefficient is 1.

Exercise 6.63. Determine the minimal polynomials of the zero operator
and the identity operator.

Similarly, we define the annihilating polynomials and the minimal poly-
nomial of a matrix. The minimal polynomial of a linear operator equals the
minimal polynomial of its matrix in any basis.
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If the space V decomposes into a direct sum of invariant subspaces of
an operator A, then the minimal polynomial of it equals the least common
multiple of the minimal polynomials of its restrictions to these subspaces.
Knowing this fact, it is easy to find the minimal polynomial of a linear
operator from its Jordan canonical form (if it has one, of course). The first
step is to find the minimal polynomial of a Jordan block.

Lemma 6.64. The minimal polynomial of the Jordan block of order m with
the eigenvalue A equals (t - A)'".

Proof. Let A be the linear operator determined by this block. ThenN =
A - AE is a nilpotent operator of height m, i.e.,

(A - AE)- = 0, (A - AE)m-1 # 0.

It follows that (t -A)' is an annihilating polynomial and none of its divisors
is such. Therefore, (t - A)' is the minimal polynomial.

Now let A be a linear operator whose characteristic polynomial fA splits
into linear factors. Let A1i ... , A, be all (distinct) roots of the polynomial
fA. Lemma 6.64, together with the remark that precedes it, implies the
following

Theorem 6.65. The minimal polynomial of the operator A is
s

mA(t) = Mt - Air``,
i=1

where mi is the maximal order of Jordan blocks with the eigenvalue Ai in
the Jordan canonical form of A.

Corollary 6.66. The Jordan canonical form of A is diagonal if and only if
the minimal polynomial of A has no multiple roots.

Example 6.67. Let A be a linear operator on a complex vector space such
that A' = E for some natural m. Then t' -1 is an annihilating polynomial
of A. Since it has no multiple roots, the minimal polynomial of A has no
multiple roots either. Thus, the Jordan canonical form of A is diagonal.
Clearly, its diagonal entries (the eigenvalues of A) are roots of unity of
degree m.

Example 6.68. We will find here all linear operators A such that A3 = A2.
This condition means that t3 - t2 is an annihilating polynomial of A or that,
equivalently, the minimal polynomial of A divides t3 - t2 = t2(t - 1). By
Theorem 6.65, this holds if and only if the Jordan canonical form of A
contains only blocks of the following types:

(0
00)

, (0), (1).
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The number of blocks of each type can be arbitrary (in particular, zero) as
long as the sum of their orders is n.

Corollary 6.69 (Cayley-Hamilton Theorem). fA(A) = 0.

In particular, we conclude that for a linear operator A on a two-dimen-
sional vector space,

A2 - (tr A)A + (detA)E = 0.

Of course, this can be deduced via direct calculation (do it!).

Remark 6.70. The Cayley-Hamilton theorem also holds without the as-
sumption that the characteristic polynomial fA splits into linear factors.
This can be shown as follows. We will prove in Section 9.5 that there exists
a field extension L of the field K where fA splits into linear factors. Re-
garding the matrix A of the operator A as a matrix with entries from L,
we can claim that it is annihilated by its characteristic polynomial (by the
above corollary). But it is obvious that the characteristic polynomial of A
does not depend on whether we treat it as a matrix with entries from K or
with entries from L. Similarly, one can show that if the minimal polynomial
of an operator A splits into linear factors over K, then its characteristic
polynomial splits into linear factors over K as well.

Using Cayley-Hamilton theorem, we can reduce the calculation of the
value of a polynomial f at a linear operator A to the calculation of the value
of a polynomial of degree < n at this operator. Namely, divide f by fA with
a remainder:

(6.25) f = q fA + p, deg p < n.

Then

f (A) = p(A)-

Assume that K = R or C and that the polynomial fA splits into linear
factors (which is always true over C). Let aj...... , be all its (distinct)
roots and k1, ... , k their multiplicities, so that

(6.26) kl + + k8 = n.

Then (6.25) implies that

(6.27) fU)(a;)=p1jl(a;) for i=1,...,s, j=0,1,...,k;-1.
(We assume here that f(0) = f for every function f.) As the following
proposition shows, equalities (6.27) determine the polynomial p uniquely.
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Proposition 6.71. Let Al, ... , a, E K be distinct numbers and kl,... , k
natural numbers satisfying condition (6.26). Denote by P,a the space of poly-
nomials of degree < n. Then the correspondence gyp: P -* Kn sending a
polynomial p E Pn to the collection

(p(i) (A): i=1,...,s, j=0,1,...,k=-1)
is an isomorphism of vector spaces.

Proof. Clearly, w is a linear map. Since dim Pn = dim Kn = n, it suffices
to prove that Ker cp = 0. But Ker cp must consist of polynomials for which
every )t is a root of multiplicity > k1, whereas a nonzero polynomial of
degree < n cannot have so many roots (counted with multiplicities).

The problem of constructing a polynomial p of degree < n given numbers
p(j)(A,), i = 1, ... , s; j = 0,1, ... , k; - 1, is called the interpolation problem
(with multiple nodes). In the case of simple nodes, i.e., when k1 = . . . =
k, = 1, the answer is provided by Lagrange's interpolation formula.

Example 6.72. Let us calculate A' for

1 0 -3
A= 1 -1 -6

-1 2 5

We have

fA(t) =
t-1 0 3
-1 t+1 6

1 -2 t-5
= t3 - 5t2 + 8t - 4 = (t- 1)(t-2)2.

The interpolation polynomial

p(t) = at2 + bt + c

is determined by the following conditions:

p(1)=a+b+c=1,
p(2)=4a+2b+c=2m,
p'(2)

implying

a=(m-2)2rn-1+1,

b=-(3m-8)2"i-'-4,
c=(2m-6)2m-1+4.
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Therefore,

Am = 2m-i ((m - 2)A2-(3m - 8)A+(2m - 6)E] + A2 - 4A + 4E

3m-6 -6m+12 -9m+12 4 -6 -6
= 2m-1 3m - 4 -6m + 8 -9m + 6 + 2 -3 -3

-m 2m 3m+2 0 0 0

The above discussion can be generalized from the case of polynomials
to that of general analytic functions. In order to do this, we have to study
topological properties of the algebra of linear operators.

Let V be a vector space over the field K = R or C.

Definition 6.73. A norm on the space V is a function II ii : V -+ R such
that

(i) IIxII>0forx00;
(ii) liAxII = IAIllxll;

(iii) IIx + vii <- IIxII + Ilvil

Let us give several examples of norms on K.

Example 6.74. IIxII = maxi Ixil

Example 6.75. Euclidean (Hermitian) norm Ilxll = LLi xil

Example 6.76. IIxII = Li Ixii
Definition 6.77. A sequence consisting of vectors x,,, converges in norm
to a vector x E V if lim,,,-., IIx,,, - xii = 0.

It is easy to see that convergence in any of the above norms means
convergence in every coordinate. This is true for every norm on a finite-
dimensional space as the following proposition demonstrates.

Proposition 6.78. For any two norms II Ill and II i12 on a finite-dimen-
sional space V, there exist positive constants a and b such that

a< IIxII2 <b for all xEV,x00.
Ilxlll

Proof. It suffices to compare every norm with a fixed one. Let Ilxlll =
lxi I , where x1, ... , x are the coordinates of the vector x in some basis

{e1i...,en}. Then
IIxII2 <- I41leil12 <- bllxiii,

where b = maxi lietii2. The inequalities

I IIx + oxi12 - IIXII21 <- IIAx112 <- blloxli 1
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show that II - 112 is a continuous function in the coordinate topology. Let a
be its minimum on the unit sphere IIxIII = 1 in the sense of the first norm.
ThenIIXII2 _ allxllifor all x E V.

Remark 6.79. Generally speaking, on an infinite-dimensional space, dif-
ferent norms define different topologies. Check this, for instance, for the
following norms on the space of continuous functions on the interval [0,11:

1

Ill Iii = f If(x)Idx, IIfIIz=omax If

Let V be a finite-dimensional vector space with a fixed norm II II.

Definition 6.80. A series r,m=1 x16 (x11 E V) converges absolutely if the
numerical series E =1 IIxmII converges.

Just as for numerical series, we can prove the following two propositions:

Proposition 6.81. Every absolutely converging series Em=1 x11 (x11 E V)
converges. Moreover,

00

E IIxmII
M=1

Proposition 6.82. The sum of an absolutely converging series does not
change with any permutation of its terms.

We can also define the norm on the space of linear operators on V.

Definition 6.83. The norm of a linear operator A is

IIAII = max IIAxII = max
IIAxII

IIxII=1 x#o IIxll

Proposition 6.84. The above-defined function on the space of linear oper-
ators is indeed a norm. Moreover, it has the following property:

IIABII <_ IIAII IIBII.

Proof. We have

IIA+BII =
Imax

II(A+B)xII = Imax IIAx+BxII <_ Imax(IIAxII +IIBxII)

< max IIAxll + max IIBxII = IIAII + IIBII.
II4=1 II=II=1

Other properties of a norm are obvious. Now,

IIBBII = max
IIABxII

= max llABxII IIBxII
x00 IIxII Bx#o IIBxII IIxII

< max IIABxhI . max IIBxII < max IIAvhI . max IIBxII = IIAII IIBII.Bx#o IIBxII Bx00 IIxII v#o IIyhh x#o IIxII
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Exercise 6.85. Determine explicitly the norm of a linear operator for each
of the above three norms on the space K.

Clearly, a norm of a linear operator is not less than the absolute value
of any of its eigenvalues.

Theorem 6.86. Let a series E M=O' oamtm (am E K) converge for ItI < R.
Then the series

00

(6.28) f(A) = E a,nAm
m=o

converges absolutely for any linear operator A such that IIAII < R.

Proof. It is known that convergence of the power series f (t) for ItI < R
implies its absolute convergence on the same interval (disk). Since

Ila.At II <_ laml IIAIIm,

the series f (A) converges absolutely for IIAII < R. D

Expression (6.28) is taken as the definition of how the function f is ap-
plied to a linear operator A. Properties (6.24) are preserved here. Similarly,
one defines the function of a matrix. As in the case of polynomials, if A is a
matrix of an operator A in some basis, then f (A) is a matrix of the operator
f (A) in the same basis.

Assume now that just as above, the characteristic polynomial fl has
roots a1, ... , with multiplicities kl,... , k, such that kl + + k, = n. If
IIAII <R,then IA;I < R for i = 1,. .. , s.

Theorem 6.87. Under the assumptions of Theorem 6.86, let p be a poly-
nomial of degree < n satisfying properties (6.27). Then f (A) = p(A).

Proof. For any m, set
m

fm(t) = E aktk
k=o

and denote by p,,, the polynomial of degree < n satisfying properties (6.27)
with f replaced by the polynomial fm. We have fm(A) = p .. (A). By
Proposition 6.71, limm-.c pro = p. Thus,

f(A) = limofm(A) = »limopm(A) = p(A).

D

In accordance with the above principle, for any linear operator A we
define its exponential e'1 (= expA) as

A A2 A3
(6.29) eA=£+ 1! +

2!
+! +
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We can multiply series with the use of Proposition 6.82. Just as in the
case of numbers, we obtain the following

Theorem 6.88. eA+8 = eAe8 whenever AB = BA.

(When AB 0 BA, this does not hold, in general. One can say that this
is the reason that the theory of Lie groups (see Chapter 12) exists.)

For a given A, put

(6.30) Q(t) = etA, t E K.

Obviously, CQ(0) = E. By Theorem 6.88,

Q(t + s) = c(t)4(s), c(-t) = 4(t)-1.
Therefore, the operators G(t) form a group. It is called the one-parameter
group generated by the operator A.

Example 6.89. Let V be the operator of differentiation on the space of
polynomials of degree < m.. Then

(etvf)(x) = f (x) + f six) t + f -2 ) t2 + ... = f (x + t).

t o -1 cost -sintExample 6.90. e 1 ° _ ( sine cost) (check this).

For an operator function of a real or complex variable, one defines the
derivative in the usual way. Obviously, to differentiate an operator function,
one must differentiate its matrix entries.

Theorem 6.91. Cg'(t) = G(t)A = Ag(t).

Proof. Since

we have

G(t + At) = Q(t)g(At) = g(o09(t),

At-0 At
G(At) - E =

\
G(ot)

- £I_ fi(t) oimo At oimo -At c(t),

and the proof, as in the case of the numerical exponential, comes down to
calculating the following limit:

(6.31)

We have

etA - £
limo

t
= A.

eat £ =AIE+t(2 +t3 +...11.
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By Theorem 6.86, the series in parentheses converges absolutely for Iti < 1.
Moreover, the norm of its sum is not greater than the sum of the numerical
series

This verifies (6.31).

Theorem 6.91 suggests the general form of a solution of a homogeneous
system of linear ordinary differential equations with constant coefficients,

n

(6.32) xi(t) _ >aijxj(t), i = 1,...,n.
j=1

(Here xl (t), ... , xn (t) are unknown functions of the variable t.) According to
the general theory, system (6.32) has a unique solution satisfying the initial
conditions

(6.33) xi(0) = x;o, i = 1,...,n.

In the vector form, the system (6.32) is

(6.34) x'(t) = Ax(t),

where x(t) is the column-vector with coordinates x,(t) and A is the matrix
with entries at,. The initial condition (6.33) is thus rewritten as

(6.35) x(0) = xo,

where xo is the column-vector with coordinates x;o. Then its solution is

(6.36) x(t) = e=Axo.

The proof is a direct verification using Theorem 6.91.

Example 6.92. We will find here the solution of the following system of
differential equations:

1x'l (t) = xl (t) - 3x3(t),
x2 (t) = x1 (t) - x2(t) - 6x3(1),

Lx3(t) = -x1(t) + 2x2(t) + 5x3(1),

satisfying the initial conditions

x1(0) = 1, x2(0) = 1, x3(0) = 0.

The matrix A of this system coincides with the matrix in Example 6.72. We
have to calculate f (A), where f (u) = ei" (here t acts as a constant). The
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interpolation polynomial p(u) = au2 + bu + c is determined by the following
conditions:

p(l)=a+b+c=et,
p(2) =4a+2b+c=e2t,

p'(2)=4a+b=te2t,
implying

a = (t - 1)e2t + et,

b = -(3t - 4)e2t - 4et,

c = (2t - 3)e2' + 4et.

Therefore,
etA = e2t[(t-1)A2 - (3t-4)A + (2t-3)E] + et(A2 -4A+4E)

3t-3 -6t+6 -9t+6 4 -6 -6
=e2t 3t-2 -6t+4 -9t+3 +et 2 -3 -3

-t 2t 3t + 1 0 0 0

The solution satisfying the given initial conditions is obtained by multipli-
cation of the matrix etA by the column (o) . We thus obtain the solution

xl(t) = (-3t + 3)e2t - 2et,

x2(t) = (-3t + 2)e2t - et,

x3(t) = te2t.





Chapter 7

Affine and Projective
Spaces

7.1. Affine Spaces

In elementary geometry, we deal not just with vectors but also with points
(actually, most of the time we deal with points). Just as the axioms of a
vector space reflect the basic properties of vectors considered in elementary
geometry, the axioms of an affine space reflect the basic properties of points
and vectors together.

In the "ordinary" Euclidean space of elementary geometry, one can de-
fine the operation of addition of a point and a vector. Namely, the sum of a
point p and a vector x is the endpoint of a vector that starts at p and equals
x. The properties of this operation lie at the foundation of the following
definition.

Let V be a vector space over a field K.

Definition 7.1. The affine space associated to a vector space V is a set S
with an operation of addition S x V --' S satisfying the following conditions:

(i)p+(x+y)=(p+x)+y (pES, x,yEV);

(ii) p + 0 = p (p E S, 0 is the zero vector);

(iii) for any p, q E S there exists a unique vector x such that p + x = q.

Elements of the set S are called points. The vector x in condition (iii) is
called the vector connecting points p and q and is denoted pq. Condition (i)

239
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implies that

Pq+4F=Tn' dp,q,rES.

Every vector space V can be regarded as an affine one if we view vectors
both as vectors and as points and define the operation of addition of a
vector to a point as addition of vectors. Here the vector Pq is the difference
of vectors p and q.

Conversely, if we fix a point o ( the "origin") in an affine space S, we can
identify a point p with its position vector op. Then addition of a vector to a
point becomes just the addition of vectors. This identification of points with
vectors is called the vectorization of an affine space. (Of course, it depends
on the choice of an origin.)

The dimension of an affine space is defined as the dimension of the
corresponding vector space.

A point o (the origin) together with a basis {el, ... , e.} of the space V
is called a frame of the affine space S. Each frame is related to an affine
system of coordinates in the space S. Namely, a point p gets the coordinates
equal to those of the vector op in the basis {el, ... , It is easy to see
that

(i) coordinates of the point p + x are equal to the sums of respective
coordinates of the point p and the vector x;

(ii) coordinates of the vector Pq are equal to the differences of respective
coordinates of the points q and p.

Generally speaking, linear combinations of points are not defined in
the affine space. However, some of them can be given a precise meaning.
Namely, define the barycentric linear combination of points pi, ... , pk E S
as a linear combination of the form Ei Aipi, where Ei A, = 1, and take it
to be equal to the point p such that

o E S. By the condition Ai = 1, this definition does not depend
on the choice of the point o. Indeed, let d be another point. Then

dp = do + Zip = E ai(do + opi) _ aidpi.
i i

In particular, the center of mass of a system of points pl, ... , pk E S
can be defined as

cent (pi, ... , pk) = I (PI + ... + Pk)-
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Exercise 7.2. Prove that in the ordinary Euclidean space

a) the barycentric combination Ap+µq of two points p and q is the point
dividing the interval pq in the ratio µ : A (this point lies in this interval if
A, p > 0, and in its continuation otherwise);

b) the medians of a triangle intersect in the center of mass of the vertices.

Let po, pl, ... , pn be points of an n-dimensional affine space S such that
the vectors pap1...... 07i are linearly independent. Then every point p E S
can be uniquely presented as

n n
p = E xipi, where E xi = 1.

i=p i=O

Indeed, this equality can be rewritten as
n

_ E xipOX
i=1

implying that we can (and should) take the coordinates of the vector pop
in the basis { p p p l i... , p p p } as x1, ... , xn. Then xo is determined as xo =
1-E=1xi

The numbers xo, xi,... , x,,, are called the barycentric coordinates of the
point p with respect to po, p1, , pn.

The basic objects of elementary geometry are lines and planes. The
following definition introduces these concepts in geometry of affine spaces.

Definition 7.3. A plane in an affine space S is a subset of the form

(7.1) P = po + U,

where po is a point and U is a subspace of the space V.

The subspace U is uniquely determined as the collection of all vectors
connecting the points on P and is called the direction subspace for P. The
sum of a point on P and a vector in U lies in P and, with respect to this
operation, the plane P is an affine space associated to the vector space U.

By definition, dim P = dim U. A zero-dimensional plane is a point. A
one-dimensional plane is called a line. A plane of dimension n - 1 is called
a hyperplane.

We can choose any point of the plane P as po in (7.1).
If the intersection of two planes P1 = p1 + U1 and P2 = p2 + U2 is not

empty, then this intersection is also a plane. Namely, if p0 E P1 n P2, then
P1nP2=(pp+U1)n(po+U2)=po+(U1nU2).
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For any subset M C S and any point po E M, the plane

po+(p5 :pEM)
is the smallest plane that contains M (thus it does not depend on po).
This plane is called the affine hull of M and is denoted aff M. It can also
be defined as the collection of all barycentric linear combinations of points
from M.

Theorem 7.4. Given any k + 1 points of an affine space, there is a plane
of dimension < k passing through these points. Moreover, if these points
are not contained in a plane of dimension < k, then there exists a unique
k-dimensional plane passing through them.

Proof. Let po, pi , ... , pk E S. Then

P=PO +(popl,..POW
is a plane of dimension < k through po, pl,... , Pk If dim P = k, the vectors
pops, ... , Popk are linearly independent and P is the unique k-dimensional
plane through po, pl, ... , pk. 0

Points po, pi, ... , pk E S are called affinely dependent if they lie in a
plane of dimension < k, and affinely independent otherwise. The proof of
Theorem 7.4 implies that points PO, PI, ... , Pk are affinely dependent if and
only if the vectors pops, ... , popk are linearly dependent. Also, by definition,
the property of affine dependence or independence does not depend on the
numbering of the points (in particular, on which one we choose as po).

Theorem 7.5. Points po, pl, ... , pk are affinely independent if and only if
the rank of the matrix of their barycentric coordinates equals k + 1.

Proof. Let xio, xil, ... , xin be barycentric coordinates of the point pi with
respect to (affinely independent) points qo, qi, ... , qn. Then xi1, ... , xin are
coordinates of the vector gopi in the basis {gogl, ... , gogn}.

The rank of the matrix
xoo xoi ... xon

x10 x11 ... Sin

xko xkl ... xkn

does not change if we add to the first column the sum of all other columns.
By doing so, we obtain the matrix

1 xoi ... xon

0 xii - xoi ... xin xon

0 Ski - XOi ... xkn - xon
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Its rank is greater by 1 than the rank of the following matrix:

x11 - xO1 xln - xon

(7.3) .....................

xkl - x01 ... xkn - XOn

The entries of this matrix are coordinates of the vectors pops,... , popk in
the basis {gpgl,...,gpqn).

Thus, the rank of the matrix (7.2) equals k + 1 if and only if the rank
of the matrix (7.3) equals k. The latter means precisely that the vectors
pOpj,... , popk are linearly independent, i.e., that the points POi pl, ... , pk
are ai inely independent. 0

Figure 7.1

Example 7.6. Let points x, y, z lie on the sides bc, ca, ab of the triangle abc
(Figure 7.1) or their continuations. Suppose they divide these sides in the
ratio A : 1, 14: 1, v : 1, respectively. We will find under which condition on
A, µ, v, the points x, y, z lie on the same line, i.e., are affinely dependent. By
Exercise 7.2, the matrix of barycentric coordinates of x, y, z with respect to
a, b, c is

1 A0 1 T
1

µ+1 µ+11 ' 0
v+1 v+1

By Theorem 7.5, the points x, y, z lie on the same line if and only if the
determinant of this matrix is zero, i.e., if

.1µv=-1.
This statement is known as Menelaus's Theorem.

Exercise 7.7. Using barycentric coordinates, prove Ceva's Theorem: in the
notation of Example 7.6, the lines ax, by, cz intersect at one point if and only
if

aµv = 1
(Figure 7.2).
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Figure 7.2

Theorem 7.8. A nonempty subset P C S is a plane if and only if for any
two points a, b E P, the line through a and b also lies on P.

Proof. The "only if" part is obvious. Now let P C S be a nonempty
subset with the above property. Let {po, pi, ... , pk} be the maximal affinely
independent system of points of P. Then P C aff{po, pi , ... , pk}. We will
prove that P = aff{po,p1,...,pk).

Let p = &) p; be a barycentric linear combination of points po, pl,
... , pk. Let us prove that p E P by induction on the number I of nonzero
coefficients Ao, Al, ... , Ak. For l = 1, p coincides with one of the points
po,p1,...,pk, so there is nothing to prove. Let l > 1. Without loss of
generality, we may assume that Ak # 0. Then

k 1

P = (1 - Ak) C 1 Ak
//pi
f + J1kPk,

i.e., p lies on the line through the points
k-1

p
+--0 X

and pk. By induction, p' E P. Therefore, p E P as well. 0

Another point of view is to regard planes as sets of solutions of systems
of linear equations.

Consider the following system of linear equations:
n

(7.4) ai3x3 = b,, i = 1, ... , M.
j=1

We interpret x1, ... , x as coordinates of points in an n-dimensional affine
space S with respect to a f r a m e (o; a 1 , . . . , e,,). Then the solutions of sys-
tem (7.4) can be viewed as points of the space S. Assume that this system
is compatible and po E S is one of its solutions. It is easy to see that a point
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p E S is a solution of system (7.4) if and only if the coordinates of the vector
p satisfy the following system of homogeneous equations:

n

(7.5) E aiixi = 0, i = 1, ... , m.
j_1

We know (see Theorem 2.63) that the solutions of system (7.5) form a sub-
space U C V of dimension n - r, where r is the rank of the coefficient matrix
(it is common for systems (7.4) and (7.5)). Therefore, the set of solutions of
system (7.4) is the plane P = pp + U of the same dimension. We have thus
proved the following

Theorem 7.9. The set of solutions of a compatible system of linear equa-
tions is a plane of dimension n - r, where n is the number of variables and
r, the rank of its coefficient matrix.

Conversely, let P = pp+U be a plane. By Theorem 5.32, the subspace U
is determined by a system of homogeneous linear equations. By replacing the
free terms of these equations with the values that their left-hand sides assume
at the point pp, we obtain a system of linear equations that determines the
plane P. Thus, we have proved the following

Theorem 7.10. Every plane is the set of solutions of a system of linear
equations.

We will discuss now the relative position of two planes

P1 = pi + U1, P2 = p2 + U2.

Theorem 7.11. Planes P1 and P2 intersect if and only if

pip2EU1+U2.

Proof. Planes P1 and P2 intersect if and only if there exist vectors ul E U1
and U2 E U2 such that

Pl+U1=P2+ U2.
This equality can be rewritten as

P1P2=u1-u2
The existence of such vectors U1, u2 means that pjp2 E U1 + U2.

Planes P1 and P2 are called parallel if either U1 C U2 or U2 C U1 and
skew ifPlnP2=0andUjnU2=0.

Exercise 7.12. What is the least dimension of a space with two skew two-
dimensional planes?

Exercise 7.13. Determine dim aff(P1 U P2).
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Consider now the class of functions on an affine space corresponding to
the class of linear functions on a vector space.

Definition 7.14. An affine-linear function on an affine space S is a function
f : S --* K such that

(7.6) f (p + x) = f (p) + a(x), p E S, x E V,

where a is a linear function on the vector space V.
The function a is called the differential of f and is denoted df.

Let o E S be a fixed origin. By setting p = o in (7.6), we express an
affine-linear function in vectorized form as follows:

(7.7) f (x) = a(x) + b, b E K,

where b = f (o). This implies the following coordinate form of f :

(7.8) f (x) = aixi + b.

Conversely, for any linear function a E V* and any number b E K, the
function f determined by (7.7) is an affine-linear function with the differen-
tial a. Indeed, let p = o + y; then by vectorization,

f(p + x) = f(y + x) = a(y + x) + b = a(y) + a(x) + b

= f (y) + CO) = f (p) + a(x).

A particular case of affine-linear functions are constant functions. Their
defining characteristic is the zero differential. If f is a nonconstant affine-
linear function, then its level variety f (p) = c is a hyperplane with the
direction subspace determined by the equation di(x) = 0.

Affine-linear functions form an (n + 1)-dimensional subspace (here n =
dim S) in the space of all functions on S. This follows, for instance, from
the coordinate form (7.8).

We will prove now two statements about affine-linear functions that will
be used in the next section.

Proposition 7.15. Barycentric coordinates are gfne-linear functions.

Proof. Let xo, x1 i ... , x,, be the barycentric coordinates with respect to
points pp, pl, ... , p,,. If we take po as the origin and then vectorize S,
x1, ... , x become the usual coordinates with respect to the basis (pppl , ... ,

). Therefore, xi.... , xn are affine-linear functions. Since xo = 1 -
E 1 xi. we obtain that xo is also an affine-linear function (this can also be
shown by taking another point pi as the origin). 0
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Proposition 7.16. Let f be an affine-linear function. Then

AiP) = F"\if ( P;)

for any barycentric linear combination E; J1ipi of points pi, . , Pk

Proof. Vectorize the space S. Then f can be written in the form (7.7), so
that we obtain

f , + b J1{(a(p,) + b) .1f (Pi)

By combining the axioms of a Euclidean vector space and the axioms
of an affine space we can finally introduce the concept that encompasses all
elementary geometry.

Definition 7.17. An affine space associated with a Euclidean vector space
is called a Euclidean afne space (or simply a Euclidean space if the context
is clear).

The distance p between two points in a Euclidean space is defined as

p(P, q) = IP41.

This notion satisfies the axioms of a metric space. In particular, the triangle
inequality follows from inequality (5.26) for the length of a sum of vectors.

Exercise 7.18. Prove that the distance between two planes P, = p, + U1
and P2 = p2 + U2 in the Euclidean space is determined by the following
formula:

p(P1, P2) = I ortu,+u2 Pj I

Among all shine coordinate systems of a Euclidean space, those corre-
sponding to orthonormal bases stand out. They are called Cartesian coor-
dinate systems.

7.2. Convex Sets

Let S be an affine space over the field of real numbers and V, the associated
vector space.

Definition 7.19. The (closed) interval connecting points p, q E S is the set

pq={Ap+(1-.1)q:0:5A 1}cS.
Definition 7.20. A set M C S is convex if for any two points p, q E S, it
contains the whole interval pq.
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set.

Obviously, the intersection of convex sets is convex. A plane is a convex

Definition 7.21. A convex linear combination of points in S is their bary-
centric linear combination with nonnegative coefficients.

Proposition 7.22. For any points po, pl, ... , pk in a convex set M C S,
the set M also contains every convex linear combination p = Ei Aipi.

Proof. Use induction on the number of nonzero coefficients Ao, Al, ... , AA:
just as in the proof of Theorem 7.8 but with intervals instead of lines.

Proposition 7.23. For any set M C S, the set cony M of all convex linear
combinations of points in M is convex.

Proof. Let p = Ei Aipi and q = Ei lhgi be convex linear combinations of
points in M. Then for 0 < A < 1,

Ap + (1 - A)q = F AAipi + E(1 - A)Aigi
i i

is also a convex linear combination of points in M.

The set cony M is the smallest convex set containing M. It is called the
convex hull of M.

The convex hull of a system of affinely independent points po, pl, , pn
in an n-dimensional affine space is called the n-dimensional simplex with
vertices P0, M) .... pn. In other words, a simplex consists of points whose
barycentric coordinates with respect to some points po, pl, ... , pn are non-
negative. A zero-dimensional simplex is a point; a one-dimensional simplex,
an interval; a two-dimensional simplex, a triangle; a three-dimensional sim-
plex, a tetrahedron.

A point p in a set M C S is called an interior point if there exists a
neighborhood of p which is completely contained in M, and a boundary point
otherwise. Obviously, all points of a simplex whose barycentric coordinates
with respect to the vertices are all positive are interior (and vice versa).

Proposition 7.24. A convex set M has interior points if and only if aff M =
S.

Proof. If aff M = S, then M contains a system of n+ 1 of lnely independent
points. But then M contains a simplex with vertices at these points, hence
contains interior points. The converse is obvious.

Exercise 7.25. Prove that the closure of a convex set is convex and that,
moreover, every interior point of the closure is an interior point of the set
itself.



7.2. Convex Sets 249

A convex set that has interior points is called a convex body.

Proposition 7.26. Let p be an interior point of a convex body M and q,
any point of M. Then all points of the interval pq are interior points of M
except, maybe, the point q.

Figure 7.3

Proof. Consider the point

r=Ap+(1-A)q (0<a<1).
We have

1 A-1
P= +

a
q.

If a point r' is sufficiently close to r, then the point

1A-1p = r,
+

A
q

is close to p, hence lies in M (Figure 7.3). Since

r' _ AP' + (1 - \)q,
it follows that r' E M. 0
Corollary 7.27. Interior points of a convex body form a convex set.

Corollary 7.28. Every point of a convex body is a limit of its interior
points.

Denote the set of interior points of a convex body M by M°. This is an
open convex body.

By Proposition 7.24, any convex set M C S is a convex body in aff M.
Abusing the language, points of a convex set M that are interior within M
regarded as a body in aff M are often called interior points of M.
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For any nonconstant affine-linear function f on the set S (see Sec-
tion 7.1), let

Hf ={pES:f(p)=0},
Hf ={pES: f(p)>0},
Hi = {pES : f (p):5 0} (= H+f).

The set Hf is a hyperplane. The sets Hf and Hi are called (closed) half-
spaces bounded by the hyperplane Hf. Proposition 7.16 implies that every
half-space is a convex set. On the other hand, an interval connecting a point
in Hf to a point in Hi crosses the hyperplane Hf.

Definition 7.29. A hyperplane H f is a supporting hyperplane of a closed
convex body M if M C Hf and Hf contains at least one (boundary) point
of M. The half-space H f is then called the supporting half-space of M.

Proposition 7.30. A hyperplane H that passes through a boundary point
of a closed convex body M, is supporting if and only if H n M° = 0.

Proof. If H n M° 0 0, the points of M° (hence, also of M) lie on both
sides of H. Conversely, let points of M lie on both sides of H. Then, as
every point of M is a limit point for the set M°, there are points of M° on
both sides of H too. The interval connecting two such points lies in M° and
intersects H. Thus, H n M° # 0.

The key theorem of the theory of convex sets is the following separation
theorem:

Theorem 7.31. For every boundary point of a closed convex body, there
exists a supporting hyperplane passing through this point.

Proof. Let p be a boundary point of a closed convex body M in an n-
dimensional affine space. By induction on k, we prove that for k < n - 1,
there exists a k-dimensional plane through p that does not intersect M°.
For k = 0, the point p is such a plane. Assume that we found a (k - 1)-
dimensional plane P satisfying the induction hypothesis. Pick any (k + 1)-
dimensional plane S' containing P and an interior point po of M. Let us
find our k-dimensional plane among the planes in S' containing P.

Consider a convex body M' = M n S' in the space S. Clearly, M° n S' C
(M')°. Conversely, every point r E (M')° is an interior point of the interval
connecting pa to a point q E M' C M (Figure 7.4), hence it belongs to M°.
Therefore,

(M')° = M° n s'.



7.2. Convex Sets 251

Figure 7.4

In particular, it follows that P n (M')° = 0 and it suffices to prove that
S' contains a supporting hyperplane of the body M' that contains P. We
change the notation and denote S' = S, M' = M, and k + 1 = n.

So, let P be an (n - 2)-dimensional plane through the point p that does
intersect M°. Let us prove that there exists a supporting hyperplane of M
such that it contains P.

If a hyperplane H contains P, then P divides H into two half-planes (or,
rather, two half-hyperplanes), say, H+ and H- (this notation is not to be
confused with our notation for half-spaces). If none of the half-planes H+
and H- intersects M°, we are done. If both of them intersect M°, then so
does P; hence, this does not happen.

Now assume that H+ intersects M° while H- does not. Let us start
rotating the hyperplane H about P, clockwise. Clearly, after rotating just
a little, the half-plane H+ will still intersect M°. After rotating by ir it will
turn into the half-plane H- which does not intersect M°. So, there exists
a minimal angle of rotation at which H+ no longer intersects M°. Denote
the result of rotation of H through this angle by Ha.

Figure 7.5

By construction, the hyperplane Ho does not intersect the set M° but
after even the slightest counterclockwise rotation, it does (Figure 7.5). On
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the other hand, if the half-plane Ho intersected M°, it would still intersect
M° after a small rotation. But, as we have already remarked, both halves
of a hyperplane containing P cannot intersect M°.

Therefore, Ho does not intersect M°, hence Ha is a supporting hyper-
plane of M. 0
Remark 7.32. Actually we proved a stronger statement, namely that every
plane that passes through p and does not intersect M° is contained in a
supporting hyperplane.

Figure 7.6

Figure 7.7

Remark 7.33. A boundary point p of a body M can belong to either a
unique supporting hyperplane (as in Figure 7.5) or infinitely many such
hyperplanes (as in Figure 7.6). A supporting hyperplane can also contain
other points of M (as in Figure 7.7).

Theorem 7.34. Every closed convex set M is an intersection of (perhaps
infinitely many) half-spaces.
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Figure 7.8

Proof. Observe that every hyperplane H f is the intersection of the half-
spaces H' and Hf . This implies that a plane of any dimension is also an
intersection of half-spaces. Thus, it suffices to prove the theorem for a body
M.

We will show that a closed convex body M is the intersection of its
supporting half-spaces. Let q 0 M and p be an interior point of M. The
interval pq intersects the boundary of the body M at a point r 54 q. Denote
a supporting hyperplane through r by Hf (Figure 7.8). Since f (p) > 0 and
f (r) = 0, f (q) < 0, i.e., q 0 Hf

Definition 7.35. A polyhedron is the intersection of a finite number of
half-spaces. A convex polyhedron which is also a body is called a convex
solid.

In other words, a convex polyhedron is the set of solutions of a finite
system of linear inequalities. Notice that a convex polyhedron does not have
to be bounded. For instance, the space S itself is a convex polyhedron (as
the intersection of the empty set of half-spaces). A convex polyhedron does
not have to be a solid (though other texts sometimes require it).

Obviously, the intersection of a finite number of convex polyhedra is a
convex polyhedron. Every plane is a convex polyhedron.

Example 7.36. A simplex with vertices po, pj , ... , p is a convex polyhe-
dron since it is determined by linear inequalities xi > 0, i = 0,1, ... , n, where
xo, xl, ... , x are barycentric coordinates with respect to P0, PI, , pn-

Example 7.37. A convex polyhedron determined by linear inequalities 0 <
xj < 1, i = 1,. .. , n, where X 1 ,-- . , xn are affine coordinates with respect to
some frame, is called an n-dimensional parallelepiped.
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Definition 7.38. A point p of a convex set M is extreme if it is not an
interior point of any interval in M.

Theorem 7.39. A bounded closed convex set M is the convex hull of the
set E(M) of its extreme points.

Proof. Let M = conv_E(M). Clearly, M C M. We will prove by induction
on dim S that M C M. For dim S = 0, there is nothing to prove. Let
dim S > 0 and p E M. Let us prove that p E M. Assume that M is a
body; otherwise we can use the induction hypothesis directly. Consider the
following two cases.

Case 1. Let p be a boundary point. There is a supporting hyperplane
H passing through p. The set M fl H is bounded, closed, and convex and
all its extreme points are extreme points of M. By induction, M n H is the
convex hull of its extreme points. Thus, p E M.

Case 2. Let p be an interior point. Draw a line through p. Since the
set M is bounded, this line intersects it by an interval qr that contains p.
Points q and r are boundary points of M and, by the above, they belong to
M. Therefore, p E M. 0

Theorem 7.40 (Minkowski-Weyl Theorem). The following properties of a
bounded set M C S are equivalent:

(i) M is a convex polyhedron;

(ii) M is a convex hull of a finite number of points.

Proof. (i) Let
m

(7.9) M = nHI
+=t

be a convex polyhedron. Let us prove that each extreme point of M is
the only point in the intersection of some of the hyperplanes H11,. .. , H1,,,.
This will imply that M has only a finite number of extreme points. By
Theorem 7.39, M is their convex hull.

Let p E M be an extreme point. Define

J = {j : h ( p ) = 0 1 C {1,...,rn},
P={xES: f2(x)=0forjEJ}.

Since f;(p) > 0 for i V J, we we that p is an interior point of the convex
polyhedron M fl P in the space P. But p is an extreme point of M, hence
it is an extreme point of Mn P. Thus, dim P = 0, i.e., P = {p).
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(ii) Let M = conv{pl,... , pk }. We can assume that aff M = S. Consider
the following convex polyhedron in the space of affine-linear functions on S:

M'=Sf: f(pi)?0fori=1,...,k, f(pi)=1}.
i_i

An affine-linear function on S is uniquely determined by its values at points
P1,..., pk. Since for a function from M', these values lie on the interval
[0, 1], M` is a bounded polyhedron. By the above, it is the convex hull of a
finite number of points, say, f t, ... , fm.

By Theorem 7.34, the set M is determined by linear inequalities (clearly
M is closed). Thus,

M={pES: f(p) >OVf EM'}={pES: f2(p)>0 for i=1,...,m}.

Therefore, M is a convex polyhedron. O

Definition 7.41. A face of a convex polyhedron M is a nonempty intersec-
tion of M with some of its supporting hyperplanes. (The polyhedron itself is
also regarded as its own face being the intersection of itself with the empty
set of supporting hyperplanes.)

A zero-dimensional face is called a vertex; a one-dimensional, an edge; an
(n - 1)-dimensional, a hyperface (here, n = dim aff M). Consider a polyhe-
dron M determined by formula (7.9). The following theorem demonstrates
that in order to find its faces, it suffices to consider only the hyperplanes
Hf,..... Hfm.

Theorem 7.42. Every face r of the polyhedron M is of the form

(7.10) r=Mn (flHf),
jEJ

where J C {1,...,m}.

Proof. Let I° be a face of M. Let

J={j:r'CHf, }C{1,...,m}.
For any i 0 J, there exists a point pi E F' such that f2 (pi) > 0. Let p be the
center of mass of the system of all these points. Then fi(p) > 0 for every
i0 J.

Now, define r by formula (7.10). Let us prove that r' = r. Clearly,
r' c r. It is also clear that p is an interior point of the face r. Hence, every
supporting hyperplane passing through p contains r. Thus, r' = r. 0



256 7. Afline and Projective Spaces

Therefore, if a convex polyhedron is determined by a system of linear
inequalities, we can obtain its faces by replacing some of these inequalities
with equalities (but in such a way that we do not get an empty set). One
should keep in mind, though, that on some faces defined in such a way, some
of the remaining inequalities can automatically turn into equalities too.

Example 7.43. The faces of the n-dimensional parallelepiped determined
by inequalities 0:5 xi < 1, i = 1,.. . , n, are obtained by setting some of the
coordinates to 0 or 1. In particular, vertices are points such that all their
coordinates are either 0 or 1.

Exercise 7.44. Describe the faces of the intersection of the n-dimensional
parallelepiped 0 < xi < 1, i = 1, ... , n, with the hyperplane x1 + +x = a

Exercise 7.45. Determine the faces of the n-dimensional simplex.

Exercise 7.46. Prove that every face of the polyhedron conv{pl,... , pk} is
a convex hull of a subcollection of the points p1i ... , pk. In particular, any
vertex of conv{pl,... , pk} is one of the points pl,... , pk (but not all of them
need to be vertices).

Remark 7.47. The study of the combinatorial structure of convex poly-
hedra is an interesting and important area of mathematics. Here are two
results from this area:

(i) The sequence (ao, al.... , where ak is the number of k-dimen-
sional faces of an n-dimensional bounded convex polyhedron, is called the f -
vector of this polyhedron. What are the necessary and sufficient conditions
for a sequence of n natural numbers to be the f -vector of some n-dimensional
polyhedron? For n = 3, the conditions are as follows: ao - al + a2 = 2, 4 <
ao, a2 <- (Steinitz's Theorem). For a general n the answer is still
unknown.

(ii) Points p and q in a convex polyhedron are called neighboring if the
interval pq is an edge of this polyhedron. It is easy to see that tetrahedron
is the only 3-dimensional convex polyhedron such that each of its two ver-
tices are neighboring. The story is completely different in the 4-dimensional
space. D. Gale showed that this space contains polyhedra with an arbitrary
number of vertices such that each two of them are neighboring. For instance,
let M be the convex hull of points

2 3 4)Pi = (ti, ti,ti,ti , i = 1,...,N,

where t1, ... , tN are distinct real numbers. Then
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(i) every point pi is a vertex of M (and these are all its vertices; see
Exercise 7.46);

(ii) every interval pips (i 0 j) is an edge of M.
Prove these two statements.

Proposition 7.48. The extreme points of a convex polyhedron M are ex-
actly its vertices.

Proof. If a point p is an interior point of an interval in M, then a supporting
hyperplane passing through p contains this interval. Hence, p is not a vertex.
Conversely, if p is not a vertex, then it is an interior point of a face of positive
dimension, hence is not extreme.

Beside mathematics, the most important examples of the use of convex
polyhedra are found in linear programming. The basic problem of linear
programming is as follows: find the maximum (minimum) of a given affine-
linear function on a given convex polyhedron. Clearly, to find the minimum
of a function f is the same as to find the maximum of the function -f, so
one can consider just one of these problems.

At the foundation of linear programming lies the following theorem:

Theorem 7.49. The maximum of an affine-linear function on a bounded
convex polyhedron M is attained at a vertex.

Proof. By Theorem 7.39 and Proposition 7.48, every point p of a polyhe-
dron M is a convex linear combination of its vertices pl,... , pk:

k k

p)kpi, Ai=1, )i>0, i=1,...,k.
i=1 i=1

By Proposition 7.16,

k

f (p) = E ai.f (pi) < max f (Pi)
i=1

and the theorem follows.

The following two examples show how the need for linear programming
arises naturally.

Example 7.50 (The Maximum Profit Problem). A company possesses re-
sources R1, ... , of amounts b1, ... , respectively, and wants to pro-
duce products PI,..., P of amounts x1 i ... , x,,, respectively. Let aij be the
amount of the resource Ri needed to produce a unit of the product Pi and
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let cj be the selling price of a unit of the product Pj. Clearly, the following
inequalities should hold:

a,jxj<bi, xj>0, j=1...... .
=t

They determine a convex polyhedron M in the n-dimensional space with
coordinates xt, ... ,.rn. To maximize the profit, one nerds to find the point
(.rt...... rn) c Al where the linear function Ej_.t cjxj (the total selling price
of the product produced) is maximal.

Example 7.51 (The Transportation Problem). Suppliers A,,-, Am carry
the awunt-s a, ... , am, respectively, of a certain product. Customers B1,
.... B need the amounts b1,.. . , bn, respectively, of the same product. It, is
also given that Ei"t a; _ E 1 bj. Let x,j be the amount of product that is
transported from A; to Bj and cj, the cost to deliver a unit of the product
from A, to Bj. The following conditions must hold:

n in

F, xij = ai, E x,j = bj, x,j > 0.
j=t i=t

They define a convex polyhedron in the mn-dimensional space with coordi-
uattue ,rp i = 1, ...,in, j = 1, ... , n. The problem is to minimize the linear

Z;;,, c, jrtj (total cost of transportation) on this polyhedron.

Figure 7.9

To solve a problem of linear programming, one commonly uses the sim-
plex method. It consists in sliding by the edges of M in the direction of
the increase of f, while possible. The movement ends at a vertex where the
function f attains its maximum (see Figure 7.9).
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7.3. Affine Transformations and Motions

Consider affine spaces S and S' associated with vector spaces V and V',
respectively (over the same field).

Definition 7.52. An affine map from the space S to the space S' is a map
f:S-'S' such that
(7.11) f (p + x) = f (p) + cp(x), p E S, x E V,

for some linear map w from V to V' (independent of p and x).

In particular, affine-linear functions defined in Section 7.1 are simply
affine maps from the space S to the field K (regarded as an affine line).

It follows from (7.11) that

(7.12) p(p9) = f (p)f (4), p, q E S.

Thus, f determines the linear map cp uniquely. The latter is called the
differential of f and is denoted df.

Let us vectorize the spaces S and S' by taking points o and d, re-
spectively, as origins. Put p = o in (7.11). We thus obtain the following
presentation of the affine map f in the vectorized form:

(7.13) f (x) = cp(x) + b, b E V',

where b = o' f (o). This implies the coordinate form of f :
n

(7.14) yi=>aijxj+bi, i=1,...,m,
j=1

where x1i ... , xn are the coordinates of the point x and y1, ... , yin are the
coordinates of y = f (x).

Conversely, it is easy to check that for any linear map gyp: V -, V' and
any vector b E V', the map defined by (7.13) is affine with the differential
equal to W.

Let S" be another affine space and g: S' - S", an affine map.

Proposition 7.53. The map g f : S -. S" is affine. Also,

(7.15)

Proof. For p E S, x E V, we have

(gf)(p + x) = 9(f (p + x)) = 9(f (p) + df (x))

= 9(f (p)) + d9( (x)) = (9f)(p) + (dg . df)(x).

0
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For K = R, the differential of an affine map is a particular case of a
differential of a smooth map in analysis. Formula (7.15) is then a particular
case of the formula for the differential of the product of smooth maps (i.e.,
the "composition function").

Proposition 7.54. An affine map is bijective if and only if its differential
is bijective.

Proof. First, choose origins o and o' in the spaces S and S', so that f (o) =
o'. Then the map f in its vectorized form coincides with its own differential.
The proposition follows.

A bijective affine transformation is called an isomorphism of affine
spaces. Affine spaces are isomorphic if there exists an isomorphism between
them.

Corollary 7.55. Finite-dimensional affine spaces (over the same field) are
isomorphic if and only if they have the same dimension.

Obviously, an affine map f : S S' sends a plane P = p + U of the
space S to the plane f (P) = f (p) + 4f (U) of the space S'. If f is bijective,
then dim f (P) = dim P.

Similarly to the proof of Proposition 7.16, one proves that

f (Din _ Aif(P.)
i i

for any barycentric linear combination Ei aipi of points p1, ... , pk E S. In
particular, an affine map sends the center of mass of a system of points to
the center of mass of the system of images of these points.

An aflne map from an affine space S to itself is called an affine trans-
formation. Bijective affine transformations form a group called the general
affine group of S and denoted GA(S). (This agrees with the definition in
vector form in Section 4.2.)

By Proposition 7.53, the map

d : GA(S) -> GL(V)

is a group homomorphism. Its kernel is the group of parallel translations

ta:p-p+a, aEV.

We denote it Tran S.

Proposition 7.56. For any f E GA(S) and a E V,

(7.16) ftaf-1 = t(/la)-
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Proof. Apply the transformation f to f to a point q = f (p). We have

ftaf-'(q) = ft. (p) = f(p + a) = f(p) + df(a) = q + df(a).
0

Of course, it is not surprising that the map f to f -1 is a parallel transla-
tion: the group TranS C GA(S) is a kernel of a homomorphism, so it is a
normal subgroup.

If one is to fix the origin o E S, so as to identify the affine space S with the
associated vector space V, the group GL(V) becomes a subgroup of GA(S).
This subgroup is just the stabilizer of the point o in the group GA(S). The
vectorized form (7.13) of an affine transformation implies that every affine
transformation f E GA(S) has the following unique presentation:

(7.17) f = taco, W E GL(V), b E V.

Clearly the map W = c(f does not depend on the choice of the origin but,
generally speaking, the vector b = of(o) does.

Exercise 7.57. Prove that under the change of origin o' = o + a (a E V),
the vector b gets replaced by the vector

(7.18) b' = b + W(a) - a.

Example 7.58. By Proposition 4.28, every motion of the Euclidean plane
E2 is a (bijective) affine transformation. The same is true for the Euclidean
space V.

Example 7.59. A homothety with the center o and coefficient A is an affine
transformation defined as

f(o+x) = o+ Ax.

Clearly, df = AE. Let us prove that every affine transformation f such that
df = \E, where A 0 1, is a homothety with a center at some point. It
suffices to prove that f has a fixed point. In the vectorized form,

f(x)=Ax+b, bEV.

The equation f (x) = x reduces to

(1 - A)x = b,

hence, it has a (unique) solution.

A homothety with coefficient -1 is called a central symmetry.

Exercise 7.60. Prove that a product of homotheties with different centers
and coefficients A and µ is a homothety when .1µ 36 1 and a nontrivial
parallel translation when Ap = 1 (but with A, µ 0 1).
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The group of affine transformations defines affine geometry in the sense
that affine geometry studies those properties of geometric figures that are in-
variant under (bijective) affine transformations. Such transformations map
a plane to a plane of the same dimension, and a barycentric linear combina-
tion of points to a barycentric linear combination of their images with the
same coefficients. Thus, the notions of a plane and a barycentric combina-
tion belong to affine geometry (hence, so do the notions of parallel lines, a
parallelogram, an interval, the center of an interval, the center of mass of
a system of points, a convex set, a simplex, etc.). But, for instance, the
notions of a square and a circle are not the notions of of lne geometry, since
an of lne transformation can map a square to a parallelogram that is not a
square, and a circle to an ellipse that is not a circle.

The following theorem shows that all simplices are equal in affine geom-
etry (e.g., on the affine plane, all triangles are equal).

Theorem 7.61. Let {po, pi, , pn } and {qo, ql, ... , qn} be two systems of
affinely independent points in an n-dimensional affine space S. Then there
exists a unique affine transformation f that maps pi to qi for i = 0, 1, . . . , n.

Proof. There exists a unique linear map p of the space V that maps the
basis {popl,... , pojua} to the basis {j,... , gogn}. If we vectorize S by
taking po as the origin, the affine transformation in question has the form

f (x) = W(x) + pogo.

0

Exercise 7.62. Prove that in real affine geometry all parallelepipeds are
equal.

Exercise 7.63. Let P1, P2, Pl, P2 C S be planes with direction subspaces
U1, U2, Ui, U2, respectively. Assume that dim Pi = dim Pl, dim P2 = dim Pz,
dim U1 fl U2 = dim Ui fl U2, and that the intersections P1 fl P2 and Pj fl P2 are
simultaneously empty or nonempty. Prove that there exists a transformation
f E GA(S) that maps Pi to Pj and P2 to P.

In affine geometry, there is no notion of distance between points because
any pair of different points can be mapped into any other pair of different
points by an affine transformation. However, affine transformations preserve
the so-called ratio of a triple of points lying on the same line.

Consider points pl, p2, p3 on the same line 1. If p2 0 p3, then pip3 =
c73i (c E K). The number c is called the (simple) ratio of the triple
pl, p2, p3 and is denoted (pi, p2, p3). If p1 0 p2 = p3, then we set (p1, p2, P3) =
oo. If pl = p2 = p3, then (pl, p2i P3) is undefined. If c = µ, we say that the
point p3 divides the interval p1 p2 in the ratio .1 : µ (though the notion of an
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interval itself is defined only in real geometry). For A + Rc = 1, this means
that

P3=µPi+\P2-
It is clear that the ratio of points pl, p2, p3 is preserved under any affine
transformation that does not contract the line l to a point (in particular, it
is preserved under any bijective affine transformation).

Exercise 7.64. Determine haw the ratio of a triple of points changes when
these points are permuted. What is the maximum and the minimum number
of the values that it may have?

Figure 7.10

Exercise 7.65. Construct a triangle abc given points x, y, z on the sides bc,
ca, ab (or their continuations) such that they divide the respective sides in
the ratios A : 1, p : 1, v : 1 (Figure 7.10). (Hint: consider the product of
homotheties with centers at points x, y, z that map c to b, a to c, and b to
a, respectively. See Example 7.6.)

Now let S be a Euclidean affine space associated to a Euclidean vector
space V.

Definition 7.66. A motion of the space S is an affine transformation of S
whose differential is an orthogonal operator. (In particular, it follows that
every motion is bijective.)

Clearly, a motion preserves distances between points (for the definition,
see Section 7.1). Conversely, a distance-preserving stun transformation is
a motion.

Remark 7.67. Actually, one can show that every distance-preserving bi-
jective transformation of S is an affine transformation, hence a motion.

Motions of a Euclidean space S form a group denoted Isom S. A motion
is called proper (or orientation preserving) if its differential belongs to SO(V)
and improper (or orientation reversing) otherwise. Proper motions form a
subgroup of index 2 in Isom S; it is denoted Isom+ S (cf. Example 4.114).
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Figure 7.11

Example 7.68. An important example of an improper motion is the (or-
thogonal) reflection rH through the hyperplane H. Let e be a unit vector
which is orthogonal to H. Every point p E S can be uniquely presented as

p = q + Ae, q E H.

By definition,

(Figure 7.11).
rHp=q - Ae

P =rHP

Figure 7.12

The differential of the reflection rH is an (orthogonal) reflection through
the direction subspace of the hyperplane H in the space V. Let Hl and H2
be hyperplanes. If they are parallel, drH, = drH hence

d(rH, rH,) = drH1 drH, = E.

In this case, rH, rH, is the parallel translation along twice the common nor-
mal vector to Hl and H2 (Figure 7.12). On the other hand, if Hl and H2
intersect in an (n - 2)-dimensional plane P, then rH1rH2 is the rotation
through twice the angle between Hi and H2, i.e., the map that stabilizes ev-
ery point of P and is the rotation through this angle in every two-dimensional
plane orthogonal to P (cf. Example 6.41).
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Exercise 7.69. Prove that the group Isom S is generated by reflections
through hyperplanes.

If we choose an origin in the space S, every motion in S has a unique
form (7.17), where V E O(V). But in general, the vector b depends on the
choice of origin. The following theorem provides a canonical presentation of
any motion.

Theorem 7.70. For any motion f , there exists a uniquely determined plane
P = po + U such that

(i) f (P) = P and f I p is a parallel translation (perhaps trivial);

(ii) df stabilizes no nonzero vectors in U1-.

Proof. If such a plane exists, its direction subspace coincides with the sub-
space of fixed vectors of the operator A = df. Denote this subspace by U.
Choose an origin and write f in the vectorized form

f(x) = Ax + a.
Let a = b + c, b E U, c E U1. Since the operator A - E is nonsingular on
U1, there exists a unique vector xo E U1 such that

Axp+c=x0.
Let po be the point corresponding to xo. Then

f(po) = po + b.
The plane P = po + U is the unique plane that satisfies conditions (i)
and (ii).

The plane P is called the axis of the motion f. A motion f is determined
by its axis P = po + U, the vector b E U, and the orthogonal transformation
B = AUK of the space U1 that has no fixed vectors. The description of
orthogonal transformations implies that for proper motions, dim U1 is even,
and for improper ones, odd.

The above theorem allows us to describe the motions of the Euclidean
line, plane, and three-dimensional space in terms of elementary geometry.
We denote the axis of a motion f by P.

Let f be a motion of the Euclidean line. Two cases are possible.

(1) dim P = 1. Then f is a parallel translation.

(ii) dim P = 0, i.e., P is a point. Then B = -E and f is the reflection
(symmetry) through the point P.

Let f be a motion of the Euclidean plane. Three cases are possible.

(i) dim P = 2. Then f is a parallel translation.
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(ii) dim P = 1, i.e., P is a line. Then B = -6 and f is the reflection
through the line P or a glide reflection, i.e., a composition of the reflection
through P and a parallel translation along P.

(iii) dim P = 0, i.e., P is a point. Then f is a (nontrivial) rotation about
the point P.

Finally, let f be a motion of the three-dimensional Euclidean space. Four
cases are possible.

(i) dim P = 3. Then f is a parallel translation.

(ii) dim P = 2. Then f is the reflection through P or a glide reflection,
i.e., a composition of the reflection through P and a parallel translation by
a vector parallel to P.

(iii) dim P = 1. Then f is a (nontrivial) rotation about the line P or
a spiral motion, i.e., a composition of a rotation about P and a parallel
translation by a vector parallel to P.

(iv) dim P = 0. Then f is a mirror rotation, i.e., a composition of a
(nontrivial) rotation about a line and a reflection through a plane perpen-
dicular to this line such that the plane and the line intersect at P.

Exercise 7.71. Describe the composition of rotations f and g of the Eu-
clidean plane about different points. (Hint: calculate d(fg).)

For every figure M of a Euclidean space S, we can define its symmetry
gyp

Sym M = {f E Isom S: f (M) = M}.

For instance, crystallographic groups appear as symmetry groups of crystal-
lographic structures.

Observe that if the group Sym M contains improper motions, then the
group

Sym+ M = { f E Isom+ S : f (M) = M}

is its subgroup of order 2. It is the kernel of the homomorphism

SymM {±1}, f -* detdf.

If M is a bounded convex polyhedron, the group Sym M is finite since a
motion mapping M into itself is uniquely determined by how it permutes the
vertices of M (and there can be only a finite number of such permutations).
Moreover, the group Sym M preserves the center of mass of the set of vertices
of M, hence is actually a subgroup of the orthogonal group.

The most symmetric polyhedra are the so-called regular polyhedra.
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Let M be a solid convex polyhedron in an n-dimensional Euclidean
space. A flag of M is a collection of its faces (Fo, F1, ... , Fn_1 }, where

Definition 7.72. A convex polyhedron M is regular if for any two of its
flags, there exists a motion f E Sym M mapping the first to the second.

Since a motion f E Sym M is obviously determined by where it maps
one of the flags, the order of the symmetry group of a regular polyhedron is
equal to the number of its flags.

Two-dimensional regular polyhedra are the ordinary regular polygons.
Their symmetry groups were described in Example 4.20.

Three-dimensional regular polyhedra are Platonic solids, i.e., the regular
tetrahedron T, cube K, octahedron 0, dodecahedron D, and icosahedron
I (see Figure 4.6). The cube and octahedron and the dodecahedron and
icosahedron are the so-called dual polyhedra. The centers of faces of one
of the dual polyhedra are the vertices of the other; this implies that their
symmetry groups coincide. (The tetrahedron is dual to itself.)

By the above, the order of the symmetry group Sym P of a three-dimen-
sional regular polyhedron P equals the number of its flags, i.e.,

I Sym PI =(number of vertices)

x (number of edges adjoint to each vertex) x 2.

Thus,

ISymT1=24, j Sym K j _ Sym O l = 48, I Sym D { _ I Sym I l = 120.

The order of the group Sym+ P is half the order of Sym P. It consists
of rotations about the lines passing through the center of P and a boundary
point that is either a vertex, or the midpoint of an edge, or the center of a
face.

Exercise 7.73. List all elements of the symmetry group of the cube.

Just as we developed the group approach to Euclidean geometry, the
same can be done in order to define pseudo-Euclidean geometry.

A real vector space V with a fixed symmetric bilinear function a of
signature (k, l), where k, l > 0, k + l = n = dim V, is called the pseudo-
Euclidean vector space of signature (k, l). The group of a-preserving linear
transformations of V is called the pseudo-orthogonal group and is denoted
O(V, a). In the basis where a assumes the normal form, the corresponding
matrix group is denoted Ok,t.

An affine space S associated to a pseudo-Euclidean vector space V is
called a pseudo-Euclidean Fine space of the corresponding signature. Its
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group of motions is the group IsomS = d-1(O(V,a)). Pseudo-Euclidean
geometry is the geometry defined by this group.

Spacetime of special relativity is the pseudo-Euclidean affine space of
signature (3, 1). It is called the Minkowski space and its group of motions,
the Poincard group. (The corresponding group of pseudo-orthogonal trans-
formations is called the Lorentz group.)

Exercise 7.74. Describe the group 01,1. (Hint: use the coordinate system
where the corresponding quadratic function has the form q(x) = x1x2.)

Exercise 7.75. State and prove the "side-side-side triangle congruence the-
orem" for the pseudo-Euclidean plane.

7.4. Quadrics

Planes are the simplest objects of affine and Euclidean geometry. As we
know, they are determined by systems of linear equations. A natural gen-
eralization of planes (which are also called linear varieties) is the so-called
algebraic varieties. These are subsets of an affine space determined by sys-
tems of algebraic equations. Their study is the subject of algebraic geometry,
which is a large mathematical field and is not covered in this book. We shall
discuss briefly only several general problems of algebraic geometry in Chap-
ter 9. Also, in this section, we will consider the next simple (after planes)
type of algebraic varieties, the quadrics. These are determined by a sin-
gle algebraic equation of the second degree. They include such objects of
elementary geometry as circles and spheres.

Assume that char K 54 2.

Definition 7.76. An affine-quadratic function on an affine space S is a
function Q: S -+ K such that its vectorized form is

(7.19) Q(x) = q(x) + 1(x) + c

for a quadratic function q, a linear function 1, and a constant c.

Let q be the polarization of the quadratic function q, i.e., the corre-
sponding symmetric bilinear function.

Lemma 7.77. With a change of origin from o to o' = o + a (a E V), the
summands in (7.19) change as follows:

(7.20) q'(x) = q(x), 1'(x) = 24(a, x) + 1(x), c' = q(a) + l(a) +c.
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Proof. We have

Q(o'+x)=Q(o+a+x)=q(a+x)+l(a+x)+c
= q(a) + 24(a, x) + q(x) + l(a) + l(x) + c

= q(x) + (24(a, x) + l(x)) + (q(a) + l(a) + c).

0

In particular, the quadratic function q does not depend on the choice of
origin.

In coordinate form, expression (7.19) becomes

(7.21) Q(x) = L: aijxixj + bixi + c, aij = aji.

Coefficients bi and c have the following meaning:

(7.22) c = Q(o), bi =
8Q

(o).8xi

The linear function
l(x) _ bixi

is called the differential of Q at the point o and is denoted d0Q. When
K = R, this agrees with the standard definition of the differential.

Definition 7.78. A point o is a center of an affine-quadratic function Q if

(7.23) Q(o + x) = Q(o - x) dx E V.

Clearly, o is a center of Q if and only if doQ = 0. Thus, the set of all
centers of Q is determined by the following system of linear equations:

(7.24)
8Q ...8Q =0.
8x1

==
CZ

This is either a plane of positive dimension or an empty set. It is easy to
see that the coefficient matrix of system (7.24) is twice the matrix (aij) of
q. Therefore, Q has a unique center if q is nondegenerate.

Let

X(Q) = {p E S : Q(p) = 0}.

Definition 7.79. A quadric (or a quadric hypersurface) is the set X (Q) for
an affine-quadratic function Q unless X(Q) is a plane or is empty.

A planar quadric is called a conic (or a quadric curve). A quadric in a
three-dimensional space is also called a quadric surface.
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Definition 7.80. A point o is a center of a quadric if this quadric is sym-
metric with respect to o, i.e., if the quadric contains the point o - x, x E V,
whenever it contains the point o + x. The center of a quadric that lies on
the quadric itself is called a vertex.

A quadric is centre l if it has (at least one) center.

Obviously, every center of an affine-quadratic function Q is a center of
the quadric X(Q). Below we will see that the converse is also true.

Let us now show several easy geometric properties of quadrics.

Proposition 7.81. If a line intersects a quadric in at least three distinct
points, then it lies on the quadric entirely.

Proof. Since any point can be chosen as the origin o, we can assume that
our line passes through o. Let Q have vectorized form (7.19). Then the
intersection of X(Q) with the line L = o+ (x) = {o+ tx : t E K}, x E V, is
determined by the following condition:

(7.25) Q(tx) = t2q(x) + tl(x) + c = 0.

This is a quadratic equation with respect to t. If all its coefficients are 0,
then L C X(Q). Otherwise, it has at most two roots and this implies that
the intersection L fl X (Q) contains at most two points.

Proposition 7.82. If o is a vertex of a quadric X and X contains a point
p 0 o, the quadric also contains the line op.

Proof. Let p = o + x for x E V. Then X contains three distinct points of
the line op: a, o + x, and o - x. Hence, it contains all of the line.

A subset of an of ine space such that together with points o and p 0 o,
it contains the line op for every such p, is called a cone with the vertex at
o. A quadric is called conic if it has a vertex.

Proposition 7.83. Every quadric contains a point which is not its vertex.

Proof. If all points of a quadric are vertices, then by Proposition 7.82,
it contains every line passing through any two of its points. Hence, by
Theorem 7.8, it is a plane. This contradicts the definition of a quadric.

Clearly, any proportional affine-quadratic functions determine the same
quadric. The converse is not so obvious and is the subject of the following

Theorem 7.84. Let X be a quadric in an affine space over an infinite
field K. If X = X(Q1) = X(Q2) for affine-quadratic functions Qi, Q2,
then these functions are proportional.
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Proof. Take as an origin a point o on X such that o is not a vertex of Q.
Then, in the vectorized form,

Q, (x) = ql (x) + 11(x), Q2(x) = q2(x) + 12(x),

where 11, 12 34 0. Points of intersection of a line o + (x) with the quadric X
are determined by either of the equations

t2g1(x) + tll (x) = 0, t2 q2(x) + t12(x) = 0.

Since the solutions of these equations (with respect to t) must coincide, for
11(x) and 12(x) # 0, we have

ql(x) q2(X)

l1(x) 12(x)

Thus,

(7.26) gl(x)12(5) = 42(5)11(x).

Multiplying the above equality by 11(5)12(x), we obtain

ql (5)12(5)11(5)12(5) = g2(x)11(x)Il (5)12(5).

The latter equality holds for all x. However, since there are no zero divisors
in the polynomial ring, we can cancel the common factor on both sides.
Thus, we see that (7.26) holds for all x as well.

Assume that the linear functions 11 and 12 are not proportional. Then,
in a suitable basis, l1(x) = XI, 12(x) = x2 and (7.26) can be rewritten as

gl(x)x2 = g2(x)xl

Looking at factors on both sides of this equality, we see that

ql(x) = I(x)xl, q2(x) = 1(5)x2

for a linear function l(x). Hence,

Ql(5) = (1(x) + 1)xl, Q2(x) _ (1(x) + 1)x2.

Since X = X (Q1 ), X contains the hyperplane xl = 0. Since X = X (Q2),
we see that the function Q2 is identically zero on this hyperplane. However,
none of the factors 1(x) + 1 and x2 is identically zero there (the former is not
zero even at the point 0). Since there are no zero divisors in the polynomial
ring, we obtain a contradiction.

Therefore, 12 = All, A E K. By (7.26), q2 = Aqj. Thus, Q2 = .Q1.

Corollary 7.85. A center of a quadric X (Q) is also a center of the func-
tion Q.
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Proof. If o is a center of X (Q), then X (Q) = X(0) for

Q(o + x) = Q(o - x).

Thus, = AQ, A E K*. Comparing the terms of the second degree in the
expressions for Q and we see that A = 1. Hence, Q and this implies
that o is a center of the function Q.

Corollary 7.86. If a quadric X (Q) is invariant under a parallel translation,
then the function Q is invariant under this translation.

Proof. If X(Q) is mapped into itself under a parallel translation by a vector
a, then X(Q) = for

Q(p) = Q(p + a).

The rest of the proof repeats that of the previous corollary.

Remark 7.87. A careful reading of the proof of Theorem 7.84, together
with Remark 3.77, shows that it also holds for finite fields, the only exception
being the field Z3. (Recall that we assumed that char K y6 2.) Over Z3, the
following counterexample exists: consider equations xi + x1x2 + 1 = 0 and
xl + x t x2 + 1 = 0. They determine the same quadric in Z3 (it consists of the
points (1, 1) and (-1, -1)). However, both of the above corollaries remain
valid over Z3.

(Consider an affine-quadratic function Q in vectorized form (7.19). Set

(7.271) Ker Q = Ker q (I Ker l

(here Ker q :.- Ker tj).

Proposition 7.88. A function Q is invariant under a parallel translation
by a t'rrtor a if and only if to e KerQ.

This implies, in prrtirular, that Kerq ' Kert does not depend on the
choice of origin.

Proof. Invariance of Q under the 1wa1lel t raunslation by a is equivalent to
its preserving its forte when the origin from o to a' = o + a. By
Lemma 7.7 7, t his holds if and only if to r- Ker Q,

Thus. if f = KerQ 0, the gmondrie X -- X (Qt txuntains the plane p+U
for every point p E N, Such a quadric is ewllect a e _tand tui quadric with
a generator U. Choose the l w,4 of the -1,Aty l` that its last d vectors
form a basis of tlot' sutspace t'. Then tlae t of Q does
not contain the last et cxxuvtinates. 'The rxlatath-an Q - 0 %'an be viewed as an
equation of a quadric .Co in the (to 4ti? .hanceuMnnal s iac . Then the first
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Figure 7.13

n - d coordinates of a point on X are coordinates of a point on Xo and the
other coordinates are arbitrary (Figure 7.13).

Therefore, in order to describe all quadrics, it suffices to describe only
the noncylindrical ones.

Proposition 7.89. A noncylindrical quadric has at most one center.

Proof. Assume that a quadric X has two centers o and o'. Denote by s and
s' the central symmetries about o and o', respectively. Then sX = s'X = X,
hence ss'X = X. Since

as' is a (nontrivial) parallel translation. Hence X is a cylindrical quadric.

Noncylindrical quadrics can be arranged in three types.

1. Nonconic central quadrics.
We set the origin at the center of the quadric. Multiplying the equation

of the quadric by an appropriate factor, we obtain

(7.28) q(x1,...,xn) = 1,

where q is a nondegenerate quadratic function.

II. Conic quadrics.

We set the origin at the vertex of the quadric. The equation of the
quadric thus becomes

(7.29) q(xl,...,xn) = 0,
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where q is a nondegenerate quadratic function. We can still multiply the
equation by any number A 0.

III. Noncentra! quadrics.

Since Ker q (l Ker I = 0 but Ker q # 0 (otherwise the quadric is central),
dim Ker q = 1. Hence,

(7.30) V = Ker I ® Ker q.

Choose an origin lying on the quadric and a basis of V that agrees with
decomposition (7.30). The equation of the quadric becomes

(7.31) u(xl,...,Xn-1) = Xn,
where u = gIKerl is a nondegenerate quadratic function in n - 1 variables.
We can also multiply this equation by any number A 0 0, as long as we also
divide the last vector in the basis by A.

The equation of the quadric can be simplified further by choosing a
suitable basis in V. What can be achieved in this way depends on the field
K (see Section 5.3). In particular, when K = C or R, the quadratic function
q can be reduced to its normal form.

Let us focus now on the case K = R. Here the equation of a noncylin-
drical quadric reduces to one and only one of the following types:

I. Nonconic central quadrics.

(7.32) 0<k<n.
II. Conic quadrics.

(7.33) -xn=0, n<k<n.2 -
(The inequality k > 2 can be satisfied by possible multiplication of the
equation by -1.)

III. Noncentral quadrics.

(7.34) xl+...+xk-xk+1-...-xn-1=Xn+ n21 <k<n.

The above list can be interpreted as the classification of real quadrics
up to an affine transformation. Indeed, if quadrics X1 and X2 have the
same equation in the affine systems of coordinates determined by frames
{o; e l , ... , en) and {o'; e i , ... , en }, respectively, then X 1 is mapped to X2
by an affine transformation that maps the first frame to the second. Con-
versely, if an affine transformation f maps the quadric X1 to the quadric
X2, then X1 and X2 have the same equation in the affine systems of coor-
dinates determined by frames {o; el,... , en} and If (o); df (e1), ... , df
respectively.
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Table 1

n type k name
I 2 ellipse

2 1 hyperbola
II 1 two intersecting lines
III 1 parabola

3 ellipsoid
I 2 hyperboloid of one sheet

3 1 hyperboloid of two sheets
II 2 quadric cone
III 2 elliptic paraboloid

1 hyperbolic paraboloid

Ellipse

Parabola Two intersecting
lines

Figure 7.14

In particular, for n = 2 or 3, we obtain the well-known classes of real
quadric curves and surfaces listed in Table 1 and shown in Figures 7.14
and 7.15, respectively.

In a space of arbitrary dimension, quadrics of type I are called ellipsoids
for k = n and hyperboloids for k < n. Quadrics of type II are called quadric
cones. Quadrics of type III are called elliptic paraboloids for k = n - 1 and
hyperbolic paraboloids for k < n - 1.

A real quadric X is a smooth hypersurface in a neighborhood of a point
p E X if and only if dpQ 54 0, i.e., if p is not a vertex. In this case, the
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i

Cone

Elliptic paraboloid

Hyperbolic
paraboloid

Hyperboloid of
one sheet

Figure 7.15
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equation d.,Q(x - p) = 0 determines the tangent hyperplane of X at p. In
particular, nonconic quadrics are smooth everywhere.

Unlike generic hypersurfaces of higher degree, real (and complex) quad-
rics have a wonderful property: many affine symmetries.

Let X be a real quadric. Denote by G(X) the group of all affine trans-
formations mapping X to itself.

Theorem 7.90. If X is a nonconic quadric, the group G(X) acts transi-
tively on X. If X is a conic quadric, the group G(X) acts transitively on
the complement of the set of vertices in X.

Proof. If X is a cylindrical quadric with a generator U, then the group
G(X) contains the group of parallel translations by vectors in U, which acts
transitively on every plane of the form p+U. Thus, in this case, it suffices to
prove the theorem for the noncylindrical quadric Xo in the space of smaller
dimension (in the above notation).

Let X be an ellipsoid with the equation q(x) = 1 (in vectorized form) for
a positive definite quadratic function q. We can make the space V Euclidean
by taking the polarization of q as the inner product. Then X becomes a
unit sphere in this space and G(X) at least contains the orthogonal group
O(V). (In fact, they coincide but we do not need this stronger statement
here.) Choose vectors x, x' in X. Then

V = (x) ® (x)1 = (2) ® (x')1.

Consider a linear transformation V E GL(V) that sends x to x' and maps iso-
morphically the Euclidean space (x)1 to the Euclidean space (x')1. Clearly
W E O(V), so by construction W(x) = x'.

The case of a hyperboloid X is similar. The only difference is that the
inner product determined by the polarization of q makes V into a pseudo-
Euclidean space of signature (k, 1), k + l = n. Here the subspaces (x)1 and
(x')1 are pseudo-Euclidean of signature (k - 1, 1), hence isomorphic.

Now let X be a quadric cone with the equation q(x) = 0 (in vectorized
form) for a quadratic function q of signature (k, l), k + l = n. As above,
we make V into a pseudo-Euclidean space. For any nonzero vector x E X,
there exists a vector y E V such that (x, y) 34 0. By normalizing vector y
we may assume that (x, y) = 1. Next, we can replace y with y - 2 (y, y)x so
that (y, y) = 0 (the equality above still holds). Then, in the two-dimensional
subspace (x, y), the matrix of the inner product is (° 1). Thus, it is nonde-
generate and of signature (1, 1). This implies that

V = (x, y) ® (x, y)1,
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where (x, y)-L is a pseudo-Euclidean (or Euclidean) space of signature
(k - 1, 1 - 1). Likewise, for a different nonzero vector x' E X, we obtain
the decomposition

V = (x', y') (D W,?r)1.
Consider a linear transformation p E GL(V) mapping x to x', y to y', and
the subspace (x, y)1 to (x', y')1 so that it is an isomorphism of pseudo-
Euclidean spaces. Then cp E O(V, q) C G(X) and by construction, V(x) _

XI.

Finally, let X be a paraboloid with equation (7.31) in the vectorized
form. Any vector x E V can be presented in the form x = y + te, where
y E Ker 1, t E R, and e is a basis vector of the subspace Ker q, so that x E X
if and only if u(y) = t. For any a E Ker 1, consider the affine transformation

fa: y+to'--p y +a+(t+2i (a, y) + u(a))e.
If u(y) = t, then

u(y + a) = t + 24(a, y) + u(a)

and vice versa. This means that fQ E G(X). Obviously, transformations fQ,
a E Ker 1, form a group that acts transitively on X. O

Exercise 7.91. Prove that if X is a paraboloid determined by (7.31), then
the group G(X) acts transitively on the region u(xl,... , x,,.

X
P

p+Kerq

0 o+Kerq

Figure 7.18

To every paraboloid X = X (Q), we associate canonically one-dimen-
sional subspace Ker q C V called the special direction of X . Since for any
choice of origin, Ker q ¢ Ker 1, equation (7.25) has exactly one solution for
x E Ker q. Therefore, a line in the special direction intersects the paraboloid
at exactly one point. Moreover, for the same reason this intersection is
transversal (Figure 7.16).

Exercise 7.92. Prove that for a nonspecial direction of a paraboloid X,
there exists a line in this direction that does not intersect X.
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Let us discuss now to which form we can reduce the equation of a quadric
in a Euclidean space if we restrict ourselves to Cartesian coordinate systems.
As in affine geometry, the problem reduces to the case of noncylindrical
quadrics. Just as above, consider three types of such quadrics.

I. Nonconic central quadrics.
After reduction of the quadratic function q to principal axes (see Corol-

lary 6.37), the equation of such a quadric in Cartesian coordinates reduces
to the form

(7.35) Alxi 2 2+ ... + Anxn = 1, A1, ... , An i4 0.

Factors Al, ... , An are determined uniquely up to a permutation.

II. Conic quadrics.

In Cartesian coordinates, the equation of such a quadric reduces to

(7.36) Alxj + ... + Anxn = 0, Al, ... , An # 0.

Factors Al, ... , An are determined uniquely up to a permutation and simul-
taneous multiplication by A 0 0.

III. Noncentral quadrics (paraboloids).

Choose an origin and reduce the quadratic function q to principal axes.
We thus obtain Cartesian coordinates in which the equation of the parabo-
loid is

Alx?+..._+ ..An_lxn_1+blxl+...+bn_1xn_1+bnxn+c=0

(A1,...,An-1,bn 0 0).
By changing the xl,... , xn_1 coordinates of the origin, we can remove linear
terms containing these coordinates (the free term will change as well). After
this, by changing the x, coordinate of the origin, we can remove the free
term. Finally, after appropriately multiplying the equation of the parabo-
loid, we obtain

(7.37) Aix2 2 + ... + An_1xn-1 = xn, A1, ... , A n- 1 0 0.

Let us show that the choice of the origin such that the equation of the
paraboloid assumes the form (7.37) is unique. We need to describe it in
invariant terms.

Let {o; e1,. .. , en } be the frame in which the equation of the paraboloid
assumes the form (7.37). Then the special direction of this paraboloid is
(en) and its tangent hyperplane at o is determined by the equation x,, = 0.
Thus, if the basis {el,... , en} is orthonormal, the tangent hyperplane at o is
orthogonal to the special direction. Such a point o is called a vertex of the
paraboloid (even though this definition does not agree with Definition 7.80).
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The line in the special direction passing through this point is called the axis
of the paraboloid. Note that these notions are defined only for a paraboloid
in a Euclidean space.

Proposition 7.93. For every paraboloid in a Euclidean space, its vertex is
unique.

(In Figure 7.16, the point o is the vertex.)

Proof. Let p be a point on the paraboloid with coordinates x1, ... , x,,.
Differentiating equation (7.37), we see that the coordinates of the normal
vector to the paraboloid at p are

2A1x1,... , 2A,,.-1xn-1, -1.

In order for p to be a vertex, it is necessary and sufficient that this vector
be proportional to e,,. This happens if and only if x1 = = 0, i.e.,
p=o.
Corollary 7.94. Factors A1,.. . , in equation (7.37) are determined up
to a permutation and simultaneous multiplication by -1.

Proof. As we have shown, the choice of the origin such that the equation of
paraboloid assumes the form (7.37) is unique. The vector e is determined
uniquely up to multiplication by -1 as the unit vector of the special direc-
tion. Such a multiplication results in the multiplication by -1 of all the
left-hand side of (7.37). If e is fixed, we cannot multiply the equation by
A 9A 1 without changing the right-hand side. But then A1, ... , An_1 are de-
termined uniquely (up to a permutation) as the eigenvalues of the symmetric
operator corresponding to the function q.

Above, we interpreted our results as the classification of quadrics up to
affine transformations; here we can interpret our results as the classification
of quadrics in a Euclidean space up to motions.

7.5. Projective Spaces

On a photo or a (realistic) painting of a flat locale, images of parallel lines
intersect in general and images of equal intervals lying on the same line are
not equal (Figure 7.17). This means that the transfer of a landscape onto
the picture's plane is not affine. The same can be said regarding images that
appear on the retina. In both cases we actually deal with central projections.

Another real-life example of a central projection is the light spot that a
lamp with a round shade makes on the floor. When the shade is pointing
straight down, the boundary of the spot is circular, just as the shade itself.
But if we begin to rotate the shade about a horizontal axis, the circle turns
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into an ellipse that stretches further and further. Finally, when its farthest
end reaches infinity, it turns into a parabola. If we rotate the shade more,
the parabola `opens up" and turns into a branch of a hyperbola (if we put
another lamp on the other side of the shade, we would see the other branch
of this hyperbola). So, the rim of the shade projects onto the floor either as
an ellipse or as a parabola or as a hyperbola.

Notice one more thing. On a picture of a flat landscape, images of lines
intersect at the point that is not the image of any point in the landscape itself
(otherwise the lines would not be parallel). On the other hand, when the
boundary of the light spot becomes a parabola, the image of the uppermost
point of the rim disappears into infinity. We see that central projection
is more than simply nonaffine, it is also nonsurjective and is not defined
everywhere.

In order to study central projection, it is useful to consider the set called
the projective plane. Its "points" are lines passing through the center of
projection and a point at which such a line intersects the plane of projection
is the image of the corresponding "point." Note that "points" corresponding

Figure 7.17. A. Zubov, Summer Gardens (St. Petersburg, Russia), engraving.
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to lines that are parallel to the plane of projection have no images. (They
will if we choose to project onto another plane.) They are called "points at
infinity" with respect to the given plane of projection.

Also, the set of "points" corresponding to all lines on a plane that passes
through the center of projection is quite naturally called a "line" of the
projective plane. On the plane of projection such a "line"-with its "point
at infinity" removed-is represented by a regular line. The only exception
is the "line" corresponding to the plane parallel to the plane of projection.
It consists of "points at infinity" and is not represented at all. This "line"
is called the "line at infinity" with respect to the given plane of projection.

This construction can be interpreted as the addition of the "line at in-
finity" formed by the "points at infinity" to the afiine plane. Here we add
the same "point at infinity" to all lines from the sheaf of parallel lines on
the affine plane. In the resulting "plane," any two lines intersect.

Generalizing this approach to any dimension and any field, we arrive at
the following definitions.

Definition 7.95. An n-dimensional projective space PV over a field K is
the set of one-dimensional subspaces of an (n+1)-dimensional vector space V
over K. For every k + 1-dimensional subspace U C V, the subset PU C PV
is called a k-dimensional plane of the space PV.

In particular, zero-dimensional planes are the points of PV, one-dimen-
sional planes are called lines and (n - 1)-dimensional planes are called hy-
perplanes.

Obviously, the intersection of several planes is a plane (as long as it is
not empty).

The space PK"+' built on the space of rows K"+1 is sometimes de-
noted KP".

Given a nonzero vector x E V, we denote by x the one-dimensional space
(x) regarded as a point of the space PV.

Let S be a hyperplane of the space V that does not pass through the

origin; let VS be its direction subspace. Define the map

pS : PV\PVS -+ S

that sends a point a E PV\PVS (x E V\VS) to the intersection of the line
(x) with S (see Figure 7.18).

Definition 7.96. The hyperplane S together with the map yps is an affine
chart of the space PV. Points of the hyperplane PVS of V are called points
at infinity with respect to the afiine chart S.
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Figure 7.18

Remark 7.97. The term affine chart agrees with the usual meaning of
the word chart. Just as a geographical chart (i.e., a map) is a projection
of a piece of the Earth surface onto a piece of paper, an affine chart is a
projection of a piece of the projective space onto an aflne space.

Remark 7.98. Identifying points of the projective space with their images
on an aflne chart, we sometimes speak of an affine chart as if it were a piece
of the projective space. Likewise, we can also say that we get the projective
space by adding points at infinity to an affine chart.

Every k-dimensional plane of the space PV that does not completely lie
in PVS is depicted as a k-dimensional plane on the affine chart S. Planes
that lie in PVS are called planes at infinity with respect to S.

The homogeneous coordinates of a point 1 E PV are coordinates of x
in a basis of V. Homogeneous coordinates of a point are defined up to a
multiplication by A 54 0. In this they differ from coordinates in the usual
meaning of this word; moreover, they cannot be simultaneously zero. A
point with homogeneous coordinates x0, X1, ... , xn is denoted (xo : xl
xn).

The nonhomogeneous coordinates of a point in PV are the affine coor-
dinates of its image in an affine chart. Unlike the homogeneous coordinates,
the nonhomogeneous coordinates of a point are defined uniquely; however,
not every point has nonhomogeneous coordinates, namely, they are not de-
fined for points at infinity with respect to the given affine chart.

We will now find a relation between homogeneous and nonhomogeneous
coordinates. Let {eo, el,... , en} be a basis of V. Consider the affine chart

(7.38) So = eo + (el,...,en)

(see Figure 7.19). The image of a point i = (xo : xl xn) on So is the
point

xl Xn
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Figure 7.19

whose affine coordinates in the frame {eo; el,... , e,,} are u , ... , o . There-
fore, for the given affine chart and frame, the nonhomogeneous coordinates
of the point (xo : xl : x,,) are the ratios 1,..., The points with:o =o .

xo = 0 are points at infinity with respect to So.
Similarly, nonhomogeneous coordinates of the point i on the affine chart

(7.39) S, = ei + (eo,el,...,ei-l,ei+l,...,en)
are the ratios ' x=' xt . The points with xi = 0 are points,

, r; , . Z 'i , .. , x,
at infinity with respect to Si.

Observe that the charts So, S1, ... , Sn form an atlas in the sense that
they cover all of PV.

Exercise 7.99. Prove that no atlas of PV contains less than n + 1 charts.

Exercise 7.100. Let yl,... , y be nonhomogeneous coordinates of the im-
age of a point i E PV on the chart So. Find its nonhomogeneous coordinates
on the chart Si.

Theorem 7.101. For any k + 1 points of a projective space, there exists
a plane of dimension < k passing through all of them. Moreover, if these
points are not contained in a plane of dimension < k, there is a unique
k-dimensional plane that passes through them.

Proof. The translation of this theorem to the language of vector spaces is
the following obvious statement: any set of k + 1 vectors is contained in a
subspace of dimension < k + 1; if they do not lie in a subspace of dimension
< k + 1, then they lie in a unique subspace of dimension k + 1. 0
Theorem 7.102. Let II1 and II2 be two planes of an n-dimensional projec-
tive space. If dim II1 + dim II2 > n, then III n 112 96 0 and

(7.40) dim(II1 f1 II2) > dim III + dim 1712 - n.

For instance, every two lines on a projective plane intersect.

Proof. If II1 = PU1 and II2 = PU2. then

dim U1 + dim U2 = dim HI +dim1I2 + 2 > n +2 > dim V.
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Therefore, Ul n U2 0 0 and hence, Ill fl II2 = P(Ui n U2) 34 0. More
precisely,

dim(Ul fl U2) >- dim Ul + dim U2 - dim V

and this implies (7.40).

Every nonsingular linear operator A E GL(V) maps one-dimensional
subspaces into one-dimensional subspaces, hence defines a bijective map A
of the space PV.

Definition 7.103. A projective transformation of the space PV is a trans-
formation of the form A, A E GL(V).

Obviously, a projective transformation maps a plane in PV to another
plane of the same dimension.

The map A A is a homomorphism of the group GL(V) to the group
of transformations of the space PV. Its image is the group of all projective
transformations of PV, also called the general projective group of PV; it is
denoted PGL(V).

Lemma 7.104. The kernel of the homomorphism A H A is the group of
scalar operators AE, A E K*.

Proof. If the operator A maps every one-dimensional space into itself, then
every nonzero vector is its eigenvector. But clearly, the sum of eigenvectors
with different eigenvalues is not an eigenvector. Therefore, all eigenvalues
of A are the same, hence A is a scalar operator.

Figure 7.20

Thus we obtain

PGL(V) ^_ GL(V)/{,\E: A E K'}.
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Let us study how a projective transformation A acts on an affine chart
S. The operator A acts as an affine map from the hyperplane S to the
hyperplane AS. The image of a point Ai = Ax, x E S, on the chart S is
the central projection (with the center at the origin) of the point Ax E AS
onto S (Figure 7.20). Thus, we can say that from the affine chart's point of
view, a projective transformation is a composition of an affine map and a
central projection.

In coordinate form, the above discussion looks as follows. Let A =
(aij) a=o be the matrix of A in the basis {eo, e1, ... , en }. Consider nonho-
mogeneous coordinates of the space PV determined by the frame {eo; e1,
... , en} of the affine chart So (see (7.38)). Choose

x E PV have nonhomogeneous coordinates xl,... , x.. Let
yl,... , yn be the nonhomogeneous coordinates of its image. Then

aio + Ej 1 aijxj
(7.41) yi = n , i = 1,...,n.

aGo+Ej=1sojxj

For example, a projective transformation of a line is a linear fractional
transformation

(7.42) ax + b ad - be # 0.

(When c # 0, the point -d/c is mapped to the point at infinity and the
point at infinity is mapped to the point a/c.)

If AS = S, the transformation A acts on a chart S as an affine transfor-
mation. The following lemma demonstrates that every affine transformation
of the space S is obtained in this way.

Lemma 7.105. Every affine transformation of a hyperplane S C V that
does not pass through the origin extends uniquely to a linear transformation
of V.

Proof. A frame {eo; el, ... , en} of the hyperplane S is also a basis of V
(see Figure 7.19). The extension of an affine transformation f of S is a
linear transformation of V mapping the basis {eo, el, ... , en} to the basis
{f(eo),df(ei),...,df(en)}.

Considering the affine space S as a piece of the projective space PV, we
can say that the group GA(S) is a subgroup of PGL(V).

Exercise 7.106. Prove that for every projective transformation of a com-
plex projective space, there exists an affine chart where it acts as an affine
transformation.
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Geometry defined by the group of projective transformations is called
projective geometry. In comparison with Theorem 7.61, the following the-
orem shows how rich is the group of projective transformations relative to
the group of affine transformations.

A system of n + 2 points of an n-dimensional projective plane is called
a system of points in general position if no n + 1 of them lie on the same
hyperplane.

Theorem 7.107. Let {po, p1, ... , pn+1 } and {qo, qi, ... , qn+1 } be two sys-
tems of points in general position of an n-dimensional projective space PV.
Then there exists a unique projective transformation that maps pi to qi for
i= 0,1,...,n+1.

Proof. Let pi = ei, qi = fi, where ei, fi, i = 0, 1, ... , n+ 1, are nonzero vec-
tors of the space V. The condition of the theorem means that {eo, ei, ... , en}
(respectively, { fo, fl,... , fn}) is a basis of V and all coordinates of the vector
en+1 (respectively, fn+1) in this basis are nonzero. By normalizing vectors
eo, el, ... , en (respectively, fo, fl,... , fn) in a particular way, we can obtain
en+i = eo + el + + en (respectively, fn+i = fo + fl + + fn). With these
conditions, let A be the linear operator that maps the basis {eo, el, ... , en}
to {fo,fi,...,fn}. Then Aen+1 = fn+i and A is the unique projective
transformation that satisfies the condition of the theorem.

In particular, any three distinct points on a projective line can be mapped
to any other three distinct points by a projective transformation. For this
reason, not only projective geometry does not have the notion of the dis-
tance between two points but it also lacks the notion of the ratio of a triple
of points on a line, which affine geometry has. However, there exists an
invariant of a quadruple of points on a line.

Namely, let p1, p2, p3, p4 be points on a line PU C PV. Choose a basis
lei, e2} in the space U and, for any two vectors u, v E U, denote by det(u, v)
the determinant of the matrix formed by coordinates of these vectors in this
basis. Let pi = ui, i = 1, 2, 3, 4. It is easy to see that the expression

det(ul,u3) det(u1,U4)
(7.43) (p1,P2,Ps,Pa) = det(u3,u2) : det(u4,u2)
depends neither on the normalization of vectors ui nor on the choice of
lei, e2} in U. It is called the cross-ratio of the four points P1, P2, P3, P4 -

Let L be an affine chart of the line PU. Choose the basis lei, e2l SO
that L = e2 + (ei) and let ui = e2 + xiel. Then xi is the nonhomogeneous
coordinate of the point pi on the chart L (Figure 7.21) and

det(ui,ui) =
xi 1

= xi -
1xi

1
xi.
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Figure 7.21

Therefore,

(7.44) (pl,P2;p3+p4) _
XI - X3 xl - x4

x3-x2 x4-x2
Let us emphasize that since the cross-ratio can be defined by formula (7.43),
expression (7.44) depends neither on the choice of the affine chart nor on
the choice of coordinate on it.

Remark 7.108. The cross-ratio is assumed to be determined if no three
of the points pl, p2, p3, p4 are the same. Under this condition, if p2 = p3 or
pl = p4, the value of the cross-ratio is taken to be oo.

Exercise 7.109. Determine what happens to the cross-ratio (pl, P2i p3, p4)
= b when points pl, p2, p3, p4 are permuted. Prove that the expression

(b2-b+1)3
0(6 -1)2

does not change under any permutation.

Exercise 7.110. Study the images of four square flower beds along the
central alley in Figure 7.17 and show that the engraver seriously distorted
the perspective. (Hint: compare the cross-ratio of the three equidistant
points of the central alley determined by the flower beds and the alley's
point at infinity to the cross-ratio of their images on the engraving.)

Since the cross-ratio was defined in terms invariant under any linear
transformation of V, it is preserved by every projective transformation.

We now turn to the projective theory of quadrics. As we will see, it is
much simpler than its affine counterpart. This is one of the manifestations
of projective geometry's perfection that fascinated 19th century mathemati-
cians so much-they even believed that all geometries must be deduced from
it.

We call a subset of a vector space V a cone if it is invariant under
multiplication by numbers, i.e., if together with a given vector, it contains
all vectors proportional to it. (In the sense of the definition in Section 7.4,
this is the same as a cone with vertex at the origin.) In particular, a quadric
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X C V is a cone in the above sense if and only if X = X (Q), where Q is a
quadratic function on the space V. Such quadrics are called quadratic cones
(here we deviate slightly from the terminology in Section 7.4).

For any cone X C V, call the subset PX of the space PV formed by all
one-dimensional spaces in X the projectivization of X. Clearly, the image
of PX on an affine chart S is the intersection X n S.

Definition 7.111. A quadric in the space PV is a projectivization of a
quadratic cone from the space V.

In other words, this is a subset of the form PX(Q), where Q is a qua-
dratic function on the space V, as long as this subset is not empty and is
not a plane. The image of a projective quadric on an affine chart, as long as
it is not empty and is not a plane, is an affine quadric; however, the type of
the quadric depends on the chart. (Recall that light spot from a lamp with
a shade.)

A projective quadric PX(Q) is called nondegenerate if the quadratic
function Q is nondegenerate.

Remark 7.112. Using ideas from the proof of Theorem 7.84, it is not
difficult to show that whenever the field K contains more than five elements,
the intersection X (Q) n S is never empty. Also, X (Q) n S can become a
hyperplane if and only if Q is the product of two linear functions (and hence,
PX(Q) is the union of two hyperplanes).

is
In homogeneous coordinates, the equation of a projective quadric PX(Q)

n
(7.45) Q(xo, xi,... , xn) _ E aj xixj = 0, aij = aji.

+a=0

On the affine chart So, it is described in affine coordinates as

(7.46) Q(1, xl,... , xn) = 0

and its intersection with the hyperplane at infinity (with respect to So) is
described by the equation

(7.47) Q(0, xi, ... , xn) = 0

in homogeneous coordinates.
Observe that every quadric X on the chart So (hence, on any affine

chart) depicts a projective quadric X. The equation of X in homogeneous
coordinates is obtained from the equation of X by entering xo into every
linear term and xa into the free term. When applicable, Theorem 7.84
implies that the quadric X is uniquely determined by the quadric X.
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Example 7.113. Consider the conic C C RP2 defined by the following
equation in homogeneous coordinates:

2 2 2=0.x0-xl-x2
Its image on the affine chart So is the ellipse

xi+x2=1
and there are no points at infinity on C with respect to So. On the affine
chart xo - x2 = 1, the same conic is depicted as the parabola

y = xi,

where y = xo+x2. In this case, there exists one point at infinity: (1 : 0 : 1).
Finally, on the affine chart S2, the conic C is depicted as the hyperbola

2 2 -xp - x1 - 1

and there are two points at infinity, (1 : 1 : 0) and (1 : (-1) : 0).

X2

22 =

Figure 7.22

All this is well observed on the chart So, where the image of the line
xo-x2 = 0, which is the line at infinity with respect to the chart xo-x2 = 1,
has the equation x2 = 1 and touches the image of the conic at one point.
In turn, the image of the line x2 = 0, which is the line at infinity with
respect to S2, intersects the image of the conic at two points (Figure 7.22).
Therefore, we can claim that a parabola is tangent to the line at infinity and
a hyperbola intersects it at two points. It is not difficult to see that the point
at infinity that lies on the parabola corresponds to its special direction (see
Section 7.4) and the points at infinity that lie on the hyperbola correspond
to its asymptotes.

Exercise 7.114. Prove that every paraboloid in a real affine space is tangent
to the hyperplane at infinity.
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If a quadratic function Q is degenerate and the one-dimensional space
(xo) lies in its kernel, then for any one-dimensional subspace (x) contained
in a cone X (Q), this cone also contains the two-dimensional space (x, xo).
This implies that for every point a 0 ao, the quadric PX(Q) also contains
the line ixo, i.e., that it is a cone with the vertex io.

Its image on an affine chart is either a cone or a cylinder depending on
whether the point F0 lies in this chart or not. (So, the difference between
cones and cylinders disappears in projective geometry.)

In the cases K = C or R, we can choose a basis of V such that the
quadratic function Q reduces to its normal form. It follows that the equation
of a nondegenerate quadric in a complex projective space always reduces to
the form

(7.48) xo+x2l n=0.
In a real projective space, it always reduces to the form

(7.49) xp + xi +... + xk - xk+1 x2 = 0, n2 1 <k<n.

(The inequality k >21 appears because we can always multiply the equa-
tion by -1.)

W e see that all nondegenerate complex quadrics are projectively equiv-
alent and that the set of nondegenerate real quadrics splits into [n2 11] + 1
classes with respect to projective equivalence.

That quadrics determined by equation (7.49) are not projectively equiv-
alent for different k follows from Theorem 7.84 and the Law of Inertia.
However, the differences also show up in the geometric structure of such
quadrics. The following theorem describes one such difference.

Theorem 7.115. The maximum dimension of a plane contained in a real
quadric with equation (7.49) equals n - k - 1.

Proof. Obviously, a k-dimensional plane l7o determined by equations
xk+1=...=xn=0

does not intersect quadric (7.49). Since each plane of dimension > n - k
intersects IIo, none of them can lie in the quadric.

On the other hand, by changing the basis, we can rewrite equation (7.49)
as

Y0Yk+1 + Y1yk+2 + + j/-k-1Yn + yn_k + + yk = 0.
This shows that the (n - k - 1)-dimensional plane

lies in the quadric. 0
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In particular, quadric (7.49) does not contain straight lines if and only
if k = n - 1. Such a quadric is called an oval. One of its affine images is an
ellipsoid. When k < n - 1, the quadric is called ruled.

Table 2

n k name affine image part at infinity
ellipse 0

2 1 conic parabola point
hyperbola two points
ellipsoid 0

2 oval quadric elliptic paraboloid point
3 hyperboloid of two sheets conicJ-i;TM-quadric hyperboloid of one sheet conic

hyperbolic paraboloid two lines

We list nondegenerate quadrics in RP2 and RP3 together with their
affine images in Table 2. In each case we also describe the part at infinity
with respect to the given affine chart.

Figure 7.23

Observe that a ruled quadric in IRP3 is "woven" from two families of
lines; see Figure 7.23 for its affine image.

The following theorem is closely related to Theorem 7.90 and is also its
projective analogue.

Theorem 7.116. For any nondegenerate real projective quadric PX, the
group G(PX) of X-preserving projective transformations acts transitively
on X.
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Proof. Nondegeneracy implies that the zero vector is the only vertex of the
cone X. Thus, applied to X, Theorem 7.90 implies that the group of X-
preserving linear transformations acts transitively on the set of its nonzero
vectors. The theorem follows by projectivization.

Exercise 7.117. Prove that if PX is an oval quadric, the group G(PX)
acts transitively on the set of (ordered) triples of different points of PX.

In the case of an oval quadric PX, the group G(PX) can serve as
a foundation for the construction of conformal and Lobachevsky geome-
tries. Namely, conformal geometry is realized on the quadric PX itself
while Lobachevsky geometry is realized on its interior. In both cases, the
geometry-defining group in the sense of Section 4.2 is the group G(PX) (but
it acts on different sets).

Exercise 7.118. Prove that the group G(PX) acts transitively on the in-
terior of an oval quadric PX (cf. Exercise 7.91).





Chapter 8

Tensor Algebra

Tensor algebra is rather a language than a substantial theory. Yet this lan-
guage is very useful and, moreover, absolutely indispensable. In particular,
it allows us to give a uniform description of all objects of linear algebra and
even arrange them in one algebraic structure.

8.1. Tensor Product of Vector Spaces

We begin by introducing a general concept that encompasses many of the
notions we considered in previous chapters.

Let V1,..., Vp and U be vector spaces over a field K. The map

(8.1)

is called multilinear (or, rather, p-linear) if it is linear in each of the p
arguments when the other arguments are fixed. Such maps form a vector
space, which is itself a subspace in the space of all maps from Vi x . . . x Vp
to U. We denote this subspace as Hom(Vj,... , Vp; U).

If the spaces Vi,..., Vp and U are finite-dimensional, then so is the space
Hom(Vj,... , Vp; U). More precisely,

dim Hom(Vj,...,Vp;U)

since a multilinear map (8.1) is determined by the images of the basis vectors
of the spaces V1,..., Vp, which, in turn, are determined by their coordinates
in a basis of U.

When U = K, we obtain the space Hom(Vi,... , Vp; K) of multilinear
functions on Vl x x Vp. In particular, Hom(V; K) is the dual space V'
of V.

295
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The tensor products of vector spaces V and W arises naturally when we
consider bilinear mappings gyp: V x W --+ U. We will see that one of them is
"universal;" in some sense, it describes all others. The corresponding space
U is called the tensor product of V and W.

Proposition 8.1. Let V and W be vector spaces with bases lei: i E I}
and {f3: j E J}, respectively. The following properties of a bilinear map
gyp: V x W -+ U are equivalent:

(i) vectors (p(ei, fj), i E I, j E J, form a basis of U;
(ii) every vector z E U decomposes uniquely as z = Ei cp(ei, yi), yi E W;

(iii) every vector z E U decomposes uniquely as z = J:j W(xj, fj), xj E
V.

(When these spaces are infinite-dimensional, it is assumed that the sums
above are finite.)

Proof. If z = Ei j zij`p(ei, fj), then z = >i W(e;, yi) for yi = Ej zj fj and
vice versa. Equivalence of properties (i) and (ii) follows. Similarly, we prove
the equivalence of (i) and (iii). 0
Corollary 8.2. If property (i) holds for some bases of V and W, then it
holds for any bases.

Definition 8.3. A tensor product of vector spaces V and W is a vector
space T with a bilinear map

®:VxW-+T, (x,y)Hx®y

that satisfies the following condition: if lei: i E 1} and {f,: j E J} are
bases of V and W, respectively, then {ei 0 f: i E I, j E J} is a basis of T.

The above discussion implies that this condition does not depend on the
choice of bases of V and W.

Obviously, a tensor product exists for any two spaces V and W. Indeed,
consider the vector space T with a basis {tij : i E I, j E J} and define the
bilinear map ®: V x W -+ T so that ei ®fj = tij for the basis vectors ei, fj.

A tensor product is unique in the following sense: if (T1, ®1) and (T2, ®2)
are two tensor products of V and W, then there exists a (unique) isomor-
phism

0: T1 T2

such that

(8.2) r'(x®iy) = x®2y
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for any x E V, y E W. Indeed, for basis vectors, the isomorphism in question
can be constructed as

1'(ei®lfi) = ei02f3.
By linearity, (8.2) then holds for any x E V, y E W.

The tensor product of vector spaces V and W is denoted as V ®W or, if
we need to emphasize the base field, V OK W. It follows from the definition
that in the finite-dimensional case,

(8.3) dim(V ®W) = dim V dim W.

Example 8.4. Consider the bilinear map

®: K[x] x K [y] - K [x, y]

defined as

(f ® 9)(x,y) = f(x)9(y)

The products xi ®yi = xiyj (i, j = 0, 1, 2, ...) form a basis of K[x, y], hence
K[x, y] = K[x] ® K[y]. Similarly,

(8.4) K[xl,...,xm,yl,...,yn] =K[xl,...,xm]®K[yl,...,yn].

In the following two examples, V and W are finite-dimensional vector
spaces with bases lei,. - ., en } and {f,. .. , f.1- The dual bases of V' and
W' are denoted lei, ...,e,} and {01,..., O), respectively.

Example 8.5. For any a E V' and y E W, define the linear map a 0 y
from V to W as

(8.5) (a ® y)(x) = a(x)y

We have thus constructed a bilinear map

®: V* x W -- Hom(V;W).

It is easy to see that ei ®fj is a linear map determined by the matrix Eji.
Since these matrices comprise a basis of the space of all m x n matrices,

(8.6) Hom(V; W) = V' ® W.

Example 8.6. For any a E V' and Q E W', define the bilinear function
a ®/3onV x W as

(8.7) (a (& /3)(x, y) = a(x)Q(y)

We thus obtain a bilinear map

®: V' ®W' -' Hom(V, W; K).

Here (ei (9 Bj) (x, y) = xiyj, where xl, .... xn and yl,... yn are coordinates
of vectors x and y, respectively. Since every bilinear function ry on V x W
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decomposes uniquely as 'y(x, y) = Ei j cijxiyj, the functions ei ® Bj form a
basis of the space Hom(V, W; K). Therefore,

(8.8) Hom(V, W; K) = V` ® W.

Universality of the tensor product that we mentioned in the beginning
of this section can be expressed as follows:

Proposition 8.7. For any bilinear map gyp: V x W - U, there exists a
unique linear map': V ® W -+ U such that

(8.9) co(x, y) _ i,b(x (9 y)

for anyxEV,yEW.

Proof. On the basis vectors of V 0 W, this linear map is determined as

t(ei ®fj) _ P(ei, fj ).
0

Every element z E V ® W decomposes uniquely as

(8.10) z = zijei ®fj, zij E K.
i,j

The numbers zij are called coordinates of z with respect to the given bases
of V and W. In particular, in the finite-dimensional case z is described by
them x n matrix (zij) (here m = dim V, n = dim W).

An element z E V ® W is called decomposable if it decomposes as

(8.11) z=x®y, xEV, yEW.
Clearly, if x = Ei xiei, y = Fj yj f j, then zij = xjyj. In the finite-
dimensional case this means that rk(zij) < 1. Thus decomposable elements
comprise a very small part of the space V ® W (unless V or W is one-
dimensional); however, they span all of it.

Exercise 8.8. Prove that decomposition (8.11) of a nonzero decomposable
element z E VOW is unique up to replacements x " Ax, y H A-ly, A E K`.

Proposition 8.1 suggests other-often useful-decompositions of an ele-
ment of a tensor product. Namely, every element a E V ® W decomposes
uniquely as

(8.12) z=> ei®yi, yiEW,

or as

i

(8.13) zxj®fj, x3EV.
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Exercise 8.9. Prove that every element z E V 0 W decomposes as

(8.14) z=>Vk®Wk,
k=1

where the vectors v1, ... , yr E V, as well as w1i ... , w,. E W, are linearly
independent. This decomposition is unique up to replacements

vk '-' akivi, wk '-' bklwl,
t i

where A = (akt) and B = (bM) are nonsingular square matrices of order r
such that AT B = E. Here r is the rank of the coordinate matrix of z.

An important example of a tensor product is base field extension. We
discussed its simplest case, the complexification of a real vector space, in
Section 6.2.

Let V be a vector space over a field K. Let L be an extension of K, i.e.,
a field that contains K as a subfield. We can consider L as a vector space
over K and thus form the tensor product

V(L)=L®V.

By definition this is a vector space over K. However, we can make it into a
vector space over L by defining multiplication by elements of L as

a(µ (9 v)= \,a®v, \,p EL, vEV.

We can view the original space V as embedded into V (L) by identifying
a vector v E V with the vector 1 ® v E V(L). With this identification,
a 0 v = av. Consider the decomposition of elements of V (L) in a basis of
the second component in the tensor product. We obtain that every basis
of V over K is also a basis of V(L) over L. However, base field extension
is useful precisely because there exist other bases of V(L) where certain
objects (e.g., linear operators) look simpler.

On the other hand, if {9t: i E I} is a basis of L over K, every vector of
V (L) decomposes uniquely as Ei B;vi, where vi, i E I, are some vectors of
V (such that only finitely many of them are nonzero). For instance, every
vector of the complexification V(C) of a real vector space V decomposes
uniquely as x + ay for x, y E V.

In some sense, the operation of tensor product on vector spaces is com-
mutative and associative. Namely, for any two vector spaces V and W, there
exists an isomorphism

(8.15) V®W "W®V
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that maps x ®y (x E V, y E W) to y ®x. It is defined by the condition
that it maps any basis vector e; ® fj of V ® W to the basis vector f; ® ej of
W ® V. Similarly, for any three space U, V, W there exists an isomorphism

(8.16) (U®V)®W -24 U®(V(9 W)

mapping (x®y)®z (xE U, yEV, z E W) tox®(y®z).
By identifying spaces (U 0 V) 0 W and U ® (V ® W) via isomor-

phism (8.16), we can write tensor products of any (finite) number of vec-
tor spaces V1, V2,. .., Vp without parentheses. Induction on p shows that
tensor products of basis vectors of V1,..., V. form a basis of the space
V1 ® 0 Vp. On the other hand, this property can be taken as the defini-
tion of V1® ® Vp, i.e., one can define the tensor product of several vector
spaces just as we did it for two of them (one should only replace a bilinear
map with a p-linear one).

In view of Proposition 8.7, there exists an isomorphism

(8.17) Hom(V (& W; U) Hom(V, W; U)

that sends a linear map t/i: V ®W -+ U to the bilinear map cp: V x W - U
determined by (8.9). In particular, for U = K we obtain

(8.18) (V ®W)' Z Hom(V, W; K).

We can obviously generalize Proposition 8.7 to the case of any (finite)
number of vector spaces (instead of just two of them). Therefore, we obtain
an isomorphism

(8.19) Hom(V1 ® ... (9 Vp; U) Z Hom(V1 i ... , Vp; U)

that sends a linear map t/i : V1 ®... 0 Vp -a U to the p-linear map cp: V1 x
...x V,, - U defined as

(8.20) W(xl, ... , x,,) = tG(x1 ®... ®xp).

In particular, for U = K we obtain an isomorphism

(8.21) (V1 ®...®Vp)* Z Hom(V1i...,Vp;K).

Elements of the type x1® Oxp are called decomposable elements of the
tensor product V1®...®Vp. The existence of canonical isomorphism (8.19) is
equivalent to the following fundamental principle of tensor algebra: for any
p-linear map gyp: V1 x ... x Vp -. U, there exists a unique linear map Vi : V1®

0 Vp -' U satisfying condition (8.20). This allows us to construct linear
maps of a tensor product by defining them on indecomposable elements.

There exist other important canonical isomorphisms of tensor products
of finite-dimensional spaces.
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First of all, we can generalize Example 8.6 to any number of finite-
dimensional vector spaces V1,... , Vp. Let

(8.22) (al ®... (D ap)(xl,.,xp) = al(xl)...ap(xp)

for al E V, ... , ap E Vp . Then,

(8.23) Hom(V1i ... , Vp; K) = Vi ® ®Vp .

Together with isomorphism (8.21), this establishes the following isomor-
phisms:

(8.24) V1 ® ... ® VP .Z (V1 VP)

Combining equality (8.6) with isomorphisms (8.19) and (8.24), we obtain
the isomorphism

(8.25) Vi ®UZHom(V1i...,Vp;U)

for any finite-dimensional spaces V1,.. . , Vp, and U.

In view of the canonical isomorphisms above, we can identify the respec-
tive spaces, i.e., assume that V ®W = W ®V, (U ®V) ®W = U ®(V ®W ),
V' 0 W' ® U = Hom(V, W; U) (for finite-dimensional spaces), etc.

For any linear operators A E L(V) and B E L(W), one constructs the
linear operator A 0 B E L(V 0 W) by defining it as

(8.26) (A ®B)(x ®y) = Ax (& By

on a decomposable element x 0 y. The operator A ® B is called the tensor
product of operators A and B.

Let A = (a,,) be the matrix of the operator A in a basis {e1, ... ) en} of
V and B = (bkj), the matrix of the operator B in a basis (fl,. - -, An) of W.
Then the matrix of the operator A® B in the basis {el (& fl, el 0 f2, ... ,
el®fm, e20 fl, e2®f2.... ,e2®/m,...,en®fl, en®f2,...,en®fr} of
the space V 0 W is

a11B a12B ... a1nB
a21B a22B ... a2nB

an1B an2B ... annB

(8.27)

It is called the tensor product of matrices A and B and is denoted A 0 B.
It is easy to see that tr A ®B = tr A tr B, hence

(8.28) tr A ®B = tr A tr B.

Exercise 8.10. Prove that

(8.29) det A ® B = (det A)m(det B)n.
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Exercise 8.11. Assume that the characteristic polynomial of A has n roots
1\1, .... A, (counted with multiplicities). Assume as well that the character-
istic polynomial of B has m roots Prove that the characteristic
polynomial of A ®B has nm roots i = 1, ... , n; j = 1, ... , m. Deduce
from this formulas (8.28) and (8.29).

Exercise 8.12. Prove that (for finite-dimensional spaces V and W) the
space L(V ® W) is the tensor product of the spaces L(V) and L(W) with
respect to the tensor product of linear operators defined above.

Similarly, one can define a tensor product of several linear operators.

8.2. Tensor Algebra of a Vector Space

In this section, V always stands for an n-dimensional vector space.
The space

2Q(v)

P 9

is called the space of tensors of type (p, q) on V. (The space To (V) is
assumed to be equal to K.) Clearly, dim TT (V) = nP+q. Also, To (V) = V,
V, (V) = V' and, more generally,

(8.30) 7'40(V) = Hom V, ... , V; K),

9

(8.31) T91 (V) = HomV,...,V;V).

9

In particular, tensors of type (0, 2) are bilinear functions; tensors of type
(1, 1), linear operators; tensors of type (1, 2), bilinear operations (algebraic
structures) on V.

Tensor multiplication determines a bilinear operation

®: 7q(V) X T;(V) -Tq ;(V),

such that

(xl®...®ap®a1®...(9 aq)®(xp+1®...(9 xp+r®aq+1®...®aq+8)
=X10...0Xp+r®al 0...®aq+e

Example 8.13. The space

V)®(V(& V)

can be identified with the space L(V (9 V). Then the tensor multiplication

T11(V) xTi(V) - T2(V)
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coincides with the tensor multiplication of linear operators in the sense of
Section 8.1. Indeed, bilinearity of both multiplications implies that it suffices
to check that they coincide for decomposable linear operators. Let A = u®a,
B = v ®/3, u, v E V, a,,3 E V*, and let A ® B be the tensor product of the
operators A and B in the sense of Section 8.1. Given that (a ® /3)(x ® y) =
a(x),Q(y) (see Example 8.6 and the definition of isomorphism (8.18)), we
obtain that

(A ®B)(x ®y) = Ax ®By = a(x),3(y)u ® v

= ((a®/3)(x®y))u®v = ((u®v) (9 (a®Q))(x®y).
Thus,

as required.
A®B=u®v®a®/3,

Another important operation on tensors is contraction. This is a linear
map

7',(V) -- Tq=i (V), p, q > 0,
defined as follows. Consider the map

T-PV`;. X V X V -& i (V ),
P 9

(xl,...,xp,al,...,aq) -a1(x1)(x2 ®... ®xp ®a2 ®... ®a4),

It is clearly multilinear. Thus, there exists a linear map TQ (V) - q_-,, (V )
such that

x1®...Oxp®al ®...®aq'-.a1(x1)(x2®...®xpOa2®...(9 aq),

This is exactly the contraction.
In this definition we contract the first components in the products

VO. V and V . 0 V* whose tensor product is Tq (V). One can
P q

similarly define a contraction in any pair of components.

Example 8.14. The contraction of a linear operator (i.e., a (1,1)-tensor) is
its trace. Indeed, by linearity it suffices to verify this statement for decom-
posable operators, i.e., for operators of the form x 0 a, x E V, a E V*. Such
an operator is zero on the (n - 1)-dimensional subspace Ker a and acts as
the multiplication by a(x) on the quotient space V/ Ker a. Hence, its trace
is a(x), precisely its contraction.

Example 8.15. The contraction of the product of a linear operator A and a
vector x in the second V-component and the first (and only) V*-component
is the vector Ax. Indeed, for a decomposable operator A = u ® a, the result
of this contraction is a(x)u, which is precisely Ax.
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Example 8.16. The contraction of the product of linear operators A and
8 in the second V component and the first V' component equals the usual
product AB of these operators. Indeed, for decomposable operators A =
u ® a and B = v 0 , the result of the contraction is the operator a(v)u 0,8
that maps a vector x E V to a(v)Q(x)u. On the other hand,

ABx = ,C3(x)Av = a(v)$(x)u.

Example 8.17. Formula (8.7) implies that the contraction of the tensor
product of a bilinear function a and two vectors x and y in two pairs of
components equals a(x, y) or a(y, x) (depending on how the contracted com-
ponents are combined).

A contraction of the tensor product of tensors T and U is often called
the contraction of T with U.

Let lei} be a basis of the space V and {ej}, the dual basis of V'. Then
lei, ® . ®ei,, ®Ej, ® ®sjQ} is the basis of the space T'(V). Every tensor
T of the type (p, q) can be expressed in this basis as

7 ®... ®ei,, ®Ej, ®... (9 Ejq

The coefficients are called the coordinates of T in the basis
lei) of V.

Example 8.18. The coordinates of a linear operator regarded as a (1,1)-
tensor are exactly the matrix entries of this operator. Indeed, if A =
Ei,j Aijei ® ej, then Aej = F_i Aijei.

Example 8.19. Similarly, coordinates of a bilinear function regarded as a
(0, 2)-tensor are the matrix entries of this function.

There exists another notation for tensors, originally introduced by Ein-
stein. Here both subscripts and superscripts are used: basis vectors of V
are indexed by the subscripts and those of V', by the superscripts. The
corresponding indices of tensor coordinates are superscripts and subscripts,
respectively. If the same index appears in a product twice, once as a sub-
script and once as a superscript (no other repetitions are allowed), it is
assumed that we sum over this index. So in Einstein's notations, the above
formula looks like

(8.32) T = Tj,...j4ei, ®... ® eiD ®0

Example 8.20. Consider a linear operator A acting on a vector x.In
Einstein's notations, coordinates of the image of x are

(Ax)' = Ajx1.
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Example 8.21. The product of linear operators A and B is given by the
formula

(AB)k=AB .

The coordinates of the tensor product T 0 U of tensors T E V q (V) and
U E 7.(V) are the products of coordinates of the factors:

(T
®U)j-Ap+r = T...ipUip+1...tp+r

71.j9+8

The coordinates of the contraction S of a tensor T E TT (V) in the first
pair of components (also called the contraction in the first pair of indices)
are

Sia...ip = Tki2...ip
)a...j9 kja...ja

This follows from equality (8.32) because the contraction of the product
e;1 ®... ® e;,, ®01 ®... 0 ej9 equals dpi e;, ®- .. ®ei, ®eja ®... ®£i
(here S; is the Kronecker symbol). Similarly, one finds the coordinates of a
contraction of T in any pair of indices.

On a Euclidean vector space V, there exists a special tensor g E 7'20M
that determines the inner product. It is called the metric tensor of V. The
contraction of the metric tensor with any tensor T E T (V) in any index of
g and the first superscript of T is the tensor T E TQi (V) with coordinates

14. ...{p T,,Ei2...ip.
gjk j1...jv

The transition from the tensor T to the tensor T is called the lowering of
the first superscript of the tensor T. We define the lowering of any other
superscript similarly.

In an orthonormal basis of V, gjk = bjk, hence
TTa... y, fa...ip
ij1...ja = S1...ja

This implies, first of all, that the operation of lowering a superscript is
invertible. Its inverse is called the raising of a subscript. Second, it follows
that if we restrict ourselves to orthonormal bases, there is no difference
between subscripts and superscripts of tensors in a Euclidean space.

Example 8.22. When lowering the index of a vector u E V, we obtain a
linear function

a(x) = 9jkXJUk = (x, u)
We thus establish again the canonical isomorphism between the Euclidean
space V and its dual space V'.

Example 8.23. When lowering the index of a linear operator A, we obtain
a bilinear function

a(x, y) = 9jkTjAtk9< = (x, Ay)
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This establishes the canonical isomorphism between the space of linear op-
erators and the space of bilinear functions on a Euclidean space (we already
described this isomorphism in Section 6.3).

Tensors of type (p,0) are called contravariant tensors of rank p. We

denote

T'(V) = To (V).
The spaces To(V) = K, T1(V) = V, T2(V),... can be arranged into an
algebra. In order to do this, we need the notion of an external direct sum
of vector spaces.

We already encountered the decomposition of a vector space into a direct
sum of subspaces in Section 5.1. The corresponding definition can be stated
as follows:

Definition 8.24. A vector space V decomposes into a direct sum of sub-
spaces Vi,. .. , Vk if every element x E V decomposes uniquely as x =
X1 + + xk for xi E Vi. This is written as

V = V1 ®... ® Vk.

For subspaces V1, V2, the uniqueness of the decomposition of x E V as
x = x1 + x2i xl E V1, X2 E V2, is equivalent to V1 fl V2 = 0.

There exists another approach to the concept of a direct sum where we
do not assume beforehand that spaces V1, . , Vk are embedded into some
common space.

Definition 8.25. The direct sum of vector spaces V1, ... , Vk is the vector
space V1® ®Vk formed by all sequences (xl, ... , xk), where xi E Vi, with
componentwise operations of addition and multiplication by elements of the
base field.

So, operations on V1® ® Vk are determined as follows:

(xl,...,xk)+(Y1,...,yk) _ (x1+Y1,...,xk+yk),
1(x1, ... , xk) = (x1, -I xk).

That we indeed get a vector space in this way is obvious. In particular, its
zero is the sequence (0, ... , 0).

A direct sum in the sense of Definition 8.24 is called internal and in the
sense of Definition 8.25, external. However, these two notions are closely
related.

Namely, consider sequences of the form (0, ... , x,. .. , 0), where x E V is
in the ith place. Operations on such sequences reduce to respective opera-
tions on the ith component. By identifying an element x E V with such a
sequence, we obtain an embedding of the space V as a subspace of the space
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V1® . . ® Vk. Moreover, every element of Vl ® ® Vk decomposes uniquely
into a sum of elements of these subspaces. Hence, the space V1 ® ® Vk
is the direct sum of its subspaces V1,.. . , Vk. With this identification, an
element (xl,... , xk) of the external direct sum V1 ® - ® VA; is commonly
written as x1 + + xk.

Conversely, let a vector space V decompose into a direct sum of its
subspaces V1,.. . , Vk. Form the external direct sum V1® ® Vk. Then the
map

V®...®Vk-,V, (xl,...,xk)-xl+...+xk,
is an isomorphism of vector spaces.

The above discussion can be generalized to the case of an infinite number
of components V1, V2,. .. as long as we consider only finitary sequences
(xl, X2.... ), xi E Vi, i.e., sequences with only a finite number of nonzero
terms.

Now we can describe the construction of the tensor algebra. Consider
the following infinite direct sum:

(8.33)

Since

T(V) _ TP(V).
P=O

TP(V) ®Tq(V) C Tp+g(V),
the tensor product defines the structure of a graded algebra on T(V). This
algebra is called the tensor algebra of V. Note that it is associative (but not
commutative) and has a unity, which is the unity of the field K = T°(V).

Similarly, tensors of type (0, p) are called covariant tensors of rank p.
Denote Tp(V) = 2(V). The algebra

00

T.(V) = ®TT(V)
P=O

is called the algebra of multilinear functions on V. The tensor product of
multilinear functions has a simple interpretation. Namely, the values of a
(p + q)-linear function a ®,0, a E Tp(V), j3 E Tq(V), are determined as
follows:

(8.34) (a ®Q)(xl,...,xp+q) = a(x1,...,xp)0(xp+1,...,xp+q).

Indeed, by linearity, it suffices to verify that this formula holds for a =
al 0...®ap(a1,...,apEV*)and (3 /31®...0 /3qO9 EV*) but
then it easily follows from (8.22).

On the other hand, since

TT(V) = Tp(V'),
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the algebra of covariant tensors can be regarded as the tensor algebra of the
space V.

By the fundamental principle of tensor algebra (see Section 8.1), every
p-linear map

(8.35) cp: V U

P

"passes through" TP(V) in the sense that there exists a (unique) linear map

(8.36) t/i: TP(V) --+ U

such that

(8.37) 40(x1, ... , x,) = ?L(x1 ®... ® XP)

for any xi, ... , xP E V. When U = K, this establishes the isomorphism

(8.38) TP(V) + (TP(V))`

(a special case of isomorphism (8.21)).

If we consider only symmetric or skew-symmetric multilinear maps, we
arrive at the notions of the symmetric or the exterior power of V, respec-
tively. These are discussed in the next two sections.

8.3. Symmetric Algebra

Definition 8.26. A multilinear map (8.35) is symmetric if

W(xi,,...,xiP) _ Oxi,...,xP)
for any permutation iP) of indices 1, ... , p.

Clearly, it suffices to consider only permutations of two indices.
When U = K, this definition turns into that of a symmetric multilinear

function.
Let lei,..., en} be a basis of a space V.

Definition 8.27. A pth symmetric power of V is a vector space S together
with a symmetric p-linear map

(8.39) V X X V S, (xi,... , XP) H xi V ... V XP
P

such that the vectors ei, V ... V ei,, ii < . < iP, form a basis of S.

Notice that the expression xi V . V x, in (8.39) is one (inseparable)
symbol that denotes the image of the element (xi, ... , XP).

This definition does not depend on the choice of a basis of V. Indeed, if
{ei, ... , en} is another basis, the vectors ej'l V V e?P, ji 5 S jP, also
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form a basis of the space S: the number of these vectors is the same as the
number of the vectors ei, V - V eiy, ii < < ip, and the latter can be
expressed as the linear combinations of the former.

A symmetric power exists: it suffices to consider a vector space S with
the basis {si,...ip: i1 < < ip} and define the p-linear map (8.39) on the
basis vectors of V as ei, V... Veip = where the nondecreasing sequence
jl,... , jp is an arrangement of i1,... , ip.

The symmetric power is unique in the following sense: if (S1, V1) and
(S2, V2) are two p-linear symmetric powers of V, then there exists a (unique)
isomorphism Vj: S1 /S2 such that

?j(X1V1 ... V1xp) = xjV2...V2xp

for any xi, ... , xp E V. We construct this isomorphism by first defining it
for the basis vectors:

i'(ei1 Vl ... Vi ein) = ei, V2 ... V2 eip, it < ... < ip.

The symmetric power of a space V is denoted SP(V).
The following proposition describes the universality property of the sym-

metric power, which is similar to that of the tensor product (see Proposi-
tion 8.7).

Proposition 8.28. For any symmetric p-linear map (8.35), there exists a
unique linear map 7+(,: S'(V) -i U such that

(8.40) (p(xL ... xp) _ (xl V ... V xp)

for anyxl,...,xpEV.

Proof. Such a linear map is determined on the basis vectors of SP(V) as

'+s(ei, V ... V eia) = w(ei...... eiy), i1 < ... < ip.

Because the map (p is symmetric, this formula holds for every i1,.. . , ip.
Then (8.40) follows by linearity. 0

Elements of the form x1 V - V xp, x1, ..., xp E V, of the symmetric
power SP(V) are called decomposable. Proposition 8.28 implies that in order
to define a linear map of SP(V), it suffices to define it on decomposable
elements so that it is multilinear and symmetric with respect to x1, ... , xp.

In particular, there exists a bilinear map

V:Sp(V)xS4(V)-+S'Q(V)

determined on decomposable elements as

(8.41) (x1V...Vxp)V(xp+1V...Vxp+q)=x1V...Vxp+q.
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Consider the direct sum
00

S(V) = Sp(V).
p=o

The operation V defined above turns S(V) into a graded algebra. It is called
the symmetric algebra of the space V. Clearly, it is associative, commutative,
and has a unity (which is the unity of the field K = S°V). Definition (8.41)
implies that every decomposable element x1 V ... V xp E SP(V) coincides
with the product of elements xl,... , xp in the algebra S(V).

The symmetric algebra of a vector space is actually a familiar object.
We recognize it as the polynomial algebra. Namely, identify each product
e=, V V e;5,, i1 < < ip, with the monomial uj, uj, in variables
ul,... , u,a; we thus obtain an isomorphism between the algebra S(V) and
the algebra K[ul,... , u,,].

Moreover, if one regards el,... , e,, as coordinate functions on the dual
space V`, then every element of the algebra S(V) determines a function
on V' (as a polynomial in el,... , e,a). We can thus say that the algebra
S(V) is the algebra of polynomials on V' (even though over a finite field,
its elements cannot be identified with the functions they define). Likewise,
the algebra S(V') is the polynomial algebra on V.

If char K = 0, the space S"(V) can be identified with the subspace of
symmetric tensors in T1'(V).

Namely, for every permutation u E Sp, define a linear map T i-s T° of
the space TP(V) on decomposable elements as follows:

(8.42) (x1 (9 ... ® xp)° = x,(1) ® . ® x'(p).

Observe that

((xl ®... (9 xp)')' = (xv(1) (9 ... 0
xo(p))r

= x,.(1) ®... ®xc*(p) = (x1 ®... 0 xp)°T,

hence,

(8.43) (T°)r = T'T

for every tensor T E TP(V).
A tensor T E TP(V) is called symmetric if T° = T for any permutation

o E Sp. Symmetric tensors form a subspace of Tp(V ); denote it by STP(V ).

Assume that char K = 0. Then we can define the operator Sym of
symmetrization on the space 7P(V) as

(8.44) Sym T = li E V.
P! TEs'
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Clearly, SymT E STP(V) for any T and SymT = T whenever T E STP(V).
This means that Sym is a projection onto STP(V).

Proposition 8.29. If char K = 0, there exists an isomorphism y : SP(V)
STP(V) such that

(8.45) µ(xl V V xP) = Symn(xi ® ® xp).

Proof. Since the right-hand side of (8.45) is multilinear and symmetric
with respect to xl,...,xp, there exists a linear map µ: SP(V) -+ STP(V)
satisfying condition (8.45). It maps a basis vector ei, V . . . Veip, it < < ip,
of SP(V) to the tensor Sym(ei, (9 ® eie), it < . . . < jr,.

Let us look at the decomposition of a symmetric tensor in basis vectors
ei, ® ® eip of the space TP(V). We notice that the basis vectors with
the same indices (but different order) have the same coefficients. Thus, the
tensors Sym(ei, (9 ® ei,) with ii < < ip form a basis of the space
STP(V ).

Hence, µ is an isomorphism.

By means of this isomorphism, S(V) can be identified with STP(V ).

Observe that the subspace
00

ST(V) _ ®STP(V) C T(V)
P=O

is not a subalgebra of T(V); however, its identification with S(V) allows
us to endow it with an algebra structure. Multiplication in this algebra is
defined as

(8.46) T V U = Sym(T ® U).

Let us apply the above construction to the dual space V*. We denote

SS(V) = SP(V'), STT(V) = STP(V').

The space STp(V) is nothing but the space of symmetric p-linear func-
tions on V. Symmetrization works as follows:

(8.47) (Syma)(xi,...,xp) = 1 a(xo(i),...,xo(p)).
oES,

To each symmetric p-linear function a E STp(V), we associated a poly-
nomial fQ E Sp(V) defined as

(8.48) fi(x) = a(x,...,x)

(just as in Section 5.3, where to every bilinear function we associated a
quadratic function).
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Proposition 8.30. If char K = 0, then the map

(8.49) STT(V) SS(V), a '-+ fa

is a vector space isomorphism whose inverse p: Sp(V) -, STp(V) was de-
fined in Proposition 8.29.

Proof. It suffices to consider symmetric p-linear functions of the form

a=3ym(al ®...0ap) =,U(alV...Vap),

where al, ... , ap E V*. For every such function, we have

,fa(x) = al(x) ... ap(x) = (al V ... V ap)(x),

implying

as required. 0

The symmetric multilinear function a is called the polarization of the
polynomial fQ.

Example 8.31. The polarization of the polynomial

AX) = xi + X22X3

is the symmetric trilinear function

1
a(x,y,z) = xlylzl + 5(x3y2z2 + x2y3z2 + x2y2z3)

(Here x, y, z are the vectors in a three-dimensional space with coordinates
Xi, yi, zi, i = 1, 2, 3.)

Remark 8.32. When the base field has a positive characteristic, map (8.49)
is not generally an isomorphism. For instance, the bilinear function a(x, y)
= xly2 + x2y1 corresponds to the zero quadratic function over a field of
characteristic 2. Also, over such a field, the quadratic function f (x) = xlx2
does not correspond to any symmetric bilinear function.

Remark 8.33. Formula (8.48) associates to any (not necessarily symmetric)
p-linear function a homogeneous polynomial of degree p. However, the linear
map Tp(V) -+ Sp(V) defined in this way is not an isomorphism for any p > 1.

Multiplication in the algebra
00

ST.(V) = ®STp(V)
p=o
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of symmetric multilinear functions corresponding to multiplication in the
algebra

00

S.(V) _ ®SS(V)
>

looks as follows:

(8.50) (a V $)(xl,...,xp+q)

p!q! a(x{, , ... t xiy)13(Q(x{P+1 f ... , xiP+4) f
(p + q)1

(i1....,iPIiP+1....4P+q)

.where we sum over all partitions (i1,. .. , ip I ip+l, ... , ip+q) of the set 11'..
p+q} into two groups of p and q elements, respectively (the order of indices
within each group does not matter). This follows from formulas (8.46),
(8.34), and (8.47) and symmetry the of functions a and (3.

The symmetric product of p linear functions ai, ... , ap E V* is given by
the formula

(8.51) (al V ... V ap)(XI,...,xp) =
P

per(ai(xj)),

where per A is the permanent of the square matrix A. The permanent is
defined similarly to the determinant with the only difference that all terms,
corresponding to even or odd permutations, are added with the plus sign.

Remark 8.34. For a field of positive characteristic, formula (8.50) does
not make sense. The situation improves if we remove the coefficient before
the sum. Such an operation remains associative and commutative but this
algebra is no longer isomorphic to S. (V).

Just as we defined the tensor product of linear operators, it is possible
to define the symmetric power SPA of a linear operator A. This is a linear
operator on the space SP(V) that acts on decomposable elements as

(8.52) (SPA)(xiV...Vxp)=Ax1V...VAxp.

If we identify the space SP(V) with the space S7"(V) of symmetric tensors
(in the case char K = 0), the operator SPA becomes simply the restriction
of the pth tensor power of A to the invariant subspace STP(V) C TP(V).

Example 8.35. In representation theory of groups (see Section 11.4), it is
sometimes necessary to know the trace of the symmetric square S2A of an
operator A. Let {e1, ... , be a basis of V. Then vectors ei V ej, i <
comprise a basis of the space S2(V). We have (in Einstein's notation)

(S2A)(ei V ej) = Aei V Aej = A,kek V Ajet

2 (4. A'+A,A?)ekVel.
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Therefore,

(8.53) tr S2A = 2 (AA; + AAA,) = 2 ((tr A)2 + tr AZ) .

Exercise 8.36. Assume that the characteristic polynomial of an opera-
tor A has n roots (counted with multiplicities). Prove that the
characteristic polynomial of the operator S2A has n(n + 1)/2 roots Aiai,
1 < i < j < n. Deduce from this formula (8.53).

8.4. Grassmann Algebra

The Grassmann or the exterior algebra is constructed like the symmetric
algebra but with skew-symmetry replacing symmetry. We will assume here
that char K 96 2. (The case char K = 2 can be included in the general
scheme but then we ought to treat it carefully.)

Definition 8.37. A multilinear map (8.35) is skew-symmetric if

w(xi...... xi,) = sign(il,... , ip)rp(xl,... , xp)

for any arrangement (i1, ... , ip) of indices 1,... , p.

Clearly, it suffices to consider only permutations of two arguments (and
require that after such a permutation, the image be multiplied by -1). It is
also clear that if p is a skew-symmetric p-linear map, then cp(x1i... , xp) = 0
whenever some of the vectors x1,. .. , xp are the same.

When U = K, this definition becomes that of a skew-symmetric multi-
linear function.

Let {e1, ... , en} be a basis of the space V.

Definition 8.38. A pth exterior power of V is a vector space A together
with a p-linear map

(8.54) Vx...x V--.A, (xl,...,xp)i--*x1A...Axp

p

such that the vectors ei, n - A eip, i1 < . . < ip, form a basis of A.

For the same reasons as in the definition of a symmetric power, this
definition does not depend on the choice of a basis of V.

Just as a symmetric power, an exterior power exists and is unique. It is
denoted ApV.

Its definition implies that

dimAp(V)
(n) n(n-1) (n-p+1).

P - pt

In particular, AP(V) = 0 for p > n.
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The elements of the space AP(V) are called multivectors or, rather, p-
vectors. In particular, 1-vectors are just vectors of V; 2-vectors are called
bivectors; 3-vectors are called trivectors.

The following proposition explains the universality of the exterior prod-
uct; its proof is similar to that of Proposition 8.28.

Proposition 8.39. For any skew-symmetric p-linear map (8.35), there ex-
ists a unique liner map (i : AP(V) --# U such that

(8.55) (p(xl,... , xp) = ik(xl A ... A xp)

for anyxli...,xpEV.

Multivectors of the form xl A A xp, xl, ... , xp E V, are called decom-
posable.

There exists a bilinear map

A: A1(V) x AQ(V) -> Ap+Q(V)

defined on decomposable multivectors as

(8.56) (x1 A ... A xp) A (xp+l A ... A xp+4) = x1 A . A xp+q.

Consider the direct sum
00

A(V) _ ®Ap(V).
P=O

Operation A turns A(V) into a graded algebra called the Grassmann or the
exterior algebra of the space V. It is associative and has a unity but it is not
commutative. However, it possesses a property that replaces commutativity,
namely

uAv=(-1)"vAu for uEAP(V), vEA9(V).
Graded algebras satisfying this property are called supercommutative. (Su-
percommutativity lies at the foundation of the so-called supermathematics.)

Every decomposable multivector xl A A xp E AP(V) coincides with
the product of vectors xl,... , xp in the algebra A(V).

Unlike the symmetric algebra, the exterior algebra is finite-dimensional.
More precisely, since its basis vectors ei, A A esp, it < < ip, are in
one-to-one correspondence with subsets of the set

dimA(V) = 2'.

The space AP(V) can be identified with the subspace of skew-symmetric
tensors in TP(V).

Namely, a tensor T E Tp(V) is called skew-symmetric if TO = (sign a)T
for any permutation a E Sp. Skew-symmetric tensors form a subspace of
T"(V); denote it AT'(V).
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Assume that char K = 0. Then we can define the operator Alt of alter-
nation on the space TP(V):

(8.57) Alt T = 1 E (sign a)7.
P! "'ES'

This is a projection onto ATP(V).

Proposition 8.40. For char K = 0, there exists an isomorphism µ: AP(V)
--p ATP(V) such that

(8.58) µ(x1 A ... A xp) = Alt(xi ® ... (9 x,,).

Proof. The proof is similar to that of Proposition 8.29. We should only
take into account that in the decomposition of a skew-symmetric tensor in
the basis e;, ® ® e{p of TP(V), a basis vector appears with a nonzero
coefficient only if all of its indices are distinct. 0

By means of this isomorphism, we can identify the space AP(V) with
ATP(V ).

Exercise 8.41. Prove that

T2(V) = ST 2(V) (D A742(V),

but if dim V > 1, then TP(V) STP(V) + ATP(V) for p > 2.

The subspace
n

AT(V) = ®ATP(V) C T(V)
P=O

is not a subalgebra of T(V), but after identifying it with A(V), we can endow
it with an algebra structure. In particular, its multiplication operation is
described as

TAU=Alt(T®U).
Now we apply the above discussion to the dual space. We denote

Ap(V) = AP(V*), ATP(V) = ATP(V').

The subspace ATP(V) is nothing but the space of skew-symmetric p.
linear functions on V. The operation of alternation is

(8.59) (Alt a)(xl, ... , xp) = 1 E (sign a)a(xo(1), ... , xo(P)).

P!
oESp

Multiplication in the algebra
00

AT. (V) = ®ATP(V)
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of skew-symmetric multilinear functions that arises from multiplication in
the algebra

00

A.(V) _ Ap(V)
P=O

is given by the formula

(8.60) (a A Q)(xl,...,xp+q)

p!qI- 31gn(il,...,ZP+q)a(x{...... x{p)(xip+l,...,xiv+a),
+

where, as in (8.50), we sum over all partitions (i1,.. . , ip I i,1,. .. , ip+q) of
the set {l,.. . , p + q} into two subset of p and q elements, respectively. The
product a A i is called the exterior product of the functions a and p.

The exterior product of p linear functions al, ... , ap E V* is given by
the formula

(8.61) (al A ... A ap)(xl,... , xp) = pi det(ai(xi))

Remark 8.42. In the case of a field of positive characteristic, formula (8.60)
does not make sense. However, if we remove the coefficient before the sum,
we would still obtain an algebra isomorphic to A.(V). Sometimes such
a definition of the exterior product is assumed also for the case of zero
characteristic.

Similarly to the symmetric power of a linear operator, one defines the
exterior power ApA of a linear operator A.

Exercise 8.43. Prove that

(8.62) trA2A =

2

((trA)2 - trA2).

Whereas the symmetric algebra only provides a different approach to the
polynomial algebra, the Grassmann algebra is explicitly featured here for the
first time in this course. However, we have already encountered it in disguise
when we discussed determinants. Applications of the Grassmann algebra
given below can be viewed as a development of the theory of determinants.

Consider an n-dimensional vector space V over a field K of characteris-
tic 54 2.

Theorem 8.44. (i) A system of vectors {al,... , ap} of V is linearly depen-
dent if and only if a1 A A ap = 0.

(ii) Assume that in each of the systems {al, ... , ap} and {b11. .. , bp}
vectors are linearly independent. Then (al,... , ap) = (b1,. .. , bp) if and
only if the p-vectors al A ... A ap and bl A ...Abp are proportional.
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Proof. (i) If vectors al,... , ap are linearly dependent, then one of them can
be expressed in terms of others. For instance, let

p-1

ap=FAai.
i=1

Then
p-1

alA...Aap_1AapAjaiA...Aap_1Aai=0.
i=1

If vectors ai, ... , ap are linearly independent, then they are part of some
basis of V. Then, according to the definition of the exterior product, the
p-vector al A . . . A ap is a basis vector of the space AP(V). Hence, it is
nonzero.

(ii) If (al, ... , ap) = (b1, ... , bp), then the vectors b11. .. , by can be ex-
pressed in terms of vectors al,...,ap. Thus the p-vector bi A Abp can
be expressed as a linear combination of p-vectors of the form ai, A . A ay.
However,

fal A A ap for different i1, ... , ip,
0 otherwise.

Hence, b1A.. Abp=JlalA ...Aap.
If (ai, ... , a.) 96 (bl,... , bp), there exists a basis lei, ... ,of V such

that

(al,...,ap) _ (el,...,ep), (bj,...,bp) _ (ed+i,...,ed+p) (0 < d < p).

We know that the p-vector al A . . A ap is proportional to el A A ep and the
p-vector bl A A by is proportional to ed+l A . . . A ed+p. But the p-vectors
ei A . . Aep and ed+l A . Aed+p are not proportional to each other: according
to the definition of the exterior power, they are distinct basis vectors of the
space AP(V). Hence, the p-vectors al A - . - A ap and bi A - - -Abp are not
proportional either. O

The set of decomposable p-vectors is called the Gmssmann cone. The
projectivization of this cone is called the Grassmann variety and is denoted
Grp(V). By Theorem 8.44, the points of Grp(V) are in one-to-one corre-
spondence with the p-dimensional subspaces of V.

Fix a basis {ei,... , of the space V and let {ai,... , ap} be a basis of
a subspace U. Let us find the coordinates of the p-vector al A . . A ap in the
basis of the space AP(V) f o r m e d b y the products ei, A . A e; , , ii < . . < i , , .
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Let A = (aij) be a p x n matrix of coordinates of vectors al, ... , ap in
the basis i.e.,

ai=>aijej,

We have

j

a1 A ... A ap = alit ... apipei, A ... A eip.

If some of the indices i1,. .. , ip are the same, then ei, A . . . A eip = 0. If
they are all different, we can permute factors in ei, A . . A eip so that their
indices form an increasing sequence; in the process the whole product gets
multiplied by (-1)', where s is the number of inversions in the sequence

ip). It follows that

(8.63) al A ... A ap = > Mit...ipeil A ... A eip
i, <...<ip

where Mi,...ip is the minor of A of order p formed by the columns with indices
il,...,ip.

By Theorem 8.44, the values of Mi,...i,, determine the subspace U unique-
ly. They are called the Phicker coordinates of U. These are actually the
homogeneous coordinates of the corresponding point of the projective space
PAP(V) and are defined up to a multiplication by a number c 34 0. Further-
more, since the decomposable p-vectors form just a part of the space AP(V),
the Plucker coordinates of a subspace are not arbitrary; there exist certain
relations between them (see the next theorem).

In order to express these relations better, we accept the following con-
vention: given a collection of numbers pi,.,.i,, ii < < ip, we assume that
pi,...ip are also defined for any i1 ,. .. , ip in such a way that after two indices
are interchanged, gets multiplied by -1 (so, if two indices are the
same, it is zero). In particular, for any i1, ... , ip, Mi,...ip is then equal to the
determinant of a matrix of order p formed by the columns of A with indices
i i ,- .. , ip (in this order).

Theorem 8.45. Numbers pi,...ip are the Plucker coordinates of some p-
dimensional subspace U C V if and only if they are not simultaneously zero
and if for any i1, ,ip+1J1,...> jp_1i the following relation holds:

p+1
// -(8.64) 1)kpil...ik_...i',Aikh...jp-1 - 0

k=1

(here the symbol ' shows that the marked index is absent).

Relations (8.64) are called the Plucker relations.
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Remark 8.46. Since the left-hand side of relation (8.64) is skew-symmetric
in and we may assume that it < . < ip+1 and
j1 < - - - <21<"<3p-1.

Proof. Let us prove that relations (8.64) hold for the Plncker coordinates
Mi,...y of a p-dimensional subspace U C V. Expanding the determinant
Mlk)l...jy-l along the first column, we obtain

Mik11...jp-1 = asi,,N,,

where N, does not depend on k. Thus, it suffices to prove that
p+1

(8.65) (-1) Mi1...ik...iD+lasik = 0
k=1

for all s. Add the sth column of A to A to obtain a (p + 1) x n matrix.
Denote it by A,. Then the left-hand side of (8.65) is, up to a sign, the
expansion of the determinant of a matrix formed by the columns of A, with
indices i1,. .. , ip+i along the last line. Since two columns of the matrix A,
are the same, this determinant is zero.

Conversely, assume that p.j1,,,ia are not simultaneously zero and that
they satisfy relations (8.64). Let us prove that there exists a p x n matrix
A such that

(8.66) AI...i, = Mi,...ip

for any i1,. .. , ip (here the meaning of Mi,.,.in is as above).
Without loss of generality, we may assume that til..., = 1. We are

looking for a matrix A of the form

1 0 ... 0 al,p+l . . - aln

A= 0 1 ... 0 a2,P+1 ... a2n

0 0 ... 1 ap,p+1 ... ap
satisfying (8.66). Then, for j > p

M,........pj = aij.

Thus, we must set
aij = (-1)P-1µ1...i...Pj;

then equality (8.66) holds whenever the set {i1,. .. , ip} differs from the set
(1,. .. , p} in no more than one element.

Now it remains to prove that equality (8.66) holds if the set {i1.... , ip}
differs from the set { 1.... , p} in m elements for any m. We use induction
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on m. Let i l {1,. .. , p}. The following condition holds:
P

(8.67) µiti2...iy - µl...pµiti2...iy = (-1)k+1µi11...k...pµti;2...iy
k=1

On the other hand, it follows from the first part of the theorem that the
same condition holds for minors of A:

P

(8.68) Miti2...iy = E(-1)k+IMit1...k...pMki2....a.
k=1

By the induction hypothesis, the right-hand sides of (8.67) and (8.68) coin-
cide. Therefore, M 1...4. 0
Example 8.47. For n = 4, p = 2, the Pliicker relations reduce to the
following one:

(8.69) µ12µ34 + µ23µ14 + µ31µ24 = 0.

Example 8.48. For p = n - 1, there are no nontrivial Pliicker relations.
Hence, every (n - 1)-vector is decomposable.

Exercise 8.49. Prove that for p!5 q, there exists a bilinear map

gyp: AP(V) x Aq(V') - Aq-p(V')

defined on decomposable elements as

W(xlA...Axp,alA...AQq) _

E sign(il,... , ip, jl, ... , jq-P)ait (xl) ... air (xp)aj, n ... A c jq_p
ii-4p

(here we sum over all different i1,...,, and { jl, ... , jq-p} is the comple-
ment of in the set { 1, ... , q} with an arbitrary ordering).

Exercise 8.50. Prove that for a nonzero element 6 of A" (V' ), the map

AP(V) -, A"-P(V'), u r-. W(u, 6),

where V is the bilinear map from Exercise 8.41, is an isomorphism that maps
decomposable elements into decomposable elements. Deduce from this that
every (n - 1)-vector is decomposable (cf. Example 8.48).

Another application of the Grassmann algebra is the construction of the
so-called Pfaffian of a skew-symmetric matrix of even order.

Suppose n = 2m and A = (aij) is a skew-symmetric matrix of order n.
Consider the bivector

a=Eaii(eiAej)= Eaij(eiAej),
i<j ij
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where {ei, ... , en} is a fixed basis of the space V. Let us compute the mth
power of a in the algebra A(V):

all,2 ... an-tieil n ... A einam = a L
_

2m,n

1 sign(il, ... , in)aili2 . . ain_ lin el A A en,

where the latter sum is taken o v e r a l l permutations (i1, ... , in) of indices
1, ... , n. The summands that differ only by the order of pairs (i1, i2), ... ,
(in_1,in) and the order of elements in each pair are equal. Therefore,

(8.70) am = m! sign(i1, ... , in)aili2 ... asn-Iin el A ... A en,

((ili2l ... jin-li.)

where the sum is taken over all partitions of the set {1,. .. , n} into pairs
(ii,i2),..., (in_1iin) (the order of pairs and the order of indices within
pairs are chosen arbitrarily).

The expression

(8.71) pf A = E sign(i1, ... , in)aili2 ain Iin
(ili2l...lin-lin)

is called the Pfafflan of A. Formula (8.70) can be rewritten as

(8.72) am = m! (pf A)ej A ... A en.

It remains valid when vectors el,... , en are linearly dependent: then it says
that am = 0.

Theorem 8.51. (i) pf CACT = det C . pf A for any matrix C of order n.
(ii) (pf A)2 = det A.

Proof. (i) We will prove this formula first under the assumption that char K
= 0. Let {ei, ... , en} be a basis of V and

(el,...,en) _ (ei,...,e'n)C.

Let us express the bivector a = Ei j aijei A ej in terms of e'1, ... , e;,. Put
C = (cij); then

a = 1 aijckicijek A e! = 1 > aklek n ell,
2 ij,kj 2

k,l

where
akl = aijckiclj.

i,j
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Set A'= (aki); then

Thus,

A'=CACT.

am = m! (pf A)el A ... A e,, = m! (pf A')e'A...Ae;,.

On the other hand,

elA...Aen =(detC)e'A...Aen

(cf. expression (8.63)). Therefore,

pfA det C = pf A',

as required.

The equality that we have just proved can be viewed as an identity in
the ring of polynomials over Z in entries of matrices A and C. Reduction
modulo p shows that it still holds over the field Z,,, hence over any field of
characteristic p.

(ii) By Theorem 5.59, there exists a nonsingular matrix C such that

A = CFCT ,

where F is a matrix of the following form:

(-1 0)

F=

It is easy to see that

0

1 for k = m,detF=pfF=
10 fork < m,

0/

but in either case det F = (pf F)2. According to the first part of the theorem,

pf A = det

On the other hand,

0

0

det A = (det C)2 det F.

Therefore, det A = (pf A)2.
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Example 8.52. For a skew-symmetric matrix A of order 4, we have

pf A = a12a34 + a23a14 + a31a24

Comparing this formula with formula (8.69), we see that the bivector a =
F,,,,j asjeiAej is decomposable if and only if pf A = 0. By Theorem 8.51, this
condition is equivalent to det A = 0. Since the rank of a skew-symmetric
matrix is always even, the latter condition holds if and only if rk A < 2.
On the other hand, one can easily prove directly that the bivector a is
decomposable if and only if rk A < 2.



Chapter 9

Commutative Algebra

Rings (and, in particular, fields) and groups are the most important algebraic
structures, for which a substantial theory exists. In this chapter, we develop
the subjects of abelian groups and commutative associative rings that we
already touched upon in Chapters 1 and 3. Some general definitions and the
simplest facts in Sections 9.2 and 9.3 hold for more general kinds of rings.

9.1. Abelian Groups

Abelian groups are to some extent similar to vector spaces, an object with
which you are already well acquainted. At any rate, the notion of linear
dependence also plays an important role in the theory of abelian groups.

Recall that elements of an additive abelian group can be multiplied by
integers (this corresponds to taking an integer power of an element in a mul-
tiplicative group). This operation has the same properties as the operation
of multiplication of vectors by elements of the base field.

Namely, let A be an additive abelian group. Then it is easy to check
that for any a, b E A, k,1 E Z,

(9.1) k(a + b) = ka + kb,
(9.2) (k + l)a = ka + la,
(9.3) (kl)a = k(la)

(in the multiplicative version, property (9.2) was proven in Section 4.3).
Properties (9.1) and (9.2) imply similar properties for subtraction:

k(a-b) =ka-kb, (k-1)a=ka-la.

325
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For any subset S C A, the collection of all linear combinations

klal + + khan, ai E S, k, E Z,

is the smallest subgroup of the group A that contains S. It is called the
subgroup generated by S and is denoted (S). If (S) = A, then we say that
A is generated by S or that S is a generating set of A. (This agrees with
notions introduced in Section 4.4 for arbitrary groups.) An abelian group
that has a finite generating set is called finitely generated. Finitely generated
abelian groups are similar to finite-dimensional vector spaces.

A system {al, ... , an} of elements of a group A is called linearly inde-
pendent if klal + + knan = 0 only for kl = . . . = kn = 0. A system of
linearly independent elements that generates A is called a basis.

Every finite-dimensional vector space has a basis, but not every finitely
generated abelian group has one. For instance, the group Zn is generated
by one element, but it has no basis since every element a E Zn satisfies the
nontrivial relation na = 0.

Definition 9.1. A finitely generated abelian group is free if it has a basis.

Analogues of some statements concerning vector spaces (see Section 2.2)
hold for free abelian groups.

Theorem 9.2. All bases of a free abelian group L contain the same number
of elements.

Proof. Let {el,... , en} and {ei, ... , e',, } be bases of the group L. Assume
that m > n. We have

(elI...Iem) _ (el,...ten)C,

where C is an n x m integral matrix (i.e., a matrix with integer entries).
By Proposition 2.25, the columns of C are linearly dependent as elements
of the space Qn. It follows that there exists a nontrivial linear dependence
with integer coefficients between them; clearly, ei, ... , e;,, are subject to the
same dependence and this is impossible. O

The number of elements in a basis of a free abelian group L is called its
rank and is denoted rk L. Obviously, every free abelian group of rank n is
isomorphic to the group Zn of integer rows of length n.

Remark 9.3. The zero group is regarded as a free abelian group of rank 0.

We will now describe all bases of a free abelian group L. Let {el, ... , en}
be a basis of L and let e'1,.. . , e'n be some elements of L. We have

(9.4) (ei,...,e,) = (el,...,en)C,
where C is a square integral matrix of order n.
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Theorem 9.4. Elements ei , ... , en form a basis of L if and only if det C =
±1.

Proof. If detC = f1, the matrix C-1 is integral, thus
(el,...,en)C-1.

This implies that the elements e',..., e;, generate L and, since C is nonsin-
gular, they are linearly independent.

Conversely, let {e'1, ... , e;,} be a basis of L. Then

(9.5) (el,... , en) _ (e...... e;, )D

for an integral matrix D. By (9.4) and (9.5), we see that CD = E, hence
(det C) (det D) = 1. Since both det C and det D are integers, det C = ±1.

If one is to match free abelian groups with vector spaces, then subspaces
should be matched with subgroups. This is partially justified by the follow-
ing theorem.

Theorem 9.5. Every subgroup N of a free abelian group L of rank n is a
free abelian group of rank < n.

Proof. We use induction on n. For n = 0, there is nothing to prove.
F o r n > 0, let {e1, ... , en} be a basis of L. Consider the subgroup

Li = (e1, ... , en- 1) C L. This is a free abelian group of rank n - 1. By the
induction hypothesis, the subgroup Ni = N f1 Ll is a free abelian subgroup
of rank m < n - 1. Let { fl, ... , f,,,} be its basis.

Consider the last coordinates of all elements of N in the basis {ei, ... , en }
of L. They form a subgroup of the group Z, which, by Theorem 4.50, has
the form kZ for some k E Z+. If k = 0, N = N1 and we are done. If
k > 0, let f,,,+1 be an element of N whose last coordinate is k. Then
{fl, - , fm, fm+i } is a basis of N, which completes the proof.

The analogy between subgroups of a free abelian group and subspaces of
a vector space is not complete. Unlike a vector space, a free abelian group
of rank n > 0 contains subgroups of the same rank that do not coincide with
the whole group. For instance, the subgroup mZ C Z, m > 0, has rank 1,
just as the whole group Z.

However, the connection between free abelian groups and vector spaces
goes beyond the above analogy. A free abelian group of rank n can be
embedded as a subgroup into an n-dimensional Euclidean vector space E.
Namely, let { e1, ... , e,,} be a basis of En. Then the subgroup generated
b y vectors e1, . . . , e,, (i.e., the set of vectors with integer coordinates in the
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Figure 9.1

basis {el, . . . , e"}) is a free abelian group of rank n. This geometric picture
(Figure 9.1) helps to understand free abelian groups better.

A subgroup L C E" obtained as above is called a lattice in E".

Exercise 9.6. A parallelepiped P(ej,... , e") on a basis {e1, ... , e" } of a
lattice L C E" is called a fundamental parallelepiped of this lattice. Prove
that its volume does not depend on the choice of basis of L.

There is also an axiomatic description of lattices in E" which uses topol-
ogy of this space.

Definition 9.7. A subgroup L C E" is discrete if every bounded subset of
E" contains a finite number of elements of L.

Obviously, every lattice is discrete. More generally, a subgroup generated
by a linearly independent system of vectors (i.e., a lattice in a subspace of
E") is discrete.

Exercise 9.8. Prove that a subgroup L C E" is discrete if and only if its
intersection with a neighborhood of zero consists only of zero itself.

Theorem 9.9. Every discrete subgroup L C E" is generated by a linearly
independent system of vectors of E.

Proof. Let U C E" be the linear span of the subgroup L. Clearly, L is a
discrete subgroup of U. Thus, by switching from E" to U, we may assume
that the linear span of L is all of the space itself.

In this case, the subgroup L contains a`basis {el,... , e" } of E". Consider
the lattice Lo generated by this basis in E". In every coset of L by Lo, there
is a vector from the parallelepiped P(el,... , e"). Since the intersection
L fl P(el, ... , e") is finite, the index IL : Lol is finite. Denote it by d. Then
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dx E Lo for any x E L (see Corollary 4.68). Therefore,

(9.6) Lo C L c d-'Lo.

Observe that d-'Lo is a lattice in E" generated by the basis {d-lel, ... ,
d-te,,}. By Theorem 9.5, it follows from (9.6) that L is a free group; more-
over,

n = rkL0 < rkL < rk d-' Lo = n,
thus, rk L = n. It follows that any basis of L is also a basis of E". This
means that L is a lattice in E'.

Corollary 9.10. A discrete subgroup L C E" whose linear span coincides
with E", is a lattice in E.
Example 9.11. Lattices in E3 play an important role in crystallography.
The defining feature of a crystal structure is the periodic repetition of the
configuration of atoms in all three dimensions (see Figure 4.2 in Section 4.2).
More explicitly, let r be the symmetry group of a crystal structure (which
we extend to all of the space). Denote by L the group of all vectors a such
that the parallel translation to belongs to F. The above implies that L
generates all of E3 (as a vector space). On the other hand, since there exist
only finitely many atoms of the crystal structure in a bounded part of the
space, the group L is a discrete subgroup of E". Hence, L is a lattice in E3.

Usually, the group r contains other motions apart from parallel trans-
lations. They are the ones that determine the symmetry of real crystals in
nature. That is, the symmetry group G of a crystal whose structure has
symmetries described by t coincides with the group dI' of linear parts of
motions in F.

Using the above description of the group of parallel translations con-
tained in I', we can learn something about G. Namely, for each -y E F and
every a E L, we have

tdy(a) = yta-l-I E F
(see (4.2)). Therefore, every transformation g E G preserves the lattice L,
and hence its matrix in a basis of the lattice is integral. We obtain tr g E Z.
On the other hand, if g is a rotation through an angle a about an axis, then
trg = 2 cos a + 1. Hence, 2 cos a E Z. This implies that

ir x 21r
a E 0, 3, 2, 3 , zr

In particular, unlike flowers and some lower animal species, crystals cannot
have a rotational symmetry of the fifth order.

We will now provide a more precise description of subgroups of free
abelian groups. The key role will be played by an auxiliary statement about
integral matrices.



330 9. Commutative Algebra

Definition 9.12. An integral elementary row transformation of a matrix is
a transformation of one of the following three types:

(i) adding a row multiplied by an integer to another row;

(ii) interchanging two rows;

(iii) multiplying a row by -1.

An integral elementary column transformation is defined similarly.

A rectangular n x m matrix C = (cij) is called diagonal if c;j = 0
for i 0 j and cii = ui for i = 1,.. . , p, p = min{n, m}. The notation is
diag(ul,...,up).

Proposition 9.13. Every integral rectangular matrix C = (cu) can be re-
duced by integral elementary row and column transformations to the form
diag(ul,...,up), where ul,...,up > 0 and uilui+1, i = 1,...,p - 1,

Proof. If C = 0, there is nothing to prove. If C 74 0 but c11 = 0, we can
get c11 0 by interchanging rows and columns. We can also obtain c11 > 0
by multiplying the first row by -1, if necessary. Let us now try to reduce
ell by integral elementary row and column transformations.

If an entry c;l, i > 2, is not divisible by ell, divide it by ell with a
remainder:

cil=gcll+r, 0<r<ell.
Subtract the first row multiplied by q from the ith row and then interchange
the ith and the first rows. We thus reduced c11. Similarly, if an entry
c11, j > 2, is not divisible by c11, we can reduce c11 by applying column
transformations.

If all entries in the first row and the first column are divisible by cl1 but
an entry c, , i, j > 2, is not divisible by ell, we act as follows. Subtract the
first row multiplied by an appropriate number from the ith row in order to
obtain cil = 0 (cij remains nondivisible by ell). Then add the ith row to
the first one. The entry ell remains the same, but clj is no longer divisible
by ell and we can reduce ell as above.

Following the above procedure, we finally obtain a matrix where all
entries are divisible by cll. By subtracting the appropriate multiples of
the first row from all other rows and the appropriate multiplies of the first
column from all other columns, we obtain a matrix of the form

C1
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where all entries of the matrix Ci are divisible by ul. The latter property
is preserved under any integral elementary row or column transformation of
Cl.

Applying the same procedure to the matrix Ci, etc., we will finally
reduce C to the required form.

For 2 x 1 or 1 x 2 matrices, the procedure in the above proof is simply
the Euclidean algorithm that produces the greatest common divisor of two
integers.

Example 9.14. To illustrate the procedure in general, let us consider the
following example:

2 6 2 2 6 2 2 3 4

2 3 4

_.
0 -3 2

-,

0 -3 2
4 2 4 4 2 4 4 2 4

2 1 4 1 2 4 1 0 0
-* 0 -3 2

__+

-3 0 2- 0 6 14

4 -2 4 -2 4 4 0 8 12

1 0 0 1 0 0 1 0 0

-+ 0 6 14 0 2 -2 0 2 0

0 2 -2 0 6 14 0 0 20

Here all entries in the first row and the first column were divisible by
ell = 2 from the beginning; however, c22 = 3 was not divisible by cll. This
is why we subtracted the first row from the second and added the resulting
second row to the first one. Of course, using particular properties of the
original matrix, one could obtain the same result faster.

Exercise 9.15. Prove that ui = d4/d,_,, where dt is the greatest common
divisor of the minors of order i of the original matrix C (do is assumed to
be equal to 1).

Remark 9.16. The above exercise implies that the numbers ul, ... , up are
uniquely determined by C. If one does not require that ujlui+l, the reduction
to the diagonal form simplifies somewhat but, in general, the diagonal form
is then no longer determined uniquely.

Theorem 9.17. For any subgroup N of a free abelian group L of rank
n, there exists a basis {el,... , e } of L and natural numbers ul, ... , urf
m < n, such that {uiei,...,u,ne,n} is a basis of the group N and ujjut+l
fori=1,...,m-1.
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Proof. By Theorem 9.5, N is a free abelian group of rank m < n. Let
{el,... , en} be a basis of L and { fl, ... , fn}, a basis of N. Then

(fl, ... , fm) = (el,... , en)C,
where C is an integral n x m matrix of rank m. We can perform the following
"elementary" transformations on the bases of L and N:

(i) adding a basis element multiplied by an integer to another basis
element;

(ii) interchanging two basis elements;

(iii) multiplying a basis element by -1.

The elementary transformations of the basis of L induce integral elemen-
tary row transformations of the matrix C, and elementary transformations
of the basis of N induce integral elementary column transformations of this
matrix. By Proposition 9.13, using these transformations we can reduce C
to

C = diag(ul,... , urn),

where ul,... , u,n > 0 and ujIta;+1 for i = 1,... , m - 1. (Since rkC = m,
there are no zeros among ul, ... , u,n.) But this means exactly that the bases
lei,..., en} and { fl, ... , fm} of L and N that we obtain after applying these
particular transformations are related by the following equations:

A=u=es, i=1,...,m.
0

A basis {el,... , en} of the group L that satisfies the assumptions of
Theorem 9.17 is not unique. However, as we will see below, the numbers
ul, . . . , u,, are determined uniquely. They are called invariant factors of the
subgroup N C L.

Exercise 9.18. Prove that when m = n, the index IL : NJ is finite and
equal to the product of invariant factors.

Exercise 9.19. Let L be a lattice in E' and N, its sublattice. Prove
that the index IL : NJ equals the ratio of the volumes of the fundamental
parallelepipeds of the lattices L and N.

Figure 9.2 illustrates Theorem 9.17: dots stand for elements of the lattice
L C E2 and encircled dots, for elements of the sublattice N. Vectors el and
e2 form a basis of L that satisfies the assumptions of the theorem; here
u1= 1, u2=4.

Let us study now the structure of an arbitrary finitely generated abelian
subgroup. For this, we need the notion of a direct sum of abelian groups.
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Definition 9.20. An (additive) abelian group decomposes into a direct
sum of subgroups &..., Ak if every element a E A decomposes uniquely
as a = al + + ak with ai E Ai. We denote this as

A=Al®...®Ak.

In the case of two subgroups Al and A2, the uniqueness of the decom-
position of every element a E A in the form a = al + a2, al E Al, a2 E A2,
is equivalent to the condition Al fl A2 = 0.

Definition 9.21. The direct sum of (additive) abelian groups AI,. .., Ak is
the group Al ® ® Ak that consists of all sequences (al,... , ak), ai E Ai,
with componentwise addition.

For instance, Z = Zn. Notice that if the groups Al,..., Ak are
n

finite, then
IA1 ® . . . E D = J A I ... I&$.

The direct sum in the sense of Definition 9.20 is called internal and in
the sense of Definition 9.21, external. These two notions are related just as
in the case of vector spaces (see Section 8.2).

In the case of multiplicative abelian groups G1,. .. , Gk, one usually
speaks about a direct product and denotes it as G1 x x Gk. This agrees
with the general definition of a direct product of groups that is given in
Section 10.1.

First consider the decomposition of cyclic groups into a direct sum of
(cyclic) subgroups.

Recall that every infinite cyclic group is isomorphic to the additive group
Z and every finite cyclic group of order n is isomorphic to the additive group
Zn of residue classes modulo n.
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Exercise 9.22. Prove that the group Z cannot decompose into a direct sum
of two nonzero subgroups.

Proposition 9.23. If n = ki with (k, l) = 1, then

(9.7) Zn ^-' Zk ®Z1.

Proof. Since I& ®ZZI = k1= n, it suffices to produce an element of order
n in the group Zk ® Z1. For example, such is the element ([11k, [1]1).

Exercise 9.24. Determine preimages of the elements [1]3 E Z3 and [1]5 E Z5
under the isomorphism Z15 Z5 ® Z3 that maps [1]15 into ([1]3, [1]5).

Corollary 9.25. If n = pi' p, is the factorization of n into prime num-
bers, then

(9.8) Zn ti Z
k,

®... (D Z,,.,. .

Definition 9.26. A primary group or a p-group is a finite group whose
order is a power of a prime number p.

Thus, every finite cyclic group decomposes into a direct sum of primary
cyclic groups.

Exercise 9.27. Prove that a primary cyclic group cannot decompose into
a direct sum of two nonzero subgroups.

Theorem 9.28. Every finitely generated abelian group A decomposes into
a direct sum of primary cyclic and infinite cyclic subgroups. Moreover, the
collection of orders of these subgroups is determined uniquely.

Proof. Let {al, ... , an} be a generating set of A. Consider the following
homomorphism

gyp: Zn -4 A, (kl,... , kn) kjaj + ... + khan.

By the Homomorphism Theorem 4.100, A = Zn/N, where N = Kerip. By
Theorem 9.17, there exists a basis {ej,... , en} of the group Zn and natural
numbers ul,... , um, m < n, such that {ulel,... , u,,,e,,,} is a basis of N and
u; ]u;+l for i = 1,... , m - 1. Consider the homomorphism

lj: Zn_Zu,®...ED ®Z
n-m

lie, +....}Inen'-' ([ll]u...... 11m]u,,.,lm+1i.... ln).

Clearly, Ker+p = N. It follows that

(9.9) A=Zu,®...ED ZumED Z . D Z
n-m
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(If ul = = uq = 1, the first q factors have the form Zl = Z/Z = 0 and
should be dropped.)

Thus, A decomposes into a direct sum of cyclic subgroups. Each finite
factor of this decomposition can, in turn, be decomposed into a direct sum
of primary cyclic subgroups. Hence, we obtain the required decomposition
of A.

It remains to show uniqueness. Let (c)q denote the cyclic group of order
q generated by c. Assume that A decomposes into a direct sum of primary
cyclic and infinite cyclic subgroups:

(9.10) A = (cl)yk1 ®... ® (c8)y;, ® (c,+i)oo ®... ®(c,+t).

(prime numbers pl,... , p, are not necessarily all distinct). Consider the
so-called torsion subgroup:

(9.11) TorA:={aEA:rna=0 forsomemEZ, m#0}.
Clearly, Tor A is the sum of the first a factors in decomposition (9.10).
Hence, A/ Tor A ^_- V. By definition, the subgroup Tor A does not depend
on decomposition (9.10), thus we have shown that the value of t does not
depend on this decomposition either.

Now, for every prime number p, we can consider the p-torsion subgroup

(9.12) TorpA :_ {a E A: pka = 0 for some k E Z+}.

Clearly, TorA is the sum of finite factors in decomposition (9.10) whose
orders are powers of p. Hence, the sum of these factors does not depend
on (9.10) either. Thus, we reduced the proof to the case of a primary
group A.

Let IAA = pk and let A decompose into a direct sum of cyclic subgroups:

(9.13) A = (cl) , ® ... ® (c,.)p,,,., ki + ... + kr = k.

We will prove by induction on k that the collection {k1,. .. , k } does not
depend on decomposition (9.13).

For k = 1, the statement is obvious. For k > 1, consider the subgroup

pA:={pa:aEA}CA.
Obviously,

pA = (WI),,..-1 ® ... ® (",')p,, -1;
in particular, for k; = 1, the corresponding factor simply disappears. Since
the definition of the subgroup pA does not depend on decomposition (9.13),
the induction hypothesis implies that the collection of k, i = 1,.. . , r, such
that k; 0 1 does not depend on this decomposition. As for the k,-'s equal
to 1, their number can be derived from the condition kl + .. + k, = k and
does not depend on decomposition (9.13) either. 0
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Remark 9.29. In decomposition (9.13), the subgroups themselves are not
defined uniquely for r > 1. For instance, for kl = = kr = 1, the
group A can be regarded as an r-dimensional vector space over the field Zp,
so to decompose it into a direct sum of cyclic subgroups is the same as to
decompose this vector space into a direct sum of one-dimensional subspaces.
The latter decomposition is obviously not unique.

Remark 9.30. If the group A is finite, then there can be no infinite sub-
groups in its decomposition; therefore, it decomposes into a direct sum of
primary cyclic subgroups.

We did not use the condition ui(uj+i in the proof of Theorem 9.28.
However, it allows us to reconstruct numbers u 1 , . . . , u,,,, i.e., the invariant
factors of the subgroup N C Z', from the orders of factors in decomposi-
tion (9.10). Thus we can prove that invariant factors of a subgroup of a free
abelian group L do not depend on the choice of basis of L satisfying the
conditions of Theorem 9.17.

Namely, by following the proof of the theorem, we see that for a prime
number p, its power in the factorization of u,,, equals its maximum power
among the numbers pl', ... , psn; the power of p in the factorization of u,,,_1
equals its maximum power among the remaining numbers pi' , ... , p8 etc.

It also follows from the proof of the theorem that every finite abelian
group A allows the decomposition

(9.14) A = (al)., ® ... ®Sa.)._
where u4 Iu=+t for i = 1, ... , m - 1. We can assume that ul 1; otherwise a
number of first factors in the decomposition can be dropped. Under these
conditions, the numbers ui, ... , u,, are uniquely determined. They are called
the invariant factors of A. Their product is equal to IAA.

The last invariant factor has a simple meaning.

Definition 9.31. The exponent of a finite group is the least common mul-
tiple of the orders of elements of this group.

Corollary 4.71 shows that the exponent of a finite group divides its order.

Proposition 9.32. The exponent of a finite abelian group A equals its last
invariant factor u,,,.

Proof. Clearly, u,,,.a = 0 for any a E A. This means that the exponent
of A divides u,,,,, but since A contains a cyclic subgroup of order u,,,, the
exponent equals u,,,. 0
Corollary 9.33. A finite abelian group A is cyclic if and only if its exponent
equals its order.
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Proof. A group A is cyclic if and only if it has only one factor in decompo-
sition (9.14), but this means exactly that um = I AI .

This criterion of cyclicity of a finite abelian group has an interesting
application.

Theorem 9.34. Every finite subgroup of the multiplicative group of a field
(and, in particular, the multiplicative group of any finite field) is cyclic.

Proof. Let G be a finite subgroup of the multiplicative group of a field K.
Assume that its exponent equals m.. Then gm = 1 for every g E G. Since
the equation x1 = 1 has at most m solutions in K, IGI < m and, hence,
IGI = m. 0
Exercise 9.35. Find a generator of each of the following groups: Z7; Z41

Exercise 9.36. Prove that the group 762,E of invertible elements of the ring
Z2k is not cyclic for k > 2; more precisely, 7G2k = (3) x (-1) '-' Z21;-2 ® Z2.

Remark 9.37. It can be shown that the group Z,*, is cyclic if and only if
n = 2,4,k, or 2pk, where p is an odd prime number.

Example 9.38. For an odd prime p, Z is a cyclic group of an even order,
hence the squares form in it a subgroup of index 2. Thus the map that sends
a quadratic residue modulo p to 1 and a quadratic nonresidue to -1 is a
homomorphism of the group Z to the (multiplicative) group {±11. The

image of a residue class [kjp under this map is denoted (p) and is called
the Legendre symbol.

The residue class [-1[P is the only element of order 2 in the group Z P*.
It is quadratic if and only if this group contains an element of order 4, i.e.,
if IzPI = p - 1 is divisible by 4. Thus,

\ p) =

Exercise 9.39. Prove that a polynomial x4 + 1 is reducible over any finite
field. (Hint: first prove that at least one of the elements -1, 2, -2 is a square
in such a field.)

9.2. Ideals and Quotient Rings

Generalizing the construction of the ring of residue classes 7G,,, in Section 1.6,
we can consider equivalence relations that agree with the operations in an
arbitrary ring. Since a ring is, first of all, an additive abelian group, such a
relation must be the congruence relation modulo an additive subgroup (see



338 9. Commutative Algebra

Section 4.5 and, in particular, Exercise 4.84). Let us discuss what kind of
subgroups defines a relation that agrees with multiplication as well.

Let A be a ring and I C A, an additive subgroup.

Proposition 9.40. The equivalence relation modulo I agrees with multipli-
cation if and only if I is invariant under left and right multiplication by any
element of A.

The above conditions say that for any x E I and a E A, the inclusions
ax E I and xa E I hold. An additive subgroup I satisfying these conditions
is called a (two-sided) ideal of the ring A. A subgroup that satisfies the
former (respectively, latter) condition is called a left (respectively, right)
ideal. Clearly, in a commutative ring, there is no difference between left,
right, and two-sided ideals.

Proof. Assume that the equivalence relation modulo I agrees with the op-
eration of multiplication. Then for any a E A,

x=_O(modI)

a left ideal. Similarly, one proves that I is a right ideal.

Conversely, let I be an ideal and let

a = a' (mod l), b = b' (mod I),

a'=a+x, b'=b+y, x,yE I.
Then

ab'=ab+ay +xb+xy=ab(mod I).
0

So, if I is an ideal of A, we can define multiplication on the quotient
group A/I by the following rule:

(a+I)(b+I)=ab+I.
It is easy to see that this operation satisfies the distributive law. The ring
we have just constructed is called the quotient ring of the ring A by the
ideal I and is denoted A/I. If A is commutative, associative, or has a unity,
then the quotient ring has the respective property as well.

Example 9.41. A field has no nontrivial ideals (i.e., those different from
the zero ideal and the field itself). Indeed, if x is a nonzero element of a
field K, then every element of K can be presented in the form ax for a E K,
thus every ideal containing x coincides with K.



9.2. Ideals and Quotient Rings 339

Example 9.42. Every additive subgroup of the ring Z is of the form nZ,
where n E Z+ (see Example 4.52), and is an ideal. The quotient ring Z/nZ,
n 54 0, is just the ring of residue classes Zn.

We provide examples of ideals in other rings further down. Now, let us
show how ideals and quotient rings relate to homomorphisms.

A map f from a ring A to a ring B is called a homomorphism if it agrees
with the operations, i.e., if

f(x + y) = f(x) + f(y),

f(xy) = f(x)f(y)

for any x, y E A. The image Im f of the homomorphism f is a subring of B
and its kernel

Ken f = {x E A: f (x) = 0}

is an ideal of A.

According to the definition of the quotient ring A/I, the map

a - a+I,
is a homomorphism. It is called the canonical homomorphism of the ring A
onto the ring A/I. Its kernel is obviously the ideal 1.

One has the following Homomorphism Theorem for rings which is an
analogue of the Homomorphism Theorem 4.100 for groups.

Theorem 9.43. Let f : A B be a ring homomorphism. Then

Imf ^- A/Ker f.

More precisely, there exists an isomorphism

cp: Imf -24 A/Kerf

that maps an element b = f (a) E Imf to the coset 7r(a) = a + Ker f.

Proof. We already know from Theorem 4.100 that the map W is an additive
group isomorphism. It remains to show that it preserves multiplication. Let
f(x) = u and f(y) = v. Then f(xy) = uv and

'o(uv) = n(xy) = ir(x)r(y) ='P(u)W(v)

Example 9.44. Reduction modulo p that we considered in Section 3.6 is a
homomorphism of the ring Z[t] to the ring Zp[t]. Its kernel is the ideal pZ[t]
formed by polynomials with coefficients divisible by p. Therefore,

Z[tl lpZ[tl Zp[t]
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Example 9.45. Let K be a field. Fix an element c E K. As we practically
proved in Section 3.1, the map

K[t] - K, f i f (c),
is a ring homomorphism. By Bezout's theorem, its kernel consists of all
polynomials divisible by t - c. Therefore,

K[t]/(t - c)K[t] ^- K.

Example 9.46. Let t2 + pt + q E R[t] be a quadratic polynomial with a
negative discriminant. Let c E C be one of its imaginary roots. The map

R[t] C, f '-' f (c),
is a ring homomorphism. Its image coincides with C and its kernel consists
of polynomials divisible by (t - c)(t _,a) = t2 + pt + q. Therefore,

IR[t]/(t2 + pt + q)IR[t] ^, C.

When A is an algebra over a field K, we add another condition to the
definition of a left, right, or two-sided ideal: it should be preserved when
multiplied by elements of K, i.e., also be a subspace of A. For a (two-sided)
ideal I of A, we define multiplication of elements of A/I by elements of K
as follows:

.1(a +I) =,\a+ L
This turns it into an algebra over K called the quotient algebra of A by the
ideal I.

Remark 9.47. If A is an algebra with unity 1, then the ideals of the algebra
A are the same as the ideals of the ring A. Indeed, let I be a left ideal of
the ring A. Then for any x E I and .1 E K,

.1x = (Al)x E I.

This means that I is a subspace, hence a left ideal of the algebra A. The
same holds for the right ideals.

Example 9.48. A direct check shows that the matrices with all but the
first column equal to zero form a left ideal in the algebra L,1(K) of matrices
of order n. Similarly, the matrices with all but the first row equal to zero
form a right ideal. However, there are no nontrivial two-sided ideals in the
algebra Ln(K). Indeed, suppose I C L,(K) is a nonzero two-sided ideal and
A = (a;J), a nonzero matrix in this ideal. Assume that akj # 0. For any i, j,

EjkAEij = aMEEj E I,

thus Ety E I. Therefore, I = Ln(K).

Example 9.49. The niltriangular matrices form an ideal in the algebra of
all triangular matrices.
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Example 9.50. The functions whose value at a fixed point xo E X is 0,
form an ideal in the algebra F(X, K) of all K-valued functions on the set
X.

A map f from an algebra A to an algebra B is called a homomorphism
if it is linear and multiplication-preserving, i.e.,

f(xy) = f(x)f(y)

for any x, y E A. The image Im f of the homomorphism f is a subalgebra
of the algebra B and its kernel Ker f is an ideal of the algebra A.

For any ideal I of an algebra A, we define the canonical homomorphism

a: A A/1, a,--'a+I.
Its kernel is I.

One has the Homomorphism Theorem for algebras which is formulated
just as the Homomorphism Theorem for rings.

Example 9.51. The map associating a triangular matrix to its diagonal
part is a homomorphism of the algebra of triangular matrices onto the al-
gebra of diagonal matrices. Its kernel is the ideal of niltriangular matrices.
Thus, the quotient algebra of triangular matrices by the ideal of niltriangular
matrices is isomorphic to the algebra of diagonal matrices.

Example 9.52. The map that sends a function f E F(X, K) to its value
at a fixed point x0 E X is a homomorphism of the algebra F(X, K) to the
field K regarded as a (one-dimensional) algebra over itself. Its kernel is the
ideal I(xo) of functions whose value at the point xo is 0. Therefore,

F(X,K)/I(xo) ^' K.

Definition 9.53. A ring (respectively, an algebra) A decomposes into a
direct sum of its subrings (respectively, subalgebras) A1,.. . , Ak if

(i) it decomposes into the direct sum of &..., Ak as an additive group
(respectively, a vector space);

(ii) AZAj = 0 for i # j.

The latter condition is equivalent to saying that A,_., Ak are ideals
(as long as condition (i) holds). Thus the following "componentwise" rule
holds for multiplication:

(x1 + ... + xk)(yl + ... + yk) = x1y1 + ... + xkyk, xi, Vi E Ai.

Now let A1,... , Ak be rings or algebras.
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Definition 9.54. The direct sum of rings (respectively, algebras) A1, ... , Ak
is their direct sum Al ® ® Ak as additive groups (respectively, vector
spaces) with componentwise multiplication:

(xl, ... , xk) (y1, ... , yk) = (xlyl, ... , xkyk), -Ti, yi E Ai.

Obviously, the operation of multiplication in Al®... ®Ak, which we have
just defined, is distributive with respect to addition (respectively, bilinear),
so that Al ®. . . ® Ak indeed becomes a ring (respectively, an algebra). If
all the rings &..., Ak are commutative, associative, or have a unity, then
their direct sum has the respective property as well.

The direct sum of rings or algebras in the sense of Definition 9.53 is called
internal and in the sense of Definition 9.54, external. These two notions are
related as in the case of vector spaces.

Example 9.55. Let n = kl for (k, 1) = 1. The isomorphism of additive
groups

(9.15) Zn Zk Zt

that maps the unity [1],, of the ring Z to the unity ([1]k, [111) of the ring
Zk ® Zt (see Proposition 9.23) is actually a ring isomorphism. This follows
from the fact that in a cyclic additive subgroup generated by the ring unity,
multiplication can be expressed via addition by the following formula:

(sl)(tl) = (st)1, s,t E Z.

Ring isomorphism (9.15) induces an isomorphism of multiplicative groups
of invertible elements:

(9.16) Zn . Zk X Zt .

Exercise 9.56. Using the conclusion of Example 9.55, obtain the following
expression for the Euler function (see Example 4.72):

w(n)=n I-- -
P'l

where pl, ... , p, are all (distinct) prime divisors of n.

Example 9.57. The map sending a diagonal matrix to the sequence of its
diagonal entries is an isomorphism of the algebra of diagonal matrices of
order n over a field K to the direct sum of n copies of K.

From this point on, we always assume that A is a commutative associa-
tive ring with unity.

For any subset S C A, the collection of all "linear combinations"

alxl+...+amxm, X1,. ,5mES, a,,...,a,EA,
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is the smallest ideal containing S. It is called the ideal generated by the
subset S and is denoted (S). In particular, the ideal (u) generated by a
single element u is called a principal ideal.

Definition 9.58. A principal ideal domain is an integral domain such that
every ideal in it is principal.

In particular, every field is trivially a principal ideal domain.

Theorem 9.59. Every Euclidean domain is a principal ideal domain.

Proof. Obviously, the zero ideal is principal. Let I be a nonzero ideal of A
and let u be an element of I with the least norm. Divide any element of I
by u with a remainder: this remainder must belong to I, hence it is zero.
This implies that I = (u).

Therefore, the rings Z and K[t] (for a field K) are principal ideal do-
mains.

R.emark 9.60. It is easy to see that the property that every ideal is principal
survives passing to the quotient ring. However, a quotient ring of a principal
ideal domain need not be one, since it may cease being a domain, i.e., acquire
zero divisors. For instance, all ideals in the ring Z = Z/nZ are principal,
but it is a principal ideal domain only when n is prime (and then it is a
field).

Remark 9.61. There exist principal ideal domains that are neither Eu-
clidean domains nor fields. For example, such is the ring of numbers a +
b -19,where a,bEZor a,bEZ+2.

Properties of division that we proved for Euclidean domains in Sec-
tion 3.5 generalize to arbitrary principal ideal domains.

Theorem 9.62. In a principal ideal domain A, every pair of elements x, y
has the greatest common divisor d, which can be presented in the form d =
ax+by,a,bE A.

Proof. Consider the ideal

(x, y) _ {ax + by : a, b E A}

generated by elements x and y. There exists an element d E A such that
(x, y) = (d). This is the greatest common divisor of elements x and y. By
construction, it can be presented in the form d = ax + by.

Remark 9.63. The notation (x, y) for an ideal generated by elements x and
y agrees quite well with the notation (x, y) for the greatest common divisor.
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Factorization into primes also exists and is unique in principal ideal
domains. Indeed, with the help of Theorem 9.62, the proof of uniqueness
for a Euclidean domain in Section 3.5 carries verbatim to the case of a
principal ideal domain. As for the existence, we will prove it later for a
larger class of rings (see Theorem 9.153).

The following theorem generalizes Theorem 1.49.

Theorem 9.64. Let u be a nonzero noninvertible element of a principal
ideal domain A. The quotient ring A/(u) is a field if and only if u is prime.

Proof. For any a E A, denote the coset a + (u) E A/(u) by [a]. If u = vw
for noninvertible v and w, then [v] [w] = 0. However, [v], [w] qA 0, thus the
ring A/(u) contains zero divisors and is not a field.

Conversely, if the element u is prime, then for any x V (u), the elements
x and u are relatively prime. Therefore, there exist a and b such that
ax + bu = 1. Passing to cosets, we have [a] [x] = 1 in A/(u). Thus, every
nonzero element of the ring A/(u) is invertible, hence, A/(u) is a field. 0

Note that if a principal ideal domain is not a field, it contains noninvert-
ible nonzero elements and hence prime elements.

Example 9.65. We will determine here when a prime number p is a prime
element of the ring Z[z] of Gaussian integers (see Example 3.54). Since
Z[z] ^- Z[t]/(t2 + 1) (see Example 9.46),

Z[z]/(p)
Z[tj/(t2 + 1,P) = Zp[tl/(t2 + 1)

by Example 9.44. By Example 9.38, the polynomial t2 + 1 is irreducible over
Zp if and only if p = -1 (mod 4). Theorem 9.64 (applied twice) implies that
the latter condition is necessary and sufficient for p being prime in Z[z].

Let p = 1 (mod 4) and let p = 7r1 zr s > 2, be the prime factorization
of p in the ring Z[z]. Passing to norms, we obtain

N(ri) ... N(zrg) = N(p) = p2,
implying that s = 2 and N(zrl) = N(7r2) = p. If 7rl = a + bn for a, b E Z,
then a2 + b2 = p (and 7r2 = a - bn). Therefore, every prime number of the
form 4k + 1 can be presented as a sum of squares of two integers.

Exercise 9.66. Prove that up to multiplication by invertible elements,
prime elements of the ring Z[z] are prime natural numbers of the form 4k + 3,
numbers of the form a + in, for a, b E N such that a2 + b2 is a prime natural
number of the form 4k + 1, and the number 1 + z.

Exercise 9.67. Use the uniqueness of prime factorization in the ring Z[z]
to prove that a natural number n can be presented as a sum of squares
of two integers if and only if in its prime factorization (in Z) every prime
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factor of the form 4k + 3 occurs with even exponent. Find the number of
presentations in this case.

The following theorem generalizes Example 9.55.

Theorem 9.68. Let u and v be relatively prime elements of a principal ideal
domain A. Then

(9.17) A/(uv) - A/(u) ® A/(v).

Proof. The map

f : A - A/(u) ® A/(v), a - (a + (u), a + (v)),

is a ring homomorphism. Let a and b be elements of A such that au+bv = 1.
Then

f (bv) = (1 + (u), 0 + (v)), f (au) = (0 + (u), 1 + (v)),

implying that the homomorphism f is surjective. Obviously, Ker f = (uv).
This establishes the isomorphism (9.17).

Example 9.69. If f E Kit] is an irreducible polynomial over a field K, then
the quotient ring K[t]/(f) is a field. For instance, IR[t]/(t2 + 1) ^- C (see
Example 9.46). On the other hand, if f = (t - c1) . . . (t - c,=) for different
cl, ... , c,,, Theorem 9.68 implies that

(see Example 9.45).

n

9.3. Modules over Principal Ideal Domains

In view of properties (9.1)-(9.3), abelian groups can be regarded as "vector
spaces over Z." Likewise, one can define "vector spaces" over more general
rings. They are called modules.

The notion of a module turns out to be very useful. In particular, the
theory of modules over principal ideal domains, which we present in this
section, contains the theory of finitely generated abelian groups discussed
in Section 9.1 and the theorem about reduction of the matrix of a linear
operator to the Jordan canonical form.

We start, however, with more general notions.

Let A be an associative ring with unity.

Definition 9.70. A (left) A-module (or a module over A) is an additive
abelian group M, with the operation of (left) multiplication by elements of
the ring A, that satisfies the following properties:
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(i) a(x+y) =ax+ay for any aEA,x,yEM;
(ii) (a+b)x=ax+bx for any a, bE A, X E M;

(iii) (ab)x = a(bx) for any a, b E A, X E M;

(iv) lx = x for any x E M.

In particular, a module over a field is a vector space and a module over Z
is an additive abelian group. However, there exist other important examples
of modules.

Example 9.71. A module over a polynomial ring K[t] (K is a field) is a vec-
tor space over K with a linear operator that plays the role of multiplication
by t.

Example 9.72. A ring A is a module over itself (the product of an element
of the ring and an element of the module is defined as the product of these
two elements in the ring).

Example 9.73. Any vector space V is naturally a module over the ring
L(V) of all linear operators on V.

Remark 9.74. Similarly, one can define right modules. The difference is
that in this case the elements of the ring A are put to the right of the elements
of the module, so that when multiplying an element of this module by a
product of elements of the ring, we first multiply it by the first element (and
not the second as in the case of left modules). If the ring A is commutative,
there is no difference between left and right modules (and elements of the
ring can be put on either side of elements of the module).

A subset N of a module M is called a submodule if it is closed with
respect to the operations of addition and multiplication by elements of the
ring A. Every submodule is a module with respect to these operations.

Example 9.75. A submodule of an abelian group regarded as a Z-module
is just a subgroup.

Example 9.76. A submodule of a K[t]-module (see Example 9.71) is a
subspace invariant under the operator of multiplication by t.

Example 9.77. A submodule of a ring A regarded as a (left) module over
itself is a left ideal of this ring.

Just as we did this for vector spaces in Section 8.2 and for abelian groups
in Section 9.1, we can define the (internal and external) direct sum of mod-
ules.

Now let us define a quotient module.
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An equivalence relation R on an A-module M agrees with the operation
of multiplication by elements of A if

xRx axRax
The relation of comparison modulo an additive subgroup N C M agrees
with multiplication by elements of A if and only if N is a submodule. In
this case, we can define multiplication by elements of A on the quotient
group M/N by the following rule:

a(x + N) = ax + N.

This makes this group into an A-module called the quotient module of M
by N and denoted M/N.

In particular, this is how one defines the quotient space V/U of a vector
space V by a subspace U. Quotient modules of Z-modules are the same as
quotient groups.

A map f of a module M into a module N (over the same ring) is called
a homomorphism if

f (x + y) = f (x) + f (y),
f(ax) = af(x)

An invertible homomorphism is called an isomorphism.

If f : M N is a module homomorphism, then its image

Imf={f(x):xEM}CN
is a submodule of N and the kernel

Kerf={XEM: f(x)=0}CM
is a submodule of M.

For any submodule N C M, we define the canonical homomorphism

ir:M-M/N, x-*x+N,
whose kernel is N.

Theorem 9.78 (Module Homomorphism Theorem). Let f : M -+ N be a
homomorphism of A-modules. Then

Imf =M/Kerf.
More precisely, there exists an isomorphism

p: Im f -Z M/Ker f

that maps an element y = f (x) E Imf to the cosec W(x) = x + Kerf .
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Proof. We already know from Theorem 4.100 that the map cp is an iso-
morphism of additive groups. It remains to check that it commutes with
multiplications by elements of the ring A. Let f (x) = y. Then f (ax) = ay
for aEAand

co(ay) = ir(ax) = air(x) = aco(y)
0

Consider an A-module M.

For any subset S C M, the collection of all linear combinations

alxl+...+akxk, xiES,aiEA,
is the smallest submodule containing S. It is called the submodule generated
by the subset S and is denoted (S). If (S) = M, we say that M is generated
by S or that S is the generating set of the module M. A module that allows
a finite generating set is called finitely generated.

A module generated by a single element is called cyclic.
The ideal

AnnM = {a E A: aM = 0}

is called the annihilator of M. If Ann M 36 0, the module is called periodic.

Theorem 9.79. Every cyclic A-module M is isomorphic to a module A/I,
where I is a left ideal of the ring A. If A is commutative, I coincides with
Ann M, and thus is defined by M uniquely.

Proof. Let M = (x) be a cyclic A-module. The map

a'ax,
is a module homomorphism and Im f = M. By the Module Homomorphism
Theorem, M = A/I, where I = Ker f . The second claim is obvious.

A system {xl, ... , x,+} of elements of M is called linearly independent
if alxl + + 0 for ai E A only if al = . . . = a,, = 0. A linearly
independent generating system is called a basis.

A finitely generated module that has a basis is called free. A free cyclic
module is isomorphic to A (as an A-module).

Just as for finitely generated abelian groups, one can build up a theory
for finitely generated modules over principal ideal domains.

From this point on, we assume that A is a principal ideal domain.

Theorem 9.80. All bases of a free A-module L contain the same number
of elements.
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Proof. If A is a field, then the assertion of this theorem is known. If A
is not a field, let p be a prime element of A. Then A/(p) is a field and
L/pL is a vector space over this field. If {el, ... , is a basis of L, then
{[ell,. - -, [en] } is a basis of this vector space (here [x] denotes the coset
x + pL). Thus, n = dim L/pL.

The number of elements in a basis of a free module L is called its rank
and is denoted rk L.

Theorem 9.81. Every submodule N of a free A-module L of rank n is a
free A-module of rank m < n. Moreover, there exists a basis {el,... , en} of
L and (nonzero) elements ul,... , u,, E A such that {ulel, ... , is a
basis of the submodule N and uiJui+l for i = 1_., m - 1.

Proof. For n > 1, the first assertion of the theorem is the definition of the
principal ideal domain. For n > 1, it is proved just as in the case A = Z
(see Theorem 9.5).

Also, as in the case A = Z, the proof of the second assertion is based on
reducing the transition matrix C from a basis of L to a basis of N to the
diagonal form using elementary transformations of these bases.

When A is a Euclidean domain, an elementary transformation of a basis
of a free A-module is either of the following:

(i) adding a basis element multiplied by an element of A to another basis
element;

(ii) interchanging two basis elements;

(iii) multiplying a basis element by an invertible element of A.

In this case, reduction of C to the diagonal form is performed just as
in the proof of Proposition 9.13 with the only difference that we have to
minimize not the entry cli (which makes no sense) but its norm.

In the general case, the notion of an elementary transformation should
be generalized. Let (a e) be an invertible matrix with entries from A. (A
matrix is invertible if and only if its determinant is invertible.) Consider a
system of elements {x1, ... , x,,} of an A-module M. Call a quasi-elementary
transformation the replacement of two elements xi and xi by the linear
combinations

axi + bxj, cxi + dxj.
Clearly, the inverse of a quasi-elementary transformation is also quasi-ele-
mentary. Also, elementary transformations are quasi-elementary.

Using a quasi-elementary transformation, every pair of elements {x, y}
of the ring A can be reduced to a pair of the form {d, 0}, where d = (x, y).
Indeed, there exist a, b E A such that ax + by = d. Consider the matrix
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(-y/d x/d) It is invertible since its determinant equals 1. The correspond-
ing quasi-elementary transformation maps {x, y} to {d, 0}.

Therefore, if a row or a column of the matrix C contains entries x, y, then
using a quasi-elementary transformation of rows or columns, we can obtain
entries d, 0. If we follow the general outline of the proof of Proposition 9.13,
such transformations suffice to reduce C to diagonal form. 0

Now we will study the structure of an arbitrary finitely generated A-
module.

Every nontrivial cyclic A-module is isomorphic to either A or A/(u) for
a noninvertible nonzero element u.

If (u, v) = 1, it is easily seen that the ring isomorphism

A/(u, v) -Z A/(u) ® A/(v)

from the
F.

of Theorem 9.68 is an isomorphism of A-modules. Therefore,
if u = pl' . . p;' is the prime factorization of u, we obtain the following
isomorphism:

(9.18) A/(u)'"A/Q4')®...®Al(p;')
Definition 9.82. A finitely generated A-module M whose annihilator con-
tains a power of a prime element p E A is primary (or, rather, p-primary).

Thus, every periodic cyclic A-module decomposes into a direct sum of
primary cyclic submodules.

Theorem 9.83. Every finitely generated A-module M decomposes into a
direct sum of primary and free cyclic submodules. Moreover, the collection
of annihilators of these submodules is defined uniquely.

Proof. The proof of this theorem is analogous to that of Theorem 9.28. In
particular, the existence of such a decomposition follows from Theorem 9.81
and isomorphism (9.18). To prove uniqueness (of the annihilators), one
should consider the torsion submodule

TorM:={xEM:ax=O forsomeaEA, a#0}
and, for every prime p E A, the p-torsion submodule

Tor,M:={xEM:pkx=0forsome kEZ+}.

As in the case of abelian groups, uniqueness of the decomposition of a
primary module into a direct sum of primary cyclic submodules is proved by
induction. However, our original approach that used the group order does
not work in the general case. Instead, we should use the following one: if
a module M decomposes into a direct sum of p-primary cyclic submodules,
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then the number of the summands equals the dimension of the submodule
{x E M: px = 0} regarded as a vector space over the field A/(p). D

As in the case of abelian groups, for any periodic A-module M, we obtain
from the proof of Theorem 9.83 that

(9.19) M - A/(u1) m ... ®A/(u,,,),

where u1, ... , u,,, are noninvertible nonzero elements of the ring A such
that uilui+1 for i = 1, ..., m - 1. The elements u1, ... , u,n are determined
uniquely up to multiplication by invertible elements. They are called invari-
ant factors of the module M. Obviously,

(9.20) AnnM = (u,,).

In the case A = K[tJ (K a field), Theorem 9.83 describes the structure
of linear operators on vector spaces over the field K (cf. Example 9.78).
If the given vector space is finite-dimensional, we obviously deal with the
finitely generated situation. Moreover, in this case, there are no free direct
summands, since a free cyclic module over K[t] is infinite-dimensional over
K. The result looks especially simple if K is algebraically closed. Here
primary cyclic modules have the form

K[t]l ((t - A)m), A E K.

Such a module is an m-dimensional vector space over K with the basis

{[(t - A)'"-1], ... , [t - A], [1]},

where if (t)] denotes the class f (t) + ((t - A)m). In this basis, the matrix of
the operator of multiplication by t is the Jordan block

1

A . O
J(A) =

O

This implies

Theorem 9.84. Every linear operator on a finite-dimensional vector space
over an algebraically closed field has a Jordan canonical form in some ba-
sis. Moreover, this form is determined uniquely up to a permutation of the
diagonal blocks.
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Recall that we have already proven the first claim of this theorem in
Section 6.4.

It follows from (9.20) that the last invariant factor of a K(t]-module
associated with a linear operator A is the minimal polynomial of A (see
Theorem 6.65).

Exercise 9.85. Prove that in the basis {[tn-1], [ti-2),..., [t], [1]}, the mar
trix of the operator of multiplication by t on a K[t]-module K[t]/(h(t)),
where h(t) = to + altn-1 + - + an-lt + an, is

-al 1 0 ... 0 0
-a2 0 1 ... 0 0

-an-1 0 0 ... 0 1

-an 0 0 ... 0 0
Also prove that its characteristic polynomial is h(t). Conclude that the prod-
uct of invariant factors of the K[t]-module associated to a linear operator A
is equal to the characteristic polynomial of A.

Exercise 9.86. Deduce the Cayley-Hamilton theorem (Corollary 6.69) from
the above exercise.

Exercise 9.87. Find a canonical form for the matrix of a linear operator
over the field of real numbers.

Exercise 9.88. Find a canonical form for the matrix of a linear operator
on the four-dimensional vector space over the field Z2.

9.4. Noetherian Rings

For the rest of this chapter the word "ring" will stand for "commutative
associative ring with unity." Subrings are assumed to contain the unity,
and homomorphisms, to map a unity to a unity.

A natural generalization of the class of principal ideal domains is the
class of Noetherian rings.

Definition 9.89. A ring A is Noetherian if either of the following equivalent
conditions holds:

(i) every ideal is generated by a finite number of elements;

(ii) every strictly ascending chain of ideals is finite, i.e., there exist no
infinite chains of ideals I1 C 12 C C In C . . . (In 3& In+l).

Recall that we say that an ideal I is generated by elements xl,... , xn E A
if I = {alxl + + anxn : al, ... , an E Al. We denote this I = (xl,... , xn).



9.4. Noetherian Rings 353

The equivalence of conditions (i) and (ii) is proved as follows. Let I1 C
I2 C . . . be an ascending chain of ideals. Then I = U' l I is also an ideal.
If it is generated by a finite number of elements, then they all belong to the
ideal I,, for some sufficiently large n. Hence, I = In and the chain is not
strictly ascending.

Conversely, if an ideal I is not generated by a finite number of elements,
then there exists a sequence of elements x1, X2.... E I such that the sequence
of ideals

(Si) C (x1,52) C ...

is strictly ascending.

Proposition 9.90. Every quotient ring A/I of a Noetherian ring A is Noe-
therian.

Proof. Let J be an ideal of the ring A/I. Then its full preimage under the
canonical homomorphism 7r : A A/I is an ideal of the ring A. If this
ideal is generated by elements Si, ... , xn E A, then J is generated by the
elements 7r(x1), ... , Tr(xn).

The structure of finitely generated modules over Noetherian rings is
not as simple as that of modules over principal ideal domains. However,
the following theorem demonstrates that in some sense they still resemble
finite-dimensional vector spaces.

Theorem 9.91. Every submodule N of a finitely generated module M over
a Noetherian ring A is finitely generated.

Remark 9.92. In the case M = A (i.e., when M is a free cyclic module),
the assertion of the theorem is just the definition of a Noetherian ring.

Proof of Theorem 9.91. Let M = (x1, ... , xn). We will prove this theo-
rem by induction on n.

For n = 1, we can assume that M = A/I, where I is an ideal of A (see
Theorem 9.79). Then N is an ideal of the ring A/I and the assertion of the
theorem follows from Proposition 9.90.

For n > 1, consider the submodule M = (x1, ... , xn_1) C M and set
N1 = N fl M1. By the induction hypothesis, N1 is finitely generated. Let
N1 = (y1, ... , yk). The quotient module N/N1 is a submodule of the cyclic
module M/M1, hence is finitely generated by the above. Let N/N1 =
(zl+N1,...,z1+N1). Then N=(yl,...,yk,z1....,z().

How does one show that a ring is Noetherian? One of the basic tools
here is provided by the following theorem.



354 9. Commutative Algebra

Theorem 9.93 (Hilbert's Basis Theorem). The polynomial ring A[x] over
a Noetherian ring A is Noetherian itself.

Proof. Consider an ideal I of the ring A[x]. Denote by A[x]n the set of poly-
nomials of degree < n. This is a free A-module with a basis { 1, x_., xn I.

Put In = I fl A[x]n. By Theorem 9.91, I is a finitely generated A-module.
Obviously, I = U I and xIn C In+i.

Denote by Jn the set of coefficients of xn in all polynomials of In. It is
clear that this is an ideal of A and that Jn C Jn+l. Since A is Noetherian,
there exists m such that Jn = Jm for all n > m. Therefore, for any poly-
nomial f E In, n > m, there exists g E In such that f - x"-mg E In-1.
This shows that the ideal I of the ring A[x] is generated by the subset Im.
Thus, if In is generated by polynomials fl, ... , fk as an A-module, then I
is generated by the same polynomials as an A[x]-module.

Corollary 9.94. The ring of polynomials in any number of variables over
a Noetherian ring is Noetherian.

We say that a ring B is generated by elements ul,... , u,, over a subring
A if every element of B can be presented as a polynomial in u1, ... , un with
coefficients in A. In this case there exists a homomorphism

onto

(where A[xl,... , x.] stands for the polynomial ring in xl,... , xn with coef-
ficients in A) and hence,

B ^_- A[xl, ... , xn]/ Ker f.

This is usually denoted B = A[ul,... , un], even though this does not mean
that B is a polynomial ring in n independent variables (ul,... , u,, may be
algebraically dependent).

Corollary 9.95. Every ring that is finitely generated over a Noetherian ring
is Noetherian itself.

Remark 9.96. There also exists the following "absolute" version of Corol-
lary 9.95 which does not depend on any particular subring.

A ring is said to be generated by elements u1,. .. , un if every element
of this ring can be presented as a polynomial in u , . . . , un with integer
coefficients. In this case, it is isomorphic to a quotient ring of the ring
Z[xl, ... , xn], hence is Noetherian. Thus, every finitely generated ring is
Noetherian.

When we work with rings, zero divisors (if they exist) often cause prob-
lems. There are methods to fight them. The "most awful" zero divisors are
the nilpotent elements.
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An element a of a ring A is called nilpotent if a' = 0 for some natural
number m. It is easy to see that the set of all nilpotent elements is an ideal
of A. It is called the (nilpotent) radical of A and is denoted rad A. The
quotient ring A/ rad A has no nilpotent elements (except for 0).

Example 9.97. Let A be a principal ideal domain. We will describe here
rad (A/(u)) for a nonzero noninvertible element u E A. Let u = pi ...pk
be the factorization of u into primes. The element a + (u) E A/(u) is
nilpotent if and only if a" E (u) for some natural n. The uniqueness of prime
factorization in A implies that this happens if and only if a is divisible by
pl p8. Therefore,

rad(A/(u)) = (pi ...p.)/(u)-

Exercise 9.98. Prove that

rad(Al (D ... S = rad Al ® . . . ( D Ak.

An ideal of a ring A that is not equal to A is called proper.

Definition 9.99. A proper ideal I of a ring A is prime if the quotient ring
A/I contains no zero divisors.

In other words, ab E I must imply that either a E I or b E I.
For example, in a principal ideal domain A a nonzero ideal (p) is prime

if and only if p is prime.

A proper ideal I of a ring A is called maximal if it is not contained in
any larger proper ideal. The second definition of a Noetherian ring implies
that a Noetherian ring has at least one maximal ideal.

Proposition 9.100. An ideal I of a ring A is maximal if and only if the
quotient ring A/I is a field.

Proof. Obviously, the ideal I is maximal if and only if the quotient ring
A/I has no nontrivial ideals. We know that a field does not contain such
ideals (see Example 9.41). Conversely, let a ring K have no nontrivial ideals.
Then for any nonzero element a E K, the ideal (a) coincides with K. In
particular, it contains 1, which means exactly that a is invertible. Thus, K
is a field. 0
Corollary 9.101. Every maximal ideal is prime.

Theorem 9.102. The radical of a Noetherian ring coincides with the in-
tersection of all its prime ideals.

Proof. Clearly, the radical is contained in the intersection of all prime
ideals. To prove the opposite inclusion, we have to check that if a is not
nilpotent, then there exists a prime ideal that does not contain a.
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If an element a is not nilpotent, then we can construct the ring A' =
A[a-1] of fractions of the type b/a", b E A, n E Z.., just as we constructed
the field of quotients of an integral domain in Section 3.10. By Corol-
lary 9.95, the ring A' is Noetherian. Hence, it has a maximal ideal I'. Since
a is invertible in A', a ¢ F. Set I = I' n A. The ring A/I embeds into the
field A'/I', thus contains no zero divisors. Therefore, I is a prime ideal of
A that does not contain a. 0
Remark 9.103. Using transfinite tools (e.g., the Zorn lemma), it is easy to
prove that every (not necessarily Noetherian) ring contains a maximal ideal.
It follows that Theorem 9.102 holds, in fact, for all rings.

9.5. Algebraic Extensions

When a ring A is a subring of a ring B, we say that B is an extension of
A. In this case, we deal not just with a ring but also with an algebra over
A; this suggests how we may study B further. (The definition of an algebra
over a ring is the same as that over a field.)

Let us introduce terminology that helps to describe this situation.
An element u E B is called algebraic over A if it satisfies a nontrivial

algebraic equation with coefficients in A; otherwise we call u transcendental.
In particular, every element a E A is algebraic over A since it satisfies the
linear equation x - a = 0. The ring B is called an algebraic extension of A
if every element of B is algebraic over A.

More generally, elements ul, ... , un E B are called algebraically depen-
dent over A if they satisfy a nontrivial algebraic equation (in n indetermi-
nates) with coefficients in A.

The set of elements of B that can be presented as f (ul,... , un) for a
polynomial f with coefficients in A, is a subring (containing A). It is called
the subring generated over A by ul, ... , un and is denoted A[ul, ... , un]. If
ul, ... , un are algebraically independent, then this ring is isomorphic to the
polynomial ring over A in n variables. In general, it is isomorphic to the
quotient ring of the polynomial ring by the ideal of algebraic dependences
of ul,... , un. An extension B of a ring A is called finitely generated if there
exist elements ul, ... , un E B such that B = A[ul,... , un].

If the ring B is an integral domain (and then, so is A), we can con-
sider quotient fields K = Q(A) and L = Q(B) and assume that the events
take place inside the "big" field L. The following diagram illustrates this
approach:

A c B
(9.21) n n

K c L
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If elements u1, ... , u E L are algebraically dependent over K, they are
algebraically dependent over A, since the coefficients in the statement of
dependence can be made "integral," i.e., belonging to A, by multiplying the
statement of dependence by a common denominator.

Consider, first, algebraic extensions of fields.

The key to their understanding is the concept of a finite extension that
we introduce below. The main idea in the proofs of next statements lies in
the fact that a subspace of a finite-dimensional space is finite-dimensional.

If a field L is an extension of a field K, it can be regarded as a vector
space over K. The dimension of this vector space is denoted dimK L.

Definition 9.104. An extension L of a field K is finite if dimK L < oo.
The value of dimK L is called the degree of the extension L.

The following theorem suggests how one obtains finite extensions.

Theorem 9.105. Let h E K[x] be an irreducible polynomial of degree n.
Then L = K[x]/(h) is a finite extension of K. Moreover, din1K L = n.

Proof. That L is a field follows from the general Theorem 9.64. Since it
is possible to uniquely divide with a remainder in K[xJ, every element of L
can be uniquely presented as

ao+alx+...+.an-lx"-1+(h), ao,al,...,a.-i EK.
This means that the cosets

1 + (h), x + (h), ..., xi-1 + (h)

form a basis of L over K. 0

The element a = x + (h) E L is clearly a root of h in L. Furthermore,
L = K[a]. For this reason, when we pass from K to L, we say that we
adjoin to K a root of the irreducible polynomial h.

Extensions of this kind are called simple. We will demonstrate in Sec-
tion 11.6 that every finite extension of a field of zero characteristic is simple
(the Primitive Element Theorem). However, this fact does not help much
for the discussion below-this is why we delay the proof (and the use) of
this theorem.

Example 9.106. If a E K is an element which is not a square in K, then the
field K[im] obtained by adjoining to K a root of the polynomial x2 -a is an
extension of degree 2, also called a quadratic extension of K. In particular,
R[ = C.

Let L be an extension of K.
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If an element u E L is algebraic over K, the set of all polynomials
f E K[x] such that f (u) = 0 is a nonzero ideal of the ring K[x]. The
generating element of this ideal is called the minimal polynomial of u and is
denoted m4 (cf. the definition of the minimal polynomial of a linear operator
in Section 6.5). Observe that the minimal polynomial is irreducible. Indeed,
if mu = f g, then either f (u) = 0 or g(u) = 0, thus the degree of either f or
g equals the degree of mu. The degree of mu is called the degree of u over
K.

Theorem 9.107. An element u E L is algebraic over K if and only if K[u]
is a finite-dimensional vector space over K. With this condition, K[u] is a
field and its dimension (over K) equals the degree of u over K.

Proof. If the space K[u] is finite-dimensional over K, then it is generated
by a finite number of powers of u. Hence, there exists n such that u" can
be expressed as a linear combination of lower powers. Thus, u is algebraic
over K.

Conversely, assume that u is an algebraic element of degree n over K.
Then u" can be expressed as a linear combination of lower powers of u.
By multiplying this expression successively by u and replacing u" with its
expression in terms of lower powers, we see that every power of u, hence every
element of K[u], can be expressed as a linear combination of 1, u,. .. , un-t

Therefore, dimK K[u] < n.
More precisely, consider the homomorphism

(p; K[x] -. L, f i-' f(u)-
Its image is K[u] and its kernel is the ideal generated by the minimal poly-
nomial mu of u. Thus,

K[u] K[x]/(mu)
Since the polynomial m is irreducible, Theorem 9.105 implies that K[u] is
a field and that its dimension over K is deg mu = n.

Corollary 9.108. Every finite field extension is algebraic.

Example 9.109. Let p be a prime number. Since the number ep = cos v +
t sin Zp E C is a root of the polynomial xp-t + +x + 1, which is irreducible
over Q (see Example 3.72). Q[ep] is an extension of Q of degree p - 1. It
contains all pth complex roots of unity. This field is called cyclotomic.

Theorem 9.110. If L is a finite extension of a field K and AI is a finite
extension of L, then Al is a finite extension of K. Moreover.

dimK AI = dimK L dims A1.
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Proof. If {ei} is a basis of L over K and {f} is a basis of M over L, then
{ ei f j } is a basis of M over K.

For any elements ul, ... , un E L, the set of elements of L that can
be presented as ratios of elements of the ring K[u1 i ... ,u,,J is a subfield
isomorphic to Q(K[u1 i ... , unJ). It is called the subfield generated over K
by the elements ul,... , un and is denoted K(u1,... , un). In particular, if
u E L is algebraic over K, then by Theorem 9.107, K(u) = K[u] (this is the
phenomenon of "cancellation of irrationality in the denominator").

If K(ul,... , un) = L, we say that the field L is generated over K by the
elements ul,... , un.

Theorem 9.111. If a field L is generated over K by a finite number of
algebraic elements u1, ... , un, then it is a finite extension of K.

Proof. Consider the "tower of extensions"

K C K(ul) C K(ul, U2) C C K(u1,... , un) = L.

Since K(ul,... , un) = K(ul, ..., u,n_1)(u,n) and since urn is algebraic over
K(ul, ..., (it is already algebraic over K), every "story" of this tower
is a finite extension. By Theorem 9.110, L is a finite extension of K.

Theorem 9.112. Consider an extension L of a field K. The set k of all
elements of L that are algebraic over K is a subfield, which is algebraically
closed in L.

(The latter means that every element of L which is algebraic over k
belongs to k, i.e., is already algebraic over K.)

Proof. If u, v E K, then by Theorem 9.111, K(u, v) C K. In particular,

u+v, uv, u 1 E K.

This implies that k is a subfield of L.
Let U E L be algebraic over k and let u1i ... , un E K be the coeffi-

cients of an algebraic equation with a root u. By Theorem 9.111, K' =
K(u1,... , u,,) is a finite extension of K. Since u is algebraic over K', the
field K(u) is a finite extension of K'. Hence, K'(u) is a finite extension of
K, thus K'(u) C K. In particular, u E K.

The field k is called the algebraic closure of K in L.
For instance, the field of all algebraic numbers is the algebraic closure

Q of the field Q in C. Since the field C is algebraically closed, so is Q (in
the absolute sense and not just in C). A finite extension of Q is called a
field of algebraic numbers (there are many such fields). It is not difficult to
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show that every field of algebraic numbers is isomorphic to a subfield of Q
(do this!).

In a simple extension of a field K obtained by adjoining a root of an
irreducible polynomial f, this polynomial does not necessarily have more
than one root (though it might). In general, if we want to obtain a field where
f decomposes into linear factors, we need to construct further extensions.

Definition 9.113. A splitting field of a polynomial f E K[x] (not neces-
sarily irreducible) is an extension L of K such that f decomposes into linear
factors in L[x] and L is generated over K by the roots of f.

A homomorphism (and, in particular, an isomorphism) of an extension
of K acting trivially on K is called a homomorphism (an isomorphism) over
K.

Theorem 9.114. Any polynomial f E K[x] has a splitting field. Such a
field is unique up to an isomorphism over K.

To prove the second part of this theorem, we need the following

Lemma 9.115. Let P(a) be an extension of a field P obtained by adjoining
a root a of an irreducible polynomial h E P[x]. Let cp be a homomorphism of
P into a field F. The number of extensions of the homomorphism V to a ho-
momorphism0: P(a) - F equals the number of roots of the polynomial NP
in F (this polynomial is obtained from h by applying W to each coefficient).

Proof. Such an extension of 0, if exists, is given by the following formula

(9.22) 1l'(ao + ala + ... + W(ao) + o(ai),3 + ... + so(am)/3m,

ao,ai,...,amEP,
where 33 = vi(a) is an element of F. Applying this formula to the equality
h(a) = 0, we obtain that h`°(f3) = 0. Conversely, if 6 E F is a root of the
polynomial hW, then formula (9.22) defines a homomorphism 11': P(a) -+
F.

Proof of Theorem 9.114. Consider the following sequence of extensions:

where Ki is obtained from K;_1 by adjoining a root of an irreducible factor
fi of f over K;_1 such that the degree of fi is > 1. Since the number
of irreducible factors of f increases at every step, this sequence cannot be
infinite. Its last term K. = L is a splitting field of f.

Now let L be another splitting field. Let us construct a sequence of
homomorphisms

Bpi : Ki L, i = 0,1, ... , s,
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such that
APO = id, WiIx;_1 = Wi-1

B_y the lemma, the ith step of this construction is possible if the polynomial
fi = f;'-' has a root in L. Since fi divides f in Ki_1[x], fi divides f in
L[x]. Thus, homomorphisms ci exist. The last of them,

GPs=v:L - L,
is an isomorphism since, according to the definition of a splitting field, the
field L is a minimal extension of K where f decomposes into linear factors.

Example 9.116. Let us find the degree of the splitting field L of the cubic
polynomial

f = x3 + a1x2 + a2x + a3 E K[x], char K 96 2.

Consider three possible cases:

(i) f has three roots in K. Then L = K.

(ii) f has one root in K. Then L is a quadratic extension of K.

(iii) f has no roots in K, hence is irreducible over K. Now let K1 3 K
be the cubic extension obtained by adjoining a root a1 off to K. Two cases
are possible:

(a) f has three roots in K1; then L = K1;

(b) f has only one root in K1i then K is a quadratic extension of K1,
hence, dimK L = 6.

To distinguish cases (iii)(a) and (iii)(b) consider the discriminant of f.
By definition, it equals

D = (al - 02)2(al - a3)2(a2 - a3)2,

where al, a2, a3 are the roots of f in L. (For the expression of D in terms
of coefficients of f, see Section 3.9.) Let us prove that if f has no roots in
K, then dimK L = 3 if and only if D E K2.

Observe that if D 0 K2, then D 0 Kl, otherwise would be a
quadratic extension of K contained in K1, which is impossible by the formula
for the multiplication of dimensions in an extension tower (Theorem 9.110).
Thus,

D E K2 D E Kl (a1 - a2)(a1 - a3)(a2 - a3) E K1.

Now, since a1 E K1 and a2 and a3 are the roots of a quadratic polyno-
mial with coefficients from K1, we have

(a1 - a201 - a3) E K1,
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hence

DE K2 a2-a3EK1 G=*

(here we used that char K 0 2).

Q2, a3 E K1 b L=K1

Now we use Theorem 9.114 to describe all finite fields.

A finite field F has characteristic p > 0, a prime number. Its cyclic
additive subgroup generated by the unity is a subfield isomorphic to the field
of residue classes Z. We identify this subfield with Z,,. If dimz F = n,
then

(FJ = e.
Thus, the number of elements of any finite field is a power of a prime number.

Theorem 9.117. For any prime p and any natural n, there exists a field
with p" elements. All fields with p" elements are isomorphic.

The proof of this theorem requires some preparation.

Let F be a (possibly infinite) field of characteristic p > 0. Consider the
map

- - + x ,--+ XP.

Obviously, cp(xy) = p(x),p(y). Moreover, as strange as it looks, V(x + y) _
cp(x) + sp(y). Indeed, as we saw in Section 1.6,

(x+y)"=0 =xP+ !!.E
Thus, V is an endomorphism (a homomorphism into itself) of the field F.
It is called the Flobenius endomorphism.

Since Ker p = 0, Im W = FP c F. Clearly, for a finite field, FP = F, so
here the F>!:obenius endomorphism is an automorphism.

Proof of Theorem 9.117. Let F be a finite field containing q = p" ele-
ments. Since the order of the multiplicative group F' is q - 1, a9-1 = 1 for
every a E F'. Therefore,

a4=a VaEF.
In other words, all elements of F are roots of the polynomial xQ - x. There-
fore, F is a splitting field of this polynomial over Z. By Theorem 9.114,
this implies that all fields of q elements are isomorphic.

On the other hand, let F be the splitting field of the polynomial f =
x4 - x over ZP. Since f = -1, this polynomial has no multiple roots.
Its roots are the fixed points of the automorphism W" of F, where p is
the Frobenius automorphism. It is easy to see that the fixed points of any
automorphism form a subfield. Therefore, the collection of roots off is a
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subfield of F containing q elements (hence it coincides with F). This proves
that such a field exists.

Corollary 9.118. For any prime p and any natural n, theme exists an irre-
ducible polynomial of degree n over Zp.

Proof. Let F be a field with q = p" elements and a, a generator of its
multiplicative group (which, as we know, is cyclic). Then F = Zp(a), hence
the minimal polynomial of a over Zp has degree n.

The field with q elements is denoted F.. (In particular, for a prime q,
FP = Zr.)

Example 9.119. The only irreducible polynomial of the second degree over
the field Z2 is the polynomial x2+x+ 1. Adjoining to Z2 its root, we obtain
the field F4.

Exercise 9.120. Write down the addition and the multiplication table for
the field F4.

Let us regard a finite extension L of a field K as a vector space over K.
There is a natural way to introduce an inner product on L.

Namely, for any u E L, define the linear operator T(u) on the space L:

T(u)x = ux, x E L.

Call the trace of this operator the trace of u; denote it by tr u. Clearly, the
trace is a linear function on L. Define the inner product on L as

(9.23) (u,v) = truv.

This is a symmetric bilinear function on L. If char K = 0, this function is
nondegenerate because

(u, u-1) = tr 1 = dimK L 36 0

for every nonzero element u E L.

Example 9.121. We describe here the inner product on the cyclotomic
field Q(ep) = Q(_-p] (see Example 9.109). As a vector space over Q, the field
Q(e) is generated by the elements 1, fp, £p, ... ,

_ 1
whose sum equals zero.

As a basis of this space take, for instance, the elements 1, cp, ep, ... , ep-2.
By determining the matrices of operators T( P) in this basis, it is easy to
see that

trl=p-1, tree=-1, k=1,...,p-1.
Therefore,

E1) - 1-1,p - 1, fork + l - 0 (mod p),
p p otherwise.
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The inner product of any two elements of the field Q(ep) can be easily
determined if one of them is expressed as a rational linear combination
of 1, ep, 6Y, ... , ep 1 with coefficients adding up to zero (which is always
possible). Namely, if EP-1 xk = 0, then

P-l P-1 P-1

C xkey ykep I = P (XOYO + xkYP-k)
k=0 k=0 / k=1

A part of the above discussion on field extensions can be generalized
to extensions of Noetherian rings as long as we appropriately modify the
notions of an algebraic element and an algebraic extension.

Let a ring B be an extension of a ring A. An element u E B is called in-
tegral algebraic over A, or simply integral, if it satisfies a nontrivial algebraic
equation with coefficients in A and the leading coefficient 1. In particular,
elements of A itself are integral over A. An element u E B which is algebraic
over A can be made integral if we multiply it by an appropriate nonzero ele-
ment of A (namely, by the leading coefficient of the algebraic equation over
A whose root is u).

A ring B is called an integral extension of A or simply integral over A
if every element of B is integral over A.

When A is a field, these definitions are equivalent to the definitions of
an algebraic element and an algebraic extension.

The following is the key definition.

Definition 9.122. An extension B of a ring A is finite if B is a finitely
generated A-module.

Now we state partial analogues of Theorems 9.107, 9.110, 9.111, and
9.112 for ring extensions. Their proofs differ very little from the proofs of the
corresponding theorems. One only needs to replace the word "basis" with
the phrase "generating set" and use Theorem 9.91 instead of the statement
that every subspace of a finite-dimensional vector space is finite-dimensional.

Theorem 9.123. An element u E B is integral over A if and only if A[u]
is a finitely generated A-module.

Corollary 9.124. Every finite extension of a Noetherian ring is integral.

Theorem 9.125. If B is a finite extension of A, and C is a finite extension
of B, then C is a finite extension of A.

Theorem 9.126. If a ring B is generated over A by a finite number of
integral elements, then it is a finite extension of A.

Recall that a finitely generated (and certainly finite) extension of a Noe-
therian ring is also Noetherian (Corollary 9.95).
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Theorem 9.127. Let B be an extension of a Noetherian ring A. The set
q of all elements of B integral over A is a subring which is integrally closed
in B.

(The latter means that every element of B which is integral over A
belongs to A, i.e., that it is already integral over A.)

The ring q is called the integral closure of the ring A in B.
For example, all algebraic numbers integral over Z-they are called al-

gebraic integers-form a subring Z in the field 0 of all algebraic numbers.
The field of fractions of Z coincides with 0.

Remark 9.128. In fact, Corollary 9.124 and, hence, Theorem 9.127 hold for
arbitrary (not necessarily Noetherian) rings. This can be proved as follows.
Let B = Ael +- +Ae,,. Then e;ej = Ek Gjkek for some cjk E A. If A' is a
subring of A containing all c,jk's, then B' = A'e1+ +A'e,, is a subring of B
and, moreover, a finite extension of A'. For every u = alel + +a,,e,,, a; E
A, take the subring generated by all cjjk's and a;'s as A'. It is Noetherian
(see Remark 9.96), hence by Corollary 9.124, u E B' is integral over A' and,
moreover, A.

The following theorem establishes a connection between finite field ex-
tensions and finite ring extensions.

An integral domain is called normal or integrally closed if it is inte-
grally closed in its field of fractions. For example, the ring Z is normal by
Theorem 3.67. On the other hand, the ring of polynomials without a linear
term (i.e., of the form ao + a2x2 +...) or the ring of numbers of the form
a + bv, a, b E Z, is not normal (prove this!).

Theorem 9.129. Let A be a normal Noetherian domain with the field of
fractions K. Let L be a finite extension of K and B, the integral closure of
A in L. Assume that char K = 0. Then B is a finite extension of A.

(See diagram (9.21).)

Proof. We prove first that tr u E A for every u E B. Let al, ...,am E A be
such that

u"' +alu"'-1 +...+am-lu+am = 0.

Then

(9.24) T(u)m + aiT(u)m-l + ... + am-1T(u) + arE = 0.

Let P D K be the splitting field of the characteristic polynomial of the
operator T(u). It follows from (9.24) that all roots of this polynomial in
P are integral over A. But the trace tr u = tr T(u) is equal to the sum of
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these roots, hence, it is also integral over A. On the other hand, tr u E K.
It follows from normality of A that tr u E A.

Let {el, ... , en} be a basis of L over K. Multiplying el,... , e by appro-
priate elements of A, we can obtain ei, ... , en, E B. Then cii :_ (ei, ei) E A
for all i, j and

A := det(cii) 96 0.

Let us determine when the element
u = xlel + ... + xnen, xl, ... , xn E K,

is integral over A. This is obviously true if x1,. .. , xn E A. Generally
speaking, this condition is not necessary, but we will show now that the
coefficients xi, ... , xn cannot be "too fractional."

Considering inner products of u with the basis vectors, we see that

(9.25) E c'ixi = (e;, u) E A, i = 1, ... , n.
i

If we regard equations (9.25) as a system of linear equations in indetermi-
nates xi, ... , xn, Cramer's rules imply that X1, ... , xn E A- i A.

Thus, the ring B is contained in the A-submodule generated by the
elements A-lei,... , A-ien. Since A is Noetherian, it follows that B is a
finitely generated A-module.

Remark 9.130. Theorem 9.129 and its proof are also valid in the case
of char K = p > 0 whenever the inner product in L is nondegenerate.
A finite extension L of K satisfying this condition is called separable (see
Remark 11.58).

Let K be a field of algebraic numbers (i.e., a finite extension of the field
Q). The integral closure of the ring Z in K is called the ring of integers of
K. It is denoted ZK. Theorem 9.129 implies that ZK is a finitely generated
(additive) abelian group. Since the group ZK is torsion-free, it is free. More-
over, when multiplied by an appropriate (rational) integer, every element of
K becomes integral. Thus, a basis of ZK is also a basis of K regarded as a
vector space over Q, hence,

rk ZK = dimq K.

Exercise 9.131. Prove that the integers of the field Q(/ ), where d is a
square-free integer, are the numbers of the form a + bf, where a, b E Z or,
whenever d =_ 1 (mod 4), a, b E Z+ Z.

Exercise 9.132. Prove that the integers of the cyclotomic field Q(ep) (see
Examples 9.109 and 9.121) are the numbers

ao + aiep + ... + ap_2ep2, ao, ai, ... , ap-2 E Z.
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(Hints: (i) as in the proof of Theorem 9.129, prove at first that the denom-
inators of the rational numbers ao, al, . . . , ap_2 are powers of p;

(ii) instead of the decomposition in the powers of Ep, consider the de-
composition in the powers of 1 - Ep;

(iii) prove that in the ring of integers of the field Q(Ep), the following
numbers are associated:

1-e,,. i-EP, k=1,2,...,p-1, pEp)p-1;
(iv) prove that if a rational integer is divisible by 1-ep, then it is divisible

by p.)

9.6. Finitely Generated Algebras and Affine Algebraic
Varieties

In this section we study algebras over a field K. Here, by an algebra, we
always understand a commutative associative algebra with unity. An algebra
A is called finitely generated if it is finitely generated over K. Observe that
by Corollary 9.94, every finitely generated algebra is Noetherian.

The theory of finitely generated algebras lies at the foundation of the
study of systems of algebraic equations; this is the subject of algebraic ge-
ometry.

Let A be an algebra without zero divisors. Elements ul,... , un of A are
called algebraically dependent if they are algebraically dependent over K.

Definition 9.133. A transcendence basis of A is a maximal algebraically in-
dependent system of elements or, equivalently, an algebraically independent
system {u,. .. , ud} such that A is an algebraic extension of the subalgebra
K[ul,... , ud] generated by the elements u1, ... , ud. (Cf. the definition of a
basis of a vector space.)

For example, {xl, ... , x,} is a transcendence basis of the polynomial
algebra K[xl,... , xn].

Proposition 9.134. Every transcendence basis of an algebra A is a tran-
scendence basis of its quotient field Q(A) regarded as an algebra over K.

Proof. Let {ul, ... , ud} be a transcendence basis of A. Elements of Q(A)
that are algebraic over the subalgebra K[ul,... , ud] are the elements that
are algebraic over the subfield

K(ul,... , ud) = Q(K[ui,... ud])-
All such elements form a subfield in Q(A) (Theorem 9.83). Since this subfield
contains A, it coincides with Q(A). 0
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Proposition 9.135. Let A = K[ul,... , u,,]. Then every maximal alge-
braically independent subsystem of the system {u1, ... , u,, } is a transcen-
dence basis of A.

Proof. Let {ul,... , ud} be a maximal algebraically independent subsystem
of the system {ul,... , Consider the algebraic closure of the subfield
K(ul,... , ud) in the field Q(A). By assumption, it contains the elements
u1, ... , u,,, hence coincides with Q(A). In particular, it contains A.

Corollary 9.136. Every finitely generated algebra without zero divisors has
a transcendence basis.

Proposition 9.137. Let {u1, u2, ... , ud} be a transcendence basis of A
and v E A, an element that is transcendental over K[u2, ... , ud]. Then
{v, u2i .... ud} is also a transcendence basis of A.

Proof. Clearly, the elements v, u2, ..., ud are algebraically independent. On
the other hand, the elements v, u1i u2, ... , ud are algebraically dependent.
Consider a nontrivial algebraic dependence of them. It should depend non-
trivially on the element u1. Thus, u1 is algebraic over the subalgebra K(v, u2i
.... ud]. Therefore, the algebraic closure of the subfield K(v1, u2, ... , ud) in
Q(A) contains K(u1i u2, ... , ud), hence coincides with Q(A).

Theorem 9.138. All transcendence bases of an algebra A (if such exist)
have the same number of elements.

This number is called the transcendence degree of A and is denoted
tr. deg A.

Proof. Let { u 1 , .{u1, .. , ud } and {v,... , v } be two transcendence bases. If all
elements v1, ... , v, are algebraic over K[u2, ... , ud], then elements u2, ... , ud
form a transcendence basis of A by themselves, which is impossible. Hence,
there exists an index i1 such that the element vi, is transcendental over
K(u2, ... , ud]. By Proposition 9.137, {vi, , u2, ... , ud} is a transcendence
basis of A. In the same manner, we can replace u2 by an element vie, etc.
At the end, we obtain a transcendence basis of the form

Clearly, the indices i1, ... , id must be distinct and they should contain all
indices 1, 2, ... , e. Thus, d = e.

Theorem 9.139 (Noether Normalization Lemma). A finitely generated al-
gebra A = K[ui,... , without zero divisors has a transcendence basis
{VI, ... , vd} such that A is integral over Kin.. , vd].
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Proof. We will prove this theorem under the assumption that the field K is
infinite. In this case, we can construct the transcendence basis in question
from linear combinations of ul,... , un.

We use induction on n. If the elements ul, ... , un are algebraically in-
dependent, they form such a transcendence basis. Otherwise, consider a
nontrivial algebraic dependence between them:

f(ul,...,un) = 0, f E K[xl,...,xn].
Let deg f = in. If x' occurs in f with a nonzero coefficient, the element
un is integral over the subalgebra B = K [u1, ... ,un_1]. By the induction
hypothesis, there exists a transcendence basis v1,.. . , vd of B such that the
algebra B is integral over K(vl,... , vd]. This is the transcendence basis that
we need.

The general case reduces to the above after a change of variables of the
form

xi = yi + aiYn, i = 1,...,n - 1, xn = 1/n, al,...,an-1 E k.

The polynomial

g(y11,...,y/n-1,ya)=f(y/1+alyn,...,yn-1+an-lyn,yn)
is also of degree m and yn occurs in it with the coefficient

go(0,...,0,1) = fo(ai,...,an_,,1),
where fo and go are the leading homogeneous components of the polynomials
f and g, respectively. Since fo is a nonzero homogeneous polynomial, it
cannot be identically equal to zero on the hyperplane xn = 1. Therefore,
with a suitable choice of al,..., an-1, yn occurs in the polynomial g with a
nonzero coefficient. Put

then

ui = vi + aivn, i = 1,...,n - 1, un = vni

g(vl,...,Vn) = f(u1,...,un) = 01
and the proof reduces to the previous case. O

Theorem 9.140. If a finitely generated algebra A is a field, then it is a
finite algebraic extension of the field K.

Proof. By Theorem 9.139, there exists a transcendence basis {v1,. .. , vd}
of A such that A is integral over the subalgebra

B = K[vl,... , vd].

Let us prove that B is also a field. For any u E B, there exists u-' E A.
The element u-1 is integral over B, i.e.,

,u-m + blu-m+1 + ... + bin-lu l + bin = 0
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for some bl,... , bm E B. Thus,

u-1 = -b1 - b2u - ... -b U'-' E B.
Since the algebra B is isomorphic to the algebra of polynomials in d variables,
it cannot be a field when d > 0. Hence d = 0, i.e., A is an algebraic extension
of K.

Corollary 9.141. If a finitely generated algebra A over an algebraically
closed field K is itself a field, then A = K.

Theorem 9.142. Let A be a finitely generated algebra over an algebraically
closed field K. Then for every nonnilpotent element a E A, there exists a
homomorphism gyp: A -+ K such that V(a) # 0.

Proof. Following the proof of Theorem 9.102, consider a maximal ideal I'
of the algebra A' = A[a-1J. The field A'/I' is a finitely generated algebra
over K, hence it coincides with K. Now we can take the restriction of the
canonical homomorphism A' A'/I'= K to A as W.

Let us apply this theorem to the study of systems of algebraic equations.

Let M C K" be the set of solutions of a system of algebraic equations

(9.26) fi(xl,...,x") =0, i = 1,...,m.
Consider the algebra

(9.27) A = K[xl,... , x,a]/(fl, ... , .fm)

and the canonical homomorphism 7r: K[xl,...,x"] -+ A. Set 7r(xi) = ui;
then A = K[ul,... , u,,J

To each point x E K", there corresponds the homomorphism

(9.28) it: K[xl,...,x"] -+K, f - f(x)
and, conversely, every homomorphism

7': 1K[xl,... , x,,] -+ K

has the form 7/)x, where x is the point with coordinates
If x E M, the homomorphism ip: maps the ideal (fl, ... , fm) to zero,

hence, can be factored through the homomorphism 7r:

K[xl,...,x"] -4 K
(9.29) . /,=

A

The homomorphism co.,: A K thus obtained maps the generating ele-
ments u1, ... , u" of A to the coordinates of the point x. Conversely, ev-
ery homomorphism cp: A --+ K is a part of some commutative diagram of
type (9.29), hence has the form W. for x E M.
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Therefore, the points of M are in one-to-one correspondence with ho-
momorphisms of the algebra A to K. This quite trivial observation throws
a bridge between commutative algebra and algebraic geometry and, in par-
ticular, allows Theorem 9.142 to take the following form:

Theorem 9.143 (Hilbert's Nullstellensatz). Let M be the set of solutions
of a system of algebraic equations (9.26) over an algebraically closed field
K, and let a polynomial f E K[xl,... , xn] be identically zero on M. Then
there exists a natural number k such that

(9.30) fk E (fl,...,fm)

Proof. Define the algebra A as above and put a = rr(f) E A. Condi-
tion (9.30) means that the element a is nilpotent. If this is not so, by The-
orem 9.142, there exists a homomorphism gyp: A -+ K such that V(a) 0 0.
This homomorphism defines a point of M where the value of f is not
zero.

Observe that, on the other hand, every polynomial f E K[xl,... , xn]
that satisfies condition (9.30) is identically zero on M.

Corollary 9.144. The system of algebraic equations (9.26) over an alge-
braically closed field K is incompatible if and only if

(9.31) (f1,...,fm) 9 1,
i.e., if there exist polynomials g1, ... , g,n E K[xi, ... , x"] such that

(9.32) flgl + ... + fmgm = I.

Proof. Apply the Nullstellensatz to the polynomial f = 1.

Definition 9.145. An affine algebraic variety over K, or an algebraic va-
riety in Kn, is the set of solutions of a system of algebraic equations.

Let M C Kn be an algebraic variety. K-valued functions on M that are
restrictions of polynomials on the space K" are called polynomials on M.
They form an algebra called the polynomial algebra on M, which is denoted
K[M]. The kernel of the restriction homomorphism

p: K[xli...,xn] -' K[M]
is an ideal I(M) that consists of all polynomials on K" that are identically
zero on M. We have

K[M] ^-' K[xl,...,xn]/I(M).
By Hilbert's Basis Theorem, the ideal I (M) has a finite generating set:

I(M) _ (fi,...,fm).
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Clearly, the variety M can be defined by equations (9.26). The ideal I(M)
is called the ideal of M.

Every point x E M defines the homomorphism

(9.33) Wx: K[M] K, f '-' f W.
The above discussion shows that we have a one-to-one correspondence be-
tween points of M and homomorphisms of the algebra K[M] into K. Notice
that as an algebra of functions on M, K[M] has no nilpotent elements.

Conversely, let A = K[ul,... , u,,] be a finitely generated algebra. Con-
sider a homomorphism

7r: K [x l , ... , x"] -, A, xi i-4 u; .

Its kernel is an ideal I of the polynomial algebra K[x;,... , xa]. Let

I = (fl, ... , fm),
and let M C K" be an algebraic variety defined by system (9.26). Then
the points of M are in one-to-one correspondence with homomorphisms of
A into K. However, the ideal I(M) can be larger than I and so, the algebra
K[M] does not have to coincide with A.

In any case, Ker p 3 Ker zr, hence, there exists a homomorphism

a: A -+ K[M].

Its kernel consists of elements of A that come (under 7r) from polynomials
that are identically zero on M. By the Nullstellensatz, if K is algebraically
closed,

Ker a = rad A.

In particular, if A has no nilpotent elements (and K is algebraically closed),
A = K[M].

Thus, in the case of an algebraically closed field K, we have established
a one-to-one correspondence between the algebraic varieties in K" and the
algebras on n generators that do not have nilpotent elements.

For any finitely generated algebra A over K, we call the set of all its
homomorphisms into K the spectrum and denote it Spec A. If we fix a
set of n generators of A, then by the aforesaid, Spec A is identified with an
algebraic variety in K".

In particular, for M an algebraic variety in K", Spec K[M] is identified
with M if we choose the restrictions of coordinate functions of K" as its
generators. For other choices, we obtain other "models" of the spectrum
that are regarded as algebraic varieties isomorphic to M. Thus, we regard
as internal properties of M, the properties that can be expressed in terms
of the algebra K[M].
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In order to study these properties, it is useful to employ the Zariski
topology. In this topology, a set N C M is closed if it is defined by equations
of the form

f;=0, i=1,...,m,
where fl,. .. , f, E K[M]. For example, the closed subsets of K" are exactly
the algebraic varieties. The closed subsets of any algebraic variety M C K^
are the algebraic varieties in K" that are contained in M.

It is not difficult to check that this definition satisfies topology axioms,
i.e., that the intersection of any number of closed sets and the union of a finite
number of closed sets are closed. For instance, the union of subsets defined
by equations fi = 0, i = and gi = 0, j = 1, ... , p, respectively, is
defined by the equations fig, = 0, i = 1.... , m, j = 1, ... 'p.

Except for some trivial cases, the Zariski topology is not Hausdorff. For
example, the closed subsets of the line K' in the Zariski topology are the
line itself and its finite subsets. Thus, if K is infinite, every two nonempty
open subsets intersect.

Since it is so poor, the Zariski topology mostly plays an auxiliary role
as a useful language for the study of algebraic varieties. But by itself, it can
still express some rough properties of algebraic varieties.

Definition 9.146. A topological space is Noetherian if it does not contain
an infinite strictly decreasing sequence of closed subsets.

To every closed subset N of an affine algebraic variety M, there cor-
responds the ideal IM(N) of the algebra K[M] consisting of all polynomi-
als that are identically zero on N. Furthermore, Ni D N2 if and only if
IM(N1) C IM(N2). Thus, since K[M] is Noetherian, the variety M is a
Noetherian topological space (in the Zariski topology).

Definition 9.147. A topological space M is irreducible if it is nonempty
and satisfies either of the following equivalent properties:

(i) it cannot be presented as a union of two proper closed subsets;

(ii) any two of its nonempty open subsets have a nonempty intersection.

(Compare this definition with that of a connected topological space.)

Theorem 9.148. An affine algebraic variety M is irreducible if and only if
the algebra K[M] has no zero divisors.

Proof. Let fl, f2 E K[M] be nonzero polynomials such that fl f2 = 0. Then
M = N, UN2, where N;, i = 1, 2, is the closed subset defined by the equation
/; = 0.
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Conversely, let M = N1 U N2, where N1, N2 are proper closed subsets.
Choose nonzero polynomials fl E IM(N1), f2 E Iit(N2). Then fl f2 = 0.

Proposition 9.149. Every Noetherian topological space M can be uniquely
presented in the form

8

(9.34) M = U Mi,
i=o

where M1, ... , M8 are irreducible closed subsets such that none of them con-
tains another.

Subsets Mi are called irreducible components of M.

Proof. Assume that there exist Noetherian topological spaces that cannot
be presented as finite unions of their irreducible closed subsets. Call such
spaces bad. Let MO be bad. Then Mo is reducible, i.e., Me = M1 U N1,
where M1 and N1 are proper closed subsets. Clearly, at least one of them
is bad. Let it be M1. Then M1 = M2 U N2, where M2 and N2 are proper
closed subsets and at least one of them is bad. Continuing this process, we
obtain an infinite strictly decreasing sequence of closed subsets

MODMiDM2D...,
which is a contradiction since Mo is Noetherian.

Thus, every Noetherian topological space M can be presented in the
form (9.34), where M1,.. . , M, are irreducible closed subsets. Removing
those contained in others, we obtain a situation where none of these subsets
contains another. Let us show that with this condition, decomposition (9.34)
is unique.

Let M = U' j=1 Nj be another such decomposition. Then for any j,
8

Nj=U(MinN.)
i=1

and irreducibility of Nj implies that there exists i such that Nj C Mi.
Similarly, there exists k such that Mi C Nk, but then Nj C Nk. It follows
that j = k and NY = Mi. Thus, {N1,. .. , NN} C IM,,..., M.I. The
opposite inclusion is proved similarly.

In particular, every affine algebraic variety uniquely decomposes into
irreducible components.

Example 9.150. Let f be a polynomial of the second degree in n variables
over an algebraically closed field K. The equation f = 0 defines an algebraic
variety M in K. The following cases are possible:

(i) f does not split into linear factors; then M is an irreducible quadric;
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(ii) f splits into two nonproportional linear factors; then M is a union
of two hyperplanes, and these are its irreducible components;

(iii) f is a square of a linear polynomial; then M is a hyperplane (in this
case, I(M) 0 (f)).

All this can be deduced from a more general Theorem 9.164, which is
proved in the next section.

One of the most important characteristics of an irreducible algebraic
variety is its dimension.

Definition 9.151. The dimension of an irreducible affine algebraic variety
M is the number

dim M = tr. deg K[M].

In particular,
dim K" = tr. deg K[xl,... , xn] = n.

The dimension of an algebraic variety has the following property, which
is similar to a property of the dimension of a vector space.

Theorem 9.152. Let N be an irreducible closed subset of an irreducible
affine algebraic variety M. Then dim N < dim M and equality is attained
only when N = M.

Proof. Let
p: K[M] K[N]

be the restriction homomorphism. It is clear that if elements p(f 1), ... , p(fk)
are algebraically independent in KIN], the elements fl,... , fk are alge-
braically independent in K[M]. This implies the first assertion of the theo-
rem.

Assume now that N 34 M. Let { p(fl ), ... , p(fk) } be a transcendence
basis of KIN] and f E IM(N), f 4 0. Let us prove that fl, ... , fk, f are
algebraically independent in K[M]; this will imply the second assertion.

Assume that fl,..., fk, f are algebraically dependent. This dependence
can be written as

ao(fi,...,fk)r +a,(h,.. ,fk)f'"-' +... +a.(fl,..., fk) = 0,
where ao, al, ... , a,,, are polynomials some of which are nonzero. We can
assume that am # 0; otherwise, we can cancel f in the above equality.
Applying p, we obtain

a.(P(fl), ... , P(fk)) = 0,

contradicting the algebraic independence of p(f l ), ... , p(fk).
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9.7. Prime Factorization

One of the fundamental goals of arithmetics is to develop the theory of fac-
torization into primes for the rings of algebraic integers. A similar problem
over finitely generated algebras appears in algebraic geometry (e.g., in rela-
tion with the description of linear bundles over algebraic varieties). Despite
the differences between these two types of rings, the problem of prime factor-
ization can be treated somewhat similarly for both of them. This framework
is presented in the end of this section; as for its beginning, here we prove
existence and uniqueness of prime factorizations in certain types of rings.

Let A be an integral domain. Notice that for elements a, b E A, the
condition bja is equivalent to the condition (a) C (b); thus, the condition
a - b is equivalent to the condition (a) = (b).

Theorem 9.153. In a Noetherian domain, every noninvertible nonzero el-
ement factorizes into a product of prime elements.

(We assume that a product might consist of one factor only.)

Proof. Assume that there exist noninvertible nonzero elements which can-
not be factorized into prime elements. We call such elements bad. Let ao
be a bad element. Then it is certainly not prime, hence as = albs, where
al and bl are noninvertible elements. Clearly, at least one of the elements
al and bl is bad. Assume al is bad. Then al = a2b2, where a2 and b2 are
noninvertible elements and one of them is bad. Continuing this process, we
obtain the following strictly increasing chain of ideals:

(ao) c (al) C (a2) C ... ,

which cannot happen in a Noetherian domain. 0

As for the uniqueness of prime factorization, it may hold only up to a
permutation of factors and multiplication by invertible elements. Below we
understand uniqueness in this sense only.

Inspecting the proof of uniqueness of prime factorization in Euclidean
domains (see Section 3.5), we see that it relies on exactly one property of
these rings: if a prime element p divides the product ab, then it divides
either a or b. In other words, we use the fact that in a Euclidean domain,
the ideal (p) generated by a prime element p is prime. This suggests the
following theorem:

Theorem 9.154. If in an integral domain A every principal ideal generated
by a prime element is prime, then any element of A factorizes into primes
in at most one way.



9.7. Prime Factorization 377

Observe that a principal ideal generated by a nonprime noninvertible
nonzero element is not prime in any integral domain.

Definition 9.155. An integral domain A is factorial (or a unique factor-
ization domain) if every noninvertible nonzero element of A factorizes into
prime elements and this factorization is unique in the above sense.

In particular, every principal ideal domain is factorial (see Section 9.2).
Obviously, in a factorial domain, a principal ideal generated by a prime

element is prime.

In a factorial domain, every two elements a and b have the greatest
common divisor GCD{a, b} which by definition is a common divisor divisible
by all other common divisors. Namely, let

b=flpL', k,l;>0,
i=1 i=1

where p1,. .. , p8 are prime. Then

GCD{a,b} _ pmin{ki Al

The greatest common divisor is defined uniquely up to multiplication by an
invertible element.

Elements a and b of a factorial domain are called relatively prime if
GCD{a, b} = 1, i.e., if the prime factorizations of a and b contain no common
factors (up to the association relation).

The following theorem generalizes Theorem 3.67 (or rather, Corollary
3.68).

Theorem 9.156. Every factorial domain is normal.

The proof of this theorem is the same as the proof of Theorem 3.67.

Theorem 9.157. The ring A[x] of polynomials over a factorial domain A
is also a factorial domain.

Before attempting the proof, we need some preparation.

Call a polynomial f E A[xJ primitive if its coefficients are relatively
prime together.

Let K be the field of fractions of A. Obviously, every polynomial h E
K[x] decomposes as h = Ahl, where hl E A[x] is primitive and \ E K.

Lemma 9.158 (Gauss Lemma). If a polynomial f E A[xJ factors into a
product of two polynomials in the ring K[x], then it factors into a product
of two polynomials in A[x] proportional to those in the first factorization.
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This lemma is proved just as Theorem 3.70. The only small difference is
that the quotient ring of A by an ideal generated by a prime element is not
a field in general. However, it is always an integral domain and this suffices
for the proof.

Corollary 9.159. If a polynomial f E A[x] factors in K[x] into a product of
polynomials of smaller degree, then it factors into a product of polynomials
of smaller degree in A[x].

Proof of Theorem 9.157. Corollary 9.159 and obvious considerations im-
ply that there are only two kinds of prime elements in the ring A[x]:

(i) prime elements of A;

(ii) primitive polynomials h E A[xJ which are irreducible over K.

On the other hand, it is clear that all these elements are indeed prime
and that every noninvertible nonzero element of the ring A[x] factors into
a product of such elements. If there exist two such factorizations of a poly-
nomial f E A[xJ, then considering them in the ring K[xl (which is known
to be factorial), we conclude that the factors of the second type in these
factorizations are associated in K[xj. Since they are primitive, they must
also be associated in A[x]. So, after cancelling these factors, we obtain two
prime factorizations in A and can use the factoriality of A.

By induction, we conclude with

Corollary 9.160. For any n, the polynomial ring K[xl,... , x,s] in n vari-
ables over a field K is a factorial domain.

Prime elements of the ring K[xl, ... , xn] are called irreducible polyno-
mials.

Obviously, every polynomial of first degree is irreducible.

Lemma 9.161. If a polynomial f E K[xl, ... , xn] over an infinite field K
is zero at all points of the hyperplane

then it is divisible by 1.

Proof. By passing to another affine coordinate system, we can assume that
l = x1. Then the condition of the lemma means that all terms of f contain
x1, hence, f is divisible by 1.

In what follows, we provide two examples of factorization of a polynomial
into linear factors, using the above lemma and the factoriality of the ring of
polynomials-
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Example 9.162. We calculate the Vandermonde determinant V (x 1, ... , xn )
(see Example 2.96) in a different way. Obviously, V (xl, ... , xn) is a poly-
nomial in x1i... , xn.. When xi = xj (i, j different), it turns into zero be-
cause the corresponding matrix contains two equal rows in this case. By
Lemma 9.161, we conclude that this polynomial is divisible by xi - xj in the
ring K[xl,... , xn] whenever i, j are different. But then uniqueness of factor-
ization in this domain implies that V (xl, ... , xn) is divisible by fi>j(xi-xj).

It is easy to see that V (xl, ... , xn) is a homogeneous polynomial of degree
n(;_1) . Thus,

V(xl,...,xn)=Cf(xi-xj), CE K.
i>j

Comparing the coefficients of x2x3 x;-1, we obtain c = 1.

Exercise 9.163. In the same way, prove that

x3+y3+z3 - 3xyz = (x+y+z)(x+wy+wz)(x+wy+wz),

where

We now apply the result on factoriality of a polynomial ring to the
description of (n - 1)-dimensional algebraic varieties in Kn.

Let K be an algebraically closed field. For f E K[x1i... , xn], denote by
M(f) the algebraic variety in Kn defined by the equation f = 0.

Theorem 9.164. The map p -+ M(p) establishes a one-to-one correspon-
dence between irreducible polynomials in n variables (considered up to the
association relation) and (n - 1)-dimensional irreducible algebraic varieties
in Kn. Moreover, the ideal of M(p) is generated by p.

Proof. (i) Let p E K[x1, ... , xn] be an irreducible polynomial. Then the
ideal (p) is prime, hence, the variety M(p) is irreducible and I(M(p)) =
(p). In particular, p is uniquely determined by M(p) up to the association
relation.

(ii) In the above notation, we have

K[M(p)] = K[xl,... , xn]/(p) = K[u1,... , un],

where u1, ... , un are the restrictions of coordinate functions x,. .. , x,, of
the space Kn to M(p). Assume that the polynomial p is nontrivial in xn.
Then every polynomial in (p) is nontrivial in x,,. Thus, u1,.. . , un_ 1 are
algebraically independent and dim M(p) = n - 1.

(iii) Conversely, let M c Kn be an (n - 1)-dimensional irreducible al-
gebraic variety. Choose a nonzero polynomial f E I (M) and decompose it
into irreducible factors. Since I(M) is prime, at least one of these factors
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lies in I(M). Let it be some irreducible polynomial p. Then M C M(p);
however, since their dimensions coincide, we must have M = M(p). 0

Let f E K[xi, ... , be a noninvertible nonzero polynomial. Decom-
pose it into irreducible factors:

f = P11 ... Pa..

Theorem 9.164 obviously implies that

M(f) = M(Pi) U ... U M(p,)
is the decomposition of M(f) into irreducible components.

Exercise 9.165. Determine I (M(f) ).

We obtain similar results if, instead of K", we consider an irreducible
affine variety M such that K[M] is factorial. (The only place where this
general case requires additional considerations is part (ii) of the proof of the
theorem.)

However, if the algebra K[M] is not factorial, it contains prime elements
that generate nonprime principal ideals. At the same time, M contains
(n - 1)-dimensional irreducible subvarieties whose ideals are not principal.

Example 9.166. Let Q C K3 be the quadratic cone defined by the equation
xy = z2. We have

K[Q] = K[x, y, z]l(xy - z2) = K[u, v, w],
where u, v, w are related: uv = w2. Obviously, u, v, w are prime elements of
the algebra K[Q] (as are all linear forms in them). Therefore, the relation
uv = w2 violates factoriality. This is related to the fact that the ideals (u),
(v), and (w) are not prime (e.g., uv E (w) but u 0 (w) and v V (w)) and
also to the fact that the ideals of the (line) generators of Q are not principal
(e.g., the ideal of the x-axis is (v, w) and the ideal of the y-axis is (u, w)).

Examples of this kind indicate that it might be more reasonable to con-
sider the prime ideals of K[M] corresponding to (n - 1)-dimensional irre-
ducible subvarieties instead of just the prime elements. And, indeed, this line
of reasoning leads to a very beautiful theory-not just for finitely generated
algebras but for Noetherian domains. We will now give a brief exposition of
this theory.

Let A be a normal Noetherian domain. A valuation on A is a surjective
map

v: A\{0}--.Z+,
that satisfies the following conditions:

(i) v(ab) = v(a) + v(b);
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(ii) v(a + b) > min{v(a), v(b) }.

The set of elements a E A such that v(a) > 0 is a prime ideal of A. It is
called the ideal of the valuation v and is denoted p(v).

To every prime element p E A such that the ideal (p) is prime, there
corresponds a valuation vp defined as follows: vp(a) is the largest power of
p that divides a. It is obvious that p(vp) = (p). If the domain A is factorial,
then for any pair of its noninvertible elements a and b,

bra vp(a) > vp(b) Vp.

However, in the general case the data provided by valuations of the form
vp is not sufficient to determine if one element is divisible by another. The
following two exercises suggest what reasonable generalization we should
consider instead.

Exercise 9.167. Prove that a principal prime ideal that is not 0 or A is
minimal among nonzero prime ideals of A.

Exercise 9.168. Prove that in a factorial domain, every minimal prime
ideal is principal.

Minimal prime ideals of A are called its prime divisors. In the above case
A = K[M], prime divisors are the ideals of (n - 1)-dimensional irreducible
subvarieties of M.

One can show that every prime divisor p is the ideal of a uniquely deter-
mined valuation vp. The proof is based on the idea that the ideal p becomes
principal under a suitable embedding of A into a bigger ring A [u-1], where
u E A \ p. Clearly, if p = (p), then vp = vp.

When A = K[M] and p = I(N) for an (n - 1)-dimensional irreducible
subvariety N of M, the value of vp(f) at f E K[M] has the meaning of the
"order of zero" of f on N.

Example 9.169. In Example 9.166, the plane x = 0 touches the cone Q
along the y-axis, the plane y = 0 touches it along the x-axis, and the plane
z = 0 intersects it transversely in the x- and y-axes. Thus, if we denote by
p and q the ideals of the axes x and y in the algebra K[Q],

vp(u) = 0, vp(v) = 2, vp(w) = 1,

vq(u) = 2, vq(v) = 0, vq(w) = 1,

which agrees with the relation uv = w2.

The main properties of the valuations vp that justify their use are:

(i) for any a E A \ {0}, the set of p such that vp(a) > 0 is finite;
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(ii)foranya,bEA\{0},
Na `dp vp(a) > vp(b).

Historically, this theory was first established for the rings of integers
of cyclotomic fields in Kummer's work on Fermat's theorem. Unlike the
general case, all nontrivial prime ideals are minimal in a ring of algebraic
integers (as we will see below). Furthermore, in this case, this theory can be
interpreted as a theorem on unique factorization of ideals into prime factors.

Namely, define multiplication on the set of ideals as
k

ab aib; : a,.... , ak E a, bl,... , bk E b
i=1

This multiplication is clearly commutative and associative; moreover, (a)(b)
= (ab). Thus, the semigroup of nonzero elements of A considered up to the
association relation embeds into the semigroup of ideals.

It can be shown that if A is the ring of integers of a field of algebraic
numbers, then every nonzero ideal of A factors into a product of prime ideals
uniquely. The value of vp(a) is then interpreted as the exponent of p in the
factorization of the ideal (a).

Two ideals are called equivalent if they become equal after multiplica-
tion by suitable principal ideals. Classes of equivalent ideals of a ring A
of algebraic integers form a group called the class group of A and denoted
Cl A. It measures how far A deviates from being factorial.

Let K be a field of algebraic numbers and ZK, the ring of its integers.

Theorem 9.170. Every nonzero ideal a of the ring ZK is an additive sub-
group of finite index.

Proof. We know that there exists a basis {el,... , of K over Q such
that

ZK=Zei®...®Zen ,

Let a be a nonzero element of a. The map x -p ax is a nonsingular
linear transformation of the space K over Q, hence {ae,,... , a

is a a subgroup of finite index
in ZK.

Corollary 9.171. Any nontrivial prime ideal p of the ring ZK is maximal.

Proof. The quotient ring ZK/p is finite and has no zero divisors. The rest
follows from the next lemma.

Lemma 9.172. A finite integral domain A is a field.
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Proof. Let a E A be a nonzero element. Since A contains no zero divisors,
the map

A A, x'-'ax
is injective, hence, surjective (as A is finite). In particular, there exists b

such that ab = 1.

Corollary 9.173. A nontrivial prime ideal of the ring ZK is a minimal
prime ideal.

Proof. If there existed a smaller prime ideal, it would not be maximal.

Example 9.174. The ring of integers of the field Q(/) is Z[V'---51. Define
the norm N(c) of a number c = a + bvf--5 E Z[-5], a, b E Z, as follows:

N(c)=cc=a2+5b2EZ.
Clearly, this norm is multiplicative:

N(clc2) = N(ci)N(c2)
Thus, if c is an invertible element of Z[v -5], N(c) = ±1. It follows that the
only invertible elements of this ring are ±1. If c is nonprime, noninvertible,
and nonzero, then N(c) can be presented as a product of two norms greater
than 1. With this consideration, it is easy to show that all elements in the
following equality:

(9.35) 2.3=(1+v/---5)(1-v')
are simple. Therefore, the domain Z[v/-5] is not factorial.

From the viewpoint of the theory of ideals, equality (9.35) can be ex-
plained as follows:

(2) = p2, (3) = glg2, (1 + vf-5) = pqi, (1 - v f5-) = pq2,

where

q=(3,1±':), q2 = (3,1 - C)
are prime ideals (prove this!). It can be shown that

ClZ[v] Z.
In general, the class group of the ring of integers of any field of algebraic

numbers is finite. This means, in particular, that for every ideal, some power
of it is a principal ideal.





Chapter 10

Groups

10.1. Direct and Semidirect Products

In Section 9.1, we considered direct sums of additive abelian groups. Of
course, the name of the group operation does not matter; nothing stops
us from doing the same for multiplicative groups, though in this case, it is
natural to speak not about a direct sum but about a direct product. More
importantly, we can jettison commutativity. Let us give appropriate rigorous
definitions.

Definition 10.1. A group G decomposes into a direct product of subgroups
GI,.. -, Gk if

(i) every element g E G decomposes uniquely as g = gl 9k, 9: E Gi;

(ii)g{gj =g,g;forg;EG;,g3EGj,i0j.

If so, we write G = Gl x . x Gk. Obviously, if G is finite, then

IGI = IGII "' IGkI

Condition (i) implies that G; f1 G, = {e} for i 36 j but, as we have seen
in the case of vector spaces, for k > 2 the latter condition is weaker than
condition (i) (see Exercise 5.7).

The following rule for multiplying elements of G follows from condi-
tion (ii):

(10.1) (91...9k)(911 ... 90 = (91911) (9k9k), 9i, 9,' E Gi.

In particular, it is easy to see that every subgroup G. is normal. The fol-
lowing lemma implies that condition (ii) can be replaced with the condition
of normality of the subgroups C,,. .. , Gk.

385
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Lemma 10.2. Let Gi and G2 be normal subgroups of G such that G1 nG2 =
{e}. Then gtg2 = g2g1 for any 91 E G1, 92 E G2.

Proof. We have

919291 192 1 = 91(9291 1921) _ (919291 1)921 E G1 n G2 = {e},

implying 9192 = 9291. 0

We now consider the case of two factors separately.

Proposition 10.3. A group G decomposes into a direct product of its sub-
groups Gl and G2 of and only if

(i) subgroups G1 and G2 are normal;

(ii) G1 nG2 = {e};

(iii) G = G1G2, i.e., every element g E G decomposes as g = 9192,
91EG1,92EG2.

Proof. We already proved the "only if" part above. Conversely, assume
that conditions (i)-(iii) hold. By Lemma 10.2, 9192 = 9291 for g1 E G1,
92 E G2. It remains to show that any g E G decomposes as g = g'g2, where
91 E G1, g2 E G2, uniquely. Let

9192 = 9192, 91, 9i E G1, 92, 92 E G2

Then

hence,

91191 = 9292-1 E G1 n G2 = {e},

91 = 9,1) 92 = 9'2
0

Example 10.4. Let G = {e, a, b, c} be a noncyclic group of order 4. It
is easy to see that the square of any of the elements a, b, c is the identity
and the product of either two of them (in any order) equals the third (the
multiplication table of this group is given in Example 4.12). It follows that
G is the direct product of any two of its cyclic subgroups of order 2; for
instance,

G = {e, a} x {e, b}.

Example 10.5. That any nonzero complex number can be uniquely pre-
sented in the trigonometric form means that

C' = R. x T

(for notations, see Examples 4.63 and 4.64).
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Example 10.6. Let G = GLn (R) be the group of matrices with positive
determinant. Also, let Gl be the group of scalar matrices AE, A > 0, and
G2 = SLn(R). Then G = G1 x G2. Indeed, G1 and G2 are normal subgroups
(and elements of G1 commute with all elements of G), G1 n G2 = {e}, and
G = G1G2 since every matrix A E G decomposes as

A = AA1 = (AE)A1

for

A = " det A, Al = A E SLn(R) = G2.

Exercise 10.7. Find all n such that

GL.n(lR) = {AE: \ E IV} x SLn(R).

We now define the external direct product of groups.

Definition 10.8. The direct product of groups G1, ... , Gk is the set of
sequences (g1, ... , gk), 9i E Gi, with the componentwise operation of multi-
plication:

(919i,...,9k9k)

Clearly, in this way we obtain a group. It is denoted G1 x . . . X Gk.

Identifying an element g E Gi with the sequence (e, . . . , g, . . . , e) E G1 x
x Gk (with g at the ith place), we embed Gi into G1 x x Gk as a

subgroup. The group G1 x x Gk is the direct sum of these subgroups in
the sense of Definition 10.1.

Conversely, if a group G decomposes into a direct product of its sub-
groups G1, ... , Gk, the map

G1 x... XG'k'G, (91,...,9k)-91...9k

is an isomorphism according to rule (10.1).

Example 10.9. The group of (nonsingular) diagonal matrices of order n is
isomorphic to the group

n

Decomposition of a group into a direct product is not as common as de-
composition into the so-called semidirect product. Before giving appropriate
definitions, let us discuss group automorphisms.

Definition 10.10. An automorphism is an isomorphism from a group onto
itself.

Example 10.11. The map x ax, a 54 0, is an automorphism of the
additive group of a field.
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Example 10.12. The map X F__* (XT )-1 is an automorphism of the group
of nonsingular matrices.

Automorphisms of a group G form a group denoted Aut G.
For every element g E G, the map a(g): x f-, gxg-', x E G, is an

automorphism:

a(g)(xy) = gxyg-' = (gxg-')(gyg-') = (a(g)x)(a(g)y).

Such an automorphism is called the inner automorphism defined by g.
The map g i -+ a(g) is a homomorphism from the group G to the group

AutG:
a(gh)x = ghx(gh)-' = g(hxh-')g-' = a(g)a(h)x.

Its kernel is the center Z of the group G:

Z= {zEG:zg=gzdgEG},
and its image is a subgroup of Aut G called the group of inner automorphisms
of C. It is denoted Inn G. By the homomorphism theorem,

Inn G - G/Z.

Example 10.13. It is easy to prove that the center of the group Sn is trivial
whenever n > 3. Hence,

Inn Sn - Sn.

Example 10.14. The center of the group GL,,(K) (where K is a field)
consists of scalar matrices. It is isomorphic to the group K'. The quotient
group GLn(K)/{AE: A E K'} is just the projective group PGLn(K) (the
group of projective transformations of the (n - 1)-dimensional projective
space PK" associated with the vector space Kn). Thus,

InnGLn(K) - PGL,(K).

Consider 1p E Aut G and g E G. A direct computation shows that

,pa(g)w-' = a(cp(g))

Therefore, Inn G is a normal subgroup of the group Aut G.

Of course, only nonabelian groups have nontrivial inner automorphisms.

Example 10.15. Here we will describe the group Aut Ss. Since a group
isomorphism preserves the order of an element, an automorphism P of S3
maps transpositions to transpositions. Moreover, since S3 is generated by
transpositions, an automorphism V is uniquely determined by the way it
permutes transpositions. There are three transpositions in Ss, hence

I AutSsI < IS31=5.
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As we have seen before, the group Inn S3 contains exactly six elements.
Therefore,

AutS3=InnS3.

Example 10.16. Here we will describe the group Aut Zn. Let cP E Aut Zn
and V([1]) = [k]. Then

w([1111) = [k][k) = [kl] = [k][1),
I i

where multiplication in the last equality is understood in the sense of the
ring Z,,. Thus every automorphism of the group Zn is of the form

CPa : x I-+ ax

for some a E Z. Conversely, for any a E Zn, the map W. is a homomorphism
of the group Zn into itself and

cPac°b = Wab-

Therefore, the homomorphism Wa is invertible, i.e., is an automorphism, if
and only if the element a is invertible in the ring Zn. Thus,

Aut Zn ^_- Zn,

where Z;, is the group of invertible elements of the ring Z,,.

Using the terminology of automorphisms, we can reformulate the defini-
tion of a normal subgroup as follows: a subgroup is normal if it is invariant
with respect to all inner automorphisms of the group G.

Let N be a normal subgroup of a group G and H, any subgroup of G.
Then

NH:={nh:nEN, hEH}
is a subgroup as the following equalities demonstrate:

10.2
(n1hl)(n2h2) = nl(hln2hr')hlh2,

(nh)-1 = (h-'n 1h)h-1

Moreover, NH = HN.

Definition 10.17. A group G decomposes as a semidirect product of sub-
groups N and H if

(i) N is a normal subgroup;

(ii) Nil H = {e};

(iii) NH = G.

The notation is G= N x H (or G= H )4 N).
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Properties (ii) and (iii) are equivalent to every element of G having a
unique decomposition nh with n E N, h E H. In particular, if G is a finite
group,

IGI = INIIHI.

Example 10.18. Sn = An x ((12)).

Example 10.19. S4 = V4 x S3, where V4 is the Klein 4-group (see Exam-
ple 4.110) and S3 is embedded into S4 as the subgroup that fixes 4. Indeed,
it is easy to see that for any k E {1,2,3, 4}, there exists a unique permu-
tation in V4 that moves 4 into k. It follows that every permutation o E S4
decomposes uniquely as o = rp, where T E V4, p E S3.

Example 10.20. GLn(K) = SLn(K) x {diag(A,1, ... ,1) : A E K*}.

Example 10.21. The group GA(S) of of ine transformations of an affine
space S is the semidirect product of its (normal) subgroup Tran S of parallel
translations and the group GL(V) of linear transformations of the associated
vector space V that embeds into GA(S) as a subgroup fixing one point.

Example 10.22. The group Isom S of motions of a Euclidean affine space
S is the semidirect product of the group of parallel translations and the
group O(V) of orthogonal transformations of the associated Euclidean vector
space.

If G = N x H, then GIN c H. However, one should not assume that for
every normal subgroup N, it is possible to find a subgroup H (isomorphic
to GIN) such that G = N x H. For instance, for the (normal) subgroup 2Z
in the group Z, there exists no such complementary subgroup.

Let G = N x H. For any h E H, denote by a(h) the restriction of the
inner automorphism a(h) of G to N. It is obvious that a(h) E Aut N and
that the map h H a(h) is a homomorphism from H into the group Aut N.
The first of the formulas (10.2) can be rewritten as

(10.3) (nihi)(n2h2) = (nia(hi)n2)(hih2)

Now assume that for some groups N and H, there exists a homomor-
phism

a: H - Aut N.
Define a multiplication on the Cartesian product N x H as follows:

(10.4) (ni,hi)(n2,h2) = (nxa(hi)n2,hih2)
This formula is suggested by formula (10.3). A direct check shows that
operation (10.4) satisfies the axioms of a group operation. The resulting
group G is called the (external) semidirect product of the groups N and H
defined by the homomorphism a. It is denoted N x H or simply N x H. If
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we identify the group N with the subgroup of G consisting of pairs of the
form (n, e) and the group H, with the subgroup consisting of pairs of the
form (e, h), then G becomes the semidirect product of these subgroups in
the sense of Definition 10.17.

Conversely, if a group G splits into a semidirect product of its subgroups
N and H and a : H --+ Aut N is the homomorphism defined as above, then
the map

NxH -iG, (n,h)inh
is a group isomorphism.

The direct product is a particular case of the semidirect one: it occurs
when a is the trivial homomorphism.

Below, we will denote the cyclic group of order n with a generator a by
(a)n.

Example 10.23. Here we will describe the groups that are semidirect prod-
ucts of cyclic groups (a)n and (b)n, of orders n and m, respectively.

A homomorphism

a: (b),n -* Aut(a)n Zri

is determined by the image of b, which acts by raising all elements of (a)n to
the power k (see Example 10.16). The number k (defined modulo n) must
satisfy the following condition:

k'n 1 (mod n).

In particular, if the number I 4I = cp(n) is relatively prime to m, then k = 1,
which gives us direct product. So, for instance, any semidirect product of
groups (a)7 and (b)5 is the direct product. Let us denote the semidirect

product of the groups (an and (b),,, corresponding to k by (a)n x (b)m- It
is defined by the following relation:

bab-1 = ak.

For example, (a),, oc (b)2 is the dihedral group Dn. Some of the semidirect
products obtained in this way may turn out to be isomorphic. Namely,
for (r, m) = 1, we can replace the element b with an element b'' that also
generates the group (b); then k is replaced with k''. This shows that k itself
is not so essential as the cyclic subgroup generated in Z by the element
[k]. For instance, there exist only two nonisomorphic groups that split into
a semidirect product of the groups (a)11 and (b)5 (one of them is the direct
product of these groups).
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10.2. Commutator Subgroup

Let G be a group. A commutator of two elements x, y E G is an element

(x,y) =xyx-lb 1

Its obvious properties are:

(1) (x, y) = e xy = yx;

(v) (x, y) = (y, X)-

A subgroup generated by all commutators in the group G is called the
commutator subgroup of G and is denoted (G, G) or G'. By property (ii),
all elements of the commutator subgroup can be presented as products of
commutators. The commutator subgroup is trivial if and only if G is abelian.

Clearly, if W: G - H is a group homomorphism, cp(G') C H'. Moreover,
if W(G) = H, then W(G) = H'. In particular, the commutator subgroup is
invariant with respect to all inner automorphisms of the group, i.e., it is a
normal subgroup.

Theorem 10.24. The commutator subgroup G' of a group G is the smallest
normal subgroup such that the resulting quotient group is abelian.

Proof. (i) Denote GIG' by A and let rr : G --+ A be the canonical homo-
morphism. Then A' = rr(G') = {e}, hence A is abelian.

(ii) Let N C G be a normal subgroup such that the quotient group
GIN = A is abelian. Let rr : G - A be the canonical homomorphism. Then
rr(G') = A' = {e}, hence G' C N.

To discuss further examples, we need the following propositions (which
are also of independent interest).

Proposition 10.25. The group An is generated by 3-cycles and, for n > 5,
also by products of pairs of disjoint transpositions.

Proof. Since S is generated by transpositions, An is generated by the
products of pairs of transpositions. Both statements of the proposition follow
from the relations

(ij)(jk) _ (ijk),
(ij)(kl) _ (ijk)(jkl),

(ij)(jk) = f(ij)(lm)][(7k)(lm)]
(here i, j, k,... are pairwise distinct).

Proposition 10.26. The group SLn(K) is generated by elementary matrices
of the first type, i.e., by the matrices E + cEij (i 0 j).
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Proof. We will use a slightly modified version of Gaussian elimination and
show that it is possible to reduce any A E SLn(K) to the identity matrix by
applying only elementary transformations of the first type. As in the proof
of Theorem 4.59, this will imply the proposition.

Let A = (aj) E SLn(K), n > 1. First, by applying only elementary
transformations of the first type, we will transform A so that all = 1.
If ail iA 0 for some i > 1, this can be achieved at once by adding the
appropriately multiplied ith row to the first row. If ail = 0 for all i > 1,
then all 0 0. Here we add the first row to the second and proceed as in the
previous case.

When all = 1, we multiply the first row by appropriate coefficients and
subtract it from all other rows, obtaining ail = 0 for all i > 1. After this, we
apply the same procedure to the matrix of order n - 1 obtained from A by
deleting the first row and column. We continue as above, and finally arrive
at a triangular matrix with all diagonal entries, except possibly the last
one, equal to 1. However, the determinant of A is 1 by definition, and the
above transformations do not change its value. Therefore, the last diagonal
element of this triangular matrix is 1 as well.

Finally, we reduce this unitriangular matrix to the identity matrix via
the standard reversed Gaussian elimination. O

Example 10.27. We will show here that S,, = An. Since the group Sn/An
is abelian, S,, C An. As S3 is not abelian and IA31 = 3, S3 = A3. Therefore,
for any n, S;, contains all 3-cycles, hence coincides with A.

Example 10.28. Here we will show that A'4 = V4 and A',, = An for n > 5.
Since the group A4/V4 is abelian, A4 C V4. However, A4 itself is not abelian,
so A4 = V4. Therefore, for any n, A;, contains all products of pairs of disjoint
transpositions, thus, it coincides with An for n > 5.

Example 10.29. We will show that SLn(K)' = GLn(K)' = SLn(K) when-
ever the field K contains more than 3 elements. (In fact, this is also true
when IKI < 3 but only if n > 3.) Since the group GLn(K)/SLn(K) K' is
abelian, GLn(K)' C SLn(K). A direct computation shows that

0
((0 a1)' (0

1c

)) - (0
1

1)c)

Therefore, if K contains an element A # 0, ±1, the group SLn(K)' contains
all elementary matrices of the first type, hence, coincides with SLn(K).

k
Exercise 10.30. Find the commutator subgroup of (a)n a (b),n (cf. Exam-
ple 10.23).
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Define higher order commutator subgroups G(k) of a group G as follows:

Gill = G', G(k+i) = (Gild)'
.

Definition 10.31. A group G is solvable if there exists a natural number
m such that G(m) = {e}.

Clearly, any subgroup and any quotient group of a solvable group is
solvable. Conversely, if a normal subgroup N of G and the quotient group
GIN are solvable, then G itself is solvable (prove this).

Example 10.32. It follows from Examples 10.27 and 10.28 that S,, is solv-
able for n < 4 and is not solvable for n > 5.

Example 10.33. We will prove here that the group B,,(K) of (nonsingular)
triangular matrices is solvable. The proof is by induction on n.

The group B1(K) ^ K` is abelian. By deleting the last row and the last
column from every triangular matrix of order n, we obtain a homomorphism

f : Bn(K) -+ Bn-l (K)
By the induction hypothesis the group

B,,-I(K) ^-' B,,(K)/Ker f

is solvable. The group Ker f consists of matrices of the type

(10.5)

1 cl

0

0 1 Cn-1
0... 0 cn

By assigning to each matrix like this the number cn, we obtain a homomor-
phism Ker f -+ K' whose kernel consists of matrices of type (10.5) with
c,+ = 1. It is easy to see that this kernel is abelian. Therefore, the group
Ker f is solvable, and so is Bn(K).

10.3. Group Actions

Recall that we denote the group of all bijective transformations of the set
X (into itself) by S(X). In particular, S(11,..., n}) = Sn is the symmetric
or the permutation group.

Every subgroup of the group S(X) is called a transformation group of
the set X. We have already encountered many transformation groups in the
course of this book.

The notion of a group action is closely related to that of a transformation
group but it provides us with a more flexible language.
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Definition 10.34. An action of a group G on a set X is a homomorphism

a: G S(X).

In other words, to define an action of G on X means to indicate a
transformation a(g) E S(X) for each g E G so that

(10.6) a(gh) = a(g)a(h).

Properties of a homomorphism imply that the identity of G acts as the
identity transformation id and that the inverse element acts as the inverse
transformation.

The image of a "point" x E X under a transformation a(g) is denoted
a(g)x or simply gx if it is clear what the action is. In this notation, prop-
erty (10.6) becomes a kind of associativity:

(gh)x = g(hx).

When an action a of a group G on X is given, we write G7 X or simply
G: X.

Every transformation group G C S(X) acts on X "tautologically" via
the trivial homomorphism G -- S(X).

Conversely, for any action G ' X, the subgroup Im a C S(X) is a
transformation group of X. By the homomorphism theorem,

Im a ^- G/ Ker a.

The normal subgroup Ker a C G is called the ineffectiveness kernel of the
action a. If Ker a = {e}, then the action a is called effective.

A particular case of an action is a linear representation, which is a ho-
momorphism of G to the group GL(V) of (invertible) linear transformations
of a vector space V.

Every action G °: X naturally generates a number of other actions: on
an invariant subset of X, on the set of all (or just some) subsets of X, on
a quotient set of X by an invariant equivalence relation, etc. We notice, in
particular, the linear representation a, induced by a on the space of all (or
just some) K-valued functions on X, which is defined as

(10.7) f(a(g)''x).
Usually we omit the symbol a; the formula thus becomes

(10.8) (gf)(x) = f(g-lx)-

Every action G : X restricted to a subgroup H C G defines an action
H:X.

For any group G we define three important actions of G on itself:
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(i) the action I by left shifts:

I(g)x = gx;

(ii) the action r by right shifts:

r(g)x = xg-1;

(iii) the action a by conjugations (inner automorphisms):

a(g)x = gxg-1

The action l (as well as r) is effective, thus G Im I C S(G). In particu-
lar, this implies Cayley's theorem: every finite group of order n is isomorphic
to a subgroup of S. As we saw in Section 10.1, the ineffectiveness kernel of
the action a is the center Z of G.

An action G : X defines an equivalence relation G on X as follows:

X C y if there exists g E G such that y= gx

(check the axioms of an equivalence relation!). The equivalence classes here
are called orbits. Thus, the orbit that contains a point x (called the orbit
of x) is the subset

Gx={gx:9EG}CX.
If all elements of X are equivalent, i.e., if there is only one orbit, the action
is called transitive.

Example 10.35. An orbit of the group of planar rotations about a point o
is either a circle with the center at o or o itself.

Example 10.36. The group of all planar motions and even its subgroup of
parallel translations act transitively.

Example 10.37. The Klein 4-group V4 acts on the set (1,2,3, 4} transi-
tively.

Example 10.38. Restrict the action I (respectively, r) of G on itself to a
subgroup H C G. The orbits of this action are the right (respectively, left)
cosets of H in G.

Elements of G that are equivalent under the action a of G on itself are
called conjugate and the orbits of this action are called conjugacy classes.

If a group G is defined as a transformation group of a set X, the descrip-
tion of its conjugacy classes can be obtained with the help of the following
simple observation: if an element g E G maps a point x to a point y, then
hgh-1 maps hx to hy.
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Example 10.39. Assume that a permutation a E S is a product of disjoint
cycles:

O = (ili2 ... ip)(jlj2 ... j9) ...
Then for any permutation T E S, we have

TOT_' = (7-(il)7-(i2) ... T(ip))(TUl)T(j2) .. TUq)) ...

This implies that two permutations are conjugate if and only if the sets of
lengths of disjoint cycles in their decompositions coincide. Therefore, the
number of conjugacy classes in the group S equals the number of (un-
ordered) partitions of n into a sum of natural numbers.

by

hx

Figure 10.1

X

y

0

Figure 10.2

Example 10.40. The group Isom+ E2 of proper motions of the Euclidean
plane consists of parallel translations and rotations (Section 7.3). By the
above-stated principle, the motion which is conjugate by a motion h to the
parallel translation along a vector a is the parallel translation along dh(a)
(see Figure 10.1). (We already proved this in Section 4.2.) Similarly, the
motion which is conjugate by h to the rotation about a point o through a is
the rotation about ho through a (see Figure 10.2). Therefore, the conjugacy
classes of the group Isom+ E2 are of two types:
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(i) the set of parallel translations along vectors of a given length r > 0;
(ii) the set of rotations through a given angle a E (0, 27r).

Exercise 10.41. Describe conjugacy classes of the group of rotations of a
cube.

Consider actions a and $ of the same group G on sets X and Y, re-
spectively. The map f : X - Y is called equivariant or, more precisely,
G-equivariant if for any g E G, the diagram

XfY
-(9)1 1.0(9)

X Y
f

is commutative. An equivariant bijection is called an action isomorphism.
(A diagram of sets and maps is called commutative if the composition of
maps along any path with the same beginning and end results in the same
map.)

The subgroup
Gx={gEG:gx=x}

is called the stabilizer of a point x.
For a subgroup H c G, define an action of G on the set G/H of left

cosets as follows:
g(uH) = (gu)H.

The following theorem shows that the action of a group G on an orbit
Gx is determined by the stabilizer of x up to an isomorphism. This theorem
generalizes Theorem 4.76 (and makes it more precise).

Theorem 10.42. The map

f:Gx-*G/G.,, y- Gx={gEG:gx=y}
is an action isomorphism.

Proof. (i) When y = gx, the set Gz coincides with the coset gG2. Indeed,

91x=y b 9-19ix=x 9-191EGx 91E9G,.

(ii) It is clear from the definition that the map f is bijective.
(iii) The map f is equivariant. Indeed, let y = ux for u E G. Then for

any9EG,

f (9y) = f ((9u)x) = (9u)Gz = 9(uG.) = 9f (y).
0



10.3. Group Actions 399

Corollary 10.43. Every transitive group action of G is isomorphic to its
action on the set of left cosets of a subgroup of G.

Corollary 10.44. If G is finite,

(10.9) IGxI = IGI

IGxI

(Here IGxI denotes the number of elements in the orbit Gx.)

It is easy to see that

(10.10) G9. = gGxg-1

Since we can choose any point on the given orbit as the point x in the
statement of Theorem 10.42, the actions of G on G/H and G/gHg-1 are
isomorphic for any H C G and g E G.

The ineffectiveness kernel of the action G : G/H is the intersection
of stabilizers of all points, i.e., n9EC gHg-1. This is the largest normal
subgroup of G that is contained in H. In particular, H is normal if and only
if it acts trivially on G/H.

Example 10.46. Consider a cube K C E3. The isomorphism S4 =i
Sym+ K (see Example 4.116) defines an action S4 : E3. This action, in
turn, induces actions of the group S4 on the set of vertices of the cube, on
the set of its diagonals, etc. In the table below, we list several transitive
actions S4 : X obtained in such a way. For each, we describe the stabilizer
H of an element of X. In every case IXIIHI = IS4I = 24, as follows from
Corollary 10.44.

Elements of X IXI IHI H
cube edges 12 2 ((12))

diagonals of cube faces 12 2 ((12)(34))
cube vertices 8 3 ((123))

cube faces 6 4 ((1234))
pairs of opposite edges 6 4 ((12), (34))

pairs of opposite vertices
(or diagonals)

4 6 S3

pairs of opposite faces 3 8 (V4, (1234))

Example 10.46. We will prove here that if IGI = n < oo and p is the
least prime divisor of n, then every subgroup H C G of index p is normal.
Indeed, consider the action H : G/H. The number of elements in every
orbit of this action divides IHI, thus it is either 1 or greater than or equal
to p. Since IG/HI = p and there exists at least one fixed point (the coset
eH), we conclude that the action is trivial.
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Exercise 10.47. Consider an action of a finite group G on a finite set X.
Denote the set of orbits of this action by X/G. For every element g E G,
denote the set of points fixed by g in X by X. Prove Burnside's Formula

IX/GI = 1 IX9I.
I GI

gEG

(Hint: compute in two ways the number of elements in the set F = { (g, x) E
GxX:gx=x}.)
Exercise 10.48. Using Burnside's formula and the result of Exercise 10.41,
determine the number of different ways to color the faces of a cube in three
colors. (Two colorings are considered different if one cannot be obtained
from the other by rotating the cube.)

For the action of G on itself by conjugations, the stabilizer of a point x
is the subgroup

Z(x)={gEG:gx=xg}
called the centralizer of x. Denote by C(x) the conjugacy class of x (it is
an orbit of this action). For a finite group H, formula (10.9) implies

(10.11) IC(x)I =
lIZ (x)I

The action of G on itself by conjugations induces an action of G on
the set of its subgroups. Subgroups that are equivalent with respect to this
action are called conjugate. (For instance, the stabilizers of equivalent points
under any action of G are conjugate subgroups according to (10.10).) For
this action, the stabilizer of a subgroup H C G is the subgroup

N(H) = {g E G: gHg-1 = H}

called the normalizes of H. When the group G is finite, formula (10.9) shows
that the number of subgroups that are conjugate to H equals [G : N(H)]
(the index of N(H)). Notice that N(H) D H, thus in the case of a finite G,
[G: N(H)J divides [G : H].

10.4. Sylow Theorems

Let p be a prime number. Recall that a finite group G is called a p-group if
IGI = p".

Theorem 10.49. A nontrivial p-group has a nontrivial center.

Proof. Let G be a nontrivial p-group with center Z. The set G \ Z splits
into nontrivial conjugacy classes; also by (10.11), the number of elements in
each of these classes is divisible by p. Therefore, the number of elements in
the center is also divisible by p. 0
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Corollary 10.50. Every p-group is solvable.

Proof. Let G be a nontrivial p-group with center Z. While proving the
claim by induction on n = log,, JGI, we can assume that the group G/Z is
solvable. Since the group Z is solvable (and even abelian), we conclude that
G is solvable too.

Corollary 10.51. Every group of order p2 is abelian.

Proof. Let G be a group of order p2 with center Z. Assume that Z # G.
Then IZI = p and IG/ZI = p, so that G/Z is cyclic. Let aZ be its generator.
Then every element g E G has the form g = a'z, z E Z. But every two
elements of this form commute, and this contradicts our assumption.

Now let IGI = p"m, where (p, m) = 1.

Definition 10.52. A Sylow p-subgroup of the group G is a subgroup of G
of order p".

Theorem 10.53. Sylow p-subgroups exist.

Proof. If G is abelian, then its (only) Sylow p-subgroup is the p-torsion
subgroup (see Section 9.1).

In the general case, we will prove this theorem by induction on JGJ.
If IGI = 1, there is nothing to prove. Let IGI > 1. Consider the decom-

position of G into conjugacy classes. Two cases are possible.
Case 1. There exists a nontrivial class C(x) with the number of elements

not divisible by p. Then p" divides I Z(x) I and by the induction hypothesis,
there exists a subgroup of Z(x) of order p". It is a Sylow p-subgroup of G.

Case 2. No such class exists. Then, as in the proof of Theorem 10.49,
we obtain that IZI is divisible by p. Let IZ) = p"°mo, where (p,mo) = 1,
and let Z1 C Z be the subgroup of order p"°. The order of the group G/Zl
is p"-"0m, thus by the induction hypothesis, it contains a subgroup of order
p"-"O. Its full preimage under the canonical homomorphism G -* G/Z1 is
a Sylow p-subgroup of G.

Theorem 10.54. Any p-subgroup of the group G is contained in some Sylow
p-subgroup. All Sylow p-subgroups are conjugate.

Proof. Let S C G be a Sylow p-subgroup and S1 any p-subgroup. Consider
the action of S, on G/S. Since the number of elements in any nontrivial
orbit of Sl is divisible by p and the number of elements of the set G/S is
not divisible by p, S1 has at least one fixed point in G/S. If gS is such a
point, then S1 c gSg-1. This proves the first statement of the theorem.
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Moreover, if Si is a Sylow p-subgroup, by comparing the orders, we see that
Si = gSg 1.

Exercise 10.55. By a similar argument, prove that in a group of order
p", every subgroup H of order pk, k < n, has at least one fixed point in
G/H that is different from eH. Conclude that N(H) 34 H and that H is
contained in a subgroup of order pk+i

Theorem 10.56. The number of Sylow p-subgroups is congruent to 1 mod-
ulo p.

Proof. Let S be a Sylow p-subgroup and C(S), a class of subgroups conju-
gate to S. By Theorem 10.54, this is the set of all Sylow p-subgroups. When
G acts on C(S) by conjugations, the stabilizer of any subgroup S' E C(S)
is its normalizer N(S'). Restrict this action to S. Then C(S) splits into
nontrivial S-orbits (the number of elements in each is divisible by p) and
fixed points. We prove that the only fixed point is the subgroup S itself.
This will imply that

IC(S)l - 1 (modp).
Let S' E C(S) be a fixed point. This means that S C N(S'). Then S and S'
are Sylow p-subgroups of N(S'), hence they are conjugate in this subgroup.
Therefore, S = S.

Theorem 10.56 together with the fact that the number of Sylow p-
subgroups divides the index of (any) Sylow p-subgroup, sometimes allows
us to conclude that the Sylow p-subgroup is unique, and hence normal.

Example 10.57. We will prove here that every group G of order pq, where p
and q are distinct prime numbers, is a semidirect product of cyclic subgroups
of order p and q (see Example 10.23). Indeed, let p > q. Then it follows from
Example 10.46 that the Sylow p-subgroup Gp is normal. If Gq is a Sylow
q-subgroup, then Gp fl G. = {e}. Hence, IGpGqJ = pq = JGJ. Therefore,

G = Gp x Gq.

Example 10.58. We will prove here that every group G of order 45 is
abelian. Indeed, let Np, p = 3, 5, be the number of its Sylow p-subgroups.
Then

{N3 1 (mod3), N315} . N3 = 1,

{N5 1 (mod5), N519} : N5 = 1.
Thus Sylow subgroups G3 and G5 are normal and

G=G3xG5.
But the group G3 has order 9, hence is abelian by Corollary 10.51. Therefore,
G is abelian.
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Exercise 10.59. Prove that all groups of order < 60 are solvable. (Hint:
prove that if IGI = n < 60, then for some prime p, pin, the number N of
Sylow p-subgroups of G does not exceed 4. If N > 1, consider the action of
G by conjugation on the set of Sylow p-subgroups and obtain a nontrivial
homomorphism G SN.)

10.5. Simple Groups

Definition 10.60. A nontrivial group G is simple if it does not contain
nontrivial normal subgroups (i.e., those different from {e} and G).

A solvable simple group G is a cyclic group of prime order. Indeed, since
G' :h G, we must have C' = {e}, i.e., G is abelian. But all subgroups of an
abelian group are normal. Hence, G is cyclic; moreover, its order is a prime.

Thus, there are two kinds of simple groups:

(i) abelian, which are only cyclic groups of prime order;

(ii) nonabelian (hence unsolvable).

An example of a nonabelian simple group is the group A5 (for the proof
of its simplicity, see below).

The following discussion explains the value of simple groups. Let us take
a chain of subgroups:

(10.12) G=Go DG1 D... DGm_1 DGm={e},

where Gi+1 < Gi, i = 0,1,-, rn - 1. If the quotient group

Fi = Gi/Gi+l

contains a nontrivial normal subgroup N, then we can insert another group
between Gi and Gi+l, namely the full preimage of N under the canonical
homomorphism Gi -+ F1. Thus if G is finite, it is possible to construct a
chain (10.12) where all quotient groups (factors) are simple. In either case,
such a chain, if it exists, is called a composition series of G.

One can quite easily prove the Jordan-Holder theorem: if a group G has
a composition series, then the collection of its factors is determined uniquely
up to a permutation. Therefore, to every group that has a composition series
(e.g., a finite group), we can canonically associate a collection of simple
groups. This is why the classification of simple groups is fundamental to
understanding of the structure of all groups.

Exercise 10.61. Prove that a finite group is solvable if and only if all factors
of its composition series are abelian.
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The classification of nonabelian simple finite groups is tremendously dif-
ficult. It was obtained after a 30-year long effort by several hundred mathe-
maticians worldwide and was completed by 1981.1 We restrict ourselves to
considering several examples only.

Proposition 10.62. The group An is simple for n > 5.

Lemma 10.63. If the cycle decomposition of a permutation a E An con-
tains a cycle of even length or two cycles of the same odd length, then the
conjugacy class of or in An coincides with its conjugacy class in Sn.

(Here any fixed element of { 1, ... , n} is regarded as a cycle of length 1.)

Proof. In either case, the centralizer of a in S. contains an odd permutation
TO. Indeed, if the decomposition of a contains a cycle of even length, then
we can take it as To, and if the decomposition contains cycles (i1i2 iq),
(.9132... jq) of equal odd length q, then we can take To = (i1j1) (i2j2) ... (igjq),
Now let T be any odd permutation. Then

Tar-1 = ('rTO)a(TTO)-1,

where TTO is already even. 0

In particular, all products of pairs of disjoint transpositions and, for
n > 5, all triple cycles are conjugate not only in Sn but also in An.

Proof of Proposition 10.62. Let N C An be a normal subgroup contain-
ing a permutation a e. By taking an appropriate power of a, we can
assume that is has a prime order p. Then a is a product of a number of
disjoint cycles of length p.

Consider separately the following three possibilities:

(i)Letp>5. Write a as
a = (ili2i3i4 ... ip)T,

where r is the product of remaining cycles (if there are none, put r = e),
and conjugate it by the triple cycle (ili2i3). We have

a' = (i1i2i3)a(i,i2i3)-1 = (i2i3i1i4 ... ip)T E N

(cf. Example 10.39). Hence, a'a-1 = (ili2i4) E N. Since all triple cycles are
conjugate in An and all of them together generate An (see Proposition 10.25),
we have N=An.

'The proof of this classification is distributed among many papers (total size about 10,000
pages) by different authors. Nobody can claim that he/she checked the entire proof. For this
reason, some experts doubt that the proof is correct and complete.
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(ii) Let p = 3. If a is just a triple cycle, then, as above, we have N = A.
Otherwise, write a as

a = (i1i2i3)(j1i2h)T,

where r is the product of remaining cycles, and conjugate it by (i1j1)(i2j2).
We have

a' = (ilij)(jJ2i3)T E N,
o'a-1 = (ixi1)(i3j3) E N.

Since all products of pairs of disjoint transpositions are conjugate in An and
all of them together generate A,, (see Proposition 10.25), here we also have
N=A,a.

(iii) Finally, let p = 2. Then the permutation a is a product of an even
number of disjoint transpositions. Write it as

a = (i1i2)(i3i4)7-,

where T is the product of remaining transpositions, and conjugate it by
(i1i2i3). We obtain

a' = (i2i3)(ili4)r E N,

a' a-1 = (i1i3)(i2i4) E N,

which implies, as above, that N = A,,. 0

In particular, the group A5 is a simple group of order 60. By Exer-
cise 10.59, this is the least order that a nonabelian simple group might have.
Observe that the above proof simplifies significantly for the case n = 5 as it
comes down to considering the case where o is a cycle of length 5 (modulo
Lemma 10.63).

Exercise 10.64. Prove that the only nontrivial normal subgroup of A4 is
the Klein group V4.

Exercise 10.65. Prove that every simple group G of order 60 is isomorphic
to A5. (Hint: by considering the action of G on the set of its Sylow 5-
subgroups, obtain an inclusion G C A6; then consider the action of G on
A6/G)-

To present another example of a series of simple groups, we state (with-
out proof) the following fact: for n > 2, the group

PSLn(K) = SLn(K)/{AE: A E K`, An = 1)

is simple except when n = 2 and K is a finite field of two or three elements.
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Exercise 10.66. Determine the order of the group PSL2(Fq), where F. is
the finite field of q elements. Prove that

PSL2(F2) .,, S3, PSL2(F3) '=' A4, PSL2(F4) = PSL2(F5) ' A5.

(Hint: consider the natural action of the group G = PSL2(Fq) on the pro-
jective plane PFQ over the field Fq; for q = 5 argue as in Exercise 10.65.)

The group PSL2(F7) is a simple group of order 168. Orderwise, this is
the next nonabelian simple group after A5. The group PSL2(F9) is actually
isomorphic to As.

Exercise 10.67. Prove that the group PSL2(C) is simple.

Figure 10.3

To demonstrate how geometric considerations can be applied to the
proofs of simplicity of (infinite) groups, we show here that the group SO3 is
simple.

Every element of the group SO3 is a rotation through an angle a about
some axis. The conjugation by an element g E SO3 of the rotation through
a about an axis l results in the rotation through a about the axis gl (Ex-
ample 10.40). Thus every normal subgroup of the group SO3 that contains
a rotation through a about some axis should contain a rotation through a
about any axis.

Let m and m' be two lines; denote the angle between them by -y. It
is easy to see (see Example 6.41) that the product of rotations through it
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about m and m' is the rotation through 2ry about the axis perpendicular to
the plane spanned by m and m'.

Assume now that N C SO3 is a normal subgroup that contains a rotation
through an angle a e (0, 2a) about an axis 1. Let g be a rotation through 7r
about an axis m such that it forms an angle 0 E [0,

2
] with 1. Then

h = 9(s9s-1) =
(gsg-1)s-1

E N.

Since sgs-1 is the rotation through 1r about the axis sm, by the above
remark, h is a rotation through 2ry, where -y is the angle between m and sm
(see Figure 10.3). The angle 'y equals 0 when 0 = 0, and equals a when 0 =

. Continuity implies that it attains all values between 0 and a. Therefore,
N contains rotations through all angles between 0 and 2a. By taking powers
of these rotations, we can obtain rotations through all angles. This shows
that N = S03-

It can be shown as well that the group SO is simple for any n > 3, except
for n = 4. Nonsimplicity of the group SO4 is a surprising fact discussed in
Section 12.4.

10.6. Galois Extensions

Extensions of a field K obtained by adjoining roots of irreducible polyno-
mials can turn out to be isomorphic. More generally, one of them can be
isomorphic to a subfield of another, and it is not easy to figure out when this
happens. The subject of this section, Galois theory, studies exactly homo-
morphisms (and, in particular, automorphisms) of algebraic field extensions.

We explained in Section 4.2 what role played by groups in geometry and
physics. However, the theory of groups originated in Galois theory, where
groups appear in a fundamentally different way. Ideas of Galois theory
emerge in other mathematical fields. For instance, in topology the analogue
of Galois theory is the theory of coverings (in particular, the analogue of the
Galois group of a field is the fundamental group of a topological space) and
in the theory of functions of a complex variable, such analogue is the theory
of holomorphic maps of Riemann surfaces.

Let L be a field extension of K of finite degree n. The automorphisms
of the field L over K form a group which we denote as AutK L.

Proposition 10.68. 1 AUtK Ll < n.

Proof. The field L can be obtained from K by taking successive simple
extensions

K=
K, is obtained from adjoining a root a; of an irreducible poly-

nomial fi E K;_1 (x]. By Lemma 9.115, any homomorphism Wi-1: Ki-1 '-+ L
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extends to a homomorphism cp{ : Ki -- L in at most ni ways, where

ni = deg fi = dimK;_, Ki.

Therefore, the identity automorphism of the field K extends to an automor-
phism of the field L in at most nln2 ... n8 = n ways. O

Let G C AUtK L be a (finite) subgroup of the group of automorphisms
of the field L over K. Denote by LG the subfield of G-invariant elements
of L.

Theorem 10.69. LO = K if and only if IGI = n. Moreover, if LG = K,
then for any two fields P, Q such that K C P C Q C L, there exist exactly
dime Q extensions 0: Q -. L of any homomorphism cp : P L over K.

Proof. (i) By definition, G C AutLG L. Therefore,

IGI < dimLo L < dimK L = n.

If IGI = n, then dimLc L = dimK L, hence LG = K.
(ii) Conversely, let LG = K. For any element a E L, let { al , ... ,am}

be its G-orbit. Then
M

(10.13) f = [J(x - ai) E LG[x] = K[x]
i-i

is the minimal polynomial of a over K. By construction, it splits into
different linear factors over L[x].

Let us prove now the second statement of the theorem. Since every
finite extension can be obtained by taking successive simple extensions, it
suffices to consider the case when Q = P(a) is a simple extension of P.
Let h be the minimal polynomial of a over P. Then in the ring P[xj,
h divides the minimal polynomial f of a over K. Thus, h" divides f in
the ring W(P)[x], hence it splits into different linear factors in L[x]. By
Lemma 9.115, the homomorphism W extends to a homomorphism P : Q -. L
in exactly deg h = dimp Q ways.

Applying the above discussion to the case of P = K, Q = L, we obtain
I AutK LI = n.

It remains to show that G = AUtK L. Let ip E AUtK L. Then for any
a E L, the element cp(a), as well as a, is a root of the polynomial (10.13), i.e.,
there exists an element g E G (it might depend on a) such that W(a) = go.

If the field L is finite, then we can take for a a generator of the group
V. Then, of course, W = g E G. If L is infinite (and, then, so is K), for any
g E G, we define

L9 = {a E L: V(a) = ga} C L.
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Obviously, L. is a subspace (even a subfield) over K. The above implies
that

L = U Lg.
gEG

We need to conclude from here that L = L. for some g
from the next lemma.

E G. This follows
0

Lemma 10.70. A finite-dimensional vector space K over an infinite field
cannot be covered by a finite number of proper subspaces.

Proof. Let V = Ui=1 V, where V1,. .. , V, are proper subspaces of V. For
every i, consider a nonzero linear function l; E V3 that becomes zero on V.
Consider the polynomial F = 11;_11;. By our assumption, F(v) = 0 for
each v E V. Then F is the zero polynomial, and this is clearly not true.

Definition 10.71. A finite extension L of a field K is a Calois extension if

I AUtK LI = dimK L.

In this case, the group AUtK L is called the Galois group of the extension L
and is denoted Gal L/K.

Theorem 10.69 implies that if L is a Galois extension of K and P C L
is a subfield containing K, then L is a Galois extension of P.

A polynomial f E K[x] is called separable if it does not have multiple
roots in any extension of K.

Denote by f the formal derivative of a polynomial f.

Proposition 10.72. A polynomial f E K[xj is separable if and only if
(f, f') = 1. In particular, an irreducible polynomial f is separable if and
only if f 96 0.

Proof. First of all, observe that the greatest common divisor of any two
polynomials f, g E K[xj can be found using the Euclidean algorithm, hence
it is the same over any extension of K. On the other hand, if a polynomial
f has a multiple irreducible factor h over an extension L of K, then hi f' in
L[x], thus (f, f') j4 1. In particular, this happens if f is not separable.

Conversely, if f is separable, then it splits into different linear factors
over its splitting field, and it easily follows that (f, f') = 1.

Corollary 10.73. Every irreducible polynomial over a field of zero charac-
teristic is separable.

Corollary 10.74. Every irreducible polynomial f over a field of character-
istic p %deg f is separable.
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Corollary 10.75. Every irreducible polynomial over a finite field is separa-
ble.

Proof. Let h be a nonseparable irreducible polynomial over a finite field K.
Then h' 3A 0, hence

h=ao+aixp+a2x2p+...+amxmp, ao,ai,...,a, E K.
Since Kp = K (see Section 9.5), there exist bp, bi, ... , bm E K such that
bk = ak. Thus, h has the form

h = (ba+bix+b2x2+ +bmxm)p
and is reducible, a contradiction.

An example of a nonseparable irreducible polynomial is the polynomial

xp-t=(x-O-)p
over the field Zp(t).

Theorem 10.76. Let f E K[x] be a polynomial such that all its irreducible
factors are separable. Then its splitting field is a Galois extension of K.

Proof. This actually follows from the proof of the second part of Theo-
rem 9.114 for the case L_ = L if we take into account that under our assump-
tions, all polynomials fi are separable.

Observe that if L is the splitting field of a polynomial f E K[x], then
every automorphism V of the field L over K preserves the set {al, ... , an}
of roots off and can only permute them. Since L = K(ai,... , an), the
automorphism cp is uniquely determined by the permutation that it performs
on the set of roots. Thus, the group AutK L embeds into S,,.

Example 10.77. It follows from the formula for solutions of a quadratic
equation that every quadratic extension of a field K of characteristic 0 2
is of the form K(f ), where d E K \ K2. Every such extension is a Galois
extension. Its Galois group is generated by the automorphism a + b[d
a-bf,a,bEK.
Example 10.78. The finite field F., q = p' , is a Galois extension of the
field Zp. Its Galois group is the cyclic group of order n generated by the
Frobenius automorphism.

Example 10.79. The cyclotomic field K = Q(e27n,/n) is the splitting field
of the polynomial xn - 1 over Q and is thus a Galois extension of the field
Q. Every automorphism of Kn induces an automorphism of the (cyclic)
group Cn of roots of unity of order n contained in Kn. As we know, every
automorphism of the group C. is the raising to the kth power for some k
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relatively prime to n. Thus, the group Gal Kn/Q embeds into the group Zn,
whose order is V(n) (where cp is Euler's function). In fact, this embedding is
an isomorphism. To show this, it suffices to prove that for any prime p such
that p In, there exists an automorphism of the field K that induces raising
to the pth power in C. This means that if f is the minimal polynomial of
e = e2 ../n over Q, then f (6P) = 0.

We may assume that f is a monic polynomial with integer coefficients.
Then, by Gauss's lemma, xn - 1 = fg, where g E Z[x]. It is easy to see
that the polynomial xn - 1 remains separable after the reduction modulo p.
Therefore, the polynomials [f) P and [g]P are relatively prime.

Assume now that f (&P) # 0. Then g(eP) = 0, hence

g(xP) = f(x)h(x), h E Z[x].

Reducing modulo p, we obtain

191P = [f]P[h']P'

which contradicts the fact that [f]P and [g]p are relatively prime.

Therefore, dim0 Kn = co(n).

Example 10.80. Let L be the splitting field of an irreducible cubic poly-
nomial f with the discriminant D over a field K of characteristic $ 2,3
(see Example 9.116). Then L is a Galois extension of K. If D 0 K2,
then dimK L = 6 and Gal L/K ^-- S3. If D E K2, then dimK L = 3 and
Gal L/K A3. The latter statement means that the Galois group performs
only even permutations on the set of roots of f.

Example 10.81. Let

f =xn+alxn-1 +...+an-lx+an
be a "generic" polynomial of degree n whose coefficients are regarded as
elements of the field K = k(al,... , CO of rational functions in n independent
variables over some field k. Let L be the splitting field of f over K and
Zr,. . . , z , , E L, its roots.

By Vii te's formula, ak = (-1)kok, where o,.. . , on are elementary sym-
metric polynomials in x1, ... , xn. Therefore, L = k(xl,... , xn). Since

tr. deg L = tr. deg K = n,

x1, ... xn are algebraically independent over k. In particular, they are dis-
tinct, so that f is a separable polynomial and L is a Galois extension of the
field K. Every permutation of the roots xl,... , xn defines an automorphism
of the field L acting trivially on K. Therefore, Gal L/K = Sn. We have also
proved that

sn
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10.7. Fundamental Theorem of Galois Theory

For any Galois extension L/K, Galois theory establishes a correspondence
between the subfields of L containing K and the subgroups of the group
G = Gal L/K.

Namely, to every subfield P C L containing K, there corresponds the
subgroup

Gp={gEG:glp=id}CG,
and to every subgroup H C G, there corresponds the subfield

LH={aEL: ha=aVhEH}C L.

Theorem 10.69 shows that

(10.14) IGpI = dunp L,

(10.15) dimLH L = IHI.

Theorem 10.82 (Fundamental Theorem of Galois Theory). The maps
P " Gp and H ' - LH described above, an inverse to each other and
thus establish a one-to-one correspondence between the set of subfields of L
containing K and the set of subgroups of G. Moreover, a Galois extension
of K contained in L corresponds to a normal subgroup of G and vice versa.

Proof. Obviously,
LGpjP.

Also, (10.14) and (10.15) imply that

dimLop L = I GpI = dimp L.

Therefore,
LGp=P.

Likewise, we can prove that
GLx = H.

Now, since by Theorem 10.69, every automorphism of a subfield P ex-
tends to an automorphism of L, the field P is a Galois extension of K if
and only if the transformations in G that leave it invariant induce dimK P
distinct automorphisms on it. But formula (10.14) implies that

dimKP=IG:Gpl.
Thus, P is a Galois extension if and only if every transformation in G leaves
it invariant.

Since P = LH for H = Gp,

gP = LBHa ' .
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Therefore, the subfield P is invariant under every transformation in G if and
only if the subgroup H is normal.

Example 10.83. Let f be an irreducible cubic polynomial over a field K of
characteristic 0 2 and D l K2 (see Example 9.116). Let L be the splitting
field of f . Then Gal L/K = S3. The subgroup A3 C S3 corresponds to the
quadratic extension K(v) contained in L.

Example 10.84. Let cp be the Frobenius automorphism of the finite field
Fpn, p prime. As we know, Gal F,,.. /Zp = (W),,. Any subgroup of the group
(9),, has the form where mmra. The corresponding subfield is the
field of fixed points of the automorphism cpm. It has dimension m over Zp,
i.e., it is isomorphic to Fp....

Example 10.85. Let p be an odd prime number. The Galois group G of
the cyclotomic field Kp = Q(ep) (see Examples 9.109 and 10.79) is a cyclic
group of order p-1. Let H C G be the (unique) subgroup of index 2. Then
P = Kp is a quadratic extension of Q. Let us prove that

P J Q( fp) for p = 1 (mod 4),
Q(/) for p =- -1 (mod4).

A generator of G acts on the group Cp of pth roots of unity by raising to
the rth power (here r is such that [r]p generates Z;). Consider the following
number:

P-1
a=ep-ep+Ep -...-ep°-2tP)E,

where (p) is the Legendre symbol (see Example 9.38). Clearly,

_ a for g E H,
g(a) -a for g E G \ H.

Therefore, a E P and a2 E Q.
By Examples 9.121 and 9.38, we have

a2 = 1 tr a2 = 1 (a, a)p-1 p-1
P-1 k-k

P-P 1 1(P) \

Galois theory was created in relation with the problem of solvability of
algebraic equations by radicals.
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We say that an element a of a field extension of K is radical over K if it
can be expressed in terms of elements of K using arithmetic operations and
root extraction (of any degree). In other words, this means that a belongs
to the last field in a chain of extensions

where Ki = Ki_1(ai) for ai such that an' E Kz_1i n, E N.

Proposition 10.86. If a polynomial f E K[x] is irreducible and at least
one of its roots is radical over K, then all of its roots are radical over K.

Proof. Let al and 02 be roots of K in some extensions of the field K. Then
there exists an isomorphism of the field K(al) onto the field K(a2) mapping
al to Thus, if al is radical over K, then so is a2.

An algebraic equation f (x) = 0, where f E K[x], is said to be solvable
by radicals over K if all its roots are radical over K. This is equivalent to
saying that the splitting field L of f over K is contained in a field obtained
from K by successively adjoining roots of certain elements.

The main achievement of E. Galois (1830) regarding solvability of alge-
braic equations by radicals is the following

Theorem 10.87. Let f be an. irreducible polynomial over a field K of zero
characteristic and let L be its splitting field over K. The equation f (s) = 0
is solvable by radicals over K if and only if the group Gal L/K is solvable.

The proof of this theorem is based on the fact that if P is a field con-
taining n distinct roots of unity of degree n, then its extension of the form
P(a), where c = a E P, is a Galois extension with a cyclic Galois group
whose order divides n. Below, we will provide a complete proof of a simpler
version of this theorem that speaks of solvability by quadratic radicals.

The fact that the group S,, is solvable only for n < 4 together with
Example 10.81 implies that a generic algebraic equation of degree n over an
(arbitrary) field K of zero characteristic is solvable by radicals only for n < 4.
Solvability of a generic equation of degree n. over K by radicals means that it
is possible to describe uniformly, i.e., by a general formula, the roots of any
equation of degree n in terms of its coefficients and some fixed elements of K
using arithmetic operations and root extraction. Absence of such a formula
does not mean that a particular equation cannot be solved by radicals. For
instance, every algebraic equation over C is solvable by radicals since all its
roots lie in C.

Traditionally, solvability of algebraic equations by radicals over Q at-
tracted the biggest interest. One can deduce from Theorem 10.87 that for
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any n > 5, there exists an irreducible polynomial f E Q[x] of degree n such
that the equation f (x) = 0 is not solvable by radicals.

Solvability by quadratic radicals is defined just as solvability by radicals,
except that now only extraction of square roots is allowed.

Theorem 10.88. Let f be an irreducible polynomial over a field K of char-
acteristic 0 2 and L, the splitting field off over K. The equation f (x) = 0
is solvable by quadratic radicals over K if and only if

(10.16) dimK L = 2", n E N.

Proof. (i) Assume the equation f (x) = 0 is solvable by quadratic radicals.
Then there exists a chain of quadratic extensions

K=
such that L C K,. We have

dimK LI dimK K. = 2,

implying (10.16).

(ii) Conversely, let dimK L = 2". Then the group G = Gal L/K is a
2-group, hence it is solvable. Consider its composition series

G=GoDG1 DG2D. DG,={e}.
Obviously, IGi_1J/JGiI = 2 for each i. Denote K; = LG'. We obtain the
following chain of quadratic extensions:

K=KocK1CK2c...CK3=L,
which proves that the equation f (x) = 0 is solvable by quadratic radicals.

0
Remark 10.89. Since

deg f = dimK K(a),

where a E L is a root of the polynomial f, equality (10.16) implies that
deg f is a power of 2. The converse is false.

Remark 10.90. In the second part of the proof we used that L is a Galois
extension of the field K. This is certainly true if char K = 0. If char K =
p > 2, this follows from the fact that f is separable since its degree, a power
of 2, is not divisible by p.

Solvability of equations by quadratic radicals was of interest in connec-
tion with compass and straightedge constructions.

Every problem on a compass and straightedge construction can be stated
as follows: given a length unit and intervals of lengths al, ... , ak, construct
an interval of length a. Studying possible elementary steps of constructions,
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one can prove that the above problem can be solved if and only if the number
a is a quadratic radical over the field K = Q(a1, ... , ak).

Remark 10.91. When we speak about a real number being a quadratic
radical over a field K C R, the original definition does not preclude us
from extracting square roots from negative numbers, which pushes us into
the complex region. However, to construct a complex number means to
construct its real and imaginary parts, and arithmetic operations over and
extractions of square roots from complex numbers reduce to arithmetic op-
erations over real numbers and extractions of square roots from positive
numbers. All these operations can be performed by a straightedge and com-
pass.

In particular, if a is transcendental over K, the problem of constructing
it is unsolvable. This is how one proves that it is impossible to square the
circle (if the radius of the circle is chosen as the length unit, this problem is
equivalent to constructing an interval of length ir).

If a is algebraic over K with the minimal polynomial f E K[x], Theo-
rem 10.88 implies that the problem of constructing a is solvable if and only
if the degree of the splitting field of f is a power of 2. In particular, it is
necessary that the degree of f itself be a power of 2.

Example 10.92. The problem of doubling the cube reduces to that of con-
structing an interval of length Y2-. Since the polynomial x3 - 2 is irreducible
over Q and its degree is not a power of 2, this problem is unsolvable.

Example 10.93. The problem of trisecting the angle equal to co reduces
to that of constructing an interval of length cos(cp/3), given an interval of
length cos cp. By the well-known formula,

cos = 4 cos3

3

- 3 cos 3 ,

hence a = cos(ep/3) is a root of the polynomial

f = 4x3 - 3x - cos cp E K[x],

where K = Q(cos cp). If we are looking for a universal method of trisecting
an angle that does not depend on the angular measure cp, we have to regard
cos p as an independent variable. Then the polynomial f is irreducible
over K (check this!) and the problem is unsolvable, just as in the previous
example. For particular angles (e.g., the right angle) the problem may be
solvable, but one can produce values of cp for which it is not. The criterion
for solvability is the presence of a root of f in K. For instance, if cp = E31
then K = Q and f = 4x3 - 3x - 1 has no roots in K; therefore, in this case
the problem is unsolvable.
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Example 10.94. The problem of dividing a circle into n equal parts (cyclo-
tomy) reduces to the problem of constructing an interval of length cos 2n or,
equivalently, of constructing the number elm"" = cos 2n + z sin 2n. There-
fore, cyclotomy is possible if and only if the degree of the cyclotomic field
Kn = Q(e2,/") is a power of 2. It is known that the degree of K equals
W(n) (see Example 10.79). If n is a prime number, V(n) = n - 1, thus we
must have n = 21 + 1. It is easy to see that the number 21 + 1 is prime
only if m is a power of 2. Thus, n must be of the form

n=2211 +1.

Such numbers are called Fermat numbers. For k = 0, 1,0,1,2,3,4, we obtain
the prime numbers

3, 5, 17, 257, 65537,

but for k = 5, the number is already not prime. These are the only prime
Fermat numbers known at present.

Galois theory allows us to give a conceptual proof of the fundamen-
tal theorem of algebra of complex numbers; it uses only the following two
properties of the fields R and C:

(i) every polynomial of odd degree over R has a root in R;

(ii) it is possible to extract a square root from any number in C.

Both these properties can be easily proven without resorting to the fun-
damental theorem (see Sections 3.4 and 1.5, respectively).

Property (i) implies that over R, there exist no irreducible polynomials of
odd degree greater than 1. Hence, there exists no nontrivial finite extension
of odd degree (because the minimal polynomial of every element of such an
extension must be of odd degree).

Let f E C[xJ. Denote by 7 the polynomial obtained from f by replacing
all its coefficients with their conjugates. Then f f = f f = If, hence f f E
R[x]. On the other hand, if c E C is a root of the polynomial fl, then either
c or c is a root of f. Therefore, it suffices to show that every polynomial of
positive degree with real coefficients has a root in C.

Let f E It[x] be a polynomial of positive degree with a splitting field
L D R over R. Let G = Gal L/It. Consider a Sylow 2-subgroup H of G and
the field LH = K. Since dimR K = IG : HI is an odd number, G = H by the
above, i.e., G is a 2-group. But then Theorem 10.88 implies that the field
L is contained in a field obtained from R by successively adjoining square
roots. It follows from property (ii) above that L = R or C. Hence, f has a
root in C.





Chapter 11

Linear Representations
and Associative
Algebras

In applications of group theory, the most important role is played by their
linear representations. There are two sources for linear representations of
groups:

(i) for a group G of differentiable transformations with a common fixed
point, taking the differential at this point is a linear representation of G;

(ii) a group action on a set X defines, according to formula (10.7), a
linear representation of this group in the space of functions on X.

On the other hand, the matrix algebra is a rich object where calculations
are extremely effective. It thus becomes a benchmark for the study of many
algebraic structures. A comparison with the matrix algebra is achieved via
a linear representation.

11.1. Invariant Subspaces

For a vector space V over a field K, we denote the (associative) algebra of all
linear operators on V by L(V). If the space V is finite-dimensional, the linear
operators can be represented as matrices in some basis, and this establishes
an isomorphism between the algebra L(V) and the matrix algebra Ln(K),
n = dim V.

419
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Definition 11.1. A linear representation of a set X in a vector space V is
a map

(11.1) R: X -+ L(V).

The space V is called the representation space and its dimension, the
dimension of the representation. The operators R(x), x E X, are called the
representation operators.

If the set X is endowed with some operations, it is natural to require
for the representation to agree with them. Thus, a linear representation of
a group is defined by the conditions

R(xy) = R(x)R(y), R(e) = E

(so, it can be defined as a homomorphism into GL(V)), while a linear rep-
resentation of an associative algebra is defined by the conditions

R(x + y) = R(x) + R(y), R(xy) = R(x)R(y),
R(.\x) = AR(x), A E K.

Nonetheless, at first we will study properties of linear representations
that are independent of any operations on the set X.

Definition 11.2. Let R: X L(V) and S: X -+ L(U) be two linear
representations of the same set X over the same field. A morphism of the
representation R to the representation S is a linear map c : V -+ U satisfying
the following property: for any x E X, the diagram

V
R(x)

V

VI IV

U ----+ U
S(x)

is commutative. An invertible morphism is called an isomorphism of repre-
sentations.

Linear representations R and S are called isomorphic if there exists an
isomorphism of R to S. In this case, we write R S. In respective bases of
V and U, isomorphic representations have the same matrices.

Example 11.3. A linear representation of a one-point set is just a linear
operator on a vector space. Two linear representations of a one-point set over
an algebraically closed field are isomorphic if and only if the matrices of the
corresponding linear operators have the same Jordan canonical form. Thus,
in this case, the classes of isomorphic representations are parameterized by
Jordan matrices.
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Remark 11.4. The problem of describing linear representations of a two-
point set (to say nothing of bigger sets) is considered 'wild." This means
that from the current viewpoint, it cannot be solved in any reasonable way.
However, the only interesting linear representations are those of sets with
operations (first of all, groups) and in this case, the difficulty in describing
the representations depends on other reasons rather than on the number of
elements.

Every linear representation R: X -+ L(V) over a field K can be viewed
as a linear representation over an extension L of K, once the representa-
tion operators are extended to linear operators on V(L) (see Section 8.1).
In the basis of V (L) composed of vectors of V, such an extension of the
representation is given by the same matrices as the original representation.

Proposition 11.5. Let R: X L(V) and S: X -' L(W) be linear repre-
sentations of a set X over an infinite field K and let L be an extension of
K. ?hen, if R and S are isomorphic over L, they are already isomorphic
over K.

Proof. Write down the matrices of representations R and S in some bases
of V and W. That R and S are isomorphic over K means that there exists
a nonsingular matrix C with entries in K such that

(11.2) CR(x) = S(x)C Vx E X.

Relations (11.2) represent a system of homogeneous linear equations in en-
tries of C with coefficients from K. Let {C1,.. . , C,m} be a fundamental
system of its solutions. If the representations R and S are not isomor-
phic over K. then det(AjC1 + ... + A,RCm) = 0 for every Al, ... , A. E K,
hence det(t1C1 + ... + t,RCm) is the zero polynomial in ti, ... , t,,,. But then
det(A1C1 + + AmCm) = 0 for any Al.... , Am E L, and this means that R
and S are not isomorphic over L.

In the understanding of the structure of linear representations, an im-
portant role is played by invariant subspaces.

Consider a representation R: X L(V). A subspace U C V is called
invariant with respect to R if it is invariant under all representation oper-
ators R(x),x E X. It is obvious that a sum or an intersection of invariant
subspaces is also an invariant subspace.

An invariant subspace U C V gives rise to two new representations of
X: the subrepresentation

X -- L(U), Rt.'(x) = R(x)1U,

and the quotient representation

Rv/u : X - L(V/U), Rriu(x)(v + U) = R(x)v + U.
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The representation RU (respectively, Rv,u) is uniquely determined by the
property that the embedding U - V (respectively, the canonical map V
V/U) is a morphism of representations.

In the matrix form, this looks as follows: if a basis of the space V is
chosen so that its first vectors form a basis of U, then

0 Rvlu(x)R(x) - R (x)
Definition 11.6. A linear representation (11.1) is irreducible if V # 0 and
there exist no nontrivial subspaces U C V that are invariant under R.

Obviously, every one-dimensional representation is irreducible.

Example 11.7. Consider the representation H of the additive group R by
rotations of the Euclidean space E2 which is defined in the orthonormal
basis {el, e2} by the formula

II(t) _ (cost
sin t

- sin t
cos t

It is irreducible because no one-dimensional subspace is mapped into itself
by all rotations. However, if one considers this representation over the com-
plex numbers, it becomes reducible. More precisely, the one-dimensional
subspaces spanned by the vectors el - zee and el + zee, respectively, are
invariant, and in the basis formed by these vectors, this representation has
the form

=
Cett

0 /II(t)
0 e-st

(see Example 6.19).

Example 11.8. The isomorphism S4 Z Sym+ K (see Example 4.116) de-
fines a linear representation of the group S4 in the space E3. Let us prove
that it is irreducible. Since the orthogonal complement of an invariant sub-
space is invariant as well (see Proposition 6.34), it suffices to prove that
there exist no one-dimensional invariant subspaces, and this is obvious. In
fact, this representation is irreducible not just over It but over C as well.
This is a consequence of the following general proposition.

Proposition 11.9. Let R: X -. L(V) be an irreducible real linear represen-
tation of odd dimension. Then the complexification of R is also irreducible.

Proof. Assume that W C V(C) is a nontrivial invariant subspace. Observe
that if a subspace of V(C) is invariant under complex conjugation, then with
every vector it contains its real and imaginary parts as well, hence it is a
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complexification of a subspace of the space V. It follows that the invari-
ant subspaces W fl W and W + W are complexifications of some invariant
subspaces of V. By irreducibility of R, we must have

WnW=O, W+W=V(C),
i.e., V (C) = W ® W. But then dim V(C) = 2 dim W, which contradicts the
condition that the dimension of V is odd. 0
Example 11.10. Let V be an n-dimensional vector space with a basis
{el,..., The linear representation M of the group Sn defined by the
formulas

M(a)ej = e,(j), a E Sn,

is called the monomial representation. This representation is reducible; one
can present at least two nontrivial invariant subspaces: the one-dimensional
subspace (el + + en) and the (n - 1)-dimensional subspace

Exi=0

Let us prove that whenever char K = 0, the representation Mo = Mvo is
irreducible. Indeed, let U C Vo be an invariant subspace with a nonzero
vector x = Ei xie= E U. Since Ei x= = 0, not all numbers x1,. .. , xn are
equal. Without loss of generality, assume that xl # x2. Then

x - M((12))x = (xi - x2)(el - e2) E U,

hence el - e2 E U. Applying representation operators to el - e2, we obtain
that ej-eJEUforalli,j,butthen U=Vo.
Example 11.11. Let A be an associative algebra. Then the formula

T(a)x = ax, a,x E A,

determines a linear representation T of the algebra A on itself called the (left)
regular representation. We emphasize that this is an algebra representation,
i.e., that

T(a + b) = T(a) + T(b), T(ab) = T(a)T(b), T(Aa) = AT(a).

For instance, the second of these properties is equivalent to associativity of
multiplication in A. Invariant subspaces of this representations are nothing
but left ideals of A.

If W: V U is a morphism of the representation R: X -* L(V) to the
representation S: X - L(U), then Imp is an invariant subspace of U and
Ker cp is an invariant subspace of V. Hence, the following theorem holds:

Theorem 11.12. Every morphism of an irreducible representation is either
an isomorphism or the zero map.



424 11. Linear Representations and Associative Algebras

Unless specified otherwise, in the sequel we will always assume that only
finite-dimensional linear representations are considered.

Theorem 11.13 (Schur's Lemma). Every endomorphism (i.e., a morphism
to itself) of an irreducible representation over an algebraically closed field is
a multiple of the identity operator.

Proof. Let R: X L(V) be the given representation. A linear operator
So E L(V) is an endomorphism of R if it commutes with all representation
operators. Therefore, if cp is an endomorphism of R, then so is (p - AE for
everyA E K. Choose as A an eigenvalue of V. By Theorem 11.12, we obtain
that W -AS=0.

Corollary 11.14. Let R: X L(V) and S: X L(U) be two irreducible
representations of a set X over an algebraically closed field. Then every two
morphisms of R to S are proportional.

Proof. If one of the morphisms is zero, there is nothing to prove. Thus,
we have only to prove that the two isomorphisms are proportional. But if
wp: V - U and 0: V -. U are two isomorphisms of R to S, then V5-1V: V
V is an automorphism of R. By Schur's lemma, 0-1ip = AS, thus cp =
Arji.

Corollary 11.15. Every irreducible representation of an abelian group over
an algebraically closed field is one-dimensional.

Proof. In the case of an abelian group, all representation operators com-
mute with one another, hence, each of them is an endomorphism of the
representation. By Schur's lemma, they are all scalar. Therefore, every
subspace is invariant and a representation is irreducible only if it is one-
dimensional.

Definition 11.16. A linear representation R: X -+ L(V) is completely
reducible if every invariant subspace U C V has a complementary invariant
subspace, i.e., an invariant subspace W such that V = U ® W.

Observe that, as strange as it sounds, every irreducible representation is
completely reducible.

Example 11.17. The formula

R(t) =
\0 e0t ' t E R,

defines a two-dimensional real linear representation of the additive group
R. Its nontrivial invariant subspaces are the one-dimensional subspaces
spanned by the basis vectors (i.e., coordinate axes). Since these subspaces
are complements of each other, the representation R is completely reducible.
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Example 11.18. The formula

S(t) 01
defines another linear representation of this group. In this case, the only
nontrivial invariant subspace is the one-dimensional subspace spanned by
the first basis vector. Thus, the representation S is not completely reducible.

Proposition 11.19. Every subrepresentation and every quotient represen-
tation of a completely reducible representation is completely reducible.

Proof. Let R: X --> L(V) be a completely reducible representation and
U C V, an invariant subspace. For every invariant subspace U1 C U, there
exists an invariant complement in V. Denote it V2. The subspace U2 =
U n V2 is then an invariant subspace which is complementary to U1 in V.

Now let a: V - V/U be the canonical map and W1 C V/U, an invariant
subspace. Then V1 = 7r-1(W1) is an invariant subspace of V (that contains
U). If V2 C V is its complementary invariant subspace, W2 = 7r(V2) is the
invariant subspace that is complementary to Wl in V/U. O

Below we present a different characterization of completely reducible
representations.

Theorem 11.20. (i) If a representation R: X -* L(V) is completely re-
ducible, then V decomposes into a direct sum of minimal invariant subspaces.

(ii) Conversely, if the space V decomposes into a sum (not necessarily
direct) of minimal invariant subspaces V1,. .. , V,,, then the representation
R is completely reducible. Moreover, for any invariant subspace U C V, we
can take a sum of certain V i's as its invariant complement.

(Here a minimal invariant subspace is a subspace that is minimal among
nonzero invariant subspaces.)

Proof. (i) Consider a minimal invariant subspace V1, find a complementary
invariant subspace of it, consider a minimal invariant subspace V2 of it, etc.

(ii) Let U C V be an invariant subspace. For any subset I C 11, ..., n},
put VI = &.E J V. Let I be a maximal subset (possibly empty) such that
U n VI = 0. Then for any j 0 I, we should have U n Viu{i} 0 0, implying

(U®VI)nV; 36 0.

Since V, is a minimal invariant subspace, VV C U ® V,. Therefore,

V=UED VI.

0
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Example 11.21. If char K = 0, the monomial representation of the group
S,, defined in Example 11.10 is completely reducible, since in this case, the
space V decomposes into a direct sum of minimal invariant subspaces:

Exercise 11.22. Let Ad be the linear representation of the group GL,,(K)
in the space defined as

Ad(A)X = AXA`1.

Prove that if char K = 0, then (E) and (X E L (K) : tr X = 0) are minimal
invariant subspaces. Conclude that the representation Ad is completely
reducible.

Definition 11.23. The sum of linear representations Rj : X - L(V ), i =
1, ... , m, is the linear representation

R=R1+.+Rm: X--+ L(Vl®...ED

defined by the formula

R(x)(vl,... , vm) = (Rl(x)v1, ... , Rm(x)vm)-

In matrix form,

Rl (x) 0 ... 0

R(x)
0 R2(x) ... 0

0 0 ... R,,, (x)

If R: X L(V) is a linear representation and the space V decomposes
into a direct sum of invariant subspaces Vl,... , Vi, then R ^ Rl + + R,n,
where Rj = Rv{ .

Theorem 11.20 implies the following description of completely reducible
representations:

Corollary 11.24. A linear representation is completely reducible if and only
if it is isomorphic to a sum of irreducible representations.

Corollary 11.25. Let R: X - L(V) be a completely reducible representa-
tion which is isomorphic to a sum of irreducible representations R1, . . . , R,,,.
Then every subrepresentation and every quotient representation of R are iso-
morphic to a sum of some of the representations R.

Proof. Let
V=VIED ...ED Vm
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be a decomposition into a direct sum of invariant subspaces such that RV, =
R. and let U C V be an invariant subspace. By Theorem 11.20, there exists
a subset I C {1, ... , m} such that V = U ®V,. Clearly,

Rv,U RVr ^, > Ri.
iE/

Now, let J = { 1, ... , m} \ I. Then V = VJ ®VI, hence

Ru^.Rv,vr^,Ry,^_-ERj.
jEJ

0
Example 11.26. Every irreducible linear representation of a one-point set
X over an algebraically closed field K is one-dimensional. Thus, every com-
pletely reducible representation of X over K is a linear operator whose
matrix is diagonal in some basis.

Let R: X -- L(V) be a completely reducible representation and let

(11.3)

V into a direct sum of minimal invariant subspaces.

Definition 11.27. The isotypic component of a representation R corre-
sponding to an irreducible representation S of X is the sum V(S) of all
summands V in the decomposition (11.3) such that RV, S, as well as the
restriction R(S) of R to this sum.

It is clear from this definition that the space V decomposes into a di-
rect sum of the isotypic components corresponding to different irreducible
representations of X.

Example 11.28. For a completely reducible representation of a one-point
set over an algebraically closed field, its isotypic components are the eigen-
spaces of the corresponding linear operator.

A representation R is called isotypic or, rather, S-isotypic if R = R(S).
Isotypic representations can be described as follows. Let S: X -* L(U)

be an irreducible representation and Z a vector space. Define a representa-
tion

(11.4) R: X - L(U ®Z)
by the formula

R(x)(u (9 z) = (S(x)u) ® z.
If {zl,...,z,,,} is a basis of Z, the decomposition

(11.5) U®Z=(U®zI)ED ED (U®z,,,)
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is a decomposition of the space U®Z into a direct sum of invariant subspaces
such that the restriction of R to each of them is isomorphic to S.

Theorem 11.29. If the base field K is algebraically closed, then every in-
variant subspace of U ® Z has the form U ® Zo, where Zo is a subspace
of Z.

Proof. Since any sum of subspaces of the form U ® Zo is a subspace of the
same kind, it suffices to prove the theorem for minimal invariant subspaces.

Let W C U 0 Z be a minimal invariant subspace. By the decomposi-
tion (11.5), for any w E W, we have

w=tpl(w)®zi+...+Vm(w)®z,,,,
where cpj,... , ,o are morphisms of the representation Rw to S. By Corol-
lary 11.15, Bpi = A;cp, where \; E K and W is a fixed isomorphism of Rw to
S. Thus,

so that

w=W(w)®(Alzl+...+Amzm),

W = U ®(Aizi + - - - + Amzm).
0

Exercise 11.30. Prove that if the field K is algebraically closed, every
endomorphism of the representation (11.4) is of the form

u®z'u®Cz,
where C is a linear operator on Z.

Theorem 11.31 (Burnside's Theorem). Let R: X L(V) be an irreducible
representation of a set X over an algebraically closed field. Then the sub-
algebra of the algebra L(V) generated by the set R(X) coincides with L(V),
except when dim V = 1 and R(X) = 0.

Notice that the subalgebra generated by R(X) consists of all linear com-
binations of products of operators R(x), x E X. Thus, this theorem claims
that except for the trivial case, every linear operator is a linear combination
of products of operators R(x), x E X.

Proof. As we know, the space L(V) can be identified with V ® V' so that
each decomposable element u 0 a E V ® V* correspond to the operator

u ®a : v ,-* a(v)u.

Under this identification, the products of an operator u ®a with any linear
operator A E L (V) look like

(11.6) A(u(9 a) =Au®a,
(11.7) (u(9 a)A=u®A*a,
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where A' E L(V') is the adjoint operator determined by the formula

(A*a)(v) = a(Av).

Observe that, since the canonical one-to-one correspondence between the
subspaces of V and the subspaces of V* that associates to each subspace its
annihilator, the representation

R*:X---- L(V*)

defined as
R (x) = R(x)*

is irreducible.

Let us define representations Tj and T, of X in the space L(V) by the
formulas

T)(x)A = R(x)A, Tr(x)A = AR(x).
Formulas (11.6) and (11.7) imply that these representations are isotypic.

Denote the subalgebra of L(V) generated by the set R(X) by A. Clearly,
it is a subspace of L(V) that is invariant under the representation T, as well
as with respect to the representation Tr. By Theorem 11.29, it can be
presented in the form A = V 0 Wo for a subspace Wo of V* and, at the
same time, in the form A = Vo ® V` for a subspace Vo of V. This is possible
only if A is L(V) or 0. In the latter case, dim V = 1; otherwise R would be
reducible. O

Exercise 11.32. The tensor product of group representations R: G -
GL(V) and S: H - GL(W) is the representation

ROS:GxH-+GL(V®W)
defined as

(R 0 S)(9, h) = R(g) ® S(h).
(See the definition of the tensor product of linear operators in Section 8.1.)
Prove that the tensor product of irreducible representations of groups G and
H is irreducible over an algebraically closed field.

Consider now the class of completely reducible linear representations
that, in some sense, are the opposite of isotypic representations. Namely,
we say that a completely reducible representation has a simple spectrum if
it is a sum of pairwise nonisomorphic irreducible representations or, in other
words, if all its (nonzero) isotypic components are irreducible.

Example 11.33. A completely reducible representation of a one-point set
over an algebraically closed field has a simple spectrum if and only if all
roots of the characteristic polynomial of the corresponding linear operator
are simple.
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For representations with a simple spectrum, the invariant subspaces and
endomorphisms are especially easy to describe.

Proposition 11.34. Let R: X -+ L(V) be a completely reducible represen-
tation with a simple spectrum. Consider a decomposition (11.3) of V into a
direct sum of minimal invariant subspaces. Then

(i) every invariant subspace of V is a sum of terms in the decomposition
(11.3);

(ii) if the base field K is algebraically closed, then every endomorphism
cP of R has the following form:

(11.8) cP(x) = Aix for x E Vie \1, . , Am E K.

Proof. (i) Every invariant subspace is a sum of minimal invariant subspaces.
By the definition of a representation with a simple spectrum, every mini-
mal invariant subspace is an isotypic component, hence it coincides with a
summand of the decomposition (11.3).

(ii) Every summand of the decomposition (11.3) is invariant under o
and, by Schur's lemma, the action of V on this summand is scalar. 0
Corollary 11.35. For a completely reducible representation with a simple
spectrum, the decomposition of the representation space into a direct sum of
minimal invariant subspaces is unique.

A linear representation R: G -+ GL(V) of a group G (over a field K
of characteristic 3& 2) is called orthogonal (respectively, symplectic) if there
exists a nondegenerate symmetric (respectively, skew-symmetric) bilinear
function on V that is invariant under every representation operator.

Exercise 11.36. Prove that if R: G -+ GL(V) is an irreducible represen-
tation of G over an algebraically closed field, then

(a) every nonzero invariant bilinear function on V is nondegenerate;

(b) any two such functions are proportional;

(c) every such function is either symmetric or skew-symmetric.

11.2. Complete Reducibility of Linear Representations of
Finite and Compact Groups

For some classes of groups, it is possible to prove the complete reducibility
of all their linear representations.

We begin with the finite groups. For them, the proof is purely algebraic
and is based on the simple idea of the lemma below.

Let S be a finite-dimensional affine space over a field K.
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Lemma 11.37 (Fixed Point Lemma). Let G be a finite group of affine
transformations of S whose order is not divisible by char K. Then G has a
fixed point in S.

Proof. The center of mass of the orbit of any point p E S is one such fixed
point:

cent G 1P = IGl 9E gp.

Now let V be a finite-dimensional vector space over a field K, and G C
GL(V) a group of linear transformations.

Theorem 11.38. Let G be a finite group whose order is not divisible by
char K. Then for every G-invariant subspace U C V, there exists a G-
invariant complementary subspace W.

Proof. To specify a subspace W that is a complement of U is the same as
to specify the projection P onto U along W. The subspace W is invariant
if and only if P commutes with all transformations in G.

The set of all projections onto U is described by the following linear
equations:

PvEU `dvEV, Pu=u Vu,
hence, it is a plane in the space L(V) of all linear operators on V. Denote
this plane by S.

The group G acts on L(V) by conjugations. This action leaves S invari-
ant, thus inducing affine transformations on S. Hence, we obtain a finite
group of affine transformations of the plane S. Take its fixed point as the
required projection P.

Corollary 11.39. Every linear representation of a finite group G over a
field K whose characteristic does not divide IGJ, is completely reducible.

Proof. The asserton follows by applying the theorem to the image of the
group G under the given linear representation.

Example 11.40. In Example 11.8, we constructed a three-dimensional rep-
resentation of the group S4. We will prove here in another way that it is
irreducible not only over R but also over C. Since it is completely reducible
in either case, it suffices to show that it has no one-dimensional invariant
subspaces, i.e., that the representation operators have no common eigen-
vectors. We know (see Proposition 6.18) that to any eigenvector of a real
linear operator corresponding to an imaginary eigenvalue, there corresponds
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a two-dimensional invariant real subspace. However, this representation has
no two-dimensional invariant real subspaces.

For K = ilP or C, a reasonable generalization of finite groups is compact
topological groups.

Definition 11.41. A topological group is a group G with a Hausdorff topol-
ogy such that the group operations

µ:GxG - G, (x,y)'-'xy,
t:G -* Gx F-+x-1

are continuous maps. A topological group homomorphism is a group homo-
morphism which is also a continuous map.

Examples of topological groups are the additive and the multiplicative
group of the fields R and C and also the groups of nonsingular matrices over
these fields. Every group (e.g., a finite one) can be regarded as a topological
group with discrete topology.

A subgroup of a topological group with the induced topology is a topo-
logical group. A direct product of topological groups is also a topological
group.

A topological group is called compact if it is also a compact topological
space. In particular, all finite groups are compact. Examples of infinite
compact topological groups are the "circle"

T = {zEC':IzI=1},
the orthogonal group On, and the unitary group Un. Let us prove that On
is compact. This group is determined by the equations

E xikxjk = bij
k

in the n2-dimensional space Ln(R) of all real matrices X = (xij) of order
n, hence, it is closed in Ln(R). These equations also imply that IxijI < 1;
therefore, On is also bounded in Ln(R). Thus, it is compact. Compactness
of Un is proved in a similar way.

Every closed subgroup of a compact group is compact. A direct product
of compact groups is compact. For instance, the direct product of n copies of
the circle T is a compact group called the n-dimensional torus and denoted
T. The image of a compact group under a (continuous) homomorphism (in
particular, a linear representation) is a compact group.

There are analogues of the fixed point lemma and Theorem 11.38 for
compact groups. Their proofs use the notion of the center of mass of a
convex set.
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Let M be a nonempty bounded convex set in a real affine space S. If

M

of the set M by the formulaaff M = S, define the center of mass cent MfxJL(dx),

cent M = µ(M)-'

where p is the standard measure on S invariant under parallel translations.
The measure µ is defined up to a constant multiple, but the formula implies
that the freedom in the choice of p does not affect the result. The integral
on the right-hand side can be defined coordinatewise or directly, as the limit
of integral sums which are (up to the factor before the integral) barycentric
linear combinations of points of S and, hence, are well defined. The first
definition shows that the integral exists, and the second, that it does not
depend on the choice of coordinates. In general, we define cent M as above
but replace S with the space aff M.

Since the definition of the center of mass is stated in terms of affine
geometry, for any affine transformation a,

cent a(M) = a(cent M).

In particular, if the set M is invariant under an affine transformation, its
center of mass is a fixed point of this transformation.

The definition of the center of mass implies that cent M E M. Actually,

cent M E M°,

where M° is the interior of the set M with respect to the space aff M.
Indeed, for any affine-linear function f which is nonnegative on M and
nonzero in aff M, we have

f (cent M) = µ(M)-' JM f (x)p(dx) > 0.

Lemma 11.42 (Fixed Point Lemma). Let G be a compact group of affine
transformations of a real affine space S. Let M C S be a nonempty convex
set which is invariant under G. Then G has a fixed point in M.

Note that we can regard the whole space S as M.

Proof. The center of mass of the convex hull of the orbit of any point p E M
is a required fixed point. 0
Theorem 11.43. Let G be a compact group of linear transformations of
a vector space V over the field K = ]k or C. Then for any G-invariant
subspace U C V, there exists a G-invariant complementary subspace W.

Proof. This proof repeats that of Theorem 11.38 verbatim. One should
only notice that when K = C, the plane S of projections onto U must be
regarded as a real affine space. 0
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Corollary 11.44. Every real or complex linear representation of a compact
topological group is completely reducible.

Example 11.45. By Theorem 11.43 and Corollary 11.14, every (continu-
ous) complex linear representation of a compact abelian group is a sum of
one-dimensional representations, i.e., its matrices are diagonal in some basis.
In particular, this can be applied to finite abelian groups and the group T.

There is another way to prove the complete reducibility of linear repre-
sentations of compact groups. It is also of interest.

Theorem 11.46. Let G be a compact group of linear transformations of a
real (respectively, complex) vector space V. Then there exists a G-invariant
positive definite quadratic (respectively, Hermitian) function on V.

Proof. The set of all positive definite quadratic (respectively, Hermitian)
functions is a G-invariant convex set in the space of all quadratic (respec-
tively, Hermitian) functions. A fixed point of G in this set is a required
function.

Corollary 11.47. Every compact (and, in particular, finite) subgroup of
the group GLn(R) (respectively, GL,,(C)) is conjugate to a subgroup of O
(respectively, Un).

Theorem 11.46 allows us to give another proof of Theorem 11.43: for an
invariant complement of U, one can take the orthogonal complement with
respect to the inner product defined by the invariant quadratic (respectively,
Hermitian) function.

11.3. Finite-Dimensional Associative Algebras

The linear representation approach leads, first of all, to a rather good de-
scription of the structure of finite-dimensional associative algebras.

Let A be a finite-dimensional associative (but not necessarily commuta-
tive) algebra over a field K.

An element a E A is called nilpotent if an = 0 for some n E N. The
algebra A is called nilpotent if all its elements are nilpotent. Every subalge-
bra and every quotient algebra of a nilpotent algebra are nilpotent. On the
other hand, if an ideal I and the quotient algebra A/I are nilpotent, then
A is nilpotent.

Example 11.48. The algebra of niltriangular matrices (triangular with a
zero diagonal) of order n is nilpotent. Moreover, the product of any n
elements of this algebra is zero. As we will see now, every nilpotent algebra
has this property.
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Theorem 11.49. For every nilpotent algebra A, there exists n E N such
that the product of any n elements of A is zero.

For any subspaces B, C C A, we denote by BC the linear span of all
products of the form bc, b E B, c E C. In this notation, the statement of
this theorem can be written as An = 0 for some n E N.

Proof. Let B C A be a maximal subspace for which there exists n E N
such that Bn = 0. Assume that B # A and let a E A \ B. Since aB1 = 0,
there exists k > 0 such that aBk B but aBk+l C B. Replacing a with a
suitable element from aBk, we obtain

(11.9)

For some m E N, we have

(11.10)

aBCB.

a'n=0.

Let C = B e (a). Conditions (11.9) and (11.10) imply that C"' = 0, and
this contradicts the definition of B.

Remark 11.50. Let A be a nilpotent (finite-dimensional) algebra. Then
there exists n such that an = 0 for all a E A (show this). An infinite-
dimensional algebra A is called nilpotent if there exists n E N such that
the product of any n elements of A is zero. There are infinite-dimensional
algebras which are not nilpotent, while all their elements are. Such algebras
are called nilalgebras.

Unlike the commutative case, all nilpotent elements of an associative
algebra A do not have to form an ideal (or even a subspace). However, if I
and J are two nilpotent ideals, their sum

I+J:={x+y:xEI,yEJ}
is also a nilpotent ideal since it contains the nilpotent ideal I, and the
quotient algebra

(I + J)/I - J/(I n J)

by I is nilpotent too. Thus, there exists the largest nilpotent ideal. It is
called the radical of A and is denoted rad A.

In the commutative case, it coincides with the radical of A in the sense
of Section 9.4.

An algebra A is called semisimple if rad A = 0.

Example 11.51. By Example 9.97, the algebra Kit]/(h) is semisimple if
and only if the polynomial h has no multiple irreducible factors.
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When char K = 0, semisimple algebras can be characterized in another
way.

Let T : A --' L(A) be a regular representation of A (see Example 11.11).

Define the "inner product" on A by the formula

(11.11) (a, b) = trT(ab) = trT(a)T(b).

This is a symmetric bilinear function (possibly degenerate). Moreover, it
has the following property:

(ab, c) = (a, bc),

which follows from the associativity of multiplication in A. (When A is a
field, this inner product coincides with the one introduced in Section 9.5.)

Proposition 11.52. The orthogonal complement Il of an ideal I of an
algebra A is also an ideal.

Proof. Let x E I1, a E A, y E I. Then

(xa, y) = (x, ay) = 0, (ax, y) = (y, ax) = (ya, x) = 0.

0

Proposition 11.53. If char K = 0, every element a E A that is orthogonal
to all of its own powers is nilpotent.

Proof. Let
(an,a) = tr T(a)n+1 = 0 Vn E N.

Consider an extension of K where the characteristic polynomial f of the
operator T(a) splits into linear factors:

s

f = tkO [J(t - Ai)k', al, ... , A. are different and nonzero.
i=1

Then

tr T(a)n+1 = ,\n+1 = 0
i=1

Let n assume values from 1 to s. Consider the above equalities as a square
system of homogeneous linear equations with respect to k1,.. . , k,. Its de-
terminant differs from the Vandermonde determinant only by the factor
Al A hence it is nonzero. Therefore, kl = ... = k, = 0 in K, which is
impossible if char K = 0. Thus, s = 0 and this means that the operator



11.3. Finite-Dimensional Associative Algebras 437

T(a) is nilpotent, i.e., T(a)m = 0 for some m E N. But then

am+1 = T(a)ma = 0.

Theorem 11.54. (i) If the inner product (11.11) is nondegenerate, then
the algebra A is semisimple.

(ii) Conversely, if the algebra A is semisimple and char K = 0, the inner
product (11.11) is nondegenerate.

Proof. (i) Let I be a nilpotent ideal of A. Then for every x E I and a E A,
the element ax is nilpotent (it belongs to I). Thus

(a, x) = tr T(ax) = 0.

Therefore, I C Al = 0.
(ii) Conversely, if charK = 0, by Propositions 11.52 and 11.53, Al is a

nilpotent ideal.

Remark 11.55. In fact, we proved a stronger result: if char K = 0, then
rad A is the kernel of the inner product (11.11).

Example 11.56. It follows from formula (11.6) that the regular represen-
tation of the algebra L(V) is isotypic. More precisely, it is isomorphic to
nR, where n = dim V and R is the tautological representation of L(V) in
the space V (i.e., the identity map L(V) L(V)). Thus, the inner prod-
uct (11.11) on L(V) has the form

(11.12) (A, B) = n trAB.

If Eti is the operator defined (in a fixed basis) by the matrix unit E_ then

tr&,&kt =
1, for k = j,l = i,

0, otherwise.

It follows that if char K does not divide n, the inner product (11.12) is
nondegenerate, hence, the algebra L(V) is semisimple. (We will see in Ex-
ample 11.62 that it is semisimple also when char K divides n.)

Example 11.57. Let A = K[t]/(h). We can view A as a K[t]-module. Then
h is the characteristic polynomial of the operator of multiplication by t (see
Exercise 9.85). Let cl,... , c,, be its roots (with multiplicities) in the splitting
field. Then for every polynomial f E K[t], the characteristic polynomial of
the operator of multiplication by f (t) has roots f (cr ), ... , f (c,,,). However,
the operator of multiplication by f (t) on the K[t]-module A is the same as



438 11. Linear Representations and Associative Algebras

the operator of multiplication by [f] = f + (h) on the algebra A, i.e., the
operator T([ f ] ). Thus,

trT([fJ) f(c=).
i

Therefore. in the basis {[1], [t], [t2J,...I [tn-1]} of A, the matrix of the inner
product (11.11) is

so Si s2 ... sn-1
81 82 83 ... sn

(11.13) 82 83 84 ... 8n+1

sn-1 Sn an+1 s2n-2

where 8k = Ci + + cn`. Observe that we can express the power sums sk in
terms of the coefficients of the polynomial h without determining its roots.

By Theorem 11.54, if char K = 0, the algebra A is semisimple if and only
if the matrix (11.13) is nonsingular. On the other hand (see Example 11.51),
it is semisimple if and only if the polynomial h has no multiple irreducible
factors, which, in the case of char K = 0, is equivalent to C1, ... , Cn being
distinct. Therefore, we conclude that the polynomial h over a field of zero
characteristic is separable (i.e., has no multiple roots in any extension of K)
if and only if the matrix (11.13) is nonsingular.

Remark 11.58. The latter statement is valid in any characteristic and can
be proven directly. Namely, matrix (11.13) can be presented as the product

1 1 ... 1 1 Cl Ci ... C1-1

Cl C2 ... Cn 1 C2 '1.22 ... C3-1

Ci CZ Cn 1 C3 G3 ... C3-1

C1-1 C2-1
.......4-1 1.. C.. C2.....

Cn-1

Therefore, its determinant equals

fl(ci - cj)2,

i>j

i.e., the discriminant of h (see Section 3.9); this implies the above statement.
In particular, we obtain that for an irreducible polynomial h over a field

K of positive characteristic, the field L = K[xJ/(h) is a separable extension
of K in the sense of Remark 9.130 if and only if h is separable.

Exercise 11.59. Prove that when char K = 0, the number of distinct roots
of h equals the rank of the matrix (11.13).

An algebra A is called simple if A 54 0 and A has no nontrivial ideals
(i.e., ideals different from 0 or A).
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Example 11.60. Every extension L of a field K is a simple (commutative)
algebra over K.

Exercise 11.61. Prove the converse: every simple commutative algebra
over K is either a field containing K (i.e., an extension of K) or the one-
dimensional algebra with the zero multiplication.

For every algebra A, the subspace A2 is an ideal (as is any product of
two ideals). If A is nilpotent, A2 96 A. Thus, a simple algebra A cannot be
nilpotent except for the trivial case when A2 = 0 and dim A = 1, i.e., when
A is the one-dimensional algebra with the zero multiplication. Except for
this case, every simple algebra is semisimple.

Example 11.62. The algebra L(V) is simple (see Example 9.48), thus
semisimple.

Theorem 11.63. Every semisimple associative algebra A decomposes into
a direct sum of (nontrivial) simple algebras:

(11.14) A=Al ED ®A
and every ideal of A is a sum of some terms in this decomposition.

Proof. We will prove this theorem under the assumption that char K = 0.
If the algebra A is simple, there is nothing to prove (here s = 1). Let it be
nonsimple and let Al C A be a minimal ideal. Then either

(11.15) A=A1®Ai
or Al C A- L. In the latter case, the ideal Al is nilpotent by Proposition 11.53,
hence this case is impossible. In the former case, the decomposition (11.15)
implies that every ideal of the algebra Al and every ideal of the algebra
At are ideals of A. Thus, the algebra Al is simple and the algebra At is
semisimple. If the algebra At is not simple, apply the same procedure to
it, and so on.

Now let I be an ideal of A. Denote by ak the projection onto the kth
term in the decomposition (11.14). Obviously, Ik = 7rk(I) is an ideal of the
algebra Ak. If Ik 36 0, then Ik = Ak, hence

Ak=Ak=AkIk=AkICI.
This implies that I is a sum of terms in the decomposition (11.14). 0

In particular, every (finite-dimensional) semisimple commutative asso-
ciative algebra A is a direct sum of several finite extensions of K (see Exer-
cise 11.61). If K is algebraically closed, then A is simply a sum of several
copies of K.
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Exercise 11.64. Prove the latter statement (about the algebraically closed
case) by methods of commutative algebra. (Hint: consider Spec A and use
Hilbert's Nullstellensatz.)

Example 11.65. Consider a polynomial h E K[x] without multiple irre-
ducible factors. Let h = pi pe be its decomposition into irreducible factors
over K. By Theorem 9.107, the following algebras are isomorphic:

(11.16) K[t]l(h) ^' K[t]l(pi) ®... ® K[t]l (p8)
This provides a decomposition of the semisimple algebra K[t]/(h) into a
direct sum of simple algebras (finite extensions of K). In particular, when
K = R, in the decomposition (11.16) every real root of h corresponds to
a one-dimensional summand isomorphic to R, and every pair of conjugate
imaginary roots corresponds to a two-dimensional summand isomorphic to
C (see Examples 9.45 and 9.46).

Exercise 11.66. Compute by two methods the inner product (11.11) in the
algebra R[x]/(h) for a polynomial h E R[x] without multiple complex roots.
Prove that the number of pairs of conjugate imaginary roots of h equals the
negative index of inertia of the symmetric matrix (11.13). In particular, all
roots of the polynomial h are real if and only if the matrix (11.13) is positive
definite.

As for simple algebras, the following theorem describes their structure
in the case of an algebraically closed field. The general case is the subject
of Section 11.6.

Theorem 11.67. Every nontrivial simple associative algebra A over an
algebraically closed field K is isomorphic to an algebra of the form L(V),
where V is a vector space over K. Moreover, every nontrivial irreducible
representation of A is isomorphic to the tautological representation of L(V).

(By a trivial irreducible representation, we understand the one-dimen-
sional representation R with R(A) = 0.)

Proof. Consider the restriction of the regular representation of A to a min-
imal invariant subspace V (left ideal) of A. We obtain an irreducible repre-
sentation; denote it by R. Its kernel is an ideal of A. By Burnside's theorem,
either

A - R(A) = L(V)
or dim V = 1 and R(A) = 0. In the latter case, AV = 0, hence

Ao:={xEA:Ax=0}34 0;
however, it is easy to see that Ao is an ideal of A. Thus, AO = A, contra-
dicting nontriviality of A.
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Now let A = L(V) for a vector space V, and let R be the tautologi-
cal representation of A in V. Then the regular representation T of A is
isomorphic to nR, where n = dim V. Let S: A --+ L(U) be an irreducible
representation of A. Choose a nonzero vector ua E U and consider the map

gyp: A, U, a - S(a)uo.

Since

cp(T(a)x) = V(ax) = S(ax)uo = S(a)S(x)uo = S(a)V(x),

W is a morphism of T into S. If S is nontrivial, Im P = U, so that the
representation S is isomorphic to a quotient representation of T. Since S is
irreducible, S ^_- R (by Corollary 11.25). 0

Theorems 11.63 and 11.67 imply that every semisimple associative al-
gebra over an algebraically closed field is isomorphic to an algebra of the
form

(11.17) A=L(Vi)®...®L(V,),

where V1,..., V. are vector spaces. If dim Vi = Y4, i = 1, ... 18,

(11.18) dim

We can determine the number s if we know the center of A. In general,
the center of an associative algebra A is a (commutative) subalgebra

Z(A)={zEA: az=zadaEA}.
It is known that the center of the algebra L(V) is one-dimensional and
consists of scalar transformations (see Exercise 1.80). Thus, for a semisimple
algebra A presented as the decomposition (11.17),

(11.19) dimZ(A) = s.

Let Ri, i = 1, ... , s, denote the irreducible representation of A in the
space V defined by the projection onto L(Vi) in the decomposition (11.17).
Notice that the representations R1,..., R. are pairwise nonisomorphic be-
cause they have different kernels.

Theorem 11.68. Every nontrivial irreducible representation of algebra
(11.17) is isomorphic to one of the representations R1, ... , R,.

Proof. Let S: A - L(U) be a nontrivial irreducible representation of A.
Since S(A) = L(U) is a simple algebra, Ker S is the sum of all terms of
the decomposition (11.17) except for one, say, L(V). But then S is actually
defined by a representation of the algebra L(V), hence, it is isomorphic to
Ri by Theorem 11.67. 0
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Also, another theorem is true: every linear representation of a semisim-
ple associative algebra (over any field) is completely reducible.

11.4. Linear Representations of Finite Groups

The theory of associative algebras provides important information about
linear representations of finite groups.

Let G be a finite group of order n and K a field.

Definition 11.69. The group algebra of the group G over K is the algebra
KG whose basis elements are indexed by elements of the group G so that
the product of basis elements with indices g, h E G is the basis element with
the index gh.

Usually basis elements of the algebra KG are identified with the corre-
sponding elements of the group G. With this identification, every element
of the algebra KG is written as

(11.20) a = > agg, ag E K.

gEG

Associativity of multiplication in G implies associativity of multiplication in
KG.

Every linear representation R of the group G in a vector space V over
a field K uniquely extends to a linear representation of the algebra KG in
the same space by the following formula:

R F ag9 = E agR(g)
gEG gEG

Conversely, the restriction of every linear representation of the algebra KG
to G is a linear representation of the group G. This establishes a one-to-one
correspondence between representations of a group and its group algebra.

Obviously, corresponding representations of G and KG have the same
collection of invariant subspaces. In particular, irreducible representations
of the group correspond to irreducible representations of the group algebra
and vice versa.

Theorem 11.70. If char K does not divide n, the algebra KG is semisimple.

Proof. We use Theorem 11.54. Calculate the inner product (11.11) on the
algebra KG. It is easy to see that for any g E G,

trT(g) = 0,
g 34 e.
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Thus, for every g, h E G,

(11.21) (g, h) _ n, gh = e,

0, gh e.

When char K does not divide n, this inner product is nondegenerate, hence
KG is semisimple. 0

For the rest of this section we assume that K = C. Theorem 11.70 and
results from Section 11.3 imply that the algebra CC is a direct sum of matrix
algebras.

Theorem 11.71. The group C has only a finite number of irreducible com-
plex representations up to isomorphism. Their dimensions nl,... , n8 satisfy
the relation

(11.22) ni+ +n;=n,
while their number s equals the number of conjugacy classes of G.

Proof. The first statement of the theorem and relation (11.22) follow from
Theorem 11.68 and formula (11.18). By formula (11.19), the number s
equals the dimension of the center of the algebra CG. Let us determine this
center.

Element (11.20) lies in the center of CG if and only if it commutes with
all elements of G, i.e., if

hah-1 = a9(hgh-1) _ ah-19hg = a
gEG gEG

for every h E G. This means that in the expression of a, the coefficients of
conjugate elements of G are equal. Therefore, the center of CG is the linear
span of elements of the form > EC g, where C is a conjugacy class. Hence,
the dimension of the center equals the number of conjugacy classes. 0

Example 11.72. For an abelian group, every irreducible representation
is one-dimensional (Corollary 11.15). Their number equals n because in
this case, every conjugacy class consists of one element. This agrees with
formula (11.22).

Example 11.73. Since under every homomorphism of a group G into an
abelian group, its commutant is mapped into the identity, one-dimensional
representations of every group C reduce to representations of the quotient
group GIG'. In particular, for every n, the group S has exactly two one-
dimensional representations: the trivial one and the nontrivial one that maps
a permutation to its sign.
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Example 11.74. For the group S3, there definitely exist three pairwise
nonisomorphic irreducible representations:

R1, the trivial one-dimensional representation;

R'1, the sign of a permutation;

R2, the two-dimensional representation under which S3 is isomorphic to
the symmetry group of an equilateral triangle (check that this representation
is irreducible not only over IR but over C as well!).

Since there exist exactly three conjugacy classes in S3 (or, also, since 12+
12 + 22 = 6), this is the complete list of irreducible complex representations
of S3.

Example 11.75. Similarly, one obtains the following complete list of irre-
ducible complex representations of the group S4:

R1, the trivial one-dimensional representation;

R'1, the sign of a permutation;

R2, the composition of the homomorphism S4 S4/V4 = S3 and the
two-dimensional irreducible representation of S3;

R3, the isomorphism onto the group of rotations of a cube;

R3, the isomorphism onto the symmetry group of a regular tetrahedron.

Remark 11.76. It follows from Examples 11.74 and 11.75 that all irre-
ducible complex representations (and, thus, all complex representations) of
the groups S3 and S4 are complexifications of real representations. It can be
shown that the same is true for the group S for any n. Thus, together with
Proposition 11.5, this implies that one can work with real representations of
S just as with the complex ones. In particular, all theory presented in this
section holds for real representations of Sn.

Exercise 11.77. Describe all irreducible representations of the dihedral
group D.

Exercise 11.78. Prove that every irreducible representation of a group
G x H is a tensor product of irreducible representations of groups G and H
(see the definition in Exercise 11.32).

Let
R,: G GL(V), i = 1,...,s,

be all irreducible complex representations of the group G. Then, after the
appropriate identification, we can assume that

(11.23) CG =L(V1)®0L(V8),
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and A. is just the projection onto the ith summand in this decomposition.
Subspaces L(V) are the isotypic components of the regular representa-

tion T of the algebra CC, and the restriction of T to L(V) is isomorphic to
niRj, ni = dim V. Thus, for every a, b E CG,

(11.24) (a,b) nitr Rj(a)Rj(b)

i=1

(see formula (11.12) ).

Consider now the space C[G] of all complex-valued functions on G. Since
every function cp on G extends uniquely to a linear function on CG according
to the formula

V (>agg') = E agcp(g),
9EC 9EG

the space C[G] is naturally identified with the dual space of CG.
On the other hand, the inner product on the space CG determines its

isomorphism with the dual space. In particular, under this isomorphism, an
element g E G corresponds to the function cpg defined as

:;:o9(h) = (gh =
,

i.e., to the b-function bg-i (at the point g-1) multiplied by n.
With the help of the above isomorphism, we can transfer the inner prod-

uct from the space CG to the space C[G]. Then, for the 8-functions, we
obtain

1 -1) n, gh = e,
(bg, bh) = (g-', h =n 10, gh ,6 e,

and for any two functions cp and t/i,

(11.25) (W" O) = n E w(g)OW).
gEG

Let us calculate now the inner products of the matrix entries of irre-
ducible representations of G.

In each space Vi, i = 1, ... , s, choose a basis and denote by cpiik, j, k =
1, ... , ni, the (j, k)th matrix entry of the operator Ri(g) in this basis. The
function cpijk E C[G] so defined is called the (j, k)th matrix entry of the
representation Ri.

On the other hand, denote by Eijk the linear operator on V whose ma-
trix in the chosen basis is the matrix unit Ejk. The decomposition (11.23)
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implies that the elements Eijk form a basis of the space CG. It follows from
formula (11.24) that

(11.26) ni
and that other inner products of the elements Eijk are zero.

Under the isomorphism of the spaces CG and C[G], the element Eijk
corresponds to the matrix entry tpikj with the coefficient ni, in view of
formula (11.26). Therefore,

(11.27) (coijk, soikj) =

and the other scalar products of matrix entries are zero.
Of particular interest are the sums of diagonal matrix entries; these are

called the characters of representations Ri.
Generally speaking, let R: G - GL(V) be a representation of a group G.

Definition 11.79. The character of the representation R is the function
X E C[G] defined as

X(9) = tr R(9)

Obviously, the character of the sum of two representations equals the
sum of their characters.

Since the traces of conjugate operators are equal,

X(hgh-1) = X(9) d9, h E G.

Functions X E C[G] with this property are called central. They form a
subspace in C[G] that we denote ZC[G]. Clearly, for a finite group G,
the dimension of this subspace equals the number of conjugacy classes, i.e.,
dim ZC[G] = s.

In particular, let Xi be the character of the representation Ri, i =
1, ... , s. Formula (11.27) implies

Theorem 11.80. The characters Xl,... , X, form an orthonormal basis of
the space ZC[G], i.e.,

(11.28) (Xi,Xj) = bij

Let R: G -+ GL(V) be a linear representation with character X.

Corollary 11.81. The multiplicity of an irreducible representation Ri in
the decomposition of R equals (X, Xi)

Proof. If R E , IciRi, then X = E 1 lrXi, hence, (X, Xi) = k,. 0

Corollary 11.82. A representation R is irreducible if and only if (X, X) = 1.
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Proof. If R kjRj, then (X, X) = E;-1 k? = 1 if and only if one of
the multiplicities ki equals 1 while the others are 0.

Instead of the bilinear inner product (11.25) on the space C[G], we can
consider the Hermitian inner product

(11.29) ('PI'') = 1 37 O(9)1G(9),
gEG

which is more useful for actual calculations. If in every space Vi we choose
a basis which is orthonormal with respect to an invariant Hermitian inner
product (see Theorem 11.54), the representation operators are written as
unitary matrices, i.e., the following relations hold:

Wikj(9-1) ='Pijk(9)

In terms of the Hermitian metric (11.29), relations (11.27) and (11.28) mean
that the matrix entries cpijk form an orthogonal basis of the space C[G] and

60ijklWijk) = 1 ,

while the characters Xi form an orthonormal basis of the space ZC[G].

Example 11.83. The character of a one-dimensional representation co-
incides with the only matrix entry or, to put it differently, with the rep.
resentation itself. The cyclic group (a)n has n one-dimensional complex
representations Ro, R1,..., Rn_1 defined by the conditions

Rk(a) = wk, w = e21ri/n

Thus, the characters of this group are given by the following table:

Xo X1 .. Xn-1
e 1 1 ... 1

a 1 w (.ln

a2 1 w n-

a' 1
1 Wn-1 ...

(n-1

The orthogonality relations for the characters mean in this case that if the
character table is divided by f, we get a unitary matrix.

Example 11.84. Using the description of the irreducible representations
of the group S4 provided in Example 11.75, it is not difficult to obtain the
following character table for this group:
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X1 XI X2 x3 X'

e 1 1 2 3 3 1

(12) 1 -1 0 -1 1 6

(12)(34) 1 1 2 -1 -1 3

(123) 1 1 -1 0 0 8

(1234) 1 -1 0 1 -1 6

The leftmost column of this table lists the representatives of conjugacy
classes of S4, and the rightmost column lists the number of elements in
each class: these are needed for the calculations of inner products. For
instance,

(X2,X3) = (X2IX3) = 0.

Example 11.85. Let V be the (6-dimensional) space of functions on the set
of faces of a cube. The isomorphism between S4 and the symmetry group
of the cube defines a linear representation of S4 in the space V. Denote this
representation by R and its character by X. Every element g E S4 permutes
the faces of the cube and thus R(g) permutes the 5-functions of the faces.
Therefore, x(g) = tr R(g) is the number of faces preserved by g. Thus, we
obtain the following table for the values of x:

X

(12)e

6 0

(12)(34)

2

(123)

0

(1234)

2

Calculating the inner products of this character and the characters of irre-
ducible representations of S4 (Example 11.84), we obtain

(xlxl) = 1, 0, (xIx2) =1, (XIx3) = 1, (xIx3) = 0.

Thus,
R^_-R1+R2+ R3.

Exercise 11.88. Describe explicitly the minimal invariant subspaces of the
representation R in Example 11.85.

Exercise 11.87. Let G C S, be a doubly transitive permutation group.
(This means that for every two ordered pairs of different symbols, there ex-
ists a permutation of G that maps the first pair to the second.) Prove that
the representation of G in the space of functions on the set {1,...,n} de-
composes into a sum of exactly two irreducible representations, one of which
is the trivial one-dimensional representation. (Hint: use the expression that
Burnside's formula (Exercise 10.47) gives for the number of orbits of G on
the set {1,...,n} x {1,...,n}.)

Exercise 11.88. Determine the character table of the group A5.
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Exercise 11.89. Let R: G --, GL(V) be a linear representation of a finite
group G. Prove that the projection Pi of the space V onto its isotypic
component that corresponds to the irreducible representation R; of G can
be given by the formula

gEG

where n = IGI, n; = dim R=, and X; is the character of Rj. (Hint: prove
that the element

n4 EXi(g-1)g E CG
gEG

is the unity of the ith summand in the decomposition (11.23); for this,
calculate its inner products with elements of G using (11.21) and (11.24).)

Apart from the operation of addition of representations that we consid-
ered above, there exist other important operations on linear representations
of (arbitrary) groups.

For every linear representation R: G GL(V), it is possible to define
the dual representation R*: G -* GL(V*) by the rule

(11.30) (R`(g)a)(x) = a(R(g)-lx), a E V',x E V,

i.e., by the standard rule describing how a transformation acts on functions.
In the matrix language, this looks as follows:

(11.31) R*(g) = (R(g)T)-1

Therefore, the character of the dual representation is determined by the
formula

(11.32) XR'(9) = XR(9-1)

The definition of the dual representation can be rewritten in the following
symmetric form:

(R*(g)a)(R(g)x) = a(x).

It follows that R** = R (under the canonical identification of V" and V).
It might happen that R' = R; in this case, the representation R is called
self-dual.

For a complex linear representation of a finite group, in a basis that is
orthonormal with respect to an invariant Hermitian inner product, formu-
las (11.31) and (11.32) become

(11.33) R'(9) = R(9), XR(9) = XR(9)
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Example 11.90. For irreducible (one-dimensional) representations of a
cyclic group, we have, in the notation of Example 11.83,

RptiRo, Rk Rn-k, k=1,...,n-1.
Example 11.91. It follows from Example 10.39 that in the group Sn, every
element is conjugate to its inverse. Thus, every linear representation of S
is self-dual.

Exercise 11.92. Prove that if R is an irreducible group representation, the
representation R' is also irreducible.

Exercise 11.93. Prove that all representations of a finite group G are self-
dual if and only if every element of G is conjugate to its inverse.

Now we define the multiplication of linear representations of a group G.

The product of linear representations R: G GL(V) and S: G
GL(W) is the linear representation

RS: G -+ GL(V ® W), g t--, R(g) ® S(g).

(See the definition of the tensor product of linear operators in Section 8.1.)

Remark 11.94. Sometimes the representation RS is called the tensor prod-
uct of representations R and S, but we reserve this term for the representa-
tion of the direct product of two groups, as defined in Exercise 11.32.

Exercise 11.95. Choose bases in the spaces V and W and write R and
S in these bases. We write an element of the space V ® W as the matrix
Z of its coordinates (see formula (8.10)). Prove that in this notation, the
representation RS is described by the formula

(11.34) (RS)(g)Z = R(g)ZS(g)T.

Formula (8.28) implies that

(11.35) XRS = XRXS-

As a rule, the product of irreducible representations is not irreducible.
The decomposition of the product of irreducible representations into irre-
ducible components is one of the fundamental problems of representation
theory. Due to formula (11.35), for representations of finite groups this
problem can be solved with the help of characters.

Example 11.96. Let us decompose the square of the representation R3
of the group S4 (Example 11.75) into a sum of irreducible representations.
Using the character table of S4 given in Example 11.84, we obtain

(X3IXS) = 1, (X3IX'1) = 0, (X3IX2) = 1+

(X3IX3) = 1, (X3Ix3) = 1
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Therefore,

(11.36) R3-Rl+R2+R3+R3.

Similarly, one defines the product of several representations as well as
the symmetric and the exterior power of a representation. For instance, the
symmetric square of a representation R: G -+ GL(V) is the representation

S2R: G -* GL(S2(V)), g ' S2(R(g)).
(See the definition of the symmetric square of a linear operator in Sec-
tion 8.3.)

Formula (8.53) implies that

(11.37) Xs2R(9) = I (XR(9)2 + XR(92))

If we identify the space S2(V) with the space ST2(V) of symmetric
tensors, the representation S2R becomes nothing but the restriction of the
representation R2 to the invariant subspace ST2(V). A similar statement
holds for the exterior square A2R of a representation R. Since T2(V) _
ST2(V) ® AT2(V),

(11.38) R2 -_ S2R + A2R.

Example 11.97. Hooke's law in the theory of elasticity describes the rela-
tion between the deformation tensor or and the stress tensor r of a convex
solid at a given point. Both these tensors are symmetric operators on the
space E3. (For the definition of the deformation tensor, see Example 6.45.)
By lifting indices we can regard them as elements of the space S2(E3).
Hooke's law says that a = Nr, where 7{ is a symmetric operator on the
space S2(E3) called the elasticity tensor. It describes the elasticity proper-
ties of a given convex solid at a given point (under given temperature and
pressure). Since dim S2(E3) = 6, the dimension of the space of symmetric
operators on S2(E3) equals 62 = 21. Thus, in the general case, the elas-
ticity tensor depends on 21 parameters which should be determined from
experiment.

The picture simplifies if the solid has a crystal structure. Namely, let
G = dr, where r is the symmetry group of this crystal structure (see Ex-
ample 9.11). Then the operator 7{ must commute with all operators S2A
for A E G. The general form of such an operator can be determined using
representation theory. The larger the group G, the smaller the number of
parameters on which it depends.

Consider, for example, the crystal of table salt (see Figure 4.2 in Sec-
tion 4.2). Here G is the symmetry group of a cube, i.e., in the notation of
Example 11.75, G = R3(S4) x {±E}. The second factor acts trivially on



452 11. Linear Representations and Associative Algebras

S2(E3) and can thus be discounted. Thus, the operator N must be an endo-
morphism of the representation S2R3 of S4. From formula (11.37), we obtain
the following table for the values of the character X of this representation:

e (12) (12)(34) (123)

X

(1234)

6 2 2 0 0

Calculating its inner products with the characters of irreducible representa-
tions, we conclude that

(11.39) S2R3 a- Rl + R2 + R.

In particular, the representation S2R3 has a simple spectrum. By Proposi-
tion 11.34 (see also Remark 11.76), the general form of this endomorphism
depends on three parameters. Thus, in order to find the elasticity tensor of
the crystal of table salt, one has to determine experimentally just 3 param-
eters (instead of 21!).

Remark 11.98. Due to isomorphism (11.38), decomposition (11.39) could
be found by subtracting from decomposition (11.36) the representation
A2 R3, which can be easily shown to be isomorphic to R3.

Exercise 11.99. Prove that an irreducible representation of a group is self-
dual if and only if it is orthogonal or symplectic (for definitions, see the end
of Section 11.1).

Exercise 11.100. Prove that an irreducible complex representation of a
finite group is a complexification of a real representation if and only if it is
orthogonal.

Exercise 11.101. Prove that the sum of dimensions of orthogonal irre-
ducible representations of a finite group G minus the sum of dimensions
of its symplectic irreducible representations equals the number of solutions
of the equation x2 = e in G. (Hint: calculate the trace of the antiauto-
morphism of the group algebra CG induced by the inversion in G in the
basis consisting of elements of G and in a basis that agrees with decompo-
sition (11.23).)

11.5. Invariants

Every action of a group G on a set X defines a linear representation of this
group in the space F(X, K) of K-valued functions on X (see formula (10.8)).

Definition 11.102. A function f E F(X, K) is an invariant of (this action
of) the group G if gf = f for every g E G.
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In other words, an invariant is a function that is constant on the orbits
of G. Knowing invariants helps in describing orbits, which is an important
problem. Namely, if an invariant f assumes different values at two points,
then these points must belong to different orbits. An ideal solution to this
problem is to list invariants fl, . . . , such that for any two points in dif-
ferent orbits, at least one of the invariants assumes different values at these
points. In this case, we say that the invariants f1, ... , separate the orbits.

Example 11.103. For the group GLn(G) consider the linear representation
Ad in the space Ln(G) defined as

Ad(A)X = AXA-'.

Let fx(t) = det(tE - X) be a characteristic polynomial of X. Write it as

fx(t) = to - f1(X )tn-1 + ... + (-1)n fn(X)

Then fk(X) is the sum of the principal minors of X of order k (Exercise 6.15).
Since characteristic polynomials of similar matrices are equal, f1i ... , fn are
invariants of this action of GLn(C). However, they do not separate orbits.
Indeed, two matrices lie in the same orbit if and only if they have the same
Jordan canonical form, whereas the values of invariants f 1, ... , fn determine
only the eigenvalues of the matrix.

Example 11.104. Invariants of the symmetric group Sn acting on Kn by
permuting the coordinates are functions in n variables that do not change
under any permutation of variables. In particular, invariant polynomials are
the symmetric polynomials.

The space F(X, K) is an algebra with respect to ordinary function mul-
tiplication, and transformations in G are automorphisms of this algebra. It
follows that the invariants form a subalgebra in F(X, K).

Usually, one searches for invariants not among all functions but only
among those that are, in some sense, "good." The most common is the
situation where X = V is a vector space over a field K and the action of G
is defined by its linear representation in V. In this case, one usually confines
the search for invariants to the algebra K[V] of polynomials on V. (This is
what we did in Example 11.103.) The subalgebra of invariants in K[V] is
denoted K[V]G.

We say that the orbits of a linear group G C GL(V) are separated by
invariants if for every two orbits, there exists an invariant f E K[V]c that
assumes different values on them.

Theorem 11.105. If G C GL(V) is a finite group and its order is not
divisible by char K, then its orbits are separated by invariants.
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Proof. Let 01 and 02 be two different orbits. There exists a polynomial
f E K[V] such that the value of f is 1 at every point of O1 and 0 at
every point of 02. The set of all polynomials of degree < deg f with this
property is a plane S in the space of all polynomials of degree < deg f . The
group G preserves this plane and acts on it by of ine transformations. By
Lemma 11.37, there exists a fixed point of G on S. This is an invariant we
need.

Exercise 11.106. In the above proof, we used the fact that for any finite
number of points in V, there exists a polynomial assuming prearranged
values at these points. Prove this.

Example 11.107. Defining a vector (xl, x2i ... , xn) E Kn up to a permu-
tation of its coordinates is equivalent to giving the polynomial

(x - x1)(x - x2)...(x - xn) E K[xJ.

Coefficients of this polynomial are, up to a sign, elementary symmetric poly-
nomials in x1, x2i ... , x,,. Therefore, the orbits of the group S in the space
K° (see Example 11.104) are separated by elementary symmetric polyno-
mials (which are invariants of Sn) and, certainly, by all invariants.

If the algebra K[V]G is generated by invariants and these
invariants assume the same values at two points, then all invariants assume
the same values at these points. Thus, if the orbits of G are separated by (all)
invariants, they are also separated by invariants fl, . . . , fm. For instance, in
the previous example, we could say beforehand (whenever char K does not
divide IGI) that the orbits of S,, must be separated by elementary symmetric
polynomials, since these polynomials generate the algebra of all symmetric
functions.

The following theorem is a particular case of the modern version of
Hilbert's finiteness theorem. Hilbert himself proved this theorem in 1891
for linear representations of SLn(K), but proofs based on his ideas can be
applied to a more general setting and, in particular, to the case of simple
groups.

Theorem 11.108. If G is a finite group and its order is not divisible by
char K, then the algebra K[VJG is finitely generated.

The statement of this theorem means that there are invariants fl,..., fm
such that every invariant can be represented as a polynomial in fl,..., fm
(but perhaps not uniquely).
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Proof. Define the so-called Reynolds operator 4 (this symbol is called "nat-
ural") as

(11.40) f =cent Gf = 1 E gf.
gEG

This linear operator has the following properties:

(i) f O E K[V]G for every f E K[V];

(ii) f a= f for every f E K[V]G;

(iii) (f h)a = f h4 for every f E K[V]G, h E K[V].

In other words, this is a projection onto the algebra of invariants that
commutes with multiplications by invariants.

Observe that a polynomial is invariant if and only if all its homogeneous
components are invariant and that the Reynolds operator maps a homoge-
neous polynomial to a homogeneous polynomial of the same degree.

Now let I C K[V] be an ideal generated by all homogeneous invariants
of positive degree. By Hilbert's basis theorem, I is generated by a finite
number of polynomials. Clearly, these can be chosen among homogeneous
invariants. Let these be invariants fl,.. -, fm, and let

K[f1,...,fm] C K[V]G

be the subalgebra that they generate. We will show that it coincides with
the algebra of invariants. For this, we prove by induction on n that every
homogeneous invariant of degree n lies in the algebra K(f1,... , f,,,].

For n = 0, there is nothing to prove (the algebra K[f1, . . . , fm] contains
the constants by definition). Let f be a homogeneous invariant of positive
degree. Since f E I, there exist polynomials hl, ... , hm E K[V] such that

m

f =>f=hi.
i=1

Without loss of generality, we can assume that h; is a homogeneous polyno-
mial of degree

deg h= = deg f - deg fi < deg f.
Applying the operator b to the previous equality, we obtain

m

f
By induction hypothesis, ha E K[ f i, ..., fm]. Hence, f E K[ fl, ... , fm].

In particular cases, finding a finite generating set of the algebra of in-
variants explicitly can be a difficult problem.
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Example 11.109. Here we give another proof that the algebra of invari-
ants of the symmetric group Sn, i.e., the algebra of symmetric polynomials
(see Example 11.104), is generated by elementary symmetric polynomials
a1i ... , an. We showed in Example 10.81 that

S.,

and al, . . . , an are algebraically independent. Since x1i ... , xn are the roots
of the polynomial

(x-XI)...(x-xn) =xn -ajxn-1 +...+(-1)nan

with coefficients in K[a1i... , an], the algebra K[xl,... , xn] of all polynomi-
als and, a fortiori, its subalgebra K[x1 i ... , x,,]S" are integral extensions of
the algebra K[al,... , an]. At the same time,

K[x1,... , xn]s C K(xl,... , 2n)S _- K(al,... , an).
Since the algebra K[o1,... , an] is isomorphic to the algebra of polynomials
in n variables and, hence, factorial, it is normal (integrally closed in its
quotient field). Therefore,

K[xl,... , xn]S^ = K[a1,... , an].

Example 11.110. One should not think that, as in the previous example,
the algebra of invariants is always generated by algebraically independent
elements. Such a situation is rather an exception than a rule. For example,
consider the group

G = {±E} C GL(V), char K : 2.

A homogeneous polynomial is an invariant of this group if and only if it has
an even degree. Thus, here the minimal set of generators of the algebra of
invariants consists of polynomials fib = xixj and these are related:

fijfkl = fikfjl-

Remark 11.111. Theorems 11.105 and 11.108 still hold for finite groups
whose order is divisible by char K but the proofs provided above are no
longer valid.

When K = R, the above theorems can be generalized to arbitrary com-
pact groups.

Theorem 11.112. The orbits of a compact group G of linear transforma-
tions of a real vector space V are separated by invariants.

Proof. Following the proof of Theorem 11.105, we cannot expect now that
a polynomial assuming 1 on 01 and 0 on 02 exists. However, by the Weier-
strass approximation theorem (on uniform approximation by polynomials of
a continuous function on a compact set), there exists a polynomial f that is



11.5. Invariants 457

positive on Ol and negative on 02. The collection of polynomials of degree
5 deg f with this property is a G-invariant convex set M in the space of all
polynomials of degree < deg f . A fixed point of G in this set is an invariant
we need.

Remark 11.113. For complex vector spaces, an analogous theorem fails as
the example of the circle T C C' = GLi (C) demonstrates.

Theorem 11.114. Let G be a compact group of linear transformations of
a vector space V over the field K = R or C. Then the algebra K[V]G is
finitely generated.

As Theorem 11.108, this theorem is a particular case of Hilbert's finite-
ness theorem.

Proof. The proof can follow that of Theorem 11.108 once we define the
Reynolds operator with properties (i)-(iii). This can be done by replacing
summation over a finite group in formula (11.40) with a properly defined
integration over a compact group. (For instance, in the case of G = 7, this
is the standard integration over a circle.) However, we will use a different
construction.

By complete reducibility of linear representations of a compact group
(see Corollary 11.44), the space K[V]n of homogeneous polynomials of de-
gree n on V decomposes into the direct sum of the subspace K[VJn of
G-invariant polynomials and a G-invariant subspace (K[V]n)G. Let

00

K[V]G = ®(K[V]n)G-
n=0

Clearly, the subspace K[V]G is invariant under G and

(11.41) K[V] = K[V]G ® K[V]G.

Now, let us define the operator b as the projection onto K[V]G with
respect to decomposition (11.41). By construction, this projection commutes
with the action of G. It remains only to check that it commutes with
multiplication by invariants. For this, it suffices to prove that

K[V]GK[V]G C K[V]G

The multiplication by an invariant f E K[V]G commutes with the action
of G, i.e., it is an endomorphism of the representation of G in the space K[V]-
Since the subspace K[V]G is, by construction, a complement of K[V]G, the
representation of G on K[V]G decomposes into a sum of nontrivial irre-
ducible representations. The same can be said about the representation of
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G in fK[VJC. Hence, the projection of this subspace onto K[V]C is zero,
i.e.,

fK[VJC C K[VJC,
and this completes the proof.

Example 11.115. Consider the linear representation R of the group O
in the space Ln of real symmetric matrices of order n determined by the
formula

R(A)X = AXA-1(= AXAT ).

Consider the characteristic polynomial of X,

det(tE - X) = t' - f1(X)tn-1 + f2(X)t"-2 - ... + (-1)"fn(X )

Let us prove that
R[Ln ]R(On) = R[f1,... , ff]

and that fl, ... , fn are algebraically independent. For this, recall that every
symmetric matrix is orthogonally similar to a diagonal matrix. Thus, every
invariant f of the group R(On) is determined uniquely by its restriction to
the space D of diagonal matrices. Since diagonal matrices that differ only
in the order of their diagonal elements are orthogonally similar, f [D is a
symmetric polynomial in diagonal elements x1, ... , xn. A direct check shows
that the restrictions of the invariants f 1i . . . , fn to D are the elementary
symmetric polynomials in x1,.. . , xn. Then the statements we are proving
follow from the theorem about symmetric polynomials. Notice that in this
example, the orbits are separated by invariants, as they should be, according
to Theorem 11.112.

11.6. Division Algebras

Since the field of complex numbers is algebraically closed, it follows that
the only finite-dimensional algebras over R that are also fields are R and
C. However, if we drop the condition of commutativity for multiplication,
we can construct one more such algebra, namely the algebra of quaternions.
This algebra also plays an important role in mathematics and its applica-
tions. The theory turns out to be even more substantial if, as a base field,
we consider an arbitrary field instead of R (e.g., Q).

Definition 11.116. A division ring is an associative ring with unity where
every nonzero element has an inverse. An algebra that is also a division ring
is called a division algebra.

Remark 11.117. A ring that consists of zero only is not regarded as a
division ring.
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In other words, a division ring is a "noncommutative field." Similarly
to a field, a division ring has no zero divisors and its nonzero elements form
a multiplicative group (though, not necessarily abelian). The multiplicative
group of nonzero elements of a division ring D is denoted D*.

Every division ring D can be viewed as a division algebra over its center

Z(D)={zED: za=azdaED},
which is obviously a field.

In a division algebra D with the unity 1 over a field K, the elements
of the form Al, A E K, form a subring isomorphic to K. It is contained
in the center Z(D) of D. Usually these elements are identified with the
corresponding elements of K. With this identification, Z(D) D K. An
algebra D is called central if Z(D) = K.

Exercise 11.118. Prove that a finite-dimensional associative algebra is a
division algebra if and only if it contains no zero divisors.

The simplest and most important examples of noncommutative division
algebras are the quaternion algebras.

A (generalized) quaternion algebra over a field K of characteristic 36 2
is an algebra D = D(a, j3), a, f3 E K*, generated by elements %,3 satisfying
the following relations:

g2 = a, ? = 3, t9 = --n-

It is easy to see that the elements 1, z, 3, and k = z3 constitute a basis of the
algebra D over K with elements z, 3, k pairwise anticommutative and

k2 = -a,3.

In particular, for K = H, the algebra D(-1, -1) is the ordinary algebra of
quaternions H discovered by Hamilton in 1843.

The algebra D(1, 1) is isomorphic to the matrix algebra L2(K). This
isomorphism is established/ as follows:

/ l
1 +-- (1 i) , i 1 -0 I , ? -* I 0 0 I , k -0 0 .

In order to

/l

determine if it is possible to \\dividell in a quaternion algebra,
define for every quaternion

q=x+yz+z3 +uk, x,y,z,uE K,

the conjugate quaternion 4 by the formula

4=x-yz-z3 - uk.



460 11. Linear Representations and Associative Algebras

It is easy to see that the linear map q H q, called the standard involution,
is an antiautomorphism of the algebra D, i.e.,

gig2 = 4241

(By linearity, it suffices to check this for the basis elements.) The element

(11.42) N(q)=qq=x2-ay2-f3z2+a,Qu2EK
is called the norm of the quaternion q. Clearly, q is invertible if and only if
N(q) 96 0 (and in this case, q-' = N(q)-'q)

The algebra D = D(a, Q) is a division algebra if and only if the equation

x2 - ay2 - f3z2 + of u2 = 0

has no nonzero solutions in the field K or, as this is sometimes said, if the
quadratic function (11.42) does not represent zero over K. In particular,
this condition holds for K = P and a = Q = -1 since in this case the
quadratic form (11.42) is positive definite.

Finally, observe that for any a, b E K`, we have
(at)2 = a2a, (b3)2 = b2/3, (at)(b3) = -(b3)(az).

This shows that

D(a2a, b213) = D(a, Q).

Exercise 11.119. Prove that in the algebra D(1, 1) ^-- L2(K), the norm of a
matrix is its determinant. Interpret in matrix terms the standard involution
of this algebra.

Exercise 11.120. Prove that D(a,1) ^_- L2(K) for every a E K.

If D is a finite-dimensional division algebra over a field K, the subalgebra
K[x] is commutative for every x E D, hence, it is a field. Thus, every finite-
dimensional division algebra over an algebraically closed field K coincides
with K.

When dealing with division algebras over a field that is not algebraically
closed, it is always useful to study what happens over algebraic extensions of
this field. For instance, in the study of real algebras, it is useful to investigate
their complexifications. Allowing algebraic extensions, we put ourselves in
the situation equivalent to that over an algebraically closed field. On the
other hand, many properties of algebras are preserved in such extensions.

Let A be an algebra over a field K and P an extension of K. The vector
space A(P) = P®K A can be turned into an algebra over P if we define the
product of its elements by the rule

(A (& u)(µ 0 v) = Aj 0 uv.
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Identifying every element a E A with the element 10 a E A(P), we obtain
an inclusion of the algebra A into A(P). If lei,..., e,,} is a basis of A over
K, then the multiplication in K is defined by the formulas

eiej = >cijkek.
k

Elements cijk E K are called the structure constants of the algebra A in
the basis {el, ... , The same formulas define the multiplication in the
algebra A(P) in the basis {el, ... , en}. However, it makes sense to con-
sider extensions because there exist other bases of A(P) where the structure
constants might look simpler.

To gain something from this method, we need, of course, to prove be-
forehand that some properties of an algebra are invariant when the base
field is extended.

Proposition 11.121. A semisimple finite-dimensional associative algebra
A over a field K of zero characteristic remains semisimple if we pass to any
extension P of K.

Proof. We use here the criterion for semisimplicity of a finite-dimensional
associative algebra which relates to the inner product (see Theorem 11.54).
Obviously, in a basis that consists of elements of A, the matrix of the inner
product in A(P) is the same as in A. Thus, it is nonsingular, implying that
A(P) is semisimple.

For example, let L be a finite extension of a field K. Regard it as an
algebra over K. This algebra is semisimple (even simple); therefore, by the
above, for every extension P of K, the algebra L(P) is also semisimple,
hence, it is a direct sum of finite extensions of P.

Let a E L \ K be an element with the minimal polynomial h over K.
Then

L D K[a] ^_- K[x]/(h),

hence
L(P) D P[a] ^ P[x]/(h).

If the polynomial h is reducible over P, in particular, if it has a root in P,
then P[a] and, a fortiori, L(P) are not fields. Thus, by taking successive
simple algebraic extensions of K, we can obtain a finite extension P such
that

(11.43) L(P) ^- P 9 P, n = dimK L.
n

If P D K is such an extension, we say that L splits over P.
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As an example of an application of the above approach, let us prove the
Primitive Element Theorem:

Theorem 11.122. Every finite extension L of a field K of zero character-
istic is simple, i.e., generated over K by a single element.

Proof. Let dimK L = n. If L is not generated as an algebra over K by
a single element, then for every a E L, the elements 1, a, a2, ... , an-I are
linearly dependent. This can be expressed by setting the determinant formed
by columns of coordinates of 1, a, a2, ... , an-I in some basis of L over K
identically equal to zero. As a function of coordinates of a, this determinant
is a polynomial with coefficients in K. If it is zero for all values assumed
by the variables in K, it is a zero polynomial, hence it equals zero in every
extension P over K. This, in turn, means that the algebra L(P) is not
generated over P by a single element.

However, if L splits over P, it is easy to prove that L(P) is generated
by a single element. Indeed, consider an element

a=(a1,...,an) E P®...ED P
n

with different coordinates a1, ... , an E P. Then the determinant formed
by the coordinates of the elements 1, a, a2, ... , an'I is the Vandermonde
determinant for s1, ... , a,,, thus nonzero.

We now turn to the study of noncommutative finite-dimensional division
algebras. Clearly, every division algebra is simple.

Let D be a finite-dimensional central division algebra over a field K.

Proposition 11.123. The algebra D remains simple over every extension
P of K.

Proof. Let I C D(P) be a nonzero ideal. Consider a shortest nonzero linear
combination of the form

a = E,\iai, \i E P, ai E D,
i=1

belonging to I. Clearly, a1, ... , a, are linearly independent over K; otherwise
we could have reduced the number of summands. Likewise, a1, ... , A. are
linearly independent over K.

By multiplying the element a by ai 1 (on either side), we obtain a1 = 1
and still remain inside I. If 8 > 1, then a2 f K = Z(D), thus, there exists
an element c E D' such that cat 34 a2c. We have

a - cac1 = :Lai(ai - caic
1)

E I,

i=2



11.6. Division Algebras 463

while a - cac-1 56 0 since \2, ... , A are linearly independent over K and
a2 - ca2c 1 0 0. This contradicts the definition of a. Therefore, a = 1. But
then, I E) 1 and I = D(P). 0
Theorem 11.124. There exists a finite-dimensional extension P of K such
that D(P) Ln(P) for some n E N.

Corollary 11.125. dim D = n2.

The number n is called the degree of the algebra D and is denoted deg D.
For instance, the degree of a quaternion algebra is 2.

Proof of Theorem 11.124. Let k be a maximal algebraic extension of K.
(Its existence is proved with the use of Zorn's lemma.) This algebraically
closed field is called the algebraic closure of K. By Theorem 11.67,

D(K) ^_- L,,(K)

for some n E N. Let e;j E D(k) be the elements that are identified by this
isomorphism with matrix units, and let P C K be the subfield generated
over K by the coordinates of all these elements in a basis of D(K) composed
of elements of D. Obviously, P is a finite extension of K and D(P) =
Ln(P). 0

If P D K is an extension such that D(P) - Ln(P), we say that D splits
over P.

Example 11.126. A quaternion algebra D(a, l3) splits over the field P =
K(f , 0)

We gain important information about the algebra D from the study of
its maximal commutative subalgebras or, to put it differently, its maximal
subfields.

Theorem 11.127. Every maximal subfield F of the algebra D has dimen-
sion n over K. Every isomorphism of maximal subfields extends to an inner
automorphism of D.

(We do not claim, however, that all maximal subfields are isomorphic.)

Proof. First of all, observe that if F is a maximal commutative subalgebra
of D and P is an extension of K, then F(P) is a maximal commutative sub-
algebra of D(P). Indeed, the maximality condition means that F coincides
with its own centralizer

ZD(F)={xE D: ax=xa`daE F},
and this is equivalent to

dim ZD(F) = dim F.
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However, the coordinate definition of the centralizer is written as a system
of homogeneous linear equations with coefficients in K, and the dimension
of the space of solutions of any homogeneous system of linear equations does
not change if we pass to an extension field.

Now, let k be the algebraic extension of K. Then D(K) ^_- and

F(K) Kim,
m

where m = dim F. The latter means that F(K) has a basis {el,... , em}
such that

e? = e;, etej = 0 for i # j.
If we view the algebra L,, (k) as an algebra of linear operators, the elements
el, ... , em correspond to pairwise commuting projections. In a suitable ba-
sis, these projections have diagonal matrices.

Identify the algebra D(K) with via a fixed isomorphism. Then
the above discussion implies that there exists an element c E D(k)* such
that cF(K)c 1 consists of diagonal matrices. But since cF(K)c 1 is a maxi-
mal commutative subalgebra, it coincides with the subalgebra of all diagonal
matrices. Hence, m = n, which proves the first assertion of the theorem.

Now let F1, F2 C D be two maximal commutative subalgebras and
gyp: Fl -24 F2, an isomorphism. Then p extends to an isomorphism

io: F1(K) 2- F2(K).

The above discussion shows that there exists an element c E D(K)' such
that c1F(K)c 1 = F2(K). More precisely, since every automorphism of the
algebra of diagonal matrices is simply a permutation of diagonal entries,
hence induced by an inner automorphism of the algebra D(K), we
can assume that

(11.44) cac 1 = p(a) for a E F, (k).

We need to prove that there exists a nonzero element x E D such that
xax-1 = V(a) for a E F1 or, equivalently, that

xa=co(a)x VaEFl.

In the coordinate form, this conditions are written as a system of homoge-
neous linear equations with coefficients in K. It follows from (11.44) that
this system has a nonzero solution in K; but then it has a nonzero solution
in K as well. 0

Let us apply the theory that we have just developed to the description
of division algebras over R and over finite fields.
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Theorem 11.128 (Frobenius Theorem). Every finite-dimensional division
algebra D over iR is isomorphic to either lit, or C, or H.

Proof. The center Z(D) of D is a finite extension of lit, hence it is isomor-
phic to either IIt or C. In the latter case, D can be viewed as an algebra over
C; thus, since C is an algebraically closed field, D = C.

Now let Z(D) = R, i.e., let D be a central algebra. Since every maximal
subfield of D is isomorphic to either i[t or C, deg D = 1 or 2. In the former
case, D = R. Now consider the latter case.

Choose a maximal subfield of D and identify it with C. By Theo-
rem 11.127, the complex conjugation in C extends to an inner automorphism
of D, i.e., there exists an element 7 E D such that 3zj-1 = z for every z E C.
Clearly, j ¢ C. Therefore, D = C ® C1. Now, since j2 commutes with
and with all elements of C, J2 E Z(D) = R. Multiplying 3 by a suitable real
number, we obtain 32 = ±1. However, the case 72 = 1 is impossible because
then (j + 1)(3 - 1) = 0. Therefore,

a2=32=-1, 13=-.7z,

implying D = H.

Theorem 11.129 (Wedderburn's Theorem). Every finite division ring is
commutative, i.e., is a field.

Proof. Let D be a finite division ring with the center K. Then D is a
finite-dimensional central division algebra over K. The first statement of
Theorem 11.127 implies that all maximal subfields of D contain the same
number of elements, hence are isomorphic. The second statement implies
that they can be obtained from one another by inner automorphisms of D.
Furthermore, every element a E D is contained in the subfield K[a], hence,
in a maximal subfield.

Let F be a maximal subfield of D. The above implies that the group D*
is covered by subgroups conjugate to F'. The number of these subgroups
equals [D' : N(F')] and, at any rate, does not exceed [D' : F']. Therefore,

ID`I <IFtI[D':F`]=ID'I.

However, the equality is impossible here for the simple reason that all these
subgroups contain the identity. The only exception is the trivial case, when
D' = F', thus, D = F(= K).

Unlike the case of JR and the finite fields, there exist central division
algebras of any degree over many other fields, for instance, over Q.
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Example 11.130. Let F = Q(9), where 9 is a root of the irreducible poly-
nomial

f =t3-3t+1.
The discriminant of f equals 81 = 92; therefore, F is a Galois extension
of Q of degree 3 (see Example 10.80). Let or be a generator of the group
Gal F/Q. Consider formal expressions

(11.45) as + als + a282, ao,a,,a2 E F.

Define the multiplication of such formal expressions using the distributive
laws, the associativity law, and the relations

s3 = 2, sa = o(a)s, a E F.

We obtain a 9-dimensional noncommutative algebra D over Q containing
the field F as a subalgebra. Let us prove that D is a division algebra.

The algebra D can be presented by matrices of order 3 over F. Namely,
we map every element a E F to the matrix

fa 0 0
T(a) = 0 o(a) 0

0 0 a2(a)

and thus obtain an embedding of the field F into L3(F) (as a Q-subalgebra).
Now, consider the matrix

0 1 0

S= 0 0 1

2 0 0

It is easy to check that

S3 = 2E, ST(a) = T(a(a))S.

Therefore, matrices of the form

ao al a2

(11.46) T(ao) + T(al)S + T(a2)S2 = 2a(a2) a(ao) a(al)

2a2(al) 2a2(a2) a2(ao)

where ao, al, a2 E F, form a Q-subalgebra of the algebra L3(F) isomorphic
to D. It consists of all matrices A E L3(F) satisfying the condition

(11.47) SAS-1 = a(A),

where a(A) denotes the matrix obtained from A by applying a to all its
entries.

Obviously, if a matrix A satisfying condition (11.47) is nonsingular, the
matrix A-1 also satisfies condition (11.47). Thus, to prove that D is a divi-
sion algebra, it suffices to check that every nonzero matrix of the form (11.46)
is nonsingular.
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To prove the latter statement, we apply reduction modulo 2. Let 0 be
the ring of integers of the field F. Obviously, 0 is invariant with respect
to the group Gal F/Q so that if a E 0, then T(a) E L3(0). Furthermore,
0 contains the subring Z[9] _ {uo + u10 + u262 : uo, U1, U2 E Z}. Since the
polynomial

[f12=t3+t+1EZ2[t]
is irreducible over Z2, the quotient ring

Z[e1 /2Z[O] = Z2[t)/[f]2Z2[t]

is the field with eight elements. There exists a natural homomorphism

(11.48) Z[0]/2Z[8] - 0/20.

Since the additive group of 0 is isomorphic to Z3, 10/201 = 8. It follows
that the homomorphism (11.48) is, in fact, an isomorphism; thus the ring
0/20 is also a field.

By multiplying the element (11.45) in D by a suitable rational number,
we can obtain the situation where the numbers ao, a1, a2 belong to 0 and
at least one of them does not belong to 20. If ao E 20 but a1 20, then,
multiplying by s-1 = s2/2, we obtain ao 0 20. If ao, al E 20 but a2 20,
we obtain the same result when multiplying by s-2 = s/2. Therefore, it
suffices to prove that elements (11.45) in D such that

ao, al, a2 E 0, ao 0 20

are invertible.

With these conditions, all elements of matrix (11.46) belong to 0 and
the reduction of this matrix modulo 2 is a strictly triangular matrix over
the field 0/20. The determinant of the latter matrix is nonzero. It follows
that the determinant of matrix (11.46) is nonzero; this completes the proof.

Since dim D = 9, D is a central division algebra of degree 3.

Division algebras appear naturally in the study of irreducible linear
representations over fields that are not algebraically closed. Namely, let
R : X - L(V) be a nontrivial irreducible representation of a set X over a
field K. Consider the set D of endomorphisms of R. Obviously, this is a
subalgebra in L(V). By Theorem 11.12, every nonzero endomorphism of R
is invertible. Therefore, D is a division algebra.

The space V can be viewed as a D-module or, as it is sometimes called,
a vector space over D. (It is easy to see that every finitely generated module
over a division algebra has a basis just as a vector space over a field.) The
set R(X) is contained in the algebra LD(V) of linear transformations of this
vector space (which is isomorphic to an algebra of matrices over D). It is
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not difficult to obtain the following generalization of Theorem 11.31: the
subalgebra of L(V) generated by the set R(X) coincides with LD(V).

This implies, in turn, the following generalization of Theorem 11.67:
every nontrivial simple finite-dimensional associative algebra over a field K
is isomorphic to the algebra of all linear representations of a vector space
over a division algebra over K.

In particular, by the Frobenius theorem, irreducible real linear represen-
tations separate into three types with D = R, C, or 1111, respectively.

Exercise 11.131. Prove that the representations of these three types are
described by whether their complexifications remain irreducible, split into a
sum of two nonisomorphic irreducible representations, or split into a sum of
two isomorphic irreducible representations, respectively.

If we do not require associativity, the definition of a division algebra
should be changed. An algebra D (not necessarily associative) is called a
division algebra if for every a, b E D, a 0 0, each of the equations ax = b
and ya = b has a solution.

Exercise 11.132. Prove that for associative algebras, this definition is
equivalent to the previous one.

Exercise 11.133. Prove that the statement of Exercise 11.118 also holds
for nonassociative algebras.

Dropping the associativity condition, we can produce new interesting
examples of division algebras, even over R.

Example 11.134. We present here a construction of the octonion algebra
0, which is the most interesting example of a nonassociative division algebra
over R.

Let V be a three-dimensional vector space over the field Z2. Consider
the 8-dimensional algebra 0 over R with the basis {ea : a E V) and the
multiplication table

eseb = e(a,b)ea}b,

where the coefficients e(a, b) are equal to ±1 and are determined according
to the following rules:

(i) E(0, b) = e(a, 0) = 1, so that eo = 1 is the unity of the algebra 0;

(ii) e(a,a) = -1 for a 0 0, so that the square of every "imaginary unit"
ea, a 0 0, equals -1;

(iii) e(a, b) = -e(b, a) for a, b 0 0, a 36 b, so that the imaginary units
anticommute;
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(iv) e(a, b) = e(b, c) = e(c, a) for a, b, c 54 0, a + b + c = 0, so that
any two imaginary units generate a subalgebra isomorphic to the algebra of
quaternions;

(v) e(a, b)e(b, c)e(c, d)e(d, a) = -1 for distinct a, b, c, d # 0, a + b +
c+d=0.

Nonzero vectors of V can be viewed as points of the projective plane PV
over the field Z2. With this interpretation, condition (iv) pertains to triples
of points on one line and condition (v), to quadruples of points neither three
of which lie on one line.

Figure 11.1

An example of a choice of coefficients e(a, b), a, b 36 0, a 3A b, satisfying
conditions (iii)-(v) is given in Figure 11.1, where the lines of PV are denoted
by six lines and one circle, and the arrow from a point a to a point b stands for
e(a, b) = 1. (Other coefficients can be reconstructed via rules (iii) and (iv).)
It is not difficult to show that any other choice of coefficients e(a, b) reduces
to this one by multiplication of some imaginary units by -1.

The algebra 0 constructed above is called the octonion algebra or the
Cayley algebra.

As in the case of quaternions, the linear map u - u that preserves the
unity and multiplies all imaginary units by -1 is an antiautomorphism of
the algebra 0. The element N(u) = uu, called the norm of the octonion u,
lies in R and equals the sum of squares of its coordinates. If u 0 0, then
N(u) 36 0 and

(11.49) U-' = N(u)-'u

is the inverse of u. Conditions (i)-(iii) suffice to establish all these properties;
however, since 0 is not associative, they do not insure that it is a division
algebra.
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When associativity is not valid, the weaker property of alternativity is
sometimes sufficient. An algebra is called alternative if the associator

(uvw) = (uv)w - u(vw)

of any three of its elements is skew-symmetric in u, v, w. In particular, it
follows that when either two of the elements are the same, associativity
holds.

Exercise 11.135. Prove that in an alternative algebra, a subalgebra gen-
erated by any two elements is associative.

Let us show that the algebra 0 is alternative. By linearity, it suffices
to check that the associator of any three basis vectors ea, eb, e, a, b, C E
V, is skew-symmetric. If a, b, c are linearly dependent, ea, eb, e, lie in an
associative algebra and there is nothing to check. Assume that a, b, c are
linearly independent. Let us prove that not just the associator but also
the products (eaeb)ec, ea(ebec) are skew-symmetric in a, b, c. For instance,
consider the first one. Clearly, it is skew-symmetric in a and b. Thus,
it suffices to check that it is skew-symmetric in b and c. Conditions (iii)
and (iv) imply that

(eoeb)ec = e(a,b)E(a + b,c)ea+b+c = -E(a,b)e(a + b + c,c)ea+b+c

and, similarly,

(e.eC)eb = e(a,c)E(a + c,b)ea+b+c = -E(c,a)e(b,a + b + c)ea+b+c.

But condition (v) implies that

e(a, b)E(a + b + c, c) = -r(c, a)e(b, a + b + c).

It follows that
(eaeb)ec = -(eaec)eb

The skew-symmetricity of the second product is shown similarly.

Formula (11.47) for the inverse element in 0 implies that

u 1 E (1, u);

thus if two elements in the product of three are inverses of each other, then,
just as when they coincide, we have associativity. Therefore, for u # 0, the
element u -1v is a solution of the equation ux = v and the element vu-1 is
a solution of the equation yu = v. Hence, 0 is a division algebra.

There exists the following theorem: every alternative finite-dimensional
division algebra over R is isomorphic to either R, or C, or H, or 0.
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Lie Groups

The definition of a Lie group is similar to that of a topological group.
Namely, a Lie group is a group C that possesses a structure of a differ-
entiable manifold such that the group operations

,a:GxG - G, (x,y)- xy,

are differentiable. In other words, (local) coordinates of a product are differ-
entiable functions of (local) coordinates of the factors, and the coordinates
of the inverse of an element are differentiable functions of the coordinates
of this element. A Lie group can be viewed as a topological one but its
structure is richer.

In the above definition, we can consider either real or complex manifolds.
Respectively, we thus come to the definitions of a real and a complex Lie
group. To cover both cases at once, we denote the base field (respectively,
JR or C) by K.

Examples of Lie groups are the additive and the multiplicative group of
K and the group of nonsingular matrices (or, in geometric terms,
the group GL(V) of invertible linear transformations of an m.dimensional
vector space V over the field K). In the latter case, the coordinates are the
matrix entries.

The theory of Lie groups encompasses algebra, analysis, and geometry.
For this reason, its methods and concepts play an important role in the
majority of areas of mathematics and theoretical physics.

471
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12.1. Definition and Simple Properties of Lie Groups

We will not use the general definition of a Lie group that we supplied above.
To simplify the presentation, we restrict ourselves to linear Lie groups: the
ones that are subgroups of GL,,(K). Actually, almost every Lie group can
be presented as a linear Lie group.

By a differentiable function, we mean a function that has continuous
partial derivatives of the first order in all of its domain. However, in all
examples below, the functions are analytic and, in the case K = C, it is well
known that every differentiable function is analytic.

Recall that a subset M C K" is called a d-dimensional differentiable
manifold if for every point p, it can be defined in some neighborhood of p
by a system of equations

(12.1) A(XI,...,xn) =0, i = 1,...,m,
where m = n - d and fl, ... , f,n are differentiable functions such that the
rank of their Jacobian matrix at p equals m.

Remark 12.1. Any open subset of Kn is determined locally by an empty
system of equations and so, by definition, it is an n-dimensional differentiable
manifold. On the other hand, every discrete subset is defined locally by the
system of equations of the form xi = ci, i = 1,.. . , n, hence, it is a zero-
dimensional differentiable manifold.

The restriction on the rank of the Jacobian matrix of the functions
fl,..., f.. means that it has a minor of order m that is nonzero at the
point p. Without loss of generality, assume that

(12.2) (p) 910.

8t, Ox-

Then, the implicit function theorem implies that, as in the case of a system
of linear equations, we can regard "free" variables x,1,. , xn as param-
eters of a point of M in some neighborhood of p; the "principal" variables
XI, . . . , x,, can be expressed in terms of the free ones via differentiable func-
tions:

Ixl ='p1(xm+i,...,xn),
(12.3)

xm = pm(xm+l,...,xn).

More precisely, let PI , .... pn be coordinates of p. Then there exists
a neighborhood U of the point (P1,.. . , p,,,) in the space K'n of principal
variables and a neighborhood V of the point (pin+1, ... , p,) in the space
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Kd of free variables such that the intersection M n (U x V) is the graph
of the differentiable map gyp: V -, U defined by equations (12.3), i.e., a
point (xi, . . , xm, xm+1, . , xn) E U x V belongs to M if and only if condi-
tions (12.3) hold.

The tangent space Tp(M) at a point p of the manifold M defined by
equations (12.1) consists of vectors (dx1,... , dx") E K" that satisfy the
system of homogeneous linear equations obtained by differentiating equa-
tions (12.1) at p:

(12.4) dfi(p) _ fi (p)dxj = 0, i = 1,...,m.
j=1 j

Observe that the restriction on the rank of the Jacobian matrix of the func-
tions f1i... , fm is equivalent to the condition that the dimension of the
space of solutions of the system (12.4) be equal to n - in. Sometimes check-
ing the latter is easier than calculating the rank of the Jacobian matrix.
If condition (12.2) holds, we can take dxm+1,... , dx" as free variables in
system (12.4).

The space Tp(M) can be described as the set of all tangent vectors to
the curves on M passing through p. This implies, in particular, that the
tangent space does not depend on the choice of the system of equations that
defines M in a neighborhood of p.

Let us emphasize that here we view the tangent space Tp(M) as a sub-
space of the vector space K" and not as the parallel plane passing through
the point p.

Definition 12.2. A linear Lie group is a subgroup G of GL"(K) that is a
differentiable manifold in the space L"(K) of all matrices.

Since every subgroup G C GL" (K) is invariant under multiplications by
its elements which are linear transformations of the space L"(K), it suffices
to check that G satisfies the definition of a differentiable manifold at one
point of G, say, at the identity e. (The identity of a linear group is the
identity matrix E.)

Exercise 12.3. If G is a linear Lie group, then

T9(G) = Te(G)g

for every matrix g E G.

In what follows, by a Lie group we understand a linear Lie group and
denote the tangent space of a Lie group G at the identity simply by T(G).

Example 12.4. The group GL,,(K) is an open subset of L"(K), thus, it is
an n2-dimensional Lie group.
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Example 12.5. The group SLn(K) is an (n2 - 1)-dimensional Lie group.
Indeed, it is defined by the equation det g = 1 and, differentiating it at the
identity, we obtain the linear equation

ddetg = trdg = 0,
which defines an (n2 -1)-dimensional space of matrices with zero trace.

In Section 6.5, we defined the derivative of a matrix function of one vari-
able. Likewise, we can define partial derivatives of a matrix function of sev-
eral variables. Define the differential of a matrix function 4' = 45(x1, ... , xn)
by the formula

dQ = > dxi.
i=1 axi

Passing to the matrix entries, it is easy to prove that

(12.5) d(4' + %F) = dO + d1k,

(12.6) d(Ml) = (d4i)* + 41(dW).

Using the latter formula in the calculation of the differential d(44-1) (which
is zero), we obtain

d(4?-1) _ -4i-1(d4i)4' '.

Example 12.6. The orthogonal group On(K) is defined by the matrix
equation ggT = E. Due to its obvious symmetry, we regard this equation
as a system of n 21 equations in matrix entries. Differentiating it at the
identity, we obtain the linear equation

d(ggT) = dg + (dg)T = 0,

which defines the n n-1 -dimensional space of skew-symmetric matrices.
Since

2 n(n + 1) - n(n - 1)
n 2 2

On(K) is an n 2 1 -dimensional Lie group over K. Note that the group
On(R) is usually denoted simply by O.

Exercise 12.7. Prove that the pseudo-orthogonal group Ok,i, k + I = n,
(see Section 7.3) is an n 2 1 -dimensional real Lie group.

Exercise 12.8. For an even n = 2m, consider the group of linear trans-
formations of Kn that preserve the nonsingular skew-symmetric bilinear
function m

a(x,y) _ >(xiym+i - xm+iyi)
i=1

This group is called symplectic and is denoted Spn(K). Prove that Spn(K)
is an '''-dimensional Lie group.
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Example 12.9. The group B,, (K) of nonsingular triangular matrices is an
open subset of the space of all triangular matrices, hence, it is an n+i

dimensional Lie group.

Example 12.10. Every discrete (and, in particular, finite) subgroup of
GLn(K) is a zero-dimensional Lie group.

We can also consider real Lie groups that consist of complex matrices:
these are understood as subgroups of the group GLn(C) that are differen-
tiable manifolds in the space Ln(C) viewed as a 2n2-dimensional real vector
space.

Example 12.11. The group U is determined in Ln(C) by the matrix equa-
tion

(12.7) gg* = E

(here g' = gT). This equation can be regarded as a system of n2 real

equations in real and imaginary parts of the entries xij of the matrix g:
Ixkl2

= 1, i = 1,...,n,

k

xikxjk = xikxjk = 0, i,j = 1,...,n, i < j.

k k

Differentiating equation (12.7) at the identity, we obtain the linear equation

dg + (dg)` = 0,

which defines the n2-dimensional subspace of skew-Hermitian matrices. The
group Un is an n2-dimensional real Lie group, since 2n2 - n2 = n2.

Example 12.12. The group SU,, = Un n SLn(C) is an (n2 -1)-dimensional
real Lie group (prove this). Its tangent space at the identity consists of the
skew-Hermitian matrices with zero trace.

Proposition 12.13. Euery Lie group G C GLn(K) is closed in GLn(K).

Proof. Let G be the closure of G in GLn(K). By continuity, G is a subgroup
as well, while the definition of a differentiable manifold implies that G is open
in G. Now consider g E G. The coset gG is open in G, hence, it intersects
G. But then gG = G and, in particular, g E G.

The main approach in the theory of Lie groups is to pass from considering
a group G to considering its tangent space Te(G) = T(G) (which, as we will
see later, has an algebra structure). However, if, for instance, the group G
is discrete, then its tangent space is zero, thus carries no information about
the structure of G. In the general case, a Lie group G is well controlled by
its tangent space at the identity only if G is connected.
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Recall that a topological space is called connected if it cannot be de-
composed into a union of two disjoint proper closed subsets. A union of
two intersecting connected subsets of a topological space M is connected.
It follows that the relation "x y if x and y lie in the same connected sub-
set" is an equivalence relation on M. Classes of this equivalence are called
connected components of the space M.

If M is a differentiable manifold, then every point of M has a connected
neighborhood (say, homeomorphic to a ball). This implies that the con-
nected components of M are open in M. At the same time, they are closed
in M as each of them is the complement of the union of the others.

The connected component of a Lie group G that contains the identity is
denoted G°.

Proposition 12.14. G° is a normal subgroup of G, and all other connected
components are the cosets of G°.

Proof. The left or right multiplication by an element g E G is a homeomor-
phism of the topological space G onto itself and, thus, can only permute its
connected components. Therefore, gG° = G°g is the connected component
that contains g. In particular, if g E G°, then gG° = G°. This implies that
G° is closed with respect to multiplication.

Similarly, passing to the inverse element is a homeomorphism of the
topological space G into itself and can only permute its connected compo-
nents. Since (G°)-1 contains the identity, (G°)-1 = G°. Therefore, G° is a
subgroup. The rest has already been shown before.

Example 12.15. We will prove here that the group is connected.
For fixed different i and j, the matrices of the form E + cE12, c E K, make
up a connected subset that contains the identity. Therefore, all elementary
matrices of the first type lie in However, we know that they
generate SLT,(K) (see Section 10.2). Thus,

Example 12.16. One can prove similarly (do it!) that the group
is connected, while the group GLn(lR) contains two connected components,
one of which is the group of matrices with positive determinant.

Example 12.17. Let us show that the group O, consists of two connected
components, one of which is SO, (the other consists of orthogonal matrices
with determinant -1). Let n = 2m or 2m+1. Consider orthogonal matrices
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of the form

(12.8)

n(0I) 0

n('Pm)

0 (1)

Pl GmER,

where the block in parentheses (of order 1) appears if n = 2m + 1. These
matrices form a connected subset-it is homeomorphic to a direct product
of m circles, i.e., to an m-dimensional torus. Since this subset contains
the identity, it lies in O. However, we know that every matrix in SO,, is
conjugate in 0,, to a matrix of the form (12.8) (see Section 6.3). Therefore,
On D SOn. On the other hand, since 0,, is a union of two cosets of SO,,,
each obviously being closed, we obtain On = SOn.

Example 12.18. Similarly, one shows that the groups U,, and SU,, are
connected.

Exercise 12.19. Prove that the group SO,,,, consists of two connected
components and that SOn 1 is the subgroup of transformations preserving
both connected components of the hyperboloid

x12
2+...+xn-xn+1=-I.

(Hint: prove that every transformation in the group SOn,I that preserves
both connected components of the above hyperboloid is a product of a hy-
perbolic rotation (Lorentz transformation) in a two-dimensional subspace
that contains the basis vector en+1 and a transformation from SOn which
leaves e,,+l invariant.)

Proposition 12.20. A connected Lie group is generated by any neighbor-
hood of the identity.

Proof. Let U be a neighborhood of the identity in the Lie group G. Denote
by G the subgroup generated by U. For every g E G, the subset gU, which
is a neighborhood of g in G, is contained in the coset gG. This shows that
all cosets of G are open in G. On the other hand, they are closed in G since
each of them is the complement of the union of the others. Therefore, if G
is connected, there exists only one such coset, i.e., G = G. 0

Remark 12.21. In this section, we chose the language of matrices. But it is
clear that instead of matrices, we could speak about linear transformations
defined by them. For instance, one can speak about the Lie group GL(V)
of nonsingular linear transformations of an n-dimensional vector space V



478 12. Lie Groups

over K, about the Lie group O(V) of orthogonal transformations of an n-
dimensional Euclidean space V, and so on. In the sequel, when useful, we
will sometimes switch to this language of linear transformations.

Remark 12.22. By Lemma 7.105, the group GA(S) of affine transforma-
tions of an n-dimensional affine space S embeds naturally into the group
GL(V) of linear transformation of an (n + 1)-dimensional vector space V.
In a suitable basis, the image of this embedding consists of matrices of the
form

all ... ain bl

ani ... ann bn

0 ... 0 1

where the matrix A = (aj,) is nonsingular. Thus, the group GA(S), as well
as some of its subgroups such as the group of motions of an n-dimensional
Euclidean space, can be regarded as a linear Lie group.

12.2. The Exponential Map

A Lie group G and its tangent space T(G) are related via the exponential
map.

We defined the exponential of a matrix in Section 6.5. It gives rise to a
map

(12.9) exp: Ln(K) - GLn(K),

called the exponential map.

The definition of the exponential of a matrix implies that exp 0 = E and

(12.10) expX=E+X+o(IIXII)
This shows that the differential of the exponential map at 0 is the identity
map. In particular, the Jacobian matrix of the exponential map at 0 is
nonsingular, hence by the implicit function theorem, the map exp yields a
diffeomorphism from a neighborhood of 0 in the space Ln(K) to a neighbor-
hood of the identity in the group GLT(K). The inverse map (defined in a
neighborhood of the identity of GLn(K)) is denoted log.

Remark 12.23. The map log is determined by the series
Xn

log(E+X) _ (-1)n-i $

n=1

which is absolutely convergent for I I X II < 1.
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Remark 12.24. It can be shown that the map exp yields a diffeomorphism
from the open subset of L,, (K) that consists of matrices with complex eigen-
values A such that J3°aj < n to the open subset of GL, (K) that consists of
matrices without negative eigenvalues. The map (12.9) is not a diffeomor-
phism on the entire Ln(K).

The following proposition generalizes the well-known formula
*'e° = lim (1 + a-)

.n-.oo n

Proposition 12.25. Let g(t), Itl < c, be a differentiable curve on the group
GLn(K) such that

(12.11) g(O) = E, g'(0) = A.

Then

(12.12)
1

n
exp A = lim g

n

Proof. At t = 0, the curve logg(t) has the same tangent vector as g(t), i.e.,
A. This means that

log g(t) = to + o(t),
hence

In particular,

g(t) = exp(tA + o(t)).

g(n) =exp (An+0(n1))

Taking the nth power of the latter identity, we obtain

+ o(1)).(i)"g = exp(A

This implies (12.12). 0
Theorem 12.26. Let G C GLn(K) be a Lie group. Then

(12.13) exp T(G) C G.

Moreover, the map exp is a diffeomorphism from a neighborhood of 0 in the
space T(G) to a neighborhood of the identity of G.

Proof. For any A E T(G), there exists a curve g(t) on G satisfying condi-
tion (12.11). Since the group G is closed in GLn(K) (see Proposition 12.13),
(12.12) implies that exp A E G.

To prove the second assertion of the theorem, rewrite the map

(12.14) exp: T(G) - G
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in local coordinates of neighborhoods of the identity in G and zero in T(G).
As such, we can choose the free variables of the system of equations defining
G near the identity and the corresponding free variables of the system of
homogeneous linear equations defining T(G). (Recall that here the variables
are matrix entries.) We obtain a differentiable map f from a neighborhood
of zero of the space Kd (where d = dim G) to this space. Formula (12.10)
implies that the differential of f at zero is the identity map. Hence, by the
implicit function theorem, the map f is a diffeomorphism from a (possibly
smaller) neighborhood of zero in Kd to a region in this space. Passing back
to the map exp, we obtain the second assertion of this theorem.

Example 12.27. When G = SL,,(K), condition (12.13) says that if tr A =
0, then det exp A = 1 (see Example 12.5).

Example 12.28. When G = 0,, (respectively, Un), condition (12.13) says
that the exponent of a skew-symmetric (respectively, skew-Hermitian) ma-
trix is an orthogonal (respectively, unitary) matrix (see Examples 12.6 and
12.11). This can also be checked directly (try it).

Theorem 12.29. A connected Lie group is uniquely determined by its tan-
gent space at the identity.

Proof. Theorem 12.26 and Proposition 12.20 imply that a connected Lie
group G C GLn(K) coincides with the subgroup generated by the set
expT(G).

Notice that the above theorem does not claim the existence of a Lie
group with a given tangent space. In fact, very few subspaces of the space
of matrices are tangent spaces to Lie groups. A necessary condition for this
is provided in the next section.

Remark 12.30. Generally speaking, G 34 expT(G), i.e., the map (12.14)
does not have to be surjective (even for a connected Lie group G). For ex-
ample, the tangent space T(G) of the group G = SL2(R) consists of matrices
with zero trace. Such a matrix has complex eigenvalues A, -A, where either
A E R or A E %R. In either case,

trexpA = ee +e-\ > -2.
Therefore, matrices g E G with trg < -2 do not belong to expT(G) (e.g.,
the matrix z o

Let G C GLn(K), H C GLm(K) be Lie groups. A map f: G -, H
is called a Lie group homomorphism if it is a group homomorphism and is
differentiable, i.e., the entries of the matrix f (g) are differentiable functions
of the entries of g E G. The differential of a homomorphism f at the
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identity is a linear map from the space T(G) to the space T(H). We will
simply denote it df without stating explicitly at which point the differential
is taken.

Theorem 12.31. Let f : G H be a Lie group homomorphism. Then

(12.15) f (exp A) = exp df (A)

for any A E T(G).

Proof. We will use Proposition 12.25. Let g(t) be a curve on the group G
satisfying conditions (12.11). Then the curve h(t) = f (g(t)) on the group
H satisfies the following conditions:

h(0) = E, h'(0) = df (A).

Therefore,
/1

f(eXPA) = f nim g I n
)n)

= nimoh n =expdf(A).

0
Example 12.32. Applied to the homomorphism

det: C* (= GL1(C)),

formula (12.15) implies that

det exp A = et A

for any matrix A E (cf. Example 12.5).

Theorem 12.33. A homomorphism of a connected Lie group into another
Lie group is uniquely determined by its differential at the identity.

Proof. Let f : G -{ H be a Lie group homomorphism. Theorems 12.26
and 12.31 imply that if we know df , we can determine f (g) for an element
g in some neighborhood U of the identity in G. But if G is connected, then
by Proposition 12.20, it is generated by U. Thus, we can determine f (g) for
allgEG.

The above theorem does not claim the existence of a Lie group homo-
morphism with a given differential. In fact, very few linear maps of tangent
spaces are differentials of Lie group homomorphisms. A necessary condition
for this is provided in the next section.

Exercise 12.34. Prove that the kernel Ker f of a Lie group homomorphism
f : G --* H is a Lie group whose tangent space coincides with Ker df .

Exercise 12.35. In the same notation, prove that if Imdf = T(H) and H
is connected, then Im f = H.
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12.3. Tangent Lie Algebra and the Adjoint Representation

The matrix
[A, B] = AB - BA

is called the commutator of matrices A, B E Ln(K). This should not
be confused with the group commutator, (A,B) = ABA-1B-1, which is
defined for nonsingular matrices; however, these two notions are closely
related.

Proposition 12.36. For any matrices A, B E Ln(K),
2

(12.16) [A,B] = a
Ot as

2 (exptA,expsB)I
t=s=o

Proof. By differentiating the group commutator

(exptA,expsB) = (exptA)(expsB)(exptA)-1(expsB)-1

with respect to s at s = 0, we obtain

(exp tA) B(exp tA)-1 - B.
as

(exp tA, exp sB)18=0
=

ifferentiating this expression with respect to t at t = 0, we obtainD

at as
(exp tA, exp sB)

e=8=o

= AB - BA = [A, B].

Theorem 12.37. The tangent space T(G) of a Lie group G C GLn(K) is
closed utith respect to taking the commutator, i.e.,

A, B E T(G) [A, B] E T(G).

Proof. Fix t and consider the curve

g(s) _ (exp tA, exp sB) E G.

Since g(0) = E,

Therefore,

a2

g'(0) = a(exp tA, exp sB)F

a2
(exp to exp sB)

at as

E T(G).
8=0

= [A, B] E T(G).

0

A subspace of the space of matrices that is closed with respect to taking
the commutator is called a linear Lie algebra. Thus, the tangent space T (G)
of a (linear) Lie group G is a linear Lie algebra. It is called the tangent
algebra of the group G.
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Example 12.38. For the group the above theorem says that if
tr A = tr B = 0, then tr[A, B] = 0. In fact, the latter equality is always
true. In other words,

trAB = trBA
for any two matrices A, B (see Section 5.3).

Example 12.39. For the group the above theorem says that the
commutator of two skew-symmetric matrices A, B is also a skew-symmetric
matrix. This can be easily checked directly:

[A, B]T = (AB - BA)T = BTAT - ATBT = BA - AB = -[A, B].

The commutator is anticommutative, i.e.,

(12.17) [A, B] + [B, A] = 0,

and satisfies the Jacobi identity

(12.18) [[A,B],C]+[[B,C],A]+[[C,A],B] = 0.

This identity can be easily checked by direct calculation. It is a consequence
of the associativity of matrix multiplication.

Any algebra satisfying identities (12.17) and (12.18) is called a Lie alge-
bra. For instance, the space E3 with the operation of cross product is a Lie
algebra (see Example 1.75). The space L,,(K) is a Lie algebra with respect
to taking the commutator. Theorem 12.37 means that the tangent space of
any Lie group G C is a subalgebra of this algebra.

Theorem 12.40. The differential of a Lie group homomorphism is a ho-
momorphism of their tangent algebras.

Proof. Let f : G - H be a Lie group homomorphism and let A, B E T(G) .

By Theorem 12.31,

f ((exp tA, exp sB)) = (f (exp tA), f (exp sB)) = (exp t df (A), exp s df (B)).

As in the proof of Theorem 12.37, regard the commutator (exp tA, exp sB)
with a fixed t as a curve on G parameterized by s. When s = 0, this curve
passes through the identity. The map df sends the tangent vector of this
curve at(.(exPtAs = 0 to the tangent vector of its image in H. Thus,

df a ex psB) ) = a (exptdf(A),expsdf(B))
g a=o as e_a

By differentiating with respect to t at t = 0, we obtain

df([A, B]) = [df (A), df (B)]

because of (12.16) and the fact that the linear map df and the operator of
differentiation commute.
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A (differentiable) homomorphism of a Lie group G into the Lie group
GL(V) is called a linear representation of the group G (as a Lie group) on
the space V.

For every Lie group G, there exists a remarkable linear representation
on the space T(G); it plays an important role in the theory of Lie groups.
Here is how we construct it.

Every element g E G defines an inner automorphism a(g) of the group
G as follows:

(12.19) a(g)x = gxg-1, x E G.

This automorphism is the restriction to G of a linear transformation X
gXg-l on the space L,,(K). In particular, it is differentiable. Its differential

at the identity is denoted Ad(g) and is called the adjoint operator of g E G.
The operator Ad(g) is determined by the same formula as a(g):

Ad(g)X = gXg-1, X E T(G).

Since a(xy) = a(x)a(y),

Ad(xy) = Ad(x) Ad(y).

(However, this can be easily checked directly.) Furthermore, if g = (gij),
9-1 = (9{j), and X = (xij), then Ad(g)X = (yij), where

(12.20) yij = >9kxklglj
k,l

As coordinates in the space T(G), we can take matrix entries such that
other matrix entries can be expressed as their linear combinations. For-
mula (12.20) shows that the matrix entries of Ad(g) are rational (hence,
differentiable) functions of the entries of g. Therefore, the map

Ad: G GL(T(G))

is a linear representation of the Lie group G on the space T(G). It is called
the adjoint representation of G.

Exercise 12.41. Prove that if f : G - H is a Lie group homomorphism,
then

f(Ad(g)X) = Ad(f(g))df(X), g E G, X E T(G).

Exercise 12.42. Prove that the kernel of the adjoint representation of a
connected Lie group is its center.

A homomorphism of a Lie algebra L into the Lie algebra L(V) of linear
transformations of a vector space V (with the operation of taking the com-
mutator) is called a linear representation of L (as a Lie algebra) on V. By
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Theorem 12.40, the differential of a linear representation of a Lie group G
is a linear representation of its tangent Lie algebra T(G).

The differential of the adjoint representation Ad of a Lie group G is
called the adjoint representation of the Lie algebra T(G) and is denoted ad.

Theorem 12.43.
ad(A)X = [A, X], A, X E T(G).

Proof. Let g(t) be a curve on G satisfying conditions (12.11). Then

ad(A) = 8 Ad(g(t))) .
at o'

Therefore, for any X E T(G),

ad(A)X = at Ad(g(t))X Lo
19 g(t)Xg(t)_1I = AX - XA = [A, X].c_-o

The fact that ad is a linear representation of the algebra T(G) means
that

ad([A, B]) = [ad(A), ad(B)]

or, taking the above theorem into account, that

[[A, B], C] = [A, [B, C]] - [B, [A, C]]

for any A, B, C E T(G). The last identity is equivalent to the Jacobi identity.
This result can be viewed as a conceptual proof of the Jacobi identity for
matrix commutators.

On the other hand, this discussion suggests the way to define the adjoint
representation ad for any Lie algebra L (not necessarily associated with any

Lie group) as

ad(a)x = [a, x], a, x E L.

Example 12.44. The adjoint representation of the Lie algebra (E3, x) is
defined as

ad(a)x = a x x.

Since the triple product (a, b, c) = (a x b, c) is skew-symmetric, the oper-
ator ad(a) is also skew-symmetric. This defines a homomorphism of the
Lie algebra (E3, x) into the Lie algebra T(S03) of skew-symmetric matrices
of order 3. It is easy to see that this homomorphism has a trivial kernel.
Since both algebras are three-dimensional, we, in fact, constructed an iso-
morphism.

Exercise 12.45. Determine explicitly the matrices of the adjoint operators
of the vectors of an orthonormal basis of E3 in the same basis.
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Exercise 12.46. Prove that for any matrices A, X E L,(K), the following
equality holds:

(exp A)X(exp A)-1 = E k' [A, [A,..., [A, XI... ]].
k-0 k

Exercise 12.47. The center of a Lie algebra L is a subalgebra

Z(L) _ {z E L: [z, u] = O Vu E L}.

Prove that the center of a connected Lie group G is a Lie group whose
tangent algebra coincides with the center of the Lie algebra T(G). (Hint:
use Exercises 12.42 and 12.34.)

Example 12.48. Consider the adjoint representation of the Lie group SU2.
The Lie algebra T(SU2) consists of skew-symmetric matrices with zero trace,
i.e., matrices of the form

(12.21)
X= Zx1 x2 + ix3

-x2 + 2X3 -txl
Observe that

detX=xi+x2+x3.
Thus, det X is a positive definite quadratic function on the space T(SU2).
Take it as the norm; this turns T(SU2) into a (three-dimensional) Euclidean
space. Since

det Ad(g)X = det gX g 1 = det X,

we see that the adjoint operators of the elements of the group SU2 are
orthogonal, i.e., Ad(SU2) C 03. Since the group SU2 is connected, so is its
image. Therefore, Ad(SU2) C SO3.

Furthermore, Ker Ad consists of matrices that commute with all matrices
of the form (12.21). Using the fact that every matrix commuting with the
matrix (o °) is diagonal, it is easy to show that

Ker Ad = {±E}.

Similarly, we can prove that Ker ad = 0. Since dim SU2 = dim SO3 = 3, we
see that Imad = T(S03). It follows from Theorems 12.31 and 12.26 and
Proposition 12.20 that

Ad(SU2) = S03-

Therefore, the adjoint representation is a homomorphism of the group SU2
onto the group SO3 with the kernel {±E}.

Note that the /group SU2 consists of the matrices of the form

( -b) , a, b E C, jal2 + lb12 = 1
\b a
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and coincides with the group of quaternions of norm 1 in the matrix model
of the algebra H (see Exercise 1.82). Thus, the group SU2 is the (three-
dimensional) sphere in the four-dimensional Euclidean space H. The group
SO3 is obtained from this sphere by identifying the antipodal points, hence
it is the three-dimensional real projective space. The space T(SU2) coincides
with the space of purely imaginary quaternions.

Exercise 12.49. In a similar way, prove that the adjoint representation
maps the group SL2(R) onto the connected component of the group SO2,1
(see Exercise 12.19) and that the kernel of this map is {±E}.

Exercise 12.50. Prove that the adjoint representation is a homomorphism
of the group SL2(C) onto the group SO3(C) with the kernel {±E}.

12.4. Linear Representations of Lie Groups

Linear representations of Lie groups have been studied extensively; here we
can only discuss the starting points of this theory. The principal idea is to
replace the study of linear representations of a Lie group with that of linear
representations of its tangent Lie algebra.

Let G be a Lie group and

R: G GL(V),

a (finite-dimensional) representation of G. Then

dR: T(G) L(V)

is a linear representation of the Lie algebra T(G).

Theorem 12.51. Every subspace U C V that is invariant with respect to
G is invariant with respect to T(G). If G is connected, then the converse
is also true: every subspace invariant with respect to T(G) is also invariant
with respect to G.

Proof. (i) Let U be an invariant subspace with respect to G and let A E
T(G). Consider a curve g(t) in G satisfying conditions (12.11). Then

dR(A) =
e

R(g(t))N L-0,
hence, for every vector u E U,

dR(A)u = 85jR(g(t))u E U.
It_-O

(ii) Conversely, let U be an invariant subspace with respect to T(G). By
Theorem 12.31, for every A E T(G),

R(exp A) = exp dR(A),
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hence, for every u E U,

R(exp A)u = E k dR(A)ku E U.
k=0

Therefore, the subspace U is invariant with respect to exp T(G). If G is
connected, it follows that U is invariant with respect to all of G.

Thus, if G is connected, the collections of invariant subspaces of a rep-
resentation R of G and the representation dR of T(G) are the same.

Corollary 12.52. A linear representation R of a connected Lie group G
is irreducible (respectively, completely reducible) if and only if the represen-
tation dR of the Lie algebra T(G) is irreducible (respectively, completely
reducible).

Exercise 12.53. Let G be a connected Lie group and H a connected Lie
subgroup of G. Prove that the following conditions are equivalent:

(i) H is a normal subgroup of G;

(ii) the subspace T(H) is invariant under the adjoint representation of
G;

(iii) T(H) is an ideal of T(G).

A connected Lie group is called simple if it does not contain nontrivial
connected normal Lie subgroups. A Lie algebra is called simple if it does
not contain nontrivial ideals.

Exercise 12.54. Prove that if the tangent algebra of a connected Lie group
G is simple, then G is simple (as a Lie group). (The converse is also true.)

Exercise 12.55. Prove that the Lie group SO3 is simple. (In fact, SO3 has
no nontrivial normal subgroups; see Section 10.5.)

The classification of simple Lie groups is as important for the theory of
Lie groups as the classification of simple finite groups is for the theory of
finite groups. It was obtained in late 19th-early 20th century by W. Killing
and E. Cartan (first for complex and then for real Lie groups). This is one
of the most amazing mathematical achievements.

It can be shown that the Lie group SO, is simple whenever n > 5.
However, the Lie group SO4 is not simple, as the following example demon-
strates.

Example 12.56. As we saw in Example 12.48, the group SU2 can be re-
garded as the group of quaternions of norm 1. Consider the linear represen-
tation R of the Lie group G = SU2 X SU2 on the space M defined as

R(p,4)x=px9-1, xEH.
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Since

N(pxq-1) = N(p)N(x)N(q)-1 = N(x)
for p, q E SU2, we see that R(G) C 04. The connectedness implies that
R(G) C SO4. Thus, we have defined a homomorphism

R : SU2 X SU2 S04-

If (p,q) E KerR, then, in particular, R(p,q)l = pq-1 = 1, implying
p = q. Then, as in Example 12.48, we obtain p = q = ±1. Since dim G =
dim SO4 = 6, it follows that R(G) = SO4. Therefore,

SO4 = (SU2 X SU2)/{(E, E), (E, -E)}.

In particular, under the homomorphism R, each factor in the product SU2 X
SU2 is mapped into a connected normal Lie subgroup of SO4. Hence, SO4
is not a simple Lie group.

Exercise 12.57. Prove that the Lie group is simple for n > 2.

Complex and real Lie groups are closely related.

Let G be a connected complex Lie group.

Definition 12.58. A connected real Lie subgroup H C G is a real form of
G if

T(G) = T(H) ® zT(H).

Remark 12.59. This definition can be extended to nonconnected Lie groups
once we require every connected component of G to intersect H.

Example 12.60. The group SL,,(R) is a real form of the group SL,a(C).

Example 12.61. The group SU,, is also a real form of the group SL,a(C),
while the group U,, is a real from of the group G"(C). This follows from
the fact that every complex matrix can be presented uniquely as a sum of
an Hermitian and a skew-Hermitian matrix and that the space of Hermitian
matrices can be obtained from the space of skew-Hermitian matrices by the
multiplication by i.

Example 12.62. The group SO,, is a real form of the group SO,,(C) (which
can be proven to be connected).

Theorem 12.63. Let R: G - GL(V) be a complex linear representation of
a connected complex Lie group G and let H be a real form of G. Then the
collections of invariant subspaces of R(G) and R(H) are the same.

Proof. By Theorem 12.51, a subspace U C V is invariant under G (respec-
tively, H) if and only if it is invariant under T(G) (respectively, T(H)). But
since

dR(T(G)) = dR(T(H)) + ulR(T(H)),
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the invariance of U with respect to T(G) is equivalent to its invariance with
respect to T(H).

This theorem can be used to show complete reducibility of linear repre-
sentations of certain complex Lie groups.

Definition 12.64. A connected complex Lie group is reductive if it has a
compact real form.

So, in view of the above examples, the groups GLT(G), SL,a(G), and
are reductive. It can be shown (though this is not easy) that every

noncommutative simple complex Lie group is reductive.

Remark 12.65. It is more natural to exclude connectedness from the def-
inition of a reductive group: then the class of reductive groups includes all
finite groups.

Theorem 12.63 and the complete reducibility of linear representations of
compact groups proven in Section 11.2 immediately imply

Theorem 12.66. Every linear representation of a reductive complex Lie
group is completely reducible.

This method of proof is due to H. Weyl and is called the unitary trick.
It can be used in the proofs of other theorems as well. For instance, it allows
us to extend Hilbert's finiteness theorem, which we proved in Section 11.5
for compact groups, to reductive groups.

Using the above theory, let us find all irreducible linear representations
of the Lie group SL2(C). This example plays a key role in the theory of
linear representations of arbitrary simple Lie groups.

Denote the tangent Lie algebra of SL2(O) by s12(G). Fix the following
basis of this algebra:

1(12.22) H = (0 -1) ' E+ = C0 0) ' E_ = (0 o)

A direct calculation shows that \
(12.23) [H, E+] = 2E+, [H, E_] _ -2E_, [E+, E-] = H.

Let R: SL2(C) -+ GL(V) be a linear representation. Let

dR(H) _ f{, dR(E+) _ £+, dR(E_) = £_.

The operators R, E+,1~ satisfy the relations

[f, E+] = 2+, [x, E-] = -2£_, [4+, E-] = x,
which follow from relations (12.23).
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Lemma 12.67. Let v be an eigenvector of the operator N with the eigen-
value A. Then, if nonzero, the vector E+v (respectively, E_v) is an eigen-
vector of N with the eigenvalue A + 2 (respectively, A - 2).

Proof. We have

nE+v = E+7Iv + [71, E+Jv = >&+v + 2E+v = (A + 2)E+v.

13

Lemma 12.68. There exists an eigenvector vo of the operator h such that
E+vo=0.

Proof. Since the operator 7{ has only a finite number of eigenvalues, there
exists an eigenvalue A0 of N such that AO + 2 is not an eigenvalue. The
corresponding eigenvector vo is the one we need.

Every such vector vo is called a highest weight vector of the representa-
tion R.

Let vo be a highest weight vector and Ao the corresponding eigenvalue
of N. Consider vectors

vk = (E_)kvo, k = 0,1, 2,... .

By Lemma 12.67,
7tvk = (Ao - 2k)vk.

Lemma 12.69. E+vk = ckvk-1, where ck = k(Ao - k + 1).

Proof. We will prove this formula by induction on k. The formula is valid
for k = 0 assuming that v_1 = 0. Assume that it is valid for k. Then

E+vk+l = E+E_vk = E-E+vk + [E+, E-]Vk

= CkS_vk_1 + Nvk = ckvk + (Ao - 2k)vk = Ck+ivk,

where

ck+l=ck+A0-2k=(k+1)Ao-k2-k=(k+1)(Ao-k).
0

Since eigenvectors of the operator 7{ that correspond to different eigen-
values are linearly independent, there exists a number n such that the vectors
vo, v11 v2, ... , vn are nonzero and linearly independent, whereas 0.
Then it follows from Lemma 12.69 that 0, i.e., that A0 = n.

Now, it follows from the previous formulas that the linear span of the
vectors vo, vi, v2,.. -, v n is invariant with respect to the operators N,
hence with respect to all of the algebra s12(C).
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If the representation R is irreducible, then

(12.24) V = (vo,v1,...,vn)

and the operators W, £+, E_ have the following form in the basis {vo, vl,
...,vn}:

(12.25) 7-lvk = (n - 2k)vk,

(12.26) E+vk = k(n - k + 1)vk_1i

(12.27) E_vk = Vk+1,

assuming v_1 = vn+1 = 0. The number n is called the highest weight of
the representation R. Formulas (12.25)-(12.27) show that an irreducible
representation of the group SL2(C) is completely determined by its highest
weight.

Conversely, if condition (12.24) holds, the representation R is irreducible.
Indeed, any nonzero invariant subspace is, in particular, invariant under the
operator If; hence it is a linear span of some of its eigenvectors vo, v1, ... , v,,.
But, since it is invariant under the operators E+ and E_, it must contain all
these vectors, i.e., coincide with V.

The remaining question is whether a representation with a given highest
weight exists. One can check directly that the operators fl, E+, E_ given
by formulas (12.25)-(12.27) define a linear representation of the Lie algebra
s12(C) and then, using a general theorem omitted in this course, prove that
there exists a linear representation of the group SL2(C) whose differential is
the above representation. We take a different approach and construct the
required representation explicitly.

We assume that the group SL2(C) acts on the space C2 with the basis
(x, y) tautologically, i.e., that the element

g = (c d) E SL2(C)

acts by the formulas

(12.28)
gx = ax + cy,
gy=bx+dy.

This action induces a linear action of SL2(C) on the space S"(C2). Regard
x and y as coordinates in the dual space (C2)' and identify the symmetric
algebra of C2 with the polynomial algebra on (C2)' (see Section 8.3). Then
the elements of the space S" (C2) are homogeneous polynomials of degree n
in x and y, also known as binary forms of degree n. The action of SL2(C)
is then interpreted as a linear change of variables by formulas (12.28). We
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thus obtain a linear representation; denote it by R,,. By definition,

(Rn(9)f)(x, y) = f(ax+cy/,bx+dy)

for every binary form f of degree n.

Let us calculate the differential of the representation R. Put

dR, (H) = R, dR(E+) = E+, dR(E_) = E_.

Taking into account that
/

exptH =
0 e0t) exptE+ = (1 1)' exptE_ = I t 0 I

\ /we obtain

(Rf)(x, y) _

(E+f) (x, y) _

(E-f)(x,y) _

f (etx,
a-ty)

LO
of (x, y) of (x, y)

Olt =
x

Ox - y ay

0f(x,y+tx)I
t=o =

xaf y)

f(x+ty,y)LO =yaf(axy)

for a binary form f E S" (0).
In particular, for fo = xn,

xfo = nfo, E+fo = o,

i.e., fo is a highest weight vector of the representation Rn with the eigenvalue
n. Moreover,

fk=Ekfo=n(n-1)...(n-k+1)xn-kyk,

so that the forms fo, fl,... , f comprise a basis of the space Sn(C2). There-
fore, Rn is an irreducible representation with the highest weight n.

Simultaneously, we have just proved that every irreducible linear rep-
resentation of the algebra s12(C) is a differential of an (irreducible) linear
representation of the group SL2(C).

The results obtained also provide a description of irreducible complex
linear representations of the Lie groups SL2(If) and SU2, which are real
forms of the group SL2(C). Indeed, if H is a real form of SL2(C) and
S : H -, GL(V) is its irreducible complex linear representation, then the
representation dS of the Lie algebra T(H) extends uniquely to a linear rep-
resentation of the Lie algebra s12(C). By the aforesaid, this representation is
the differential of a linear representation of the group SL2(C). It follows that
the irreducible complex linear representations of the group H are exactly the
restrictions of the irreducible linear representations of SL2(C) to H.
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Exercise 12.70. For n > 0, prove that

Ker R _ 1{±E},
{E}, n odd,

n even.

Exercise 12.71. Describe irreducible linear representation of the Lie group
S03(C)-

Exercise 12.72. Describe irreducible complex linear representations of the
Lie groups SO3 and SO2,1.



Answers to Selected
Exercises

1.79. Ej,Eki = bjkEil (here b=j is the Kronecker delta).
2.35. qn.
2.39. (qn - 1)(qn - q)(qn - g2)...(gn - qn-1).

2.41. 1)( ^-q)(q"- )...(q°-qk-1)
(q"-1) )...(r)

2.69. 3.
3.65. 2 = (1 + z)(1 - z) " (1 + t)2, 3 is prime, 5 = (2 + z)(2 - z).

3.66. x, x2+x+1, x3+x2+1, x3+x+1, x4+x3+1, x4+x+1,
x4+x3+x2+x+1.
4.112. IGL2(Zp)I = p(p + 1)(P - 1)2, ISL2(ZP)I = p(p - 1)2.
5.5. Three distinct one-dimensional subspaces of a two-dimensional vector
space.

5.7. Same as in Exercise 5.5.

5.52. rn n+1 n n-1 1
`\ 2 , J

1 -casatz -CO5019 -COSa14
-CO8012 1 -COO a28 -a245.68. -CO9al3 -COSOW 1 -COSa34 , where a j is the angle between the
- 009 014 - cos aa4 - coo a34 1

ith and the jth faces; the dihedral angle in the regular tetrahedron equals
arccos 1/3.

5.85. Ek CkiCkj = b{j; Ek i ikCjk =
ObOa0 b

6{j.

6.10.
Q )

0d0
COd

495



496 Answers to Selected Exercises

6.46. The matrix D is determined up to a permutation of the diagonal
entries. Given D, the matrices 01 and 02 are determined up to a transfor-
mation 01 - 010, 02 -4 0-102, where 0 is an orthogonal matrix that
commutes with D.

6.63. t,t - 1.

6.85. (i) maxi E1 1% 1, where (aiz) = A is the matrix of the operator
A; (ii) maxi A,, where A1,. .. , A,, are the (nonnegative) eigenvalues of the
selfadjoint operator A*A; (iii) maxi E; lai,I.

7.12. 5.
7.13. dim(U1 + U2) if P1 n P2 54 0; dim(U1 + U2) + 1 if P1 n P2 = o.

7.44. The faces of positive dimension are determined by the following con-
dition: k < n/2 coordinates xi are 0 and l < n/2 coordinates are 1, given
that k + I < n - 1 (this is automatic for an even n). A vertex is a point
having [n/2] coordinates equal to 0 and [n/2] coordinates equal to 1; for an
odd n, the remaining coordinate equals 1/2.
7.45. Convex hulls of all subsets of the set of the vertices of the simplex.
7.64. When pl, p2, p3 are permuted, their ratio assumes the values c,
-c-1, 1, - 1 -1, -+1, - +1. The smallest number of different values equals
2 if the equation x2+x+1 = 0 has a solution in the field K, and 3 otherwise.
7.71. The rotation about the third point through the sum of the angles if
it is not 21r, and a parallel translation otherwise.
7.73. See the answer to Exercise 10.41 with the list of all elements of the
group Sym+ K. Additionally, Sym K contains six reflections through planes
passing through the edges, three reflections through planes parallel to the
faces, eight mirror rotations through 7r/3 about the axes passing through
the vertices, six mirror rotations through 7r/2 about axes passing through
the centers of the faces, and the central symmetry.

7.74. (XI,x2)'-' (tx1,t-1x2); (x1,x2) ~ (tx2,t-1x1) for t E R.

7.75. If the inner squares of the sides of one triangle (regarded as vectors)
equal the inner squares of the respective sides of the other triangle, these
triangles are equal.

7.100. - , , ... , R.
7.109. Permutations from V4 do not change the cross-ratio. Permutations
preserving the point p4 change the cross-ratio just as the simple ratio of
points p1, p2, p3 (see the answer to Exercise 7.64) with the minus sign, i.e.,
the values of the cross-ratio are: b, 1 - d, 1 - a, 1,
9.24. [10]15, [6]15.

9.35. [3]7i[6]41.
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9.67. If n = 2'npil ... p eqi' q t " , where pl,... , p, a r e distinct prime num-
bers of the form 4k + 1 and q , . .. , qt are distinct prime numbers of the form
4k + 3 and I1i ... , It are even, this number equals 4(k1 + 1) . . . (k, + 1).

9.87. For example, a block-diagonal matrix that consists of Jordan blocks
and blocks of the following form:

a 1

-b a 1

0 a 1

-b a 1

0

0

(b > 0).

0

9.88. For example, a block-diagonal matrix of order 4 that consists of
Jordan blocks and blocks of the form

1 1 0 0
0 1 0 1 1 0

1 1 1 0 1 0
1 0 1 0 0 1

0 0 '

,

0 0 1 1
1 0 0 1 0 0

0 0 1 0

0 1 0 0 1 1 0 0 1 1 0 0

0 0 1 0 0 0 1 0 1 0 1 0

1 0 0 1 ' 0 0 0 1 1 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

9.120.

+ 0 1 a a+1
0 0 1 a a+1
1 1 0 a+1 a
a a a+1 0 1

a+1 a+1 a 1 0

9.165. (pl...p,,)
10.7. For odd n.
10.30. (ak-1)n/(n,k-1)

10.41. Five classes: the identity motion (1 element); rotations through Zs
about axes passing through the vertices (8 elements); rotations through it
about axes passing through the centers of the edges (6 elements); rotations
through ' about axes passing through the centers of the faces (6 elements);

x 0 1 a a+
0 0 0 0 0

1 0 1 a a+
a 0 a a+1 1

a+l 0 a+1 1 a
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rotations through n about axes passing through the centers of the faces (3
elements).

10.48. 57.

10.66. 2'q(g2 - 1) for q odd and q(q2 - 1) for q a power of 2.
11.77. In the notation of Example 10.23, Dn = (a),, x (b)2. For an odd n,
the group Dn has two one-dimensional representations

a --+ 1, b' -+ ±l

and n-1 two-dimensional irreducible representations

a *-+
(wk 0k)

0 w '
bI-+(1 0), 1<k<2,

where w = e2i'/n. For an even n, Dn has four one-dimensional representa-
tions

a'-+ ±l, b -- ±1
and nI - 1 two-dimensional irreducible representations described as in the
case of odd n.
11.86. The one-dimensional subspace of constants; the two-dimensional
subspace of "even" functions assuming the same value on opposite faces
of the cube, with the sum of all values equal zero; the three-dimensional
subspace of "odd" functions assuming opposite values on the opposite faces
of the cube.
11.88.

X1 X2 X3 X4 X5

e 1 3 3 4 5 1

(12)(34) 1 -1 -1 0 1 15

(123) 1 0 0 1 -1 20

(12345) 1 3-1/5 3+ 5 _ 2 0 12

(12354) 1 3+1'5 3- 5 _ 1 0 12

11.119. (,d)-(_(d Q).

r
00 00 - '1 '0 l01 -12.45. \1 0f 10

0
000

12.71. For every n E Z+, there exists a unique (2n + 1)-dimensional irre-
ducible representation Sn of the group SO3(C) related to the representation
R2n of the group SL2(C) via the following commutative diagram:

SL2((C)
Ri

GL2n+1(C)
Ad\ / Sn

SO3(C)

(see Exercise 12.50).
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12.72. For every n E Z+, there exists a unique (2n + 1)-dimensional irre-
ducible complex representation of the group SO3 (respectively, SO'11) ob-
tained by restriction of the representation Sn of the group SO3(C) (see the
answer to Exercise 12.71).
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action, 385
effective, 395
transitive, 396

adjoining a root of a polynomial, 357
alfitte chart, 282
algebra, 2Z

alternative, 470
Cayley, 469
center of, 441
division, 468

central, 459
degree of, 453
splits, 463

exterior, 315
finitely generated, 367

graded, 176

Grassmann, 315
group, 442

Lie, 983
center of, 486
linear, 482
simple, 488

nilpotent, 934
octonion, 469
of formal power series, 83
of multilinear functions, 36Z
polynomial, 81, 1§2 192 371
quaternion, 29, 459
quotient, 340
radical of, 435
semisimple, 435
simple, 438
spectrum of, 312
structure constants of, 461
supercommutative, 315
symmetric, 310

tangent, 482
tensor, 307
transcendence degree of, 368

algebra element
nilpotent, 434

algebra elements
algebrically dependent, 367

algebraic integer, 365
alternation, 316
angle, 196
annihilator, 178, 348
antiautomorphism, 466
anticommutativity, 8, 483.
arrangement, 62

even, 6Z
odd, 8Z
sign of, 67

change of, l1 1
trivial, 62

associated elements, 104
associativity, 5, 6 139
associator, 470
atlas, 284
automorphism, 15

group, LO, 387
inner, 388

axis of motion, 265

basis, 26, 47, 326
dual, 177
Jordan, 222
orthogonal, 183
orthonorntal, 192 240
symplectic, 189
transcendence. 367

bivector, 315
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center
of a division ring, 459
of a group, 388
of a Lie algebra, 486
of an associative algebra, 441

center of mass, 240
centralizer, 400
character, 446
characteristic of a field, 22

closure

algebraic, 339 40
integral, 365

cofactor, Z3

combination, linear, see also linear combi-
nation

commutative diagram, 398
commutativity, 5. fi
commutator

of group elements, 392
of matrices, 482
subgroup, 392

complement, orthogonal, 182, 129
complex number, 13

absolute value of, 16
algebraic form of, 15
argument of, 16
imaginary, 15
imaginary part of, 15
norm of, 104
purely imaginary, 15
real part of, 15
trigonometric form of, 1Z

complexification, 208
component

connected, 476
homogeneous, 113
irreducible, 374
isotypic, 42Z
orthogonal, 193

composition of functions, 2
composition series, 403
cone, 270, 288

Grassmann, 318
quadratic, 289
quadric, 275

congruence

modulo n, 20
modulo a subgroup, 155

conic, 269
conjugacy class, 396
conjugation

complex, 15
quaternion, 459

contraction, 303.
convergence, absolute, 233
convex body. 249
coordinate, 26
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coordinate system
affine, 240
Cartesian, 242

coordinates
barycentric, 241
homogeneous, 283
nonhomogeneous, 283
of a tensor, 304
Plucker, 319

covet, 156
left, 156
right, 156

Cramer's rules, 77
cross-ratio, 282
cubic resolution, 123
curve, quadric, 269
cycle, 150

disjoint, 150

decomposable element, 2298 300 309 315
degree

of a division algebra, 463
transcendence, 368

derivative, 91
determinant, 70

expansion of, 74
of a linear operator, 207
Vandermonde, 73

differential
of an affine map, 259
of an affine transformation, 167
of an affine-linear function, 248
of an affine-quadratic function, 269

dimension
of a representation, 420
of a space, 47
of a variety, 329

direct product, 333
of groups, 387
of subgroups, 385

direct sum
external, 3306. 333, 342
internal, 306, 333, 342
of abelian groups, 333
of modules, 346
of rings, 342
of spaces, 306
of subgroups, 333
of subspaces, 174, 30&

discriminant, 124
distance, 194, 242
distributive laws, Z
divisible, 104
divisor, prime, 381
domain

Euclidean, 104
factorial, 31Z
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integral, 104
integrally closed, 365
normal, 365
principal ideal, 343
unique factorization, 312

edge, 255
eigenspace, 209
eigenvalue, 102
eigenvector, 202
ellipsoid, 225
endomorphism

Flobenius, 362
group, 164

equation
algebraic, 82
free term of, 35
linear, 35

homogeneous, 35
solvable by radicals, 41A

equivalence class, 12
equivalent figures, 144
exponent of a finite group, 336
extension

of a field, 293
degree of, 352
finite, 352
Gable, 408
quadratic, 352
separable, 366
simple, 352

of a ring, 356
finite, 364
finitely generated, 356
integral, 364

face, 255
factor, invariant, 332, 336, 351

Flermat numbers, 412
field, 9

algebraic closure of, 463
algebraically closed, 94
characteristic of, 22
cyclotomic, 358
of algebraic numbers, 358
of complex numbers, 13
of fractions, 130
of rational fractions, 131
of rational functions, 131
quotient, 130
splits, 461
splitting, 360

field element
algebraic, 356

trace of, 363
quadratic radical, 415
radical, 414
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transcendental, 356
finitary sequence, 51
flag, 262
form

bilinear, 180
binary, 492
canonical Jordan, 227
canonical of a quadratic function, 215.221
linear, 126
normal, 186, 199
quadratic, 182
real, of a Lie group, 489

Formula
Burnside's, 4110
Cardano's, 1.26
Lagrange Interpolation, 134
Thylor's, 92
ViPte's, 89

fraction
proper, 131
rational, 131

primitive, 132
regular part of, 132

reduced, 131
frame, 7911
function

affine-linear, 246
differential of, 246

affine-quadratic, 2fi8
center of, 269
differential of, 269

bilinear, 1811
kernel of, 181
matrix of, 18(1
negative definite, 186
nondegenerate,181
polarization of, 182
positive definite, 186
rank of, 181
skew-symmetric, 181
symmetric, 181

central, 446
coordinate, 112
Euler's, 158
exponential, 234
Hermitian, 198

normal form of, 199
positive definite, 199

linear, 60 126
multilinear, 66, 295

skew-symmetric, 319
symmetric, 308

quadratic, 182
canonical form of, 211 , 221
Hermitian, 198
negative definite, 196

normal form of, 186
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positive definite, 186
sesquilinear, 198

matrix of, 198
skew-Hermitian, 198
skew-symmetric, 67

Gaussian elimination, 36
reverse, 40

Gaussian integer, 105
generator

of a group, 151
of a quadric, 272

geometry, 144
affine, 145, 262
conformal, 293
Lobachevsky,293
projective, 28Z
pseudo-Euclidean, 267

grading, 175
greatest common divisor, 105, 322
group, 139

abelian, 5, 139
finitely generated, 326
free, 326
multiplicative, 6

action of, 395
additive of a ring, 7
alternating, 165
center, 388
class, 382
commutative, 139
compact, 432
cyclic, 151
dihedral, 143
finite, exponent of, 336
full affine, 145
Gallileo, 146
Galois, 409
general affine, 260
general linear, L18
general projective, 285.
generated by S, 153
identity of, 6 139
inner automorphisms of, 388
Klein, 168
Lie, 423

linear, 473
real form of, 489
reductive, 490
simple, 488

Lorentz, 268
multiplicative of a field, 10
of cube rotations, 169
of parallel translations, 260
one-parameter, 235
order of, 152
orthogonal, 141, 211

Index

permutations of, 137
Poincar5, 147, 268
primary, 334
pseudo-orthogonal, 267
quotient, 162
simple, 403
solvable, 394
special linear, 143
special orthogonal, 217
special unitary, 221
symmetric, 137
symmetry, 143, 26fi
symplectic, 474
topological, 432
transformation, 137, 394
transitive, 144
unimodular, 143
unitary, 221
zero of, 5

group element
congruent modulo a subgroup, 155
inverse of, 6 139
order of, 149
power of, 147

group elements
commutator of, 392
conjugate, 396
linearly independent, 326

groups
direct product of, 387

half-space, 250
supporting, 2511.

homomorphism
algebra, 341
canonical, 170, 339, 341, 347
field extension, 360
group, 1.63
Lie group, 480
module, 347
ring, 339
topological group, 432

homothety, 261
hull

affine,242

convex, 248

hyperboloid, 275
hyperface, 255
hyperplane, 241

projective, 282
supporting, 250

hypersurface, quadric, 269

ideal, 338
equivalent, 382
generated by S, 343
left, 338
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maximal, 35,5
of a valuation, 381
of a variety, 322
prime, 356
principal, 343
proper, 365
right, 338
two-sided, 338

image, SL 163
index

lowering of, 345
raising of, 305

index of a subgroup, 151
index of inertia

negative, 187 199.
positive, 187, 193

inequality, Cauchy-Schwarz, 139
interpolation problem, 84

with multiple nodes, 231
interval, 242
invariant, 452

separating orbits, 453
inversion, 52
isomorphism, 3

action, 398
of affine spaces, 200
of algebras, 29
of Euclidean vector spaces, 192
of field extensions, 354
of modules, 341
of representations, 424

of vector spaces, 25

Jacobi identity, 8 483
Jordan block, 222

nilpotent, 225
Jordan canonical form, 221

kernel, 57, 153
ineffectiveness, 395
of a bilinear function, 181

lattice, 328
Law of Inertia, 154.. 199
least common multiple, 148
Legendre symbol, 332
Lemma

D'Alambert'a, 96
Fixed Point, 431.433
Gauss, 114
Gauss's, 377
Noether Normalization, 364
Schur's, 424

length, 194
line, 241

projective, 282
linear combination, 44
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barycentric, 240
convex, 248
nontrivial, 44

linear programming, 257
linear representation, 395 see also represen-

tation

manifold
differentiable, 412

map
affine,252

differential of, 259
equivariant, 388
exponential, 411
linear, 53

matrix of, 55
multilinear, 295

skew-symmetric, 314
symmetric, 308

quotient, 19
matrix, 3f1

coefficient, 31£
column rank of, fi4
commutator, 482
diagonal, 3L 330
diagonal of, 31
elementary, 42
extended, 3fi
Gram, 191
Hermitian, 198
identity, 32
in step form, 32
Jordan, 222
lower triangular, 39
main diagonal of, 31
nonsingular, 5Q 63
of a bilinear function, 184
of a linear map, 55
of a linear operator, 241
of a sesquilinear function, 121
order of, 31
orthogonal, 110
permanent of, 313
Pfaffian of, 322
rank of, 52
row rank of, 60
scalar, 33
secondary diagonal of, 31
similar, 221
skew-Hermitian, IS%
skew-symmetric, 113
square, 31
strictly triangular, 39
symmetric, 176
tensor product, 301
transition, 50
transposed, 34
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trapezoidal, 38
triangular, 39
unit, 33
unitary, 200

method
Jacobi, 187
simplex, 258

minor, 73
complementary, 73
corner, 79, 184
principal, 208

module, 345
cyclic, 348
finitely generated, 348

free, 348
rank of, 349

left, 345
periodic, 348
primary, 354
quotient, 347
right, 34fi

module elements
linearly independent, 348

monomial
leading, 116.

morphism, 424
motion, 263

axis of, 265
improper, 263
orientation preserving, 263
orientation reversing, 263
proper, 253
spiral, 266

multivector, 315
decomposable, 315

nilalgebras, 435
norm

convergence in, 232

of a complex number, 104
of a linear operator, 233
of a quaternion, 466
of an octonion, 469
on a vector space, 232

normalizer. 444

octonion,469

norm of, 469
operation, I

commutative, 3
operator

adjoint, 212 220, 484
Hermitian. 220
identity, 206
linear, 201

determinant of. 207
norm of, 233

rank of, 207
minimal polynomial of, 228
nilpotent, 224

height of, 224
of left multiplication, 206
orthogonal, 213
positive definite, 215, 221
representation, 424
Reynolds, 455
selfadjoint, 213, 224
skew-symmetric, 213
symmetric, 213
tensor product, 341
unitary, 224

orbit, 158, 396
length of, 159
separated by invariants, 453

order

lexicographic, 115
of a group, 152
of a group element, 149

origin, 138
orthogonalization

Gram Schmidt, 185
method of, 193

oval, 292

paraboloid
axis of, 280
elliptic, 275
hyperbolic, 275
vertex of, 279

parallel translation, 1.38
parallelepiped, 195, 253

base of, 195
fundamental, 328
height of, 195
volume of, 195

permutation
even, 165
odd, 165

Pfaffian, 322
pivotal element, 37
plane, 241

at infinity, 283
projective, 282

planes
parallel, 245
skew, 245

point, 239
at infinity, 282
boundary, 248
extreme. 254
interior, 248
neighboring. 256

points
affinely dependent, 242
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affinely independent, 242
in general position, 28Z

polar decomposition, 219, 221
polarization, 182, 312
polyhedron, 253

face of, 255
flag of, 261
regular, 266, 261

polynomial, 81
annihilating, 228
characteristic, 208
coefficients of, a2
cyclotomic, 111
degree of, 82, 113
depressed, 125
homogeneous, 113
irreducible, 107, 328
leading coefficient of, 82
minimal, 228, 358
monic, 20
of several variables, 112
primitive, 110. 377
root of, a7
separable, 409
splitting field of, 30
symmetric, 1111

elementary, 118
power

exterior, 334 311
symmetric, 313

power sum, 116
prime element, 106
Problem

Maximum Profit, 251
'1}ansporation, 258

product
exterior, 31Z
inner, 190 199
triple, 485

projection, 174, 214
orthogonal, 193, 215

projectivization, 288

quadratic nonresidue, 188
quadratic residue, 188
quadric, 269

center of, 270
central, 270
conic, 270
cylindrical, 272
projective, 283

nondegenerate,289

ruled, 292

vertex of, 270

quaternion, 29, 459
conjugate, 459
norm of, 460

quotient, incomplete, 85

radical
of a commutative ring, 355
of an algebra, 435

rank
of a bilinear function, 181
of a free abelian group, 326
of a free module, 343
of a linear operator, 207
of a matrix, 52
of a system of vectors, 52

ratio
cross-, 281
simple, 262

reduction
modulo p of a polynomial, 110

reduction to principal axes, 215
reflection, 210, 264

glide, 266
orthogonal, 213

relation, 18
equivalence, 18

relations, Plucker, 313
relatively prime elements, 321
remainder, 85
representation, 420

adjoint, 484, 485.
character of, 446
completely reducible, 424
dimension of, 420
dual, 449
irreducible, 422
isotypic, 422
linear, 4211
matrix entry of, 44fi
monomial, 423
of a group, 420
of a Lie algebra, 484
of a Lie group, 48.4
of an associative algebra, 420
operator, 420
orthogonal, 434
quotient, 421
regular, 423
self-dual, 449
space, 420
symplectic, 430
tautological, 437
with a simple spectrum, 423

representations
product of, 450
sum of, 426
tensor product of,

residue class, 20
ring, 7

429

algebraic extension, 3511
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intersection of, 111
linearly dependent, 171
linearly independent, 173
sum of, 171

surface, quadric, 288
symbol, Kronecker, 172
symmetrization, 314
symmetry, central, 251
system of equations

compatible, 36
degree of indeterminacy, Al

determined, 39
general solution of, 38
in step form, 38
incompatible, 36
triangular, 39
underdetermined, 32

systems of equations
equivalent, 36

tensor, 342
contravariant, 3l
covariant, 342
metric, 345
skew-symmetric, 315
symmetric, 314

tensor product, 296
of matrices, 341
of operators, 341
of representations, 429

Theorem
Bezout's, 86
Burnside's, 428
Cayley's, 396
Cayley-Hamilton, 234
Ceva's, 243
Descrates, 144
Euler's, 158 21Z
Format's Little, 158
FYobenius, 455
Fundamental, of algebra of complex num-

bers, 93
Fundamental, of Galois theory, 412
Hilbert's basis, 354
Hilbert's finiteness, 484
Hilbert's Nullstellensatz, 371
Homomorphism, 165. 342
Jordan-Holder, 443
Lagrange's, 152
Menelaus's, 243
Minkowski-Weyl, 254
Primitive element, 462
Separation, 250
Steinita's, 256
Wedderburn's, 465
Wilson's, 94

topology, Zariski, 323
torus, 432

trace, 1Z6
transformation, 1.32

affine, 145 260
differential of, 162
linear part of, 18Z

elementary, 36
elementary row, 38
integral elementary column, 334
integral elementary row, 334
linear, 201
Lorentz, 142
orthogonal, L41
projective, 285
quasi-elementary, 348

transposition, 88, 154
adjacent, L54

trigonometric form, 17
trivector, 315

valuation, 384
ideal of, 381

variable
free, 39
principal, 39

variety
affine, 321
algebraic, 2888. 321
Graaemann, 318
ideal of, 312
irreducible, 313

dimension of, 325
linear, 268
polynomial algebra of, 321

vector, 24
connecting points, 238
geometric, 24
highest weight, 491
length of, 184.. 244
position, 244
root, 222

height of, 222
vectorization, 240

vectors

collinear, 26
coplanar, 26
equivalent, 52
linearly dependent, 44
linearly independent, 44
orthogonal, 182. 198
positively oriented, 64
system of, 44

rank of, 52
vertex

of a paraboloid, 229
of a polyhedron, 255
of a quadric, 220

weight, highest, 492
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