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Preface

This book aims to present a general survey of algebra, of its basic notions and
main branches. Now what language should we choose for this? In reply to the
question ‘What does mathematics study?’, it is hardly acceptable to answer
‘structures’ or ‘sets with specified relations’; for among the myriad conceivable
structures or sets with specified relations, only a very small discrete subset is of
real interest to mathematicians, and the whole point of the question is to
understand the special value of this infinitesimal fraction dotted among the
amorphous masses. In the same way, the meaning of a mathematical notion is
by no means confined to its formal definition; in fact, it may be rather better
expressed by a (generally fairly small) sample of the basic examples, which serve
the mathematician as the motivation and the substantive definition, and at the
same time as the real meaning of the notion.

Perhaps the same kind of difficulty arises if we attempt to characterise in terms
of general properties any phenomenon which has any degree of individuality.
For example, it doesn’t make sense to give a definition of the Germans or the
French; one can only describe their history or their way of life. In the same way,
it’s not possible to give a definition of an individual human being; one can only
either give his ‘passport data’, or attempt to describe his appearance and charac-
ter, and relate a number of typical events from his biography. This is the path
we attempt to follow in this book, applied to algebra. Thus the book accom-
modates the axiomatic and logical development of the subject together with more
descriptive material: a careful treatment of the key examples and of points of
contact between algebra and other branches of mathematics and the natural
sciences. The choice of material here is of course strongly influenced by the
author’s personal opinions and tastes.



Preface 5

As readers, I have in mind students of mathematics in the first years of an
undergraduate course, or theoretical physicists or mathematicians from outside
algebra wanting to get an impression of the spirit of algebra and its place in
mathematics. Those parts of the book devoted to the systematic treatment of
notions and results of algebra make very limited demands on the reader: we
presuppose only that the reader knows calculus, analytic geometry and linear
algebra in the form taught in many high schools and colleges. The extent of the
prerequisites required in our treatment of examples is harder to state; an ac-
quaintance with projective space, topological spaces, differentiable and complex
analytic manifolds and the basic theory of functions of a complex variable is
desirable, but the reader should bear in mind that difficulties arising in the
treatment of some specific example are likely to be purely local in nature, and
not to affect the understanding of the rest of the book.

This book makes no pretence to teach algebra: it is merely an attempt to talk
aboutit. I have attempted to compensate at least to some extent for this by giving
a detailed bibliography; in the comments preceding this, the reader can find
references to books from which he can study the questions raised in this book,
and also some other areas of algebra which lack of space has not allowed us to
treat.

A preliminary version of this book has been read by F.A. Bogomolov, R.V.
Gamkrelidze, S.P. Démushkin, A.I. Kostrikin, Yu.l. Manin, V.V. Nikulin, A.N.
Parshin, M.K. Polyvanov, V.L. Popov, A.B. Roiter and A.N. Tyurin; I am
grateful to them for their comments and suggestions which have been incor-
porated in the book.

I am extremely grateful to N.I. Shafarevich for her enormous help with the
manuscript and for many valuable comments.

Moscow, 1984 I.R. Shafarevich

I have taken the opportunity in the English translation to correct a number
of errors and inaccuracies which remained undetected in the original; I am very
grateful to E.B. Vinberg, A.M. Volkhonskii and D. Zagier for pointing these out.
I am especially grateful to the translator M. Reid for innumerable improvements
of the text.

Moscow, 1987 I.R. Shafarevich



6 §1. What is Algebra?

§ 1. What is Algebra?

What is algebra? Is it a branch of mathematics, a method or a frame of mind?
Such questions do not of course admit either short or unambiguous answers.
One can attempt a description of the place occupied by algebra in matl}ematics
by drawing attention to the process for which Hermann Weyl coined the un-
pronounceable word ‘coordinatisation’ (see [H. Weyl 109 (1939), Chap. I, §4]).
An individual might find his way about the world relying exclusively on his sense
organs, sight, feeling, on his experience of manipulating objects in the world
outside and on the intuition resulting from this. However, there is another
possible approach: by means of measurements, subjective impressions can be
transformed into objective marks, into numbers, which are then capable of being
preserved indefinitely, of being communicated to other individuals who have not
experienced the same impressions, and most importantly, which can be operated
on to provide new information concerning the objects of the measurement.

The oldest example is the idea of counting (coordinatisation) and calculation
(operation), which allow us to draw conclusions on the number of objects without
handling them all at once. Attempts to ‘measure’ or to ‘express as a number’ a
variety of objects gave rise to fractions and negative numbers in addition to the
whole numbers. The attempt to express the diagonal of a square of side 1 as a
number led to a famous crisis of the mathematics of early antiquity and to the
construction of irrational numbers.

Measurement determines the points of a line by real numbers, and much more
widely, expresses many physical quantities as numbers. To Galileo is due the
most extreme statement in his time of the idea of coordinatisation: ‘Measure
everything that is measurable, and make measurable everything that is not yet
s0’. The success of this idea, starting from the time of Galileo, was brilliant. The
creation of analytic geometry allowed us to represent points of the plane by pairs
of numbers, and points of space by triples, and by means of operations with
numbers, led to the discovery of ever new geometric facts. However, the success
of analytic geometry is mainly based on the fact that it reduces to numbers not
only points, but also curves, surfaces and so on. For example, a curve in the plane
is given by an equation F(x, y) = 0; in the case of a line, F is a linear polynomial,
and is determined by its. 3 coefficients: the coefficients of x and y and the constant
term. In the case of a conic section we have a curve of degree 2, determined by
its 6 coefficients. If F is a polynomial of degree n then it is easy to see that it has
1(n + 1)(n + 2) coefficients; the corresponding curve is determined by these
coefficients in the same way that a point is given by its coordinates.

In order to express as numbers the roots of an equation, the complex numbers
were introduced, and this takes a step into a completely new branch of mathe-
matics, which includes elliptic functions and Riemann surfaces.

For a long time it might have seemed that the path indicated by Galileo
consisted of measuring ‘everything’ in terms of a known and undisputed collec-
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tion of numbers, and that the problem consists just of creating more and more
subtle methods of measurements, such as Cartesian coordinates or new physical
instruments. Admittedly, from time to time the numbers considered as known
(or simply called numbers) turned out to be inadequate: this led to a ‘crisis’, which
had to be resolved by extending the notion of number, creating a new form of
numbers, which themselves soon came to be considered as the unique possibility.
In any case, as a rule, at any given moment the notion of number was considered
to be completely clear, and the development moved only in the direction of
extending it:

‘1, 2, many’ = natural numbers = integers

= rationals => reals = complex numbers.

But matrixes, for example, form a completely independent world of ‘number-
like objects’, which cannot be included in this chain. Simultaneously with them,
quaternions were discovered, and then other ‘hypercomplex systems’ (now called
algebras). Infinitesimal transformations led to differential operators, for which
the natural operation turns out to be something completely new, the Poisson
bracket. Finite fields turned up in algebra, and p-adic numbers in number theory.
Gradually, it became clear that the attempt to find a unified all-embracing
concept of number is absolutely hopeless. In this situation the principle declared
by Galileo could be accused of intolerance; for the requirement to ‘make mea-
surable everything which is not yet so’ clearly discriminates against anything
which stubbornly refuses to be measurable, excluding it from the sphere of
interest of science, and possibly even of reason (and thus becomes a secondary
quality or secunda causa in the terminology of Galileo). Even if, more modestly,
the polemic term ‘everything’ is restricted to objects of physics and mathematics,
more and more of these turned up which could not be ‘measured’ in terms of
‘ordinary numbers’.

The principle of coordinatisation can nevertheless be preserved, provided we
admit that the set of ‘number-like objects’ by means of which coordinatisation
is achieved can be just as diverse as the world of physical and mathematical
objects they coordinatise. The objects which serve as ‘coordinates’ should satisfy
only certain conditions of a very general character.

They must be individually distinguishable. For example, whereas all points of
a line have identical properties (the line is homogeneous), and a point can only
be fixed by putting a finger on it, numbers are all individual: 3, 7/2, \/5, 7 and so
on. (The same principle is applied when newborn puppies, indistinguishable to
the owner, have different coloured ribbons tied round their necks to distinguish
them.)

They should be sufficiently abstract to reflect properties common to a wide
circle of phenomenons.

Certain fundamental aspects of the situations under study should be reflected
in operations that can be carried out on the objects being coordinatised: addition,
multiplication, comparison of magnitudes, differentiation, forming Poisson
brackets and so on.
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We can now formulate the point we are making in more detail, as follows:

Thesis. Anything which is the object of mathematical study (curves and surfaces,
maps, symmetries, crystals, quantum mechanical quantities and so on) can be
‘coordinatised’ or ‘measured’. However, for such a coordinatisation the ‘ordinary’
numbers are by no means adequate.

Conversely, when we meet a new type of object, we are forced to construct (or
to discover) new types of ‘quantities’ to coordinatise them. The construction and
the study of the quantities arising in this way is what characterises the place of
algebra in mathematics (of course, very approximately).

From this point of view, the development of any branch of algebra consists of
two stages. The first of these is the birth of the new type of algebraic objects out
of some problem of coordinatisation. The second is their subsequent career, that
is, the systematic development of the theory of this class of objects; this is
sometimes closely related, and sometimes almost completely unrelated to the
area in connection with which the objects arose. In what follows we will try not
to lose sight of these two stages. But since algebra courses are often exclusively
concerned with the second stage, we will maintain the balance by paying a little
more attention to the first.

We conclude this section with two examples of coordinatisation which are
somewhat less standard than those considered up to now.

Example 1. The Dictionary of Quantum Mechanics. In quantum mechanics,
the basic physical notions are ‘coordinatised’ by mathematical objects, as follows.

Physical notion Mathematical notion

Line ¢ in an co-dimensional

State of a physical system complex Hilbert space

Scalar physical quantity Self-adjoint operator

Simultaneously measurable .
Commuting operators

quantities
Quantity taking a precise Operator having ¢ as eigenvector
value / in a state ¢ with eigenvalue A

Set of values of quantities

. Spectrum of an operator
obtainable by measurement P P

Probability of transition

from state ¢ to state ¥ (@, ¥)l, where |o] = [y| =1

Example 2. Finite Models for Systems of Incidence and Parallelism Axioms.
We start with a small digression. In the axiomatic construction of geometry, we
often consider not the whole set of axioms, but just some part of them; to be
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concrete we only discuss plane geometry here. The question then arises as to
what realisations of the chosen set of axioms are possible: do there exists other
systems of objects, apart from ‘ordinary’ plane geometry, for which the set of
axioms is satisfied? We consider now a very natural set of axioms of ‘incidence
and parallelism’.

(a) Through any two distinct points there is one and only one line.

(b) Given any line and a point not on it, there exists one and only one other
line through the point and not intersecting the line (that is, parallel to it).

(c) There exist three points not on any line.

It turns out that this set of axioms admits many realisations, including some
which, in stark contrast to our intuition, have only a finite number of points and
lines. Two such realisations are depicted in Figures 1 and 2. The model of Figure
1 has 4 points A, B, C, D and 6 lines AB, CD; AD, BC; AC, BD. That of Figure
2 has 9 points, A, B, C, D, E, F, G, H, I and 12 lines ABC, DEF, GHI; ADG,
BEH, CFI; AEL, BFG, CDH; CEG, BDI, AFH. The reader can easily verify that
axioms (a), (b), (c) are satisfied; in our list of lines, the families of parallel lines are
separated by semicolons.

We return to our main theme, and attempt to ‘coordinatise’ the model of
axioms (a), (b), (c) just constructed. For the first of these we use the following
construction: write ® and 1 for the property of an integer being even or odd
respectively; then define operations on the symbols @ and 1 by analogy with the
way in which the corresponding properties of integers behave under addition
and multiplication. For example, since the sum of an even and an odd integer is
odd, we write ® + 1 = 1, and so on. The result can be expressed in the ‘addition
and multiplication tables’ of Figures 3 and 4.

The pair of quantities 0 and 1 with the operations defined on them as above
serve us in coordinatising the ‘geometry’ of Figure 1. For this, we give points
coordinates (X, Y) as follows:
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+ |0 1 x |0 1

010 1 0|0 O

111 0 110 1
Fig. 3 Fig. 4

A=(0,0, B=(,1), C=(10, D=(11.

It is easy to check that the lines of the geometry are then defined by the linear
equations:

AB:1X =0, CD:1X =1, AD:1X +1Y =0,
BC:1X +1Y =1, AC:1Y=0, BD:1Y=1.

In fact these are the only 6 nontrivial linear equations which can be formed using
the two quantities 0@ and 1.

The construction for the geometry of Figure 2 is similar, but slightly more
complicated: suppose that we divide up all integers into 3 sets U, V and W as

follows:
U = integers divisible by 3,
V = integers with remainder 1 on dividing by 3,

W = integers with remainder 2 on dividing by 3.

The operations on the symbols U, V, W is defined as in the first example; for
example, a number in V plus a number in W always gives a number in U, and
so we set V + W = U; similarly, the product of two numbers in W is always a
number in V, so we set W- W = V. The reader can easily write out the corre-
sponding addition and multiplication tables.

It is then easy to check that the geometry of Figure 2 is coordinatised by our
quantities U, V, W as follows: the points are

A=(U,U), B=(UV), C=(UW), D=(VU E=(V),
F=WV,W), G=(WU), H=WV), I=(WW)

and the lines are again given by all possible linear equations which can be written
out using the three symbols U, V, W; for example, AFH is givenby VX + VY =
U,and DCHby VX + WY = V.

Thus we have constructed finite number systems in order to coordinatise finite
geometries. We will return to the discussion of these constructions later.

Already these few examples give an initial impression of what kind of objects
can be used in one or other version of ‘coordinatisation’. First of all, the collection
of objects to be used must be rigorously delineated; in other words, we must
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indicate a set (or perhaps several sets) of which these objects can be elements.
Secondly, we must be able to operate on the objects, that is, we must define
operations, which from one or more elements of the set (or sets) allow us to
construct new elements. For the moment, no further restrictions on the nature of
the sets to be used are imposed; in the same way, an operation may be a com-
pletely arbitrary rule taking a set of k elements into a new element. All the same,
these operations will usually preserve some similarities with operations on
numbers. In particular, in all the situations we will discuss, k = 1 or 2. The basic
examples of operations, with which all subsequent constructions should be
compared, will be: the operation a— —a taking any number to its negative; the
operation b— b~! taking any nonzero number b to its inverse (for each of these
k = 1); and the operations (a,b)— a + b and ab of addition and multiplication
(for each of these k = 2).

§ 2. Fields

We start by describing one type of ‘sets with operations’ as described in § 1
which corresponds most closely to our intuition of numbers.

A fieldis a set K on which two operations are defined, each taking two elements
of K into a third; these operations are called addition and multiplication, and the
result of applying them to elements a and b is denoted by a + b and ab. The
operations are required to satisfy the following conditions:

Addition:

Commutativity: a + b = b + a;

Associativity:a + (b + ¢)=(a + b) + ¢;

Existence of zero: there exists an element 0 € K such that a + 0 = a for every
a (it can be shown that this element is unique);

Existence of negative: for any a there exists an element (—a) such that
a + (—a) = 0 (it can be shown that this element is unique).
Multiplication:

Commutativity: ab = ba,

Associativity: a(bc) = (ab)c;

Existence of unity: there exists an element 1 € K such that al = a for every a
(it can be shown that this element is unique);

Existence of inverse: for any a # 0 there exists an element a~! such that
aa™' = 1 (it can be shown that for given q, this element is unique).
Addition and multiplication:

Distributivity: a(b + ¢) = ab + ac.

Finally, we assume that a field does not consist only of the element 0, or
equivalently, that 0 # 1.
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These conditions taken as a whole, are called the field axioms. The ordinary
identities of algebra, such as

(@ + b)* = a® + 2ab + b?
or
al—@+D)t=atla+ 1!

follow from the field axioms. We only have to bear in mind that for a natural
number n, the expression na means a + a + **- + a (n times), rather than the
product of a with the number n (which may not be in K).

Working over an arbitrary field K (that is, assuming that all coordinates,
coefficients, and so on appearing in the argument belong to K) provides the most
natural context for constructing those parts of linear algebra and analytic
geometry not involving lengths, polynomial algebras, rational fractions, and
O on.

Basic examples of fields are the field of rational numbers, denoted by Q, the
field of real numbers R and the field of complex numbers C.

If the elements of a field K are contained among the elements of a field L and
the operations in K and L agree, then we say that K is a subfield of L, and L an
extension of K, and we write K < L. For example, Q <« R < C.

Example 1. In § 1, in connection with the ‘geometry’ of Figure 1, we defined
operations of addition and multiplication on the set {0,1}. It is easy to check
that this is a field, in which 0 is the zero element and 1 the unity. If we write 0
for 0 and 1 for 1, we see that the multiplication table of Figure 4 is just the rule
for multiplying 0 and 1 in @, and the addition table of Figure 3 differs in that
1 + 1 = 0. The field constructed in this way consisting of 0 and 1 is denoted by
F,. Similarly, the elements U, V, W considered in connection with the geometry
of Figure 2 also form a field, in which U = 0, V = 1 and W = — 1. We thus obtain
examples of fields with a finite number (2 or 3) of elements. Fields having only
finitely many elements (that is, finite fields) are very interesting objects with many
applications. A finite field can be specified by writing out the addition and
multiplication tables of its elements, as we did in Figures 3—4. In § 1 we met such
fields in connection with the question of the realisation of a certain set of axioms
of geometry in a finite set of objects; but they arise just as naturally in algebra
as realising the field axioms in a finite set of objects. A field consisting of g
elements is denoted by F,.

Example 2. An algebraic expression obtained from an unknown x and arbi-
trary elements of a field K using the addition, multiplication and division opera-
tions, can be written in the form

ag +a;x+ -+ ax"
by + byx + -+ + b, x™’

1

where a;, b; € K and not all b, = 0. An expression of this form is called a rational
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fraction, or a rational function of x. We can now consider it as a function, taking
any x in K (or any x in L, for some field L containing K) into the given expression,
provided only that the denominator is not zero. All rational functions form a
field, called the rational function field; it is denoted by K(x). We will discuss
certain difficulties connected with this definition in § 3. The elements of K are
contained among the rational functions as ‘constant’ functions, so that K(x) is
an extension of K.

In a similar way we define the field K(x,y) of rational functions in two
variables, or in any number of variables.

An isomorphism of two fields K’ and K” is a 1-to-1 correspondence a’ < a”
between their elements such that a’—a” and b’ b” implies that a’ + b'
a” + b" and a'b < a”b”; we say that two fields are isomorphic if there exists an
isomorphism between them. If L’ and L" are isomorphic fields, both of which are
extensions of the same field K, and if the isomorphism between them takes each
element of K into itself, then we say that it is an isomorphism over K, and that
L’ and L” are isomorphic over K. An isomorphism of fields K’ and K" is denoted
by K' = K”. If L’ and L” are finite fields, then to say that they are isomorphic
means that their addition and multiplication tables are the same; that is, they
differ only in the notation for the elements of L' and L”. The notion of
isomorphism for arbitrary fields is similar in meaning.

For example, suppose we take some line a and mark a point O and a ‘unit
interval’ OF on it; then we can in a geometric way define addition and multiplica-
tion on the directed intervals (or vectors) contained in a. Their construction is
given in Figures 5-6. In Figure 5, b is an arbitrary line parallel to @ and U an
arbitrary point on it, QU || AV and VC| UB; then OC = OA + OB. In Figure 6,
b is an arbitrary line passing through O, and EU || BV and VC|UA; then OC =
OA-OB.

N b
a
0 A 8 C a
7 Vel TN N
Fig. § Fig. 6

With this definition of the operations, intervals of the line form a field P; to
verify all the axioms is a sequence of nontrivial geometric problems. Taking each
interval into a real number, for example an infinite decimal fraction (this is again
a process of measurement!), we obtain an isomorphism between P and the real
number field R.
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Example 3. We return now to the plane curve given by F(x, y) = 0, where F is
a polynomial; let C denote the curve itself. Taking C into the set of coefficients
of F is one very primitive method of ‘coordinatising’ C. We now describe another
method, which is much more precise and effective.

It is not hard to show that any nonconstant polynomial F(x,y) can be fac-
torised as a product of a number of nonconstant polynomials, each of which
cannot be factorised any further. If F = F, - F, ... F, is such a factorisation then
our curve with equation F = 0 is the union of k curves with equations F, = 0,
F,=0,..., F, =0 respectively. We say that a polynomial which does not fac-
torise as a product of nonconstant polynomials is irreducible. From now on we
will assume that F is irreducible.

Consider an arbitrary rational function ¢(x, y) in two variables; ¢ is repre-
sented as a ratio of two polynomials:

o(x,y) = Plx.))
’ Q(x,y)’

and we suppose that the denominator Q is not divisible by F. Consider ¢ as a
function on points of C only; it is undefined on points (x, y) where both Q(x, y) = 0
and F(x, y) = 0. It can be proved that under the assumptions we have made there
are only finitely many such points. In order that our treatment from now on has
some content, we assume that the curve C has infinitely many points (that is, we
exclude curves such as x? + y2 = —1, x* + y* = 0 and so on; if we also consider
points with complex coordinates, then the assumption is not necessary). Then
©(x, y) defines a function on the set of points of C (for short, we say on C), possibly
undefined at a finite number of points—in the same way that the rational
function (1) is undefined at the finite number of values of x where the denominator
of (1) vanishes. Functions obtained in this way are called rational functions on
C. It can be proved that all the rational functions on a curve C form a field (for
example, one proves that a function ¢ defines a nonzero function on C only if
Q(x, )
P(x,y)
condition required for ¢, that the denominator is not divisible by F; this proves
the existence of the inverse). The field of rational functions on C is denoted by
R(C); it is an extension of the real number field R. Considering points with co-
ordinates in an arbitrary field K, it is easy to replace R by K in this construction.

Assigning to a curve C the field K(C) is a much more precise method of
‘coordinatising’ C than the coefficients of its equation. First of all, passing from
a coordinate system (x,y) to another system (x’,y’), the equation of a curve
changes, but the field K(C) is replaced by an isomorphic field, as one sees easily.
Another important point is that an isomorphism of fields K(C) and K(C’)
establishes important relations between curves C and C'.

Suppose as a first example that C is the x-axis. Then since the equation of C
is y = 0, restricting a function ¢ to C we must set y = 0 in (2), and we get a
rational function of x:

2

P(x, y)is not divisible by F(x, y), and then the function ¢ ! = satisfies the
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_ P(x,0)
@(x,0) = 0(x.0)

Thus in this case, the field K(C) is isomorphic to the rational function field
K(x). Obviously, the same thing holds if C is an arbitrary line.

We proceed to the case of a curve C of degree 2. Let us prove that in this case
also the field K(C) is isomorphic to the field of rational functions of one variable
K(t). For this, choose an arbitrary point (x,, y,) on C and take t to be the slope
of the line joining it to a point (x, y) with variable coordinates (Figure 7).

(Xoa yg)

(xy4)

Fig. 7

In other words, set ¢ = 2—2°
X — X,

y, as functions on C, are rational functions of ¢. For this, recall that y — y, =
t(x — x,), and if F(x, y) = 0 is the equation of C, then on C we have

F(x,yo + t(x — x0)) = 0. 3)

, as a function on C. We now prove that x and

In other words, the relation (3) is satisfied in K(C). Since C is a curve of degree
2, this is a quadratic equation for x: a(t)x? + b(t)x + c(t) = 0 (whose coefficients
involve t). However, one root of this equation is known, namely x = x,; this
simply reflects the fact that (x,, y,) is a point of C. The second root is then
obtained from the condition that the sum of the roots equals ——%. We get
an expression x = f(t) as a rational function of ¢, and a similar expression
y = g(t); of course, F(f(t),g(t)) =0. Thus taking x> f(t), y«<>g(t) and
o(x, y) = o(f(¢),g(t)), we obtain an isomorphism of K(C) and K(t) over K.

The geometric meaning of the isomorphism obtained in this way is that points
of C can be parametrised by rational functions: x = f(t), y = g(¢). If C has
the equation y? = ax? + bx + ¢ then on C we have y = \/ax? + bx + ¢, and
another form of the result we have obtained is that both x and \/ax? + bx +¢
can be expressed as rational functions of some third function ¢. This expression
is useful, for example, in evaluating indeterminate integrals: it shows that any
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integral
J(p(x,« /ax? + bx + c)dx,

where ¢ is a rational function, reduces by substitutions to integrals of a rational
function of ¢, and can hence be expressed in terms of elementary functions. In
analysis our substitutions are called Euler substitutions. We mention two further
applications.

(@) The field of trigonometric functions is defined as the field of all rational
functions of sin ¢ and cos ¢. Since sin? ¢ + cos® ¢ = 1, this field is isomorphic
to R(C), where C is the circle with equation x? + y* = 1. We know that R(C) is
isomorphic to R(t). This explains why each trigonometric equation can be
reduced to an algebraic equation.

(b) In the case of the circle x> + y? =1, if we set x, =0, y, = —1, our
construction gives the formulas

2t 1 —¢?
= —7F, = — 4
iy e YTy @
A problem of number theory which goes back to antiquity is the question
b
of finding integers a, b, ¢ for which a? + b? = c%. Setting a_ X,—=y t= b
c ¢

and reducing formula (4) to common denominators, we get the well-known
expression

a=2pq, b=q*—p* c=q*+p*

Already for the curve C with equation y? = x3 + 1 the field K(C) is not isomor-
phic to the field of rational functions. This is closely related to the fact that an

dx
elliptic integral, for example f——
tary functions. Vx+1

Of course, the field K(C) also plays an important role in the study of other
curves. It can also be defined for surfaces, given by F(x,y,z) = 0, where F is a
polynomial, and if we consider spaces of higher dimensions, for an even wider
class of geometric objects, algebraic varieties, defined in an n-dimensional space
by an arbitrary system of equations F, =0, ..., F,, = 0, where the F; are poly-
nomials in n variables.

In conclusion, we give examples of fields which arise in analysis.

cannot be expressed in terms of elemen-

Example 4. All meromorphic functions on some connected domain of the plane
of one complex variable (or on an arbitrary connected complex manifold) form
a field.

Example 5. Consider the set of all Laurent series ) a,z" which are con-
n=—k

vergent in an annulus 0 < |z| < R (where different series may have different
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annuluses of convergence). With the usual definition of operations on series, these
form a field, the field of Laurent series. If we use the same rules to compute the
coefficients, we can define the sum and product of two Laurent series, even if
these are nowhere convergent. We thus obtain the field of formal Laurent series.
One can go further, and consider this construction in the case that the coefficients
a, belong to an arbitrary field K. The resulting field is called the field of formal
Laurent series with coefficients in K, and is denoted by K((z)).

§ 3. Commutative Rings

The simplest possible example of ‘coordinatisation’ is counting, and it leads
(once 0 and negative numbers have been introduced) to the integers, which do
not form a field. Operations of addition and multiplication are defined on the
set of all integers (positive, zero or negative), and these satisfy all the field axioms
but one, namely the existence of an inverse element a™' for every a # O (since,
for example, 4 is already not an integer).

A set having two operations, called addition and multiplication, satisfying all
the field axioms except possibly for the requirement of existence of an inverse
element a™! for every a # 0 is called a commutative ring; it is convenient not to
exclude the ring consisting just of the single element O from the definition.

The field axioms, with the axiom of the existence of an inverse and the
condition 0 # 1 omitted will from now on be referred to as the commutative ring
axioms.

By analogy with fields, we define the notions of a subring A = B of a ring, and
isomorphism of two rings A’ and A”; in the case that A ¢ A’and A = A" we also
have the notion of an isomorphism of A’ and A” over A4; an isomorphism of rings
is again written A’ = A”".

Example 1. The Ring of Integers. This is denoted by Z; obviously Z < Q.

Example 2. An example which is just a fundamental is the polynomial ring
A[x] with coefficients in a ring A. In view of its fundamental role, we spend some
time on the detailed definition of A[x]. First we characterise it by certain
properties.

We say that a commutative ring B is a polynomial ring over a commutative
ring A if B > A and B contains an element x with the property that every element
of B can be uniquely written in the form

ag+ayx + -+ a,x" with g; € A

for some n > 0. If B’ is another such ring, with x’ the corresponding element, the
correspondence
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g+ a;x+ " +a,x" & ag+a,x' + - +a,x)

defines an isomorphism of B and B’ over A, as one sees easily. Thus the poly-
nomial ring is uniquely defined, in a reasonable sense.

However, this does not solve the problem as to its existence. In most cases the
‘functional’ point of view is sufficient: we consider the functions f of 4 into itself
of the form

fle)=ao +ajc+ -+ a,c” force A. (1)

Operations on functions are defined as usual: (f + g)(c) = f(¢) + g(c¢) and
(fg)(c) = f(c)g(c). Taking an element a € A into the constant function f(c) = a,
we can view A as a subring of the ring of functions. If we let x denote the function
x(c) = ¢ then the function (1) is of the form

f=ay+ax+ " +ax" (2)

However, in some cases (for example if the number of elements of A is finite, and
n is greater than this number), the expression (2) for f may not be unique. Thus
in the field F, of §2, Example 1, the functions x and x? are the same. For this
reason we give an alternative construction.

We could define polynomials as ‘expressions’ g + a;x + - + a,x", with +
and x' thought of as conventional signs or place-markers, serving to denote the
sequence (a,,...,4a,) of elements of a field K. After this, sum and product are
given by formulas

Zakx +Zbkx —Z (a, + by)x",

k+l=m

(Z akx"> <Z b,x’> =Y c,x™ wherec,= Y ab.
k 1 m

Rather more concretely, the same idea can be formulated as follows. We consider
the set of all infinite sequences (aq, a,,...,q,,...) of elements of a ring A, every
sequence consisting of zeros from some term onwards (this term may be different
for different sequences). First we define addition of sequences by

(@g,aysevvslpy...) + (boyby,...,b,,...) = (a9 + by,a, + by,...,a, +b,,...).

All the ring axioms concerning addition are satisfied. Now for multiplication we
define first just the multiplication of sequences by elements of A:

a(ag,ay,...,a,,...) =(aay,aa,,...,ad,,...).

We write E, = (0,...,1,0,...) for the sequence consisting of 1 in the kth place
and O everywhere else. Then it is easy to see that

(Ag,@ysesly,...) =Y. aiE,. (3)

k>0
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Here the right-hand side is a finite sum in view of the condition imposed on
sequences. Now define multiplication by

(; akEk> <Zt: blEl> = ; aybEy iy 4)

(on the right-hand side we must gather together all the terms for k and [ with
k + I = n as the coefficient of E,). It follows from (4) that E, is the unit element
ofthering, and E, = E%. Setting E, = x we can write the sequence (3) in the form
Y a,x*. Obviously this expression for the sequence is unique. It is easy to check
that the multiplication (4) satisfies the axioms of a commutative ring, so that the
ring we have constructed is the polynomial ring 4[x].

The polynomial ring A[x,y] is defined as A[x][y], or by generalising the
above construction. In a similar way one defines the polynomial ring A[x,,...,x,]
in any number of variables.

Example 3. All linear differential operators with constant (real) coefficients can

. C 0 0 .
be written as polynomials in the operators A Hence they form a ring
xl xn

o 0
Rl —,...,— |.
|:6x1’ ’6x,,:|

to t; defines an isomorphism \

0 0
Rl —,... ~ R[t,,...,t,]
[6x1’ ’ax,,] [t ]

If A = K is a field then the polynomial ring K [x] is a subring of the rational
function field K(x), in the same way that the ring of integers Z is a subring of the
rational field Q. A ring which is a subring of a field has an important property:
the relation ab = 0 is only possible in it if either a = 0 or b = 0; indeed, it follows
easily from the commutative ring axioms that a-0 = 0 for any a. Hence if ab = 0
in a field and a # 0, multiplying on the left by a™! gives b = 0. Obviously the
same thing holds for a ring contained in a field.

A commutative ring with the properties that for any of its elements a, b the
product ab = 0 only if a = 0 or b = 0, and that 0 # 1, is called an integral ring
or an integral domain. Thus a subring of any field is an integral domain.

0
Sending 3

13

Theorem L. For any integral domain A, there exists a field K containing A as a
subring, and such that every element of K can be written in the form ab™ with
a,be A and b # 0. A field K with this property is called the field of fractions of
Aj; it is uniquely defined up to isomorphism.

For example, the field of fractions of Z is @, that of the polynomial ring K [x]
is the field of rational functions K(x), and that of K[x,,...,x,]is K(xy,...,X,).
Quite generally, fields of fractions give an effective method of constructing new
fields.
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Example 4. If A and B are two rings, their direct sum is the ring consisting of
pairs (a, b) with a € 4 and b € B, with addition and multiplication give by

(a1, b)) + (az,b;) = (a; + ay, b, + by),
(ay,b1)(ay,by) = (aya,,b,b,).

Direct sum is denoted by A @ B. The direct sum of any number of rings is defined
in a similar way.

A direct sum is not an integral domain: (a,0)(0,d) = (0,0), which is the zero
element of A @ B.

The most important example of commutative rings, which includes non-
integral rings, is given by rings of functions. Properly speaking, the direct sum
A@ @ A of n copies of A can be viewed as the ring of function on a set of
n elements (such as {1,2,...,n}) with values in A: the element (a,,...,a,) €
A@ @ A can be identified with the function f given by f(i) = g;. Addition
and multiplication of functions are given as usual by operating on their values.

Example 5. The set of all continuous functions (to be definite, real-valued
functions) on the interval [0, 1] forms a commutative ring ¥ under the usual
definition of addition and multiplication of functions. This is not an integral
domain: if f and g are the functions depicted in Figures 8 and 9, then obviously
fg = 0. In the definition, we could replace real-valued functions by complex-
valued ones, and the interval by an arbitrary topogical space. Rings of this form
occuring in analysis are usually considered together with a topology on their set
of elements, or a norm defining a topology. For example, in our case it is standard
to consider the norm

If1'= Sup [f(x)I.
0g<xg1

Examples analogous to those of Figures 8 and 9 can also be constructed in
the ring of C* functions on the interval.

y f

1/2 1 X 472

)
I VR

Fig. 8 Fig. 9
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(§2, Example 5). Similarly to § 2, Example 5 we can define the ring of formal power

series Y. a,t" with coefficients a, in any field K. This can also be constructed
n=0

asin Example 2, if we just omit the condition that the sequences (aq, a,, ..., qa,,...)

are 0 from some point onwards. This is also an integral domain, and its field of

fractions is the field of formal Laurent series K((t)). The ring of formal power

series is denoted by K [t].

Example 7. The ring 0, of functions in n complex variables holomorphic at the
origin, that is of functions that can be represented as power series

Yoay i ozi.zin
convergent in some neighbourhood of the origin. By analogy with Example 6

we can define the rings of formal power series C|z,,...,z,] with complex coef-
ficients, and K[z,,...,z,] with coefficients in any field K.

Example 8. We return to the curve C defined in the plane by the equation
F(x,y) = 0, where F is a polynomial with coefficients in a field K, as considered
in § 2. With each polynomial P(x, y) we associate the function on the set of points
of C defined by restricting P to C. Functions of this form are polynomial functions
on C. Obviously they form a commutative ring, which we denote by K[C]. If F
is a product of factors then the ring K[C] may not be an integral domain. For
example if F = xy then C is the union of the coordinate axes; then x is zero on
the y-axis, and y on the x-axis, so that their product is zero on the whole curve
C. However, if F is an irreducible polynomial then K[C] is an integral domain.
In this case the field of fractions of K[C] is the rational function field K(C) of C;
the ring k[ C] is called the coordinate ring of C.

Taking an algebraic curve C into the ring K[C] is also an example of
‘coordinatisation’, and in fact is more precise than taking C to K(C), since K[C]
determines K(C) (as its field of fractions), whereas there exist curves C and C’ for
which the fields K(C) and K(C') are isomorphic, but the rings K[C] and K[C']
are not.

Needless to say, we could replace the algebraic curve given by F(x, y) = 0 by
an algebraic surface given by F(x,y,z) = 0, and quite generally by an algebraic
variety.

Example 9. Consider an arbitrary set M, and the commutative ring 4 con-
sisting of all functions on M with values in the finite field with two elements F,
(§2, Example 1). Thus A consists of all maps from M to F,. Since F, has only two
elements 0 and 1, a function with values in [, is uniquely determined by the subset
U <= M of elements-on which it takes the value 1 (on the remainder it takes the
value 0). Conversely, any subset U = M determines a function ¢y with ¢, (m) = 1
if me U and @y(m) =0 if m¢ U. It is easy to see which operations on subsets
correspond to the addition and multiplication of functions:

Oy Oy =Py~y and @y + @y = @y,
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where U 4 V is the symmetric difference, UAV = (U u V) ~ (U n V). Thus our
ring can be described as being made up of subsets U = V with the operations of
symmetric difference and intersection as sum and product. This ring was in-
troduced by Boole as a formal notation for assertions in logic. Since x2 = x for
every element of [, this relations holds for any function with values in F,, that
is, it holds in A. A ring for which every element x satisfies x2 = x is a Boolean ring.

More general examples of Boolean rings can be constructed quite similarly,
by taking not all subsets of M, but only some system S of subsets containing
together with U and V the subsets U~V and U U V, and together with U its
complement. For example, we could consider a topological space having the
property that every open set is also closed (such a space is called 0-dimensional),
and let S be the set of open subsets of M. It can be proved that every Boolean
ring can be obtained in this way. In the following section § 4 we will indicate the
principle on which the proof of this is based.

The qualitatively new phenomenon that occurs on passing from fields to
arbitrary commutative rings is the appearance of a nontrivial theory of divisi-
bility. An element a of a ring A is divisible by an element b if there exists ¢ in A
such that a = bc. A field is precisely a ring in which the divisibility theory is
trivial: any element is divisible by any nonzero element, since a = b(ab™!). The
classical example of divisibility theory is the theory of divisibility in the ring Z:
this was constructed already in antiquity. The basic theorem of this theory is the
fact that any integer can be uniquely expressed as a product of prime factors.
The proof of this theorem, as is well known, is based on division with remainder
(or the Euclidean algorithm).

Let A be an arbitrary integral domain. We say that an element ae A4 is
invertible or is a unit of A if it has an inverse in A;in Z the units are + 1, in K[x]

the nonzero constants ¢ € K, and in K[x] the series ) a,x" with a, # 0. Any
i=0

element of A is divisible by a unit. An element a is said to be prime if its only
factorisations are of the form a = c(c™!a) where ¢ is a unit. If an integral domain
A has the property that every nonzero element can be written as a product of
primes, and this factorisation is unique up to renumbering the prime factors and
multiplication by units, we say that A is a unique factorisation domain (UF D) or
a factorial ring. Thus Z is a UFD, and so is K[x] (the proof uses division with
remainder for polynomials). It can be proved that if 4 is a UFD then so is A[x];
hence A[x,,...,x,]1s also a UFD. The prime elements of a polynomial ring are
called irreducible polynomials. In C[x] only the linear polynomials are irreduci-
ble, and in R[x] only linear polynomials and quadratic polynomials having no
real roots. In @[ x] there are irreducible polynomials of any degree, for example
the polynomial x" — p where p is any prime number.

Important examples of UFDs are the ring ¢, of functions in n complex
variables holomorphic at the origin, and the formal power series ring
K[t,,...,t,] (Example 7). The proof that these are UFDs is based on the
Weierstrass preparation theorem, which reduces the problem to functions (or
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formal power series) which are polynomials in one of the variables. After this,
one applies the fact that A[t] is a UFD (provided A is) and an induction.

Example 10. The Gaussian Integers. It is easy to see that the complex numbers
of the form m + ni, where m and n are integers, form a ring. This is a UFD, as
can also be proved using division with remainder (but the quantity that decreases
on taking the remainder is m* + n?). Since in this ring

m? + n? = (m + ni)(m — ni),

divisibility in it can be used as the basis of the solution of the problem of
representing integers as the sum of two squares.

Example 11. Let ¢ be a (complex) root of the equation e? + ¢ + 1 = 0. Complex
numbers of the form m + ne, where m and n are integers, also form a ring, which
is also a UFD. In this ring the expression m* + n® factorises as a product:

m® + n3 = (m + n)(m + ne)(m + ne),

where € = ¢2 = —(1 + ¢) is the complex conjugate of &. Because of this, divisi-
bility theory in this ring serves as the basis of the proof of Fermat’s Last Theo-
rem for cubes. The 18th century mathematicians Lagrange and Euler were
amazed to find that the proof of a theorem of number theory (the theory of
the ring Z) can be based on introducing other numbers (elements of other
rings).

Example 12. We give an example of an integral domain which is not a UFD;
this is the ring consisting of all complex numbers of the form m + n./ —5 where
m, ne Z. Here is an example of two different factorisations into irreducible

factors:
3Z=2+./-52-/-5

We need only check that 3,2 + ./ —5 and 2 — ./ —5 are irreducible elements.
For this, we write N (x) for the square of the absolute value of o;if x = n + m/ —5
then N (o) = (n + m/ —5)(n — m/ —5) = n* + 5m?, which is a positive integer.
Moreover, it follows from the properties of absolute value that N(«f) =
N(@N(B). If, say, 2 + ./ —5 is reducible, for example 2 + ./ —5 = af, then
N2+ /—5)=N(@N(B).But N2 + ./ —5) =9, and hence there are only three
possibilities: (N (), N(8)) = (3,3) or (1,9) or (9, 1). The first of these is impossible,
since 3 cannot be written in the form n? + 5m? with n, m integers. In the second
B = +1and in the third « = +1, so « or §is a unit. This proves that 2 + ./ —5
is irreducible.

To say that a ring is not a UFD does not mean to say that it does not have
an interesting theory of divisibility. On the contrary, in this case the theory of
divisibility becomes especially interesting. We will discuss this in more detail in
the following section § 4.
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§4. Homomorphisms and Ideals

A further difference of principle between arbitrary commutative rings and
fields is the existence of nontrivial homomorphisms. A homomorphism of a ring
Atoaring Bisamap f: A - B such that

flay + ay) = fla,) + flay), fla,a,) = flay)- fla;) and  f(1,) = 1p

(we write 1, and 1, for the identity elements of A of B). An isomorphism is a
homomorphism having an inverse.

If a ring has a topology, then usually only continuous homomorphisms are of
interest.

Typical examples of homomorphisms arise if the rings 4 and B are realised as
rings of functions on sets X and Y (for example, continuous, differentiable or
analytic functions, or polynomial functions on an algebraic curve C). A map
@: Y —» X transforms a function F on X into the function ¢*F on Y defined by
the condition

(@*F)(y) = F(o(y)).

If ¢ satisfies the natural conditions for the theory under consideration (that is,
if ¢ is a continuous, differentiable or analytic map, or is given by polynomial
expressions) then @* defines a homomorphism of 4 to B. The simplest particu-
lar case is when ¢ is an embedding, that is Y is a subset of X. Then ¢* is simply
the restriction to Y of functions defined on X.

Example 1. If C is a curve, defined by the equation F(x,y) =0 where
F € K[x,y] is an irreducible polynomial, then restriction to C defines a homo-
morphism K[x, y] - K[C].

The case which arises most often is when Y is one point of a set X, that is
Y = {x,} with x4 € X; then we are just evaluating a function, taking it into its
value at x,.

Example 2. If x, € C then taking each function of K[(] into its value at x,
defines a homomorphism K[C] - K.

Example 3. If € is the ring of continuous functions on [0,1] and x, € {0, 1]
then taking a function ¢ € € into its value ¢(x,) is a homomorphism ¢ — R. If
A is the ring of functions which are holomorphic in a neighbourhood of 0, then
taking ¢ € A into its value ¢(0) is a homomorphism 4 — C.

Interpreting the evaluation of a function at a point as a homomorphism has
led to a general point of view on the theory of rings, according to which a
commutative ring can very often be interpreted as a ring of functions on a set,
the ‘points’ of which correspond to homomorphisms of the original ring into
fields. The original example is the ring K[C], where C is an algebraic variety,
and from it, the geometric intuition spreads out to more general rings. Thus
the concept that ‘every geometric object can be coordinatised by some ring of
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functions on it’ is complemented by another, that ‘any ring coordinatises some
geometric object’.

We have already run into these two points of view, the algebraic and func-
tional, in the definition of the polynomial ring in § 3. The relation between the
two will gradually become deeper and clearer in what follows.

Example 4. Consider the ring A4 of functions which are holomorphic in the disc
|z| < 1 and continuous for |z| < 1. In the same way as before, any point z, with
|zo| < 1 defines a homomorphism A — C, taking a function ¢ € 4 into @(z,). It
can be proved that all homomorphisms A — C over C are provided in this way.
Consider the boundary values of functions in A4; these are continuous functions
on the circle |z| = 1, whose Fourier coefficients with negative index are all zero,
that is, with Fourier expansions of the form ) c,e?™®. Since a function f € 4

n=0
is determined by its boundary values, A is isomorphic to the ring of continuous
functions on the circle with Fourier series of the indicated type. However, in this
interpretation, only the homomorphisms of 4 corresponding to points of the
boundary circle |z| = 1 are immediately visible. Thus considering the set of all
homomorphisms sometimes helps to reestablish the set on which the elements
of the ring should naturally be viewed as functions.

In the ring of functions which are holomorphic and bounded for |z| < 1, by
no means all homomorphisms are given in terms of points z, with |z,| < 1. The
study of these is related to delicate questions of the theory of analytic functions.

For a Boolean ring (see § 3, Example 9), it is easy to see that the image of a
homomorphism ¢: 4 — F in a field F is a field with two elements. Hence,
conversely, any element a € 4 sends a homomorphism ¢ to the element ¢(a) € F,.
This is the idea of the proof of the main theorem on Boolean rings: for M one
takes the set of all homomorphisms 4 — F,, and A is interpreted as a ring of
functions on M with values in F,.

Example 5. Let £ be a compact subset of the space C" of n complex variables,
and A the ring of functions which are uniform limits of polynomials on %"
The homomorphisms 4 — C over C are not exhausted by those corresponding
to points z € J; they are in 1-to-1 correspondence with points of the so-
called polynomial convex hull of A, that is with the points z € C" such that
| f(z)| < Sup | f]| for every polynomial f.

A

Example 6. Suppose we assign to an integer the symbol 0 if it is even and 1
if it is odd. We get a homomorphism Z — F, of the ring of integers to the field
with 2 elements F, (addition and multiplication tables of which were given in § 1,
Figures 3 and 4). Properly speaking, the operations on 0 and 1 were defined in
order that this map should be a homomorphism.

Let f: A —» B be a homomorphism of commutative rings. The set of elements
f(a) with a € A forms a subring of B, as one sees from the definition of homomor-
phism; this is called the image of f, and is denoted by Im f or f(A4). The set of
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elements a € A for which f(a) = 01is called the kernel of f, and denoted by Ker f.
If B = Im f then we say that B is a homomorphic image of A.

If Ker f = 0 then f is an isomorphism from A to the subring f(A) of B; for if
f(a) = f(b) then it follows from the definition of homomorphism that f(a —b) =0,
that is,a — b € Ker f = 0 and so a = b. Thus f is a 1-to-1 correspondence from
A to f(A4), and hence an isomorphism. This fact draws our attention to the
importance of the kernels of homomorphisms.

It follows at once from the definitions that if a,, a, € Ker f then a, + a, €
Ker f, and if a € Ker f then ax € Ker f for any x € A. We say that a nonempty
subset I of a ring A4 is an ideal if it satisfies these two properties, that is,

a,a,el=a,+a,el, and ael=axel foranyxceA.

Thus the kernel of any homomorphism is an ideal. A universal method of
constructing ideals is as follows. For an arbitrary set {a,;} of elements of A,
consider the set I of elements which can be represented in the form )’ x;a, for
some x; € A (we assume that only a finite number of nonzero terms appears in
each sum). Then I is an ideal; it is called the ideal generated by {a;}. Most
commonly the set {a,} is finite. An ideal I = (a) generated by a single element is
called a principal ideal. If a divides b then (b) < (a).

A field K has only two ideals, (0) and (1) = K. For if I < K is an ideal of K
and0 # ae IthenIsaa ‘b= bforanyb € K, and hence I = K (this is another
way of saying that the theory of divisibility is trivial in a field). It follows from
this that any homomorphism K — B from a field is an isomorphism with some
subfield of B. R

Conversely, if a commutative ring A does not have any ideals other than (0)
and (1), and O # 1 then A is a field. Indeed, then for any element a # 0 we must
have (a) = A, and in particular 1 € (a), so that | = ab for some b € 4, and a has
an inverse.

In the ring of integers Z, any ideal I is principal: it is easy to see that if I # (0)
then I = (n), where n is the smallest positive integer contained in I. The same is
true of the ring K[x]; here any ideal I is of the form I = (f(x)), where f(x) is a
polynomial of smallest degree contained in I. In the ring K[ x, y], it is easy to see
that the ideal I of polynomials without constant term is not principal; it is of the
form (x,y). An integral domain in which every ideal is principal is called a
principal ideal domain (PID).

It is not by chance that the rings Z and K[ x] are unique factorisation domains:
one can prove that any PID is a UFD. But the example of K[x, y] shows that
there are more UFDs than PIDs. In exactly the same way, the ring ¢, of functions
of n > 1 complex variables which are holomorphic at the origin (§ 3, Example 7)
is a UFD but not a PID. The study of ideals in this ring plays an important role
in the study of local analytic varieties, defined in a neighbourhood of the origin
by equations f; = 0,..., f,, = 0(with f; € 0,). The representation of such varieties
as a union of irreducibles, the notion of their dimension, and so on, are based on
properties of these ideals.
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Example 7. In the ring € of continuous functions on the interval, taking a
function ¢ to its value @(x,) at x, is a homomorphism with kernel the ideal
I, = {9 € €lo(x,) = 0}. It is easy to see that I, is not principal: any function
which tends to 0 substantially slower than a given function ¢(x) as x — x, (for
example . /|<p(x)|ﬁs not contained in the ideal (qo(x)/. One can prove in a similar
way that I, is not even generated by any finite number ¢, ..., @, € I, of func-
tions in it.

Another example of a similar nature can be obtained in the ring & of germs of
C® functions at 0 on the line (by definition two functions defined the same germ
at 0 if they are equal in some neighbourhood of 0). The ideal M, of germs of
functions which vanish at O together with all of their derivatives of order <n is
principal, equal to (x"*!), but the ideal M, of germs of functions all of whose
derivatives vanish at 0 (such as e"'**) is not generated by any finite system of
functions, as can be proved. In any case, the extent to which these examples carry
conviction should not be exaggerated: it is more natural to use the topology of
the ring € of continuous functions, and consider ideals topologically generated
by functions ¢,, ..., @, that is, the closure of the ideal (¢,...,®,). In this
topological sense, any ideal of € is generated by one function. The same con-
siderations apply to the ring &, but its topology is defined in a more complicated
way, and, for example, the fact that the ideal M, is not generated by any finite
system of functions then contains more genuine information.

Let I and J be two ideals of a ring A. The ideal generated by the set of all
products ij with i € I and j € J is called the product of I and J and denoted by
1J. Multiplication of principal ideals agrees with that of elements: if I = (a) and
J = (b) then 1J = (ab). By analogy with the question of the unique factorisation
of elements into prime factors, we can pose the question of factorising ideals of
a ring as a product of ideals which cannot be factorised any further. Of course,
both of these properties hold in a principal ideal domain. But there exist impor-
tant types of ring which are not factorial, but in which the ideals have unique
factorisation into products of irreducible factors.

Example 8. Consider the ring of numbers of the formm + n\/ —Swithm,ne Z,
given in § 3, Example 12 as an example of a nonfactorial ring. The factorisation

32=02+./-32-/-5) )

which we gave in §3 is not a factorisation into prime factors if we replace the
numbers by the corresponding principal ideals. It is not hard to see that

R+/=-5=Q+/-53>*% 2-J/-5=2—-/-513)?
and
B)=2+./-532-./-53),

so that (1) is just the product 2 + / —5,3)%(2 — \/ — 5, 3) in which the factors
are grouped in different ways. The possibility of an analogous factorisation is the
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basis of the arithmetic of algebraic numbers. This is the historical explanation of
the term ‘ideal’: the prime ideals into which an irreducible number factorises (for
example 3 or 2 + \/?5) were first considered as ‘ideal prime factors’.

The numbers 3 and 2 + \/——5 do not have common factors other than +1,
since they are irreducible. But the ideal (3,2 + \/tg) is their greatest common
divisor (more precisely, it is the g.c.d. of the ideals (3), (2 + \/ —5)). Similarly to
the fact that the greatest common divisor of integers a and b can be expressed
as au + bo, the ideal (3,2 + \/—75) consists of all numbers of the form 3o +
Q2+ =58

The notion of ideal is especially important because of the fact that the relation
between homomorphisms and ideals is reversible: every ideal is the kernel of
some homomorphism. In order to construct from an ideal I of a ring A the ring
B which A will map to under this homomorphism, we introduce the following
definitions.

Elements a, and a, of a ring A are said to be congruent modulo an ideal I of
A (or congruent mod I) if a, — a, € I. This is written as follows:

a, =a,modl.

If A = Z and I = (n) then we obtain the classical notion of congruence in number
theory: a, and a, are congruent mod n if they have the same remainder on
dividing by n.

Congruence modulo an ideal is an equivalence relation, and it decomposes A
as a union of disjoint classes of elements congruent to one another mod I. These
classes are also called residue classes modulo I.

Let I} and I, be two residue classes mod I. It is easy to see that however we
choose elements a, € I and a, € I, the sum a, + a, will belong to the same
residue class I". This class is called the sum of /7 and 7. In a similar way we
define the product of residue classes. It is not hard to see that the set of all residue
classes modulo an ideal I with the above definition of addition and multiplication
forms a commutative ring; this is called the residue class ring or the quotient ring
of A modulo I, and denoted by A/I.

For example if A = Z and I = (2) then I has 2 residue classes, the even and
odd numbers; and the ring Z/(2) coincides with the field F,.

It is easy to see that taking an element a € A into its residue class mod I is a
homomorphism f: 4 — A/I, with kernel I. This is called the canonical homo-
morphism of a quotient ring.

Canonical homomorphisms of rings to their quotient rings give a more explicit
description of arbitrary homomorphisms. Namely, the following assertion is easy
to verify:

Theorem 1. For any ring homomorphism ¢: A — B, the image ring Im ¢ is
isomorphic to the quotient ring A/Ker ¢, and the isomorphism ¢ between them
can be chosen so as to take the canonical homomorphism . A — A/Ker ¢ into
@: A—Imo.
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More precisely, for any a € A, the isomorphism ¢ takes ¥/(a) into ¢(a) (recall
that a(y/(a@)) € Im ¢ < B, so that ¢((a)) and ¢(a) are both elements of B).

This result is most often applied in the case Im ¢ = B. In this case the assertion
is the following.

II. Homomorphisms Theorem. A homomorphic image is isomorphic to the
quotient ring modulo the kernel of the homomorphism.

Under the canonical homomorphism f, the inverse image f ~(J) of any ideal
J = A/lisanideal of A containing I, and the image f(I') of any ideal I’ containing
I is an ideal of 4/I. This establishes a 1-to-1 correspondence between ideals of
the quotient ring A/I and ideals of 4 containing I.

In particular, as we know, A/I is a field if and only if it has exactly two ideals,
(0) and (1), and this means that I is not contained in any bigger ideal other that
A itself. Such an I is called a maximal ideal. It can be proved (using Zorn’s lemma
from set theory) that any ideal I # A is contained in at least one maximal ideal.

Together with the construction of fields of fractions, considering quotient rings
modulo maximal ideals is the most important method of constructing fields. We
now show how to use this to obtain a series of new examples of fields.

Example 9. In Z, maximal ideals are obviously of the form (p), where p is a
prime number. Thus Z/(p) is a field; it has p elements, and is denoted by F,. Up
to now we have only constructed fields [, and F; with 2 or 3 elements. If n is not
prime, then the ring Z/(n) is not a field, and as one sees easily, is not even an
integral domain.

Example 10. Consider now the polynomial ring K[x]; its maximal ideals are
of the form (¢(x)) with ¢(x) an irreducible polynomial. In this case, the quotient
ring L = K[x]/(¢(x))is a field. Write a for the image of x under the homomorphism
polynomial ¢ has a root in L. Write n for the degree of ¢. Using division with
remainder, we can represent any polynomial u(x) € K[x] in a unique way in the
form u(x) = o(x)¥(x) + v(x), where v is a polynomial of degree less than n. It
follows from this that any element of L can be uniquely expressed in the form

ag + a0 + ayo? + -+ a,_ 0", @

where ay, ..., a,_, are arbitrary elements of K.

If K =R and ¢(x) = x? + 1 then we construct in this way the field C of
complex numbers; here i is the image of x in R[x]/(x? + 1), and a + bi is the
image of a + bx.

The above construction gives an extension field L/K in which a given poly-
nomial ¢(t) has a root. Iterating this process, it can be proved that for any field
K, there exists an extension XZ/K such that any polynomial ¢ € X[t] has a root
in 2. A field having this property is said to be algebraically closed. For example,
C is algebraically closed.
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Let K be a field with p elements. If ¢ is an irreducible polynomial of degree n
over K then the expression (2) shows that L has p” elements. Based on these ideas,
one can prove the following results, which together describe all finite fields.

I11. Theorem on Finite Fields.
(i) The number of elements of a finite field is of the form p", where p is the
characteristic.
(ii) For each p and n there exists a field F, with q = p" elements.
(iii) Two finite fields with the same number of elements are isomorphic.

Finite fields have very many applications. One of them, which specifically uses
the fact that they are finite, relates to the theory of error-correcting codes. By
definition, a code consists of a finite set E (an ‘alphabet’) and a subset U of the
set E" of all possible sequences (a4, ...,4a,) with a; € E. This subset is to be chosen
in such a way that any two sequences in U should differ at a sufficiently large
number of places. Then when we transmit a ‘message’ (u,. .., 4,) € U, we can still
reconstruct the original message even if a small number of the u; are corrupted.
A wealth of material for making such choices is provided by taking E to be some
finite field F,, and U to be a subspace of the vector space Fj. Furthermore, the
greatest success has been achieved by taking [} and U to be finite-dimensional
subspaces of the field F,(t) or even of F,(C), where C is an algebraic curve, and
determining the choice of these subspaces by means of certain geometric condi-
tions (such as considering functions with specified zeros and poles). Thus coding
theory has turned out to be related to very delicate questions of algebraic geom-
etry over finite fields.

Considering already the simplest ring Z/(n) leads to interesting conclusions.
Let K be an arbitrary field, with identity element 1. Consider the map f from Z
to K defined by

14+--+1 (ntimes) ifn>0
f(my=n-1, thatis f(n)=<0 ifn=0
—(1+--+1) (—ntimes) ifn<0.

It is easy to see that f is a homomorphism. Two cases are possible, either
Ker f =0 or Ker f # 0.

In the first case f(Z) is a subring of K isomorphic to Z. Since K is a field, it
must also contain the ratio of elements of this ring, which one easily checks form
a subfield K, = K. It follows from the uniqueness of fields of fractions that K,
is isomorphic to @, that is, K contains a subfield isomorphic to Q.

In the second case, suppose that Ker f = (n). Obviously, n must be a prime
number, since otherwise f(Z) =~ Z/n would not be integral. But then f(Z) =
Z/(p) = F, is a field with p elements.

Thus we have seen that any field K contains either the field Q of rational
numbers, or a field F, with some prime number of elements. These fields are called
the prime fields; any field is an extension of one of these. If K contains a field
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with p elements, then px = 0 for every x € K. In this case, p is called the char-
acteristic of K, and we say that K is a field of finite characteristic, and write
char K = p. If K contains Q then nx = 0 only if n = 0 or x = 0; in this case, we
say that K has characteristic 0, and write char K = 0 (or sometimes char K = oo).

The fields Q, R, C, Q(x), R(x), C(x) are of characteristic 0. The field F, with p
elements has characteristic p, as have F,(x), F,(x, y) and so on.

A ring A/I can be embedded in a field if and only if it is an integral domain.
This means that I # A and if a, be A and ab € I then eitherae I or be I. We
say that an ideal is prime if it satisfies this condition. For example, the principal
ideal I = (F(x,y)) = K[x,y] is prime if F is an irreducible polynomial: the ring
K{[x,y]/I = K[C](where C is the algebraic curve with equation F(x, y) = 0) can
be embedded in the field K(C). We can say that a prime ideal is the kernel of a
homomorphism ¢: A — K, where K is a field (but possibly ¢(4) # K).

It can be shown that the ideals of Example 8 which are irreducible (in the sense
that they do not decompose as a product of factors) are exactly the prime ideals
in the sense of the above definition.

At the beginning of this section we discussed the point of view that any ring
can be thought of as a ring of functions on some space X. The ‘points’ of the
space correspond to homomorphisms of the ring into fields. Hence we can
interpret them as maximal ideals (or in another version, prime ideals) of the ring.
If M is an ideal ‘specifying a point x € X" and a € A, then the ‘value’ a(x) of a at
x is the residue class a + M in A/M. The resulting geometric intuition might at
first seem to be rather fanciful. For example, in Z, maximal ideals correspond to
prime numbers, and the value at each ‘point’ (p) is an element of the field F,
corresponding to p (thus we should think of 1984 = 2°-31 as a function on the
set of primes% which vanishes at (2) and (31); we can even say that it has a zero
of multiplicity 6 at (2) and of multiplicity 1 at (31)). However, this is nothing more
than a logical extension of the analogy between the ring of integers Z and the
polynomial ring K[t], under which prime numbers p € Z correspond to irre-
ducible polynomials P(t) € K[t]. Continuing the analogy, the equation a,(t) +
a,(t)x + -+ + a,(t)x" = 0 with a,(t) € K[¢] defining an algebraic function x(t)
should be considered as analogous to the defining equation ao + a;x + - +
a,x" = 0 with a; € Z of an algebraic number. In fact, in the study of algebraic
numbers, it has turned out to be possible to apply the intuition of the theory of
algebraic functions, and even of the Riemann surfaces associated with them.
Several of the most beautiful achievements of number theory can be attributed
to the systematic development of this point of view.

Another version of the same ideas plays an important role in considering maps
@: Y - X (for example, analytic maps between complex analytic manifolds). If
A is the ring of analytic functions on X and B that on Y, then as we said at the
beginning of this section, a map ¢ determines a homomorphism ¢*: A — B. Let

I This example was chosen because of the year the book was written, and has nothing to do with the
fiction of George Orwell (translator’s footnote).
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Z < X be a submanifold and I = A the ideal of functions vanishing on Z. If
I =(f1,...,f,), this means that Z is defined by the equations f; =0, ..., f, = 0.
The inverse image ¢ ~'(Z) of Z in Y is defined by the equations o*f; =0, ...,
o*f, =0, and it is natural to associate with it the ring B/(¢*f,,...,0*,) =
B/(¢*I)B. Suppose for example that ¢ is the map of a line Y to a line X given by
x = y2. If Z is the point x = a # 0 then ¢ !(Z) consists of two points y = i\/&,
and

B/(¢*)B = C[y)/()* — 0) = C[yl(y — VO @ CYI/(y + /0 = CDC;

that is, it is in fact the ring of functions on a pair of points. But if Z is the point
x = 0 then ¢ ~!(Z) is the single point y = 0, and B/(¢*I)B = C[y]/y*. This ring
consists of elements of the form a + fe, with «, § € C, and ¢ the image of y, with
¢? = 0; it can be interpreted as the ‘ring of functions on a double point’, and it
gives much more precise information on the behaviour of the map x = y? in a
neighbourhood of x = 0 than just the set-theoretic inverse image of this point.
In the same way, the study of singularities of analytic maps leads to considering
much more complicated commutative rings as invariants of these singularities.

Example 11. Let K, K,, ..., K,, ... be an infinite sequence of fields. Consider
all possible infinite sequences (a,,a,,...,a,,...) with g; € K;, and define opera-
tions on them by

(@1,05,...,8y,...) + (by,bys...,b,,...y =(ay + by,a; + by,...,a, + b,,...)

and
(ay,a3,...,0,,...)(by,by,...,b,,...) =(a by, a5b,,...,a,b,,...).

We thus obtain a commutative ring called the product of the fields K;, and
denoted [| K. ,

Certain homomorphisms of the ring [ | K; into fields (and hence, its maximal
ideals) are immediately visible: we take the sequence (a4, a,,...,d,,...) into its
nth component a, (for fixed n). But there are also less trivial homomorphisms.
In fact, consider all the sequences with only finitely many nonzero components
a;; these form an ideal I. Every ideal is contained in a maximal ideal, so let .#
be some maximal ideal of | | K; containing I. This is distinct from the kernels of
the above trivial homomorphisms, since these do not contain I. The quotient
ring n K,/ is a field, and is called an ultraproduct of the fields K;. We obtain
an interesting ‘mixture’ of the fields K;; for example, if all the K; have different
finite characteristics, then their ultraproduct is of characteristic 0. This is one
method of passing from fields of finite characteristic to fields of characteristic 0,
and using it allows us to prove certain hard theorems of number theory.

If all the fields K; coincide with the field R of real numbers, then their
ultraproduct has applications in analysis. It lies at the basis of so-called non-
standard analysis, which allows us, for example, to avoid hard estimates and
verifications of convergence in certain questions of the theory of differential
equations.
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From the point of view of mathematical logic, ultraproducts are interesting in
that any ‘elementary’ statement which is true in all the fields K; remains true in
their ultraproduct.

di
dz"
where the f;(z) are Laurent series (either convergent or formal). Multlphcatlon

of such operators is not necessarily commutative; but for certain pairs of opera-
tors & and 4 it may nevertheless happen that 24 = A9, for example, if

Example 12. Consider differential operators of the form 2 = Z fi(2)

2 3

@:%_22—2 and 4 —%—3 _zdi+3z_3.
Then the set of all polynomial"P(Q, 4)in @ and 4 with constant coefficients is a
commutative ring, denoted by Ry 4. Now something quite unexpected happens:
if 24 = A2 then there exists a nonzero polynomial F(x, y) with constant coeffi-
cients such that F(2, 4) = 0, that is, & and 4 satisfy a polynomial relation. For
example, if

d? d? ,d 3

Q_dz 2272 and 4= 13 3z d+3z ,
then F = 9* — 4%; we can assume that F is irreducible. Then the ring Ry 4 is
isomorphic to C[x, y]/(F(x, y)), or in other words, to the ring C[C] where C is
an irreducible curve with equation F(x, y) = 0. If the operators & and 4 have a
common eigenfunction f, then this function will also be an eigenfunction for all
operators of Ry 4. Taking any operator into its eigenvalue on the eigenfunction
f is a homomorphism R, 4 — C. In view of the isomorphism Rg 4 = C[C], this
homomorphism defines a point of C. It can be shown that every point of the
curve corresponds to a common eigenfunction of the operators 2 and 4. The
relation between commuting differential operators and algebraic curves just
described has in recent times allowed a significant clarification of the structure
of commuting rings of operators.

§5. Modules

Consider some domain V in space and the vector fields defined on it. These can
be added and multiplied by numbers, carrying out these operations on vectors
applied to one point. Thus all vector fields form an infinite-dimensional vector
space. But in addition to this, they can be multiplied by functions. This operation
is very useful, since every vector field can be written in the form

0 0

2
4L Bl cl
ax tBay O
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where 4, B and C are functions; hence it is natural to consider the set of vector
fields as being 3-dimensional over the ring of functions. We thus arrive at the
notion of a module over a ring (in this section, we only deal in commutative rings).
This differs from a vector space only in that for a module, multiplication of its
elements by ring elements is defined, rather than by field elements as for a vector
space. The remaining axioms, both those for the addition of elements, and for
multiplication by ring elements, are exactly as before, and we will not repeat
them.

Example 1. A ring is a module over itself; this is an analogue of a 1-dimensional
vector space.

Example 2. Differential forms of a given degree on a differentiable (or real or
complex analytic) manifold form a module over the ring of differentiable (or real
or complex analytic) functions on the manifold. The same holds for vector fields,
and quite generally for tensor fields of a fixed type. (We will discuss the definition
of all these notions in more detail later in § 5 and in § 7).

Example 3. If ¢ is a linear transformation of a vector space L over a field K,
then we can make L into a module over the ring K[t] by setting

fM)x =(f(@)(x) for f(t)e K[t]and x€ L.

Example 4. The ring of linear differential operators with constant coefficients
(§ 3, Example 3) acts on the space of functions (C*, of compact support, exponen-
tially decaying, polynomial), and makes each of these spaces into a module over
this ring. Since this ring is isomorphic to the polynomial ring R[¢,,...,t,] (§3,
Example 3), each of the indicated spaces is a module over the polynomial ring.
Of course, the same remains true if we replace the field R by C.

Example 5. Let M and N be modules over a ring A. Consider the module
consisting of pairs (m, n) for m € M, n € N, with addition and multiplication by
elements of 4 given by

(myn) + (my,n))=m+my,n+n;) and a(m,n) = (am,an).

This module is called the direct sum of M and N and is denoted by M @ N. The
direct sum of any number of modules can be defined in the same way. The sum
of n copies of the module A (Example 1) is denoted by A" and is called the free
module of rank n. This is the most direct generalisation of an n-dimensional vector
space; elements of A" are n-tuples of the form

m=(a,,...,a,) with g€ A.

Ife;=(0,...,1,...,0) with 1 in the ith place then m = ) a,e;, and this representa-
tion is unique.

It is sometimes also useful to consider algebraic analogues of infinite-
dimensional vector spaces, the direct sum of a family 2’ of modules isomorphic



§5. Modules 35

to A. Elements of this sum are specified as sequences {a,},.s With a,€ 4 as ¢
runs through 2, and a,, # 0 for only a finite number of 6 € 2. With the elements
e, defined as before, every element of the direct sum has a unique representation
as a finite sum Y a,e,. The module we have constructed is a free module, and the
{e,} a basis or a free family of generators of it.

Example 6. In a module M over the ring Z the multiplication by a number
n € Z is already determined once the addition is defined:

ifn>0 then nx=x+--+x (ntimes)

and if n = —m with m > 0 then nx = —(mx). Thus M is just an Abelian group?
written additively.

We omit the definitions of isomorphism and submodule, which repeat word
for word the definition of isomorphism and subspace for vector spaces. An iso-
morphism of modules M and N is written M = N.

Example 7. Any differential r-form on n-dimensional Euclidean space R”" can
be uniquely written in the form
Yoooa dx, AoAdxg,

i< <i,

where a; _; belongs to the ring 4 of functions on R" (differentiable, real analytic
or complex analytic, see Example 2). Hence the module of differential forms is

. . n ny. . . .
isomorphic to A('), where is the binomial coefficient.
r

Example 8. Consider the polynomial ring C[x,,...,x,] as a module M over
itself (Example 1); on the other hand, consider it as a module over the ring of
differential operators with constant coefficients (Example 4). Since this ring is
isomorphic to the polynomial ring, we get a new module N over C[x,,...,x,].
These modules are not isomorphic; in fact for any m’ € N there exists a non-zero
elementa € C[x,,...,x,]such thatam’ = O(take a to be any differential operator
of sufficiently high order). But since C[x,,..., x, ] is an integral domain, it follows
that in M, am = 0 implies that a = 0 or m = 0.

In a series of cases, Fourier transform establishes an isomorphism of modules
M and N over thering 4 = C[x,,...,x,], where M and N are modules consisting
of functions, and A acts on M by multiplication, and on N via the isomorphism

0 0
C[tl,-..,t,,] = Cl:"a;,,gx—nil

For example, this is the case if M = N is the space of C* functions F(x,,...,X,)
for which

2We assume that the reader knows the definition of a group and of an Abelian group; these will be
repeated in § 12.
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is bounded foralla > 0, §; = 0.

Recalling the definition of § 4, we can now say that an ideal of a ring 4 is a
submodule of 4, if A is considered as a module over itself (as in Example 1). Ideals
which are distinct as subsets of 4 can be isomorphic as A-modules. For example,
an ideal I of an integral domain A is isomorphic to 4 as an A-module if and only
if it is principal (because if I = (i) then ar ai is the required homomorphism;
conversely, if ¢: A > I is an isomorphism of 4-modules, and 1 is the identity
element of A then ¢(1) =ie I implies that ¢(a) = ¢@(al) = ap(1) = ai, that is
I = (i)). Hence the set of ideals of a ring which are non-isomorphic as modules
is a measure of its failure to be a principal ideal domain. For example, in the ring
A, =7 + Z\/ﬁ consisting of numbers of the form a + b\/g with a, b € Z (where
d is some integer), there are only a finite number of non-isomorphic ideals. This
number is called the class number of A; and is a basic arithmetic invariant.

Example 9. Let {m,} be a set of elements of a module M over a ring A. Consider
all possible linear combinations ) a;m, with coefficients g; € A (even if the set
{m, } is infinite, each linear combination only involves finitely many terms). These
form a submodule of the module M, called the submodule generated by the {m,}.
In particular, if M = 4 as a module over itself, we arrive back at the notion of
the ideal generated by elements {m,} which we have already met. If the system
{m,} generates the whole of M, it is called a system of generators of M.

The notion of a linear map of one vector space to another carries over
word-for-word to modules; in this case such a map is called an A-linear map, or
a homomorphism. Exactly as for the case of an ideal in a ring, for a submodule
N < M we can define its cosets m + N, the quotient module M/N and the
canonical homomorphism M — M/N. The notions of image and kernel, and the
relation between homomorphisms and submodules formulated in § 4 for the case
of rings and ideals also carry over.

These notions allow us to define certain important constructions. By defini-
tion, we know how to add elements of a module. M and multiply them by elements
of A4, but we don’t know how to multiply two elements together. However, in
some situations there arises an operation of multiplying elements of a module
M by elements of a module N, and getting a value in some third module L For
example, if M consists of vector fields ) f,-éa; and N of differential 1-forms
Y p;dx; then the product Y f;p; is defined, and belongs to the ring of functions
(and is independent of the choice of coordinates x,, ..., x,). In a similar way, one
can define (independently of the choice of coordinates) a product of a vector field
by a differential r-form, the result of which is a differential (r — 1)-form.

We define a multiplication defined on two modules M and N and with values
in a third module L to be a map which takes a pair of elements x e M, y € N into
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an element xy € L, having the following bilinearity properties:
(x; + x)y=x,y+x,y for x,x,e MandyeN;
x(y; + y,)=xy, + xy, for xeMandy,y,eN;
(ax)y = x(ay) = a(xy) for xeM,yeNandac A.

If a multiplication xy is defined on two modules M and N with values in L,
and if ¢: L —» L’ is a homomorphism, then ¢(xy) defines a multiplication with
values in L'. It turns out that all possible multiplications on given modules M
and N can be obtained in this way from a single ‘universal’ one. This has values
in a module which we denote by M ®, N, and the product of elements x and
y is also denoted by x ® y. The universality consists of the fact that for any
multiplication xy defined on M and N with values in L, there exists a unique
homomorphism

o M®,N - L forwhich xy=¢(x®y).

It is easy to show that if a module and a product with this universality property
exist, then they are defined uniquely up to isomorphism. The construction of the
module M ®, N and the multiplication x ® y is as follows: suppose that M has
a finite set of generators x, ..., x,, and N a set y,, ..., y,. We consider symbols
(x;, y;), and the free module S = 4™ with these as generators. In S, consider the
elements

Y aix;,y;) forwhich Y a;x;=0in M,

13

and the elements

Y blx;,y;)  for which Y bx;=0in N,
J

and consider the submodule S, generated by these elements. We set
MQ@,N =S5/,
and if x =Y a;x;and y =) b;y; then
xXQy= Z a;b(x; ® yy),
LJ

where x; ® y; denotes the image in S/S, of (x;, y;) under the canonical homomor-
phism S — S/S,. It is easy to check that x ® y does not depend on the choice of
the expressions of x and y in terms of generators, and that in this way we actually
get a universal object. More intrinsically, and without requiring that M and N
have_finite systems of generators, we could construct the module M ®, N by

taking as generators of S all possible pairs (x,y) with xe M and y e N, and §,
to be the submodule generated by the elements

(X1 + x2,¥) — (x1,9) — (X2, ), (%, p1 + y2) — (6 p1) — (X, ¥2),
a(x’ y) - (X, ay)’ a(x’ y) - (ax, J’)
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This way, we have to use a free module S on an infinite set of generators, even if
we are dealing with modules M and N having finitely many generators. However,
there is nothing arbitrary in the construction related to the choice of systems of
generators.

The module M ®, N defined in this way is called the tensor product of the
modules M and N, and x ® y the tensor product of the elements x and y. If M
and N are finite-dimensional vector spaces over a field K, then M ®g N is also
a vector space, and

dim(M ®¢ N) = dim M -dim N.

If M is a module over the ring Z, then M ®z Q is a vector space over Q; for
example if M =~ 7" then M ®7; Q =~ Q". Butif M =~ Z/(n) then M ®7 Q = 0, that
is, M is killed off on passing to M ®; Q; although any element m € M corre-
sponds to m ® 1 in M ®7 Q, this is 0, as one checks easily from the bilinearity
conditions. In a similar way, from a module M over an integral domain 4 we
can get a vector space M ®, K over its field of fractions K. In exactly the same
way, a vector space E over a field K defines a vector space E ®g L over any
extension L of K. When K = R and L = C this is the operation of complexifica-
tion which is very useful in linear algebra (for example, in the study of linear
transformations).

If M; is a vector space of functions f(x;) of a variable x; (for example, the
polynomials f(x;) of degree <k;), then M, ® --- ® M,, consists of linear com-
binations of functions

filxy).. . fulx,) with fie M,

in the space of functions of x, ..., x,. In particular, the ‘degenerate kernels’ of
the theory of integral equations are of this form. It is natural quite generally to
try to interpret spaces of functions (of one kind or another) K(x, y) of variables
x, y as tensor products of spaces of functions of x and of y. This is how the
analogues of the notion of tensor products arise in the framework of Banach and
topological vector spaces. The classical functions K(x,y) arise as kernels of
integral operators

S JK (x, ) f(y)dy.

In the general case the elements of tensor products are also used for specifying
operators of Fredholm type. A similar role is played by tensor products in quan-
tum mechanics. If spaces M; and M, are state spaces of quantum-mechanical
systems S; and S, then M; ® M, describe the state of the system composed of
S; and S,.

Example 10. The module M ®, - ®,, M (r factors) is denoted by T"(M). If M
is a finite-dimensional vector space over K, then T"(M) is the space of contra-
variant tensors of degree r.
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Example 11. The quotient module of M ®, M by the submodule generated by
the elements x ® y — y ® x for x, y € M is called the symmetric square of M, and
is denoted by S*M; it is universal for commutative multiplication xy of x, y € M.
In a similar way we can define the rth symmetric power S"M; this is the quotient
module of T"(M) by the submodule generated by all possible elements

XQ0 @OX®x4; @ ®X, — X ® X4 OX; Q@ x,

fori=1,...,r — 1, where x; € M. For example, if M is the module of linear forms
in variables ¢,,..., t, with coefficients in the field K, then S"M consists of all forms
(that is, homogeneous polynomials) of degree rin ¢, ..., t,.

Obviously, a product of r elements X, ..., X, € M with values in S"M is always
defined, and does not depend on the order of the factors: just consider the
image of x; ® --- ® x, under the canonical homomorphism T (M) — S"M. These
products generate S"M.

Example 12. The rth exterior power of a module M is the quotient module of
T"(M) by the submodule generated by expressions x; ® --- ® x, in which two
factors coincide, say x; = x;. The exterior power is denoted by /\" M. For exam-
ple, the module of differential r-forms on a differential manifold is isomorphic to
/\’ M, where M is the module of differential 1-forms. By analogy with the case
of the symmetric power, the multiplication of r elements x, ..., x, of M with
values in /\"M is defined; it is denoted by x, A **- A Xx,, and is called their
exterior product. By definition, x; A -+ A x, = 0if x; = x;. It follows easily from
this that x; A """ AX; A Xy A A X, = =X A A X AX; A A X, I
M has a finite number of generators x, ..., x, then the products

X, AoAax, for 1<ij<iy<-<i,<n
are generators for /\"M. In particular, \'M =0 for r >n. If M is an n-

. n
dimensional vector space over a field K, then dim /\"M = <r> forr < n.

Example 13. If M is a module over a ring A4 then the set M* of all homomor-
phisms of M to A is a module, if we define operations by

(f+g)m)=f(m)+ g(m) for f,ge M*andme M;
(afY(m) = af(m), for feM* ae Aandme M.

This module is called the dual module of M. If M is a vector space over a field
K, then M* is the dual vector space. The space of differential 1-forms on a
differentiable manifold (as a module over the ring of differentiable functions) is
the dual of the module of vector fields.

The elements of the space T"(M*) are called covariant tensors; the elements of
TP(M) ® T4M*) are called tensors of type (p, q).

If M is the space of tensors of type (p, q) over a vector space and N the space
of tensors (p’,q’), then M ® N is the space of tensors of type (p + p’,q + q'), and
® is the operation of multiplying tensors.
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In conclusion, we attempt to extend to modules the functional’ intuition which
we discussed in §4 as applied to rings. We start with an example.

Let X be a differentiable manifold, A the ring of differentiable functions on it,
and M the A-module of vector fields on X. At a given point x € X, every vector
field 7 takes a value t(x), that is, there is defined a map M — T, where T, is the
tangent space to X at x. This map can be described in algebraic terms, by defining
multiplication of constants « € R by a function fe A by f-a = f(x)a. Then R
will be a module over 4,and T, =@ M ®, R, and our map takes 7 into the element
7 ® 1. In this form, we can construct this map for an arbitrary module M over
an arbitrary ring A. Let ¢: A —» K be a homomorphism of A4 into a field with
¢(A) = K and kernel the maximal ideal m; then K is a module over A4 if we set
ao = @(a)a for ae A and o € K. Hence there is defined a vector space M,, =
M ®, K over K, the ‘value of M at the point m’. For example, if A = K[C], where
C is an algebraic curve (or any algebraic variety), then as we saw in §4, any point
c € C defines a homomorphism ¢,.: A — K, where ¢,(f) = f(c), and the maximal
ideal m, consisting of functions f € 4 with f(c) = 0.

Thus each module M over K[C] defines a family of vector spaces M, ‘pa-
rametrised by’ the variety C, and in an entirely similar way, a module M over an
arbitrary ring defines a family of vector spaces M ®,(A/m) over the various
residue fields A/m, ‘parametrised by’ the set of maximal ideals m of 4.

The geometrical analogue of this situation is the following: a family of vector
spaces over a topological space X is a topological space & with a continuous map

f:&- X,

in which every fibre f~!(x) is given a vector space structure (over R or C),
compatible with the topology of & in the natural sense. A homomorphism between
families f: & - X and g: # — X is a continuous map

. 8-> F,

taking each fibre f ~!(x) into the fibre g~!(x), and inducing a linear map between
them. A family & of vector spaces defines a module M, over the ring A(X) of
continuous functions on X. If the family & is a generalisation of a vector space,
then an element of M, is a generalisation of a vector: it is a choice of a vector in
each fibre f~!(x) for x € X. More precisely, elements of My, called sections, are
defined as continuous maps

s: X -6,

for which the point s(x) belongs to the fibre f ~!(x), for all x € X (thatis, fs(x) = x).
The operations

(81 + 55)(x) = 5;(x) + 55(x) for s,,s,€ Mgand x € X;
(ps)(x) = p(x)s(x), for ¢ e A(X),xe X and s € M,

make M, into a module over A(X).



§6. Algebraic Aspects of Dimension 41

§ 6. Algebraic Aspects of Dimension

The basic invariant of a vector space is its dimension, and in this context the
class of finite-dimensional vector spaces is distinguished. For modules, which are
a direct generalisation of vector spaces, there are analogous notions, which play
the same fundamental role. On the other hand, we have considered algebraic
curves, surfaces, and so on, and have ‘coordinatised’ each such object C by
assigning to it the coordinate ring K{ C] or the rational function field K(C). The
intuitive notion of dimension (1 for an algebraic curve, 2 for a surface, and so on)
is reflected in algebraic properties of the ring K[ C] or of the field K(C), and these
properties are meaningful and important for more general types of rings and
fields. As one might expect, the situation becomes more complicated in com-
parison with the simplest examples: we will see that there exist various ways
of expressing the ‘dimension’ of rings or modules as a number, and various
analogues of finite dimensionality.

The dimension of a vector space can be defined from various different starting
points: firstly, as the maximal number of linearly independent vectors; secondly,
as the number of vectors in a basis (and here we need to prove that all bases
of the same vector space consist of the same number of vectors); finally, one
can make use of the fact that if the dimension is already defined, then an
n-dimensional space L contains an (n — 1)-dimensional subspace L,, and L, an
(n — 2)-dimensional subspace L,, and so on. We thus get a chain

LRL 2L, 2 2L, =0

Hence the dimension can be defined as the greatest length of such a chain.
Each of these definitions applies to modules, but here we already get different
properties, which provide different numerical characteristics of modules; they
also lead to different analogues of finite dimensionality for modules. We will
consider all three of these approaches. For the first of these we assume that A is
an integral domain.

Elements m,,...,m, of a module M over a ring A are linearly dependent if there
exist elements a4, ..., g, € 4, not all zero, with

aym, +”‘+akmk=0;

otherwise they are linearly independent. The maximal number of linearly indepen-
dent elements of a module M is called its rank, rank M; if this is finite, then M
is a module of finite rank. The ring A itself is of rank 1 as an A-module, and the
free module A" has rank n in the new definition.

Despite the apparent similarity, the notion of rank is in substance very far
from the dimension of a vector space. Even if the rank n is finite and m, ..., m,
is a maximal set of linearly independent elements of a module, then it is quite
false that every element m can be expressed in terms of them: in a linear depen-
dence relationam + a,m, + --- + a,m, = 0, we cannot in general divide through



42 §6. Algebraic Aspects of Dimension

by a. Thus we do not get the same kind of canonical description of all elements
of the module as that provided by the basis of a vector space. Moreover, one
might think that modules of rank 0, being analogues of 0-dimensional vector
spaces, should be in some way quite trivial, whereas they can be arbitrarily
complicated. Indeed, a single element m € M is linearly dependent if there exists
a nonzero element a € 4 such that am = 0; in this case we say that m is a torsion
element. A module has rank 0 if it consists entirely of torsion elements; it is then
called a torsion module. For example, any finite Abelian group considered as a
Z-module is a torsion module. A vector space L with a linear transformation ¢
considered as a module over the polynomial ring K[x] (§ 5, Example 3) is also
a torsion module: there exists a polynomial f(x) # 0 such that f(¢) = 0, (that is
(f(@)(x) =0 or f-x = 0) for every x € L. The polynomial ring R[x,,...,x,] as

0 0
a module over the ring of differential operators R [6_""’5] (§ 5, Example
X n

4) is another example of a torsion module. All of these modules have rank 0,
although, for example, it is intuitively hard to accept the last example as being
even finite-dimensional.

A better approximation to an intuitive notion of finite dimensionality is pro-
vided by the definition of finite dimensionality of a vector space in terms of the
existence of a basis.

A module M having a finite set of generators is said to be finitely generated,
or amodule of finite type. Thus M contains a finite system m, , ..., m, of elements
such that any element is a linear combination of these, although in contrast to
vector spaces, we cannot require that this representation is unique.

A ring as a module over itself, and more generally a free module of finite
rank, is of finite type, as is a finite Abelian group as a Z-module and a vector
space with a given linear transformation as a K[x]-module. The polynomial
ring Rx,,...,x,] is not of finite type as a module over the ring of differen-

) 0 0 . . .
tial operators R[Ec_""’f)_]: starting from a finite number of polynomials
1 Xn

Fy, ..., F, it is not possible to get polynomials of higher degree by applying
differentiations.

A homomorphic image of a module of finite type has the same property: the
image of a system of generators is a system of generators. In particular, homo-
morphic images of the free module 4" are all of finite type and are generated by
at most n elements. The converse is also true. If M has generators m,, ..., m,
then taking a k-tuple (a,,...,a,) € A* (by definition A* consists of such k-tuples)
into the element a,m; + -+ + q,m, is a homomorphism with image M. This
proves the following:

Theorem 1. Any module of finite type is a homomorphic image of a free module
of finite type A".

In particular, a module with a single generator is a homomorphic image of
the ring A itself, that is (by the homomorphisms theorem) is of the form A/I,
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where I is an ideal of A4; if I =0 then M is isomorphic to 4. A module of
this form is called a cyclic module. We can think of these as analogues of
1-dimensional vector spaces.

In some cases, modules of finite type are rather close to finite-dimensional
vector spaces. For example, if 4 is an integral domain in which all the ideals are
principal (that is, a PID), then we have the following result.

II. Theorem on Modules over a Principal Ideal Domain. A module of finite
type over a PID is isomorphic to a direct sum of a finite number of cyclic modules.
A cyclic module is either isomorphic to A or decomposes further as a direct sum
of cyclic modules of the form A/(n*) where n is a prime element. The representation
of a module as a direct sum of such modules is unique.

If a module M is a torsion module then there are no summands isomorphic
to A. This happens for example if 4 = Z and M is a finite Abelian group. In this
case the theorem we have stated gives a classification of finite Abelian groups.
The same holds if A = C[x], and M = L is a finite-dimensional vector space
over C with a given linear transformation (§ 5, Example 3). In this case it is easy
to see that our theorem gives the reduction of a linear transformation to Jordan
normal form.

One proof of Theorem II is based on a representation of M in the form

M= A"/N with N c 4"
(by Theorem I). It is easy to prove that N is also a module of finite type. If
A"=Ae, @ @ Ae, and N =(uy,...,u,), thenu, =) c;ej,

and the representation M = A"/N shows that M is ‘defined by the system of linear
equations’

n
Y c;ei=0 for i=1,....,m
=

We now apply to this system the idea of Gauss’ method from the classical theory
of systems of linear equations.

Main Lemma. Qver a PID, any matrix can be reduced to diagonal form by
multiplying on either side by unimodular matrixes.

If the analogue of the Euclidean algorithm holds in the ring then multiplication
on either side by unimodular matrixes can be performed by the well-known
elementary transformations (row and column operations): interchanging two
rows, adding a multiple of one row to another, and similar operations on
columns. Applied to the matrix (c;), row and column operations correspond to
the simplest possible transformations of the systems of generators ey, ..., e, and
relations u,, ..., U, In this case, the analogy with Gauss’ method is particularly
obvious.
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The main lemma allows us to find systems of generators for which the matrix
(c;;) is diagonal. If

(cy) = . ,  witha; #0,...,a,#0

- -

then M = A"/N =~ A)(a,)® - ® A/(a,) ® A"". From this it is not hard to get
to the assertion of Theorem II.

In particular if A = Z, Theorem II describes the structure of Abelian groups
with a finite number of generators. Such groups arise, for example, in topo-
logy as the homology or cohomology groups of a finite complex (see §21 for
these).

However, one property, which intuitively is closely related to finite dimen-
sionality, does not hold in general for a module of finite type: a submodule may
no longer be of finite type. This can fail even in the simplest case: a submodule
of a ring 4, that is, an ideal, is not always of finite type. For example in the ring
& of germs of C* functions at 0 € R, the ideal of functions vanishing at 0 together
with all derivatives does not have a finite number of generators (§ 4, Example 7).
In the same way, in the polynomial ring in an infinite number of generators x,,
X3, ..., Xy, ... (each polynomial depends of course only on finitely many of them)
the polynomials with no constant term form an ideal which does not have a finite
number of generators. Thus it is natural to strengthen the finite dimensionality
condition, by considering modules all of whose submodules are of finite type.
We say that a module with this property is Noetherian. This notion can be related
to the so far unused characterisation of the dimension of a vector space in terms
of chains of subspaces. Namely, the Noetherian condition is equivalent to the
following property of a module (called the ascending chain condition or a.c.c.):
any sequence of submodules

MiTM, G EMF -,

is finite. The verification of this equivalence is almost obvious.

These ideas can also be applied to the classification of rings from the point of
view of analogues of finite dimensionality. It is natural to consider rings over
which any module of finite type is Noetherian; a ring with this property is a
Noetherian ring. For this, it is necessary first of all that the ring should be
Noetherian as a module over itself, that is, that every ideal should have a finite
system of generators. But it is not hard to check that this is also sufficient: if
all ideals of a ring A have a finite basis then the free modules A" are also
Noetherian, and hence also their homomorphic images, that is, all modules of
finite type.
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How wide is the notion of a Noetherian ring? Obviously any ring all of whose
ideals are principal is Noetherian. Another fundamental fact is the following
theorem:

I11. The Hilbert Basis Theorem. For a Noetherian ring A the polynomial ring
A[x] is again Noetherian.

The proofis based on considering theideals J, = A (forn = 1,2,...), consisting
of elements which are coefficients of leading terms of polynomials of degree n
contained in a given ideal I = A[x], and then making repeated use of the
Noetherian property of A. It follows from the Hilbert basis theorem that the
polynomial ring A[x,,...,x,] in any number of variables is Noetherian if A4 is.
In particular, the ring K[x,,...,x,] is Noetherian. It was for this purpose that
Hilbert proved this theorem; he formulated it in the following explicit form.

Theorem. Given any set {F,} of polynomials in K[x,...,x,], there exists a
finite subset F, , ..., F, such that any polynomial F, can be expressed as a linear
combination

P F, +-+P,F, with P,...,P,eK[x,...,x,].

But we can go even further. Obviously, if 4 is Noetherian then the same is true
of any homomorphic image B of 4. We say that a ring R containing a subring
A is finitely generated over A, or is a ring of finite type over A if there exists a

finite system of elementsr,,...,r, of R such that all elements of R can be expressed
in terms of them as polynomials with coefficients in A; the elements r,, ..., r, are
called generators of R over A. Consider the polynomial ring A[x,,...,X,] and
the map

F(xq,-- x> F(ry,...,1).

This is a homomorphism, and its image is R. Thus we have the result:

Theorem IV. Any ring of finite type over a ring A is a homomorphic image of
the polynomial ring A[x4,...,x,]. From the above it then follows that a ring of
finite type over a Noetherian ring is Noetherian.

For example, the coordinate ring K [C] of an algebraic curve C (or surface, or
an algebraic variety) is Noetherian. If C is given by an equation F(x, y) = O then
x and y are generators of K[C] over K.

Other examples of Noetherian rings which are important in applications are
the rings @, of functions of n complex variables which are holomorphic at the
origin, and the formal power series ring K[t,,...,t,].

Noetherian rings are the most natural candidates for the role of finite-
dimensional rings. A notion of dimension can also be defined for these, but this
would require a rather more precise treatment.

While the condition that a ring should be a ring of finite type over some simple
ring (for example, over a field) is a concrete, effective form of a finite dimensionality
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condition, the Noetherian condition is more intrinsic, although a weaker asser-
tion. In one important case these notions coincide.

A ring A is graded if it has specified subgroups 4, (that is, submodules of 4 as
a Z-module) forn = 0, 1, ..., such that for x € A, and y € 4,, we have xy € 4, ,,,
and any element x € A can be uniquely represented in the form

XxX=Xo+x,+--+x, with x;€4,. (1)

We say that elements x € A, are homogeneous, and the representation (1) is the
decomposition of x into homogeneous components. The subset A, is obviously
a subring of A.

For example, the ring K[x;,...,x,,] is graded, with 4, the space of homomo-
geneous polynomials of degree nin x4, ..., x,,, and 4, = K.

One checks easily the following result:

Theorem V. Let A be a graded ring; then A is Noetherian if and only if A, is
Noetherian and A is a ring of finite type over A,.

Proof. Obviously, the set of elements x € 4 for which x, = 0 in (1) is an ideal
I,,. Tt turns out that for the truth of the assertion in the theorem, it is sufficient
for just this single ideal to be finitely generated. Indeed, we take a set of generators
of I, represent each generator in the form (1), and consider all the homogeneous
terms x; appearing in this way. We get a set of homogeneous elements x,, ...,
xy (with x; € A, ) which again obviously generate I,. These elements x, ..., xy
are generators for A over A,. Indeed, it is enough to prove that any element
x € A, with n > 0 can be expressed as a polynomial in x,, ..., xy with coefficients
in A. By assumption I, = (x,,...,xy), and in particular

X=a;x; + - +ayxy with a;€A.

Considering the decomposition of the elements a; into homogeneous com-
ponents, and noting that on the left-hand side x € 4,, we can assume that a; € 4,
and x; € A, withn; + m; = n. For n; = nthe component a;x; is expressed in terms
of x; with coefficient a; € 4, as required, whereas for n; < n we can apply to a;
the same argument as for x. After a finite number of steps we get the required
expression for x.

For fields, the intuitive notion of finite-dimensionality is realised by analogy
with rings. We say that a field L is an extension of finite type of a subfield K if
there exists a finite number of elements «;, ..., o, € L such that all the remaining
elements of L can be represented as rational functions of a;, ..., o, with coeffi-
cients in K. In this case we write L = K(a,,...,4,),and say that L is the extension
of K generated by a,, ..., «,. For example, the field of rational functions
K(x4,...,x,) is an extension of K of finite type. The complex number field is
an extension of finite type of the real number field: complex numbers can be
represented as extremely simple rational functions a + bi of the single element i.
Any finite field F, is a extension of finite type of its prime subfield: we could take
ay,..., &, to be, for example, all the elements of F,. If C is an irreducible algebraic
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curve, given by an equation F(x, y) = 0 then K(C) is an extension of finite type
of K, since all the functions in K(C) are rational functions of the coordinates x
and y. The same holds if C is an algebraic surface, and so on.

These examples make it plausible that for extensions of finite type there exists
an analogue of the notion of dimension, corresponding to the intuitive notion of
dimension for algebraic curves, surfaces, and any algebraic varieties.

A system of elements «, ..., o, of a field L is said to be algebraically dependent
over a subfield K of L if there exists an irreducible polynomial F € K[x,,..., x,],
not identically zero, such that

F(oy,...,0,)=0.

If &, actually occurs in this relation, we say that the element a, is algebraically
dependentona,,...,a,_;.Certain very simple properties of algebraic dependence
are just the same as the well-known properties of linear dependence. For example
if an element « is algebraically dependent on ay, ..., , and each of the «; is
algebraically dependent on elements f,, ..., f,,, then a is algebraically dependent
on B, ..., B,. From this, repeating formally the well-known arguments for the
case of linear dependence, we can prove that in an extension of finite type there
exists an upper bound for the number of algebraically independent elements. The
maximal number of algebraically independent elements of an extension of finite
type L/K is called the transcendence degree of the extension, and is denoted by
trdeg L/K.

If the transcendence degree of an extension L/K is n, then L contains a set of
n algebraically independent elements such that any other element is algebraically
dependent on them; conversely, if n elements with this property exist, then the
transcendence degree equals n.

For example, the transcendence degree of the rational function field K(x,, ..., x,)
as an extension of K is n. Let C be an irreducible algebraic curve, defined by an
equation F(x, y) = 0. If for example y actually occurs in the equation F then in
the field K(C), the element x is algebraically independent and y is algebraically
dependent on x, and hence so are all other elements of K(C). Hence the transcen-
dence degree of K(C)/K is 1. In the same way, one proves that if C is an algebraic
surface then the transcendence degree of the field K(C) is 2. We thus arrive at a
notion of dimension which really agrees with geometric intuition. The trans-
cendence degree of the field K(C), where C is an algebraic variety, is called the
dimension of C, and is denoted by dim C. It enjoys natural properties: for example,

dimC, £dimC, if C, <=C,.

Example 1. Let X be a compact complex analytic manifold of dimension n and
#(X) the field of all meromorphic functions on X. It can be proved that

trdeg #(X)/C < n.
If X is an algebraic variety over C then
H(X)=C(X) and trdeg.#(X)=n.
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Thus the number tr deg .#(X)/C is a measure of how close the complex manifold
X is to being an algebraic variety; all possible values from O to n occur already
in the particular case of complex toruses (see § 15).

What does an extension L/K of finite type and of transcendence degree 0 look
like? To say that the transcendence degree is 0 means that any element « € L
satisfies an equation F(x) = 0, where F is a polynomial. Such an element « is said
to be algebraic over K. Since L/K is an extension of finite type,

L = K(a,,...,a,) forcertain oy,...,a,€L.

Thus L/K can be obtained as a composite of extensions of the form K(«)/K,
where « is an algebraic element. Conversely, a composite of such extensions
always has transcendence degree 0.

Suppose that L = K(«) where « is an algebraic element over K. Among all
polynomials F(x) € K[x] for which F(a) = O (these exist, since « is algebraic over
K), there exists one of smallest degree; all others are divisible by this one: for
otherwise, by division with remainder, we would arrive at a polynomial of smaller
degree with the same property. This polynomial of smallest degree P is uniquely
determined up to a constant multiple. It is called the minimal polynomial of a.
Obviously, P is irreducible over K. Knowing the minimal polynomial P we can
specify all the elements of the field L = K(«) in a very explicit form. For this,
consider the homomorphism

¢:K[x]-> L

which takes a polynomial F € K[x] into the element F(«) € L. The kernel of ¢
is the principal ideal (P), as one sees easily. Hence its image is isomorphic to
K[x]/(P)(by the homomorphisms theorem). It is not hard to show that its image
is the whole of L; for this we should note that Im ¢ is a field and contains o.
Hence L is isomorphic to K[x]/(P). If the degree of P is n then, as we saw in § 4,
Formula (2), every element of the field L =~ K[x]/(P) can be expressed in the form

E=ay+aa+-+a,_a"! with g€k, )

and the expression is unique. The classic example of this situation is K = R,
L =C = R[i], P(x) = x* + 1: every complex number can be represented as
a+ biwitha, beR.

The representation (2) for elements of the field L = K(«) leads to an important
corollary. Suppose we forget about the multiplication in L and keep only addi-
tion and multiplication by elements of K. Then (2) shows that the vector space
L is finite-dimensional over K and the elements 1, a, ..., a" ! form a basis of it.
An extension L/K is finite if L is finite-dimensional as a vector space over K. Its
dimension is called the degree of the extension L/K, and is denoted by [L : K].In
the previous example [L : K] = n; in particular [C: R] = 2.

For example, if [, is a finite field and p the characteristic of F,, then [, contains
the prime field with p elements F,. Obviously, F,/F, is a finite extension. If
[F, : F,] = nthen there exist nelements a4, ..., o, € F, such that any other element
can be uniquely represented in the form



§6. Algebraic Aspects of Dimension 49

o=ao + - +a,a, with gef,

and it follows from this that the number of elements of a finite field F, is equal
to p”, that is, it is always a power of p.

It is easy to prove that the condition that an extension be finite is transitive,
that is, if L/K and A/L are finite extensions, then A/K is also finite, and

[A4:K]=[A4:L][L:K]. 3)

It follows from the above that any extension of finite type and of transcendence
degree 0 is finite. Conversely, if L/K is a finite extension and [L : K] = n then for
any « € L the elements 1, a, ..., o" must be linearly dependent over K (since there
are n + 1 of them). It follows from this that « is algebraic, and hence L has
transcendence degree 0. Thus we obtain another characterisation of extensions
of finite type and of transcendence degree 0; these are the finite extensions. From
what we have said above, any finite extension is obtained as a composite of
extensions of the form K(a). But we have the following result:

VL. Primitive Element Theorem. Suppose that K is a field of characteristic 0,
and that L = K(a, B) is an extension generated by two algebraic elements a and f;
then there exists an element y € L such that L = K(y).

Under this condition, any finite extension L = K(a,,...,a,) can be expressed in
the form L = K(a), so that L = K[x]/(P), and we have the representation (2) of
the elements of L.

In fact the result holds under much wider assumptions, and in particular for
finite fields.

If every polynomial has a root in a field K, that is, if K is algebraically closed,
then all the irreducible polynomials are linear, and an extension of K cannot
contain algebraic elements other than the elements of K. Hence K does not
have any finite extensions other than K itself. This is the case for the complex
number field C. The real number field has only two finite extensions, R and C.
But the rational number field Q and the field K(t) of rational functions (even for
K = C) have very many finite extensions. These are instruments for the study of
algebraic numbers (in the case of Q) and of algebraic functions (in the case C(t)).
It can be shown that any finite extension of K(t} is of the form K(C) where C is
some algebraic curve, and a finite extension of the field K(x,...,x,) is of the
form K(V), where V is an algebraic variety (of dimension n).

An extension K(a), where a is a root of an irreducible polynomial P(x), is
determined by this polynomial, and so the theory of finite extensions is a certain
language (and also a ‘philosophy’) in the theory of polynomials in one variable.
In one and the same extension L/K there exist many elements o for which
L = K(a), and many polynomials P(x) corresponding to these. The extension
itself reflects those properties which all of these have in common. We have here
another example of ‘coordinatisation’, analogous to assigning the function field
K(C) to an algebraic curve C. The construction of a field K(x) in the form
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K[x]/(P) is entirely parallel to the construction of the field K(C) from the
equation of the curve C.

The most elementary example illustrating applications of properties of exten-
sions to concrete questions is the theory of ruler and compass constructions.
Translating these constructions into the language of coordinates, it is easy to see
that they lead either to addition, subtraction, multiplication and division opera-
tions on the numbers representing intervals already constructed; or to solving
quadratic equations, the coefficients of which are numbers of this type (to find
the points of intersection of a line and a circle, or of two circles). Hence if we let
K denote the extension of Q generated by all the quantities given in the statement
of the problem, and « the numerical value of the quantity we are looking for,
then the problem of constructing this quantity by ruler and compass reduces to
the question of whether o« is contained in an extension L/K which can be
represented as a chain

L/Ll’ LI/LZ’ e LnAZ/Ln‘—la Ln—l/Ln = Ka

in which each extension is of the form L;,_, = L,(f), where f§ satisfies a quadratic
equation. This condition is equivalent to [L;_, : L;] = 2. Applying the relation
(3) we obtain that [L: K] = 2". If « € L then K(«) = L, and again it follows from
(3) that the degree [K(x): K] must be a power of 2. This is only a necessary
condition; a sufficient condition for the solvability of a problem by ruler and
compass can also be formulated in terms of the field K(«), but is slightly more
complicated. However, already the necessary condition we have obtained proves,
for example, that the problem of doubling the cube is not solvable by ruler and
compass: it reduces to the construction of a root of the polynomial

x*—2, and [Q(J2):Q]=3.

In exactly the same way, the problem of trisecting an angle leads, for example,
to the construction of @ = cos ¢/3, given that a = cos ¢ is known. This is related

to the cubic equation
40> —3a—a=0.

We should consider a as an independent variable, since ¢ is arbitrary. Hence K
is the field of rational functions @(a), and [K(«): K] = 3, and again the problem
is not solvable by ruler and compass.

In the same way, the question of solving algebraic equations by radicals also
leads to certain questions on the structure of finite extensions. We will deal with
this in detail in § 18.A.

§ 7. The Algebraic View of Infinitesimal Notions

Considering quantities ‘up to infinitesimals of order n° can be translated in
algebraic terms quite conveniently, considering elements ¢ (of certain rings)
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satisfying ¢" = 0 as analogues of infinitesimals. Suppose, for example, that C is an
algebraic curve, for simplicity considered over the complex field C. We introduce
the commutative ring

U={a+aela,a, eC,e* =0}

This can be described more precisely as C[x]/(x?), with ¢ the image of x
under the canonical homomorphism C[x] — U. Consider homomorphisms
@: C[C] — U over C (that is, such that C < C[C] is mapped by the identity to
C < U). Such a ¢ is determined by the images ¢(x) and ¢(y) of the coordinates
x and y, since the other elements of C[C] are polynomials h(x, y) in x and y, and
@(h(x, )} = h(e(x), (p)). Also, if F(x,y) = 0 is the equation of C then the ele-
ments ¢(x) and ¢(y) of U must satisfy the same equation

F(p(x), 9(y)) = 0. (1)

We write ¢(x) = a + a, & and ¢(y) = b + b,e. The ring U has a standard homo-
morphism {y: U — C given by y(a + a, &) = a. Applying this to the relation (1),
we get F(a,b) =0, that is, ¢ defines a point (a,b) € C. However, knowing this
point, we can reconstruct only the terms a and b in the expressions for ¢(x) and
¢(y). What is the meaning of the coefficients a, and b;? We substitute the values
for ¢(x) and ¢(y)in(1)and write F(a + a, &, b + b, ¢) in the standard form ¢ + ¢, &.
Expanding F as a Taylor series and using the fact that F(a, b) = 0 and &2 = 0 we
see that F(a + a,&,b + b &) = (a, Fi(a,b) + b, Fy(a, b))e, and condition (1) can be
written

F(a,b)=0 and a,F(a,b)+ b Fj(a,b)=0.

This means that (a, b) is a point of C and (a,, b,) is a vector lying on the tangent
line to C at (a, b). Here we assume that (a, b) is not a singular point of C, that is,
the partial derivatives Fy(a,b) and F;(a,b) do not both vanish. It is easy to see
that our arguments give a description of all homomorphisms of C[C] to U: these
correspond to pairs consisting of a point of C and a vector of the tangent line to
the curve at this point. In a similar way, for the case of an algebraic surface we
get a description of the tangent planes, and so on.

We formulate the previous arguments in a somewhat different way. We com-
pose @: C[C] — U with the standard homomorphism : U - C, to get the
sequence

ciaabudbe

As in §4, Example 2, the composite ¢ = ¢ defines the point x, € C, taking a
function into its value at x,. Hence the kernel is the maximal ideal M, of C[C],
consisting of functions vanishing at x,. If x, = (a, b) then x — aand y — b belong
to M, . This corresponds to the fact that ¢(x — a) and ¢(y — b) are of the form
a,e and b, ¢, that is, they belong to the ideal I = Kery of U. A vector of the
tangent space at x, (in the present case, of the tangent line) is defined by the
images x — a and y — b lying in this ideal, that is, by the restriction of ¢ to M, .
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Since &2 = 0, @ obviously vanishes on 92 . Hence ¢ defines a linear map of the
space EUIXO/EIR into C, and precisely this 11near function determines a vector of
the tangent 11ne at x,. [t is not hard to prove that any linear function I, /im

C defines a tangent vector at x.

Theorem. The tangent space at a point x, is the dual vector space to M, /M2 ,
where I, is the maximal ideal corresponding to X,.

The same thing holds for an algebraic surface C with equation F(x,y,z) =0
the tangent plane to C at a nonsingular point x, = (a,b, ¢} (that is, a point at
which the three derivatives

F(a,b), Fy(a,b) and F/(a,b)

do not all vanish simultaneously) can be identified with the dual vector space to
M, /M2 . Later we will apply these arguments to an arbitrary algebraic variety,
but for the moment we show that they also have applications outside the
algebraic case.

Example 1. Let 4 be the ring of differentiable functions in a neighbourhood
ofa point O of an n-dimensional vector space E, and let 9 be the ideal of functions
vanishing at O. By Taylor’s formula, f € M can be represented in the form
f = Imod M? where [ is a linear function. Linear functions on E form the dual
vector space E*, and we again get an isomorphism I/9M? =~ E*. If { € E then

o

(&) can be interpreted as the partial derivative [(¢) = _C(O)

A similar situation holds if A is the ring of differentiable functions on a
differentiable manifold X and 9 consists of the functions vanishing at x, € X.
Again we have MM/M? = T, where T, is the tangent space at x,, and the
isomorphism is given by

I(¢) = af(xo) for £eT, and!=f+ M. 2

S

The preceding argument presupposed that we already had a definition of the
tangent space of a differentiable manifold, but the argument can be reversed and
turned into the definition of the tangent space,

T, = (M, /M )*. )

Thus ¢ € T, is by definition a linear function / on M, which is zero on imio
Setting / to be equal to zero by definition on constants, we get a function on the
whole of A. It is easy to see that the conditions imposed on [ can be written as

llaf + Bg) =al(f) + Bl(g) for o,BecRand f,ge A
and 4)
I(fg) = I()g(x0) + U(g)f (xo).
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In this form they axiomatise the intuitive notion of a tangent vector as ‘that with
respect to which a function can be differentiated’ (as in (2)). The relation (3) or
the equivalent conditions (4) gives perhaps the most intrinsic definition of the
tangent space at a point of a differentiable manifold.

In this connection it is natural to consider the notion of a vector field on a
differentiable manifold. By definition, a vector field 6 assigns to any point x € X
a vector 0(x) € T,. For any function f € A and a point x € X, the vector 8(x)
defines a number 6(x)( f), that is, a function g(x) = 0(x)(f). We write 2(f) for
this operator. The relations (4) show that & satisfies the conditions

Dof + Bg) = ad(f) + BL(9),
and  Z(fg) = f2(9) + 2(f)g.

An operator of this type is called a first order linear differential operator. It is

(5)

easy to see that in a coordinate system (x,,..., X,) it can be written
"o of
2(f)=) a;—, 6
(N)=Yag ©

where a; = 9(x;). Conversely, every operator & satisfying (5) defines a vector field
6 for which

0(x)(f) = 2(f)(x).
For any arbitrary ring A a derivation of A is a map £: A - A which satisfies
P(a + b) = D(a) + 2(b),
Z(ab) = a2(b) + 2(a)b.

If B c A is a subring, we say that & is a derivation of 4 over B if 2(b) = 0 for
b e B. Then %(ab) = 2(a)b for a € A, b € B. If we set

(2, + 2,)(a) = 2,(a) + D,(a),
(c2)(a) = cD(a) fora,ce A

then derivations of 4 over B form an A-module.

We can thus say that the module of vector fields on a differentiable manifold
X is by definition the module of derivations over R of the ring of differentiable
functions on X. Together with the assertions of § 5, Examples 13 and 12, we now
get an algebraic definition of all the basic notions: vector fields, differential
1-forms and r-forms on a manifold.

We now return to arbitrary commutative rings. In §4 we formulated a general
conception according to which the elements of an arbitrary commutative ring A
can be viewed as functions on a ‘space’, the points of which are maximal ideals
(or in another version, prime ideals) of the ring, and the homomorphisms
A — A/M define the value of a ‘function’ a € 4 at the ‘point’ corresponding to
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the maximal ideal IR. Now we can make this connection deeper by assigning a
tangent space to each point. For this, consider the maximal ideal I defining a
point, and the quotient 9M/M2. Suppose that k = A/IM is the ‘field of values’ at
the point corresponding to 9. For elements m € M and a € A the residue class
of ammod M? depends only on the residue class of amod IR, that is, on the
element of k determined by a. This shows that M/9M? is a vector space over k.
The dual vector space, that is, the set of k-valued linear functions on /M2 is
the analogue of the tangent space at the point corresponding to M.

This point of view is useful in the analysis of various geometric and algebraic
situations. For example, if an irreducible algebraic curve C is given by an
equation F(x, y) = 0, then for (a,b) € C the tangent space is given by the equation

Fi(a,b)(x — a) + F;(a,b)(y — b) = 0.

This is 1-dimensional for all points (a, b), except for points at which F.(a,b) =
Fj(a,b) = 0. We say that a point of C is singular if both F, and F, vanish there,
and nonsingular otherwise. It is easy to see that the number of singular points is
finite. We see that the tangent space is 1-dimensional (that it, it has the same
dimension as C) for nonsingular points, and has bigger dimension (namely 2) for
singular points. A similar situation holds for more general algebraic varieties:
the dimension of the tangent spaces is the same at all points, except at the points
of a certain proper algebraic subvariety, at which it jumps up. This gives us, firstly
a new characterisation of the dimension of an irreducible algebraic variety (as
the dimension of the tangent spaces at all points except those of some proper
subvariety); secondly, it distinguishes the singular points (the points of this proper
subvariety); and thirdly, it gives an important invariant of a singular point (the
jump in dimension of the tangent space). But perhaps most remarkable of all is
that these notions are applicable to arbitrary rings, not necessarily geometric in
origin, and allow us to use geometric intuition in their study. For example, the
maximal ideals of the ring of integers Z are described by prime numbers, and for
MM = (p) the vector space M/IM? is 1-dimensional over F,, so that here singular
points do not occur.

Example 2. Consider the ring A consisting of elements a + bo with a, b € Z,
with operations defined on them as usual, together with the condition ¢2 = 1
(this ring turns up in connection with the arithmetical properties of representa-
tions of the group of order 2). Its;maximal ideals can be described as follows. For
any prime number p # 2 we have two maximal ideals

M, = {a + bo|p divides a + b}
and

M, = {a + bo|p divides a — b}.

Obviously, M, = (p,1 — 6) and M), = (p,1 + o). For each of these, the space
9M/9M? is 1-dimensional over F,. In addition, there exists a further maximal ideal
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M, = {a + bo|a and b have the same parity} = (2,1 + o).

It is easy to see that M3 = (4,2 + 20) and that M,/IMM2 consists of 4 elements,
the cosets of the elements 0, 2, 1 + ¢ and 3 + ¢. Thus this is a 2-dimensional
vector space over [,. The ideal MM, corresponds to the unique singular point.

All of our considerations so far have been connected with considering quanti-
ties ‘up to infinitesimals of order 2°, which for an arbitrary ring 4 and its maximal
ideal M reduces to considering the ring A/9M2. Of course, it is also possible to
consider quantities ‘up to infinitesimals of order r’, which leads to the ring 4/9t".
For example, if A is the polynomial ring C[x,,...,x,] or the ring of analytic
functions of variables z, ..., z, in a neighbourhood of the origin, or the ring of
C* complex-valued functions in 7 variables, and M is the ideal of functions which
vanish at the origin O = (0,...,0) then A/ is a finite-dimensional vector space
over C. It generalises the space A4/9MM? we have already considered, and is called
the space of jets of order (r — 1).

Example 3. Differential Operators of Order > 1. A linear differential operator
of order <r on a differentiable manifold X can be defined formally as an R-linear
map Z: A - A of the ring A4 of differentiable functions on X to itself such that
for any function g € A4 the operator 2,(f) = 2(gf) — g2(f) has order <r — 1.
Formula (5) defining a first order operator shows that 2(gf) — g2(f) is the
operator of multiplying by a function (namely, 2(g)); conversely if Z(gf) — 92(f)
is multiplication by a function then it is easy to check that Z(f) = 2(f) + 2(1)f,
where 9 is a first order operator.

From the definition it follows by induction that if 2 is a'operator of order <r
then 9(931;:‘) < M, , where M, < A is the maximal ideal corresponding to a
point x, € X. In coordinates this means that 2(f)(x,) depends only on the values
at x, of the partial derivatives of f of order <r. In other words, we have

5i1+"'+in
9(f)= z ail...i,,(xl,"':xn)—__——f

. —, witha; ; €A.
Lt T er Oxit...0xm b

For any point x, € X the map f(x)— 2(f)(x,) defines a linear function [ on
the space of all jets of order r: | € (4/9")*, in exactly the same way that a first
order linear differential operator defines a linear function on M, /M2 .

However, the most precise apparatus for studying the ring A ‘in a neighbour-
hood of a maximal ideal 90t is obtained if we consider simultaneously all the
rings A/M" forn = 1,2, 3,... They can all be put together into one ring A called
the projective limit of the A/9". For this we observe that there exists a canonical
homomorphism @,: /9™ — 4/9" with kernel IM*/9M"+1. The ring A4 is defined
as the set of sequences of elements {a,|a, € A/9"} which are compatible in the
sense that ¢,(o,4+;) = &,; the ring operations on sequences are defined element-
by-element. Each element a € A defines such a sequence, by a, = a + ", and
we thus get a homomorphism ¢: 4 — A. The kernel of ¢ is the intersection of all
the ideals 9M". In many interesting cases this intersection is 0, and hence 4 embeds
in A as a subring.
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Example 4. Let A = K[x], and M = (x). An element o, of the ring K[x]/(x")

is uniquely determined by a polynomial
fi=ag+a;x+-+a, x"1,

and a sequence of elements {a, } is compatible if the polynomial f, ., representing
o,.; is obtained from f, by adding in a term of degree n. The whole sequence
thus defines an infinite (formal) power series. In other words, the ring A is
isomorphic to the ring of formal power series K[x] of §3, Example 6. The
inclusion ¢: K[x] — K[x] extends to an inclusion of the fields of fractions
@: K(x) > K((x)), where K((x)) is the field of formal Laurent power series (§ 2,
Example 5). It is easy to see that this inclusion is the same thing as sending a
rational function to its Laurent series at x = 0. In particular, if a function does
not have a pole at x = 0 then it is sent to its Taylor series. For example, if
f(x)=1/1 = x) then f(x) =1 + x + - + x" ' mod x", or in other words, the
function f(x) — 1 — x — --- — x""! has denominator not divisible by x, and nu-
merator divisible by x". This means that f(x)is sent to the series 1 + x + x? + -

Example 5. Let A = K[C] be the coordinate ring of an arbitrary algebraic
variety C. If 9. is the maximal ideal of A corresponding to a nonsingular point
c e C, then A is isomorphic to the ring K[x,...,x,] of formal power series,
where n is the dimension of C (in any of the definitions of this notion discussed
above). Moreover, the inclusion

K[C] - K[xy,...,%,]

extends to those functions in K(C) that are finite at c, that is, can be represented
as P/Q where P, Q € K[C] and Q(c) # 0. This gives a representation of such
functions as formal power series. If K is the complex or real number field C or
R then it can be proved that the corresponding functions converge for sufficiently
small values of x;, ..., x,. This is how one proves that an algebraic variety
without singular points is also a topological, differentiable and analytic manifold.

Example 6. Let 4 be the ring of C* functions in a neighbourhood of x = 0,
and I the ideal of functions that vanish at x = 0. Then I" is the ideal of functions
that vanish at x = 0 together with all of their derivatives of order <n; A/I"is the
ring R[x]/(x"), and the homomorphism 4 — R[x]/(x") takes a function into its
Taylor series. In this case () I" # 0, since there exist nonzero C* functions all of
whose derivatives vanish at x = 0. The homomorphism A — A takes each func-
tion to its formal Taylor series. Since by a theorem of E. Borel there exist C®
functions all of whose derivatives at x = 0 take preassigned values, 4 =~ R[¢].

But the same ideas can also be applied to rings of a completely different nature.

Example 7. Suppose that A = Z is the ring of integers and I = (p) for some
prime number p. As A we get a ring Z, called the ring of p-adic integers. By
analogy with the case of the ring K[x] considered above, one can see that an
element of Z,, is given as a sequence {a,} of integers of the form
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%, =ag+a;p+-+a,p"Y,

where the a; belong to the fixed system 0 < a; < p of representatives of the classes
of residues mod p, and a,,,, is obtained from «, by adding on a term a,p". This
sequence can be written as a formal series

ao+“1P+“2P2 +

The ring operations on these sequences are carried out in exactly the same way
as the operations on integers written in base p; that is, if operating on the
coefficient a; we get a number ¢ > p, we must divide ¢ by p with remainder
¢ = ¢o + ¢,p and ‘carry c, into the next place’. The ring Z, is integral, and its
field of fractions Q,, is the field of p-adic numbers. The inclusion Z =, Z, extends
to an inclusion Q <, Q,.

To get a more rounded view of the relation between the constructions
described above, we return to the example of the ring K[x] and the field K(x).
For a more precise numerical characterisation of the fact that a nonzero function
f € K(x) vanishes to a given order at x = 0, we introduce the exponent v(f),
equal to nif f has a zero of order n > 0 at x = 0, or to —n if f has a pole of order
n > 0 at x. We fix a real number ¢ with 0 < ¢ < 1 once and for all (for example,
¢=13), and set @(f) =" for f#0, and ¢(0) = 0. Then ¢(f) is small if f
vanishes to a high order at x = 0. The expression ¢(f) we have introduced has
the formal properties of the absolute value of a rational, real or complex number:
¢(f)=0ifand only if f = 0, and

o(f9) = o(f)e(9), o(f +9) < o(f) + o(9). (7

We say that a field L having a real-valued function ¢ with these three properties
is a normed field and the function ¢ a valuation. The simplest example of a normed
field is the rational number field @ with ¢(x) = |x|. The procedure of constructing
the reals starting from the rationals, by means of Cauchy series, can be taken
over word-for-word to any normed field. We get a new normed field L, into which
L embeds as a subfield with the valuation preserved, such that the image of L is
everywhere dense; and Lis complete (in the sense of its valuation), that is, it
satisfies the Cauchy convergence criterion; L is called the completion of L with
respect to the valuation ¢.

It is very easy to see that the construction of the field K((x)) and of the
embedding K(x) — K((x)) is an application of the general construction to the
case of the valuation ¢(f) = c*" introduced above. Now we can use the fact
that the field K(X)" = K((x)) has a valuation extending the valuation ¢ of K(x).
It is easy to see what this is: if f € K((x)) and

f=cx"+ ¢y x"t + -+ withe, #0

then ¢(f) = c", and ¢(0) = 0. But in a normed field the convergence of series is
meaningful, and it is easy to see that any formal Laurent series converges in this
sense; in particular, x® — 0 as n — oo in the sense of our theory. Taking a rational
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function f into its Laurent series now turns into an equality, in the sense that in
K(X)" = K((x)), f is equal to the sum of the series converging to it.

In this connection it is interesting to determine quite generally which valua-
tions can be defined on the field K(x). We restrict ourselves to the case of the
complex number field K = C, and strengthen the notion of valuation by adding
a further condition to (7):

p@=1 if «eC and o #0. (8)

Obviously the valuation ¢(f) = c*“? we have constructed satisfies this extra
condition. Of course, we could vary our construction, considering any point
x = o in place of x = 0, that is, defining v(f) as the order of the zero or pole of
a function f at x = a. The valuation so obtained is denoted by ¢,. We can
consider another similar valuation by considering the order of zero or pole of a
function at infinity; we denote this valuation by ¢,.. It can most simply be defined

by o (f)=c""if f = g and P, Q are polynomials of degree n, m respectively

(and of course ¢(0) = 0).
It is not hard to see that these valuations exhaust all the valuations of C(x).

Theorem 1. All valuations of C(x) (with the extra condition (8)) are given by the
valuations ¢, for o € C, and the valuation ¢,

Thus the valuations of C(x) give us in a very natural way all the points of the
line (including the point at infinity), or of the Riemann sphere, on which the
rational functions are defined.

We now ask the same question for finite extensions of C(x). These are of the
form C(C), where C is some irreducible curve. The answer turns out to be similar,
but rather more delicate. Every nonsingular point ¢ of the curve C corresponds
to some valuation ¢,, characterised for example by the fact that ¢.(f) < 1 if and
only if f(c) = 0. But there are a finite number of valuations to be added to these;
firstly, the points at infinity of the curve C (which occur if we consider a curve in
the projective plane). Secondly, singular points of C may correspond to several
distinct valuations. The entire set of valuations is in 1-to-1 correspondence with
the points of a certain nonsingular curve lying in projective space, and defining
the same field C(C), the so-called nonsingular projective model of C. The points
of this model are thus characterised in a very remarkable way quite intrinsically
by the field C(C). Another way of stating the same description is that if the curve
C is given by the equation F(x, y) = 0 then all valuations of C(C) are in 1-to-1
correspondence with the points of the Riemann surface of the function y as an
analytic function of x. This can be considered as a purely algebraic description
of the Riemann surface of an algebraic function.

Let £ = (a, b) be some point of an algebraic curve C with equation F(x, y) = 0,
and ¢ one of the valuations corresponding to £ Then the completion of C(C)
with respect to the valuation ¢ is again isomorphic to the field C((t)) of formal
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Laurent series. Suppose that under the inclusion C(C) = C((¢)),
X=a=c¢t"+ ¢ "+, with ¢, #0.
Then x — a = t*(t) with f(0) # 0. Thus
X —a=r1k
where
T =tf ()",

and f(#)"* must be understood as a formal power series, which is meaningful in
view of the condition f(0) # 0. It is easy to show that t is a ‘parameter’ of the
field C((t)) as well as ¢; that is, all elements of C((t)) can be represented as Laurent
series in 7 also, so that C((¢)) = C((z)). In particular,

y=>dt =Y d(x — a)’.

This type of expansion of an algebraic function y as a fractional power series in
x — ais called a Puiseux expansion.

We now proceed to the rational number field Q. Let p be a prime, and ¢ a real
number with 0 < ¢ < 1. We write v(n) for the highest power of p which divides

. n .
n, and for a rational number a = — with n, m € Z, we set
m

(Pp(a) = ¢’ —v(m)

It is easy to check that ¢, is a valuation on the rational number field Q.
Considering the completion of Q in this valuation, we arrive at the p-adic number
field @, which was introduced earlier. In it, the notion of convergence of series
makes sense, and the formal power series which we used to specify p-adic
numbers are convergent. For example, the equality

1 2
——=14+p+p°+--
1—p
has the meaning that the number on the left-hand side is the sum of the conver-
gent series on the right.
By analogy with the field C(x) it is natural to ask: what are all the valuations
of Q7

IL. Ostrowski’s Theorem. Every valuation of Q is either a p-adic valuation ¢,
or a valuation of the form @(a) = |al’, where c is a real number with 0 < ¢ < 1.

The number ¢ here is an inessential parameter, exactly as that occuring in the
definition of a p-adic valuation or of the valuation ¢, of C(x): valuations obtained
for different choices of ¢ define the same notion of convergence and isomorphic
completions. The completion with respect to the valuation | | gives of course
the real number field. Thus all the p-adic number fields Q, and the real number
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field R play entirely similar roles. The comparison with the field C(x) shows that
primes p (defining the fields Q,) are analogous to finite points x = «, and the
inclusions @ — @, are analogous to expansions in Laurent series at finite points;
then the inclusion @ — R is an analogue of the Laurent expansion at infinity.
This gives a unified point of view on two types of properties of integers (or
rational numbers): divisibility, and size. For example, for f € Z[x], the fact that
the equation f(x) = 0 has a real root means that there exist rational numbers a,,
for which | f(a,)| is arbitrarily small. In the same way, the fact that f(x)is solvable
in the p-adic field means that there exist rational numbers g, for which ¢,(f(a,))
is arbitrarily small, that is, that f(a,) is divisible by larger and larger powers of
p. It can be shown that for a polynomial f(x,...,x,) the solvability of the
equation

f(x19~--sxn) =0
in Q, is equivalent to the solvability of the congruence
f(x4,...,x,) =0 modp*

for any k. Since a congruence to any modulus reduces to congruences mod p*,
the solvability of the equation f =0 in all the fields Q, is equivalent to the
solvability of the congruence

f=0 modN

for any modulus N. For example, the following assertion is a classical result of
number theory.

II1. Legendre’s Theorem. The equation
ax?> +by*=c (fora,b,ceZ and ¢ > 0)

is solvable in rational numbers if and only if the following conditions hold:

(1) eithera>0orb > 0;

(2) the congruence ax? + by* = cmod N is solvable for all N.

By what we have said above, this means that the equation ax® + by* = c is
solvable in rationals if and only if it is solvable in each of the fields Q, and R.

This result can be generalised.
IV. Minkowski-Hasse Theorem. The equation
f(xla'--sxn) =6

where f is a quadratic form with rational coefficients, and ¢ € Q, is solvable in Q
if and only if it is solvable in all the fields Q, and R.

The p-adic number field reflects arithmetic properties of the rational numbers
(divisibility by powers of p), but on the other hand, it has a number of properties
in common with the field R; in Q, we can consider measures, integrals, analytic
functions, interpolation and so on. This gives a powerful number-theoretic
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method (especially if all the fields @, and R are considered together), the use of
which has led to a large number of deep arithmetic results.

In conclusion, we consider a finite extension field K of Q; a field of this type
is called an algebraic number field. What valuations are there on K? Every
valuation induces a certain valuation of Q, and one can prove that any valuation
of Q is induced by a finite number of valuations of K. Those which induce the
usual absolute value [a] on Q are related to embeddings of K into the real field
R or the complex field C and the function |x| on these fields. We consider other
valuations. In Q the subring Z is distinguished by the conditions ¢,(a) < 1 for
all p. By analogy, consider the elements of K satisfying ¢(a) < 1 for all the
valuations of K inducing the valuations ¢, of Q for some prime p. One sees easily
that these elements form a ring A, which plays the role of the ring of integers of
K; the elements of A4 are called algebraic integers. (It can be proved that a € K
is an algebraic integer if and only if it satisfies a equation

o"+ a0t + - +a,=0 with ay,...,a,€7;

this is often taken as the definition of an algebraic integer.) The field of fractions
of A equals K. Obviously, 4 o Z. It can be proved that A4 is a free module over
Z, of rank equal to the degree [K : @] of the extension K/Q. The ring 4 is in
general not a unique factorisation domain, but the theorem on unique factorisa-
tion of ideals into a product of prime ideals holds in it. In particular, for any
prime ideal p and element o € A there is a well-defined exponent v(x) which tells
us what power of p divides the principal ideal (2). We choose a real number ¢

with0 < ¢ < 1,and foranyelement ¢ € K, & # 0, write ¢ = %with o, B € Aand set

q)p(f) = Y@V,

Thus to each prime ideal p of 4 we assign a valuation ¢,. It turns out that these
exhaust all the valuations of K that induce one of the valuations ¢, on Q. These
facts make up the first steps in the arithmetic of algebraic number fields. Com-
paring them with the analogous facts which we have discussed above in connec-
tion with the fields C(C) for an algebraic number field C, we can observe a
far-reaching parallelism between the arithmetic of algebraic number fields and
the geometry of algebraic curves (or properties of the corresponding Riemann
surfaces). This is a further realisation of the ‘functional’ point of view of numbers
which we discussed in § 4 (see the remark after Example 3).

§ 8. Noncommutative Rings

The set of linear transformations of a finite-dimensional vector space has two
operations defined on it, addition and multiplication; writing out linear trans-
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formations in terms of matrixes, these operations can be transferred to matrixes
as well. The existence of both these operations is extremely important and is
constantly used. It is, for example, only because of this that we can define
polynomials in a linear operator; and, among other uses, they are used in the
study of the structure of a linear transformation, which depends in an essential
way on the multiplicity of roots of its minimal polynomial. The same two
operations, together with a passage to limits, make it possible to define analytic
functions of a (real or complex) matrix. For example,

0 A”
A __ .
e’ = 2 —',
n=0 H!

by writing out a system of n first order linear ordinary differential equations with
. . . dx .
constant coefficients in # unknowns in the form i Ax, where x is the vector

of unknown functions and A the matrix of coefficients, this allows us to write the
solution in the form x(t) = e“'x,, where x, is the vector of initial data.

The operations of addition and multiplication of linear transformations are
subject to all the axioms of a commutative ring, except commutativity of multi-
plication. Omitting this requirement from the definition of a commutative ring,
we also omit the adjective ‘commutative’ in the name of the new notion.

Thus, a ring is a set with operations of addition and multiplication, satisfying
the conditions:

a+b=b+a,
at+b+c)=@+b)+ec,
(ab)c = a(bc),
alb + c¢)=ab + ac
(b + ¢)a = ba + ca.

There exists an element 0 such that a + 0 = 0 + a = afor all g; for any a there
exists an element —a with the property a + (—a) = 0. There exists an element 1
such that 1-a =a-1 =aforall a.

We now give some examples of rings (noncommutative ones; we have already
seen any number of commutative ones).

Example 1. The ring of linear transformations of a vector space L, and its
natural generalisation, the ring of all homomorphisms of a module M to itself
over a commutative ring 4. Homomorphisms of a module to itself are called
endomorphisms, and the ring defined above is denoted by End,M.If A = K is a
field, we get the ring of linear transformations of a vector space L, which we will
also denote by Endg L.

Example 2. The simplest infinite-dimensional analogue of the ring of linear
transformations is the rings of bounded linear operators in a Banach space.
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Example 3. The ring of linear differential operators in 1 or n variables, whose
coefficients are polynomials, or analytic functions, or C* functions, or formal
power series (in the same number of variables, of course).

Before proceeding to consider further examples, we note those notions which
we introduced for commutative rings, but which did not in fact use commuta-
tivity. These are: isomorphism, homomorphism, kernel and image of a homomor-
phism, subring, graded ring.

For example, choosing a basis in an n-dimensional vector space L over a field
K determines an isomorphism of the ring End L with the ring of n x n matrixes,
which we denote M,(K).

In a ring R the set of elements a commuting with all elements of R (that is,
ax = xaforall x € R)forms a subring, called the centre of R, and denoted by Z(R).

If the centre of a ring R contains a subring 4 then we say that R is an A-algebra
or an algebra over A. Forgetting about multiplication in R and considering only
multiplication of elements of R by elements of A turns R into an A-module. The
notion of homomorphism of two algebras over a commutative ring A differs from
an ordinary ring homomorphism in that we insist that each element of A4 is taken
into itself, that is, that the homomorphism defines a homomorphism of the
corresponding A-modules. The notion of subalgebra of an algebra R over A is
defined in the same way: it should be a subring containing A.

If A = K is a field and R is an algebra over K then the dimension of R as a
vector space over K is the rank of the algebra R. We have already met this notion:
a finite extension L/K is an extension which is an algebra of finite rank. An
algebra of finite rank n over a field K has by definition a basis e,, ..., e,, and
multiplication in the algebra is determined by the multiplication of elements of
this basis. Since e;e; is again an element of the algebra, it can be written in the form

ee;=) cpe With ¢ e kK. (1)

The elements c;;, are called the structure constants of the algebra. They determine
multiplication in the algebra:

(Z aiei)(z bjej) = Z aibjcijkek'

The relations (1) are referred to as the multiplication table of the algebra. Of
course, the structure constants cannot be given in an arbirary way: they have to
satisfy the conditions that reflect the requirement that multiplication is associa-
tive and there exists a unit element.

For example, the matrix ring M,,(K) is an algebra of rank n? over K. As a basis
we can take the n® elements E;;, where E;; is the matrix with all entries equal to
0 except for the entry in the ith row and jth column, which is 1. Its structure
constants are determined by

EE =0 ifj#k,
EijE'l = E;.

J

2
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Now we can introduce some more examples of rings, given most simply as
algebras over a field.

Example 4. Let G be a finite group (we assume that the reader is familiar with
this notion, although in any case it is recalled in § 12). We construct an algebra
over a field K whose basis elements e, for g € G are indexed by elements of the
group, and which multiply together as elements of G:

€, €, = ¢€

91792 9192°

The algebra so obtained is called the group algebra of G, and is denoted by K[ G].
In the same way, we can define the group algebra A[G] of a finite group G over
a commutative ring A. Identifying elements g € G with the corresponding basis
elements e,, we can view the elements of K[G] as sums Y. o,9. The product

geG
(Z czgg> (;.zc B,,h) can of course also be written in the same form ) 7,9,

geG geG

where, as is easy to check,

’))g = Z OCuﬁu’lg' (3)

ueG

An element ) a,g is determined by its coefficients, which we can view as func-
tions on G, and write accordingly «(g). We then get an interpretation of K[{G]
as the algebra of functions on G, with multiplication taking functions a(g), f(g)
into the function y(g) given as in (3) by

yg) = Y, a(u)pu'g). (4)

ueG
This notation is the starting point for generalisations to infinite groups. For
example, if G is the unit circle |z| = 1, writing elements of G in terms of their
argument ¢, we see that a function on G is just a periodic function of ¢ with
period 27. By analogy with formula (4), the group algebra of our group is defined
as the algebra of periodic functions a(¢) (for example continuous and absolutely
integrable) with the multiplication law which takes a(@), f(¢) into the function

1 2n
7(f) J a(t) B — t)dt.

=%0

In analysis, this operation is called the convolution of two functions.

This definition fails in one formal respect: the group algebra does not contain
the identity element, which is the delta-function of the unit element. We can easily
overcome this failure by adjoining a unit to R, that is, considering C @ R with
multiplication (o + x)(8 + ¥) = aff + (ay + Bx + xY).

Another way of generalising the notion of group algebra to infinite groups is
applicable to countable groups, and is related to considering series instead of
functions: we consider infinite series (for example, absolutely convergent) of the
form Y a,g with o, € C, and the multiplication law given by (3).
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Example 5. The most famous example of a noncommutative ring is the qua-
ternion algebra H. This is an algebra of rank 4 over the field of real numbers R
with basis 1, i, j, k, having the multiplication law

it=jt=k*=—1, ij=k, ji=—k jk=i ki= —i, ki=j, ik = —j,

that is, if we write i, j, k around the circle,

N

k ¢

Fig. 10

then the product of two adjacent elements taken in clockwise order is equal to
the third, and taken anticlockwise is equal to minus the third.

The modulus (or absolute value) of a quaternion q =a + bi + ¢j + dk is
the number |q| = \/ a? + b* + ¢? + d?; the conjugate of q is the quaternion
g = a — bi — ¢j — dk. The relations

99=qq=1q1*> and q,q, = 4,4, (%)
are easy to check. It follows from these that if ¢ # 0 then the quaternion ¢~* =

1 _ .
W(ils an inverse of g, thatis, gqg"! =q*q=1.1f g =a + bi + ¢j + dk then a
q
is called the real part of q and bi + ¢j + dk the imaginary part; they are denoted

by Re g and Im q. If a = O then g is purely imaginary. In this case it corresponds
to a 3-dimensional vector x = (b, ¢,d). The product of two purely imaginary
quaternions can expressed in terms of the two basic algebraic operations on
3-dimensional vectors, the scalar product (x, y) and the vector product {x, y]; in
fact if purely imaginary quaternions p and g correspond to vectors x and y then
Re(pq) = (x, y) and Im(pq) corresponds to the vector [x, y].

From the equalities (5) it follows easily that |q,q,| = |g,|"1g,| for two qua-
ternions ¢q, and gq,. This means that if a, b, ¢, d and a,, b,, c,, d, are arbitrary
numbers, then the product

(@ + b% + ¢ + d*)(a? + b? + 2 +d})

can be written in the form a3 + b2 + c3 + d3, where a,, b, ¢,, d, (which are the
coefficients of 1, i, j, k in the quaternion ¢, q,), can be expressed very simply in
terms of a, b, ¢, d and a,, b, ¢, d, (the reader can easily write out these ex-
pressions). The resulting identity was discovered by Euler long before Hamilton’s
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introduction of quaternions; it is useful, for example, in the proof of Lagrange’s
famous theorem that any natural number n is equal to a sum of squares of four
integers: using this identity, the problem reduces at once to the case of a prime
number .

Example 6. The quaternions contain the field C of complex numbers, as
elements of the form a + bi. Any quaternion can be uniquely written in the form
zy + z,j with z,, z, € C. This expression

H=C®Cj (6)

gives a convenient way of representing quaternions. When handling quaternions
written in this form, we need only remember that z € C and j do not commute.
However, it is easy to check that their commutation is subject to the simple rule

jz=17. ()

The representation (6) has one important geometric application. Suppose
we consider pairs (q,,9,) # (0,0) with q,, g, € H and identify pairs which are
proportional ‘on the left™ (q,,9,) ~ (99,,99,) for g # 0. We obtain the quater-
nionic projective line P'(H). Just as the real and complex projective plane, it
contains a finite part, the pairs (q,,q,) with g, # 0, which we can identify
with H (by taking ¢, = 1), and P*(H) is obtained from H by adding the point at
infinity (q,,0). This shows that, as a manifold, P*(H) is diffeomorphic to the 4-
dimensional sphere S*. Representing H in the form (6) and setting q, = z, + z, j,
g, = z3 + z4j, we replace the pair (q,,q,) by the 4-tuple (z,, z,,25,z4) in which
not all z; are zero. These 4-tuples, considered up to nonzero complex multiples,
form the 3-dimensional complex projective space P3(C). Both P*(H) and P3(C)
are obtained from the same set of pairs (q,,¢,), but by means of different
identification processes, differing by the choice of proportionality factors: g € H
in the first case, and g € C in the second. Since pairs identified in the second case
are obviously also identified in the first, we get a map

P3(C) - §*.

This is the twistor space over the sphere $*, which is very important in geometry;
its fibres form a certain 4-dimensional family of lines of P*(C). It allows us to
reduce many differential-geometric questions concerning the sphere S* to
questions of complex analytic geometry of P3(C).

Other applications of quaternions, to the study of the groups of orthogonal
transformations of 3- and 4-dimensional space, will appear in § 15.

A ring in which any nonzero element a has an inverse a™! (that is an element
such that aa™' = a™'a = 1) is a division algebra or skew field. In fact it is enough
to assume only the existence of a left inverse a™?, such that a”la = 1 (or only a
right inverse). If a’ is a left inverse of a and a” a left inverse of a’ then, by
associativity, a”a’a is equal to both of a and a”. This gives aa’ = 1, so that a’ is
also aright inverse. A field is a commutative division algebra, and the quaternions
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are the first example we have met of a noncommutative division algebra. It is
easy to check that there is only one inverse in a division algebra for a given
element. In a division algebra any equation ax = b with a # 0 can be solved:
x = a”'b; similarly, for ya = b witha # 0, y = ba™ ™.

The standard notions of linear algebra over a field K carry over word-for-word
to the case of vector spaces over an arbitrary division algebra D. We observe
only the single distinction, which is significant, although formal: if a linear
transformation ¢ of a n-dimensional vector space over a division algebra is given

inabasis ey, ..., e, by a matrix (a;) and ¥ by a matrix (b,) then, as one can easily
check, the transformation ¢y is given by the matrix c¢;, where
Ci = Z b aie. @®)
k

In other words, in the usual formula for multiplying matrixes, we must inter-
change the order of the terms. (This can already be observed in the example of
1-dimensional vector spaces!)

In this connection we introduce the following definition.

Rings R and R’ are said to be opposite or skew-isomorphic if there exists a 1-to-
1 correspondence a <> a’ between a € R and a’ € R’ with the properties that

a,<ajand a,>a, = a, +a,—a; + a,and a,a, ¥ & a,a;.

A correspondence a «» a’ which establishes a skew-isomorphism of R with itself
is called an involution of R. Examples are the correspondences a <« a* (where a*
is the transpose matrix) in the matrix ring M,(A4) over a commutative ring A,
Z o,g < Z a,g~" in the group ring A[G], and g <> g in the quaternion algebra H.

For each ring R there exists an opposite ring R’ skew-isomorphic to R. To get
this, we simply take the set of elements of R with the same addition and define
the product of two elements a and b to be ba instead of ab.

Now we can describe the result expressed in (8) above as:

Theorem 1. The ring of linear transformations of an n-dimensional vector space
over a division algebra D is isomorphic to the matrix ring M,,(D’) over the opposite
division algebra D'.

With the exception of this alteration, the well-known results of linear algebra
are preserved for vector spaces over division algebras. Going further, we can also
define the projective space P"(D) over D, and this will again have most of the
properties we are familiar with.

Example 7. We consider the space T"(L) of contravariant tensors of degree r
over an n-dimensional vector space L over a field K (see § 5 for the definition of
the module T"(M)). The tensor product operation defines the product of tensors
@ e T"(L) and ¢ € T5(L) as a tensor ¢ ® Y € T"*5(L). To construct a ring by
means of this operation, consider the direct sum @ T"(L) of all the spaces
T"(L), consisting of sequences (¢, @;,...), with only a finite number of non-
zero terms, and ¢, € T"(L). We define the sum of sequences component-by-
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component, and the product of (¢g, ¢y, ...) and (Yo, ¥y, ...) as (&, &y, ...), where

&= Y @, It follows from properties of multiplication of tensors that
ogr<p
we get a ring in this way. It contains subspaces T"(L) forr =0, 1, ..., and each

element can be represented as a finite sum @, + ¢, + - + ¢, with ¢, € T"(L).
The elements ¢, € T°(L) = K are identified with elements of K, so that the ring
constructed is a K-algebra. It is called the tensor algebra of the vector space L,
and denoted by T(L). The decomposition of T(L) as the sum of the T"(L) makes
T(L) into a graded algebra.

Let us choose a basis &, &,, ..., &, of T1(L) = L. The well-known properties
of tensor multiplication show that the products &; -...- &, , where (iy,...,i,) is
any collection of m indexes, each of which can take the values 1, ..., n, form a
basis of T™(L). Hence all such products (for all m) form an infinite basis of the
tensor algebra over K. Thus any element of the tensor algebra can be written as
a linear combination of products of the elements &, &,, ..., &, and different
products are linearly independent (the order of the factors is distinguished). In
view of this, T(L)is also called the noncommuting polynomial algebrain n variables
¢, ..., &, Assuch it is denoted by K(¢&,,..., &0,

The characterisation of the algebra T(L) indicated above has important appli-
cations. We say that elements {x,} (finite or infinite in number) are generators of
an algebra R over a commutative ring A if any element of R can be written as a
linear combination with coefficients in A of certain products of them. Suppose
that an algebra R has a finite number of generators x4, ..., x, over a field K.
Consider the map which takes any elementa = ) a;,.. 1,8, .-~ & ofthealgebra
K{(&,,. ., Einto theelemento =Y a; ; x; ... x; of R.Itiseasy to see that
we thus get a homomorphism K{¢,,..., £,> — R whose image is the whole of R.
Thus any algebra having a finite number of generators is a homomorphic image
of a noncommuting polynomial algebra. In this sense, the noncommuting poly-
nomial algebras play the same role in the theory of noncommutative algebras as
the commutative polynomial algebras in commutative algebra, or free modules
in the theory of modules.

We must again interrupt our survey of examples of noncommutative rings to
get to know the simplest method of constructing them. As in the case of commuta-
tive rings, it is natural to pay attention to properties enjoyed by kernels of
homomorphisms. Obviously, if ¢: R - R’ is a homomorphism, then Ker ¢ con-
tains the sum a + b of two elements a, b € Ker ¢, and bqth of the products ax
and xa of an element a € Ker ¢ with any element x € R. We have run up against
the fact that the notion of ideal of a commutative ring can be generalised to the
noncommutative case in the three ways (a), (b), (c) below. Consider a subset ] = R
containing the sum a + b of any two elements a, b € I

(a) If the product xa is contained in I for any a € I and x € R, then we say that
1 is a left ideal,

(b) if (under the same conditions) ax is contained in I then we say that I is a
right ideal,
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(c) if both conditions (a) and (b) hold, we say that I is a two-sided ideal. Thus
the kernel of a homomorphism is a two-sided ideal.

We give examples of these notions. In the ring of linear transformations of a
finite-dimensional vector space L over a division algebra D, a subspace V < L
defines a left ideal , I, consisting of all transformations ¢ such that (V) = 0, and
a right ideal I, consisting of all ¢ such that ¢(L) = V. In the ring of bounded
linear operators in a Banach space, all compact (or completely continuous)
operators form a two-sided ideal.

All elements of the form xa with x € R form a left ideal, and those of the form
ay for y € R a right ideal. For two-sided ideals the corresponding construction
is a little more complicated. We treat this at once in a more general form. Let
{a,} be a system of elements of a ring R; all sums of the form x,a, y, + -~ +
x,d, ¥, With x;, y; € R form a two-sided ideal. It is called the ideal generated by
the system {a,}.

In complete analogy with the commutative case we can define the cosets of a
two-sided ideal and the ring of these cosets. We preserve the previous notation
R/I and the name quotient ring for this. For example, if R is the ring of bounded
linear operators in a Banach space and [ is the two-sided ideal of compact
operators, then many properties of an operator ¢ depend only on its image in
R/I. Thus to say that ¢ satisfies the Fredholm alternative is equivalent to saying
that its image in R/I has an inverse.

The homomorphisms theorem is stated and proved in complete analogy with
the commutative case (§4, Theorem II).

Let {¢,} be a system of elements of the noncommuting polynomial algebra
K{&,,...,¢,> and I the two-sided ideal it generates. In the algebra R =
K{&,,..., &/, we write ay, ..., a, for the images of the elements &, ..., &,.
These are obviously generators of R; we say that R is defined by generators
a,, --., a, and relations ¢, = 0. By the homomorphisms theorem, any algebra
with a finite number of generators can be defined by some system of generators
and relations. But although the system of generators is by definition finite, it
sometimes happens that the system of relations cannot be chosen to be finite.

The commutative polynomial ring K[x,,...,x,] has the defining relations
x;X; = x;x;. Let R be the ring of differential operators with polynomial coeffi-
cients in n variables x,, ..., x,. Generators in this algebra are, for example, the

operators ¢; of multiplication by x; (with g;(f) = x,f) and p; = ﬁixj It is easy to
see that it has the defining relations
pib; = PiPi»  4id; = 4;4i> ©)
pigj=q;p; fi#j, and pig;—qp;=1.
We apply this construction to some other important classes of algebras.

Suppose given an n-dimensional vector space L and a symmetric bilinear form,
which we denote by (x, y). We consider the algebra having generators in 1-to-1



70 §8. Noncommutative Rings

correspondence with the elements of some basic of L (and denoted by the same
letters), and relations of the form

xy + yx =(x,y) forx,yelL. (10)

Thus our algebra is the quotient algebra of the tensor algebra T(L) by the ideal
I generated by the elements (x, y) — xy — yx.
We consider two extreme cases.

Example 8. Suppose that the bilinear form (x, y) is identically zero. Then it
follows from the relation (10) that x? = 0 (if the characteristic of K is #2; if
char K = 2 then we need to take x2 = 0 as part of the definition). Any element
of the algebra constructed in this way is a linear combination of products
e;,*... ¢; of basis elements of L. It is easy to see that all such products generate
the space /\'(L) (see § 5 for the definition of the module /\'(M)). The whole of
our algebra is represented as a direct sum A°(L)@® ANL)@® -+ @ /\*(L). This
algebra is graded and of finite rank 2% it is called the exterior algebra of L and
denoted /\(L); multiplication in /\ (L) is denoted by x A y.

It is easy to see that if x € /\'(L) and y € /\S(L) then

x Ay=ynAXx ifeitherrorsiseven (11)
and
xAy=—y A x if bothrandsare odd.
This can be expressed in another way. Write /\ (L) = R, and set
NLe NLe AN L)@ =R, ANL)S AL =R
Then R = R°@® RY, and
R°-R°<=R® R°R'<R! R'R°cR! R!'R!'cR° (12)

A decomposition with properties (12) is called a Z/2-grading of the algebra R.
For R = /\(L)wecanstate (11) by saying thatx A y = y A xifeither xor y € R°,
andx A y = —y A xifboth xand y € R'. An algebra with a Z/2-grading having
these properties is called a superalgebra. The exterior algebra /\(L) is the most
important example of these. Interest is superalgebras has been stimulated by
quantum field theory. On the other hand, it turns out that purely mathematically,
they form a very natural generalisation of commutative rings, and can serve
as the basis for the construction of geometric objects, analogues of projective
space (superprojective spaces) or of differential and analytic manifolds (super-
manifolds). This theory has applications to supergravitation in physics, and it is
studied by supermathematicians.

Example 9. The definition of exterior algebra used a basis of the vector space
L (the vectors x, y in (10) belong to it). Of course, the construction does not
depend on this choice. We can give a completely intrinsic (although less eco-
nomical) definition, taking x and y in (10) to be all the vectors of L. It is easy
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to see that we arrive at the same algebra. In this form the definition is applicable
toany module M over a commutative ring 4. We obtain the notion of the exterior

algebra of a module:
AM = (—rD N M.

If M has a system of n generators then /\’M = 0 for r > n. In particular, the
exterior algebra of the module of differential 1-forms Q! on a n-dimensional

differentiable manifold is called the algebra of differential forms, Q = P Q".

r<n
We will see later important applications of the exterior product of forms.

Example 10. Now consider the other extreme case, when the bilinear form (x, y)
in (10) is nondegenerate and corresponds to a quadratic form F(x), that is,
F(x) = 4(x, x) (we suppose that the characteristic of K is #2). We can argue in
this case just as in the previous one, exchanging factors in the producte; ... e;_
using (10). The only difference is that for j < i the product e;e; gives rise to two
terms, one containing — e;e; and one containing (e;, e;), giving a product of r —
factors. As a result we prove in exactly the same way that the productse; -...-e;
with i, - < i, form a basis of our algebra, so that it is again of rank 2" This
algebra is called the Clifford algebra of the vector space L and the quadratic form
F, and is denoted by C(L). The significance of this construction is that in C(L)
the quadratic form F becomes the square of a linear form:

F(x;e; + - + x,e,) = (x,e, + - + Xx,e,)% (13)

Thus the quadratic form becomes ‘a perfect square’, but with coefficients in some
noncommutative algebra. Suppose that F(x,,...,x,) = x? + x2; then by (13),
X3+ 4+ x2=(x,e; + - + x,e,)% Using the isomorphism between the ring

. . . . 0
of differential operators with constant coefficients R [8—’ e 6—] and the poly-
Y1 Yn
nomial ring R[x,,...,Xx,], we can rewrite this relation in the form

oy} a2~ \ay, oy, ")

It was precisely the idea of taking the square root of a second order operator
which motivated Dirac when he introduced a notion analogous to the Clifford
algebra in his derivation of the so-called Dirac equation in relativistic quantum
mechanics.

The products ¢; -...-e; with an even number r of factors generate a subspace
C° of the Clifford algebra C, those with odd r a subspace C*; clearly, dim C° =
dim C! = 271, It is easy to see that C = C° @ C! and that this defines a 7Z/2-
grading. In particular C° is a subalgebra of C, called the even Clifford algebra.

Consider the map which sends a basis element e; -...-e; of C(L) into the
product ¢; -...-e; in the opposite order. It is easy to see that this gives an
involution of C(L), which we denote by a+ a*.
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Example 11. Suppose that F(x;,x,) = x? + x and that K = R. Then C(L)
has rank 4 and basis 1, e,, e,, e, e, with e? = e2 = 1 and e,e, = —e e,. [tis easy
to see that C(L) = M,(R). For this, we set

E, = 7 E12=—2“_, E21=—2—“’ 22 = 5

and we then need to see that the elements E;; multiply together according
to rule (2). The isomorphism of C(L) with M,(R) sends e, to the matrix

b 0 O =1 Thenb 14) the Lapl ator 2z + 2.
. or —5 + —5
0 —1 and e, to _q 0 en by ( e Laplace oper a2 T oy
1 0o 0 —17]0)2
can be written as ([O —1]§+ |:_1 0]@> . If the operator 2 =
—17 8 .
I:(l) _?:l;;+ |:_(1) (1)]5 acts on the column [Z:l then the equation

9 |:u:| = 0 gives:
v

du v ou _ Ov
ox 0y oy  ox’
that is, the Cauchy-Riemann equations.

Now suppose that F(x,,...,x,,) = x2 + - + x2,. We divide the indexes
1,..., 2ninto n pairs: (1,2), (3,4), ..., 2n — 1,2n), and write «, f, etc. to denote
any collection (i,...,i,) of indexes such that i, belongs to the pth pair. If
o= (iy,...,i,)and g = (j,,..., j,) then we set

Ey=E E . E

)17 t2)2 ’ injn’
where the E;; are expressed in terms of e;, ¢; as in the case n = 1. It is easy to see
that the E,; again multiply according to rule (2), that is C(L) = M,.(R).

Example 12.If F(x,, x,,Xx;3) = x? + x3 + x2and K = R, then the even Clifford
algebra C°(L) is isomorphic to the quaternion algebra: e, e,, e,e;, e, e; multi-
ply according to the rule of Example 5.

In the commutative case fields can be characterised as rings without ideals
(other than 0). In the noncommutative case, as usual, the relation is more
complicated. One proves just as in the commutative case that the absence of left
ideals (other than 0) is equivalent to the fact that every element other than 0 has
a left inverse (satisfying a 'a = 1), and right ideals relate to right inverses in the
same way. Thus division algebras are the rings without left ideals (or without
right ideals), other than 0.

What does the absence of two-sided ideals correspond to? A ring not having
any two-sided ideal other than 0 is said to be simple. We will see later the
exceptionally important role played by simple rings in the theory of rings, so that
they can, together with division algebras, be considered as a natural extension
of fields to the noncommutative domain.
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Example 13. We determine the structure of left ideals of the ring R of linear
transformations of an n-dimensional vector space L over a division algebra D.
Let us show that the construction given earlier (the ideals , I and I,,) describes
all of these, restricting ourselves to left ideals. Let I = R be such an ideal, and
V < L the subspace consisting of all elements x € L such that ¢(x) = 0 for all
pel.If@,,..., @ is a basis of I as a vector space over D then ﬂ Kergp, = V. 1t
is easy to see that if ¢ € R satisfies Ker ¢ = V then any linear transformation
¢ for which Ker ¢’ > V can be expressed in the form ¢ with ¢ € R. It fol-
lows easily from this that if ¢,, ¢, € I then I contains a transformation ¢ for
which Ker g = Ker ¢; n Ker ¢,. Applying this remark to the transformations
@1, ..., @, we find an element @ € I such that Kerp = V, and by what we
have said above, this implies that all transformations ¢ with ¢(V) = 0 are con-
tained in I, that is, I = {¢|@(V) = 0} = , I. Right ideals are considered in a simi-
lar way.

Suppose finally that I is a two-sided ideal. As a left ideal, I corresponds to
some subspace V, such that I = {¢@|@(V) = 0}. Take x € V with x # 0. Forp e I
we have ¢(x) = 0. Since I is a right ideal, for any ¥ € R we have @y € I and hence
@(¥(x)) = 0. But we could take y(x) to be any vector of L, and hence I = 0. Thus
a ring R isomorphic to M, (D) is simple.

Another example of a simple ring is the ring R of differential operators with
polynomial coefficients. To keep the basic idea clear, set n = 1. Interpreting p as

d
the operator I it is easy to check the relation pf(q) — f(q)p = f'(q). f 2 =
X

Y fi(@)p' is contained in a two-sided ideal I and 2 # 0 then on passing to the
expression p2 — Pp a number of times, we find an element 4 € I which is a
nonzero polynomial in p with constant coefficients, 4 = g(p). Since the relations
(9) do not distinguish between p and g, we have the relation g(p)q — qg(p) = g'(p).
Composing expressions of this form several times, we find a nonzero constant in
I.Hence I = R.(The validity of these arguments requires that the coefficient field
has characteristic zero.)

Example 14. Algebras which are close to being simple are the Clifford algebras
C(L) and C°(L) for any vector space L with a quadratic form F (we assume that
the ground field has characteristic #2). The following results can be verified
without difficulty. The algebra C(L) is simple if n = O mod 2 (where n = dim L),
and then Z(C(L)) = K. The algebra C°(L) is simple if n = 1 mod 2, and then
Z(C%(L)) = K. The remaining cases are related to properties of the element
z=e,...e,e C(L), where ey, ..., e, is an orthogonal basis of L. It is easy to see
that z is contained in the centre of C(L)if n = 1 mod 2 and in the centre of C°(L)
if n =0mod2, and in both cases the centre of these algebras is of the form
K + Kz.Thenz> =ae Kanda = (—1)"*@ora = 2-(—1)"" V29 depending on
the parity of n; 2 denotes the discriminant of the form F with respect to the basis
eq,...,e, Ifaisnotasquarein K thenK + Kz = K (\/E) and the corresponding
algebra is simple with centre K (\/E). If a is a square then the algebra K + Kz is
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isomorphic to K @ K and the corresponding Clifford algebra is isomorphic to
the direct sum of two simple algebras of the same rank with centre K.

§9. Modules over Noncommutative Rings

A module over an arbitrary ring R is defined in the same way as in the case of
a commutative ring: it is a set M such that for any two elements x, y € M, the
sum x + y is defined, and for x € M and a € R the product ax € M is defined,
satisfying the following conditions (for all x, y, z€ M, a, b € R):

X+y=y+x;
x+y+z=x+(y+2z)

there exists 0 e M such that 0 + x = x + 0 = x;
there exists — x such that x + (—x) = 0;

1-x=x; r M
{(ab)x = a(bx);
(a + b)x = ax + bx;
a(x + y) = ax + ay. J

In exactly the same way, the notions of isomorphism, hothomorphism, kernel,
image, quotient module and direct sum do not depend on the commutativity
assumption. A ring R is a module over itself if we define the product of a (as an
element of the ring) and x (as an element of the module) to be equal to ax. The
submodules of this module are the left ideals of R. If I is a left ideal then the
residue classes mod I form a module R/I over R. The multiplication of x (as an
element of the module) on the right by a (as an element of the ring) does not
define an R-module structure. In fact, if we denote temporarily this product by
{ax} = xa (on the left as in the module, on the right as in the ring) then
{(ab)x} = {b{ax}}, which contradicts the axioms (1). However, we can say that
in this way R becomes a module over the opposite ring R’. In this module over
R’, the submodules correspond to right ideals of R.

The most essential examples of modules over noncommutative rings are first
of all the ring itself and its ideals as modules over the ring. We will see shortly
just how useful it is to consider these modules for the study of the rings them-
selves; and secondly, the study of the many modules over group rings is the
subject of group representation theory, which will be discussed in detail later.

If R is an algebra over a field K then every R-module M is automatically a
vector space over K (possibly infinite-dimensional). The module axioms show
that for any a € R the map ¢,(x) = ax for x € M is a linear transformation of
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this vector space. Moreover, sending a to the linear transformation ¢, is a
homomorphism of the algebra R into the algebra Endg M of all linear trans-
formations of M as a K-vector space. Conversely, a homomorphism R — Endg L
(denoted by a— @,) into the algebra of linear transformations of a vector space
L obviously defines an R-module structure on L:

ax = @,(x) for aeRand xe L. (2)

In this situation, we sometimes use somewhat different terminology from that
usual in the general case. In view of the especial importanee of this special case
we repeat, in the new terminology, the basic definitions given above in the general
case.

Restatement of the Definition of a Module. A representation of an algebra R
over a field K on a K-vector space L is a homomorphism of R to the algebra
EndgL of linear transformations of L.

In other words, a representation of R sends each element a € R to a linear
transformation ¢, so that the following conditions are satisfied:

¢, = E (the identity transformation); (3)
Qe = 0@, forae KandaeR; 4)
Pasy = Pa+ @ fora,beR; (5)
Oup = 0,0, fora,beR. (6)

Restatement of the Definition of a Submodule. A subrepresentationis a subspace
V < Linvariant under all transformations ¢, for a € R, with the representation
of R induced by these transformations.

Restatement of the Definition of a Quotient Module. The quotient representa-
tion by a subrepresentation V < L is the space L/V with the representation
induced by the transformation ¢,.

If R is an algebra of finite rank over a field K with basis | = ¢, ..., e, and
multiplication table e;e; = Y c;e; then conditions (3)-(6) in the definition of a

representation reduce to specifying transformations ¢, , ..., ¢, satisfying the
relations

(pl = E’ (7)

(pe,(peJ = z cijk(pek' (8)

If R = K[G] is the group algebra of a finite group G then conditions (7), (8)
take the form

¢ = E’ (9)
(pgl(pgz = (pgl(pgz' (10)

Conditions (9)-(10) guarantee that all transformations are invertible.
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If G is an infinite group and the group algebra is defined as the set of linear
combinations of elements of the group (see § 8, Example 4), then a representation
is given by the same conditions (10). If the group algebra is defined as the algebra
of functions on the group with the convolution operation, the elements of the
group G are only contained in it as delta-functions, and hence the operators ¢,
may not exist. On the other hand, if operators g, satisfying (9) and (10) exist, then
the operator ¢, corresponding to a function f can be defined as the integral
of operator functions f(g)¢, taken over the whole group. Hence for group
representations, conditions (9) and (10) give more than conditions (3)—(6) for the
group algebra, and we take conditions (9) and (10) as the definition of a group
representation.

If the module M in which the representation of an algebra R is realised is
finite-dimensional over a field K then we say that the representation is finite-
dimensional. In this case the linear transformations ¢, are given by matrixes (once
a basis of M has been chosen). Let us reformulate once more the basic notions
of representation theory in this language.

A finite-dimensional representation of an algebra R is a homomorphism R —
M,(K), which assigns to each element a € R a matrix C, € M,(K) satisfying the
conditions:

C, =E,
Coa = 0C,,
Corp = C+ G,
C,, = C,G,.
In the case of a representation of a group G these conditions are replaced by
C,=E,
Co,= C,,C,,.

Restatement of the Notion of Isomorphism of Modules. Two representations
a— C, and a> C, are equivalent if there exists a nondegenerate matrix P such
that C, = PC,P~! for every ae R.

Restatement of the Notion of Submodule. A representation a+— C, has a sub-
representation aw D, if there exists a nondegenerate matrix P such that the
matrixes C, = PC,P! are of the form

D, §
c,=|"* 7. 11
[ 5 m

Restatement of the Notion of Quotient Module. The matrixes F, in (11) form
the quotient representation by the given subrepresentation.

Restatement of the Notion of Direct Sum of Modules. If S, = 0 in (11) we say
that the representation C, is the direct sum of the representations D, and F,.
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Considering in particular an algebra R as a module over itself, we get an impor-
tant representation of R. It is called the regular representation. If R has a finite
basis ey, ..., e, with structure constants c;; then the element a,e; + - + a,e,
corresponds in the regular representation to the matrix (p;, ), where p; = Y. ¢;;0:.

i

We now return to modules over an arbitrary ring R (not necessarily an algebra)
and consider an important condition having the character of finite dimensionality.
This relates to the definition of the dimension of a vector space as the greatest
length of a chain of subspaces.

We define the length of an R-module M to be the upper bound of the length
r of chains of submodules:

M=M,ZM, 3 2M=0

Of course, the length of a module may be either finite or infinite. Consider a
module of finite length r and a chain M = My 2 M, 2 --- 2 M, = 0 of maximal
length. If the module M;/M,,, contained a submodule N distinct from M;/M, .,
itself and O, then its inverse image M’ under the canonical homomorphism
M; > M;/M;,, would be a submodule M; 2 M’ 2 M,,,; substituting this into
our chain, we would get a longer chain. Hence there can be no such submodule
in M;/M;,,. We thus arrive at a very important notion.

A module M is simple if it does not have any submodules other than 0 and
M. A representation of an algebra (or of a group) is irreducible if the correspond-
ing module is simple.

Simpleness is a very strong condition.

Example 1. In the case of vector spaces over a field, only 1-dimensional spaces
are simple.

Example 2. Let L be a finite-dimensional complex vector space with a given
linear transformation ¢, considered as a module over the ring C[¢] (§ 5, Example
3). Since ¢ always has an eigenvector, and therefore a 1-dimensional invariant
subspace, L is again simple only if it is 1-dimensional.

Example 3. Consider a ring R as a module over itself. To say that R is simple
means that R does not have left ideals, that is, R is a division algebra.

Let M and N be two simple modules and ¢: M - N a homomorphism. By
assumption, Ker ¢ = 0or M,andIm ¢ = Oor N.If Ker ¢ = M orIm ¢ = O then
¢ is the zero homomorphism. In the remaining case Ker ¢ = 0 and Im¢ = N,
so that ¢ is an isomorphism. Thus we have the following result.

L. Schur’s Lemma. A homomorphism of one simple module into another is either
zero or an isomorphism.

We return to the notion of length. We have seen that if M is a module of length
r then in a chain M = My 2 M, 2 --- 2 M, = 0 each of the modules M;/M,,,
must be simple.
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/
A chain M=M,ZM,;2--2M,=0 in which M;/M;,, is simple is
called a composition series. The following result holds.

II. The Jordan-Holder Theorem. All composite series of the same module have
the same length (and in particular they are either all finite or all infinite). If they
are finite then the successive quotients M;/M, ., appearing in them are isomorphic
(but possibly occuring in a different order).

Thus in a module of finite length the longest chains of submodules are exactly
the composition series.

We extend the notion of length to rings. The length of a ring R is its length as
an R-module. Thus a ring has length r if it hasa chain R 21, 2--- 21, =0 of
left ideals and no longer chains.

We have already seen that a division algebra is a ring of length 1. Left ideals
of a matrix ring M, (D) over a division algebra D correspond to linear subspaces
of the n-dimensional space L over the opposite division algebra D’ (§ 8, Example
13). Hence the length of M, (D) is n.

Of course, if a ring R is an algebra over a field K then the length of R does not
exceed its rank over K.

A module of finite length is finitely generated (or is of finite type), by analogy
with the property of Noetherian modules in the case of commutative rings.

If a ring R has finite length then the length of any finitely generated R-
module is also finite. This follows from the fact that if elements x, .. ., x, generate
a module M then M is a homomorphic image of the module R" under the
homomorphism (a,,...,a,)—a;x; + - + a,x,, and is of finite length as a quo-
tient of a module of finite length.

In conclusion, let us consider in more detail a notion which we have often met
with in the theory of modules over a commutative ring.

A homomorphism of an R-module M to itself is called an endomorphism. All
the endomorphisms of a module obviously form a ring; it is denoted by End, M.
An important difference from the commutative case is that it is not possible to
define the multiplication of an endomorphism ¢ € Endg M by an element a € R.
The map x — a@(x) is not in general an endomorphism over R; that is, multiplica-
tion of endomorphisms by elements of R is not defined in End; M.

Example 4. Consider the ring R as an R-module. What is the ring of endomor-
phisms Endg R of this module? By definition, an endomorphism ¢ is a map of
R to itself which satisfies the conditions

ox +y)=ox) + o(y), o¢lax)=ap(x), fora, x,y €R. (12)

Setting ¢(1) = f we get from (12) for x = 1 that ¢(a) = af for any a € R. Thus
any endomorphism is given as right multiplication by an element f € R. It follows
from this that the ring Endg R is the opposite ring of R.

Example 5. Suppose that a module M is isomorphic to a direct sum of n
isomorphic modules P, that is, M = P™. Then M consists of n-tuples (x,,...,x,)
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with x; € P. The situation is exactly the same as in describing linear transforma-
tions of a vector space, and the answer is entirely analogous. For ¢ € Endg M
and x € P, set

(0((0, s Xl ’0)) = (‘//il(x)9 e l//in(x))

(where x is in the ith place on the left-hand side). Here y;; are homomorphisms
of P to P, that is y;; € Endg P. Replacing ¢ by the matrix (if;;) with entries in
Endy P, we get an isomorphism

Endg P" = M,(Endy P).

In the particular case that P is the division algebra D as module over itself, we
arrive (using the result of Example 4) at the expression found earlier (§ 8, Theorem
1) for the ring of linear transformations over a division algebra.

Example 6. The ring Endy M of endomorphism of a simple module M is a
division algebra. This is an immediate consequence of Theorem 1.

§ 10. Semisimple Modules and Rings

The theory of modules over noncommutative rings, and the study of the
structure of the rings themselves, can be taken well beyond the framework of
general definitions and almost obvious properties treated in the preceding sec-
tion, provided we restrict ourselves to objects satisfying the strong, but frequently
occuring property of semisimpleness.

A module M is semisimple if every submodule of M is a direct summand. This
means that for any submodule N = M, there exists another submodule N' =« M
suchthat M = N@® N'.

Obviously, a submodule, holomorphic image and a direct sum of semisimple
modules are semisimple. A simple module is semisimple. Any module of finite
length contains a simple submodule; hence a semisimple module of finite length
is a direct sum of simple modules. It follows from the Jordan-Holder theorem
(or can be deduced even more simply from § 9, Theorem I) that the decomposition
of a semisimple module as a sum of simple modules is unique (that is, the simple
summands are uniquely determined up to isomorphism). The number of these
summands is the length of the module.

If Pc M is simple and N =« M is any submodule then either P = N or
P~ N = 0. From this we deduce the following:

Theorem 1. If a module is generated by a finite number of simple submodules
then it is semisimple and of finite length.

In fact, if P, ..., P, are simple submodules generating M and N = M but
N # M, then there exists P, ¢ N. Then P, N = 0 and the submodule generated
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by P, and N is isomorphic to the direct sum P, @ N. Applying the same argument
to this, we arrive after a number of steps at a decomposition M = N @ N'.

Example 1. Let M be a finite-dimensional vector space L with a linear trans-
formation ¢, considered as a module over K [t] (see § 5, Example 3). If M is simple,
then L is a 1-dimensional vector space (§9, Example 1). Hence M is semisimple
if and only if L can be written as a direct sum of 1-dimensional invariant
subspaces, that is, ¢ can be diagonalised. Semisimpleness in the general case is
also close in meaning to the ‘absence of nondiagonal Jordan blocks’.

Example 2. Suppose that M corresponds to a finite-dimensional representation
¢ of an algebra R over the field C; assume that M as a vector space over C has
a Hermitian scalar product (x, y), and that the representation ¢ has the property
that for all a € R there exists a’ € R such that ¢} = ¢, (where ¢* denotes the
complex conjugate transformation). Then M is a semisimple module.

Indeed, if N =« M is a subspace invariant under the transformations ¢, for
a € R, then its orthogonal complement N’ will be invariant under the transforma-
tions ¢F, so by the assumption, under all transformations ¢,. Hence M = N @ N’
as an R-module.

Example 3. Suppose that M corresponds to a finite-dimensional representation
o of a group G over C, again with a Hermitian scalar product defined such that
all the operators ¢, are unitary for g € G, that is

(©4(x), 94(¥) = (x, y). 1)

Then M is semisimple. The proof is the same as in Example 2.

The notion of semisimpleness extends to infinite-dimensional representations
of groups, with the modification that the module M as a vector space over C is
given a topology or a norm, and the submodule N is assumed to be closed. In
particular, if in the situation of Example 3 M is a Hilbert space under the
Hermitian product (x, y) then the argument still works.

Example 4. A finite-dimensional representation of a finite group G over C
defines a semisimple module.

The situation can be reduced to the previous example. Introduce on M
(considered as a vector space over C) an arbitrary Hermitian scalar product
{x,y}, and then set

(x,y) = Z {@y(x), 04(»)}, 2
IGI ge
where the sum runs over all elements g € G, and |G| denotes the number of
elements of G. It is easy to see that the product (x, y) satisfies the conditions of
Example 3.
The same argument can be adapted to representations over an arbitrary field.
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Example 5. If G is a finite group of order n not divisible by the characteristic
of a field K, then any finite-dimensional representation of G over K defines a
semisimple module.

Let M be the space in which the representation ¢ acts,and N = M a submodule.
We choose an arbitrary subspace N’ such that M = N @ N’ (as a vector space).
Write 7’ for the projection onto N parallel to N'; thatis,if x = y + y' withx e M,
y€ N and y’ € N’ then 7'(x) = y. We consider the linear transformation

t
n=-Y @, '@, 3)
n geG
It is easy to check that 1M < N, nx = x for x e N and ¢, = ng, for g€ G. It
follows from this that = is the projection onto N parallel to the subspace
N, = Kerm and that N, is invariant under all ¢, for g € G; that is, it defines a
submodule N; < M such that M = N @ N,.

We carry over the notion of semisimpleness from modules to rings. A ring R
is semisimple if it is semisimple as a module over itself. From Examples 4-5 it
follows that the group algebra of a finite group G over a field K is semisimple if
the order of the group is not divisible by the characteristic of the field.

Theorem II. 4 simple ring R (see §8) of finite length is semisimple.

In fact, consider the submodule I of R generated by all simple submodules.
From the fact that R is of finite length it follows that I is generated by a finite
number of submodules P, ..., P,. Obviously I is a left ideal of R. But I is also a
right ideal, since for all a € R, P.a is a left ideal and a simple submodule, that is
P.a < I, and hence Ia < I. Since R is simple, I = R, that is R is generated by
simple submodules P,, and is semisimple because of Theorem I.

The theory of modules over semisimple rings has a very explicit character.

Theorem IIL If R is a semisimple ring of finite length and
R=P ®  -®P,

is a decomposition of R (as a module over itself) as a direct sum of simple
submodules then the P; for i = 1, ..., n are the only simple modules over R. Any
module of finite length is semisimple and is a direct sum of copies of certain of the
modules P,.

In fact, if M is any module and x,, ..., x, are elements of M then we can define
a homomorphism f: R¥ - M by

f((al,...,ak)) =da,Xq + -4+ a, Xy

From the fact that M is of finite length it follows that for some choice of the
elements x,, ..., x; the image of f is the whole of M. Thus M is a homomorphic
image of a semisimple module, and is therefore semisimple. If M is simple,
rewriting R* in the form P} @ --- @ P} we see that f(P;) = 0if P;is not isomorphic
to M, and hence P, = M for some i.
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Corollary. In particular, we see that over a semisimple ring of finite length there
are only a finite number of simple modules (up to isomorphism).

We now turn to the description of the structure of semisimple rings of finite
length. As a module over itself, such a ring decomposes as a direct sum of simple
submodules:

R=P® @Fh 4)

In this decomposition we group together all the terms which are isomorphic to
one another as R-modules:

R:(Pl®"'®Pkl)®(Pkl+l®..'®Pk2)®..'@(Pkp,‘+l@."G')Pkp)’
that is,

R=R,®R,® - ®R,, (5)
where
R; = Z Pj; (6)
k <j<k 4y

here in (6) all the simple submodules P; for k; < j < k;;; occuring in the
same summand R; are isomorphic, and all those occuring in different R; are
nonisomorphic.

Any simple submodule P < R is isomorphic to one of the P,, and it is not hard
to deduce from this that it is contained in the same summand R; as P,. In
particular, for a € R the module P,a is isomorphic to P,, and hence P,a c R; if
P, = R,. In other words, the R; are not only left ideals (as they must be as
R-submodules), but also right ideals, that is, they are two-sided ideals. It follows
from this that R;R; = R; and R;R; < R;, and hence R;R; = 0 for i # j. It is easy
to see that the components of 1 in R; in the decomposition (5) is the unit element
of R;, so that we have a decomposition as a direct sum of rings

R=R,®R,® - ®R,.

Here the R, are defined entirely uniquely: each of them is generated by all simple
submodules of R isomorphic to a given one.

Consider now one of the rings R;. For this it is convenient to rewrite the
decomposition (6) in the form

Ri:Pi,IG')Pi,ZC'B'“@Pi,q,’

where the prime submodules P, ; are all isomorphic, that is, R; = N/ for some
module N, isomorphic to all of the P, ;for j=1,..., g;.

Let us find the ring of automorphisms of this module over R. Since R,R; = 0
for s # i, we have Endg R; = Endg R;, and thus Endg R; is isomorphic to the
opposite ring R; skew-isomorphic to R; (see §9, Example 4). On the other hand,
by §9, Example 3, Endg R; = M, (Endg N;), and Endg N; is a division algebra D,
(§9, Example 6). Hence R; = M, (D;), and
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R, = M, (D). ™

We have seen (§8, Example 13) that M (D) is a simpie ring, and hence the rings
R;in (7) are simple. Putting the decomposition (5) together with the isomorphism
(7), we obtain the following fundamental theorem.

IV. Wedderburn’s Theorem. A semisimple ring of finite length is isomorphic to
direct sum of a finite number of simple rings. A simple ring of finite length is
isomorphic to a matrix ring over some division algebra.

Conversely, we have seen (§ 8, Example 13) that for D a division algebra, the
ring M,(D) is simple, and it is easy to see that a direct sum of semisimple rings
is semisimple. Hence Wedderburn’s theorem describes completely the range of
the class of semisimple rings: they are direct sums of matrix rings over division
algebras. As a particular case we get:

Theorem V. A commutative ring of finite length is semisimple if and only if it
is a direct sum of fields.

For an arbitrary semisimple ring R, its centre Z(R) is commutative. It is easy
to see that Z(R; @ R,) = Z(R,) ® Z(R;) and that Z(M,(D)) = Z(D).

Corollary. The centre of a semisimple ring R is isomorphic to a direct sum of
fields, and the number of direct summands of the centre is equal to the number of
direct summands in the decomposition (5) of R as a direct sum of simple rings.

In particular, we have the result:

Theorem V1. A semisimple ring of finite length is simple if and only if its centre
is a field.

We now illustrate the general theory by means of the fundamental example of
the ring M, (D). In §8, Example 13 we saw what the left ideals of R = M, (D)
look like for a division ring D. Any left ideal of this ring is of the form ,I =
{a € RlaV = 0}, where a is considered as a D’-linear transformation of a n-
dimensional vector space L (over the opposite division algebra D’), and V < L
is some vector subspace. Simple submodules correspond to minimal ideals.
Obviously, if V = V' then I > ,.I. Hence we obtain a minimal ideal I is we
take V to be an (n — 1)-dimensional subspace of L. Choose some basis ¢4, ..., e,
of L and let V; be the space of vectors whose ith coordinate in this basis equals
zero; the ideal , I consists of matrixes having only the ith column nonzero. The
decomposition R = N, @ --- @ N, corresponds to the decomposition

d_“ o d}" d, 0 -+ 0 0 - 0 dy,
= +oe G
4, - - d, dy, 0 - 0 0 --- 0 d,

of a matrix. On multiplying this on the left by an arbitrary matrix, the ith column
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transforms exactly as a vector of L. Thus all the ideals N, are isomorphic as
R-modules, and are isomorphic to L. This is the unique simple module over R.

In the case of an arbitrary semisimple algebra R of finite length, the position
is only a little more complicated. If R decomposes as a direct sum

R = Mnl(Dl)@”.@MnP(Dp)

of p matrix rings then it has p simple modules N;, ..., N,, where N, is a
n;-dimensional vector space over the opposite division algebra D;, and R acts on
N; as follows: M, (D;) annihilates N, for j # i, and matrixes of M, (D;) act on N;
as befits a matrix acting on a vector.

The remaining part of this section is devoted to examples and applications of
the theory we have treated.

We return to an arbitrary simple ring of finite length, which by Wedderburn’s
theorem is isomorphic to a matrix ring M, (D) over some division algebra D. We
have given a description of the left ideals of this ring: they are in 1-to-1 inclusion-
reversing correspondence with subspaces of an n-dimensional subspace over the
opposite division algebra D’ (that is, V; < V, if and only if ,, I =, I). To what
extent is the whole ring (that is, the division algebra D and the dimension n)
reflected by this partially ordered set? The set of linear subspaces of a n-dimensional
vector space over D coincides with the set of linear subspaces of (n — 1)-
dimensional projective space P" (D) over D. Thus our question is essentially a
question about the axiomatic structure of projective geometry. We recall the
solution of this problem. (The axioms we give are not independent; we have
chosen them as the most intuitively convincing.)

Let P be a partially ordered set, that is, for some pairs (x, y) of elements of P
an order relation x < yis defined, such that the following conditions are satisfied:
(@)ifx <yand y < zthen x < z;and (b) x < yand y < x ifand only if x = y.

We assume that the following axioms are satisfied:

1. For any set of elements x, € P there exists an element y such that y > x,
for all o, and if z > x, for all « then z > y. The element y is called the sum of the
x, and is denoted by ( ) x,. In particular, the sum of all x € P exists (the ‘whole
projective space’). It is denoted by I or I(B).

2. For any set of elements x, € P there exists an element y’ such that y’ < x,
foralle,andifz’ < x,forallathenz’ < y’. The element ' is called the intersection
of the x, and is denoted by () x,. In particular, the intersection of all x € P exists
(the ‘empty set’). It is denoted by &F or &J(B).

From now on, for x, y € P with y < x we write x/y for the partially ordered
set of all z € P such that y < z < x. Obviously conditions 1 and 2 are satisfied
in x/y for all x and y.

3. For any x and y € B and a € x/y there exists an element b € x/y such that
aub=I(x/y)and anb = F(x/y). If b’ € x/y is another element with the same
properties and if b < b’ then b = b’

4. Finite length: the length of all chains a; < a, < -- < a, with a, # a,,
a, # as,,...,a,_; # a,is bounded.
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An element a € R is a point if b < a and b # a implies that b = .

5. For any two points a and b there exists a point ¢ such that ¢ # a, ¢ # b and
c<avub.

A partially ordered set satisfying conditions 1-5 is called a projective space. It
can be proved that the maximum length of a chain starting from ¢ and ending
with a € B defines a dimension function d(a) on points, which satisfies the relation

dl@anb) + d(@aub) =d(a) + d(b).

The number d(I) is called the dimension of B. An example of a n-dimensional
projective space is the space P"(D) of all linear subspaces of a (n + 1)-dimensional
vector space over a division algebra D.

We have the following result.

VII. Fundamental Theorem of Projective Geometry. (a) For n = 2 the projec-
tive space P"(D) (as a partially ordered set) determines the number n and the
division algebra D; and (b) if B is a projective space of dimension at least 3 then
it isomorphic (as a partially ordered set) to the projective space P"(D) over some
division algebra D.

The proof is based on artificially introducing a system of coordinates in the
projective space (that is, ‘coordinatising’ it); the basic idea is already present in the
calculus of plane intervals (see § 2, Figures 5 and 6). As in this calculus, the set of
elements which appear as coordinates can be constructed fairly easily. On this
set one defines operations of addition and multiplication; but the hard part is
verifying the axioms of a division algebra. The key to it is the following assertion,
known as ‘Desargues’ theorem’

VIHL Desargues’ Theorem. If the 3 lines AA’, BB', CC’ joining corresponding
vertexes of two triangles ABC and A'B'C' intersect in a point O then the points of
intersection of the corresponding sides are collinear (see Figure 11).

However, this assertion can only be deduced from the axioms of a projective
space if the space has dimension > 3. In 2 dimensions, that is in the plane, it does
not follow from the axioms, and not every projective plane is isomorphic to
P2(D). A necessary and sufficient condition for this is that the previous proposi-
tion should hold, and one must add this as an extra axiom, Desargues’ axiom.

The results we have given characterise the role of completely arbitrary division
algebras in projective geometry: they allow us to list explicitly all the non-
isomorphic realisations of the system of axioms of n-dimensional projective
geometry (together with Desargues’ axiom if n = 2). As one would expect, alge-
braic properties of division algebras occur as geometric properties of the cor-
responding geometries. For example, the commutativity of a division algebra D
is equivalent to the following assertion in the projective space P"(D) for n > 2.

IX. Pappus’ ‘Theorem’. If the vertégses of a hexagon P, P,P,P,PsP, lie 3 by 3
on two lines, then the points of intersection of the opposite sides P, P, and P,Ps,
P, P; and PsPg, Py P, and PP, are collinear (Figure 12).



86 §10. Semisimple Modules and Rings

Fig. 11

The condition that the division algebra D is of characteristic 2 is equivalent to
the following axiom:

X. Fano’s Axiom. The 3 points of intersection of opposite sides AB and DC, AD
and BC, AC and BD of a plane quadrilateral ABCD are collinear.

In Figure 13 this property does not hold, since the real number field has
characteristic # 2.

The finite models of systems of certain geometric axioms which we considered
in §1 (see Figures 1-2) relate to the same circle of ideas; they are finite affine
planes over the fields F, and F;, that is, they are obtained from the projective
planes P?(F,) and P%(F,) by throwing away one line and the points on it (which
will then be ‘at infinity’ from the point of view of the geometry of the remaining
points and lines).

There are various infinite-dimensional generalisations of simple rings of finite
length and of the theory treated above. One of these starts off from the semisimple
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Fig. 13

condition (Example 2) and the criterion VI for a semisimple ring to be simple.
This leads to the following definition.

A subring R of the ring of bounded operators on a complex Hilbert space is
called a factor if together with an operator ¢ it contains the conjugate operator
©*, the centre of R consists only of the scalar operators, and R is closed in the
natural topology (the so-called weak topology).

Similarly to the way in which a simple ring of finite length defines a projective
space satisfying the axioms 1-5, any factor defines a partially ordered set satisfy-
ing similar axioms. On this set a dimension function is again defined, but now
various cases can occur:

Case I,. The dimension takes the values O, 1, 2, ..., n; then the factor is
isomorphic to the ring M, (C).

Case I,. The dimension takes the values 0, 1, 2, ..., c0; in this case the factor
is isomorphic to the ring of all bounded operators on an infinite-dimensional
Hilbert space.

Case II,. The dimension takes values in the interval [0, 1].

Case I1,. The dimension takes values in the interval [0, co].

Case III. The dimension takes only the values 0 and co.

The partially ordered sets corresponding to II;, II, and III are highly non-
trivial infinite-dimensional analogues of projective planes (we emphasise that the
dimensions of subspaces can be any real values), called continuous geometries.

From now on we restrict ourselves to considering algebras of finite rank over
a field K.

Example 6. We saw in § 8, Example 11 that if L is a real 2n-dimensional vector
space with metric x? + -+ + x3, then the Clifford algebra C(L) is isomorphic to
the matrix algebra M,..(R). Therefore this algebra has a unique irreducible
representation (up to equivalence), of degree 22". Thus we can write

x% + 0+ x%n = (xlrl + o+ x2n1—'2n)29

where I, ..., I,, are 22" x 22" matrixes, and these matrixes are uniquely deter-
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mined up to transformations I;+— CI;C~'. No matrixes smaller than 22 x 22"
can give such a representation.

Now suppose that the field K is algebraically closed. Then the theory of
semisimple algebras over K and their representations takes on an especially
concrete character. The basis of this is the following simple result.

Theorem XI. A division algebra of finite rank over an algebraically closed field
K is equal to K itself.

In fact if D has rank n and a € D then the elements 1, a, a?, ..., a” must be
linearly dependent over K. Hence there exists a polynomial F € K[t] of degree
<n, not identically 0, for which F(a) = 0. Since K is algebraically closed, F(t) =
y[1(t — ), so that [ [(a — ;) = 0. Since D is a division algebra, we must have
a — «; = 0 for some i, so that a € K. We thus get the following result.

Theorem XI'. Qver an algebraically closed field K, any simple algebra of finite
rank is isomorphic to M,(K), and any semisimple algebra to a direct sum of such.

Earlier, in Formula (7), we gave an explicit decomposition of the regular
representation of the algebra M, (K) into irreducible representations. It follows
from this that its regular representation is a sum of n equivalent n-dimensional
representations (corresponding to n-dimensional space K" as a module over the
matrix ring M,(K)). If R=M, (K)® @M, (K) then R has p irreducible
n;-dimensional representations N; (corresponding to the irreducible representa-
tions of the matrix algebras M, (K)), and the regular representation of R is of the
form

R=N'®N;>® - @®N,” where n;=dimN,

For the decomposition of the centre there is also only one possibility, namely
Z(R) = K”.
As a result, the theory of representations of semisimple algebras of finite rank
over an algebraically closed field reduces to the following:
Theorem XII. Every representation is a finite sum of irreducible representations.

Theorem XIII. All irreducible representations are contained among the irreducible
factors of the regular representation. The number of nonequivalent representations
among these is equal to the rank of the centre of the algebra.

Theorem XIV. Every irreducible representation is contained in the regular
representation the same number of times as its dimension.

XYV. Burnside’s Theorem. The sum of squares of the dimensions of irreducible
representations equals the rank of the algebra:

n=ni+-+nd.

To specify concretely a representation ¢: R — M,(K) we use the traces of
the matrixes ¢(a) for a € R. The function Tr(¢p(a)) is defined on R and is linear,
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and is hence determined by its values on the elements of a basis of R. Since
Tr(CAC™) = Tr(A), equivalent representations have the same traces. Write
T,(a) for the function Tr(¢(a)).

If a representation ¢ is a direct sum of two others, ¢ = ¢, @ ¢, then obviously
Tr,(a) = Tr, (a) + Tr,,(a). The traces of irreducible representations are called
the characters of the algebra R. Let y,(a), x,(a), ..., x,(a) be the characters
corresponding to the p irreducible representations ¢, ..., ¢,. Any representation
¢ decomposes as a direct sum of irreducibles, and if y; occurs m; times amongst
these, then

Tr(p(a) = ml Xl(a) + 4+ mep(a)' (8)

We know that in the decomposition of R as a direct sum of simple algebras
R =R;® ' ®R,, the irreducible representation ¢, maps to zero in all the
summands R; for i # j. Together with (8), this implies the following result.

Theorem XVI. The representations of a semisimple algebra are uniquely deter-
mined by their trace functions Tr (a).

The results we have given have a very large number of application, most
significantly in the special case of a group algebra R = K[G]. We will meet these
later, but for now we indicate a completely elementary application to the matrix
algebra.

XVIL Burnside’s Theorem. An irreducible subalgebra R of a matrix algebra
Endg L over an algebraically closed field K coincides with the whole of End L.

Proof. The hypothesis of the theorem means that if a representation ¢ of R in an
n-dimensional space L is defined by an embedding R — Endg L then ¢ will be
irreducible. For any x € L the map a+ ax defines a homomorphism of R as a
module over itself into the simple module L. Take for x the nelements e, ..., e,
of a basis of L. We get n homomorphisms f;: R — L, or a single homomorphism
fiR—>L"given by f = f; + - + f,. If f(a) = 0 for some a € R then f,(a) = 0,
that is, ae; = 0 and ax = O for all x € L. But R = End L, and hence a = 0. Hence
R < L" as R-module. Since L is a simple module, it follows from this that R is
semisimple as a module, and hence the algebra R is semisimple, and as a module
R =~ L* for some k. But according to Theorem XV, k = n = dim L. Hence R has
rank n?, and therefore R = Endy L.
As an illustration, we give a striking application of this result:

XVIIL Burnside’s Theorem. If G is a group of n x n matrixes over a field K of
characteristic 0, and if there exists a number N > O such that g" = 1 forallge G
then G is finite.

For the proof we will use some of the very elementary notions of group theory.
Obviously, extending the field K if necessary, we can assume that it is algebraically
closed. Write R for the set of all combinations of the form
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a; g, + -+ g, with o€ Kandg;eG.

Obviously, R is an algebra over K and R = M,(K). Consider first the case that
R is irreducible. According to the preceding theorem of Burnside we then have
R = M,(K). By assumption, the eigenvalues of any element g € G are Nth roots
of unity. Since the trace Tr(g) of an n x n matrix is the sum of n eigenvalues, Tr(g)
can take at most N” values. It is easy to check that the bilinear form Tr(4B) on
M, (K)is nondegenerate. Since R = M,,(K), there exists n” elements gy,..., g, € G
which form a basis of M,(K). Let e, ..., e,. be the dual basis with respect to the
2

bilinear form Tr(4B).If g = ), a;e; is the expression of an arbitrary element g € G
i=1

in this basis, then a; = Tr(gg;). Thus the coefficients a; can take only a finite

number of values, and hence G is a finite group.

If R is reducible then the matrixes corresponding to elements of G can simul-
taneously be put in the form
<A(g) C(g)>
0 B9

Applying induction, we can assume that A(g) and B(g) have already been proved
to form finite groups G’ and G”. Consider the homomorphism f: G — G’ x G”
given by f(g) = (A(g), B(g)); its kernel consists of elements g € G corresponding

to matrixes
E C(9)
0 E

It is easy to see that if K is a field of characteristic 0 and C(g) # 0 then this matrix
cannot be of finite order: taking its mth power just multiplies C(g) by m. Hence
the kernel of f consists only of the unit element, that is, G is contained in a finite
group G’ x G”, and hence is itself finite.

§ 11. Division Algebras of Finite Rank

Wedderburn’s theorem entirely reduces the study of semisimple algebras of
finite rank over a field K to that of division algebras of finite rank over the same
field. We now concentrate on this problem. If D is a division algebra of finite
rank over K and L the centre of D then L is a finite extension of K and we can
consider D as an algebra over L. Hence the problem divides into two: to study
finite field extensions, which is a question of commutative algebra or Galois
theory, and that of division algebras of finite rank over a field which is its centre.
If an algebra D of finite rank over a field K has K as its centre, then we say that
D is a central algebra over K.
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The question of the existence of central division algebras of finite rank over
a given field K and of their structure depends in a very essential way on particular
properties of K. We have already met one very simple result in this direction:
over an algebraically closed field K there do not exist division algebras of finite
rank other than K. In particular this holds for the complex number field.

For the case of the real number field the situation is not much more complicated.

I. Frobenius’ Theorem. The only division algebras of finite rank over the
real number field R are R itself, the complex number field C, and the quaternion
algebra H.

Here are another two cases when the situation is simple.

II. Wedderburn’s Theorem. Over a finite field K, there do not exist any central
division algebras of finite rank other than K itself.

In other words, a finite division algebra is commutative. This is of course
interesting for projective geometry, since it shows that for finite projective
geometries of dimension >2, Pappus’ theorem follows from the other axioms
(and in dimension 2, from Desargues’ theorem).

IIL. Tsen’s Theorem. If K is an algebraically closed field and C is an irreducible
algebraic curve over K, then there do not exist any central division algebras of
finite rank over K(C) other than K(C) itself.

The three cases in which we have asserted that over some field K there do
not exist any central division algebras of finite rank other than K itself can all
be unified by one property: a field K is quasi-algebraically closed if for every
homogeneous polynomial F(t,,...,t,) € K[t,,...,t,] of degree less than the
number n of variables, the equation

F(x{,...,x,)=0

has a nonzero solution in K.

It can be shown that if K is any quasi-algebraically closed field, then the only
central division algebra of finite rank over K is K itself. On the other hand, each
of the fields considered above is quasi-algebraically closed: algebraically closed
fields, finite fields and function fields K(C) where K is algebraically closed and
C is an irreducible algebraic curve. Tsen’s theorem is proved starting from this
property, and this is one possible method of proof of Wedderburn’s theorem.
The theorem that a finite field is quasi-algebraically closed is called Chevalley’s
theorem. For the case of the field F,, this is an interesting property of congruences.
The property of being quasi-algebraically closed is a direct weakening of alge-
braically closure; this become obvious if we start with the following characterisa-
tion of algebraically closed fields.

Theorem. A field K is algebraically closed if and only if for every homogeneous
polynomial F(t,,...,t,) € K[t,,...,t,] of degree less than or equal to the number
n of variables, the equation
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F(xy,...,x,) =0 0y
has a nonzero solution in K.

Proof. Obviously, for an algebraically closed field K the equation (1) has a
nonzero solution. Suppose that K is not algebraically closed. Then over K there
is an irreducible polynomial P(t) of degree n > 1. The ring L = K[¢]/(P)is a field
extension of K of degree n, and is hence an algebra of rank n over K. Consider-
ing the regular representation of this algebra, we take each element x € L to
the matrix A, € M,(K). The determinant of the matrix A, is called the norm of
x, and is denoted by N(x). From properties of representations (and of deter-
minants) it follows that N(1) = 1,and N(xy) = N(x)N(y). From this if x # 0 then
N(x)N(x~!) = 1, and hence N(x) # 0. Consider any basis e, ..., e, of L/K (for
example the images of the elements 1, ¢, ..., t""! of K[t]); we write any element
xe Lasx,e; + - + x,e, with x; € K. It is easy to see that N(x) is a polynomial
of degree nin x4, ..., x,, and setting

F(xla“-’xn) = N(xlel ++ xnen)

we get an example of an equation of type (1) with no solution.

We proceed now to fields over which there do exist central division algebras
of finite rank. Up to now we know one such field, the real number field R, over
which there exists a central division algebra of rank 1 (R itself) and of rank 4 (the
quaternions H). These numbers are not entirely fortuitous, as the following result
shows.

Lemma. The rank of a simple central algebra is a perfect square.

The proof is based on the important notion of extending the ground field. If
R is an algebra of finite rank over a field K and L is an arbitrary extension of
K, we consider the module R ®x L (see § 5); we define a multiplication on its
generators a ® & by

@®HO®n=ab®&n for abeR,{nel.

It is easy to verify that this turns R ®, L into a ring, which contains L (as 1 ® L),
so that this is an algebra over L. If e, ..., e, is a basis of R over K then ¢; ® 1,
..., e, ® 1 is a basis of R ®g L over L. Hence the rank of R ® L over L equals
that of R over K. Passing from R to R ® L is called extending the ground field.
To put things simply, R ® Lis the algebra over L having the same multiplication
table as R.

It is not hard to prove the following assertion:

Theorem IV. The property that an algebra should be central and simple is
preserved under extension of the ground field.

Now we just have to take L to be the algebraic closure of K; by the general
theory R ®g L =~ M, (L), and hence the rank of R over K, equal to the rank of
R ®g L over Lis n?.
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Thus the quaternion algebra realises the minimal possible value of the rank
of a nontrivial central division algebra. The next case in order of difficulty, of
interest mainly in number theory, is the case of the p-adic number field Q,,
introduced in § 7.

V. Hasse’s Theorem. For any n there exist ¢(n) central division algebras of rank
n? over the field Q, (Where ¢ is the Euler function).

The proof of the theorem indicates a method of assigning to each such algebra
D a certain primitive nth root of unity, which determines D. This root of unity
is called the invariant of the division algebra D, and is denoted by p,(D).

We consider the simplest example. For any field K of characteristic #2,
suppose that a, b € K are two nonzero elements. Construct the algebra of rank
4 over K with basis 1, i, j, k and multiplication table

2=a,j?=b,ji=—ij=k

(the remaining products can be computed from these rules using associativity).
The algebra so obtained is called a generalised quaternion algebra, and is denoted
by (a,b). For example H = (— 1, —1). It is easy to prove that the algebra (a,b) is
simple and central, and any simple central algebra of rank 4 can be expressed in
this form. Thus by the general theory of algebras, (a, b) is either a division algebra,
or isomorphic to M,(K). Let us determine how to distinguish between these two
cases. For this, by analogy with the quaternions, define the conjugate of the
element x = a + Bi + yj + 6k to be x = o — i — yj — Ok. It is easy to see that

Xy =yx and xx =oa? — af? — by? + abdé? e K. )

Set N(x) = xx. It follows from (2) that N(xy) = N(x)N(y). Hence if N(x) = O for
some nonzero x then (a, b) is not a division algebra: xx = 0, although x # 0 and
x # 0. If on the other hand N(x) # O for every nonzero x, then x™! = N(x)™'x
and (a, b) is a division algebra. Thus (g, b) is a division algebra if and only if the
equation a® — af? — by? + abd? = 0 has only the zero solution for (, 8,7, d) in
K. This equation can be further simplified by writing it in the form

w — af? = b(y* — ad?),

or

b_az—aﬂz_N(a+ﬂi)_N<a+ﬂi

= = = =N ) = 2 2’
y2 —ad?  N(y + &) y+5i> (€ +ni) = % —an

o+ Bi
wh | = .
ere & + ni VT ol

the form: the equation ¢2 — an? = b has no solutions in K. The homogeneous
form of the same equation is

Thus the condition that (a, b) is a division algebra takes

E—an* —b*=0. 3)
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This should not have any solution in K, otherwise (a,b) =~ M,(K). It is easy to
see that if (3) has a nonzero solution, then it has a solution for which & # 0. It
then reduces to the equation

ax®> 4+ by’ = 1. 4)

Now suppose that K is the rational number field Q. Equation (3) is exactly
the equation to which Legendre’s theorem stated at the end of § 5 relates. This
asserts that (3) has a solution in @ if and only if it has a solution in R and in all
the fields @,,. In this form the theorem gives us information about the generalised
quaternion algebra (a, b) for a, b € Q. By what we have said above, the algebra
C = (a,b) is isomorphic to M,(Q)if and only f C® R = M,(R)and C® Q, =
M,(Q,)for all p. But the same line of argument can be carried further, to describe
all generalised quaternion algebras over Q. That is, one can show that two such
algebras C = (a,b)and C' = (a’,b") are isomorphicifand onlyif CQ R =~ C' ® R
and C® Q, ~ C'® Q, for all p. In other words, consider the invariants u,, of
division algebras of rank 4 over Q, (which by definition are equal to —1) and
for a simple central algebra C over Q set

1,(C) = p(C®Q,) = —1if C® Q, is a division algebra
u(CO) =1 CR®Q, = M,(Q,),

moreover, set
up(C) = —11f C® R is a division algebra (that is, = H);
ur(C) = 1if C® R = M,(R).

Then the above result can be restated as follows:

Theorem V1. A division algebra C of rank 4 over Q is determined by ug(C) and
u,(C) for all p, which we call the set of invariants of C.

What can this set of invariants be? We have seen that not all ug(C) and p,(C)
can be equal to 1 (because then, by Legendre’s theorem, C would not be a division
algebra). Moreover, it is easy to prove that u,(C) = —1 holds for only a finite
number of primes p. It turns out that there is only one more condition apart from
these.

Theorem VII. An arbitrary set of choices ug, t, = + 1( for each prime p) is the
set of invariants of some central division algebra of rank 4 over Q if and only if
(a) not all pg and u, are 1; (b) only a finite number of them are —1;

and () prllu, =1 (5
14
Amazingly, the relation (5) turns out just to be a restatement of Gauss’ law of

quadratic reciprocity, which thus becomes one of the central results of the theory
of division algebras over Q.



§11. Division Algebras of Finite Rank 95

The results we have treated generalise immediately to arbitrary central division
algebras of finite rank over Q. Let C be a central division algebra over @ of finite
rank n?. The algebra C ® R = Cy is isomorphic either to M,(R), and then we set
ur(C) = 1, or to M, ,(H), and then by definition we set ur(C) = — 1. Similarly,
for any prime number p the algebra C ® Q, is of the form M,(C,), where C,is a
central division algebra over Q,. We set u,(C) = pu,(C,) (see Hasse’s theorem,
Theorem V above). We have the following results:

VIII. The Hasse-Brauer-Noether Theorem. C =~ M,(Q) if and only if Cy =
M,(R)and C® Q, = M,(Q,) for all p, that is ug(C) = u,(C) = 1 for all p.

Hasse’s Theorem. Two central division algebras C and C' over Q are isomorphic
ifand only f CQ R=C ®Rand CR® Q, = C' ® Q, for all p, that is ug(C) =
pr(C') and u,(C) = p,(C') for all p. A set of numbers pg and p, ( for all p) can be
realised as pg = ug(C) and p, = p,(C) for a central division algebra C over Q if
and only if (a) u, # 1 for only a finite number of primes p;

and (b) e [Tay = 1. (6)

Entirely similar results hold for finite extensions K of Q, that is, algebraic
number fields. They form part of class field theory. The analogue of relation (6)
for any algebraic number field is a far-reaching generalisation of Gauss’ law of
quadratic reciprocity.

The sketch given here of the structure of division algebras over the rational
number field can serve as an example of just how closely the structure of division
algebras over a field K relate to delicate properties of K.

We give one more example: the structure of central division algebras of finite
rank over the field R(C) where C is a real algebraic curve. In this case, any central
division algebra is a generalised quaternion algebra, and is even of the form
(—1,a)for a € R(C), a # 0. The algebra (— 1, a) is isomorphic to M,(R(C)) if and
only if a(x) = 0 for every point x € C (including points at infinity in the projective
plane). The function a(x) on C changes sign at a finite number of points of C,
Xy, ..., X,; (Figure 14 illustrates the case of the curve

Fig. 14
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P2+ (x2—-1D(x2-4)=0

and the function a = y). The division algebra (—1,4) is determined by these
points x;, ..., x, at which the sign changes. More complicated, but also more
interesting is the example of the field C(C) where C is an algebraic surface. The
structure of division algebras in this case reflects very delicate geometric proper-
ties of the surface. We will return to these questions in § 12 and §22.

§ 12. The Notion of a Group

We start with the notion of a transformation group: the notion of a group first
arose in this form, and it is in this form that it occurs most often in mathematics
and mathematical physics.

A transformation of a set X is a 1-to-1 map f: X - X from X to itself,
that is, a map for which there exists an inverse map f~!: X — X, satisfying
fYof=fof™! = e Here f o g denotes the product of maps (that is, the com-
posite, the map obtained by performing g and f successively):

(fog)(x)=f(9(x) forxeX, (1

and e is the identity map

e(x)=x forxeX.

We say that a set G of transformations of X is a transformation group if it
contains the identity transformation e and contains together with any g € G the
inverse g !, and together with any g,, g, € G the product g,g,.

Usually these conditions are fulfilled in an obvious way, because G is defined
as the set of all transformations preserving some property. For example, the
transformations of a vector space preserving scalar multiplication and the addi-
tion of vectors (that is, g(ax) = ag(x) and g(x + y) = g(x) + g(y)); these form the
group of nondegenerate linear transformations of the vector space. The trans-
formations preserving the distance p(x, y) between points of a Euclidean space
(that is, such that p(g(x),g(y)) = p(x, y)) form the group of motions. If the trans-
formations are assumed to preserve a given point, then we have the group of
orthogonal transformations.

The group of transformations of one kind or another which preserve some
object can often be interpreted as its set of symmetries. For example, the fact that
an isosceles triangle is more symmetric that a nonisosceles triangle, and an
equilateral triangle more symmetric thaf a nonequilateral isosceles triangle can
be quantified as the fact that the number of motions of the plane taking the
triangle to itself is different for these three types of triangles. It consists (a) of
just the identity map for a nonisosceles triangle, (b) of the identity map and
the reflection in the axis of symmetry for an isosceles triangle, and (c) of 6



§12. The Notion of a Group 97

transformations for the equilateral triangle, the identity, the rotations through
120° and 240° through the centre 0 and the reflections in the three axes of
symmetry (Figure 15).

@ (b) ©

Fig. 15

We give a number of typical examples of different types of symmetry.

The symmetry group of a pattern in the plane consists of all motions of the
plane that take it to itself. For example, the symmetry group of the pattern
depicted in Figure 16 consists of the following motions: translations in the vector
OA, translation in OB followed by reflection in the axis OB, and all composites
of these.

g L p
SNEN-
p L L P

8 2 2 Q

By a symmetry of a molecule we understand a motion of space which takes
every atom of the molecule to an atom of the same element, and preserves all
valency bonds between atoms. For example, the phosphorus molecule consists
of 4 atoms situated at the vertexes of a regular tetrahedron, and its symmetry
group coincides with the symmetry group of the tetrahedron, which we will
discuss in detail in the following section § 13.

Crystals have a large degree of symmetries, so that the symmetry group of a
crystal is an important characteristic of the crystal. Here by a symmetry we
understand a motion of space which preserves the position of the atoms of the
crystal and all relations between them, taking each atom into an atom of the
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same element. We describe as an example the symmetry group of the crystal of
cooking salt NaCl, depicted in Figure 17. This consists of adjacent cubes, with
alternate vertexes occupied by atoms of sodium Na(e) and chlorine Cl(o):

The set of all symmetries is given (in a coordinate system chosen with the origin
in one of the atoms, and axes along the sides of the cubes, which are considered
to be of length 1) by permutations of the coordinate axes, reflections in the
coordinate planes, and translations in vectors with integer coordinates. It can be
expressed by the formulas

Xy = ex; + k,
x/2 = ”xiz + l’
xy={x;, +m,

where (i,,1,,i3) is a permutation of (1, 2,3), each of &, ,{ = +1,and (k,I,m) e Z3.

Algebraic or analytic expressions may also have symmetries: a symmetry of a
polynomial F(x,,...,x,) is a permutation of the unknowns x,, ..., x, which
preserves F. From this, we get for example the term symmetric function, one
preserved by all permutations. On the other hand, the function [T (xi—xp)is

i<k
preserved only by even permutations. In general if F is a function defined on a
set X, then a transformation of X which preserves F can be considered as a
symmetry of F. In the preceding example, X was the finite set {x,,...,x,}.

A function on 3-space of the form f(x? + y* + z?) has all orthogonal trans-
formations as symmetries. Physical phenomena often reflect symmetries of this
type. For example, by E. Noether’s theorem, if a dynamical system on a manifold
X is described by a Lagrangian % which has a 1-parameter groups {g,} of
transformations of X as symmetries, then the system has a first integral that
can easily be written down. Thus in the case of the motion of a system of point
bodies, invariance of .# under translations leads to the conservation of momen-
tum and invariance under rotations to the conservation of angular momentum.
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For any of the types of algebraic objects considered up to now, fields, rings,
algebras and modules, the symmetries are transformations of the corresponding
sets preserving the basic operations. In this case they are called automorphisms.

Thus the automorphisms of an n-dimensional vector space F over a field K
are nondegenerate linear transformations; the group of these is denoted by GL(F)
or GL(n,K). When a basis is chosen, they are given by nondegenerate n x n
matrixes. Similarly, the automorphisms of the free module 4" over a commuta-
tive ring A form a group GL(n, 4) and are given by matriXes with entries in 4
whose determinant is invertible in A. The group consisting of matrixes of deter-
minant 1 is denoted by SL(n, A).

An automorphism ¢ of a ring K (in particular, of a field) is a transformation
o such that

gla+ b)=o0(a)+ o(b) and a(ab) = a(a)a(b). (2)
For example, if R = M, (K) then a nondegenerate matrix ¢ € GL(n, K) defines an
automorphism o(a) = cac™! of R.

The transformation ¢(z) = z is an automorphism of the complex number field
C as an R-algebra, that is, an automorphism of the field extension C/R. In a
similar way, any field extension L/K of degree 2 (with the characteristic of K # 2)
has exactly 2 automorphisms. For it is easy to see that L = K(y) with 2 = c € K.
Each automorphism is uniquely determined by its action on y, since g(a + by) =
a + ba(y). But ¢ preserves the field operations in L and fixes the elements of K,
and therefore (6(y))*> = a(y?) = a(c) = c. Hence o(y) = +7. Thus the only auto-
morphism are the identity o(a + by) = a + by and the automorphism with
a(y) = —v, that is o(a + by) = a — by. Extensions having ‘less symmetry’ also
exist. For example, the extension K = Q(y) where y* = 2, is of degree 3 over Q,
and has only the identity automorphism. For as above, any automorphism o is
determined by its action on 7y, and (5(y))® = 2. If 6(y) = 7, # 7 then (y,/7)3 = 1,
so that ¢ = y, /y satisfies ¢> — 1 = 0; since ¢ # 1, it satisfies 6> + ¢ + 1 = 0, and
hence (2¢ + 1)®> = — 3. Hence K must contain the field @(,/—3). But K/Q and
@(ﬁ)/@ have degree 3 and 2 respectively, and this contradicts the fact that
the degree of an extension is divisible by that of any extension contained in it
(§ 6, Formula (3)).

Finally the symmetries of physical laws (by this, we understand coordinate
transformations which preserve the law) are very important characteristics of
these laws. Thus the laws of mechanics should be preserved on passing from one
inertial coordinate system to another. The corresponding coordinate transforma-
tions (for motion on a line) are of the form

x'=x—ut, U=t 3)
in the mechanics of Galileo and Newton, and

, X — vt .t —(v/c*)x

= =1 4
Ji—wer T T-wer “

in the mechanics of special relativity, where c is the speed of light in a vacuum.
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The symmetry group given by the transformation formulas (3) is called the
Galileo-Newton group, and that given by formulas (4) the Lorentz group.

An example of another type of symmetry of physical laws is the so-called parity
law, according to which all physical laws should preserve their form if we
simultaneously invert the sign of time, the sign of electrical charges, and the
orientation of space. Here we have a group consisting of just two symmetries.

We mention some very simple notions related to transformation groups. The
orbit of an element x € X under a transformation group G of X is the set Gx of
elements of the form g(x), as g runs through G. The stabiliser subgroup of x is the
set G, of elements of G which fix x, that is, G, = {g|g(x) = x}. The stabiliser
subgroup of an element is itself a transformation group contained in G.

Consider the relation between two elements x, y € X that there should exist a
transformation g € G such that g(x) = y; this is an equivalence relation, that is,
it is reflexive, symmetric and transitive. To check this is just a rephrasing of
the three properties in the definition of a transformation group. All elements
equivalent to one another form an orbit of G. Hence X breaks up as the disjoint
union of orbits; this set of orbits or orbit space is denoted by G\ X. If there is just
one orbit, that is, if for any x, y € X there exists g € G with y = g(x) then we say
that G is transitive.

We now proceed to the notion of a group. This formalises only certain aspects
of transformation groups: the fact that we can multiply transformations (Formula
(1)), and the associativity law (fg)h = f(gh) for this multiplication (which can be
verified immediately from the definition).

A group is a set G with an operation defined on it (called multiplication), which
sends any two elements ¢,, g, € G into an element g, g, € G, and which satisfies:

associativity: (9,192)9 = 91(9293);

existence of an identity: there exists an element e € G such that eg = ge = g for
all g € G (it is easy to prove that e is unique);

existence of an inverse: for any g € G there exists an element g~! € G such that
gg ! = g g = e (it is easy to prove that g~! is unique).

From the associativity law, one proves easily that for any number of elements
d1,92, > gns their product (in the given order) does not depend on the position
of brackets, and can therefore be written g, g, - - g,. The product g - - - g of g with
itself n times is written as g", and (g })*as g™ ".

If multiplication is commutative, that is, g,g, = g,¢, for any g,, g, € G, we
say that G is an Abelian (or commutative) group. In essence, we have already seen
this notion, since it is equivalent to that of module over the ring of integers Z.
To emphasise this relation, the group operation in an Abelian group is usually
called the sum, and written g, + g,. We then write 0 instead of e, — g instead of
g%, and ng instead of g". For ne Z and g€ G, ng is a product, defining a
Z-module structure on G.

If a group G has a finite number of elements, we say that G is finite. The number
of elements is called the order of G, and is denoted by |G]|.
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An isomorphism of two groups G, and G, is a 1-to-1 correspondence f: G — G,
such that f(g,9,) = f(9,)f(g,)- We say that two groups are isomorphic if there
exists an isomorphism between them, and we then write G, = G,.

A finite group G = {g,,...,g,} can be specified by its ‘multiplication table’, the
so-called Cayley table. This is a square matrix with the product g;g; in the ith
row and jth column. For example, if G is a group of order 2 then it consists of
the identity element e and g # e, and it is easy to see that g2 can only be e. Hence
its Cayley table is of the form

If G is of order 3 with identity element e and g # e then it is easy to see that
g* # e and g* # g, so that G = {e,g,h} with h = g2. Just as easily, we see that
gh = e. Hence the Cayley table of G is of the form

An isomorphism of two groups means that (up to notation for the elements),
their Cayley tables are the same. Of course, Cayley tables can only conveniently
be written out for groups of fairly small order. There are other ways of specifying
the operation in a group. For example, let G be the group of symmetries of an
equilateral triangle (Figure 15, (c)). Let s denote the reflection in one of the
heights, and ¢ a rotation through 120° about the centre. Then ¢? is a rotation
through 240°. It is easy to see that s, st and st? are reflections in the three heights.
Thus all the elements of G can be written in the form

e, t, t2, s, st, st (5)
Obviously,
s2=e, t=e (6)
Furthermore, it is easy to check that
ts = st2. )

These rules already determine the multiplication of the group. For example

(st)? = stst = sst’t = s2t3 = e,
and

t%s = tts = tst® = st*t? = st.
This method of describing a group is called specifying it by generators and
relations; it will be described more precisely in § 14. In this notation, an isomor-
phism of G with a group G’ means that G’ also has elements s’ and ¢, in terms
of which all the other elements of G’ can be expressed as in (5), and which satisfy
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conditions (6) and (7). Consider for example the group GL(2,F,) of nondegen-
erate 2 x 2 matrixes with entries in the field F,. It is easy to write them all out,
since their columns are necessarily of the form

HiHEH! ®

and nonproportional columns (to give a nondegenerate matrix) means in the
present case that they are distinct. We get 6 matrixes

o P ol ole MY

01
One sees easily that this list is precisely of the form (5) with ¢’ = [1 I:I and

0 1
s' = [ ) 0} and that the relations (6) and (7) hold. Therefore this group is

isomorphic to the symmetry group of an equilateral triangle. The isomorphism
we have found seems quite mysterious. However, it can be described in a more
meaningful way: for this we need to observe that symmetries of a triangle permute
the 3 vertexes, and that in our case all of the 6 possible permutations are realised.
The nondegenerate matrixes over F, act on the 3 column vectors (8), and also
realise all possible permutations of these. Thus each of the two groups is iso-
morphic to the group of all permutations of 3 elements.

From this and from many other examples, we see that isomorphisms may
occur between groups whose elements are completely different in nature, and
which arise in connection with different problems. The notion of isomorphism
focuses attention just on the multiplication law in the groups, independently of
the concrete character of their elements. We can imagine that there exists a
certain ‘abstract’ group, the elements of which are just denoted by some symbols,
for which a composition law is given (like a Cayley table), and that concrete
groups are ‘realisations’ of it. Quite surprisingly, it often turns out that properties
of the abstract group, that is, properties purely of the group operation, often have
a lot to offer in understanding the concrete realisation, which the abstract group
‘coordinatises’. A classic example is Galois theory, which will be discussed later.
However, in the majority of applications of group theory, properties of the
abstract group are mixed up together with properties of the concrete realisation.

In the above, we have only given examples of transformation groups, and so
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