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Preface

About three hundred years before our era, the great Greek geometer Euclid1

attempted to compile and logically order the many results of geometry known
by that time.

The Greeks were well acquainted with the notion of proof; logical arguments
were used to obtain new results from old. However, these old theorems had to
be derived from other known theorems, which in turn were to be deduced from
more primitive results, and so on. Hence, in order to give a logically coherent
exposition of geometry, avoiding an infinite regress, it became necessary to posit
a number of first theorems, that is, to decide at what point one must begin the
chain of reasoning that allows new theorems to be proved from those that have
already been established. Results were sought that were considered to be so
self-evident that it would not be necessary to prove them.

Euclid began his great masterpiece, The Elements, with a list of five pos-
tulates that play the role of first theorems and which are considered to be so
obvious as to be accepted without proof.

Explicitly, these postulates are:
1. A straight line can be drawn from any point to any point.
2. A finite straight line can be produced continuously in a straight line.
3. A circle can be described with any center and distance.
4. All right angles are equal to one another.
5. If a straight line falling on two straight lines makes the interior angles on

the same side less than two right angles, the two straight lines, if produced

1 Very little is known about Euclid. We cannot even be certain of his existence.
The Elements is a monumental achievement, perhaps more than one man could
conceivably have produced, so it is possible that Euclid simply directed the work.
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indefinitely, meet on that side on which the angles are less than the two
right angles.

Prior to this, in order to clarify what was being discussed, Euclid gave
twenty-three definitions (a point is that which has no parts; a line is a breadth-
less length, etc.) together with five logical rules or common notions (things
which are equal to the same thing are also equal to one another; if equals be
added to equals, the wholes are equals, etc.). See, for instance, [13] or [26].

From this, with a level of rigor that was considered exemplary until the 19th
century, Euclid recovered all the theorems of elementary geometry. Some more
involved topics, such as conic sections, for example, although known in Euclid’s
time, do not appear in The Elements.2

In the paper [12], A. Dou makes a remark concerning The Elements that is
worth quoting here:

The geometry of The Elements is a geometry that today should be called

physical geometry, because for Euclid and Aristotle the terms of the

propositions in The Elements refer precisely to the real natural bodies

of the physical world [. . . ] It is a geometry that tries to study the struc-

ture of physical space.

Euclid’s points and straight lines are not physical points and straight lines,
but an abstraction of them. When one tries to give a rigorous foundation of
geometry, some fundamental questions arise, such as: What is a point? What is
a straight line? The definitions given by Euclid are not satisfactory, they must
be considered only as descriptions, and it is clear that the definition of a point
(that which has no parts) and straight line (a length without width) in The
Elements do not provide much in the way of rigor.

For more than two thousand years after Euclid many mathematicians tried
to prove the fifth postulate. Unable to find a direct proof, they instead tried an
indirect approach, hoping to arrive at a contradiction by assuming its negation.
Curiously, the assumption that the fifth postulate is false does not lead to a
contradiction, but rather opens the door to new and marvelous geometries.

The first to develop this approach, and realize that it does not lead to con-
tradiction, were N. Lobatchevski and J. Bolyai, who independently3 discovered

2 The Elements is composed of thirteen books; books i, iii, iv, xi, xii and xiii are
concerned with geometry, while books vii, viii and ix cover arithmetic. The re-
maining four books are dedicated to algebra. The results of the first four books,
the seventh and the ninth, are principally due to the Pythagorean school, the fifth
and the sixth are due to Eudoxus (4th century BC), and the tenth and thirteenth
are due to Teatetus (368 BC). The Elements contain a total of 131 definitions and
465 propositions.

3 Lobatchevski’s first publications on non-Euclidean Geometry appear in the Kazan
Messenger (1829–1830). The work of Bolyai, known as the Appendix, because it
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Hyperbolic Geometry (a totally coherent geometry that does not satisfy the
fifth postulate).

To establish these new geometries rigorously it was necessary to reformulate
Euclid’s Elements, removing all ambiguities such as that of the definition of a
straight line mentioned above. Several works appeared in this direction and the
efforts culminated in 1899 with D. Hilbert’s Grundlagen der Geometrie.

Hilbert’s new axiomatization was a synthesis of the work of many mathe-
maticians (including, for instance, M. Pasch). The main novelty of Hilbert’s
approach with respect to Euclid’s work was that, at the outset, he assumed
only a pair of sets (here we restrict our discussion to plane geometry) whose
elements are not defined but that are called respectively points and straight
lines. Among the elements of these sets there are certain relations4 that again
are not defined, but which satisfy some axioms or properties: incidence, order,
continuity and congruence.

The incidence axioms describe the fact that through any two points only
one straight line can pass. The order axioms enable us to talk about line seg-
ments, and those of continuity permit the construction of the real numbers.
The congruence axioms assert, essentially, that “given a line segment AB and
a straight half-line with origin C, there exists a unique point D on this straight
half-line such that the line segment AB is congruent to the line segment CD”,
together with an analogous assertion for angles.

From this one can reproduce the results of The Elements. A simplified ax-
iomatic development of Euclidean Plane Geometry can be found in [24].

This approach immediately suggests some natural questions: What happens
if we do not include the order axioms, or the axioms of continuity? Is it essential
to identify the points of a straight line with the set of real numbers? Can we
“do geometry” identifying, for instance, the points of straight lines with the
complex numbers?

We shall see that, in fact, we can do geometry identifying the points of
straight lines with the elements of an arbitrary field.

Next we state the axioms of Affine Plane Geometry as they appear in [1].
Recall that we only have a pair of sets whose elements are undefined but

which we suggestively call, respectively, points and straight lines. Let us assume
that there is a relation, called incidence, among the elements of the first set
and the elements of the second. When an element P of the first set is related

was published as an addendum to his father’s book Tentamen Juventutem Stu-
diosam in Elementa Matheseos Purae Introducendi, dates from 1831, but the year
of publication of the Tentamen itself was 1829. Bolyai elaborated his geometry in
outline in 1823 and the final work, in German, was completed in 1826.

4 A relation among the elements of two sets is a subset of the Cartesian product of
these two sets.
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to an element l of the second, we shall write P ∈ l, and we shall say that P

belongs to l, or that the straight line l passes through the point P .
We further assume that this (undefined) relation satisfies the following ax-

ioms:

Axiom 1

Given two distinct points P and Q, there exists a unique straight line l such
that P ∈ l and Q ∈ l.

Axiom 2

Given a point P and a straight line l, there exists a unique straight line m such
that P ∈ m and l‖m.

The notation l‖m means that either l = m or there is no point P satisfying
both P ∈ l and P ∈ m. One says that l is parallel to m.

Axiom 3

There are three non-collinear points.

The next axioms are more easily stated if we first define the concepts of dilation
and translation.

Definition

A map σ from the set of points into itself is called a dilation if it has the
following property: Let P , Q be distinct points and let l be the straight line
they determine. Then the straight line l′ determined by σ(P ) and σ(Q) is
parallel to l. A dilation without fixed points is called a translation.

The bundle of straight lines, each line determined by a point and its image
under a given translation, is called the direction of the translation.

We shall postulate that there must be ‘sufficiently many’ dilations and trans-
lations. More precisely:

Axiom 4

Given two distinct points P and Q there exists a translation τ such that
τ(P ) = Q.
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Axiom 5

Given three distinct collinear points P , Q and R there exists a dilation σ such
that σ(P ) = P and σ(Q) = R.

With these last two axioms we can define coordinates in the plane in such a way
that each point has two coordinates and each straight line is given by a linear
equation. These coordinates are not necessarily real numbers, but elements of
some field k. This field can be constructed from axioms 1, 2, 3 and 4. In fact k

is formed by certain morphisms of the group T of translations. Concretely (for
details, see [1]) we have

k = {α : T −→ T : α satisfies the following two properties}

1. For all τ, σ ∈ T , α(τ ◦ σ) = α(τ) ◦ α(σ), i.e. α is a group homomorphism.
2. For all τ ∈ T , τ and α(τ) have the same direction.

All axiomatic theories face the problem of consistency. A system is consistent if
no contradiction can be derived within it. To prove that a theory is consistent,
one provides a mathematical model in which all the axioms are satisfied. If this
model is consistent, so too is the axiomatic system. The axiomatic system is,
at least, as consistent as the model.

This is what we are going to do in this book. We shall construct an algebraic
model, based on the concept of a vector space over a field, which, with suitable
definitions, will satisfy all the axioms of Affine and Euclidean Geometry.

Organization In Chapter 1 we introduce the most fundamental concept of
these notes: affine space. This is a natural generalization of the concept of
vector space but with a clear distinction between points and vectors. This
distinction is not often made in vector spaces: it is commonplace, for example,
not to distinguish between the point (1,2) ∈ R

2 and the vector v = (1,2) ∈ R
2.

The problem is that R
2 is both a set of points and a vector space.

In the study of vector spaces, the vector subspaces and the relations among
them (the Grassmann formulas) play a central role. In the same way, in the
study of affine spaces, the affine subspaces and the relations among them (the
affine Grassmann formulas) also play an important role.

The simplest figure that we can form with points and straight lines is the
triangle. In this chapter we shall meet two important results that refer to
triangles and the incidence relation: the theorems of Menelaus and Ceva.

In Exercise 1.5 of this chapter, page 38, we verify Axioms 1, 2 and 3 of Affine
Geometry.

In Chapter 2 we introduce a class of maps between affine spaces: affine maps,
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or affinities. The definition is a natural one, indeed affinities are revealed to be
simply those maps that take collinear points to collinear points.

We shall also see that there are ‘enough’ affinities. In fact, in an affine space
of dimension n, given two subsets of n+1 points, there exists an affinity which
maps the points of the first subset onto the points of the second.

In Exercise 2.9 of this chapter, page 88, we verify Axioms 4 and 5 of Affine
Geometry.

In Chapters 3 and 4 we answer the natural question of how many affinities
there are. To do so we first define an equivalence relation between affinities and
study its equivalence classes. In low dimensions the problem is not too hard and
is solved explicitly in Chapter 3. However, in arbitrary dimensions the problem
is rather involved, since it depends upon the classification of endomorphisms,
and in particular on the Jordan normal form of a matrix. In Chapter 4 we
provide the full details of this classification, since we have not been able to find
it in the literature.

In Chapter 5 we consider affine spaces on which a distance has been defined.
Thus we have a model of classical Euclidean Geometry, where, for instance,
Pythagoras’ Theorem holds.

In Chapter 6 we study distance preserving maps, that is, the Euclidean mo-
tions. Since there are fewer Euclidean motions than affinities, their classification
is simpler. We also introduce a natural equivalence relation among Euclidean
motions, similar to that for affinities, and we characterize each equivalence class
by a finite sequence of numbers (the coefficients of a polynomial and a metric
invariant).

In Chapter 7 we study Euclidean motions in dimensions 1, 2 and 3. In
dimension three, for instance, there are only three types of Euclidean motion:
helicoidals (which include rotations, translations and the identity mapping),
glide reflections (which include mirror symmetries) and anti-rotations.

In Chapter 8 we study quadrics, two quadrics being considered equivalent
if there is an affinity that maps one onto the other. Quadrics are the zeros of
quadratic polynomials, and therefore they are the most natural objects to con-
sider after straight lines (the zeros of linear polynomials). From this perspective,
there are only three inequivalent quadrics (conics) in the plane: the ellipse, the
hyperbola and the parabola. We also give the complete list of quadrics in three
dimensions.

In Chapter 9 we study quadrics, this time considering two quadrics to be
equivalent if there is a Euclidean motion that maps one onto the other. From
this perspective there are infinitely many quadrics (conics) in the plane, since
ellipses, parabolas and hyperbolas of different sizes are inequivalent to one an-
other. Nevertheless, we shall give the classification in dimensions two and three,
representing the quadrics by a finite sequence of real numbers. For example,
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in the plane, there are as many ellipses as pairs (a, b) of real numbers, with
0 < a ≤ b and as many hyperbolas as pairs (a, b) of real numbers, with 0 < a,
0 < b.

We give a faithful list of all quadrics in arbitrary dimensions. For this we need
to introduce a suitable definition of a good order among various real numbers.
Most textbooks are not concerned with the faithfulness of this list, that is, that
each quadric appears in the list once and only once; for this reason this notion
of good order is, as far as we know, new in this context.

Finally we have collected together in the appendices the results from linear
algebra that we have used in the text: bilinear maps and their diagonalization,
isometries, the classification of isometries, diagonalization of symmetric bilin-
ear maps, the method of completing the squares, orthogonal diagonalization,
simultaneous diagonalization (the spectral theorem), the Nullstellensatz, and
so on.

There are many interesting books on Affine Geometry, treated in many cases
from the viewpoint of projective geometry. In order to complement the presen-
tation given in this book the reader may also wish to consult, for example, [2–5,
11, 14–16, 18, 19, 22, 28, 29, 31–34] or [36].

Agust́ı Reventós TarridaBarcelona, Spain
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1
Affine Spaces

1.1 Introduction

In this chapter we introduce the concept of an affine space as an algebraic
model in which the axioms of Affine Geometry listed in the introduction are
all fulfilled. For this we will need to define the terms straight line, plane, etc.
We shall also demonstrate some classical theorems, such as those of Thales and
Menelaus.

1.2 Definition of Affine Space

Let k be a field. A review of the definitions of a field and of a vector space over
a field, as well as their more elementary properties, can be found in [8].

Definition 1.1

Let E be a k-vector space. An affine space over E is a set A together with a
map

A × E −→ A

P,v �−→ P + v

such that:

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
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(1) P +�0 = P for all P ∈ A, where �0 is the identity element of E;
(2) P + (v + w) = (P + v) + w for all P ∈ A and v,w ∈ E; and
(3) given P,Q ∈ A, there exists a unique v ∈ E such that P + v = Q.

1.2.1 Observations

Observation 1. Note that if P ∈ A and v ∈ E, the notation P + v means only
the image of the pair (P,v) via the above map A × E −→ A.
Hence, the four signs “+” appearing in condition 2 have different meanings:
three of them represent the above map, and the other, ordinary vector
addition in the vector space E.

Observation 2. The unique vector determined by the points P and Q is denoted
by

−−→
PQ. Hence, we have the fundamental relation

P +
−−→
PQ = Q.

Observation 3. Let G be a group. A map

A × G −→ A

P,v �−→ P + v

such that:
(1) P + e = P for all P ∈ A, where e is the identity element of G; and
(2) P + (v + w) = (P + v) + w for all P ∈ A and v,w ∈ G,
is called an action of G on A. If, in addition, the following holds:
(3) for all pairs of points P,Q ∈ A, there exists a unique v ∈ G such that

P + v = Q,
then the action is said to be simply transitive.
Hence, we can also define affine space as follows:

Definition 1.2

An affine space is a simply transitive action of the additive group of a k-vector
space E on a set A.

Observation 4. Notice that, since the action of the additive group is transitive,
for all P ∈ A the map

ϕP : A −→ E

Q �−→ −−→
PQ,

is a well-defined bijection. The injectivity and surjectivity of ϕP are imme-
diate; see Proposition 1.4.
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1.3 Examples

Example 1. The standard example of an affine space is given by A = E, that
is, the “points” of this affine space are the elements of the vector space.
The action is

A × E −→ A

P,v �−→ P + v,

where the sum is ordinary vector addition.
Let us verify that the three conditions of the definition of affine space are
satisfied.
(1) P + �0 = P . This is obvious, since �0 is the identity element of vector

addition in E.
(2) P + (u + v) = (P + u) + v. This is precisely the associative property of

vector addition in E.
(3) Given the points u, v ∈ A = E, there exists a unique vector w ∈ E such

that u + w = v. It is sufficient to take w = v − u. That is, −→uv = v − u.
Thank heavens we do not put arrows over the elements of E, because
otherwise we would be forced to write such cumbersome expressions as

−→
�u�v = �v − �u. (Whew!)

This “confusion” between points and vectors can bring about some prob-
lems. For instance, if A = E = R

2, it is not clear a priori if the pair (1,2)
represents a point or a vector.

Example 2. Although only a special case of the above example, the following
is of independent interest. As the set of points we take A = kn, and for the
k-vector space we take E = kn. The action is

A × E −→ A

P,v �−→ P + v,

where the sum P +v is the componentwise sum. That is, if P = (p1, . . . , pn)
and v = (v1, . . . , vn), then

P + v = (p1 + v1, . . . , pn + vn).

Example 3. Let us take A = {(x, y) ∈ R
2 : y > 0} and, as the R-vector space,

E = R
2. As the action of the vector space on the set we take

A × E −→ A

(x, y), (u1, u2) �−→ (x + u1, e
u2y).

Note that, for all u2 ∈ R, eu2y > 0, and hence (x + u1, e
u2y) ∈ A.

It is easy to prove that this action is simply transitive.
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Example 4. Let A = {(x1, . . . , xn) ∈ R
n : x1 + · · · + xn = 1} be the set of points

and let E = {(u1, . . . , un) ∈ R
n : u1 + · · · + un = 0} be the R-vector space.

As the action of the vector space on the set, we take

A × E −→ A

(x1, . . . , xn), (u1, . . . , un) �−→ (x1 + u1, . . . , xn + un).

Note that (x1 + u1, . . . , xn + un) ∈ A.
It is easy to prove that this action is simply transitive.

Example 5.1 Let us take

A = {(x, y, z) ∈ R
3 : x > 0, y > 0, z > 0, x + y + z = 1}

and as the R-vector space we take E = R
2. As the action of the vector

space on the set we take

A × E −→ A

(x, y, z), (u1, u2) �−→ 1
xeu1+yeu2+z (xeu1 , yeu2 , z).

Note that

1
xeu1 + yeu2 + z

(xeu1 , yeu2 , z) ∈ A.

It is easy to prove that this action is simply transitive.

1.4 The Dimension of an Affine Space

An affine space is formed by three mathematical objects: a set A, a k-vector
space E, and an action of E on A. Nevertheless, to simplify the language, we
normally speak of the affine space A; where it is understood that we are not
only referring to the set A.

The dimension of an affine space A is defined to be the dimension of its
associated vector space E. We shall write dimA = dimE. In this book we only
consider finite dimensional affine spaces.

1 This example, which appears in statistics, was suggested to me by Carles Bar-
celó. See Mathematical foundations of compositional data analysis, C. Barceló, J.A.
Mart́ın, V. Pawlowsky, Preprint UdG, 2000.
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Observation 1.3

Note that in the definition of affine space the vector addition of E appears
explicitly, for instance, when writing P +(u+v) = (P +u)+v. However, scalar
multiplication does not appear at all.

The following situation is possible. On a given vector space E, with vector
addition “+” and scalar multiplication “·”, there could be a second scalar
multiplication “•” on E such that E1 = (E,+, •) is a vector space different
from E2 = (E,+, ·). In fact, it may even be the case that E1 and E2 do not
have the same dimension.

It follows, from Example 1, that A1 = E1 and A2 = E2 are automatically
affine spaces. The set of points and the action is exactly the same in both cases.
Nevertheless, they are different as affine spaces. In fact, since dimA1 = dimE1

and dimA2 = dimE2, they could even have different dimensions.
Ferran Cedó suggested to me the following example of this phenomenon.

Take the field of rational functions k = R(x) (see, for instance, [8]). Every field
is a vector space over itself of dimension 1. Now we define a second scalar
multiplication “•” by

k × R(x) −→ R(x)
p(x), q(x) �−→ p(x) • q(x) = p(x2) · q(x).

Then k = R(x) with the usual addition of rational functions and this scalar
multiplication is a k-vector space of dimension 2, since 1 and x are linearly
independent.

In summary, if we put k1 = (R(x),+, ·) and k2 = (R(x),+, •) we have two
k-vector spaces, on the same set and with the same addition, but such that
dimk1 = 1 and dimk2 = 2. If we consider them as affine spaces we have two
affine spaces over the same set and with the same action but of different di-
mensions.

1.5 First Properties

Proposition 1.4

Let P,Q,R,S ∈ A and u, v ∈ E be arbitrary points and vectors. The following
properties are satisfied.
(1) P + u = P + v implies u = v.
(2) P + u = Q + u implies P = Q.
(3)

−−→
PQ =�0 if and only if P = Q.

(4)
−−→
PQ = −−−→

QP .
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(5) Given P ∈ A, v ∈ E, there is a unique Q ∈ A such that
−−→
PQ = v.

(6)
−−→
PQ +

−−→
QR =

−→
PR.

(7)
−−→
PQ =

−→
PR implies Q = R.

(8)
−−→
PQ =

−→
RS implies

−→
PR =

−→
QS.

Proof

(1) Let Q = P + u = P + v. Since there is a unique vector that added to P

gives Q, we have u = v.
(2) Let us assume P + u = Q + u, and subtract u. We obtain (P + u) − u =

(Q + u) − u. Hence, P + (u − u) = Q + (u − u), that is, P = Q.
(3) If

−−→
PQ =�0, we have Q = P +

−−→
PQ = P +�0 = P . If P = Q, we have P +

−−→
PP =

P , and by uniqueness we have
−−→
PP =�0.

(4) Let us compute

P + (
−−→
PQ +

−−→
QP ) = (P +

−−→
PQ) +

−−→
QP = Q +

−−→
QP = P.

Hence,
−−→
PQ +

−−→
QP =�0.

(5) Given P ∈ A and v ∈ E, we take Q = P + v, and we have
−−→
PQ = v.

(6) Let us compute

P + (
−−→
PQ +

−−→
QR) = (P +

−−→
PQ) +

−−→
QR = Q +

−−→
QR = R = P +

−→
PR.

Hence,
−−→
PQ +

−−→
QR =

−→
PR.

(7) Let us assume
−−→
PQ =

−→
PR. Then

−−→
QR =

−−→
QP +

−→
PR =

−−→
QP +

−−→
PQ =�0.

Hence, Q = R.
(8) Let us assume

−−→
PQ =

−→
RS. Then

−→
PR =

−−→
PQ +

−−→
QR =

−→
RS +

−−→
QR =

−−→
QR +

−→
RS =

−→
QS.

�

Property (1) says that we can “cancel” points and Property (2) says that we
can “cancel” vectors.

Property (3) means that the vector with origin and end-point P is the zero
vector and Property (4) refers to the “direction” of the vectors.

Properties (5) and (7) are, respectively, surjectivity and injectivity of the
map ϕp of Observation 4 in Section 1.2.
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Property (6), also known as Chasles’ identity , tells us that vector addi-
tion satisfies the “parallelogram law” and Property (8) tells us that “parallels
between parallels are equal” (see Figure 1.1).

Figure 1.1. Chasles’ identity and the parallelogram law

1.6 Linear Varieties

We ask when a subset B of A inherits the properties of an affine space and
therefore can itself be considered as an affine space.

Definition 1.5

A subset B of an affine space A is an affine subspace of A, with associated
vector space a vector subspace F of E, if
(0) for all P ∈ B and for all v ∈ F one has P + v ∈ B.
Moreover, the map

B × F −→ B

P,v �−→ P + v

satisfies
(1) P +�0 = P , for all P ∈ B, �0 ∈ F ;
(2) P + (v + w) = (P + v) + w, for all P ∈ B and v,w ∈ F ; and
(3) for each pair of points P,Q ∈ B we have

−−→
PQ ∈ F .

1.6.1 Observations

Observation 1. Property (0) says that the action of the vector space E over A

restricts to an action of the vector subspace F over B.
Observation 2. It is not necessary to impose properties (1) and (2) since they

are immediate consequences of condition (0). Condition (3), however, must
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be imposed; see Exercise 1.4. Thus (B, F ) is an affine space. Notice that
dimB = dimF .

Observation 3. Affine subspaces are also called linear subvarieties or linear
varieties. If they have dimension 1, they are called affine straight lines
(or simply straight lines); if they have dimension 2, they are called affine
planes (or simply planes); if they have dimension equal to dimA − 1, they
are called affine hyperplanes (or simply hyperplanes).
For each point P ∈ A and for each vector subspace F of E, we put

P + [F ] = {Q ∈ A : Q = P + v, with v ∈ F }.

Proposition 1.6

If B is an affine subspace of A, with associated vector space F , and P ∈ B, then

B = P + [F ].

Proof

P + [F ] ⊂ B is condition (0) in the definition of affine subspace.
Conversely, to see that B ⊂ P +[F ], let us take Q ∈ B and put Q = P +

−−→
PQ.

From Property (3) we have
−−→
PQ ∈ F . Hence, Q ∈ P + [F ] and this completes

the proof. �

If B = P + [F ] we say that B is the linear variety through P directed by F . We
also say that F is the direction of B.

Proposition 1.7

Let B = P + [F ] be a linear variety of an affine space A. Then
(1) Q ∈ P + [F ] if and only if

−−→
PQ ∈ F ;

(2) if Q ∈ P + [F ], then Q + [F ] = P + [F ]; and
(3) if Q,R ∈ P + [F ], then

−−→
QR ∈ F .

Proof

(1) The vector
−−→
PQ is the unique vector such that Q = P +

−−→
PQ.

(2) Q + [F ] = P +
−−→
PQ + [F ] = P + [F ].

(3)
−−→
QR =

−−→
QP +

−→
PR, but both

−−→
QP and

−→
PR are vectors of F .

�
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1.7 Examples of Straight Lines

Example 1. Let us consider the affine space of Example 1 in Section 1.3, that
is, A = E, and let F = 〈v〉 be a vector subspace of E of dimension 1. Let
P ∈ A. Then the set B = P + [F ] = {P + λv : λ ∈ k} is the straight line
through P with direction v (see Figure 1.2). The sum P + λv is the sum
of two elements of E.

Figure 1.2. Straight lines

The elements of B are points of the affine space; but, in this example, they
are also vectors of E, since they are obtained as a sum of elements of E.

Example 2. Let us consider the affine space of Example 2 in Section 1.3, that
is, A = kn, and let F = 〈v〉 be a vector subspace of E = kn of dimension 1.
Let P ∈ A. Then the set B = P + [F ] = {P + λv : λ ∈ k} is the straight line
through P with direction v.
If P = (p1, . . . , pn) and v = (v1, . . . , vn), the points X = (x1, . . . , xn) of B

satisfy

xi = pi + λvi, i = 1, . . . , n.

Example 3. Let us consider the affine space of Example 3 in Section 1.3. Fig-
ure 1.3 below represents the straight lines through the point (0,1) with di-
rection vectors u = (1,1) and v = (1,2) respectively. In fact, (0,1)+t(1,1) =
(0,1) + (t, t) = (t, et), and hence the graph of the first straight line is the
graph of the exponential function y = ex. Analogously (0,1) + t(1,2) =
(0,1) + (t,2t) = (t, e2t), and hence the graph of the second straight line is
the graph of the exponential function y = e2x.

Example 4. Let us consider the affine space of Example 4 in Section 1.3. We
draw the straight line through the point (1/3,1/3,1/3) with direction vec-
tor v = (1/4,1/4, −1/2). Recall that the sum of the three components
of the vector v must be zero. The straight line is formed by the points
(1/3 + t/4,1/3 + t/4,1/3 − t/2) (see Figure 1.4).
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Figure 1.3. Straight lines

Figure 1.4. Straight lines

Example 5. Let us consider the affine space of Example 5 in Section 1.3. Fig-
ure 1.5 represents the straight line passing through the point (1/3,1/3,1/3)
with direction vector u = (1,2). In fact,

(1/3,1/3,1/3) + t(1,2) =
(

et

1 + et + e2t
,

e2t

1 + et + e2t
,

1
1 + et + e2t

)
.

This coincides, up to parametrization, with the intersection of A with the
cone x2 − yz = 0.
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Figure 1.5. Straight lines

1.8 Linear Varieties Generated by Points

Definition 1.8 (The linear variety generated by r points)

Let us consider the points P1, . . . , Pr ∈ A. The linear variety generated by these
r points, denoted by 〈P1, . . . , Pr 〉, is the smallest linear variety containing them.

Proposition 1.9

Let P1, . . . , Pr ∈ A. Then

〈P1, . . . , Pr 〉 = P1 + 〈−−−→
P1P2,

−−−→
P1P3, . . . ,

−−−→
P1Pr 〉.

Proof

Let L = P1 + [F ] be a linear variety containing the points Pi, i = 1, . . . , r. Since
Pi ∈ L, we have

−−→
P1Pi ∈ F and, hence,

P1 + 〈−−−→
P1P2,

−−−→
P1P3, . . . ,

−−−→
P1Pk 〉 ⊂ L.

Thus P1 + 〈−−−→
P1P2,

−−−→
P1P3, . . . ,

−−−→
P1Pr 〉 contains Pi (since Pi = P1 +

−−→
P1Pi), and it is

contained in any other linear variety containing these points. �

Notice that the role played by P1 in the above proposition can be played by
any of the other points Pi.

We observe that dim〈P1, . . . , Pr 〉 ≤ r − 1. When dim〈P1, . . . , Pr 〉 = r − 1,
that is, when the vectors

−−−→
P1P2, . . . ,

−−−→
P1Pr are linearly independent, we say that
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the points P1, . . . , Pr are affinely independent. Again, the role played by P1 in
this definition can be played by any of the other points Pi, see Exercise 1.7,
page 38.

1.9 The Affine Grassmann Formulas

We first study the intersection of two linear varieties.

Proposition 1.10

Let P + [F ] and Q + [G] be two linear varieties of an affine space A. Then
(P + [F ]) ∩ (Q + [G]) 
= ∅ if and only if

−−→
PQ ∈ F + G.

Proof

If there exists a point R such that R ∈ P + [F ] and R ∈ Q + [G], then
−−→
PQ =

−→
PR +

−−→
RQ ∈ F + G.

Conversely, if
−−→
PQ ∈ F + G, we can write

−−→
PQ = u + v, with u ∈ F and

v ∈ G. Thus, from Q = P +
−−→
PQ = P + u + v, we deduce P + u = Q − v ∈

(P + [F ]) ∩ (Q + [G]), and the intersection is non-empty. This completes the
proof. �

Proposition 1.11

Let P + [F ] and Q + [G] be two linear varieties of an affine space A. If R ∈
(P + [F ]) ∩ (Q + [G]), then

(P + [F ]) ∩ (Q + [G]) = R + [F ∩ G].

Proof

We know, from point 2 of Proposition 1.7, that P + [F ] = R + [F ] and that
Q + [G] = R + [G]. Now, the equality

(R + [F ]) ∩ (R + [G]) = R + [F ∩ G]

is clear. �
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Definition 1.12

The linear variety sum of two linear varieties L1 and L2 is the smallest linear
variety containing them, and is denoted by L1 + L2.

Proposition 1.13

Let P + [F ] and Q + [G] be two linear varieties of an affine space A. Then

(P + [F ]) + (Q + [G]) = P + [F + G + 〈−−→
PQ〉].

Proof

Let L be a linear variety containing P + [F ] and Q + [G]. Since P,Q ∈ L, there
is a vector subspace H such that

L = P + [H] = Q + [H],

and
−−→
PQ ∈ H . In particular 〈−−→

PQ〉 ⊂ H .
But, P + [F ] ⊂ P + [H] implies F ⊂ H , and Q + [G] ⊂ Q + [H] implies

G ⊂ H .
Hence,

F + G + 〈−−→
PQ〉 ⊂ H,

and

P + [F + G + 〈−−→
PQ〉] ⊂ P + [H] = L.

That is, P + [F + G + 〈−−→
PQ〉] is contained in every linear variety containing

P + [F ] and Q + [G]. Moreover, it is clear that these two linear varieties are
contained in P + [F + G + 〈−−→

PQ〉]. �

Theorem 1.14 (Grassmann formulas)

Let L1 = P + [F ] and L2 = Q + [G] be linear varieties of an affine space A.
If L1 ∩ L2 
= ∅, then

dim(L1 + L2) = dimL1 + dimL2 − dim(L1 ∩ L2).

If L1 ∩ L2 = ∅, then

dim(L1 + L2) = dimL1 + dimL2 − dim(F ∩ G) + 1.
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Proof

Let us first assume L1 ∩ L2 
= ∅. Then, by Proposition 1.10, we have

F + G + 〈−−→
PQ〉 = F + G,

and hence, by Proposition 1.13, we have

L1 + L2 = P + [F + G].

Thus,

dim(L1 + L2) = dim(F + G)

= dimF + dimG − dim(F ∩ G)

= dimL1 + dimL2 − dim(L1 ∩ L2),

since, by Proposition 1.11, dim(L1 ∩ L2) = dim(F ∩ G).
Now, let us assume that L1 ∩ L2 = ∅. Then, by Proposition 1.10, we have

(F + G) ∩ 〈−−→
PQ〉 =�0,

and hence, by Proposition 1.13, we have

dim(L1 + L2) = dim(F + G + 〈−−→
PQ〉)

= dim(F + G) + dim〈−−→
PQ〉

= dimF + dimG − dim(F ∩ G) + 1

= dimL1 + dimL2 − dim(F ∩ G) + 1,

and this completes the proof. Note that in this case we cannot replace dim(F ∩
G) by dim(L1 ∩ L2). �

Definition 1.15

Two linear varieties L1 = P1 + [F1] and L1 = P2 + [F2] are said to be parallel
when F1 ⊂ F2 or F2 ⊂ F1.

In particular, if dimF1 = dimF2, the above linear varieties are parallel if and
only if F1 = F2.

Proposition 1.16

If two parallel linear varieties meet, then one of them is contained in the other.
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Proof

Let us assume that L1 = P + [F ] and L2 = Q + [G] are parallel (for in-
stance, G ⊂ F ) and that they meet. It follows, by Proposition 1.10, that

−−→
PQ ∈

F + G ⊂ F . Hence,

Q + [G] = P +
−−→
PQ + [G] ⊂ P + [F ],

and this completes the proof. �

Proposition 1.17 (Parallels between parallels are equal)

Let us suppose that two parallel straight lines r and s are cut by two parallel
straight lines r′ and s′. Let A = r′ ∩ s, B = s′ ∩ s, C = r ∩ r′ and D = r ∩ s′ be
the intersection points. Then

−−→
AB =

−−→
CD and

−→
AC =

−−→
BD.

Proof

By hypothesis we have
−−→
AB = λ

−−→
CD and

−−→
BD = μ

−→
AC . But the point D can be

written as

D = A +
−→
AC +

−−→
CD,

or as

D = A +
−−→
AB +

−−→
BD = A + λ

−−→
CD + μ

−→
AC.

Equating these expressions, and taking into account that the vectors
−→
AC and−−→

CD are linearly independent, one obtains λ = μ = 1. Hence
−−→
AB =

−−→
CD and−→

AC =
−−→
BD, see Figure 1.6, and this completes the proof. �

Figure 1.6. Parallels between parallels

Example 1.18

Study the relative position of two planes in an affine space of dimension 4.



16 1. Affine Spaces

Solution

Let L1 = P1 + [F1], L2 = P2 + [F2] be linear varieties of an affine space A, with
dimA = 4 and dimLi = 2, i = 1,2.

If L1 ∩ L2 
= ∅, we have

dim(L1 + L2) = 2 + 2 − dim(L1 ∩ L2) = 4 − dim(F1 ∩ F2).

Hence, we have three possibilities:
1. If dim(F1 ∩ F2) = 0, they meet in a point.
2. If dim(F1 ∩ F2) = 1, they meet in a straight line.
3. If dim(F1 ∩ F2) = 2, they coincide.

If L1 ∩ L2 = ∅, we have

dim(L1 + L2) = 2 + 2 − dim(F1 ∩ F2) + 1 = 5 − dim(F1 ∩ F2).

Hence, we only have two possibilities:
4. If dim(F1 ∩ F2) = 1, they cross (they neither cut nor are parallel).
5. If dim(F1 ∩ F2) = 2, they are parallel (F1 = F2).

If we take a basis (e1, e2, e3, e4) of E, we can easily construct examples of
the above five cases. For instance:
1. Take L1 = P + [F1], L2 = P + [F2], with F1 = 〈e1, e2〉, F2 = 〈e3, e4〉.
2. Take L1 = P + [F1], L2 = P + [F2], with F1 = 〈e1, e2〉, F2 = 〈e2, e3〉.
3. Take L1 = P + [F1], L2 = P + [F2], with F1 = F2.
4. Take L1 = P + [F1], L2 = Q + [F2], with Q = P + e4 and F1 = 〈e1, e2〉,

F2 = 〈e2, e3〉.
5. Take L1 = P +[F1], L2 = Q+[F2], with Q = P + e3 and F1 = F2 = 〈e1, e2〉.

�

1.10 Affine Frames

Definition 1.19

An affine frame in an affine space A is a set R = {P ; (e1, . . . , en)} formed by
a point P ∈ A and a basis (e1, . . . , en) of the associated vector space E. The
point P is called the origin of this affine frame.

When we fix an affine frame, the points Q ∈ A have coordinates, called affine
coordinates, defined in the following way: let us consider the vector

−−→
PQ given

by the origin P of the affine frame and by the point Q. Then, if

−−→
PQ = q1e1 + · · · + qnen, qi ∈ k,
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we say that Q has affine coordinates (q1, . . . , qn). We also say that (q1, . . . , qn)
are the coordinates of Q with respect to R, or in R.

Slightly abusing notation, we write Q = (q1, . . . , qn). Note that for the origin
P of R we have P = (0, . . . ,0).

If Q = (q1, . . . , qn) and R = (r1, . . . , rn), then
−−→
QR =

−−→
QP +

−→
PR

= −(q1e1 + · · · + qnen) + (r1e1 + · · · + rnen)

= (r1 − q1)e1 + · · · + (rn − qn)en,

that is, the i-th component of the vector
−−→
QR is equal to the i-th coordinate of

the point R minus the i-th coordinate of the point Q.
Equivalently, if v = v1e1 + · · · + vnen, the affine coordinates (r1, . . . , rn) of

the point R = Q + v are given by

ri = qi + vi, i = 1, . . . , n.

In the particular case of the affine space A = kn (Example 2 on page 3)
there is a privileged affine frame: C = {P ; (e1, . . . , en)}, with P = (0, . . . ,0) and
ei = (0, . . . ,0,1,0, . . . ,0) (where the 1 is in the i-th position), i = 1, . . . , n. This
affine frame is called the canonical affine frame of kn. It has the great advantage
that the components of a point coincide with its coordinates.

1.10.1 Change of Affine Frame

Let us assume given two affine frames

R = {P ; (e1, . . . , en)} and R ′ = {P ′; (v1, . . . , vn)}

in the same affine space A. We want to find the relationship between the co-
ordinates (x1, . . . , xn) of a point X with respect to R and the coordinates
(x′

1, . . . , x
′
n) of the same point X with respect to R ′ (see Figure 1.7).

To find this relationship we put

−−→
PX =

n∑
i=1

xiei,

−−→
P ′X =

n∑
j=1

x′
jvj ,

−−→
PP ′ =

n∑
i=1

biei,
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Figure 1.7. Coordinates of X with re-
spect to R and R ′

vj =
n∑

i=1

aijei.

Substituting, one obtains

−−→
P ′X =

n∑
i=1

x′
jvj =

n∑
i,j=1

x′
jaijei, (1.1)

and also

−−→
P ′X =

−−→
P ′P +

−−→
PX = −

n∑
i=1

biei +
n∑

i=1

xiei. (1.2)

Equating coefficients in (1.1) and (1.2) one obtains

xi =
n∑

j=1

x′
jaij + bi, i = 1, . . . , n.

These n equations can be written as

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ =

⎛
⎜⎝

a11 . . . a1n

...
...

...
an1 . . . ann

⎞
⎟⎠

⎛
⎜⎝

x′
1
...

x′
n

⎞
⎟⎠ +

⎛
⎜⎝

b1

...
bn

⎞
⎟⎠ .

To simplify the notation we shall write

x = Ax′ + b

with

x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ , b =

⎛
⎜⎝

b1

...
bn

⎞
⎟⎠ , A = (aij), x′ =

⎛
⎜⎝

x′
1
...

x′
n

⎞
⎟⎠ .
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This equality is equivalent to

⎛
⎜⎜⎜⎝

x1

...
xn

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 . . . a1n b1

...
...

...
...

an1 . . . ann bn

0 . . . 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x′
1
...

x′
n

1

⎞
⎟⎟⎟⎠ .

This (n + 1) × (n + 1) matrix is denoted by M(R ′, R) and is called the matrix
of the change of affine frame or the matrix of the change of coordinates. So, we
have

⎛
⎜⎜⎜⎝

x1

...
xn

1

⎞
⎟⎟⎟⎠ = M(R ′, R)

⎛
⎜⎜⎜⎝

x′
1
...

x′
n

1

⎞
⎟⎟⎟⎠ . (1.3)

We shall write, briefly,

(
x

1

)
= M(R ′, R)

(
x′

1

)
=

(
A b

0 1

)(
x′

1

)

1.11 Equations of a Linear Variety

Let us fix an affine frame R = {P ; (e1, . . . , en)} in an affine space A, and consider
a linear variety L = Q + [F ]. Let Q = (q1, . . . , qn).

Let us fix a basis (v1, . . . , vr) of F . Put vj =
∑n

i=1 aijei, j = 1, . . . , r. It is
clear that X = (x1, . . . , xn) ∈ L if and only if there are scalars λj , j = 1, . . . , r

such that

xi = qi +
r∑

j=1

λjaij , i = 1, . . . , n. (1.4)

Equations (1.4) are called parametric equations of the linear variety L.
These equations impose restrictions between the affine coordinates xi of

the points of L. We shall see that they are solutions of a certain linear system.
We will use some well-known properties of the rank of a matrix, which can be
found, for instance, in [8], page 200.
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Proposition 1.20

Let L = Q + [F ] be a linear variety of dimension r in an affine space A and
let R = {P ; (e1, . . . , en)} be an affine frame. Then the coordinates of the points
of L in R are a solution of a linear system AX = B, of n − r equations, n

unknowns and rank n − r. Moreover, the components of any vector of F in the
basis (e1, . . . , en) are a solution of the homogeneous system AX = 0.

Proof

Let us assume F = 〈v1, . . . , vr 〉, and let Q = (q1, . . . , qn). A point X = (x1, . . . , xn)
belongs to L if and only if the vector

−−→
QX is a linear combination of the vectors

v1, . . . , vr. Equivalently,

rank

⎛
⎜⎝

v11 . . . v1r x1 − q1

...
...

...
...

vn1 . . . vnr xn − qn

⎞
⎟⎠ = r,

since the last column is a linear combination of the first r columns (which are
linearly independent). Note that column j, for j = 1, . . . , r, is formed by the
components of the vector vj = (v1j , . . . , vnj).

Permuting, if necessary, the rows of this matrix, we may assume that the
r × r minor,

δ =

∣∣∣∣∣∣∣
v11 . . . v1r

...
...

...
vr1 . . . vrr

∣∣∣∣∣∣∣
is non-zero.

Since all the (r + 1) × (r + 1) minors of the above matrix must be zero, the
coordinates (x1, . . . , xn) of the points of L satisfy the following linear system
of n − r equations and n unknowns:

∣∣∣∣∣∣∣∣∣

v11 . . . v1r x1 − q1

...
...

...
...

vr1 . . . vrr xr − qr

vj1 . . . vjr xj − qj

∣∣∣∣∣∣∣∣∣
= 0, j = r + 1, . . . , n. (1.5)

Note that this system can be written as

AX = B,
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where X and B are matrices of 1 column and A is a matrix of n − r rows and
n columns. In fact, the matrix A is of the form

A =

⎛
⎜⎜⎜⎝

∗ . . . ∗ δ 0 . . . 0
∗ . . . ∗ 0 δ . . . 0
... . . .

...
...

...
...

...
∗ . . . ∗ 0 0 . . . δ

⎞
⎟⎟⎟⎠ ,

and, hence, the system has rank n − r (it has a non-zero (n − r) × (n − r)
minor). This proves the first part of the proposition.

The second part states that

A

⎛
⎜⎝

v1j

...
vnj

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠ , j = 1, . . . , r,

since if the components of the vectors of the basis of F are solutions of the
homogeneous system AX = 0, then the components of any other vector of F

will also be a solution of this system.
Notice that each of the determinants in system (1.5) is a sum of two de-

terminants, those obtained by considering the last column as a sum of two
columns. In particular, one of these determinants does not contain any xi.

Inspired by this observation, we consider the system of n − r equations

∣∣∣∣∣∣∣∣∣

v11 . . . v1r x1

...
...

...
...

vr1 . . . vrr xr

vj1 . . . vjr xj

∣∣∣∣∣∣∣∣∣
= 0, j = r + 1, . . . , n, (1.6)

which can be written as AX = 0, where the matrix A is exactly the same matrix
A as in system (1.5).

It is now clear that, by substituting in (1.6) the variables (x1, . . . , xr, xj)
respectively by (v1i, . . . , vri, vji), for i = 1, . . . , r, and j = r + 1, . . . , n, all these
determinants are zero, because they have two equal columns. Hence,

A

⎛
⎜⎝

v1j

...
vnj

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠ , j = 1, . . . , r,

and this completes the proof. �
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Observation 1.21

We can arrive at the same result by row-reducing the matrix to row-reduced
echelon form ⎛

⎜⎝
v11 . . . v1r x1 − q1

...
...

...
...

vn1 . . . vnr xn − qn

⎞
⎟⎠ ,

since, if the rank is equal to r, we obtain a matrix of the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• ∗ . . . ∗ ∗
0 • . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . • ∗
0 0 . . . 0 Expression 1
...

...
...

...
...

0 0 . . . 0 Expression n − r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where • denotes any non-zero element (the r pivots), ∗ denotes an arbitrary
element, and “Expression i” is an expression of the form

ai1x1 + · · · + ainxn − bi, i = 1, . . . , n − r.

Since the rank of this reduced matrix must also be r, we must have

a11x1 + · · · + a1nxn = b1,

...

an−r,1x1 + · · · + an−r,nxn = bn−r.

This is the linear system of n − r equations, n unknowns and rank n − r satisfied
by the coordinates x1, . . . , xn of the points of L. The argument proving that
this system has rank n − r is the same as that used in the above proof.

This system is equivalent to system (1.6), in the sense that they have the
same solutions.

The equations given by the linear system AX = B are known as Cartesian
equations of the linear variety.

Since the systems AX = B and CAX = CB, where C is an invertible ma-
trix, have the same solutions, it is clear that Cartesian equations of a linear
variety are not unique.
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Example 1.22

Find Cartesian equations for the plane of the affine space R
4 given by L =

P + [F ], with P = (1,0,1,0) and F = 〈(1, −1,0,0), (0,0,1,1)〉.

Solution

First method. We must have

rank

⎛
⎜⎜⎝

1 0 x − 1
−1 0 y

0 1 z − 1
0 1 t

⎞
⎟⎟⎠ = 2. (1.7)

Since the minor ∣∣∣∣ 1 0
−1 0

∣∣∣∣
is equal to zero, we must permute the rows of (1.7). For instance, we can put

rank

⎛
⎜⎜⎝

1 0 x − 1
0 1 z − 1

−1 0 y

0 1 t

⎞
⎟⎟⎠ = 2.

Then, the equations of L are

∣∣∣∣∣∣
1 0 x − 1
0 1 z − 1

−1 0 y

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
1 0 x − 1
0 1 z − 1
0 1 t

∣∣∣∣∣∣ = 0.

Equivalently
{

x + y = 1,

z − t = 1.

Second method. Row-reducing the matrix to row-reduced echelon form

⎛
⎜⎜⎝

1 0 x − 1
−1 0 y

0 1 z − 1
0 1 t

⎞
⎟⎟⎠ ,
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one obtains ⎛
⎜⎜⎝

1 0 x − 1
0 1 z − 1
0 0 t − z + 1
0 0 y + x − 1

⎞
⎟⎟⎠ .

Since the rank must be 2, we have
{

x + y = 1,

z − t = 1.

Finally we remark that, for instance,
{

x + y + 2z − 2t = 3,

3x + 3y + 4z − 4t = 7

are also Cartesian equations of L. �

When, in kn, the equations of a linear variety are given without specifying an
affine frame, as was done in the previous example, we implicitly assume that
we are considering the canonical affine frame.

Observation 1.23

We have seen that the coordinates of the points of L = Q + [F ] are solution
of a linear system AX = B, and that the components of the vectors of F are
solution of the homogeneous system AX = 0.

Conversely, given a linear system AX = B and an affine frame, we can
interpret the solutions of this system as a linear variety L = Q + [F ]. It suffices
to take

F =
{∑

xiei : (x1, . . . , xn) a solution of the system AX = 0
}

,

where (e1, . . . , en) is the basis of the given affine frame and Q the point Q =
(q1, . . . , qn), where (q1, . . . , qn) is any solution of the system AX = B.

1.11.1 Equations of Straight Lines

The equations of a straight line are given by (1.5) with r = 1. Hence, we have
∣∣∣∣v11 x1 − q1

vj1 xj − qj

∣∣∣∣ = 0, j = 2, . . . , n. (1.8)
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These equations are usually written as

x1 − q1

v1
= · · · =

xn − qn

vn
,

where v = (v1, . . . , vn) denotes a direction vector of the straight line. We should
not worry about division by zero: at least one vi is non-zero.

1.11.2 Equations of Hyperplanes

The equation of a hyperplane is given by (1.5) with r = n − 1. Hence, we have

∣∣∣∣∣∣∣
v11 . . . v1r x1 − q1

...
...

...
...

vn1 . . . vnr xn − qn

∣∣∣∣∣∣∣
= 0. (1.9)

This is usually written (expanding by the last column) as

a1x1 + · · · + anxn = b,

with at least one ai 
= 0. By Proposition 1.20, the equation of the direction of
this hyperplane is

a1x1 + · · · + anxn = 0.

Since two hyperplanes are parallel if and only if they have the same director
subspace, the hyperplanes

a1x1 + · · · + anxn = b,

a′
1x1 + · · · + a′

nxn = b′

are parallel if and only if the equations

a1x1 + · · · + anxn = 0,

a′
1x1 + · · · + a′

nxn = 0 (1.10)

have the same solutions.
Since the space of solutions of each one of these equations has dimension

n − 1, the space of solutions of system (1.10) also has dimension n − 1. Hence,
by Rouché-Frobenius’ theorem (see [8], page 260), we have

rank
(

a1 . . . an

a′
1 . . . a′

n

)
= n − (n − 1) = 1,
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and therefore one row is a multiple of the other. That is, there exists a λ ∈ k

such that

a′
i = λai, i = 1, . . . , n.

Equivalently, every hyperplane parallel to

a1x1 + · · · + anxn = b

has equation

a1x1 + · · · + anxn = b′,

with b′ ∈ k.

Observation 1.24

The above result on parallel hyperplanes can also be obtained as a consequence
of the following lemma.

Lemma 1.25

Let f, g : kn −→ k be surjective linear maps such that kerf = kerg. Then there
exists a λ ∈ k such that f = λg.

Proof

Surjectivity implies dimkerf = dimkerg = n − 1.
Let (e1, . . . , en−1) be a basis of kerf = kerg, and let (e1, . . . , en−1, en) be

a basis of kn. Put f(en) = λg(en). It is clear that f(ei) = λg(ei), i = 1, . . . , n.
Hence, f = λg, and this completes the proof. �

Corollary 1.26

The hyperplanes

a1x1 + · · · + anxn = b,

a′
1x1 + · · · + a′

nxn = b′

are parallel if and only if there exists a λ ∈ k such that

a′
i = λai, i = 1, . . . , n.
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Proof

Apply the previous lemma with f(x) =
∑

i aixi and g(x) =
∑

i a
′
ixi. �

1.12 Barycenter

Definition 1.27

Let P1, . . . , Pr be points of an affine space A. The barycenter G of these r points
is the point

G = P1 +
1
r
(

−−−→
P1P2 + · · · +

−−−→
P1Pr).

Therefore we need r (i.e. the sum of r times the unit element of the field k) to
be invertible in k.

Proposition 1.28

The barycenter of r points P1, . . . , Pr ∈ A is the unique point G such that

−−→
GP1 + · · · +

−−→
GPr =�0.

Proof

We have
−−→
GP1 + · · · +

−−→
GPr =

−−→
GP1 + (

−−→
GP1 +

−−−→
P1P2) + · · · + (

−−→
GP1 +

−−−→
P1Pr)

= r
−−→
GP1 + (

−−−→
P1P2 + · · · +

−−−→
P1Pr)

= r
−−→
GP1 + r

−−→
P1G =�0.

Hence, the barycenter satisfies the given condition.
Moreover, it is the only point satisfying it. To see this let us assume that

G′ satisfies
−−−→
G′P1 + · · · +

−−−→
G′Pr =�0.

Then

(
−−→
G′G +

−−→
GP1) + · · · + (

−−→
G′G +

−−→
GPr) =�0.

Hence, r
−−→
G′G =�0, and so G = G′. �
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It is now clear that the role played by P1 in the definition of barycenter can be
played by any of the points Pi, i = 1, . . . , r. That is, we also have

G = Pi +
1
r
(

−−→
PiP1 + · · · +

−−→
PiPr).

The barycenter of two points is called the midpoint between them. That is,
the midpoint between P1 and P2 is the point

G = P1 +
1
2

−−−→
P1P2.

1.12.1 Computations in Coordinates

Let R be an affine frame of A, and let us denote by

Pi = (xi1, . . . , xin), i = 1, . . . , r,

G = (g1, . . . , gn)

the coordinates of the points Pi and G in R. It is easy to see that

gj =
x1j + · · · + xrj

r
, j = 1, . . . , n.

1.13 Simple Ratio

Definition 1.29

Let A,B,C ∈ A be three distinct collinear points. The simple ratio of these
three points is the unique scalar λ = (A,B,C) ∈ k such that

−−→
AB = λ

−→
AC.

Equivalently, the simple ratio of three distinct collinear points is the scalar
(A,B,C) ∈ k such that

B = A + (ABC)
−→
AC

Note that the order of the points is very important.2 It is clear, for instance,
that by permuting the last two points, the simple ratio is inverted. In fact, we
have
2 Not all authors take the points in the same order in the definition of simple ratio.

We have adopted, as a sign of recognition and respect, the definition used by Puig
Adam, [23], volume 2, page 108.
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(A,B,C) = λ,

(A,C,B) =
1
λ

,

(B,A,C) =
λ

λ − 1
,

(B,C,A) =
λ − 1

λ
,

(C,A,B) =
1

1 − λ
,

(C,B,A) = 1 − λ.

1.13.1 Characterization of the Points of a Line Segment
(k = R)

Let A be a real affine space, that is, such that its associated vector space E is
an R-vector space. Then every pair of points P,Q ∈ A determine a line segment
PQ defined by

PQ = {X ∈ A : X = P + λ
−−→
PQ,0 ≤ λ ≤ 1}.

Proposition 1.30

Let A be a real affine space, and let X,P,Q ∈ A be three distinct collinear
points. Then

X ∈ PQ if and only if 0 < (P,X,Q) < 1.

Proof

Let X = P + λ
−−→
PQ. Then

−−→
PX = λ

−−→
PQ, and hence (P,X,Q) = λ. That is, X

belongs to the line segment PQ if and only if 0 < (P,X,Q) < 1. �

Since the simple ratio depends on the order, we also have the following, for
example.
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Proposition 1.31

Let A be a real affine space, and let X,P,Q ∈ A be three distinct collinear
points. Then

X ∈ PQ if and only if (X,P,Q) < 0.

Proof

If (P,X,Q) = λ, then

(X,P,Q) =
λ

λ − 1
.

�

1.13.2 Characteristic Property of the Barycenter
of a Triangle

The barycenter of a triangle3 is the barycenter of its vertices.

Proposition 1.32

The straight line joining the vertex A of a triangle ABC with the barycenter
G of this triangle meets the opposite side in the midpoint A′ of the points B,C .
That is,

(B,A′,C) =
1
2
.

Moreover,

(A,G,A′) =
2
3
.

Proof

Let us cut the straight line A + λ
−→
AG with the straight line B + μ

−−→
BC (see

Figure 1.8). Recall B = A +
−−→
AB. We have

A + λ
−→
AG = B + μ

−−→
BC

= A +
−−→
AB + μ

−−→
BC.

3 Also called the centroid or geometric center.
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Figure 1.8. Barycenter

Hence,

λ
−→
AG =

−→
AG +

−−→
GB + μ

−−→
BG + μ

−−→
GC.

Since
−→
GA +

−−→
GB +

−−→
GC =�0, we have

(λ − 1)
−→
GA + (1 − μ)

−−→
GB + μ(−−→

GA − −−→
GB) =�0,

and hence

λ − 1 − μ = 0,

1 − μ − μ = 0,

that is, λ = 3
2

and μ = 1
2
.

Thus, A′ = A + 3
2

−→
AG, that is (A,G,A′) = 2

3
.

And also A′ = B + 1
2

−−→
BC, that is (B,A′,C) = 1

2 . �

The straight lines joining each vertex of a triangle with the midpoint of the
opposite side are called medians. The above proposition implies that the three
medians of a triangle meet in a point: the barycenter.

1.13.3 The Real Plane as a Complex Straight Line

Let A = R
2 be the real affine plane. We have dimR A = 2. Let A = (a1, a2),

B = (b1, b2), C = (c1, c2) ∈ A. If these points are not collinear, it makes no
sense to talk about their simple ratio. However, we can think of A as C. Then
dimC A = 1 (the real plane is the complex straight line), and hence the complex
numbers A = z1 = a1 + ia2, B = z2 = b1 + ib2, C = z3 = c1 + ic2 are collinear.
So, there exists a λ ∈ C such that

z2 − z1 = λ(z3 − z1)

(simply take λ as the ratio of these two complex numbers). Thus,

(z1, z2, z3) =
z2 − z1

z3 − z1
.
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As an application we have that three complex numbers z1, z2, z3 are the
vertices of an equilateral triangle in C if and only if

(z1, z2, z3) =
1
2

+ i

√
3

2
.

1.14 Theorems of Thales, Menelaus and Ceva

Theorem 1.33 (Thales’ theorem)

Let us assume that three parallel straight lines r, s, t meet two concurrent
straight lines in points A,A′ (on r), B,B′ (on s) and C,C ′ (on t). Then
(A,B,C) = (A′,B′,C ′).

Equivalently, there exists a λ ∈ k such that
−−→
AB = λ

−→
AC,

−−−→
A′B′ = λ

−−→
A′C ′.

Proof4

As r, s and t are parallel, there exist μ, ν ∈ k such that
−−→
BB′ = μ

−−→
CC ′, and−−→

AA′ = ν
−−→
CC ′ (see Figure 1.9).

4 Proof of Thales’ theorem given in the famous song
“El teorema de Tales”, by Le Luthiers:

a paralela a b, b paralela a c, a paralela a b, paralela a c, paralela a
d, op es a pq, m es a nt, op es a pq como mn es a mt; a paralela a
b, b paralela a c, op es a pq como mn es a nt.
–La bisectriz yo trazaré, y a cuatro planos intersectaré.
–Una igualdad yo encontraré, op más pq es igual a st.
–Usaré la hipotenusa.
–Ay, no te compliques: nadie la usa,
–Trazaré pues un cateto.
–Yo no me meto, yo no me meto.
Triángulo, tetrágono, pentágono, exágono, eptágono, octógono, son
todos poĺıgonos. Seno, coseno, tangente y secante, y la cosecante y
la cotangente.
Tales. . . Tales de Mileto, Tales. . . Tales de Mileto, Tales. . . Tales de
Mileto, Tales. . . Tales de Mileto. Que es lo que queŕıamos demostrar,
Que es lo que, que es lo que, queŕıamos demos, demos, demostrar.
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Figure 1.9. Thales’ theorem

Let (A,B,C) = λ and (A′,B′,C ′) = σ, so that we have
−−→
AB = λ

−→
AC and

−−−→
A′B′ = σ

−−→
A′C ′.

We have

C′ = C +
−−→
CC ′ = A +

−→
AC +

−−→
CC′. (1.11)

On the other hand

C ′ = A +
−−→
AA′ +

−−→
A′C′

= A + ν
−−→
CC ′ + σ−1

−−−→
A′B′

= A + ν
−−→
CC ′ + σ−1(

−−→
A′A +

−−→
AB +

−−→
BB′)

= A + ν
−−→
CC ′ + σ−1(−ν

−−→
CC ′ + λ

−→
AC + μ

−−→
CC ′). (1.12)

Comparing (1.11) and (1.12), and equating the coefficients of
−→
AC and

−−→
CC ′,

one obtains

1 = σ−1λ,

1 = ν − σ−1ν + σ−1μ. (1.13)

Thus, (A,B,C) = λ = σ = (A′,B′,C ′), completing the proof. �

Corollary 1.34

Let us assume that two parallel straight lines r, s cut two concurrent straight
lines respectively in points B,B′ (on r) and C,C ′ (on s). Let A be the point
of concurrence. Then the triangles ABB′ and ACC ′ are similar, that is,
there exists a λ ∈ k such that

−−→
AB = λ

−→
AC,

−−→
AB′ = λ

−−→
AC ′,

−−→
BB′ = λ

−−→
CC ′.
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Figure 1.10. Similar triangles

Proof

This is a particular case of Thales’ theorem, with A = A′ (see Figure 1.10).
It is sufficient to observe that, in this case, formula (1.13) implies λ = μ,

since
−−→
AA′ =�0 = ν

−−→
CC ′, that is ν = 0. �

Theorem 1.35 (Menelaus’ theorem)

Let us assume that a straight line meets the sides of a triangle ABC in the
points P,Q,R, respectively. Then

(P,A,B) · (Q,B,C) · (R,C,A) = 1.

Proof

Let (P,A,B) = λ, (Q,B,C) = μ, (R,C,A) = ν. We have
−→
PA = λ

−−→
PB,

−−→
QB =

μ
−−→
QC,

−→
RC = ν

−→
RA (see Figure 1.11).

Figure 1.11. Menelaus’ theorem

Then
−→
PA = λ(

−−→
PQ +

−−→
QB)

= λ
−−→
PQ + λμ

−−→
QC

= λ
−−→
PQ + λμ

−−→
QR + λμν

−→
RA. (1.14)

But, since we also have
−→
PA =

−→
PR +

−→
RA, (1.15)
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and the vectors
−→
PR,

−−→
PQ and

−−→
QR are proportional, equating (1.14) and (1.15),

one obtains

λμν = 1,

and this completes the proof. �

Note that in the statement of Menelaus’ theorem it is necessary that P 
= A,B,
Q 
= B,C , R 
= C,A, that is, the straight line that cuts the sides of the triangle
does not contain any vertex.

The converse of Menelaus’ theorem is also true; see Exercise 1.43, page 45.

Observation 1.36

In the axiomatic development of Euclidean Plane Geometry it is not possible
to prove directly that if a straight line intersects one side of a triangle and
misses the three vertices, then it must intersect one of the other two sides.

This must be imposed as an axiom, as was observed by Moritz Pasch and
included in D. Hilbert’s work of 1899, Gründlagen der Geometrie.

From this, and Hilbert’s other axioms, it can be proved that if a straight
line intersects one side of a triangle and misses the three vertices, then it must
intersect one and only one of the other two sides.

In our algebraic model, this “only one” part is a direct consequence of
Menelaus’ theorem and Proposition 1.31, since if a straight line cuts the three
sides of a triangle, then the three simple ratios are negative, and so their product
cannot be equal to 1.

Theorem 1.37 (Ceva’s theorem)

Let ABC be a triangle. The necessary and sufficient condition for three
straight lines, passing respectively through each one of the vertices of the tri-
angle, to be concurrent in a point P , is that the following relationship among
simple ratios is satisfied:

(PA,B,C) · (PB ,C,A) · (PC ,A,B) = −1,

where PA, PB, PC denote the intersection points of the three given straight lines
with the sides BC, AC and AB, respectively.
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Proof

First we assume that the three straight lines meet in a point P . Let us consider
the straight line s through the point A, parallel to the straight line BC, see
Figure 1.12. Let M = s ∩ BP and N = s ∩ CP .

Figure 1.12. Ceva’s theorem

Applying Corollary 1.34 of Thales’ theorem twice, with vertex P , one ob-
tains

(A,M,N) = (PA,B,C). (1.16)

Applying the same corollary, with vertex PB , one obtains

−−→
CB = (PB ,C,A)

−−→
AM.

Applying the corollary again, now with vertex PC , one obtains

−−→
AN = (PC ,A,B)

−−→
BC.

These two last equalities imply

(A,M,N) = − 1
(PB ,C,A)(PC ,A,B)

,

which, together with (1.16), gives the result.
To see that the condition is sufficient, let us suppose that there are three

points PA, PB , PC satisfying

(PA,B,C) · (PB ,C,A) · (PC ,A,B) = −1.

Let Q = BPB ∩ CPC and denote by P ′
A the point P ′

A = AQ ∩ BC.
Then, from the first part of the theorem applied to the three concurrent

straight lines in Q, we have

(P ′
A,B,C) · (PB ,C,A) · (PC ,A,B) = −1.
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Thus, (P ′
A,B,C) = (PA,B,C), and therefore PA = P ′

A. Hence the straight
line APA goes through Q, and this completes the proof. �

Because of the influence of this theorem, straight lines through a vertex of a
triangle, contained in the plane of the triangle, are called cevians, a term ap-
parently introduced by M.A. Poulain in 1888. For instance, the altitudes, the
angle bisectors, the perpendicular bisectors and the medians are examples of
concurrent cevians; see Exercise 5.11 of Chapter 5, page 171. The intersection
of a cevian through a vertex with the opposite side to this vertex is called the
foot of the cevian. Thus Ceva’s theorem says that three cevians are concur-
rent if the product of the simple ratios of their feet and corresponding vertices
is −1.

EXERCISES

1.1. Prove that the following actions induce an affine space structure
on A:
(a)

A × E −→ A

P,v �−→ P + v

where

A = {P = (x, y, z) ∈ R
3 : x + y + z = 1} and

E = {v = (x, y, z) ∈ R
3 : x + y + z = 0}.

(b)

A × E −→ A

P, (α,β) −→ P + α(1, −1,0) + β(1,0, −1),

where A = {P = (x, y, z) ∈ R
3 : x + y + z = 1} and E = R

2.
(c)

A × E −→ A

(x, y, z), (α,β) −→ (x + αz + βy + αβ, y + α, z + β),

where A = {(x, y, z) ∈ R
3 : x = yz} and E = R

2.
1.2. Let A be an affine space over a vector space E, defined by the action

ϕ : A × E → A, and let f : E′ → E be an isomorphism of vector
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spaces. Prove that the map

A × E′ −→ A

a,u −→ ϕ(a, f(u))

gives a structure of an affine space over E′ on A.
1.3. Let A be an affine space over a vector space E, defined by the action

ϕ : A × E → A. Consider a set A
′ and a bijection g : A → A

′. Prove
that the map

A
′ × E −→ A

′

a′, u −→ g(ϕ(g−1(a′), u))

gives a structure of an affine space over E on A
′.

1.4. Let A be an affine space over a vector space E. Find a subset B of
A and a vector subspace F of E such that conditions 0,1 and 2 of
Definition 1.5 are fulfilled, but not condition 3.

1.5. Let A be an affine space of dimension two. Prove that Axioms 1, 2
and 3 of Affine Geometry given in the introduction, page viii, are
fulfilled.

1.6. Prove that the set

A = {(x, y, z) ∈ R
3 : x2 + y2 − z = 0}

with the action of R
2 given by

(x, y, z) + (u, v) = (x + u, y + v, (x + u)2 + (y + v)2),

is an affine space.
1.7. Let P1, . . . , Pr be points of an affine space. Prove that the vectors−−−→

P1P2, . . . ,
−−−→
P1Pr are linearly independent if and only if the vectors

−−→
PiP1, . . . ,

−−−−→
PiPi−1,

−−−−→
PiPi+1, . . . ,

−−→
PiPr , i = 2, . . . , r − 1, are linearly inde-

pendent.
1.8. Find the equation and draw approximately the straight line parallel

to r : (0,1) + 〈(1,1)〉, through the point (0,2), in the affine space of
Example 3, page 3.

1.9. Consider the linear varieties of the affine space R
4 given respectively

by the following equations:⎧⎨
⎩

x + y − z − 2t = 0,

3x − y + z + 4t = 1,

2y − 2z − 5t = −1/2.

⎧⎨
⎩

−z + t = 1,

2x + y + z − t = 0,

4x + 2y + 2z + t = 3.⎧⎨
⎩

2x − y + t = −1,

2x − y + t = −1,

−x + 2y + z − 2t = 2.

{
3x + z = 0.
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{
−x + 2y + z − 2t = 2,

3x + z = 0.

⎧⎨
⎩

2x − y + t = −1,

−x + 2y + z − 2t = 2,

3x + z + t = 4.

Write each of them in the form P + [V ], where P ∈ R
4 and V is a

vector subspace of the vector space R
4, giving explicitly the point P

and a basis of V .
1.10. Find, in an affine space of dimension 3, Cartesian equations for the

linear varieties given, in some affine frame, by:
⎧⎨
⎩

x = 2 − a,

y = −1,

z = 2 + a,

⎧⎨
⎩

x = a − b,

y = a − 5,

z = 2a + 3b,

where a, b ∈ k are parameters.
1.11. Find, in an affine space of dimension 4, a system of Cartesian and

parametric equations for the linear varieties given in some affine
frame by:
(a) The straight line through the points (2,1,0,1) and (1,1,1,2).
(b) The plane through the points (2,1,0,1), (1,1,1,2) and

(3, −1,2,3).
(c) The linear variety of dimension 3 through the points (2,1,0,1),

(1,1,1,2), (3, −1,2,3) and (0,0, −2, −1).
1.12. Find, in an affine space of dimension 4, the dimension and parametric

equations of each of the linear varieties given, in some affine frame,
by:

L:
{

−2x + 3y + 4z + t = 5.

M :

⎧⎪⎪⎨
⎪⎪⎩

x − y + 2z − 2t = 7,

3x + z + t = 7,

x − y + 5z + 6t = 0,

−2x − y + z − 3t = 0.

N :
{

−2x + 3y + 4z + t = 5,

−x + 4y + z − 5t = 8.

Find L ∩ M , M ∩ N and M + N .
1.13. Given a linear variety L and a point P /∈ L, prove that there is a

unique linear variety of the same dimension as L, parallel to L and
passing through P .
Find, in the affine space R

3, a system of Cartesian and paramet-
ric equations of: the plane containing the points (1, −1,0), (2,1,1)
and (2,0,1); the plane parallel to the above plane passing through
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(0,0,1); a straight line passing through (1,1,1) and parallel to the
above two planes.

1.14. Let L = P + [F ] be a linear variety of dimension r in an affine space
A. Let Q /∈ L. Prove that the set of points of the straight lines
through Q containing some point of L, together with the points
of the linear variety L′ = Q + [F ], is a linear variety of dimension
r + 1.

1.15. Fix an affine frame in an affine space of dimension 4. Find a system
of Cartesian and parametric equations of the following:
(a) The plane containing the point (1,2,3,4) and parallel to the

plane:

x − y + z + t = 3; 2x + y − 5t = 10.

(b) The plane containing the point (1,2,3,4) and parallel to the
plane:

x = 2u + v; y = u + v; z = u − 2v + 1; t = v − 2.

1.16. Fix an affine frame in an affine space of dimension 4. Find a system
of Cartesian equations of the linear varieties given by:
(a) (x, y, z, t) = (2,3,0, −4) + λ(0,2,1, −5);
(b) (x, y, z, t) = (2,3,0, −4) + λ(0,2,1, −5) + μ(3, −1, 1

2 ,0); and
(c) (x, y, z, t) = (2,3,0, −4) + λ(0,2,1, −5) + μ(3, −1, 1

2 ,0) + ρ(1,1,

1,1).
1.17. Fix an affine frame in an affine space of dimension 4. Find a system

of Cartesian and parametric equations of the plane containing the
straight line r and parallel to the straight line s, where:

r:

⎧⎨
⎩

2x − y + t = −1,

−x + 2y + z − 2t = 2,

3x + z + t = 4.

s:

⎧⎨
⎩

x − y + t = 3,

x + 2y + z − 2t = 2,

x + z + t = 0.

1.18. Fix an affine frame in an affine space of dimension 4. Find a system
of Cartesian and parametric equations of a plane Π satisfying:
(a) Π is parallel to the hyperplane x + y + z + t = 0.
(b) Π contains the straight line (1,1,1,1) + λ(2, −1,0, −1).
(c) Some plane parallel to Π meets in a straight line the plane:

{
2x + y − z = 2,

4x + t = 5.

1.19. Find, in the affine space R
4, a system of Cartesian and parametric

equations of the plane Π generated by the straight line (1,1,1,1) +
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λ(2, −1,0, −1) and the point (0,0, −2,3). Is there a plane Π ′ passing
through the point (0,1,0,1) and such that the intersection Π ∩ Π ′

is the point (0,0, −2,3)?
1.20. Let Π be the plane of the affine space R

4 given by:
{

2x + y − z = 2,

4x + t = 5.

Determine all the straight lines L passing through the point (0,1,0,1)
and such that Π + L = R

4.
1.21. Let L1 and L2 be the linear varieties of the affine space R

4 given by

L1 = {(a + 3λ + 2μ,1 − λ − μ,4 + λ,6 + 5λ + 2μ) : λ,μ ∈ R},

L2 = {(2 + α + 2β,1,1 + α + β,3α) : α,β ∈ R}.

Find a ∈ R such that L1 ∩ L2 
= ∅. For this value of a, determine
L1 ∩ L2 and L1 + L2.

1.22. Determine the relative positions of two straight lines in an affine
space of dimension n.

1.23. Consider the hyperplane Π of the affine space R
4 given by x + y +

mz = n and the straight line r given by

x = t, y = 2 − t, z = 2t.

Study, according to m ∈ R and n ∈ R, the relative position between
the plane Π and the straight line r.

1.24. Prove that, in an affine space of dimension 3, the intersection of two
different and non-parallel planes is a straight line.

1.25. Let Ai = (ai, bi, ci), i = 1,2,3,4, be points in an affine space of di-
mension 3. Prove that the points Ai are coplanar if and only if

∣∣∣∣∣∣∣∣

a1 b1 c1 1
a2 b2 c2 1
a3 b3 c3 1
a4 b4 c4 1

∣∣∣∣∣∣∣∣
= 0.

1.26. Let A1, . . . ,An be points in an affine space. Prove that the straight
lines joining each point Ai with the barycenter Bi of the other points
(see Figure 1.13) are concurrent (in the barycenter G of the points
A1, . . . ,An). Find the simple ratio (Ai,Bi,G).

1.27. Let P,Q,R be three points in an affine space of dimension 2. Let
MPQ be the midpoint of P and Q, MQR the midpoint of Q and R,
and MRP the midpoint of R and P . Prove that the barycenter of P ,
Q and R coincides with the barycenter of MPQ, MQR and MRP .
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Figure 1.13. Collinear barycenters

1.28. (Barycenter with weights) Given a set of r points Pi, i = 1, . . . , r, in
an affine space A, its barycenter with weights is the point G̃ given by

G̃ = P1 +
r∑

i=1

λi
−−→
P1Pi,

r∑
i=1

λi = 1.

Prove that for all points Q ∈ A we have

Q +
r∑

i=1

λi
−−→
QPi = G̃, and, hence,

r∑
i=1

λi

−−→
G̃Pi =�0.

1.29. Given, in the affine space R
4, the linear varieties

L1 = {(x, y, z, t) ∈ R
4 : x + y = 4, z + t = a},

L2 = {(3 + λ,2 − 2λ,2λ, −1 + λ) : λ ∈ R},

find a ∈ R such that the affine space generated by L1 and L2 has
minimum dimension.

1.30. Let L1 and L2 be two straight lines in an affine space A of dimen-
sion 3.
(a) What are the possible values of dim(L1 + L2)?
(b) Prove that L1 and L2 do not meet and are not parallel if and

only if L1 + L2 = A.
1.31. In the affine plane A = Z/3Z × Z/3Z over the field Z/3Z:

(a) How many points are there?
(b) How many straight lines are there?
(c) How many points are there on each straight line?
(d) How many straight lines are there parallel to a given straight

line?
(e) How many different families of parallel straight lines are there?

1.32. Given, in the affine plane R
2, the three straight lines

3x + 2y = 1, y = 5, 6x + y = −13,
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find a triangle ABC such that its medians are on these straight
lines, the vertex A is on the first straight line, and the point (1/3,0)
is the midpoint of the side BC.

1.33. Consider, in the affine plane R
2, the points A = (2,3), G = (1, −1)

and the straight lines r : x − 3y+1 = 0, s : 2x+5y − 1 = 0. Determine
the unique triangle having A as one of its vertices, G as barycenter,
and such that the other two vertices are on the straight lines r and
s, respectively.

1.34. Let C = (e1, e2, e3) be the canonical basis of the vector space R
3.

Find the equations of the change of coordinates between the affine
frames R1 and R2 of the affine space R

3 given by

R1 = {(1,1,1); (e3 − e1, e1 + e3, e1 + e2)},

R2 = {(0,1,1); (e1,2e2 − e3,3e1 − e3)}.

1.35. Consider the affine frame R of the affine space R
3 given in the

canonical affine frame by

R = {(1,1,1); ((1,1,1), (0,1,0), (2,1,0))}.

What are the coordinates of the point (0,0,0) ∈ R
3 in this new affine

frame? And those of the point (1,1,1) ∈ R
3? Is there a point with

the same coordinates in R as in the canonical affine frame C? Find
the equations of the change of coordinates between R and C.

1.36. Consider, in the affine space R
3, the affine frames R and R′ given by

R = {(0,0,0); ((1,0,0), (0,1,0), (0,0,1))},

R′ = {(−1,0,0); ((1,1,0), (0, −1,0), (0,0 − 1))}.

(a) Given the point P with coordinates (1,2, −1) in R, determine
the coordinates of P in R′.

(b) Find, with respect to R ′, the equation of the plane Π , given,
with respect to R, by the equation 2x − y + z + 2 = 0.

(c) Find, with respect to R′, the equations of the straight line r

given, with respect to R, by the equations
{

2x + y = 0,

x − 2y + z = 1.

1.37. (Gauss’ straight line) A straight line cuts the sides AB, BC and AC

of the triangle ABC in the points D, E and F respectively (see
Figure 1.14). Prove that the midpoints X,Y,Z of the line segments
DC, AE and BF , respectively, are collinear.
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Figure 1.14. Gauss’ straight line

1.38. Consider, in a real affine plane, a triangle ABC and a point P

on the straight line AB not belonging to the line segment AB. Let
l be a straight line through P that cuts the line segments AC and
BC. Let R = l ∩ AC , Q = l ∩ BC and G = BR ∩ AQ. Prove that
the point P ′, the intersection of the straight lines CG and AB, see
Figure 1.15, does not depend on the straight line l.
Hint: Prove that (P,A,B) = −(P ′,A,B).

Figure 1.15. P ′ is called the harmonic conjugate of P

1.39. Let ABC be a triangle in a real affine plane. Let P be the point on
the straight line AB with (B,P,A) = 3

2 ; Q the point on the straight
line BC with (C,Q,B) = 3

2 ; and R the point on the straight line
AC with (A,R,C) = − 1

8 . Prove that the points P,Q,R are collinear
and give, with respect to the affine frame R = {A; (

−−→
AB,

−→
AC)}, the

equation of the straight line that they determine.
1.40. Let us consider a trapezium A,B,C,D, with the side AB parallel to

the side DC. Let P be the intersection point of the diagonals AC

and BD (see Figure 1.16). Prove that P is the midpoint of the line
segment containing P , parallel to the side AB and with endpoints
in BC and AD.

1.41. Let A,B,C,D be the vertices of a quadrilateral in an affine plane,
that is, four points of the affine plane such that no three of them
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Figure 1.16. Diagonals of a trapezium

are collinear. Prove that the midpoints of the line segments AB,
BC, CD, DA are the vertices of a parallelogram (see Figure 1.17).
Prove also that a quadrilateral is a parallelogram if and only if the
diagonals intersect at their midpoint.

Figure 1.17. The parallelogram associated to a quadrilateral

1.42. Given a triangle ABC in the real affine plane, consider the points
P1 = A + 2

3

−−→
AB, P2 = A + 1

3

−−→
AB, Q1 = B + 1

3

−−→
BC, Q2 = B + 2

3

−−→
BC.

Find (A,C,R), where R is the point at which the side AC cuts the
straight line P1Q2 (see Figure 1.18).

Figure 1.18. Simple ratio

1.43. Prove the converse of Menelaus’ theorem. Explicitly, prove that if
P,Q,R are points on the sides of a triangle ABC such that

(P,A,B) · (Q,B,C) · (R,C,A) = 1,

then P,Q,R are collinear.
1.44. Study the converse of Thales’ theorem. Explicitly, given three

collinear points A,B,C and three collinear points A′,B′,C ′ (on
another straight line) such that (A,B,C) = (A′,B′,C ′), is it true
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that the straight lines AA′, BB′ and CC ′ are parallel? Prove the
converse of Corollary 1.34 of Thales’ theorem. That is, prove that if
two straight lines r, r′ meet two straight lines s, t (concurrent in a
point A) in points B ∈ r ∩ s, B′ ∈ r′ ∩ s, C ∈ r ∩ t, C ′ ∈ r′ ∩ t and the
triangles ABC and AB′C′ are similar, then r and r′ are parallel.

1.45. (Desargues’ theorem) Let r, r′, r′ ′ be straight lines in an affine space,
concurrent in a point O; and let A,B ∈ r, A′,B′ ∈ r′, A′ ′,B′ ′ ∈ r′ ′

be points different to each other and different from O. Prove that if
the points I = AA′ ∩ BB′, J = AA′ ′ ∩ BB′ ′, K = A′A′ ′ ∩ B′B′ ′ are
defined, then they are collinear (see Figure 1.19).

Figure 1.19. Desargues’ theorem

1.46. (Pappus’ theorem) Let A, B, C be points on a straight line r and
let A′, B′, C′ be points on another straight line r′, in an affine
plane. Prove that if the points I = AB′ ∩ BA′, J = AC ′ ∩ A′C,
K = BC′ ∩ B′C are defined, then they are collinear (see Figure 1.20).

Figure 1.20. Pappus’ theorem
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Affinities

2.1 Introduction

From the geometrical point of view, the most natural maps between affine
spaces are those taking collinear points to collinear points. We shall see that
these maps are also the most natural from the algebraic point of view: they
essentially coincide with the affinities.

2.2 Definition of Affinity

Let A1 and A2 be affine spaces over the k-vector spaces E1 and E2, respectively.
Let us fix a point P ∈ A1. Then every map f : A1 −→ A2 induces a map

f̃P : E1 −→ E2

defined by the formula

f̃P (v) =
−−−−−−→
f(P )f(Q),

where Q ∈ A1 is the unique point such that
−−→
PQ = v.

This map f̃P between the vector spaces E1 and E2 is not in general linear.
We shall say that f̃P is the map induced by the map f and the point P .

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 2, c© Springer-Verlag London Limited 2011
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Definition 2.1

A map f : A1 −→ A2 between two affine spaces is called an affinity if the map
f̃P : E1 −→ E2 induced by f and a point P ∈ A1 on the corresponding k-vector
spaces is a linear map.

In this case f̃P does not depend on the point, that is, f̃P = f̃Q for all P,Q ∈ A1.
In fact, if v =

−−→
QR, we have

f̃Q(v) =
−−−−−−→
f(Q)f(R)

=
−−−−−−→
f(Q)f(P ) +

−−−−−−→
f(P )f(R)

= −f̃P (
−−→
PQ) + f̃P (

−→
PR)

= −f̃P (
−−→
PQ) + f̃P (

−−→
PQ +

−−→
QR)

= f̃P (
−−→
QR)

= f̃P (v).

Note that we have only used the fact that f̃P preserves vector addition. If
f̃P preserves vector addition but does not preserve scalar multiplication, i.e.,
f̃P (λv) �= λf̃P (v), we still have f̃P = f̃Q for all P,Q ∈ A1, but f is not an affinity.

Since all of the linear maps f̃P are equal for an affinity f , i.e. they do not
depend on the point P , we shall denote this map simply by f̃ .

Thus, if f : A1 −→ A2 is an affinity, there is a linear map f̃ : E1 −→ E2 such
that, for every pair of points P,Q ∈ A1,

f̃(
−−→
PQ) =

−−−−−−→
f(P )f(Q)

Since

f(Q) = f(P ) +
−−−−−−→
f(P )f(Q),

we have

f(P +
−−→
PQ) = f(Q) = f(P ) + f̃(

−−→
PQ),

and, since
−−→
PQ is an arbitrary vector, we have, for every point P ∈ A1 and for

every vector v ∈ E1,

f(P + v) = f(P ) + f̃(v)
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This equality is equivalent to the commutativity of the following diagram

A1 × E1 −−−−→ A1

f ×f̃

⏐⏐�
⏐⏐�f

A2 × E2 −−−−→ A2

We summarize these comments in the following proposition.

Proposition 2.2

A map between two affine spaces f : A1 −→ A2 is an affinity if and only if there
exists a linear map f̃ : E1 −→ E2 between the corresponding k-vector spaces
such that

f(P + v) = f(P ) + f̃(v) for all P ∈ A1 and v ∈ E1.

Proof

If f is an affinity, we take f̃ = f̃P , for some P , and we are done.
Conversely, if there exists a linear map f̃ with this property, since Q =

P +
−−→
PQ, for all P,Q ∈ A1, we have

f(Q) = f(P ) + f̃(
−−→
PQ),

and hence, f̃(
−−→
PQ) =

−−−−−−→
f(P )f(Q) = fP (

−−→
PQ), that is, f̃P = f̃ . Thus, f̃P is linear,

and f is an affinity. �

It is clear that if such an f̃ exists, it is unique.
Note that if f = id, that is, f(P ) = P , for all P ∈ A, then f is an affinity

with f̃ = id, that is, f̃(v) = v, for all v ∈ E. This can only happen when we
have f : A1 −→ A1, that is, when the source and target affine spaces are the
same: the same set, the same associated vector space and the same action. For
instance, the identity map id : R(x) −→ R(x) is not an affinity between the
affine spaces k1 and k2 considered in Observation 1.3, page 5.

2.3 First Properties

In this section A1 and A2 are affine spaces over the k-vector spaces E1 and E2,
respectively.
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Proposition 2.3 (Uniqueness)

Let f, g : A1 −→ A2 be affinities that coincide on some point P ∈ A1, that is
f(P ) = g(P ), and which have the same associated linear map, f̃ = g̃. Then
f = g.

Proof

Let Q ∈ A1. Then

f(Q) = f(P +
−−→
PQ)

= f(P ) + f̃(
−−→
PQ)

= g(P ) + g̃(
−−→
PQ)

= g(P +
−−→
PQ)

= g(Q).

Hence, f = g. �

Proposition 2.4 (Existence)

Let φ : E1 −→ E2 be a linear map and suppose given two points P ∈ A1 and
Q ∈ A2. Then there exists a unique affinity f : A1 −→ A2 such that f(P ) = Q

and f̃ = φ.

Proof

Uniqueness follows from the above proposition.
Let us prove the existence. Define f : A1 −→ A2 by

f(X) = Q + φ(
−−→
PX) for all X ∈ A1.

Then, clearly f(P ) = Q. Moreover, f̃P = φ. In fact,

f̃P (
−−→
PX) =

−−−−−−−→
f(P )f(X) =

−−−−→
Qf(X) = φ(

−−→
PX).

In particular, f̃P is linear, and hence f is an affinity with associated linear map
f̃ = φ. �
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Theorem 2.5 (Transitivity)

Let P1, . . . , Pr be affinely independent points in an affine space A1. Let
Q1, . . . ,Qr be points in an affine space A2. Then there exists an affinity
f : A1 −→ A2 such that f(Pi) = Qi, for i = 1, . . . , r. If r = dimA1 + 1, then
this affinity is unique.

Proof

Since the points P1, . . . , Pr are affinely independent, the vectors
−−−→
P1P2, . . . ,

−−−→
P1Pr

are linearly independent. We know (see, for instance, [8], page 288) that there
exists a linear map φ : E1 −→ E2 such that

φ(
−−→
P1Pi) =

−−−→
Q1Qi, i = 1, . . . , r.

(Notice that the points Qi are neither necessarily affinely independent nor
distinct.)

We take, using Proposition 2.4, the unique affinity f : A1 −→ A2 such that
f(P1) = Q1 and such that f̃ = φ. Clearly

f(Pi) = f(P1 +
−−→
P1Pi) = f(P1) + f̃(

−−→
P1Pi) = Q1 +

−−−→
Q1Qi = Qi.

If r = dimA1 +1, the vectors
−−−→
P1P2, . . . ,

−−−→
P1Pr form a basis of E1. In this case

there exists (see, for instance, [8], page 288) a unique linear map φ : E1 −→ E2

such that

φ(
−−→
P1Pi) =

−−−→
Q1Qi, i = 1, . . . , r.

But any affinity taking the points Pi to the points Qi has the above linear
map φ as associated linear map. Hence, by Proposition 2.3, this affinity is
unique. �

Proposition 2.6

Let f : A1 −→ A2 be an affinity with associated linear map f̃ . Then f is injective
if and only if f̃ is injective and f is surjective if and only if f̃ is surjective.

Proof

Let us assume that f is injective, and suppose f̃(v) =�0. Let v =
−−→
PQ. We have

0 = f̃(
−−→
PQ) =

−−−−−−→
f(P )f(Q),
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and hence f(P ) = f(Q). This implies P = Q and v =
−−→
PQ = �0, that is, f̃ is

injective.
Assume now that f̃ is injective and suppose f(P ) = f(Q). Then f̃(

−−→
PQ) =

−−−−−−→
f(P )f(Q) =�0, and hence,

−−→
PQ =�0, that is, P = Q, and f is injective.

Assume now that f is surjective and let v ∈ E2. Let v =
−−−→
P ′Q′ and choose

P,Q such that f(P ) = P ′ and f(Q) = Q′. Then f̃(
−−→
PQ) =

−−−→
P ′Q′ = v, and hence

f̃ is surjective.
Assume now that f̃ is surjective and let Q ∈ A2. Take any point P ∈ A1

and a vector v ∈ E1 such that f̃(v) =
−−−−→
f(P )Q. Then f(P + v) = f(P ) + f̃(v) =

f(P ) +
−−−−→
f(P )Q = Q, and hence f is surjective. �

In particular, f is bijective if and only if f̃ is bijective.

Observation 2.7

Let P1, . . . , Pn+1 ∈ A and Q1, . . . ,Qn+1 ∈ A be, respectively, affinely indepen-
dent points. We know, from Theorem 2.5, that there exists a unique affinity f

such that f(Pi) = Qi and a unique affinity g such that g(Qi) = Pi, i = 1, . . . , n.
But, as we saw in the proof of Theorem 2.5, f̃ = g̃−1. Hence, by Proposition

2.6, f is bijective and f = g−1.

Observation 2.8

Let A be an affine space over a k-vector space E. To give an affine frame
R = {P ; (e1, . . . , en)} in A is equivalent to giving a bijective affinity between A

and kn. For this reason we say that an affine space is “essentially” kn.
In fact, this bijective affinity is given simply by taking coordinates:

A
f−→ kn

Q �−→ (q1, . . . , qn),

where
−−→
PQ = q1e1 + · · · + qnen.

It is clear that f is a bijective map. To see that f is an affinity we compute
f̃P . Let v ∈ E and let Q ∈ A be the unique point such that v =

−−→
PQ. Then

f̃P (v) = f̃P (
−−→
PQ) =

−−−−−−→
f(P )f(Q) = (q1, . . . , qn),

since f(Q) = (q1, . . . , qn) and f(P ) = (0, . . . ,0).
That is, f̃P sends the vector of E with components (q1, . . . , qn) in the basis

(e1, . . . , en) to the vector (q1, . . . , qn) ∈ kn.
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Hence,

f̃P (u + v) = f̃P (u) + f̃P (v), u, v ∈ E,

f̃P (λu) = λf̃P (u), u ∈ E,λ ∈ k,

since the components of u + v are the components of u plus the components
of v, and the components of λu are the components of u multiplied by λ.

Hence, f̃P is linear and f is an affinity.

2.4 The Affine Group

We shall see that the set of all bijective affinities from an affine space into itself
has the structure of a group. The group operation is, of course, composition of
affinities. We begin with some slightly more general results.

Proposition 2.9

Let f : A1 −→ A2 and g : A2 −→ A3 be affinities. Then their composition
g ◦ f : A1 −→ A3 is an affinity with associated linear map g̃ ◦ f̃ .

Proof

For each P ∈ A1 and each v ∈ E1 we have

(g ◦ f)(P + v) = g(f(P ) + f̃(v)) = (g ◦ f)(P ) + g̃ ◦ f̃(v).

By Proposition 2.2, g ◦ f is an affinity with

g̃ ◦ f = g̃ ◦ f̃ .

�

Proposition 2.10

Let f : A1 −→ A2 be a bijective affinity. Then its inverse f −1 : A2 −→ A1 is an
affinity with associated linear map f̃ −1.

Proof

For each P ∈ A1 and each v ∈ E1 we have

f −1(P + v) = f −1(P ) + f̃ −1(v),
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as can be seen directly by applying f to both sides of this equality. By Propo-
sition 2.2, f −1 is an affinity with

f̃ −1 = f̃ −1.

�

Theorem 2.11 (Affine Group)

The set of all bijective affinities from an affine space A into itself is a group with
respect to composition of maps, called the affine group or group of affinities,
and is denoted GA.

Proof

This is an immediate consequence of the above Propositions 2.9 and 2.10. Note
that composition of affinities is associative and that the unit element is the
identity. �

The natural action of the affine group GA on the space A itself is given by

GA × A −→ A

f,P �−→ f(P ).

Thus, as noted in Observation 2.7, the group of affinities of the straight line
acts simply transitively over ordered pairs of points (given two ordered pairs
of points, each pair formed by different points, there exists a unique affinity
taking one pair onto the other), the group of affinities of the plane acts simply
transitively over ordered triples of points (given two ordered triples of points,
each triple formed by different non-collinear points, there exists a unique affinity
taking one triple onto the other), etc. Recall the concept of a simply transitive
action on points (not on pairs, triples, etc.) on page 2.

Now, following F. Klein, we can say that Affine Geometry is the study of
the properties of the figures of A which are invariant under the action of the
affine group GA.

Observation 2.12

When there is a bijective affinity between two affine spaces we say that these
affine spaces are isomorphic. Recall that the concept of affinity is only mean-
ingful when the vector spaces associated to the corresponding affine spaces are
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modeled on the same field k. Two affine spaces are isomorphic if and only if
they have the same dimension. Concretely we have:

Proposition 2.13

Let A1 and A2 be affine spaces over the k-vector spaces E1 and E2, respectively.
Then A1 and A2 are isomorphic if and only if they have the same dimension.

Proof

It is clear, by Proposition 2.6, that if the spaces are isomorphic then they have
the same dimension.

Conversely, if the spaces have the same dimension, we take an isomorphism
φ : E1 −→ E2 between the associated vector spaces, which have, by definition,
the same dimension. By Proposition 2.4, there exists an affinity f : A1 −→ A2

with f̃ = φ, which, by Proposition 2.6, is bijective. �

2.5 Affinities and Linear Varieties

Proposition 2.14

Affinities take linear varieties to linear varieties. Concretely, let f : A1 −→ A2

be an affinity, L1 = P + [F ] a linear variety of A1, and L2 = Q + [G] a linear
variety of A2. Then

f(P + [F ]) = f(P ) + [f̃(F )],

f −1(Q + [G]) = P + [f̃ −1(G)], if P ∈ f −1(Q + [G]).

Proof

Since f(P + v) = f(P ) + f̃(v) for all P ∈ A1 and v ∈ E1, the first equality is
evident.

To prove the second equality we observe that P is any point such that−−−−→
Qf(P ) ∈ G. Note that in some cases this point P does not exist; in these cases
we have

f −1(Q + [G]) = ∅.

Note also that a point X ∈ A1 belongs to f −1(Q + [G]) if and only if
−−−−→
Qf(X) ∈ G.
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Finally, a point X ∈ A1 belongs to P + [f̃ −1(G)] if and only if f̃(
−−→
PX) ∈ G.

Since

f̃(PX) =
−−−−−−−→
f(P )f(X) =

−−−−→
f(P )Q +

−−−−→
Qf(X),

we have X ∈ f −1(Q + [G]) if and only if X ∈ P + f̃ −1(G). �

Corollary 2.15

Injective affinities take linear varieties to linear varieties of the same dimension.
In particular, they take straight lines to straight lines.

Proof

Injectivity ensures dim f̃(F ) = dimF . �

The Fundamental Theorem of Affine Geometry, which we shall meet later (The-
orem 2.46, page 81), deals with the converse of this proposition. The question
is: is a map taking straight lines to straight lines necessarily an affinity?

Proposition 2.16

Injective affinities preserve the simple ratio.

Proof

Let A,B,C ∈ A1 be three different collinear points such that
−−→
AB = λ

−→
AC . Let

f : A1 −→ A2 be an injective affinity. By the previous corollary, the three points
f(A), f(B), f(C) ∈ A2, which are distinct, are collinear. Applying f̃ to the
above equality one obtains

f̃(
−−→
AB) =

−−−−−−→
f(A)f(B) = f̃(λ

−→
AC) = λ

−−−−−−→
f(A)f(C),

and hence

(f(A), f(B), f(C)) = λ = (A,B,C).

�
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2.6 Equations of Affinities

Let f : A1 −→ A2 be an affinity, R1 = {P1; (e1, . . . , en)} an affine frame in A1

and R2 = {P2; (v1, . . . , vm)} an affine frame in A2.
The aim of this section is to relate the coordinates (x1, . . . , xn) of a point

X ∈ A1 to the coordinates (y1, . . . , ym) of the point f(X) ∈ A2.
For this we write

−−−−−→
P2f(P1) =

m∑
j=1

ajvj ,

−−→
P1X =

n∑
i=1

xiei,

−−−−−→
P2f(X) =

m∑
j=1

yjvj .

That is,

f(P1) = (a1, . . . , am),

X = (x1, . . . , xn),

f(X) = (y1, . . . , ym).

We also write

f̃(ei) =
m∑

j=1

ajivj .

That is, A = (aij) is the matrix of f̃ with respect to the bases B1 = (e1, . . . , en)
and B2 = (v1, . . . , vm), which is usually denoted by M(f̃ , B1, B2).

Then
−−−−−→
P2f(X) =

−−−−−→
P2f(P1) +

−−−−−−−→
f(P1)f(X)

=
−−−−−→
P2f(P1) + f̃(

−−→
P1X),

that is,
m∑

j=1

yjvj =
m∑

j=1

ajvj +
n∑

i=1

xi

m∑
j=1

ajivj .

Equating coefficients we get

yj = aj +
n∑

i=1

xiaji, j = 1, . . . ,m.
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Matricially

⎛
⎜⎝

y1

...
ym

⎞
⎟⎠ =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ +

⎛
⎜⎝

a11 . . . a1n

...
...

...
am1 . . . amn

⎞
⎟⎠

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ ,

or, in a more compact form,

⎛
⎜⎜⎜⎝

y1

...
ym

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a11 . . . a1n

...
...

...
am1 . . . amn

a1

...
am

0 . . . 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

...
xn

1

⎞
⎟⎟⎟⎠ .

Or, in an even more abbreviated form,

(
y

1

)
=

(
A a

0 1

)(
x

1

)
(2.1)

or

y = Ax + a

with

y =

⎛
⎜⎝

y1

...
ym

⎞
⎟⎠ , A = (aij), x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ , a =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ .

We shall use the notation

M(f, R1, R2) =
(

A a

0 1

)

to indicate the matrix of f in the affine frames R1 and R2. When R1 = R2

(and thus A1 = A2) we shall simply write M(f, R1).
Sometimes, when these affine frames are implicitly given, we shall simply

write

M(f) =
(

A a

0 1

)
.

Now it is very easy to construct examples of affinities: we simply give the
two matrices A and a.
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Observation 2.17

Given the affine frames R1 = {P1; B1} of A1, R2 = {P2; B2} of A2, and a matrix

M =
(

A a

0 1

)
,

there exists a unique affinity f : A1 −→ A2 such that

M(f, R1, R2) =
(

A a

0 1

)
.

In fact, we define f giving its associated linear map f̃ by the condition

M(f̃ , B1, B2) = A

and its value on a point by the condition f(P1) = aT. That is, f(P1) is the point
with coordinates (a1, . . . , an) in R2. From Proposition 2.4, such an affinity exists
and is unique.

Observation 2.18

We have seen that, once we fix affine frames, affinities are given by affine equa-
tions of the form y = Ax+a. If we change these affine frames, the equations will
change, but there will still be an affine relationship between the coordinates of
a point and those of its transformed image.

For instance, affinities from kn to km are the maps f : kn −→ km, with
f(x1, . . . , xn) = (y1, . . . , ym), such that

⎛
⎜⎝

y1

...
ym

⎞
⎟⎠ = A

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ +

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ ,

with A ∈ Mm×n(k). It suffices to identify the components (x1, . . . , xn) of a
point with its coordinates in the canonical affine frame. Here, recall, Mm×n(k)
is the set of matrices with m rows and n columns with elements in the field k.

Observation 2.19

Given two affine frames R and R ′ in an affine space A, we have

M(id, R ′, R) = M(R′, R),
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where M(R ′, R) is the matrix of the change of coordinates introduced on
page 19.

Equation (2.1), page 58, tells us that the relationship between the coordinates
x of a point and the coordinates y of the image of this point by an affinity is
given by only one matrix, as is the case for linear maps between vector spaces.
So we can manipulate affinities “as if” they are linear maps.

In particular, by arguments similar to those given in the composition of
linear maps (see [8], page 300), and by the change of basis formula (see [8],
page 302), we obtain the next two propositions.

Proposition 2.20

The matrix of the composition of affinities is the product of the matrices of
these affinities. Concretely, if f : A1 −→ A2 and g : A2 −→ A3 are affinities and
we fix affine frames Ri on Ai, i = 1,2,3, then

M(g ◦ f, R1, R3) = M(g, R2, R3) · M(f, R1, R2).

Proof

If (
y

1

)
=

(
A a

0 1

)(
x

1

)

are the equations of f , and
(

z

1

)
=

(
B b

0 1

)(
y

1

)

are the equations of g, then
(

z

1

)
=

(
B b

0 1

)(
A a

0 1

)(
x

1

)

are the equations of g ◦ f . Since the product of matrices is associative, we have
the result. �

We summarize this result by simply writing

M(g ◦ f) = M(g) · M(f)
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Corollary 2.21

The matrix of the inverse of an affinity is the inverse of the matrix of this
affinity. Concretely, if f : A1 −→ A2 is a bijective affinity and we fix affine
frames Ri on Ai, i = 1,2, then

M(f −1, R2, R1) = M(f, R1, R2)−1.

Proof

We apply the above proposition with g = f −1 and R1 = R3. �

We summarize this result by simply writing

M(f −1) = M(f)−1

Proposition 2.22

Let f : A1 −→ A2 be an affinity, R1, R′
1 affine frames in A1, and R2, R′

2 affine
frames in A2. Then

M(f, R1, R2) = M(id2, R2, R′
2)

−1M(f, R′
1, R′

2)M(id1, R1, R′
1).

Proof

This is a consequence of Proposition 2.20 and the equality

f ◦ id1 = id2 ◦ f,

where idi denotes the identity map of Ai, i = 1,2. �

In the particular case in which A1 = A2, we can take R1 = R2 and R′
1 = R ′

2

and we have

M(f, R1, R1) = C−1M(f, R′
1, R′

1)C

where C = M(id, R1, R′
1) = M(R1, R′

1) is the matrix of the change of coordi-
nates.

We have already stated that we will write this equation as

M(f, R1) = C−1M(f, R′
1)C (2.2)
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Example 2.23

Find, in the affine plane R
2, the equations of an affinity sending the triangle

�ABC onto the triangle �A′B′C′, with A = (1,1), B = (3,2), C = (4,4), A′ =
(−1,0), B′ = (−5,2), C ′ = (7,4).

Solution

It follows, from Theorem 2.5, that such an affinity exists and is unique if we as-
sume that the points A,B,C are mapped, respectively, to the points A′,B′,C ′.
We can also consider, for example, the case where A,B,C are mapped, respec-
tively, to A′,C ′,B′, or to any other permutation of A′,B′,C ′. Here we only
study the first case.

Let us consider the affine frames

R = {A; (
−−→
AB,

−→
AC)} = {(1,1); ((2,1), (3,3))},

R′ = {A′; (
−−−→
A′B′,

−−→
A′C ′)} = {(−1,0); ((−4,2), (8,4))}.

By definition of the matrix associated to an affinity, we have

M(f, R, R′) = I2,

where f is the affinity we are looking for.
We shall use the notation In for the n × n identity matrix, i.e. the diagonal

matrix with 1s on the diagonal and zeros elsewhere.
By Proposition 2.22 we have

M(f, C, C) = M(id, C, R ′)−1M(f, R, R′)M(id, C, R)

= M(R′, C)M(R, C)−1,

where C is the canonical affine frame.
These two matrices are easily computable. Concretely we have

M(R ′, C) =

⎛
⎝ −4 8 −1

2 4 0
0 0 1

⎞
⎠ and M(R, C) =

⎛
⎝2 3 1

1 3 1
0 0 1

⎞
⎠

and the affinity we are looking for is
⎧⎪⎪⎨
⎪⎪⎩

x′ = − 20
3

x +
28
3

y − 11
3

,

y′ =
2
3
x +

2
3
y − 4

3
.

�
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2.7 Invariant Varieties

In this section we only consider affinities from an affine space A into itself.
A point P ∈ A is a fixed point of an affinity f : A −→ A if and only if

f(P ) = P .
A linear variety L = P + [F ] ⊂ A is invariant under an affinity f : A −→ A

if and only if f(L) ⊂ L.
In particular, fixed points are invariant linear varieties of dimension zero.

Proposition 2.24

A linear variety L = P + [F ] of the affine space A is invariant under an affinity
f : A → A if and only if
(1)

−−−−→
Pf(P ) ∈ F ; and

(2) f̃(F ) ⊂ F .

Proof

By Proposition 2.14 we have

f(L) = f(P ) + [f̃(F )] = P +
−−−−→
Pf(P ) + [f̃(F )],

and hence f(L) ⊂ L if and only if
−−−−→
Pf(P ) ∈ F and f̃(F ) ⊂ F . �

In the next corollary we use the notion of an eigenvector, which is reviewed on
page 333 of the Appendix.

Corollary 2.25

A straight line L = P + 〈v〉 of an affine space A is invariant under an affinity
f : A → A if and only if there exist λ,μ ∈ k such that
(1)

−−−−→
Pf(P ) = λv; and

(2) f̃(v) = μv (that is, v is an eigenvector of f̃ ).

Proof

This is the above proposition in dimension 1. �

Notice that the condition that the direction vector of a straight line L is an
eigenvector of f̃ is a necessary but not sufficient condition for L to be invariant
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under f . For instance, the straight line y = 1 of R
2 is not invariant under the

affinity {
x′ = x,

y′ = y + 1,

although its direction vector is an eigenvector of f̃ , since f̃ = id. However, the
straight line x = 0 is invariant, since its direction vector is v = (0,1) and, taking
P = (0,0), we have

−−−−→
Pf(P ) = v.

Proposition 2.26

If f is a bijective affinity and L = P + [F ] is an invariant linear variety, then
f(L) = L.

Proof

In this case f̃ is also bijective, and hence f̃(F ) = F . Thus,

f(L) = f(P ) + [f̃(F )] = P +
−−−−→
Pf(P ) + [F ] = P + [F ] = L.

�

Note that we can have f(L) = L, but f(P ) �= P for all P ∈ L. For instance, the
translation Tu (see Section 2.8) leaves invariant any straight line with direction
vector u, but it does not have any fixed points.

Proposition 2.27

The set Fix(f) of fixed points of an affinity f is either a linear variety directed
by ker(f̃ − id) or it is the empty set.

Proof

Let us assume that there exists a P ∈ A such that f(P ) = P . Then, for each
u ∈ E, P + u is a fixed point of f if and only if

P + u = f(P + u) = f(P ) + f̃(u) = P + f̃(u),

that is, if and only if f̃(u) = u, or, equivalently, u ∈ ker(f̃ − id).
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Hence,

Fix(f) = P + [ker(f̃ − id)].

�

The study of fixed points will be of great interest in what follows, so we begin
with the following result.

Proposition 2.28

An affinity f : A −→ A has a unique fixed point if and only if the associated
linear map f̃ : E −→ E does not have eigenvalue 1.

Proof

Let us assume that P is the unique fixed point. Since Fix(f) = P +[ker(f̃ − id)],
it follows from the above proposition that ker(f̃ − id) = {�0}, and hence there
is no eigenvector with eigenvalue 1.

Conversely, let us assume that f̃ does not have eigenvalue 1.
This means

ker(f̃ − id) = {�0}

and hence, by the above proposition, it only remains to prove that Fix(f) �= ∅.
For this, we look for a point Q and a vector v such that f(Q + v) = Q + v.

That is, such that f(Q)+ f̃(v) = Q+v. Equivalently, we are looking for a point
Q and a vector v such that

−−−−→
Qf(Q) = −(f̃ − id)(v). (2.3)

But, since the kernel of (f̃ − id) is zero, (f̃ − id) is invertible. Hence, given
any point Q, there exists a (unique) vector v satisfying (2.3), and so the point
P = Q + v, with v thus constructed, is fixed. �

Using the equations of an affinity, we can give a very simple proof of Proposi-
tion 2.28.
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Proposition 2.29 (Equations of fixed points)

Let us assume that the equations of an affinity f in some frame R = {P ; B }
of an affine space A of dimension n is x′ = Ax + a. Then f has a unique fixed
point if and only if det(A − In) �= 0.

Proof

The point with coordinates x is a fixed point if and only if

x = Ax + a, (2.4)

that is,

(A − In)x = −a.

But this system has a unique solution if and only if det(A − In) �= 0. �

Note that the condition det(A − In) �= 0 is equivalent to the condition that 1
is not an eigenvalue of A. But A is the matrix of f̃ in B, and hence f has a
unique fixed point if and only if f̃ does not have eigenvalue 1.

Equation (2.4) is the equation of fixed points of f .

2.8 Examples of Affinities

2.8.1 Translations

Definition 2.30

A translation is an affinity f : A −→ A such that f̃ = id.

Proposition 2.31

An affinity f is a translation if and only if there is a u ∈ E such that

f(Q) = Q + u for all Q ∈ A.

Proof

Since
−−−−→
Pf(P ) =

−−→
PQ +

−−−−→
Qf(Q) +

−−−−−−→
f(Q)f(P ) =

−−→
PQ +

−−−−→
Qf(Q) + f̃(

−−→
QP ),
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every affinity satisfies the fundamental relation

−−−−→
Pf(P ) + (f̃ − id)

−−→
PQ =

−−−→
QfQ

Hence, if f̃ = id, we have
−−−−→
Pf(P ) =

−−−→
QfQ for all P,Q ∈ A. Let u =

−−−−→
Pf(P ).

Then, for all Q ∈ A, we have

f(Q) = Q +
−−−−→
Qf(Q) = Q +

−−−−→
Pf(P ) = Q + u.

Conversely, if there is a u ∈ E such that u =
−−−−→
Pf(P ) =

−−−−→
Qf(Q), for all

P,Q ∈ A, the fundamental relation directly implies f̃ = id. �

For this reason we shall denote translations by Tu and we will say that Tu is
the translation by vector u, where u is called the translation vector.

Equations of Translations Let R = {P ; B } be an arbitrary affine frame and
assume that the translation vector u has components u = (u1, . . . , un) in B. In
particular, Tu(P ) = P + u = (u1, . . . , un). Then, by Section 2.6, we have

M(Tu, R) =
(

In u

0 1

)
,

or, equivalently, ⎧⎪⎨
⎪⎩

x′
1 = x1 + u1,

...
x′

n = xn + un.

If u �= 0, we can complete the translation vector to a basis B = (u, e2, . . . , en)
of E, and then, in the affine frame R′ = {P ; B }, with P ∈ A arbitrary, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1 = x1 + 1,

x′
2 = x2,

...
x′

n = xn.

Observation 2.32

The set of all translations of an affine space A is a group with respect to
composition of maps. The identity element is translation by the vector �0. The
group properties follow from the equalities Tu ◦ Tv = Tu+v (the composition of
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translations is a translation) and T −1
u = T−u (the inverse of a translation is a

translation). This group, denoted by T, is a subgroup of the group of affinities
GA. Let

Φ : GA −→ End E
f �→ f̃

be the map sending each affinity f to its associated endomorphism f̃ .
By definition of translation we have

T = kerΦ.

In particular, T is a normal subgroup of GA, and, from the Isomorphism The-
orem (see [8], page 284) and because Φ is surjective, we have

GA/T ∼= End E.

2.8.2 Homotheties

Definition 2.33

A homothety is an affinity f : A −→ A such that f̃ = λ id, λ �= 0,1. λ is called
the similitude ratio of the homothety.

Proposition 2.34

Homotheties have a unique fixed point.

Proof

Let us fix P ∈ A and assume that Q ∈ A is a fixed point. Then,

P +
−−→
PQ = Q

= f(Q)

= f(P +
−−→
PQ)

= f(P ) + λ
−−→
PQ

= P +
−−−−→
Pf(P ) + λ

−−→
PQ.

Hence, Q is a fixed point if and only if

−−−−→
Pf(P ) = (1 − λ)

−−→
PQ,
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that is, if and only if

Q = P +
1

1 − λ

−−−−→
Pf(P ). (2.5)

Moreover, it is clear that Q is the unique fixed point. To see this let us
assume that there are two different fixed points Q,Q′. Then

f̃(
−−→
QQ′) =

−−−−−−−→
f(Q)f(Q′) =

−−→
QQ′,

implying f̃ = id, a contradiction since f̃ = λ id with λ �= 1. �

Note that, in particular, we have proved that for all P,R ∈ A we have

P +
1

1 − λ

−−−−→
Pf(P ) = R +

1
1 − λ

−−−−→
Rf(R).

Since homotheties are determined by the fixed point, called the center of
the homothety, and by the similitude ratio λ, we shall denote by hP,λ the
homothety with center P and similitude ratio λ.

Equations of homotheties Let R = {P ; (e1, . . . , en)} be an affine frame with
origin the unique fixed point P of the homothety and with (e1, . . . , en) an
arbitrary basis of E. It follows from Section 2.6 that

M(hP,λ, R) =
(

λIn 0
0 1

)
,

or, equivalently,
⎧⎪⎨
⎪⎩

x′
1 = λx1,

...
x′

n = λxn.

Observation 2.35

The set of all homotheties of an affine space A is not a group with respect to
composition of maps. The identity translation is not a homothety.

Even if we add the identity to the set of all homotheties, we still don’t have
a group, since the composition of homotheties with different centers and inverse
similitude ratios is a translation.
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Indeed, if we denote by hX,ν the homothety with center X ∈ A and simili-
tude ratio ν ∈ k, it follows from Proposition 2.9 that

hP,λ ◦ hQ,μ =
{

TQQ′ λμ = 1,

hR,λμ λμ �= 1,

where Q′ = hP,λ(Q) and

R = Q +
1

1 − λμ

−−−−−−→
QhP,λ(Q).

We can arrive at the same conclusion using coordinates. Indeed, if we take
an affine frame R with origin at Q, by Proposition 2.20 we have

M(hP,λ ◦ hQ,μ, R) = M(hP,λ, R) ◦ M(hQ,μ, R)

=
(

λIn a

0 1

)(
μIn 0
0 1

)

=
(

λμIn a

0 1

)
,

which gives the above result, that is, hP,λ ◦ hQ,μ is a homothety if λμ �= 1, or a
translation if λμ = 1. Here n = dimA.

Affinities such that f̃ = λ id (homotheties and translations) are called dila-
tions, and they constitute a group (see the definition of dilation given in the
introduction, page viii).

2.8.3 Symmetries

Definition 2.36

A symmetry is an affinity f : A −→ A such that f2 = id.

Note first that, for all points P ∈ A, the point

Q = P +
1
2

−−−−→
Pf(P )

is fixed.
Hence, the linear variety Fix(f) is non-empty. Let us assume dimFix(f) = r.

Recall Fix(f) = Q + [ker(f̃ − id)], where Q is any fixed point.
Since

u =
1
2
(u + f̃(u)) +

1
2
(u − f̃(u)), for all u ∈ E,
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we have

E = ker(f̃ − id) ⊕ ker(f̃ + id),

since 1
2
(u + f̃(u)) ∈ ker(f̃ − id), 1

2
(u − f̃(u)) ∈ ker(f̃ + id) and, obviously, the

intersection of these subspaces is the zero vector.
This is the decomposition given by the annihilating polynomial, see [8], page

361. Note that f2 = id implies f̃2 = id, and hence (f̃ − id) ◦ (f̃ + id) = 0. That
is, the polynomial (x − 1)(x + 1) is a multiple of the minimal polynomial.

Every point P ∈ A can be written as (see Figure 2.1)

P = Q +
−−→
QP = Q + u + v, u ∈ ker(f̃ − id), v ∈ ker(f̃ + id),

where Q is the above fixed point.
Thus,

f(P ) = f(Q + u + v) = Q + u − v = P − 2v.

Figure 2.1. Symmetry

Note that if r = 0, the linear variety Fix(f) is a point. In this case f is said
to be a central symmetry. In particular, ker(f̃ − id) = {�0} and P = Q + v with
v ∈ ker(f̃ + id). The image of a point is given by f(P ) = P − 2v = P − 2

−−→
QP .

If r = 1, Fix(f) is a straight line, and we say that f is an axial symmetry ;
if r = 2, Fix(f) is a plane, and we say that f is a mirror symmetry .

Equations of symmetries Let R = {P ; (e1, . . . , en)} be an affine frame with
origin a fixed point P of the given symmetry, and let (e1, . . . , en) be a basis
with ei ∈ ker(f̃ − id), i = 1, . . . , r, and ei ∈ ker(f̃ + id), i = r + 1, . . . , n. Then,
from Section 2.6, we have

M(f, R) =

⎛
⎜⎜⎜⎜⎝

1
. . .

−1

0
...
0

0 . . . 0 1

⎞
⎟⎟⎟⎟⎠ ,
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or, equivalently, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = x1,

...
x′

r = xr,

x′
r+1 = −xr+1,

...
x′

n = −xn.

Observation 2.37

Each decomposition of the vector space E as a direct sum E = F ⊕ G, together
with a point P , gives rise to a symmetry sL : A −→ A defined by

sL(P + v) = P + v1 − v2, for all v = v1 + v2 ∈ E, with v1 ∈ F,v2 ∈ G,

and called the symmetry with respect to L = P + [F ] in the direction G. Note
that s2

F = id.
If dimL = 0, we have a central symmetry ; if dimL = 1, we have an axial

symmetry ; if dimL = 2, we have a mirror symmetry.

2.8.4 Projections

Definition 2.38

A projection is an affinity f : A −→ A such that f2 = f .

In this case it is clear that Fix(f) = �(f). Hence, the linear variety Fix(f) is
non-empty. Let us assume dimFix(f) = r and set Fix(f) = Q + [ker(f̃ − id)],
where Q is any fixed point.

Since

u = f̃(u) + (u − f̃(u)), for all u ∈ E,

we have

E = ker(f̃ − id) ⊕ ker(f̃),

because f̃(u) ∈ ker(f̃ − id), (u − f̃(u)) ∈ ker(f̃) and, obviously, the intersection
of these subspaces is the zero vector.

This is the decomposition induced by the annihilating polynomial of f ,
x(x − 1), see [8], page 361. In fact, f2 = f implies f̃2 = f̃ , and hence, (f̃ − id) ◦
f̃ = 0. That is, the polynomial x(x − 1) is a multiple of the minimal polynomial.
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Every point P ∈ A can be written in a unique way as (see Figure 2.2)

P = Q +
−−→
QP = Q + u + v, u ∈ ker(f̃ − id), v ∈ ker(f̃),

where Q is the above fixed point.
Thus

f(P ) = f(Q + u + v) = Q + u = P − v.

Figure 2.2. Projection

Note that if r = 0, the linear variety Fix(f) reduces to the point P . Then
f(X) = P for all X ∈ A. If r = dimE, then f = id.

Equations of projections Let R = {P ; (e1, . . . , en)} be an affine frame with
origin a fixed point P of the symmetry, and let (e1, . . . , en) be a basis with ei ∈
ker(f̃ − id), i = 1, . . . , r and ei ∈ ker(f̃), i = r + 1, . . . , n. Then, by Section 2.6,
we have

M(f, R) =

⎛
⎜⎜⎜⎜⎝

1
. . .

0

0
...
0

0 . . . 0 1

⎞
⎟⎟⎟⎟⎠ ,

or, equivalently,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = x1,

...
x′

r = xr,

x′
r+1 = 0,

...
x′

n = 0.
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Observation 2.39

Each decomposition of the vector space E as a direct sum E = F ⊕ G, together
with a point P , gives rise to a projection pL : A −→ A defined by

pL(P + v) = P + v1, for all v = v1 + v2 ∈ E, with v1 ∈ F,v2 ∈ G,

called the projection on L = P + [F ] in the direction G.

2.9 Characterization of Affinities of the Line

Theorem 2.40

Let A1, A2 be two affine spaces over the k-vector spaces E1,E2, respectively,
of dimension 1, and with k �= Z/2Z. Let f : A1 −→ A2 be a map preserving the
simple ratio. Then f is an affinity.

Proof

Fix P ∈ A1 and let us study f̃P . First we want to prove that f̃P (u + v) =
f̃P (u) + f̃P (v) for all u, v ∈ E1. Since this formula is true for u =�0 or v =�0, we
can assume given two vectors u, v ∈ E1 different from zero. We know that there
are points (unique) Q,R,S, with P �= Q,P �= R,Q �= S and R �= S, such that

u =
−−→
PQ,

v =
−→
PR,

u + v =
−→
PS.

Note that
−→
QS =

−−→
QP +

−→
PS = −u + u + v =

−→
PR.

Analogously
−→
RS =

−→
RP +

−−→
PQ +

−→
QS = −v + u + v =

−−→
PQ.

If the three points P,Q,R are distinct (that is, u �= v) we can compute their
simple ratio. Put (P,Q,R) = λ, that is,

−−→
PQ = λ

−→
PR. Since the simple ratio

is preserved, the three points P ′ = f(P ), Q′ = f(Q) and R′ = f(R) are also
distinct and

(P ′,Q′,R′) = λ,
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that is,
−−−→
P ′Q′ = λ

−−→
P ′R′. (2.6)

Note, on the other hand, that if the three points P,Q,S are distinct (that
is, u �= −v) we can compute their simple ratio, obtaining

(Q,P,S) = −λ,

since
−−→
QP = −λ

−→
PR = −λ

−→
QS.

Since the simple ratio is preserved, the three points P ′, Q′ and S′ = f(S)
are also distinct and

(Q′, P ′, S′) = −λ,

that is,
−−−→
Q′P ′ = −λ

−−→
Q′S′. (2.7)

From (2.6) and (2.7) we directly deduce that
−−→
P ′R′ =

−−→
Q′S′.

Thus,

f̃P (u + v) = f̃P (
−→
PS)

=
−−→
P ′S′

=
−−−→
P ′Q′ +

−−→
Q′S′

=
−−−→
P ′Q′ +

−−→
P ′R′

= f̃P (u) + f̃P (v).

This proves that f̃P preserves vector addition (with the hypothesis that
these vectors are neither equal nor opposite). It remains to prove that f̃P

preserves scalar multiplication. Since the formula that we want to prove,
f̃P (λv) = λf̃P (v), is clearly true for λ = 0, λ = 1 or v = �0, we can assume
from now on that λ ∈ k and v ∈ E1, with λ �= 0, λ �= 1 and v �= 0.

We know that there exists a unique point Q ∈ A1 such that v =
−−→
PQ, and a

unique point T ∈ A1 such that λv =
−→
PT .

Then it is clear that the points P,Q,T are distinct and that

(P,T,Q) = λ,

hence

(P ′, T ′,Q′) = λ,

where P ′ = f(P ), T ′ = f(T ), Q′ = f(Q).
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Thus,

f̃P (λv) = f̃P (
−→
PT ) =

−−→
P ′T ′ = λ

−−−→
P ′Q′ = λf̃P (v).

Finally we remark that, since f̃P preserves scalar multiplication, the formula
f̃P (u + v) = f̃P (u) + f̃P (v) is also true for u = ±v. This completes the proof. �

For a slightly different proof of this theorem, see Exercise 2.11 of this chapter,
page 88.

Note that when k = Z/2Z the straight lines have only two points and the
hypothesis on the simple ratio doesn’t make sense. For this reason, there are
maps between affine spaces over Z/2Z which are not affinities. For instance,
considering the field k = Z/2Z as an affine space, the map f : Z/2Z −→ Z/2Z

given by f(0) = f(1) = 1 is not an affinity because f(1 + 1) �= f(1) + f(1).

2.10 The Fundamental Theorem of Affine
Geometry

First let us recall a definition from linear algebra.

Definition 2.41

Let E1,E2 be two k-vector spaces. A map f̃ : E1 −→ E2 is called semi-linear if
there exists an automorphism σ of the field k such that

f̃(u + v) = f̃(u) + f̃(v), for all u, v ∈ E1,

f̃(λu) = σ(λ)f̃(u), for all λ ∈ k,u ∈ E1.

Recall that an automorphism of the field k is a bijective map σ : k −→ k such
that σ(a + b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b), for each a, b ∈ k, and σ(1) �= 0.
This implies σ(0) = 0 and σ(1) = 1.

Let us return our attention to affine spaces.

Definition 2.42

A map f : A1 −→ A2 between two affine spaces is called a semi-linear affine
transformation if the map f̃P : E1 −→ E2, induced by f and by a point P ∈ A1

on the corresponding k-vector spaces is semi-linear.
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In this case we also say that f is a semi-affinity.
Recall that, using only the fact that f̃P preserves vector addition, one can

prove f̃P = f̃Q for all Q ∈ A. Hence, it is natural to denote simply by f̃ the
semi-linear map associated with the semi-affinity f .

Equivalently, we have the following.

Proposition 2.43

A map f : A1 −→ A2 is a semi-affinity if and only if there is a semi-linear map
f̃ : E1 −→ E2 such that

f(P + u) = f(P ) + f̃(u), for all P ∈ A and u ∈ E1.

Proof

Compare the proof of Proposition 2.2. �

If such a map f̃ exists, it is unique.
The Fundamental Theorem of Affine Geometry, which we are going to prove

in this section, states that if a bijective map f takes collinear points to collinear
points then it is a semi-affinity.

Let us first show that the bijective map f maps collinear points to collinear
points if and only if it maps straight lines to straight lines.

It could be the case that the image of a straight line is only a proper part
of a straight line. For instance, it is easy to construct a map f : R −→ R with
f(R) ⊂ (0,1). Such a map sends collinear points to collinear points, but it does
not send straight lines to straight lines. However, this f is not bijective. Does
there exist a bijective map f : A −→ A sending collinear points to collinear
points such that the image f(L) of a straight line L is properly contained in a
straight line L′?

Before answering this question, we carefully study the special case of the
plane. Readers who wish to proceed directly to the general case may prefer to
skip to Proposition 2.45.

Proposition 2.44

Let A1 and A2 be two affine planes over the k-vector spaces E1,E2, respectively.
Assume k �= Z/2Z.
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Then every bijective map f : A1 −→ A2 sending collinear points to collinear
points bijectively sends straight lines onto straight lines.

Proof

Let L be a straight line in A1 and P1, P2 be distinct points of L. Let L′ be the
straight line determined by the distinct points P ′

1 = f(P1), P ′
2 = f(P2).

Since f maps collinear points to collinear points, it is clear that

f(L) ⊂ L′.

It remains to prove the opposite inclusion.
Let Z ′ ∈ L′. There is a Z ∈ A1 such that f(Z) = Z′. We want to prove that

Z ∈ L. Let us assume that Z /∈ L, see Figure 2.3.

Figure 2.3. Collinear points to collinear
points

Take an arbitrary point X ∈ A1. If the straight line determined by the
points X,Z cuts L in a point Y (see the drawing on the left of Figure 2.4),
then Y ′ = f(Y ) ∈ L′; since Z′ ∈ L′, and X ′ = f(X) belongs to the straight line
determined by Y ′ and Z ′, we must have X ′ ∈ L′.

Figure 2.4. Collinear points to collinear points

If the straight line determined by the points X,Z does not cut L (and,
therefore, the two lines are parallel, since they lie in a plane, see the drawing on
the right of Figure 2.4), we take the point T = Z + t

−−−→
P1P2 with t �= 0,1 (here we

use the assumption that k �= Z/2Z). Then the straight lines P2T and P1Z meet
in a point W . Since W is collinear with P1 and Z, we have W ′ = f(W ) ∈ L′.
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Since T is collinear with P2 and W , we have T ′ = f(T ) ∈ L′. Finally, since X

is collinear with T and Z, we have X ′ ∈ L′.
Therefore, in all cases, given X ∈ A1 we have X ′ ∈ L′, that is, we have

f(A1) ⊂ L′, contradicting the bijectivity of f . Hence, Z ∈ L, and this completes
the proof. �

Let us turn to the general case.

Proposition 2.45

Let A1 and A2 be affine spaces of dimension n ≥ 2 over the k-vector spaces
E1,E2, respectively. Assume k �= Z/2Z.

Then every bijective map f : A1 −→ A2 sending collinear points to collinear
points also bijectively maps linear varieties of dimension r onto linear varieties
of dimension r, r = 1, . . . , n. In particular, f bijectively maps straight lines onto
straight lines.

Proof

The central idea of the proof is to show that f bijectively maps hyperplanes onto
hyperplanes. In fact, once we have done this, we can restrict f to a hyperplane.
The hypotheses of the theorem will then continue to hold, but in dimension
n − 1; repeating the argument we eventually prove that f bijectively maps
straight lines onto straight lines.

Let L be a hyperplane in A1. Let P1, . . . , Pn be points generating this hy-
perplane, that is, such that

L = P1 + 〈−−−→
P1P2, . . . ,

−−−→
P1Pn〉, dimL = n − 1.

Let L′ be the linear variety generated by the distinct points P ′
1 = f(P1), . . . ,

P ′
n = f(Pn).

Since f takes collinear points to collinear points we have f(L) ⊂ L′. To see
this, we define

Li = P1 + [〈e2, . . . , ei〉], ei =
−−→
P1Pi, i = 2, . . . , n,

and, since L = Ln, we use induction on i. If i = 2, since L1 is the straight line
determined by the points P1 and P2, it is clear that f(L1) ⊂ L′.

Let us assume f(Lk) ⊂ L′.
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In order to prove that f(Lk+1) ⊂ L′ let us take an arbitrary point X ∈ Lk+1.
Note that X can be written as

X = X0 + xek+1, X0 ∈ Lk.

Let Y = P1 + εek+1 be a point with ε �= 0, x (we are assuming that the field
has more than two elements). Since Y belongs to the straight line determined
by the points P1 and Pk+1, it is clear that Y ′ = f(Y ) ∈ L′.

A short calculation shows that the point

T = X + t
−−→
XY , with t =

x

x − ε
,

belongs to Lk. Hence, T ′ = f(T ) ∈ L′.
Since the points X , Y , T are collinear, the points X ′ = f(X), Y ′, T ′ are also

collinear, and hence X ′ ∈ L′. This proves that f(Lk+1) ⊂ L′ and, by induction,
that f(L) ⊂ L′.

In order to ensure that the image of a hyperplane is a hyperplane, it remains
to prove that f(L) = L′, and that dimL′ = n − 1.

Let us take Z ′ ∈ L′. We must show that Z ′ ∈ f(L). We know that there
exists a Z ∈ A1 such that f(Z) = Z′, but it is not clear a priori that Z ∈ L. Let
us assume Z /∈ L.

Take an arbitrary point X ∈ A1. If the straight line determined by the
points X,Z cuts L in a point Y , then Y ′ = f(Y ) ∈ L′; since also Z ′ ∈ L′, and
X ′ = f(X) belongs to the straight line determined by Y ′ and Z ′, we must have
X ′ ∈ L′.

If the straight line determined by the points X,Z does not cut L, we have

−−→
ZX ∈ 〈 −−−→

P1P2, . . . ,
−−−→
P1Pn〉.

Let us take a point T = Z + t
−−→
ZX with t �= 0,1 (here we use the assumption

that k �= Z/2Z).

Figure 2.5. The image of a hyper-
plane is a hyperplane

Let Q = P1 +
−−→
ZX ∈ L. Then the straight lines P1Z and QT meet in a

point W , see Figure 2.5. Since W is collinear with P1 and Z, we have W ′ =
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f(W ) ∈ L′. Since T is collinear with Q and W , we have T ′ = f(T ) ∈ L′. Finally,
since X is collinear with T and Z, we have X ′ ∈ L′.

Thus, in all cases, given X ∈ A1 we have X ′ ∈ L′, that is, we have
f(A1) ⊂ L′, contradicting the bijectivity of f . Hence, Z ∈ L, and this proves
that f(L) = L′.

Finally, note that given a point P ′ /∈ L′ it is easy to see, by an argument
similar to that used above, that each point of A2 belongs either to a straight
line connecting P ′ with a point of L′ or to the linear variety through P ′ with
the same direction as L. But this implies, see Exercise 1.14 of Chapter 1, page
40, that dimL′ = n − 1, and this completes the proof. �

Theorem 2.46 (Fundamental theorem of affine geometry)

Let A1, A2 be two affine spaces over the k-vector spaces E1,E2 respectively, of
the same dimension n, with n ≥ 2. Suppose that k �= Z/2Z. Let f : A1 −→ A2

be a bijective map sending collinear points to collinear points.
Then f is a semi-affinity.

Proof

First part: f takes parallel straight lines to parallel straight lines. If n = 2, this
is evident because f is injective.

Let r1, r2 be two distinct parallel straight lines of A1, with dimA1 = n > 2.
Let us take two distinct points A,B on r1 and a point C on r2. Let D =
C +

−−→
AB ∈ r2.

Figure 2.6. Construction of the point
X

Take Y ∈ AD distinct from A and D (here we use k �= Z/2Z).
Denote by r3 the straight line AC , by r4 the straight line Y B and by r5

the straight line AD.
The straight lines r3 and r4 meet in a point X distinct from A, see Fig-

ure 2.6. This point X exists because all straight lines of the above diagram are
in a plane (concretely in the plane Σ : A+ 〈−−→

AB,
−→
AC〉) and the direction vectors

of r3 and r4,
−→
AC and

−−→
BY , are linearly independent (since

−→
AC =

−−→
BD).1

1 If the characteristic of the field is different from 2, we can take Y = A+ 1
2

−−→
AD, and

then X = C.
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Since f is injective and maps straight lines to straight lines, f(r1) and f(r2)
are non-intersecting straight lines. It still remains to prove that they are in the
same plane.

The straight lines f(r1), f(r5) meet in f(A) and, therefore, they determine
a plane Π . Since f(Y ) and f(B) belong to this plane, we have f(r4) ⊂ Π and
in particular f(X) ∈ Π . But this implies f(r3) ⊂ Π , and hence f(C) ∈ Π . Since
also f(D) ∈ Π , we have f(r2) ⊂ Π and f(r1), f(r2) are coplanar. Since they
do not meet, f(r1) and f(r2) are parallel, and this completes the first part of
the proof.

Second part: f̃P is additive. Let us fix a point P ∈ A1. We must show that
the map f̃P : E1 −→ E2 given by

f̃P (
−−→
PX) =

−−−−−−−→
f(P )f(X), for all X ∈ A1,

preserves vector addition.
Let u =

−−→
PQ, v =

−→
PR be linearly independent vectors and let S = Q +

−→
PR.

We have u + v =
−−→
PQ +

−→
PR =

−−→
PQ +

−→
QS =

−→
PS.

By the first part of the proof, and by Proposition 1.17, we know that
the points f(P ), f(Q), f(R), f(S) are the vertices of a parallelogram, that is,
−−−−−−→
f(P )f(R) =

−−−−−−→
f(Q)f(S). Thus,

f̃P (u) + f̃P (v) =
−−−−−−→
f(P )f(Q) +

−−−−−−→
f(P )f(R)

=
−−−−−−→
f(P )f(Q) +

−−−−−−→
f(Q)f(S)

=
−−−−−−→
f(P )f(S)

= f̃P (u + v).

Hence, f̃P preserves the addition of linearly independent vectors.
If w = λu, we have

f̃P (u + w) + f̃P (v) = f̃P (u + w + v)

= f̃P (u) + f̃P (w + v)

= f̃P (u) + f̃P (w) + f̃P (v).

Hence, f̃P preserves the addition of vectors, linearly independent or not;
that is,

f̃(u + v) = f̃(u) + f̃(v), for all u, v ∈ E1.

Third part: the behavior of f̃P with scalars. Since f̃P is additive we have
f̃P = f̃Q, for all P,Q ∈ A1, and so from now on we shall write f̃P = f̃ .

Fix u ∈ E1, u �= 0. Let λ ∈ k, λ �= 0. There are unique points Q and R such
that u =

−−→
PQ and λu =

−→
PR.
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Since P,Q,R are collinear, the points f(P ), f(Q), f(R) are also collinear,
and hence there exists a μu(λ) ∈ k such that

f̃(λu) =
−−−−−−→
f(P )f(R) = μu(λ)

−−−−−−→
f(P )f(Q) = μu(λ)f̃(u). (2.8)

Moreover, since f is bijective, f̃(u) �= 0 and, therefore, the scalar μu(λ) is
unique. Thus we have a map

μu : k −→ k

λ �→ μu(λ).

It is also easy to see that, since f is bijective, μu is also bijective.
Note that this map μu depends, a priori, on the chosen vector u ∈ E1. Also

note that μu(0) = 0 and μu(1) = 1.
By definition of semi-affinity, we must prove that f̃ is semi-linear, that is,

that the scalars are transformed via an automorphism of the field. Hence, by
(2.8), we must verify the following two properties:
(a) μu = μv for all v ∈ E1; and
(b) μu is an automorphism of k.

Proof of (a) for every v ∈ E1 linearly independent with u. Let v ∈ E1 be
linearly independent with u. Set u =

−−→
PQ, v =

−→
PR, λu =

−−→
PQ′ and λv =

−−→
PR′.

From the converse of the corollary of Thales’ theorem, see Exercise 1.44 of
Chapter 1, page 45, the straight lines RQ and R′Q′ are parallel. From the first
part of the present proof, page 81, the straight lines f(R)f(Q) and f(R′)f(Q′)
are also parallel, see Figure 2.7.

Figure 2.7. Thales’ theorem

By Thales’ theorem, if the scalar τ ∈ k is such that

−−−−−−−→
f(P )f(Q′) = τ

−−−−−−→
f(P )f(Q),

then
−−−−−−−→
f(P )f(R′) = τ

−−−−−−→
f(P )f(R).

Equivalently, if

f̃(λu) = τ f̃(u), (2.9)
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then

f̃(λv) = τ f̃(v). (2.10)

From (2.9) we deduce τ = μu(λ) and from (2.10) we deduce τ = μv(λ); hence,
μu = μv for all v ∈ E1 linearly independent with u.

Proof of (b). The equality μu = μv for all v ∈ E1 linearly independent with
u enables us to prove that μu is an automorphism of k.

Indeed, since f is bijective, there exists a v ∈ E1 linearly independent with
u such that f̃(u) �= 0. If λ′ ∈ k, λ′ �= 0, then setting μ = μu, we have

μ(λλ′)f̃(v) = f̃(λλ′v) = μ(λ)f̃(λ′v) = μ(λ)μ(λ′)f̃(v),

since, as λ′v is linearly independent with u, μu = μλ′v .
Thus,

μ(λλ′) = μ(λ)μ(λ′), λ,λ′ ∈ k\{0}.

Since μ(0) = 0, this equality holds for all λ, λ′ ∈ k.
Since f̃((λ + λ′)u) = f̃(λu) + f̃(λ′u), we have μ(λ + λ′) = μ(λ) + μ(λ′) and

clearly μ(1) = 1. Hence μ : k −→ k is an automorphism of k.
End of the proof of (a). It remains only to prove that

μu = μv when v = νu, ν ∈ k.

But we have

f̃(λv) = f̃(λνu) = μu(λν)f̃(u) = μu(λ)μu(ν)f̃(u),

and also

f̃(λv) = μv(λ)f̃(νu) = μv(λ)μu(ν)f̃(u).

Comparing these two equalities we obtain the result. �

Corollary 2.47

Let A1,A2 be two affine spaces over the k-vector spaces E1,E2, respectively, of
the same dimension n, with n ≥ 2. Let us assume that k �= Z/2Z. Let f : A1 −→
A2 be a bijective map that takes straight lines to straight lines and preserves
the simple ratio.

Then f is an affinity.

Proof

Every element λ of the field can be written as the simple ratio λ = (A,B,C) of
three points.



2.10 The Fundamental Theorem of Affine Geometry 85

Since f is a semi-affinity we have

f̃(
−−→
AB) = f̃(λ

−→
AC) = σ(λ)f̃(

−→
AC).

Hence,

λ = (A,B,C) = (f(A), f(B), f(C)) = σ(λ),

where σ is the automorphism of the field associated to f . Thus, σ(λ) = λ for
all λ, that is, σ is the identity, and hence f is an affinity. �

Example 2.48

Find a bijective map of an affine space A into itself taking straight lines onto
straight lines and such that it is not a semi-affinity.

Solution

By the Fundamental Theorem, we must look for an affine space over a Z/2Z-
vector space. We take A = E = (Z/2Z)3 and

f : A −→ A

(0,0,0) �→ (0,0,0)

(1,0,0) �→ (1,0,1)

(1,1,0) �→ (1,1,1)

(0,1,0) �→ (0,1,1)

(0,0,1) �→ (0,0,1)

(1,0,1) �→ (1,0,0)

(1,1,1) �→ (1,1,0)

(0,1,1) �→ (0,1,0)

f is bijective and takes straight lines onto straight lines, but it is not a semi-
affinity. Indeed, take P = (0,0,0), Q = (1,0,0), R = (0,1,0) and denote f̃P by f̃ .
Notice that

−−→
PQ = (1,0,0) and

−→
PR = (0,1,0). We have

f̃(
−−→
PQ +

−→
PR) = f̃(1,1,0) = (1,1,1).

But,
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f̃(
−−→
PQ) + f̃(

−→
PR) = f̃(1,0,0) + f̃(0,1,0)

= (1,0,1) + (0,1,1)

= (1,1,0) �= (1,1,1).

�

2.10.1 A Note on Automorphisms of Fields

It is useful to know that the fields Q, R and Z/pZ have a unique automor-
phism: the identity. Hence, when we work over one of these fields (with p �= 2),
the Fundamental Theorem of Affine Geometry states that every bijective map
taking straight lines to straight lines is an affinity.

The only automorphism of Z/pZ is the identity. Let σ be an automorphism
of Z/pZ. Since σ(1) = 1, the other elements are also fixed, because Z/pZ is
additively generated by 1. That is, σ(m) = mσ(1) = m, and hence σ = id.

The only automorphism of Q is the identity. Let σ be an automorphism
of Q. Since σ(1) = 1, all integers are fixed, because Z is additively generated
by 1. Moreover, σ(n · 1

n ) = σ(n) · σ( 1
n ) = 1; hence, σ( 1

n ) = 1
σ(n) = 1

n .
Thus,

σ
(m

n

)
= m · σ

(
1
n

)
=

m

n
,

and so σ = id.

The only automorphism of R is the identity. Let σ be an automorphism
of R. We know, by the above argument, that σ is the identity on Q.

Let a ∈ R. Let us assume a > 0. Then a = b2, with b ∈ R. Thus, σ(a) = σ(b)2,
and hence σ(a) > 0. Since σ is bijective, we have a > 0 if and only if σ(a) > 0.

Let us assume that there is a real number c such that σ(c) − c > 0 (a very
similar argument can be applied if σ(c) − c < 0). Choose r ∈ Q such that σ(c) <

r < c. Then

σ(c − r) = σ(c) − σ(r) = σ(c) − r < 0,

a contradiction, since c − r > 0. Hence, σ(c) = c for all c ∈ R, and σ = id.
See, for instance, [30], page 49.

The field C, however, has infinitely many automorphisms2 and the fields of
pr elements have exactly r automorphisms; see for instance [20], page 184.

2 It seems impossible (or very difficult) to explicitly describe these automorphisms
(except, of course, for the identity and conjugation). Nevertheless, given any per-
mutation P of a family of complex numbers S, algebraically independent over the
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EXERCISES

2.1. Verify if the following maps are affinities or not:

C −→ C

z �→ z

R
2 −→ R

2

(x, y) �→ (x, −y)
R

3 −→ R
2

(x, y, z) �→ (1 + x,
√

π)

In the first case consider C as an affine space over C and also over R.
2.2. Consider the affinity f : R

3 −→ R
2 given in the respective canonical

affine frames by

(
x′

y′

)
=

(
2 1 0

−1 1 3

)⎛
⎝x

y

z

⎞
⎠ +

(
2
1

)
.

Find the equations of f in the affine frames R1 and R2 given by

R1 = {(1,0,0); ((2, −1,0), (0,2, −1), (−1,0,2))},

R2 = {(2,1); ((1,1), (1, −1))}.

2.3. Find, in the affine plane R
2, the equations of the projection on

the straight line r: x + y = 1 in the direction of the straight line
s: x − y = 2.

2.4. Find, in the affine space R
3, the equations of the symmetry with

respect to L = (1,1,0)+ [F ] in the direction G in the following cases:
1. F = 〈(1,2,3), (0,0,1)〉, G = 〈(3,1,1)〉.
2. F = 〈(3,1,1)〉, G = 〈(1,2,3), (0,0,1)〉.
3. F = {�0}.
4. G = {�0}.

2.5. Find, in the affine space R
3, the equations of the projection on L =

(1,1,0)+ [F ] in the direction G in the same four cases considered in
the previous exercise.

2.6. Consider, in an affine space of dimension 3, the linear varieties given
in some affine frame R by

L = {(x, y,x) : x + y + z = 3, x − 4y + 2z = 1},

M = {(x, y,x) : 2x − 3y − z = 1}.

Find the equations of the symmetry with respect to L in the direction
of M and the equations of the symmetry with respect to M in the
direction of L.

field of algebraic numbers Q̄, and any automorphism σ of Q̄, there exists an auto-
morphism of C that restricted to S acts as P and restricted to Q̄ acts as σ. See,
for instance, [20], page 270, Exercise 1.
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2.7. Let f : R
3 −→ R

3 be an affinity of the affine space R
3 such that the

points of the plane Π : x + z = 1 are fixed and such that f(0,0,0) =
(0, −3,0).
(a) Find the matrix of f in the canonical affine frame C of the affine

space R
3.

(b) Prove that on the planes parallel to Π , f acts as a translation,
and find the translation vector.

2.8. Let R = {P ; (e1, e2)} be an affine frame of a given affine plane. Find
the equations of the axial symmetries, and their compositions, with
respect to the straight lines given in R by the equations 2x+3y = 2
and x + 3y = 2, in the directions e1 + e2 and e1 respectively.

2.9. Prove that dilations of an affine plane satisfy the Axioms 4 and 5 of
Affine Geometry given in the introduction, page viii.

2.10. Prove that the image under an affinity of the barycenter of r points
is equal to the barycenter of the images of these points. The same
is true for the barycenter with weights. Is a map preserving the
barycenter with weights necessarily an affinity?

2.11. Prove Theorem 2.40 in the following three steps:
(1) Reduce the problem to the case A1 = A2 = k.
(2) Further reduce the problem to the case f(0) = 0 (composing with

a translation).
(3) Observe that f(b) = a · b where f(1) = a.
Thus, f is multiplication by a, which is linear. This exercise was
suggested by F. Cedó.

2.12. Let f be an affinity of an affine plane A, given in the affine frame
R = {P ; (e1, e2)} by the equations f(x, y) = (x − y + 1, y + 2). Find
the equations of f in the affine frame R′ = {(3,2); (e1 − e2,2e1 +e2)}.

2.13. Consider the affinity of the affine space R
3 given by

T (x, y, z) = (1 + x + 2y + z,2 + y − z, −1 + x + 9z).

Is it bijective? Find the associated endomorphism. Find the image
of the straight line x = a, y = 2 − a, z = −1 and the image of the
plane 2x + y − z = 1. Find the preimage of these linear varieties.
Find the fixed points. Find also the equations of T in the affine
frame {(1,0,4); ((1,1,0), (2,0,1), (8,0,7))}.

2.14. Find the affinity f of the affine space R
3 leaving the plane Π : x +

y = 1 invariant, acting on this plane as a translation by the vector
v = (0,0,1), and such that f(1,1,0) = (0,0,0).

2.15. Let f be the affinity of an affine space of dimension 3 given in an
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affine frame R by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′ = 1 − 1
3
x +

2
3
y +

2
3
z,

y′ =
2
3
x − 1

3
y +

2
3
z,

z′ = −1 +
2
3
x +

2
3
y − 1

3
z.

Find, with respect to R:
(a) The fixed points and the invariant straight lines.
(b) The image of the straight line

x

1
=

y − 2
2

=
z + 1

3
.

(c) The preimage of the plane x′ − y′ − z′ = 2.
2.16. (a) Construct all the affinities of the affine plane R

2 which leave
invariant the figure formed by a point P and a straight line r

with P /∈ r.
(b) Give, in the affine plane R

2, the expression of all affinities f such
that f(P ) = P and f(r) = r where P = (1,0) and r: y − x = 0.

2.17. Prove that, in an affine plane, given two intersecting straight lines r, s

and a point P not belonging to them, and given another analogous
configuration, that is, two intersecting straight lines r′, s′ and a point
P ′ not belonging to them, there exists a unique affinity f such that
f(r) = r′, f(s) = s′ and f(P ) = P ′. Find this affinity, in the affine
plane R

2, where

r: x − y = 2, s: x − 2y = −1, P = (0,0);

r′: x = 4, s′: x − y = 1, P ′ = (1,2).

2.18. (a) Find, with respect to the canonical affine frame of the affine
plane R

2, the equations of a homothety of center (2,3) and simil-
itude ratio −1.

(b) Is it true that the image of a straight line that does not contain
the center of a homothety is another straight line parallel to it?

(c) Find a homothety which, when composed with the homothety
of part a), yields a translation, and give the translation vector.

2.19. Let A be an affine plane. Find the affinities of A fixing one vertex
of a triangle and permuting the other two. Find the affinities of A

leaving invariant a given straight line.
2.20. Let A be an affine space of dimension 3. Find the affinities of A

with one straight line of fixed points r and leaving invariant another
straight line parallel to r.
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2.21. Consider the map f : R
4 → R

4 given by

f(x, y, z, t) = (1 + x + y, −1 + y + z,2 + z + t,1 + αx + t), α ∈ R.

Find the value of α for which f is not bijective. Let Π : ax+by+cz+
dt = 1 be a hyperplane in the affine space R

4. Find, for the previous
value of α, the condition that must be fulfilled by a, b, c, d in order
that f(Π) be a linear variety of dimension smaller than 3.

2.22. Study the affinities of the affine space R
2 preserving the hyperbola

xy = 1.
2.23. Let f be an affine map. Prove:

(a) If f2 has a fixed point, then f also has a fixed point.
(b) If there exists an n ∈ N such that fn has a fixed point, then f

also has a fixed point.
2.24. Prove that given two triangles T1 and T2 of an affine plane A, there

exists a bijective affinity f : A → A such that f(T1) = T2. How many
maps with this property are there? Is the previous statement true
if we replace triangles by quadrilaterals, parallelograms or triples of
points?

2.25. Let �ABC and �A′B′C′ be triangles whose sides are respectively
parallel. Prove that there exists a translation or a homothety map-
ping one of them onto the other.

2.26. (a) Find, with respect to the canonical affine frame of the affine
space R

2, the equations of an affinity mapping the points A =
(0,0), B = (1,0), C = (0,1), respectively onto the points B, C,
A. What is the image under this affinity of the barycenter of the
triangle �ABC?

(b) Find, with respect to the canonical affine frame of the affine
space R

2, the equations of an affinity mapping the points A =
(a1, a2), B = (b1, b2), C = (c1, c2), respectively onto the points
B,C,A. What is the image under this affinity of the barycenter
of the triangle �ABC?



3
Classification of Affinities

3.1 Introduction

In this chapter we only consider affinities from an affine space A into itself. The
aim is to see how many affinities there are. We give a complete answer to this
question, modulo an equivalence relation, in dimensions 1 and 2. We also give
a geometric interpretation of the affinities of the real affine plane. Arbitrary
dimensions are considered in the next chapter.

3.2 Similar Endomorphisms

First let us recall the following definitions from linear algebra. Let E be a
k-vector space.

Definition 3.1

Two endomorphisms f̃ and g̃ of E are similar if and only if there exists an
invertible endomorphism h̃ of E such that f̃ = h̃−1 ◦ g̃ ◦ h̃.

In this case we say that h̃ conjugates f̃ and g̃. Analogously we have the follow-
ing.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 3, c© Springer-Verlag London Limited 2011

91
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Definition 3.2

Two matrices A,B ∈ Mn×n(k) are similar if and only if there exists an invert-
ible matrix C ∈ Mn×n(k) such that A = C−1BC.

In this case we say that C conjugates A and B.
The relationship between these two definitions is given in the next propo-

sition.

Proposition 3.3

Let f̃ and g̃ be endomorphisms of E. Then:
(i) The matrices M(f̃ , B1) and M(f̃ , B2) are similar, where B1 and B2 are

bases of E.
(ii) f̃ and g̃ are similar if and only if M(f̃ , B) and M(g̃, B) are similar, where

B is a basis of E.
(iii) f̃ and g̃ are similar if and only if there are bases B1 and B2 of E such that

M(f̃ , B1) = M(g̃, B2).

Proof

See [8], page 321. �

From this, we easily deduce that similar endomorphisms have the same charac-
teristic polynomial and, in particular, the same trace and the same determinant,
see [8], page 332.

3.3 Similar Affinities

For affinities we have an analogous definition.

Definition 3.4

Two affinities f, g : A −→ A are similar if and only if there exists a bijective
affine map h : A −→ A such that f = h−1 ◦ g ◦ h.

In this case we say that h conjugates f and g.
The relationship between similar endomorphisms and similar affinities is

given in the following proposition.
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Proposition 3.5

If two affinities are similar, then their associated linear maps are also similar.

Proof

Since the linear map associated with a composition of affinities is equal to the
composition of the corresponding linear maps, the equality

f = h−1 ◦ g ◦ h

implies

f̃ = h̃−1 ◦ g̃ ◦ h̃.

Hence, if f is similar to g, then f̃ is similar to g̃. �

The converse is not true. For instance, the identity and a translation Tu, with
u �= 0, have the same associated linear map, but they are not similar.

Proposition 3.6

Let Tu and Tv be two translations, different from the identity, of an affine
space A. Then Tu and Tv are similar.

Proof

Let ϕ be any bijective linear map such that ϕ(u) = v. We know, from Propo-
sition 2.4, that there is an affinity h such that h̃ = ϕ (in fact, there are many
such maps).

Then h conjugates Tu and Tv. In fact,

(h ◦ Tu)(P ) = h(P + u) = h(P ) + ϕ(u) = h(P ) + v = (Tv ◦ h)(P ).

�

3.4 Computations in Coordinates

Proposition 3.3, which refers to endomorphisms, can be directly generalized to
affinities.

For convenience, we define affinely similar matrices.
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Definition 3.7

We say that the matrices
(

A a
0 1

)
and

(
B b
0 1

)
are affinely similar if there is an

invertible matrix
(

C c
0 1

)
such that

(
A a

0 1

)
=

(
C c

0 1

)−1 (
B b

0 1

)(
C c

0 1

)
,

with A,B,C ∈ Mn×n(k);a, b, c ∈ Mn×1(k).

Then we have the following.

Proposition 3.8

Let f and g be affinities of an affine space A. Then:
(i) The matrices M(f, R1) and M(f, R2) are affinely similar, where R1 and

R2 are affine frames of A.
(ii) f and g are similar if and only if M(f, R) and M(g, R) are affinely similar,

where R is an affine frame of A.
(iii) f and g are similar if and only if there exist affine frames R1 and R2 of

A such that M(f, R1) = M(g, R2).

Proof

The proof is an adaptation of that of Proposition 3.3. For convenience, we
reproduce it here.
(i) This is a consequence of the change of basis formula, (2.2) on page 61.
(ii) (⇒) Let us assume that f and g are similar. Then there is an invertible

affinity h of A such that f = h−1 ◦ g ◦ h. Hence, by Proposition 2.20,

M(f, R) = M(h−1, R)M(g, R)M(h, R).

Since M(h−1, R) = M(h, R)−1, the matrices M(f, R) and M(g, R) are
similar, and the matrix conjugating them is of the form

(
C c
0 1

)
, since it

corresponds to the matrix of an affinity.
(⇐) Let us assume that the matrices M(f, R) and M(g, R) are conjugated
by a matrix

M =
(

C c

0 1

)
.

Let h be the affinity of A such that M(h, R) = M . Since M is invertible,
h is bijective and M(h−1, R) = M −1. Now we have
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M(f, R) = M(h−1, R)M(g, R)M(h, R)

= M(h−1 ◦ g ◦ h, R).

Hence, f = h−1 ◦ g ◦ h, and this proves that f and g are similar.
(iii) (⇐) Let us assume that there are affine frames R1 and R2 of A such

that M(f, R1) = M(g, R2). From (i), M(g, R2) is similar to M(g, R1),
and from (ii), f and g are similar.
(⇒) Let us assume that f and g are similar. Let h be an invertible affinity
of A such that f = h−1 ◦ g ◦ h.
Then

M(f, R1) = M(h, R1)−1M(g, R1)M(h, R1).

Since h is bijective, if we put R1 = {P ; (e1, . . . , en)}, then

R2 = {h(P ); h̃(e1), . . . , h̃(en)}

is an affine frame of A and

M(h, R1) = M(R2, R1).

Hence,

M(f, R1) = M(R2, R1)−1M(g, R1)M(R2, R1) = M(g, R2).
�

Note that Proposition 3.6 can now easily be proved:

Corollary 3.9

Let Tu and Tv be two translations, different from the identity, of an affine
space A. Then Tu and Tv are similar.

Proof

We have seen, on page 67, that the equations of a translation Tu, with u �= 0,
are ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x′
1 = x1 + 1,

x′
2 = x2,

...
x′

n = xn.
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Now the result is a consequence of part (iii) of Proposition 3.8. �

Analogously, we have the following.

Corollary 3.10

The homotheties hP,λ and hQ,μ are similar if and only if λ = μ.

Proof

If λ = μ, the matrix of the first homothety with respect to an affine frame
with origin the fixed point P is equal to the matrix of the second homothety
with respect to an affine frame with origin the fixed point Q. From part (iii) of
Proposition 3.8, these homotheties are similar.

If the homotheties are similar, it is clear by Proposition 3.5 that λ = μ. �

Corollary 3.11

Two projections f and g of an affine space A are similar if and only if
dimFix(f) = dimFix(g).

Proof

See the equations of projections on page 73. �

Corollary 3.12

Two symmetries f and g of an affine space A are similar if and only if
dimFix(f) = dimFix(g).

Proof

See the equations of symmetries on page 72. �

Corollary 3.13

Let R = {P ; B } be an affine frame of an affine space A of dimension n. Let f, g

be affinities with
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M(f, R) =
(

A a

0 1

)
, M(g, R) =

(
B b

0 1

)
,

where A,B ∈ Mn×n(k) and a, b ∈ Mn×1(k).
Then, f is similar to g if and only if there exist an invertible matrix C ∈

Mn×n(k) and a column matrix c ∈ Mn×1(k) such that

{
A = C−1BC,

(B − In)c = Ca − b.

Proof

From part (ii) of Proposition 3.8, f is similar to g if and only if there exists a
matrix (

C c

0 1

)
,

with C invertible, such that

(
A a

0 1

)
=

(
C c

0 1

)−1 (
B b

0 1

)(
C c

0 1

)
. (3.1)

Equivalently,
(

C c

0 1

)(
A a

0 1

)
=

(
B b

0 1

)(
C c

0 1

)
,

and hence

CA = BC, Ca + c = Bc + b,

which can be written as
{

A = C−1BC,

(B − In)c = Ca − b.

�

Part (i) of Proposition 3.8 allows us to define the determinant and trace of an
affinity as the determinant and trace of the matrix of the affinity with respect
to any affine frame.1

1 Indeed, we can define not only the determinant and trace, but any function of the
elementary symmetric polynomials.



98 3. Classification of Affinities

Since

M(f, R) =
(

A a

0 1

)
,

we have det f̃ = detf and trace f̃ = trace f − 1.
Part (ii) of Proposition 3.8 states that the determinant and the trace of an

affinity are invariant within each equivalence class.

3.5 Invariance Level

Definition 3.14 (Invariance level)

An affinity f has invariance level ρ(f) = r, for r = 0, . . . ,dimA, if and only if
f has invariant linear varieties of dimension r and all linear varieties of smaller
dimension (if r > 0) are not invariant.

Thus, for instance, if f has a fixed point, the invariance level is ρ(f) = 0, since
there are invariant varieties of dimension zero (and it does not make sense to
talk about varieties of smaller dimension).

If f is a translation (different from the identity) it has invariance level
ρ(f) = 1, since translations have invariant straight lines, but they do not have
fixed points.

Equivalently, ρ(f) is the minimum of the dimensions of the invariant vari-
eties:

ρ(f) = min
L⊂A

{dimL : f(L) ⊂ L}

We illustrate this definition in dimensions 1 and 2.

3.5.1 Invariance Level in Dimension 1

Let f be an affinity of an affine space of dimension 1. Then:
(0) f has invariance level ρ(f) = 0 if and only if it has a fixed point.
(1) f has invariance level ρ(f) = 1 if and only if it does not have a fixed point.

Hence, in order to find ρ(f) it is only necessary to determine the fixed points
of f .
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3.5.2 Invariance Level in Dimension 2

Let f be an affinity of an affine space of dimension 2. Then:
(0) f has invariance level ρ(f) = 0 if and only if it has a fixed point.
(1) f has invariance level ρ(f) = 1 if and only if it does not have a fixed point,

but it has an invariant straight line.
(2) f has invariance level ρ(f) = 2 if and only if it neither has fixed points nor

invariant straight lines.
Hence, in order to find ρ(f) it is only necessary to determine the fixed points

and invariant straight lines of f .
In the next proposition we prove that similar affinities have the same in-

variance level.

Proposition 3.15

Let f, g be similar affinities. Then ρ(f) = ρ(g).

Proof

We know that there is an invertible affinity h such that

f = h−1 ◦ g ◦ h.

Let L be a linear variety of the affine space A invariant under f , that is, such
that f(L) ⊂ L. Then the linear variety h(L), which has the same dimension as
L because h̃ is an isomorphism, is invariant under g, since

g(h(L)) = h(f(L)) ⊂ h(L).

Hence, if f has invariant varieties of a certain dimension, then g also has invari-
ant varieties of the same dimension, and conversely. Hence, ρ(f) = ρ(g), and
this completes the proof. �

3.6 Classification of Affinities of the Line

In this section A denotes an affine space over a k-vector space E of dimension 1.
We first observe that Proposition 2.29, which refers to the existence of a

unique fixed point, can be stated as follows:
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Proposition 3.16

Let f be an affinity of an affine space of dimension 1. Let us assume that, in
some affine frame, f has equation x′ = Ax+a. Then, f has a unique fixed point
if and only if A �= 1.

Proof

In this case A ∈ M1×1(k), that is, A ∈ k, and hence the condition det(A − 1) �= 0
of Proposition 2.29 reduces to A − 1 �= 0. �

Note that this unique fixed point has coordinate x = a
1−A ∈ k.

Theorem 3.17 (Classification)

Let f be an affinity of an affine space of dimension 1. Then there exists an
affine frame R = {P ; e} such that the equation of f in this affine frame is one
(and only one) of the following:

x′ = Ax, A �= 1,

x′ = x + 1,

x′ = x.

Proof

If f has two fixed points, it is the identity. In any affine frame the equation is

x′ = x.

In this case ρ(f) = 0.
If f has a unique fixed point P , we take the affine frame R = {P ; e}, where

e ∈ E is any non-zero vector. Since dimE = 1, we have f̃(e) = Ae for some
scalar A ∈ k. By Proposition 3.16, A �= 1. Thus,

M(f, R) =
(

A 0
0 1

)
,

and hence the equation is

x′ = Ax, A �= 1.

In this case, ρ(f) = 0.
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Finally, if f does not have fixed points, we take any point P and define
e =

−−−−→
Pf(P ). Note that e �= 0. Again by Corollary 2.28, we must have f̃(e) = e.

In the affine frame R = {P ; e} we have

M(f, R) =
(

1 1
0 1

)
,

and hence the equation is

x′ = x + 1.

In this case, ρ(f) = 1.
The uniqueness of such expression follows from the invariance of the deter-

minant: if detf = A �= 1, we are in the first case; if detf = 1, we are either in
the second case if ρ(f) = 1, or in the third case if ρ(f) = 0. �

Summarizing, we have Table 3.1.

Linear Affine Name and invariance level Equation

1 �= A ∈ k
(

A 0
0 1

)
Homothety, ρ = 0 x′ = Ax

1
(

1 1
0 1

)
Translation, ρ = 1 x′ = x + 1

1
(

1 0
0 1

)
Identity, ρ = 0 x′ = x

Table 3.1. Affinities of the line

Theorem 3.18 (Characterization)

Let f and g be affinities of an affine space of dimension 1. Then f is similar to
g if and only if f̃ is similar to g̃ and ρ(f) = ρ(g).

Proof

We have seen in Propositions 3.5 and 3.15 that if f is similar to g then f̃ is
similar to g̃ and ρ(f) = ρ(g).

Conversely, let us assume given two affinities f and g such that f̃ is similar
to g̃, and ρ(f) = ρ(g). The condition “f̃ is similar to g̃” (which in dimension 1
is equivalent to f̃ = g̃) implies det(f) = det(g) = A.

Looking at the above table we see that if A �= 1, both f and g are homoth-
eties of similitude ratio A, and hence, by Corollary 3.10, f is similar to g.
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If A = 1, the equality ρ(f) = ρ(g) implies either that f and g are both
translations, and so by Proposition 3.6, f is similar to g, or that f and g are
equal to the identity. �

3.7 Classification of Affinities of the Real Plane

In this section A denotes an affine space over an R-vector space E of dimen-
sion 2. First let us recall a result from linear algebra.

3.7.1 Classification of Endomorphisms in Real Dimension
Two

Let E be an R-vector space of dimension two. The study of an endomorphism
of E requires the study of its characteristic polynomial, but the knowledge
of this polynomial for each endomorphism is not enough to determine if two
endomorphisms of E are similar or not.

Since we are in dimension two, the characteristic polynomial is of degree two,
with real coefficients, and therefore the roots of this polynomial are complex,
real simple or real multiple.

It is known, see for instance [8], that in dimension two, two endomorphisms
f̃ , g̃ are similar if and only if their characteristic polynomials have the same
roots and, moreover, dim(ker(f̃ − a id)) = dim(ker(g̃ − a id)), where a ∈ R is a
common real multiple root (if there is such a root).

Concretely, if the characteristic polynomial of f̃ , pc(f̃) = x2 + bx + c, has
complex roots, that is, b2 < 4c, then there exists a basis B of E such that

M(f̃ , B) =
(

0 −c

1 −b

)
.

If pc(f̃) = (x − a)(x − b), with a, b different real numbers, then there exists
a basis B of E such that

M(f̃ , B) =
(

a 0
0 b

)
.

If pc(f̃) = (x − a)2 with a ∈ R, and dim(ker(f̃ − a id)) = 1, then there exists
a basis B of E such that

M(f̃ , B) =
(

a 0
1 a

)
.
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If pc(f̃) = (x − a)2 with a ∈ R, and dim(ker(f̃ − a id)) = 2, then there exists
a basis B of E such that

M(f̃ , B) =
(

a 0
0 a

)
.

3.7.2 List of Canonical Expressions of Endomorphisms

We have obtained four canonical expressions for the matrix of f̃ as a function
of the roots of its characteristic polynomial: complex, simple real or double real
(two cases). However, because of Proposition 3.16, we must still separate the
cases in which one of the real roots is 1. This increases the four cases to eight.

We organize the above classification in the following way: given an endo-
morphism f̃ of a real vector space E of dimension 2, there exists a basis B of E

such that M(f̃ , B) is equal to one and only one of the matrices of the following
list:

Ẽ (b, c) =
(

0 −c

1 −b

)
, b2 < 4c

H̃(a, b) =
(

a 0
0 b

)
, a, b �= 1; a < b

h̃(a) =
(

a 0
0 a

)
, a �= 1

P̃ (a) =
(

a 0
1 a

)
, a �= 1

h̃g(a) =
(

1 0
0 a

)
, a �= 1

h̃e =
(

1 0
1 1

)
,

ĩd =
(

1 0
0 1

)
= I2,

No two different matrices in this list are conjugate.
Inspired by this, we next give a list of matrices that will allow us to give a

more concise statement of the Classification Theorem.
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3.7.3 Canonical Expressions of Affinities

E (b, c) =

⎛
⎜⎝

0 −c 0
1 −b 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ Ẽ (b, c)

0
0

0 0 1

⎞
⎟⎠ , b2 < 4c,

H(a, b) =

⎛
⎜⎝

a 0 0
0 b 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ H̃(a, b)

0
0

0 0 1

⎞
⎟⎠ , a, b �= 1; a < b,

h(a) =

⎛
⎜⎝

a 0 0
0 a 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ h̃(a)

0
0

0 0 1

⎞
⎟⎠ , a �= 1,

P (a) =

⎛
⎜⎝

a 0 0
1 a 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ P̃ (a)

0
0

0 0 1

⎞
⎟⎠ , a �= 1,

Thg(a) =

⎛
⎜⎝

1 0 1
0 a 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ h̃g(a)

0
1

0 0 1

⎞
⎟⎠ , a �= 1,

hg(a) =

⎛
⎜⎝

1 0 0
0 a 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ h̃g(a)

0
0

0 0 1

⎞
⎟⎠ , a �= 1,

The =

⎛
⎜⎝

1 0 1
1 1 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ h̃e

1
0

0 0 1

⎞
⎟⎠ ,

he =

⎛
⎜⎝

1 0 0
1 1 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ h̃e

0
0

0 0 1

⎞
⎟⎠ ,

T =

⎛
⎜⎝

1 0 0
0 1 1

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ I2

0
1

0 0 1

⎞
⎟⎠ ,

id =

⎛
⎜⎝

1 0 0
0 1 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ I2

0
0

0 0 1

⎞
⎟⎠ = I3.
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The matrices of this list are called canonical matrices.
The notation comes from the following:

E (b, c) = Elliptic.

H(a, b) = Hyperbolic.

P (a) = Parabolic.

h(a) = Homothety.

hg(a) = General homology.

he = Special homology.

Thg(a) = General homology followed by translation.

The = Special homology followed by translation.

T = Translation.

id = Identity.

See Section 3.9, page 116, for a geometrical interpretation of these affinities.

Theorem 3.19 (Classification)

Let f be an affinity of a real affine plane. Then there exists an affine frame
R = {P ; B } such that the matrix M(f, R) is a canonical matrix.

Proof

We know that there is a basis B = (e1, e2) of the associated vector space E such
that M(f̃ , B) is equal to one (and only one) of the matrices

Ẽ (b, c), H̃(a, b), h̃(a), P̃(a), h̃g(a), h̃e, ĩd.

First case: M(f̃ , B) = Ẽ (b, c), H̃(a, b), h̃(a), P̃(a). In this case, by Proposi-
tion 3.16, there exists a unique fixed point P .

Let us consider the affine frame R = {P ; B } with origin this fixed point.
Then, since

M(f, R) =

⎛
⎜⎝M(f̃ , B)

0
0

0 0 1

⎞
⎟⎠ ,

the matrix M(f, R) is equal to one of the matrices E (b, c), H(a, b), h(a) or P (a).
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Second case: M(f̃ , B) = h̃g(a). In this case, we take an affine frame with
origin any point Q, S = {Q; B }. Then

M(f, S) =

⎛
⎝1 0 α

0 a β

0 0 1

⎞
⎠ .

Let us see if there are any fixed points. The equations of fixed points are

x + α = x,

ay + β = y,

so we have two cases:
α = 0. In this case, there are fixed points (any point with y = β

1−a
). Let P be

one of these fixed points, and let R = {P ; B }. Then

M(f, R) =

⎛
⎝1 0 0

0 a 0
0 0 1

⎞
⎠ = hg(a).

α �= 0. In this case, there are no fixed points. We look for invariant straight
lines. Since the eigenvectors are the two vectors e1 and e2 of the basis

B, the candidates to be invariant straight lines must have equations of
the form x = constant or y = constant. Since y′ = ay +β, it is clear that
the straight line

y =
β

1 − a

is invariant. In fact, it is the unique invariant straight line, since x′ =
x+α, and hence, the straight line x = c, where c is a constant, is mapped
to the straight line x = c + α, with α �= 0.
Since the invariant straight line has an equation of the form y =
constant, it has direction vector e1. Let P be a point of this straight
line, and let R = {P ;λe1, e2} with

−−−−→
Pf(P ) = λe1. Then

M(f, R) =

⎛
⎝1 0 1

0 a 0
0 0 1

⎞
⎠ = Thg(a).

Third case: M(f̃ , B) = h̃e. In this case, we take an affine frame with origin
any point Q, S = {Q; B }. Then

M(f, S) =

⎛
⎝1 0 α

1 1 β

0 0 1

⎞
⎠ .
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Let us see if there are any fixed points. The equations of fixed points are

x + α = x,

x + y + β = y,

so we have two cases:
α = 0. In this case, there are fixed points (any point with x = −β). Let P be

one of these fixed points, and let R = {P ; B }. Then

M(f, R) =

⎛
⎝1 0 0

1 1 0
0 0 1

⎞
⎠ = he.

α �= 0. In this case, there are no fixed points. Let us see if there are invariant
straight lines. Since the unique eigenvector is e2, the second vector of
the basis B, the candidates to be invariant straight lines must have
equations of the form x = constant. But, since x′ = x + α, there are no
invariant straight lines.
Therefore, there are no special points which can be considered as the
origin. Nevertheless, we can slightly improve the initial expression of f

in the following way: Let

R = {Q; (αe1 + βe2, αe2)},

where, as before,
−−−−→
Qf(Q) = αe1 +βe2. Then f̃(αe1 +βe2) = αe1 +βe2 +

αe2, and f̃(αe2) = αe2, and hence

M(f, R) =

⎛
⎝1 0 1

1 1 0
0 0 1

⎞
⎠ = The.

Fourth case: M(f̃ , B) = ĩd = I2. In this case f is, by definition, a transla-
tion Tv .

If f = Tv, with v �= 0, we complete v to a basis B ′ = (u, v). Let P be any
point and R = {P ; B ′ }. Then

M(f, R) =

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ = T.

If f = Tv with v =�0, then f = id, and in any affine frame R we have

M(f, R) =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ = I3.

�
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When M(f, R) is a canonical matrix we also say that M(f, R) is the canonical
expression of f .

It remains to be seen if there can exist affine frames R and S such that
M(f, R) and M(f, S) are two different canonical matrices. For instance, hg(a)
and Thg(a) have the same characteristic polynomial, and in particular the same
trace and the same determinant, and we could have, in principle, M(f, R) =
hg(a) and M(f, S) = Thg(a) for the same affinity f . Likewise for he and The,
and for T and id.

We shall answer this question in Proposition 3.23.

Example 3.20

Let f be the affinity of the affine plane R
2 given in the canonical affine frame

C by

M(f, C) =

⎛
⎝2 2 3

0 1 4
0 0 1

⎞
⎠ .

Find an affine frame R in R
2 such that M(f, R) is a canonical matrix. Find

the fixed points and the invariant straight lines.

Solution

We first study the fixed points.
Fixed points. The equations of the fixed points are

2x + 2y + 3 = x,

y + 4 = y.

Hence, there are no fixed points.
Eigenvectors. The matrix

A =
(

2 2
0 1

)

has u = (1,0) as eigenvector with eigenvalue λ = 2 and v = (−2,1) as eigenvec-
tor with eigenvalue μ = 1.

Invariant straight lines of direction u. These straight lines have equation
y = constant and, hence, they are not invariant (y′ = y + 4).

Invariant straight lines of direction v. These straight lines have equation
x + 2y + c = 0, c ∈ R, and they are invariant if for each of their points (x, y)
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there exists a λ ∈ R such that
⎛
⎝2 − 1 2 3

0 1 − 1 4
0 0 1 − 1

⎞
⎠

⎛
⎝x

y

1

⎞
⎠ = λ

⎛
⎝−2

1
0

⎞
⎠ . (3.2)

Equivalently,
⎛
⎝1 2 3

0 0 4
0 0 0

⎞
⎠

⎛
⎝−c − 2y

y

1

⎞
⎠ = λ

⎛
⎝−2

1
0

⎞
⎠ .

From this we deduce that λ = 4 and c = 11. Hence, the invariant straight line
is x + 2y + 11 = 0.

Invariant straight lines (second method). The straight line ax + by + c = 0
is invariant if ⎛

⎝2 − λ 0 0
2 1 − λ 0
3 4 1 − λ

⎞
⎠

⎛
⎝a

b

c

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ ,

where λ is an eigenvalue associated to one of the eigenvectors (not necessarily
to the direction vector of the straight line!). See point (8) on page 111.

For λ = 1 there is no solution. For λ = 2 the solution is b = 2a, c = 11a, and
we get the same straight line x + 2y + 11 = 0 obtained above.

In particular, we have obtained ρ(f) = 1.
Hence, looking at the table on page 104, we see that the given affinity is

similar to an affinity of the type Thg(a), namely

Thg(2) =

⎛
⎝1 0 1

0 2 0
0 0 1

⎞
⎠ .

To find the affine frame in which the matrix of f has this expression, we
take a point P of the invariant straight line, that is, a point of the form P =
(−11 − 2y, y), next we compute f(P ) and we put

−−−−→
Pf(P ) = λv.

Since this equation coincides with (3.2) we have λ = 4. Hence, as we have seen
in the proof of Theorem 3.19, the affine frame R (one for each value of y) such
that M(f, R) is the canonical matrix Thg(2) is

R = {(−11 − 2y); 4v,u}.
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The matrix of the change of basis is

C =

⎛
⎝ −8 1 −11 − 2y

4 0 y

0 0 1

⎞
⎠ .

Note that this matrix C satisfies C−1M(f, C)C = Thg(2). �

Observation 3.21

We collect here some observations that may be useful in trying to classify
affinities of the plane.
1. General homology. Let f be an affinity such that

M(f, S) =

⎛
⎝1 0 α

0 a β

0 0 1

⎞
⎠ .

If α = 0, there exists an affine frame R such that M(f, R) = hg(a). If α �= 0,
there exists an affine frame R such that M(f, R) = Thg(a).

2. Special homology. Let f be an affinity such that

M(f, S) =

⎛
⎝1 0 α

1 1 β

0 0 1

⎞
⎠ .

If α = 0, there exists an affine frame R such that M(f, R) = he. If α �= 0,
there exists an affine frame R such that M(f, R) = The.

3. Translation. Let f be an affinity such that

M(f, S) =

⎛
⎝1 0 α

0 1 β

0 0 1

⎞
⎠ .

If α = β = 0, M(f, S) = I3. If α �= 0 or β �= 0, there exists an affine frame
R such that M(f, R) = T .

4. Origin. Note that the origin of any affine frame R, such that M(f, R) is
a canonical matrix, is the unique fixed point in cases E (b, c), H(a, b), h(a),

P (a); an arbitrary fixed point in cases hg(a), he, id; a point on the invariant
straight line in case Thg(a); and an arbitrary point in cases The and T .

5. Fixed points. First method. A point P with coordinates P = (x, y) in an
affine frame R is a fixed point of the affinity f if and only if

(x, y,1) ∈ ker(M(f, R) − I3)
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6. Fixed points. Second method. To find the fixed points of an affinity f , we
first find its canonical expression, next we find the fixed points in the affine
frame in which the canonical expression is written, and finally we obtain
the results in the given affine frame.
Concretely: let us assume given M(f, R′), and let R be an affine frame
such that M(f, R) is a canonical matrix. Let C = M(R, R′) be the matrix
of the change of affine frame.
Then, if a fixed point has coordinates (x, y) in R, it has coordinates (x′, y′)
in R ′, given by (1.3) on page 19, that is,

⎛
⎝x′

y′

1

⎞
⎠ = C

⎛
⎝x

y

1

⎞
⎠ .

7. Invariant straight lines. First method. Recall that the straight line P + 〈v〉
is invariant under an affinity f if and only if v is an eigenvector of f̃ and−−−−→
Pf(P ) ∈ 〈v〉.
Let us fix an affine frame R and set P = (p1, p2), v = (v1, v2). Then the
condition

−−−−→
Pf(P ) ∈ 〈v〉 is equivalent to

(M − I3)p = μv,

for some scalar μ, where

M = M(f, R), p =

⎛
⎝p1

p2

1

⎞
⎠ , v =

⎛
⎝v1

v2

0

⎞
⎠ .

8. Invariant straight lines. Second method. A straight line r, given in an affine
frame R by the equation αx + βy + γ = 0 (α or β different from zero), is
invariant under the affinity f if and only if

(α,β, γ) ∈ ker(MT − μ · I3)

where μ is an eigenvalue of M = M(f, R).
This follows from the fact that the equation of the straight line can be
written matricially as

(α,β, γ)

⎛
⎝x

y

1

⎞
⎠ = 0.
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The condition (α,β, γ) ∈ ker(MT − μ · I3) can be written as

MT

⎛
⎝α

β

γ

⎞
⎠ = μ

⎛
⎝α

β

γ

⎞
⎠ ,

or, transposing,

μ(α,β, γ) = (α,β, γ)M,

and hence

(α,β, γ)

⎛
⎝x′

y′

1

⎞
⎠ = (α,β, γ)M

⎛
⎝x

y

1

⎞
⎠ = μ(α,β, γ)

⎛
⎝x

y

1

⎞
⎠ .

Thus, the point P = (x, y) belongs to the straight line r if and only if
the point f(P ) = (x′, y′) belongs to the same straight line r. Hence, this
straight line is invariant.
Conversely, if the straight line is invariant, the previous equality is satisfied,
and hence, by the same argument as that made on page 25, (α,β, γ)M =
μ(α,β, γ), or equivalently (α,β, γ) ∈ ker(MT − μ · I3).
Recall that the eigenvalues of M and MT coincide, but the corresponding
eigenvectors do not.

9. Invariant straight lines. Third method. To compute the invariant straight
lines of an affinity f , we first find its canonical expression, next we find the
invariant straight lines in the affine frame in which the canonical expression
is written, and finally we obtain the results in the given affine frame.
Concretely: let us assume given M(f, R′), and let R be the affine frame
such that M(f, R) is a canonical matrix. Let C = M(R, R′) be the matrix
of change of affine frame.
Then, if an invariant straight line has equation αx + βy + γ = 0 in R, it
has equation α′x + β′y + γ′ = 0 in R′, with

⎛
⎝α′

β′

γ′

⎞
⎠ = (CT)−1

⎛
⎝α

β

γ

⎞
⎠ .
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3.8 Invariance Level in the Real Plane

Proposition 3.22

Let f be an affinity of the real affine plane and let R be an affine frame such
that M(f, R) is a canonical matrix. Then

ρ(f) = 0, for M(f, R) = E (b, c), H(a, b), h(a), P (a), hg(a), he, id.

ρ(f) = 1, for M(f, R) = Thg(a), T.

ρ(f) = 2, for M(f, R) = The.

Proof

To find the fixed points and the invariant straight lines of f we can fix any
affine frame and use coordinates. In particular, we can choose the affine frame
R given in the statement. The proof is, therefore, a simple calculation in each
of the ten cases. �

Proposition 3.23

Let f be an affinity of the real affine plane and let us assume that there are
affine frames R = {P ; B } and R ′ = {P ′; B ′ } such that M(f, R) and M(f, R ′)
are canonical matrices. Then M(f, R) = M(f, R′).

Proof

The matrices of a given affinity f in different affine frames are conjugated by
an invertible matrix of the form

(
C c

0 1

)
.

This conjugation between M(f, R) and M(f, R ′) induces a conjugation, per-
formed by the matrix C, between the matrices M(f̃ , B) and M(f̃ , B ′).

Hence, if M(f, R) and M(f, R′) are canonical matrices, then M(f̃ , B) and
M(f̃ , B ′) must, respectively, be conjugate to and equal to matrices in the seven
families

Ẽ (b, c), H̃(a, b), h̃(a), P̃(a), h̃g(a), h̃e, ĩd,

but, by the classification of endomorphisms in dimension two given in Sec-
tion 3.7.1, this is impossible, unless M(f̃ , B) = M(f̃ , B ′).
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If M(f̃ , B) = M(f̃ , B ′) = Ẽ (b, c), H̃(a, b), h̃(a), P̃(a), it can be seen directly,
just by looking at the list of canonical matrices, that we must have

M(f, R) = M(f, R′) = E (b, c), H(a, b), h(a), P (a),

respectively.
If M(f̃ , B) = M(f̃ , B ′) = h̃g(a), it can be seen directly, just by looking at the

list of canonical matrices, that we could have, in principle, M(f, R) = hg(a) and
M(f, R ′) = Thg(a). But the invariance level of f is different for the matrices
hg(a) and Thg(a), so this cannot happen, and hence either

M(f, R) = M(f, R′) = hg(a)

or

M(f, R) = M(f, R′) = Thg(a).

An analogous argument holds for M(f̃ , B) = M(f̃ , B ′) = h̃e, ĩd. This completes
the proof. �

Theorem 3.24 (Characterization)

Let f and g be affinities of the real affine plane. Then f is similar to g if and
only if f̃ is similar to g̃ and ρ(f) = ρ(g).

Proof

It has been proved in Propositions 3.5 and 3.15, respectively, that if f is similar
to g then f̃ similar to g̃ and ρ(f) = ρ(g).

Conversely, let us assume that we have two affinities of the plane, f and g,
such that f̃ is similar to g̃ and ρ(f) = ρ(g).

Case ρ(f) = ρ(g) = 0. Let P be a fixed point of f , f(P ) = P ; Q be a fixed
point of g, g(Q) = Q; and set

f̃ = h̃−1 ◦ g̃ ◦ h̃.

We then define h as the unique affinity such that h̃ is its associated linear map
and such that h(P ) = Q.

Note that

(h ◦ f)(P ) = h(P ) = Q = g(Q) = (g ◦ h)(P ).

Hence,

h ◦ f = g ◦ h,
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since they have the same associated linear map h̃ ◦ f̃ = g̃ ◦ h̃, and they coincide
at the point P .

Case ρ(f) = ρ(g) = 1. In this case there is an affine frame R = {P ; B } such
that either M(f, R) = Thg(a) or M(f, R) = T ; and there is an affine frame R′ =

{P ′; B ′ } such that either M(g, R ′) = Thg(a′) or M(g, R ′) = T . In particular,
we must have either

M(f̃ , B) = h̃g(a) or M(f̃ , B) = ĩd,

and either

M(g̃, B ′) = h̃g(a′) or M(g̃, B ′) = ĩd.

But, since h̃g(a) and ĩd are not conjugate, and h̃g(a) is conjugate to h̃g(a′)
if and only if a = a′, we must have either

M(f, R) = M(g, S) = Thg(a) or

M(f, R) = M(g, S) = T.

Hence, f is similar to g.
Case ρ(f) = ρ(g) = 2. In this case, there are affine frames R, S such that

M(f, R) = The,

M(g, S) = The.

Hence, f is similar to g. �

Thus, every affinity of the real affine plane is similar to one and only one of the
affinities of Table 3.3.

3.8.1 Summary of the Classification of Affinities
of the Real Plane

Let us assume an affinity f is given in some affine frame R by the matrix

M(f, R) =
(

P p

0 1

)
.

In order to determine which kind of affinity f is (without searching for an affine
frame in which f has canonical expression) we will use the following procedure:
(1) First we find the characteristic polynomial of P and compute its roots.
(2) If it has complex roots, we are in case Ẽ (b, c). There is an affine frame with

respect to which the matrix of f is equal to E (b, c).
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(3) If it has simple real roots, we are either in case H̃(a, b) or in case h̃g(a). In
the first case there is an affine frame with respect to which the matrix of
f is equal to H(a, b). In the second case we still need to compute ρ.

(4) If it has a multiple real root a, we compute dim ker(P − aI2) in order to
determine if P is diagonalizable or not. This tells us in which of the cases
h̃(a), P̃(a), h̃e or ĩd we are in. In the first two cases there is an affine frame
in which the matrix of f is equal, respectively, to h(a) or P (a). In the two
last cases we must compute ρ.

(5) In order to compute ρ, we compute the eigenvectors of the eigenvalue 1 of
M(f, R) (point 5 in Observation 3.21, page 110). If one of them has its
third component different from zero, then ρ = 0. Otherwise, ρ = 1 in cases
h̃g(a) and ĩd, and ρ = 2 in case h̃e.

3.9 Geometrical Interpretation

3.9.1 Homologies

Affinities with canonical expression given by hg(a) are called general homolo-
gies and those with canonical expression given by he are called special homolo-
gies.

More geometrically, an affinity f of the real affine plane with a straight line
of fixed points is called a homology. This straight line e of fixed points is called
the homology axis of f . Outside of this axis there are no fixed points.

Then, either for all P /∈ e the straight line Pf(P ) is parallel to the homology
axis or there is a point P /∈ e such that the straight line Pf(P ) meets e in a
point O.

In the first case, all straight lines parallel to the homology axis are invariant
(verify this), and we can find an affine frame R in which M(f, R) = he, that
is, f is a special homology.

In the second case, every straight line parallel to the straight line Pf(P ) is
invariant (verify this), and we can find an affine frame R in which M(f, R) =
hg(a), that is, f is a general homology.

The knowledge of the axis and the image f(P ) of a given point P allows us
to find graphically the image f(Q) of any other point Q.

For special homologies we need only cut the straight line Of(P ) with the
straight line parallel to the axis through Q. The point O is the intersection of
the straight line PQ with the homology axis, see Figure 3.1.

For general homologies we need only cut the straight line Of(P ) with the
straight line parallel to the straight line Pf(P ) through Q. The point O is the
intersection of the straight line PQ with the homology axis, see Figure 3.2.
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Figure 3.1. Special homology

Figure 3.2. General homology

Note that symmetries and projections, studied on pages 70 and 72, are
particular cases of general homologies. Indeed, with respect to a suitable affine
frame, general homologies have equations

x′ = ax, a �= 1,

y′ = y.

If a = 0, the homology is a projection over the straight line x = 0, in the
direction of the straight line y = 0.

If a = −1, the homology is a symmetry with respect to the straight line
x = 0, in the direction of the straight line y = 0.

An affinity with canonical expression Thg(a) is a general homology followed
by a translation Tu such that the translation vector u is linearly independent
with the direction vector of the invariant straight line. Recall that the direction
vector of the invariant straight line of a general homology is linearly indepen-
dent with the direction vector of the axis.

An affinity with canonical expression The is a special homology followed
by a translation Tu such that the translation vector u is linearly independent
with the direction vector of the invariant straight line. Recall that the direction
vector of the invariant straight line of a special homology is linearly dependent
with the direction vector of the axis.

3.9.2 Elliptic Affinities

Affinities with canonical expression given by E (b, c) are called elliptic affinities.
They have a unique fixed point and no invariant straight lines.
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Note that rotations are elliptic affinities. Concretely, if

M(f, R) =

⎛
⎝cosα − sinα 0

sinα cosα 0
0 0 1

⎞
⎠ ,

then there exists an affine frame R′ such that M(f, R ′) = E (−2cosα,1).
On the other hand, since

⎛
⎝0 −c 0

1 −b 0
0 0 1

⎞
⎠ =

⎛
⎝ 0 λ 0

1
λ 0 0
0 0 1

⎞
⎠

⎛
⎝1 2λα 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝λ 0 0

0 λ 0
0 0 1

⎞
⎠ ,

with λ2 = c and 2αλ = −b, we see that every elliptic affinity can be considered
as the composition of a homothety (if λ �= 1) with two general homologies.

Since ⎛
⎝λ 0 0

0 λ 0
0 0 1

⎞
⎠ =

⎛
⎝λ 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 λ 0
0 0 1

⎞
⎠ ,

every homothety is the composition of two general homologies, and hence every
elliptic affinity is a composition of general homologies; two if λ = 1, and four if
λ �= 1.

Notice also that⎛
⎝ 0 λ 0

1
λ 0 0
0 0 1

⎞
⎠

2

=

⎛
⎝1 2λα 0

0 −1 0
0 0 1

⎞
⎠

2

=

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ,

and hence these two general homologies are symmetries, and we can conclude
that every elliptic affinity is the composition of a homothety (if λ �= 1) fol-
lowed by two symmetries with concurrent axes (concurrent in the center of the
homothety).

The equation of the axis of the first symmetry, with respect to the affine
frame we are using, is x = λy (and the direction of symmetry is that of the
straight line x + yλ = 0); and the axis of the second symmetry has equation
y = 0 (and the direction of symmetry is that of the straight line αλy + x = 0).

3.9.3 Parabolic Affinities

Affinities with canonical expression given by P (a) are called parabolic affinities.
They have a unique fixed point and a unique invariant straight line, called the
axis of the affinity.
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A characterization of these affinities is given in Exercise 3.1, page 124.
To construct graphically the image of a point under a parabolic affinity f

we need to know the fixed point O, the axis e, a pair of corresponding points
P and f(P ) on the axis, and a pair of corresponding straight lines r and f(r),
through O.

Construction of f(Q) when Q ∈ r. We shall follow the following steps (see
Figure 3.3):
(1) Let Q1 be the intersection of the parallel to the axis through Q with r′.
(2) Then Q′ is the intersection of the parallel to PQ1 through P ′.

Figure 3.3. Parabolic affinity. First
case

Construction of f(R) when R /∈ r. We shall follow the following steps (see
Figure 3.4):
(1) Consider the point M = QR ∩ e.
(2) Next consider the point R1 defined as the intersection of the straight line

MQ1 with the parallel to the axis e through R.
(3) The point R′ = f(R) we are looking for is the intersection of the straight

line OR1 with the parallel to PR1 through P ′.

Figure 3.4. Parabolic affinity. Second
case

For a justification of the validity of these two constructions, see Exercise 3.2,
page 124.
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3.9.4 Hyperbolic Affinities

Affinities with canonical expression given by H(a, b) are called hyperbolic affini-
ties. They have a unique fixed point and two invariant straight lines, called axes
of the affinity.

If we know the axes e1, e2 and a pair of corresponding points, that is, a point
P and its image P ′ = f(P ), for some point P that does not belong to the axes,
then we can construct Q′ = f(Q) graphically for any other point Q.

Figure 3.5. Hyperbolic affinity

We shall follow the following steps (see Figure 3.5):
(1) Construct P1, P2, P

′
1, P

′
2,Q1,Q2 as the intersection with the axes of the

parallel to them through P,P ′ and Q, respectively.
(2) Draw an auxiliary straight line r through the intersection point of the two

axes, and construct the points M = r ∩ QQ1 and N = r ∩ QQ2.
(3) Draw the parallel to MP1 through P ′

1 and find the point M ′, the intersec-
tion of this parallel with r.

(4) Draw the parallel to NP2 through P ′
2 and find the point N ′, the intersection

of this parallel with r.
(5) Obtain the point Q′ = f(Q) we are looking for as the intersection of the

parallel e1 through N ′ with the parallel to e2 through M ′.
For a justification of the validity of this construction, see Exercise 3.3, page
124.
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Observation 3.25

An affinity f of the plane is:
(1) Elliptic if and only if the characteristic polynomial pf̃ (x) of the associated

linear map has complex roots. Equivalently, if and only if (trace(f̃))2 <

4det f̃ .
(2) Parabolic or a homothety if and only if pf̃ (x) has a double real root different

from 1.
(3) Hyperbolic if and only if pf̃ (x) has two different real roots different from 1.
(4) A general homology or a general homology followed by a translation if and

only if pf̃ (x) has two different real roots and one of them is equal to 1.
(5) A special homology, a special homology followed by a translation, a trans-

lation or the identity if and only if pf̃ (x) has 1 as a double real root.

3.10 Decomposition of Affinities in the Real
Plane

Since ⎛
⎝a b h

c d k

0 0 1

⎞
⎠ =

⎛
⎝a −c h

c a k

0 0 1

⎞
⎠

⎛
⎝1 0 0

0 λ 0
0 0 1

⎞
⎠

⎛
⎝1 μ 0

0 1 0
0 0 1

⎞
⎠ ,

with

λ =
ad − bc

a2 + c2
, μ =

ab + cd

a2 + c2
,

we see that every bijective affinity of the plane is equal to the composition of a
special homology (or the identity if μ = 0), followed by a general homology (or
the identity if λ = 1), followed by an elliptic affinity (or a homothety if c = 0
and a �= 1, or the identity or a translation if c = 0 and a = 1).

Note that the general and special homologies above have the same axis.
Note also that any matrix of the form

(
a −c

c a

)
, c �= 0,

satisfies the ellipticity condition, since (2a)2 < 4(a2 + c2).
Finally we remark that this decomposition of the affinity is not unique.
Table 3.2 summarizes the sixteen different ways in which a bijective affinity

can be decomposed according to the above matricial product.
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E ◦ he h ◦ he he T ◦ he

E ◦ hg ◦ he h ◦ hg ◦ he hg ◦ he T ◦ hg ◦ he

E ◦ hg h ◦ hg hg T ◦ hg

E h T id

Table 3.2. Decomposition of affinities

Here T = translation, h = homothety, hg = general homology, he = special
homology, E = elliptic.

Note that⎛
⎝1 0 0

1 1 0
0 0 1

⎞
⎠ =

⎛
⎝ α β 0

−β α 0
0 0 1

⎞
⎠

⎛
⎝a 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ α′ β′ 0

−β′ α′ 0
0 0 1

⎞
⎠ ,

with

a =
3 +

√
5

2
, α =

5 −
√

5
20

, β = −
√

5
10

, α′ = 2, β′ =
√

5 − 1.

Thus, every special homology is the composition of an elliptic affinity with
a general homology and with another elliptic affinity. We shall write

he = E ◦ hg ◦ E (3.3)

Summing up, we have the following.

Theorem 3.26

Every affinity is a composition of general homologies.

Proof

This follows from Table 3.2 on page 122, together with formula (3.3) and the
fact that homotheties and elliptic affinities are a composition of general ho-
mologies, see page 118.

Translations and the identity are a composition of general homologies (with
parallel axes), because⎛

⎝1 0 0
0 1 0
0 0 1

⎞
⎠ =

⎛
⎝a 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝a−1 0 0

0 1 0
0 0 1

⎞
⎠ , a �= 0,1,

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ =

⎛
⎝1 0 0

0 −1 1
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ .



3.10 Decomposition of Affinities in the Real Plane 123

Affinity Name and properties Equation

E (b, c) Elliptic x′ = −cy, b2 < 4c,
y′ = x − by.One fixed point.

No invariant straight lines.
ρ = 0.

H(a, b) Hyperbolic x′ = ax, a, b �= 1,
y′ = by, a �= b.One fixed point.

Two invariant straight lines.
ρ = 0.

h(a) Homothety x′ = ax, a �= 1,
y′ = ay.Infinite invariant straight lines.

One fixed point.
ρ = 0.

P (a) Parabolic x′ = ax, a �= 1,
y′ = x + ay.One fixed point.

One invariant straight line.
ρ = 0.

hg(a) General homology x′ = ax, a �= 1,
y′ = y.Invariant lines not ‖ to the fixed one.

Line of fixed points.
ρ = 0.

Thg(a) Gen. hom. followed by trans. x′ = ax, a �= 1,
y′ = y + 1.One invariant straight line.

No fixed points.
ρ = 1.

he Special homology x′ = x,
y′ = x + y.Invariant lines ‖ to the fixed one.

Line of fixed points.
ρ = 0.

The Sp. hom. followed by trans. x′ = x + 1,
y′ = x + y.No invariant straight lines.

No fixed points.
ρ = 2.

T Translation x′ = x,
y′ = y + 1.ρ = 1.

id Identity x′ = x,
y′ = y.ρ = 0.

Table 3.3. Affinities of the plane
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Hence, every element in Table 3.2 on page 122 can be reduced to a compo-
sition of general homologies. �

EXERCISES

3.1. Prove that the composition of a special homology of axis e with a
homothety of center O ∈ e is a parabolic affinity.

3.2. Prove that a parabolic affinity P (a) maps every straight line r par-
allel to the axis into another straight line r′ parallel to the axis, and
such that the simple ratio (e, r, r′) = a (with the natural definition
of the simple ratio of three parallel straight lines).
Justify, following the above comments, the two constructions of the
image of a point under a parabolic affinity given on page 119.

3.3. Justify the construction of the image of a point under a hyperbolic
affinity given on page 120.

3.4. Give examples of two elliptic affinities whose composition is respec-
tively: elliptic, parabolic, hyperbolic, a homothety, a special homol-
ogy, a special homology followed by a translation, a general homol-
ogy, a general homology followed by a translation, a translation or
the identity.

3.5. Repeat the previous exercise, but this time consider the composition
of two hyperbolic affinities or two parabolic affinities.

3.6. Study the composition of two affinities of different type in the real
affine plane.

3.7. Let h be a homology and let u be an arbitrary vector. Prove that
there exists a vector v such that

Tv ◦ h = h ◦ Tu.

Study the relationship between the following two sets of affinities of
the plane:

TH = {Tu ◦ h : u ∈ E,h homology},

HT = {h ◦ Tu : u ∈ E,h homology}.

3.8. Classify the affinity f of the affine plane R
2 given, in the canonical

affine frame, by {
x′ = x − 1

8y − 1
8 ,

y′ = 2x − 1
8 .
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Find the fixed points, the invariant straight lines, and an affine frame
R such that M(f, R) is the canonical expression of f .

3.9. Classify, in each case, the affinity f of a real affine plane given, in
some affine frame, by

(a)

{
x′ = 4y + 1,

y′ = −x + 4y + 1.
(b)

{
x′ = 2x + 9y + 12,

y′ = x + 4y + 4.

(c)

{
x′ = − 1

2
x + 3

2
y + 11

2
,

y′ = 3
2x − 1

2y − 7
2 .

(d)

{
x′ = 2x − y − 2,

y′ = 3y + 2.

(e)

{
x′ = 3

2x − 1
2y − 1,

y′ = 1
2
x + 1

2
y + 1.

(f)

{
x′ = x − 3y + 3,

y′ = x − 2y + 2.

Find, in each case, the fixed points, the invariant straight lines, and
an affine frame R such that M(f, R) is the canonical expression of f .

3.10. Classify the affinities fa of the affine plane R
2 given, in the canonical

affine frame, by {
x′ = ax + y + a,

y′ = x + ay + a.

Find, in each case, the fixed points, the invariant straight lines, and
an affine frame Ra such that M(fa, Ra) is the canonical expression
of fa.
Find the locus of the images of a point under all these affinities.
That is, describe the set {fa(P ) : a ∈ R} for each point P ∈ R

2.
3.11. Classify the affinities fa of the affine plane R

2 given, in the canonical
affine frame, by

{
x′ = (1 + a)x − ay + 1,

y′ = a2x + (1 + 2a − 4a2 + a3)y,

and such that they do not have fixed points. Find the invariant
straight lines, and an affine frame Ra such that M(fa, Ra) is the
canonical expression of fa.
Find the locus of the images of a point under all these affinities. That
is, describe the set {fa(P ) : a ∈ R} for each given point P ∈ R

2.
3.12. Classify the affinity f of a real affine plane given, in some affine

frame, by (
x′

y′

)
= A

(
x

y

)
+ a,
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in the following cases:

(a) A =
(

−17 10
30 18

)
, a =

(
−2
4

)
,

(b) A =
(

−4 1
−9 −2

)
, a =

(
−2
2

)
,

(c) A =
(

11 −25
4 −9

)
, a =

(
−5
−2

)
,

(d) A =
(

11 −25
4 −9

)
, a =

(
−39
−13

)
,

(e) A =
(

−7 −4
12 7

)
, a =

(
2

−3

)
,

(f) A =
(

4 6
−2 −3

)
, a =

(
−9
6

)
.

Find, in each case, the fixed points, the invariant straight lines, and
an affine frame R such that M(f, R) is the canonical expression of f .

3.13. Classify the affinity f of a real affine plane given, in some affine
frame, by {

x′ = 3x + 4y + 3,

y′ = −x − y − 1.

Find the fixed points, the invariant straight lines, and an affine frame
R such that M(f, R) is the canonical expression of f .

3.14. Classify the affinity f of a real affine plane given, in some affine
frame, by {

x′ = 5x − 2y + 3,

y′ = 9
2
x − y + 4.

Find the fixed points, the invariant straight lines, and an affine frame
R such that M(f, R) is the canonical expression of f .

3.15. Consider the two affinities of a real affine plane given, in some affine
frame, by

f(x, y) = (−2x − y − 1,9x + 4y + 4),

g(x, y) = (3x + 4y + 3, −x − y − 1).

Are they similar?
3.16. Classify the affinity f of a real affine plane given by

M(f, R) =

⎛
⎝1 0 0

0 −1 1
0 0 1

⎞
⎠ .
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Find the fixed points, the invariant straight lines, and an affine frame
R′ such that M(f, R ′) is the canonical expression of f .

3.17. Classify the affinity fa of the affine plane R
2 given by

M(fa, C) =

⎛
⎝1 0 0

5 a 0
0 0 1

⎞
⎠ ,

where C is the canonical affine frame. Find, as a function of the
values of the parameter a ∈ R, the fixed points, the invariant straight
lines, and an affine frame Ra such that M(fa, Ra) is the canonical
expression of fa.

3.18. (a) Find, in the canonical affine frame of the affine plane R
2, the

equations of a homothety with center (1,1) and similitude ra-
tio 3.

(b) Can two homotheties with different centers be similar?
(c) Can two homotheties with different ratios be similar?

3.19. Let R = {P ; (e1, e2)} be an affine frame in a real affine plane A.
Study the affinity f = S ◦ Tu of A given by the composition of the
translation Tu by the vector u = (3,4) with the symmetry S with
respect to the straight line L1 = P + 〈e1〉 in the direction 〈e2〉. Find
the fixed points, the invariant straight lines, and an affine frame R ′

such that M(f, R′) is the canonical expression of f .
3.20. Let R = {P ; (e1, e2)} be an affine frame in a real affine plane A.

Study the affinity f = Tu ◦ S of A given by the composition of the
symmetry S with respect to the straight line L1 = P + 〈e1〉 in the
direction 〈e2〉 and the translation Tu by the vector u = (2,5). Find
the fixed points, the invariant straight lines, and an affine frame R ′

such that M(f, R′) is the canonical expression of f .
3.21. Study the affinities of a complex affine plane.





4
Classification of Affinities in Arbitrary

Dimension

4.1 Introduction

In this chapter we study affinities in arbitrary dimension. We shall see, using the
classification of endomorphisms, that we can give a very general classification of
affinities. For this, we shall try to generalize the results obtained in dimension
two to arbitrary dimension.

4.2 Jordan Matrices

First let us recall the following results on the classification of endomorphisms.
Let f̃ be an endomorphism of a k-vector space E of dimension n and assume
that the characteristic polynomial pc(f̃) factorizes as

pc(f̃) = (x − 1)sq(x),

with gcd((x − 1)s, q(x)) = 1.
Then

E = ker(f̃ − id)s ⊕ Im(f̃ − id)s, (4.1)

and this decomposition is invariant under f̃ , see, for instance [8], page 359. We
shall call this the canonical decomposition of E induced by f̃ .
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Springer Undergraduate Mathematics Series,
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From now on we shall use the notation

E1 = ker(f̃ − id)s,

E2 = Im(f̃ − id)s.

Thus, equality (4.1) is now written as

E = E1 ⊕ E2.

We also know that there is a basis B1 of E1, called the Jordan basis, such
that

M(f̃|E1 , B1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

ε1 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . 1 0
0 . . . 0 εn−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.2)

with εi ∈ {0,1}, for all i = 1, . . . , n − 1. See, for instance [8], page 388.
The matrices

(
1
)
,

(
1 0
1 1

)
,

⎛
⎝1 0 0

1 1 0
0 1 1

⎞
⎠ , . . .

are called Jordan boxes of order 1, 2, 3, etc. Thus, the matrix (4.2) is com-
posed of Jordan boxes, and these boxes are uniquely determined, so that the
expression (4.2) is unique up to the order of these boxes. (One normally puts
the larger Jordan boxes at the top of the matrix, however in the classification
theorem for affinities that we are about to prove it is not possible to maintain
this convention; we will be forced to permute the boxes.)

Recall that the basis B1 is formed by certain special vectors ei, called gener-
ators, and their images under (f̃ − id), (f̃ − id)2, (f̃ − id)3, etc. These generators
will play a fundamental role in the classification theorem for affinities.

The basis B1 has, therefore, the following form (ordered by rows):

e1, (f̃ − id)e1, . . . , (f̃ − id)s1−1e1,

e2, (f̃ − id)e2, . . . , (f̃ − id)s2−1e2,

...

er, (f̃ − id)er, . . . , (f̃ − id)sr −1er,
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where s1, . . . , sr are the orders of the Jordan boxes of (4.2). We shall write

eij = (f̃ − id)j−1ei, j = 2, . . . , si

Thus we have

B1 = (e1, e12, . . . , e1s1 , e2, e22, . . . , e2s2 , . . . . . . , er, er2, . . . , ersr
). (4.3)

Note that the vector ei is not the i-th vector of the basis, but the generator of
the i-th Jordan box.

Denoting

Cj = 〈ej , ej2, . . . , ejsj
〉, j = 1, . . . , r,

we have the following decomposition of E1 as a direct sum of f̃ -invariant sub-
spaces

E1 = C1 ⊕ · · · ⊕ Ct ⊕ · · · ⊕ Cr. (4.4)

Unlike the decomposition (4.1), this one is not canonical.
In summary, the most important properties of this basis are the following:

st = order of the t-th Jordan box,

et = generator of the t-th Jordan box,

etk = element of the basis of the t-th box,

(f̃ − id)(et) = et2, if st > 1,

(f̃ − id)(etk) = et(k+1), 2 ≤ k < st,

(f̃ − id)(etst
) = 0,

(f̃ − id)st(et) = 0.

(4.5)

The sixth equality states that the last vector of the basis of each Jordan box
is an eigenvector.

For instance, if

M(f̃|E1 , B1) =

⎛
⎜⎜⎜⎜⎜⎝

1
1 1

1
1 1

1 1

⎞
⎟⎟⎟⎟⎟⎠

,
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we have a basis B1 of the form

e1

e12 = (f̃ − id)e1,

e2

e22 = (f̃ − id)e2,

e23 = (f̃ − id)2e2.

Here s1 = 2, s2 = 3, and the generators are e1 and e2. Note finally that (f̃ −
id)2e1 = 0 and that (f̃ − id)3e2 = 0. This is the reason why the first box has
order two and the second one has order three.

Observation 4.1

We have decomposed E = E1 ⊕ E2 and we have found a Jordan basis B1 of E1.
If the characteristic polynomial of f̃|E2 factorizes in linear factors, we can also
find a Jordan basis of E2. Otherwise, we can find a basis of E2 in which the
matrix of f̃ has rational form; see [8], page 428.

Observation 4.2

Note that conjugate Jordan matrices are equal, up to the order of the boxes.
This is a consequence of the uniqueness, up to the order, of the Jordan matrix
associated to an endomorphism; see [8], page 373. For instance, we have J ′ =
C−1JC, with

J =

⎛
⎜⎝

1 0 0
1 1 0

0 0 1

⎞
⎟⎠ , J ′ =

⎛
⎜⎝

1 0 0

0 1 0
0 1 1

⎞
⎟⎠ , C =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ .

We remark, once again, that the Jordan basis is not unique. For instance,

⎛
⎝a 0 0

b a 0
c b a

⎞
⎠

⎛
⎝1 0 0

1 1 0
0 1 1

⎞
⎠ =

⎛
⎝1 0 0

1 1 0
0 1 1

⎞
⎠

⎛
⎝a 0 0

b a 0
c b a

⎞
⎠ ,

for all a, b, c. This equality can be written as J = C−1JC, where J is the Jordan
matrix. If a �= 0, C is the matrix of a change of basis leaving J invariant.
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4.3 Similar Endomorphisms and Canonical
Decomposition

Definition 4.3

Let f̃ be an endomorphism of a k-vector space E. Let E = E1 ⊕ E2 be the canon-
ical decomposition of E induced by f̃ . A basis B = (e1, . . . , ek, ek+1, . . . , en) of
E is adapted to f̃ if B1 = (e1, . . . , ek) is a basis of E1 and B2 = (ek+1, . . . , en) is
a basis of E2.

In this case we shall write B = (B1, B2).

Proposition 4.4

Let f̃ and g̃ be similar endomorphisms of E, and let B = (B1, B2) and
B ′ = (B ′

1, B ′
2) be bases adapted respectively to f̃ and g̃. Then there exists an

invertible matrix

C =
(

P1 P2

0 P4

)
,

where P1 is a p × p matrix (p=number of elements of B1=number of elements
of B ′

1), and P4 is a (n − p) × (n − p) matrix, n = dimE, such that

M(f̃ , B) = C−1M(g̃, B ′)C.

Proof

Let us assume that f̃ is similar to g̃, and let

E = E1 ⊕ E2

E = E′
1 ⊕ E′

2

be the two canonical decompositions induced respectively by f̃ and g̃, given
in (4.1).

Let h̃ be an isomorphism conjugating f̃ and g̃, that is, such that f̃ = h̃−1 ◦
g̃ ◦ h̃.

Note that

(f̃ − id)s = h̃−1(g̃ − id)sh̃. (4.6)

Hence,

h̃(E1) = E′
1.
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This implies that the matrix C = M(h̃, B, B ′) is of the required form, and by
the formula for the change of basis, the proof is complete. �

The next result is included only to emphasize that, in the context of Jordan
bases, not only is there a matrix like the above C conjugating M(f̃ , B) and
M(g̃, B ′), but any matrix conjugating them must be of the same type as C.
Concretely, we have the following.

Definition 4.5

Let f̃ be an endomorphism of a k-vector space E. Let E = E1 ⊕ E2 be the canon-
ical decomposition of E induced by f̃ . A basis B = (e1, . . . , ek, ek+1, . . . , en) of
E is a Jordan basis adapted to f̃ if B1 = (e1, . . . , ek) is a Jordan basis of E1 and
B2 = (ek+1, . . . , en) is a basis of E2.

Note that if B is a Jordan basis adapted to f̃ , then

M(f̃ , B) =
(

J 0
0 K

)
,

where J is a Jordan matrix.

Proposition 4.6

Let us assume
(

P1 P2

P3 P4

)(
J 0
0 K

)
=

(
J ′ 0
0 K ′

)(
P1 P2

P3 P4

)
,

where J,J ′ are p × p Jordan matrices with 1s on the diagonal, K,K ′ are q × q

matrices such that K ′ does not admit the eigenvalue 1, P1 is a p × p matrix, P4

is a q × q matrix, P3 is a q × p matrix, and P2 is a p × q matrix. Then P3 = 0.

Proof

Using the block product of matrices, see [8], page 182, one obtains

P3J = K ′P3. (4.7)

We write P3 in columns as P3 = (C1, . . . ,Cp). The last column of P3J (the
p-th column) is equal to P3 multiplied by the last column of J , but we know
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that

last column of J =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ ,

and, hence, the last column of P3J is equal to the last column, Cp, of P3. But,
at the same time, it must be equal to the last column of K ′P3, which is equal
to K ′ multiplied by Cp. Hence, since K ′ does not have eigenvalue 1, Cp = 0.

Equating now the penultimate columns of (4.7) we get either

Cp−1 + Cp = K ′Cp−1

if the penultimate column of J has two 1s, or

Cp−1 = K ′Cp−1

if the penultimate column of J has one 1. But, since Cp = 0, in both cases we
have the same result: Cp−1 = K ′Cp−1. Since K ′ does not have the eigenvalue 1,
Cp−1 = 0. We repeat this procedure until we reach the first column of P3.
Therefore all the columns of P3 are zero. That is, P3 = 0, and this completes
the proof. �

4.4 Clarifying Examples

Before initiating the study of the general classification, we provide examples
of the many different situations that can occur. With these examples in mind,
the proof of the general theorem is much easier to follow.

Example 4.7

Let f be an affinity of an affine space of dimension 4. Let us assume that in
some affine frame R = {P ; (e1, e2, e3, e4)} we have

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 0

0 0 1 0 1
0 0 1 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.
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Equivalently,

x′
1 = x1 + 1,

x′
2 = x1 + x2,

x′
3 = x3 + 1,

x′
4 = x3 + x4.

If we make the change of basis

e′
1 = e1 + e3 (the vector

−−−−→
Pf(P )),

e′
2 = (f̃ − id)(e′

1) = e2 + e4,

e′
3 = e3,

e′
4 = e4,

we have

M(f, R′) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 0

0 0 1 0 0
0 0 1 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

We remark that, since e2 and e4 are eigenvectors, (f̃ − id)2(e′
1) = 0.

Thus, we have changed the basis in such a way that the Jordan matrix has
not changed (two 2 × 2 boxes), and the vector

−−−−→
Pf(P ) has components (1,0,0,0)

in this new basis. The origin of the two affine frames, R and R′, is the same
point P .

We recall that the Jordan matrix is unique up to the order of the boxes,
but the Jordan basis is not unique, as we have just seen.

Example 4.8

Let f be an affinity of an affine space of dimension 5. Let us assume that in a
given affine frame R = {P ; (e1, e2, e3, e4, e5)} we have

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0

0 0 0 1 0 1
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Equivalently,

x′
1 = x1 + 1,

x′
2 = x1 + x2,

x′
3 = x2 + x3,

x′
4 = x4 + 1,

x′
5 = x4 + x5.

If we make the change of basis

e′
1 = e1 + e4 (the vector

−−−−→
Pf(P )),

e′
2 = (f̃ − id)(e′

1) = e2 + e5,

e′
3 = (f̃ − id)(e′

2) = e3,

e′
4 = e4,

e′
5 = e5,

we have

M(f, R′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0

0 0 0 1 0 0
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We remark that, since e3 is an eigenvector, (f̃ − id)3(e′
1) = 0.

Thus, we have changed the basis in such a way that the Jordan matrix has
not changed (one 3 × 3 box and one 2 × 2 box), and the vector

−−−−→
Pf(P ) has

components (1,0,0,0,0) in this new basis. The origin of the two affine frames,
R and R ′, is the same point P .

Example 4.9

Let f be an affinity of an affine space of dimension 5. Let us assume that in a
given affine frame R = {P ; (e1, e2, e3, e4, e5)} we have
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M(f, R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0

0 0 1 0 0 1
0 0 1 1 0 0
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Equivalently,

x′
1 = x1 + 1,

x′
2 = x1 + x2,

x′
3 = x3 + 1,

x′
4 = x3 + x4,

x′
5 = x4 + x5.

If we make the change of basis

e′
1 = e1 + e3 (the vector

−−−−→
Pf(P )),

e′
2 = (f̃ − id)(e′

1) = e2 + e4,

e′
3 = (f̃ − id)(e′

2) = e5,

e′
4 = e1,

e′
5 = e2,

we have

M(f, R′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 0 0

0 0 0 1 0 0
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We remark that, since e5 is an eigenvector, (f̃ − id)3(e′
1) =�0.

Thus, we have changed the basis in such a way that the Jordan matrix has
not changed (one 3 × 3 box and one 2 × 2 box), and the vector

−−−−→
Pf(P ) has

components (1,0,0,0,0) in this new basis. The origin of the two affine frames,
R and R ′, is the same point P .

But the order of the Jordan boxes has changed!
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Example 4.10

Let f be an affinity of an affine space of dimension 5. Let us assume that in a
given affine frame R = {P ; (e1, e2, e3, e4, e5)} we have

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 a

0 1 1 0 0 b

0 0 0 1 0 1
0 0 0 1 1 c

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Equivalently,

x′
1 = x1,

x′
2 = x1 + x2 + a,

x′
3 = x2 + x3 + b,

x′
4 = x4 + 1,

x′
5 = x4 + x5 + c.

Let us take as a new origin of the affine frame any point Q with coordinates
in R given by

Q = (−a, −b, q3, −c, q5).

Then

−−−−→
Qf(Q) = (q′

1 − q1, q
′
2 − q2, q

′
3 − q3, q

′
4 − q4, q

′
5 − q5)

= (0,0,0,1,0),

and hence

M(f, R ′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0

0 0 0 1 0 1
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where R ′ = {Q; (e1, e2, e3, e4, e5)}.
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We could stop here, but we prefer to permute the boxes (e′
1 = e4, e′

2 = e5,
e′
3 = e1, e′

4 = e2, e′
5 = e3) in order to obtain

M(f, R′ ′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1
1 1 0 0 0 0

0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where R ′ ′ = {Q; (e′
1, e

′
2, e

′
3, e

′
4, e

′
5)}. Thus, we have changed the initial basis in

such a way that the Jordan matrix has not changed (one 3 × 3 box and one
2 × 2 box), and the vector

−−−−→
Qf(Q) has components (1,0,0,0,0) in this new basis.

The origin has changed and the order of the Jordan boxes has also changed!

Example 4.11

Let f be an affinity of an affine space of dimension 4. Let us assume that in a
given affine frame R = {P ; (e1, e2, e3, e4)} we have

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 1

0 0 1 0 0
0 0 1 1 1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

Equivalently,

x′
1 = x1,

x′
2 = x1 + x2 + 1,

x′
3 = x3,

x′
4 = x3 + x4 + 1.

Let us take as new origin of the affine frame any point Q with coordinates
in R given by

Q = (−1, q2, −1, q4).

All these points are fixed points.



4.4 Clarifying Examples 141

Then, with respect to R ′ = {Q; (e1, e2, e3, e4)}, we have

M(f, R′) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0

0 0 1 0 0
0 0 1 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, we have changed the affine frame in such a way that the Jordan
matrix has not changed (the basis of the vector space has not changed), and
the vector

−−−−→
Qf(Q) has components (0,0,0,0) in this new basis, since Q is a fixed

point. The origin has changed.

Example 4.12 (Coexistence)

Let f be an affinity of an affine space of dimension 4. Let us assume that in
some affine frame

R = {P ; (e1, e2, e3, e4)}

we have

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 α

1 1 0 0 β

0 0 a 0 1
0 0 0 b 3

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

with a, b �= 1 (the eigenvalue 1 coexists with eigenvalues different from 1).
Equivalently,

x′
1 = x1 + α,

x′
2 = x1 + x2 + β,

x′
3 = ax3 + 1,

x′
4 = bx4 + 3.

As the new origin of the affine frame we take any point Q with coordinates
in R given by

Q =
(

q1, q2,
1

1 − a
,

3
1 − b

)
.
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Then, with respect to R ′ = {Q; (e1, e2, e3, e4)}, we have

M(f, R ′) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 α

1 1 0 0 q1 + β

0 0 a 0 0
0 0 0 b 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, we have changed the affine frame in such a way that the Jordan matrix
has not changed (the basis in the vector space has not changed), and the vector
−−−−→
Qf(Q) has components (∗, ∗,0,0) in this basis. The origin has changed.

This is what we wanted to show, but we can go further and simplify the ex-
pression of the matrix associated to f by taking q1 = −β. If α = 0, we have

M(f, R′) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0

0 0 a 0 0
0 0 0 b 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

and if α �= 0, we make the change of basis e′
1 = αe1, e′

2 = αe2, e′
3 = e3, e′

4 = e4

and we have

M(f, R ′ ′) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 0

0 0 a 0 0
0 0 0 b 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

where R′ = {Q; (e′
1, e

′
2, e

′
3, e

′
4)}.

4.5 Classification of Affinities in Arbitrary
Dimension

Let f be an affinity of an affine space A, of dimension n, and let

E = E1 ⊕ E2
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be the canonical decomposition induced by f . Notice that

(f̃ − id)s
|E1

= 0,

where s is the multiplicity of the root 1 in the characteristic polynomial pc(f̃)
of the associated endomorphism f̃ , and that

(f̃ − id)|E2

is an isomorphism.
We know that there exists a basis B1 of E1 and a basis B2 of E2 such that

the matrix of f in an affine frame R = {P ; B }, with B = (B1, B2), is

M(f, R) =

⎛
⎝J 0 b

0 K c

0 0 1

⎞
⎠ , (4.8)

where J is a Jordan matrix with 1s on the diagonal, K is a certain matrix, and
b and c are column matrices. That is, B is a Jordan basis adapted to f̃ . In this
case we also say that R = {P ; B } is a Jordan affine frame adapted to f .

Concretely,

J = M(f̃|E1 , B1) (expression (4.2)),

K = M(f̃|E2 , B2),

−−−−→
Pf(P ) = u + v, u ∈ E1, v ∈ E2,

b = C(u, B1),

c = C(v, B2).

(4.9)

Here, C(u, B1) is the column matrix formed by the components of the vector
u in the basis B1.

The matrix K does not play a special role in the following sections but, as
we have remarked in Observation 4.1, we can think of it as a Jordan matrix
without the eigenvalue 1, or as a matrix in rational form. We cannot be more
precise because in this chapter k is an arbitrary field.

Since the basis B1 is written as in expression (4.3), page 131, we shall write
the matrix b in the form
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b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b12

...
b1s1

b2

b22

...
b2s2

...

br

br2

...
brsr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

We remark that bi is the component of the vector
−−−−→
Pf(P ) with respect to

the i-th generator.
Next we shall see that, by simply changing the origin of R, we can show

that the column matrix c in expression (4.8) is zero.

Proposition 4.13

Let f be an affinity of an affine space A. Then there exists a Jordan affine
frame adapted to f , R = {P ; B }, such that

M(f, R) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,

where J,K and b are as in (4.9).

Proof

We know that there exists a Jordan affine frame adapted to f , R0 = {P0; B },
with B = (B1, B2), such that

M(f, R0) =

⎛
⎝J 0 b

0 K c

0 0 1

⎞
⎠ .

We shall see that there exists a point P ∈ A such that
−−−−→
Pf(P ) ∈ E1.
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Hence, the components of this vector in B2 are zero. We shall take this point
P as the origin of the new affine frame and, in this way, we shall obtain the
desired result.

Inspired by Example 4.12, we construct this point P in the following way.
First, we compute the vector

−−−−−→
P0f(P0) and we decompose it in the direct

sum E = E1 ⊕ E2 as

−−−−−→
P0f(P0) = u + v, u ∈ E1, v ∈ E2.

Then, we let

P = P0 − (f̃ − id)−1
|E2

(v),

so that
−−→
PP0 = (f̃ − id)−1

|E2
(v).

This is the central point where we have used the fact that (f̃ − id) is an
isomorphism on E2.

Then

−−−−→
Pf(P ) =

−−→
PP0 +

−−−−−→
P0f(P0) +

−−−−−−−→
f(P0)f(P )

= −(f̃ − id)(
−−→
PP0) + u + v

= u ∈ E1,

and hence, in the affine frame R = {P ; B }, we have

M(f, R) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,

and this completes the proof. �

Proposition 4.14

Let f be an affinity of an affine space A of dimension n. Then there exists a
Jordan affine frame adapted to f , R = {P ; B }, such that

M(f, R) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,
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with

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

0
...
0

b2

0
...
0
...

br

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, bi ∈ {0,1}, i = 1, . . . , r,

where J and K are as in (4.9).

Proof

We must show that there exists a Jordan affine frame adapted to f , R = {P ; B },
such that

−−−−→
Pf(P ) is equal to a sum of generators.

Let R0 = {P0; B } be a Jordan affine frame adapted to f , with B = (B1, B2),
and write B1 as in (4.3), page 131. By Proposition 4.13 we can assume that

M(f, R0) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,

with b as in (4.10).
We want to find a point P ∈ A (which will be the new origin) such that

−−−−→
Pf(P ) =

r∑
i=1

biei,

that is, with the same coefficient in ei as that of the vector
−−−−−→
P0f(P0), and with

the remaining coefficients zero.
Once we have this expression, we shall modify the basis in order to transform

the non-zero bi of this expression into 1.
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To find P we first write the vector
−−→
P0P with respect to R0 as:

−−→
P0P =

∑
i

piei +
∑

pijeij ,

where pi, pij , for i = 1, . . . , r, j = 2, . . . , si, are coefficients to be determined.
Note that in this expression we are assuming that

−−→
P0P ∈ E1.

Since the components of
−−−−→
Pf(P ) are obtained by subtracting the coordinates

of P from the corresponding coordinates of P ′ = f(P ), and the equations of f

(in B1) are

x′
1 = x1 + b1,

x′
12 = x1 + x12 + b12,

x′
13 = x12 + x13 + b13,

...

x′
2 = x2 + b2,

x′
22 = x2 + x22 + b22,

x′
23 = x22 + x23 + b23,

...

we have,

−−−−→
Pf(P ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

p1 + b12

...
p1s1−1 + b1s1

b2

p2 + b22

...
p2s2−1 + b2s2

...

br

pr + br2

...
prsr −1 + brsr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Hence, we can choose

pi = −bi2, i = 1, . . . , r,

pi(j−1) = −bij , i = 1, . . . , r; j = 3, . . . , si,
(4.11)

and we have

−−−−→
Pf(P ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

0
...
0

b2

0
...
0
...

br

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Equivalently,

−−−−→
Pf(P ) =

r∑
i=1

biei.

We shall take the point

P = (
︷ ︸︸ ︷

−b12, −b13, . . . , −b1s1 , ∗, . . . ,
︷ ︸︸ ︷

−br2, −br3, . . . , −brsr
, ∗)

thus obtained as the new origin of the affine frame.
Note that in expression (4.11) the terms pisi

(the last in each Jordan box)
are indeterminate. The asterisks in the above expression indicate arbitrary
values.

Finally, for all t = 1, . . . , r such that bt �= 0, we replace the basis in the
corresponding box Ct = 〈et, et2, . . . , etst

〉 by

e′
t = btet,

e′
t2 = btet2,

...
e′
tst

= btetst ,
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and we obtain the result. That is, the affine frame we were looking for is the
affine frame R = {P ; B } where this basis B is the initial basis of R0, but with
these small modifications in some of the Jordan boxes. �

Observation 4.15

In order to avoid having to write the large matrices appearing in the above
proof, we can proceed as follows.

For every pair of points P0, P we verify that
−−−−→
Pf(P ) = (f̃ − id)

−−→
P0P +

−−−−−→
P0f(P0).

Applying this equality to the setting described above, and using the rules
given in table (4.5), page 131, the calculation of

−−−−→
Pf(P ) made on page 147 can

also be performed as follows:
−−−−→
Pf(P ) = (f̃ − id)

(∑
i

piei +
∑
ij

pijeij

)
+

∑
i

biei +
∑
ij

bijeij

=
∑
i,j

pijei(j+1) +
∑

i

piei2 +
∑

i

biei +
∑
ij

bijeij

=
∑

i

biei +
∑

i,j≥3

(pi(j−1) + bij)eij +
∑

i

(pi + bi2)ei2.

In all these summands, i = 1, . . . , r, and j (which depends on the i to which
it is attached) has the range j = 2, . . . , si, except in the penultimate summand,
where it is specified that the sum begins at j = 3.

From this relation we directly deduce (4.11).

Theorem 4.16 (Classification)

Let f be an affinity of an affine space A of dimension n. Then there exists a
Jordan affine frame adapted to f , R = {P ; B }, such that

M(f, R) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,

with

b =

⎛
⎜⎜⎜⎝

ε

0
...
0

⎞
⎟⎟⎟⎠ , ε ∈ {0,1},
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where J and K are as in (4.9). We say that M(f, R) is a canonical expression
of f .

Proof

Let R′ = {P ; B ′ } be the Jordan basis adapted to f̃ given in the above proposi-
tion. Then

M(f, R ′) =

⎛
⎝J ′ 0 b

0 K 0
0 0 1

⎞
⎠

and
−−−−→
Pf(P ) =

∑
i

biei, bi ∈ {0,1}.

Let t be such that bt = 1 and such that st ≥ st′ , for all t′ with bt′ = 1.
That is, the vector et appears in the expression of

−−−−→
Pf(P ), but the generators

corresponding to boxes of higher dimension than that of the box Ct do not.
We make the following change of basis: the vectors of B remain unchanged,

except those of the box Ct, which are modified as follows:

e′
t =

−−−−→
Pf(P ) =

∑
i

biei, bi ∈ {0,1},

e′
t2 = (f̃ − id)e′

t,

e′
t3 = (f̃ − id)2e′

t,

...

e′
tst

= (f̃ − id)st −1e′
t.

These vectors are linearly independent. In fact, using the properties of the
Jordan basis collected in (4.5), page 131, we see that the matrix with columns
formed by the components, in the Jordan basis, of the st vectors e′

t, e
′
t2, . . . , e

′
tst

is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

bt 0 0 . . . 0
0 bt 0 . . . 0
0 0 bt . . . 0
...

...
...

...
0 0 0 . . . bt

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since bt = 1, this matrix has rank st, and hence the vectors e′
t, e

′
t2, . . . , e

′
tst

are linearly independent.
If we replace the vectors et, et2, . . . , etst

of the initial Jordan basis by
e′

t, e
′
t2, . . . , e

′
tst

, we obtain a new basis B ′ ′ (see [8], page 250). Let

C ′
t = 〈e′

t, e
′
t2, . . . , e

′
tst

〉.

In general, we have Ct �= C ′
t.

However, the most important thing is that the direct sum decomposition

E = C1 ⊕ · · · ⊕ C ′
t ⊕ · · · ⊕ Cr

is still invariant under f̃ .
To prove that f̃(C ′

t) ⊂ C ′
t, it is sufficient to prove that (f̃ − id)e′

tst
=�0.

In fact,

(f̃ − id)(e′
tst

) = (f̃ − id)st(e′
t)

= (f̃ − id)st

(∑
i

biei

)

= 0,

since if bt′ �= 1, then st ≥ st′ and

(f̃ − id)st(et′ ) =�0.

Note that this decomposition coincides, replacing Ct by C ′
t, with decompo-

sition (4.4).
Moreover, this new basis is a Jordan basis because

M(f̃|E1 ; B ′) = M(f̃|E1 ; B ′ ′).

Finally, in order to obtain the affine frame we are looking for it remains only
to permute the vectors of B ′ ′ in order to put in the first positions the vectors
of the basis of C ′

t. That is, we adapt the basis to the decomposition

E = C ′
t ⊕ C1 ⊕ · · · ⊕ Cr.

This is the basis B that we were looking for. �

Observation 4.17

Notice that if f has a fixed point, we can assume, taking this point as origin,
that ε = 0.
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Proposition 4.18

Let f be an affinity without fixed points. Then, the dimension ρ(f) of the
invariant variety of smaller dimension is equal to the order of the first Jordan
box in the canonical expression of f .

Proof

Let

M(f, R) =

⎛
⎝J 0 b

0 K 0
0 0 1

⎞
⎠ ,

with

b =

⎛
⎜⎜⎜⎝

ε

0
...
0

⎞
⎟⎟⎟⎠ , ε ∈ {0,1},

be the canonical expression of f .
Since we are assuming that there are no fixed points, we must have ε = 1.

Indeed, if ε = 0, the origin P of the affine frame R is a fixed point.
Let Ct be the first Jordan box of J . Then, since

−−−−→
Pf(P ) = et, the linear

variety L = P + 〈et, et2, . . . , etst
〉 is invariant, and has dimension st.

We must prove that there are no invariant linear varieties of lower dimen-
sion.

Let us assume L′ = Q + [H] is invariant. Then ut =
−−−−→
Qf(Q) ∈ H .

The first st equations of f in R are

x′
1 = x1 + 1,

x′
12 = x1 + x12,

x′
13 = x12 + x13,

...

x′
1st

= x1st−1 + x1st
.

Since the components of the vector
−−−−→
Qf(Q) are obtained by subtracting the

coordinates of Q from the corresponding coordinates of Q′ = f(Q), we have

ut =
−−−−→
Qf(Q) = (

st︷ ︸︸ ︷
1, q1, . . . , q1st −1, ∗, . . . , ∗).
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We take

ut2 = (f̃ − id)ut,

ut3 = (f̃ − id)2ut,

...

utst
= (f̃ − id)st −1ut.

These vectors are linearly independent. In fact, the matrix with columns
the components in the initial Jordan basis of the st vectors ut, ut2, . . . , utst

is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
q1 1 0 . . . 0
q12 q1 1 . . . 0
...

...
...

...
q1st −1 q1st −2 q1st −3 . . . 1

∗ ∗ ∗ . . . ∗
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and this matrix has rank st.
Since all of these vectors are in H , it follows that dimH ≥ st, and this

completes the proof. �

Theorem 4.19 (Characterization)

Let f and g be affinities of an affine space A of dimension n. Then, f is similar
to g if and only if f̃ is similar to g̃ and ρ(f) = ρ(g).

Proof

We have seen, in Propositions 3.5 and 3.15 respectively, that if f is similar to
g then f̃ is similar to g̃ and ρ(f) = ρ(g).

Conversely, let us assume that we have two affinities, f and g, such that f̃

is similar to g̃ and ρ(f) = ρ(g).

First case: ρ(f) = ρ(g) = 0.
It follows, from Theorem 4.16 and Observation 4.17, that there exists a

Jordan affine frame adapted to f , R = {P ; B }, such that

M(f, R) =

⎛
⎝J 0 0

0 K 0
0 0 1

⎞
⎠ ,
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and there exists a Jordan affine frame adapted to g, R′ = {P ′; B ′ }, such that

M(g, R ′) =

⎛
⎝J ′ 0 0

0 K ′ 0
0 0 1

⎞
⎠ .

Since f̃ is similar to g̃, there exists a matrix C ∈ Mn×n(k) such that

C

(
J 0
0 K

)
=

(
J ′ 0
0 K ′

)
C.

Hence, (
C 0
0 1

)
M(f, R) = M(g, R′)

(
C 0
0 1

)
.

But this implies, by part (ii) of Proposition 3.8, that f is similar to g, and
this completes the proof.

Second case: ρ(f) = ρ(g) �= 0.
By Proposition 4.18 there exists a Jordan affine frame adapted to f ,

R = {P ; B }, such that

M(f, R) =

⎛
⎜⎜⎝

Jt 0 0 b

0 J0 0 0
0 0 K 0
0 0 0 1

⎞
⎟⎟⎠ ,

with

b =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , Jt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0

1 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . 1 0
0 . . . 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This Jordan box Jt has order ρ(f). J0 is the matrix formed by the remaining
Jordan boxes (once we remove Jt) of the canonical expression of f .

Analogously, there exists a Jordan affine frame adapted to g, R ′ = {P ′; B ′ },
such that

M(g, R′) =

⎛
⎜⎜⎝

Jt 0 0 b

0 J ′
0 0 0

0 0 K ′ 0
0 0 0 1

⎞
⎟⎟⎠ ,
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with the same Jt and the same b that appear in M(f, R). J ′
0 is the matrix

formed by the remaining Jordan boxes (once we remove Jt) of the canonical
expression of g.

To simplify the notation, we shall write

M(f, R) =

⎛
⎝J 0 c

0 K 0
0 0 1

⎞
⎠ ,

with

J =
(

Jt 0
0 J0

)
,

and

M(g, R ′) =

⎛
⎝J ′ 0 c

0 K ′ 0
0 0 1

⎞
⎠ ,

with

J ′ =
(

Jt 0
0 J ′

0

)
.

We have put

c =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ ,

a matrix of one column and as many rows as the dimension of J . It coincides
with b when the Jordan matrix is reduced to the first box.

Since f̃ is similar to g̃ and we are using adapted bases there exists, by
Proposition 4.4, an invertible matrix C of the form

C =
(

P1 P2

0 P4

)

such that

CM(f̃ , B) = M(g̃, B)C.

Therefore, we have
(

P1 P2

0 P4

)(
J 0
0 K

)
=

(
J ′ 0
0 K ′

)(
P1 P2

0 P4

)
.
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In particular, P1J = J ′P1 and P4K = K′P4. We want to replace the matrix
P1 with another matrix P ′

1 such that the equality P ′
1J = J ′P ′

1 still holds, but
with its first column having a 1 in the first position, and zeros elsewhere.

Note first that, since C is invertible, P1 and P4 are also invertible. In par-
ticular, J and J ′ are conjugate. Hence, they have the same number of Jordan
boxes, perhaps in a different order.

In particular, J0 and J ′
0 also have the same number of Jordan boxes, perhaps

in a different order, and hence they are conjugate. Reordering boxes is simply
a change of basis.

Therefore, there exists an invertible Q such that

QJ0 = J ′
0Q.

But then, the matrix

P ′
1 =

(
It 0
0 Q

)
,

with It the ρ(f) × ρ(f) identity matrix, is invertible and it satisfies
(

It 0
0 Q

)(
Jt 0
0 J0

)
=

(
Jt 0
0 J ′

0

)(
It 0
0 Q

)
.

That is, we have found an invertible matrix, P ′
1, such that

P ′
1J = J ′P ′

1,

and such that its first column is equal to c, i.e., it has a 1 in the first position,
and zeros elsewhere.

Finally, again using the block product of matrices, we see that
⎛
⎜⎝

P ′
1 0 0

0 P4 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

J 0 c

0 K 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

J ′ 0 c

0 K ′ 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

P ′
1 0 0

0 P4 0

0 0 1

⎞
⎟⎠ .

In fact, this equality is equivalent to

P ′
1J = J ′P ′

1,

P ′
1c = c,

P4K = K′P4.

The first and third equalities have already been verified, and the second equality
simply says that the first column of P ′

1 is c.
But this implies, by part (ii) of Proposition 3.8, that f is similar to g, and

this completes the proof. �
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EXERCISES

4.1. Study the affinities of a real (or complex) affine space of dimension 3.
4.2. Rewrite the classification of affinities in dimension two using the

general classification theorem of affinities, Theorem 4.16.
4.3. Classify the affinity of an affine space of dimension 3 given by

x′
1 = 3x1 + x2 − x3 + 1,

x′
2 = x1 + 8,

x′
3 = x1 + x2 + x3.

4.4. Classify the affinity of an affine space of dimension 4 given by

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 2
1 1 0 0 3
0 0 2 0 1
0 0 0 3 3

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

4.5. Classify the affinity of an affine space of dimension 4 given by

M(f, R) =

⎛
⎜⎜⎜⎜⎜⎝

−1 −4 0 0 1
1 3 0 0 2

0 0 1 0 3
0 0 1 1 4

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

4.6. Classify the affinity of an affine space of dimension 4 given by

M(f, R) =

⎛
⎜⎜⎜⎝

−1 −4 0 1
1 3 0 2

0 0 2 3

0 0 0 1

⎞
⎟⎟⎟⎠ .





5
Euclidean Affine Spaces

5.1 Introduction

In this chapter we introduce the concept of distance in affine spaces. For this
we shall “copy” the fundamental properties of the Euclidean distance of R

n,
the distance given by Pythagoras’ Theorem.

5.2 Definition of Euclidean Affine Space.
Pythagoras’ Theorem

Definition 5.1

A Euclidean affine space is an affine space A such that the associated vector
space E is a Euclidean vector space.

Recall that a Euclidean vector space is an R-vector space E on which a scalar
product is defined. A scalar product is a bilinear, positive definite, symmetric
map φ : E × E −→ R, see Definition A.8, page 326. The scalar product of two
vectors u, v ∈ E is denoted by

φ(u, v) = 〈u, v〉, for all u, v ∈ E,

and the modulus of a vector v ∈ E is defined by |v| =
√

〈v, v〉.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 5, c© Springer-Verlag London Limited 2011
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The most important properties of these vector spaces can be found in Ap-
pendix A, page 319.

Example 5.2

The paradigmatic example is the affine space A = R
n, modeled on the vector

space E = R
n, Example 2 on page 3. When we consider on E the standard

scalar product

(x1, . . . , xn) · (y1, . . . , yn) =
n∑

i=1

xiyi,

A is a Euclidean affine space. In this case, we simply refer to the Euclidean
affine space R

n or, when n = 2, the Euclidean affine plane R
2.

Example 5.3

Every linear variety L = P + [F ] of a Euclidean affine space A, modeled on E,
is a Euclidean affine space. Indeed, we know that L is an affine space with as-
sociated vector space F , and F is a Euclidean vector space with scalar product
induced by the scalar product on E.

Definition 5.4

Let A be a Euclidean affine space. The distance d(P,Q) between the points
P,Q ∈ A is given by

d(P,Q) = | −−→
PQ|.

Therefore, we have a map

d : A × A −→ R

P,Q �→ d(P,Q)

The most important properties of this map are the following.

Proposition 5.5

For all P,Q,R ∈ A we have:
(1) d(P,Q) ≥ 0;
(2) d(P,Q) = 0 if and only if P = Q;
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(3) d(P,Q) = d(Q,P ); and
(4) d(P,Q) ≤ d(P,R) + d(R,Q).

Proof

The first three properties are a direct consequence of the definition. The fourth,
known as the triangle inequality , is a consequence of Corollary A.10, page 327. �

Theorem 5.6 (Pythagoras’ Theorem)

If the triangle 	PQR is right angled at P , then

d(Q,R)2 = d(P,Q)2 + d(P,R)2.

Proof

That the triangle is right angled at P means, by definition, that the vectors−−→
PQ and

−→
PR are orthogonal, that is,

〈 −−→
PQ,

−→
PR〉 = 0.

Thus,

d(Q,R)2 = 〈−−→
QR,

−−→
QR〉

= 〈−−→
QP +

−→
PR,

−−→
QP +

−→
PR〉

= d(P,Q)2 + d(P,R)2,

and this completes the proof. �

Definition 5.7

Two linear varieties L1 = P + [F ] and L2 = Q + [G] of a Euclidean affine space
A are said to be orthogonal if the vector subspaces F and G are orthogonal.

Let us recall that two vector subspaces F and G of a Euclidean vector space
E are said to be orthogonal if 〈u, v〉 = 0, for all u ∈ F , v ∈ G or, equivalently,
when F ⊂ G⊥ where

G⊥ = {u ∈ E : 〈u, v〉 = 0 for all v ∈ G}.

For the most important properties of orthogonal subspaces, see Section A.5,
page 331. Notice that F ⊂ G⊥ implies F ∩ G = {�0}.
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5.3 The Distance Between Two Varieties

It is natural to define the distance between two subsets as the infimum of the
distances between their respective points. Concretely:

Definition 5.8

The distance between two linear varieties L1 = P + [F ] and L2 = Q + [G] of a
Euclidean affine space A is defined as

d(L1,L2) = inf
X∈L1,Y ∈L2

d(X,Y ).

To compute this distance we proceed as follows:
(1) First we compute the vector space F +G and its orthogonal (F +G)⊥. We

have

E = (F + G) ⊕ (F + G)⊥.

(2) Then we decompose the vector
−−→
PQ in this direct sum, yielding

−−→
PQ = u + v, u ∈ (F + G), v ∈ (F + G)⊥.

(3) The distance is then given by

d(L1,L2) = |v|.

Justification of the Method Every point X ∈ L1 can be written as X = P +u1

with u1 ∈ F and every point Y ∈ L2 can be written as Y = Q+u2 with u2 ∈ G.
Hence,

inf
X∈L1,Y ∈L2

d(X,Y ) = inf
u1∈F,u2∈G

d(P + u1,Q + u2)

= inf
u1∈F,u2∈G

| −−→
PQ + u2 − u1|

= inf
u1∈F,u2∈G

|u + v + u2 − u1|

= inf
u1∈F,u2∈G

|(u + u2 − u1) + v|

= inf
u1∈F,u2∈G

√
|(u + u2 − u1)|2 + |v|2

= |v|,

and this completes the proof.
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5.4 Common Perpendicular

The method described in the previous section allows us to compute the distance
between two varieties. Sometimes, however, we need to find a pair of points
X ∈ L1 and Y ∈ L2 such that

d(X,Y ) = d(L1,L2),

that is, points attaining the infimum of the distances between the points of the
two varieties.

Proposition 5.9

Let L1 = P + [F ] and L2 = Q + [G] be linear varieties of an affine space A.
Then there are points X ∈ L1 and Y ∈ L2 such that

d(L1,L2) = d(X,Y ).

If F ∩ G = {�0}, these points are unique.

Proof

We decompose
−−→
PQ in the direct sum

E = (F + G) ⊕ (F + G)⊥.

We then have

−−→
PQ = u + v, u ∈ (F + G), v ∈ (F + G)⊥,

and we know that

d(L1,L2) = |v|.

The vectors u and v are uniquely determined. Now we decompose u as a sum
of one element of F and one of G, see Figure 5.1 (this decomposition is unique
if and only if F ∩ G = {�0}).

We have

u = u1 + u2, u1 ∈ F, u2 ∈ G.

Hence,
−−→
PQ = u1 + u2 + v, u1 ∈ F, u2 ∈ G, v ∈ (F + G)⊥.
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Figure 5.1. Decomposition of
−−→
PQ

Then the equality

Q = P +
−−→
PQ = P + u1 + u2 + v

can be written as

Q − u2 = P + u1 + v,

which, setting

X = P + u1 ∈ L1,

Y = Q − u2 ∈ L2,

is equivalent to Y = X + v, and hence

−−→
XY = v.

In particular, we have found points X ∈ L1 and Y ∈ L2 such that

d(L1,L2) = |v| = d(X,Y ).

Observe that the straight line X + 〈v〉 is a common perpendicular to L1 and L2.
These points X,Y are not, in general, unique. Indeed, note that, for any

w ∈ F ∩ G, the points

X ′ = X + w,

Y ′ = Y + w

satisfy

X ′ ∈ L1, Y ′ ∈ L2,
−−→
XY =

−−−→
X ′Y ′
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and, hence,

d(L1,L2) = d(X ′, Y ′).

The points X and Y are uniquely determined only when F ∩ G = {�0}, i.e.
when the sum of F and G is a direct sum. In fact, in this case, there are unique
vectors u1 ∈ F , u2 ∈ G, v ∈ (F + G)⊥ such that

−−→
PQ = u1 + u2 + v,

and we know that the points X = P + u1 ∈ L1, Y = Q − u2 ∈ L2 satisfy
−−→
XY = v.

Let us suppose that there are other points X ′ = P + u′
1 ∈ L1, Y ′ =

Q + u′
2 ∈ L2, such that |

−−−→
X ′Y ′ | = d(L1,L2). Then

−−−→
X ′Y ′ =

−−→
PQ + u′

2 − u′
1 = (u1 − u′

1) + (u2 + u′
2) + v.

By Pythagoras’ Theorem and the equality |
−−−→
X ′Y ′ | = |v| we have

u1 − u′
1 + u2 + u′

2 =�0.

Hence, u1 − u′
1 = −u2 − u′

2, and since the first term of this equality belongs to
F and the second term belongs to G, both must be zero, and we have u1 = u′

1

and u2 = −u′
2. Hence, X = X ′ and Y = Y ′, and this completes the proof. �

At the other extreme to the case where F and G form a direct sum is the case
F = G. Observe that, in this case, that is, if L1 = P + [F ] and L2 = Q + [F ], in
order to find points where the distance is attained it is sufficient to decompose

−−→
PQ = u + v ∈ F ⊕ F ⊥,

and then, according to the calculations made in the above proposition, any pair
of points of the form

X = P + w,

Y = P + w + v = Q − u + w, for all w ∈ F,

is such that d(L1L2) = d(X,Y ).

Proposition 5.10

Let L1 = P + [F ] and L2 = Q + [G] be linear varieties with F ∩ G = H = {�0}.
Then there are parallel linear varieties H1 ⊂ L1 and H2 ⊂ L2, of the same
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dimension, such that

d(H1,H2) = d(L1,L2).

Proof

We know that there are points X ∈ L1, Y ∈ L2 such that the straight line they
determine is perpendicular to L1 and L2 and such that d(X,Y ) = d(L1,L2).
Consider the linear varieties H1 = X + [H] and H2 = Y + [H]. It is clear that
H1 ⊂ L1, H2 ⊂ L2, and that they are parallel, because they have the same
direction.

To find the distance between H1 and H2 we must decompose the vector
−−→
XY

in the direct sum E = H ⊕ H⊥ and take the modulus of the second component.
But

−−→
XY ∈ (F + G)⊥ ⊂ H⊥, and hence

d(H1,H2) = | −−→
XY | = d(X,Y ) = d(L1,L2).

�

Observe that every pair of points of the form

P ′ = P + w,

Q′ = Q + w, w ∈ H,

attains the minimum distance.

Example 5.11

Find, in the Euclidean affine space R
3, the distance and the common perpen-

dicular between the straight lines L1 = (1,2,3) + 〈(1,0,0)〉 and L2 = (0,0,0) +
〈(0,2,4)〉.

Solution

Let P = (1,2,3), F = 〈(1,0,0)〉, Q = (0,0,0), G = 〈(0,2,4)〉, so that L1 = P +
[F ] and L2 = Q + [G]. Then

F + G = 〈(1,0,0), (0,2,4)〉.

Since we are in R
3, we can compute (F + G)⊥ using the vector product of

(1,0,0) and (0,2,4). Another method is to write the vectors of (F + G)⊥ as
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(α,β, γ), and then impose the condition that they are perpendicular to (1,0,0)
and (0,2,4). We have

(F + G)⊥ = 〈(0,4, −2)〉.

Now we write
−−→
PQ = u + v, u ∈ (F + G), v ∈ (F + G)⊥.

Concretely,
−−→
PQ = (−1, −2, −3)

= λ(1,0,0) + μ(0,2,4) + ν(0,4, −2) ∈ (F + G) ⊕ (F + G)⊥.

We deduce that λ = −1, μ = − 4
5 , ν = − 1

10 . In particular,

d(L1,L2) =
∣∣∣∣− 1

10
(0,4, −2)

∣∣∣∣ =
√

5
5

.

To find points X,Y attaining this distance, we recall that X = P + u1 and
Y = Q − u2 (see Figure 5.2) with u1 ∈ F , u2 ∈ G and v ∈ (F + G)⊥, such that

−−→
PQ = u1 + u2 + v.

Figure 5.2. Construction of points attaining the dis-
tance

Therefore, in our case, u1 = λ(1,0,0) = (−1,0,0) and u2 = μ(0,2,4) =
(0, − 8

5 , −16
5 ). Hence,

X = (1,2,3) + (−1,0,0) = (0,2,3),

Y = (0,0,0) −
(

0, − 8
5
,

−16
5

)
=

(
0,

8
5
,
16
5

)
.

Clearly, d(X,Y ) =
√

5
5 . �

Example 5.12

Find the distance and the common perpendicular between the planes L1 and
L2 of the Euclidean affine space R

4 given by
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L1 = (0,1,2,3) + 〈(1,0,0,0), (2,6, −1,0)〉,

L2 = (0,0,0,0) + 〈(0,2,4,1), (2,6, −1,0)〉.

Solution

Let P = (0,1,2,3), Q = (0,0,0,0), F = 〈(1,0,0,0), (2,6, −1,0)〉, G = 〈(0,2,4,1),
(2,6, −1,0)〉.

Thus L1 = P + [F ], L2 = Q + [G],

F + G = 〈(1,0,0,0), (2,6, −1,0), (0,2,4,1)〉,

and

(F + G)⊥ = 〈(0,1,6, −26)〉.

Now we write

−−→
PQ = u + v, u ∈ (F + G), v ∈ (F + G)⊥.

Concretely,
−−→
PQ = (0, −1, −2, −3)

= λ(1,0,0,0) + μ(0,2,4,1)

+ ν(2,6, −1,0) + δ(0,1,6, −26). (5.1)

We find λ = −40/713, μ = −449/713, ν = 20/713, δ = 65/713.
In particular,

d(L1,L2) =
∣∣∣∣ 65
713

(0,1,6, −26)
∣∣∣∣ =

65√
713

.

To find points X,Y attaining this distance, we recall that X = P + u1,
Y = Q − u2 with u1 ∈ F , u2 ∈ G and v ∈ (F + G)⊥, such that

−−→
PQ = u1 + u2 + v.

One possibility, among others since F ∩ G = {�0}, is to take, comparing with
formula (5.1),

u1 = λ(1,0,0,0) + μ(0,2,4,1) =
1

713
(−40, −898, −1796, −449)

u2 = ν(2,6, −1,0) =
1

713
(40,120, −20,0).
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Thus,

X = P + u1 =
1

713
(−40, −185, −370,1690),

Y = Q − u2 =
1

713
(−40, −120,20,0).

Clearly, d(X,Y ) = 65√
713

. �

EXERCISES

5.1. Let L1 and L2 be linear varieties of a Euclidean affine space A. Prove
that if X ∈ L1 and Y ∈ L2 are such that d(L1,L2) = d(X,Y ), then
the straight line determined by the points X and Y is a common
perpendicular to L1 and L2.

5.2. Let A,B,C be three collinear points in a Euclidean affine space A.
Prove that

|(A,B,C)| =
d(A,B)
d(A,C)

.

Does this mean that the simple ratio depends on the distance?
5.3. Let

L1:

{
x + y + z = 2,

x − y + z = 1,
L2:

⎧⎪⎪⎨
⎪⎪⎩

x = 2λ + μ,

y = 3 + 2λ + 2μ,

z = 4 + 3λ + 2μ

be two linear varieties of the Euclidean affine space R
3.

(a) Find the distance from P = (0,0,0) to L1 and L2.
(b) Find the straight line through P intersecting L1 and the straight

line x = z = 0.
5.4. Let L be the linear variety of the Euclidean affine space R

4 given by

{
x − y = 0,

x + t = 3.

Find the plane Π orthogonal to L such that L ∩ Π = {(1,1,1,1)}.
5.5. Let A be the affine space R

3 considered as a Euclidean affine space
with the scalar product given, in the canonical basis of the vector
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space R
3, by the matrix

⎛
⎝5 1 0

1 1 0
0 0 3

⎞
⎠ .

Find the distance from the point P = (−1,1, −2) to the plane
through the points A = (1, −1,1), B = (−2,1,3) and C = (4, −5, −2).

5.6. Let A be the affine space R
4 considered as a Euclidean affine space

with the scalar product given, in the canonical basis of the vector
space R

4, by the matrix

⎛
⎜⎜⎝

5 1 0 1
1 1 0 0
0 0 3 0
1 0 0 1

⎞
⎟⎟⎠ .

Find the distance between the following linear varieties of A:
(a) The plane determined by (0,1,1,0), (1,1,1,1) and (−1,0,0,1)

and the straight line
⎧⎨
⎩

x + y − z = 1,

2x + t = 2,

2x + y − z + t = 0.

(b) The planes {
x + y − z = 0,

2x + t = 3,

and {
x + y + z + t = 2,

4x + 2y + 2t = 0.

(c) The straight lines (1, −1,0,0) + 〈(0,1,0,1)〉 and

⎧⎨
⎩

x + y − 2z = 2,

y + z + t = 3,

x + z = −1.

5.7. Find, in the Euclidean affine space R
4, the distance between the

planes

Π1:
{

x − t − 2 = 0,

y − z + 2 = 0.
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Π2:
{

x − z − 2 = 0,

y − t + 1 = 0.

Find points P ∈ Π1 and Q ∈ Π2 such that d(P,Q) = d(Π1,Π2). Re-
peat the exercise considering in R

4 the scalar product given in Ex-
ercise 5.6.

5.8. Find, in the Euclidean affine space R
4, the distance from the plane

Π:
{

x − t − 2 = 0,

y − z + 2 = 0

to the straight line

r:

⎧⎨
⎩

x − z − 2 = 0,

y − t + 1 = 0,

y = 0.

Find points P ∈ Π and Q ∈ r such that d(P,Q) = d(Π,r). Repeat the
exercise considering in R

4 the scalar product given in Exercise 5.6.
5.9. Find, in the Euclidean affine space R

4, the distance from the plane

Π:
{

2y − 3z − 2 = 0,

y − 3t − 1 = 0

to the straight line

r: (1,2,3,1) + λ(0,3,2,1).

Find points P ∈ Π and Q ∈ r such that d(P,Q) = d(Π,r).
5.10. Let

r: x − 1 = −y = z, s: x = y = z,

be two straight lines in the Euclidean affine space R
3.

(a) Find the common perpendicular to r and s.
(b) Find the distance d(r, s). Find points P ∈ r and Q ∈ s such that

d(P,Q) = d(r, s). Repeat the exercise considering in R
3 the scalar

product given in Exercise 5.5.
5.11. Consider a triangle in a Euclidean affine plane. Prove the following

statements:
(a) The three perpendicular bisectors intersect in a single point (the

circumcenter).
(b) The three angle bisectors intersect in a single point (the incen-

ter).
(c) The three altitudes intersect in a single point (the orthocenter).
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5.12. Consider a triangle in a Euclidean affine plane. Prove that the prod-
uct of the lengths of the two line segments determined by the ortho-
center on each altitude is constant.

5.13. Suppose that the interior and exterior bisectors of the angle C of
a triangle 	ABC meet the straight line AB in points Ci and Ce

respectively, see Figure 5.3. Prove that

(Ce,A,B) = −(Ci,A,B).

Figure 5.3. Metric property of the bisectors

5.14. Let O,A,B be points in the Euclidean affine plane R
2 and suppose

that

d(O,A) = 3, d(O,B) = 5, ∠OAB =
π

3
.

(a) Find the matrix of the standard scalar product on the vector
space R

2 with respect to the basis (
−→
OA,

−−→
OB).

(b) Find d(A,B) and find the distance from O to the straight line
AB.

5.15. Find, in the Euclidean affine space R
3, the distance between the

linear varieties L1 and L2, given by

L1:

⎧⎪⎪⎨
⎪⎪⎩

x = 1 + λ,

y = 2,

z = 3.

L2:

{
x = 0,

z = 2y.

Find points P ∈ L1 and Q ∈ L2 such that d(P,Q) = d(L1,L2). Re-
peat the exercise considering on R

3 the scalar product given in Ex-
ercise 5.5.

5.16. Find, in the Euclidean affine space R
4, the distance between the

planes

Π1:
{

3t − y = 0,

3z − 3x + 2y = 0.

Π2: (1,0,0,1) + 〈(3,3,1,1), (5,3,3,1)〉.
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Find points P ∈ Π1 and Q ∈ Π2 such that d(P,Q) = d(Π1,Π2). Re-
peat the exercise considering on R

4 the scalar product given in Ex-
ercise 5.6.

5.17. Find, in the Euclidean affine space R
4, the distance between the

linear varieties

L1 = (0,0,0,0) + 〈(1,0,1,0), (0,1,2,3), (1,0,0,1)〉,

L2 = (1,1,1,1) + 〈(2,1,3,4)〉.

Find points P ∈ L1 and Q ∈ L2 such that d(P,Q) = d(L1,L2).
5.18. Let 	ABC be a triangle in a Euclidean affine plane A and let P be

any point of A.
Prove that the three straight lines through P perpendicular, respec-
tively, to the straight lines AB, AC and the median corresponding
to the vertex A (the straight line determined by A and the midpoint
M of BC) cut the altitude through vertex A in equal line segments
(see Figure 5.4).

Figure 5.4. Altitude and median

5.19. Consider the set

A = {(x, y, z, t) ∈ R
4 : x + y + z − 2t = −1}
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and the vector space

E = {(u1, u2, u3, u4) ∈ R
4 : u1 + u2 + u3 − 2u4 = 0}.

Prove that (A,E), with the action ϕ : A × E −→ A given by

ϕ((x, y, z, t), (u1, u2, u3, u4) = (x + u1, y + u2, z + u3, t + u4),

is an affine space.
Observe that the vector space E admits two scalar products: one,
denoted by 〈·, · 〉1, induced by the standard scalar product on R

4, and
the other, denoted by 〈·, · 〉2, given in Exercise A.9 of Appendix A,
page 345. Hence, we have two Euclidean affine spaces: (A,E, 〈 ·, · 〉1)
and (A,E, 〈·, · 〉2).
Find, for each of these two Euclidean affine spaces:
(a) The distance between the point P = (1,1,1,2) and the point

Q = (0,0,0,1/2).
(b) The angles of the triangle 	PQR, with R = (1,0,0,1), and their

sum.
(c) The distance from the point P to the linear variety

L = {(x, y, z, t) ∈ A;x + y + z + t = 0}.

Note: The hyperplane A is the hyperplane tangent to the hyperboloid
of two sheets x2 + y2 + z2 − t2 = −1 at the point (1,1,1,2). This
hyperboloid, with the metric induced by the Lorentz metric of R

4,
is a model of three-dimensional Hyperbolic Geometry. See Exercise
A.9 of Appendix A, page 345. Although the Lorentz metric is not
positive definite, its restriction to this hyperplane is positive definite.
This exercise was suggested by Carmen Safont.
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Euclidean Motions

6.1 Introduction

In this chapter we will use some results on isometries, essentially Theorems
A.21 and A.22, page 333, in order to study a special class of affinities: those
preserving distance. These distance preserving affinities are called Euclidean
motions.

We give the classification of Euclidean motions in arbitrary dimension, see
Theorem 6.21. Readers only interested in low dimensions can go directly to
Chapter 7, page 197.

We recall that if (E, 〈·, · 〉) is a Euclidean vector space, an isometry is an
endomorphism f̃ : E −→ E such that

〈f̃(u), f̃(v)〉 = 〈u, v〉, for all u, v ∈ E.

f̃ is also said to preserve the scalar product or be scalar product preserving.
Among the most important properties of isometries we wish to emphasize

that their eigenvalues have modulus 1 and that eigenvectors corresponding to
different eigenvalues, one equal to 1 and the other equal to −1, are orthogonal.

We also recall that two isometries f̃ and g̃ are isometrically similar if and
only if there is an isometry h̃ conjugating them, that is, such that f̃ = h̃−1 ◦ g̃ ◦ h̃;
see Definition A.36, page 343.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 6, c© Springer-Verlag London Limited 2011
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6.2 Definition of Euclidean Motion

Definition 6.1

Let A be a Euclidean affine space. A map f : A → A is called a Euclidean motion
if

d(f(P ), f(Q)) = d(P,Q), for all P,Q ∈ A.

In other words, the Euclidean motions are the distance-preserving maps.

Proposition 6.2

Let A be a Euclidean affine space. A map f : A −→ A is a Euclidean motion if
and only if it is an affinity and its associated linear map f̃ is an isometry.

Proof

Let us suppose that f is an affinity and that f̃ is an isometry. Then

d(f(P ), f(Q)) = |
−−−−−−→
f(P )f(Q)| = |f̃(

−−→
PQ)| = | −−→

PQ| = d(P,Q).

Conversely, suppose that f preserves the distance. Fix P ∈ A and consider
the map f̃P . Recall that, by definition, f̃P (

−−→
PQ) =

−−−−−−→
f(P )f(Q). We must prove

that f̃P is linear and preserves the scalar product. By Theorem A.21, page 333,
it is sufficient to prove that it preserves the scalar product.

Let u, v ∈ E be two vectors and set u =
−−→
PQ, v =

−→
PR. We have

d(Q,R)2 = | −−→
QR|2 = | −−→

QP +
−→
PR|2

= | −−→
QP |2 + | −→

PR|2 + 2〈−−→
QP,

−→
PR〉,

and

d(f(Q), f(R))2 = |
−−−−−−→
f(Q)f(R)|2

= |
−−−−−−→
f(Q)f(P ) +

−−−−−−→
f(P )f(R)|2

= | −−→
QP |2 + | −→

PR|2 + 2〈
−−−−−−→
f(Q)f(P ),

−−−−−−→
f(P )f(R)〉.

Equating the distances,

〈u, v〉 = 〈−−→
PQ,

−→
PR〉 = 〈f̃P (

−−→
PQ), f̃P (

−→
PR)〉 = 〈f̃P (u), f̃P (v)〉.

Thus, f̃P preserves the scalar product, and in particular, it is linear. �
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6.3 Examples of Euclidean Motions

Let us review the examples of affinities given in Section 2.8, page 66, and
determine whether the affinities considered there are, or are not, Euclidean
motions, when considered in the context of Euclidean affine spaces.

6.3.1 Translations

The simplest examples of Euclidean motions are the translations, since if f is
a translation, then f̃ = id, and the identity is, obviously, an isometry.

6.3.2 Homotheties

The homotheties, with similitude ratio λ �= −1, are not Euclidean motions,
since if f is a homothety, then f̃ = λ id, with λ �= 1, and hence f̃ is not an
isometry, because 〈f̃(u), f̃(v)〉 = λ2〈u, v〉 �= 〈u, v〉.

6.3.3 Orthogonal Symmetries

Every linear variety L = P + [F ] of a Euclidean affine space A gives rise to a
symmetry sL : A −→ A defined by

sL(P + v) = P + v1 − v2, for all v = v1 + v2 ∈ E, with v1 ∈ F,v2 ∈ F ⊥.

This symmetry is called the orthogonal symmetry with respect to L, or sim-
ply the symmetry with respect to L.

It is easy to find, proceeding as in page 71, an orthonormal basis B (Defini-
tion A.11, page 327) such that if f̃ is the linear map associated to an orthogonal
symmetry f , then

M(f̃ , B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, there are as many 1s on the diagonal as the dimension of F and as many
−1s as the dimension of F ⊥, all other entries being equal to zero.



178 6. Euclidean Motions

Since this matrix is orthogonal it follows from Corollary A.25, page 335,
that f̃ is an isometry. Hence, orthogonal symmetries are Euclidean motions.
See also Exercise 6.1, page 192.

In Observation 2.37, page 72, we studied symmetries in affine spaces without
a Euclidean structure. In that setting one cannot attach a meaning to F ⊥,
and thus in order to give a symmetry with respect to F we had to specify a
decomposition of E as a direct sum of two subspaces E = F ⊕ G, and thus obtain
the symmetry with respect to F in the direction G. This kind of symmetry on
a Euclidean affine space, where F and G are not orthogonal to each other, is
not a Euclidean motion.

6.3.4 Orthogonal Projections

Every linear variety L = P + [F ] of a Euclidean affine space A gives rise to a
projection pL : A −→ A defined by

pL(P + v) = P + v1, for all v = v1 + v2 ∈ E, with v1 ∈ F,v2 ∈ F ⊥.

This projection is called the orthogonal projection on L. It is easy to find,
proceeding as on page 73, an orthonormal basis B such that, if f̃ is the linear
map associated to an orthogonal projection f , then

M(f̃ , B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, there are as many 1s on the diagonal as the dimension of F , and zeros
elsewhere.

Since this matrix is not orthogonal, we conclude that orthogonal projections
are not Euclidean motions. In Observation 2.39, page 74, we studied projections
in affine spaces without a Euclidean structure. In that setting one cannot define
the subspace F ⊥, and thus in order to give a projection on F we had to specify
a decomposition of E as a direct sum of two subspaces E = F ⊕ G, and we
obtained the projection on F in the direction G.
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6.4 Similar Euclidean Motions

Definition 6.3

We say that two Euclidean motions f, g : A −→ A of a Euclidean affine space
A are similar as Euclidean motions if and only if there is a Euclidean motion
h : A −→ A such that f = h−1 ◦ g ◦ h.

Notice that it is possible that f and g can be similar as affinities, in the sense
of Definition 3.4, page 92, but not similar as Euclidean motions. We shall see
an example of this shortly, but first we study the relationship between similar
Euclidean motions and similar isometries; see Definition A.36, page 343.

Proposition 6.4

If two Euclidean motions are similar as Euclidean motions, then the associated
linear maps are isometrically similar.

Proof

From

f = h−1 ◦ g ◦ h,

we deduce

f̃ = h̃−1 ◦ g̃ ◦ h̃,

and hence f̃ is isometrically similar to g̃, because f̃ and g̃ are conjugated by
an isometry. �

The converse, however, is not true. For instance, all translations have the same
associated linear map (the identity), but not all translations are similar as
Euclidean motions to each other. Concretely, we have the following.

Proposition 6.5

Let Tu and Tv be two translations of a Euclidean affine space A. Then Tu is
similar as a Euclidean motion to Tv if and only if |u| = |v|.
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Proof

Let us suppose |u| = |v|. Take any isometry ϕ such that ϕ(u) = v. The existence
of ϕ is easy to prove, see Exercise A.1 of Appendix A, page 344. Then any
affinity h such that h̃ = ϕ conjugates Tu and Tv. Indeed, for all points P ∈ A

we have

(h ◦ Tu)(P ) = h(P + u) = h(P ) + ϕ(u) = h(P ) + v = (Tv ◦ h)(P ).

Conversely, if there is an isometry h such that h ◦ Tu = Tv ◦ h, then, for
every point P ∈ A, we have

h(P + u) = h(P ) + h̃(u) = h(P ) + v,

and hence h̃(u) = v. Since h̃ is an isometry, |u| = |v|. �

In particular, if u and v are non-zero vectors with |u| �= |v|, then Tu is similar
to Tv as affinities, but Tu is not similar to Tv as Euclidean motions.

6.5 Calculations in Coordinates

In arbitrary vector spaces there are no privileged bases. Nevertheless, on vector
spaces endowed with a scalar product, orthonormal bases (see Definition A.11,
page 327) hold a certain privileged status: computations are easier when work-
ing with these bases. A similar situation occurs in the context of Euclidean
affine spaces.

Definition 6.6

An affine frame R = {P ; B } of a Euclidean affine space A is called orthonormal
if B is an orthonormal basis of E.

If f : A −→ A is a Euclidean motion of a Euclidean affine space A of dimen-
sion n, and R is an orthonormal affine frame, we have

M(f, R) =
(

A a

0 1

)
,

where A = M(f̃ , B). This matrix satisfies

AAT = In,
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since it is the matrix associated to an isometry in an orthonormal basis, see
Corollary A.25, page 335. Matrices satisfying the condition AAT = In are called
orthogonal matrices, and they satisfy detA = ±1. Orthogonal matrices form a
group, see Section A.4, page 329.

Conversely, every matrix of the form
(

A a
0 1

)
, with A orthogonal, can be

interpreted via an orthonormal affine frame as a Euclidean motion.
For convenience, we define matrices similar as matrices of Euclidean mo-

tions.

Definition 6.7

We say that the matrices
(

A a
0 1

)
and

(
B b
0 1

)
with AAT = BBT = In, are similar

as matrices of Euclidean motions if there is an invertible matrix
(

C c
0 1

)
, with

CCT = In, such that(
A a

0 1

)
=

(
C c

0 1

)−1 (
B b

0 1

)(
C c

0 1

)
.

Proposition 6.8

Let f and g be Euclidean motions of a Euclidean affine space A. Then
(i) The matrices M(f, R1) and M(f, R2) of f in two different orthonormal

affine frames R1 and R2 are similar as matrices of Euclidean motions.
(ii) f and g are similar as Euclidean motions if and only if the matrices

M(f, R) and M(g, R), where R is an orthonormal affine frame, are similar
as matrices of Euclidean motions.

(iii) f and g are similar as Euclidean motions if and only if there are orthonor-
mal affine frames R1 and R2 of A such that

M(f, R1) = M(g, R2).

Proof

The proof is an adaptation of the proof of Proposition 3.8. �

Corollary 6.9

Let R = {P ; B } be an orthonormal affine frame of a Euclidean affine space A

of dimension n. Let f, g be Euclidean motions and set

M(f, R) =
(

A a

0 1

)
, M(g, R) =

(
B b

0 1

)
.
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Then f is similar to g as Euclidean motions if and only if there is an orthogonal
matrix C ∈ Mn×n(R) and a column matrix c ∈ Mn×1(R) such that

{
A = CTBC,

(B − In)c = Ca − b.

Proof

The proof is an adaptation of the proof of Proposition 3.13. �

Observe that Proposition 6.5 is also a corollary of Proposition 6.8. In fact we
have the following.

Corollary 6.10

Let Tu and Tv be two translations of a Euclidean affine space A of dimension n.
Then Tu is similar as a Euclidean motion to Tv if and only if |u| = |v|.

Proof

Complete the unit vector u
|u| to an orthonormal basis B = ( u

|u| , e2, . . . , en) of
the vector space E. In the orthonormal affine frame R = {P ; B }, with P an
arbitrary point, the equations of Tu are (by the same argument as on page 67),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1 = x1 + |u|,

x′
2 = x2,

...
x′

n = xn.

Analogously, we construct an orthonormal affine frame R′ = {P ′; B ′ } such
that the equations of Tv in R′ are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
1 = x1 + |v|,

x′
2 = x2,

...
x′

n = xn.

Hence, if |u| = |v|, it follows from part (iii) of Proposition 6.8 that Tu is
similar as a Euclidean motion to Tv.



6.6 Glide Vector 183

Conversely, if Tu is similar as a Euclidean motion to Tv , we set

M(Tu, R) =
(

In a

0 1

)
, M(Tv, R) =

(
In b

0 1

)
,

where R is an orthonormal affine frame, and the above Corollary 6.9 says that
there is an orthogonal matrix C such that Ca = b.

But a and b represent, respectively, the components of u and v in the given
orthonormal basis. Hence, |v|2 = bTb = aTCTCa = aTa = |u|2. �

6.6 Glide Vector

Euclidean motions without fixed points have associated to them, in a natural
way, an eigenvector of the associated endomorphism with eigenvalue 1. This
eigenvector plays an important role in the study and classification of Euclidean
motions. Before giving a precise definition, let us recall the following result.

Proposition 6.11

Let f be a Euclidean motion in a Euclidean affine space A, with associated
linear map f̃ . Let

E = ker(f̃ − id) ⊕ ker(f̃ − id)⊥.

Let P ∈ A and set

−−−−→
Pf(P ) = uf + v; uf ∈ ker(f̃ − id), v ∈ ker(f̃ − id)⊥.

Then the vector uf does not depend on the selected point P .

Proof

In order to prove that uf does not depend on the selected point P , we take
another point Q ∈ A and observe that

−−−−→
Pf(P ) = (f̃ − id)

−−→
QP +

−−−−→
Qf(Q).

But, by Proposition A.30, page 338 (or Observation 6.13), we have

(f̃ − id)
−−→
QP ∈ Im(f̃ − id) = ker(f̃ − id)⊥,
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and hence the components in ker(f̃ − id) that we obtain by decomposing
−−−−→
Pf(P )

and
−−−−→
Qf(Q) in the direct sum E = ker(f̃ − id) ⊕ ker(f̃ − id)⊥ are equal. �

This proposition is of interest only when 1 is an eigenvalue of f̃ , since, otherwise,
ker(f̃ − id) = {�0} and uf =�0. Recall that f̃ does not have eigenvalue 1 if and
only if f has a unique fixed point (see Proposition 2.28, page 65).

Definition 6.12

Let f be a Euclidean motion of a Euclidean affine space A, with associated
linear map f̃ . Let

E = ker(f̃ − id) ⊕ ker(f̃ − id)⊥.

Let P ∈ A and set

−−−−→
Pf(P ) = uf + v; uf ∈ ker(f̃ − id), v ∈ ker(f̃ − id)⊥.

We say that uf is the glide vector of f , and its modulus τ(f) = |uf | is called
the glide modulus of f .

Notice that the glide vector of f is an eigenvector of f̃ with eigenvalue 1. It
is denoted by uf to emphasize that it is determined by f , in the sense that it
does not depend on the point P selected to compute

−−−−→
Pf(P ). The importance

of the glide modulus is that it is the same for all Euclidean motions that
are similar as Euclidean motions (the glide vector, however, can change). See
Propositions 6.16 and 6.22.

Observation 6.13

The equality

Im(f̃ − id) = ker(f̃ − id)⊥,

proved in Proposition A.30, page 338, can be proved directly in the following
way: Let w ∈ ker(f̃ − id). Then,

〈(f̃ − id)(v),w〉 = 〈f̃(v),w〉 − 〈v,w〉 = 〈f̃(v), f̃(w)〉 − 〈v,w〉 = 0.

This proves that Im(f̃ − id) ⊂ ker(f̃ − id)⊥. But we know, by the Isomorphism
Theorem ([8], page 284), that these subspaces have the same dimension and,
hence, they are equal.
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Observation 6.14

There are some cases in which the calculation of the glide modulus τ(f) is
especially simple. For instance:
(1) When f has fixed points, because if P is a fixed point of f then

−−−−→
Pf(P ) =�0,

and hence τ(f) = 0.
(2) When f has invariant straight lines, or invariant linear varieties, directed

by eigenvectors with eigenvalue 1, because in this case we can take a point
P on an invariant straight line or on an invariant linear variety and we will
have

−−−−→
Pf(P ) ∈ ker(f̃ − id), and hence τ(f) = |

−−−−→
Pf(P )|.

(3) When f is a translation Tu, because then τ(f) = |u|, see Proposition 6.16.

Observation 6.15 (Method to find the glide vector)

The easiest way to find uf and τ(f) is to take an orthonormal basis (e1, . . . , ek)
of ker(f̃ − id) and an orthonormal basis (ek+1, . . . , en) of ker(f̃ − id)⊥. Then we
put

−−−−→
Pf(P ) = a1e1 + · · · + akek + ak+1ek+1 + · · · + anen,

and we have

uf = a1e1 + · · · + akek,

τ(f) =
√

a2
1 + · · · + a2

k.

As particular cases we have:
Computation of τ(f) in dimension two. Let f be a Euclidean motion with

associated linear map f̃ in a Euclidean affine space A of dimension two. Then

τ(f) =

⎧⎪⎪⎨
⎪⎪⎩

0, if dimker(f̃ − id) = 0,

| 〈
−−−−→
Pf(P ), e〉|, if dimker(f̃ − id) = 1,

|
−−−−→
Pf(P )|, if dimker(f̃ − id) = 2 (f̃ = id),

where P is an arbitrary point and e is a unit eigenvector of f̃ with eigenvalue 1.
Computation of τ(f) in dimension three. Let f be a Euclidean motion with

associated linear map f̃ in a Euclidean affine space A of dimension three. Then

τ(f) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if dimker(f̃ − id) = 0,

| 〈
−−−−→
Pf(P ), e1〉|, if dimker(f̃ − id) = 1,√

〈
−−−−→
Pf(P ), e1〉2 + 〈

−−−−→
Pf(P ), e2〉2, if dimker(f̃ − id) = 2,

|
−−−−→
Pf(P )|, if dimker(f̃ − id) = 3,
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where P is, in all cases, an arbitrary point; in the second case e1 is a unit eigen-
vector of f̃ with eigenvalue 1; and in the third case e1, e2 are unit orthogonal
eigenvectors of f̃ with eigenvalue 1.

Proposition 6.16

The glide vector of a translation by vector u, Tu, is u. In particular, τ(Tu) = |u|.

Proof

Since T̃u = id,

E = ker(T̃u − id) ⊕ ker(T̃u − id)⊥ = ker(T̃u − id),

and, hence, the glide vector uTu
coincides with the vector

−−−−−→
PTu(P ), for every

point P . But we know that
−−−−−→
PTu(P ) = u, and hence uTu = u, and this completes

the proof. �

Proposition 6.17

Let f be a Euclidean motion of a Euclidean affine space A. Then τ(f) = 0 if
and only if f has a fixed point.

Proof

Let us suppose that f has a fixed point P . Applying the definition of τ(f) to
the vector

−−−−→
Pf(P ) we obtain τ(f) = 0.

Conversely, suppose τ(f) = 0. Fix a point P ∈ A and set

−−−−→
Pf(P ) = uf + v; uf ∈ ker(f̃ − id), v ∈ ker(f̃ − id)⊥.

Since τ(f) = 0, uf =�0, and hence

−−−−→
Pf(P ) ∈ ker(f̃ − id)⊥.

But we have seen in Proposition A.30, page 338 (and in Observation 6.13)
that ker(f̃ − id)⊥ = Im(f̃ − id), so that

−−−−→
Pf(P ) ∈ Im(f̃ − id).

Equivalently, there is a v ∈ E such that
−−−−→
Pf(P ) = (f̃ − id)(v). (6.1)
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From this equality we can prove that f has a fixed point. Indeed, finding a fixed
point is equivalent to finding a vector w ∈ E such that the point Q = P + w is
fixed. That is,

P + w = Q = f(Q) = f(P + w) = f(P ) + f̃(w),

or, equivalently,
−−−−→
Pf(P ) = w − f̃(w) = −(f̃ − id)(w).

By (6.1), it is sufficient to take w = −v and the point Q = P − v is fixed. �

6.7 Classification of Euclidean Motions

Theorem 6.18

Let f be a Euclidean motion without fixed points in a Euclidean affine space A.
Then the Euclidean motion g = f ◦ T−uf

has a fixed point. In fact, the glide
vector uf is the only eigenvector with eigenvalue 1 satisfying this property.

Proof

Fix a point P ∈ A and set
−−−−→
Pf(P ) = uf + v; u ∈ ker(f̃ − id), v ∈ ker(f̃ − id)⊥ = Im(f̃ − id).

In particular, there is a w ∈ E such that v = (f̃ − id)(w).
Inspired by the proof of the above proposition, we take Q = P − w as a

candidate for the fixed point. Let us check it:

g(Q) = f ◦ T−uf
(Q)

= f(Q − uf )

= f(P ) − f̃(w) − uf

= P + uf + f̃(w) − w − f̃(w) − uf

= P − w

= Q.

To prove the uniqueness of uf , let us assume that there is an eigenvector u′

with eigenvalue 1 such that f ◦ T−u′ has a fixed point Q′. Then

Q′ = f ◦ T−u′ (Q′) = f(Q′ − u′) = f(Q′) − f̃(u′) = f(Q′) − u′,
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and, hence,
−−−−−→
Q′f(Q′) = u′.

But, since u′ is an eigenvector with eigenvalue 1, this equality can be written
as

−−−−−→
Q′f(Q′) = u′ +�0 ∈ ker(f̃ − id) ⊕ ker(f̃ − id)⊥.

Thus, by Proposition 6.11, we have uf = u′, and this completes the proof. �

Thus τ(f) can be interpreted as the modulus of the translation that we must
perform in order to transform a Euclidean motion without fixed points into a
Euclidean motion with a fixed point.

Observe that f ◦ T−uf
= T−uf

◦ f . In fact, w ∈ E is an eigenvector of f̃ with
eigenvalue 1 if and only if f ◦ Tw = Tw ◦ f .

Corollary 6.19

Every Euclidean motion f of a Euclidean affine space A is the composition of
a translation with a Euclidean motion that has a fixed point.

Proof

If f has a fixed point, we take as the translation the identity. Otherwise we know
that there is a Euclidean motion g with a fixed point such that g = f ◦ T−uf

.
Hence, f = g ◦ Tuf

. �

Due to this result, the classification of Euclidean motions is practically reduced
to the classification of Euclidean motions with fixed points.

Observation 6.20

The fixed points of g = f ◦ T−uf
belong to an invariant straight line of f of

direction uf . Indeed, if g(P ) = P , we have

g(P ) = f(P − uf ) = f(P ) − uf = P ;

hence,
−−−−→
Pf(P ) = uf ,
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and the straight line through P with direction vector uf (an eigenvector with
eigenvalue 1) is invariant.

In particular, a Euclidean motion has either a fixed point or an invariant
straight line. Hence, its invariance level ρ is 0 or 1.

Theorem 6.21 (Classification)

Let f be a Euclidean motion of a Euclidean affine space A of dimension n.
Then there is an orthonormal affine frame R of A such that

M(f, R) =

(
M c

0 1

)
,

where the matrix M is the matrix given on page 340, and

c =

⎛
⎜⎜⎜⎝

τ(f)
0
...
0

⎞
⎟⎟⎟⎠ .

Proof

Since f̃ is an isometry, it follows from Theorem A.33, page 340, that there is
an orthonormal basis B such that

M(f̃ , B) = M,

where M is the matrix given on page 340. Notice that the number of 1s, −1s
and rotation boxes appearing in M , as well as the angles of these rotations, are
completely determined by the characteristic polynomial of f̃ .

If f has a fixed point P , τ(f) = 0, and in the affine frame R = {P ; B } we
have

M(f, R) =

(
M 0

0 1

)
,

which completes the proof in this case.
We now assume that f does not have fixed points.
We know, by Theorem 6.18, that the Euclidean motion g = f ◦ T−uf

=
T−uf

◦ f , where uf is the glide vector of f , has a fixed point. Notice that

g̃ = f̃ ◦ T̃−uf
= f̃ ◦ id = f̃ ,
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and hence, uf is also an eigenvector of g̃ with eigenvalue 1.
Let P be a fixed point of g. Since f̃ = g̃, we have

M(g, R) =

(
M 0

0 1

)
.

The basis B has been explicitly constructed in the proof of Theorem A.33,
page 340, and it is adapted to the decomposition of the vector space E as an
orthogonal direct sum of the form

E = ker(f̃ − id) ⊕ · · · ,

given explicitly in equality (A.4), page 340. In particular, the first vectors are
unit eigenvectors of f̃ with eigenvalue 1, the choice of which are restricted only
by the condition that they form an orthonormal basis of ker(f̃ − id).

We modify B, taking a basis of ker(f̃ − id) with first vector e1 = 1
|uf | uf =

1
τ(f)

uf . The basis of ker(f̃ − id)⊥ remains unchanged. Denote by B1 this new
basis and let R1 = {P ; B1}. Observe that M(g, R) = M(g, R1).

Since f = Tuf
◦ g, we have:

M(f, R1) = M(Tuf
, R1)M(g, R1)

=
(

In c

0 1

)(
M 0

0 1

)

=

(
M c

0 1

)
,

where

c =

⎛
⎜⎜⎜⎝

τ(f)
0
...
0

⎞
⎟⎟⎟⎠ ,

and this completes the proof. �

6.8 Invariance of the Glide Modulus

Let us prove that τ(f) is invariant within each equivalence class of similar
Euclidean motions.
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Proposition 6.22

Let f and g be two Euclidean motions of a Euclidean affine space A, similar as
Euclidean motions, then τ(f) = τ(g).

Proof

Let h be an invertible Euclidean motion such that h ◦ f = g ◦ h. Then the
isometries f̃ and g̃ are conjugated by h̃, and hence

h̃(ker(f̃ − id)) = ker(g̃ − id).

Since h̃ preserves orthogonality,

h̃(ker(f̃ − id)⊥) = ker(g̃ − id)⊥.

Let us take an arbitrary point P and set

−−−−→
Pf(P ) = uf + v, uf ∈ ker(f̃ − id), v ∈ ker(f̃ − id)⊥.

Then τ(f) = |uf |.
On the other hand, since the definition of τ(g) does not depend on the

selected point Q used to compute
−−−−→
Qg(Q), we apply it to the point h(P ), and

we have
−−−−−−−→
h(P )gh(P ) = h̃(

−−−−→
Pf(P ))

= h̃(uf + v)

= h̃(uf ) + h̃(v).

Since h̃(uf ) ∈ ker(g̃ − id) and h̃(v) ∈ ker(g̃ − id)⊥, this last equality is the de-
composition of

−−−−−−−→
h(P )gh(P ) in the direct sum

E = ker(g̃ − id) ⊕ ker(g̃ − id)⊥.

In particular, h̃(uf ) is the glide vector of g and, hence, τ(g) = |h̃(uf )| = |uf | =
τ(f), and this completes the proof. �

Theorem 6.23 (Characterization)

Two Euclidean motions f and g of a Euclidean affine space A are similar as
Euclidean motions if and only if they have the same glide modulus and the
associated endomorphisms f̃ and g̃ are isometrically similar.
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Proof

We know that if f is similar to g as Euclidean motions then f̃ is similar to g̃

as isometries and τ(f) = τ(g), see Propositions 6.4 and 6.22, respectively.
To prove the converse, let us recall that if f̃ is isometrically similar to g̃, then

f̃ and g̃ have the same characteristic polynomial; see Theorem A.38, page 343.
Hence, there are bases B and B ′ such that M(f̃ , B) = M(g̃, B ′) = M , where M

is the matrix on page 340.
By the Classification Theorem 6.21, we know that there are orthonormal

affine frames R and R′ such that

M(f, R) =
(

M c

0 1

)
, M(g, R′) =

(
M c′

0 1

)
,

with cT = (τ(f),0, . . . ,0) and c′T = (τ(g),0, . . . ,0). Hence, c = c′ and the above
matrices are equal. Hence, f is similar as a Euclidean motion to g, and this
completes the proof. �

The same theorem can also be stated as follows:

Theorem 6.24 (Characterization)

Two Euclidean motions of a Euclidean affine space A are similar as Euclidean
motions if and only if they have the same glide modulus and their associated
endomorphisms have the same cha racteristic polynomial.

Proof

Simply recall that two isometries are isometrically similar if and only if they
have the same characteristic polynomial, see Theorem A.38, page 343. �

EXERCISES

6.1. Prove, directly from Definition 6.1 (without using Corollary A.25,
page 335), that orthogonal symmetries are Euclidean motions.

6.2. Find, in the Euclidean affine space R
3, the equations of the straight

line r′ symmetric to the straight line

r:
x − 1

2
=

−y + 3
1

=
z − 2

3

with respect to the plane Π : 2x − y + z − 1 = 0.
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6.3. Let B = (u, v), with u = (1, −1) and v = (1,1), be a basis of the
Euclidean affine plane R

2. Let T : R
2 −→ R

2 be the affinity given in
the affine frame {(0,0); B } by the equation:

T

(
x

y

)
=

1
2

(
−

√
3 −1

−1
√

3

)(
x

y

)
+

(
1
2

)
.

Prove that T is a Euclidean motion.
6.4. Let T : R

3 −→ R
3 be the affinity of the Euclidean affine space R

3

given in the canonical affine frame by

T (x, y, z) =
1
4

⎛
⎝ 2 +

√
3 −

√
2 −2 +

√
3√

2 2
√

3
√

2
−2 +

√
3 −

√
2 2 +

√
3

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ +

⎛
⎝1

0
1

⎞
⎠ .

Prove that T is a Euclidean motion.
6.5. Let

L1:

{
x + y + z = 2,

x − y + z = 1.

L2:

⎧⎪⎪⎨
⎪⎪⎩

x = 2λ + μ,

y = 3 + 2λ + 2μ,

z = 4 + 3λ + 2μ

be two linear varieties of the Euclidean affine space R
3.

(a) Find the orthogonal projection of the point P = (2,1,3) on L1

and on L2.
(b) Find the symmetry of P with respect to L2.

6.6. Find, in the Euclidean affine space R
3, the symmetry of the point

(−1,1,3) with respect to each of the following linear varieties:

L1:

{
x − y − z = 1,

y − 2z = 0.

L2:
{

x − 1
1

=
y

−1
=

z + 1
2

.

6.7. Let A be the affine space R
2 considered as a Euclidean affine space

with the scalar product given, in the canonical basis of the vector
space R

2, by (
4 1
1 1

)
.
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Find the symmetry of the point P = (2,3) with respect to the
straight line x + y + 1 = 0.

6.8. Find, in the Euclidean affine space R
3, the straight line r′ symmetric

to the straight line

r:
x − 1

2
=

−y + 3
1

=
z − 2

3

with respect to the plane Π : 2x − y + z = 1.
6.9. Find, with respect to the canonical affine frame of the Euclidean

affine plane R
2, the equations of the axial symmetry f given by

M(f, R) =

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ ,

where R is the affine frame

R = {(0,0); ((1/2,
√

3/2), (
√

3/2, −1/2))}.

Repeat the exercise when the Euclidean structure (the scalar prod-
uct) on the affine space R

2 is given, in the canonical affine frame, by
the matrix (

3 2
2 2

)
.

6.10. Let

Π: − x + 2y + z − 2 = 0, r:
x + 2

3
=

y − 1
1

=
z − 3

2
,

be a plane and a straight line of the Euclidean affine space R
3.

(a) Find the equations of the straight line r′ symmetric to r with
respect to Π .

(b) Find the equations of the plane Π ′ symmetric to Π with respect
to r.

Repeat the exercise when the Euclidean structure on the affine space
R

3 is that given in Exercise 5.5 of Chapter 5, page 169.
6.11. Suppose that an affinity of a Euclidean affine space is given, in some

affine frame R, by the equations

x′
1 = x1,

x′
2 = x1 + x2.

Is it a Euclidean motion? And if R is orthonormal?
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6.12. Suppose that an affinity of a Euclidean affine space is given, in some
affine frame R, by the equations

(
x′

1

x′
2

)
=

(
9 20

−4 −9

)(
x1

x2

)
+

(
1
5

)
.

Is it a Euclidean motion? And if R is orthonormal?
6.13. Let f be an affinity of a Euclidean affine space A. Prove that

τ(f) = inf
P ∈A

d(P,f(P )).





7
Euclidean Motions of the Line, the Plane

and of Space

7.1 Introduction

The matrix M appearing in the Classification Theorem of Euclidean motions
(Theorem 6.21) is made up of 1s and −1s on the diagonal and boxes of sines and
cosines centered on the diagonal. As the dimension increases, this leads to many
possibilities, the number of combinations of diagonal entries and boxes rapidly
growing. However, in low dimensions the number of possibilities is relatively
small.

In this chapter we study the cases of dimension 1, 2 and 3. Thus we shall
have, for these dimensions, a more explicit version of the Classification Theo-
rem. We present the results without appealing to this theorem, so that those
readers only interested in low dimensions may omit the previous chapter.

7.2 Classification of Euclidean Motions
of the Line

Theorem 7.1 (Classification Theorem)

Let f be a Euclidean motion of a Euclidean affine space A of dimension 1.
Then there is an orthonormal affine frame R = {P ; e} such that the equation

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 7, c© Springer-Verlag London Limited 2011

197
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of f in R is one and only one of the following:

x′ = −x Symmetry,

x′ = x + d, d ≥ 0 Translation (identity if d = 0).

Proof

By Theorem A.33, page 340, there is an orthonormal basis B = (e1) such that

M(f̃ , B) = (1), or

M(f̃ , B) = (−1).

If f has a fixed point P , in the affine frame R = {P ; B }, we have

M(f, R) =

(
1 0

0 1

)
, or

M(f, R) =

(
−1 0

0 1

)
.

In the first case, f is the identity, and the equation is x′ = x. In the second
case, f is a symmetry, and the equation is x′ = −x.

If f does not have fixed points, we know, by Proposition 2.28, page 65, that
f̃ has at least one eigenvector v with eigenvalue 1. Since we are in dimension
one, E = 〈v〉 = ker(f̃ − id), and hence f̃ = id, that is, f is a translation. We can
take v with |v| = 1, so that B = (v) is an orthonormal basis of E.

Since for all P ∈ A we have
−−−−→
Pf(P ) = τ(f)v, in the affine frame R = {P ; B }

the matrix of f is

M(f, R) =

(
1 τ(f)

0 1

)
,

and, setting d = τ(f) > 0, the equation of f is x′ = x + d, d > 0. �

Thus, every Euclidean motion of the straight line different from the identity is
similar as a Euclidean motion to a symmetry or to a translation by a vector of
modulus d > 0.

Notice that translations of the form x′ = x − d, with d > 0, do not appear
in this list, because changing the affine frame (by simply replacing v with −v)
this translation can be written as x′ = x + d, with d > 0.

Notice also that we do not separate translations T (d) with d > 0 from the
identity (d = 0), as we did in the affine case, because now we have as many
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equivalence classes of translations as real numbers d ≥ 0. However, in the affine
case, there are only two equivalence classes: one formed only by the identity
and the other formed by all translations different from the identity. Roughly
speaking, the assertion the identity is a translation by vector zero has more
sense in the context of Euclidean motions than in the context of affinities.

This result is summarized in Table 7.1.

Characteristic of f̃ τ(f)

Translation x − 1 d ≥ 0
Symmetry x + 1 0

Table 7.1. Euclidean motions of the line

7.3 Classification of Euclidean Motions
of the Plane

The aim of this section is to study the Euclidean motions of a Euclidean affine
space of dimension two.

We know that given an isometry f̃ of a Euclidean vector space E of di-
mension two, there is an orthonormal basis B of E such that M(f̃ , B) is equal
to one and only one of the matrices of the following list (see Theorem A.34,
page 342).

7.3.1 List of Canonical Expressions of Isometries

R̃(α) =
(

cosα − sinα

sinα cosα

)
, 0 < α ≤ π,

S̃ =
(

1 0
0 −1

)
,

ĩd =
(

1 0
0 1

)
= I2.

The notation R̃(α) is chosen to remind us that this type of isometry is a
rotation by angle α. Observe that R̃(0) = ĩd, however when we write R̃(α) we
assume that α �= 0, as we want to separate the cases depending on whether
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these matrices have the eigenvalue 1 or not. The notation S̃ recalls that this
type of isometry is a symmetry.

Inspired by the above list, we now give a list of matrices that will help us
to formulate the Classification Theorem more easily.

7.3.2 List of Canonical Expressions of Euclidean Motions

R(α) =

⎛
⎜⎝

cosα − sinα 0
sinα cosα 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ R̃(α)

0
0

0 0 1

⎞
⎟⎠ , 0 < α ≤ π,

Gl(d) =

⎛
⎜⎝

1 0 d

0 −1 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ S̃

d

0

0 0 1

⎞
⎟⎠ , d ≥ 0,

T (d) =

⎛
⎜⎝

1 0 d

0 1 0

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝ I2

d

0

0 0 1

⎞
⎟⎠ , d ≥ 0.

The notation is again chosen to remind us that these motions are rotations
by angle α, glide reflections of modulus d, and translations by a vector of
modulus d.

In order to classify a Euclidean motion we must study its associated endo-
morphism and its glide modulus.

Theorem 7.2 (Classification Theorem)

Let f be a Euclidean motion of a Euclidean affine space of dimension two. Then
there is an orthonormal affine frame R such that the matrix M(f, R) is equal
to one of the matrices in the list of canonical expressions.

Proof

Since f̃ is an isometry, it follows from Theorem A.34, page 342, that there is
an orthonormal basis B = (e1, e2) of E such that

M(f̃ , B) = R̃(α), or

M(f̃ , B) = S̃, or

M(f̃ , B) = ĩd.
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If f has a fixed point P , τ(f) = 0, and in the affine frame R = {P ; B } we
have, respectively,

M(f, R) = R(α), or

M(f, R) = Gl(0), or

M(f, R) = T (0),

each of which is a matrix in the list of canonical expressions.
We now assume that f does not have fixed points.
We know, by Theorem 6.18, that the Euclidean motion g = f ◦ T−uf

=
T−uf

◦ f , where uf �= 0 is the glide vector of f , has a fixed point. Since g̃ = f̃ ,
uf is also an eigenvector of g̃ with eigenvalue 1. Set d = τ(f) = |uf | > 0.

Let P be a fixed point of g. We know, as before, that there is an orthonormal
affine frame R = {P ; B } such that

M(g, R) =

(
M 0

0 1

)
,

where, by Proposition 2.28, M = S̃ or M = ĩd.
In both cases, the first vector of the basis, e1, is an eigenvector of g̃ = f̃

with eigenvalue 1, which can be taken (modifying if necessary the initial basis)
as the normalized glide vector, that is, we can always select the above basis B
so that uf = de1.

Since f = Tuf
◦ g, in the first case (M = S̃) we have:

M(f, R) = M(Tuf
, R)M(g, R)

=

⎛
⎜⎝

1 0 d

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 −1 0

0 0 1

⎞
⎟⎠

=

⎛
⎜⎝

1 0 d

0 −1 0

0 0 1

⎞
⎟⎠ = Gl(d),

and in the second case (M = ĩd) we have:

M(f, R) = M(Tuf
, R)M(g, R)

=

⎛
⎜⎝

1 0 d

0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 1 0

0 0 1

⎞
⎟⎠
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=

⎛
⎜⎝

1 0 d

0 1 0

0 0 1

⎞
⎟⎠ = T (d).

In summary, there always exists an orthonormal affine frame in which the ma-
trix of f coincides with one of the matrices in the list of canonical expressions.
This completes the proof. �

Thus, every Euclidean motion of a Euclidean affine plane is similar as a Eu-
clidean motion to a rotation, a glide reflection, or a translation.

This result is summarized in Table 7.2.

Characteristic of f̃ τ(f)

Rotation x2 − (2 cosα)x + 1 0
Glide reflection (x − 1)(x + 1) d ≥ 0
Translation (x − 1)2 d ≥ 0

Table 7.2. Euclidean motions of the plane

The characteristic polynomial of the rotations have complex roots, except
if α = 0, in which case the polynomial is (x − 1)2, or when α = π, in which case
the polynomial is (x + 1)2.

7.4 Geometrical Interpretation

If M(f, R) = R(α), then f is a rotation with center the origin of R. Since

(
cosα − sinα

sinα cosα

)
=

(
cosα sinα

sinα − cosα

)(
1 0
0 −1

)
,

it follows that a rotation by angle α is the composition of two symmetries with
respect to axes that meet in the center of the rotation, with an angle equal to
α/2. See Exercises 7.1 and 7.4, page 217. In the particular case α = π, the
rotation is called a half turn or central symmetry, because it is effectively a
central symmetry according to the definition given on page 72.

If M(f, R) = Gl(0), then f is a symmetry with respect to the straight line
through the origin with direction vector the second vector of the basis. This
straight line is comprised of fixed points, and all straight lines perpendicular
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to it are invariant. f is also called an axial symmetry, since it is effectively an
axial symmetry according to the definition given on page 72.

If M(f, R) = Gl(d), d > 0, then f is a glide reflection, the composition of
a symmetry with a translation in the direction of the axis of symmetry. The
translation vector has modulus d. There is an invariant straight line and no
fixed points.

If M(f, R) = T (d), then f is a translation with translation vector of mod-
ulus d. Every straight line with this direction vector is invariant. If d = 0, f is
the identity.

In summary, every Euclidean motion of a Euclidean affine space of dimen-
sion two is equivalent to one and only one of the Euclidean motions of Table 7.3.

Euclidean motion Name Equation Affinity

R(α) Rotation x′ = x cosα − y sinα,

y′ = x sinα + y cosα,

0 < α ≤ π.

Elliptic
One fixed point.
τ = 0.

ρ = 0

Gl(d) Glide reflection x′ = x + d,

y′ = −y, d > 0.

T ◦ hg(−1)
No fixed points.
One inv. str. line.
τ = d.

ρ = 1

Symmetry x′ = x,

y′ = −y, d = 0.

Symmetry
Fixed str. line.
Infinite inv. str. lines.
τ = 0.

ρ = 0

T (d) Translation x′ = x + d, d > 0,

y′ = y.

Translation
No fixed points.
Infinite inv. str. lines.
τ = d

ρ = 1

Identity x′ = x,

y′ = y, d = 0.

Identity
τ = 0. ρ = 0

Table 7.3. Euclidean motions of the plane

Recall that the notation T ◦ hg(−1), used in the second row of the table,
denotes the composition of a general homology of ratio −1 followed by a trans-
lation.

Note that, for the same reasons as given on page 198, in this table we neither
separate translations from the identity nor symmetries from glide reflections.
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7.5 Classification of Euclidean Motions of Space

The aim of this section is to study the Euclidean motions of a Euclidean affine
space of dimension three.

We know that given an isometry f̃ of a Euclidean vector space E of dimen-
sion three, there is an orthonormal basis B of E such that M(f̃ , B) is equal to
one and only one of the following matrices (see Theorem A.35, page 342).

7.5.1 List of Canonical Expressions of Isometries

R̃(α) =

⎛
⎝1 0 0

0 cosα − sinα

0 sinα cosα

⎞
⎠ , 0 ≤ α ≤ π,

S̃R(α) =

⎛
⎝ −1 0 0

0 cosα − sinα

0 sinα cosα

⎞
⎠ , 0 < α ≤ π,

S̃ =

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ .

The notation R̃(α) reminds us that we are talking about a rotation by angle
α about an axis. The axis is the vector subspace generated by the first vector
of the basis B. Likewise, the S̃ denotes a symmetry and the S̃R(α) denotes a
rotation composed with a symmetry.

We write S̃ instead of S̃G(0) because we wish to separate the cases depend-
ing on whether these matrices admit the eigenvalue 1 or not.

Next we give a list of matrices which will help us to formulate the Classifi-
cation Theorem more easily.

7.5.2 List of Canonical Expressions of Euclidean Motions

R(α,d) =

⎛
⎜⎜⎜⎝

1 0 0 cd

0 cosα − sinα c0
0 sinα cosα c0

0 0 0 c1

⎞
⎟⎟⎟⎠ , 0 ≤ α ≤ π, d ≥ 0,
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SR(α) =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0

0 0 0 1

⎞
⎟⎟⎟⎠ , 0 < α ≤ π,

Gl(d) =

⎛
⎜⎜⎜⎝

1 0 0 d

0 1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , d ≥ 0.

The matrices of this list are called canonical matrices.
The notation is chosen to remind us that we are speaking, respectively, of

rotations by angle α composed with translations by a vector of modulus d,
R(α,d) (helicoidal Euclidean motions); rotations by angle α composed with
symmetries, SR(α) (anti-rotations); and glide reflections of modulus d, Gl(d).

In order to classify a Euclidean motion, we must study its associated endo-
morphism and its glide modulus.

Theorem 7.3 (Classification Theorem)

Let f be a Euclidean motion of a Euclidean affine space of dimension three.
Then, there is an orthonormal affine frame R such that M(f, R) is a canonical
matrix.

Proof

Since f̃ is an isometry, it follows from Theorem A.35, page 342, that there is
an orthonormal basis B = (e1, e2, e3) of E such that

M(f̃ , B) = R̃(α), or

M(f̃ , B) = S̃R(α), or

M(f̃ , B) = S̃.

If f has a fixed point P , τ(f) = 0, and in the affine frame R = {P ; B } we
have, respectively,

M(f, R) = R(α,0), or

M(f, R) = SR(α), or

M(f, R) = Gl(0),

each of which is a canonical matrix.
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We now assume that f does not have fixed points.
We know, by Theorem 6.18, that the Euclidean motion g = f ◦ T−uf

=
T−uf

◦ f , where uf �= 0 is the glide vector of f , has a fixed point. Since g̃ = f̃ ,
uf is also an eigenvector of g̃ with eigenvalue 1. Put d = τ(f) = |uf | > 0.

Let P be a fixed point of g. Then, there is an orthonormal affine frame
R = {P ; B }, with B = (e1, e2, e3), such that

M(g, R) =

(
M 0

0 1

)
,

where, by Proposition 2.28, page 65, M = R̃(α) or M = S̃. In both cases, the
first vector of the basis, e1, is an eigenvector of g̃ = f̃ with eigenvalue 1, which
can be considered (modifying if necessary the initial basis) as the normalized
glide vector, that is, we can always select the above basis B in such a way that
uf = de1.

Since f = Tuf
◦ g, in the first case (M = R̃(α)) we have:

M(f, R) = M(Tuf
, R)M(g, R)

=

⎛
⎜⎜⎜⎝

1 0 0 d

0 1 0 0
0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0

0 0 0 1

⎞
⎟⎟⎟⎠ = R(α,d),

and in the second case (M = S̃) we have:

M(f, R) = M(Tuf
, R)M(g, R)

=

⎛
⎜⎜⎜⎝

1 0 0 d

0 1 0 0
0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ = Gl(d).

Summarizing, there always exists an orthonormal affine frame R such that
M(f, R) is a canonical matrix. This completes the proof. �

Thus, every Euclidean motion of a Euclidean affine space of dimension three
is similar as a Euclidean motion to a helicoidal Euclidean motion (including
rotations, translations and the identity), an anti-rotation, or a glide reflection
(including symmetries).

This result is summarized in Table 7.4.
The characteristic polynomial of a helicoidal Euclidean motion has complex

roots, except if α = 0, in which case the characteristic polynomial is (x − 1)3,
or if α = π, in which case the characteristic polynomial is (x − 1)(x + 1)2.
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Characteristic of f̃ τ(f)

Helicoidal (x − 1)(x2 − 2cos(α)x + 1) d ≥ 0
Anti-rotation (x + 1)(x2 − 2cos(α)x + 1) 0
Glide Reflection (x − 1)2(x + 1) d ≥ 0

Table 7.4. Euclidean motions of the space

The characteristic polynomial of an anti-rotation has complex roots, except
if α = 0, in which case the polynomial is (x + 1)(x − 1)2, or if α = π, in which
case the polynomial is (x + 1)3.

7.6 Geometrical Interpretation

If M(f, R) = R(α,0), α �= 0, then the Euclidean motion f reduces to a rotation
around an axis. It has a fixed straight line (the axis) and planes perpendicular
to the axis are invariant. The glide modulus is τ = 0. In the particular case
α = π, this Euclidean motion is called a half turn, or axial symmetry.

If M(f, R) = R(α,d), α �= 0, d > 0, then f is a rotation around an axis
followed by a translation in the direction of this axis. f is called a helicoidal
Euclidean motion. There is an invariant straight line and there are no fixed
points. The glide modulus is τ = d.

If M(f, R) = R(0, d), then the helicoidal Euclidean motion f reduces to a
translation. If d = 0, it is the identity.

If M(f, R) = SR(α), α �= 0, then f is the composition of a symmetry with
respect to a plane with a rotation around an axis perpendicular to this plane.
The axis of the rotation is the unique invariant straight line, and τ = 0. We say
that f is an anti-rotation. If α = π, f is called a central symmetry.

If M(f, R) = Gl(d), d > 0, then f is the composition of a symmetry with
respect to a plane with a translation by a vector in the direction of this plane.
It has infinitely many invariant straight lines and τ = d. By analogy with the
comparable case in dimension two, we say that f is a glide reflection.

If M(f, R) = Gl(0), then f is a symmetry with respect to a plane and τ = 0.
f is said to be a mirror symmetry.

Summing up, every Euclidean motion of a Euclidean affine space of di-
mension three is equivalent to one and only one of the Euclidean motions in
Table 7.5.



208 7. Euclidean Motions of the Line, the Plane and of Space

Euclidean motion Name and properties Equation

R(α,d) Helicoidal Euclidean motion x′ = x + d,

y′ = y cosα − z sinα,

z′ = y sinα + z cosα,

α �= 0, d > 0.

One inv. straight line.
No fixed points.
τ = d.

Rotation (α �= 0, d = 0) x′ = x,

y′ = y cosα − z sinα,

z′ = y sinα + z cosα.

One fixed str. line.
Invariant ⊥ plane.
τ = 0.

Axial symmetry if α = π.

Translation (α = 0, d > 0) x′ = x + d, d > 0,

y′ = y,

z′ = z.

No fixed points.
τ = d.

Identity (α = 0, d = 0) x′ = x,

y′ = y,

z′ = z.

τ = 0.

SR(α) Anti-rotation
R ◦ S

x′ = −x,

y′ = y cosα − z sinα,

z′ = y sinα + z cosα,

α �= 0.

S = Mirror symmetry.
R = Rotation ⊥ plane.
One inv. str. line ⊥ plane.
τ = 0.

Gl(d) Glide
T ◦ S

x′ = x + d, d > 0,

y′ = y,

z′ = −z.S = Mirror symmetry.
T = Translation ‖ plane.
∞ inv. str. lines.
τ = d.
Mirror symmetry x′ = x,

y′ = y,

z′ = −z.

One fixed plane.
τ = 0.

Table 7.5. Euclidean motions of the space
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Example 7.4

Classify the Euclidean motion f of the Euclidean affine space R
3 given, in the

canonical affine frame C, by

M(f, C) =
1
16

⎛
⎜⎜⎝

√
3 + 2 11

√
2

√
3 − 2 16

√
2

−7
√

2 − 2
√

6 2
√

3 −7
√

2 + 2
√

6 −32
−3

√
3 + 10 −

√
2 −3

√
3 − 10 16

√
2

0 0 0 16

⎞
⎟⎟⎠ .

Find the fixed points, the invariant straight lines, the glide vector and an or-
thonormal affine frame R such that M(f, R) is a canonical matrix.

Solution

It is advisable to use Maple or some similar program, because the calculation
is a little long. The characteristic polynomial of the associated endomorphism
f̃ is

x3 +
1
2
x2 +

1
2
x + 1,

which can be written as

(x + 1)
(

x2 − 1
2
x + 1

)
.

Looking at Table 7.4 on page 207 we directly see that f is an anti-rotation by
angle α with cos(α) = 1

4
.

We also arrive at the same conclusion by noting that det f̃ = −1 and that
1 is not an eigenvalue of f̃ . This implies that f is an anti-rotation. Then, we
have 2cos(α) = trace(M(f, C)), see Exercise 7.7, page 218. Since this trace is
equal to 1

2
, we again obtain cos(α) = 1

4
.

To find the fixed points, we solve the system (with Maple or similar),

(M(f, C) − I4)

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

and take the solutions with fourth coordinate 1. We find that the unique fixed
point is the point

P =
(

−
√

2
2

, −2,

√
2

2

)
.

In particular, the glide vector vanishes.
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The axis of the anti-rotation (the unique invariant straight line) is a straight
line through P directed by the eigenvector of f̃ with eigenvalue −1.

To find this vector we must solve the system

(M(f̃ , C) + I3)

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ .

We get the eigenvector

v = (1, −
√

2, −2
√

3 − 5),

or, of course, any multiple of it. Therefore the unique invariant straight line
is l: P + 〈v〉.

To construct an affine frame R such that

M(f, R) =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

we must complete e1 = v/|v| to an orthonormal basis (e1, e2, e3), such that the
scalar product 〈e3, f̃(e2)〉 is positive, and take P as the origin. The reason, as
can be seen by inspecting the matrix, is that we must have 〈e3, f̃(e2)〉 = sinα,
and we are assuming 0 ≤ α ≤ π, that is, sinα ≥ 0. Since cosα = 1

4 , we have
sinα =

√
15
4

.
For instance, we can take e2 = 1√

3
(

√
2,1,0) (a unit vector orthogonal

to e1), and e3 is the vector product e1 ∧ e2 (see page 215). Thus, 〈e3, f̃(e2)〉 =
15/4

√
2(

√
3 + 1) > 0. If this value is negative, we replace e3 by −e3. �

Example 7.5

Classify the Euclidean motion f of the Euclidean affine space R
3 given, in the

canonical affine frame C, by

M(f, C) =

⎛
⎜⎜⎜⎝

(
√

2 + 2)/4 (−
√

2 + 2)/4 1/2 0
(−

√
2 + 2)/4 (

√
2 + 2)/4 −1/2 4

1/2 −1/2 −1/
√

2 2
√

2

0 0 0 1

⎞
⎟⎟⎟⎠ .

Find the fixed points, the invariant straight lines, the glide vector and an or-
thonormal affine frame R such that the M(f, R) is a canonical matrix.
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Solution

The characteristic polynomial of the associated endomorphism f̃ is

x3 − x2 − x + 1,

which can be written as

(x + 1)(x − 1)2.

Looking at Table 7.4 on page 207 we see directly that f is a glide reflection (or
a mirror symmetry).

To find the fixed points, we solve the system (with Maple or similar)

(M(f, C) − I4)

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ,

and take the solutions with fourth coordinate 1. Or, equivalently, we study the
system

(M(f̃ , C) − I3)

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 0

−4
−2

√
2

⎞
⎠ .

This system has no solutions, and hence, there are no fixed points. Thus, f is
a glide reflection with glide modulus different from zero; in particular, it is not
a mirror symmetry.

To find the glide vector we find an orthonormal basis adapted to the de-
composition

R
3 = ker(f̃ − id) ⊕ ker(f̃ − id)⊥.

In our case this decomposition coincides with

R
3 = ker(f̃ − id) ⊕ ker(f̃ + id),

because eigenvectors of different eigenvalues are orthogonal; see Theorem A.22,
page 333, and Theorem A.32, page 340.

From this it is easy to see that the glide vector uf is given by

uf =
1
2
(f̃ + id)

−−−−→
Pf(P ),

where P is any point; see Exercise 7.13, page 219. To simplify our calculations,
let us take P = (0,0,0); we get

−−−−→
Pf(P ) = (0,4,2

√
2),
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and

uf = (1,3, −2 +
√

2).

Therefore, the glide modulus is

τ(f) = 2
√

4 −
√

2.

We know that the Euclidean motion g = f ◦ T−uf
has a fixed point. In fact,

since f̃ = g̃, g is a mirror symmetry.
To find its plane of symmetry, that is, the set of fixed points, we observe

that

M(g, C) = M(f, C)M(T−uf
, C)

=

⎛
⎜⎜⎜⎝

(2 +
√

2)/4 (2 −
√

2)/4 1/2 −1
(2 −

√
2)/4 (2 +

√
2)/4 −1/2 1

1/2 −1/2 −
√

2/2 2 +
√

2

0 0 0 1

⎞
⎟⎟⎟⎠ .

Thus, we must solve the system

(M(g̃, C) − I3)

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 1

−1
−2 −

√
2

⎞
⎠ .

The solution of this system is the plane

Π: x − y − (2 +
√

2)z = −2
√

2 − 4.

Equivalently,

Π: (0,2
√

2 + 4,0) + 〈(1,1,0), (1,3, −2 +
√

2)〉.

Recall that the linear variety of fixed points is directed by ker(f̃ − id), and
hence we know directly that uf belongs to it.

Now we look for an affine frame in which the matrix of f is a canonical ma-
trix. For this we shall take the origin in Π , and an orthonormal basis (e1, e2, e3),
with e1 the normalized glide vector, e2 in the direction of Π , and e3 normal
to Π . Concretely, we take R = {P ; (e1, e2, e3)} with

P = (0,2
√

2 + 4,0),

e1 =
1

2
√

4 −
√

2
(1,3, −2 +

√
2) (e1 = uf/|uf |),
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e2 =
1

2
√

7
√

6 − 2
√

2
(10 −

√
2,2 − 3

√
2,6 − 2

√
2),

e3 =
1

2
√

2 +
√

2
(1, −1, −2 −

√
2).

Thus we have

M(g, R) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

Therefore g is a mirror symmetry with respect to the plane Π . Since f =
g ◦ Tuf

= Tuf
◦ g, we see that f is the glide reflection obtained as the composition

of the symmetry with respect to Π with a translation by the vector uf in the
direction of Π .

Matricially,

M(f, R) = M(g, R)M(Tuf
, R)

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 2
√

4 −
√

2
0 1 0 0
0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 0 0 2
√

4 −
√

2
0 1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

Finally, we observe that any straight line contained in Π and with direction uf

is an invariant straight line. �

7.7 Composition of Rotations in Dimension
Three

A rotation by angle α, 0 ≤ α ≤ π, around a straight line l is not determined by
the data l, α. We also need to know the sense of this rotation.

However, if we assume that the given Euclidean affine space of dimension
three is oriented (that is, a basis B is given on the associated vector space E),
and that the given straight line l is also oriented (that is, we choose one of
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the two unit vectors determining its direction), then this line and angle do
determine a unique rotation.

Concretely, given a unit vector u ∈ E, a straight line l: P + 〈u〉, and an an-
gle α, we define the rotation by angle α around the axis l as the Euclidean mo-
tion given by the matrix R(α,0) in the orthonormal affine frame R ′ = {P ; B ′ },
where B ′ = (u, v,w), with v any vector orthogonal to u, and w the vector deter-
mined by the condition that the basis B ′ is orthonormal and positive, that is,
detM(B ′, B) > 0. We denote this rotation by R(l, u,α) and we say that it is the
rotation by angle α around the straight line l, oriented by u. In Exercise 7.19
we give an explicit formula for R(l, u,α).

The aim of this section is to study the Euclidean motion obtained by com-
posing two rotations R(l, u,α) and R(m,v,β), of concurrent axes l,m.

Let us first see two different ways of decomposing a rotation as a product
of symmetries.

7.7.1 First Decomposition of a Rotation as a Product
of Symmetries

Let {P ; (e1, e2, e3)} be an orthonormal affine frame. Denote by li the straight
lines li: P + 〈ei〉, i = 1,2, and let lα be the straight line

lα: P +
〈
cos

(α

2

)
e2 + sin

(α

2

)
e3

〉
.

The matricial equality

⎛
⎝1 0 0

0 cosα − sinα

0 sinα cosα

⎞
⎠ =

⎛
⎝ −1 0 0

0 cosα sinα

0 sinα − cosα

⎞
⎠

⎛
⎝ −1 0 0

0 1 0
0 0 −1

⎞
⎠

shows that the rotation R(l1, e1, α) is equal to the composition of the axial sym-
metry S2 (the rotation by angle π around the axis l2) with the axial symmetry
Sα of axis lα.

That is,

R(l1, e1, α) = Sα ◦ S2. (7.1)
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7.7.2 Second Decomposition of a Rotation as a Product
of Symmetries

Analogously, the matricial equality
⎛
⎝1 0 0

0 cosβ − sinβ

0 sinβ cosβ

⎞
⎠ =

⎛
⎝ −1 0 0

0 1 0
0 0 −1

⎞
⎠

⎛
⎝ −1 0 0

0 cosβ − sinβ

0 − sinβ − cosβ

⎞
⎠

shows that a rotation by angle β around the axis l1, oriented by e1, is equal to
the composition of the axial symmetry S−β of axis

l−β : P +
〈

cos
(

β

2

)
e2 − sin

(
β

2

)
e3

〉

with the axial symmetry S2 of axis l2.
That is,

R(l1, e1, β) = S2 ◦ S−β . (7.2)

These two ways of decomposing a rotation as a composition of symmetries,
(7.1) and (7.2), allow us to study the composition of rotations. Indeed, let us
consider in an oriented three-dimensional Euclidean affine space two rotations
with respect to the axes l,m concurrent in a point P , R(l, u1, α) and R(m,v1, β).

From now on we shall write R(u1, α) and R(v1, β) instead of R(l, u1, α) and
R(m,v1, β) respectively, since, once we have fixed the point P , it is clear that
the axes of rotation are, respectively, l: P + 〈u1〉 and m: P + 〈v1〉.

Let us take e ∈ E orthogonal to v1 and u1, and such that the basis B ′ =
(v1, u1, e) is positive. We have chosen v1 as the first element of this basis because
we make the rotation R(v1, β) first, followed by the rotation R(u1, α). We find
e via the formula

e =
v1 ∧ u1

|v1 ∧ u1| ,

where

v1 ∧ u1 = (bc′ − b′c, a′c − ac′, ab′ − a′b),

v1 = (a, b, c) and u1 = (a′, b′, c′) being the components of v1 and u1 in a positive
orthonormal basis. This is the great advantage of the vector product: it gives
a vector orthogonal to the two multiplied vectors, in such a way that the basis
(u, v,u ∧ v) is positive.

We define the vectors u2, v2 by the condition that the bases (u1, e, u2) and
(v1, e, v2) are positive and orthonormal (see Figure 7.1).

Using formulas (7.1) and (7.2) and taking into account that e is orthogonal
to u1 and v1, one obtains
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Figure 7.1. Orthonormal basis

R(u1, α) ◦ R(v1, β) = Sα ◦ Se ◦ Se ◦ S−β

= Sα ◦ S−β ,

where Sα is the symmetry of axis lα, the straight line through P with direction

wα = cos
(α

2

)
e + sin

(α

2

)
u2, (7.3)

and S−β is the symmetry of axis l−β , the straight line through P with direction

w−β = cos
(

β

2

)
e − sin

(
β

2

)
v2. (7.4)

Observe that

〈wα,w−β 〉 = cos
(α

2

)
cos

(
β

2

)
− sin

(α

2

)
sin

(
β

2

)
cos δ,

where δ (0 < δ < π) is the angle between the vectors v1 and u1 (which we
assume to be different and not opposite, in order to be able to define e). That
is,

〈v1, u1〉 = cos δ.

Let γ be the angle between the two axes of symmetry, that is, the angle
between the straight lines lα and l−β . By definition of the angle between two
straight lines, see Exercise 7.15, page 220, we have 0 < γ ≤ π

2 , and hence

{
cosγ = 〈wα,w−β 〉, if 〈wα,w−β 〉 > 0,

cosγ = −〈wα,w−β 〉, if 〈wα,w−β 〉 < 0.

But, again as we saw in Exercise 7.15, the composition of two symmetries
of concurrent axes is a rotation around an axis perpendicular and concurrent
with the other two axes. Concretely, we have

R(u1, α) ◦ R(v1, β) = Sα ◦ S−β = R(w,2γ)

where R(w,2γ) is the rotation around the third axis, oriented by the vector w,
and angle 2γ, where γ is the angle between the axes of the symmetries and w
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is the unit vector orthogonal to wα and w−β , given by
⎧⎪⎪⎨
⎪⎪⎩

w =
w−β ∧ wα

|w−β ∧ wα| if 〈w−β ,wα〉 > 0,

w = − w−β ∧ wα

|w−β ∧ wα| if 〈w−β ,wα〉 < 0,

with

w−β ∧ wα = cos
(

α

2

)
sin

(
β

2

)
v1 + sin

(
α

2

)
cos

(
β

2

)
u1

− sin
(

α

2

)
sin

(
β

2

)
sin(δ)e.

Since the initial data of the problem are the vectors v1, u1, it is useful to
write the vectors wα and w−β in terms of the basis (v1, u1, e). The expressions
(7.3) and (7.4) are transformed, respectively, into

wα = cos
(

α

2

)
e + sin

(
α

2

)
1

sin δ
v1 − sin

(
α

2

)
(cot δ)u1,

w−β = cos
(

β

2

)
e − sin

(
β

2

)
(cot δ)v1 + sin

(
β

2

)
1

sin δ
u1.

EXERCISES

7.1. Let R = {P ; (e1, e2)} be an orthonormal affine frame of a Euclidean
affine space of dimension two. Prove that the equations of an orthog-
onal symmetry with respect to the straight line l: P + 〈v〉 are

{
x′ = x cos(2α) + y sin(2α),
y′ = x sin(2α) − y cos(2α),

where v = (v1, v2) is a unit vector with v2 ≥ 0 and v1 = cosα.
7.2. In a Euclidean affine space of dimension two, what is the Euclidean

motion obtained by the composition of two orthogonal symmetries,
with axes that intersect with angle θ?

7.3. Prove that, in a Euclidean affine space of dimension two, every trans-
lation is a composition of symmetries with parallel axes; and every
rotation is a composition of symmetries with axes that intersect at
the center of the rotation. As a consequence, prove that every Eu-
clidean motion is a composition of at most three symmetries.

7.4. Compare the decomposition of a rotation of the Euclidean affine
plane as a composition of symmetries given in Section 7.4, page 202,
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with the decomposition of an elliptic affinity (in particular, a rota-
tion) given in Section 3.9, page 117.

7.5. Classify the Euclidean motion of the Euclidean affine space R
2 given,

in the canonical affine frame, by

⎛
⎜⎝

cos(3π
2 ) − sin( 3π

2 ) 1
sin(3π

2
) cos( 3π

2
) 1

0 0 1

⎞
⎟⎠ .

Recall that the notation R(α) has been introduced only for 0 < α ≤ π.
7.6. Find, in the canonical affine frame of the Euclidean affine space R

2,
the equations of:
(a) An anticlockwise rotation g of center Q = (2,1) and angle 30◦

(the basis (e1, g̃(e1)) is negative with respect to the canonical
basis (e1, e2) of the vector space R

2, i.e., the determinant of the
matrix of the change of basis is negative).

(b) An axial symmetry of axis x + 2y − 2 = 0.
7.7. Let f be a rotation by angle α in a Euclidean affine space of dimen-

sion two. Prove that 1+2cos(α) = trace(M), where M is the matrix
of f in an affine frame.
Let f be a rotation by angle α around a given axis in a Euclidean
affine space of dimension three. Prove that 2 + 2cos(α) = trace(M),
where M is the matrix of f in an affine frame.
Let f be an anti-rotation by angle α in a Euclidean affine space of
dimension three. Prove that 2 cos(α) = trace(M), where M is the
matrix of f in an affine frame.

7.8. Let S be an axial symmetry of the Euclidean affine space R
2, with

axis the straight line L: P + 〈u〉, and let v be a non-zero vector of

the vector space R
2. Prove that ̂vS̃(v) = 2v̂u, where S̃ is the linear

map associated to S. Here, the symbol “̂” means “angle”.
7.9. Let f be the axial symmetry of the Euclidean affine space R

2 given
by

M(f, R) =

⎛
⎜⎝

1 0 0
0 −1 0

0 0 1

⎞
⎟⎠ ,

where R = {P ; (u, v)}, with P = (0,0), u = 1
2(1,

√
3) and v =

1
2(

√
3, −1). Find M(f, C), where C is the canonical affine frame of

the affine space R
2.
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7.10. Let B = (u, v) be a basis of the Euclidean vector space R
2. Let us

suppose that a rotation g of R
2 is such that

M(g̃, B) =
(

1 − 3
2

2
3 0

)
,

where g̃ is the linear map associated to g. Is B an orthonormal basis?
Find the angle of rotation of g, the angle between the vectors u, v,
and the ratio of their moduli, |u|

|v| .
7.11. Find, in the canonical affine frame of the Euclidean affine space R

2,
the equations of a rotation g : R

2 −→ R
2 of angle π/6 radians in the

anticlockwise sense.
(a) Let C be the canonical basis of the vector space R

2. Let g̃ be
the linear map associated to this rotation. Prove that the matrix
M(g̃, C) is an orthogonal matrix.

(b) Find M(g̃, B), where B = (u, v) with

u =
1√
2
(1,1), v =

1√
2
(−1,1).

(c) Prove that the matrix M(g̃, C ′), where C ′ is an orthonormal basis
of R

2, can only take two values, depending on whether or not
the orientation of C ′ coincides with that of the canonical basis.

7.12. Find, in the canonical affine frame of the Euclidean affine space R
3,

the equations of a rotation g : R
3 −→ R

3 around the z axis, of angle
π/6 radians in the anticlockwise sense.
(a) Let C be the canonical basis of the vector space R

3. Let g̃ be
the linear map associated to this rotation. Prove that the matrix
M(g̃, C) is an orthogonal matrix.

(b) Find M(g̃, B), where B = (u, v,w) with

u =
1√
2
(1,1,0), v =

1√
2
(−1,1,0), w = (0,0,1).

(c) Prove that, in contrast to the situation in dimension two (see
the previous exercise), the matrix M(g̃, C ′), where C ′ is an or-
thonormal basis of R

3, can take many values, depending on the
orthonormal basis C ′ that we choose.

7.13. If f is a glide reflection of a Euclidean affine space of dimension
three, prove that the glide vector is given by

uf =
1
2
(f̃ + id)

−−−−→
Pf(P ),
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where f̃ is the linear map associated to f and P is an arbitrary
point.

7.14. Prove that, in a Euclidean affine space of dimension three, every
translation is a composition of mirror symmetries with parallel sym-
metry planes; and every rotation with respect to an axis is a compo-
sition of mirror symmetries with the symmetry planes intersecting at
this axis of rotation. As a consequence, prove that every Euclidean
motion is a composition of at most four mirror symmetries.

7.15. Let Su be the symmetry with respect to the straight line r: P + 〈u〉,
and let Sv be the symmetry with respect to the straight line s:
P + 〈v〉, in an oriented Euclidean affine space of dimension three.
Assume that u and v are linearly independent unit vectors. Note
that u and v are determined up to their sign. Recall that the angle
between the two straight lines is, by definition, the unique angle γ,
with 0 < γ ≤ π

2
, such that

| 〈u, v〉| = cosγ.

Prove that

Sv ◦ Su = R(w,2γ),

where R(w,2γ) is the rotation of vector w, and angle 2γ, where γ

is the angle between the two straight lines r and s, and w is the
unit vector orthogonal to u and v determined by the condition that
(u, v,w) is either a positive basis if 〈u, v〉 > 0, or negative if 〈u, v〉 < 0.
That is, ⎧⎪⎪⎨

⎪⎪⎩
w =

u ∧ v

|u ∧ v| if 〈u, v〉 > 0,

w = − u ∧ v

|u ∧ v| if 〈u, v〉 < 0.

7.16. Classify the Euclidean motion of a Euclidean affine space A of di-
mension three given, in an orthonormal affine frame, by the following
equations:

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎜⎝

1
3 − 2

3 − 2
3

− 2
3

1
3

− 2
3

− 2
3 − 2

3
1
3

⎞
⎟⎠

⎛
⎝x

y

z

⎞
⎠ +

⎛
⎝ 1

0
−2

⎞
⎠ .

Find the fixed points, the invariant straight lines, the glide vector
and an orthonormal affine frame R such that M(f, R) is a canonical
matrix.
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7.17. Let R be an orthonormal affine frame of a Euclidean affine space A

of dimension three. Study the composition of the rotation
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ +

⎛
⎝ 2

−3
1

⎞
⎠ ,

with the translation by the vector v = (2,3, −1).
7.18. Find, in the Euclidean affine space R

3, the equations of a rotation by
angle α around the straight line r: (0, −3, −2) + λ(1,1,1). Suppose
r is oriented by v = (1,1,1).

7.19. Let g = R(l, u,α) be the rotation of the Euclidean affine space R
3

around the straight line l: P + 〈u〉, oriented by the unit vector u,
and angle α. Prove that

g̃(v) = cosα · v + (1 − cosα)(〈u, v〉) · u + sinα · (v ∧ u),

where g̃ is the linear map associated to g.
Given a point Q ∈ R

3, find the coordinates of the point Q′ = g(Q),
in the affine frame R = {P ; B }, where B = (

−−→
PQ,u,

−−→
PQ ∧ u).

7.20. Prove that the affinities f of the Euclidean affine space R
2 given in

the canonical affine frame by the following matrices are Euclidean
motions and classify them:
⎛
⎜⎝

1 0 1
0 1 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

√
3/2 −1/2 0

1/2
√

3/2 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

1/2 −
√

3/2 0√
3/2 1/2 1

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

0 −1 −1
1 0 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

1+
√

5
4 −

√
5−

√
5

8 0√
5−

√
5

8
1+

√
5

4
0

0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1+
√

5
4 −

√
5+

√
5

8 2√
5+

√
5

8
−1+

√
5

4 0

0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1−
√

5
4 −

√
5+

√
5

8 0√
5+

√
5

8
1−

√
5

4 0

0 0 1

⎞
⎟⎟⎠ .

Find, in each case, the fixed points, the invariant straight lines, the
glide vector and an orthonormal affine frame R such that M(f, R)
is a canonical matrix.

7.21. Prove that the affinities f of the Euclidean affine space R
3 given in

the canonical affine frame by the following matrices are Euclidean
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motions and classify them:
⎛
⎜⎜⎜⎝

−1 0 0 1
0 −1 0 0
0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1/3
√

2/
√

3 −
√

2/3 0√
2/

√
3 0 1/

√
3 0

−
√

2/3 1/
√

3 2/3 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

−7/9 2
√

2/3
√

3 −2
√

2/9 0
2

√
2/3

√
3 1/3 −4/3

√
3 1

−2
√

2/9 −4/3
√

3 −5/9 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

Find, in each case, the fixed points, the invariant straight lines, the
glide vector and an orthonormal affine frame R such that M(f, R)
is a canonical matrix.

7.22. Classify the Euclidean motions of a Euclidean affine plane A given
in an orthonormal affine frame by the following equations:

⎧⎪⎪⎨
⎪⎪⎩

x′ = −2 +
1
2
x −

√
3

2
y,

y′ = 1 +
√

3
2

x +
1
2
y.

⎧⎪⎪⎨
⎪⎪⎩

x′ =
√

2
2

x +
√

2
2

y,

y′ = 1 +
√

2
2

x −
√

2
2

y.

Find, in each case, the fixed points, the invariant straight lines, the
glide vector and an orthonormal affine frame R such that M(f, R)
is a canonical matrix.
Study the Euclidean motion obtained by the composition of the two
previous Euclidean motions.

7.23. Classify the Euclidean motions of a Euclidean affine space A of di-
mension three given, in an orthonormal affine frame, by the following
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x′ = 1 +
1
2
x +

√
2

2
y +

1
2
z,

y′ = −1 +
√

2
2

x −
√

2
2

z,

z′ =
1
2
x −

√
2

2
y +

1
2
z.

⎧⎪⎪⎨
⎪⎪⎩

x′ = 1 + y,

y′ = 1 − z,

z′ = −x.

Find, in each case, the fixed points, the invariant straight lines, the
glide vector and an orthonormal affine frame R such that M(f, R)
is a canonical matrix.



7.7 Composition of Rotations in Dimension Three 223

Study the Euclidean motion obtained by the composition of the two
previous Euclidean motions.

7.24. Consider the following two affinities of the Euclidean affine plane R
2:

f(x, y) = (y + 1, x + 1),

g(x, y) =
(

− 4
5
x +

3
5
y + 1,

3
5
x +

4
5
y + 3

)
.

(a) Find their fixed points and their invariant straight lines.
(b) Are there affine frames R and R ′ such that

M(f, R) = M(g, R ′)?

(c) Prove that f and g are Euclidean motions. Are they similar as
Euclidean motions?

7.25. Consider the octahedron of the Euclidean affine space R
3 with ver-

tices (1,0,0), (−1,0,0), (0,1,0), (0, −1,0), (0,0,1), (0,0, −1).
(a) Prove that Euclidean motions leaving the octahedron invariant

form a subgroup G of the group of Euclidean motions of R
3

having the origin (0,0,0) as a fixed point.
(b) Prove that the elements of G leave the set of faces (respectively,

edges and vertices) of the octahedron invariant.
(c) Prove that the subgroup of G comprising the orientation-

preserving Euclidean motions is made up of twenty-four ro-
tations. This group is called the octahedral group. Prove that
there are twenty-four Euclidean motions in G that reverse the
orientation.

(d) Find the equations of these twenty-four rotations. How many
axes of rotation are there?

(e) How many symmetries with respect to a plane are there in G?





8
Affine Classification of Real Quadrics

8.1 Introduction

We have seen that hyperplanes of affine spaces are given by linear equations.
The coordinates of their points are zeros of linear polynomials.

Quadrics, the objects that we are about to study, are zeros of quadratic
polynomials, and hence they are in some sense the most natural objects to
consider after hyperplanes.

Since linear varieties of any dimension can be considered as intersections
of hyperplanes, it would be interesting to generalize this to the study of the
intersection of quadrics, but we leave this for another occasion.

We restrict ourselves to the study of real affine spaces, that is, affine spaces
modeled on R-vector spaces. The calculations are similar, but simpler, over C.
See Exercise 8.11, page 281.

Let us begin with a short review of polynomials.

8.2 Quadratic Polynomials

A polynomial of second degree (quadratic) with n variables, and real coeffi-
cients, is an expression of the form

r(x1, . . . , xn) = xTAx + Bx + C,

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 8, c© Springer-Verlag London Limited 2011
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where A = (Aij) ∈ Mn×n(R) is symmetric, B = (B1, . . . ,Bn) ∈ M1×n(R) (one
row), C ∈ R, and x ∈ Mn×1(k) (one column) given by

x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ .

Thus,

r(x1, . . . , xn) =
(
x1 . . . xn

)
A

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠

+
(
B1 . . . Bn

)
⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ + C

=
n∑

i,j=1

Aijxixj +
n∑

i=1

Bixi + C. (8.1)

For instance, if n = 2, we have

r(x1, x2) =
(
x1 x2

)(
A11 A12

A12 A22

)(
x1

x2

)
+

(
B1 B2

)(
x1

x2

)
+ C

= A11x
2
1 + 2A12x1x2 + A22x

2
2 + B1x1 + B2x2 + C

=
2∑

i,j=1

Aijxixj +
2∑

i=1

Bixi + C,

with Aij ,Bi,C ∈ R and A12 = A21. We say that A is the matrix of the quadratic
part and B the matrix of the linear part of r(x).

Since polynomials are not usually written as in (8.1), but as

r(x1, . . . , xn) =
n∑

i,j=1, i≤j

Aijxixj +
n∑

i=1

Bixi + C,

if we want to write it matricially, we must divide by two the coefficients that
are not on the diagonal of the quadratic part. For instance,

3x2
1 + x1x2 + 2x2 + 3 =

(
x1 x2

)(
3 1/2

1/2 0

)(
x1

x2

)

+
(
0 2

)(
x1

x2

)
+ 3.
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Finally, we say that a point (a1, . . . , an) ∈ R
n is a zero of the polynomial

r(x1, . . . , xn) if r(a1, . . . , an) = 0.

Notation From now on we shall simply write r(x) instead of r(x1, . . . , xn),
but note that in the expression

r(x) = xTAx + Bx + C,

the x on the left and the x on the right are slightly different (the x on the right
is a column matrix).

8.2.1 The Symmetric Matrix Associated to a Polynomial

Observe that every quadratic polynomial, r(x) = xTAx+Bx +C, can be writ-
ten as a product of matrices. Indeed, we have

r(x) = xTAx + Bx + C =
(
xT 1

)(
A BT/2

B/2 C

)(
x

1

)
. (8.2)

To prove this equality, we need only recall the properties of the block prod-
uct of matrices. Concretely, we have

(
xT 1

)(
A BT/2

B/2 C

)(
x

1

)

=
(
xT 1

)(
Ax + BT/2
(B/2)x + C

)

= xTAx + xTBT/2 + (B/2)x + C

= xTAx + Bx + C.

For instance, if n = 2,

(
x1 x2 1

)
⎛
⎝ A11 A12 B1/2

A12 A22 B2/2
B1/2 B2/2 C

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠

= A11x
2
1 + 2A12x1x2 + A22x

2
2 + B1x1 + B2x2 + C

= xTAx + Bx + C

= r(x).
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Thus, to pass from the polynomial to its associated matrix we must divide
by two the coefficients that are not on the diagonal. For instance,

3x2
1 + x1x2 + 2x2 + 3 =

(
x1 x2 1

)
⎛
⎝ 3 1/2 0

1/2 0 1
0 1 3

⎞
⎠

⎛
⎝cx1

x2

1

⎞
⎠ .

Since symmetric matrices are associated to symmetric bilinear maps, the
study of quadrics reduces essentially to the study of these maps. The most
important properties of symmetric bilinear maps are collected in Appendices
B and C.

8.3 Definition of a Quadric

Definition 8.1

A quadric, in a real affine space A of dimension n, is the set of points of A

such that their coordinates, in a given affine frame, are the zeros of a quadratic
polynomial with n variables and real coefficients.

Hence, in order to give a quadric we must give an affine frame R of A and a
quadratic polynomial r(x) with n variables and real coefficients.

From now on we will consider only polynomials with real coefficients.
The quadric determined by the quadratic polynomial r(x) and the affine

frame R, denoted by Q(r(x), R), is the subset of A given by

Q(r(x), R) = {P ∈ A : r(p) = 0},

where p = (p1, . . . , pn) are the coordinates of the point P in the affine frame R.
Once we fix an affine frame R of A, we simply say that Q is the quadric of

the equation r(x) = 0.

8.3.1 Polynomials or Zeros of Polynomials?

Is it possible that different polynomials give rise to the same quadric? That
is, given an affine frame R, can we have Q(r(x), R) = Q(s(x), R), with
r(x) �= s(x)?

It is clear that if we replace r(x) by some multiple of it, s(x) = λr(x), we
have Q(r(x), R) = Q(s(x), R). But, can we have this equality with s(x) �= λr(x)?
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The answer is yes. For instance, the polynomials r(x) = x2
1 + x2

2 and s(x) =
x2

1 + 5x2
2 satisfy r(x) �= λs(x), for all λ ∈ R, but the equations x2

1 + x2
2 = 0 and

x2
1 + 5x2

2 = 0 have the same solution: (x1, x2) = (0,0).
That is, we have

Q(r(x), C) = Q(s(x), C), with r(x) �= λs(x),

where C is the canonical affine frame of R
2.

We must therefore be careful to avoid such ambiguous expressions as “let
r(x) be the polynomial defining Q” or “assume that the polynomial defining

Q has no linear part”.
The normal course of action, and this is the path we shall follow, is to

first study the polynomials r(x) defining the quadrics, and not the quadrics
themselves. Next, we pass from the polynomials to their zeros, that is, we shall
study equations of the form r(x) = 0, taking into account that two quadratic
polynomials with the same zeros are (almost always) proportional. This is the
content of Hilbert’s theorem, see Theorem D.4, page 399.

8.4 Change of Affine Frame

Let R = {O; B } and R′ = {O′; B ′ } be two affine frames of a real affine space A.
We know, see (1.3) on page 19, that the points with coordinates x in R have
coordinates x′ in R ′ related by

x = ax′ + b,

where a = M(B ′, B) is the matrix of the change of basis (the columns of a are
the components, in B, of the vectors of B ′), and b = C(O′, R) is the column
matrix formed by the coordinates, in R, of O′.

Recall that this relationship can be written as
(

x

1

)
=

(
a b

0 1

)(
x′

1

)
. (8.3)

Let r(x) be a quadratic polynomial and let us consider the quadric
Q(r(x), R). Take a point P ∈ Q(r(x), R). Its coordinates in R, p = (p1, . . . , pn),
satisfy the equation r(p) = 0. Let us find the equation satisfied by the coordi-
nates of P in R ′, p′ = (p′

1, . . . , p
′
n).

If r(x) = xTAx + Bx + C, the equation r(p) = 0 can be written as

r(p) =
(
pT 1

)(
A BT/2

B/2 C

)(
p

1

)
= 0. (8.4)
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The relationship between the coordinates of the point P ∈ A in the affine
frames R and R ′ is given by

(
p

1

)
=

(
a b

0 1

)(
p′

1

)
. (8.5)

Substituting (8.5) in (8.4) we obtain

r(p) =
(
p′T 1

)(
aT 0
bT 1

)(
A BT/2

B/2 C

)(
a b

0 1

)(
p′

1

)

=
(
p′T 1

)(
aT 0
bT 1

)(
Aa Ab + BT/2

(B/2)a (B/2)b + C

)(
p′

1

)

=
(
p′T 1

)(
aTAa aTAb + aTBT/2

bTAa + (B/2)a bTAb + bTBT/2 + (B/2)b + C

)(
p′

1

)

=
(
p′T 1

)(
A′ B′T/2

B′/2 C ′

)(
p′

1

)

= p′TA′q′ + B′q′ + C ′ = 0,

with

A′ = aTAa,

B′ = 2bTAa + Ba,

C ′ = bTAb + Bb + C.

(8.6)

(Notice that Ba = aTBT and bTAa = aTAb.)
That is, if p = (p1, . . . , pn) is a zero of the polynomial

r(x) = xTAx + Bx + C,

then p′ = (p′
1, . . . , p

′
n) is a zero of the polynomial

r′(x) = xTA′x + B′x + C ′,

with A′,B′,C ′ given by (8.6).
In summary, given two affine frames R = {O; B } and R′ = {O′; B ′ }, with

M(B ′, B) = a,C(O′, R) = b, and two polynomials

r(x) = xTAx + Bx + C,

r′(x) = xTA′x + B′x + C ′,

with A′,B′,C ′ related to A,B,C,a, b by relations (8.6), we have

Q(r(x), R) = Q(r′(x), R ′).
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Notice that r′(x) = r(ax + b), and hence we have

Q(r(x), R) = Q(r(ax + b), R′) (8.7)

Hence, from the point of view of the study of quadrics, it is natural to say
that these two polynomials r(x) and r(ax+b) are, in a certain sense, equivalent.
We shall do this in Definition 8.2.

Since the affine frame R ′ is in fact the image of the affine frame R un-
der the affinity with equations x′ = ax + b, the results of this section can be
reformulated in terms of affinities. We shall do this in the following section.

8.5 Image of a Quadric Under an Affinity

Let R be an affine frame of a real affine space A of dimension n. Let f : A −→ A

be a bijective affinity, given in the affine frame R by the equation

x′ = ax + b,

where a ∈ Mn×n(R) is invertible and b ∈ Mn×1(R) (one column).
Let r(x) be a quadratic polynomial and let us consider the quadric Q of

the equation r(x) = 0.
The question is: what is the equation satisfied by the coordinates of the

points of f −1(Q)?
Since a point P ∈ f −1(Q) if and only if f(P ) ∈ Q, the coordinates of f(P )

satisfy the equation r(x) = 0.
But since the relationship between the coordinates of the point P and those

of the point f(P ) is given by p′ = ap + b, we have r(p′) = r(ap + b) = 0.
This proves

f −1(Q(r(x), R)) = Q(r(ax + b), R) (8.8)

or, equivalently,

f(Q(r(ax + b), R)) = Q(r(x), R) (8.9)

Summarizing, the image of the quadric of the equation r(ax + b) = 0 under
a bijective affinity with equation x′ = ax + b is the quadric of the equation
r(x) = 0. Recall that the relationship between the coefficients of the polynomials
r(x) and r′(x) = r(ax + b) is given by (8.6).

For instance, the affinity of the affine space R
2,

x′
1 = 2x1 + 1,

x′
2 = x2,
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transforms the quadric of the equation 4x2
1 + x2

2 + 4x1 + 1 = 0 into the quadric
of the equation r(x) = x2

1 + x2
2 = 1. In fact, the polynomial defining the first

quadric is equal to r(ax + b), with

a =
(

2 0
0 1

)
, b =

(
1
0

)
.

Again, as we mentioned in the previous section, it is natural to say that the
polynomials r(x) and r(ax + b) are equivalent.

8.6 Equivalent Quadratic Polynomials

In this and in the following sections, until Section 8.12, we shall make no refer-
ence to affine spaces, instead confining our discussion to polynomials. Inspired
by the calculations in the two previous sections, we define an equivalence rela-
tion between quadratic polynomials.

Definition 8.2

The quadratic polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′

are equivalent if and only if there is an invertible a ∈ Mn×n(R), b ∈ Mn×1(R)
(one column), and a real number λ �= 0, such that

r(ax + b) = λs(x).

That is, two polynomials are equivalent if we can formally transform one of
them into a multiple of the other by an affine change of variables.

Proposition 8.3

The quadratic polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′,
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are equivalent if and only if there is an invertible a ∈ Mn×n(R), b ∈ Mn×1(R)
(one column), and a real number λ �= 0, such that

(
aT 0
bT 1

)(
A BT/2

B/2 C

)(
a b

0 1

)
= λ

(
A′ B′T/2

B′/2 C ′

)
. (8.10)

Proof

If r(x) and s(x) are equivalent, we have r(ax + b) = λs(x). We have seen, on
page 230, that

r(ax + b) =
(
x 1

)(
aT 0
bT 1

)(
A BT/2

B/2 C

)(
a b

0 1

)(
x

1

)
.

Since

s(x) =
(
x 1

)(
A′ B′T/2

B′/2 C ′

)(
x

1

)
,

the proof is complete. �

The relation defined above is clearly an equivalence relation.

Corollary 8.4

The quadratic polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′

are equivalent if and only if there is an invertible a ∈ Mn×n(R), b ∈ Mn×1(R)
(one column), and a real number λ �= 0, such that

λA′ = aTAa,

λB′ = 2bTAa + Ba,

λC ′ = bTAb + Bb + C.

Proof

Multiply the matrices of (8.10). �
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Notice that r(x) is equivalent to μr(x), for all μ ∈ R, μ �= 0, as can be seen by
taking a = In, b = 0, λ = 1

μ .

Corollary 8.5

The quadratic polynomials in n variables and without linear part

r(x) = xTAx + C,

s(x) = xTA′x + C ′

are equivalent if and only if there is an invertible a ∈ Mn×n(R) and a real
number λ �= 0 such that λC ′ = C and λA′ = aTAa.

Proof

The polynomials r(x) and s(x) are equivalent if and only if there is an invertible
n × n real matrix a, a real column matrix b and a real number λ such that

λA′ = aTAa,

0 = 2bTAa,

λC ′ = bTAb + C.

Since a is invertible, the second equation implies bTA = 0, and hence λC ′ = C.
To prove the converse, we just take b = 0. �

In particular, polynomials of the form r(x) = xTAx cannot be equivalent to
polynomials of the form r(x) = xTA′x + C, with C �= 0.

Observation 8.6

Polynomials that differ only by a permutation of variables are equivalent. For in-
stance, if in the polynomial with n variables r(x) = xTAx+Bx+C we permute
x1 and x2, we obtain the polynomial s(x) = xTA′x + B′x + C, with A′ = aTAa

and B′ = Ba, where

a =
(

I ′
2 0
0 In−2

)
,

and

I ′
2 =

(
0 1
1 0

)
.
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Hence, r(x) and s(x) are equivalent, since they satisfy (8.6), with b = 0. For
instance, if n = 2, we have

aTAa =
(

0 1
1 0

)(
a11 a12

a12 a22

)(
0 1
1 0

)
=

(
a22 a12

a12 a11

)
,

and

Ba =
(
b1 b2

)(
0 1
1 0

)
=

(
b2 b1

)
.

We have transformed the polynomial a11x
2
1 +2a2x1x2 +a22x

2
2 +b1x1 +b2x2 +C

into the polynomial a11x
2
2 + 2a2x1x2 + a22x

2
1 + b1x2 + b2x1 + C.

If, instead of permuting x1 and x2, we permute xi and xj , the matrix a

performing the permutation of the variables xi and xj is obtained by permuting
rows i and j in the identity matrix In.

Example 8.7

The polynomials

r(x) = (x1 − 1)2 + (x2 − 1)2 − 4,

s(x) = x2
1 + x2

2 − 1,

are equivalent, since the change of variables

x1 = 2x′
1 + 1,

x2 = 2x′
2 + 1,

gives

r(x) = r(2x′
1 + 1,2x′

2 + 1) = 4x′2
1 + 4x′2

2 − 4 = 4s(x′).

We can also see this directly from Proposition 8.3. It is sufficient to observe
that the above change of variables can be written as

(
x1

x2

)
=

(
2 0
0 2

)(
x′

1

x′
2

)
+

(
1
1

)
,

or, equivalently,
⎛
⎝x1

x2

1

⎞
⎠ =

⎛
⎜⎝

2 0 1
0 2 1

0 0 1

⎞
⎟⎠

⎛
⎝x′

1

x′
2

1

⎞
⎠ . (8.11)
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But, since

r(x) =
(
x1 x2 1

)
⎛
⎝ 1 0 −1

0 1 −1
−1 −1 −2

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠ , (8.12)

and

s(x) =
(
x1 x2 1

)
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠ ,

substituting (8.11) into (8.12) we obtain

⎛
⎝2 0 0

0 2 0
1 1 1

⎞
⎠

⎛
⎝ 1 0 −1

0 1 −1
−1 −1 −2

⎞
⎠

⎛
⎝2 0 1

0 2 1
0 0 1

⎞
⎠ = 4

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ ,

which is precisely condition (8.10) with λ = 4.

8.7 Invariants

We recall that the index of a real symmetric matrix A is the number

index(A) = min{r+(A), r−(A)},

where r+(A) is the number of positive eigenvalues of A, and r−(A) is the
number of negative eigenvalues of A. In particular, rank(A) = r+(A) + r−(A).
For the definition of the index of a symmetric bilinear map, see page 363, and
for the definition of the index of a real symmetric matrix, see page 366.

By Descartes’ theorem, Theorem C.12, page 389, to find the index of a real
symmetric matrix A it is not necessary to compute the eigenvalues of A. We
need only look at the number of sign differences between consecutive non-zero
coefficients of its characteristic polynomial (Corollary C.13).

Definition 8.8

Given a polynomial r(x) = xTAx + Bx + C, let

ρ = rank(A),

i = index(A),



8.7 Invariants 237

ρ̃ = rank(Ã),

ĩ = index(Ã),

where Ã =
(

A BT/2
B/2 C

)
. We say that ρ and i are respectively the quadratic rank

and the quadratic index of r(x) (because they depend only on the quadratic
part), and that ρ̃ and ĩ are respectively the rank and the index of r(x).

Observe that ρ̃ can only be equal to ρ, ρ + 1 or ρ + 2, and that ĩ can only be
equal to i or i + 1.

We say that these four numbers ρ, i, ρ̃, ĩ are invariants associated with the
polynomial because, as we shall see immediately, they are the same for equiv-
alent polynomials.

Theorem 8.9

Let us assume that the polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′,

are equivalent, and let

Ã =
(

A BT/2
B/2 C

)
, Ã′ =

(
A′ B′T/2

B′/2 C ′

)
.

Then

rank(A) = rank(A′),

index(A) = index(A′),

rank(Ã) = rank(Ã′),

index(Ã) = index(Ã′).

Proof

There exists an n × n invertible real matrix a and an (n+1) × (n+1) invertible
real matrix c such that

λA′ = aTAa,

λÃ′ = cTÃc.



238 8. Affine Classification of Real Quadrics

This implies the respective equalities of ranks, because the rank of a matrix
is invariant under left and right multiplication by invertible matrices, see for
instance [8].

By Proposition B.21, page 366, we know that

r+(λA′) = r+(A),

r+(λÃ′) = r+(Ã).

But, for any real symmetric matrix P we have

r+(λP ) =
{

r+(P ) λ > 0,

r−(P ) λ < 0.

Hence,

index(A′) = min{r+(A′), r−(A′)} = min{r+(A), r−(A)} = index(A),

and

index(Ã′) = min{r+(Ã′), r−(Ã′)} = min{r+(Ã), r−(Ã)} = index(Ã),

and this completes the proof. �

Observe that the invariant r+(A), so useful in the classification of symmetric
bilinear maps, has had to be replaced by the index, as a consequence of the
possible change of sign coming from the scalar λ appearing in Definition 8.2.

8.8 Canonical Representatives Without Linear
Part

In this and in the following section we shall study the equivalence classes of
polynomials induced by the equivalence relation introduced in Definition 8.2.
We shall see that within each class there is an especially simple polynomial
that will be called the canonical representative of the class.

Theorem 8.10

Let r(x) = xTAx + Bx + C be a quadratic polynomial with

rank(A) = rank(A|BT).
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Then r(x) is equivalent to a polynomial of the form

s(x) = xTDx + C ′,

where D is a diagonal matrix with only ±1 and zeros on the diagonal, with
r+(D) ≥ r−(D), and C ′ is a constant.

Proof

By Corollary 8.4, to find a polynomial without linear part equivalent to

r(x) = xTAx + Bx + C,

and only with quadratic terms of the form ±x2
i , is equivalent to finding an

invertible real matrix a and a real column matrix b such that
(1) aTAa = D, D diagonal, with ±1 and 0s on the diagonal,
(2) (2bTA + B)a = 0.

The existence of a matrix a satisfying condition (1) is an immediate conse-
quence of Proposition B.13, page 359.

Since a is invertible, condition (2) is satisfied if and only if

2bTA + B = 0,

or, transposing, if and only if

2Ab = −BT.

Hence, we can take as column matrix b satisfying the second condition any
solution of the system

2Ax = −BT (8.13)

This system has a solution, because we are assuming rank(A) = rank(A|BT).
Notice that if detA �= 0, the condition on the ranks is automatically satis-

fied and, moreover, system (8.13) has a unique solution. This system is called
the equations of the center, for reasons that will be revealed below; see Propo-
sition 8.36, page 267.

Summarizing, we have found an invertible real matrix a and a real column
matrix b such that

A′ = aTAa = D,

B′ = (2bTA + B)a = 0,

C ′ = (bTA + B)b + C =
1
2
Bb + C.
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Hence, the given polynomial r(x) is equivalent to

s(x) = xTDx + C ′,

with C′ = 1
2
Bb + C. If r+(D) ≥ r−(D), we have finished. Otherwise, we need

only change the signs, since s(x) is equivalent to −s(x), and this polynomial is
given by

−s(x) = xT(−D)x − C ′,

and hence we have r+(−D) ≥ r−(−D). This completes the proof. �

Observation 8.11

Observe that the condition on the rank that appears in the statement of
Theorem 8.10 is invariant within the equivalence class. That is, if r(x) =
xTAx + Bx + C satisfies rank(A) = rank(A|BT) and s(x) = xTA′x + B′x + C ′

is equivalent to r(x), then rank(A′) = rank(A′ |B′T).
In fact, by Theorem 8.9, we have rank(A) = rank(A′). On the other hand,

equality (8.10) implies

λ(A′ |B′T) = aT(A|BT)
(

a b

0 1

)
, (8.14)

and, hence, by the invariance of the rank under multiplication by invertible
matrices, rank(A′ |B′T) = rank(A|BT). Hence, rank(A) = rank(A|BT) implies
rank(A′) = rank(A′ |B′T).

8.8.1 Canonical Expression

We have seen that every polynomial r(x) = xTAx + Bx + C, with

rank(A) = rank(A|BT),

is equivalent to a polynomial of the form

s(x) = xTDx + C ′,

where D is diagonal, with ±1 and zeros on the diagonal, with at least as many
1s as −1s.

If we permute the elements of the diagonal of D we obtain a polynomial
equivalent to s(x), see Observation 8.6; hence, we shall assume that s(x) is
written as
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s(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + C ′ (8.15)

with i = index(A) = index(D), ρ = rank(A) = rank(D), and C ′ ∈ R.
This expression includes the case

s(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + C′,

when ρ = 2i.
If we reach this point with C ′ = 0, we can say that the given polynomial

r(x) = xTAx + Bx + C is equivalent to

s(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ (8.16)

If C ′ > 0, we make the change of variables

x′
k =

xk√
C′

,

and, by Definition 8.2, polynomial (8.15) is equivalent to

t(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + 1 (8.17)

If C ′ < 0, we make the change of variables

x′
2k−1 =

x2k√
−C ′ , k = 1, . . . , i,

x′
2k =

x2k−1√
−C ′ , k = 1, . . . , i,

x′
j =

xj√
−C ′ , j = 2i + 1, . . . , ρ,

and, by Definition 8.2, polynomial (8.15) is equivalent to

t(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) − x2
2i+1 − · · · − x2

ρ + 1 (8.18)

We observe that when ρ = 2i, the expressions (8.17) and (8.18) coincide.
Both can be written as

t(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + 1.

To avoid repetitions, we shall consider this expression as a particular case of
(8.17) with ρ = 2i, and when we write the expression (8.18), we shall assume
2i < ρ.
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8.9 Canonical Representatives with Linear Part

Theorem 8.12

Let

r(x) = xTAx + Bx + C

be a quadratic polynomial with

rank(A) �= rank(A|BT).

Then r(x) is equivalent to a polynomial of the form

s(x) = xTDx + B′x,

where D is a diagonal matrix with ±1 in the first ρ terms of the diagonal
(ρ = rank(A)) and zeros elsewhere, and B′ = (0, . . . ,0,1,0, . . . ,0) (the 1 in the
ρ + 1-th position).

Proof

We know, by Proposition B.13, page 359, that there is an invertible real matrix
a such that the matrix

D = aTAa

is diagonal with ±1 in the first ρ terms of the diagonal and zeros elsewhere.
Hence, the given polynomial r(x) is equivalent to the polynomial

s(x) = xTA′x + B′x + C′

given by

A′ = D,

B′ = Ba,

C′ = C,

(Corollary 8.4, with λ = 1, and b = 0), and it is also equivalent to the polynomial

s(x) = xTA′x + B′x + C′

given by
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A′ = −D,

B′ = −Ba,

C ′ = −C,

(Corollary 8.4, with λ = −1, and b = 0). Hence, r(x) is equivalent to a polyno-
mial s(x) = xTDx+B′x+C ′ such that the diagonal matrix D of the quadratic
part has at least as many 1s as −1s.

Permuting, if necessary, the elements of the diagonal of D, see Observa-
tion 8.6, we may assume that r(x) is equivalent to the polynomial

s(x) = (x2
1 − x2

2)+ · · · +(x2
2i−1 − x2

2i)+x2
2i+1 + · · · +x2

ρ + b′
1x1 + · · · + b′

nxn +C ′,

with i = index(A) = index(D) and ρ = rank(A) = rank(D).
Then we can make the change of variables

x′
2k−1 = x2k−1 +

b′
2k−1

2
, k = 1, . . . , i,

x′
2k = x2k − b′

2k

2
, k = 1, . . . , i,

x′
j = xj +

b′
j

2
, j = 2i + 1, . . . , ρ,

x′
j = xj , j = ρ + 1, . . . , n,

(8.19)

suggested by the method of completing the squares, and we see that s(x) is
equivalent to the polynomial

t(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ

+ b′
ρ+1xρ+1 + · · · + b′

nxn + C ′ ′

where C ′ ′ is a constant that can easily be computed. The polynomials s(x) and
t(x) are equivalent because one can pass from one to the other by an affine
change of variables.

Thus, we have successfully separated the quadratic variables from the linear
ones.

The hypothesis on the rank, and the invariance of this hypothesis within
the equivalence class (Observation 8.11), tell us that some b′

j , j = ρ + 1, . . . , n

is different from zero.
Let us assume b′

ρ+1 �= 0. We make the affine change of variable

x′
i = xi, i �= ρ + 1

x′
ρ+1 = b′

ρ+1xρ+1 + · · · + b′
nxn + C ′ ′,

(8.20)

and we obtain that t(x) is equivalent to the polynomial
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w(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i)

+ x2
2i+1 + · · · + x2

ρ + xρ+1. (8.21)

This completes the proof. �

8.9.1 Observations

Observation 1. The change of variables (8.19) can be written as x′ = ax + b

with a = id and

bT =
(

b′
1

2
, − b′

2

2
, . . . ,

b′
2i−1

2
, − b′

2i

2
,
b′
2i+1

2
, . . . ,

b′
ρ

2
,0, . . . ,0

)
.

Thus, t(ax + b) = s(x).
Observation 2. The change of variables (8.20) can be written as x′ = ax + b

with

a =
(

Iρ O

O M

)
, (8.22)

where

M =

⎛
⎜⎜⎜⎝

b′
ρ+1 b′

ρ+2 . . . b′
n

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

C ′ ′

...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(C ′ ′ in the ρ + 1-th position and zeros elsewhere).
Observation 3. If instead of supposing b′

ρ+1 �= 0 we suppose b′
j �= 0, with j ∈

{ρ + 2, . . . , n}, we get

w(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + xj .

But it is clear, merely changing the names of the variables, that this poly-
nomial is equivalent to polynomial (8.21).

8.9.2 Canonical Expression

We have seen that every polynomial r(x) = xTAx + Bx + C, with

rank(A) �= rank(A|BT),
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is equivalent to

w(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + xρ+1 (8.23)

with i = index(A) and ρ = rank(A). This expression includes the case ρ = 2i,
where we have

w(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + xρ+1.

8.9.3 Conclusion

For convenience, we collect the results of this and the preceding Section 8.8 in
the next theorem.

Theorem 8.13 (Classification Theorem)

Every quadratic polynomial in n variables is equivalent to one and only one of
the following polynomials:

(I) rI(x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ,

(II) rII (x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + 1,

(III) rIII (x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) − x2
2i+1 − · · · − x2

ρ + 1,

(IV) rIV (x) = (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ + xρ+1,

where ρ > 0, 0 ≤ 2i ≤ ρ ≤ n in cases (I) and (II), 0 ≤ 2i < ρ ≤ n in case (III),
and 0 ≤ 2i ≤ ρ < n in case (IV).

Proof

We have seen, in Sections 8.8 and 8.9, that every quadratic polynomial in n

variables is equivalent to one of the polynomials in this list.
The uniqueness is a consequence of the invariance of the rank and the

index, Theorem 8.9, since in this list there are no two polynomials with the
same invariants (ρ, i, ρ̃, ĩ). In fact, it is sufficient to observe that a polynomial
is of type (I) if and only if ρ̃ = ρ; of type (II) if and only if ρ̃ = ρ + 1 and ĩ = i;
of type (III) if and only if ρ̃ = ρ + 1 and ĩ = i + 1; and of type (IV) if and only
if ρ̃ = ρ + 2. Moreover, within each type, the quadratic rank and the quadratic
index, ρ and i, uniquely determine the polynomial. �
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The polynomials of this list are called canonical expressions or canonical rep-
resentatives.

Observe that case (IV) occurs only if ρ < n, and that, to avoid repetitions,
we shall always consider that in case (III) we have 2i < ρ. That is, the case
where 2i = ρ belongs to case (II). It is also easy to see that in case (I) we have
ĩ = i, and that in case (IV) we have ĩ = i + 1.

Corollary 8.14

Two quadratic polynomials are equivalent if and only if they have the same
invariants (ρ, i, ρ̃, ĩ).

Proof

The four numbers (ρ, i, ρ̃, ĩ) determine a unique polynomial in the list of canon-
ical representatives. �

This result allows us to count, with a certain facility, the number of equivalence
classes of quadratic polynomials.

8.10 The Number of Equivalence Classes
of Quadratic Polynomials

We have seen, in the proof of Theorem 8.13, that the only possible 4-tuples are
the following:

(I) (ρ, i, ρ, i), 2i ≤ ρ ≤ n,

(II) (ρ, i, ρ + 1, i), 2i ≤ ρ ≤ n,

(III) (ρ, i, ρ + 1, i + 1), 2i < ρ ≤ n,

(IV) (ρ, i, ρ + 2, i + 1), 2i ≤ ρ < n.

Thus, to count the number of equivalence classes of quadratic polynomials
we must count the number of 4-tuples in each of the cases (I), (II), (III), (IV)
and add the results. The argument is slightly different in each case depending
on whether the number of variables n is even or odd.

Type (I). n = 2k +1. There are as many classes as pairs (ρ, i) with 0 ≤ 2i ≤
ρ ≤ n. Hence, if i = 0, ρ varies between 1 and n. If i = 1, ρ varies between 2
and n. If i = 2, ρ varies between 4 and n. We increase the value of i until we
reach i = k − 1. In this case ρ varies between 2k − 2 and 2k + 1. Finally, if
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i = k, ρ varies between 2k and 2k + 1. Observe that at each step the number
of possible values of ρ decreases by two.

Therefore, the number of possible cases is

N(I) = n + (2k + (2k − 2) + · · · + 6 + 4 + 2) =
n2 + 4n − 1

4
.

Type (I). n = 2k. There are as many classes as pairs (ρ, i) with 0 ≤ 2i ≤
ρ ≤ n. Hence, if i = 0, ρ varies between 1 and n. If i = 1, ρ varies between 2
and n. If i = 2, ρ varies between 4 and n. We increase the value of i until we
reach i = k − 1. In this case ρ varies between 2k − 2 and 2k. Finally, if i = k, ρ

must be equal to 2k. Observe that at each step the number of possible values
of ρ decreases by two.

Therefore, the number of possible cases is

N(I) = n + (2k − 1 + (2k − 3) + · · · + 5 + 3 + 1) =
n2 + 4n

4
.

Type (II ). There are as many classes as in case (I), since we must count
pairs (ρ, i) with 0 ≤ 2i ≤ ρ ≤ n.

N(II ) = N(I).

Type (III ). n = 2k+1. There are as many classes as in case (I), minus those
coming from ρ = 2i. There are k classes of the latter type, because i ∈ {1, . . . , k}.
(The case ρ = 2i = 0 is not considered, because we always assume ρ > 0.) Hence,

N(III ) = N(I) − k =
n2 + 2n + 1

4
.

Type (III ). n = 2k. By the same argument,

N(III ) = N(I) − k =
n2 + 2n

4
.

Type (IV ). n = 2k + 1. There are as many classes as pairs (ρ, i) with 0 ≤
2i ≤ ρ < n. Hence, there are as many classes as in case (I), minus those coming
from ρ = n. There are k + 1 classes of the latter type, because i varies between
0 and k.

N(IV ) = N(I) − (k + 1) =
n2 + 2n − 3

4
.

Type (IV ). n = 2k. Analogously,

N(IV ) = N(I) − (k + 1) =
n2 + 2n − 4

4
.
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Incidentally, the expression of the number N = N(I) + N(II ) + N(III ) +
N(IV ) does not depend on whether n is even or odd. Carrying out this sum,
we obtain the number N of equivalence classes of quadratic polynomials with
n variables:

N = n2 + 3n − 1

8.11 Regular Zeros

Polynomials r(x) can be considered as maps

r : R
n −→ R.

Therefore, we can talk about their gradient, grad r(x), as the vector formed by
the partial derivatives:

grad r(x) =
(

∂r

∂x1
, . . . ,

∂r

∂xn

)
.

Definition 8.15

A point p ∈ R
n is called a regular point of the polynomial r(x) if grad r(p) �= 0.

Note that if r(x) = xTAx + Bx + C, then

grad r(x) = 2xTA + B

In fact, the i-th component of the gradient vector is

∂

∂xi
(xTAx + Bx + C) = 2(0, . . . ,1, . . . ,0)Ax + Bi = 2(xTA)i + Bi.

Hence, p ∈ R
n is a regular point of r(x) if and only if 2pTA + B �= 0, that

is, if and only if p is not a solution of the system

2Ax = −BT.

This system is exactly the same as the system appearing in Section 8.8,
(8.13), which we called the equations of the center. We shall study this system
in Proposition 8.36, page 267.
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Definition 8.16

If p ∈ R
n is a regular point of the quadratic polynomial r(x) and r(p) = 0, we

say that p is a regular zero of this polynomial.

If the polynomials r(x) and s(x) are equivalent, with r(ax + b) = λs(x), and
x is a regular zero of s(x), then x′ = ax + b is a regular zero of r(x). In fact,
applying the chain rule to the equality r(ax + b) = λs(x), we obtain

grad(r(ax + b)) · a = λgrad(s(x)), (8.24)

and hence, grad(s(x)) �= 0 if and only if grad(r(ax + b)) �= 0.
Hence, if r(x) and s(x) are equivalent polynomials, we see that r(x) has

regular zeros if and only if s(x) has regular zeros.
Finally, we observe that the gradients of the four types of polynomials (I),

(II), (III) and (IV), given in the Classification Theorem 8.13, are

grad rI(x) = (2x1, −2x2, . . . ,2xρ,0, . . . ,0),

grad rII (x) = (2x1, −2x2, . . . ,2xρ,0, . . . ,0),

grad rIII (x) = (2x1, −2x2, . . . , −2xρ,0, . . . ,0),

grad rIV (x) = (2x1, −2x2, . . . ,2xρ,1, . . . ,0).

Thus, if a polynomial is equivalent to a polynomial of type (II), (III) or (IV),
all its zeros are regular; if it is equivalent to a polynomial of type (I) with i �= 0,
then it has regular and non-regular zeros, and if i = 0, it does not have any
regular zeros.

8.12 Affine Classification of Quadrics

We come back to affine spaces. Recall that the definition of equivalent poly-
nomials was motivated by equality (8.9), page 231, which says that if f is an
affinity of equation x′ = ax + b, then

f(Q(r(ax + b), R)) = Q(r(x), R).

Therefore, the following definition is natural.

Definition 8.17

We say that two non-empty quadrics Q1 and Q2 of a real affine space A are
equivalent if there exists a bijective affinity f such that f(Q1) = Q2.
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Let us see what relationship there is between equivalent polynomials and equiv-
alent quadrics.

Proposition 8.18

Let R be an affine frame of an affine space A of dimension n, and let r(x) and
s(x) be equivalent polynomials in n variables. Then there is an affine frame R ′

such that

Q(r(x), R) = Q(s(x), R ′).

Proof

Since the polynomials are equivalent, there is, by Definition 8.2, an invertible
n × n real matrix a, an n × 1 real column matrix b, and a real number λ �= 0,
such that r(ax + b) = λs(x).

Equality (8.7), page 231, tells us that

Q(r(x), R) = Q(λs(x), R ′) = Q(s(x), R′),

with

M(R′, R) =
(

a b

0 1

)
.

This completes the proof. �

Theorem 8.19

Let A be an affine space of dimension n, R an affine frame of A, and r(x) and
s(x) equivalent polynomials in n variables.

Then, the quadrics Q(r(x), R) and Q(s(x), R) are equivalent (or empty).

Proof

Since r(x) and s(x) are equivalent, there is, by Definition 8.2, an invertible
n × n real matrix a, an n × 1 real column matrix b, and a real number λ ∈ R,
λ �= 0, such that r(ax + b) = λs(x).

The equality (8.9), page 231, tells us directly that the affinity f of equa-
tion x′ = ax+ b satisfies f(Q(r(x), R)) = Q(s(x), R). Hence, these quadrics are
equivalent (or empty). �



8.12 Affine Classification of Quadrics 251

Corollary 8.20

Let R and R ′ be two affine frames in an affine space of dimension n, and let r(x)
be a polynomial in n variables. Then the quadrics Q(r(x), R) and Q(r(x), R′)
are equivalent.

Proof

We know, by equality (8.7), page 231, that Q(r(x), R) = Q(r(ax+ b), R′), with

M(R′, R) =
(

a b

0 1

)
.

But, by the above theorem, this second quadric is equivalent to Q(r(x), R′).
Hence, Q(r(x), R) and Q(r(x), R ′) are equivalent. �

The converse of Theorem 8.19 is also true, but we must recall that the defini-
tion of equivalent quadrics, Definition 8.17, has been given only for non-empty
quadrics. Explicitly, we shall prove that equivalent (and, therefore, non-empty)
quadrics give rise to equivalent polynomials.

But there may be empty quadrics (equal, therefore, as subsets of the
affine space), defined by non-equivalent polynomials. For instance, in the affine
space R

3, the quadrics x2
1 + x2

2 + 1 = 0 and x2
1 + 1 = 0 are empty, but the

polynomials x2
1 + x2

2 + 1 and x2
1 + 1 are not equivalent.

To study the converse of Theorem 8.19 we must introduce regular points.

Definition 8.21 (Regular points)

Let Q = Q(r(x), R) be a quadric in an affine space A and let P ∈ Q. We say
that P is a regular point of Q if the point (p1, . . . , pn) ∈ R

n, where (p1, . . . , pn)
are the coordinates of P in R, is a regular zero of r(x).

Thus, in order to determine if a point is regular we need to know, in principle,
the affine frame and the polynomial defining the quadric.

This leads to the following natural question: If we have Q = Q(r(x), R) =
Q(s(x), R ′), what is meant by the expression “P is a regular point of Q”? Does
it mean that the point (p1, . . . , pn) ∈ R

n, where (p1, . . . , pn) are the coordinates
of P in R, is a regular zero of r(x), or that the point (p′

1, . . . , p
′
n) ∈ R

n, where
(p′

1, . . . , p
′
n) are the coordinates of P in R′, is a regular zero of s(x)?

The next proposition provides a partial answer to this question. See Obser-
vation 8.25.
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Theorem 8.22 (Nullstellensatz)

Let A be an affine space of dimension n, and let r(x) and s(x) be two quadratic
polynomials in n variables. Let R be an affine frame of A. Let us assume that
the quadric Q(r(x), R) has a regular point (with respect to r(x)) and also that

Q(r(x), R) = Q(s(x), R).

Then there is a λ ∈ R, λ �= 0, such that r(x) = λs(x).

Proof

This is an immediate consequence of the real Nullstellensatz, Theorem D.4,
page 399. �

Thus, once we fix the affine frame, the polynomial defining the quadric (with a
regular point) is determined up to scalars, and hence the definition of regular
point does not depend on which of these multiples is considered.

Theorem 8.23 (Converse of Theorem 8.19)

Let A be an affine space of dimension n, R an affine frame of A and r(x) and
s(x) polynomials in n variables.

Let us assume that the quadrics Q(r(x), R) and Q(s(x), R) are equivalent
(and, therefore, non-empty). Then r(x) and s(x) are equivalent.

Proof

We know that there is a bijective affinity f : A −→ A such that f(Q(s(x), R)) =
Q(r(x), R). But we also know, by equality (8.9), page 231, that if f has equation
x′ = ax + b, then

f(Q(s(x), R)) = Q(t(x), R), with t(x) = s(a−1(x − b)).

Hence, Q(r(x), R) = Q(t(x), R). Observe that the polynomials s(x) and t(x)
are equivalent.

If some of the points of Q(r(x), R) are regular (with respect to r(x)) then,
by Theorem 8.22, there is a λ �= 0 such that r(x) = λt(x), and hence r(x) and
s(x) are equivalent and we have finished.

If none of the points of Q(r(x), R) are regular (with respect to r(x)), then
neither the points of Q(t(x), R) (Theorem 8.22) nor the points of Q(s(x), R)
(with respect to s(x)) are regular, because s(x) and t(x) are equivalent.
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Then, by the Classification Theorem and the expressions of the gradients
given on page 249, both r(x) and s(x) are equivalent to a polynomial of type
(I) with i = 0.

This means that r(x) is equivalent to rI(x) = x2
1 + · · · + x2

ρ and that s(x)
is equivalent to r′

I(x) = x2
1 + · · · + x2

ρ′ . By Theorem 8.19, there is a bijective
affinity between Q(r(x), R) and Q(rI(x), R) and a bijective affinity between

Q(s(x), R) and Q(r′
I(x), R). Composing these affinities with f we obtain a

bijective affinity between Q(rI(x), R) and Q(r′
I(x), R).

But, since rI(x) = 0 represents a hyperplane of dimension n − ρ (x1 = x2 =
· · · = xρ = 0), and r′

I(x) = 0 represents a hyperplane of dimension n − ρ′ (x1 =
x2 = · · · = xρ′ = 0), and bijective affinities take hyperplanes to hyperplanes of
the same dimension, we must have ρ = ρ′ and r(x) is equivalent to s(x). This
completes the proof. �

Corollary 8.24 (Converse of Proposition 8.18)

Let A be an affine space of dimension n, and let r(x) and s(x) be polynomials
in n variables. Let R and R′ be affine frames such that

Q(r(x), R′) = Q(s(x), R).

Let us assume that this quadric is non-empty. Then r(x) and s(x) are equiva-
lent.

Proof

Since, by Corollary 8.20, Q(r(x), R ′) is equivalent to Q(r(x), R), we have, by
transitivity, that Q(r(x), R) is equivalent to Q(s(x), R). Hence, by the above
theorem, r(x) and s(x) are equivalent. �

Observation 8.25

In particular, it makes perfect sense to say that a point P ∈ Q is regular ,
because independently of the affine frame R and of the polynomial r(x) used in
the definition of Q = Q(r(x), R), the point (p1, . . . , pn) ∈ R

n, where (p1, . . . , pn)
are the coordinates of P in R, is a regular zero of r(x).

In fact, if we have Q(r(x), R) = Q(s(x), R′) and the relationship between
the coordinates x in R and the coordinates x′ in R ′ is given by x = ax′ + b,
then the expression of the gradients (8.24) tells us that x′ is a regular zero of
s(x) if and only if x is a regular zero of r(x).
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Corollary 8.24, together with Proposition 8.9, allows us to define the rank,
quadratic rank, index and quadratic index of a non-empty quadric as the rank,
quadratic rank, index and quadratic index, respectively, of any polynomial
defining the quadric.

If we do not impose the hypothesis that the quadrics are non-empty, there
may be different polynomials, for instance r(x) = x2

1 +1 and s(x) = x2
1 +x2

2 +1,
defining the same quadric (the empty set), and with different quadratic rank
(1 and 2, respectively).

Theorem 8.26 (Equivalence between polynomials and quadrics)

Let Q(r(x), R) and Q(s(x), R) be two non-empty quadrics in a real affine
space A. Then they are equivalent if and only if the polynomials defining them,
r(x) and s(x), are equivalent.

Proof

This is a consequence of Theorems 8.19 and 8.23. �

By Corollary 8.20, this result is also true even in the case where the two given
quadrics do not refer to the same affine frame. Concretely, the non-empty
quadrics Q(r(x), R) and Q(s(x), R′) of a real affine space A are equivalent
if and only if the polynomials defining them, r(x) and s(x), are equivalent.

Corollary 8.27

Two non-empty quadrics are equivalent if and only if the quadratic polynomials
defining them have the same invariants (ρ, i, ρ̃, ĩ)

Proof

This is a consequence of Theorems 8.26 and 8.14. �

Theorem 8.28 (Classification Theorem)

Let Q(r(x), R) be a non-empty quadric of a real affine space A of dimension n.
Then Q(r(x), R) is equivalent to one and only one of the quadrics given, in R,
by the following equations:

(I) (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) + x2
2i+1 + · · · + x2

ρ = 0,
(II) (x2

1 − x2
2) + · · · + (x2

2i−1 − x2
2i) + x2

2i+1 + · · · + x2
ρ + 1 = 0,
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(III) (x2
1 − x2

2) + · · · + (x2
2i−1 − x2

2i) − x2
2i+1 − · · · − x2

ρ + 1 = 0,
(IV) (x2

1 − x2
2) + · · · + (x2

2i−1 − x2
2i) + x2

2i+1 + · · · + x2
ρ + xρ+1 = 0,

where ρ > 0, 0 ≤ 2i ≤ ρ ≤ n in case (I), 0 < 2i ≤ ρ ≤ n in case (II), 0 ≤ 2i < ρ ≤ n

in case (III), and 0 ≤ 2i ≤ ρ < n in case (IV).

Proof

This is an immediate consequence of Theorems 8.13 and 8.19. �

All quadrics of type (II) with i = 0, x2
1 + · · · + x2

ρ + 1 = 0, correspond to empty
quadrics, and for this reason they have not been considered in the statement
of the previous theorem.

This theorem can also be formulated in terms of a change of affine frame.
Concretely, we have the following.

Theorem 8.29

Let Q(r(x), R) be a non-empty quadric of a real affine space A of dimension n.
Then there is an affine frame R ′ in which the equation of Q(r(x), R) is one
and only one of the equations given in the previous Theorem 8.28.

Proof

We know that r(x) is equivalent to one and only one of the polynomials r0(x),
of type (I), (II), (III) or (IV), given in Theorem 8.13. By Proposition 8.18, there
is an affine frame R′ such that Q(r(x), R) = Q(r0(x), R′). �

When we have Q(r(x), R) = Q(r0(x), R′), with r0(x) one of the canonical rep-
resentatives given in Theorem 8.13, we say that R′ is the affine frame adapted
to the quadric, or simply the adapted affine frame.

8.12.1 Construction of the Adapted Affine Frame

In order to classify a quadric Q(r(x), R), we shall classify first the polynomial
r(x), finding explicitly the affine change x′ = ax + b that transforms r(x) into
one of the canonical representatives r0(x). If we have λr0(x) = r(ax + b), then



256 8. Affine Classification of Real Quadrics

the adapted affine frame R′ is given (see the proof of Proposition 8.18) by

M(R′, R) =
(

a b

0 1

)
.

That is, the origin of R′ has coordinates b in R, and the vectors of the cor-
responding basis of R′ have components given respectively by the columns of
the matrix a.

Recall that we can find a directly by imposing that the matrix aTAa is
diagonal (where A is the matrix of the quadratic part of r(x)); and that, when
r0(x) is of type (I), (II) or (III), b is given directly by the coordinates of a
center of the quadric. If r0(x) is of type (IV) and, hence, it has no center, the
only way to compute b is to follow the steps given in Section 8.9.

8.13 Affine Classification of Conics

Quadrics in affine spaces of dimension 2 are called conics. To classify them it is
sufficient to apply Theorem 8.28 with n = 2, taking into account the restrictions
on ρ and i.

Observe that we must have

1 ≤ ρ ≤ 2,

0 ≤ i ≤ 1,

1 ≤ ρ̃ ≤ 3,

0 ≤ ĩ ≤ 1,

and, as we pointed out on page 246, if ρ̃ = ρ, then ĩ = i; if ρ̃ = ρ + 1, then
i ≤ ĩ ≤ i + 1, and if ρ̃ = ρ + 2, then ĩ = i + 1. This results in Table 8.1.

Observe that if r(x) = xTAx + Bx + C, and we let

d = detA,

D = det
(

A BT/2
B/2 C

)
= det Ã,

then we have

ρ = 2 if and only if d �= 0, ρ = 1 if and only if d = 0,

ρ̃ = 3 if and only if D �= 0, i = 1 if and only if d < 0.

Note that the sign of d is an invariant, since the formula λA′ = aTAa implies
(we are in dimension two) λ2 detA′ = (deta)2 detA, and hence detA and detA′

have the same sign.
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ρ i ρ̃ ĩ Equation Name

(I) 2 0 2 0 x2
1 + x2

2 = 0 Point
(I) 2 1 2 1 x2

1 − x2
2 = 0 Two str. lines

(I) 1 0 1 0 x2
1 = 0 Double str. line

(II) 2 1 3 1 x2
1 − x2

2 + 1 = 0 Hyperbola
(II) 2 0 3 0 x2

1 + x2
2 + 1 = 0 Empty

(II) 1 0 2 0 x2
1 + 1 = 0 Empty

(III) 2 0 3 1 −x2
1 − x2

2 + 1 = 0 Ellipse
(III) 1 0 2 1 −x2

1 + 1 = 0 Two parallel str. lines
(IV) 1 0 3 1 x2

1 + x2 = 0 Parabola

Table 8.1. Conics

Analogously, formula (8.10) tells us that whether D vanishes or not is an
invariant, but its sign is not invariant because, repeating the same argument,
we obtain a λ3, which has the same sign as λ. Concretely we have

λ3 det Ã′ = det Ã(detC)2,

because Ã is a 3 × 3 matrix, and we cannot ensure that det Ã′ and det Ã have
the same sign.

This comment justifies the classification of conics in terms of the sign of d

and whether or not D is zero.
However it is clear that in higher dimensions we cannot reduce the four

invariants (ρ, i, ρ̃, ĩ) to the study of only two determinants.
The relationship between the four invariants and the two determinants d

and D is explicitly set out in Table 8.2.

ρ i ρ̃ ĩ d D Name

(I) 2 0 2 0 d > 0 D = 0 Point
(I) 2 1 2 1 d < 0 D = 0 Two str. lines
(I) 1 0 1 0 d = 0 D = 0 Double str. line
(II) 2 1 3 1 d < 0 D �= 0 Hyperbola
(II) 2 0 3 0 d > 0 D �= 0 Empty (imaginary ellipse)
(II) 1 0 2 0 d = 0 D = 0 Empty (imaginary str. lines)
(III) 2 0 3 1 d > 0 D �= 0 Ellipse
(III) 1 0 2 1 d = 0 D = 0 Two parallel str. lines
(IV) 1 0 3 1 d = 0 D �= 0 Parabola

Table 8.2. Conics
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Thus, omitting empty conics, the classification can be quickly obtained by
computing only two determinants.

D �= 0

⎧⎨
⎩

d > 0 Ellipse
d < 0 Hyperbola
d = 0 Parabola

D = 0

⎧⎨
⎩

d > 0 Point
d < 0 Two intersecting str. lines
d = 0 Two parallel or equal str. lines

Hence, with the exception of parallel or equal straight lines, non-empty
conics are completely determined by these two determinants. See Figures 8.1
and 8.2 for the case D �= 0.

Figure 8.1. Ellipse

A detailed study of conics in the Euclidean affine plane R
2 from an elemen-

tary geometrical point of view can be found in [8]. For instance, one can find an
elementary proof that conics with D �= 0 can be defined as sets of points of the
plane such that the quotient of the distances to a given point (the focus) and
to a given straight line (the directrix) is constant. This constant is lower than 1
for ellipses; greater than 1 for hyperbolas; and equal to 1 for parabolas. There
are also equivalent definitions of conics, methods of constructing tangents, the
relationship with cross-sections of a cone of R

3, etc.
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Figure 8.2. Parabola and hyperbola

Conics also appear in a natural way when studying the orbits of planets.
We recommend [27] for a simple demonstration, using only Newton’s laws, that
the orbits of the planets are conics.

8.14 Affine Classification of Quadrics
in Dimension Three

We apply Theorem 8.28 with n = 3, taking into account the following restric-
tions on ρ and i:

1 ≤ ρ ≤ 3, 0 ≤ i ≤ 1,

1 ≤ ρ̃ ≤ 4, 0 ≤ ĩ ≤ 2.

As we remarked on page 246, if ρ̃ = ρ, then ĩ = i; if ρ̃ = ρ+1, then i ≤ ĩ ≤ i+1,
and if ρ̃ = ρ + 2, then ĩ = i + 1. This results in Table 8.3 (see also Figure 8.3).

Example 8.30

Classify the quadric of the affine space R
3 given in the canonical affine frame

by r(x) = x2
1 − 2x2

2 + 2x1x2 + 4x1x3 + 8x3 + 1 = 0 and find the adapted affine
frame.
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ρ i ρ̃ ĩ Equation Name

(I) 3 0 3 0 x2
1 + x2

2 + x2
3 = 0 Point

(I) 3 1 3 1 x2
1 + x2

2 − x2
3 = 0 Cone

(I) 2 0 2 0 x2
1 + x2

2 = 0 Straight line
(I) 2 1 2 1 x2

1 − x2
2 = 0 Two planes

(I) 1 0 1 0 x2
1 = 0 Double plane

(II) 3 0 4 0 x2
1 + x2

2 + x2
3 + 1 = 0 Empty

(II) 3 1 4 1 x2
1 + x2

2 − x2
3 + 1 = 0 Hyperboloid of two sheets

(II) 2 0 3 0 x2
1 + x2

2 + 1 = 0 Empty
(II) 2 1 3 1 x2

1 − x2
2 + 1 = 0 Hyperbolic cylinder

(II) 1 0 2 0 x2
1 + 1 = 0 Empty

(III) 3 1 4 2 x2
1 − x2

2 − x2
3 + 1 = 0 Hyperboloid of one sheet

(III) 3 0 4 1 −x2
1 − x2

2 − x2
3 + 1 = 0 Ellipsoid

(III) 2 0 3 1 −x2
1 − x2

2 + 1 = 0 Elliptic cylinder
(III) 1 0 2 1 −x2

1 + 1 = 0 Parallel planes
(IV) 2 0 4 1 x2

1 + x2
2 + z = 0 Elliptic paraboloid

(IV) 2 1 4 2 x2
1 − x2

2 + z = 0 Hyperbolic paraboloid
(IV) 1 0 3 1 x2

1 + z = 0 Parabolic cylinder

Table 8.3. Quadrics

Solution

The matrix of the quadratic part is

A =

⎛
⎝1 1 2

1 −2 0
2 0 0

⎞
⎠ ,

which has rank ρ = 3. The characteristic polynomial of A is −x3 − x2 +7x+8,
which has one change of sign between consecutive non-zero coefficients, and
hence i = 1.

The enlarged matrix is

Ã =

⎛
⎜⎜⎝

1 1 2 0
1 −2 0 0
2 0 0 4
0 0 4 1

⎞
⎟⎟⎠ ,

which has rank ρ̃ = 4. The characteristic polynomial of Ã is −x4 + 24x2 +
17x − 72, which has two changes of sign between consecutive non-zero coeffi-
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Figure 8.3. Quadrics in R
3

cients, and hence ĩ = 2. Looking at the table we see that the given quadric,
which has invariants (ρ, i, ρ̃, ĩ) = (3,1,4,2), is a hyperboloid of one sheet.

Let us find the affine frame in which this quadric has equation x2
1 − x2

2 −
x2

3 + 1 = 0.
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Since rank(A) = rank(A|BT) = 3 (observe that B = (0,0,1)), this quadric
has a unique center, given by

2

⎛
⎝1 1 2

1 −2 0
2 0 0

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ = −

⎛
⎝0

0
8

⎞
⎠ .

Solving this system one obtains that the center is the point

C = (−2, −1,3/2).

This point will be the origin of the affine frame that we are looking for.
To find the basis, we diagonalize the matrix A. We have

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2
1 −2 0
2 0 0

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2
0 −3 −2
0 −2 −4

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −3 −2
0 −2 −4

1 −1 −2
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first transformation is F2 → F2 − F1, F3 → F3 − 2F1, and the second
C2 → C2 − C1, C3 → C3 − 2C1. Next we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −3 −2
0 −2 −4

1 −1 −2
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −3 −2
0 0 −8/3

1 −1 −2
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −3 0
0 0 −8/3

1 −1 −4/3
0 1 −2/3
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first transformation is F3 → F3 − 2
3
F2, and the second C3 → C3 − 2

3
C2.

The basis in which A diagonalizes is given by the columns of the lower
matrix that has been transformed from the identity matrix. That is, u =
(1,0,0), v = (−1,1,0),w = (−4/3, −2/3,1). Consider the affine frame R =
{C; B } with B = (u, v,w).

The relationship between the initial coordinates (x1, x2, x3) and the coor-
dinates (x′

1, x
′
2, x

′
3) in this new affine frame is

⎛
⎝ x1 + 2

x2 + 1
x3 − 3/2

⎞
⎠ =

⎛
⎝1 −1 −4/3

0 1 −2/3
0 0 1

⎞
⎠

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ .
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Substituting these values into the initial equation of the quadric, we get

x′2
1 − 3x′2

2 − 8/3x′2
3 + 7 = 0,

which can be written as(
x′

1√
7

)2

−
( √

3√
7
x′

2

)2

−
( √

8√
21

x′
3

)2

+ 1 = 0,

or as

x̄1
2 − x̄2

2 − x̄3
2 + 1 = 0,

with

x̄1 =
x′

1√
7
, x̄2 =

√
3√
7
x′

2, x̄3 =
√

8√
21

x′
3.

Hence, the adapted affine frame is R ′ = {C; B ′ }, where C is the center of
the quadric, and B ′ = (ū, v̄, w̄) with

ū =
√

7u, v̄ =
√

7√
3
v, w̄ =

√
21√
8

w.

�

Example 8.31

Classify the quadric of an affine space A of dimension 3 given, in an affine
frame R, by r(x) = 3x2

1 − x2
3 − 2x1x3 + 4x1 + x2 + x3 + 1 = 0, and find the

adapted affine frame.

Solution

Modifying slightly the method used in the above problem, we shall use the
method of completing the squares.

3x2
1 − x2

3 − 2x1x3 + 4x1 + x2 + x3 + 1

= 3
(

x1 − z

3

)2

− x2
3

3
− x2

3 + 4x1 + x2 + x3 + 1

= 3x′2
1 − 4

3
x2

3 + 4x′
1 +

7
3
x3 + x2 + 1

(
x′

1 = x1 − x3

3

)

= 3
(

x′
1 +

2
3

)2

− 4
3

− 4
3

(
x3 − 7

8

)2

+
49
48

+ x2 + 1

= x′ ′2
1 − x′2

3 + x′
2,
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with

x′ ′
1 =

√
3
(

x1 − x3

3
+

2
3

)
,

x′
2 = x2 +

11
16

,

x′
3 =

2√
3

(
x3 − 7

8

)
.

Hence, the relationship between the polynomials r(x) and r0(x) = x2
1 −

x2
3 + x2, is r(x) = r0(ax + b) with

a =

⎛
⎝

√
3 0 −

√
3/3

0 1 0
0 0 2/

√
3

⎞
⎠ , b =

⎛
⎝ 2

√
3/3

11/16
−14/8

√
3

⎞
⎠ .

Equivalently,

r(a−1(x − b)) = r0(x).

Hence, as we explained in the Section “Construction of the adapted affine
frame” on page 255, the adapted affine frame is determined by

M(R′, R) =
(

a−1 −a−1b

0 1

)
,

where R is the initial affine frame.
The calculation gives

a−1 =

⎛
⎝

√
3/3 0

√
3/6

0 1 0
0 0

√
3/2

⎞
⎠ , −a−1b =

⎛
⎝ −3/8

−11/16
7/8

⎞
⎠ .

The origin of R′ is the point C given, in R, by C = (−3/8, −11/16,7/8) and
the vectors of the basis are

u = (
√

3/3,0,0), v = (0,1,0), w = (
√

3/6,0,
√

3/2),

and in this affine frame the quadric has equation x2
1 − x2

3 + x2 = 0. It is a
hyperbolic paraboloid. �

8.15 Quadrics Without Regular Points

As we said in the classification of polynomials, page 249, if a quadric is equiv-
alent to a quadric of type (II), (III) or (IV), all its points are regular. If it is
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equivalent to a quadric of type (I) with i �= 0, it has regular and non-regular
points.

If a quadric is equivalent to a quadric of type (I), with i = 0, it does not have
any regular points. These quadrics are the only ones that are linear varieties:

x2
1 + · · · + x2

ρ = 0

is the linear variety with equations x1 = · · · = xρ = 0. Since bijective affinities
take linear varieties to linear varieties of the same dimension, any quadric
equivalent to a quadric of type (I), with i = 0, is a linear variety of dimension
n − ρ.

The Classification Theorem tells us that quadrics of type (I) with i = 0 are
the only ones contained in a linear variety. We give a direct proof of this in the
following proposition.

Proposition 8.32

Let us assume that a quadric Q = Q(r(x), R) of an affine space A is contained
in a linear variety L �= A. Then Q does not have any regular points.

Proof

Every linear variety L is contained in a hyperplane Π , that is, in a linear variety
of codimension 1. Let s(x) = a1x1 + · · · + anxn + c = 0 be the equation of Π .
By hypothesis, every zero of r(x) is a zero of s2(x). Suppose r(x) has a regular
zero, then, by Theorem D.4, page 399, r(x) = λs2(x). In particular, Q = L = Π .
But s2(x) has no regular zeros, because grad s2(x) = 2s(x)(a1, . . . , an), which
vanishes when s(x) vanishes. Contradiction.

Therefore, Q does not have any regular points. �

Hence, quadrics contained in linear varieties are linear varieties. In this case,
the equations of this linear variety can be found from the quadratic polynomial
defining the quadric.

Proposition 8.33

Let us assume that a quadric Q = Q(r(x), R) of an affine space A, with r(x) =
xTAx + Bx + C, is contained in a linear variety L �= A. Then Q is the linear
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variety with equations {
Bx + 2C = 0,

2Ax + BT = 0.

Proof

By Proposition 8.32, grad r(x) = 2Ax+BT = 0 on the points of Q. Substituting
this equality into the expression for r(x) we obtain

xTAx + Bx + C = − 1
2
xTBT + Bx + C =

1
2
Bx + C.

Hence, r(x) = 0 if and only if 2Ax + BT = 0 and Bx + 2C = 0. �

For instance, in R
3, the quadric x2

1 + x2
2 = 0 is, as a set of points, the straight

line x1 = x2 = 0, because the first equation says nothing, since B = 0 and C = 0,
and the second equation is

2Ax + BT = 2
(

1 0
0 1

)(
x1

x2

)
=

(
0
0

)
.

However, a circle is a quadric of R
2, but it is not a quadric of R

3. See Exer-
cises 8.8 and 8.9, page 281.

8.16 Quadrics with Center

Definition 8.34

We say that a point G ∈ A is a center of a quadric Q if

SG(Q) = Q,

where SG is the central symmetry with respect to G.

Let us recall that the central symmetry with respect to a point G, SG, is the
affinity taking every point X ∈ A to the point X ′ = SG(X) such that G is the
midpoint of the line segment XX ′. In coordinates, SG is given by the equations

x′ = 2g − x,

where g is the column matrix formed by the coordinates of G. See the definition
of central symmetry on page 71.

Notice that the center may or may not belong to the quadric.
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Proposition 8.35

Let Q = Q(r(x), R) be a non-empty quadric with r(x) = xTAx + Bx + C. Let
us assume that rank(A) = rank(A|BT). Then Q has a linear variety of centers
of dimension n − ρ, where ρ = rank(A).

Proof

By the hypothesis on the rank we know that, in some affine frame, Q is given
by an equation of type (I), (II) or (III). The central symmetry SG, where G is
any point of the type

G = (0, . . . ,0, aρ+1, . . . , an),

leaves Q invariant. In fact, this symmetry is given by

(x1, . . . , xn) �→ (−x1, . . . , −xρ,2aρ+1 − xρ+1, . . . ,2an − xn),

and it is clear that this transformation leaves invariant equations of type (I),
(II) or (III). �

However, if a quadric is given by an equation of type (IV), it is not invariant
under any central symmetry.

Observe that the quadric Q(r(x), R) has a center if the polynomial r(x) is
equivalent to a polynomial without linear part, and that if a quadric has more
than one center, it has infinitely many centers.

Proposition 8.36 (Equations of the center)

Let Q = Q(r(x), R) be a non-empty quadric with r(x) = xTAx + Bx + C. Let
G ∈ A, and let (g1, . . . , gn) be the coordinates of G in R. Then these coordinates
are a solution of the system

2Ax = −BT

if and only if G is a center of Q.

Proof

Let us first assume that 2Ag = −BT, where g denotes the column matrix formed
by the coordinates of G in R. Let X be an arbitrary point of Q. We want to
show that the point X ′, symmetric to X with respect to G, also belongs to the
quadric.
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The coordinates of X ′ satisfy the matricial equality

x′ = 2g − x;

hence,

x′TAx′ + Bx′ + C

= (2g − x)TA(2g − x) + B(2g − x) + C

= xTAx − 4gTAx + 4gTAg + 2Bg − Bx + C

= −4gTAx + 4gTAg + 2Bg − 2Bx

= 2(2gTA + B)(g − x)

= 0,

since the condition 2Ag = −BT is equivalent, transposing, to 2gTA = −B.
Conversely, let us assume that G ∈ A is a point such that SG(Q) = Q. Since

the equation of SG is x′ = 2g − x, the above equality implies that if x satisfies

xTAx + Bx + C = 0,

then

x′TAx′ + Bx′ + C = 0,

with x′ = 2g − x.
By the above calculation, we have

(2gTA + B)(g − x) = 0 (8.25)

for each point x such that r(x) = 0.
But this implies 2Ag + BT = 0. Indeed, if 2Ag + BT �= 0, (8.25) is the

equation of a hyperplane, and hence Q would be contained in this hyper-
plane. By Proposition 8.33, Q is contained in the linear variety with equations
2Ax+BT = 0. It is clear that the center of symmetry of a quadric contained in a
linear variety must be in this linear variety. Hence, we must have 2Ag+BT = 0,
a contradiction. �

Observe that a quadric has a center if and only if rank(A) = rank(A|BT). That
is, a quadric has a center if and only if it is of type (I), (II) or (III).
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Definition 8.37

Let Q = Q(r(x), R) be a non-empty quadric with r(x) = xTAx + Bx + C. We
say that Q is non-degenerate if detA �= 0.

Observe that, by Propositions 8.9 and 8.24, this definition neither depends on
the polynomial nor on the affine frame used to define Q. In fact, the condition
detA �= 0 is equivalent to the condition that Q has maximum quadratic rank;
see page 254.

Corollary 8.38

Let Q = Q(r(x), R) be a non-empty quadric with r(x) = xTAx+Bx+C. Then
Q has a unique center if and only if it is non-degenerate.

Proof

The system

2Ax = −BT

has a unique solution if and only if detA �= 0. �

Corollary 8.39

Let Q = Q(r(x), R) be a non-empty quadric with r(x) = xTAx+Bx+C. Then
a point G ∈ A is a center of Q if and only if

grad r(g) = 0,

where g denotes the coordinates of G in R.

Proof

We know that grad r(x) = B + 2xTA, see page 248. �

In practice, to calculate the center, we just solve the system

Equations of the center:
∂r(x)
∂xi

= 0, i = 1, . . . , n.
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This is very natural. Consider, for example, the family of ellipses in the
Euclidean affine plane R

2,

rt(x) =
x2

1

a2
+

x2
2

b2
= t, 0 < t ≤ 1.

The vector

grad rt(x) =
(

∂rt

∂x1
,
∂rt

∂x2

)

is the gradient vector of this family, and so it is perpendicular to each ellipse in
the family. These ellipses, as t tends to zero, contract onto the center. Hence,
on the center, this gradient vector must vanish.

8.17 Tangent Cone

In this section we only consider quadrics possessing a regular point.

Definition 8.40 (Tangent straight line)

We say that a straight line l: P + 〈v〉 is tangent to a quadric Q = Q(r(x), R),
with r(x) = xTAx + Bx + C, when l ∩ Q is a point, and vTAv �= 0.

As usual, when we write vTAv we are identifying the vector v of the vector
space associated to the affine space A with the column matrix formed by its
components in the basis B associated to R.

The condition vTAv �= 0 neither depends on the polynomial nor on the affine
frame used to define Q. Indeed, let us assume that Q(r(x), R) = Q(s(x), R′),
with s(x) = xTA′x+B′x+C ′. Since Q has a regular point, there exists a λ ∈ R,
λ �= 0 such that λA′ = aTAa (see Theorem 8.22 and (8.7)).

But the relationship between the components of v in the bases B and B ′,
associated respectively to R and R′, is v = av′, with a = M(B ′, B). Hence,

vTAv = (av′)TAav = v′TA′v′,

and the condition vTAv �= 0 is independent of the polynomial and of the affine
frame.

We can also say that a straight line l is tangent to the quadric Q when
l ∩ Q reduces to a double point. In fact, to calculate l ∩ Q we must find a λ ∈ R

such that the point P + λv belongs to the quadric. That is, denoting by p the
column matrix of the components of P , we must solve the equation
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(p + λv)TA(p + λv) + B(p + λv) + C

= λ2vTAv + λgrad r(p)(v) + r(p)

= 0, (8.26)

and this equation is of second degree if and only if vTAv �= 0.
Hence, the definition of tangent straight line we have just given is equivalent

to the following.

Definition 8.41 (Tangent straight line)

We say that a straight line l is tangent to the quadric Q when l ∩ Q reduces to
a double point (see Figure 8.4).

Figure 8.4. Tangent line

Observe that if A is positive definite, the condition vTAv �= 0 is automatically
satisfied. When vTAv = 0 we say that v is an isotropic vector with respect to
A (or that l is an isotropic straight line with respect to A); see the definition
of an isotropic vector of a bilinear symmetric map on page 378. Thus we can
say that l is tangent to Q when l ∩ Q reduces to a point and l is non-isotropic
with respect to A.

Since (8.26) has only one solution, we must have

(grad(r(p))(v))2 = 4(r(p))(vTAv) (vTAv �= 0). (8.27)

In this case, the point l ∩ Q is the point P + λv with

λ =
− grad(r(p))(v)

2(vTAv)
.

In particular, it is easy to see that this λ satisfies

grad(r(p + λv))(v) = 0.
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If A is the Euclidean affine space R
n, the above equality tells us that the

product of a row matrix by a column matrix is equal to zero, which in other
words tells us that the ordinary scalar product of the vectors grad(r(p + λv))
and v is zero, and hence, that the direction vector of the tangent straight line is
orthogonal to the gradient vector at the contact point. This justifies the name
tangent straight line, since the tangent line is contained in the tangent plane
(the plane orthogonal to the gradient) at the contact point.

Observation 8.42

The given definition of tangent straight line makes sense even if the gradient at
the contact point vanishes. For instance, in the Euclidean plane R

2, consider
the conic C: x2

1 − x2
2 = 0 and a point P = (a, b) with a2 − b2 �= 0. The straight

lines ay − bx = 0 and x − y + b − a = 0 pass through P and cut C, respectively,
in a single point, see Figure 8.5.

Figure 8.5. Tangent line in a singular point

The first line is tangent, because the condition vTAv �= 0 is

(
a b

)(
1 0
0 −1

)(
a

b

)
= a2 − b2 �= 0,

and at the contact point (0,0) the gradient vanishes; however, the second line is
not tangent, since the condition vTAv �= 0 is not satisfied, because the direction
vector of the straight line is v = (1,1) and, hence,

vTAv =
(
1 1

)(
1 0
0 −1

)(
1
1

)
= 1 − 1 = 0.

Note that if we remove the condition vTAv �= 0 in (8.27), there are straight
lines which are not tangent, but which nevertheless satisfy the equation. These
are, explicitly, all those straight lines l: P + 〈v〉 with

grad r(p)(v) = 0, vTAv = 0.
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If, in addition to these two conditions, r(p) = 0, the straight line l is con-
tained in the quadric, since (8.26) has infinitely many solutions; if r(p) �= 0, the
straight line l does not cut the quadric, since (8.26) has no solution. In this
case (i.e., grad r(p)(v) = 0, vTAv = 0, r(p) �= 0) we say that l is an asymptote
of the quadric.

Example 8.43 (r(p) = 0, grad r(p)(v) = 0, vTAv = 0)

In the affine plane R
2, the straight line l: P + 〈v〉 with P = (1,1) and v = (1,1),

is contained in the conic x2
1 − x2

2 = 0. It is not tangent, according to our defini-
tion, but it satisfies (8.27), without the condition vTAv �= 0, since we have

grad r(p)(v) =
(
2 −2

)(1
1

)
= 0,

vTAv =
(
1 1

)(
1 0
0 −1

)(
1
1

)
= 0.

Example 8.44 (grad r(p)(v) = 0, vTAv = 0)

In the affine plane R
2, the straight line l: P + 〈v〉 with P = (0,0) and v = (1,1)

does not cut the hyperbola x2
1 − x2

2 − 1 = 0 but it satisfies (8.27), without the
condition vTAv �= 0, since we have

grad r(p)(v) =
(
0 0

)(
1
1

)
= 0,

vTAv =
(
1 1

)(
1 0
0 1

)(
1
1

)
= 0.

Notice that l is the asymptote of the hyperbola.

Example 8.45 (grad r(p)(v) = 0, vTAv = 0)

In the affine space R
3, the straight line l: P + 〈v〉, with P = (0,0,0) and

v = (0,0,1), does not cut the cylinder x2
1 + x2

2 − 1 = 0, but it satisfies (8.27),
without the condition vTAv �= 0, since we have

grad r(p)(v) =
(
0 0 0

)
⎛
⎝0

0
1

⎞
⎠ = 0,
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vTAv =
(
0 0 1

)
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠

⎛
⎝0

0
1

⎞
⎠ = 0.

Observe that l is the axis of the cylinder.

Definition 8.46 (Tangent cone)

The tangent cone to a quadric Q from a point P is the set TP formed by P and
by the points of all straight lines through P tangent, asymptotic or contained
in the quadric.

Next we shall see that the tangent cone to a quadric is also a quadric and we
shall study its equation.

The direction vectors of all these straight lines through P must satisfy
(8.27). Substituting v by (x − p)/λ in (8.27), we see that the coordinates x of
the points of the straight lines through P tangent, asymptotic or contained in
the quadric, satisfy

Tangent cone: (grad r(p)(x − p))2 = 4r(p)((x − p)TA(x − p)) (8.28)

This equation is of second degree, and therefore it represents a quadric, if we
exclude the points such that r(p) = grad r(p) = 0, since in this case the equation
reduces to 0 = 0. That is, when we consider the tangent cone to a quadric from
a point, we are assuming either that this point does not belong to the quadric
(r(p) �= 0), or that it is a regular point of the quadric (r(p) = 0,grad r(p) �= 0).
See Exercise 8.16, page 282.

Conversely, any point x �= p satisfying (8.28) is a point of the tangent cone.
However x = p is also a solution of (8.28) (this case was not considered above,
because we supposed v �=�0), which is in agreement with the fact that P ∈ TP .

For instance, the tangent cone to the circle x2
1 + x2

2 − 1 = 0 from the point
P = (0,0) is x2

1 + x2
2 = 0, that is, TP = P , although there is no straight line

through P tangent, asymptotic or contained in the circle.
It can happen that the tangent cone does not contain any tangent straight

lines. For instance, the tangent cone to the hyperboloid x2
1 + x2

2 − x2
3 + 1 = 0

from the point P = (0,0,0) is the cone x2
1 +x2

2 − x2
3 = 0, which does not contain

any straight line tangent to the hyperboloid (they are tangent at infinity, see
Figure 8.6). See Exercise 8.15, page 281.

Since P ∈ TP is a center of TP (the symmetry with respect to P leaves TP

invariant), TP is a quadric of type (I), the only types of quadrics containing
their center. For instance, in dimension 3, the tangent cone can be a cone, but
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Figure 8.6. Tangent cone

can also be a point, a straight line, a plane or two planes. See Exercise 8.15,
page 281.

Observation 8.47 (Polar hyperplane)

The above calculations can be slightly simplified by recalling, as mentioned in
Section 8.2.1, that the equation r(x) = 0 can be written as

x̄TMx̄ = 0, (8.29)

where x̄ = (x1, . . . , xn,1), and M is the matrix associated to the polynomial,
that is,

M =
(

A BT/2
B/2 C

)
. (8.30)

Let

x̄ = (x1, . . . , xn,1),

p̄ = (p1, . . . , pn,1),

v̄ = (v1, . . . , vn,0).

Then the equation of the straight line P + 〈v〉 can be written as

x̄ = p̄ + λv̄.
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The intersection of the straight line with the quadric can be obtained by
substituting x̄ = p̄ + λv̄ into (8.29). We get

x̄TMx̄ = (p̄ + λv̄)TM(p̄ + λv̄) = 0.

This equation, quadratic in λ, must have a unique solution, and therefore
its discriminant must vanish. That is,

(p̄TMv̄)2 − (p̄TMp̄)(v̄TMv̄) = 0. (8.31)

Replacing v̄ by (x̄ − p̄)/λ we find that the coordinates x of the points of the
straight lines through P tangent to the quadric x̄TMx̄ = 0 satisfy the equation

Tangent cone: (p̄TMx̄)2 − (p̄TMp̄)(x̄TMx̄) = 0 (8.32)

If we now substitute M by its expression (8.30), we obtain

(
pTAx +

1
2
B(p + x) + C

)2

= r(p)r(x),

which is precisely (8.28), written in a slightly different form.
When P is a point of the quadric (p̄TMp̄ = 0), the equation of the tangent

cone from P reduces to

p̄TMx̄ = 0

which is a linear variety called a tangent hyperplane.
If P does not belong to the quadric, the hyperplane p̄TMx̄ = 0 is said to

be the polar hyperplane of P with respect to the quadric. The intersection of
the polar hyperplane with the quadric is formed by points of the tangent cone,
see Figure 8.7. This is obvious, because these points satisfy p̄TMx̄ = 0 and
x̄TMx̄ = 0. See Exercise 8.17, page 282.

The reader well versed in Projective Geometry will have recognized in this
section the projective treatment of quadrics.

Example 8.48

Find, in an affine space A of dimension 3, the tangent cone to the quadric given
in some affine frame R by x2

1 + x2
2 + x2

3 − 1 = 0, from the point P = (2,0,0).
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Figure 8.7. Polar line

Solution

In this case

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Since p̄ = (2,0,0,1), we have p̄TMp̄ = 3, and hence the equation is

⎛
⎜⎜⎝

(
2 0 0 1

)
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎠

⎞
⎟⎟⎠

2

= 3(x2
1 + x2

2 + x2
3 − 1).

This gives x2
1 − 4x1 + 4 = 3(x2

2 + x2
3). See Figure 8.8. �

Example 8.49

Find, in an affine space A of dimension 2, the tangent cone to the quadric given
in some affine frame R by x2

1 + 2x2
2 − 1 = 0, from the point P = (2,4).
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Figure 8.8. Tangent cone

Solution

In this case

M =

⎛
⎝1 0 0

0 2 0
0 0 −1

⎞
⎠ .

Since p̄ = (2,4,1), we have p̄TMp̄ = 35, and hence the equation is

⎛
⎝(

2 4 1
)
⎛
⎝1 0 0

0 2 0
0 0 −1

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠

⎞
⎠

2

= 35(x2
1 + 2x2

2 − 1).

This gives −31x2
1 − 6x2

2 + 32x1x2 − 4x1 − 16x2 + 36 = 0. But this quadratic
polynomial is the product of two linear polynomials:

−31x2
1 − 6x2

2 + 32x1x2 − 4x1 − 16x2 + 36

=
(
(16 −

√
70)x1 − 6x2 − (8 − 2

√
70)

)

·
(
(16 +

√
70)x1 − 6x2 − (8 + 2

√
70)

)
,

so that the tangent cone is reduced to the two tangent straight lines

(16 −
√

70)x1 − 6x2 − (8 − 2
√

70) = 0,

(16 +
√

70)x1 − 6x2 − (8 + 2
√

70) = 0.

The polar straight line is 2x1 + 8x2 − 1 = 0. See Figure 8.9. �
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Figure 8.9. Tangent cone

EXERCISES

8.1. Let us consider, in an affine space A of dimension 2, the conic given
in some affine frame R by

2x2
1 + 8x2

2 − 4x1x2 +
√

2x2 = 0.

(a) Is the conic an ellipse, a hyperbola or a parabola?
(b) Find a central symmetry leaving the conic invariant.
(c) Find an axial symmetry leaving the conic invariant.

8.2. Let us consider, in an affine space A of dimension 2, the conic given
in some affine frame R by

3x2
1 + 7x2

2 + 6x1x2 + x1 + x2 = 0.

(a) Find a 2 × 2 symmetric matrix A and a 1 × 2 matrix B such



280 8. Affine Classification of Real Quadrics

that

3x2
1 + 7x2

2 + 6x1x2 + x1 + x2 =
(
x1 x2

)
A

(
x1

x2

)
+ B

(
x1

x2

)
.

(b) Find the center of the conic, that is, find a point C = (c1, c2)
such that

2A

(
c1

c2

)
= −BT.

(c) Find a 2 × 2 invertible matrix a such that

aTAa =
(

1 0
0 1

)
.

(d) Prove that the affinity
(

x′

y′

)
= a−1

(
x

y

)
− a−1

(
c1

c2

)

transforms the initial conic into the conic given by x2
1 + x2

2 = 1.
(e) Find, with respect to R, a central symmetry that leaves the

initial conic invariant.
(f) Find, with respect to R, an axial symmetry that leaves the initial

conic invariant.
8.3. Classify the conics of an affine plane A given in an affine frame R

by

2x2
1 − x2

2 − x1 − x2 − 3 = 0,

−3x2
1 + 9x2

2 + 6x1x2 − 4x1 − 1 = 0,

x1x2 + 1 = 0.

Find, if it exists, the center of each of these conics.
8.4. Classify the quadrics of an affine space A of dimension three given

in an affine frame R by

2x2
1 − x2

2 − x1 − x2 − 3 = 0,

−3x2
1 + 9x2

2 + 6x1x2 − 4x1 − 1 = 0,

x1x2 + 1 = 0.

Find, if it exists, the center of each of these quadrics.
8.5. Classify the quadrics of an affine space A of dimension three given

in an affine frame R by
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x2
1 − x2

2 − 4x1x3 − 8x2x3 − 3x2 + x3 − 1 = 0,

−x2
1 + x2

3 + 6x1x2 − 4x1 − x2 = 0,

x2
3 + x1x2 + 1 = 0.

Find, if it exists, the center of each of these quadrics.
8.6. Given the polynomials r(x) = x2

1 + x1x2 − x1 + 2 and s(x) = 2x2
1 +

4x2
2 − 6x1x2 + 2, find two affine frames R and R ′ of the affine plane

R
2 such that

Q(r(x), R) = Q(s(x), R′).

8.7. Characterize the points of the affine plane R
2 such that the conic

through them and through the points (0,0), (1,0), (0,1), (2,2) is an
ellipse. (This is adapted from an exercise in [4].)

8.8. Is the sphere S2 of R
3 a quadric of R

4?
8.9. Study the compatibility of the system of equations considered in

Proposition 8.33.
8.10. Find the affine classification of real quadrics in dimension four.
8.11. Using Proposition B.12, page 358, study the classification of quadrics

on a complex affine space. Show that every quadric of a complex
affine space of dimension n is equivalent to one and only one of the
quadrics given, in some affine frame, by the following equations:

(I) x2
1 + · · · + x2

ρ = 0,
(II/III) x2

1 + · · · + x2
ρ + 1 = 0,

(IV) x2
1 + · · · + x2

ρ + xρ+1 = 0,
where 0 < ρ ≤ n in cases (I) and (II/III), and 0 < ρ < n in case (IV).

8.12. Given two conics in different planes of the affine space R
3, with two

common points, and given a point not contained in these planes,
prove that there is a unique quadric containing the conics and the
point.
Find the quadric containing the point (1,1,1) and the circles
x2

1 + x2
3 = 1, x2 = 0 and x2

2 + x2
3 = 1, x1 = 0. Find a quadric con-

taining the circle (x1 − 1)2 + x2
3 = 1, x2 = 0, the parabola x2 = x2

3,
x1 = 0 and the point (1,1,1), see Figure 8.10.

8.13. Given a hyperboloid of one sheet, find planes cutting it in two
straight lines, in an ellipse, in a hyperbola or in a parabola. Given a
hyperboloid of two sheets, find planes cutting it in an ellipse, a hyper-
bola or in a parabola. Given an elliptic paraboloid, find planes cut-
ting it in an ellipse or in a parabola. Given a hyperbolic paraboloid,
find planes cutting it in a hyperbola or in a parabola.

8.14. In the affine space R
3, find the tangent cone to the quadric x2

1 +x2
2 −

x2
3 + 1 = 0 from the point (5,5,5). See Figure 8.11.



282 8. Affine Classification of Real Quadrics

Figure 8.10. Quadric containing two conics

Figure 8.11. Tangent cone

8.15. Find the tangent cone to the parabolic cylinder of R
3 given by the

equation x2 = x2
1 from the point (1,0,0). Find the tangent cone to a

sphere of R
3 from its center. Find the tangent cone to the quadric

of R
3 given by x2

1 − 1 = 0 from the point (3,0,0). Find the tangent
cone to a hyperboloid of one sheet from a point on its axis. Find the
tangent cones to x2

1 − x2
2 = 0 from the points (0,0) and (1,1).

8.16. Prove that (8.28), defining the tangent cone to a quadric from a
point, is of second degree, except if the point is a non-regular point
of the quadric, or when the quadric is a double hyperplane (this
case was not considered earlier, because the tangent cone has been
defined only for quadrics with a regular point).

8.17. In the notation of Observation 8.47, page 275, prove that the equa-
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tion p̄TMx̄ = 0 represents a hyperplane (the polar hyperplane of
the point P with respect to the quadric x̄TMx̄ = 0) if and only
if grad r(p) �= 0. Observe that the condition grad r(p) �= 0 is equiva-
lent to the condition that the point p ∈ R

n does not belong to the
intersection of n hyperplanes. Find the polar hyperplane in all cases
(quadric and point) considered in Exercise 8.15.





9
Orthogonal Classification of Quadrics

9.1 Introduction

In the previous chapter we regarded as “equal” a quadric and its transforma-
tion under an affinity. In this chapter we similarly identify a quadric and its
transformation under a Euclidean motion. We will essentially use a well known
result from algebra, the Spectral Theorem (also known as the Simultaneous
Diagonalization Theorem, because it gives a basis with respect to which two
given symmetric bilinear maps simultaneously diagonalize), see Theorem C.8,
page 387.

9.2 Orthogonally Equivalent Quadratic
Polynomials

In this and in the following sections, until Section 9.7, we will not mention affine
spaces, focusing instead on polynomials. We define an equivalence relation be-
tween polynomials very similar to the relation we used in the previous chapter,
Definition 8.2, but with the condition that the invertible matrix a appearing
there is now an orthogonal matrix. This will allow us to say that two quadrics
are orthogonally equivalent if there is a Euclidean motion (not an arbitrary
affinity) mapping one of them onto the other.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5 9, c© Springer-Verlag London Limited 2011

285
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Definition 9.1

The polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′,

are orthogonally equivalent if there is an orthogonal a ∈ Mn×n(R), a column
matrix b ∈ Mn×1(R), and a real number λ �= 0, such that

r(ax + b) = λs(x).

That is, two polynomials are orthogonally equivalent if we can formally trans-
form one of them into a multiple of the other by an orthogonal change of
variables.

Proposition 9.2

The polynomials in n variables

r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′,

are orthogonally equivalent if and only if there is an orthogonal a ∈ Mn×n(R),
a column matrix b ∈ Mn×1(R), and a real number λ �= 0, such that

(
aT 0
bT 1

)(
A BT/2

B/2 C

)(
a b

0 1

)
= λ

(
A′ B′T/2

B′/2 C ′

)
. (9.1)

Proof

The proof is as in Proposition 8.3, page 232. �

Therefore, two polynomials are orthogonally equivalent if and only if the sym-
metric matrices associated to them are, up to a scalar factor, conjugated by
a matrix that can be interpreted as the matrix of a Euclidean motion in an
orthonormal affine frame.

This relation is clearly an equivalence relation.

Corollary 9.3

The polynomials in n variables
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r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′

are orthogonally equivalent if and only if there is an orthogonal a ∈ Mn×n(R),
a column matrix b ∈ Mn×1(R), and a real number λ �= 0, such that

λA′ = aTAa,

λB′ = 2bTAa + Ba,

λC ′ = bTAb + Bb + C.

Proof

Simply multiply the matrices of (9.1). �

Notice that r(x) is orthogonally equivalent to μr(x), for all μ ∈ R, μ �= 0, as
can be seen by taking a = In, b = 0 and λ = 1

μ
.

Corollary 9.4

The quadratic polynomials in n variables and without linear part

r(x) = xTAx + C,

s(x) = xTA′x + C ′

are orthogonally equivalent if and only if there is an orthogonal a ∈ Mn×n(R)
and a real number λ �= 0 such that λC ′ = C and λA′ = aTAa.

Proof

The proof is as in Corollary 8.5, page 234. �

In particular, polynomials of the form r(x) = xTAx cannot be equivalent to
polynomials of the form r(x) = xTA′x + C, with C �= 0.

Proposition 9.5

If the quadratic polynomials in n variables
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r(x) = xTAx + Bx + C,

s(x) = xTA′x + B′x + C ′,

are orthogonally equivalent, then the eigenvalues of A and A′ are proportional.

Proof

The condition λA′ = aTAa can be written as λA′ = a−1Aa, since a is orthog-
onal; and it is well known that A and a−1Aa have the same characteristic
polynomial (see, for instance [8], page 332). �

Example 9.6

The polynomials

r(x) = (x1 − 1)2 + (x2 − 1)2 − 1,

s(x) = 2x2
1 + 2x2

2 − 2

are orthogonally equivalent, since if we make the change of variables

x1 = x′
1 + 1,

x2 = x′
2 + 1,

we have

r(x) = r(x′
1 + 1, x′

2 + 1) = x′2
1 + x′2

2 − 1 =
1
2
s(x′).

This can also be seen directly from Proposition 9.2. It is sufficient to observe
that the above change of variables can be written as

⎛
⎝x1

x2

1

⎞
⎠ =

⎛
⎜⎝

1 0 1
0 1 1

0 0 1

⎞
⎟⎠

⎛
⎝x′

1

x′
2

1

⎞
⎠ . (9.2)

But, since

r(x) =
(
x1 x2 1

)
⎛
⎝ 1 0 −1

0 1 −1
−1 −1 1

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠ ,

and

s(x) =
(
x1 x2 1

)
⎛
⎝2 0 0

0 2 0
0 0 −2

⎞
⎠

⎛
⎝x1

x2

1

⎞
⎠ ,
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substituting (9.2) into the expression of r(x), one has

⎛
⎝1 0 0

0 1 0
1 1 1

⎞
⎠

⎛
⎝ 1 0 −1

0 1 −1
−1 −1 1

⎞
⎠

⎛
⎝1 0 1

0 1 1
0 0 1

⎞
⎠ =

1
2

⎛
⎝2 0 0

0 2 0
0 0 −2

⎞
⎠ ,

which is exactly condition (9.1) with λ = 1
2
.

9.2.1 Invariants

Since orthogonally equivalent polynomials are equivalent in the sense given
in Definition 8.3, it is clear that orthogonally equivalent polynomials have the
same invariants (ρ, i, ρ̃, ĩ). However, there are polynomials with the same invari-
ants (ρ, i, ρ̃, ĩ) that are not orthogonally equivalent, for instance, x2

1 + x2
2 − 1

and x2
1 + x2

2 − 4.

9.3 Criterion for Ordering

This section is purely technical, but has been introduced to facilitate the reading
of the next section.

Definition 9.7 (Criterion for ordering)

We say that the non-zero real numbers d1 ≥ · · · ≥ dρ are well ordered if one of
the following four conditions is satisfied:
1. There are more positive dis than negative dis.
2. The number of positive dis is equal to the number of negative dis and

d1 > |dρ|.
3. The number of positive dis is equal to the number of negative dis and, if

dj = |dρ+1−j |, for j = 1, . . . , t − 1, with t ≤ ρ/2, then dt > |dρ+1−t|.
4. The number of positive dis is equal to the number of negative dis and

dj = |dρ+1−j |, for j = 1, . . . , ρ/2.

Obviously, this definition is of interest only when the number of positive dis is
equal to the number of negative dis, and this can only happen when ρ is even.

The four cases considered in the above definition can be condensed to only
two by making use of the lexicographic order used in dictionaries.
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Definition 9.8

We say that the non-zero real numbers d1 ≥ · · · ≥ dρ are well ordered if one of
the following two conditions is satisfied:
1. There are more positive dis than negative dis.
2. The number of positive dis is equal to the number of negative dis and

(d1, . . . , dr) ≥ (−dρ, . . . , −dr+1), with r = ρ/2, in the lexicographic order.

In particular, if d1 ≥ · · · ≥ dρ are well ordered, then d1 > 0.
For instance, 8 ≥ 4 ≥ −1 are well ordered, but the numbers that we obtain

by multiplying by −1, 1 ≥ −4 ≥ −8, are not.
4 ≥ 3 ≥ 2 ≥ −1 ≥ −3 ≥ −4 are well ordered, since 4 = | − 4|, 3 = | − 3|,

2 > | − 1|. However, the numbers that we obtain by multiplying by −1, 4 ≥ 3 ≥
1 ≥ −2 ≥ −3 ≥ −4 are not.

The numbers 8 ≥ 4 ≥ −4 ≥ −8 are well ordered, and they coincide with the
numbers that we obtain multiplying by −1. The numbers 4 ≥ 4 ≥ −4 ≥ −4 are
well ordered.

These examples suggest the following lemma.

Lemma 9.9

Given real numbers d1 ≥ · · · ≥ dρ, then d1 ≥ · · · ≥ dρ or −dρ ≥ · · · ≥ −d1 are
well ordered. If they are both well ordered, then they are equal.

Proof

It is evident that if the number of dj > 0 is different from the number of
dj < 0 one of the two orderings has more positive terms than negative. If
there are as many positive djs as negative, then either dj = |dρ+1−j |, for
j = 1, . . . , ρ/2, in which case both orderings coincide, or there is a first term
satisfying dt �= |dρ+1−t|, in which case one and only one of the two orderings
will satisfy dt ≥ |dρ+1−t|. �

9.4 Canonical Representatives Without Linear
Part

In this and in the following section we shall study the equivalence classes of
polynomials corresponding to the equivalence relation of polynomials intro-
duced in Definition 9.1. We shall see that within each class there is an especially
simple polynomial, which we shall call the canonical representative of the class.
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Theorem 9.10

Let r(x) = xTAx + Bx + C be a quadratic polynomial with

rank(A) = rank(A|BT).

Then r(x) is orthogonally equivalent to a polynomial of the form

s(x) = xTDx + C ′,

where D is a diagonal matrix of the same rank as A, and C′ is a constant.

Proof

In order to find a polynomial without linear part equivalent to

r(x) = xTAx + Bx + C,

it is sufficient to find, by Corollary 9.3 with λ = 1, a real orthogonal matrix a

and a real column matrix b such that

D = aTAa, with D diagonal,

0 = (2bTA + B)a,

C ′ = bTAb + Bb + C = C +
1
2
Bb.

The third condition is irrelevant, because no condition is imposed on C ′. Since
a is invertible, the second condition holds if and only if

2bTA + B = 0,

or, transposing, if and only if

2Ab = −BT.

Hence, for the column matrix b we can take any solution of the system

2Ax = −BT (9.3)

This system has a solution, because we are assuming rank(A) = rank(A|BT).
Observe that if detA �= 0, the condition on the ranks is automatically sat-

isfied, and the system (9.3) has a unique solution. We have already mentioned
that this system is called the system of equations of the center.

The existence of a real orthogonal matrix a satisfying the first condition
(aTAa diagonal) is a direct consequence of the matricial version of the Spectral
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Theorem, see Theorem C.11, page 389. This theorem says precisely that given
a real symmetric matrix A, there is a real orthogonal matrix a such that the
matrix

D = aTAa

is diagonal. This completes the proof. �

Corollary 9.11

Let r(x) = xTAx + Bx + C be a quadratic polynomial with

rank(A) = rank(A|BT).

Then r(x) is either orthogonally equivalent to a polynomial of the form

s(x) = x2
1 + d2x

2
2 + · · · + dρx

2
ρ,

with 1 ≥ d2 ≥ · · · ≥ dρ well ordered, or to a polynomial of the form

t(x) = d1x
2
1 + d2x

2
2 + · · · + dρx

2
ρ + 1,

with d1 ≥ · · · ≥ dρ.

Proof

Permuting if necessary the variables and taking into account that a polynomial
is orthogonally equivalent to its negative, we may assume, by the above theorem
and Lemma 9.9, that r(x) is equivalent to

s′(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + C ′, (9.4)

with d′
1 ≥ · · · ≥ d′

ρ well ordered, and C ′ ∈ R (C ′ = ±(C + 1
2
Bb)). Notice that

polynomials differing only by a permutation of the variables are orthogonally
equivalent, since the matrix a performing this permutation is obtained by per-
muting the corresponding rows in the identity matrix, see Observation 8.6, and
such a matrix is orthogonal.

Now we have two cases, depending on the vanishing of C ′.
First case, C ′ = 0. Dividing (9.4) by d′

1, we obtain that the initial polynomial
is orthogonally equivalent to

s(x) = x2
1 + d2x

2
2 + · · · + dρx

2
ρ (9.5)

with 1 ≥ d2 ≥ · · · ≥ dρ well ordered.
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Second case, C ′ > 0. Dividing (9.4) by C ′, we obtain that the initial poly-
nomial is orthogonally equivalent to

t(x) = d1x
2
1 + · · · + dρx

2
ρ + 1 (9.6)

with d1 ≥ · · · ≥ dρ well ordered.
Third case, C′ < 0. Dividing (9.4) by C′, we obtain that the initial polyno-

mial is orthogonally equivalent to

t(x) = d̄1x
2
1 + · · · + d̄ρx

2
ρ + 1

with d̄1 ≤ · · · ≤ d̄ρ (not, in general, well ordered). Replacing the variables xi by
xρ+1−i and d̄i by dρ+1−i, i = 1, . . . , ρ, we have

t(x) = d1x
2
1 + · · · + dρx

2
ρ + 1 (9.7)

with d1 ≥ d2 ≥ · · · ≥ dρ, and this completes the proof. �

Finally observe that, in the notation introduced in Theorem 8.13, polynomials
orthogonally equivalent to polynomials of the form (9.5) are of type (I). Poly-
nomials orthogonally equivalent to polynomials of the form (9.7) with ρ = 2i,
or with ρ �= 2i but with more djs positive than negative, are of type (II), since
in this case ĩ = i; and if there are fewer djs positive than negative, they are of
type (III), since in this case ĩ = i + 1.

9.5 Canonical Representatives with Linear Part

We begin with a technical lemma that we will need later. It refers to a special
class of polynomials, those in which the variables appearing in the quadratic
part do not appear in the linear part.

Lemma 9.12 (Separated variables)

Let us consider the polynomial

r(x) = d1x
2
1 + · · · + dρx

2
ρ + bρ+1xρ+1 + · · · + bnxn + C.

Assume that some bi, for instance bρ+1, is different from zero. Then, r(x) is
orthogonally equivalent to

s(x) = d1x
2
1 + · · · + dρx

2
ρ + Mxρ+1,
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where

M =
√

b2
ρ+1 + · · · + b2

n.

Proof

The idea is to make the change of variables

x′
i = xi, i ≤ ρ,

x′
ρ+1 = M −1(bρ+1xρ+1 + · · · + bnxn + C),

x′
j =

n∑
k=ρ+1

pkjxk, j = ρ + 2, . . . , n,

(9.8)

in such a way that the matrix

P =

⎛
⎜⎝

bρ+1/M pρ+1,ρ+2 . . . pρ+1,n

...
...

...
bn/M pn,ρ+2 . . . pn,n

⎞
⎟⎠ (9.9)

is orthogonal.
For this, we assume that we are in R

n−ρ, with the ordinary scalar prod-
uct, and coordinates xρ+1, . . . , xn, and we find an orthonormal basis of the
hyperplane H : bρ+1xρ+1 + · · · + bnxn = 0. Let this basis be

uj = (pρ+1,j , . . . , pn,j), j = ρ + 2, . . . , n.

Now we complete this orthonormal basis of H to an orthonormal basis of R
n−ρ

adding as first vector the unit direction vector of the hyperplane H ,

uρ+1 = M −1(bρ+1, . . . , bn).

Thus, the matrix P defined in (9.9) is the matrix of the change of basis
between orthonormal bases, and therefore it is an orthogonal matrix. That is,
PPT = In−ρ.

The change of variables (9.8) can be written as

x′ =
(

Iρ O

O PT

)
x + C̃
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where C̃ is the column matrix

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
C

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with C in the position ρ + 1, and zeros elsewhere.
It is therefore a change of variables of the form x′ = ax+b with a orthogonal,

and it is evident that if we replace xi by x′
i in the initial polynomial r(x) we

obtain

s(x′) = d1(x′
1)

2 + · · · + dρ(x′
r)

2 + Mx′
ρ+1,

and, hence, r(x) is equivalent to s(x), completing the proof. �

Theorem 9.13

Let

r(x) = xTAx + Bx + C

be a quadratic polynomial with

rank(A) �= rank(A|BT).

Then r(x) is orthogonally equivalent to a polynomial of the form

s(x) = d1x
2
1 + · · · + dρx

2
ρ + xρ+1, (9.10)

with d1 ≥ d2 ≥ · · · ≥ dρ well ordered.

Proof

Observe that we must have ρ < n and rank(A|BT) = ρ + 1. We know, by the
Spectral Theorem C.11, page 389, that there is a real orthogonal matrix a such
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that D = aTAa is diagonal, and of the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d′
1

. . .
d′

ρ

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.11)

with d′
i �= 0 and ρ = rank(A), where d′

1 ≥ · · · ≥ d′
ρ.

The given polynomial r(x) is equivalent (with λ = 1 and b = 0) to

r(x) = xTA′x + B′x + C ′,

with

A′ = aTAa = D,

B′ = (2bTA + B)a = Ba,

C ′ = (bTA + B)b + C = C.

That is, r(x) is equivalent to

r(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + b′

1x1 + · · · + b′
nxn + C.

Since a polynomial is orthogonally equivalent to its negative, we may assume,
by Lemma 9.9, that d1 ≥ · · · ≥ dρ are well ordered.

The coefficients b′
i are the components of B′ and they are given by the

equation B′ = Ba (or B′ = −Ba if we have changed the sign of r(x)), and
therefore they depend on the matrix a used to diagonalize A (this matrix is
not unique).

Then we can make the orthogonal change of variables

x′
i = xi +

b′
i

2d′
i

, i = 1, . . . , ρ,

x′
k = xk, k = ρ + 1, . . . , n,

(9.12)

suggested by the method of completing the squares, and we see that r(x) is
equivalent to the polynomial

s(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + b′

ρ+1xρ+1 + · · · + b′
nxn + C2, (9.13)

for some constant C2 that can easily be computed. Hence, we have separated
the quadratic variables from the linear ones.
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The hypothesis on the rank, and the invariance of this hypothesis within
each equivalence class (Observation 8.11), tells us that some of the coefficients
b′
j , j = ρ + 1, . . . , n, are different from zero.

We cannot continue with the same argument as in Section 8.9, because the
change (8.20), page 243, is not orthogonal. However, we can apply Lemma 9.12.

Applying this lemma, we see that the polynomial s(x) given in (9.13) is
equivalent to the polynomial

t(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + Mxρ+1,

with

M =
√

(b′
ρ+1)2 + · · · + (b′

n)2.

Dividing by M > 0, t(x) is equivalent to

s(x) = d1x
2
1 + · · · + dρx

2
ρ + xρ+1

with d′
i = Mdi, i = 1, . . . , ρ, and d1 ≥ d2 ≥ · · · ≥ dρ well ordered. This completes

the proof. �

Polynomials orthogonally equivalent to polynomials with linear part satisfy
ρ̃ = ρ + 2 and they are, therefore, of type (IV).

9.5.1 Observations

Observation 1. The change of variables (9.12) can be written as x′ = ax + b

with a = In and

bT =
(

b′
1

2d1
, . . . ,

b′
ρ

2dρ
,0, . . . ,0

)
.

Observation 2. If, instead of supposing b′
ρ+1 �= 0, we suppose b′

j �= 0, with j ∈
{ρ + 2, . . . , n}, we obtain

r(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + xj .

But it is clear, by a simple change of variables, that this polynomial is
equivalent to (9.10). We have already noted in Observation 8.6 that the
matrix a performing the permutation of xρ+1 with xj is the matrix obtained
by permuting the rows ρ + 1 and j in the identity matrix, and this matrix
is orthogonal.

Observation 3. If the polynomials
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r(x) = d1x
2
1 + · · · + dρx

2
ρ + Mxρ+1,

s(x) = d1x
2
1 + · · · + dρx

2
ρ + M ′xρ+1,

with M and M ′ positive, are orthogonally equivalent, then M = M ′.
If ρ + 1 = n, this is an immediate consequence of equality (9.1), page 286,
because under these conditions we must have λ = 1, and hence, taking
determinants on both sides of (9.1), we have

det

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0
. . .

...
...

dρ

0 M/2
0 . . . M/2 0

⎞
⎟⎟⎟⎟⎟⎠

= λn+1 det

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0
. . .

...
...

dρ

0 M ′/2
0 . . . M ′/2 0

⎞
⎟⎟⎟⎟⎟⎠

and from this we deduce M = M ′.
If ρ+1 < n these determinants are zero, and we cannot use this argument.
However, we can make the following observation (which is also valid if
ρ + 1 = n). If r(x) and s(x) are orthogonally equivalent, there is a real or-
thogonal matrix a and a real column matrix b such that λaD = Da, where
D is the matrix (9.11), and (2bTD+B)a = λB′, where B = (0, . . . ,M, . . . ,0)
and B′ = (0, . . . ,M ′, . . . ,0) (all terms are zero, except the term in the
ρ + 1-th position).
But, λaD = Da implies λ = 1 and also (using the block product of matrices)
that a is of the form

a =
(

P O

O Q

)
,

with P = (pij) a ρ × ρ orthogonal matrix, and Q = (qij) a (n − ρ) × (n − ρ)
orthogonal matrix.
Thus, the equality (2bTD + B)a = λB′, which is equivalent to

(2b1d1, . . . ,2bρdρ,M,0, . . . ,0)a = λ(0, . . . ,0,M ′,0, . . . ,0),

implies (by equating the components from the ρ + 1-th position onward)
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Mqρ+1,ρ+1 = λM ′,

Mqρ+1,j = 0, j = ρ + 2, . . . , n.

Since Q is orthogonal, we have

q2
ρ+1,ρ+1 + · · · + q2

ρ+1,n = 1,

and, therefore, q2
ρ+1,ρ+1 = 1. Since M and M ′ are positive, we must have

M = M ′, and this completes the proof.

9.5.2 Conclusion

For convenience, we collect the results of this and the preceding Section 9.4 in
the following theorem.

Theorem 9.14 (Classification Theorem)

Every quadratic polynomial in n variables is orthogonally equivalent to one
and only one of the following polynomials:

(I) r(x) = x2
1 + d2x

2
2 + · · · + dρx

2
ρ with 1 ≥ d2 ≥ · · · ≥ dρ, well ordered,

(II/III) r(x) = d1x
2
1 + · · · + dρx

2
ρ + 1 with d1 ≥ d2 ≥ · · · ≥ dρ,

(IV) r(x) = d1x
2
1 + · · · + dρx

2
ρ + xρ+1 with d1 ≥ d2 ≥ · · · ≥ dρ, well ordered,

where 0 < ρ ≤ n in cases (I) and (II/III), and 0 < ρ < n in case (IV).

Proof

We have seen, in Sections 9.4 and 9.5, that every quadratic polynomial in n

variables is orthogonally equivalent to one of the polynomials in this list.
It remains to show that two different polynomials of this list are not or-

thogonally equivalent. If they do not have the same invariants (ρ, i, ρ̃, ĩ) we are
done. Let us assume, therefore, that r(x) and s(x) are polynomials in this list
with the same invariants (ρ, i, ρ̃, ĩ). In particular, r(x) and s(x) must be of the
same type (I), (II/III) or (IV). We study each of the three cases.

r(x) and s(x) are both of type (I). We have r(x) = x2
1 + d2x

2
2 + · · · + dρx

2
ρ,

with 1 = d1 ≥ d2 ≥ · · · ≥ dρ well ordered; and s(x) = x2
1 + d′

2x
2
2 + · · · + d′

ρx
2
ρ,

with 1 = d′
1 ≥ d′

2 ≥ · · · ≥ d′
ρ well ordered.
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If r(x) and s(x) were orthogonally equivalent, the matrices
⎛
⎜⎜⎜⎝

1 0 0 0
0 d2 0 0

0 0
. . . 0

0 0 0 dρ

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1 0 0 0
0 d′

2 0 0

0 0
. . . 0

0 0 0 d′
ρ

⎞
⎟⎟⎟⎠

would have proportional eigenvalues; see Proposition 9.5.
By Lemma 9.9, the scalar transforming a well ordered set of real numbers

into another well ordered set of real numbers must be positive; but as the
largest number in these orderings is in both cases equal to 1, this scalar must
be 1, and hence, d′

i = di, for i = 2, . . . , ρ. Thus, r(x) = s(x).

r(x) and s(x) are both of type (II/III). We have r(x) = d1x
2
1 + · · · +dρx

2
ρ +1

with d1 ≥ · · · ≥ dρ, and s(x) = d′
1x

2
1 + · · · + d′

ρx
2
ρ + 1 with d′

1 ≥ · · · ≥ d′
ρ.

If r(x) and s(x) were orthogonally equivalent, by Corollary 9.4, the matrices
⎛
⎜⎜⎜⎝

d1 0 0 0
0 d2 0 0

0 0
. . . 0

0 0 0 dρ

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

d′
1 0 0 0
0 d′

2 0 0

0 0
. . . 0

0 0 0 d′
ρ

⎞
⎟⎟⎟⎠ ,

would have the same eigenvalues. Thus, d′
i = di, for i = 1, . . . , ρ, and hence

r(x) = s(x).

r(x) and s(x) are both of type (IV). We have r(x) = d1x
2
1 + d2x

2
2 + · · · +

dρx
2
ρ + xρ+1, with d1 ≥ d2 ≥ · · · ≥ dρ well ordered; and s(x) = d′

1x
2
1 + d′

2x
2
2 +

· · · + d′
ρx

2
ρ + xρ+1, with d′

1 ≥ d′
2 ≥ · · · ≥ d′

ρ well ordered.
If r(x) and s(x) were orthogonally equivalent, the matrices

⎛
⎜⎜⎜⎝

d1 0 0 0
0 d2 0 0

0 0
. . . 0

0 0 0 dρ

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

d′
1 0 0 0
0 d′

2 0 0

0 0
. . . 0

0 0 0 d′
ρ

⎞
⎟⎟⎟⎠ ,

would have proportional eigenvalues; see Proposition 9.5.
By Lemma 9.9, the scalar transforming a well ordered set of real numbers

into another well ordered set of real numbers must be positive, and hence
d′

j = λdj , for j = 1, . . . , ρ, λ > 0. Since r(x) is orthogonally equivalent to λr(x),
we have that the polynomials

λr(x) = λd1x
2
1 + · · · + λdρx

2
ρ + λxρ+1,

s(x) = λd1x
2
1 + · · · + λdρx

2
ρ + xρ+1
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are equivalent. From Observation 3 on page 297 applied to these two polynomi-
als, we see that λ = 1, that is, d′

j = dj , for j = 1, . . . , ρ, and hence r(x) = s(x).
This completes the proof. �

Notice that polynomials of type (II/III) are of affine type (II) when there are
at least as many positive djs as negative djs, and they are of affine type (III)
when there are fewer positive djs than negative djs. The type (I) and (IV)
polynomials are of affine type (I) and (IV), respectively.

The polynomials of this list are called canonical expressions or canonical
representatives. The coefficients di appearing in the canonical representative
of a given polynomial r(x) = xTAx + Bx + C are multiples of the eigenvalues
of A. That is, we can order the eigenvalues aj of A in such a way that there is
a λ ∈ R, λ > 0, with λaj = dj , j = 1, . . . , ρ.

9.6 Invariants

The invariants (ρ, i, ρ̃, ĩ) associated to each polynomial were sufficient for the
affine classification, but they are not sufficient for the orthogonal classification.

To each polynomial r(x) = xTAx+Bx+C we associate the element of R
4+ρ,

(ρ, i, ρ̃, ĩ, d1, . . . , dρ),

where the dj are the coefficients of the canonical representative of r(x), ordered
as in the Classification Theorem 9.14.

Proposition 9.15

Two quadratic polynomials are orthogonally equivalent if and only if they have
the same invariants (ρ, i, ρ̃, ĩ, d1, . . . , dρ).

Proof

If they are orthogonally equivalent they have the same canonical representative
and, therefore, the same invariants. Conversely, if they have the same invariants,
that means that they have the same canonical representative and, therefore,
they are orthogonally equivalent. �
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Example 9.16

In Table 9.1 we give the invariants of some polynomials.

Type Polynomial Invariants

(I) r1(x) = 4x2
1 − x2

2 (2,1,2,1,1, −1/4)
(I) r2(x) = 4x2

1 − 8x2
2 (2,1,2,1,1, −1/2)

(I) r3(x) = −4x2
1 + x2

2 (2,1,2,1,1, −1/4)
(II) r4(x) = 4x2

1 − x2
2 + 1 (2,1,3,1,4, −1)

(II) r5(x) = 4x2
1 − 8x2

2 + 1 (2,1,3,1,4, −8)
(II) r6(x) = −4x2

1 + 8x2
2 + 1 (2,1,3,1,8, −4)

(II) r7(x) = x2
1 − x2

2 + 1 (2,1,3,1,1, −1)
(II) r8(x) = −x2

1 + x2
2 + 1 (2,1,3,1,1, −1)

(II) r9(x) = −4x2
1 + x2

2 + x2
3 + 1 (3,1,4,1,1,1, −4)

(III) r10(x) = 4x2
1 − x2

2 − x2
3 + 1 (3,1,4,2,4, −1, −1)

(IV) r11(x) = −4x2
1 + x2

2 + x2
3 + x4 (3,1,5,2,1,1, −4)

(IV) r12(x) = 4x2
1 − x2

2 − x2
3 + x4 (3,1,5,2,1,1, −4)

Table 9.1. Invariants

Notice that r1(x) and r3(x) are orthogonally equivalent, as are r11(x) and
r12(x), and r7(x) and r8(x), respectively. However, r5(x) and r6(x), although
they only differ in the sign of the quadratic part, do not have the same invari-
ants; and, although they are of the same affine type, they are not orthogonally
equivalent. Likewise for r9(x) and r10(x).

Example 9.17

In Table 9.2 we present the canonical representatives of some polynomials.

Type Polynomial Canonical Invariants

(I) x2
1 + 5x2

2 − 2x1 + 20x2 + 21 x2
1 + (1/5)x2

2 (2,0,2,0,1,1/5)
(II) 4x2

1 − x2
2 + x1 16x2

1 − 64x2
2 + 1 (2,1,3,1,16, −64)

(III) x2
1 + x2

2 − 1/5 −5x2
1 − 5x2

2 + 1 (2,0,3,1, −5, −5)
(IV) x2

1 + x2
2 + 2x1 + x3 + 1 x2

1 + x2
2 + x3 (2,0,4,1,1,1)

Table 9.2. Canonical representatives
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9.7 Orthogonal Classification of Quadrics

Let us return to Euclidean affine spaces and study the relationship between
quadrics associated to orthogonally equivalent polynomials. This section is an
adaptation of Section 8.12 to the orthogonal case.

Definition 9.18

We say that two non-empty quadrics Q1 and Q2 of a Euclidean affine space A

are orthogonally equivalent if and only if there is a Euclidean motion f such
that f(Q1) = Q2.

Let us see what relationship there is between orthogonally equivalent polyno-
mials and orthogonally equivalent quadrics.

Proposition 9.19

Let R be an orthonormal affine frame of a Euclidean affine space A of dimension
n, and let r(x) and s(x) be orthogonally equivalent polynomials in n variables.
Then there is an orthonormal affine frame R′ such that

Q(r(x), R) = Q(s(x), R ′).

Proof

The proof is as in Proposition 8.18, taking into account that the matrix of the
change of basis between orthonormal bases is an orthogonal matrix. �

Theorem 9.20

Let A be a Euclidean affine space of dimension n, R an orthonormal affine
frame of A, and let r(x) and s(x) be orthogonally equivalent polynomials in n

variables.
Then the quadrics Q(r(x), R) and Q(s(x), R) are orthogonally equivalent

(or empty).

Proof

The proof is as in Theorem 8.19, taking into account that the affinity con-
structed there is now a Euclidean motion. �
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Corollary 9.21

Let R and R ′ be two orthonormal affine frames in a Euclidean affine space of
dimension n, and let r(x) be a polynomial in n variables. Then the quadrics

Q(r(x), R) and Q(r(x), R ′) are orthogonally equivalent.

Proof

Compare Corollary 8.20. �

The converse of Theorem 9.20 is also true. Concretely we shall prove that
orthogonally equivalent (and, therefore, non-empty) quadrics give rise to or-
thogonally equivalent polynomials.

Theorem 9.22 (Converse of Theorem 9.20)

Let A be a Euclidean affine space of dimension n, R an orthonormal affine
frame in A and r(x) and s(x) polynomials in n variables.

Let us assume that the quadrics Q(r(x), R) and Q(s(x), R) are orthogonally
equivalent (and, therefore, non-empty) and that at least one of the points of
Q(r(x), R) is regular. Then r(x) and s(x) are orthogonally equivalent.

Proof

The proof is as in the first part of the proof of Theorem 8.23, where it is assumed
that there is a regular point, taking into account that the affinity constructed
there is now a Euclidean motion. �

Note that the hypothesis on regular points does not appear in the statement
of Theorem 8.23, but the proof is divided into two parts depending on whether
there is a regular point or not. The argument used there for the case where
there are no regular points cannot be adapted to the orthogonal case. For
instance, in the Euclidean affine space R

2, the polynomials r(x) = x2
1 + x2

2 and
s(x) = 7x2

1 + 5x2
2 are not orthogonally equivalent, but the quadrics given by

x2
1 + x2

2 = 0 and 7x2
1 + 5x2

2 = 0 are orthogonally equivalent.

Corollary 9.23 (Converse of Proposition 9.19)

Let A be a Euclidean affine space of dimension n, and let r(x) and s(x) be
polynomials in n variables. Let R and R′ be orthonormal affine frames such
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that

Q(r(x), R ′) = Q(s(x), R).

Let us assume that this quadric is non-empty, and that at least one of its points
is regular. Then r(x) and s(x) are orthogonally equivalent.

Proof

Compare Corollary 8.24. �

Theorem 9.24 (Equivalence between polynomials and quadrics)

Let Q(r(x), R) and Q(s(x), R) be two non-empty quadrics of a Euclidean affine
space A, with R orthonormal, and let us assume that at least one of the points
of Q(r(x), R) is regular. Then these two quadrics are orthogonally equivalent
if and only if the polynomials defining them, r(x) and s(x), are orthogonally
equivalent.

Proof

This is a consequence of Theorems 9.20 and 9.22. �

Corollary 9.25

Two non-empty quadrics, with at least one regular point, are orthogonally
equivalent if and only if the polynomials defining them have the same invariants
(ρ, i, ρ̃, ĩ, d1, . . . , dρ).

Proof

This is a consequence of Theorems 9.15 and 9.24. �

Theorem 9.26 (Classification Theorem)

Every non-empty quadric of a Euclidean affine space A of dimension n, with
at least one regular point, is orthogonally equivalent to one and only one of
the quadrics given, in a certain orthonormal affine frame, by the following
equations:

(I) x2
1 + d2x

2
2 + · · · + dρx

2
ρ = 0, 1 ≥ d2 ≥ · · · ≥ dρ well ordered,
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(II/III) d1x
2
1 + · · · + dρx

2
ρ + 1 = 0, d1 ≥ d2 ≥ · · · ≥ dρ,

(IV) d1x
2
1 + · · · + dρx

2
ρ + xρ+1 = 0, d1 ≥ d2 ≥ · · · ≥ dρ well ordered,

where 0 < ρ ≤ n in cases (I) and (II/III), and 0 < ρ < n in case (IV).

Proof

This is a consequence of Theorems 9.14 and 9.24. �

We have already noted on page 249 that the only quadrics without regular
points are those of type (I) and index i = 0. This means that in the list given in
this theorem, the case (I) with all djs positive is omitted. Case (II/III) with all
djs positive (in particular i = 0) has also been omitted, because it corresponds
to empty quadrics.

If we wanted a complete list, including empty quadrics and quadrics without
regular points, then we would have to add the two cases (I) and (II/III) with
i = 0, but at the expense of a loss of faithfulness.

This theorem can also be stated in terms of a change of affine frame as
follows.

Theorem 9.27

Let Q(r(x), R) be a non-empty quadric of a real affine space A of dimension n,
with R an orthonormal affine frame, and assume that Q(r(x), R) contains at
least one regular point. Then there is an orthonormal affine frame R′ in which
the equation of Q is one and only one of the equations given in the above
Theorem 9.26.

Proof

We know that r(x) is orthogonally equivalent to one and only one of the poly-
nomials r0(x) of type (I), (II), (III) or (IV) given in Theorem 9.26. By Propo-
sition 9.19, there is an orthonormal affine frame R′ such that Q(r(x), R) =

Q(r0(x), R ′). �

We say that R′ is the orthonormal affine frame adapted to the quadric, since
the polynomial defining the quadric in this affine frame is the simplest possible;
it is one of the canonical representatives given in Theorem 9.14.
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9.7.1 Construction of the Adapted Orthonormal Affine
Frame

In order to classify orthogonally a quadric Q(r(x), R) we shall first classify
the polynomial, finding explicitly the equations x′ = ax + b, with a orthogo-
nal, transforming r(x) into one of the canonical polynomials r0(x). If we have
λr0(x) = r(ax + b), then the adapted affine frame R′ is given (see the proof of
Proposition 8.18) by

M(R′, R) =
(

a b

0 1

)
.

The coordinates of the center, in R, are the components of b; and the compo-
nents in B (the basis of R) of the vectors of the basis are given by the columns
of the matrix a. These vectors are the normalized eigenvectors of the matrix A

corresponding to the quadratic part of the polynomial.
If r0(x) is of type (I) or (II/III), then (see Section 8.8) the origin of R ′ is a

center of the quadric. If r0(x) is of type (IV) and hence, it has no center, we
must compute b following the steps of Section 9.4. See Example 9.29.

9.8 Orthogonal Classification of Conics

We apply Theorem 9.26 to the case n = 2. In cases (I) and (II/III) we can have
ρ = 1 or ρ = 2. In case (IV) we must have ρ = 1.
Type (I ) with ρ = 1: x2

1 = 0.
Type (I ) with ρ = 2: x2

1 + d2x
2
2 = 0, with 1 ≥ d2 well ordered. In particular,

|d2| ≤ 1.
Type (II/III ) with ρ = 1: d1x

2
1 + 1 = 0, with d1 > 0.

Type (II/III ) with ρ = 2: d1x
2
1 + d2x

2
2 + 1 = 0, with d1 ≥ d2.

Type (IV ) with ρ = 1: d1x
2
1 + x2 = 0, with d1 > 0.

The different values of the index are determined by the relative number of
positive versus negative djs. We collect all possible cases in Table 9.3.

Observe that in cases (I) and (II) with all djs positive (in particular, with
index i = 0), different values of dj , and hence non-equivalent polynomials, give
rise to the same quadric (a point, a straight line or the empty set). These
quadrics do not contain regular points.
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ρ i ρ̃ ĩ d1 d2 Equation Name

(I) 2 0 2 0 1 1 ≥ d2 > 0 x2
1 + d2x

2
2 = 0 Point

(I) 2 1 2 1 1 0 > d2 ≥ −1 x2
1 + d2x

2
2 = 0 Two lines

(I) 1 0 1 0 1 x2
1 = 0 Double line

(II) 2 1 3 1 > 0 < 0 d1x
2
1 + d2x

2
2 + 1 = 0 Hyperbola

(II) 2 0 3 0 ≥ d2 > 0 d1x
2
1 + d2x

2
2 + 1 = 0 Empty

(II) 1 0 2 0 > 0 d1x
2
1 + 1 = 0 Empty

(III) 2 0 3 1 < 0 ≤ d1 d1x
2
1 + d2x

2
2 + 1 = 0 Ellipse

(III) 1 0 2 1 < 0 d1x
2
1 + 1 = 0 Parallel lines

(IV) 1 0 3 1 > 0 d1x
2
1 + x2 = 0 Parabola

Table 9.3. Conics

Example 9.28

Classify orthogonally the conic of a Euclidean affine plane A given in an or-
thonormal affine frame R by r(x) = 5x2

1 − x2
2 − 6

√
3x1x2 + 4 = 0.

Solution

The eigenvalues of the matrix of the quadratic part

A =
(

5 −3
√

3
−3

√
3 −1

)
,

are λ1 = 8 and λ2 = −4. The corresponding normalized eigenvectors are u1 =
1
2
(−

√
3,1) and u2 = 1

2
(1,

√
3). The equations of the center

∂r(x)
∂x1

= 0,
∂r(x)
∂x2

= 0,

give x1 = x2 = 0. Hence, the adapted affine frame is

R ′ = {(0,0); (u1, u2)}.

In this affine frame, the equation of the conic is r(ax + b) = 0, where b = 0
(coordinates of the center), and a is the matrix with columns the components
of u1 and u2. We obtain 2x2

1 − x2
2 + 1 = 0; a hyperbola. �
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9.9 Orthogonal Classification of Quadrics
in Dimension Three

We apply Theorem 9.26 to the case n = 3. In cases (I) and (II/III) we can have
ρ = 1, ρ = 2 or ρ = 3. In case (IV) we must have ρ = 1 or ρ = 2.
Type (I ) with ρ = 1: x2

1 = 0.
Type (I ) with ρ = 2: x2

1 + d2x
2
2 = 0, with 1 ≥ d2 well ordered. In particular

|d2| ≤ 1.
Type (I ) with ρ = 3: x2

1 + d2x
2
2 + d3x

2
3 = 0, with 1 ≥ d2 ≥ d3 well ordered. In

particular d2 is positive.
Type (II/III ) with ρ = 1: d1x

2
1 + 1 = 0, with d1 > 0.

Type (II/III ) with ρ = 2: d1x
2
1 + d2x

2
2 + 1 = 0, with d1 ≥ d2.

Type (II/III ) with ρ = 3: d1x
2
1 + d2x

2
2 + d3x

2
3 + 1 = 0, with d1 ≥ d2 ≥ d3.

Type (IV ) with ρ = 1: d1x
2
1 + x2 = 0, with d1 > 0.

Type (IV ) with ρ = 2: d1x
2
1 + d2x

2
2 +x3 = 0, with d1 ≥ d2 well ordered. In par-

ticular |d2| ≤ d1.
The different values of the index are determined by the relative number of

positive versus negative djs. We collect all possible cases in Table 9.4, where the
equation is always d1x

2
1+d2x

2
2+d3x

2
3+1 = 0 with the corresponding restrictions

on di.
Observe that in cases (I) and (II/III) with all djs positive (in particular,

index i = 0), different values of dj , in fact non-equivalent polynomials, give rise
to the same quadric (a point, a straight line, a plane or an empty set). These
quadrics do not contain regular points.

The abbreviated names in the final column of the table are introduced
only for typographical reasons. They have the following meanings: 2P = two
intersecting planes; P2 = double plane; H2 = hyperboloid of two sheets; HC =
hyperbolic cylinder; H1 = hyperboloid of one sheet; E = ellipsoid; EC = elliptic
cylinder; PP = parallel planes; EP = elliptic paraboloid; HP = hyperbolic
paraboloid; PC = parabolic cylinder.

Example 9.29

Let R = {P ; B } be an orthonormal affine frame of a Euclidean affine space A

of dimension three. Classify orthogonally the quadric given in R by r(x) =
3x2

1 − x2
3 − 2x1x3 + 4x1 + x2 + x3 + 1 = 0 and find the adapted orthonormal

affine frame.
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ρ i ρ̃ ĩ d1 d2 d3 Name

(I) 3 0 3 0 1 1 ≥ d2 ≥ d3 > 0 Point
(I) 3 1 3 1 1 1 ≥ d2 > 0 < 0 Cone
(I) 2 0 2 0 1 1 ≥ d2 > 0 0 Str. line
(I) 2 1 2 1 1 0 > d2 ≥ −1 0 2P
(I) 1 0 1 0 1 0 0 P2

(II) 3 0 4 0 ≥ d2 ≥ d3 > 0 Empty
(II) 3 1 4 1 ≥ d2 > 0 < 0 H2
(II) 2 0 3 0 ≥ d2 > 0 0 Empty
(II) 2 1 3 1 > 0 < 0 0 HC
(II) 1 0 2 0 > 0 0 0 Empty
(III) 3 1 4 2 > 0 < 0 ≤ d2 H1
(III) 3 0 4 1 < 0 ≤ d1 ≤ d2 E
(III) 2 0 3 1 < 0 ≤ d1 0 EC
(III) 1 0 2 1 < 0 0 0 PP
(IV) 2 0 4 1 ≥ d2 > 0 1 EP
(IV) 2 1 4 2 > 0 0 > d2 ≥ −d1 1 HP
(IV) 1 0 3 1 > 0 0 1 PC

Table 9.4. Quadrics

Solution

The matrix of the quadratic part is

A =

⎛
⎝ 3 0 −1

0 0 0
−1 0 −1

⎞
⎠ .

The eigenvalues are λ1 = 1 +
√

5, λ2 = 1 −
√

5 and λ3 = 0. The normalized
eigenvectors are, respectively,

u1 = a(1,0,2 −
√

5), u2 = b(1,0,2 +
√

5), u3 = a(0,1,0)

with

a =
1√

10 − 4
√

5
, b =

1√
10 + 4

√
5
.

Then (u1, u2, u3) is the basis of the adapted orthonormal affine frame that
we are looking for. To find the origin of this affine frame we observe that this
quadric has no center, because rankA �= rank(A|BT), where B = (4,1,1). Hence
we are in the situation described in Section 9.5. Following this section we make
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the change of variables

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ a b 0

0 0 1
−ac−1 bc 0

⎞
⎠

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ , with c = 2 +

√
5. (9.14)

Substituting these values into r(x) we obtain

r(x) = 3(ax′
1 + bx′

2)
2 − (−ac−1x′

1 + bcx′
2)

2

− 2(ax′
1 + bx′

2)(−ac−1x′
1 + bcx′

2)

+ 4(ax′
1 + bx′

2) + x′
3 + (−ac−1x′

1 + bcx′
2) + 1

= λ1x
′2
1 + λ2x

′2
2 + dx′

1 + ex′
2 + x′

3 + 1,

with

d = (6 −
√

5)a =
6 −

√
5√

10 − 4
√

5
, e = (6 +

√
5)b =

6 +
√

5√
10 + 4

√
5
.

Now we complete squares

λ1x
′2
1 + λ2x

′2
2 + dx′

1 + ex′
2 + x′

3 + 1

= λ1

(
x′

1 +
d

2λ1

)2

− d2

4λ1
+ λ2

(
x′

2 +
e

2λ2

)2

− e2

4λ2
+ x′

3 + 1

= λ1x
′ ′2
1 + λ2x

′ ′2
2 + x′ ′

3 ,

with

x′ ′
1 = x′

1 +
d

2λ1
,

x′ ′
2 = x′

2 +
e

2λ2
,

x′ ′
3 = x′

3 − d2

4λ1
− e2

4λ2
+ 1.

Solving for x′
1, x

′
2, x

′
3 and substituting them into (9.14) we obtain the global

change of coordinates

⎛
⎝x1

x2

x3

⎞
⎠ = ā

⎛
⎝x′ ′

1

x′ ′
2

x′ ′
3

⎞
⎠ + ā

⎛
⎜⎜⎝

− d
2λ1

− e
2λ2

d2

4λ1
+ e2

4λ2
− 1

⎞
⎟⎟⎠ ,
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with

ā =

⎛
⎝ a b 0

0 0 1
−ac−1 bc 0

⎞
⎠ .

We write this change as x = āx′ ′ + b̄, and so r(āx′ ′ + b̄) = r0(x′ ′), where
r0(x) = λ1x

2
1 + λ2x

2
2 + x3 is the canonical representative. By the Section “Con-

struction of the adapted orthonormal affine frame” on page 307, the adapted
affine frame R′ is given by

M(R′, R) =
(

ā b̄

0 1

)
,

where R is the affine frame in which the quadric was given.
Hence, the basis is formed by the vectors whose components in B are given

by the columns of ā; and the origin C is the point with coordinates b̄, that is,

C =
(

− ad

2λ1
− be

2λ2
,

d2

4λ1
+

e2

4λ2
− 1, − ad

2cλ1
− bec

2λ2

)
=

(
− 3

8
, − 11

16
,
7
8

)
.

Observe that the straight line C + 〈u3〉 is an axis of symmetry. This orthog-
onal symmetry is given in R by

S(x1, x2, x3) =
(

− 3
4

− x1, x2,
7
4

− x3

)
.

Compare this example with Example 8.31, page 263. �

9.10 Symmetries of a Quadric

Looking at the classification, one can see that any map with equations given
in the adapted affine frame by

S(x1, . . . , xn) = (±x1, . . . , ±xn)

leaves any quadric of type (I) or (II/III) invariant.
Once we fix the signs “±”, we have S ◦ S = id, that is, S is a symmetry.

Since the affine frame is orthonormal, S is an orthogonal symmetry.
For instance,

S(x1, . . . , xn) = (x1, −x2, . . . , −xn)

is an axial symmetry with respect to the straight line through the origin of the
adapted affine frame (a center of the quadric) with direction vector the first
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vector of the adapted basis (an eigenvector of the symmetric matrix associated
to the quadratic part of r(x)). A straight line through the center of the quadric
with direction vector an eigenvector of the quadratic part is a symmetry axis
of the quadric.

If

S(x1, . . . , xn) = (x1, x2, −x3, . . . , −xn),

we have a mirror symmetry with respect to the plane through the origin of the
adapted affine frame directed by two eigenvectors of the quadratic part. A plane
through the center directed by the space generated by two eigenvectors of the
quadratic part is a plane of symmetry of the quadric.

If

S(x1, . . . , xn) = (−x1, . . . , −xn),

we have a central symmetry with respect to the origin.
Finally, observe that any map with equations given, in the adapted affine

frame, by

S(x1, . . . , xn) = (±x1, . . . , ±xρ−1, xρ, ±xρ+1, . . . , ±xn),

where ρ is the quadratic rank, leaves invariant any quadric of type (IV). In
particular, the straight line through the origin of the adapted affine frame
(these quadrics have no center) and direction vector the ρ-th eigenvector, is a
symmetry axis of the quadric.

For instance, the axial symmetry S(x1, x2, x3) = (−x1, −x2, x3), leaves in-
variant the elliptic paraboloid x2

1 + x2
2 + x3 = 0.

Example 9.30

Find the symmetry axes of the quadric of the Euclidean affine space R
3 given

in the canonical affine frame by r(x) = 4x2
1 + 4x2

2 + 4x2
3 + 4x1x3 + x3 − 1 = 0.

Find the equations of the symmetry with respect to one of these axes.

Solution

This polynomial can be written as xTAx + Bx + C, with

A =

⎛
⎝4 0 2

0 4 0
2 0 4

⎞
⎠ , B = (0,0,1), C = −1.
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Since det(A) �= 0, we have ρ = 3. Its characteristic polynomial is pA(x) = −x3 +
12x2

1 − 44x + 48, which has three changes of sign, and hence i = 0.
The matrix

Ã =

⎛
⎜⎜⎝

4 0 2 0
0 4 0 0
2 0 4 1
0 0 1 −1

⎞
⎟⎟⎠

has rank 4, and hence ρ̃ = 4. Its characteristic polynomial is pÃ(x) = x4 + x3 +
31x2 + 4x − 64, which has one change of sign, and hence ĩ = 1. Hence, the
invariants are (ρ, i, ρ̃, ĩ) = (3,0,4,1), and the quadric is, therefore, an ellipsoid.

We want to find an orthonormal affine frame in which the equation of this
ellipsoid is

d1x
2
1 + d2x

2
2 + d3x

2
3 + 1 = 0,

with d3 ≤ d2 ≤ d1 < 0.
The origin will be the center of the quadric. We calculate this center by

solving the system 2Ax = −BT, that is,

⎛
⎝8 0 4

0 8 0
4 0 8

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = −

⎛
⎝0

0
1

⎞
⎠ .

We obtain C = (1/12,0, −1/6).
The orthonormal basis we are looking for is formed by the normalized eigen-

vectors of A.
The eigenvalues of A are the roots of the characteristic polynomial pA(x).

These roots are λ1 = 2, λ2 = 4 and λ3 = 6. The corresponding eigenvectors are
u1 = (1,0, −1), u2 = (0,1,0) and u3 = (1,0,1).

This answers the question posed in the problem: the symmetry axes of the
quadric are the straight lines C + 〈ui〉, i = 1,2,3. For completion, we continue
the classification.

Consider the orthonormal affine frame R = {C; B }, where B = (v1, v2, v3)
with v1 = 1/

√
2u1, v2 = u2 and v3 = 1/

√
2u3.

The relationship between the initial coordinates (x1, x2, x3) and the coor-
dinates (x′

1, x
′
2, x

′
3) in R is given by

⎛
⎝x1 − 1/12

x2

x3 + 1/6

⎞
⎠ =

⎛
⎜⎝

1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

⎞
⎟⎠

⎛
⎝x′

1

x′
2

x′
3

⎞
⎠ .

Substituting these values into the equation 4x2
1 + 4x2

2 + 4x2
3 + 4x1x3 + x3 −



9.10 Symmetries of a Quadric 315

1 = 0, we obtain

2(x′
1)

2 + 4(x′
2)

2 + 6(x′
3)

2 − 13/12 = 0,

that is,

− 24
13

(x′
1)

2 − 48
13

(x′
2)

2 − 72
13

(x′
3)

2 + 1 = 0.

These coefficients, d1 = − 24
13

, d2 = − 48
13

, d3 = − 72
13

, already satisfy the condition
d3 ≤ d2 ≤ d1 < 0. Otherwise, we need only permute the variables.

Figure 9.1. Orthogonal symmetry

Now we find the orthogonal symmetry with respect to l: C + 〈v3〉. Since v3

is a unit vector, the symmetry of a point X is given by (see Figure 9.1)

S(X) = X + 2
−−→
XY , with Y = C + (

−−→
CX · v3)v3.

Substituting, we obtain

Y =
(

x1

2
+

x3

2
+

1
8
,0,

x1

2
+

x3

2
− 1

8

)
,

and, hence,

S(x1, x2, x3) =
(

x3 +
1
4
, x2, x1 − 1

4

)
.

�

EXERCISES

9.1. Find the canonical representatives of the following polynomials:

r(x) = x2
1 − 3x2

2 + 8x1x2 + x1 + x2 + 1,

s(x) = 5x2
1 + x2

2 + 2x1x2 − 3x1 + x2 + x3 + 1,

t(x) = 5x2
1 + x2

2 + 2x1x2 + 4x1 + 2.
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9.2. Find the invariants (ρ, i, ρ̃, ĩ, d1, . . . , dρ) of the following polynomials:

r(x) = −2x2
1 + x2

2 + 2x1x2 + x1 + 9,

s(x) = −2x2
1 + x2

2 + x1 + x2,

t(x) = x2
1 + 2x1x2 + x2 − 8.

9.3. Classify the conic of a Euclidean affine plane given in an orthonormal
affine frame by

2x2
1 + 8x2

2 − 4x1x2 +
√

2x2 = 0;

that is, find its canonical expression. Find an adapted affine frame.
9.4. Consider the conic of the Euclidean affine space R

2 given by

3x2
1 + 7x2

2 + 6x1x2 + x1 + x2 = 0.

(a) Find a symmetric 2 × 2 matrix A and a 1 × 2 matrix B such
that

3x2
1 + 7x2

2 + 6x1x2 + x1 + x2 =
(
x1 x2

)
A

(
cx1

x2

)
+ B

(
cx1

x2

)
.

(b) Find the center of the conic, that is, find a point C = (c1, c2)
such that

2A

(
c1

c2

)
= −BT.

(c) Find an orthogonal 2 × 2 matrix a such that D = aTAa is a
diagonal matrix.

(d) Prove that the Euclidean motion of the Euclidean affine space
R

2

(
x′

y′

)
= a−1

(
x1

x2

)
− a−1

(
c1

c2

)

transforms the given conic into an ellipse with center the origin.
See Exercise 8.2 of Chapter 8, page 279.

9.5. Classify orthogonally the conics of a Euclidean affine plane A given
in an orthonormal affine frame R by

2x2
1 − x2

2 − x1 − x2 − 3 = 0,

−3x2
1 + 9x2

2 + 6x1x2 − 4x1 − 1 = 0,

x1x2 + 1 = 0.

Find, in each case, the center.
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9.6. Classify orthogonally the quadrics of a Euclidean affine space A of
dimension three given in an orthonormal affine frame R by

2x2
1 − x2

2 − x1 − x2 − 3 = 0,

−3x2
1 + 9x2

2 + 6x1x2 − 4x1 − 1 = 0,

x1x2 + 1 = 0.

Find, in each case, the center.
9.7. Classify orthogonally the quadrics of a Euclidean affine space A of

dimension three given in an orthonormal affine frame R by

x2
1 − x2

2 − 4x1x3 − 8x2x3 − 3x2 + x3 − 1 = 0,

−x2
1 + x2

3 + 6x1x2 − 4x1 − x2 = 0,

x2
3 + x1x2 + 1 = 0.

Find, in each case, the center.
9.8. Given the polynomials

r(x) = x2
1 − 4x2

2 + x1x2 − x2,

s(x) = −x2
1 − 2x2

2 − 5x1x2 −
√

2
2

x1 −
√

2
2

x2,

find two orthonormal affine frames R and R′ of the Euclidean affine
space R

2 such that

Q(r(x), R) = Q(s(x), R′).

9.9. (Ruled quadrics) Prove that through any point (a1, a2, a3) on the
hyperbolic paraboloid HP : d1x

2
1 +d2x

2
2 + z = 0 (d1 > 0, d2 < 0) pass

two straight lines lying entirely on it. In fact, the direction vector is
given by

(d2(d1a
2
1 ± a2a1

√
d1

√
−d2), d1a1(a2d2 ∓ a1

√
d1

√
−d2),2d1d2a1a3).

9.10. (Ruled quadrics) Prove that through every point (a1, a2, a3) on the
one sheet hyperboloid H1: d1x

2
1 +d2x

2
2 +d3x

2
3 +1 = 0 (d1 > 0, d2 < 0,

d3 < 0) pass two straight lines lying entirely on it. In fact, the di-
rection vector (u1, u2, u3) (determined up to a scalar factor) can be
found by solving the system

d1u
2
1 + d2u

2
2 + d3u

2
3 = 0,

d1a1u1 + d2a2u2 + d3a3u3 = 0.
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9.11. Let P be a point in the interior of an ellipsoid of the Euclidean affine
space R

3. Draw three orthogonal straight lines through P , and let
A1,A2 be the intersection points of the first line with the ellipsoid;
B1,B2 the intersection points of the second line with the ellipsoid;
and C1,C2 the intersection points of the third line with the ellipsoid.
Prove that the sum

1
PA1 · PA2

+
1

PB1 · PB2
+

1
PA1 · PA2

does not depend on the three orthogonal straight lines chosen. (This
exercise is taken from [4].)



A
Vector Spaces with Scalar Product

A.1 Introduction

The aim of this chapter is to “copy” the metric properties of the vector space
R

n in arbitrary R-vector spaces of finite dimension.
After recalling the notion of the “standard” scalar product on R

n, we study
bilinear maps as a natural generalization of this scalar product to arbitrary
R-vector spaces. We associate matrices to these bilinear maps in a way that
is similar, but necessarily different, to the way that matrices are associated to
linear maps.

Next we introduce the notion of a scalar product on an R-vector space, as a
particular case of a bilinear map, and the concepts of norm, cosine of the angle
between two vectors and orthogonality.

We shall also study maps preserving a scalar product. These maps are linear
and the matrix associated to each of them, in an orthonormal basis, has the
curious property that its inverse and its transpose coincide (AT = A−1). This
kind of matrix is said to be orthogonal; see Section A.8, page 341.
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A.1.1 The Standard Scalar Product on R
n

Definition A.1

The standard scalar product of two vectors u and v of R
n is the number u · v

given by

u · v = u1v1 + u2v2 + · · · + unvn,

where u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn).

The scalar product enables us to define the distance between points of R
n, the

angle between vectors, etc.
Concretely, the modulus or norm of a vector u ∈ R

n is the number |u| given
by

|u| =
√

u · u.

The Cauchy-Schwarz inequality holds:

(u · v)2 ≤ |u|2|v|2,

for all u, v ∈ R
n. The cosine of the angle between two non-zero vectors u, v ∈ R

n

is defined as

cos(u, v) =
u · v

|u| · |v| .

The distance between two points P and Q of R
n is the number

d(P,Q) = | −−→
PQ|,

where
−−→
PQ = Q − P . The properties of distance given in Proposition 5.5,

page 160, are satisfied.

A.2 Bilinear Maps

Note that the existence of the canonical basis of R
n plays a key role in the

definition of the standard scalar product. Since an arbitrary R-vector space has
no canonical basis, we must find an alternative definition of scalar product in
the general case. What we will do is observe that the standard scalar product on
R

n can be considered as a map from R
n × R

n to R satisfying certain properties,
and then we shall define a scalar product on an R-vector space E to be any
map from E × E to R satisfying these same properties.
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Definition A.2

A bilinear map ϕ on an R-vector space E is a map

ϕ : E × E −→ R

which satisfies the following, for all u, v,w ∈ E and for all λ ∈ R:
(1) ϕ(u + v,w) = ϕ(u,w) + ϕ(v,w),

ϕ(u, v + w) = ϕ(u, v) + ϕ(u,w).
(2) ϕ(λu, v) = λϕ(u, v),

ϕ(u,λv) = λϕ(u, v).

Observe that the standard scalar product is a bilinear map on R
n.

A.2.1 The Matrix of a Bilinear Map

Let B = (e1, . . . , en) be a basis of the R-vector space E. To each bilinear map
ϕ on E we associate a matrix A ∈ Mn×n(R) in the following way:

A = (aij), with aij = ϕ(ei, ej).

That is,

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠ .

ϕ determines, and is determined by, A. Indeed, let

u =
n∑

i=1

uiei, v =
n∑

j=1

vjej .

Then

ϕ(u, v) = ϕ

⎛
⎝ n∑

i=1

uiei,

n∑
j=1

vjej

⎞
⎠

=
n∑

i=1

n∑
j=1

uivjϕ(ei, ej)

=
n∑

i=1

n∑
j=1

uiaijvj
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=
(
u1 . . . un

)
⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎝

v1

...
vn

⎞
⎟⎠ . (A.1)

The matrix A is called the matrix of ϕ with respect to the basis B, and will
be denoted by M(ϕ, B).

Using this notation and the notation used for the components of vectors,
see page 143, formula (A.1) is rewritten as

ϕ(u, v) = C(u, B)TM(ϕ, B)C(v, B). (A.2)

A.2.2 Change of Basis

Let B1 = (e1, . . . , en) and B2 = (u1, . . . , un) be two bases of E, and let ϕ be a
bilinear map on an R-vector space E. What is the relationship between the
matrices M(ϕ, B1) and M(ϕ, B2)?

Let

C = M(B2, B1)

be the matrix of the change of basis, that is,

C = (cir) with ur =
∑

i

cirei.

To simplify the notation, we set

A = (aij) = M(ϕ, B1), B = (bij) = M(ϕ, B2).

We also use the notation [M ]ij to denote the (i, j)-th entry of the matrix M .
So, if M = (mij), we have [M ]ij = mij .

Thus,

brs = ϕ(ur, us) =
∑
i,j

circjsϕ(ei, ej) =
∑
i,j

circjsaij

=
∑
i,j

ciraijcjs =
∑

i

cir[AC]is =
∑

i

[CT]ri[AC]is = [CTAC]rs.

That is,

B = CTAC,
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or, equivalently,

M(ϕ, B2) = M(B2, B1)TM(ϕ, B1)M(B2, B1) (A.3)

which is the formula of the change of basis for bilinear maps.
In particular,

detM(ϕ, B2) = detM(ϕ, B1) · (detC)2.

This enables us to define the rank and discriminant of a bilinear map. The
rank of a bilinear map φ is the rank of the matrix associated to φ in any basis,

rankφ = rankM(φ, B).

Recall that the rank of a matrix does not vary when we multiply this matrix,
on the left or on the right, by an invertible matrix (see, for instance, [8], page
201). For this reason, and by (A.3), it makes sense to talk about the rank of φ.

The discriminant of φ is the discriminant of the matrix associated to φ in
any basis,

discriminantφ = discriminantM(φ, B).

Recall that the discriminant of a matrix is its determinant, modulo squares.
Thus,

discriminantM(φ, B1) = discriminantM(φ, B2),

since

detM(ϕ, B2)
detM(ϕ, B1)

is a square. Thus it is meaningful to talk about the discriminant of φ, but not
the determinant of φ.

Observe that two matrices have the same discriminant if and only if their
determinants are different from zero and the quotient of these determinants is
a square. Therefore, the discriminant strongly depends on the arithmetic of the
underlying field.

For instance, on C all invertible matrices have the same discriminant, be-
cause every non-zero complex number has a square root; and on R two invertible
matrices have the same discriminant if and only if their determinants have the
same sign, because then their quotient is positive and therefore has a square
root.
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A.2.3 Symmetric Bilinear Maps

Definition A.3

A bilinear map ϕ on an R-vector space E is symmetric if and only if, for all
u, v ∈ E, we have ϕ(u, v) = ϕ(v,u).

Observe that the standard scalar product is a symmetric bilinear map on R
n.

Proposition A.4

A bilinear map ϕ on an R-vector space E is symmetric if and only if its as-
sociated matrix with respect to a basis B = (e1, . . . , en) of E, A = M(ϕ, B), is
symmetric, that is A = AT.

Proof

It is clear that if ϕ is symmetric then its associated matrix A is symmetric,
because ϕ(ei, ej) = ϕ(ej , ei).

Conversely, let us assume A is symmetric.
First we observe that, if c1, c2 ∈ Mn×1(R), the product of matrices cT

1 Ac2

is a scalar (a 1 × 1 matrix), and hence we have

(cT
1 Ac2)T = cT

1 Ac2.

Thus, if u, v ∈ E are the vectors with components c1, c2 in the basis B,
c1 = C(u, B) and c2 = C(u, B), we have

ϕ(u, v) = cT
1 Ac2 = (cT

1 Ac2)T = cT
2 ATc1 = cT

2 Ac1 = ϕ(v,u).

�

A.2.4 The Radical

We have already remarked in the introduction to this chapter that the concept
of a bilinear map generalizes the concept of the standard scalar product on R

n.
However, with respect to this ‘generalized scalar product’, it is possible for a
non-zero vector in the R-vector space E to have modulus zero, that is, there
may be a vector u ∈ E, u �= 0, such that φ(u,u) = 0. It is even possible for a
non-zero vector 0 �= u ∈ E to satisfy φ(u, v) = 0 for all v ∈ E. For this reason, in
order to study bilinear maps, it is useful to introduce the concept of the radical.
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Definition A.5

The radical of a symmetric bilinear map φ of an R-vector space E is the vector
subspace of E defined by

radφ = {v ∈ E : φ(v,w) = 0, for all w ∈ E}.

When radφ = {�0}, we say that φ is non-singular, or non-degenerate.

Extending a basis of the radical to a basis of the whole space we obtain a basis
B such that

M(φ, B) =
(

0 0
0 A

)

and a decomposition

E = radφ ⊕ F

such that φ restricted to F is non-singular. That is, the radical of (F,φ|F )
is zero. Thus, the study of symmetric bilinear maps essentially reduces to the
study of non-singular symmetric bilinear maps.

Note that the subspace F complementary to the radical is not at all unique
(a basis of the radical can be extended to a basis of the whole space in many
different ways). If we have

E = radφ ⊕ F ′,

and B ′ is a basis adapted to this decomposition (the first vectors are in radφ

and the others in F ′), then

M(φ, B ′) =
(

0 0
0 A′

)
.

In this case, it is easy to see (change of basis) that there is an invertible matrix
C such that

A′ = CTAC.

Hence, discriminantA′ = discriminantA, and we call this common value the
discriminant of the non-singular part of φ.

Finally, let us recall that the notation E = F ⊥H reads “E is equal to the
orthogonal direct sum of F and H” and means E = F ⊕ H with φ(u, v) = 0 for
all u ∈ F and v ∈ H . That is, E is the direct sum of two orthogonal subspaces.

In particular, the notation radφ ⊕ F is equivalent to the notation radφ⊥F ,
since the radical is orthogonal to any subspace.
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A.3 Scalar Product

Definition A.6

We say that a bilinear map ϕ on an R-vector space E is positive definite if for
all u ∈ E we have ϕ(u,u) ≥ 0, and ϕ(u,u) = 0 if and only if u = 0.

Notice that the condition ϕ(u,u) ≥ 0 is meaningless on arbitrary fields. Observe
also that the standard scalar product is positive definite; and that if ϕ is positive
definite, then radϕ = {�0}.

Definition A.7 (Scalar product)

A scalar product on an R-vector space E is a positive definite symmetric bilinear
map ϕ on E.

Definition A.8

A Euclidean vector space is an R-vector space together with a scalar product
defined on it.

Thus, if ϕ is a scalar product on E, we say that (E,ϕ) is a Euclidean vector
space. Sometimes, by abuse of notation, we say “the Euclidean vector space E”
when it is clear which scalar product is being considered.

A scalar product on E enables us to define a distance between elements
of E, angles, etc.

Concretely, if ϕ is a scalar product on E, we define the modulus or norm
of a vector u of E by

|u| =
√

ϕ(u,u),

and the cosine of the angle between two non-zero vectors u and v of E by

cos(u, v) =
ϕ(u, v)

|u| · |v| .

This definition makes sense because of the Cauchy-Schwarz inequality.

Proposition A.9 (The Cauchy-Schwarz Inequality)

Let (E,ϕ) be a Euclidean vector space. Then, for all u, v ∈ E, we have

ϕ(u, v)2 ≤ |u|2|v|2.
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Proof

Let λ ∈ R. Then

0 ≤ ϕ(u + λv,u + λv) = ϕ(u,u) + 2λϕ(u, v) + λ2ϕ(v, v).

Since the polynomial ϕ(u,u) + 2ϕ(u, v)x + ϕ(v, v)x2 takes non-negative values
for all λ ∈ R, its discriminant must be negative or zero. Hence,

4ϕ(u, v)2 − 4ϕ(u,u)ϕ(v, v) ≤ 0,

and this completes the proof. �

Corollary A.10

Let (E,ϕ) be a Euclidean vector space. Then, for all u, v ∈ E, we have

|u + v| ≤ |u| + |v|.

Proof

Using the Cauchy-Schwarz inequality we have

|u + v|2 = ϕ(u + v,u + v) = |u|2 + |v|2 + 2ϕ(u, v)

≤ |u|2 + |v|2 + 2|u| |v|

= (|u| + |v|)2,

and this completes the proof. �

Definition A.11

Let (E,ϕ) be a Euclidean vector space. We say that u ∈ E is a unit vector if
|u| = 1. Two vectors u, v ∈ E are said to be orthogonal if ϕ(u, v) = 0. A basis
(e1, . . . , en) is called orthogonal if the ei are orthogonal to each other, that is,
ϕ(ei, ej) = 0, for all i �= j. If, moreover, all the ei are unit vectors, the basis is
called orthonormal.

When a basis is orthonormal with respect to a scalar product ϕ we also say that
this basis is ϕ-orthonormal. However, it is often the case that the scalar product
is understood, in which case we simply say that the basis is orthonormal.
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Therefore, the matrix of ϕ in an orthonormal basis B = (e1, . . . , en) is the
identity matrix, because the component (i, j) of M(ϕ, B) is

ϕ(ei, ej) = δij .

Recall that δij = 1, if i = j, and δij = 0, if i �= j.
Observe that if E = R

n, the canonical basis is orthonormal with respect to
the standard scalar product.

Proposition A.12

Let u1, . . . , uk be non-zero vectors of a Euclidean vector space (E,ϕ). If they
are orthogonal to each other, then they are linearly independent.

Proof

If

λ1u1 + · · · + λkuk = 0,

then

0 = ϕ(uj ,0) = ϕ

(
uj ,

i=k∑
i=1

λiui

)
= λjϕ(uj , uj),

and hence λj = 0, for all j = 1, . . . , k. �

Theorem A.13 (Gram-Schmidt)

Let (E,ϕ) be a Euclidean vector space. Then there exists an orthonormal basis
of E.

Proof

We begin with any basis (u1, . . . , un) of E. Consider

E1 = 〈u1〉,
E2 = 〈u1, u2〉,

...
Ei = 〈u1, . . . , ui〉,

...
En = 〈u1, . . . , un〉.
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The vector subspace E1 admits an orthonormal basis. Simply take

e1 =
u1√

ϕ(u1, u1)
.

Let us assume, by induction, that Ek admits an orthonormal basis
(e1, . . . , ek).

We construct an orthonormal basis of Ek+1 = 〈e1, . . . , ek, uk+1〉 in the fol-
lowing way:

Let

e′
k+1 = uk+1 − (λ1e1 + · · · + λkek),

so that e′
k+1 is orthogonal to all ei, i = 1, . . . , k. For this to be the case, we must

take

λi = ϕ(ei, uk+1), for i = 1, . . . , k.

Next we set

ek+1 =
e′
k+1

|e′
k+1| ,

and we obtain an orthonormal basis (e1, . . . , ek+1) of Ek+1. Thus, by induction,
the proof is complete. �

This recursive method of constructing an orthonormal basis is known as the
Gram-Schmidt orthonormalization method.

A.4 The Orthogonal Group

The set of all n × n real matrices such that ATA = In form a group called the
orthogonal group, denoted by O(n). That is,

O(n) = {A ∈ Mn×n(R) : ATA = In}.

Equivalently, A is an orthogonal matrix if its inverse coincides with its trans-
pose. If A ∈ O(n), we say that A is an orthogonal matrix.

These matrices appear in the study of the relationship between different
orthonormal bases. We have seen, in the above Theorem A.13, that there is at
least one basis of the Euclidean vector space (E,ϕ) orthonormal with respect
to ϕ. However, this basis is not unique.

Formula (A.3) allows us to study the matrix of the change of basis between
two orthonormal bases. Indeed, if B1 and B2 are two bases of E, we have
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M(ϕ, B2) = M(B2, B1)TM(ϕ, B1)M(B2, B1).

If, moreover, B1 and B2 are orthonormal, we have

M(ϕ, B1) = M(ϕ, B2) = In,

and hence the above formula gives

In = M(B2, B1)TM(B2, B1).

That is, the matrix of the change of basis between two orthonormal bases is
an orthogonal matrix.

A.4.1 Positive Definite Matrices

We have seen in Proposition A.4 that a bilinear map on E is symmetric if and
only if its matrix, in any basis, is symmetric. It is very easy to see if a matrix is
symmetric, but to distinguish, among symmetric matrices, those corresponding
to scalar products is not immediate.

Definition A.14

A matrix A ∈ Mn×n(R) is called positive definite if and only if

cTAc > 0

for all non-zero column matrices c ∈ Mn×1(R).

Proposition A.15

Let A ∈ Mn×n(R). Then there exist a scalar product ϕ on E and a basis B of
E such that M(ϕ, B) = A if and only if A is symmetric and positive definite.

Proof

See [8], page 447. �

The most useful criterion to determine if a symmetric matrix is positive definite
is the following.
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Proposition A.16

A symmetric matrix A = (aij) ∈ Mn×n(R) is positive definite if and only if

∣∣∣∣∣∣∣
a11 . . . a1i

...
...

ai1 . . . aii

∣∣∣∣∣∣∣
> 0,

for all i = 1, . . . , n.

Proof

See [8], page 448. �

A.5 Orthogonal Vector Subspaces

Let (E,ϕ) be a Euclidean vector space. Let F be a vector subspace of E. We
define the orthogonal F ⊥ of F by

F ⊥ = {u ∈ E : ϕ(u, v) = 0, for all v ∈ F }.

Proposition A.17

Let F and H be vector subspaces of the Euclidean vector space E. Then we
have:
(i) F ⊥ is a vector subspace of E.
(ii) If F ⊆ H , then H⊥ ⊆ F ⊥.
(iii) F ∩ F ⊥ = {�0}.
(iv) F ⊆ (F ⊥)⊥.

Proof

The proof is left to the reader. �

Proposition A.18

Let F be a vector subspace of a Euclidean vector space E. Then

E = F ⊥F ⊥.
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In particular,

dimF ⊥ = dimE − dimF.

Proof

We know that F ∩ F ⊥ = {�0}. Let us show that E = F +F ⊥. Take an orthonor-
mal basis (e1, . . . , ek) of F . Using Steinitz’s theorem (see [8], page 251) we
complete these linearly independent vectors to a basis of E,

(e1, . . . , ek, uk+1, . . . , un).

Next we apply the Gram-Schmidt orthonormalization method. This method
transforms the vectors uk+1, . . . , un to vectors ek+1, . . . , en, so that (e1, . . . , ek,

ek+1, . . . , en) is an orthonormal basis of E with ek+1, . . . , en ∈ F ⊥. Hence, every
element of E is the sum of an element of F and an element of F ⊥. �

Corollary A.19

Let F be a vector subspace of a Euclidean vector space E. Then

F ⊥ ⊥ = F.

Proof

We know that F ⊆ F ⊥ ⊥ and also that

dimF ⊥ ⊥ = dimE − dimF ⊥ = dimE − (dimE − dimF ) = dimF.

Since F is of finite dimension, F = F ⊥ ⊥. �

A.6 Isometries

Definition A.20

Let (E,ϕ) be a Euclidean vector space. An isometry of E is a map f : E −→ E

preserving the scalar product, that is, such that

ϕ(u, v) = ϕ(f(u), f(v)), for all u, v ∈ E.

Isometries are automatically linear:
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Theorem A.21

Let (E,ϕ) be a Euclidean vector space. Let f : E → E be an isometry. Then f

is linear.

Proof

A simple calculation shows that

ϕ(f(u + v) − f(u) − f(v), f(u + v) − f(u) − f(v)) = 0,

ϕ(f(λu) − λf(u), f(λu) − λf(u)) = 0.

See [8], page 453. �

Recall that λ ∈ R is an eigenvalue of an endomorphism f : E → E if there exists
a non-zero vector u ∈ E such that f(u) = λu. In this case we say that u is an
eigenvector of f with eigenvalue λ.

Theorem A.22

Let (E,ϕ) be a Euclidean vector space. Let f : E → E be an isometry. Then
(i) For all u ∈ E, |f(u)| = |u|.
(ii) For all u, v ∈ E, ϕ(u, v) = 0 if and only if ϕ(f(u), f(v)) = 0.
(iii) The map f is bijective.
(iv) If λ is an eigenvalue of f then λ = 1 or λ = −1.
(v) Eigenvectors of f with different eigenvalues are orthogonal.

Proof

Parts (i) and (ii) are clear.
(iii) If f(u) = 0, we have 0 = ϕ(f(u), f(u)) = ϕ(u,u), and hence u = 0. Thus,

f is injective and, by the Isomorphism Theorem (see [8], page 284), f is bijec-
tive.

(iv) Let u ∈ E be an eigenvector of f with eigenvalue λ, that is, f(u) = λu.
Then we have

ϕ(u,u) = ϕ(f(u), f(u)) = ϕ(λu,λu) = λ2ϕ(u,u),

and hence λ = ±1.
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(v) Let u, v ∈ E be eigenvectors of f with different eigenvalues. By (iv), we
can assume that f(u) = u and f(v) = −v. Then

ϕ(u, v) = ϕ(f(u), f(v)) = ϕ(u, −v) = −ϕ(u, v),

and hence ϕ(u, v) = 0. �

Proposition A.23

Let (E,ϕ) be a Euclidean vector space, f a map from E to E, and (e1, . . . , en)
a basis of E. Then f is an isometry if and only if it is linear and

ϕ(f(ei), f(ej)) = ϕ(ei, ej), i, j = 1, . . . , n.

Proof

If f preserves the scalar product, then, by Theorem A.21, it is linear; and it
obviously preserves the scalar product between vectors of the basis.

Conversely, assume that f is linear and preserves the scalar product between
vectors of the basis. Let u =

∑n
i=1 uiei, v =

∑n
j=1 vjej be two vectors of E, with

ui, vj ∈ R. Then

ϕ(f(u), f(v)) =
n∑

i=1

n∑
j=1

uiujϕ(f(ei), f(ej))

=
n∑

i=1

n∑
j=1

uiujϕ(ei, ej) = ϕ(u, v).

�

Proposition A.24

Let (E,ϕ) be a Euclidean vector space, and f : E −→ E a linear map with
matrix A in a basis B1 = (e1, . . . , en) of E. Let G be the matrix of ϕ in this
basis. Then f is an isometry if and only if ATGA = G.

Proof

In the usual notation, see pages 57 and 322, we have

A = M(f, B1, B1), G = M(ϕ, B1).
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First we suppose that f is an isometry. Then, by Theorem A.22, f is bijective
and B2 = (f(e1), . . . , f(en)) is a basis of E. By the formula of the change of
basis (formula (A.3), page 323), we have

M(ϕ, B2) = M(B2, B1)TM(ϕ, B1)M(B2, B1);

but it is clear that

M(B2, B1) = M(f, B1, B1) = A,

and hence the formula of the change of basis implies

M(ϕ, B2) = ATGA.

But, since

ϕ(f(ei), f(ej)) = ϕ(ei, ej),

we have

M(ϕ, B2) = M(ϕ, B1) = G,

and hence

G = ATGA.

Conversely, the matricial equality G = ATGA implies

ϕ(ei, ej) = ϕ(f(ei), f(ej)),

and, by Proposition A.23, f is an isometry. �

Now we can prove that the matrix of an isometry in an orthonormal basis is
an orthogonal matrix.

Corollary A.25

Let (E,ϕ) be a Euclidean vector space, f : E −→ E a linear map, and A =
M(f, B) the matrix of f in an orthonormal basis B of E. Then f is an isometry
if and only if ATA = In.

Proof

Apply Proposition A.24 with G = In. �
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Observe that this corollary is also true when A is the matrix of f in a basis
B = (e1, . . . , en) such that

ϕ(ei, ej) = aδij , a ∈ R,

because in this case G = M(ϕ, B) = aIn and ATGA = G if and only if ATA = In.

A.7 Polynomials of Isometries

Let f be an isometry of a Euclidean vector space E. Observe that (f − id) does
not preserve, in general, the scalar product (the difference of isometries is not
an isometry). More generally, if f is an isometry and p(x) is a polynomial, the
endomorphism p(f) is not, in general, an isometry. However, endomorphisms
obtained in this way have very interesting properties. For instance, if we denote
the scalar product by ϕ(u, v) = 〈u, v〉, we have the following.

Proposition A.26

Let f be an isometry and p(x) = a0 +a1x+ · · · +anxn be any polynomial. Then

〈p(f)(u), v〉 = 〈u, p(f −1)(v)〉, for all u, v ∈ E.

Proof

〈p(f)(u), v〉 =
〈∑

i

aif
i(u), v

〉
=

∑
i

ai〈f i(u), v〉

=
∑

i

ai〈u, f −i(v)〉 =
〈

u,
∑

i

aif
−i(v)

〉

= 〈u, p(f −1)(v)〉.

�

Corollary A.27

Let f be an isometry and p(x) be any polynomial. Then

|p(f)(u)| = |p(f −1)(u)|, for all u ∈ E.
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Proof

〈p(f)(u), p(f)(u)〉 = 〈u, p(f −1)p(f)(u)〉

= 〈u, p(f)p(f −1)(u)〉

= 〈p(f −1)(u), p(f −1)(u)〉.

�

Corollary A.28

Let f be an isometry and p(x) be any polynomial. If, for some vector u ∈ E,
we have p(f)2(u) = 0, then p(f)(u) = 0.

Proof

Set w = p(f)(u). Since p(f)(w) = 0, by the previous corollary we have
p(f −1)(w) = 0, and hence

0 = 〈p(f −1)(w), u〉

= 〈w,p(f)(u)〉

= 〈w,w〉;

therefore w = 0, and the proof is complete. �

Evidently, this corollary also proves that if p(f)r(u) = 0, r ≥ 2, then
p(f)(u) = 0.

Corollary A.29

Let f be an isometry. Let p(x) be an irreducible monic polynomial divisor of
the minimal polynomial mf (x) of f . Then

mf (x) = p(x)q(x), gcd(p(x), q(x)) = 1.

That is, the minimal polynomial mf (x) of an isometry f is equal to the product
of all the irreducible factors of the characteristic polynomial pf (x) of f , with
exponent 1.
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Proof

Let us suppose mf (x) = p(x)rq(x). Then, for all v ∈ E, p(f)rq(f)(v) = 0, and,
by Corollary A.28, p(f)q(f)(v) = 0. If r > 1, we would have a polynomial,
p(x)q(x), with degree less than the degree of the minimal polynomial, annihi-
lating f . This is a contradiction, and hence we must have r = 1. This completes
the proof.

Since the minimal polynomial has all the irreducible factors of the character-
istic polynomial (see [8], page 350), this result says that the minimal polynomial
mf (x) of an isometry f is equal to the product of all irreducible factors of the
characteristic polynomial pf (x) of f , each factor with exponent 1. �

Proposition A.30

Let f be an isometry and let

mf (x) = q1(x) · · · qr(x)

be the factorization of the minimal polynomial of f in monic irreducible factors.
Then

ker qi(f) ⊂ (ker qj(f))⊥, i �= j,

Im qi(f) = (ker qi(f))⊥.

Proof

Let us first show that ker qi(f) ⊂ (ker qj(f))⊥, i �= j.
For this we take u ∈ ker qi(f) and we prove that 〈u, v〉 = 0, for all v ∈

ker qj(f), i �= j.
Note that qi(f)(u) = 0 and qj(f)(v) = 0. Recall that, by Corollary A.27, we

also have qj(f −1(v)) = 0. By Bézout’s identity, there are polynomials a(x), b(x)
such that

qi(x)a(x) + qj(x)b(x) = 1.

In particular, qj(f)b(f)(u) = u. Hence,

〈u, v〉 = 〈qj(f)b(f)(u), v〉

= 〈b(f)(u), qj(f −1)(v)〉

= 0.

Now we want to show that Im qi(f) = (ker qi(f))⊥.
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For this we take w ∈ Im qi(f), that is, w = qi(f)(u), and we prove that
〈w,v〉 = 0, for all v ∈ ker qi(f). As before, we also have qi(f −1(v)) = 0. Hence,

〈w,v〉 = 〈qi(f)(u), v〉 = 〈u, qi(f −1)(v)〉 = 0.

This proves Im qi(f) ⊂ (ker qi(f))⊥; but, by the Isomorphism Theorem (see [8],
page 284), we have equality. This completes the proof. �

Since we are working over the field R, the irreducible factors of the characteristic
polynomial of an isometry, and therefore also those of the minimal polynomial,
have degree 1 or 2. In fact, the only factors that can appear in the factoriza-
tion of the characteristic polynomial are (x − 1), (x + 1) (the eigenvalues have
modulus 1), (x − a)2 + b2, b �= 0, and their powers.

But there is still one more constraint.

Proposition A.31

Suppose that the characteristic polynomial of an isometry f is divisible by
p(x) = (x − a)2 + b2, b �= 0. Then

a2 + b2 = 1.

Proof

We know that ker((f − a id)2 + b2 id) �= {�0}, see [8], page 363. Let v ∈ ker((f −
a id)2 + b2 id). The vectors v and f(v) are linearly independent, since there
are no eigenvectors in this kernel. Let F = 〈v, f(v)〉. Since f2(v) is a linear
combination of v and f(v), the vector subspace F is invariant under f . The
matrix of f|F in the basis B = (v, f(v)) is

M(f|F , B) =
(

0 −(a2 + b2)
1 −2a

)
.

Since the determinant of an isometry is ±1, we must have

a2 + b2 = 1,

and this completes the proof. �
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Theorem A.32

Let f be an isometry. We factorize the characteristic polynomial pf (x) of f

into irreducible factors

pf (x) = (x − 1)r(x + 1)sq1(x)n1 · · · qt(x)nt ,

with qi(x) = x2 − 2aix + 1, 0 ≤ ai < 1; r, s,ni ≥ 0, i = 1, . . . , t. Then

E = ker(f − id) ⊕ ker(f + id) ⊕ ker q1(f) ⊕ · · · ⊕ ker qt(f), (A.4)

and these subspaces are orthogonal to each other (or zero).

Proof

This is a consequence of Corollary A.29, Proposition A.30 and the decomposi-
tion theorem corresponding to the minimal polynomial, [8], page 364. �

Theorem A.33 (Canonical expression)

For each isometry f there exists an orthonormal basis B such that M = M(f ; B)
is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .
−1

cosα1 − sinα1

sinα1 cosα1

. . .
cosαm − sinαm

sinαm cosαm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof

We know that

E = ker(f − id) ⊕ ker(f + id) ⊕ ker q1(f) ⊕ · · · ⊕ ker qt(f),
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where qi(x) = x2 − 2aix + 1, 0 ≤ ai < 1; r, s,ni ≥ 0, i = 1, . . . , t.
We have already seen, in the proof of Proposition A.31, that if v ∈ ker(f2 −

2aif +id), then the subspace Fi1 = 〈v, f(v)〉 of this kernel is invariant under f .
In particular, the restriction f|Fi1 of f to Fi1 is an isometry on a vector space of
dimension two. Since it does not admit the eigenvalue 1, there is an orthonormal
basis Bi1 of Fi1 such that

M(f|Fi1 , Bi1) =
(

cosαi − sinαi

sinαi cosαi

)
, 0 < α ≤ π.

The minimal polynomial (or the characteristic polynomial) of f|Fi1 is

x2 − (2 cosαi)x + 1,

and, since it must coincide with the irreducible qi(x), we have

ai = cosαi.

Thus we have the orthogonal direct sum decomposition

ker qi(f) = Fi1 ⊕ F ⊥
i1 .

Next we take a vector w ∈ F ⊥
i1 and we repeat the process (i.e., we consider

the subspace Fi2 = 〈w,f(w)〉, etc.) until we obtain the orthogonal direct sum
decomposition

ker qi(f) = Fi1 ⊕ · · · ⊕ Fimi
.

Note that on each Fiji , ji = 1, . . . ,mi, there is an orthonormal basis Biji such
that

M(f|Fiji
, Biji

) =
(

cosαi − sinαi

sinαi cosαi

)
, 0 < αi ≤ π.

Finally, the orthonormal basis that we are looking for is given by B =
(B1, B −1, B11, . . . , Btjt

) where B1 is an orthonormal basis of ker(f − id) and
B−1 is an orthonormal basis of ker(f + id). The orthonormality of B follows
from the orthogonal direct sum decomposition (A.4), page 340. This completes
the proof. �

A.8 The Orthogonal Groups O(2) and O(3)

Notice that Theorem A.33 says that every orthogonal matrix A is conjugate, via
an orthogonal matrix C, to the matrix M given in the same theorem, page 340.
That is, M = CTAC .
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In low dimensions this matrix M cannot have many different aspects. Con-
cretely, in dimension two we have:

Theorem A.34

Let f be an isometry of a Euclidean vector space of dimension two. Then there
is an orthonormal basis B of E such that

M(f, B) =
(

1 0
0 −1

)
or M(f, B) =

(
cosα − sinα

sinα cosα

)
,

with 0 ≤ α ≤ π.

Equivalently, for all matrices A ∈ O(2) there is an orthogonal matrix C such
that

CTAC =
(

1 0
0 −1

)
or CTAC =

(
cosα − sinα

sinα cosα

)
.

And in dimension three:

Theorem A.35

Let f be an isometry of a Euclidean vector space of dimension 3. Then there
exists an orthonormal basis B of E such that

M(f, B) =

⎛
⎝ ±1 0 0

0 cosα − sinα

0 sinα cosα

⎞
⎠ ,

with 0 ≤ α ≤ π.

Equivalently, for all matrices A ∈ O(3) there is an orthogonal matrix C such
that

CTAC =

⎛
⎝ ±1 0 0

0 cosα − sinα

0 sinα cosα

⎞
⎠ .

One can find a direct proof of these two theorems, which does not make use
of Theorem A.31, in [8], Chapter 13.
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A.9 Classification of Isometries

Definition A.36

Two isometries f̃ and g̃ of a Euclidean vector space E are called isometrically
similar if and only if there exists an isometry h̃ of E such that f̃ = h̃−1 ◦ g̃ ◦ h̃.

Observe that if f̃ is isometrically similar to g̃, then f̃ is similar as an endo-
morphism to g̃ (Definition 3.1, page 91). Next we shall see that, curiously, the
converse is also true.

Proposition A.37

Let f̃ and g̃ be two isometries of a Euclidean vector space E. Then:
(i) The matrices M(f̃ , B1) and M(f̃ , B2) of f̃ with respect to two orthonormal

bases B1 and B2 of E are conjugated by an orthogonal matrix.
(ii) f̃ and g̃ are similar as isometries if and only if the matrices M(f̃ , B) and

M(g̃, B), where B is an orthonormal basis of E, are conjugated by an
orthogonal matrix.

(iii) f̃ and g̃ are similar as isometries if and only if there are orthonormal bases
B1 and B2 of E such that

M(f̃ , B1) = M(g̃, B).

Proof

The proof is as in Proposition 3.3, page 92, taking into account that the matrix
of the change of basis between two orthonormal bases is an orthogonal matrix,
and that the matrix of an isometry with respect to an orthonormal basis is an
orthogonal matrix (Corollary A.25). �

From this result, and from Theorem A.33, page 340, we deduce the following
important result.

Theorem A.38

Two isometries f̃ and g̃ are isometrically similar if and only if they have the
same characteristic polynomial.
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Proof

It is well known that similar endomorphisms have the same characteristic poly-
nomial; see [8], page 332.

To prove the converse, we observe that Theorem A.33 tells us that if the
characteristic polynomial of an isometry f̃ is

pf̃ (x) = (x − 1)r(x + 1)s(x2 − 2a1x + 1)n1 · · · (x2 − 2atx + 1)nt ,

then there is an orthonormal basis B such that M(f̃ , B) is equal to the matrix
M given in the same Theorem A.33, page 340.

But this matrix is determined by the numbers: r (the number of 1s), s (the
number of −1s), ni (the number of rotations by angle αi) and ai (the cosine of
the angle of rotation, ai = cosαi).

Hence, if the isometries f̃ and g̃ have the same characteristic polynomial,
there are (possibly different) orthonormal bases in which f̃ and g̃ have the same
associated matrix. Hence, f̃ is isometrically similar to g̃, and this completes the
proof. �

EXERCISES

A.1. Let E be a Euclidean vector space. Prove that given two non-zero
vectors u, v ∈ E, with the same norm, there is an isometry ϕ of E

such that ϕ(u) = v.
A.2. Let E be a Euclidean vector space. Give a map f : E −→ E pre-

serving the norm but not the scalar product. Is there a linear map
f : E −→ E preserving the norm but not the scalar product?

A.3. Given the orthogonal matrix

A =

⎛
⎜⎜⎝

1
2

+
√

2
4

1
2

− 1
2

+
√

2
4

− 1
2

√
2

2
− 1

2

− 1
2

+
√

2
4

1
2

1
2

+
√

2
4

,

⎞
⎟⎟⎠ ,

find an orthogonal matrix C such that

CTAC =

⎛
⎜⎜⎝

1 0 0

0
√

2
2 −

√
2

2

0
√

2
2

√
2

2

⎞
⎟⎟⎠ .

A.4. Prove that the map ϕ : R
2 × R

2 −→ R given by

ϕ((x, y), (z, t)) = 5xz − xt − yz + yt
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is a scalar product. Find an orthonormal basis, the angle formed by
the axes x = 0 and y = 0, and the norm of the vector (1,1).

A.5. Find the expression, in the canonical basis of the affine space R
2, of

the scalar product on R
2 defined by the condition that the vectors

(3,2) and (2,3) form an orthonormal basis.
A.6. Let φ be the bilinear map of R

3 given in the canonical basis by the
matrix: ⎛

⎝1 −1 1
0 1 −1
0 0 1

⎞
⎠ .

(a) Find the expression of φ((x1, x2, x3), (y1, y2, y3)).
(b) Find the matrix of φ with respect to the basis ((1,0,0), (1,1,0),

(1,1,1)).
(c) Check the formula of the change of basis.

A.7. Let φ be the bilinear map of R
3 given in the canonical basis by the

matrix: ⎛
⎝ −1 0 1

0 2 −1
1 −1 3

⎞
⎠ .

Calculate φ((1,0,1), (2, −1,0)) and find the matrix of φ with respect
to the basis ((1,1,0), (0,1,1), (0,0,1)).

A.8. Let φ be the bilinear map of R
3 given in the canonical basis by the

matrix: ⎛
⎝ −1 1 −1

1 2 −2
−1 −2 3

⎞
⎠ .

Find the matrix of φ with respect to the basis ((2,1,1), (−1,0,1),
(2, −1,0)).

A.9. Prove that the symmetric bilinear map φ of the vector space R
4

given by

φ((x, y, z, t), (x′, y′, z′, t′)) = xx′ + yy′ + zz′ − tt′

is not positive definite. Prove that, in contrast, φ is positive definite
when it is restricted to the vector subspace E of R

4 defined by the
equation

x + y + z − 2t = 0.

φ is called the Lorentz metric. See Exercise 5.19, page 173.
A.10. Study the orthogonal group O(4).





B
Diagonalization of Bilinear Symmetric

Maps

B.1 Introduction

Let E be a finite dimensional vector space over a field k of characteristic dif-
ferent from 2.

We shall see that given a symmetric bilinear map φ on E, there are bases in
which the matrix of φ is diagonal. The elements on the diagonal of this matrix
can be described with more precision with the knowledge of some properties of
the arithmetic of the field k. We study the cases k = R, k = C, and k finite. We
will see that the diagonal matrix associated to a symmetric bilinear map is, in
some sense, unique. From this, we see how many symmetric bilinear maps there
are on a given vector space, modulo a certain natural equivalence relation.

B.2 The Diagonalization Theorem

Definition B.1

A bilinear map φ on a k-vector space E is said to be diagonalizable if there is
a basis B of E such that the matrix of φ with respect to this basis, M(φ, B), is
a diagonal matrix.

We also say, in this case, that φ diagonalizes with respect to the basis B.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5, c© Springer-Verlag London Limited 2011
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Proposition B.2

Let φ be a bilinear map on a k-vector space E, and let A = M(φ, B) be the
matrix of φ with respect to a basis B of E. Then φ is diagonalizable if and only
if there is an invertible matrix C, with entries in k, such that the matrix

D = CTAC

is diagonal.

Proof

If φ diagonalizes with respect to a certain basis B ′, we take C = M(B ′, B), and
then the result follows from the formula of the change of basis (A.3), page 323.

Conversely, if there exists an invertible matrix C, with entries in k, such
that the matrix D = CTAC is diagonal, we take B ′ as the only basis such that

C = M(B ′, B).

(That is, the columns of C are interpreted as the components of the vectors of
the basis B ′ with respect to the basis B.) The same formula (A.3) says that D

is the matrix of φ in B ′, and hence, φ diagonalizes. �

If φ is a positive definite symmetric bilinear map on an R-vector space E, there
exists, by Proposition A.13, a basis orthonormal with respect to φ. The matrix
of φ with respect to this basis is, therefore, the identity. In particular, every
positive definite symmetric bilinear map diagonalizes.

If we remove the hypothesis that φ is positive definite, it is clear that or-
thonormal bases, that is, bases in which the matrix of φ is the identity, may
not exist.

For instance, given

A =
(

0 1
1 0

)
, or A =

(
1 0
0 −1

)
,

it is easy to see that there is no invertible matrix C, with real coefficients,
such that CTAC = I2. It is sufficient to observe that we would have detA ·
(detC)2 = 1, and that the determinant of A is, in both cases, negative. Hence,
if we fix a basis B of an R-vector space E and we consider the symmetric bilinear
map φ defined by M(φ, B) = A, where A is one of the two previous matrices, we
obtain a symmetric bilinear map which does not admit an orthonormal basis.
However, this does not mean that φ is not diagonalizable.
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If we replace the R-vector space E by an arbitrary k-vector space, the pre-
vious argument showing that orthonormal bases may not exist does not work.
For instance, there is an invertible matrix C, with complex coefficients, such
that CTAC = I2, where A is one of the two previous matrices. It is sufficient
to take

C =
(

1 i

1/2 1/2i

)

in the first case, and

C =
(

1 0
0 i

)

in the second.
Hence, if φ is a bilinear symmetric map on a C-vector space E with

M(φ, B) = A, for some basis B of E, then there exists a basis B ′ of E such
that M(φ, B ′) = I2.

However, we are only interested in knowing whether a given symmetric bi-
linear map diagonalizes or not (independently of whether this diagonal matrix
is the identity).

Theorem B.3 (Diagonalization)

Let φ be a symmetric bilinear map on a k-vector space E, with k a field of
characteristic different from 2. Then there exists a basis of E with respect to
which φ diagonalizes.

Proof

The proof is implicit in the following method, which is an adaptation of Gauss’
method of solving linear systems by triangulation, which simultaneously diag-
onalizes φ and gives us explicitly the basis in which the diagonalization takes
place.

Method to find the basis in which a symmetric bilinear map diago-
nalizes.

To diagonalize a symmetric bilinear map we shall follow the following steps:
(a) First we write down the matrix of φ with respect to some basis B =

(e1, . . . , en), A = M(φ, B), and, directly beneath this matrix, we write down
the identity matrix.

(b) Next we diagonalize A using Gauss’ method (see [8], page 196) with the
precaution that every operation affecting rows must be repeated exactly
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but affecting columns (for instance, if we substitute row 2 by the sum of
rows 1 and 2, we must also substitute column 2 by the sum of columns 1
and 2). The added identity matrix is also affected by these changes on the
columns.

(c) The basis in which φ diagonalizes is formed, once A has been diagonalized,
by the columns of the matrix that has been modified from the original
identity matrix. More precisely, each of these columns is formed by the
components of the vectors of the new basis with respect to the initial one.
See Example B.5, page 352.

The validity of the method is easy to justify. We simply observe that to change
first the row i, Fi, by Fi + λFj , and then the column i, Ci, by Ci + λCj ,
corresponds to the change of basis

e′
k = ek, k �= i,

e′
i = ei + λej .

In fact, the k-th component of the i-th row of the matrix of φ in this new
basis is

φ(e′
i, e

′
k) = φ(ei, ek) + λφ(ej , ek), k �= i, (B.1)

φ(e′
i, e

′
i) = φ(ei, ei) + 2λφ(ei, ej) + λ2φ(ej , ej). (B.2)

By symmetry, this is also the k-th component of the column Ci. The elements
of the matrix of φ in the initial basis, belonging neither to the row Fi nor to
the column Ci, are not affected by this change of basis.

On the other hand, when we make the change

F ′
i = Fi + λFj ,

we obtain a new row that has k-th component

φ(ei, ek) + λφ(ej , ek), k = 1, . . . , n,

expressions that, for k �= i, coincide with (B.1).
However, the modification made on the row Fi affects all the columns of the

matrix. Concretely, the term (i, i) of the column Ci, which was equal to φ(ei, ei),
is now equal to φ(ei, ei)+λφ(ej , ei), and the term (i, j) of the column Cj , which
was equal to φ(ei, ej), is now equal to φ(ei, ej) + λφ(ej , ej). Hence, when after
the row transformation F ′

i = Fi + λFj , we make the column transformation
C ′

i = Ci + λCj , we obtain that the k-th component of this new column C ′
i is

φ(ek, ei) + λφ(ek, ej), k �= i, (B.3)

φ(ei, ei) + λφ(ej , ei) + λ(φ(ei, ej) + λφ(ej , ej)). (B.4)
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These two expressions coincide, respectively, with (B.1) and (B.2), and hence
the method is justified. For another justification, see Observation B.6, page
353.

Let us see now how the performed changes affect the identity matrix which
was placed below the initial matrix.

Operations on rows of A do not affect this identity matrix, but it is affected
of course by operations on columns. Concretely, when we first perform the
operation C′

i = Ci + λCj , we are replacing the column with a 1 in the i-th
position (and zeros elsewhere) by a column with a 1 in the i-th position and
a λ in the j-th position (and zeros elsewhere). Therefore, the elements of this
column are the components, with respect to B, of the vector e′

i = ei + λej , and
this corresponds exactly to the change of basis performed (e′

i = ei +λej , e′
j = ej ,

j �= i). This is what happens in each of the successive steps of Gauss’ method.
Hence, the columns of the modified identity matrix are the components, with
respect to B, of the vectors of the new basis.

Finally, let us see that Gauss’ method leads to diagonalization. If a11 is
non-zero, then the operation

F ′
2 = F2 − a12

a11
F1, C ′

2 = C2 − a12

a11
C1

takes

A =

⎛
⎜⎝

a11 a12 . . .

a12

...

⎞
⎟⎠ ,

into

A′ =

⎛
⎜⎝

a11 0 . . .

0
...

⎞
⎟⎠ .

That is, we have obtained a zero in the 2nd position of the first row and in the
2nd position of the first column.

Making the same transformation on the others rows and columns, that is,

F ′
i = Fi − a1i

a11
F1, C ′

i = Ci − a1i

a11
C1, i = 2, . . . , n,

we obtain a matrix in which the first row and the first column are formed by
zeros, except for the term a11. Repeating the process, now pivoting on the new
term a22, we reduce the dimension of the matrix we want to diagonalize, and
in a finite number of steps we obtain the diagonalization.

If a11 is zero, we inspect the other terms on the diagonal. If aii is non-zero,
i �= 1, we permute the rows 1 and i and the columns 1 and i. This corresponds
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to the change of basis e′
1 = ei, e′

i = e1, leaving invariant the remaining vectors
of the basis. Thus the new term a11 is different from zero and we are in the
previous case.

If all the elements on the diagonal are zero, but a1i �= 0, i �= 1, the change
F ′

1 = F1 + Fi, C′
1 = C1 + Ci, which corresponds to the change of basis e′

1 =
e1 + ei, e′

j = ej , j �= 1, gives rise to a new a11 �= 0, because the characteristic of
the field is different from two (the new term a11 is equal to 2a1i), and we are
in the previous case. This completes the proof. �

These last two results, Proposition B.2 and Theorem B.3, allow us to solve the
following matricial problem:

Corollary B.4

Given a symmetric matrix A ∈ Mn×n(k), there exists an invertible matrix
C ∈ Mn×n(k) such that the matrix

D = CTAC,

is diagonal.

Proof

Let E be a k-vector space of dimension n and take any basis B of E. Let us
consider then the bilinear map φ determined by the condition A = M(φ, B).

We know, by Theorem B.3, that φ diagonalizes; hence, by Proposition B.2,
there exists an invertible C ∈ Mn×n(k) such that the matrix

D = CTAC

is diagonal. �

Gauss’ method is essentially a mechanical way of applying the so called method
of completing the squares discussed later (see Section B.5, page 367).

Example B.5

Let us consider the symmetric bilinear map φ of R
3 given in the canonical basis

by the matrix
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A =

⎛
⎝ 3 − 1

2 0
− 1

2 0 2
0 2 −2

⎞
⎠ .

Find a basis of R
3 with respect to which φ diagonalizes.

Solution

The following scheme follows the previous steps⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 − 1
2

0
− 1

2 0 2
0 2 −2
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−→
F2+

1
6 F1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 − 1
2

0
0 − 1

12 2
0 2 −2
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−→
C2+

1
6 C1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0
0 − 1

12 2
0 2 −2
1 1

6 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−→
F3+24F2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0
0 − 1

2 2
0 0 46
1 1

6 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−→
C3+24C2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0
0 − 1

12 0
0 0 46
1 1

6 4
0 1 24
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence the new basis is B = (u1, u2, u3) with u1 = (1,0,0), u2 = ( 1
6
,1,0), u3 =

(4,24,1), and in this basis

M(φ, B) =

⎛
⎝3 0 0

0 − 1
12

0
0 0 46

⎞
⎠ .

�

Observation B.6

Another way to justify the above method is as follows. Recall that to make
an elementary transformation on the rows of a matrix A corresponds to mul-
tiplying A on the left by an elementary matrix, and to make an elementary
transformation on the columns of A corresponds to multiplying A on the right
by an elementary matrix; see [8]. In order to perform the “same” elementary
transformations on the rows as on the columns of A, if we multiply on the left
by a matrix P we must multiply on the right by the matrix PT. Recall also the
properties of the block product of matrices, see [8], page 182.
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With all of this in mind we review the above process of diagonalization given
in the proof of Theorem B.3, step by step.
(a) First we write (

A

I

)
.

(b) Next we make an elementary transformation on the rows of A. This trans-
formation does not affect the identity matrix placed below A. It corresponds
to forming the product

(
P |O
O|I

)(
A

I

)
=

(
PA

I

)
,

where P is the elementary matrix performing the elementary transforma-
tion on the rows of A, O is the zero matrix, and I the identity matrix.

(c) Next we perform, on the new matrix, the same elementary transformation
except on the columns. This corresponds to forming the product

(
PA

I

)
PT =

(
PAPT

PT

)
.

If, at this point, the matrix PAP T is diagonal, we have finished. In fact, it is
enough to take B ′ as the basis determined by the formula

M(B ′, B) = PT,

(that is, the columns of PT are the components of the vectors of B ′ with respect
to B; see page 322), and, by the formula of the change of basis, we will have

PAPT = M(B ′, B)TM(φ, B ′)M(B ′, B) = M(φ, B ′),

and B ′ is, therefore, the basis with respect to which φ diagonalizes.
Moreover, this calculation allows us to record this basis (i.e., the matrix PT)

in the position occupied, at the beginning of the calculation, by the identity
matrix.

If, on the contrary, once we have completed steps (a), (b) and (c), the matrix
PAPT is still not diagonal, we continue the process repeating systematically
steps (b) and (c) until we reach the diagonalization.

B.3 Canonical Expression

Theorem B.3 says that there is a basis B = (e1, . . . , en) of E such that φ(ei, ej) =
aijδij , with aij elements of the field k and δij defined on page 328.
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The elements appearing on the diagonal can be reduced to only a few ones
by making use of some specific properties of the field k. We study the cases
k = C, k = R and k finite.

Theorem B.7 (Complex case)

Let φ be a symmetric bilinear map on a C-vector space E. Then there exists
a basis of E with respect to which φ diagonalizes, and the diagonal entries of
this matrix are 1s and 0s.

Proof

First we find a basis with respect to which φ diagonalizes. Then we transform
each non-zero element aii on the diagonal to +1. For this we make the following
change of basis: if aii = φ(ei, ei) �= 0, we put e′

i = 1√
aii

ei, and leave unchanged
the other vectors of the basis. Note that we can make this change of basis
because every non-zero element of C has a square root. Thus, reordering if
necessary, we have obtained a new basis B in which the matrix of φ is

M(φ, B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�

Theorem B.8 (Real case)

Let φ be a symmetric bilinear map on an R-vector space E. Then there exists
a basis of E with respect to which φ diagonalizes, and the diagonal entries of
this matrix are ±1 or 0.

Proof

First we find a basis with respect to which φ diagonalizes. Then we transform
each non-zero element aii on the diagonal to +1 or −1. For this we make
the following change of basis: if φ(ei, ei) = ±a2

i , we put e′
i = 1

|ai | ei and leave
unchanged the other vectors of the basis. Note that we can make this change
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of basis because every non-zero positive element of R has a square root. Thus,
reordering if necessary, we have obtained a new basis B in which the matrix of
φ is

M(φ, B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .
−1

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.5)

�

On arbitrary fields we are faced with the problem of determining whether a
given element has a square root or not. The complexity of the matrix depends
on the arithmetic of the field. This is, in general, a difficult problem.

Finite fields have pleasant properties which allow us to progress further in
this problem.

We shall use two of these properties:

Proposition B.9

Let k be a finite field of characteristic different from 2, and let a, b ∈ k be
non-squares. Then there exists a c ∈ k such that b = ac2.

Proof

See, for instance, [21], Theorem 8.3.1. �

When we say that a ∈ k is a non-square we mean that it has no square root,
that is, there is no element c ∈ k such that a = c2.

Proposition B.10

Let k be a finite field of characteristic different from 2, and let a ∈ k. Then
there exist x, y ∈ k such that a = x2 + y2.
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Proof

See, for instance, [21], Theorem 9.10.1. �

From these two propositions we can already prove the following theorem (see,
for instance, [21], Theorem 9.10.3).

Theorem B.11 (Finite case)

Let φ be a symmetric bilinear map on a k-vector space E, with k finite and of
characteristic different from 2. Then there exists a basis of E with respect to
which φ diagonalizes, and the diagonal is comprised of 0s, 1s and at most one
non-square.

Proof

First we find a basis with respect to which φ diagonalizes. On the diagonal we
shall have squares, non-squares and zeros.

By Proposition B.9 there exists a non-square a ∈ k such that every non-
square appearing on the diagonal is of the form ad2

i with di ∈ k. The change
of basis e′

i = 1
di

ei, leaving the other vectors unchanged, transforms all the non-
squares on the diagonal into a.

The elements on the diagonal admitting square roots are of the form c2
j with

cj ∈ k. The change of basis e′
j = 1

cj
ej , leaving the other vectors unchanged,

transforms all the squares on the diagonal into 1.
In this manner we have constructed a basis B ′ such that, reordering if nec-

essary,

M(φ, B ′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
. . .

a

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, by Proposition B.10, there exist x, y ∈ k such that a = x2 + y2.
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Then we make the following change of basis: we transform the first two
vectors of the basis, e1, e2, into the vectors

u1 =
x

a
e1 +

y

a
e2,

u2 =
y

a
e1 − x

a
e2,

and leave the other vectors unchanged. Note that φ(u1, u1) = φ(u2, u2) = 1,
φ(u1, u2) = 0.

Repeating this process for the two following vectors e3, e4, and then for e5, e6,
etc., we will obtain a new basis in which the matrix of φ is diagonal, with only
ones and zeros on the diagonal (if the non-square a appeared on the diagonal
an even number of times) or with only one a and ones and zeros on the diagonal
(if the non-square a appeared on the diagonal an odd number of times).

Therefore, there exists a basis B such that the matrix A = M(φ, B) is equal
to

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, or A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a non-square. This completes the proof. �

These results have the following matricial version (simply consider a given
symmetric matrix as the matrix associated to a symmetric bilinear map):

Proposition B.12 (Complex case)

Given a complex symmetric matrix A, there exists a complex invertible matrix
C such that the matrix

D = CTAC

is diagonal, and on the diagonal there are only 1s and 0s.

Proof

This is a consequence of B.7. �
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Proposition B.13 (Real case)

Given a real symmetric matrix A, there exists a real invertible matrix C such
that the matrix

D = CTAC

is diagonal, and on the diagonal there are only −1s, 1s and 0s.

Proof

This is a consequence of B.8. �

Proposition B.14 (Finite case)

Given a symmetric matrix A with elements in a finite field k, of characteristic
different from 2, there exists an invertible matrix C, also with elements in k,
such that the matrix

D = CTAC

is diagonal, and the diagonal is comprised of only the elements 1 ∈ k, 0 ∈ k,
and at most one non-square.

Proof

This is a consequence of B.11. �

We say, in the above three cases, that the matrix C diagonalizes A.

B.4 Uniqueness of the Canonical Expression

In this section we shall see that the canonical expression of a symmetric bilinear
map, given in Section B.3, is unique up to the order of the elements on the
diagonal, when k = R or k = C; and unique up to the order, modulo squares,
when k is finite.
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B.4.1 The Complex Case

Theorem B.15

Let φ be a symmetric bilinear map on a C-vector space E. Let us assume that
φ diagonalizes with respect to certain bases B and B ′, with only 1s and 0s
appearing on the respective diagonals. Then the number of 1s is the same in
both matrices.

Proof

The number of 1s coincides with the rank of the matrix and the above two
matrices are related by the formula of the change of basis

M(φ, B) = CTM(φ, B ′)C.

Since the rank of a matrix is invariant under left and right multiplication by
invertible matrices, the number of 1s in both matrices must coincide. �

Indeed, we can say that the above two matrices M(φ, B) and M(φ, B ′) are
equal up to the order of the elements on the diagonal. If we agree that, on the
diagonal, we first put the 1s, followed by the zeros, then the above two matrices
are equal. For this reason we say that this matrix is the canonical form or the
canonical expression of φ.

B.4.2 The Real Case

Let φ be a symmetric bilinear map on an R-vector space E. Let us assume that
φ diagonalizes with respect to certain bases B and B ′, with only 1s, −1s and 0s
appearing on the respective diagonals. Is the number of +1s the same in both
matrices?

We will see that the answer is yes, but the rank argument used in the complex
case is not sufficient here. That argument only tells us that the total number
of ±1s on the diagonal of M(φ, B) is the same as the total number of ±1s on
the diagonal of M(φ, B ′), and we cannot conclude from this that the number
of +1s in both diagonals coincide.

The correct argument comes from Sylvester’s theorem.
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Theorem B.16 (Sylvester’s theorem)

Let E be an R-vector space and let φ be a symmetric bilinear map on E. Then
we can decompose E as a direct orthogonal sum of vector subspaces in such a
way that

E = radφ⊥E+⊥E−,

with φ positive definite on E+ and negative definite on E−. The dimensions
dimE+ and dimE− do not depend on the decomposition.

Proof

The existence of the decomposition is clear, since it follows directly from the
Diagonalization Theorem B.8.

Indeed, we know that there exists a basis B = (e1, . . . , en) with respect to
which φ diagonalizes and such that

φ(ei, ei) = 1, i = 1, . . . , r+,

φ(ei, ei) = −1, i = r+ + 1, . . . , r+ + r−,

φ(ei, ei) = 0, i > r+ + r−.

Then simply take

E+ = 〈e1, . . . , er+ 〉,

E− = 〈er++1, . . . , er++r− 〉.

Since

radφ = 〈er++r−+1, . . . , en〉,

we have

E = radφ⊥E+⊥E−.

Observe that φ is negative definite on E−. Indeed, the condition φ(ei, ei) < 0,
satisfied for all elements of the basis of E−, implies that for each element
u =

∑
uiei ∈ E− we also have φ(u,u) = −

∑
(ui)2 ≤ 0.

Analogously we can see that φ is positive definite on E+. This completes
the first part of the proof.

Now we prove the independence of r+ and r− with respect to the decompo-
sition.

This independence means that in every decomposition of E as an orthogonal
direct sum of the radical of φ, a subspace on which φ is positive definite, and
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a subspace on which φ is negative definite, the dimensions of these last two
subspaces are completely determined by φ.

Suppose that we have

E = radφ⊥E+⊥E− = radφ⊥F+⊥F−, (B.6)

with φ positive definite on E+ and on F+ and negative definite on E− and
on F−. We want to prove that dimF+ = dimE+. This also implies dimF− =
dimE−.

Let us consider the linear map

F+
i

↪→ E
pr−→ E+

obtained as the composition of the canonical inclusion i of F+ into E with the
projection pr of E onto E+ determined by the direct sum decomposition

E = radφ⊥E+⊥E−,

that is,

pr(e0 + e+ + e−) = e+, e0 ∈ radφ, e+ ∈ E+, e− ∈ E−.

If we prove that this map (pr ◦ i) is injective, we have finished, because
injectivity implies

dimF+ ≤ dimE+,

and by symmetry, that is by exchanging the roles played by E+ and F+, we
obtain the opposite inequality, and hence the equality of these dimensions.

To prove that (pr ◦ i) is injective we take e ∈ F+ such that (pr ◦ i)(e) = 0.
We decompose e as

e = e0 + e+ + e−, e0 ∈ radφ, e+ ∈ E+, e− ∈ E−.

The image of e under (pr ◦ i) is e+ and hence e+ = 0; in particular e = e0 + e−.
But then

φ(e, e) = φ(e−, e−) ≤ 0,

since φ is negative definite on E−. On the other hand, φ(e, e) ≥ 0, since φ is
positive definite on F+. In conclusion, φ(e, e) = 0, and hence e = 0, again since
φ is positive definite on F+. Thus, (pr ◦ i) is injective, and this completes the
proof. �

Notice that the subspaces E+ and E− are not invariant: the equality (B.6) does
not imply E+ = F+. What is invariant is the dimension of E+ and the dimension
of E−. We shall denote these dimensions by r+(φ) and r−(φ), respectively.
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Theorem B.17

Let φ be a symmetric bilinear map on an R-vector space E. Let B and B ′ be
bases of E and let us suppose that the matrices M(φ, B) and M(φ, B ′) are
diagonal and that on the respective diagonals there are only ±1s and 0s. Then
these two matrices have the same number of 1s and the same number of −1s.

Proof

The number of 1s of M(φ, B) is equal to r+(φ) (by the same argument as in
the proof Sylvester’s theorem), and this number, by Sylvester’s theorem, does
not depend on the basis.

Since the rank is preserved, the number of −1s is also preserved. �

We say that the above two matrices M(φ, B) and M(φ, B ′) are equal up to the
order of the elements on the diagonal. If we agree that, on the diagonal, we
first put the 1s, then the −1s, and finally the zeros, the above two matrices
are equal. For this reason we say that this matrix is the canonical form or the
canonical expression of φ.

Notice that

r+(φ) = the number of 1s in the canonical expression of φ.

The index of φ is defined as

index (φ) = min{r+(φ), r−(φ)}.

We call r+(φ) the positivity dimension of φ, because it is the dimension of
the largest vector subspace of E on which φ is positive definite; see Exercise B.5,
page 380.

B.4.3 The Finite Case

Theorem B.18

Let φ be a symmetric bilinear map on a k-vector space E, with k finite and of
characteristic different from 2. Let us suppose that φ diagonalizes with respect
to some basis B, and that the diagonal is comprised of 1s, 0s and at most one
non-square a ∈ k.
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Suppose that there is another basis B ′ with respect to which φ also diag-
onalizes, and that the diagonal is comprised of 1s, 0s and at most one non-
square b ∈ k. Then the number of 1s in both matrices is the same, and b/a is
a square.

Proof

The proof that both matrices have the same number of 1s on the diago-
nal follows from the fact that the matrices A = M(φ, B) and A′ = M(φ, B ′)
have the same rank, and that the following can never occur, where a is non-
square:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Indeed, these matrices are conjugate, in the sense that there is an invertible
matrix P such that A = PTAP , and this conjugation induces (by the block
product of matrices) a conjugation between the non-singular parts. Concretely,
there is an invertible matrix C such that

⎛
⎜⎝

1
. . .

1

⎞
⎟⎠ = CT

⎛
⎜⎜⎜⎝

a

1
. . .

1

⎞
⎟⎟⎟⎠C,

and this is impossible because of the invariance of the discriminant.
Finally, it is possible that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b

1
. . .

1
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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with a and b non-squares, because, by Proposition B.9, there exists a c ∈ k

such that b = ac2. Hence, this situation occurs when the relationship between
the bases B = (e1, . . . , en) and B ′ = (e′

1, . . . , e
′
n) is given by e′

1 = ce1, e′
i = ei,

i = 2, . . . , n. �

In fact, we can say that the above two matrices M(φ, B) and M(φ, B ′) are equal
(modulo squares) up to the order of the elements on the diagonal. If we agree
that on the diagonal we first put a non-square, then 1s, and finally zeros, the
above two matrices are equal (modulo squares). For this reason we say that
this matrix is the canonical form or the canonical expression of φ.

B.4.4 Matricial Version

Theorems B.15, B.17 and B.18 can be formulated matricially in the following
way (simply consider a given symmetric matrix as the matrix associated to a
bilinear map).

Proposition B.19

If the matrices A ∈ Mn×n(C) and D = CTAC , with C ∈ Mn×n(C) invertible,
are diagonal with only 1s and 0s on the diagonal, then they have the same
number of 1s.

Proof

This is a consequence of B.15. �

Proposition B.20

If the matrices A ∈ Mn×n(R) and D = CTAC , with C ∈ Mn×n(R) invertible,
are diagonal with only 1s, −1s and 0s on the diagonal, then they have the same
number of 1s and the same number of −1s.

Proof

This is a consequence of B.17. �
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Observe that Sylvester’s theorem allows us to define r+(A) for any real sym-
metric matrix A. Concretely, given a real symmetric matrix A there exists a
real invertible matrix C such that the matrix D = CTAC is diagonal with only

±1s and 0s on the diagonal. We say that D is the canonical expression of A.
We define

r+(A) = the number of 1s in the canonical expression of A.

By the above proposition, this number is well defined, in the sense that it
does not depend on the invertible matrix C yielding the canonical expression
CTAC .

Analogously, we define

r−(A) = the number of −1s in the canonical expression of A,

index(A) = min{r+(A), r−(A)}.

Hence, we have the following.

Proposition B.21

Let A be a real symmetric matrix. Then for all real invertible matrices P we
have

r+(A) = r+(PTAP ),

r−(A) = r−(PTAP ),

index(A) = index(±PTAP ).

Proof

The matrices A and PTAP have the same canonical expression, and the index
does not change when we change the sign of a matrix. �

In particular, for every symmetric bilinear map φ of a real vector space, we
have

r+(φ) = r+(M(φ, B)),

r−(φ) = r−(M(φ, B)),

index(φ) = index(±M(φ, B)),

for all bases B of E.
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Proposition B.22

If the matrix A ∈ Mn×n(k), with k finite and of characteristic different from 2,
is diagonal with only 1s and 0s on the diagonal, and the matrix B ∈ Mn×n(k)
is diagonal with 1s, 0s and a single non-square on the diagonal, then there is
no invertible matrix C such that B = CTAC .

Proof

This is a consequence of B.18. �

B.5 The Method of Completing the Squares

In this section we shall give a second proof of the Diagonalization Theorem B.3
following the procedure known as the method of completing the squares.

This method is based on the fact that symmetric matrices can be identified
with homogeneous quadratic polynomials. Concretely, to each n × n symmetric
matrix A = (aij), we associate the homogeneous quadratic polynomial

r(x) = xTAx =
n∑

i,j=1

aijxixj

=
∑
i<j

(aij + aji)xixj +
∑

i

aiixixj =
∑
i≤j

āijxixj ,

with

āii = aii,

āij = 2aij , i < j,

and to each homogeneous quadratic polynomial
∑

i,j=1,i≤j

xixj āij , 1 ≤ i ≤ j ≤ n,

we associate the symmetric matrix A = (aij) with

aii = āii,

aij = āij/2, i < j,

aji = āij/2, i < j.
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For instance, to the symmetric matrix
(

a b

b c

)

we associate the quadratic polynomial

(
x1 x2

)(
a b

b c

)(
x1

x2

)
= ax2

1 + 2bx1x2 + cx2
2,

and conversely (dividing the coefficient of x1x2 by 2 before placing it in the
matrix).

This is, essentially, what we did in Section 8.2, page 225, however the
quadratic polynomials considered there were not necessarily homogeneous.

Theorem B.23 (Diagonalization)

Let φ be a symmetric bilinear map on a k-vector space E with k a field of
characteristic different from 2. Then there exists a basis of E with respect to
which φ diagonalizes.

Proof

Method of completing the squares. Let B be a basis of E and set

A = M(φ, B).

By Theorem B.2, we must find an invertible matrix C such that CTAC is
diagonal.

Let r(x) = xTAx be the homogeneous quadratic polynomial associated to A.
Concretely,

r(x) =
(
x1 . . . xn

)
A

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ =

n∑
i,j=1

aijxixj , where A = (aij).

Let us try to make a change of variables in such a way that the polynomial
written in these new variables contains only terms of the form āiix̄ix̄i, that is,
only square terms. To do this we shall follow the following procedure:

If a11 �= 0 we take it as a common factor and, since a1i = ai1, we have

r(x) = a11

(
(x1)2 + 2x1

∑
i=2

a1i

a11
xi

)
+ quadratic terms without x1
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= a11

((
x1 +

∑
i=2

a1i

a11
xi

)2

−
(∑

i=2

a1i

a11
xi

)2)

+ quadratic terms without x1.

If we make now the change of variables

y1 = x1 +
∑
i=2

a1i

a11
xi,

yi = xi, i = 2, . . . , n,

the previous expression is transformed into

r(x) = a11(y1)2 + r(y2, . . . , yn),

where r(y2, . . . , yn) is a quadratic polynomial in y2, . . . , yn.
If a11 = 0, we inspect the elements akk, k �= 1, in order to see if one of them

is non-zero. In this case, we repeat the above steps but substituting a11 by akk.
If, on the contrary, all aii = 0, i = 1, . . . , n, we fix a pair i �= j such that aij �= 0.
Next we make the change of variables

yi = xi + xj ,

yj = xi − xj ,

yk = xk, k �= i, j,

so that

xixj =
1
4
(y2

i − y2
j ).

Thus we have an expression of the polynomial in which some of the new aii are
non-zero (the characteristic of k is different from 2), and we are, therefore, in
the previous case.

In this way we have reduced the problem to the study of the homogeneous
quadratic polynomial r(y2, . . . , yn), which has one variable less than the orig-
inal polynomial. Iterating this process we arrive at a new system of variables
x̄1, . . . , x̄n, with respect to which r(x) is expressed as a sum of squares.

Hence, in a finite number of steps, we will have rewritten the given homo-
geneous quadratic polynomial as

r(x) = a1(x̄1)2 + · · · + ar(x̄r)2, ai �= 0, i = 1, . . . , r.

This finishes the method of completing the squares.
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Next we shall use this method in order to find a basis of E with respect
to which φ diagonalizes, or, equivalently, an invertible matrix C such that the
matrix CTAC is diagonal.

Let ⎛
⎜⎝

x̄1

...
x̄n

⎞
⎟⎠ = B

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠

be the change of variables that has transformed the given homogeneous
quadratic polynomial into a sum of squares. That is, the composition of all
the changes of variables made during the application of the method of com-
pleting the squares.

We shall write the composition of all these changes of variables as

x̄ = Bx.

Equivalently,

x = Cx̄, with C = B−1.

This matrix C is the matrix that we are looking for.
Indeed, we have

r(x) = xTAx = x̄TCTACx̄ = x̄TDx̄,

with D = CTAC . But the expression of r(x) as a function of x̄ contains only
squares (that is, it contains only terms of the form āiix̄ix̄i). Hence, given A,
we have found a matrix C such that CTAC is diagonal. This completes the
proof. �

Now we repeat Example B.5 using the method of completing the squares.

Example B.24

Let φ be the symmetric bilinear map of R
3 given, in the canonical basis, by the

matrix

A =

⎛
⎜⎝

3 − 1
2

0
− 1

2 0 2
0 2 −2

⎞
⎟⎠ .

Find a basis of R
3 with respect to which φ diagonalizes.
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Solution

The homogeneous quadratic polynomial associated to A is

(x1, x2, x3)

⎛
⎜⎝

3 − 1
2

0
− 1

2 0 2
0 2 −2

⎞
⎟⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 3x2

1 − 2x2
3 − x1x2 + 4x2x3.

Since the coefficient of x2
1 is different from zero, we begin by “squaring” x1.

3x2
1 − 2x2

3 − x1x2 + 4x2x3 = 3
(
x1 − x2

6

)2

− x2
2

12
− 2x2

3 + 4x2x3

= [now squaring x2]

3
(
x1 − x2

6

)2

− 1
12

(x2 − 24x3)
2

+ 48x2
3 − 2x2

3

= 3x̄1
2 − 1

12
x̄2

2 + 46x̄3
2.

Hence, the change of variables is given by

x̄1 = x1 − x2

6
,

x̄2 = x2 − 24x3,

x̄3 = x3.

Equivalently, ⎛
⎝x̄1

x̄2

x̄3

⎞
⎠ =

⎛
⎝1 − 1

6
0

0 1 −24
0 0 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ ,

or, ⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝1 1

6 4
0 1 24
0 0 1

⎞
⎠

⎛
⎝x̄1

x̄2

x̄3

⎞
⎠ .

The columns of the matrix of the change of coordinates are the elements of
the basis with respect to which φ diagonalizes. Hence this basis is (u1, u2, u3)
where u1 = (1,0,0), u2 = ( 1

6 ,1,0), u3 = (4,24,1). Therefore we have

⎛
⎝1 1

6
4

0 1 24
0 0 1

⎞
⎠

T ⎛
⎝ 3 − 1

2
0

− 1
2 0 2

0 2 −2

⎞
⎠

⎛
⎝1 1

6
4

0 1 24
0 0 1

⎞
⎠ =

⎛
⎝3 0 0

0 − 1
12 0

0 0 46

⎞
⎠ .

�
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Observe that in this example the bilinear map φ is given in the canonical basis
of R

3. This basis is orthonormal with respect to the standard scalar product.
However, the basis with respect to which φ diagonalizes is not orthonormal. Is
it possible to find an orthonormal basis with respect to which φ diagonalizes?
We study this question in Appendix C.

Observation B.25 (Quadratic forms)

If a symmetric bilinear map φ : E × E −→ k is applied only to pairs of equal
vectors (u,u), we obtain a quadratic form. That is, a quadratic form q on E is
the restriction of a symmetric bilinear map on E to the diagonal of E × E.

Concretely, the quadratic form q associated to a symmetric bilinear map φ

is the map

q : E −→ k

given by

q(v) = φ(v, v).

Observe that q(λv) = λ2q(v), but not every map q : E −→ k with this prop-
erty is a quadratic form. See Exercise B.8, page 380.

If we know q(v), for all v ∈ E, then φ is completely determined, because

φ(u, v) =
1
2
(q(u + v) − q(u) − q(v)).

(Recall that we are assuming that the characteristic of k is different from 2.)
That is, if two symmetric bilinear maps coincide on the diagonal of E × E,
then they are equal. Therefore we have a bijection between symmetric bilinear
maps and quadratic forms.

When we write a quadratic form in coordinates, we obtain a homogeneous
quadratic polynomial.

Concretely, if we fix a basis (e1, . . . , en) of E and write a vector x ∈ E in
coordinates, x =

∑
i xiei, we obtain

q(x) = φ

(∑
i

xiei,
∑

j

xjej

)
=

∑
ij

xixjaij = xTax,

where aij = φ(ei, ej), a = (aij) and xT = (x1, . . . , xn). Conversely, given a homo-
geneous quadratic polynomial and a basis, the above formula defines a quadratic
form.

Thus, once we fix a basis of E, we have a bijection between quadratic forms,
homogeneous quadratic polynomials and symmetric matrices.
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B.6 Classification of Symmetric Bilinear Maps

The problem that we consider in this section is the following: given two sym-
metric bilinear maps φ and φ′ on the same k-vector space E, are there bases

B and B ′ with respect to which φ and φ′ have the same matrix, that is, such
that M(φ, B) = M(φ′, B ′)?

When this occurs we say that φ and φ′ are equivalent.

Definition B.26

Two symmetric bilinear maps φ and φ′ on a k-vector space E are said to be
equivalent if their associated matrices, in possibly different bases, coincide.

Proposition B.27

Let E be a k-vector space and let φ and φ′ be symmetric bilinear maps on E.
Let B and B ′ be bases of E (not necessarily different). Then φ and φ′ are
equivalent if and only if there exists an invertible matrix C such that

M(φ, B) = CTM(φ′, B ′)C.

Proof

If φ and φ′ are equivalent, then there exist bases B1 and B2 such that

M(φ, B1) = M(φ′, B2).

By the formula of the change of basis, we have

M(B1, B)TM(φ, B)M(B1, B) = M(B2, B ′)TM(φ′, B ′)M(B2, B ′).

Since the matrix of a change of basis is invertible, we have

M(φ, B) = CTM(φ′, B ′)C, with C = M(B2, B ′)M(B1, B)−1.

Observe that if B = B ′, then C = M(B2, B1), that is, C is the matrix of the
change of basis between the two bases in which φ and φ′ have respectively the
same matrix.

Conversely, if there exists an invertible matrix C such that

M(φ, B) = CTM(φ′, B ′)C,
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then the basis B2 determined by the condition

C = M(B2, B ′)

satisfies

M(φ, B) = M(φ′, B2),

and hence φ and φ′ are equivalent. �

In particular,

detM(φ, B) = detM(φ′, B ′) · (detC)2.

Thus, if two symmetric bilinear maps are equivalent, they have the same rank
and the same discriminant.

However, two symmetric bilinear maps can have the same rank and discrim-
inant without being equivalent. For instance, the symmetric bilinear maps of
the vector space R

2 given in the canonical basis by the matrices
(

1 0
0 1

)
and

(
−2 0
0 −1

)

have the same rank and discriminant, but they are not equivalent.
The fact that the discriminant plays an important role in the classification

of symmetric bilinear maps, and the fact that, on arbitrary fields, it is difficult
to determine which elements have square roots, are the reasons why the classi-
fication problem on arbitrary fields is rather involved. We shall study here only
the simplest cases: k = R, k = C and k finite.1

Proposition B.28

Two symmetric bilinear maps φ and φ′ on a k-vector space E are equivalent if
and only if there exists an isomorphism h : E −→ E such that

φ(u, v) = φ′(h(u), h(v)), for all u, v ∈ E.

Proof

If there exists an isomorphism h with this property we have, by formula (A.2),

M(φ, B) = M(h, B)TM(φ′, B)M(h, B),

1 The classification for k = Q can be found in [6].
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for any basis B of E. Hence, by Proposition B.27, φ and φ′ are equivalent.
Conversely, if there exists an invertible matrix C such that

M(φ, B) = CTM(φ′, B)C,

we define h by the condition

M(h, B) = C.

Since C is invertible, h is an isomorphism and we have

M(φ, B) = M(h, B)TM(φ′, B)M(h, B).

This implies, again by formula (A.2), that

φ(u, v) = φ′(h(u), h(v)), for all u, v ∈ E,

and this completes the proof. �

Theorem B.29 (Classification on C)

Two symmetric bilinear maps on a C-vector space are equivalent if and only
if they have the same number of 1s in their canonical expression. That is, the
rank classifies.

Proof

We know, by Theorem B.7, that there exist bases B and B ′ such that

M(φ, B) =
(

Ir O

O O

)
,

M(φ′, B ′) =
(

Is O

O O

)
,

where Ir and Is are the r × r and s × s identity matrices, respectively.
Let us suppose that φ is equivalent to φ′. Then, by Proposition B.27, there

exists an invertible matrix C such that
(

Ir O

O O

)
= CT

(
Is O

O O

)
C.

But this implies r = s, since, as we have already remarked, the rank of a matrix
is invariant under left and right multiplication by invertible matrices.
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The converse is evident, since there are bases (the bases B and B ′ with
respect to which φ and φ′ have the canonical expression) such that M(φ, B) =
M(φ′, B ′). �

This theorem can also be stated in the form two symmetric bilinear maps on a
C-vector space are equivalent if and only if they have the same rank, or if and
only if they have the same canonical expression.

Theorem B.30 (Classification on R)

Two symmetric bilinear maps on an R-vector space are equivalent if and only
if they have the same number of 1s and −1s in their canonical expression. That
is, the rank and the number of 1s classify.

Proof

This is an immediate consequence of Sylvester’s theorem. Indeed, let us first
suppose that φ is equivalent to φ′. Let C be a basis with respect to which φ has
the canonical expression, with r+(φ) 1s and r−(φ) −1s on the diagonal. Let C ′

be a basis with respect to which φ′ has the canonical expression, with r+(φ′)
1s and r−(φ′) −1s on the diagonal.

By Proposition B.27 there exists an invertible matrix C such that

M(φ, C) = CTM(φ′, C ′)C.

But this implies, by Proposition B.20, r+(φ) = r+(φ′).
The converse is evident, since there are bases (the bases B and B ′ with

respect to which φ and φ′ have the canonical expression) such that M(φ, B) =
M(φ′, B ′). �

This theorem can also be stated in the form two symmetric bilinear maps on
an R-vector space are equivalent if and only if they have the same rank and
the same positivity dimension, or if and only if they have the same canonical
expression.

Theorem B.31 (Classification when k is finite)

Let k be a finite field. Two symmetric bilinear maps on a k-vector space are
equivalent if and only if they have the same rank and the same number of 1s
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in their canonical expression. That is, the rank and the discriminant of the
non-singular part classify.

Proof

If φ and φ′ are equivalent, the canonical expressions given by Theorem B.11 are
conjugate. But this implies, by the block product of matrices, that the matrices
corresponding to the non-singular parts are also conjugate. Hence, they have
the same rank, and, either they both have only 1s on the diagonal, or they both
have only one non-square and 1s on the diagonal (see the proof of Theorem
(B.18), page 363). Therefore, in both cases they have the same number of 1s.

Conversely, if φ and φ′ have the same rank and the same number of 1s in
their canonical expressions, either there are only 1s and 0s on the diagonal,
in which case the matrices of φ and φ′ are equal and we have finished, or the
first element on the diagonal of both matrices is a non-square. But given two
non-squares a and b, there exists a c ∈ k such that b = ac2 (Proposition B.9,
page 356). Hence, these matrices are conjugated by the matrix

⎛
⎜⎜⎜⎝

c

1
. . .

1

⎞
⎟⎟⎟⎠ ,

and so φ is equivalent to φ′. �

This theorem can also be stated in the form two symmetric bilinear maps on
a k-vector space, with k finite, are equivalent if and only if they have the same
canonical expression modulo squares.

B.7 Projective Classification

Observe that, in the real case, the matrices
(

1 0
0 1

)
and

(
−1 0
0 −1

)

are not equivalent.
However, if we consider these matrices as quadratic polynomials they have

the same zeros. For this reason it is convenient to introduce the concept of
projectively equivalent symmetric bilinear maps.
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Definition B.32

Two symmetric bilinear maps φ and φ′ on an R-vector space E are said to be
projectively equivalent if their associated matrices, in possibly different bases,
coincide up to the sign.

Proposition B.33

Let E be an R-vector space and let φ and φ′ be symmetric bilinear maps on E.
Let B be a basis of E. Then φ and φ′ are projectively equivalent if and only if
there exists an invertible matrix C such that

M(φ, B) = ±CTM(φ′, B)C.

Proof

This is a consequence of Proposition B.27. �

Vector subspaces of dimension 2 admitting a basis with respect to which

φ =
(

1 0
0 −1

)

are called hyperbolic planes. They are characterized as the non-singular vector
subspaces of dimension two with an isotropic vector. Recall that non-singular
means that there is no non-zero vector φ-orthogonal to all vectors, see Defini-
tion A.5, page 325. An isotropic vector is a vector u such that φ(u,u) = 0.

Observe that the number of hyperbolic planes, which appear by grouping
together pairs {1, −1} in the canonical expression of φ, coincides with the index
of φ.

Proposition B.34

Let E be an R-vector space and let φ and φ′ be symmetric bilinear maps on E.
Then φ and φ′ are projectively equivalent if and only if they have the same
rank and the same index.

Proof

As a consequence of Propositions B.21 and B.33, if φ and φ′ are projectively
equivalent they have the same rank and the same index.
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Conversely, if they have the same rank and the same index, they will have,
up to the sign, the same canonical expression (in appropriate bases). In fact, if
ρ = rank(φ) = rank(φ′) and i = index(φ) = index(φ′), it is clear that the ρ − 2i

remaining elements of the diagonal, once we have removed the pairs {1, −1} in
the respective canonical expressions, are all equal to 1 or all equal to −1.

Again by Proposition B.33, φ and φ′ are projectively equivalent. �

Theorem C.14, page 390, provides a quick method of calculating the index.

EXERCISES

B.1. Consider the bilinear map φ : R
3 × R

3 → R
3 defined by

φ((x1, x2, x3), (y1, y2, y3))

= x1y1 − x1y3 + x2y2 − x3y1 + x3y2 + 2x3y3 + x2y3.

(a) Find the matrix of φ with respect to the canonical basis of R
3.

(b) Consider the change of coordinates of R
3 given by

⎧⎪⎪⎨
⎪⎪⎩

x′ = 2x1 + 2x2 + 3x3,

x′
2 = −x1 − x3,

x′
3 = −x2 − x3.

Find, with respect to these new coordinates, the analytical ex-
pression of the quadratic form associated to φ.

B.2. Find the symmetric matrix associated to each one of the following
quadratic polynomials:

Q1(x) = x2
1 + x2

2, Q5(x) = 2x2
1 − 4x1x2 + 2x2

2 − 2x2x3,

Q2(x) = x2
1 + 2x1x2 + x2

2, Q6(x) = x2
1 + x2

2 + x2
3 − 4x1x3,

Q3(x) = x2
1 + 2x1x2 + 2x2

2, Q7(x) = 2x1x2 − 2x1x3,

Q4(x) = x2
1 + 6x1x2 + 8x2

2, Q8(x) = 2x2
1 − x2x3.

B.3. Find the canonical expressions of the symmetric bilinear maps de-
fined, with respect to the canonical bases of R

2 or R
3, by the eight

symmetric matrices found in the previous exercise. Find their in-
dices. Specify in each case the change of basis used to find the canon-
ical expression.



380 B. Diagonalization of Bilinear Symmetric Maps

B.4. Express the quadratic polynomial q(x) = 2x2
1 − x2

2 + 2x1x3 − 4x2x3

in terms of (x′
1, x

′
2, x

′
3) if
⎧⎪⎪⎨
⎪⎪⎩

x1 = x′
1 + x′

2 − 2x′
3,

x2 = −2x′
1 + x′

2,

x3 = x′
2 + x′

3.

B.5. Let φ be a symmetric bilinear map of a real vector space E. Prove
that

r+(φ) = max{dimF : F vector subspace of E

and φ|F positive definite}

and that

r−(φ) = max{dimF : F vector subspace of E

and φ|F negative definite}.

B.6. Classify the symmetric bilinear map φ of R
4 that gives rise to the

quadratic form

q(x) = x2
1 + 3x2

2 + 4x1x2 + 2x1x3 + 2x1x4 + 2x2x4 − 2x3x4,

and find a basis B with respect to which M(φ, B) is the canonical
expression of φ.

B.7. Classify the symmetric bilinear map φ of R
3 that gives rise to the

quadratic form

q(x) = 2x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x1x3 + 2x2x3

and find a basis B with respect to which M(φ, B) is the canonical
expression of φ.

B.8. Find a map q : R
2 −→ R

2 satisfying q(λv) = λ2q(v) for all v ∈ R
2 and

for all λ ∈ R, but that is not a quadratic form.



C
Orthogonal Diagonalization

C.1 Introduction

We shall see that, given two symmetric bilinear maps on a finite dimensional
R-vector space E, one of them positive definite, there is a basis of E with
respect to which the respective associated matrices are simultaneously dia-
gonal. For this reason this result is called the Simultaneous Diagonalization
Theorem, although it is also known as the Spectral Theorem.

C.2 Associated Endomorphism

Definition C.1

Let φ and g be symmetric bilinear maps of a real vector space E, with g positive
definite. The endomorphism associated to φ and g is the unique endomorphism
f of E such that

φ(u, v) = g(f(u), v), u, v ∈ E.

Observe that g is a scalar product.
Notice that the formula φ(u, v) = g(f(u), v) determines f , because an en-

domorphism is determined by its value on a basis. If we take, for instance,
B = (e1, . . . , en), an orthonormal basis with respect to g, the above formula

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-0-85729-710-5, c© Springer-Verlag London Limited 2011
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implies

f(ei) =
∑

j

φ(ei, ej)ej ,

and hence f is completely determined.
This expression of f(ei) tells us that

M(f, B) = M(φ, B).

The reader is invited to pay particular attention to the previous equation: the
first matrix is associated to a linear map while the second matrix is associated
to a bilinear map!

Therefore, roughly speaking, the associated endomorphism is obtained by
thinking of the matrix of φ with respect to an orthonormal basis as if it was
the associated matrix of a linear map.

If B is an arbitrary basis, the condition φ(u, v) = g(f(u), v) implies

M(φ, B) = M(f, B)TM(g, B).

Thus,

M(f, B)T = M(φ, B)M(g, B)−1,

and hence, transposing, and using the fact that the matrices of φ and g are
symmetric, we have

M(f, B) = M(g, B)−1M(φ, B).

If B is not g-orthonormal, M(f, B) need not be symmetric. This formula is very
useful because it enables us to calculate the endomorphism associated to φ and
g very quickly.

C.3 Self-adjoint Endomorphisms

We have just seen that if we have two symmetric bilinear maps φ and g on an
R-vector space E, with g positive definite, then there is an endomorphism f

of E (the associated endomorphism) satisfying, because of the symmetry of φ,

g(f(u), v) = g(u, f(v))

for all u, v ∈ E.
Endomorphisms satisfying this property are said to be self-adjoint with re-

spect to g.
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Definition C.2 (Self-adjoint endomorphism)

Let f be an endomorphism of a Euclidean vector space (E,g). Then f is self-
adjoint with respect to g if and only if g(f(u), v) = g(u, f(v)), for all u, v ∈ E.

When the scalar product g is understood we simply say that f is self-adjoint.
Notice that if φ is a symmetric bilinear map on (E,g), the endomorphism

associated to φ and g is self-adjoint with respect to g.
Analogously, given a self-adjoint endomorphism f of a Euclidean vector

space (E,g), we can define a symmetric bilinear map φ on E by the formula

φ(u, v) = g(f(u), v).

Then f is the endomorphism associated to φ and g. Note that φ is symmetric
if and only if f is self-adjoint.

Proposition C.3

Let f be a self-adjoint endomorphism of a Euclidean vector space (E,g). Then
eigenvectors of f with different eigenvalues are orthogonal.

Proof

Suppose that f(u) = λu, f(v) = μv, with u �= 0, v �= 0, λ �= μ.
Then

λg(u, v) = g(λu, v) = g(f(u), v)

= g(u, f(v)) = g(u,μv) = μg(u, v).

Hence, g(u, v) = 0, and this completes the proof. �

Proposition C.4

Let f be an endomorphism of a Euclidean vector space (E,g). Then the matrix
of f in an orthonormal basis is symmetric if and only if f is self-adjoint.

Proof

Let B = (e1, . . . , en) be an orthonormal basis. Put

f(ei) =
∑

k

akiek.
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Then

g(f(ei), ej) = g

(∑
k

akiek, ej

)
= aji,

g(ei, f(ej)) = g

(
ei,

∑
k

akjek

)
= aij .

Hence, if f is self-adjoint, we have aij = aji, that is, the matrix of f in B,
M(f, B), is symmetric.

Conversely, if this matrix is symmetric, that is aij = aji, we have

g(f(ei), ej) = g(ei, f(ej)), i, j = 1, . . . , n,

and it follows easily from this that

g(f(u), v) = g(u, f(v)), for all u, v ∈ E,

and this completes the proof. �

C.4 Orthogonal Diagonalization of Symmetric
Matrices

We begin with a simple observation.

Proposition C.5

Let A be a 2 × 2 real symmetric matrix. Then the eigenvalues of A are real
numbers.

Proof

Let

A =
(

a b

b c

)
.

The characteristic polynomial is

pA(x) = x2 − (a + c)x + (ac − b2).
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The discriminant is

Δ = (a + c)2 − 4(ac − b2) = (a − c)2 + 4b2 ≥ 0,

and hence there are two different real roots or a double real root. �

This result is true in arbitrary dimensions, but it is not easy to generalize the
above proof. We must pass to the complex numbers.

Theorem C.6

Let A be an n × n real symmetric matrix. Then the eigenvalues of A are real
numbers.

Proof

We consider A as a linear map from C
n to C

n, concretely

A(u) = Au, u ∈ C
n,

where Au means the matrix A multiplied by the matrix of n rows and one
column formed by the components of u,

u =

⎛
⎜⎝

u1

...
un

⎞
⎟⎠ .

The characteristic polynomial of A has n complex roots, counting multiplici-
ties. Let λ ∈ C be one such root. Since the roots of the characteristic polynomial
are the eigenvalues of A, there exists a u ∈ C

n such that

A(u) = λu.

Multiplying the matricial equality Au = λu by ūT, we get

ūTAu = λūTu = λ‖u‖2. (C.1)

Taking the conjugate of (C.1) we obtain

uTAū = λ̄‖u‖2, (C.2)

since A and ‖u‖ are real.
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Transposing (C.1) we obtain

uTAū = λ‖u‖2, (C.3)

since A = ĀT and λ‖u‖2 is a real number.
Equating (C.2) and (C.3) we get λ = λ̄, that is λ ∈ R, and this completes

the proof. �

In particular, we have proved that the characteristic polynomial of A factorizes
as a product of linear polynomials

pA(x) = (x − λ1) . . . (x − λn), λi ∈ R, i = 1, . . . , n,

where these λi are not necessarily distinct.
Observe that we have also proved that the eigenvector associated to the

eigenvalue λ ∈ R is real, since its components are solutions of a homogeneous
linear system with real coefficients.

C.5 The Spectral Theorem

Proposition C.7

Let f be a self-adjoint endomorphism of a Euclidean vector space (E,g) of
dimension n. Then the characteristic polynomial of f factorizes over R as a
product of linear factors. That is,

pf (x) = (x − λ1) . . . (x − λn), λi ∈ R, i = 1, . . . , n.

Proof

The matrix A of f in an orthonormal basis is symmetric, as we have seen
in Proposition C.4. The characteristic polynomial of f is the characteristic
polynomial of A, and, by Proposition C.6, the n eigenvalues (counting multi-
plicities) of an n × n real symmetric matrix are real numbers. This completes
the proof. �

Note that the λi can be equal to each other. Hence, we cannot directly deduce
from this proposition that a self-adjoint endomorphism diagonalizes. Note also
that this proposition tells us that the eigenvalues of a self-adjoint endomorphism
are real numbers.



C.5 The Spectral Theorem 387

Theorem C.8 (Spectral Theorem)

Let (E,g) be a Euclidean vector space, and let φ be a symmetric bilinear map
on E. Then there exists an orthonormal basis with respect to which φ diago-
nalizes. This basis is formed by the normalized eigenvectors of the associated
endomorphism.

Proof

Let f be the endomorphism of E associated to φ and g, that is,

g(f(u), v) = φ(u, v).

By Proposition C.7, there exist a λ ∈ R and an e1 ∈ E such that f(e1) = λe1.
This vector e1 can be taken to be a unit vector, ‖e1‖ = 1. Let

F = 〈e1〉 ⊥ = {v ∈ E : g(e1, v) = 0}.

Since g is positive definite we have dimF = n − 1.
Next we use induction on the dimension n of E.
If n = 1, the matrix of φ in any basis is a 1 × 1 matrix and hence is diagonal.

Therefore, it is sufficient to take as orthonormal basis a vector e ∈ E such
that g(e, e) = 1. The vector e is, of course, an eigenvector of the associated
endomorphism.

Assume that the result is true for n − 1. In particular, we can apply the result
to F , since φ and g are automatically symmetric bilinear maps on F , and g is
positive definite on F . Hence, there exists a g-orthonormal basis (e2, . . . , en) of
F with respect to which φ diagonalizes.

The basis (e1, e2, . . . , en) is clearly g-orthonormal and, since

φ(e1, ej) = g(f(e1), ej) = g(λe1, ej) = 0, j = 2, . . . , n,

the matrix of φ with respect to this basis is diagonal.
Moreover,

φ(ei, ej) = aijδij

implies

g(fei, ej) = aijδij ,

that is,

f(ei) = aiiei,
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and hence the vectors of the g-orthonormal basis B with respect to which φ

diagonalizes are, automatically, eigenvectors of f , and the terms on the diagonal
of M(φ, B) are the eigenvalues of f . �

We have already remarked that this theorem is also known as the Simultaneous
Diagonalization Theorem.

Corollary C.9

Let f be a self-adjoint endomorphism of a Euclidean vector space (E,g). Then
f diagonalizes.

Proof

Simply apply the Spectral Theorem to the scalar product g and the symmetric
bilinear map φ defined by

φ(u, v) = g(f(u), v).

�

As a consequence of the Diagonalization Theorem for endomorphisms (see for
instance [8], page 337), we have the following result on the dimension of the
space of eigenvectors, of a given eigenvalue, of a self-adjoint endomorphism.

Proposition C.10

Let

pf (x) = Πi(x − λi)di

be the factorization into linear factors of the characteristic polynomial of a
self-adjoint endomorphism f . Then

dimker(f − λi id) = di.

Thus, in practice, to find the basis given by the Spectral Theorem (that is,
the basis with respect to which the simultaneous diagonalization of φ and g

takes place) we will first find the eigenvalues of the associated endomorphism,
and then for each eigenvalue λ we will find a g-orthonormal basis of the vector
subspace ker(f − λ id). The union of these bases is the desired basis.
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The Spectral Theorem has the following matricial version.

Theorem C.11 (Matricial version of the Spectral Theorem)

Let A be a real symmetric matrix. Then there exists an orthogonal matrix
C such that D = CTAC is diagonal. The elements on the diagonal are the
eigenvalues of A.

Proof

Let (E,g) be a Euclidean vector space, and let B be an orthonormal basis. We
define a symmetric bilinear map φ on E by the formula

M(φ, B) = A.

By the Spectral Theorem, there exists an orthonormal basis B ′ with respect to
which φ diagonalizes. Therefore, we have

D = M(φ, B ′) = CTM(φ, B)C = CTAC,

where C = M(B ′, B) is the matrix of the change of basis between orthonormal
bases and is, therefore, orthogonal.

Moreover, since CT = C−1, A and D have the same characteristic polynomial
and, hence, the same eigenvalues. �

Observe that a real symmetric matrix can be considered as a linear map from
R

n to R
n which is self-adjoint with respect to the standard scalar product

on R
n. The previous Corollary C.9 tells us that all eigenvalues of A are real

numbers, as we already knew from Proposition C.6.

C.6 Quick Calculation of the Positivity
Dimension

We recall, without proof, the following result on the number of positive roots
of a polynomial (see, for instance, [25], Theorem 11.6.1).

Theorem C.12 (Descartes’ theorem)

The number of positive roots r+ of a polynomial with real coefficients, counted
according to their multiplicity, is less than or equal to the number v of sign
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differences between consecutive non-zero coefficients of the polynomial (i.e.,
r+ ≤ v).

If all roots of the polynomial are real, then r+ = v.

Corollary C.13

The number of positive eigenvalues of a real symmetric matrix is equal to
the number of sign differences between consecutive non-zero coefficients of its
characteristic polynomial.

Proof

This is a consequence of Descartes’ theorem and Proposition C.6. �

Theorem C.14

Let φ be a symmetric bilinear map on an R-vector space E of dimension n. Let
B a basis of E. Then

r+(φ) = v,

where v is the number of sign differences between consecutive non-zero coeffi-
cients of the characteristic polynomial of the matrix A = M(φ, B).

Proof

By Proposition B.21, r+(φ) = r+(A), where r+(φ) is the number of 1s in the
canonical expression of φ. By Proposition C.11, there exists an orthogonal
matrix C such that the matrix

D = CTAC = C−1AC

is diagonal, and the elements on the diagonal are the eigenvalues of A. If we
put D = (dij), we have dii = ±a2

i , i = 1, . . . , rank(φ), for some ai ∈ R. Then the
matrix Q = PTDP , where P = (pij) is an invertible diagonal matrix with

pii =
1

|ai| , i = 1, . . . , rank(φ),

pjj = 1, j = rank(φ) + 1, . . . , n,

is the canonical expression of A. Again by Proposition B.21, r+(A) = r+(Q),
and by Corollary C.13,
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r+(φ) = r+(A) = r+(Q)

= the number of positive eigenvalues of A

= v,

and this completes the proof. �

In particular, we have

index(φ) = min{v, rank(φ) − v}.

Example C.15

Find the canonical expression of the symmetric bilinear map φ on R
2 given

with respect to the canonical basis by

M(φ, C) =
(

5 2
2 1

)
.

Solution

The characteristic polynomial is x2 − 6x + 1. The signs of the coefficients are
+, −,+, and therefore there are two changes of sign. Hence, r+ = 2 and i = 0.
This means that there exists a basis B such that

M(φ, B) =
(

1 0
0 1

)
.

We can find this basis by using either Gauss’ method or the method of
completing the squares.

For instance, by using Gauss’ method we would proceed as follows:
We put ⎛

⎜⎜⎜⎝
5 2
2 1

1 0
0 1

⎞
⎟⎟⎟⎠ .

We make the transformation F2 → F2 − 2
5
F1 and we get

⎛
⎜⎜⎜⎝

5 2
0 1

5

1 0
0 1

⎞
⎟⎟⎟⎠ .
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This forces us to make the transformation C2 → C2 − 2
5
C1 and we get

⎛
⎜⎜⎜⎝

5 0
0 1

5

1 − 2
5

0 1

⎞
⎟⎟⎟⎠ .

Hence, the matrix of φ in the basis u = 1√
5
(1,0), v = 1√

5
(−2,5) is the identity.

That is,

CTAC =
(

1 0
0 1

)
,

where

C =

(
1√
5

− 2√
5

0
√

5

)
.

�

Observe that this matrix C is not orthogonal. In fact, it is clear that there does
not exist an orthogonal matrix C such that

CT

(
5 2
2 1

)
C =

(
1 0
0 1

)
.

Nevertheless, we have:

Example C.16

Given the matrix

A =
(

5 2
2 1

)
,

find a real orthogonal matrix C such that the matrix

D = CTAC

is diagonal.

Solution

To find C we only need to calculate the eigenvectors and the eigenvalues of A

(see Proposition C.11).
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It is easy to see that (1,
√

2 − 1) is an eigenvector with eigenvalue 3 + 2
√

2
and that (1, −

√
2 − 1) is an eigenvector with eigenvalue 3 − 2

√
2.

Since the basis must be orthonormal with respect to the standard scalar
product on R

2, we take as eigenvectors

u =
1
a
(1,

√
2 − 1), with a =

√
4 − 2

√
2,

v =
1
b
(1, −

√
2 − 1), with b =

√
4 + 2

√
2.

Hence,

CTAC =
(

3 + 2
√

2 0
0 3 − 2

√
2

)
,

with

C =

(
1
a

1
b

√
2−1
a

−
√

2−1
b

)
.

�

Observe that this calculation can be used to find the canonical expression asked
for in Example C.15. It is enough to change the above orthonormal basis (u, v)
by

u′ =
u√

3 + 2
√

2
,

v′ =
v√

3 − 2
√

2
.

Then we have

PTAP = I2,

with

P =
(

1/b 1/a

(
√

2 − 1)/b (−
√

2 − 1)/a

)
,

but this matrix is not orthogonal.



394 C. Orthogonal Diagonalization

EXERCISES

C.1. Let φ and g be bilinear maps on R
2 given, with respect to the canon-

ical basis C, by

M(φ, C) =
(

1 2
2 3

)
, M(g, C) =

(
1 2
2 8

)
.

(a) Prove that φ and g are symmetric and that g is positive definite.
(b) Find the endomorphism f : R

2 −→ R
2 associated to φ and g.

(c) Find a g-orthonormal basis with respect to which φ diagonalizes.
C.2. Let φ and g be bilinear maps on R

2 given, in the canonical basis C,
by

M(φ, C) =
(

2 4
4 19

)
, M(g, C) =

(
1 2
2 5

)
.

(a) Prove that φ and g are symmetric and that g is positive definite.
(b) Find the endomorphism f : R

2 −→ R
2 associated to φ and g.

(c) Find a g-orthonormal basis with respect to which φ diagonalizes.
C.3. Given the symmetric matrix

A =

⎛
⎝ 3/2 0 −

√
3/2

0 2 0
−

√
3/2 0 5/2

⎞
⎠ ,

find an orthogonal matrix P such that the matrix D = P TAP is
diagonal.

C.4. Let φ1 and φ2 be bilinear maps on R
3 given, in the canonical basis

C, by

M(φ1, C) =

⎛
⎝1 2 0

2 4
√

6
0

√
6 1

⎞
⎠ , M(φ2, C) =

⎛
⎝1 2 0

2 5 0
0 0 1

⎞
⎠ .

(a) Classify φ1 and φ2, that is, find their canonical expressions.
(b) Find a basis B such that the matrices M(φ1, B) and M(φ2, B)

are diagonal.
C.5. Find, in each case, an orthogonal matrix diagonalizing the given
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matrix.

(a)
(

3 4
4 −3

)
. (b)

(
2 1
1 2

)
.

(c)

⎛
⎝ 1 −1 −1

−1 1 −1
−1 −1 1

⎞
⎠ . (d)

⎛
⎝3 2 2

2 2 0
2 0 4

⎞
⎠ .

(e)

⎛
⎝ −1 2 2

2 −1 2
2 2 1

⎞
⎠ . (f)

⎛
⎝ 1 −1 0

−1 2 −1
0 −1 1

⎞
⎠ .

(g)
(

1 −1
−1 1

)
. (h)

⎛
⎜⎜⎝

1 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 2

⎞
⎟⎟⎠ .

(i)

⎛
⎜⎜⎝

1 0 1 0
0 0 2 0
1 2 0 0
0 0 0 2

⎞
⎟⎟⎠ .

C.6. Using an orthogonal change of variables, write the quadratic form

q(x) = 5x2
1 + 5x2

2 + 8x2
3 − 8x1x2 + 4x1x3 + 4x2x3

as a linear combination of squares, and classify it.





D
Polynomials with the Same Zeros

D.1 Introduction

We shall study here a simplified version of Hilbert’s zeros theorem, which es-
tablishes the relationship between two quadratic polynomials with the same
zeros.

D.2 The Nullstellensatz

Theorem D.1 (Nullstellensatz)

Let r(x), s(x) be polynomials in n variables on an algebraically closed field k. If
s(x) vanishes on the zeros of r(x), then there exist an m ∈ N and a polynomial
q(x) such that sm(x) = r(x) · q(x).

Since x = (x1, . . . , xn), the zeros of the polynomials are in kn.
This theorem is a simplified version of Hilbert’s Nullstellensatz (zeros the-

orem). Observe that if r(x) and s(x) have the same degree and r(x) is irre-
ducible (i.e., it is not equal to the product of polynomials of smaller degree),
then s(x) = λr(x), with 0 �= λ ∈ k.

If we restrict to quadratic polynomials, those appearing in the study of
quadrics, we can be a little more precise.

A. Reventós Tarrida, Affine Maps, Euclidean Motions and Quadrics,
Springer Undergraduate Mathematics Series,
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Theorem D.2 (Quadratic Nullstellensatz)

Let r(x), s(x) be quadratic polynomials in n variables on an algebraically closed
field k. If r(x) and s(x) have the same zeros, then there exists a λ ∈ k, λ �= 0,
such that s(x) = λr(x).

Proof

Since s(x) vanishes on the zeros of r(x), we have sm(x) = r(x) · q(x), that is
r(x) divides sm(x). If r(x) is irreducible, it must divide s(x), and since r(x) and
s(x) have the same degree, we must have s(x) = λr(x) and we have finished.
If r(x) factorizes as a product of two different polynomials of degree 1, each
of them must divide s(x), and hence we also have s(x) = λr(x). Finally, if
r(x) = r1(x)2, r1(x) must divide s(x), and hence s2(x) = r(x) · q(x).

Since we are also assuming that r(x) vanishes on the zeros of s(x), the same
argument proves that r(x) = μs(x) when s(x) is irreducible or a product of two
different polynomials of degree 1, or r2(x) = s(x) · p(x) when s(x) = s1(x)2.

From this we deduce that s1(x) divides r1(x), and hence, also in this case,
s(x) = λr(x). �

The hypothesis on the degree is essential. For instance, the polynomials r(x) =
x1x

2
2 and s(x) = x2

1x2 have the same zeros but one is not a multiple of the
other.

We are interested in a result similar to that of Theorem D.2, but in the real
case. Since R is not algebraically closed, we need a new version of this theorem.

We begin with the following lemma.

Lemma D.3

Let r(x) be a homogeneous quadratic polynomial, with n variables and real
coefficients, such that r(x) = 0 for all points x ∈ R

n with first coordinate x1 �= 0.
Then r(x) is the zero polynomial.

Proof

If n = 1, r(x) = cx2 and the lemma is clear.
If n > 1, the result is an immediate consequence of the following expression

for r(x):

r(x1, . . . , xn) = cx2
1 + x1r1(x2, . . . , xn) + r2(x2, . . . , xn),
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with ri homogeneous polynomials of degree i, i = 1,2. Then it is clear that
r(1,0, . . . ,0) = 0 implies c = 0, and r(x) should be, for each (x2, . . . , xn) fixed, a
polynomial of degree 1 in x1 with infinitely many roots. Since this is impossible,
we must have r1 = r2 = 0, and hence r(x) = 0. �

Note that the condition x1 �= 0 for the points where r(x) = 0 can be replaced
by the hypothesis r(x) = 0 on all points (x1, . . . , xn) that do not belong to a
given hyperplane of R

n, since, changing the affine frame, this hyperplane may
be written as x1 = 0.

Note that the theorem is true for arbitrary (i.e., not necessarily quadratic)
homogeneous polynomials, and that the condition of vanishing outside a hy-
perplane can be replaced by the condition of vanishing on a non-empty open
set.

Theorem D.4 (Real quadratic Nullstellensatz)

Let r(x), s(x) be quadratic polynomials over R, with n variables. If the set of
zeros of s(x) coincides with the set of zeros of r(x), and there is at least one
regular zero with respect to r(x), then there exists a λ ∈ R, λ �= 0, such that
s(x) = λr(x).

Proof

Let r(x) = xTAx+Bx+C and s(x) = xTA′x+B′x+C ′. Let p = (p1, . . . , pn) be
a regular zero of r(x). This means, see Definition 8.15, page 248, that r(p) = 0
and that grad r(p) = 2pTA + B �= 0. First we prove that grads(p) is also non-
zero.

For each vector v = (v1, . . . , vn) ∈ R
n, we consider the intersection of the

straight line p + tv of R
n, t ∈ R, with the set of zeros of r(x).

We have

0 = (p + tv)TA(p + tv) + B(p + tv) + C

= t2vTAv + 2pTAtv + pTAp + Bp + Btv + C

= t2vTAv + 2pTAtv + Btv

= t2vTAv + tLv,

with L = 2pTA + B = grad r(p) �= 0.
Analogously, cutting the same straight line with the set of zeros of s(x) we

have

t2vTA′v + tL′v = 0, (D.1)
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with L′ = 2pTA′ +B′ = grads(p). But any root t ∈ R of this equation must also
be root of the equation

t2vTAv + tLv = 0, (D.2)

and conversely (since the sets of zeros coincide).
Since L �= 0, there exists a vector v ∈ R

n such that Lv �= 0 and such that
vTAv �= 0. Otherwise we would have, by Lemma D.3, A = 0, and r(x) would
not be a quadratic polynomial.

If L′ = 0, (D.1) and (D.2) corresponding to this direction v are
{

t2vTA′v = 0,

t2vTAv + tLv = 0,

and they must have the same solutions in t. But this is impossible, and hence
L′ �= 0.

Since the gradient of r(x) at the point p is not zero, we can apply the
Implicit Function Theorem to the equation r(x) = 0. This theorem says that
we can (locally) solve for one of the variables x1, . . . , xn in terms of the others
(see Observation D.5). Hence, there are curves γi(t), i = 2, . . . , n a R

n such that

r(γi(t)) = 0,

γi(0) = p,

γ̇i(0) = ei,

where e2, . . . , en are n − 1 linearly independent vectors, orthogonal to the vector
L = grad r(p). Orthogonality follows from the chain rule applied to r(γi(t)) = 0.

Concretely, if we have solved for x1, x1 = x1(x2, . . . , xn), these curves are
given by

γi(t) = (x1(p2, . . . , pi + t, . . . , pn), p2, . . . , pi + t, . . . , pn) i = 2, . . . , n.

Since the zeros of r(x) and s(x) coincide, we have s(γi(t)) = 0, and, by the
chain rule,

grads(p) · γ̇i(0) = 0.

Thus, the vector subspace 〈e2, . . . , en〉 is orthogonal to L and L′, and hence
there exists a λ ∈ R, λ �= 0, such that

L′ = λL.

Let v be a vector that does not belong to the hyperplane Π defined by
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Lx = 0, that is, such that Lv �= 0. We will also have L′v �= 0. The equations
{

t2vTA′v + tλLv = 0,

t2vTAv + tLv = 0,

have the same solutions, and hence

vTA′v = λvTAv, for all v /∈ Π

(note that vTA′v = 0 if and only if vTAv = 0).
By Lemma D.3, we have

vTA′v − λvTAv = 0, for all v ∈ R
n,

and hence A′ = λA.
Now we easily deduce that B′ = λB and C ′ = λC, and hence s(x) = λr(x).

This completes the proof. �

For instance, s(x) = x2
1 +x2

2 is not a multiple of r(x) = x2
1 +5x2

2, although s(x)
vanishes on the zeros of r(x) (the point (0,0)). But r(x) has no regular zeros,
because the gradient of r(x), grad r(x) = (2x1,10x2), vanishes at (0,0).

However, all zeros of r(x) = x2
1 + x2

2 − 1 are regular, since grad r(x) =
(2x1,2x2) only vanishes at the point (0,0), which is not a zero of r(x). Hence,
if a quadratic polynomial vanishes on the circle x2

1 + x2
2 = 1, it is a multiple of

r(x).

Observation D.5

In the proof of Theorem D.4 we have used the Implicit Function Theorem. In
fact, we can avoid the use of this strong result by proving directly that we can
solve for one variable in terms of the others in the equation r(x) = 0. Concretely,
since grad r(p) �= 0, we may assume, for instance, that ∂r(p)

∂x1
�= 0. Then, we can

solve for x1 in terms of the other variables:

x1 = x1(x2, . . . , xn).

In fact, r(x) can be considered as a polynomial of second degree in x1, in which
the coefficients depend on the other variables, as we have seen in Lemma D.3.

To solve for x1 from the equation of second degree

r(x) = cx2
1 + x1r1 + r2 = 0,

we only need that the discriminant Δ = r2
1 − 4cr2 is positive or zero.
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Since r1 = r1(x2, . . . , xn) and r2 = r2(x2, . . . , xn) are polynomials in the vari-
ables x2, . . . , xn, the discriminant Δ is a function of the variables x2, . . . , xn.

But we know that Δ ≥ 0 at the point p, since p = (p1, . . . , pn) is a solution of
r(x) = 0. Moreover, the condition on the gra dient tells us that Δ �= 0 at p, since
otherwise p1 would be a double root of the polynomial cp2

1 + p1r1(p2, . . . , pn) +
r2(p2, . . . , pn), and hence we would have

0 = cp2
1 + p1r1 + r2 = c

(
p1 +

r1

2c

)2

=
1
4c

(
∂r(p)
∂x1

)2

�= 0.

Thus, Δ > 0 in p, and hence Δ > 0 in a neighborhood of p. Therefore, in this
neighborhood we can write x1 = x1(x2, . . . , xn) with p1 = x1(p2, . . . , pn).

If c = 0, the argument is essentially the same, since

∂r(p)
∂x1

= r1(p2, . . . , pn) �= 0,

and we can solve for x1 = x1(x2, . . . , xn) from x1r1 + r2 = 0.

EXERCISES

D.1. Find polynomials r(x) and s(x) satisfying the hypothesis of The-
orem D.1, and such that sm(x) = r(x) · q(x) for different values of
m ∈ N.

D.2. Find quadratic polynomials r(x) and s(x) over R such that the set
of zeros of s(x) coincides with the set of zeros of r(x), this set is not
reduced to a point, and r(x) is not a multiple of s(x).

D.3. Prove Lemma D.3 for homogeneous polynomials, not necessarily
quadratic, vanishing on a non-empty open set.

D.4. Study the general version of the Nullstellensatz. Use, for instance,
[10].
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