Pasha Zusmanovich
Cohomology of algebras
Synopsis of lectures at South China Normal Univ., Summer 2010:
Synopsis of lectures at University of Antananarivo, September 2019:
Literature:
Lie algebras and associative algebras:
-
N. Bourbaki, Groupes et algèbres de Lie, Chap. 1-3, 7-8,
Hermann, Paris, 1972, 1975; reprinted by Springer, 2006, 2007
-
W.A. de Graaf, Lie Algebras: Theory and Algorithms,
North-Holland, 2000
-
J.E. Humphreys,
Introduction to Lie Algebras and Representation Theory,
Springer, 3rd revised printing, 1980
-
N. Jacobson, Lie Algebras, Interscience Publ., 1962;
reprinted by Dover, 1979
-
V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed.,
Cambridge Univ. Press, 1995
-
R.S. Pierce, Associative Algebras, Springer, 1982
-
C. Procesi,
Lie Groups. An Approach through Invariants and Representations,
Springer, 2007
-
H. Strade,
Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory,
2nd ed., De Gruyter, 2017
Cohomology theories, homological algebra:
-
J. Brodzki, An Introduction to K-Theory and Cyclic Cohomology,
PWN-Polish Scientific Publishers, Warsaw, 1998;
arXiv:funct-an/9606001
-
T. Chow, You could have invented spectral sequences,
Notices Amer. Math. Soc. 53 (2006), no.1, 15-19
[AMS]
[MIT]
-
B.L. Feigin and D.B. Fuchs, Cohomologies of Lie groups and Lie algebras,
Encyclopaedia of Mathematical Sciences, Vol. 21, Lie Groups and Lie Algebras II,
Springer, 2000, 127-223.
-
D.B. Fuchs, Cohomology of Infinite-Dimensional Lie Algebras,
Consultants Bureau, N.Y., 1986
-
M. Gerstenhaber and S.D. Schack,
Algebraic cohomology and deformation theory,
Deformation Theory of Algebras and Structures and Applications
(ed. M. Gerstenhaber and M. Hazewinkel), Kluwer, 1988, 11-264
-
P.J. Hilton and U. Stammbach, A Course on Homological Algebra,
2nd ed., Springer, 1997
-
J.-L. Loday, Cyclic Homology, 2nd ed., Springer, 1998
Low-degree cohomology of current Lie algebras:
-
C. Bennis,
Homologie de l'algèbre de Lie \(sl_2(A)\),
Comptes Rendus Acad. Sci. Paris 310 (1990), 339-341
-
J.-L. Cathelineau,
Homologie de degré trois d'algèbres de Lie simple déployées étendues à une algèbre commutative,
Enseign. Math. 33 (1987), 159-173
-
C. Kassel,
Kähler differentials and coverings of complex semisimple Lie algebras extended over a commutative algebra,
J. Pure Appl. Algebra 34 (1984), 265-275
-
C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie,
Ann. Inst. Fourier 32 (1982), no.4, 119-142
[DOI]
[u-strasbg.fr]
-
P. Zusmanovich,
Central extensions of current algebras,
Trans. Amer. Math. Soc. 334 (1992), no.1, 143-152
-
P. Zusmanovich,
Deformations of \(W_1(n) \otimes A\) and modular semisimple Lie algebras with a solvable maximal subalgebra,
J. Algebra 268 (2003), no.2, 603-635
-
P. Zusmanovich,
Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds,
Lin. Algebra Appl. 407 (2005), 71-104
Other cohomological topics:
-
V. Lopatkin and P. Zusmanovich,
Commutative Lie algebras and commutative cohomology in characteristic 2,
Comm. Contemp. Math. 23 (2021), no.5, 2050046.
-
P. Zusmanovich,
A converse to the Second Whitehead Lemma,
J. Lie Theory 18 (2008), no.2, 295-299
-
P. Zusmanovich,
On Lie p-algebras of cohomological dimension one,
Indag. Math. 30 (2019), no.2, 288-299
Operads:
-
P. Cartier, What is an operad?,
Surveys in Modern Mathematics. The Independent University of Moscow Seminars (ed. V. Prasolov and Yu. Ilyashenko), London Math. Soc. Lect. Note Ser. 321 (2005), 283-291
-
J.-L. Loday and B. Vallette, Algebraic Operads, Springer, 2012
[u-strasbg.fr]
[DOI]
-
J. Stasheff,
What is... an operad?,
Notices Amer. Math. Soc. 51 (2004), no.6, 630-631
Everything else:
-
W. Fulton,
Young Tableaux,
2nd corrected printing, Cambridge Univ. Press, 1999
All the books and papers are available in electronic form in multiple places.
Software:
GAP
Sage
SuperLie
Created: Mon Sep 16 2019
Last modified: Sat Sep 3 16:29:31 CEST 2022