
COHOMOLOGY OF ALGEBRAS.
SYNOPSIS OF LECTURES AT UNIVERSITY OF ANTANANARIVO, SEPTEMBER 2019

PASHA ZUSMANOVICH

Each lecture lasted 2 (astronomical) hours.

LECTURE 1

1.1. Refresher: Lie algebras, associative algebras, associative commutative algebras. Defi-
nitions, A(−), basic examples.

1.2. Derivations. Lie algebra Der(A) for a (non-associative) algebra A. Inner derivations of a
Lie algebra.

1.3. Definition of cochain complex. Cochains, cocycles, coboundaries.

1.4. Definition of Lie algebra cohomology. Explicit formula for the differential.

1.5. Interpretations of low-degree Lie algebra cohomology.
H0(L,M) = ML; in particular, H0(L,L) = Z(L)
H1(L,K) ≃ (L/[L,L])∗

H1(L,L) = outer derivations.

LECTURE 2

2.1. Central extensions. Equivalence classes of central extensions are described by H2(L,K).
Importance of central extensions: structure theory, quantum mechanics.

2.2. Abelian extensions. Equivalence classes of abelian extension of a Lie algebra L by a mod-
ule M are described by H2(L,M).

2.3. Deformations. Massey brackets. Infinitesimal deformations are described by H2(L,L),
obstructions to prolongations of deformations lie in H3(L,L).

2.4. Elementary examples of cohomology calculations.
If L is abelian, then Hn(L,K) = Cn(L,K).
Let L = Kx be 1-dimensional. Then H0(Kx,M) = Ker(xM) and H1(Kx,M) = M/Im(xM) =

Coker(xM).

LECTURE 3

3.1. Elementary examples of cohomology calculations (continuation). H∗(L,K) for L 2-di-
mensional nonabelian and L = sl(2).

3.2. Killing form. Invariant symmetric bilinear form on a Lie algebra.

3.3. Current Lie algebras. L ⊗ A for a Lie algebra L and associative commutative algebra A.
Modular semisimple Lie algebras as extensions of a particular kind of current Lie algebras by
a “tail” of derivations.

3.4. Operads. Koszul duality. (A ⊗ B)(−) where A,B are algebras over Koszul dual operads
is a Lie algebra.

Date: October 3, 2019.
1



3.5. Kac-Moody algebras. Example of a central extension:

sl(2)⊗ C[t, t−1] + Ct
t

dt
+ Cz

[x⊗ f, y ⊗ g] = [x, y]⊗ fg + B(x, y)Res−1(f
dg

dt
)z

3.6. Filtered deformations. Graded Lie algebra associated to a filtered Lie algebra. H2
+(L,L)

classifies infinitesimal filtered deformations.

LECTURE 4

4.1. Gradings. Grading on cohomology inherited from a grading on an algebra and on a mod-
ule. Invariance of cohomology with respect to a torus action (= concentration of cohomology
in the zero degree).

4.2. Examples of computation of cohomology using invariance with respect to a torus ac-
tion.

H2(W,K) for infinite-dimensional Witt algebra W .
H2(sl(2)⊗ A,K) ≃ HC1(A).

LECTURE 5

5.1. Examples of computation of cohomology using invariance with respect to a torus action
(continuation).

H2(sl(2)⊗ A, sl(2)⊗ A) ≃ Har2(A,A).

5.2. Hochschild cohomology. Bimodules. Explicit formula for the differential.

5.3. Interpretations of low-degree Hochschild cohomology. Similar to Chevalley–Eilenberg
cohomology:

H0(A,M) = MA = {m ∈ M | a •m = m • a for any a ∈ A}; in particular, H0(A,A) = Z(A).
H1(A,A) = outer derivations.
H2(A,M) classifies square-zero extension of A by M .
H2(A,A) classifies infinitesimal deformations of A, and obstructions to prolongations of

deformations lie in H3(A,A).

LECTURE 6

6.1. Harrison cohomology. The beginning of the Hochschild complex with additional sym-
metry condition on cochains gives Harrison complex. Low-degree interpretation of the Harri-
son cohomology is the same as in the Hochschild (associative) case.

6.2. Three graces. Associative, associative commutative and Lie algebras are “three graces”,
according to Loday. Their exclusive role among all varieties of algebras from the operadic
viewpoint.

6.3. An alternative approach to cohomology of current Lie algebras. Symmetrization of vari-
ables and substitution in the cocycle equation d(

∑
iinI

ϕi(x1, . . . , xn) ⊗ αi(a1, . . . an)) = 0. For-

mula for H1(L⊗A,L⊗A). Cauchy formula, Young diagrams, representation of the Chevalley-
Eilenberg complex computing cohomology of L⊗ A in terms of the Young graphs.

6.4. Short exact sequences of modules. Interpretation of equivalence classes of short exact
sequences of L-modules 0 → A →? → B → 0 as H1(L,Hom(B,A)).
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LECTURE 7

7.1. Cohomology long exact sequence associated to the short exact sequence of modules.
Construction of the Bockstein homomorphism.

7.2. Whitehead lemmas. Sketch of possible proofs using induction on dimension of modules
using the cohomology long exact sequence, and using induction on dimension of an algebra
using sl(2)-subalgebras. Converse to Whitehead lemmas.

7.3. Spectral sequences. Spectral sequence abutting to cohomology of a filtered complex.
Leray, history of invention of spectral sequences.

7.4. Hochschild–Serre spectral sequence.

LECTURE 8

8.1. Künneth formula. H∗(L1⊗L2) ≃ H∗(L1, K)⊗H∗(L2, K). Proof via the Hochschild–Serre
spectral sequence

8.2. Tensor product of complexes. Tensor product of graded vector spaces, Künneth theorem
in general.

8.3. Another example of application of Hochschild–Serre spectral sequence. Computation
of H3(sl(2), K) taking subalgebra 〈h〉.

8.4. Cyclic cohomology. Direct definition via cyclic subcomplex of the Hochschild complex
computing HH∗(A,A∗).

8.5. Lie algebra homology. Chevalley–Eilenberg chain complex, duality between homology
and cohomology, concrete formulas for H1(L,K) and H2(L,K).

LECTURE 9

9.1. Refresher: nilpotent and solvable Lie algebras.

9.2. Refresher: free algebras, generators and relations.

9.3. Interpretation of H1(L,K) and H2(L,K) for nilpotent L as generators and relations.

9.4. H2(L,K) for perfect L as the universal central extension.

9.5. Appearance of Hopf algebras in cohomology.
Combination of Künneth theorem and pieces of cohomological long exact sequence, for a

bialgebra A gives multiplication in cohomology HH∗(A,A)⊗HH∗(A,A) → HH∗(A,A).
Hopf algebra structure on H∗(gl(A), K).
Interpretation of non-coboundary Lie coalgebra structures on a Lie algebra L as H1(L,L∧L).

9.6. Universal enveloping algebra. Its significance, Poincaré–Birkhoff–Witt theorem, Hopf
algebra structure.

LECTURE 10

10.1. Consequences of Whitehead lemmas. The first Whitehead lemma implies that every
finite-dimensional representation of a finite-dimensional semisimple Lie algebra over a field
of characteristic zero is a direct sum of irreducible representations; in particular, any such
algebra is a direct sum of simple ones.

The second Whitehead lemma implies Levi–Malcev decomposition.

10.2. Review of available computer programs. Mathematica and Maple vs. GAP and Sage.
SuperLie. Albert.
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10.3. Some open problems. Cohomology of the Poisson (= of Hamiltonian vector fields) al-
gebra. Commutative cohomology in characteristic 2. Lie algebras of cohomological dimension
1. Lie superalgebras and their cohomology.
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