3020 DIFFERENTIAL EQUATION

PASHA ZUSMANOVICH

Each lecture lasted 1 h 15 min . The textbook is P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations, 4th ed., Brooks/Cole.

Lecture 1

According to $\S 1.1$ of the texbook.
What differential equations are and why are they important.
Simplest differential equations $y^{\prime}=0$ and $y^{\prime \prime}=0$ and their solutions. First- and higherorder differential equations

Population growth: $\frac{d P}{d t}=k P$.
Methods of solutions:
(i) guessing - take $P(t)=a e^{b t}+c$;
(ii) power series.

Initial condition $P(0)=P_{0}$, initial-value problem.
Logistic equation: $\frac{d P}{d t}=k\left(1-\frac{P}{N}\right) P$. Equilibrium solutions: $P=0$ and $P=N$.
Predator-prey model: foxes and rabbits

$$
\begin{aligned}
\frac{d R}{d t} & =\alpha R-\beta R F \\
\frac{d F}{d t} & =-\gamma F+\delta R F
\end{aligned}
$$

where α is growth rate of rabbits, β is a rate with which rabits are eaten by foxes, γ is a death rate of foxes, δ is a rate with which foxes eat rabits.

Systems of differential equations.

Lecture 2

Qualitative picture using logistic equation: $\frac{d P}{d t}=0.4 P\left(1-\frac{P}{230}\right)$.
Integration as a method for solving differential equations of the form $\frac{d y}{d x}=f(x)$.
Generalization of this: separation of variables, separable differential equations: $\frac{d y}{d x}=$ $f(x) g(y)$.

Caveat: when we divide by y, we may miss a solution $y=0$, so we should check this possibility separately.

Lecture 3

Example of power series method: $y^{\prime}=2 x-1$.
Example of an initial-value problem: $y^{\prime}=-x y ; y(0)=\frac{1}{\sqrt{\pi}}$, another example from the textbook.

Octave (as alternative to Matlab).
Slope fields.

Lecture 4

Playing with Octave to draw slope fields.
Euler method for numeric solutions of initial value problems. Example: $y^{\prime}=x ; y(0)=0$.

Lecture 5

Existence and uniqueness theorems for an initial-value problem (Cauchy-Kowalevskaya theorem(s)). Why they are useful.

Autonomous equations. Examples from the textbook: $y^{\prime}=1+y^{2}$ and $y^{\prime}=3 y^{\frac{2}{3}}$, both with $y(0)=0$.

Equilibrium points, phase lines. 3 types of equilibrium points: sink, source, node. Example from the textbook: $y^{\prime}=(y-2)(y+1)$.

Lecture 6

(According to $\S 1.8$) Linear equations. Homogeneous linear equations.
Finding a solution of nonhomegeneous equation by guessing: $\frac{d y}{d x}=-2 y+e^{x}$.
(According to §1.9) Integrating factors.

Lecture 7

Review before the test: qualitative techniques (equilibrium points, phase lines, slope fields), analytic techniques (guessing, separation of variables, integrating factor).

Lecture 8

Mid-term test 1.

Lecture 9

(§§2.1, 2.2 of the textbook).
System of first-order differential equations. Rabbits and foxes again.
Equilibrium solutions. More generally, what happens if just one of the functions, R and F, is constant? (Answer: then it is necessary constant zero, and another one is an exponential function).

Initial conditions.
Two ways graphically represent the solutions: draw the two graphs together, or draw a phase portrait.

Phase plane, solution curve, equilibrium points on the phase portrait.
Symbolic representation of a system: $\frac{d Y}{d t}=F(Y)$ for $Y=(x(t), y(t))^{t}$.
Direction field.
Direction field and phase portrait for the system $\frac{d x}{d t}=x, \frac{d y}{d t}=y$ (they are straight lines).

Lecture 10

($\S \S 2.2,2.3,2.4$ of the textbook).
Equilibrium points, phase portrait of the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=3 x+y \\
\frac{d y}{d t}=x-y
\end{array}\right.
$$

Second order differential equation reduced to a system of first-order ones: Harmonic oscillator, $\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0$, the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=v \\
\frac{d v}{d t}=-\frac{k}{m} x
\end{array}\right.
$$

Phase portrait. Guessing solutions in the case $\frac{k}{m}=1: x=\sin (t), v=\cos (t)$. Solution curves are circles.

Damped harmonic oscillator leads to a differential equation of the form $\frac{d^{2} x}{d t^{2}}+p \frac{d x}{d t}+q x=0$. Guessing solutions in the form $x(t)=e^{\lambda t}$ leads to a quadratic equation in λ.

Decoupled systems, and partially decoupled systems. An example:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+3 y \\
\frac{d y}{d t}=-4 y .
\end{array}\right.
$$

Lecture 11
(§2.5)
Euler's method for the systems.
Lecture 12
(§3.1)
Linear systems. "Linearity principle" (the set of solutions forms a vector space).

E-mail address: pzusmanovich@nccu.edu

