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What is likelihood and what it is good for?

Likelihood is just a conditional probability.

Formal definition
Given random events A and B, the likelihood function of A
relative to B is:

{set of states of B} → [0, 1]

x 7→ Pr(A |B = x).

Nothing fancy so far. Consider an ...
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What is likelihood and what it is good for?

Example: alleles and genotypes

frequencies of alleles:
a: θ
A: 1− θ

=⇒

frequencies of genotypes:
aa: θ2

aA: 2θ(1− θ)
AA: (1− θ)2

numbers:
naa

naA

nAA

The probability that numbers of genotypes would be exactly
(naa, naA, nAA):

f (θ) =
(naa + naA + nAA)!

naa!naA!nAA!
θ2naa(2θ(1− θ))naA(1− θ)2nAA

f is a likelihood function:
{ probability of alleles } → { conditional probability of genotypes
assuming given probability of alleles }.
This is a model with parameter θ.
Question: Which parameter makes model the “best”?
Answer ...
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What is likelihood and what it is good for?

Example: alleles and genotypes (continued)

Question: Which parameter makes model the “best”?
Answer: Those which makes the observed data more likely, i.e.
which maximizes

f (θ) =
(naa + naA + nAA)!

naa!naA!nAA!
θ2naa(2θ(1− θ))naA(1− θ)2nAA

on [0, 1].
Solution:

θ̂ =
2naa + naA

2(naa + naA + nAA)
.

But this is exactly the Hardy-Weinberg equilibrium!
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What is likelihood and what it is good for?

Another example: linear regression

Fitting a line to the set of points on the plane
{(x1, y1), . . . , (xn, yn)}, assuming observations are independent,
and errors are normally distributed. The model is:

Y = β1X + β0 + ε, ε ∼ N(0, σ2).

What is the “probability” to have the observed data under the
given model?

P(Y lies in δ-neighbourhood of yi |X = xi ) ≈ density(Y )|X=xi ,Y=yi
·2δ,

so “probability” is replaced by density. If X is fixed,

Y − β1X − β0 ∼ N(0, σ2) ⇒ Y ∼ N(β1X + β0, σ
2).
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What is likelihood and what it is good for?

Another example: linear regression (continued)

Maximizing

density(Y )|X=xi ,Y=yi
=

n∏
i=1

1√
2πσ

exp
(
− (β1xi + β0 − yi )

2

2σ2

)
=

( 1√
2πσ

)n
exp

(
− 1

2σ2

n∑
i=1

(β1xi + β0 − yi )
2
)

is equivalent to minimizing

n∑
i=1

(β1xi + β0 − yi )
2.

But this is exactly the least squares!
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What is likelihood and what it is good for?

Refined formal definition
Assuming a random variable X has a density function f (x , θ)
parametrized by θ, the likelihood function is:

θ 7→ f (x , θ).

“Conceptual” definition

Likelihood is the probability of observed data under the given
model.

Thus, the maximum likelihood correspond to the model (in the
given parametrized class of models) which makes the observerd
data “most likely”.
One usually maximize log f (x , θ) instead of f (x , θ) (log-likelihood
function). Ok, since log is monotonic. But ...
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Why logarithm?

I Turns multiplicative things to additive.

In most cases on
practice, the likelihood function is the product of several
functions. E.g., if X1, . . . ,Xn are independent random
variables, then their likelihood function:

f (x1, . . . , xn, θ) = f (x1, θ) . . . f (xn, θ),

so logarithm turns multiplicative things to additive and easier
to deal with. (And logarithm is the only “good” function
taking multiplication to addition).

I Diminishes the “long tail”.

A random variable with values in
R+ (say, results of a measurement) tends to have a skewed
distribution to the right because there is lower limit but not
upper limit. Passing to log diminishes this skewness.
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What is likelihood and what it is good for?

Maximum likelihood behaves nicely asymtotically

Taylor series:

`(θ) = `(θ̂) +
1

2
(θ − θ̂)2`′′(θ̂) + . . .

i(θ) = E (−`′′(θ)) – Fisher information.

θ̂ ∼ N(θ0, i(θ0)
−1) as number of samples →∞.

Could be used to assess the precision of θ̂.
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What is likelihood and what it is good for?

Connection with some fancy areas of Mathematics

Back to alleles and genotypes example: model with inbreeding
coefficient λ:

frequencies of alleles:
a: θ
A: 1− θ

frequencies of genotypes:
aa: θ2 + θ(1− θ)λ
aA: 2θ(1− θ)(1− λ)
AA: (1− θ)2 + θ(1− θ)λ

numbers:
38
95
53

(some real blood groups data from UK, 1947)

Scoring equations are equivalent to:

372θ3λ2−744θ3λ−558θ2λ2+372θ3+1131θ2λ+186θλ2−573θ2

− 668θλ + 201θ + 148λ = 0;

186θ2λ2−372θ2λ−186θλ2+186θ2+387θλ−201θ−148λ+53 = 0.

Statistics + Algebraic Geometry = Algebraic Statistics.
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What is likelihood and what it is good for?

Advantages (to summarize)

I Agrees with intuition.

I Confirmed by other methods.

I “Nice” asymptotic behavior.

I Very good practical results.

I Universal.

I Connection with other areas of Mathematics.

Disadvantages

I No “theoretical” justification.

I Could be bad for small samples.

I No way to compare “disjoint” models.

I “Bayesian” issue ...
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What is likelihood and what it is good for?

“Bayesian” issue:

Pr(data|model) =
Pr(model |data)Pr(data)

Pr(model)
.

Philosophical mumbo-jumbo:

I M. Forster and E. Sober, Why likelihood?, The Nature of
Scientific Evidence (ed. M. Taper and S. Lele), Univ. of
Chicago Press, 2004, 153–165
http://philosophy.wisc.edu/forster/Likelihood/default.htm

I B. Fitelson, Likelihoodism, bayesianism, and relational
confirmation, Synthese, to appear
http://fitelson.org/research.htm
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EM algorithm

Finding the maximum of likelihood function could be difficult.

Example: alleles and phenotypes

Assume A is dominant, and we observe only phenotypes:

frequencies of alleles:
a: θ
A: 1− θ

frequencies of geno-
types:
aa: θ2

aA: 2θ(1− θ)
AA: (1− θ)2

numbers of pheno-
types:
a: 38
A: 148

Scoring equation amounts to: 38/θ2 − 148/(1− θ2) = 0, i.e. is
biquadratic. Suppose we don’t know how/don’t want to solve it.
What to do?
Introduce back missing numbers naA and nAA (hidden
parameters) and iterate.
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EM algorithm

Example: alleles and phenotypes (continued)

E
Step 1: initial genotype numbers: naA = nAA =
148/2 = 74.00

M
Step 2: find MLE for those numbers: θ = (2 · 38 +
74.00)/(2 · 186) = 0.40

E

Step 3: for θ = 0.40, find genotype frequencies: for aA:
2·0.40·(1−0.40) = 0.48 and for AA: (1−0.40)2 = 0.36,
and for them, genotype numbers: naA = 186 · 0.48 =
89.28, nAA = 148− 89.28 = 58.72

M
Step 4: find MLE for those numbers: θ = (2 · 38 +
89.28)/(2 · 186) = 0.44

E

Step 5: for θ = 0.44, find genotype frequencies: for aA:
2·0.44·(1−0.44) = 0.49 and for AA: (1−0.44)2 = 0.31
and genotype numbers: naA = 186 · 0.49 = 91.14,
nAA = 148− 91.14 = 56.86

M
Step 6: find MLE for those numbers: θ = (2 · 38 +
91.14)/(2 · 186) = 0.44

Stop!
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EM algorithm

Advantages

I Reduces MLE problem to another more manageable (MLE)
problem.

I Agrees with results obtained by other means.

I Works on practice.

Disadvantages

I No theoretical justification.
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Maximum likelihood and ME algorithm at deCODE

Associations studies
nemo by Dańıel Gudbjartsson.
Typical input data: list of affected and unaffected individuals, list
of markers (e.g. SNPs), list of genotypes (per marker and per
individual).

Haplotypes inference from genotypes

Maximum parsimony vs. maximum likelihood.
Example (0,1 – homozygote, 2 – heterozygote):
genotypes:
2120
2102
1221

⇐=

parsimonial solution:
0100 + 1110
0100 + 1101
1011 + 1101
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nemo by Dańıel Gudbjartsson.
Typical input data: list of affected and unaffected individuals, list
of markers (e.g. SNPs), list of genotypes (per marker and per
individual).

Haplotypes inference from genotypes

Maximum parsimony vs. maximum likelihood.
Example (0,1 – homozygote, 2 – heterozygote):
genotypes:
2120
2102
1221

⇐=

parsimonial solution:
0100 + 1110
0100 + 1101
1011 + 1101
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That’s all.

Slides at http://justpasha.org/tmp/presentation.pdf .


