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Lecture 0

A short 10-15 minutes introduction.
Place of Lie groups and Lie algebras within Mathematics, their relationship with other subjects,

their significance.

Lecture 1. A glimpse into Galois theory. I

After [G, Chapter 1]. Good additional readings are: [S], [L, Chapter VI, §§1-3], [Mi], or [W,
Chapter 8].

Main theorem of Galois theory about solubility in radicals. “Galois correspondence” as orga-
nizing principle in mathematics:

(i) Classical Galois theory of algebraic equations.
(ii) Lie’s theory of differential equations.

(iii) Galois theory of databases, etc.

Groups. Elementary examples: Sn, GLn(C). Multiplication (Cayley) tables. Normal sub-
groups, simple, solvable, abelian groups. Linear representations of groups.

Symmetries of algebraic equations. Galois group as automorphism group of a field extension.
Quadratic equations: S2 is abelian.
Cubic equations: S3 is solvable. Parity of a permutation. Homomorphism Sn → {−1, 1}1.
Alternating group An.
Homework: find an error at page 82 of [G].

Lecture 2. A glimpse into Galois theory. II

More examples of Galois groups:

(i) Gal(C/R) ' Z2 (nontrivial automorphism generated by conjugation);
(ii) Gal(Q(

√
2)/Q) ' Z2;

(iii) Galois group of polynomial xn − 1 is equal to (Zn)∗.

Elementary symmetric polynomials.
Quartic equation: S4 is solvable: S4 . A4 . V4 . {e}.
Quintic and higher equations : A5 is simple and hence S5 is not solvable.

Facts.

(i) An is simple iff n = 3 or n ≥ 53.
(ii) Sn is simple iff n = 2.

(iii) Sn is solvable iff n < 5.

Date: last modified March 21, 2016.
1For the, possibly, simplest and most elegant proof of this homomorphism, see [Ol]. Footnotes usually contain

material not presented during lectures and added afterwards.
2In the published version! In pdf files at the author’s homepage, that corresponds to pages 8–9 in the respective

file (Chapter 1).
3For a proof (similar to those presented by Alari), see, for example, [Mo].
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In the class of finite groups: {simple} ∩ {abelian} = {simple} ∩ {solvable} = {Zp, p prime}.
Direct product of groups.
Algorithm of constructing of formulas for roots, by example of quadratic equations. Characters

of a group.

Lecture 3. Lie groups. I

After [G, Chapter 2].
Sophus Lie. Notion of a Lie group.
Manifold, charts, atlas, dimension. Examples of manifolds: R∗, S3, etc.
GL(2,R), SL(2,R). Normal subgroups in these groups. Difference between notions of simplicity

as an abstract group and as a Lie group.
Parametrization of those groups. SL(2,R) as a “glued in two points” product of two-sheeted

hyperboloid and a circle4.
Homework: find incorrectnesses at pages 26–275 of [G].

Lecture 4. Lie groups. II

Compactness. R and S1 are compact, SL(2,R), GL(2,R) are noncompact.
Commutator. Commutant of a group. Abelian groups ⇐⇒ groups with trivial commutant.
Example: [GL(2,R), GL(2,R)] = SL(2,R). [Sn, Sn] = An

6. For a simple nonabelian group G
(e.g., An), [G,G] = G.

Lower central series, derived series, nilpotence, solvability (second, equivalent definition in
terms of derived series).
{abelian} ⊂ {nilpotent} ⊂ {solvable}.

Example of a nilpotent group: Heisenberg group Nil(3) =
{1 a b

0 1 c
0 0 1

 |a, b, c ∈ R
}

. Example

of a solvable non-nilpotent group: UT (2) =
{(

a b
0 c

)
| a, b, c ∈ R, a, c 6= 0

}
. They are both

noncompact too.

Lecture 5. Lie groups. III

5.1. Examples of nonabelian compact Lie groups.
O(n,R), SO(n,R).
SO(1,R) is trivial, SO(2,R) is homeomorphic to the circle, SO(3,R) is homeomorphic7 to RP 3.

They are compact.

5.2. Lie algebras. After [G, §§4.1, 4.2].
Linearization as one of the main mathematical ideas. Lie algebra as a tangent space at the

unit of a Lie group.
Linearization of SL(2,R) at the neighborhood of E: matrices of trace 0. They are not closed

under matrix multiplication, so taking just a matrix multiplication as an operation in a Lie algebra
does not fit.

4For some attractively-looking parametrizations of SO(3,R), see
http://mathoverflow.net/questions/70154/matrix-expression-for-elements-of-so3 .

5Pages 27–28 in the pdf file.
6In fact, every element of [Sn, Sn] is exactly one commutator, and not just a product of commutators. For a

simple proof, see [Or, Theorem 1]. This is true also for many other groups (but not true in general).
7For a good informal explanation of this homeomorphism, see Wikipedia: [W-C, Section The hypersphere of

rotations] and [W-R, Section Topology ].
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Lecture 6. Lie algebras. I

Approximation of multiplicative commutator gives an additive commutator.
Jacobi idenitity. Abstract notion of a Lie algebra.
Commutator of a Lie algebra. Abelian Lie algebras.
Classification of 1- and 2-dimensional Lie algebras.
3-dimensional examples: sl(2, K) and 3-dimensional nilpotent (Heisenberg) Lie algebra.

Lecture 7. Lie algebras. II

Significance of the Heisenberg Lie algebra in quantum mechanics: its commutation relations
imply uncertainty principle.

Many questions in structure theory of Lie algebras essentially boil down to linear algebra.
Ideals in Lie algebras. Nilpotency, solvability, simplicity. Examples (2-dimensional nonabelian

Lie algebra is solvable, 3-dimensional Heisenberg algebra is nilpotent, sl(2) is simple).

Theorem. For every finite-dimensional Lie algebra L over an algebraically closed field, one of
the following holds:

(i) L is abelian;
(ii) L contains 2-dimensional nonabelian subalgebra;

(iii) L contains 3-dimensional Heisenberg subalgebra.

A proof modulo Engel theorem.
Homework: Try to find a proof of this theorem using only elementary linear algebra.

Lecture 8. Lie algebras. III. Exponentiation

8.1. Lie algebras all whose proper subalgebras are 1-dimensional. Example: so(3). Two
extreme cases: lattice of subalgebras is “as small as possible” for such algebras, and “as big as
possible” for abelian Lie algebras. Existence of infinite-dimensional Lie algebras all whose proper
subalgebras are 1-dimensional is an interesting (and difficult) open problem.

To prove that all such finite-dimensional Lie algebras are of dimension ≤ 3 over arbitrary field
is also on open problem, albeit quite doable one, modulo existing literature.

8.2. Exponentiation. According to [G, §§4.3, 7.1, 7.2].
Exponentiation: Lie algebras→ Lie groups as an oppostite operation to linearization. Motiva-

tion: we are trying to “move away” from the identity. Topology is not suitable for that, so we are
relying on algebra, multiplying elements in the neighborhood of E of the form E + εX “many”
times. In the limit we get exp(X).

Properties of exp(X) = 1 +X + 1
2!
X2 + . . . . Due to the Cayley-Hamilton theorem, this always

reduces to the sum of the first n−1 powers, accumulating coefficients of infinite series of numbers.
Utility of the Jordan normal form for calculating of exp(X).

Example: sl(2,R). Appearence of cosh and sinh. One exponential map is not enough, two are

enough (acting on the linear subspaces spanned by matrices

(
a b
b −a

)
and

(
0 c
−c 0

)
, mapping

them to the two-sheeted hyperboloid and the circle, respectively).

Lecture 9. Lie algebras and Lie groups. IV

9.1. det(eX) = etr(X). A proof using Jordan normal form.

9.2. [G, p. 106] so(3) and su(2) – example of two isomorphic (over R) Lie algebras with noniso-
morphic Lie groups (SO(3,R) and SU(2,R)). Homework 1: Prove this.

9.3. Extension of the base field. su(2) and sl(2) are non-isomorphic over R, but isomorphic over
C. Homework 2: Prove this.
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9.4. Faithful representations of a Lie algebra. Ado’s theorem.

9.5. [W-B] Baker–Campbell–Hausdorff–Dynkin formula. Example of computation for a two-
dimensional nonabelian Lie algebra.

Lecture 10. Lie’s theory of symmetries of differential equations

Closely after [G, Chapter 16].
Similarity and dissimilarity between Galois and Lie theories.
The constant C in the solution y =

∫ x

0
f(t)dt + C of the equation dy

dx
= f(x) viewed as 1-

parametric Lie group (isomorphic to R) acting on solutions of this equation.

Fact. Every 1-dimensional connected Lie group is isomorphic either to R, or to S1. 8

Main steps in Lie’s approach taking x dy
dx

+ y − xy2 = 0 as an example.
Homework. Prove that the corresponding 1-dimensional Lie group is isomorphic to R.

Lecture 11. Homeworks

20-30 minutes.
Solutions or outline of solutions of homeworks. Non-split extensions of groups leads to homo-

logical algebra. Questions of isomorphisms between Lie algebras can be reduced to system of
quadratic equations which can be solved on computer.
Homework. Do there exist ordinary differential equations of the first order whose Lie group of
symmetries is isomorphic to S1?
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8The proof can be found in [C, Chapter 2, §2.9].
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