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1.
A subject of probability and

statistics
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What is probability and statistics?

Probability theory is a branch of mathematics which tries to argue
rigorously about random and uncertain things.

Though it cannot be said anything definite about outcomes of a
single random event, when considering a number of such events in
their totality, certain patterns emerge; these patterns are amenable
to a rigorous mathematical study.

Statistics (also called sometimes “data science”) deals with
collection, analysis, interpretation, presentation, visualization, and
organization of various (“real-world”) data. Mathematical
foundations of statistics are based on probability theory.
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Examples of applications of statistics

I Establishing links between genotype of an individual and his
risks to die from a certain disease (cancer, cardiovascular,
etc.).

I The reason of the space shuttle “Challenger” disaster.

I Detection of election frauds.

I Revelation that the “most cited papers” are not read by those
who cite them.

For details and more examples, see Dekking et al., pp. 1–11.
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2.
Basic combinatorics:

combinations, variations,
permutations
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Permutations

Definition
A permutation of a set is a bijection of the set to itself.

In other words, a permutation is a way of arranging elements of a
set into some order.

Theorem 1
The number of permutations of a set of n elements is equal to n!.

Try to prove this! (Hint: use induction).
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Variations

Definition
A variation without repetition is a way to choose k elements out of
n elements, taking into account the order of elements.

Theorem 2
The number of variations without repetition is equal to n!

(n−k)! .

Definition
A variation with repetition is a way to choose k elements out of n
elements, taking into account the order of elements, and with
possible repetitions of elements.

Theorem 3
The number of variations with repetition is equal to nk .

For proofs and examples, see Vilenkin, pp. 3–6,18–19.
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Combinations

Definition
A combination is a way to choose k elements out of n elements,
without taking into account the order of elements, and not
allowing repetitions.

Theorem 4
The number of combinations is equal to

(n
k

)
.

Proof. This is the same as doing variation without repetitions, but
without accounting for different permutations of elements, i.e. the
number in Theorem 2 should be divided by the number of
permutations of k elements, which, according to Theorem 1, is
equal to k!: n!

k!(n−k)! .
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Example of combinations

In many card games, each player gets 6 cards out of the standard
deck of 52 cards. There are(

52

6

)
=

52!

46! 6!
= 20, 358, 520

possibilities for a 6-card hand.

For more examples, see Vilenkin, pp. 28–32, and
Rice, p. 10,12–13.
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Binomial coefficients

The binomial coefficients
(n
k

)
= n!

k!(n−k)! occur in the (well known

from the high school) binomial formula:

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

and can be arranged into the Pascal triangle:

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1
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Binomial coefficients (cont.)
The main properties of binomial coefficients are:(

n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
(
n

k

)
=

(
n

n − k

)
For more properties, see Graham–Knuth–Patashnik,
pp. 153–196, and Vilenkin, pp. 34–42,61–63.

A particular case of the binomial formula is

2n =
n∑

k=0

(
n

k

)
.

A combinatorial meaning of this formula: all possible ways to
choose elements out of n elements, i.e., the number of n-length
binary sequences (like 0110 . . . , etc.)
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Inclusion-exclusion principle

In counting, the following inclusion-exclusion principle is often
used.

Theorem
The number of elements in the union of sets A1, . . . ,An is
determined by the formula

|A1 ∪ · · · ∪ An| =

|A1|+ · · ·+ |An|
−|A1 ∩ A2| − |A1 ∩ A3| − · · · − |An−1 ∩ An|
+|A1 ∩ A2 ∩ A3|+ · · ·+ |An−2 ∩ An−1 ∩ An|
− · · ·+
+(−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.

For a proof and examples, see Vilenkin, pp. 12–17.



13/85

3.
Sample space, events,
probability function
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Sample space, events

A sample space (also called probability space) is a set whose
elements represent the possible outcomes of the event we are
interested in.

An event is a subset of the sample space.

An elementary event is a subset of the sample space consisting of
one element.

The set-theoretic operations on events correspond to their logical
combinations: the intersection A ∩ B of events A and B occurs
when both A and B occur; the union A ∪ B occurs when either A
or B occurs; the complement Ω \ A, where Ω is the whole sample
space, occurs when A does not occur.
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Examples of sample spaces and events

I When tossing a coin, the sample space is the 2-element set
S = {head, tail}.

I When tossing a dice, the sample space is the 6-element set
{1, 2, 3, 4, 5, 6}.

I If we are throwing an (idealized) dart (i.e., a point) at an
(idealized) dartboard (say, a circle with radius 1 with the
center at the origin), the sample space is

{(x , y) ∈ R2 | x2 + y2 ≤ 1}.

The perfect hit, {(0, 0)}, is an elementary event, while hitting,
say, the right half of the dartboard:

{(x , y) ∈ R2 | x2 + y2 ≤ 1, x ≥ 0}

will constitute an event.

Exercise
Give more examples.
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More examples: tossing two coins
When tossing two coins simultaneously, the sample space is the
Cartesian product S × S , i.e. the set

{(head, head), (head, tail), (tail, head), (tail, tail)}.

The event of having head first is

A = {(head, head), (head, tail)},

and the event of having head second is

B = {(head, head), (tail, head)}.

Their intersection is an elementary event having both heads,
{(head, head)}, and their union is an event of having at least one
head:

A ∪ B = {(head, head), (tail, head), (head, tail)}.

The complement of A is an event of having tails first:

S \ A = {(tail, head), (tail, tail)}.
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More examples: birthday dates

We may sample birthday dates in a certain group of people. The
sample space in this case is the subset of the cartesian product

{1, 2, . . . , 31} × {Jan,Feb, . . . ,Dec}

(subset, as certain pairs, like February 30 and June 31, are
excluded). Now we may be interested, for example, in people born
at the specific date, so the one-element sets {(1, Jan)} and
{(10,Mar)} will constitute elementary events, while all birthdays
occurring in February:

{1, 2, . . . , 29} × {Feb},

or all birthdays occurring at the end of the month:

{(30, Jan), (28,Feb), (29,Feb), . . . , (31,Dec)}

will constitute (just) events.
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Probability function

Probability is a numerical expression of how likely an event occurs.
If all outcomes in the sample space Ω occur equally likely, then the
probability P(A) of an event A is equal to |A||S | , where |X | is the

cardinality (number of elements) of the set X . In particular, the
probability of an elementary event is equal to 1

|S| .
More formally:

Definition
A probability function P on a sample space Ω is a function from
the set of all possible events, i.e. the powerset P(Ω), to the
interval [0, 1], such that P(Ω) = 1, and

P(A ∪ B) = P(A) + P(B)

if A and B do not occur simultaneously, i.e. A ∩ B = ∅.

The probability of an event can be computed by summing up
probabilities of all outcomes (elementary events) comprising it.
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Examples

I In the example with two coins tossing, we have

P(A) = P(B) = P(S \ A) =
2

4
=

1

2

P(A ∩ B) =
1

4

P(A ∪ B) =
3

4

I If we are throwing a crooked dice, where 6 can occur with the
probability 1

5 = 0.2 (instead of the fair 1
6 ), and the rest of

points, from 1 till 5, can occur with the equal probability 0.16,
the probability to get an even number of points is equal to

P({2, 4, 6}) = P({2})+P({4})+P({6}) = 2×0.16+0.2 = 0.52

For more examples, see Graham–Knuth–Patashnik,
pp. 382–383, and Rice, pp. 6–7,10–11.
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Probability function (cont.)

Lemma 1
If P is a probability function, then P(∅) = 0.

Proof. Follows from P(A1 ∪ A2) = P(A1) + P(A2) for
A1 ∩ A2 = ∅ (take A2 = ∅).

Lemma 2
If P is a probability function on a sample space Ω, then for any
A ⊆ Ω, P(Ω\A) = 1− P(A).

Proof. Follows from Lemma 1, and from P(Ω) = 1 (take A1 = A,
A2 = S\A).
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Probability function on infinite sample spaces

Still, these notions of event and probability are not entirely
satisfactory, as we can run into problems with infinite sets. When
the sample space Ω is infinite, the appropriate notion of event
appears to be not an arbitrary subset of Ω, but an element of a
σ-algebra, i.e. a set of subsets of S closed with respect to
complements, and countable unions and intersections. Then the
probability function P is defined as a measure on the σ-algebra,
normalized by the condition P(Ω) = 1.
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Examples
I We are tossing an unbiased coin till the fist head. Our sample

space is Ω = {1, 2, 3, . . . , n, . . . }, where n signifies that the
first head occurs at nth toss. Then P(n) = 1

2n , and

P(1) + P(2) + P(3) + · · · =
1

2
+

1

4
+

1

8
+ · · · = 1,

as expected.
I A general way to give examples of events and probability

functions: define a (finite or countable) set Ω, and define
P(a) ∈ [0, 1] for each a ∈ Ω such that

∑
a∈Ω P(a) = 1.

I In the throwing darts example, the probability to hit any
measurable subset A of our idealized dartboard is equal to
µ(A)
π . For example, the probability of the perfect hit is zero

(as the measure of a set consisting of a single point is zero),
while the probability to hit the right half of the dartboard is 1

2 .

The bottom line: to compute probabilities, we have to count, be
it counting of discrete sets, like in combinatorics, or counting of
areas of geometric figures, like in mathematical analysis.
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Application of inclusion-exclusion principle

For arbitrary events A1,A2, . . . ,An, not necessary disjoint, we have

P(A1 ∪ · · · ∪ An) =

P(A1) + · · ·+ P(An)

−P(A1 ∩ A2)− P(A1 ∩ A3)− · · · − P(An−1 ∩ An)

+P(A1 ∩ A2 ∩ A3) + · · ·+ P(An−2 ∩ An−1 ∩ An)

− · · ·+
+(−1)n+1P(A1 ∩ A2 ∩ · · · ∩ An),

what is exactly the inclusion-exclusion principle.
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4.

Conditional probability,
Bayes’ formula,

independent events
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Conditional probability

Definition
A conditional probability, denoted by P(A|B), is a probability of an
event A assuming that another event B has occurred. It is defined
as

P(A|B) =
P(A ∩ B)

P(B)
.

(Of course, we assume here that P(B) > 0).

Theorem
Let Ω be a sample space, and B an event. Then Q : P(Ω)→ [0, 1]
defined as Q(A) = P(A|B), is a probability function on Ω.
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Example

Assuming a non-leap year, let A be an event that a person has a
birthday at the first day of a month, and B an event that a person
has a birthday at an odd-numbered day at summer. Then A ∩ B is
an event that a person has a birthday at the first day of a summer
month,

P(A ∩ B) =
3

365
,

P(B) =
15 + 16 + 16

30 + 31 + 31
=

47

92
,

P(A|B) =
3

365
47
92

=
276

17155
≈ 0.016.

Compare this with the value of unconditional probability

P(A) =
12

365
≈ 0.033.
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Bayes’ formula

Having two events A and B with nonzero probabilities, along with
the conditional probability P(A|B), we may consider the
conditional probability

P(B|A) =
P(A ∩ B)

P(A)
,

what implies

P(A|B) =
P(B|A)P(A)

P(B)
.

This is known as Bayes’ formula.
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Generalization of Bayes’ formula

Theorem
Let Ω be a sample space, B1, . . . ,Bn events such that
B1 ∪ · · · ∪ Bn = Ω, and Bi ’s are pairwise disjoint. Then

P(Bi |A) =
P(A|Bi )P(Bi )

P(A|B1)P(B1) + · · ·+ P(A|Bn)P(Bn)
.

Proof. 1st way: by induction. 2nd way: using (several times)
additivity of the conditional probability, and Bayes’ formula.
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Independent events

Definition
Two events A and B are called independent, if one of the following
six equivalent condition holds:

(i) P(A|B) = P(A)

(ii) P(B|A) = P(B)

(iii) P(A ∩ B) = P(A)P(B)

and the same conditions (i)-(iii) with A and B being replaced by A
and B (complements), respectively.

The equivalence follows from the definition of conditional
probability, and Bayes’ formula.
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Several independent events

Generalization of the definition from the previous slide to the case
of several events is not as straightforward as one might think at
the first glance:

Definition 1
Events A1, . . . ,An are called independent, if

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1) . . .P(Aik )

for any {i1, . . . , ik} ⊆ {1, . . . , n}.

Definition 2
Events A1, . . .An are called independent, if

P(B1 ∩ · · · ∩ Bn) = P(B1) . . .P(Bn)

where each Bi ’s is either Ai or Ai .
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Exercises

Exercise 1
Prove that these two definitions are equivalent.

Exercise 2
When events A and A are independent?

(Answer: if and only if P(A) = 0 or 1).
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Example

For simplicity of calculation in this example assume that every
month of a year has 30 days. For example, an event of having a
birthday specified in terms of the day of the month (e.g., at the
10th day of the month, at odd days, from 10th till 15th day, etc.)
is independent from the event of having birthday specified in terms
of the month (e.g., at January, at spring, at the last 3 months of
the year, etc.). On the other hand, the events of having birthday
at summer, and at the odd-numbered months are not independent
(intuitively this is clear, but check it numerically!)

For more examples, see Dekking et al., pp. 26–29 and
Rice, pp. 16,24–26.
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5.
Discrete random variable,

distribution function
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Discrete random variable

In some situations, we may be interested not in the sample space
itself, but only in some of its features. This leads us to the notion
of a random variable.

Definition
A discrete random variable is a function on the sample space Ω
with values in R, accepting finite or countable number of different
values.

Of course, if the sample space if finite, then any random variable
defined on it is discrete.

Example

When throwing pair of dices, we may be interested not in the exact
outcome, but merely in the sum of two throws, or in the maximum
of two throws.



35/85

Mass and distribution functions

Definition
Let X : Ω→ R be a discrete random variable defined on a sample
space Ω. The mass function of X is the function fX : R→ [0, 1]
defined for any x ∈ R as

fX (x) = P(X = x).

Definition
The distribution function of X is the function FX : R→ [0, 1]
defined for any x ∈ R as

FX (x) = P(X ≤ x).
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Notational warning

Formally, the right-hand sides of the two formulas from the
previous slide had to be written as

P({s ∈ Ω | X (s) = x}),

and
P({s ∈ Ω | X (s) ≤ x}),

respectively, but here and in similar situations below, we use the
universally accepted shorthands.
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Properties of distribution functions

Theorem
For any distribution function FX of a discrete random variable X ,
the following holds:

1. FX is non-decreasing.

2. FX is piecewise constant (i.e., has “jumps” only in a finite or
countable number of points).

3. limx→−∞ FX (x) = 0, limx→+∞ FX (x) = 1.

Proof. By definition, the mass function attains possibly non-zero
values in the finite or countable number of points (the values of the
discrete random variable X ), and is zero elsewhere. Thus we have

FX (x) =
∑
t≤x

fX (t)

for any x ∈ R.
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Example

In the tossing coin example, let us assign numerical values of 0 and
1 to tail and head respectively, and on the sample space Ω of
outcomes of tossing 3 coins simultaneously, consider the random
variable X equal to the sum of all 3 outcomes, so the possible
values of X are 0, 1, 2, 3. Let us compute the corresponding mass
and distribution functions.

fX (0) = P(X = 0) = P({(0, 0, 0)}) = 1
8

; FX (0) = fX (0) = 1
8

;

fX (1) = P(X = 1) = P({(1, 0, 0), (0, 1, 0), (0, 0, 1)}) = 3
8

; FX (1) = fX (0) + fX (1) = 1
8

+ 3
8

= 1
2

;

fX (2) = P(X = 2) = P({(1, 1, 0), (1, 0, 1), (0, 1, 1)}) = 3
8

; FX (2) = fX (0) + fX (1) + fX (2)

= 1
8

+ 3
8

+ 3
8

= 7
8

;

fX (3) = P(X = 3) = P({(1, 1, 1)}) = 1
8

; FX (3) = fX (0) + fX (1) + fX (2) + fX (3)

= 1
8

+ 3
8

+ 3
8

+ 1
8

= 1.



39/85

Example (cont.)

At any other point, the value of fX is zero, and

FX (x) =


0 if x < 0;

FX ([x ]) if 0 ≤ x ≤ 3;

1 if x > 3.

(Here [x ] denotes the integer part of x).

For other examples, see Dekking et al., pp. 43–44.
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6.
Continuous random variable,
density, distribution function
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Continuous random variable, density function

If a real-valued function defined on the sample space Ω attains not
a discrete, but a continuous range of values, we arrive at the
notion of a continuous random variable. Formally:

Definition
A random variable X : Ω→ R is continuous, if

P(a ≤ X ≤ b) =

∫ b

a
fX (t) d t

for some function fX : R→ R, and any a, b ∈ R, a ≤ b. The
function fX is called the density function of X .

Example

Picking a point at a circle of radius R, the random variable X (r) is
the probability that the point will lie in a circle with radius r ,
0 ≤ r ≤ R.
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Continuous random variables (cont.)

In the real world, we are dealing with discrete random variables,
even with a particular case of them which involves only finite
number of possible values. Continuous random variables are very
useful mathematical abstractions helping to capture important
properties of the discrete case when the number of possible values
is becoming huge. This explains a big similarity between discrete
and continuous random variables: as a rule of thumb, any formula,
result, or reasoning involving the discrete case can be turned into
the continuous one, by replacing summation by integration.

We can operate with random variables defined on the same sample
space, both discrete and continuous, the same way as we operate
with functions: we can add them, multiply them, apply other
functions to them, etc.
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Properties of density functions

Density is a continuous analog of the mass function of a discrete
random variable.

Warning

Density is not probability!

Theorem
For any density function fX of a continuous random variable X , the
following holds:

1. fX attains only non-negative values.

2.
∫∞
−∞ fX (t) d t = 1.
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Distribution function

Definition
The distribution function FX : R→ [0, 1] of a continuous random
variable X is defined the same way as for a discrete one:

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t) d t

for any x ∈ R.
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7.
Numerical characteristics of a
random variable: expectation,
quantile, median, standard

deviation
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Expectation

Random variables may contain a huge amount of data in a very
complicated form, so sometimes one wants to summarize that or
another property of a random variable by a single number.

The expected value, or mean, of a random variable X , denoted by
E [X ], is its average value, or, in other words, the center of the
corresponding distribution function. More formally:

Definition
For a discrete random variable X attaining values x1, x2, . . . , the
expected value is the weighted mean of the values, with weights
being the respective probabilities:

E [X ] =
∑

i=1,2,...

fX (xi )xi .
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Expectation (cont.)

Warning

Note that, generally, we are dealing here with an infinite sum,
which may not exist. However, it does exist in most of the
important cases occurring on practice. Of course, if the random
variable X attains only finite number of values, the sum is finite
and thus exists always.

Example

The expected value of the random variable equal to the number of
points got in one throw of a dice is equal to

1

6
× 1 +

1

6
× 2 +

1

6
× 3 +

1

6
× 4 +

1

6
× 5 +

1

6
× 6 = 3.5.

For example of a random variable with non-existing expectation,
see Dekking et al., p. 92.
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Expectation (cont.)

Definition
The expected value of a continuous random variable X is defined as

E [X ] =

∫ ∞
−∞

tfX (t) d t.

Theorem
Let X be a random variable, and g : R→ R a real function. If X is
discrete, taking values a1, a2, . . . , then

E [g(X )] =
∑
i

g(ai )P(X = ai ).

If X is continuous, with density function f , then

E [g(X )] =

∫ +∞

−∞
g(t)f (t) d t.
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Expectation (cont.)

The formulas in the theorem from the previous slide are called the
change-of-variable formulas. An important particular case is:

Corollary

For any random variable X (discrete or continuous), and any
a, b ∈ R,

E [aX + b] = aE [X ] + b.
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Quantiles, median

Definition
The p-th quantile of a random variable X , where p is a number
between 0 and 1, is the smallest number qp such that

P(X ≤ qp) = p.

Sometimes mean is not an adequate characteristic of a random
variable. For example, the mean of the yearly income per
household in a given country would exhibit values much higher
then “expected”, due to a relatively small number of
embarrassingly wealthy individuals. In such cases, a more adequate
representation of a “mean” value would be given by median which
is defined as the 0.5th quantile. Informally, the median is the value
which “sits in the middle”, and it is much less sensitive than mean
to extreme values in the data.
Another frequently used in practice quantiles are quartiles, which
are defined as 0.25th, 0.50th, and 0.75th quantiles.
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Variance and standard deviation

Definition
The variance of a random variable X , denoted by Var(X ), is the
number E [(X − E [X ])2].

Variance signify how “spread”, around the mean, is the random
variable.

Theorem 1
For any random variable X , Var(X ) = E [X 2]− E [X ]2.

Proof goes separately for discrete and continuous distributions.

Theorem 2
For any random variable X , and any a, b ∈ R,
Var(aX + b) = a2Var(X ).

Proof uses definition of variance and Theorem 1.

Definition
The standard deviation of a random variable X (both discrete and
continuous), denoted by σ(X ), is defined as σ(X ) =

√
Var(X ).
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Example

If X is a discrete random variable attaining, with the equal
probability 1

n , a finite number of n distinct values x1, . . . , xn, then

E [X ] =
x1 + · · ·+ xn

n

and

σ(X ) =

√
(x1 − E [X ])2 + · · ·+ (xn − E [X ])2

n
.

The latter formula explains why indeed the standard deviation is a
good measure of how spread the data is: the more the values xi
stay away from their mean E [X ], the bigger σ(X ) would be.

For more examples, see Graham–Knuth–Patashnik,
pp. 387–394.



53/85

8.
Basic types of discrete
distributions: uniform,
binomial, Poisson,
hypergeometric
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Uniform distribution

Some types of distributions are of utmost importance, as they
appear often on practice, and provide a convenient material for
building effective statistical models.

Perhaps, the simplest possible distribution is a uniform one.

Definition
A discrete random variable is distributed uniformly, if its mass
function attains the same value at the finite number of n points.

In what follows, we assume the number n to be fixed.

Lemma
The mass function of a uniform distribution is of the form

fn(k) =
1

n
,

where k = 1, 2, . . . , n.
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Uniform distribution (cont.)

Lemma
The expected value and the standard deviation of an uniformly

distributed random variable are equal to n+1
2 and

√
n2−1

12 ,
respectively.

Example

Our favorite random variable examples of throwing a single (fair)
dice, or tossing a single (fair) coin are uniformly distributed.
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Binomial distribution

Definition
The binomial distribution with parameters n = 1, 2, . . . and p,
where 0 ≤ p ≤ 1, is the discrete distribution of the number of
successes in a sequence of n experiments with a binary outcome
(success/failure), each of which yields success with probability p.

Lemma
The mass function of the binomial distribution has the form

fn,p(k) =

(
n

k

)
pk(1− p)n−k ,

where k = 0, 1, 2, . . . , n.

Example

Suppose that a biased coin comes up heads with probability 0.3.
Then the probability to have 4 heads after 6 tosses is equal to

f6,0.3(4) =

(
6

4

)
× 0.34 × (1− 0.3)6−4 ≈ 0.0595
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Binomial distribution (cont.)

Lemma
The expected value of a binomially distributed random variable is
equal to

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np,

and the standard deviation is equal to√
np(1− p).
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Poisson distribution

The Poisson distribution expresses the probability of a given
number of events occurring in a fixed interval of time and/or space
if these events occur with a known average rate and independently
of the time since the last event.

Definition
The Poisson distribution is defined as a discrete distribution with
parameter µ > 0 (estimated number of events) whose mass
function has the form

fµ(k) =
µk

k!
e−µ,

where k = 0, 1, 2, . . . .
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Poisson distribition (cont.)

Lemma
The expected value of a random variable whose distribution
function is Poisson, is equal to

∞∑
k=0

k
µk

k!
e−µ = µ,

and the standard deviation is equal to
√
µ.
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Hypergeometric distribution

Definition
The hypergeometric distribution with parameters N,K , n, where N
is a non-negative integer, and K and n are integers ranging from 0
till N, describes the number of successes in n binary
(success/failure) draws, without replacement, from a finite set of
N elements, that contains exactly K successes.

Lemma
The mass function of the hypergeometric distribution has the form

fN,K ,n(k) =

(K
k

)(N−K
n−k

)(N
n

) ,

where k = 0, 1, 2, . . . ,min(n,K ).
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Hypergeometric distribution (cont.)

Lemma
The expected value of the hypergeometric distribution is equal to

nK

N
,

and the standard deviation is equal to

1

N

√
nK (N − K )(N − n)

N − 1
.
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9.
Basic types of continuous

distributions: uniform, normal,
exponential
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Continuous uniform distribution

Again, among continuous distributions the continuous uniform
distribution has the most simple form: its density function is a
constant within a given range. More precisely:

Definition
The density function of the continuous uniform distribution on the
interval [a, b] is defined as

fa,b(x) =

{
1

b−a if a ≤ x ≤ b,

0 otherwise.

Lemma
The expected value and the standard deviation of an uniformly
distributed continuous random variable are equal to a+b

2 and b−a
2
√

3
,

respectively.
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Normal distribution

Definition
The normal distribution with parameters m and σ is a continuous
distribution with the density function of the form

fm,σ(x) =
1

σ
√

2π
e−

1
2

( x−m
σ

)2
.

The graph of this density function has the famous “bell-shaped”
form, with the maximum around x = m:

m
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Normal distribution (cont.)
Normal distributions are sometimes called Gaussian distributions,
in honor of Carl Friedrich Gauss (1777–1855):
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Normal distribution (cont.)

The normal distribution is, perhaps, the single most important
distribution, due to the Central Limit Theorem, one of the
cornerstones results in probability and statistics. Roughly, this
theorem says that, under certain natural conditions, the average of
a large number of identically distributed random variables is
distributed normally, no matter what the initial distribution was.
This is the reason why normally distributed random variables
appear so often on practice.

Lemma
The expected value of a normally distributed random variable is
equal to

1

σ
√

2π

∫ ∞
−∞

te−
1
2

( t−m
σ

)2
d t = m,

and the standard deviation is equal to σ.
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Exponential distribution
The exponential distribution describes the time between events in
a process in which events occur continuously and independently at
a constant average rate λ > 0. More formally:

Definition
The exponential distribution is the continuous distribution with the
density function of the form

fλ(x) =

{
0 if x < 0,

λe−λx if x ≥ 0.

Lemma
The expected value of an exponentially distributed random variable
is equal to

λ

∫ ∞
0

te−λt d t =
1

λ
,

and the standard deviation is equal to 1
λ too.
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10.
Sum of random variables,
covariance, correlation
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Sum of random variables, covariance, correlation

Theorem
For any random variables X1, . . . ,Xn, and any a1, . . . , an, b ∈ R,

E [a1X1 + · · ·+ anXn + b] = a1E [X1] + · · ·+ anE [Xn] + b.

In particular, E [X + Y ] = E [X ] + E [Y ].

As an application of Theorem, one may derive the formula
E [X ] = pn for a binomial distribution with parameters p, n,
without evaluating of the corresponding combinatorial sums:
indeed, a binomially distributed random variable X can be
represented as X = X1 + · · ·+ Xn, where each Xi is a random
variable taking the value 1 with probability p, and 0 with
probability 1− p. Thus E [Xi ] = p, and

E [X ] = p + · · ·+ p (n times).
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Covariance

Theorem
For any two random variables X , Y ,

Var(X + Y ) = Var(X ) + Var(Y ) + 2E [(X − E [X ])(Y − E [Y ])].

The “extra” term (up to factor 2) is what is called covariance, and
express the way X and Y “influence” each other

Definition
The covariance of two random variables X , Y , denoted by
Cov(X ,Y ), is defined as

E [(X − E [X ])(Y − E [Y ])].

Theorem
For any two random variables X ,Y ,

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].
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Dependence vs. correlation

Definition
Two random variables X , Y are called uncorrelated, if
Cov(X ,Y ) = 0.

Theorem
If X and Y are independent random variables, then
E [XY ] = E [X ]E [Y ].

Corollary

If two random variables are independent, then they are
uncorrelated.

Warning

The opposite is not true!

For an example, see Dekking et al., pp. 141–142.
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Correlation

Definition
The correlation between two random variables X , Y , denoted by
Cor(X ,Y ), is defined as

Cov(X ,Y )√
Var(X )Var(Y )

.

Theorem
For any two random variables X , Y :

1. Cor(X ,X ) = 1

2. Cor(X ,Y ) = Cor(Y ,X )

3. −1 ≤ Cor(X ,Y ) ≤ 1
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11.
Data analysis. Statistical

models
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Linear regression

Suppose we have two numerical datasets, x1, . . . , xn, and
y1, . . . , yn, and we want to find how yi depends on xi . This is the
task for statistical models. In the simplest case, we assume that
the relationship is linear, modulo errors of measurement.

Definition
In a linear regression model for a bivariate dataset
(x1, y1), . . . , (xn, yn), we assume that x1, . . . , xn are nonrandom,
and that y1, . . . , yn are realizations of random variables Y1, . . . ,Yn

satisfying
Yi = α + βxi + Ui

for i = 1, . . . , n, where U1, . . . ,Un are independent random
variables with E [Ui ] = 0 and Var(Ui ) = σ2.
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Linear regression (cont.)
The line y = α + βx is called the regression line.

For example, see Dekking et al., p. 258.

The regression line could be found with the method of least
squares (first developed by Gauss): which line satisfies the
condition that the sum of squares of residuals, i.e. the differences
α + βxi − yi , is minimal? This boils done to the standard problem
from analysis of minimization of the real function in two variables
α, β. See Dekking et al., pp. 329–331 for details and examples.

In more complicated statistical models, nonlinear functions may be
used.
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12.
Hypothesis testing. Null and

alternative hypotheses
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Hypotheses testing. Null and alternative hypotheses

The more sophisticated methods of choosing a suitable statistical
distribution, and estimation of the distribution parameters are
usually performed in the framework of hypothesis testing.
Hypothesis testing is also used for establishing a relationship (or
lack thereof) between two datasets, or, more generally, in deriving
any kind of statistical observation about one or more datasets.

Usually, this is done by specifying two rival and mutually exclusive
hypotheses, the null and alternative hypotheses, and their
subsequent comparison by certain statistical procedures.
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Null and alternative hypotheses (cont.)

There is no rule of thumb how null and alternative hypotheses
should be formed. However, the usual statistical practice stipulates
that the null hypothesis states that the phenomenon being studied
produces no effect or makes no difference. The null hypothesis is
also usually the hypothesis one wants to reject, or “nullify”. For
example, when investigating relationship between two datasets, the
null hypothesis should state that there is no relationship at all,
while the alternative hypothesis should indicate the existence of
such relationship. Or, say, when investigating the impact of
smoking on lung cancer, the null hypothesis would state that
smoking does not have any impact.

See Dekking et al., pp. 373–374 for more examples.
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Type I and type II errors. p-values

A type I error is the (incorrect) rejection of a true null hypothesis.
The probability of type I error is called the significance level of a
test. A type II error is the (incorrect) acceptance of a false null
hypothesis. The probability of not making a type II error, i.e. the
(correct) rejection of a false null hypothesis, is called the power of
a test. The probabilities of making type I and type II errors are
traded off against each other: for any given sample set, the effort
to reduce one type of error generally results in increasing the other
type of error. For a given test, the only way to reduce both error
rates is to increase the sample size, and this may not be feasible.

One of the most used test statistics in hypothesis testing is
p-value, which is defined as the probability of obtaining a result
equal to or “more extreme” than what was actually observed,
when the null hypothesis H0 is true. What is “more extreme” and
how it is measured, depends on the context.
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p-values (cont.)

For a “double-tailed” event, the p-value of a random variable X
assuming values “more extreme” than x (the observed value),
might be defined as

2 ·min{ P(X ≥ x | H0), P(X ≤ x | H0) },

while for “left-tailed” events the same value might be defined as

P(X ≤ x | H0),

and similarly for “right-tailed” ones.

The p-value measures statistical significance of the test, but it
should not be confused with the probability of the hypothesis being
true, the probability of observing the given data, etc. p-values are
often misused and misinterpreted.
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Examples
In the flipping coin example, suppose that the null hypothesis
specifies that the coin is fair. In a double-tailed model, the
alternative hypothesis would be that the coin is biased either way,
while in an one-tailed model the alternative hypothesis says that
the coin is biased towards, say, heads. Suppose that one gets 5
heads in a row in one experiment. In the one-tailed model this is
the most extreme possible value, with a p-value equal to(1

2

)5
=

1

32
≈ 0.03 .

In the double-tailed model, the corresponding p-value would be
twice as that:

2 ·
(1

2

)5
=

1

16
≈ 0.06 .

One frequently sets 0.05 as the threshold for the p-value of the
test to be statistically significant. Under this assumption, we
should reject the null hypothesis in the first case, while we cannot
do that in the second one.
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Hypotheses testing (cont.)

An essentially equivalent procedure, but not using the concept of a
p-value, would run as follows:

1. Choose a test statistics (for example, just the number of
heads in the flipping coin example);

2. Derive the distribution of the test statistics under the null
hypothesis (the binomial distribution in our example);

3. Select the significance level of the test (the common values
are 0.05 and 0.01);

4. Determine the critical (or rejection) region – the values of the
test statistics for which the null hypothesis is rejected;

5. Perform the test, derive from it the empirical value of test
statistics, and see whether it falls into the critical region or
not.
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Confidence interval

There is a direct relationship between the critical region and the
confidence interval. The confidence interval of a certain statistical
parameter is the interval, calculated from the sample, that contains
the specified value of the parameter with the specified probability.
A typical situation when this notion occurs naturally is estimation
of the average of the mean of identically distributed random
variables. For example, if a certain random variable is normally
distributed with the same mean µ and standard deviation σ, then
it is known that the average x of n observations is normally
distributed around µ with standard deviation σ√

n
. A 95%

confidence interval for µ is determined then as

x + N0.025
σ√
n
≤ µ ≤ x + N0.975

σ√
n
,

where N0.975 ≈ 1.96 and N0.025 = −N0.975 are the 97.5% and 2.5%
quantiles in the standard (i.e. with parameters µ = 0 and σ = 1)
normal distribution.
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Confidence interval (cont.)

Now, suppose that for some parameter θ and its value θ0, we test
the null hypothesis H0 : θ = θ0 against the alternative hypothesis
H1 : θ > θ0 (one-tailed test). Then we reject H0 in favor of H1

(i.e., θ is not in the critical region) at the significance level α if and
only if θ0 is not in the 100(1− α)% one-tailed confidence interval
for θ. A similar statement is true in the case of a double-tailed test.
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The End


