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Introduction 

The subject of the book: Elementary Topology 

Elementary means close to elements, basics. It is impossible to deter­
mine precisely, once and for all ,  which topology is elementary and which 
is not . The elementary part of a subject is the part with which an expert 
starts to teach a novice . 

We suppose that our student is ready to study topology. So,  we do not 
try to win her or his attention and benevolence by hasty and obscure stories 
about mysterious and attractive things such as the Klein bottle , 1 though 
the Klein bottle will appear in its turn. However, we start with what a 
topological space is, that is, we start with general topology. 

General topology became a part of the general mathematical language 
a long ti:J;ne ago . It teaches one to speak clearly and precisely about things 
related to the idea of continuity. It is not only needed to explain what , 
finally, the Klein bottle is, but it is also a way to introduce geometrical 
images into any area of mathematics, no matter how far from geometry the 
area may be at first glance . 

As an active research area, general topology is practically completed. 
A permanent usage in the capacity of a general mathematical language has 
polished its system of definitions and theorems. Indeed , nowadays, the study 
of general topology resembles a study of a language rather than a study of 
mathematics: one has to learn many new words, while the proofs of the 
majority of the theorems are extremely simple. However, the quantity of 

1 A person who is looking for such elementary topology will easily find it in numerous books 
with beautiful pictures on visual topology. 

-
Xl 



xii Introduction 

the theorems is huge . This comes as no surprise because they play the role 
of rules that regulate usage of words. 

The book consists of two parts. General topology is the subject of part 
one . The second part is an introduction to algebraic topology via its most 
classical and elementary segment , which emerges from the notions of funda­
mental group and covering space . 

In our opinion, elementary topology also includes basic topology of man­
ifolds, i . e . , spaces that look locally as the Euclidean space . One- and two­
dimensional manifolds, i . e . , curves and surfaces are especially elementary. 
However , a book should not be too thick, and so we had to stop. 

Chapter 5 ,  which is the last chapter of the first part , keeps somewhat 
aloof. It is devoted to topological groups. The material is intimately re­
lated to a number of different areas of Mathematics. Although topological 
groups play a profound role in those areas, it is not that important in the 
initial study of general topology. Therefore , mastering this material may 
be postponed until it appears in a substantial way in other mathematical 
courses (which will concern the Lie groups, functional analysis, etc. ) . The 
main reason why we included this material is that it provides a great variety 
of examples and exercises. 

Organization of the text 

Even a cursory overview detects unusual features in the organization of 
this book. We dared to come up with several innovations and hope that the 
reader will quickly get used to them and even find them useful. 

We know that the needs and interests of our readers vary, and realize 
that it is very difficult to make a book interesting and useful for each reader. 
To solve this problem, we formatted the text in such a way that the reader 
could easily determine what (s)he can expect from each piece of the text .  
We hope that this will allow the reader to  organize studying the material of 
the book in accordance with his or her tastes and abilities. To achieve this 
goal , we use several tricks. 

First of all ,  we distinguished the basic, so to speak, lecture line . This 
is the material which we consider basic. It constitutes a minor part of the 
text .  

The basic material is often interrupted by specific examples, illustrative 
and training problems, and discussion of the notions that are related to 
these examples and problems, but are not used in what follows. Some of 
the notions play a fundamental role in other areas of mathematics, but here 
they are of minor importance . 
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In a word, the basic line is interrupted by variations wherever possi­
ble. The variations are clearly separated from the basic theme by graphical 
means. 

The second feature distinguishing the present book from the majority of 
other textbooks is that proofs are separated from formulations. This makes 
the book look like a pure problem book. It would be easy to make the book 
looking like hundreds of other mathematical textbooks. For this purpose,  
it  suffices to move all variations to the ends of their sections so that they 
would look like exercises to the basic text , and put the proofs of theorems 
immediately after their formulations. 

For whom is this book? 

A reader who has safely reached the university level in her /his education 
may bravely approach this book. Super brave daredevils may try it even 
earlier . However, we cannot say that no preliminary knowledge is required . 
We suppose that the reader is familiar with real numbers, and , surely, with 
natural , integer , and rational numbers too. A knowledge of complex num­
bers would also be useful, although one can manage without them in the 
first part of the book. 

We assume that the reader is acquainted with naive set theory, but admit 
that this acquaintance may be superficial . For this reason, we make special 
set-theoretical digressions where the knowledge of set theory is particularly 
desirable . 

We do not seriously rely on calculus, but because the majority of our 
readers are already familiar with it , at least slightly, we do not hesitate to 
resort to using notations and notions from calculus. 

In the second part , experience in group theory will be useful, although 
we give all necessary information about groups. 

One of the most valuable acquisitions that the reader can make by mas­
tering the present book is new elements of mathematical culture and an 
ability to understand and appreciate an abstract axiomatic theory. The 
higher the degree in which the reader already possesses this ability, the 
easier it will be for her or him to master the material of the book .  

I f  you want to study topology on your own, do try to  work with the 
book. It may turn out to be precisely what you need. However, you should 
attentively reread the rest of the Introduction again in order to understand 
how the material is organized and how you can use it . 
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The basic theme 

The core of the book is made up of the material of the topology course 
for students majoring in Mathematics at the Saint Petersburg (Leningrad) 
State University. The core material makes up a relatively small part of the 
book and involves nearly no complicated arguments. 

The reader should not think that by selecting the basic theme the authors 
just try to impose their tastes on her or him. We do not hesitate to do this 
occasionally, but here our primary goal is to organize study of the subject . 

The basic theme forms a complete entity. The reader who has mastered 
the basic theme has mastered the subject . Whether the reader had looked 
in the variations or not is her or his business. However, the variations have 
been included in order to help the reader with mastering the basic material . 
They are not exiled to the final pages of sections in order to have them at 
hand precisely when they are most needed. By the way, the variations can 
tell you about many interesting things. However , following the variations 
too literally and carefully may take far too long. 

We believe that the material presented in the basic theme is the minimal 
amount of topology that must be mastered by every student who has decided 
to become a professional mathematician. 

Certainly, a student whose interests will be related to topology and other 
geometrical disciplines will have to learn far more than the basic theme 
includes. In this case the material can serve as a good starting point . 

For a student who is not going to become a professional mathematician, 
even a selective acquaintance with the basic theme might be useful. It may 
be useful for preparation for an exam or just for catching a glimpse and a 
feeling of abstract mathematics, with its emphasized value of definitions and 
precise formulations. 

Where are the proofs? 

The book is  tailored for a reader who i s  determined to work actively. 

The proofs of theorems are separated from their formulations and placed at  
the end of the current chapter. 

We believe that the first reaction to the formulation of any assertion 
(coming immediately after the feeling that the formulation has been under­
stood) must be an attempt to prove the assertion-or to disprove it , if you 
do not manage to prove it . An attempt to disprove an assertion may be 
useful both for achieving a better understanding of the formulation and for 
looking for a proof. 

By keeping the proofs away from the formulations, we want to encour­
age the reader to think through each formulation, and , on the other hand, 
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to make the book inconvenient for careless skimming. However ,  a reader 
who prefers a more traditional style and , for some reason, does not wish to 
work too actively can either find the proofs at the end of the chapter , or 
skip them all together. (Certainly, in the latter case there is some danger of 
misunderstanding . )  

This style can also please an expert who needs a handbook and prefers 
formulations not overshadowed by proofs. Most of the proofs are simple and 
easy to discover. 

Structure of the book 

Basic structural units of the book are sections. They are divided into 
numbered and titled subsections. Each subsection is devoted to a single 
topic and consists of definitions, comments, theorems, exercises, problems, 
and riddles. 

By a riddle we mean a problem whose solution (and often also the mean­
ing) should be guessed rather than calculated or deduced from the formula­
tion. 

Theorems, exercises, problems, and riddles belonging to the basic mate­
rial are numbered by pairs consisting of the number of the current section 
and a letter , separated by a dot . 

2.B. Riddle. Taking into account the number of the riddle , determine in 
which section it must be contained. By the way, is this really a riddle? 

The letters are assigned in alphabetical order . They number the assertions 
inside a section . 

A difficult problem (or theorem) is often followed by a sequence of as­
sertions that are lemmas to the problem. Such a chain often ends with a 
problem in which we suggest the reader, armed with the lemmas just proven, 
return to the initial problem (respectively, theorem) . 

Variations 

The basic material is surrounded by numerous training problems and 
additional definitions, theorems, and assertions. In spite of their relation 
to the basic material , they usually are left outside of the standard lecture 
course .  

Such additional material i s  easy to  recognize in  the book by the smaller print 
and wide margins , as shown here . Exercises , problems, and riddles that are not 
included in the basic material, but are closely related to it ,  are numbered by pairs 
consisting of the number of a section and the number of the assertion in the limits 
of the section. 

2.5. Find a proWem with the same number 2.5 in the main body of the book. 
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All solutions to problems are located at the end of the book. 

As is common, the problems that have seemed to be most difficult to 
the authors are marked by an asterisk .  They are included with different 
purposes: to outline relations to other areas of mathematics, to indicate 
possible directions of development of the subject , or just to please an ambi­
tious reader . 

Additional themes 

We decided to make accessible for interested students certain theoretical 
topics complementing the basic material . It would be natural to include 
them into lecture courses designed for senior (or graduate) students. How­
ever , this does not usually happen, because the topics do not fit well into 
traditional graduate courses. Furthermore, studying them seems to be more 
natural during the very first contacts with topology. 

In the book, such topics are separated into individual subsections, whose 
numbers contain the symbol x, which means extra. (Sometimes, a whole 
section is marked in this way, and,  in one case ,  even a whole chapter . )  

Certainly, regarding this material as additional i s  a matter o f  taste and 
viewpoint. Qualifying a topic as additional , we follow our own ideas about 
what must be contained in the initial study of topology. We realize that 
some (if not most) of our colleagues may disagree with our choice, but we 
hope that our decorations will not hinder them from using the book. 

Advices to the reader 

You can use the present book when preparing for an exam in topology 
(especially so if the exam consists in solving problems) . However, if you 
attend lectures in topology, then it is reasonable to read the book before 
the lectures, and try to prove the assertions in it on your own before the 
lecturer will prove them. 

The reader who can prove assertions of the basic theme on his or her 
own needn't solve all of the problems suggested in the variations, and can 
resort to a brief acquaintance with their formulations and solve only the 
most difficult of them. On the other hand , the more difficult it is for you 
to prove assertions of the basic theme, the more attention you should pay 
to illustrative problems, and the less attention should be paid to problems 
with an asterisk. 

Many of our illustrative problems are easy to come up with. Moreover, 
when seriously studying a subject , one should permanently cook up ques­
tions of this kind . 
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On the other hand , some problems presented in the book are not easy 
to come up with at all . We have widely used all kinds of sources, including 
both literature and teachers' folklore . 

Notations 

We did our best to avoid notations which are not commonly accepted. 
The only exception is the use of a few symbols which are very convenient 
and almost self-explanatory. Namely, within proofs symbols I=> J and 
l<=l should be understood as (sub )titles. Each of them means that we 
start proving the corresponding implication. Similarly, symbols [g and [2] 
indicate the beginning of proofs of the corresponding inclusions. 

How this book was created 

In the basic theme, we follow the course of lectures composed by Vladimir 
Abramovich Rokhlin at the Faculty of Mathematics and Mechanics of the 
Leningrad State University in the 1960s. It seems appropriate to sketch the 
circumstances of creating the course ,  although we started to write this book 
only after Vladimir Abramovich's death ( 1984 ) . 

Vladimir Abramovich Rokhlin gives a lecture , 1960s. 
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In the 1960s, mathematics was one of the mcist attractive areas of science 
for young people in the Soviet Union, being second maybe only to physics 
among the natural sciences. Every year more than a hundred students were 
enrolled in the mathematical subdivision of the Faculty. 

Several dozen of them were alumnae and alumni of mathematical schools. 
The system and contents of the lecture courses at the Faculty were seriously 
updated . 

Until Rokhlin developed his course , topology was taught in the Faculty 
only in the framework of special courses. Rokhlin succeeded in including 
a one-semester course on topology into the system of general mandatory 
courses. The course consisted of three chapters devoted to general topol­
ogy, fundamental group and coverings, and manifolds, respectively. The 
contents of the first two chapters differed only slightly from the basic ma­
terial of the book. The last chapter started with a general definition of a 
topological manifold , included a topological classification of one-dimensional 
manifolds, and ended either with a topological classification of triangulated 
two-dimensional manifolds or with elements of differential topology, up to 
embedding a smooth manifold in the Euclidean space . 

Three of the four authors belong to the first generation of students who 
attended Rokhlin 's lecture course .  This was a one-semester course , three 
hours a week in the first semester of the second year . At most two two-hour 
lessons during the whole semester were devoted to solving problems. It was 
not Rokhlin, but his graduate students who conducted these lessons. For 
instance , in 1966-68 they were conducted by Misha Gromov-an outstand­
ing geometer , currently a professor of the Paris Institute des Hautes Etudies 
Scientifiques and the New York Courant Institute. Rokhlin regarded the 
course as a theoretical one and did not wish to spend lecture time solving 
problems. Indeed, in the framework of the course one did not have to teach 
students how to solve series of routine problems, like problems in techniques 
of differentiation and integration, that are traditional for calculus. 

Despite the fact that we built our book by starting from Rokhlin 's lec­
tures, the book will give you no idea about Rokhlin 's style . The lectures 
were brilliant . Rokhlin wrote very little on the blackboard. Nevertheless, it 
was very easy to take notes. He spoke without haste, with maximally simple 
and ideally correct sentences. 

For the last time , Rokhlin gave his mandatory topology course in 1973 . 
In August of 1974 , because of his serious illness, the administration of the 
Faculty had to look for a person who would substitute for Rokhlin as a 
lecturer . The problem was complicated by the fact that the results of the 
exams in the preceding year were terrible . In 1973 ,  the time allotted for the 
course was increased up to four hours a week, while the number of students 
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had grown, and , respectively, the level of their training had decreased. As 
a result , the grades for exams "crashed down" . 

It was decided that the whole class, which consisted of about 175 stu­
dents, should be split into two classes. Professor Viktor Zalgaller was ap­
pointed to give lectures to the students who were going to specialize in 
applied mathematics, while Assistant Professor Oleg Viro would give the 
lectures to student-mathematicians. Zalgaller suggested introducing exer­
cise lessons-one hour a week. As a result , the time allotted for the lectures 
decreased, and de facto the volume of the material also reduced along with 
the time . 

It remained to understand what to do in the exercise lessons. One had to 
develop a system of problems and exercises that would give an opportunity 
to revisit the definitions given in the lectures, and would allow one to develop 
skills in proving easy theorems from general topology in the framework of a 
simple axiomatic theory. 

Problems in the first part of the book are a result of our efforts in this 
direction . Gradually, exercise lessons and problems were becoming more 
and more useful as long as we had to teach students with a lower level of 
preliminary training . In 1988 ,  the Publishing House of the Leningrad State 
University published the problems in a small book, Problems in Topology. 

Students found the book useful. One of them, Alekse'l Solov'ev , even 
translated it into English on his own initiative when he became a gradu­
ate student at the University of California. The translation initiated a new 
stage of work on the book. We started developing the Russian and English 
versions in parallel and practically covered the entire material of Rokhlin 's 
course . In 2000 ,  the Publishing House of the Saint Petersburg State Uni­
versity published the second Russian edition of the book, which already 
included a chapter on the fundamental group and coverings. 

The English version was used by Oleg Viro for his lecture course in the 
USA (University of California) and Sweden (Uppsala University) . The Rus­
sian version was used by Slava Kharlamov for his lecture courses in France 
(Strasbourg University) . The lectures have been given for quite different 
audiences: both for undergraduate and graduate students. Furthermore , 
few professors (some of whom the authors have not known personally) have 
asked the authors' permission to use the English version in their lectures, 
both in the countries mentioned above and in other ones. New demands 
upon the text have arisen. For instance , we were asked to include solutions 
to problems and proofs of theorems in the book, in order to make it meet 
the Western standards and transform it from a problem book into a self­
sufficient textbook. After some hesitation, we fulfilled those requests, the 
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more so that they were upheld by the Publishing House of the American 
Mathematical Society. 
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Part 1 

General Topology 



Our goal in this part of the book is to teach the basics of the mathe­
matical language . More specifically, one of its most important components: 
the language of set-theoretic topology, which treats the basic notions related 
to continuity. The term general topology means: this is the topology that 
is needed and used by most mathematicians. The permanent usage in the 
capacity of a common mathematical language has polished its system of 
definitions and theorems. Nowadays, studying general topology really more 
resembles studying a language rather than mathematics: one needs to learn 
a lot of new words, while proofs of most theorems are quite simple. On the 
other hand, the theorems are numerous because they play the role of rules 
regulating usage of words. 

We have to warn students for whom this is one of their first mathematical 
subjects. Do not hurry to fall in love with it . Do not let an imprinting 
happen. This field may seem to be charming, but it is not very active 
nowadays. Other mathematical subjects are also nice and can give exciting 
opportunities for research . Check them out! 



Chapter I 

Structures and Spaces 

1 .  Set- Theoret ic Digression: Sets 

We begin with a digression, which, however, we would like t o  consider un­
necessary. Its subject is the first basic notions of the naive set theory. This 
is a part of the common mathematical language , too, but an even more 
profound part than general topology. We would not be able to say anything 
about topology without this part ( look through the next section to see that 
this is not an exaggeration) . Naturally, it may be expected that the naive 
set theory becomes familiar to a student when she or he studies Calculus or 
Algebra, two subjects of study that usually precede topology. If this is true 
in your case , then , please ,  just glance through this section and pass to the 
next one . 

ll 'l J  Sets and Elements 

In an intellectual activity, one of the most profound actions is gathering 
objects in groups. The gathering is performed in mind and is not accom­
panied with any action in the physical world. As soon as the group has 
been created and assigned a name , it can be a subject of thoughts and argu­
ments and , in particular , can be included into other groups. Mathematics 
has an elaborate system of notions, which organizes and regulates creating 
those groups and manipulating them. The system is called the naive set 
theory ,  which, however , is a slightly misleading name because this is rather 
a language than a theory. 

-
3 



4 I. Structures and Spaces 

The first words in this language are set and element .  By a set we 
understand an arbitrary collection of various objects. An object included in 
the collection is an element of the set . A set consists of its elements. It is also 
formed by them. In order to diversify the wording, the word set is replaced 
by the word collection. Sometimes other words, such as class , family ,  and 
group, are used in the same sense , but this is not quite safe because each 
of these words is associated in modern mathematics with a more special 
meaning, and hence should be used instead of the word set with caution. 

If x is an element of a set A, then we write x E A and say that x belongs 
to A and A contains x. The sign E is a variant of the Greek letter epsilon, 
which corresponds to the first letter of the Latin word element . To make 
the notation more flexible , the formula x E A is also allowed to be written in 
the form A 3 x .  So, the origin of the notation is sort of ignored , but a more 
meaningful similarity to the inequality symbols < and > is emphasized. 
To state that x is not an element of A, we write x tf. A or A 75 x .  

r1 '2  J Equality of Sets 

A set is determined by its elements. The set is nothing but a collection 
of its elements. This manifests most sharply in the following principle: two 
sets are considered equal if and only if they have the same elements .  In this 
sense , the word set has slightly disparaging meaning . When something is 
called a set , this shows, maybe unintentionally, a lack of interest to whatever 
organization of the elements of this set . 

For example , when we say that a line is a set of points, we assume that 
two lines coincide if and only if they consist of the same points. On the 
other hand , we commit ourselves to consider all relations between points on 
a line (e .g . , the distance between points, the order of points on the line , etc . ) 
separately from the notion of a line . 

We may think of sets as boxes that can be built effortlessly around 
elements, just to distinguish them from the rest of the world .  The cost of 
this lightness is that such a box is not more than the collection of elements 
placed inside . It is a little more than just a name: it is a declaration of our 
wish to think about this collection of things as an entity and not to go into 
details about the nature of its member-elements. Elements, in turn, may 
also be sets, but as long as we consider them elements, they play the role of 
atoms, with their own original nature ignored .  

In modern mathematics, the words set and element are very common 
and appear in most texts. They are even overused. There are instances 
when it is not appropriate to use them. For example , it is not good to 
use the word element as a replacement for other, more meaningful words. 
When you call something an element , then the set whose element is this one 
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should be clear . The word element makes sense only in combination with 
the word set ,  unless we deal with a nonmathematical term ( like chemical 
element) , or a rare old-fashioned exception from the common mathematical 
terminology (sometimes the expression under the sign of integral is called 
an infinitesimal element ; lines, planes, and other geometric images are also 
called elements in old texts) . Euclid 's famous book on geometry is called 
Elements , too. 

11'3 J The Empty Set 

Thus, an element may not be without a set . However, a set may have 
no elements. Actually, there is such a set . This set is unique because a set 
is completely determined by its elements. It is the empty set denoted1 by 0 .  

I1 '4J Basic Sets of  Numbers 

In addition to 0, there are some other sets so important that they have 
their own special names and designations. The set of all positive integers, 
i .e . ,  1 ,  2, 3, 4, 5, . . .  , etc. , is denoted by N. The set of all integers, both 
positive, and negative , and zero , is denoted by Z. The set of all rational 
numbers (add to the integers the numbers that are presented by fractions, 
like 2/3 and 57) is denoted by Q. The set of all real numbers (obtained 
by adjoining to rational numbers the numbers like v'2 and 1r = 3 . 1 4  . . .  ) is 
denoted by R The set of complex numbers is denoted by C. 

11 '5 J Describing a Set by Listing Its Elements 

A set presented by a list a ,  b , . . .  , x of its elements is denoted by the 
symbol {a ,  b, . . .  , x } .  In other words, the list of objects enclosed in curly 
brackets denotes the set whose elements are listed. For example , { 1 ,  2; 123} 
denotes the set consisting of the numbers 1 ,  2 ,  and 123 .  The symbol {a ,  x ,  A} 
denotes the set consisting of three elements: a ,  x ,  and A, whatever objects 
these three letters denote. 

1.1. What is {0}?  How many elements does it contain? 

1.2. Which of the following formulas are correct : 

1 )  0 E {0, {0} }; 2) {0} E { {0} } ;  3) 0 E { {0} } ?  

A set consisting o f  a single element i s  a singleton .  This is any set which 
is presented as {a} for some a .  

1.3. I s  { {  0} }  a singleton? 

10ther designations , like A, are also in use, but 0 has become a common one. 



6 I. Structures and Spaces 

Notice that the sets { 1 , 2 ,  3} and {3;2 , 1 , 2 }  are equal since they have 
the same elements .  At first glance, lists with repetitions of elements are 
never needed. There even arises a temptation to prohibit usage of lists with 
repetitions in such notation. However this would not be wise. In fact , quite 
often one cannot say a priori whether there are repetitions or not. For 
example , the elements in the list may depend on a parameter, and under 
certain values of the parameter some entries of the list coincide , while for 
other values they don 't. 

1.4. How many elements do the following sets contain? 

f1'6 J Subsets 

1) { 1 ,  2 , 1 } ;  2)  { 1 , 2 ,  { 1 ,  2}  } ;  
4) { { 1 } , 1 } ;  5 )  { 1 ,  0 } ;  

7) { { 0 } , {0 } } ;  8) {x ,3 x - 1 } for x E R  

3) { { 2 } } ;  
6) { { 0 } ,  0 } ;  

I f  A and B are sets and every element o f  A also belongs to  B ,  then we 
say that A is a subset of B ,  or B includes A, and write A c B or B:::=> A. 

The inclusion signs c and :::=> resemble the inequality signs < and 
> for a good reason: in the world of sets, the inclusion signs are obvious 
counterparts for the signs of inequalities. 

1.A. Let a set A have a elements ,  and let a set B have b elements. Prove 
that if A c B ,  then a :::; b .  

f1 '7J Properties of Inclusion 

1.B Reflexivity of Inclusion. Any set includes itself: A c A holds true 
for any A. 

Thus , the inclusion signs are not completely true counterparts of the 
inequality signs < and > .  They are closer to :::; and �- Notice that no 
number a satisfies the inequality a < a. 

1. C The Empty Set Is Everywhere . The inclusion 0 c A holds true for 
any set A. In other words, the empty set is present in each set as a subset. 

Thus, each set A has two obvious subsets: the empty set 0 and A itself. 
A subset of A different from 0 and A is a proper subset of A. This word 
is used when we do not want to consider the obvious subsets (which are 
improper) . 

1.D Transitivity of Inclusion. If A, B,  and C are sets, A c B ,  and 
B c C, then A c C. 
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11 '8 J To Prove Equality of Sets ,  Prove Two Inclusions 

Working with sets, we need from time to time to prove that two sets, 
say A and B, which may have emerged in quite different ways, are equal . 
The most common way to do this is provided by the following theorem. 

1 . E  Criterion of Equality for Sets . 
A = B if and only if A C B and B C A . 

11 '9 J Inclusion Versus Belonging 

1 . F. x E A if and only if {x} C A . 
Despite this obvious relation between the notions of belonging E and 

inclusion C and similarity of the symbols E and C ,  the concepts are 
quite different . Indeed, A E B means that A is an element in B ( i . e . , one of 
the indivisible pieces constituting B ) , while A c B means that A is made 
of some of the elements of B .  

In  particular , we have A C A, while A(/. A for any reasonable A. Thus, 
belonging is not reflexive .  One more difference : belonging is not transitive ,  
while inclusion is. 

1 . G  Non-Reflexivity of Belonging. Construct a set A such that A(/. A. 
Cf. 1 . B. 

1 . H  Non- Transitivity of Belonging. Construct three sets A, B,  and C 
such that A E B and B E  C, but A(/. C. Cf. J.D. 

11 '10 J Defining a Set by a Condition (Set-Builder Notation) 

As we know (see Section 1 '5 ) , a set can be described by presenting a list 
of its elements. This simplest way may be not available or , at least ,  may not 
be the easiest one . For example , it is easy to say: "the set of all solutions of 
the following equation" and write down the equation. This is a reasonable 
description of the set . At least , it is unambiguous. Having accepted it, we 
may start speaking on the set , studying its properties, and eventually may 
be lucky to solve the equation and obtain the list of its solutions. (Though 
the latter task may be difficult , this should not prevent us from discussing 
the set . ) 

Thus, we see another way for a description of a set : to formulate prop­
erties that distinguish the elements of the set among elements of some wider 
and already known set . Here is the corresponding notation: the subset of a 
set A consisting of the elements x that satisfy a condition P(x) is denoted 
by {x E A I P(x) } .  

1. 5. Present the following sets by lists o f  their elements ( i .e . , in the form {a , b ,  . . .  } ) 

(a) {x E N i x < 5} ,  (b) {x E N ix < O} ,  (c) {x E Zi x < O} .  
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fl'llj Intersection and Union 

The intersection of sets A and B is the set consisting of their common 
elements, i . e . , elements belonging both to A and B. It is denoted by An B 
and is described by the formula 

A n B = { x I x E A and x E B} .  

Two sets A and B are disjoint i f  their intersection i s  empty, i . e . , An B = 
0. In other words, they have no common elements. 

The union of two sets A and B is the set consisting of all elements that 
belong to at least one of the two sets. The union of A and B is denoted by 
A U B. It is described by the formula 

A U B = { x I x E A or x E B} .  

Here the conjunction or should be understood in  the inclusive way: the 
statement "x E A or x E B" means that x belongs to at least one of the 
sets A and B, and, maybe ,  to both of them. 2 

A B A B 

CIDCI) 
An B 

A B 

AU B 
Figure 1. The sets A and B,  their intersection A n B ,  and their union 
AU B. 

1 .1 Commutativity of n and U. For any two sets A and B, we have 

An B = B n A and A U  B = B U A. 

In  the above figure , the first equality of  Theorem 1 .L is illustrated by 
sketches. Such sketches are called Venn diagrams or Euler circles . They 
are quite useful, and we strongly recommend trying to draw them for each 
formula involving sets. (At least , for formulas with at most three sets, since 
in this case they can serve as proofs! (Guess why? ) ) .  

1.6. Prove that for any set A we have 

An A = A, AU A = A, Au 0 = A , and A n  0 = 0. 

1. 7. Prove that for any sets A and B we have3 

A c B,  iff An B = A , iff Au B = B . 

2To make formulas clearer , sometimes we slightly abuse the notation and instead of, say, 
AU {x}, where x is an element outside A, we write just AUx. The same agreement holds true 
for other set-theoretic operations . 

3Here , as usual , iff stands for "if and only if". 
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1 . J Associativity of n and U .  For any sets A, B,  and C, we have 

(A n B) n C =A n (B n C) and (A u B) u C = A u (B u C) . 

Associativity allows us to not care about brackets and sometimes even 
to omit them. We define A n  B n C = (A n B) n C = A n  (B n C) and 
A U  B U C = (A U B) U C = A U (B U C) . However, the intersection and 
union of an arbitrarily large (in particular , infinite ) collection of sets can be 
defined directly, without reference to the intersection or union of two sets. 
Indeed , let r be a collection of sets. The intersection of the sets in r is 
the set formed by the elements that belong to every set in r. This set is 
denoted by nAEr A . Similarly, the union of the sets in r is the set formed 
by elements that belong to at least one of the sets in r. This set is denoted 
by UAErA· 

1 .K. The notions of intersection and union of an arbitrary collection of sets 
generalize the notions of intersection and union of two sets: for r ={A, B} ,  
we have 

n C = A n  B and U C = A U  B .  
CEr CEr 

1.8. Riddle. How are the notions of system of equations and intersection of sets 
related to each other? 

1.L Two Distributivities . For any sets A, B, and C, we have 

(A n B) u C = (A u C) n (B U C) , 

(A u B) n C =(A n C) u (B n C) . 

(A n B) u C = (A u C) n (B U C) 

Figure 2. The left-hand side (An B) U C of equality (1) and the sets 
AU C and B U C, whose intersection is the right-hand side of the equal-

ity ( 1 ) .  

( 1 )  
( 2 )  

1 .M. Draw a Venn diagram illustrating (2 ) . Prove ( 1 )  and (2 )  by tracing all 
details of the proofs in the Venn diagrams. Draw Venn diagrams illustrating 
all formulas below in this section. 

1.9. Riddle. Generalize Theorem l .L to the case of arbitrary collections of sets. 
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1. N Yet Another Pair of Distributivities .  Let A be a set and let r be 
a set consisting of sets. Then we have 

A n  U B = U (A n B) 
BEr BEr 

11 ' 12  J Different Differences 

and A U  n B = n (Au B) . 
BEr BEr 

The difference A ......_ B of two sets A and B is the set of those elements of 
A which do not belong to B.  Here we do not assume that A :J B.  

I f  A :J B, then the set A ......_ B i s  also called the complement of  B i n  A. 

1 . 1  0 .  Prove that for any sets A and B their union A U B i s  the union o f  the 
following three sets: A" B, B" A, and An B, which are pairwise disjoint . 

1 . 1 1 .  Prove that A" (A" B) = An B for any sets A and B.  

1 . 1 2. Prove that A c B i f  and only i f  A" B = 0. 

1 . 1 3. Prove that An (B" C) = (An B)" (An C) for any sets A,  B ,  and C. 

The set (A......_ B) U (B......_ A) is the symmetric difference of the sets A and 
B. It is denoted by A 6 B.  

A B A B A B 

ClJ(DO 
AL B 

Figure 3. Differences of the sets A and B. 

1 . 1 4. Prove that for any sets A and B we have 

A!:::. B = (AU B) "(An B) .  

1 . 1 5 Associativity of Symmetric Difference. Prove that for any sets A ,  B,  
and C we hav e 

(A!:::. B) !:::. C = A!:::. (B !:::. C) . 

1 . 1 6. Riddle. Find a symmetric definition of the symmetric difference (A!:::. B)!:::. 
C of three sets and generalize it to arbitrary finite collections of sets. 

1 . 1 7 Distributivity. Prove that (A!:::. B) n C = (An C) !:::. (B n C) for any sets 
A, B ,  and C. 

1 . 1 8. Does th e following equality hold true for any sets A, B, and C: 

(A !:::. B) u C = (AU C) !:::. (B u C)? 
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2 .  Top ology o n  a Set 

12' 1 J Definition of Topological Space 

Let X be a set . Let n be a collection of its subsets such that : 

( 1 )  the union of any collection of sets that are elements of n belongs 
to n; 

(2 )  the intersection of any finite collection of sets that are elements of 
n belongs to n; 

(3) the empty set 0 and the whole X belong to n .  

Then 

• n is a topological structure or just a topology4 on X;  

• the pair (X, D) i s  a topological space; 

• elements of X are points of this topological space; 

• elements of n are open sets of the topological space (X, n) . 

The conditions in the definition above are the axioms of topological struc­
ture . 

12'2 J Simplest Examples 

A discrete topological space is a set with the topological structure con­
sisting of all subsets. 

2. A .  Check that this is a topological space , i . e . , all axioms of topological 
structure hold true . 

An indiscrete topological space is the opposite example , in which the 
topological structure is the most meager . (It is also called trivial topology . ) 
It consists only of X and 0 .  

2.B.  This i s  a topological structure , i s  it not? 

Here are slightly less trivial examples . 

2. 1 .  Let X be the ray [0, +oo), and let n consist of 0, X ,  and all rays (a, +oo) 
with a 2 0 .  Prove that Q i s  a topological structure . 

2. 2. Let X be a plane. Let L: consist of 0, X ,  and all open disks centered at the 
origin. Is L: a topological structure? 

2. 3. Let X consist of four elements :  X = {a, b,c, d} .  Which of the following 
collections of its subsets are topological stru ctures in X ,  i . e . , satisfy the axioms of 
topological structure : 

4Thus, n is important: it is called by the same word as the whole branch of mathematics. 
Certainly, this does not mean that n coincides with the subject of topology, but nearly everything 
in this subject is related to n. 
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( 1) 0, X ,  {a} , {b} , {a, c} ,  {a, b, c} ,  {a, b} ; 
(2 )  0, X ,  {a} , {b} , {a, b} , {b, d} ; 
(3 ) 0, X ,  {a, c, d} ,  {b, c, d}? 

I.  Structures and Spaces 

The space of Problem 2. 1 is the arrow. We denote the space of Prob­
lem 2. 3 ( 1 )  by l.f. It is a sort of toy space made of 4 points. (The meaning 
of the pictogram is explained below in Section 7'9 . )  Both spaces, as well 
as the space of Problem 2. 2, are not very important , but they provide nice 
simple examples. 

12'3 J The Most Important Example: Real Line 

Let X be the set lR of all real numbers, n the set of arbitrary unions of 
open intervals (a, b) with a, b E R 

2. C. Check whether n satisfies the axioms of topological structure . 

This is the topological structure which is always meant when lR is consid­
ered as a topological space (unless another topological structure is explicitly 
specified) .  This space is usually called the real line ,  and the structure is 
referred to as the canonical or standard topology on R 

12'4 J Additional Examples 

2.4. Let X be R, and let n consist of the empty set and all infinite subsets of R. 
Is n a topological structure? 

2. 5. Let X be R, and let n consists of the empty set and complements of all finite 
subsets of R Is n a topological structure? 

The space of Problem 2. 5 is denoted by RT1 and called the line with T1-
topology . 

2.6. Let (X, D) be a topological space , Y the set obtained from X by adding a 
single element a. Is 

{ {a} u u I u En} u {0} 

a topological structure in Y? 

2. 7. Is the set {0, {0 } ,  {0 ,  1 } }  a topological structure in {0 , 1 } ?  

If  the topology n in  Problem 2. 6 is discrete ,  then the topology on Y i s  
called a particular point topology or topology of everywhere dense point .  The 
topology in Problem 2. 7 is a particular point topology; it is also called the 
topology of a connected pair of points or Sierpiriski topology . 

2.8. List all topological structures in a two-element set , say, in {0 ,  1 } .  
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I2'5J Using New Words: Points ,  Open Sets ,  Closed Sets 

We recall that , for a topological space (X, 0) , elements of X are points ,  
and elements of  n are open sets . 5 

2.D.  Reformulate the axioms of topological structure using the words open 
set wherever possible. 

A set F c X is closed in the space (X, 0) if its complement X -....._ F is 
open ( i .e . ,  X-....._ F E  0) . 

I2'6J Set-Theoretic Digression: De Morgan Formulas 

2.E. Let r be an arbitrary collection of subsets of a set X. Then 

X-....._ U A = n (X-....._ A) , 
AEr AEr 

X-....._ n A = U (X-....._ A). 
AEr AEr 

(3) 

(4) 

Formula (4 )  is deduced from (3 ) in one step , i s  i t  not? These formulas are 
nonsymmetric cases of a single formulation , which contains , in a symmetric way, 
sets and their complements ,  unions , and intersections . 

2.9. Riddle. Find such a formulation. 

12'7 J Properties of Closed Sets 

2.F. Prove that : 

( 1 )  the intersection of any collection of closed sets is closed ; 

(2 )  the union of any finite number of closed sets is closed; 

(3) the empty set and the whole space ( i .e . ,  the underlying set of the 
topological structure) are closed . 

12'8 J Being Open or Closed 

Notice that the property of being closed is not the negation of the prop­
erty of being open. (They are not exact antonyms in everyday usage , too . )  

2.  G.  Find examples of  sets that are 

( 1 )  both open and closed simultaneously (open-closed) ;  

(2 )  neither open, n<;>r closed. 

5The letter !1 stands for the letter 0 which is  the initial of the words with the same meaning: 
Open in English, Otkrytyj in Russian, Offen in German, Ouvert in French. 
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2. 1 0. 
( 1 )  
(3 ) 
(5 )  

Give an explicit description of closed sets in 
a discrete space ; (2)  an indiscrete space ; 
the arrow; ( 4) 'v; 
Rr1· 

I. Structures and Spaces 

2 .H. Is a closed segment [a , b] closed in IR? 

The concepts of closed and open sets are similar in a number of ways. 
The main difference is that the intersection of an infinite collection of open 
sets is not necessarily open, while the intersection of any collection of closed 
sets is closed. Along the same lines, the union of an infinite collection of 
closed sets is not necessarily closed, while the union of any collection of open 
sets is open. 

2. 1 1 .  Prove that the half-open interval [0 , 1 )  is neither open nor closed in R, but 
is both a union of closed sets and an intersection of open sets .  

2. 1 2. Prove that the set A =  {0} U {1/n I n  E N} is closed in R. 

12'9 J Characterization of Topology in Terms of Closed Sets 

2. 1 3. Suppose a collection :F of subsets of X satisfies the following conditions: 

( 1 )  the intersection of any family of sets from :F belongs to :F; 
(2) the union of any finite number sets from :F belongs to :F; 
(3 ) 0 and X belong to :F. 

Prove that then :F is the set of all closed sets of a topological structure (which 
one? ) . 

2. 14 .  List all collections of subsets of a three-element set such that there are 
topologies where these collections are complete sets of closed sets. 

12' 10 J Neighborhoods 

A neighborhood of a point in a topological space is any open set contain­
ing this point . Analysts and French mathematicians (following N. Bourbaki ) 
prefer a wider notion of neighborhood:  they use this word for any set con­
taining a neighborhood in the above sense . 

2. 1 5. Give an explicit description of all neighborhoods of a point in 
( 1 )  a discrete space ; (2 ) an indiscrete space; 
(3 ) the arrow; ( 4) '1..f; 
(5)  a connected pair of points; (6) particular point topology. 

l2' 1 1x J Open Sets on Line 

2./x .  Prove that every open subset of the real line is a union of disjoint open 
intervals. 

At first glance , Theorem 2./x suggests that open sets on the line are sim­
ple. However, an open set may lie on the line in a quite complicated manner. 
Its complement may happen to be not that simple. The complement of an 
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open set i s  a closed set . One can naively expect that a closed set on  lR is 
a union of closed intervals . The next important example shows that this is 
very far from being true . 

f2' 12xj Cantor Set 

Let K be the set of real numbers that are sums of series of the form 
2:�1 ak/3k with ak E {0 ,  2} . 

In other words, K consists of the real numbers that have the form 
O .a 1 a2 . . .  ak . . .  without the digit 1 in the number system with base 3 .  

2.Jx .  Find a geometric description of  K.  

2. Jx . 1 .  Prove that 

( 1 )  K is contained in [0 , 1 ] , 
(2) K does not meet ( 1 /3 ,  2/3) , 
(3) K does not meet ( 3�t1 , 3�"t2 ) for any integers k and s .  

2. Jx . 2. Present K as [0 , 1 ]  with an infinite family o f  open intervals removed. 

2. Jx . 3. Try to sketch K. 

The set K is the Cantor set .  It has a lot of remarkable properties and is 
involved in numerous problems below. 

2 .Kx .  Prove that K is a closed set in the real line . 

f2' 13x J Topology and Arithmetic Progressions 

2.Lx *. Consider the following property of a subset F of the set N of positive 
integers: there is n E N such that F contains no arithmetic progressions of 
length n . Prove that subsets with this property together with the whole N 
form a collection of closed subsets in some topology on N. 

When solving this problem, you probably will need the following com­
binatorial theorem. 

2.Mx Van der Waerden's Theorem *. For every n E N, there is N E N  
such that for any subset A C { 1 ,  2 ,  . . .  , N} , either A or { 1 , 2 ,  . . .  , N} -...... A 
contains an arithmetic progression of length n.  

See [3] . 
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3 .  B ases 

13' 1 J Definition of Base 

The topological structure is usually presented by describing its part , 
which is sufficient to recover the whole structure . A collection L: of open 
sets is a base for a topology if each nonempty open set is a union of sets in 
L:. For instance , all intervals form a base for the real line . 

3. 1 .  Can two distinct topological structures have the same base? 

3.2 .  Find some bases for the topology of 
( 1 )  a discrete space ; (2 )  'l..f ; 
(3 ) an indiscrete space ; (4) the arrow. 

Try to choose the smallest possible bases . 

3. 3. Prove that any base of the canonical topology on lR can be decreased. 

3.4 .  Riddle. What topological structures have exactly one base? 

13'2 J When a Collection of Sets is a Base 

3. A .  A collection L: of open sets is a base for the topology iff for every open 
set U and every point x E U there is a set V E L: such that x E V C U. 

3 .B.  A collection L: of subsets of a set X is a base for a certain topology on 
X iff X is the union of all sets in L: and the intersection of any two sets in 
L: is the union of some sets in L: .  

3 .  C. Show that the second condition in Theorem 3. B (on the intersection) 
is equivalent to the following one : the intersection of any two sets in L: 
contains, together with any of its points, a certain set in L: containing this 
point (cf. Theorem 3. A ) . 

13'3 J Bases for Plane 

Consider the following three collections of subsets of IR2 : 
• L:2 , which consists of all possible open disks ( i .e . , disks without 

their boundary circles) ; 

• L:00 , which consists of all possible open squares ( i . e . ,  squares with­
out their sides and vertices) with sides parallel to the coordinate 
axes; 

• L:1 , which consists of all possible open squares with sides parallel 
to the bisectors of the coordinate angles. 

(The squares in L:00 and L:1 are determined by the inequalities max{ l x ­
a l , I Y - b l } < p and l x - a l + I Y - b l < p ,  respectively. ) 
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3. 5. Prove that every element o f  E2  i s  a union o f  elements o f  E00• 
3. 6. Prove that the intersection of any two elements of E1 is a union of elements 
of E1. 
3. 7. Prove that each of the collections E2, E00, and E1 is a base for some topological 
structure in JR2 , and that the structures determined by these collections coincide. 

13' 4 J Subbases 

Let (X, n) be a topological space . A collection � of its open subsets is a 
subbase for n provided that the collection 

k 
E = {V I v = n Wi , k EN, wi E �} 

i= l 

of all finite intersections of sets in � is a base for n. 
3. 8. Let X be a set , � a collection of subsets of X.  Prove that � is a subbase 
for a topology on X iff X = UwELl W. 

I3'5J Infiniteness of the Set of Prime Numbers 

3. 9. Prove that all ( infinite) arithmetic progressions consisting of positive integers 
form a base for some topology on N. 

3. 1 0. Using this topology, prove that the set of all prime numbers i s  infinite . 

13'6 J Hierarchy of Topologies 

If 01 and 02 are topological structures in a set X such that 01 c 02 , 
then 02 is finer than 01 , and 01 is coarser than 02 . For instance , the 
indiscrete topology is the coarsest topology among all topological structures 
in the same set , while the discrete topology is the finest one , is it not? 

3 . 1 1 .  Show that the T1-topology on the real line (see 2' 4) is coarser than the 
canonical topology. 

Two bases determining the same topological structure are equivalent .  

3.D.  Riddle. Formulata a necessary and sufficient condition for two bases 
to be equivalent without explicitly mentioning the topological structures 
determined by the bases. (Cf. 3. 1: the bases 2:2 , 2:00 ,  and 2:1 must satisfy 
the condition you are looking for . )  
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4 .  Metric Spaces 

f 4' 1 J Definition and First Examples 

A function6 p :  X x X �  JR +  = { x E lR I x � 0 }  is a metric (or distance 
function) on X if 

( 1 )  p(x , y ) = 0 iff x = y ; 
(2 )  p(x , y) = p(y , x) for any x , y E X; 
(3) p(x ,  y) :::; p (x ,  z )  + p(z , y) for any x ,  y ,  z E X .  

The pair (X, p) , where p is a metric on X ,  i s  a metric space . Condition 
(3) is the triangle inequality . 

4 .A. Prove that the function 

p '  X x X �  IR + ' (x ,  y) � { � 
is a metric for any set X.  

i f  X =  y ,  
i f  X # y 

4.B. Prove that lR x lR � IR +  : (x ,  y) f--+ l x - Y l is a metric . 

4 . C. Prove that IRn x IRn � IR + : (x , y) f--+ J"E�=1 (xi - Yi ) 2 is a metric . 

The metrics of Problems 4 . B  and 4 .  C are always meant when R and JRn 
are considered as metric spaces , unless another metric is specified explicitly. 
The metric of Problem 4 . B  is a special case of the metric of Problem 4 .  C. 
All these metrics are called Euclidean .  

f 4'2 J Further Examples 

4 . 1 .  Prove that lRn X lRn ---> JR + : (x, y) >--> maxi= l , . . .  , n l x; - y; l is a metric .  

4 . 2. Prove that lRn x JRn ---> JR + : (x , y) >--> L:;�=1 lx; - y; l is a metric . 

The metrics in JRn introduced in Problems 4 . C, 4 . 1 , 4 . 2  are members of 
an infinite sequence of metrics : 

p � 1 .  

4 . 3. Prove that p(P) is a metric for any p 2: 1 .  

6The notions of function (mapping) and Cartesian square , as well as the corresponding no­
tation, are discussed in detail below, in Sections 9 and 20 . Nevertheless , we hope that the reader 
is acquainted with them, so we use them in this section without special explanations. 
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4 . 3. 1  Holder Inequality. Let xl , . . .  , xn , Yl , · · · , Yn ;:::: 0 ,  let p , q > 0 ,  
and let 1 /p + 1/q = 1 .  Prove that 

The metric of 4 . C  is p<2 J ,  that of 4 . 2  is p( l ) , and that of 4 . 1  can be denoted 
by p(oo ) and appended to the series since ( n ) 1 /p 

lim � af = max a; p--++OCl � i=l  
for any positive a1 , a2 , . . .  , an . 
4 . 4 .  Riddle. How is this related to I:2, I: 00, and I:1 

from Section 3? 

For a real p :?: 1, denote by l (P) the set of sequences x = { x;} ;= 1 ,2 , . . .  such that 
the series I:�1 l x iP converges . 

4 . 5. Let p :?:  1 .  Prove that for any two sequences x ,  y E t <PJ the series 
I:�1 lx -i - y; I P converges and that ( 00 ) 1 /p 

(x , y) >--> f; ix; - y; I P 

is a metric on t <PJ . 

14'3 J Balls and Spheres 

Let (X, p) be a metric space , a E X a point , r a positive real number . 
Then the sets 

Br (a) = { x E X  I p (a ,  x ) < r } ,  
Dr ( a) = { x E X  I p (a , x ) ::; r } ,  
Sr (a) = { X E X I p (  a ,  X ) = r } 

(5 )  
(6) 
(7) 

are , respectively, the open ball , closed ball (or disk) ,  and sphere of the space 
(X, p) with center a and radius r .  

14' 4 J Subspaces of a Metric Space 

If (X, p) is a metr�c space and A C X, then the restriction of the metric 
p to A x  A is a metric on A, and so (A, P IA xA )  is a metric space . It i s  called 
a subspace of (X, p) . 
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The disk D1 (0) and the sphere S1 (0) in !Rn (with Euclidean metric , 
see 4 .  C) are denoted by nn and sn- l and called the ( unit) n-disk and 
(n - 1 ) -sphere . They are regarded as metric spaces (with the metric induced 
from !Rn) .  
4 .D.  Check that D1 is the segment [- 1 , 1] , D2 is a plane disk, 8° is the 
pair of points { - 1 ,  1 } ,  81 is a circle , 82 is a sphere , and D3 is a ball . 

The last two assertions clarify the origin of the terms sphere and ball (in 
the context of metric spaces) . 

Some properties of balls and spheres in an arbitrary metric space re­
semble familiar properties of planar disks and circles and spatial balls and 
spheres. 

4 . E. Prove that for any po; �1ts x and a of any metric space and any r > 
p(a , x) we have 

Br-p(r ,x) (x) C Br (a) and Dr-p(a,x) (x) C Dr (a) . 

4 . 6. Riddle. What if r < p(x , a)? What is an analog for the statement of 
Problem 4 .E  in this case? 

r 4'5 J Surprising Balls 

However, balls and spheres in other metric spaces may have rather sur­
prising properties . 

4 . 7. What are balls and spheres in 1�? equipped with the metrics of 4 . 1  and 4 . 2? 
(Cf. 4 . 4 . )  

4 . 8. Find D1 (a) , D1;2 (a) , and S1;2 (a) i n  the space o f  4 .A .  

4 . 9. Find a metric space and two balls in  i t  such that the ball with the smaller 
radius contains the ball with the bigger one and does not coincide with it . 

4 . 1 0. What is the minimal number of points in the space which is required to be 
constructed in 4 . 9? 

4 . 1 1 .  Prove that the largest radius in 4 . 9  is at most twice the smaller radius. 
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f4'6J Segments (What Is  Between) 

4 . 1 2. Prove that the segment with endpoints a , b E  �n can be described as 

{ x E !Rn I p(a , x) + p(x , b) = p(a, b) } ,  

where p i s  the Euclidean metric. 

4 - 1 3. How does the set defined as in Problem 4 . 12 look if p is the metric defined 
in Problems 4 . 1  or 4 . 2? (Consider the case where n = 2 if it seems to be easier . )  

I 4'7 J Bounded Sets and Balls 

A subset A of a metric space (X, p) is bounded if there is a number d > 0 
such that p(x , y) < d for any x ,  y E A. The greatest lower bound for such d 
is the diameter of A. It is denoted by diam(A) . 

4 .F. Prove that a set A is bounded iff A is contained in a ball . 

4 . 14 .  What is the relation between the minimal radius of such a ball and diam(A)?  

I 4'8J Norms and Normed Spaces 

Let X be a vector space (over lR) . A function X --> lR + : x >---> II x II is a norm if 

( 1 ) ll x ll = 0 iff x = 0 ; 
(2 )  1 1 -Xx ll = 1 -X I II x ll for any A E 1R and x E X ;  

(3) ll x + Y ll :::; ll x ll + I I Y II for any x, y E X. 

4 . 1 5. Prove that if x >---> l l x ll is a norm, then 

p :  X x X -->  IR + : (x , y) >---> ll x - Y ll 
is a metric . 

A vector space equipped with a norm is a normed space . ThP- mE't.ric deter­
mined by the norm as in 4 . 1 5  transforms t.bP. normed space into a metric space in 
a canonical way. 

4 . 1 6. Look through the problems of this section and figure out which of the metric 
spaces involved are, in fact, normed vector spaces. 

4 . 1 1. Prove that every ball in a normed space is a convex7 set symmetric with 
respect to the center of the ball . 

4 . 1 8 *. Prove that every convex closed bounded set in !Rn that has a center of 
symmetry and is not contained in any affine space except !Rn itself is a unit ball 
with respect to a certain norm, which is uniquely determined by this ball. 

7Recall that a set A is convex if for any x ,  y E A the segment connecting x and y is contained 
in A. Certainly, this definition involves the notion of segment ,  so it makes sense only for subsets 
of those spaces where the notion of segment connecting two points makes sense . This is the case 
in vector and affine spaces over JR. 
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I 4'9 J Metric Topology 

4 .  G. The collection of all open balls in the metric space is a base for a 
certain topology. 

This topology is the metric topology . We also say that it is generated by 
the metric . This topological structure is always meant whenever the metric 
space is regarded as a topological space (for instance, when we speak about 
open and closed sets , neighborhoods, etc .  in this space) . 

4 . H. Prove that the standard topological structure in lR introduced in Sec­
tion 2 is generated by the metric (x ,  y) t--t l x - Y l · 

4 . 1 9. What topological structure is generated by the metric of 4 . A? 

4 . 1. A set U is open in a metric space iff, together with each of its points, 
the set U contains a ball centered at this point. 

I 4'10 J Openness and Closedness of Balls and Spheres 

4 . 20. Prove that a closed ball is closed (here and below, we mean the metric 
topology) . 

4 . 2 1 .  Find a closed ball that is open . 

4 . 22. Find an open ball that is closed . 

4 . 23. Prove that a sphere is closed . 

4 . 24 .  Find a sphere that is open. 

I 4'1 1  J Metrizable Topological Spaces 

A topological space is metrizable if its topological structure is generated 
by a certain metric . 

4. J. An indiscrete space is not metrizable if it is not a singleton (otherwise , 
it has too few open sets) . 

4 .K. A finite space X is metrizable iff it is discrete. 

4 . 25. Which of the topological spaces described in Section 2 are metrizable? 

I 4' 12  J Equivalent Metrics 

Two metrics in the same set are equivalent if they generate the same 
topology. 

4 . 26. Are the metrics of 4 . C, 4 . 1 , and 4 . 2  equivalent? 

4 - 27. Prove that two metrics PI and P2 in X are equivalent if there are numbers 
c,  C > 0 such that 

for any x , y E X . 
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4 . 28. Generally speaking, the converse is not true . 

4 . 29. Riddle. Hence, the condition of equivalence of metrics formulated in Prob­
lem 4 . 21 can be weakened. How? 

4 . 30. The metrics p(P) in JRn defined right before Problem 4 . 3  are equivalent . 

4 . 31 *. Prove that the following two metrics PI and Pc in the set of all continuous 
functions [0, 1] --. lR are not equivalent : 

pc (f, g) = max l f (x) - g(x) l . x E [O , l )  
I s  i t  true that one of the topological structures generated by them i s  finer than 
the other one? 

r 4' 13  J Operations with Metrics 

4 . 32. 1) Prove that if PI and P2 are two metrics in X, then PI +p2 and max{p1 , p2 } 
also are metrics . 2) Are the functions min{p1 , p2 } ,  p1 p2 , and pi / P2 metrics? (By 
definition, for p = PI /P2 we put p(x , x) = 0 . )  

4 . 33. Prove that i f  p :  X x X --.  JR+ i s  a metric, then 

( 1 )  the function (x, y) ,___.. 1 p(x( y) 
) is a metric; 

+ p x , y 
(2)  the function (x, y) ,___.. min{p(x , y ) ,  1 }  is a metric; 
(3) the function (x , y) ,___.. f (p(x , y) ) is a metric if f satisfies the following 

conditions : 
(a) f (O) = 0, 
(b) f is a monotone increasing function, and 
(c) f (x + y) S f(x) + f (y) for any x, y E JR. 

4 . 34 .  Prove that the metrics p and -1 p are equivalent . 
+ p 

r 4' 14 J Distances between Points and Sets 

Let (X, p) be a metric space , A C X, and b E  X. The number p(b , A) = 
inf{ p(b ,  a) I a E A }  is the distance from the point b to the set A. 

4 .L .  Let A be a closed set . Prove that p(b , A) = 0 iff b E A. 

4 . 35. Prove that lp (x ,  A) - p(y ,  A) l S p(x ,  y) for any set A and any points x and 
y in a metric space. 
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p(x ,  A) � p(x, z ) � p(x ,  y)+p(y , z ) 

l4' 15x J Distance between Sets 

Let A and B be two bounded subsets in a metric space (X, p) . We define 

dp (A, B) = max{ sup p(a , B) , sup p(b , A) } . 
aEA bEB 

This number is the Hausdorff distance between A and B .  

4 . Mx .  Prove that the Hausdorff distance between bounded subsets o f  a 
metric space satisfies conditions (2 )  and (3) in the definition of a metric. 

4 . Nx .  Prove that for every metric space the Hausdorff distance is a metric 
on the set of its closed bounded subsets .  

Let A and B be two bounded polygons in the plane .8 We define 

d6 (A, B) = S(A) + S(B) - 2S(A n B) , 

where S(C) is the area of a polygon C .  

4 .  Ox . Prove that dt:. i s  a metric on the set of  all bounded plane polygons . 
We call db. the area metric . 

4 . Px .  Prove that the area metric is not equivalent to the Hausdorff metric 
on the set of all bounded plane polygons . 

4 ·  Qx . Prove that the area metric is equivalent to the Hausdorff metric on 
the set of convex bounded plane polygons . 

l4' 16xj Ultrametrics and p-Adic Numbers 

A metric p is an ultra metric if it satisfies the ultra metric triangle inequality : 

p(x ,  y) � max{p(x , z) , p (z ,  y) } 
for any x ,  y ,  and z . 

A metric space (X, p) , where p is an ultrametric , is an ultrametric space . 

8 Although we assume that the notion of a bounded polygon is well known from elementary 
geometry, nevertheless , we recall the definition. A bounded plane polygon is the set of the points 
of a simple closed polygonal line "f and the points surrounded by 'Y· A simple closed polygonal line 

(or polylin e) is a cyclic sequence of segments each of which starts at the point where the previous 
one ends and these are the only pairwise intersections of the segments. 
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4 . Rx .  Check that only one metric in 4 . A-4 . 2  is an ultrametric. Which one? 

4 . Sx .  Prove that all triangles in an ultrametric space are isosceles ( i .e . ,  for 
any three points a , b, and c, at least two of the three distances p( a , b) , p(b ,  c) , 
and p (a , c) are equal) . 

4 .  Tx .  Prove that spheres in an ultrametric space are not only closed (see 
Problem 4 . 23) , but also open. 

The most important example of an ultrametric is the p-adic metric in 
the set Q of rational numbers . Let p be a prime number. For x, y E Q, 
present the difference x - y as �pa , where r, s, and a are integers , and r 
and s are co-prime with p. We define p(x , y)  = p-a . 

4 .  Ux . Prove that p is an ultrametric . 

I 4'17x J Asymmetries 

A function p : X x X ---t lR + is an asymmetric on a set X if 

( 1 )  p(x ,  y) = 0 and p(y, x) = 0, iff x = y; 
(2) p(x ,  y) :::; p (x ,  z )  + p(z ,  y) for any x ,  y ,  z E X . 

Thus , an asymmetric satisfies conditions 1 and 3 in the definition of a 
metric , but , maybe ,  does not satisfy condition 2 .  

Here i s  example o f  an asymmetric taken "from real life" : the length of 
the shortest path from one place to another by car in a city having one-way 
streets . 

4· Vx . Prove that if p :  X x X ---t JR +  is an asymmetric, then the function 

(x, y) r-+ p(x ,  y) + p(y, x) 

is a metric on X. 

Let A and B be two bounded subsets of a metric space (X, p) . The 
number ap (A, B) = supbEB p (b, A) is the asymmetric distance from A to B.  

4 .  Wx . The function ap on  the set o f  bounded subsets o f  a metric space 
satisfies the triangle inequality in the definition of an asymmetric. 

4 . Xx .  Let (X, p) be a metric space . A set B c X is contained in all closed 
sets containing A c X iff ap (A, B) = 0 .  

4 ·  Yx . Prove that ap i s  an asymmetric on the set of  all bounded closed 
subsets of a metric space (X, p) . 

Let A and B be two polygons on the plane. We define 

aA (A , B) = S(B) - S(A n B) = S(B '- A) , 

where S(C) is the area of a polygon C. 
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4 . 36x .  Prove that a.c:,. is an asymmetric on the set of all planar polygons . 

A pair (X, p) , where p is an asymmetric on X ,  is an asymmetric space . 
Certainly, any metric space is an asymmetric space , too. Open and closed 
balls and spheres in an asymmetric space are defined as in a metric space , 
see Section 413 .  

4 . Zx .  The set  of a l l  open balls of an asymmetric space is  a base of a certain 
topology. 

We also say that this topology is generated by the asymmetric . 

4 . 37x.  Prove that the formula a(x ,  y) = max{x - y , 0 }  determines an asymmetric 
on [0, oo) , and the topology generated by this asymmetric is the arrow topology, 
see Section 2' 2 . 
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5 .  S ubspaces 

15' 1 J Topology for a Subset of a Space 

Let (X, 0) be a topological space , A c X.  Denote by OA the collection 
of sets A n  V, where v E 0: OA = {A n  v I v E 0 } .  

5. A .  The collection OA  is a topological structure in A .  
The pair (A ,  OA ) is a subspace o f  the space (X, 0) . The collection OA is 

the subspace topology,  the relative topology ,  or the topology induced on A 
by 0,  and its elements are said to be sets open in A. 

5.B.  The canonical topology on JR1 coincides with the topology induced on 
JR1 as on a subspace of JR2 . 

5. 1 .  Riddle. How to construct a base for the topology induced on A by using a 
base for the topology on X? 

5 .2 .  Describe the topological structures induced 

( 1 )  on the set N of positive integers by the topology of the real line ; 
(2)  on N by the topology of the arrow; 
(3) on the two-element set { 1 ,  2} by the topology of 1RT1 ; 
(4) on the same set by the topology of the arrow. 

5. 3. Is the half-open interval [0 , 1 )  open in the segment [0, 2] regarded as a sub­
space of the real line? 

5. C. A set F is closed in a subspace A C X iff F is the intersection of A 
and a closed subset of X .  

5.4 .  If a subset of a subspace is open (respectively, closed) in the ambient space , 
then it is also open (respectively, closed) in the subspace . 

15'2 J Relativity of Openness and Closedness 

Sets that are open in a subspace are not necessarily open in the ambient 
space . 

5.D.  The unique open set in JR1 which is also open in JR2 is 0 .  

However, the following i s  true . 
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5.E. An open set of an open subspace is open in the ambient space , i . e . , if 
A E n, then nA C n. 

The same relation holds true for closed sets .  Sets that are closed in 
the subspace are not necessarily closed in the ambient space . However, the 
following is true . 

5.F. Closed sets of a closed subspace are closed in the ambient space . 

5. 5. Prove that a set U is open in X iff each point in U has a neighborhood V in 
X such that U n V is open in V .  

This allows us  to  say that the property o f  being open i s  local. Indeed , we can 
reformulate 5. 5 as follows : a set is open iff it is open in a neighborhood of each of 
its points .  

5. 6. Show that the property of being closed is not local . 

5. G Transitivity of Induced Topology. Let (X, n) be a topological space, 
X :J A :=J B .  Then (nA)B = ns , i . e . , the topology induced on B by the 
relative topology of A coincides with the topology induced on B directly from 
X .  

5. 7. Let (X, p) be a metric space, A c X .  Then the topology on A generated by 
the induced metric P IA x A  coincides with the relative topology induced o n  A by 
the metric topology on X .  
5. 8. Riddle. The statement 5 .  7 i s  equivalent t o  a pair o f  inclusions . Which of 
them is less obvious? 

f5'3J Agreement on Notation for Topological Spaces 

Different topological structures in the same set are considered simulta­
neously rather seldom. This is why a topological space is usually denoted 
by the same symbol as the set of its points , i . e . , instead of (X, n) we write 
just X .  The same applies to metric spaces : instead of (X, p) we write just 
X .  



6. Position of a Point with Respect to a Set 

6 .  Position of a Point with Respect to a 

Set 

29 

This section is devoted to further expanding the vocabulary needed when 
we speak about phenomena in a topological space . 

I6' 1J Interior , Exterior , and Boundary Points 

Let X be a topological space , A C X a subset , and b E X a point . The 
point b is 

• an interior point of A if b has a neighborhood contained in A ; 
• an exterior point of A if b has a neighborhood disjoint with A; 
• a boundary point of A if each neighborhood of b meets both A and 

the complement of A .  

I6'2J Interior and Exterior 

The interior of a set A in a topological space X is the greatest (with 
respect to inclusion) open set in X contained in A, i . e . , an open set that 
contains any other open subset of A .  It is denoted by Int A or, in more 
detail , by Intx A .  

6. A .  Every subset of a topological space has an interior. It i s  the union of 
all open sets contained in this set . 

6.B. The interior of a set A is the set of interior points of A .  

6 .  C. A set is open iff i t  coincides with its interior. 

6.D.  Prove that in JR.: 

( 1 )  Int [O, 1 )  = (0 ,  1 ) , 
(2 )  Int ((J! = 0 ,  and 
(3) Int (IR " (Q) = 0. 
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6. 1 .  Find the interior of {a, b, d} in the space 'v . 
6.2.  Find the interior of the interval (0 ,  1 )  on the line with the Zariski topology. 

The exterior of a set is the greatest open set disjoint with A. Obviously, 
the exterior of A is Int (X ......_ A) . 

I6'3J Closure 

The closure of a set A is the smallest closed set containing A. It is 
denoted by Cl A or, more specifically, by Clx A. 

6. E. Every subset of a topological space has a closure . It is the intersection 
of all closed sets containing this set . 

A. 

6. 3. Prove that if A is  a subspace of X and B C A, then ClA B = (Clx B) n A. 
Is it  true that lntA B = (lntx B) n A? 

A point b is an adherent point for a set A if all neighborhoods of b meet 

6 .F. The closure of a set A is the set of the adherent points of A .  

6. G.  A set A is closed iff A =  Cl A .  

6.H. The closure of a set A is the complement of the exterior of A .  In 
formulas: Cl A = X ......_ lnt (X ......_ A) , where X is the space and A c X .  

6.1. Prove that in lR we have : 

( 1 )  Cl [O ,  1 )  = [0, 1] , 
(2 )  Cl Q = JR, and 
(3) Cl(JR ......_ Q) = R 

6.4 .  Find the closure of {a} in V · 

16'4 J Closure in Metric Space 

Let A be a subset and b a point of a metric space (X, p) . We recall that 
the distance p(b ,  A) from b to A is inf{ p(b ,  a) I a E A }  (see 4' 14) . 

6.J. Prove that b E Cl A iff p(b ,  A) = 0 .  

16 '5 J Boundary 

The boundary of a set A is the set Cl A ......_ lnt A. It is denoted by Fr A 
or, in more detail , Frx A.  

6. 5. Find the boundary o f  {a} i n  V· 

6.K. The boundary of a set is the set of its boundary points . 

6.L .  Prove that a set A is closed iff Fr A c A. 
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6. 6. 1 )  Prove that Fr A = Fr(X -.... A) . 2 )  Find a formula for Fr A which is 
symmetric with respect to A and X -.... A .  

6. 7. The boundary of  a set A equals the intersection of  the closure of A and the 
closure of the complement of A: we have Fr A = CI A n Cl(X -.... A) . 

[6'6 J Closure and Interior with Respect to a Finer Topology 

6. 8. Let fh and n2 be two topological structures in X such that n1 c n2 . Let Cli 
denote the closure with respect to ni . Prove that Cb A ::::> Cb A for any A c X .  

6. 9. Formulate and prove a similar statement about the interior. 

[6'7 J Properties of Interior and Closure 

6. 1 0. Prove that if A C B,  then Int A C Int B .  

6. 1 1 .  Prove that Int lnt A = Int A .  

6. 12.  Find out whether the following equalities hold true that for any sets A and 
B :  

Int (A n B) = Int A n  Int B ,  

Int (A U B) = Int A U  lnt B .  

6. 1 3. Give an  example in  which one o f  equalities ( 8 )  and ( 9 )  i s  wrong. 

(8) 

(9) 

6. 14 .  In the example that you found when solving Problem 6. 12, an inclusion of 
one side into another one holds true . Does this inclusion hold true for arbitrary A 
and B? 

6. 1 5. Study the operator Cl in a way suggested by the investigation of Int under­
taken in 6. 1 G-6. 14 .  

6. 1 6. Find Cl{ 1 } ,  Int [O , 1 ] ,  and Fr (2 ,  +oo) in the arrow. 

6. 1 7. Find Int ( (O ,  1] U {2 } ) , Cl{ 1/n I n  E N } ,  and Fr Q in JR. 
6. 1 8. Find Cl N, Int (0 , 1 ) ,  and Fr [O , l ]  in 1Rr1 . How do you find the closure and 
interior of a set in this space? 

6. 1 9. Does a sphere contain the boundary of the open ball with the same center 
and radius? 

6. 20. Does a sphere contain the boundary of the closed ball with the same center 
and radius? 

6. 21 . Find an example in which a sphere is disjoint with the closure of the open 
ball with the same center and radius. 

[6'8 J Compositions of Closure and Interior 

6. 22 Kuratowski 's Problem. How many pairwise distinct sets can one obtain 
from of a single set by using the operators Cl and Int? 

The following problems will help you to solve Problem 6. 22. 

6. 22. 1 .  Find a set A C IR such that the sets A, Cl A, and Int A are 
pairwise distinct . 
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6. 22. 2. Is there a set A C ffi. such that 

( 1 )  A, Cl A, Int A, and Cl int A are pairwise distinct ; 
(2 )  A, Cl A, Int A, and Int Cl A are pairwise distinct ; 
(3) A, Cl A ,  Int A, Cl Int A, and Int Cl A are pairwise distinct? 

If you find such sets ,  keep on going in the same way, and when you 
fail to proceed, try to formulate a theorem explaining the failure . 

6. 22. 3. Prove that Cl lnt Cl lnt A = Cl int A .  

I6'9J Sets with Common Boundary 

6.23*. Find three open sets in the real line that have the same boundary. Is it 
possible to increase the number of such sets? 

16' 10 J Convexity and Int , Cl, and Fr 

Recall that a set A C !Rn is con vex if together with any two points it contains 
the entire segment connecting them (i .e . , for any x, y E A, every point z of the 
segment [x , y] belongs to A) . 

Let A be a convex set in !Rn . 
6. 24 .  Prove that Cl A and Int A are convex. 

6.25. Prove that A contains a ball if A is not contained in an (n - !)-dimensional 
affine subspace of !Rn . 
6. 26. When is Fr A convex? 

l6' 1 1j Characterization of Topology by Operations of Taking Clo­
sure and Interior 

6. 27*. Suppose that Cl. is an operator on the set of all subsets of a set X , which 
has the following properties : 

( 1 )  Cl. 0 = 0, 
(2) Cl. A :J A, 
(3) Cl. (A U B) = Cl. A U  Cl. B,  
(4) C l .  C l .  A = C l .  A .  

Prove that n = { u c X I Cl. (X ...... U) = X ...... u }  i s  a topological structure 
and Cl. A is the closure of a set A in the space (X, f!) . 
6.28. Present a similar system of axioms for Int . 

16' 12  J Dense Sets 

Let A and B be two sets in a topological space X. A is dense in B if 
Cl A :::::J B,  and A is everywhere dense if Cl A = X.  

6.M. A set is everywhere dense iff i t  meets any nonempty open set. 

6.N. The set Ql is everywhere dense in R 
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6. 29. Give an explicit characterization of everywhere dense sets 1 )  in an indiscrete 
space, 2)  in the arrow, and 3) in llh1 . 
6. 30. Prove that a topological space is discrete iff it contains a unique everywhere 
dense set . (By the way, which one? ) 
6. 31 . Formulate a necessary and sufficient condition on the topology of a space 
which has an everywhere dense point . Find spaces in Section 2 that satisfy this 
condition. 

6. 32. 1) Is it true that the union of everywhere dense sets is everywhere dense? 
2) Is it true that the intersection of two everywhere dense sets is everywhere dense? 

6. 33. Prove that any two open everywhere dense sets have everywhere dense 
intersection. 

6. 34 .  Which condition in Problem 6. 33 is redundant? 

6. 35 *. 1 )  Prove that a countable intersection of open everywhere dense sets in lR 
is everywhere dense . 2) Is it possible to replace lR here by an arbitrary topological 
space? 

6. 36 *. Prove that Q is not the intersection of countably many open sets in JR. 

I6' 13J Nowhere Dense Sets 

A set is nowhere dense if its exterior is everywhere dense . 

6. 37. Can a set be everywhere dense and nowhere dense simultaneously? 

6. 0. A set A is nowhere dense in X iff each neighborhood of each point 
x E X contains a point y such that the complement of A contains y together 
with a neighborhood of y .  

6. 38. Riddle. What can you say about the interior o f  a nowhere dense set? 

6. 39. Is lR nowhere dense in JR2 ? 

6 .40. Prove that if A is nowhere dense , then Int Cl A = 0. 

6.4 1 .  1 )  Prove that the boundary of a closed set is nowhere dense. 2) Is this true 
for the boundary of an open set? 3) Is this true for the boundary of an arbitrary 
set? 

6.42. Prove that a finite union of nowhere dense sets is nowhere dense . 

6.4 3. Prove that for every set A there exists a greatest open set B in which A is 
dense. The extreme cases B = X and B = 0 mean that A is either everywhere 
dense or nowhere dense , respectively. 

6.44 *. Prove that lR is not the union of countably many nowhere-dense subsets .  

I6' 14J Limit Points and Isolated Points 

A point b is a limit point of a set A if each neighborhood of b meets A "  b. 

6.P. Every limit point of a set is its adherent point . 
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6.4 5. Present an example in which an adherent point is not a limit one . 

A point b is an isolated point  of a set A if b E  A and b has a neighborhood 
disjoint with A ......_ b. 

6. Q. A set A is closed iff A contains all of its limit points . 

6.4 6. Find limit and isolated points of the sets (0 ,  1] U {2}  and { 1 /n I n E N }  
in Q and in R 

6.4 7. Find limit and isolated points of the set N in RT1 •  

16' 15  J Locally Closed Sets 

A subset A of a topological space X is locally closed if each point of A has a 
neighborhood U such that A n U is closed in U (cf. Problems 5. 5--5. 6) .  

6.4 8. Prove that the following conditions are equivalent : 

( 1 )  A is locally closed in X ;  
( 2 )  A i s  an open subset o f  its closure Cl A ;  
(3 )  A i s  the intersection of  open and closed subsets of X .  
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7. O rdered S ets 

This section i s  devoted t o  orders. They are structures on  sets and occupy a 
position in Mathematics almost as profound as topological structures . After 
a short general introduction , we focus on relations between structures of 
these two types. Similarly to metric spaces, partially ordered sets possess 
natural topological structures. This is a source of interesting and impor­
tant examples of topological spaces . As we will see later (in Section 2 1 ) ,  
practically all finite topological spaces appear i n  this way. 

f7' 1  J Strict Orders 

A binary relation on a set X is a set of ordered pairs of elements of X,  
i . e . , a subset R C X x X .  Many relations are denoted by special symbols , 
like -< ,  f- ,  :::: , or "'"' ·  When such notation is used, there is a tradition to write 
xRy instead of writing (x , y) E R. So, we write x f- y, or x "'"' y, or x -< y ,  
etc . This generalizes the usual notation for the classical binary relations = ,  
< ,  > ,  :::; , c ,  etc .  

A binary relation -< on a set X i s  a strict partial order, or just a strict 
order if it satisfies the following two conditions : 

• lrreflexivity : There is no a E X such that a -< a .  
• Transitivity :  a -< b and b -< c imply a -< c for any a ,  b ,  c E X.  

7. A Antisymmetry. Let -< be a strict partial order on a set X.  There are 
no x, y E X  such that x -<  y and y -<  x simultaneously. 

7. B. Relation < in the set JR. of real numbers is a strict order . 

The formula a -< b is sometimes read as "a is less than b" or "b is 
greater than a" , but it is often read as "b follows a" or "a precedes b" . The 
advantage of the latter two ways of reading is that then the relation -< is 
not associated too closely with the inequality between real numbers . 

f7'2J Nonstrict Orders 

A binary relation ::5 on a set X is a nonstrict partial order, or just a 
nonstrict order , if it satisfies the following three conditions : 

• Transitivity :  If a ::5 b and b ::5 c, then a ::5 c for any a, b ,  c E X . 
• Antisymmetry : If a ::5 b and b ::5 a ,  then a = b for any a ,  b E X .  
• Reflexivity : a ::5 a for any a E X .  

7. C .  The relation < on  JR. i s  a nonstrict order . 
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7.D.  In the set N of positive integers, the relation a I b (a divides b) is a 
nonstrict partial order . 

7. 1 .  Is the relation a I b a nonstrict partial order on the set Z of integers? 

7.E. Inclusion determines a nonstrict partial order on the set of subsets of 
any set X .  

r7'3 J Relation between Strict and Nonstrict Orders 

7. F. For each strict order -< ,  there is a relation � defined on the same set 
as follows : a �  b if either a -<  b ,  or a =  b. This relation is a nonstrict order . 

The nonstrict order � of 7.F is associated with the original strict order 
-< .  

7. G .  For each nonstrict order � ' there is a relation -< defined on the same 
set as follows : a -< b if a � b and a "I b. This relation is a strict order . 

The strict order -< of 7. G is associated with the original nonstrict order 
� -

7.H. The constructions of Problems 7.F and 7. G are mutually inverse : ap­
plied one after another in any order , they give the initial relation. 

Thus , strict and nonstrict orders determine each other . They are just 
different incarnations of the same structure of order . We have already met a 
similar phenomenon in topology: open and closed sets in a topological space 
determine each other and provide different ways for describing a topological 
structure. 

A set equipped with a partial order (either strict or nonstrict ) is a par­
tially ordered set or, briefly, a poset .  More formally speaking, a partially 
ordered set is a pair (X, -<)  formed by a set X and a strict partial order -< 
on X .  Certainly, instead of a strict partial order -< we can use the corre­
sponding nonstrict order � .  

Which of the orders, strict or nonstrict , prevails i n  each specific case is 
a matter of convenience , taste , and tradition. Although it would be handy 
to keep both of them available , nonstrict orders conquer situation by situa­
tion. For instance , nobody introduces special notation for strict divisibility. 
Another example : the symbol � ' which is used to denote nonstrict inclu­
sion, is replaced by the symbol C ,  which is almost never understood as a 
designation solely for strict inclusion. 

In abstract considerations , we use both kinds of orders : strict partial 
orders are denoted by the symbol -< ,  nonstrict ones by the symbol � .  
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I7'4J Cones 

Let (X, -< )  be a poset and let a E X. The set {x E X I a -< x} is 
the upper cone of a, and the set { x E X I x -< a} the lower cone of a .  
The element a does not belong to its cones . Adding a to them, we obtain 
completed cones: the upper completed cone or star C_k (a) = { x E X I a :::5 x} 
and the lower completed cone C)( (a) = {x E X  I x :::5 a} . 

7.1 Properties of Cones. Let (X, -< )  be a poset. Then we have: 
( 1 )  C_k (b) c C_k (a) , provided that b E  C_k (a) ; 
(2 )  a E C_k (a) for each a E X; 

(3 )  C_k (a) = C_k (b) implies a =  b .  

7. J Cones Determine an Order. Let X b e  an arbitrary set. Suppose for 
each a E X  we fix a subset Ca C X so that 

( 1 )  b E  Ca implies Cb c Ca , 
(2 ) a E Ca for each a E X, and 
(3 )  Ca = Cb implies a =  b .  

We write a -< b if b E Ca . Then the relation -< is a nonstrict order on  X,  
and for this order we  have C_k (a )  = Ca . 

7. 2. Let C C IR3 be a set . Consider the relation <l c  on IR3 defined as follows : 
a <J c  b if b - a E C. What properties of C imply that <l c  is a partial order on IR3 ? 
What are the upper and lower cones in the poset (JR3 , <J c  ) ?  

7. 3. Prove that each convex cone C i n  IR3 with vertex (0 , 0 ,  0) and such that 
P n C = { (0 , 0, 0) } for some plane P satisfies the conditions found in the solution 
to Problem 7. 2. 

7.4 .  Consider the space-time IR4 of special relativity theory, where points represent 
moment-point events and the first three coordinates x1 , x2 and x3 are the spatial 
coordinates , while the fourth one, t, is the time. This space carries a relation , "the 
event (x1 , x2 , x3 , t) precedes (and may influence) the event (x1 , x2 , x3 , t)" .  The 
relation is defined by the inequality 

c( t - t ) 2:: v'r-c( X=-:-1-_-X-:1 ):-=2-+�( X,-2-_-X2-c)-=-2 -+-(=x-3 -
--X-3...,.--,-) 2 . 

Is this a partial order? If yes ,  then what are the upper and lower cones of an 
event? 

7. 5. Answer the versions of questions of the preceding problem in the case of 
two- and three-dimensional analogs of this space , where the number of spatial 
coordinates is 1 and 2 ,  respectively. 

17'5 J Position of an Element with Respect to a Set 

Let (X, -< )  be a poset , A c X a subset . Then b is the greatest element 
of A if b E A and c :::5 b for every c E A. Similarly, b is the smallest element 
of A if b E A and b :::5 c for every c E A. 
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7. K. An element b E A is the smallest element of A iff A C C_i (b) ; an 
element b E  A is the greatest element of A iff A c CX: (b) . 

7. L .  Each set has at most one greatest and at most one smallest element . 

An element b of a set A is a maximal element of A if A contains no 
element c such that b -< c.  An element b is a minimal element of A if A 
contains no element c such that c -< b .  

7.M. An element b of A is maximal iff A n  CX: (b) = b; an element b of A is  
minimal iff A n  C_i (b) = b. 

7. 6. Riddle. 1 )  How are the notions of maximal and greatest elements related? 
2) What can you say about a poset in which these notions coincide for each subset? 

r7'6J Linear Orders 

Please, notice : the definition of a strict order does not require that for 
any a ,  b E X we have either a -< b, or b -< a ,  or a = b. The latter condition 
is called a trichotomy . In terms of the corresponding nonstrict order , it is 
reformulated as follows : any two elements a, b E X are comparable : either 
a �  b, or b �  a .  

A strict order satisfying trichotomy i s  linear (or total) . The correspond­
ing poset is linearly ordered (or totally ordered) . It is also called just an 
ordered set .  9 Some orders do satisfy trichotomy. 

7. N. The order < on the set lR of real numbers is linear . 

This is the most important example of a linearly ordered set . The words 
and images rooted in it are often extended to all linearly ordered sets .  For 
example , cones are called rays , upper cones become right rays , while lower 
cones become left rays . 

7. 7. A poset (X, -< ) is linearly ordered iff X =  Ct (a) U C)( (a) for each a E X. 

7. 8. The order a I b on the set N of positive integers is not linear . 

7. 9. For which X is the relation of inclusion on the set of all subsets of X a linear 
order? 

9Quite a bit of confusion was brought into the terminology by Bourbaki. At that time, linear 
orders were called orders , nonlinear orders were called partial orders , and, in occasions when it 
was not known if the order under consideration was linear , the fact that this was unknown was 
explicitly stated. Bourbaki suggested to drop the word partial .  Their motivation for this was that 
a partial order is a phenomenon more general than a linear order , and hence deserves a shorter and 
simpler name. This suggestion was commonly accepted in the French literature, but in English 
literature it would imply abolishing a nice short word , pose t ,  which seems to be an absolutely 
impossible thing to do. 
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I7'7J Topologies Determined by Linear Order 

7. 0. Let (X, -<) be a linearly ordered set. Then the set X itself and all right 
rays of X, i. e . ,  sets of the form { x E X I a -< x } ,  where a runs through X,  
constitute a base for a topological structure in  X .  

The topological structure determined by this base i s  the right ray topology 
of the linearly ordered set (X, -< ) .  The left ray topology is defined similarly : it 
is generated by the base consisting of X and sets of the form { x E X I x -< a} 
with a E X . 

7. 1 0. The topology of the arrow (see Section 2) is the right ray topology of the 
half-line [0, oo ) equipped with the order < .  

7. 1 1 .  Riddle. To what extent i s  the assumption that the order b e  linear nec­
essary in Theorem 7. 0? Find a weaker condition that implies the conclusion of 
Theorem 7. 0 and allows us to speak about the topological structure described in 
Problem 2. 2 as the right ray topology of an appropriate partial order on the plane. 

7.P. Let (X, -< )  be a linearly ordered set. Then the subsets of X having the 
forms 

• {x E X  I a -<  x } ,  where a runs through X ,  
• {x E X  I x -<  a} ,  where a runs through X ,  
• {x E X  I a -<  x -<  b} ,  where a and b run through X 

constitute a base for a topological structure in X .  
The topological structure determined by this base is the in terval topology 

of the linearly ordered set (X, -< ) .  

7. 12.  Prove that the interval topology is the smallest topological structure con­
taining the right ray and left ray topological structures. 

7. Q. The canonical topology of the line is the interval topology of (JR, < ) .  

17'8 J Poset Topology 

7. R.  Let (X, :::5 ) be a poset. Then the subsets of X having the form {x E 
X I a :::5 x} ,  where a runs through the entire X ,  constitute a base for a 
topological structure in X .  

The topological structure generated by this base i s  the poset topology .  

7. 8. In the poset topology, each point a E X has the smallest (with respect 
to inclusion) neighborhood. This is { x E X I a :::::; x } .  

7. T. The following properties of a topological space are equivalent: 
( 1) each point has a smallest neighborhood, 
(2 )  the intersection of any collection of open sets is open, 
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(3) the union of any collection of closed sets is closed. 
A space satisfying the conditions of Theorem 7. T is a smallest neigh­

borhood space . 10 In such a space , open and closed sets satisfy the same 
conditions . In particular , the set of all closed sets of a smallest neighbor­
hood space is also a topological structure , which is dual to the original one . 
It corresponds to the opposite partial order. 

7. 1 3. How to characterize points open in the poset topology in terms of the 
partial order? Answer the same question about closed points . (Slightly abusing 
the terminology, here by points we mean the corresponding singletons . )  

7. 14 .  Directly describe open sets in  the poset topology o f  lR with order < .  

7. 1 5. Consider a partial order o n  the set {a, b, c ,  d }  where the strict inequalities 
are :  c --< a, d --< c ,  d --< a, and d --< b .  Check that this is a partial order and the 
corresponding poset topology is the topology of I.J described in Problem 2. 3 ( 1 ) .  

7. 1 6. Describe the closure o f  a point i n  a poset topology. 

7. 1 7. Which singletons are dense in a poset topology? 

17'9 J How to Draw a Poset 

Now we can explain the pictogram I.J, by which we denote the space 
introduced in Problem 2. 3( 1 ) .  It describes the partial order on {a ,  b, c, d} 
that determines the topology of this space by 7. 1 5. Indeed, if we place a ,  b, c ,  
and d, i . e . , the elements of the set under consideration, 
at vertices of the graph of the pictogram, as shown in the 
picture , then the vertices marked by comparable elements 
are connected by a segment or ascending broken line , and 
the greater element corresponds to the higher vertex. 

a'v  
c b 

d 

In this way, we can represent any finite poset by a diagram. Elements 
of the poset are represented by points. We have a -< b if and only if the 
following two conditions are fulfilled: 1) the point representing b lies above 
the point representing a, and 2) the two points are connected either by a 
segment or by a polyline consisting of segments that connect points repre­
senting intermediate elements of a chain a -< c1 -< c2 -< · · · -< Cn -< b. We 
could have connected by a segment any two points corresponding to compa­
rable elements ,  but this would make the diagram excessively cumbersome . 
This is why the segments that are determined by the others via transitivity 
are not drawn. Such a diagram representing a poset is its Hasse diagram. 

1. U. Prove that any finite poset is determined by a Hasse diagram. 

10This class of topological spaces was introduced and studied by P. S. Alexandrov in 1935. 
Alexandrov called them discrete. Nowadays, the term discrete space is used for a much narrower 
class of topological spaces (see Section 2 ) .  The term smallest neighborhood space was introduced 
by Christer Kiselman. 
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7. V. Describe the poset topology on the set Z of  integers defined by the 
following Hasse diagram: 

• • • 

-5 -3  

-4  

-1  

-2 0 

1 3 

2 4 

5 

6 

• • • 

The space of Problem 7. V is the digital line ,  or Khalimsky line .  In this 
space , each even number is closed and each odd one is open . 

7. 1 8. Associate with each even integer 2k the interval (2k - 1 ,  2k + 1 )  of length 2 
centered at this point , and with each odd integer 2k - 1 ,  the singleton {2k - 1 } .  
Prove that a set o f  integers i s  open i n  the Khalimsky topology i ff  the union o f  sets 
associated to its elements is open in lR with the standard topology. 

7. 1 9. Among the topological spaces described in Section 2 ,  find all those obtained 
as posets with the poset topology. In the cases of finite sets, draw Hasse diagrams 
describing the corresponding partial orders. 
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8 .  Cyclic Orders 

f8' 1 J Cyclic Orders in Finite Sets 

Recall that a cyclic order on a finite set X is a linear order considered 
up to cyclic permutation. The linear order allows us to enumerate elements 
of the set X by positive integers, so that X = {x 1 , x2 , . . .  , Xn } · A cyclic 
permutation transposes the first k elements with the last n - k elements 
without changing the order inside each of the two parts of the set : 

When we consider a cyclic order , it makes no sense to say that one of its el­
ements is greater than another one , since an appropriate cyclic permutation 
puts the two elements in the opposite order . However, it makes sense to say 
that an element immediately precedes another one . Certainly, the very last 
element immediately precedes the very first one : indeed , a nontrivial cyclic 
permutation puts the first element immediately after the last one . 

In a cyclically ordered finite set , each element a has a unique element b 
next to a , i . e . , which follows a immediately. This determines a map of the 
set onto itself, namely, the simplest cyclic permutation {Xi+ I Xi f---7 XI i f  i < n, 

i f  i = n .  
This permutation acts transitively ( i .e . , any element i s  mapped to any other 
one by an appropriate iteration of the permutation) . 

B. A .  Any map T : X -+  X that transitively acts on X determines a cyclic 
order on X such that each a E X  precedes T(a) . 

B.B.  An n-element set possesses exactly (n - 1 ) !  pairwise distinct cyclic 
orders . 

In particular , a two-element set has only one cyclic order (which is so 
uninteresting that sometimes it is said to make no sense) , while any three­
element set possesses two cyclic orders. 

f8'2x J Cyclic Orders in Infinite Sets 

One can consider cyclic orders on an infinite set . However , most of what 
was said above does not apply to cyclic orders on infinite sets without an 
adjustment . In particular , most of them cannot be described by showing 
pairs of elements that are next to each other . For example , points of a 
circle can be cyclically ordered clockwise (or counter-clockwise) , but no point 
immediately follows another point with respect to this cyclic order . 
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Such "continuous" cyclic orders are defined almost in the same way as 
cyclic orders on finite sets were defined above . The difference is that some­
times it is impossible to define cyclic permutations of a set in the necessary 
quantity, and we have to replace them by cyclic transformations of linear 
orders . Namely, a cyclic order is defined as a linear order considered up to 
cyclic transformations , where by a cyclic transformation of a linear order 
-< on a set X we mean a passage from -< to a linear order -<' such that X 
splits into subsets A and B such that the restrictions of -< and -<' to each 
of them coincide , while a -< b and b -<' a for any a E A and b E B.  

8. Cx. .  Existence of a cyclic transformation transforming linear orders to 
each other determines an equivalence relation on the set of all linear orders 
on a set. 

A cyclic order on a set is an equivalence class of linear orders with respect 
to the above equivalence relation . 

8. Dx .  Prove that for a finite set this definition is equivalent to the definition 
in the preceding section . 

8.Ex .  Prove that the cyclic "counter-clockwise" order on a circle can be 
defined along the definition of this section , but cannot be defined as a linear 
order modulo cyclic transformations of the set for whatever definition of 
cyclic transformations of circle . Describe the linear orders on the circle that 
determine this cyclic order up to cyclic transformations of orders . 

8. Fx .  Let A be a subset of a set X .  If two linear orders -<' and -< on X are 
obtained from each other by a cyclic transformation, then their restrictions 
to A are also obtained from each other by a cyclic transformation. 

8. Gx Corollary. A cyclic order on a set induces a well-defined cyclic order 
on every subset of this set . 

8.Hx .  A cyclic order on a set X can be recovered from the cyclic orders 
induced by it on all three- element subsets of X .  

8.Hx . 1 .  A cyclic order on a set X can be recovered from the cyclic orders 
induced by it on all three-element subsets of X containing a fixed element 
a E X . 

Theorem 8. Hx allows us to describe a cyclic order as a ternary relation . 
Namely, let a ,  b, and c be elements of a cyclically ordered set . Then we 
write [a -< b -< c] if the induced cyclic order on {a ,  b, c} is determined by the 
linear order in which the inequalities in the brackets hold true (i .e . ,  b follows 
a and c follows b) . 
8. Ix .  Let X be a cyclically ordered set. Then the ternary relation [a -< b -<  c] 
on X has the following properties: 
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( 1 )  for any pairwise distinct a ,  b ,  c E X, we have either [a --< b --<  c] , or 
[b --< a --< c] , but not both; 

(2 )  [a --< b --< c] , iff [b --< c --< a] , iff [c --< a --< b] , for any a, b, c E X;  
( 3 )  if [a --< b --< c] and [ a  --< c --< d] , then [ a  --< b --< d] . 

Vice versa, a ternary relation on X having these four properties determines 
a cyclic order on the set X .  

f8'3x J Topology o f  Cyclic Order 

8 .Jx .  Let X be a cyclically ordered set. Then the sets that belong to the 
interval topology of every linear order determining the cyclic order on X 
constitute a topological structure in X .  

The topology defined in 8. Jx is the cyclic order topology .  

8.Kx .  The cyclic order topology determined by the cyclic counterclockwise 
order of S1 is the topology generated by the metric p (x ,  y) = l x  - v i  on 
81 c <C. 



Proofs and Comments 45 

P roofs and C omment s  

1 . A  The question is so elementary that it is difficult t o  find more 
elementary facts which we could use in the proof. What does it mean that 
A consists of a elements? This means , say, that we can count elements of 
A one by one , assigning to them numbers 1 , 2 ,  3 ,  . . .  and the last element 
will receive number a .  It is known that the result does not depend on the 
order in which we count . (In fact , one can develop a set theory which would 
include a theory of counting, and in which this is a theorem. However, since 
we have no doubts about this fact , let us use it without proof. ) Therefore , 
we can start counting elements of B by counting those in A. Counting the 
elements in A is done first , and then, if there are some elements of B that 
are not in A,  counting is continued. Thus , the number of elements in A is 
less than or equal to the number of elements in B.  

1 . B  Recall that , by the definition of an inclusion, A c B means that 
each element of A is an element of B.  Therefore , the statement that we 
must prove can be rephrased as follows : each element of A is an element of 
A.  This is a tautology. 

1 .  C Recall that , by the definition of an inclusion, A C B means that 
each element of A is an element of B.  Thus , we need to prove that any 
element of 0 belongs to A. This is true because 0 does not contain any 
elements.  If you are not satisfied with this argument (since it may seem 
a little bit strange ) , then let us resort to the question whether this can be 
wrong. How can it happen that 0 is not a subset of A? This is possible 
only if 0 contains an element which is not an element of A. However, 0 
does not contain such elements because 0 has no elements at all .  

1 . D  We must prove that each element of A is an element of C .  Let 
x E A. Since A c B, it follows that x E B. Since B c C, the latter 
belonging ( i . e . , x E B) implies x E C. This is what we had to prove . 

1 . E  We have already seen that A C A. Hence , if A =  B,  then, indeed, 
A C B and B c A. On the other hand, A c B means that each element of 
A belongs to B, while B c A means that each element of B belongs to A.  
Hence, A and B have the same elements ,  i .e . , they are equal . 

1 .  G It is easy to construct a set A with A �  A .  Take A =  0 ,  or A =  N, 
or A =  { 1 } ,  . . .  

1 . H  Take A =  { 1 } ,  B = { { 1 } } ,  and C = { {  { 1 }  } } .  It is more difficult 
to construct sets A, B, and C such that A E B, B E  C, and A E C. Take 
A = { 1 } ,  B = { { 1 } } ,  and C = { { 1 } ,  { { 1 } } } .  
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2.A What should we check? The first axiom reads here that the union 
of any collection of subsets of X is a subset of X. Well, this is true . If A c X 
for each A E r ,  then, obviously, UAEI' A c X.  We check the second axiom 
exactly in the same way. Finally, we obviously have 0 C X and X C X.  

2. B Yes ,  i t  is .  I f  one o f  the united sets i s  X,  then the union i s  X,  
otherwise the union i n  empty. If one o f  the sets t o  intersect i s  0 ,  then the 
intersection is 0. Otherwise , the intersection equals X. 

2. C First , show that UAEI' AnUBE� B = UAEI',BEdAnB) . Therefore , 
if A and B are intervals , then the right-hand side is a union of intervals . This 
proves that n satisfies the second axiom of topological structure . The first 
and third axioms are obvious here . 

If you think that a set which is a union of intervals is too simple , then, 
please try to answer the following question (which has nothing to do with the 
problem under consideration, though) . Let {rn }�=l = Q ( i .e . ,  we numbered 
all rational nnmbers) . Prove that u�=l (rn - 2-n , Tn + 2-n ) does not contain 
all real numbers , although this is a union of intervals that contains all ( ! )  
rational numbers . 

2 .D The union of any collection of open sets is open. The intersection 
of any finite collection of open sets is open. The empty set and the whole 
space are open. 

2.E 
(3) 

X E n (X ....... A) ¢:::::} \;/ A  E r : X E X ....... A 
AEI' 

¢:::::} v A E r : x tf:. A ¢:::::} x tf:. U A ¢:::::} x E x -...... U A.  
AEI' AEI' 

(4) Replace both sides of the formula by their complements in X and put 
B = X -...... A . 

2.F ( 1 )  Let r = {Fa } be a collection of closed sets .  We must verify 
that na Fa is closed, i . e . , X -...... na Fa is open. Indeed , by the second De 
Morgan formula we have 

a a 
which is open by the first axiom of topological structure . 

(2 )  Similar to ( 1 ) ;  use the first De Morgan formula and the second axiom 
of topological structure . 

(3) Obvious. 
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2. G In any topological space , the empty set and the whole space are 
both open and closed . Any set in a discrete space is both open and closed. 
Half-open intervals on the line are neither open nor closed.  Cf. the next 
problem. 

2.H Yes ,  it is ,  because its complement lR -...,_ [a , b] = ( - oo ,  a) U (b ,  +oo) 
i s  open. 

2.Jx Let U C lR be an open set . For each x E U, let (mx , Mx ) C U be 
the largest open interval containing x (take the union of all open intervals 
in U that contain x ) . Since U is open, such intervals exist . Any two such 
intervals either coincide or are disjoint .  

2.Lx Conditions (a) and (c) from Problem 2. 13  are obviously fulfilled. 
To prove (b) , we use Theorem 2. Mx and argue by contradiction . Suppose 
that two sets A and B contain no arithmetic progressions of length n.  If AUB 
contains a sufficiently long progression, then A or B contains a progression 
of length n, a contradiction. 

3.A To prove an equivalence of two statements ,  prove two implications . 
I� J Present U as a union of elements of � .  Each point x E U is contained 
in at least one of these sets .  Such a set can be taken for V. It is contained 
in U since it participates in a union equal to U. 
(<=) We must prove that each U E n i s  a union of elements of � .  For 
each point x E U, choose according to the assumption a set Vx E � such 
that x E Vx C U and consider UxEU Vx . Notice that UxEU Vx C U because 
Vx C U for each x E U. On the other hand , each point x E U is contained 
in its own Vx and hence in UxEU Vx . Therefore, U C UxEU Vx . Thus , 
U = UxEU Vx . 

3.B 1�1  X,  being an open set in  any topology, i s  the union of  some 
sets in �. The intersection of any two sets in � is open, and , therefore ,  it 
also is a union of base sets .  
( <= J Let us prove that the set of unions of all collections of elements of 
� satisfies the axioms of topological structure . The first axiom is obviously 
fulfilled since the union of unions is a union. Let us prove the second axiom 
(the intersection of two open sets is open) . Let U = Ua Aa and V = U,e B,e , 
where Aa , B,e E � .  Then 

U n V = (U Aa) n (U B ,e) = U ( Aa n B,e) , 
a ,6 a,,B 

and since , by assumption, Aa n B,e is a union of elements of � ' so is the 
intersection U n V. In the third axiom, we need to check only the part 
concerning the entire X.  By assumption, X is a union of sets in � .  
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3. D Let :E1 and :E2 be bases of topological structures fh and D2 in a 
set X.  Obviously, D1 C D2 iff V U E :E1 V x E U 3 V  E :E2 . :  x E V C U. 
Now recall that D1 = D2 iff D1 c D2 and D2 c D1 . 

4 . A  Indeed , it makes sense to check that all conditions in the definition 
of a metric are fulfilled for each triple of points x, y, and z .  

4 . B  The triangle inequality in this case takes the form J x - y J  ::; J x ­
z l  + J z - y J .  Putting a = x - z and b = z - y ,  we transform the triangle 
inequality into the well-known inequality J a  + bJ ::; J a J  + J b J . 

4 .  C As in the solution of Problem 4 . B, the triangle inequality takes 

the form: J:L�=l ( ai + bi ) 2 ::; .j:L�=l af + .j:L�=l bf . Two squarings and 

an obvious simplification reduce this inequality to the well-known Cauchy 
inequality (2::: aibi ) 2 ::; 2::: af 2::: bf . 

4 . E  We must prove that every point y E Br-p(a ,x) (x) belongs to Br (a) . 
In terms of distances , this means that p(y , a) < r if p(y ,  x) < r - p(a ,  x) and 
p(a , x) < r . By the triangle inequality, p(y , a) ::; p(y ,  x) + p(x ,  a) . Replacing 
the first summand on the right-hand side of the latter inequality by a greater 
number r - p(a , x) , we obtain the required inequality. The second inclusion 
is proved in a similar way. 

4 . F  I => J  Show that if d = diam A and a E A ,  then A C Dd(a) . 
l<=l  Use the fact that diam Dd(a) ::; 2d. (Cf. 4 . 1 1 . ) 

4 ·  G This follows from Problem 4 . E, Theorem 3. B and Assertion 3. C. 
4 . H  For this metric ,  the balls are open intervals. Each open interval in 

lR is a ball . The standard topology on lR is determined by the base consisting 
of all open intervals . 

4 . 1  ( => )  I f  a E U,  then a E Br (x) C U and Br-p(a ,x) (a) E Br (x) C U ,  
see 4 . E. 
(<=l  U i s  a union of balls , and ,  therefore , U is open in the metric topology. 

4 . J  An indiscrete space does not have sufficiently many open sets .  For 
x , y E X and r = p(x ,  y) > 0 ,  the ball Dr (x) is nonempty and does not 
coincide with the whole space ( it does not contain y) . 

4 . K  (=>) For X E X, put r = min{p(x , y) I y E x ....... x}. Which points 
are in Br (x) ?  l <= l  Obvious . (Cf. 4 . 1 9. ) 

4 . L  l => l  The condition p(b , A) = 0 means that each ball centered at 
b meets A ,  i .e . ,  b does not belong to the complement of A (since A is closed, 
the complement of A is open) . (<=) Obvious. 

4 . Mx Condition (2 )  is obviously fulfilled. Put r (A , B)  = sup p(a, B) , so aEA 
that dp (A, B)  = max{r (A,  B ) , r (B,  A) } . To prove that (3 )  is also fulfilled , it 
suffices to prove that r (A, C) ::; r (A, B ) + r (B,  C) for any A ,  B ,  C C X. We 
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easily see that p(a ,  C) :S p(a ,  b) + p(b ,  C) for all a E A and b E B. Hence , 
we have p(a ,  C) :S p(a ,  b) + r (B ,  C) , whence 

p(a ,  C) :S inf p(a ,  b) + r (B ,  C) = p(a ,  B) + r (B ,  C) :S r (A, B) + r (B ,  C) , bEE 
which implies the required inequality. 

4 . Nx By 4 . Mx, dp satisfies conditions (2 )  and (3 )  from the definition 
of a metric . From 4 . L  it follows that if the Hausdorff distance between two 
closed sets A and B equals zero , then A C B and B C A, i . e . , A =  B .  Thus , 
dp satisfies the condition ( 1 ) .  

4 ·  Ox dt::. (A ,  B)  is the area of the symmetric difference A /:::,. B = (A '-
B) U (B '- A) of A and B .  The first two axioms of metric are obviously 
fulfilled . Prove the triangle inequality by using the inclusion A '- B C 
(C " B) u (A " C) . 

4 . Rx Clearly, the metric in 4 . A  is an ultrametric . The other metrics 
are not : for each of them you can find three points x, y, and z such that 
p (x ,  y) = p(x , z )  + p(z ,  y) . 

4 . Sx The definition of an ultrametric implies that none of the pairwise 
distances between the points a, b, and c is greater than each of the other 
two. 

4 ·  Tx By 4 . Sx, if y E Sr (x) and r > s > 0 ,  then B8 (y) C Sr (x ) . 

4 .  Ux Let x - z = r1 p a1 and z - y = r2 p a2 where a1 < a2 . Then we S 1 82 ' -
have 

a1 ( r1 r2 a2-a1 ) a1 r1 s2 + r2s 1p
a2 -a1 

X - y = p - + -p = p ' 8 1 82 8 1 82 
whence p (x ,  y)  :S p-a1 = max{p(x , z ) , p (z ,  y ) } .  

5.A We must check that n A  satisfies the axioms of topological struc­
ture . Consider the first axiom. Let r c nA be a collection of sets in nA . 
We must prove that UuH u E nA . For each u E r ,  find Ux E n  such that 
U = A n Ux . This is possible due to the definition of DA . Transform the 
union under consideration: UuEr U = UuH (A n Ux ) = A n UuEr Ux . The 
union UuEr Ux belongs to n ( i .e . , is open in X) as the union of sets open in 
X. (Here we use the fact that n, being a topology on X, satisfies the first 
axiom of topological structure . )  Therefore , A n UuH Ux belongs to nA . 
Similarly we can check the second axiom. The third axiom: A = A n X ,  
and 0 = A n 0 . 

5.B Let us prove that a subset of  �1 i s  open in the relative topology 
iff it is open in the canonical topology. 
(=>) The intersection of an open disk with �1 is either an open interval 
or the empty set . Any open set in the plane is a union of open disks . 
Therefore , the intersection of any open set of the plane with �1 is a union 
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of open intervals . Thus , it is open in JR1 . 
( <= 1 Prove this part on your own. 

5. C t=-1 The complement A "  F i s  open in A,  i . e . , A "  F = A n U, 
where U i s  open in X .  What closed set cuts F on A? It  is  cut by X " U .  
Indeed, we have A n  (X " U) = A "  (A n U) = A "  (A " F) = F. 
( <=1 This is proved in a similar way. 

5. D No disk of IR2 is contained in R 
5.E If  A E 0 and B E  OA , then B = A n U,  where U E 0.  Therefore , 

B E 0 is the intersection of two sets ,  A and U, belonging to 0.  
5. F Follow the solution to the preceding Problem, 5.E, but use 5. C 

instead of the definition of the relative topology. 

5. G The core of the proof is the equality (U n A) n B = U n B.  It 
holds true because B c A, and we apply it to U E 0. When U runs 
through 0, the right-hand side of the equality (U n A) n B = U n B runs 
through nB , while the left-hand side runs through (OA )B ·  Indeed, elements 
of OB are intersections U n B with U E 0,  and elements of (OA )B  are 
intersections V n B with V E OA , but V, in turn, being an element of OA , 
is the intersection U n A with U E 0 .  

6.A The union of  all open sets contained in  A, firstly, i s  open (as a 
union of open sets ) , and , secondly, contains every open set that is contained 
in A ( i . e . , it is the greatest one among those sets ) . 

6.B Let x be an interior point of  A ( i . e . , there exists an open set Ux 
such that x E Ux C A) . Then Ux C Int A (because lnt A is the greatest open 
set contained in A) , whence x E Int A. Vice versa, if x E Int A, then the set 
Int A itself is a neighborhood of x contained in A. 

6. C t=-1 If  U i s  open, then U i s  the greatest open subset of U,  and 
hence coincides with the interior of U.  
(<=1 A set coinciding with its interior is open since the interior is open. 

6. D 

( 1 )  [0 , 1 ) is not open in the line , while (0 ,  1 )  is .  Therefore , Int [O ,  1 )  = 
(0 ,  1 ) .  

(2 )  Since any interval contains an irrational point ,  Ql contains no nonempty 
set open in the classical topology of R Therefore , lnt Ql = 0 .  

( 3 )  Since any interval contains rational points ,  lR "  Ql does not contain 
a nonempty set open in the classical topology of R Therefore , 
Int (IR "  Ql) = 0 .  

6.E The intersection of all closed sets containing A, firstly, is closed 
(as an intersection of closed sets ) , and , secondly, is contained in every closed 
set that contains A ( i . e . , it is the smallest one among those sets ) . Cf. the 
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proof of Theorem 6.A .  I n  general , properties of closure can b e  obtained 
from properties of interior by replacing unions with intersections and vice 
versa. 

6.F If x (j. Cl A, then there exists a closed set F such that F :J A and 
x (j. F, whence x E U = X "- F. Thus , x is not an adherent point for A. 
Prove the converse implication on your own, cf. 6.H. 

6. G Cf. the proof of Theorem 6. C. 

6. H The intersection of all closed sets containing A is the complement 
of the union of all open sets contained in X "- A. 

6.1 ( 1 )  The half-open interval [0 , 1 )  i s  not closed, and [0 , 1 ]  i s  closed; 
(2 )- (3 ) The exterior of each of the sets Q and lR "- Q is empty since each 
interval contains both rational and irrational numbers . 

6. J !=-l If b is an adherent point for A, then V c > 0 :J a E A n  Dc (b) , 
whence V c  > 0 :J a  E A :  p(a , b) < c . Thus , p(b , A) = 0 .  
!<=J This is an easy exercise. 

6.K If x E Fr A, then x E Cl A and x (j. Int A. Hence , firstly, each 
neighborhood of x meets A, secondly, no neighborhood of x is contained 
in A, and therefore each neighborhood of x meets X "- A. Thus , x is a 
boundary point of A. Prove the converse on your own. 

6.L Since Int A c A, it follows that Cl A = A iff Fr A c A. 
6.M !=-1  Argue by contradiction. A set A disjoint with an open set 

U is contained in the closed set X "- U. Therefore , if U is nonempty, then 
A is not everywhere dense. 
(<=) A set meeting each nonempty open set is contained in only one closed 
set : the entire space . Hence , its closure is the whole space , and this set is 
everywhere dense. 

6.N This is 6. !(2) . 
6. 0 The condition means that each neighborhood of each point con­

tains an exterior point of A. This , in turn, means that the exterior of A is 
everywhere dense. 

6. Q !=-1 This i s  Theorem 6.P. 
(<=) Hint : any point of Cl A "- A  is a limit point of A. 

7. F We need to check that the relation "a -< b or a = b" satisfies the 
three conditions from the definition of a nonstrict order . Doing this , we 
can use only the fact that -< satisfies the conditions from the definition of 
a strict order . Let us check the transitivity. Suppose that a :::::; b and b :::::; c. 
This means that either 1) a -< b -< c, or 2) a =  b -<  c, or 3) a -< b = c, or 4) 
a =  b = c. 
1 )  In this case, a -< c by transitivity of -< ,  and so a :::::; c. 2)  We have a -< c, 
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whence a :::5 c. 3) We have a -< c, whence a :::5 c. 4) Finally, a =  c, whence 
a :::5 c . Other conditions are checked similarly. 

7.1 Assertion ( 1 )  follows from transitivity of the order . Indeed, consider 
an arbitrary element c E Ck (b) . By the definition of a cone , b :::5 c, while 
the condition b E Ck (a) means that a :::5 b. By transitivity, this implies that 
a :::5 c, i . e . , c E Ck (a) . We have thus proved that each element of Ck (b) 
belongs to Ck (a) . Hence , Ck (b) C Ck (a) , as required . 
Assertion (2 )  follows from the definition of a cone and the reflexivity of 
order . Indeed, by definition, Ck (a) consists of all b such that a :::5 b, and,  
by reflexivity of order , a :::5 a .  
Assertion (3 )  follows similarly from the antisymmetry : the assumption 
Ck (a) = Ck (b) together with assertion (2 )  implies that a :::5 b and b :::5 a ,  
which together with antisymmetry implies that a =  b . 

7. J By Theorem 7. !, cones in a poset have the properties that form 
the hypothesis of the theorem to be proved. When proving Theorem 7. 1, 
we showed that these properties follow from the corresponding conditions 
in the definition of a partial nonstrict order. In fact , they are equivalent to 
these conditions . Permuting words in the proof of Theorem 7. !, we obtain 
a proof of Theorem 7. J. 

7. 0 By Theorem 3. B, it suffices to prove that the intersection of any 
two right rays is a union of right rays . Let a ,  b E X .  Since the order is 
linear , either a -< b, or b -< a . Let a -< b. Then 

{x E X  I a -<  x} n {x E X  I b -<  x } = {x E X  I b -<  x} . 

7.R By Theorem 3. C, it suffices to prove that each element of the inter­
section of two cones , say, Ck (a) and Ck (b) , is contained in the intersection 
together with a whole cone of the same kind. Assume that c E Ck (a) nCk (b) 
and d E  Ck (c) . Then a :::5 c :::5 d and b :::5 c :::5 d, whence a :::5 d and b :::5 d. 
Therefore ,  d E  Ck (a) n Ck (b) . Hence , Ck (c) c Ck (a) n Ck (b) . 

7. T Equivalence of the second and third properties follows from the 
De Morgan formulas , as in 2. F. Let us prove that the first property implies 
the second one . Consider the intersection of an arbitrary collection of open 
sets .  For each of its points ,  every set in this collection is a neighborhood.  
Therefore , its smallest neighborhood is contained in each of the sets to be 
intersected. Hence , the smallest neighborhood of the point is contained 
in the intersection , which we denote by U. Thus, each point of U lies in U 
together with its neighborhood. Since U is the union of these neighborhoods, 
it is open. 

Now let us prove that if the intersection of any collection of open sets is 
open, then any point has a smallest neighborhood.  Where can one get such a 
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neighborhood from? How to construct it? Take all neighborhoods of a point 
x and consider their intersection U.  By assumption, U is open. It contains 
x .  Therefore , U is a neighborhood of x. This neighborhood, being the 
intersection of all neighborhoods, is contained in each of the neighborhoods . 
Thus , U is the smallest neighborhood. 

7. V The minimal base of this topology consists of singletons of the form 
{2k - 1 }  with k E Z and three-element sets of the form {2k - 1 , 2k ,  2k + 1 } ,  
where again k E Z. 





Chapter II 

Continuity 

9 .  S et- Theoretic Digression: Maps 

f9' 1J Maps and Main Classes of Maps 

A map f of a set X to a set Y is a triple consisting of X, Y, and a rule , 1 
which assigns to every element of X exactly one element of Y. There are 
other words with the same meaning : mapping , function, etc .  (Special kinds 
of maps may have special names like functional , operator, etc . )  

I f  f i s  a map o f  X to Y,  then we write f : X � Y, o r  X L Y. The 
element b of Y assigned by f to an element a of X is denoted by f (a ) and 
called the image of a under j ,  or the f- image of a. We write b = f (a) , or 

a L b, or f : a f---+ b. We also define maps by formulas like f : X � Y : a f---+ b, 
where b is explicitly expressed in terms of a .  

A map f : X � Y i s  a surjective map, or just a surjection i f  every element 
of Y is the image of at least one element of X.  (We also say that f is onto . )  
A map f : X � Y i s  an injective map, injection, or  one-to-one map i f  every 
element of Y is the image of at most one element of X.  A map is a bijective 
map, bijection, or invertible map if it is both surjective and injective . 

1Certainly, the rule (as everything in set theory) may be thought of as a set. Namely, we 
consider the set of the ordered pairs (x, y) with x E X and y E Y such that the rule assigns y to 
x. This is the graph of f. It is a subset of X x Y. (Recall that X x Y is the set of all ordered 
pairs (x, y) with x E X and y E Y. )  

-
55 
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f9'2J Image and Preimage 

The image of a set A C X under a map f : X ---t Y is the set of images 
of all points of A. It is denoted by f (A) . Thus , we have 

f (A) = {f (x) I x E A} .  

The image o f  the entire set X ( i . e . , the set f (X) )  i s  the image of  f .  I t  is 
denoted by Im f .  

The preimage of  a set B c Y under a map f : X ---t Y i s  the set of 
elements of X with images in B. It is denoted by f- 1 (B) . Thus , we have 

f-1 (B) = {a E X  I f (a) E B} .  

B e  careful with these terms : their etymology can b e  misleading . For 
example , the image of the preimage of a set B can differ from B,  and even if 
it does not differ, it may happen that the preimage is not the only set with 
this property. Hence , the preimage cannot be defined as a set whose image 
is the given set . 

9. A .  We have J (f- 1 (B) ) c B for any map f :  X ---t Y and any B c Y.  

9 .B .  J (J-1 (B) ) = B iff  B c Im f .  

9. C. Let f :  X ---t Y be a map , and let B c Y be such that J (J- 1 (B) )  = B . 
Then the following statements are equivalent : 

( 1 )  f- 1 (B) is the unique subset of X whose image equals B;  
( 2 )  for any a1 , a2 E f- 1 (B) , the equality f(ai ) = j (a2 ) implies a1 = a2 . 

9.D.  A map f : X ---t Y is an injection iff for each B C Y such that 
J (J- 1 (B) )  = B the preimage f- 1 (B) is the unique subset of X with image 
equal to B.  

9.E. We have f- 1 (f (A) ) :::) A for any map f :  X ---t Y and any A c X.  

9.F. f-1 (f (A) ) = A  i ff  j (A) n f(X '- A) =  0 .  

9. 1 .  D o  the following equalities hold true for any A ,  B C Y and f :  X --+  Y :  
r1 (A U B) = r 1 (A) U r 1 (B) , ( 10) 

r1 (A n B) = r 1 (A) n r1 (B) , ( 1 1 )  
r 1 (Y -..... A) = X -..... r1 (A) ? ( 12)  

9.2 .  Do the following equalities hold true for any A, B C X and f : X  --+ Y:  
f(A U B) = f (A)  U f (B) , 
f (A n B) = f (A) n f(B) , 
f (X -..... A) = Y -..... f (A)?  

9. 3. Give examples in which two of  the above equalities ( 13)-( 1 5) are false. 

( 13) 
( 14) 

( 15) 
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9.4 .  Replace false equalities o f  9. 2 by correct inclusions . 

9. 5. Riddle. What simple condition on f : X --> Y should be imposed in order 
to make all equalities of 9. 2 correct for any A, B C X? 

9. 6. Prove that for any map f :  X -->  Y and any subsets A C X and B C Y we 
have: 

B n f (A) = f (r 1 (B) n A) . 

19'3 J Identity and Inclusion 

The identity '!'ap of a set X is the map idx : X -+ X : x f--t x. It is 
denoted just by id if there is no ambiguity. If A is a subset of X, then the 
map inA : A -+ X : x f--t x is the inclusion map , or just inclusion, of A 
into X.  It is denoted just by in when A and X are clear . 

9. G.  The preimage of a set B under the inclusion in : A -+ X is B n A. 

-9 ,4 J Composition 

The composition of maps f X -+ Y and g Y -+ Z is the map 
g o f :  X -+  Z :  x f--t g (f(x) ) . 

9. H A ssociativity of Composition. We have h o (g o f) = (h o g) o f  for 
any maps f : X -+ Y ,  g : Y -+ Z ,  and h : Z -+ U. 

9.1. We have f o idx = f = idy of for any f :  X -+  Y .  

9. J. A composition o f  injections i s  injective . 

9.K. If the composition g o  f is injective , then so is f .  

9.L .  A composition of  surjections i s  surjective . 

9.M. If the composition g o  f is surjective , then so is g .  

9. N. A composition o f  bijections i s  a bijection . 

9. 7. Let a composition 9 o f be bijective . Is then f or g necessarily bijective? 

-9'5 J Inverse and Invertible 

A map g : Y -+ X is inverse to a map f : X -+ Y if g o f = idx and 
f o g = idy . A map having an inverse map is invertible . 

9. 0. A map is invertible iff it is a bijection . 

9.P. If an inverse map exists , then it is unique . 
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f9'6 J Submaps 

If A C X and B C Y, then for every f :  X ---? Y such that f (A) C B we 
have a map ab (f)  : A ---? B : x � f (x) , which is called the abbreviation of 
f to A and B, a submap, or a submapping . If B = Y, then ab(f )  : A ---? Y 
is denoted by f lA and called the restriction of f to A. If B i= Y ,  then 
ab (f)  : A ---? B is denoted by f iA ,B or even simply f I · 
9. Q. The restriction of a map f : X ---? Y to A C X is the composition of 
the inclusion in : A ---? X and f .  In other words, ! l A  = f o in. 

9.R .  Any submap (in particular , any restriction) of an injection is injective . 

9. 8. If a map possesses a surjective restriction, then it is surjective . 
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1 0 .  C ontinuous Maps 

flO'l J Definition and Main Properties of Continuous Maps 

Let X and Y be two topological spaces . A map f : X .- Y is continuous 
if the preimage of each open subset of Y is an open subset of X.  

1 0. A .  A map is continuous iff the preimage of each closed set is closed. 

1 0.B .  The identity map of any topological space is continuous. 

1 (}. C. Any constant map (i . e . , a map with one-point image ) is continuous . 

1 0. 1 .  Let n1 and n2 be two topological structures in a space X .  Prove that the 
identity map 

id : (X, f h )  -> (X, n2 ) 
is continuous iff n2 c nl . 

1 0. 2. Let f : X -> Y be a continuous map .  Find out whether or not it is 
continuous with respect to 

( 1 )  a finer topology on X and the same topology on Y ,  
(2)  a coarser topology on  X and the same topology on  Y ,  
( 3 )  a finer topology on  Y and the same topology on  X ,  
( 4 )  a coarser topology o n  Y and the same topology o n  X .  

1 0. 3. Let X be  a discrete space, Y an arbitrary space . 1 )  Which maps X ->  Y 
are continuous? 2) Which maps Y -> X are continuous for each topology on Y? 

1 0. 4 .  Let X be an indiscrete space , Y an arbitrary space. 2 )  Which maps Y ->  X 
are continuous? 1 )  Which maps X ->  Y are continuous for each topology on Y? 

1 0.D.  Let A be a subspace of X. The inclusion in : A .- X is continuous. 

1 0.E. The topology nA induced on A c X by the topology of X is the 
coarsest topology on A with respect to which the inclusion in : A .- X is 
continuous. 

1 0. 5. Riddle. The statement J O. E  admits a natural generalization with the 
inclusion map replaced by an arbitrary map f : A -> X of an arbitrary set A. 
Find this generalization. 

1 0. F. A composition of continuous maps is continuous. 

1 0. G. A submap of a continuous map is continuous. 

1 0.H. A map f :  X .- Y is continuous iff ab (J) : X .- f (X)  is continuous . 
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j10'2 J Reformulations of Definition 

1 0. 6. Prove that a map f :  X ----> Y is continuous iff 

c1 r 1 (A) c r 1 (C1 A) 

for each A C Y. 

1 0. 7. Formulate and prove similar criteria of continuity in terms of Int f- 1 (A) 
and r 1 (Int A) . Do the same for Cl f(A) and f(Cl A) . 

1 0. 8. Let � be a base for the topology on Y. Prove that a map f : X ----> Y is 
continuous iff f- 1 (U) is open for each U E � . 

j10'3 J More Examples 

1 0. 9. Consider the map 

f :  (0 , 2] ----> (0 , 2] : f(x) = {x 
3 - x  

if X E (0 , 1 ) ,  

if x E ( 1 , 2] . 

Is it continuous (with respect to the topology induced from the real line)?  

1 0. 1 0. Consider the map f from the segment (0 ,  2 ]  (with the relative topology 
induced by the topology of the real line) into the arrow (see Section 2) defined by 
the formula 

f(x) = {x 
x + 1 

Is it continuous? 

if X E (0, 1 ] , 

if X E ( 1 , 2] . 

1 0. 1 1 .  Give an explicit characterization of continuous maps of 1Rr1 (see Section 2) 
to JR. 

1 0. 12 .  Which maps 1Rr1 ----> 1Rr1 are continuous? 

1 0. 1 3. Give an explicit characterization of continuous maps of the arrow to itself. 

1 0. 11, .  Let f be a map of the set Z + of nonnegative numbers to lR defined by the 
formula 

• 

f(x) = { �/x if X =/= 0 ,  

if X =  0 .  

Let g :  Z+  ----> f(Z + )  be the submap o f  f .  Induce a topology on  Z+  and f(Z + )  
from JR. Are f and the map g- 1 inverse to g continuous? 

j10'4J Behavior of Dense Sets Under Continuous Maps 

1 0. 1 5. Prove that the image of an everywhere dense set under a surjective con­
tinuous map is everywhere dense . 

1 0. 1 6. Is it true that the image of a nowhere dense set under a continuous map 
is nowhere dense? 

1 0. 1 7*. Do there exist a nowhere dense subset A of (0 , 1] (with the topology 
induced from the real line) and a continuous map f : (0, 1 ] ----> (0 , 1] such that 
f(A) = (0 ,  1 ] ?  
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r10'5 J Local Continuity 

A map f from a topological space X to a topological space Y is contin­
uous at a point a E X if for every neighborhood V of f (a) the point a has a 
neighborhood U such that f (U) c V. 

1 0.1. A map f : X ----+ Y i s  continuous iff it i s  continuous at each point of 
X .  

1 O. J. Let X and Y be two metric spaces. A map f : X ----+ Y is continuous 
at a point a E X iff each ball centered at f (a) contains the image of a ball 
centered at a .  

1 O .K. Let X and Y b e  two metric spaces. A map f : X ----+ Y is continuous 
at a point a E X iff for every c > 0 there exists 6 > 0 such that for every 
point x E X  the inequality p(x ,  a) < 6 implies p (f (x ) , f (a) )  < E .  

Theorem 1 O.K means that the definition o f  continuity usually studied 
in Calculus , when applicable , is equivalent to the above definition stated in 
terms of topological structures . 

r10'6 J Properties of Continuous Functions 

1 0. 1 8. Let j, g : X  -> JR.  be two continuous functions . Prove that the functions 
X -> JR. defined by the formulas 

are continuous . 

x �-->j(x)  + g(x) , 

x �-->j (x)g(x) , 

x �-->j (x) - g (x) , 

x �-> I J (x) l , 
x ,...... max{f(x) , g (x) } ,  

x �--> min{f(x) , g (x) } 

1 0. 1 9. Prove that if 0 fJ. g(X) , then the function 

X ->  JR. : x ,...... 
f (x) 
g (x) 

is also continuous . 

( 1 6) 

( 1 7) 

( 18) 

( 19) 
(20) 

( 2 1 )  

1 0. 20. Find a sequence of continuous functions f; : JR. -> JR., ( i E N) , such that 
the function 

JR. -> JR. :  x ,...... sup{ j; (x) I i E N } 

is not continuous . 

1 0. 2 1 .  Let X be a topological space. Prove that a function f : X ->  .IR.n : x ,...... 
(h (x) , . . .  , fn (x) ) is continuous iff so are all functions j; : X -> JR. with i = 1 ,  . . .  , n .  

Real p x q matrices form a space M at(p x q,  JR.) , which differs from JR.Pq only 
in the way its natural coordinates are numbered (they are numbered by pairs of 
indices) . 



62 II. Continuity 

1 0. 22. Let f :  X --+  Mat(p x q , R) and g :  X --+  Mat(q x r, R) be two continuous 
maps. Prove that the map 

X --+  Mat(p x r, R) : x >--> g(x) f (x) 
is also continuous . 

Recall that GL(n; R) is the subspace of Mat(n x n, R) consisting of all invert­
ible matrices . 

1 0. 23. Let f :  X --+  GL(n; R) be a continuous map. Prove that X --+  GL(n; R) : 
x >--> (f (x) ) - 1 is also continuous. 

110'7 J Continuity of Distances 

1 O.L .  For every subset A of a metric space X, the function X --t lR : x f-.-+ 

p(x ,  A) (see Section 4) is continuous. 

1 0. 24 . Prove that the metric topology of a metric space X is the coarsest topology 
with respect to which the function X --+ R : x >--> p(x, A) is continuous for every 
A e X. 

I10'8J Isometry 

A map f of a metric space X to a metric space Y is an isometric em­
bedding if p (J (a) , f (b) ) = p(a ,  b) for any a, b E X. A bijective isometric 
embedding is an isometry .  

1 O. M. Every isometric embedding i s  injective . 

1 O.N. Every isometric embedding is continuous . 

110'9 J Contractive Maps 

A map f :  X --+  X of a metric space X is contractive if there exists a E (0 ,  1 )  
such that p (f (a) , f(b ) )  :S ap(a, b) for any a , b E X . 
1 0. 25. Prove that every contractive map is continuous. 

Let X and Y be two metric spaces . A map f : X --+ Y is a Holder map if 
there exist C > 0 and a >  0 such that p (f (a) , f (b) ) :S Cp(a, b)"' for any a,  b E  X .  

1 0. 26. Prove that every Holder map i s  continuous . 

110' 10  J Sets Defined by Systems of Equations and Inequalities 

1 0. 0. Let fl , . . .  , fn : X --t lR be continuous functions . Then the subset of 
X formed by solutions to the system of equations 

fl (x) = · · · = fn (x) = 0 

is closed. 
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1 0. P. Let JI , . . .  , fn : X --t lR be continuous functions . Then the subset of 
X formed by solutions to the system of inequalities 

fi (x) � 0, . . . Jn (x) � 0 
is closed, while the set of solutions to the system of inequalities 

JI (x) > 0 ,  . . . , fn (x) > 0 
is open. 

1 0. 27. Where in 1 0. 0  and l O. P  can a finite system be replaced by an infinite 
one? 

1 0. 28. Prove that in �n (n 2: 1) every proper algebraic set ( i .e . , a set defined by 
algebraic equations) is nowhere dense . 

I10' 1 1J Set-Theoretic Digression: Covers 

A collection r of subsets of a set X is a cover or a covering of X if X is 
the union of sets in r, i . e . ,  X = UAEr A. In this case , elements of r cover 
X .  

These words also have a more general meaning . A collection r o f  subsets 
of a set Y is a cover or a covering of a set X c Y if X is contained in the 
union of the sets in r, i . e . , X c UAEr A. In this case , the sets in r are also 
said to cover X .  

110' 12  J Fundamental Covers 

Consider a cover r of a topological space X .  Each element of r inherits a 
topological structure from X .  When do these structures uniquely determine 
the topology of X? In particular , what conditions on r ensure that the 
continuity of a map f : X --t Y follows from the continuity of its restrictions 
to elements of r? To answer these questions , solve Problems 1 0. 29-10. 30 
and 1 0. Q-10. V. 

1 0. 29. Find out whether or not this is true for the following covers : 

( 1 )  X = [0 , 2) , and r = { [0 ,  1 ) , ( 1 ,  2) } ; 
(2 )  X = [0 , 2) , and r = { [0 ,  1) , [ 1 ,  2) } ;  
(3) X = �' and r = {Q, � -..... Q} ;  
(4 )  X = �' and r i s  the set of  all one-point subsets of  R 

A cover r of a space X is fundamental if: a set U c X is open iff for 
every A E r the set U n A  is open in A .  

1 0. Q. A cover r of a space X i s  fundamental iff: a set U c X i s  open, 
provided U n A is open in A for every A E r .  

1 0.R .  A cover r o f  a space X i s  fundamental iff: a set F c X i s  closed, 
provided that F n A is closed in A for every A E r. 
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1 0. 30. The cover of a topological space by singletons is fundamental iff the space 
is discrete. 

A cover of a topological space is open (respectively, closed) if it consists 
of open (respectively, closed) sets .  A cover of a topological space is locally 
finite if every point of the space has a neighborhood meeting only a finite 
number of elements of the cover . 

1 0. 8. Every open cover is fundamental. 

1 0. T. A finite closed cover is fundamental. 

1 0. U. Every locally finite closed cover is fundamental .  

1 0. V. Let r be a fundamental cover of a topological space X ,  and let f : 
X --> Y be a map .  If the restriction of f to each element of r is continuous, 
then so is f .  

A cover r' is a refinement of a cover r if every element of r' is contained in 
an element of r. 

1 0. 31 .  Prove that if a cover r' is a refinement of a cover r and r' is fundamental , 
then so is r .  

1 0. 32. Let b. be  a fundamental cover o f  a topological space X,  and let r be a 
cover of X such that r A = { U n A I U E r } is a fundamental cover for the 
subspace A c X for every A E b.. Prove that r is a fundamental cover of X.  

1 0. 33. Prove that the property o f  being fundamental i s  local, i .e . ,  i f  every point 
of a space X has a neighborhood v such that rv = { u n v I u E r }  is a 
fundamental cover of V ,  then r is fundamental. 

rto' 13x J Monotone Maps 

Let (X, -< )  and (Y, -<) be two posets . A map f :  X -->  Y is 

• ( non-strictly ) monotonically increasing or just monotone if 
f (a) :::5 f (b) for any a, b E  X with a :::5 b; 

• ( non-strictly ) monotonically decreasing or anti monotone if 
f (b) :::5 f (a) for any a, b E  X with a :::5 b; 

• strictly monotonically increasing or just strictly monotone if 
f (a) -< f (b) for any a ,  b E  X with a -< b; 

• strictly monotonically decreasing or strictly antimonotone if 
f (b) -< f (a) for any a, b E  X with a -< b . 

1 0. Wx . Let X and Y be two linearly ordered sets . Then any surjective 
strictly monotone or antimonotone map X --> Y is continuous with respect 
to the interval topology on X and Y .  
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1 0. 34x .  Show that the surjectivity condition in 1 0. Wx is needed . 

1 0. 35x .  Is it possible to remove the word strictly from the hypothesis of Theo­
rem 1 0. Wx? 

1 0. 36x .  In the assumptions of Theorem 1 0. Wx, is f continuous with respect to 
the right-ray or left-ray topologies? 

1 O. Xx .  A map f : X � Y of a poset to a poset is monotone increasing iff 
it is continuous with respect to the poset topologies on X and Y .  

f10'14x J Gromov-Hausdorff Distance 

1 0. 37x .  For any metric spaces X and Y ,  there exists a metric space Z such that 
X and Y can be isometrically embedded in Z .  

Isometrically embedding two metric space in  a single one , we can consider the 
Hausdorff distance between their images (see Section 4' 15x) . The infimum of such 
Hausdorff distances over all pairs of isometric embeddings of metric spaces X and 
Y in metric spaces is the Gromov-Hausdorff distance between X and Y .  

1 0. 38x . Do there exist metric spaces with infinite Gromov-Hausdorff distance? 

1 0. 39x .  Prove that the Gromov-Hausdorff distance is symmetric and satisfies the 
triangle inequality. 

1 0. 40x.  Riddle. In what sense can the Gromov-Hausdorff distance satisfy the 
first axiom of metric? 

f 10' 15x J Functions on the Cantor Set and Square-Filling Curves 

Recall that the Cantor set K is the set of real numbers that are presented as 
sums of series of the form I:;�=1 an/3n with an E {0 ,  2 } .  

1 0. 4 1x .  Consider the map 

(X) an 1 00 an /1 : K -t [0 , 1] : L 3n ,__. 2 L 2n . 
n=l n= l 

Prove that 11 is a continuous surjection . Sketch the graph of 11 . 

1 0.42x .  Prove that the function 

is continuous. 

Denote by K2 the set { (x , y) E IR2 1 x E K, y E K} . 

1 0. 43x .  Prove that the map 

is a continuous surjection. 

The unit segment [0 , 1 ]  is denoted by I ,  while the set 

{ (x 1 , . . . , xn ) C IRn I 0 � Xi �  1 for each i} 

is denoted by In and called the (unit) n-cube . 
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1 0.44x . Prove that the map ')'3 : K ---> I2 defined as the composition of 1'2 : K ---> 
K2 and K2 ---> I2 : ( x, y) >--+ (1'1 ( x) , ')'1 (y) ) is a continuous surjection . 

1 0. 45x .  Prove that the map ')'3 : K ---> I2 is a restriction of a continuous map . 
(Cf. 2. Jx. 2. ) 

The latter map is a continuous surjection I ---> I2 . Thus , this is a curve 
filling the square . A curve with this property was first constructed by G. Peano in 
1890. Though the construction sketched above involves the same ideas as Peano's 
original construction , the two constructions are slightly different . A lot of other 
similar examples have been found since then. You may find a nice survey of them 
in Hans Sagan's book Space-Filling Curves , Springer-Verlag 1994 . Here is a sketch 
of Hilbert 's construction . 

1 0. 46x .  Prove that there exists a sequence of polygonal maps fn : I ---> I2 such 
that 

( 1 )  fn connects all centers of the 4n equal squares with side 1/2n forming 
an obvious subdivision of I2 ; 

(2 )  we have dist (fn (x) , fn- 1 (x) ) :::; .../2/2n+ 1 for any x E I (here , dist de­
notes the metric induced on I2 by the standard Euclidean metric of 
JR2 ) . 

1 0.4 7x.  Prove that any sequence of paths fn : I ---> I2 satisfying the conditions 
of 1 0. 4 6x converges to a map f : I ---> I2 ( i .e . , for any x E I there exists a limit 
f (x) = limn--+oo fn (x) ) ,  this map is continuous , and its image f(I) is dense in I2 • 
1 0.48x . 2 Prove that any continuous map I ---> I2 with dense image is surjective. 

1 0.49x .  Generalize 10. 43x - 10. 48x to obtain a continuous surjection of I onto In . 

2 Although this problem can be solved by using theorems that are well known from Calculus , 
we have to mention that it would be more appropriate to solve it after Section 1 7 .  Cf. Prob­
lems 1 7. ?, 1 7. U, and 1 7. K. 
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1 1 .  Homeomorphisms 

f l l' l  J Definition and Main Properties of Homeomorphisms 

An invertible map f : X -+ Y is a homeomorphism if both this map and 
its inverse are continuous . 

1 1 . A .  Find an example of a continuous bij ection which is not a homeomor­
phism. 

1 1 .B .  Find a continuous bij ection [0 , 1 )  -+ 81 which is not a homeomor­
phism. 

1 1 .  C. The identity map of a topological space is a homeomorphism. 

1 1 .D.  A composition of homeomorphisms is a homeomorphism. 

1 1 . E. The inverse of a homeomorphism is a homeomorphism. 

f1 1'2J Homeomorphic Spaces 

A topological space X is homeomorphic to a space Y if there exists a 
homeomorphism X -+ Y.  

1 1 . F. Being homeomorphic is an equivalence relation. 

1 1 . 1 .  Ridd le. How is Theorem 1 1 . F  related to 1 1 . C- 1 1 .E? 

f1 1'3J Role of  Homeomorphisms 

1 1 .  G. Let f : X -+ Y be a homeomorphism. Then U c X is open (in X) 
iff  f (U) i s  open (in Y) . 

1 1 . H. A map f : X -+ Y is a homeomorphism iff f is a bijection and 
determines a bijection between the topological structures of X and Y .  

1 1 .  I. Let f : X -+ Y be a homeomorphism. Then for every A c X 

( 1 )  A is closed in X iff f (A) is closed in Y ;  
(2 )  f (Cl A) = Cl(f (A) ) ;  
(3) f (Int A) = Int (f (A) ) ;  
(4) f (Fr A) = Fr (f (A) ) ;  
(5 )  A is a neighborhood of a point x E X iff f (A) is a neighborhood of 

the point f (x) ; 
(6) etc. 
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Therefore , homeomorphic spaces are completely identical from the topo­
logical point of view: a homeomorphism X ---+ Y establishes a one-to-one 
correspondence between all phenomena in X and Y that can be expressed 
in terms of topological structures . 3 

f1 1'4J More Examples of Homeomorphisms 

1 1 . J. Let f : X ---+ Y be a homeomorphism. Prove that for every A C X 
the submap ab (f ) : A ---+ f (A) is also a homeomorphism. 

1 1 . K. Prove that every isometry (see Section 10) is a homeomorphism. 

1 1 .  L .  Prove that every nondegenerate affine transformation of :!Rn is a home­
omorphism. 

1 1 . M. Let X and Y be two linearly ordered sets .  Any strictly monotone 
surjection f : X ---+ Y is a homeomorphism with respect to the interval 
topological structures in X and Y .  
1 1 .N Corol lary. Any strictly monotone surjection f [a, b] ---+ [c, d] is a 
homeomorphism. 

1 1 .2 .  Let R be a positive real . Prove that the inversion 

is a homeomorphism. 

T!]) n n Rx 
r : JA.  '-. 0 ---> IR. '-. O : x f-> w 

1 1 . 3. Let 1-l = {z E C I Im z > 0} be the upper half-plane , let a, b , c, d  E JR., and 

let � �  !I > 0. Prove that 

is a homeomorphism. 

az + b f : 'H ---> 1-l : z f---> -­cz + d 

1 1 .4 .  Let f : JR. ---> JR. be a bijection . Prove that f is a homeomorphism iff f is a 
monotone function. 

1 1 .  5. 1) Prove that every bijection of an indiscrete space onto itself is a homeo­
morphism. Prove the same 2) for a discrete space and 3) RT1 • 

1 1 . 6. Find all homeomorphisms of the space 'v (see Section 2) to itself. 

1 1 .  7. Prove that every continuous bijection of the arrow onto itself is a homeo­
morphism. 

3This phenomenon was used as a basis for defining the subject of topology in the first stages 
of its development , when the notion of topological space had not yet been developed. At that 
time, mathematicians studied only subspaces of Euclidean spaces , their continuous maps , and 
homeomorphisms. Felix Klein, in his famous Erlangen Program, classified various geometries that 
had emerged up to that time, like Euclidean , Lobachevsky, affine, and projective geometries , and 
defined topology as a part of geometry that deals with properties preserved by homeomorphisms . 
In fact, it was not assumed to be a program in the sense of something being planned, although 
it became a kind of program. It was a sort of dissertation presented by Klein for receiving a 
professor position at the Erlangen University. 
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1 1 . 8. Find two homeomorphic spaces X and Y and a continuous bijection X -->  Y 
which is not a homeomorphism. 

1 1 . 9. Is "(2 : K -->  K2 considered in Problem 1 0. 43x a homeomorphism? Recall 
that K is the Cantor set , K2 = { (x , y) E n�?  I X E K, y E K} ,  and "(2 is defined by 

f1 1'5J Examples of Homeomorphic Spaces 

Below the homeomorphism relation is denoted by �- This notation is 
not commonly accepted . In other textbooks , you may see any sign close to , 
but distinct from = , e .g . , "' , c:::= , � .  etc .  

1 1 .  0. Prove that 

( 1 )  [0 , 1 ]  � [a, b] for any a <  b ;  
(2 )  [0, 1 )  � [a, b) � (0 ,  1 ]  � (a ,  b ]  for any a <  b; 
(3) (0, 1) � (a ,  b) for any a <  b; 
(4) (- 1 , 1 ) � IR; 
(5 )  [0, 1 )  � [O, +oo) and (0 , 1 )  � (O , +oo) .  

X 1 

1 1 .P. Let N = (0 ,  1 )  E 81 be the North Pole of the unit circle . Prove that 
Sl " N  � JRl . 

1 1 . Q. The graph of a continuous real-valued function defined on an interval 
is homeomorphic to the interval . 
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1 1 . R .  sn -...... point � :!Rn . (The first space is the "punctured sphere" . ) 
Here , and sometimes below, our notation is slightly incorrect : in the curly 

brackets , we drop the initial part " (x ,  y) E ll�? I " . 

1 1 . 1 0. Prove that the following plane domains are homeomorphic. 

( 1 )  The whole plane 1�? ;  
(2)  open square Int !2 = { x ,  y E (0 ,  1 )  } ;  
(3) open strip { x E (0 ,  1 )  } ; 
(4) open upper half-plane 1i = { y > 0 } ; 
(5 )  open half-strip { x > 0, y E (0 ,  1 )  } ;  
( 6 )  open disk B2 = { x2 + y2 < 1 } ; 
(7) open rectangle { a < x < b , c < y < d } ; 
(8) open quadrant { x, y > 0 } ; 
(9) open angle { x > y > 0 } ; 

( 10 )  { y2 + l x l > x } ,  i . e . , the plane without the ray { y = 0 :::; x } ; 
( 1 1 ) open half-disk { x2 + y2 < 1 ,  y > 0 } ; 
( 12 )  open sector { x2 + y2 < 1 ,  x > y > 0 } .  

1 1 . 8. Prove that 

( 1 )  the closed disk D2 is homeomorphic to the square /2 = { (x ,  y) E 
JR2 1 x , y E [0 , 1] } ;  

(2 )  the open disk B2 = { (x, y) E JR2 I x2 + y2 < 1 }  is homeomorphic 
to the open square Int 12 = { (x , y) E JR2 I x , y E (0 ,  1 )  } ;  

(3) the circle 81 is homeomorphic t o  the boundary 8!2 = !2 -...... Int !2 
of the square . 

1 1 .  T. Let b. c JR2 be a planar bounded closed convex set with nonempty 
interior U. Prove that 

( 1 )  b. is homeomorphic to the closed disk D2 ; 
(2) U is homeomorphic to the open disk B2 ; 
(3) Fr b. =  Fr U is homeomorphic to 81 . 

1 1 . 1 1 .  In which of the assertions in 1 1 .  T can we omit the assumption that the 
closed convex set � is bounded? 

1 1 . 1 2. Classify up to homeomorphism all (nonempty) closed convex sets in the 
plane. (Make a list without repeats; prove that every such set is homeomorphic 
to a set in the list ; postpone the proof of nonexistence of homeomorphisms till 
Section 1 2 . )  

1 1 . 1 3 *. Generalize the previous three problems to  the case o f  sets in  Rn with 
arbitrary n .  

The latter four problems show that angles are not essential in topology, 
i . e . ,  for a line or the boundary of a domain the property of having angles 
is not preserved by homeomorphism. Here are two more problems in this 
direction. 
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1 1 . 14 .  Prove that every simple ( i .e . , without self-intersections) closed polygon 
in R2 (as well as in Rn with n > 2) is homeomorphic to the circle 81 . 
1 1 . 1 5. Prove that every nonclosed simple finite unit polyline in R2 (as well as 
in Rn with n > 2) is homeomorphic to the segment (0, 1 ] . 

The following problem generalizes the technique used in the previous two 
problems and is actually used more often than it may seem at first glance . 

1 1 . 1 6. Let X and Y be two topological spaces equipped with fundamental covers : 
X = U, X, and Y = U, Y, . Suppose that f : X ---+ Y is a map such that 
f (X, ) = Y, for each a and the submap ab (f)  : X, ---+ Y, is a homeomorphism. 
Then f is a homeomorphism. 

1 1 . 1 7. Prove that R2 " { l x l , IY I > 1 }  � 12 " {x, y E {0, 1} }. (An "infinite cross" 
is homeomorphic to a square without vertices . ) 

1 1 . 1 8 *. A nonempty set E C R2 is "star-shaped with respect to a point c" if E 
is a union of segments (and rays ) with an endpoint at c. Prove that if E is open, 
then E � B2 . (What can you say about a closed star-shaped set with nonempty 
interior? ) 
1 1 . 1 9. Prove that the following plane figures are homeomorphic to each other . 
(See 1 1 . 1 0  for our agreement about notation. ) 

( 1 )  A half-plane : { x ?:  0 } ;  
( 2 )  a quadrant : { x ,  y ?: 0 } ;  
(3) an angle : { x ?: y ?: 0 } ;  
(4) a semi-open strip: { y E (0 , 1 )  } ;  
(5)  a square without three sides : { 0 < x < 1 ,  0 :::; y < 1 } ;  
(6) a square without two sides : { 0 :::; x ,  y < 1 } ;  
(7) a square without a side: { 0 :::; x :::; 1 ,  0 :::; y < 1 } ;  
(8) a square without a vertex : { 0 :::; x ,  y :::; 1 } "  ( 1 ,  1 ) ;  
(9) a disk without a boundary point : { x2 + y2 :::; 1 ,  y =f. 1 } ;  

( 10) a half-disk without the diameter : { x2 + y2 :::; 1 ,  y > 0 } ;  
( 1 1 )  a disk without a radius : { x2 + y2 :::; 1 } "  (0 , 1] ; 
( 12) a square without a half of the diagonal : { l x l + I Y I  :::; 1 } " (0, 1 ] . 

1 1 . 20. Prove that the following plane domains are homeomorphic to each other: 

( 1 )  punctured plane R2 " (0, 0) ; 
(2) punctured open disk B2 " (0 ,  0) = { 0 < x2 + y2 < 1 } ;  
(3) annulus { a  < x2 + y2 < b } ,  where 0 < a < b; 
(4) plane without a disk : R2 " D2 ; 
(5 )  plane without a square: R2 " 12 ; 
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(6) plane without a segment : JR2 " [0 ,  1 ] ; 
(7) JR2 " 6.. , where 6.. is a closed bounded convex set with Int 6.. o1 0 . 

1 1 . 2 1 .  Let X c JR2 be the union of several segments with a common endpoint . 
Prove that the complement JR2 " X is homeomorphic to the punctured plane . 

1 1 . 22. Let X C  JR2 be a simple nonclosed finite polyline . Prove that its comple­
ment JR2 " X is homeomorphic to the punctured plane . 

1 1 . 23. Let K = { a1 , . . .  , an } C JR2 be a finite set . The complement JR2 " K 
is a plane with n punctures. Prove that any two planes with n punctures are 
homeomorphic , i . e . ,  the position of a1 , . . .  , an in JR2 does not affect the topological 
type of 1R2 '- {a1 , . . .  , an } · 

1 1 . 24 .  Let D 1 , . . .  , Dn C 1R2 be n pairwise disjoint closed disks . Prove that the 
complement of their union is homeomorphic to a plane with n punctures . 

1 1 . 25. Let D1 , . . .  , Dn C JR2 be pairwise disjoint closed disks . The complement 
of the union of their interiors is called a plane with n holes . Prove that any two 
planes with n holes are homeomorphic , i . e . ,  the location of disks D1 , . . .  , Dn does 
not affect the topological type of JR2 " U::,1 Int D; . 

1 1 . 26. Let j, g : lR ----> lR be two continuous functions such that f < g .  Prove 
that the "strip" { (x, y) E JR2 I f(x) ::=:; y ::=:; g (x) } bounded by their graphs is 
homeomorphic to the closed strip { (x ,  y) I y E [0, 1 ]  } .  

1 1 . 27. Prove that a mug (with a handle) is homeomorphic to a doughnut . 

1 1 . 28. Arrange the following items to homeomorphism classes : a cup , a saucer , 
a glass , a spoon, a fork, a knife, a plate , a coin, a nail , a screw, a bolt , a nut , a 
wedding ring, a drill , a flower pot (with a hole in the bottom) , a key. 

1 1 .  2 9. In a spherical shell (the space between two concentric spheres) , one drilled 
out a cylindrical hole connecting the boundary spheres . Prove that the rest is 
homeomorphic to D3 . 

1 1 . 30. In a spherical shell , one made a hole connecting the boundary spheres and 
having the shape of a knotted tube (see Figure below) . Prove that the rest of the 
shell is homeomorphic to D3 . 

1 1 . 31 .  Prove that the two surfaces shown in the uppermost Figure on the next 
page are homeomorphic (they are called handles) . 
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1 1 . 32. Prove that the two surfaces shown in the Figure below are homeomorphic. 
(They are homeomorphic to a projective plane with two holes . More details about 
this is given in Section 22 . ) 

1 1 . 33 *. Prove that JR3 '- S1 � JR3 '- (1R1 u (0 , 0 ,  1 ) ) . (What can you say in the 
case of JRn?) 
1 1 . 34 .  Prove that the subset of sn defined in the standard coordinates in JRn+ l  by 
the inequality xi + x� + · · · + x� < x�+ l + · · · + x� is homeomorphic to ]Rn , ]Rn-k . 

f1 1'6J Examples of Nonhomeomorphic Spaces 

1 1 .  U. Spaces containing different numbers of points are not homeomorphic. 

1 1 .  V. A discrete space and a (non-one-point ) indiscrete space are not home­
omorphic. 

1 1 . 35. Prove that the spaces Z ,  Q (with topology induced from JR) , JR ,  lRTu and 
the arrow are pairwise non-homeomorphic . 

1 1 . 36. Find two spaces X and Y that are not homeomorphic , but there exist 
continuous bijections X --+ Y and Y --+ X.  

f1 1 '7J Homeomorphism Problem and Topological Properties 

One of the classical problems in topology is the homeomorphism problem: 
to find out whether or not two given topological spaces are homeomorphic . 
In each special case , the character of solution depends mainly on the answer. 
In order to prove that two spaces are homeomorphic , it suffices to present a 
homeomorphism between them. This is essentially what one usually does in 
this case (and what we did considering all examples of homeomorphic spaces 
above ) . However , to prove that two spaces are not homeomorphic, it does 
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not suffice to consider any special map , and usually it is impossible to review 
all the maps . Therefore , proving the nonexistence of a homeomorphism 
must involve indirect arguments .  In particular , we may look for a property 
or a characteristic shared by homeomorphic spaces and such that one of the 
spaces has it , while the other one does not . Properties and characteristics 
that are shared by homeomorphic spaces are called topological properties and 
invariants .  Obvious examples here are the cardinality ( i . e . ,  the number of 
elements) of the set of points and the set of open sets (cf. Problems 1 1 . 34 
and 1 1 .  U) .  Less obvious properties are the main object of the next chapter . 

fll'SJ Information: Nonhomeomorphic Spaces 

Euclidean spaces of different dimensions are not homeomorphic .  The 
disks DP and Dq with p #- q are not homeomorphic . The spheres SP and 
Sq with p #- q are not homeomorphic . Euclidean spaces are homeomorphic 
neither to balls , nor to spheres (of any dimension) . Letters A and P are 
not homeomorphic (if the lines are absolutely thin ! ) .  The punctured plane 
JR2 -...... (0 ,  0) is not homeomorphic to the plane with a hole , JR2 -...... { x2 +y2 < 1 } .  

These statements are of different degrees of difficulty. Some of them are 
considered in the next section . However, some of them cannot be proved by 
techniques of this course . (See, e .g . , [2] . )  

f1 1'9 J Embeddings 

A continuous map f : X -+ Y is a ( topological) embedding if the submap 
ab (f) : X -+  f (X)  is a homeomorphism. 

1 1 .  W. The inclusion of a subspace into a space is an embedding. 

1 1 . X. Composition of embeddings is an embedding . 

1 1 .  Y. Give an example of a continuous injection which is not a topological 
embedding . (Find such an example above and create a new one . )  

1 1 .  37. Find two topological spaces X and Y such that X can b e  embedded i n  Y ,  

Y can be embedded in  X ,  but X 'F Y .  

1 1 . 38. Prove that <Q cannot be embedded in Z .  

1 1 . 39. 1 )  Can a discrete space be embedded in an indiscrete space? 2) What 
about vice versa? 

1 1 . 40. Prove that the spaces IR, 1Rr1 , and the arrow cannot be embedded in each 
other . 

1 1 . 41 Corollary of Inverse Function Theorem. Deduce the following state­
ment from the Inverse Function Theorem (see , e .g . , any course of advanced calcu­
lus) : 
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Let f : Rn ---> Rn be a continuously differentiable map whose Jacobian 
det (8fi/8xj ) does not vanish at the origin 0 E Rn . Then the origin has a neigh­
borhood U such that the restriction f l u  : U ---> R n  i s  an embedding and f (U) is 
open. 

It is of interest that if U c Rn is an open set , then any continuous injection 
f : U ---> Rn is an embedding and f (U) is also open in Rn . (Certainly, this also 
implies that Rm and Rn with m i- n  are not homeomorphic . ) 

j1 1 '10  J Equivalence of Embeddings 

Two em beddings h ,  h : X ---t Y are equivalent if there exist homeomor­
phisms hx : X ---t X and hy : Y ---t Y such that h o hx = hy o fl . (The 
latter equality may be stated as follows : the diagram 

X � Y  

is commutative . )  

A n  embedding S1 --+ R3 is called a knot. 

1 1 .42 .  Prove that any two knots JI , h : S1 --+ R3 with JI (S1 ) = h (S1 ) are 
equivalent . 

1 1 . 43. Prove that two knots with images 

are equivalent . 

Information: There are nonequivalent knots. For instance , those with 
images 

0 and 
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Proofs and Comment s  

9. A If x E f- 1 (B) , then f (x) E B .  
9.B t=-1 Obvious . (<=1 For each y E B ,  there exists an element x 

such that f (x) = y .  By the definition of the preimage , x E f- 1 (B) , whence 
y E f (f- 1 (B) ) .  Thus , B c f(f- 1 (B) ) .  The opposite inclusion holds true 
for any set , see 9.A .  

9 .  C ( 1 )  ====? ( 2 )  Assume that f (C) = B implies C = f- 1 (B) . If 
there exist distinct a1 , a2 E f- 1 (B) such that f (al ) = f (a2 ) ,  then also 
f (f- 1 (B) -...... a2 ) = B ,  which contradicts the assumption . 

(2 )  ====? ( 1 )  Assume now that there exists C -=/=  f- 1 (B) such that f (C) = 
B .  Clearly, C C f- 1 (B) . Therefore , C can differ from f- 1 (B) only if 
f- 1 (B) -...... C f= 0. Take a1 E f- 1 (B) -...... C , and let b = f(a1 ) .  Since f (C) = B ,  
there exists a2 E C with f (a2 ) = f (a1 ) ,  but a2 -=/= a1 because a2 E C,  while 
a1 rt C. 

9.D This follows from 9. C. 
9.E Let x E A. Then f (x) = y E f (A) , whence x E f- 1 (f (A) ) .  
9.F Both equalities are obviously equivalent to the following statement : 

f (x) tf- f (A) for each x tf- A. 
9. G in- 1 (B) = {x E A  I x E B} = A n B . 
9.H Let x E X . Then 

h o (g o f ) (x) = h (g o f) (x) ) = h(g(f (x) ) )  = (h o g) (f (x) ) = (h o g) o f (x) . 

9.J Let x1 -=/= x2 . Then f (xl ) -=/= f (x2 ) because f is injective , and 
g (f (x1 ) ) -=/= g (f (x2 ) )  because g is injective . 

9.K If f is not injective , then there exist x1 -=/= x2 with f (xl ) = f (x2 ) · 
However, then (g o f) (x1 ) = (g o f ) (x2 ) ,  which contradicts the injectivity of 
9 ° f .  

9 . L  Let f : X ---t Y and g : Y ---t Z be  surjective . Then we have 
f (X)  = Y, whence g (f (X) )  = g(Y) = Z .  

fJ�M
. 

This follows from the obvious inclusion Im(g o f)  c Im g . 
. -y:.N. ' ·T�is follows from 9. J and 9.L . 
9. 0 t=-1 Use 9.K and 9.M. (<=I Let f : X  ---t Y be a bij ection. 

Then, by surjectivity, for each y E Y there exists x E X  such that y = f (x) , 
and , by injectivity, such an element of X is unique . Putting g (y) = x ,  we 
obtain a map g : Y ---t X.  It is easy to check (please , do it ! )  that g is inverse 
to f . .. 
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9. P This is actually obvious . On the other hand. i t  is  i nteresting to 
look at a "mechanical" proof. Let two maps g , h : Y -+ X be inverse to a 
map f : X -+ Y.  Consider the composition g o f o h : 1 ·  -+ X .  On the one 

hand, we have g o f o h = (g o f) o h = idx oh = h .  On the other hand . we 
have g o f o h = g o (f o h) = g o idy = g . 

1 0. A  Let f : X -+ Y be a map . (=>l If f : X ___. Y is continuous , 
then, for each closed set F c Y,  the set X -...._ f- 1 (F) = f- 1 ( 1 . -...._ F)  is open, 

and therefore f- 1 (F) is closed . (<=l Exchange the \\'Ords open and closed 
in the above argument . 

1 0. C  The preimage of any set under a com-t aut map either is empty 
or coincides with the whole space . 

1 0. D  I f  a set U is open i n  X ,  then its preimage in - 1 (U ) = U n A  is 
open in A by the definition of the relative topolo�,-. 

1 0. E  If U E OA , then U = V n A for "" l l l P 1: E 0. If the map 
in : (A , O' ) -+ (X, 0) is continuous , then the pn' i l l l ; ' " "  U = in- 1 ( F ) = V n A  
of a set V E 0 belongs to 0' . Thus , OA C 0' . 

1 0. F  Let f : X -+ Y and g : Y -+ Z be cont inuous maps . We must 
show that for every U c Z that is open in Z its preimage (g o f )- 1 (U) = 
f- 1 (g- 1 (U) )  is open in X .  The set g- 1 (U) is open in Y by continuity of g . 
In turn, its preimage f- 1 (g- 1 (U) )  is open in X by the continuity of f .  

1 0. G  U I A,B ) - 1 (V) = U I A ,B ) - 1 (U n B) = A n  f- 1 (U) . 
1 0. H  (=>l Use 1 0. G. (<=) Use the fact that f = in/ (X) o ab (f) . 

1 0. 1  (=> ) Let a E X . Then for any neighborhood U of f (a) we can 
construct the required neighborhood V of a just by putting V = f- 1 (U) : 
indeed, f (V) = f (f- 1 (U) )  c U. ! <= )  We must check that the preimage of 
each open set is open. Let U c Y be an open set in Y. Take a E f- 1 (U) . By 
continuity of f at a , the point a has a neighborhood V such that f (V) c U. 
Then, obviously, V c f-1 (U) . This proves that each point of f- 1 (U) is 
internal , and hence f-1 (U) is open. 

1 0. J  When proving each of the implications , use Theorem 4 . 1, accord­
ing to which a neighborhood of a point in a metric space contains a ball 
centered at the point .  

1 0. K  The condition "for every point x E X  the inequality p (x ,  a) < o 
implies p (f (x) , f (a) )  < c" means that f(B0 (a) ) c Bt: (f (a) ) .  Now, ap­
ply J O. J. 

1 0. L  This immediately follows from the inequality of Problem 4 . 35. 
1 0. M  If f (x) = f (y) , then p(f (x ) , f (y) ) = 0, whence p(x ,  y) = 0 .  
1 0. N  Use the obvious fact that the primage o f  any open ball under 

isometric embedding is an open ball of the same radius . 
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1 0. 0  The set of solutions of the system is the intersection of the preim­
ages of the point 0 E R Since the maps are continuous and the point is 
closed ,  the preimages of the point are closed , and hence the intersection of 
the preimages is closed. 

1 0.P The set of solutions of a system of nonstrict inequalities is the 
intersection of preimages of the closed ray [0 , +oo) . Similarly, the set of 
solutions of a system of strict inequalities is the intersection of preimages of 
the open ray ( 0, +oo) . 

1 0. Q Indeed , it makes no sense to require the necessity : the intersection 
of an open set with any set A is open in A anyway. 

1 O .R Consider the complement X -...... F of F and apply 1 0. Q. 
1 0. 8  Let r b e  an open cover o f  a space X .  Let U c X be  a set such 

that U n A  is open in A for each A E r. By 5.E, an open subset of open 
subspace is open in the whole space . Therefore , A n U is open in X. Then 
U = UAEr A n  U is open as a union of open sets . 

1 0. T Argue as in the preceding proof, but , instead of the definition of a 
fundamental cover , use its reformulation 1 0. R, and instead of Theorem 5.E 
use Theorem 5.F, according to which a closed set of a closed subspace is 
closed in the entire space . 

1 0. U Denote the space by X and the cover by r .  Since r is locally 
finite , each point a E X has a neighborhood Ua meeting only a finite number 
of elements of r. Form the cover I: = {Ua I a E X} of X .  Let U c X be 
a set such that U n A  is open for each A E r. By 1 0. T, {A n Ua I A E r} 
is a fundamental cover of Ua for each a E X . Hence , Ua n U is open in Ua . 
By 1 0. 8, I: is fundamental . Hence , U is open . 

1 0. V Let U be a set open in Y .  Since the restrictions of f to elements 
of r are continuous , the preimage U IA ) - 1 (U) of U under the restriction of f 
to any A E r is open. Obviously, we have UIA) - 1 (U) = f- 1 (U) n A. Hence , 
f-1 (U) n A is open in A for each A E r .  By assumption, r is fundamental . 
Therefore , f- 1 (U) is open in X .  We have thus proved that the preimage of 
any open set under f is open . Hence , f is continuous . 

1 0. Wx It suffices to prove that the preimage of any base open set is 
open. The proof is quite straight-forward. For instance , the preimage of 
{x I a -< x -<  b} is {x I c -<  x -<  d} ,  where f (c) = a  and f (d) = b, which is a 
base open set . 

1 0.Xx Let X and Y be two posets ,  f :  X ----+ Y a map . (�J Assume 
that f : X ----+ Y is monotone. To prove the continuity of f it suffices to 
prove that the preimage of each base open set is open. Put U = C¢ (b) and 
V = f- 1 (U) . If x E V ( i . e . ,  b -<  f(x) ) ,  then for any y E C.t (x) ( i . e . , X -< y) 
we have y E V. Therefore , V = Ut(x) EU C1 (x) . This set is open as a union 
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of open base sets (in the poset topology of X ) .  
(¢::::: ) Let a ,  b E  X and a -< b. Then b is contained in any neighborhood of a .  
The set C¢ (f (a) )  i s  a neighborhood of f (a) in Y .  Since f i s  continuous , a 
has a neighborhood in X whose !-image is contained in C¢ (f (a) ) .  However, 
then the minimal neighborhood of a in X ( i .e . , Ct (a) ) also has this property. 
Therefore , f (b) E f (Cj; (a) ) c C¢ (f (a) ) ,  and hence f (a) -< f (b) . 

1 1 . A For example , consider the identity map of a discrete topological 
space X onto the same set but equipped with indiscrete topology. For 
another example, see 1 1 . B. 

1 1 . B Consider the map x f--t (cos 27rx , sin 27rx) . 
1 1 .  C This and the next two statements directly follow from the defi­

nition of a homeomorphism. 
1 1 .F See the solution to 1 1 . 1 . 
1 1 .  G Denote f (U) C Y by V .  Since f is a bijection , we have U = 

f-1 (V) . We also denote f- 1 : Y ---+ X by g .  (=>l We have V = g- 1 (U) , 
which is open by continuity of g .  ( ¢::::: ) If V = f(U)  is open , then U = g (V) 
is open as the preimage of an open set under a continuous map . 

1 1 . H See l l . G. 
1 1 .  I ( 1 )  A homeomorphism establishes a one-to-one correspondence 

between open sets of X and Y. Hence , it also establishes a one-to-one 
correspondence between closed sets of X and Y.  
(2)-(6) Use the fact that the definitions of  the closure , interior , boundary, 
etc. can be given in terms of open and closed sets .  

· 

1 1 . J Obviously, ab (f)  is a bijection . The continuity of ab (f)  and 
(ab(f) ) -1 follows from the general theorem 10. G  on the continuity of a 
submap of a continuous map . 

1 1 . K  Any isometry i s  continuous , see 1 O.N; the map inverse t o  an 
isometry is an isometry. 

1 1 . L Recall that an affine transformation f : ffi.n ---+ ffi.n is given by 
the formula y = f (x) = Ax + b, where A is a matrix and b a vector ; f is 
nondegenerate if A is invertible , whence x = A-1 (y - b) = A- 1 (y) - A-1 (b) , 
which means that f is a bijection and f- 1 is also a nondegenerate affine 
transformation. Finally, f and f- 1 are continuous , e .g . , because they are 
given in coordinates by linear formulas (see 1 0. 1 8 and 1 0. 21 ) . 

1 1 . M Prove that f is invertible and f- 1 is also strictly monotone . 
Then apply 1 0. Wx. 

1 1 . 0  Homeomorphisms of the form (0 ,  1 ) ---+ (a ,  b) are defined, for 
example , by the formula x f--t a + (b - a)x ,  and homeomorphisms ( - 1 ; 1 ) ---+ 
ffi.1 and (0 ,  1 )  ---+ (0 ,  +oo) by the formula x f--t tan( 1fX /2) . (In the latter case , 
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you can easily find , e .g . , a rational formula, but it is of interest that the 
above homeomorphism also arises quite often ! )  

1 1 .P Observe that ( 1 /4 , 5/4) -t S1 ......_ N :  t f--+ (cos 27rt , sin 27rt) i s  a 
homeomorphism and use assertions (3 )  and (4) of the preceding problem. 
Here is another , more sophisticated construction , which can be of use in 
higher dimensions . The restriction f of the central projection JR2 ......_ N -t JR1 
(the x axis) to S1 '-. N is a homeomorphism. Indeed , f is obviously invertible : 
f- 1 is a restriction of the central projection JR2 ......_ N -t S1 ......_ N. The map 
S1 ......_ N -t lR is presented by the formula ( x , y) f--+ x j ( 1 - y) , and the inverse 
map is given by the formula x f--+ (2xj (x2 + 1 ) ,  (x2 - 1 ) / (x2 + 1 ) ) .  (Why 
are these maps continuous? )  

1 1 .  Q Check that the vertical projection of the graph to the x axis 
determines a homeomorphism. 

1 1 .R As usual , we identify JRn and {x E JRn+l I Xn+l = 0} . Then the 
restriction of the central projection 

JRn+l '-. (0 , . . .  , 0, 1 )  -t JR.n 

to sn ....... (0 ,  . . .  ' 0 ,  1 )  is a homeomorphism, which is called the stereographic 
projection . For n = 2, it is used in cartography. It is invertible : the inverse 
map is the restriction to JR.n of the central projection JRn+l ......_ (0 ,  . . .  , 0, 1 )  -t 

sn ......_ (0 ,  . . .  , 0 ,  1 ) .  The first map is defined by the formula 

x = (xl , . . .  , Xn+l ) f--+ ( X2 , . . .  , Xn ) , 
1 - Xn+l 1 - Xn+l 

and the second one by 

( 2xl 2xn l x l 2 - 1 ) x = (xi , . . . ' Xn ) f--+ l x l 2 + 1 ' . . . ' l x l 2 + 1 ' l x l 2 + 1 
. 

Check this . (Why are these maps continuous?) Explain how we can ob­
tain a solution to this problem geometrically from the second solution to 
Problem 1 1 . P. 

1 1 .  S After reading the proof, you may see that sometimes formulas are 
cumbersome , while a clearer verbal description is possible . 
( 1 )  Instead of !2 it is convenient to consider the homeomorphic square K = 

{ ( x , y) I I x I � 1 ,  I y I � 1 }  of double size centered at the origin. (There is 
a linear homeomorphism !2 -t K : (x ,  y) f--+ (2x - 1 ,  2y - 1 ) . )  We have a 
homeomorphism 

K -t D2 : (x ,  y) f--+ (x max{ l x l , I Y I } , Y max{ l x l ,  I Y I } ) . J x2 + y2 J x2 + y2 

Geometrically, this means that each segment joining the origin with a point 
on the contour of the square is linearly mapped to the part of the segment 
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that lies within the circle . 
(2 ) , (3 )  Take suitable submaps of the above homeomorphism K ----> D2 . 
Certainly, assertion (2 )  follows from the previous problem. It is also of 
interest that in case ( 3) we can use a much simpler formula: 

{)K ---t 81 : (x , y) f---+ ( V  x 
, V y ) . 

x2 + y2 x2 + y2 

(This is simply a central projection! )  We can also divide the circle into four 
arcs and map each of them to a side of K, cf. below. 

1 1 . T (1 )  For simplicity, assume that D2 C �.  For x E JR2 -...... 0 ,  let a(x) 
be the (unique) positive number such that a(x) l� l E Fr �. Then we have a 
homeomorphism 

� ----> D2 : x f---+ atx) i f  x =/= 0 ,  while 0 f---+ 0 .  

(Observe that in  the case when � i s  the square K,  we obtain the homeo­
morphism described in the preceding problem. )  

(2 ) , ( 3 )  Take suitable submaps o f  the above homeomorphism � ----> D2 . 
1 1 .  U There is no bijection between them. 
1 1 .  V These spaces have different numbers of open sets . 
1 1 .  W Indeed , if in : A ----> X is an inclusion, then the submap ab (in) : 

A ----> A is the identity homeomorphism. 
1 1 .X Let f : X ----> Y and g : Y ----> Z be two embeddings . Then the 

submap ab(g o f) : X  ----> g (f (X ) )  is the composition of the homeomorphisms 
ab (f)  : X ----> f (X)  and ab (g) : f (X) ----> g (f (X) ) .  

1 1 .  Y The previous examples are [0 , 1 )  ----> 81 and Z+ ----> {O} u {  1/n} �=l · 
Here is another one : Let f : Z ----> Q be a bijection and let in!Ql : Q ----> lR 
be the inclusion. Then the composition in!Ql of : Z ----> lR is a continuous 
injection, but not an embedding. 





Chapter III 

Topological Properties 

1 2 .  Connectedness 

112'1 J Definitions of Connectedness and First Examples 

A topological space X is connected if X has only two subsets that are 
both open and closed: the empty set 0 and the entire X .  Otherwise , X is 
disconnected . 

A partition of a set is a cover of this set with pairwise disjoint subsets . 
To partition a set means to construct such a cover. 

1 2 . A .  A topological space is connected, 
iff it does not admit a partition into two nonempty open sets, 
iff it does not admit a partition into two nonempty closed sets. 

12 . 1 .  1) Is an indiscrete space connected? The same question for 2)  the arrow 
and 3) llh1 • 

12. 2. Describe explicitly all connected discrete spaces . 

1 2. 3. Describe explicitly all disconnected two-element spaces . 

12 .4 .  1 )  Is the set Q of rational numbers (with the relative topology induced from 
IR) connected? 2) The same question for the set IR '- Q of irrational numbers . 

12. 5. Let fh  and fh be two topologies in a set X ,  and let !:12 be finer than !:11 
( i . e . , !:11 c !:12 ) .  1 )  If (X, !:11 ) is connected , is (X, !:12 ) connected? 2) If (X, !:12 ) is 
connected , is (X, f h )  connected? 

-
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f 1 2'2  J Connected Sets 

When we say that a set A is connected, we mean that A lies in some 
topological space (which should be clear from the context) and, equipped 
with the relative topology, A is a connected space . 

12. 6. Characterize disconnected subsets without mentioning the relative topology. 

1 2. 7. Is the set {0 ,  1 }  connected 1) in R, 2) in the arrow, 3) in RT, ? 

1 2. 8. Describe explicitly all connected subsets 1 ) of the arrow, 2) of RT, . 

12. 9. Show that the set [0 ,  1) U ( 2 ,  3) is disconnected in R .  

12. 1 0. Prove that every nonconvex subset of  the real line i s  disconnected . (In 
other words , each connected subset of the real line is a singleton or an interval . ) 

1 2. 1 1 .  Let A be a subset of a space X .  Prove that A is disconnected iff A has 
two nonempty subsets B and C such that A = B U C, B n Clx C = 0, and 
Cn Clx B = 0. 

12. 12 .  Find a space X and a disconnected subset A C X such that if U and V 
are any two open sets partitioning X ,  then we have either U :J A, or V :J A. 

12. 1 3. Prove that for every disconnected set A in Rn there are disjoint open sets 
U, V c Rn such that A c U U V, U n A =!= 0, and V n A =!=  0. 

Compare 12. 1 1-12. 13  with 12. 6. 

f12'3 J Properties of Connected Sets 

12. 14 .  Let X be a space. If a set M C X is connected and A C X is open-closed , 
then either M C A, or M C X -..... A .  

1 2.B.  The closure of a connected set is connected. 

12. 1 5. Prove that if a set A is connected and A C B C CI A ,  then B is connected . 

1 2. C. Let { A. d .AEA be a family of connected subsets of a space X .  Assume 
that any two sets in this family have nonempty intersection. Then U.>.EA A>. 
is connected. (In other words: the union of pairwise intersecting connected 
sets is connected.) 

1 2.D Special case .  If A, B c X are two connected sets with A n  B i= 0 ,  
then A U B i s  also connected . 

1 2.E. Let {A>. hEA be a family of connected subsets of a space X .  Assume 
that each set in this family meets A>.0 for some >-o E A. Then U>.EA A>. is 
connected . 

1 2. F. Let {Ak hEZ be a family of connected sets such that Ak n Ak+I i= 0 
for each k E z. Prove that ukEZ Ak is connected. 
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12. 1 6. Let A and B be two connected sets such that A n Cl B =f 0. Prove that 
A U B is also connected. 

1 2. 1 7. Let A be a connected subset of a connected space X, and let B C X " A 
be an open-closed set in the relative topology of X " A. Prove that A U B is 
connected . 

1 2. 1 8. Does the connectedness of AU B and A n  B imply that of A and B? 

12. 1 9. Let A and B be two sets such that both their union and intersection are 
connected. Prove that A and B are connected if both of them are 1) open or 2)  
closed . 

I I I I I I I 
12. 20. Let A1 ::> A2 ::> . . .  be an infinite decreasing sequence of closed connected 
sets in the plane R2 . Is n;:'=1 Ak a connected set? 

I12'4J Connected Components 

A connected component of a space X is a maximal connected subset of 
X,  i . e . , a connected subset that is not contained in any other (strictly) larger 
connected subset of X. 

1 2. G.  Every point belongs t o  some connected component. Furthermore, this 
component is unique . It is the union of all connected sets containing this 
point. 

1 2. H. Two connected components either are disjoint or coincide . 
A connected component of a space X is also called just a component of X.  

Theorems 12. G and 12.H  mean that connected components constitute a 
partition of the whole space . The next theorem describes the corresponding 
equivalence relation . 

1 2.1. Prove that two points lie in the same component iff they belong to the 
same connected set. 

1 2. J  Corollary. A space is connected iff any two of its points belong to the 
same connected set. 

1 2. K. Connected components are closed. 

12 .21 . If each point of a space X has a connected neighborhood, then each con­
nected component of X is open. 

12 .22. Let x and y belong to the same component . Prove that any open-closed 
set contains either both x and y ,  or none of them (cf. 12. 31) .  
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f12'5J Totally Disconnected Spaces 

A topological space is totally disconnected if all of its components are 
singletons . 

1 2. L  Obvious Example. Any discrete space is totally disconnected. 

1 2. M. The space Q (with the topology induced from IR) is totally discon­
nected. 

Note that Q is not discrete .  

12. 23. Give an example o f  an uncountable closed totally disconnected subset of 
the line . 

12 .24 .  Prove that Cantor set (see 2. Jx) is totally disconnected . 

f12'6 J Boundary and Connectedness 

12. 25. Prove that if A is a proper nonempty subset of a connected space, then 
Fr A  # 0. 
12 . 26. Let F be a connected subset of a space X. Prove that if A C X and 
neither F n A, nor F n (X -.... A) is empty, then F n Fr A ¥=  0. 
12 . 27. Let A be a subset of a connected space . Prove that if Fr A is connected , 
then so is Cl A .  

1 2. 28. Let X be a connected topological space, U, V C X two non-disjoint open 
subsets none of which contains the other one. Prove that if their boundaries Fr U 
and Fr V are connected , then Fr U n Fr V # 0 

f 12'7 J Connectedness and Continuous Maps 

A continuous image of a space is its image under a continuous map . 

1 2. N. A continuous image of a connected space is connected. (In other 
words, if f : X �  Y is a continuous map and X is connected, then f (X) 2s 
also connected. ) 
1 2. 0 Corollary. Connectedness is a topological property. 
1 2. P  Corollary. The number of connected components is a topological in­
variant. 
1 2. Q. A space X is disconnected iff there is a continuous surjection X � 

so . 

12 . 29. Theorem 12. Q often yields short proofs of various results concerning con­
nected sets . Apply it for proving , e . g . ,  Theorems 12 .B-12. F  and Problems 12. D  
and 12. 1 6. 

12. 30. Let X be a connected space , f : X --+ lR a continuous function . Then 
f (X)  is an interval of JR .  

12. 31 . Suppose a space X has a group structure and the multiplication by any 
element of the group (both from the left and from the right) is a continuous map 
X --+ X .  Prove that the component of unity is a normal subgroup. 
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112'8 J Connectedness on Line 

1 2.R .  The segment I = [0 , 1 ] is connected. 
There are several ways to prove Theorem 12. R. One of them is suggested 

by 12. Q, but refers to the famous Intermediate Value Theorem from Calculus, 
see 13. A .  However , when studying topology, it would be more natural to find 
an independent proof and deduce the Intermediate Value Theorem from The­
orems 12. R  and 12. Q. Two problems below provide a sketch of basically the 
same proof of 12. R. Cf. 2. Ix above . 

1 2. R . 1 Bisection Method. Let U and V be two subsets of I such that V = 
I '- U. Let a E U, b E V,  and a < b. Prove that there exists a nondecreasing 
sequence an with a1 = a, an E U, and a nonincreasing sequence bn with b1 = b , 
bn E V,  such that bn - an = (b - a) /2n- l .  

1 2. R . 2. Under assumptions of 12 .R . 1 ,  if U and V are closed in I ,  then which 
of them contains c = sup{ an } = inf{bn } ? 

12. 32. Deduce 12. R  from the result of Problem 2. 1x. 

1 2. 8. Prove that every open set in lR has countably many connected com­
ponents . 

1 2. T. Prove that JR1 is connected . 

1 2. U. Each convex set in JRn is connected. (In particular , so are JRn itself, 
the ball En , and the disk Dn . )  

1 2. V Corollary. Intervals in JR1 are connected. 

1 2. W. Every star-shaped set in JRn is connected. 

1 2.X Connectedness on Line . A subset of a line is connected iff it is an 
interval. 

1 2. Y. Describe explicitly all nonempty connected subsets of the real line . 

1 2. Z. Prove that the n-sphere sn is connected. In particular , the circle 81 
is connected. 

12. 33. Consider the union of the spiral 

r = exp ( 1 : 4'2 ) , with <p 2: 0 

(r, <p are the polar coordinates) and the circle 81 . 1 )  Is this set connected? 2) Will 
the answer change if we replace the entire circle by one of its subsets? (Cf. 12. 15. )  

12. 34 .  Are the following subsets o f  the plane JR2 connected: 

( 1 ) the set of points with both coordinates rational ; 
(2 )  the set of points with at least one rational coordinate; 
(3) the set of points whose coordinates are either both irrational ,  or both 

rational? 
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12. 35. Prove that for any c > 0 the €-neighborhood of a connected subset of the 
Euclidean space is connected . 

1 2. 36. Prove that each neighborhood U of a connected subset A of the Euclidean 
space contains a connected neighborhood of A .  

12 .  37. Find a space X and two points belonging to distinct components of X 
such that each subset A C X that is simultaneously open and closed contains 
either both points, or neither of them. (Cf. 12 .22. ) 

• • 
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1 3 .  Applicat ion of Connectedness 

f13'1 J Intermediate Value Theorem and Its Generalizations 

The following theorem is usually included in Calculus . You can easily 
deduce it from the material of this section. In fact , in a sense it is equivalent 
to connectedness of the segment . 
1 3. A  Intermediate Value Theorem. A continuous function 

f : [a , b] ---t lR 

takes every value between f (a ) and f (b) . 

Many problems that can be solved by using the Intermediate Value Theorem 
can be found in Calculus textbooks . Here are few of them. 

13 . 1 .  Prove that any polynomial of odd degree in one variable with real coefficients 
has at least one real root . 

1 3.B Generalization of 1 3. A .  Let X be a connected space , f : X  ---t lR 
a continuous function. Then f (X) is an interval of R 

1 3. C  Corollary. Let J C lR be an interval of the real line , f : J ---t lR a 
continuous function. Then f ( J) is also an interval of R (In other words , 
continuous functions map intervals to intervals . )  

f13'2 J Applications to  Homeomorphism Problem 

Connectedness is a topological property, and the number of connected 
components is a topological invariant (see Section 1 1 ) .  

1 3.D.  [0 , 2] and [0 , 1 ]  U [2 , 3] are not homeomorphic. 
Simple constructions assigning homeomorphic spaces to homeomorphic 

ones (e .g . , deleting one or several points) ,  allow us to use connectedness for 
proving that some connected spaces are not homeomorphic . 

1 3.E. I ,  [O , oo) , JR1 , and S1 are pairwise nonhomeomorphic. 

1 3. 2. Prove that a circle is not homeomorphic to a subspace of lR 1 . 

13 .3. Give a topological classification of the letters of the alphabet : A, 8 ,  C ,  D ,  
. . .  , regarded as subsets o f  the plane (the arcs comprising the letters are assumed 
to have zero thickness) . 

1 3. 4 .  Prove that square and segment are not homeomorphic. 

Recall that there exist continuous surjections of the segment onto square , 
which are called Peano curves , see Section 10 .  

1 3. F. JR1 and JRn are not homeomorphic i f  n > 1 .  
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Information. JRP and JR.q are not homeomorphic unless p = q. This 
follows , for instance , from the Lebesgue-Brouwer Theorem on the invariance 
of dimension (see , e .g . , W. Hurewicz and H. Wallman, Dimension Theory , 
Princeton, NJ , 1941 ) .  

1 3. 5. The statement "JRP is not homeomorphic to JR9 unless p = q" implies that 
SP is not homeomorphic to S9 unless p = q .  

j13'3xJ Induction on Connectedness 

A map f : X ---> Y is locally constant if each point of X has a neighborhood 
U such that the restriction of f to U is constant . 

1 3. 6x .  Prove that any locally constant map is continuous . 

1 3. 7x.  A locally constant map on a connected set is constant . 

1 3. 8x .  Riddle. How are 12. 26 and 1 3. 7x related? 

1 3. 9x .  Let G be a group equipped with a topology such that for each g E G the 
map G ---> G :  x ,..... xgx- 1 is continuous , and let G with this topology be connected . 
Prove that if the topology induced on a normal subgroup H of G is discrete ,  then 
H is contained in the center of G ( i .e . , hg = gh for any h E H and g E G) . 

1 3. 1  Ox Induction on Connectedness .  Let & be a property of subsets ·of a topo­
logical space X such that the union of sets with nonempty pairwise intersections 
inherits this property from the sets involved . Prove that if X is connected and 
each point in X has a neighborhood with property & ,  then X also has property & .  

1 3. 1 1x .  Prove 13. 7x and solve 13. 9x using 1 3. 1 0x. 

For more applications of induction on connectedness , see 14 .  T, 14 . 22x, 14 . 24x, 
and 14 . 26x. 

j13'4x J Dividing Pancakes 

1 3. 1 2x .  Any irregularly shaped pancake can be cut in half by one stroke of the 
knife made in any prescribed direction. In other words, if A is a bounded open set 
in the plane and l is a line in the plane, then a certain line L parallel to l divides 
A in half by area. 

1 3. 1 3x .  If, under the assumptions of 13. 12x, A is connected, then L is unique. 

1 3. 14x . Suppose two irregularly shaped pancakes lie on the same platter ; show 
that it is possible to cut both exactly in half by one stroke of the knife . In other 
words : if A and B are two bounded regions in the plane , then there exists a line 
in the plane that bisects the area of each of the regions . 

1 3. 1 5x .  Prove that a plane pancake of any shape can be divided into four pieces 
of equal area by two mutually perpendicular straight cuts. In other words , if A is 
a bounded connected open set in the plane , then there are two perpendicular lines 
that divide A into four parts having equal areas . 

1 3. 1 6x .  Riddle. What if the knife is curved and makes cuts of a shape different 
from the straight line? For what shapes of the cuts can you formulate and solve 
problems similar to 13. 12x-13. 1 5x? 
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1 3. 1 7x .  Riddle.  Formulate and solve counterparts o f  Problems 1 3. 12x-13. 1 5x for 
regions in three-space . Can you increase the number of regions in the counterparts 
of 13. 12x and 1 3. 14x? 

1 3. 1 8x .  Riddle.  What about pancakes in Rn ? 
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1 4 .  Pat h  Connectedness 

r14' 1  J Paths 

A path in a topological space X is a continuous map of the segment 
I =  [0 , 1] to X.  The point s (O) is the initial point of a path s : I ---t X ,  while 
s ( 1 )  is the final point of s. We say that the path s connects s (O) with s ( 1 ) .  
This terminology is inspired by an image o f  a moving point :  at the moment 
t E [0 , 1 ] , the point is at s (t) . 

To tell the truth, this is more than what is usually called a path, since , 
besides information on the trajectory of the point , it contains a complete 
account of the movement : the schedule saying when the point goes through 
each point . 

14 . 1 .  If s :  I ----> X is a path, then the image s (I) C X is connected . 

1 4 . 2. Let s : I ----> X be a path connecting a point in a set A C X with a point in 
X ....._ A. Prove that s (I) n Fr(A) =f- 0. 

s ( l )  

14 . 3. Let A be a subset of a space X ,  and let inA : A ----> X be the inclusion. 
Prove that u : I ----> A is a path in A iff the composition inA ou : I ----> X is a path 
in X .  

A constant map sa  : I ---t X : x f--> a i s  a stationary path. Each path s has 
an inverse path s- 1 : t f--> s ( 1 - t) .  Although, strictly speaking, this notation 
is already used (for the inverse map) , the ambiguity of notation usually leads 
to no confusion: as a rule , inverse maps do not appear in contexts involving 
paths . 

Let u : I ---t X and v : I ---t X be two paths such that u ( 1 )  = v (O) . We 
define 

uv : I ---t X : t f--> {u(2t) if t E [0 , 1 /2] ,  
v (2t - 1 )  if t E [ 1/2 ,  1 ] . 

u(O) u ( l )=v (O) 

(22) 

1 4 . A .  Prove that the above map uv : I ---t X is continuous ( i .e . ,  it is a 
path) . Cf. 1 0. T and 1 0. V. 



14 .  Path Connectedness 93 

The path uv is the product of u and v. Recall that uv is defined only if 
the final point u ( l )  of u is the initial point v (O) of v .  

f14'2 J Path-Connected Spaces 

A topological space X is path-connected (or arcwise connected) if any 
two points are connected in X by a path. 

14 .B.  Prove that the segment I is path-connected. 

1 4 .  C. Prove that the Euclidean space of any dimension is path-connected. 

14 .D.  Prove that the n-sphere sn with n > 0 is path-connected. 

1 4 . E. Prove that the 0-sphere S0 is not path-connected. 

14 . 4 .  Which of the following spaces are path-connected: 
( 1) a discrete space; (2 )  an indiscrete space ; 
(3) the arrow; ( 4) ffi.T1 ; 
(5 )  I.J? 

f14'3 J Path-Connected Sets 

A path-connected set (or arcwise connected set) is a subset of a topological 
space (which should be clear from the context) that is path-connected as a 
subspace (the space with the relative topology) . 

14 . 5. Prove that a subset A of a space X is path-connected iff any two points in 
A are connected by a path s :  I -+  X with s (J) c A. 

14 . 6. Prove that each convex subset of Euclidean space is path-connected. 

14 .  7. Every star-shaped set in ffi.n is path-connected . 

14 . 8. The image of a path is a path-connected set . 

14 . 9. Prove that the set of plane convex polygons with topology generated by the 
Hausdorff metric is path-connected. (What can you say about the set of convex 
n-gons with fixed n?) 

14 . 1 0. Riddle. What can you say about the assertion of Problem 14 . 9  in the 
case of arbitrary (not necessarily convex) polygons? 
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f14'4 J Properties of Path-Connected Sets 

Path connectedness is very similar to connectedness . Further , in some 
important situations it is even equivalent to connectedness. However, some 
properties of connectedness do not carry over to the case of path connect­
edness (see 14 . Q  and 14 .R) .  For the properties that do carry over , proofs 
are usually easier in the case of path connectedness . 

1 4 . F. The union of a family of pairwise intersecting path-connected sets is 
path- connected. 

14 . 1 1 .  Prove that if two sets A and B are both closed or both open and their 
union and intersection are path-connected , then A and B are also path-connected . 

14 . 1 2. 1 )  Prove that the interior and boundary of a path-connected set may be 
not path-connected . 2) Connectedness shares this property. 

14 . 1 3. Let A be a subset of the Euclidean space . Prove that if Fr A is path­
connected, then so is Cl A. 

14 . 14 .  Prove that the same holds true for a subset of an arbitrary path-connected 
space. 

f14'5 J Path-Connected Components 

A path-connected component or arcwise connected component of a space 
X is a path-connected subset of X that is not contained in any other path­
connected subset of X. 

14 . G.  Every point belongs t o  a path- connected component. 

1 4 . H. Two path-connected components either coincide or are disjoint. 
Theorems 14 . G and 14 .H mean that path-connected components con­

stitute a partition of the entire space . The next theorem describes the 
corresponding equivalence relation. 

1 4 . 1. Prove that two points belong to the same path-connected component 
iff they are connected by a path (cf. 12. 1) .  

Unlike the case of connectedness , path-connected components are not 
necessarily closed . (See 14 . Q, cf. 14 .P  and 14 .R . )  

f14'6 J Path Connectedness and Continuous Maps 

1 4 . J. A continuous image of a path-connected space is path-connected. 
14 .K Corollary. Path connectedness is a topological property. 
1 4 . L  Corollary. The number of path-connected components is a topological 
invariant. 
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I14'7J Path Connectedness Versus Connectedness 

14 .M. Any path-connected space is connected. 
Put 

A =  { (x , y) E JR2 I x > 0, y = sin ( l /x) } ,  X =  A U  (0 ,  0) . 
14 . 1 5. Sketch A.  

14 .N. Prove that A i s  path-connected and X i s  connected. 
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14 .  0. Prove that deleting any point from A makes A and X disconnected 
(and , hence , not path-connected) . 

14 .P. X is not path-connected. 

14 .  Q. Find an example of a path-connected set whose closure is not path­
connected. 

14 .R .  Find an example of a path-connected component that is not closed. 

1 4 .8. If each point of a space X has a path- connected neighborhood, then 
each path-connected component of X is open. ( Cf. 12. 21 . )  

14 .  T. Assume that each point of a space X has a path-connected neighbor­
hood. Then X is path-connected iff X is connected. 

14 .  U. For open subsets of the Euclidean space, connectedness is equivalent 
to path connectedness. 

14 . 1 6. For subsets of the real line, path connectedness and connectedness are 
equivalent . 

14 . 1 7. Prove that for each c > 0 the c-neighborhood of a connected subset of the 
Euclidean space is path-connected. 

14 . 1 8. Prove that each neighbor hood U of a connected subset A of the Euclidean 
space contains a path-connected neighborhood of A. 

l14'8x J Polyline-Connectedness 

A subset A of Euclidean space is polyline-connected if any two points of A are 
joined by a finite broken line (a polyline) contained in A. 

14 . 1 9x . Each polyline-connected set in JRn is path-connected , and thus also con­
nected . 

1 4 . 20x .  Each convex set in JRn is polyline-connected . 

1 4 . 21x .  Each star-shaped set in JRn is polyline-connected. 

14 . 22x .  Prove that for open subsets of the Euclidean space connectedness is equiv­
alent to polyline-connectedness. 

14 . 23x .  Construct a non-one-point path-connected subset A of Euclidean space 
such that no two distinct points of A are connected by a polyline in A.  
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14 . 24x.  Let X C  ll�? be a countable set . Prove that ll�? '- X  is polyline-connected. 

14 . 25x .  Let X C JRn be the union of countably many affine subspaces with di­
mensions at most n - 2. Prove that JRn '- X is polyline-connected. 

14 . 26x .  Let X c en be the union of countably many algebraic subsets ( i .e . , 
subsets defined by systems of algebraic equations in the standard coordinates of 
en ) . Prove that en '- X is polyline-connected. 

\14'9x J Connectedness of Some Sets of Matrices 
2 

Recall that real n x n matrices constitute a space , which differs from JRn only 
in the way of enumerating its natural coordinates (they are numbered by pairs 

2 
of indices) . The same holds true for the set of complex n x n matrices and en 

2 
(which is homeomorphic to JR2n ) . 

1 4 . 21x.  Find connected and path-connected components of the following sub­
spaces of the space of real n x n matrices : 

( 1 )  GL(n; JR) = {A I det A =f 0} ;  
(2 )  O(n; JR) = {A I A · ( tA) = lE} ; 
(3) Symm(n; JR) = {A I tA =  A} ;  
(4) Symm(n; lR) n GL(n; JR) ;  
(5 )  { A  I A2 = JE} .  

14 . 28x . Find connected and path-connected components o f  the following sub­
spaces of the space of complex n x n matrices : 

( 1 )  GL(n; IC) = {A I det A =f 0} ;  
(2 )  U(n; iC) = {A I A · ( tA) = lE} ; 
(3) Herm(n; IC) = {A I tA =  A} ;  
(4) Herm(n; IC) n GL(n; IC) . 
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1 5 .  Separation Axioms 

Our purpose in this section is to consider natural restrictions on the topo­
logical structure making the structure closer to being metrizable . They are 
called "Separation Axioms" . A lot of separation axioms are known. We 
restrict ourselves to the five most important of them. They are numerated, 
and denoted by To , T1 , T2 , T3 , and T4 , respectively. 1 

115 '1  J Hausdorff Axiom 

We start with the second axiom, which is the most important one . In 
addition to the designation T2 , it has a name : the Hausdorff axiom. A 
topological space satisfying T2 is a Hausdorff space . This axiom is stated 
as follows : any two distinct points possess disjoint neighborhoods . We can 
state it more formally : V x, y E X, x #- y ::lUx , Vy : Ux n Vy = 0 .  

u v 

� 
• tJ 

1 5. A .  Any metric space is Hausdorff. 

1 5. 1 .  Which of the following spaces are Hausdorff: 

( 1) a discrete space; 
(2 )  an indiscrete space; 
(3) the arrow; 
(4) RTl ; 
(5 ) lf? 

If the next problem holds you up even for a minute, we advise you to 
think over all definitions and solve all simple problems . 

1 5. B. Is the segment [0 , 1] with the topology induced from lR a Hausdorff 
space? Do the points 0 and 1 possess disjoint neighborhoods? Which, if 
any? 

1 5. c. A space X is Hausdorff iff for each X E X we have {X} = nu3x Cl u. 

1The letter T i n  these designations originates from the German word Trennungsaxiom, which 
means separation axiom. 
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115'2 J Limits of Sequences 

Let {an } be a sequence of points of a topological space X. A point 
b E  X is the limit of the sequence if for any neighborhood U of b there exists 
a number N such that an E U for any n 2:: N. 2 In this case , we say that the 
sequence converges or tends to b as n tends to infinity. 

1 5. 2. Explain the meaning of the statement "b is not a limit of sequence an" by 
using as few negations (i . e . ,  the words no , not , none , etc. ) as you can . 

1 5. 3. The limit of a sequence does not depend on the order of the terms . More 
precisely, let an be a convergent sequence : an --> b , and let ¢ : N --> N be a 
bijection. Then the sequence a<l>(n) is also convergent and has the same limit : 
a<l>(n) --> b. For example , if the terms in the sequence are pairwise distinct , then 
the convergence and the limit depend only on the set of terms, which shows that 
these notions actually belong to geometry. 

1 5.D.  Any sequence in a Hausdorff space has at most one limit. 

1 5. E. Prove that each point in the space 1Rr1 is a limit of the sequence 
an = n. 

115'3 J Coincidence Set and Fixed Point Set 

Let J, g : X -->  Y be two maps . Then the set C(f, g) = {x E X  I f(x) = g(x) } 
is the coincidence set of f and g .  
1 5. 4 .  Prove that the coincidence set of  two continuous maps from an arbitrary 
space to a Hausdorff space is closed. 

1 5. 5. Construct an example proving that the Hausdorff condition in 15. 4  is es­
sential. 

A point x E X is a fixed point of a map f : X -->  X if f (x) = x .  The set of all 
fixed points of a map f is the fixed point set of f .  

1 5. 6. Prove that the fixed-point set of  a continuous map from a Hausdorff space 
to itself is closed . 

1 5. 7. Construct an example showing that the Hausdorff condition in 1 5. 6  is es­
sential. 

1 5. 8. Prove that if j, g : X --> Y are two continuous maps , Y is Hausdorff, A is 
everywhere dense in X, and ! [ A = g [ A ,  then f = g . 

1 5. 9. Riddle. How are Problems 1 5. 4 ,  15. 6, and 15. 8  related to each other? 

115'4 J Hereditary Properties 

A topological property is hereditary if it carries over from a space to 
its subspaces, which means that if a space X has this property, then each 
subspace of X also has it . 

2You can also rephrase this as follows : each (arbitrarily small) neighborhood of b contains 
all members of the sequence that have sufficiently large indices . 
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1 5. 1 0. Which of the following topological properties are hereditary : 

( 1 )  finiteness of the set of points ; 
(2 )  finiteness of the topological structure ; 
(3) infiniteness of the set of points ; 
( 4) connectedness ; 
(5) path connectedness? 

1 5. F. The property of being a Hausdorff space is hereditary. 

f 15'5  J The First Separation Axiom 
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A topological space X satisfies the first separation axiom T1 if each one 
of any two points of X has a neighborhood that does not contain the other 
point .3 More formally: 'II x, y E X, x -=f. y :3Uy : x rJ. Uy . 

• 
X 

1 5. G. For any topological space X, the following three assertions are equiv­
alent: 

• the space X satisfies the first separation axiom, 
• all one-point sets in X are closed, 
• all finite sets in X are closed. 

1 5. 1 1 .  Prove that a space X satisfies the first separation axiom iff every point of 
X is the intersection of all of its neighborhoods. 

1 5. 1 2. Any Hausdorff space satisfies the first separation axiom. 

1 5. H. Any finite set in a Hausdorff space is closed. 

1 5.1. A metric space satisfies the first separation axiom. 

1 5. 1 3. Find an example showing that the first separation axiom does not imply 
the Hausdorff axiom. 

1 5. J. Show that 1Rr1 satisfies the first separation axiom, but is not a Haus­
dorff space ( cf. 1 5. 1 3) .  
1 5. K. The first separation axiom is hereditary. 

1 5. 1 4 .  Suppose that for any two distinct points a and b of a space X there exists 
a continuous map f from X to a space with the first separation axiom such that 
f (a) ¥- f (b) . Prove that X also satisfies the first separation axiom. 

1 5. 1 5. Prove that a continuous map of an indiscrete space to a space satisfying 
axiom T1 is constant . 

3 Axiom T1 is also called the Tikhonov axiom. 
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1 5. 1 6. Prove that every set has the coarsest topological structure satisfying the 
first separation axiom. Describe this structure. 

f15'6J The Kolmogorov Axiom 

The first separation axiom emerges as a weakened Hausdorff axiom. 

1 5.L .  Riddle . How can the first separation axiom be weakened? 

A topological space satisfies the Ko/mogorov axiom or the zeroth separa­
tion axiom To if at least one of any two distinct points of this space has a 
neighborhood that does not contain the other point .  

1 5. M. An indiscrete space containing at least two points does not satisfy 
axiom To . 

1 5.N. The following properties of a space X are equivalent: 
( 1 )  X satisfies the Kolmogorov axiom; 
(2) any two different points of X have different closures; 
(3) X contains no indiscrete subspace consisting of two points. 
(4) X contains no indiscrete subspace consisting of more than one 

point. 

1 5. 0. A topology is a poset topology iff it is a smallest neighborhood topology 
satisfying the K olmogorov axiom. 

Thus , on the one hand , posets give rise to numerous examples of topo­
logical spaces , among which we see the most important spaces, like the line 
with the standard topology. On the other hand , all posets are obtained from 
topological spaces of a special kind , which are quite far away from the class 
of metric spaces . 

f 15'7 J The Third Separation Axiom 

A topological space X satisfies the third separation axiom if every closed 
set in X and every point of its complement have disjoint neighborhoods, i . e . , 
for every closed set F C X and every point b E X " F there exist disjoint 
open sets U, V c X such that F c U and b E  V . 

• 
v 

A space is regular if it satisfies the first and third separation axioms . 
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1 5.P. A regular space i s  a Hausdorff space . 

1 5. Q. A space is regular iff it satisfies the second and third separation 
axioms . 

1 5. 1 7. Find a Hausdorff space which is not regular . 

1 5. 1 8. Find a space satisfying the third , but not the second separation axiom. 

1 5. 1 9. Prove that a space X satisfies the third separation axiom iff every neigh­
borhood of every point x E X contains the closure of a neighborhood of x .  
1 5. 20. Prove that the third separation axiom i s  hereditary. 

1 5.R .  Any metric space is regular. 

115'8 J The Fourth Separation Axiom 

A topological space X satisfies the fourth separation axiom if any two 
disjoint closed sets in X have disjoint neighborhoods, i . e . , for any two closed 
sets A, B c X with A n B = 0 there exist open sets U, V c X such that 
U n V = 0 ,  A c U,  and B c V.  

A space i s  normal i f  i t  satisfies the first and fourth separation axioms . 

1 5. 8. A normal space is regular (and hence Hausdorff) . 

1 5. T. A space is normal iff it satisfies the second and fourth separation 
axioms . 

1 5. 21 . Find a space which satisfies the fourth, but not second separation axiom. 

1 5. 22. Prove that a space X satisfies the fourth separation axiom iff every neigh­
borhood of every closed set F C X contains the closure of some neighborhood of 
F .  

1 5. 23. Prove that each closed subspace of a normal space i s  normal . 

1 5. 24 .  Let X satisfy the fourth separation axiom, and let F1 , F2 , F3 c X be three 
closed subsets with empty intersection : F1 n F2 n F3 = 0. Prove that they have 
neighborhoods ul , u2 , u3 with empty intersection. 

1 5. U. Any metric space is normal. 
1 5. 25. Find two closed disjoint subsets A and B of some metric space such that 
inf{p(a , b) I a E A, b E  B} = 0 .  

1 5. 26. Let f : X --> Y be a continuous surjection such that the image of  each 
closed set is closed . Prove that if X is normal , then so is Y.  
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fl5'9x J Nemytskii 's Space 

Denote by 1-i the open upper half-plane { (x , y) E IR2 I y > 0} equipped with 
the topology generated by the Euclidean metric . Denote by N the union of 1-i and 
the boundary line IR1 : N = 1-i U IR1 , but equip it with the topology obtained by 
adjoining to the Euclidean topology the sets of the form x U  D, where x E !R1 and 
D is an open disk in 1-i touching IR1 at the point x. This is the Nemytskii space . 
It can be used to clarify properties of the fourth separation axiom. 

1 5. 27x..  Prove that the Nemytskii space is Hausdorff. 

1 5. 28x .  Prove that the Nemytskii space is regular . 

1 5. 29x.  What topological structure is induced on !R1 from N? 

1 5. 30x.  Prove that the Nemytskii space is not normal . 

1 5. 31x Corollary. There exists a regular space which is not normal . 

1 5. 32x . Embed the Nemytskii space in a normal space in such a way that the 
complement of the image would be a single point .  

1 5. 33x Corollary. Theorem 15. 23 does not extend to  nonclosed subspaces , i . e . , 
the property of being normal is not hereditary, is it? 

f15 '10xJ Urysohn Lemma and Tietze Theorem 

1 5. 34x. Let A and B be two disjoint closed subsets of a metric space X. Then 
there exists a continuous function f :  X ----> I such that f- 1 (0) = A and f- 1 ( 1 )  = 
B .  

1 5. 35x .  Let F be  a closed subset o f  a metric space X .  Then any continuous 
function f :  X ----> [- 1 ,  1] extends over the whole X .  

1 5. 35x . 1 .  Let F be a closed subset o f  a metric space X .  For any continu­
ous function f :  F ---+ [- 1 ,  1] , there exists a function g :  X ---+ [- 1 /3 ,  1 /3] 
such that l f (x) - g(x) l ::::; 2/3 for each x E F .  

1 5. Vx Urysohn Lemma. Let A and B be two nonempty disjoint closed 
subsets of a normal space X .  Then there exists a continuous function f 
X -t I such that f (A) = 0 and f (B) = 1 .  

1 5. Vx . 1 .  Let A and B be two disjoint closed subsets of a normal space X .  
Consider the set A = { 2� J k, n E Z+ , k ::::; 2n } .  There exists a collection 
{Up }pEA of open subsets of X such that for any p,  q E A we have : 1) A C U0 
and B c X '- U1 , and 2)  if p < q ,  then Cl Up c Uq . 

1 5. Wx Tietze Extension Theorem. Let A be a closed subset of a normal 
space X .  Let f : A -t [ - 1 ,  1 ] be a continuous function. Prove that there 
exists a continuous function F : X -t [ - 1 ,  1] such that FIA = f .  
1 5. Xx Corollary. Let A b e  a closed subset o f  a normal space X.  Then 
any continuous function A -t  lR extends to a function on the whole X.  

1 5. 36x .  Will the statement of the Tietze theorem remain true i f  we replace the 
segment [ - 1 ,  1 ] in the hypothesis by IR, !Rn , 81 , or 82 ? 

1 5. 37x .  Derive the Urysohn Lemma from the Tietze Extension Theorem. 
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1 6 .  Countability Axioms 

In this section , we continue to study topological properties that are addi­
tionally imposed on a topological structure in order to make the abstract 
situation under consideration closer to special situations and hence richer 
in contents . The restrictions studied in this section bound a topological 
structure "from above" : they require that something be countable . 

j16'1J Set-Theoretic Digression: Countability 

Recall that two sets have equal cardinality if there exists a bij ection of 
one of them onto the other . A set of the same cardinality as a subset of the 
set N of positive integers is countable . 

1 6. 1 .  A set X is countable iff there exists an injection X ----> N (or, more generally, 
an injection of X into another countable set ) .  

Sometimes this term is  used only for infinite countable sets , i . e . , for sets 
of the cardinality of the whole set N of positive integers , while sets countable 
in the above sense are said to be at most countable . This is less convenient . 
In particular , if we adopted this terminology, this section would be called 
"At Most Countability Axioms" . This would also lead to other more serious 
inconveniences as well . Our terminology has the following advantageous 
properties . 

1 6. A .  Any subset of a countable set is countable . 

1 6.B.  The image of a countable set under any map is countable . 

1 6. C. The following sets are countable : 

( 1 )  z, 
(2 )  N2 = { (k , n) I k , n E N} ,  
(3 )  Q. 

1 6.D .  The union of a countable family of countable sets is countable . 

1 6.E. JR. is not countable . 

1 6. 2. Prove that each set � of disjoint figure-eight curves in the plane is countable. 
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f16'2 J Second Countability and Separability 

In this section, we study three restrictions on the topological structure . 
Two of them have numbers (one and two ) , the third one has no number. As 
in the previous section, we start from the restriction having number two . 

A topological space X satisfies the second axiom of countability or is 
second countable if X has a countable base . A space is separable if it contains 
a countable dense set . (This is the countability axiom without a number 
that we mentioned above . ) 
1 6. F. The second axiom of countability implies separability . 

1 6. G. The second axiom of countability is hereditary. 

1 6. 3. Are the arrow and llh1 second countable? 

1 6. 4 .  Are the arrow and 1Rr1 separable? 

1 6. 5. Construct an example proving that separability is not hereditary. 

1 6. H. A metric separable space is second countable. 
1 6.1  Corol lary. For metrizable spaces, separability is equivalent to the sec­
ond axiom of countability. 

1 6. J. ( Cf. 1 6. 5. ) Prove that for metrizable spaces separability is hereditary. 

1 6. K. Prove that Euclidean spaces and all their subspaces are separable 
and second countable . 

1 6. 6. Construct a metric space which is not second countable . 

1 6. 7. Prove that each collection of pairwise disjoint open sets in a separable space 
is countable . 

1 6. 8. Prove that the set of components of an open set A C rn;n is countable . 

1 6.L .  A continuous image of a separable space is separable. 

1 6. 9. Construct an example proving that a continuous image of a second countable 
space may be not second countable . 

1 6. M  Lindelof Theorem. Any open cover of a second countable space 
contains a countable part that also covers the space . 

1 6. 1 0. Prove that each base of a second countable space contains a countable 
part which is also a base. 

1 6. 1 1  Brouwer Theorem *. Let {K>. } be a family of closed sets of a second 
countable space and assume that for every decreasing sequence K 1 :::l K 2 :::l . . .  
of sets in this family the intersection n�=l Kn also belongs to the family. Then 
the family contains a minimal set A, i .e . , a set such that no proper subset of A 
belongs to the family. 
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116'3 J Bases at a Point 

Let X be a space , a a point of X.  A neighborhood base at a or just 
a base of X at a is a collection � of neighborhoods of a such that each 
neighborhood of a contains a neighborhood from � .  

1 6. N. If � i s  a base o f  a space X,  then {U E � I  a E U} i s  a base o f  X at 
a .  

1 6. 1 2. In  a metric space , the following collections o f  balls are neighborhood bases 
at a point a: 

• the set of all open balls with center a; 

• the set of all open balls with center a and rational radii ; 
• the set of all open balls with center a and radii rn , where {rn } is any 

sequence of positive numbers converging to zero . 

1 6. 1 3. What are the minimal bases at a point in the discrete and indiscrete 
spaces? 

116'4 J First Countability 

A topological space X satisfies the first axiom of countability or is a first 
countable space if X has a countable neighborhood base at each point . 

1 6. 0. Any metric space is first countable. 

1 6. P. The second axiom of countability implies the first one. 
1 6. Q. Find a first countable space which is not second countable . ( Cf. 1 6. 6. ) 

1 6. 14 .  Which of the following spaces are first countable : 
( 1 )  the arrow; (2 )  llh1 ;  
(3) a discrete space; (4) an indiscrete space? 

1 6. 1 5. Find a first countable separable space which is not second countable. 

1 6. 1 6. Prove that if X is a first countable space, then at each point it has a 
decreasing countable neighborhood base: ul ::> u2 ::> . . . .  

116'5 J Sequential Approach to Topology 

Specialists in Mathematical Analysis love sequences and their limits .  
Moreover, they like to talk about all topological notions by relying on the 
notions of sequence and its limit . This tradition has little mathematical 
justification, except for a long history descending from the XIXth century 's 
studies on the foundations of analysis . In fact , almost always4 it is more con­
venient to avoid sequences , provided that you deal with topological notions , 
except summation of series , where sequences are involved in the underlying 
definitions . Paying a tribute to this tradition , here we explain how and in 

4The exceptions which one may find in the standard curriculum of a mathematical depart­
ment can be counted on two hands . 
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what situations topological notions can be described in terms of sequences 
and their limits .  

Let A be a subset of a space X.  The set SCl A of limits of all sequences 
an with an E A is the sequential closure of A .  

1 6.R .  Prove that SCl A c Cl A.  

1 6. S .  If a space X is first countable, then the opposite inclusion Cl A C 
SCl A also holds true for each A C X,  whence SCl A = Cl A .  

Therefore , i n  a first countable space (in particular , i n  any metric space) 
we can recover (hence, define) the closure of a set provided that we know 
which sequences are convergent and what their limits are . In turn, the 
knowledge of closures allows one to determine which sets are closed . As a 
consequence , knowledge of closed sets allows one to recover open sets and 
all other topological notions . 

1 6. 1 7. Let X be the set of real numbers equipped with the topology consisting 
of 0 and complements of all countable subsets .  (Check that this is actually a 
topology. ) Describe convergent sequences, sequential closure and closure in X .  
Prove that X contains a set A with SCl A =/= C l  A .  

\16'6 J Sequential Continuity 

Now we consider the continuity of maps along the same lines . A map 
f : X --> Y is sequentially continuous if for each b E X and each sequence 
an E X  converging to b the sequence f (an ) converges to f (b) . 

1 6. T. Any continuous map is sequentially continuous. 
a1 • 

1 6. U. The preimage of a sequentially closed set under a sequentially con­
tinuous map is sequentially closed. 

1 6. V. If X is a first countable space, then any sequentially continuous map 
f :  X -->  Y is continuous. 

Thus , continuity and sequential continuity are equivalent for maps of a 
first countable space . 

1 6. 1 8. Construct a discontinuous map which is sequentially continuous . (Cf. 
Problem 1 6. 1 7. )  
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f16'7x J Embedding and Metrization Theorems 

1 6. Wx . Prove that the space l2 is separable and second countable . 

1 6.Xx .  Prove that a regular second countable space is normal . 
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1 6. Yx . Prove that a normal second countable space can be embedded in l2 . 
(Use the Urysohn Lemma 1 5. Vx. )  

1 6. Zx .  Prove that a second countable space i s  metrizable iff  i t  i s  regular . 
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1 7. Compactness 

117' 1  J Definition of Compactness 

This section is devoted to a topological property playing a very special 
role in topology and its applications . It is a sort of topological counterpart 
for the property of being finite in the context of set theory. (It seems though 
that this analogy has never been formalized . ) 

A topological space X is compact if each open cover of X contains a 
finite part that also covers X.  

I f  r i s  a cover o f  X and � c r i s  a cover o f  X,  then � i s  a subcover 
(or subcovering) of r .  Thus , a space X is compact if every open cover of X 
contains a finite subcovering. 

1 1. A .  Any finite space and indiscrete space are compact . 

1 1.B .  Which discrete spaces are compact? 

1 7. 1 .  Let fh C fh be two topological structures in X .  1 )  Does the compactness 
of (X, n2 ) imply that of (X, n1 ) ?  2) And vice versa? 

1 1. C. The line lR is not compact . 

1 7.D.  A space X is not compact iff it has an open cover containing no finite 
subcovering. 

1 7. 2. Is the arrow compact? Is llh1 compact? 

f 17'2 J Terminology Remarks 

Originally the word compactness was used for the following weaker prop­
erty : any countable open cover contains a finite subcovering . 

1 1. E. For a second countable space , the original definition of compactness 
is equivalent to the modern one . 

The modern notion of compactness was introduced by P. S .  Alexandrov 
( 1896-1982) and P. S .  Urysohn ( 1898-1924) . They suggested for it the term 
bicompactness . This notion turned out to be fortunate; it has displaced 
the original one and even took its name , i . e . , "compactness" . The term 
bicompactness is sometimes used (mainly by topologists of Alexandrov's 
school) . 

Another deviation from the terminology used here comes from Bourbaki : 
we do not include the Hausdorff property in the definition of compactness , 
while Bourbaki does . According to our definition, 1Rr1 is compact , but 
according to Bourbaki it is not . 
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117'3 J Compactness in Terms of Closed Sets 

A collection of subsets of a set is said to have the finite intersection 
property if each finite subcollection has a nonempty intersection . 

1 7. F. A collection � of subsets of a set X has the finite intersection property 
iff there exists no finite �1 c � such that the complements of sets in �1 
cover X. 

1 7. G.  A space X is compact iff every collection of closed sets in X with the 
finite intersection property has a nonempty intersection. 

1 17'4 J Compact Sets 

A compact set is a subset A of a topological space X (the latter must 
be clear from the context ) provided that A is compact as a space with the 
relative topology induced from X.  

1 7.H. A subset A of a space X is compact iff each cover of A with sets open 
in X contains a finite subcovering. 

1 7. 3. Is [ 1 ,  2) C R compact? 

1 7. 4 .  Is the same set [ 1 ,  2) compact in the arrow? 

1 7. 5. Find a necessary and sufficient condition (not formulated in topological 
terms) for a subset of the arrow to be compact? 

1 7. 6. Prove that each subset of Rr1 is compact . 

1 7. 7. Let A and B be two compact subsets of a space X .  1) Does it follow that 
A U  B is compact? 2) Does it follow that A n  B is compact? 

1 7. 8. Prove that the set A =  0 U { 1/n} ;:"= 1 in R is compact . 

1 17'5 J Compact Sets Versus Closed Sets 

1 7. 1. Is compactness hereditary? 

1 7. J. Any closed subset of a compact space is compact. 
Theorem 1 7. J can be considered a partial heredity of compactness . 
In a Hausdorff space a theorem converse to 1 7. J holds true : 

1 7. K. Any compact subset of a Hausdorff space is closed. 
The arguments proving Theorem 1 "/.K  prove , in fact , a more detailed 

statement presented below. This statement is more powerful. It has direct 
consequences , which do not follow from the theorem. 



1 1 0  III. Topological Properties 

1 7. L  Lemma to 1 7. K, but not only . . . .  Let A be a compact subset of 
a Hausdorff space X ,  and let b be a point of X not in A .  Then there exist 
open sets U, V c X such that b E V,  A c U, and U n V = 0 .  

1 1. 9. Construct a nonclosed compact subset of some topological space . What is 
the minimal number of points needed? 

f 17'6 J Compactness and Separation Axioms 

1 7. M. A compact Hausdorff space is regular. 

1 7. N. Prove that a compact Hausdorff space is normal . 

1 7. 0 Lemma to 1 7.N. Any two disjoint compact sets in a Hausdorff space 
possess disjoint neighborhoods . 

1 1. 1 0. Prove that the intersection of any family of compact subsets of a Hausdorff 
space is compact . (Cf. 1 7. 7. ) 

1 1. 1 1 .  Let X be a Hausdorff space , let { K .>. } .>.EA be a family of its compact 
subsets, and let u be an open set containing n.>.EA K,>. . Prove that for some finite 
A c A we have u � n.>.EA K,>. . 
1 1. 1 2. Let {Kn }l' be a decreasing sequence of nonempty compact connected 
sets in a Hausdorff space. Prove that the intersection n�1 Kn is nonempty and 
connected. (Cf. 12. 20. ) 

f 17'7J Compactness in Euclidean Space 

1 7. P. The segment I is compact. 
Recall that the unit n-dimensional cube (the n-cube) is the set 

r = {x E !Rn I Xi E [0, 1 ]  for i =  1, . . .  , n} .  

1 7. Q .  The cube In is compact. 

1 7.R .  Any compact subset of a metric space is bounded. 
Therefore , any compact subset of a metric space is closed and bounded 

(see Theorems 1 5.A ,  1 7.K, and 1 7. R) .  
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1 7. 8. Construct a closed and bounded , but noncompact set in a metric 
space . 

1 7. 1 3. Are the metric spaces of Problem 4 . A  compact? 

1 7. T. A subset of a Euclidean space is compact iff it is closed and bounded. 

1 7. 14 .  Which of the following sets are compact : 
( 1 )  [0 , 1 ) ;  ( 2 )  ray JR+ = {x E lR I x � 0} ; 
(4) sn ; (5) one-sheeted hyperboloid ; 
(7) [o ,  1 ) n Q? 

(3) S1 ; 
(6) ellipsoid ; 

An n x k matrix ( aij ) with real entries can be regarded as a point in JRnk . To 
do this, we only need to enumerate somehow (e .g . , lexicographically) the entries of 
( aij ) by numbers from 1 to nk.  This identifies the set L (  n, k) of all such matrices 
with JRnk and endows it with a topological structure . (Cf. Section 14 . )  

1 7. 1 5. Which of the following subsets of L (  n ,  n) are compact : 

( 1 )  GL(n) = {A E L (n,  n) I det A =f. 0} ;  
(2 )  SL(n) = {A E L(n , n) I det A = 1 } ;  
( 3 )  O(n) = {A E L (n , n) I A i s  an orthogonal matrix} ; 
(4) {A E L(n , n) I A2 = JE} ,  where lE is the unit matrix? 

117'8 J Compactness and Continuous Maps 

1 7. U. A continuous image of a compact space is compact. {In other words, 
if X is a compact space and f : X ---+ Y is a continuous map, then the set 
f (X) is compact.) 

1 7. V. A continuous numerical function on a compact space is bounded and 
attains its maximal and minimal values. {In other words, if X is a compact 
space and f : X ---+ lR is a continuous function, then there exist a , b E X 
such that f (a) :::; f (x) :::; f (b) for every x E X .) Cf. 1 1. U  and 1 7. T. 

1 7. 1 6. Prove that if f :  I ---+ lR is a continuous function, then f (I) is a segment . 

1 7. 1 7. Let A be a subset of JRn . Prove that A is compact iff each continuous 
numerical function on A is bounded . 

1 7. 1 8.  Prove that if F and G are disjoint subsets of a metric space, F is closed, and 
G is compact , then the distance p(G, F) = inf {p(x ,  y) I x E F, y E G} is positive .  

1 7. 1 9. Prove that any open set U containing a compact set A of a metric space 
X contains an €-neighborhood of A ( i .e . , the set { x E X I p(x ,  A) < c} )  for some 
c > 0 .  
1 7. 20. Let A be a closed connected subset o f  JRn , and let V be the closed € ­
neighborhood of  A ( i .e . , V = {x E JRn I p(x , A) ::::; c} ) . Prove that V is path­
connected . 

1 7. 21 .  Prove that if the closure of each open ball in a compact metric space is 
the closed ball with the same center and radius, then any ball in this space is 
connected. 
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1 7. 22. Let X be a compact metric space, and let f : X --> X be a map such 
that p(f (x) , f (y ) )  < p(x ,  y) for any x, y E X with x #- y. Prove that f has a 
unique fixed point .  (Recall that a fixed point of f is a point x such that f(x) = x ,  
see 1 5. 6. )  

1 7. 23. Prove that for each open cover o f  a compact metric space there exists a 
(sufficiently small) number r > 0 such that each open ball of radius r is contained 
in an element of the cover. 

1 7. W Lebesgue Lemma. Let f : X ---+ Y be a continuous map from a 
compact metric space X to a topological space Y,  and let r be an open cover 
of Y. Then there exists a number 8 > 0 such that for any set A c X with 
diameter diam (A ) < 8 the image f (A) is contained in an element of r .  

f 17'9 J Compactness and Closed Maps 

A continuous map is closed if the image of each closed set under this 
map is closed . 

1 1. 24 .  A continuous bijection is a homeomorphism iff it is closed. 

1 7. X. A continuous map of a compact space to a Hausdorff space is closed. 
Here are two important corollaries of this theorem. 

1 7. Y. A continuous bijection of a compact space onto a Hausdorff space is 
a homeomorphism. 

1 7. Z. A continuous injection of a compact space into a Hausdorff space is 
a topological embedding. 

1 7. 25. Show that none of the assumptions in 1 7. Y ean be omitted without making 
the statement false . 

1 7. 26. Does there exist a noncompact subspace A of the Euclidian space such that 
each continuous map of A to a Hausdorff space is closed? (Cf. 1 7. V and 1 7. X. )  

1 7.27. A restriction o f  a closed map to  a closed subset i s  also a closed map. 

1 7. 28. Assume that f : X __,  Y is a continuous map , K C X is a compact set , 
and Y is Hausdorff. Suppose that the restriction f iK  i s  injective and each a E K 
has a neighborhood Ua such that the restriction f l ua is injective . Then K has a 
neighborhood U such that the restriction f l u is injective . 

f 17' 10xj Norms in IRn 

1 7. 29x.  Prove that each norm Rn __, R (see Section 4) is a continuous function 
(with respect to the standard topology of Rn ) .  
1 7. 30x.  Prove that any two norms in Rn are equivalent ( i .e . ,  determine the same 
topological structure) . See 4 . 21, cf. 4 . 31 .  

1 7. 31x .  Does the same hold true for metrics on Rn? 
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f 17' 1 1x J Induction on Compactness 

A function f : X ---> R is locally bounded if for each point a E X there exist a 
neighborhood U and a number M > 0 such that l f (x) l :::; M for x E U ( i .e . , each 
point has a neighborhood U such that the restriction of f to U is bounded ) .  

1 7. 32x .  Prove that i f  a space X i s  compact and a function f : X --. R i s  locally 
bounded , then f is bounded . 

This statement is a simple application of a general principle formulated below 
in 1 7. 33x. This principle can be called induction on compactness (cf. induction on 
connectedness , which was discussed in Section 1 2 ) .  

Let X be  a topological space , C a property o f  subsets o f  X .  We say that C 
is additive if the union of each finite family of sets having the property C also has 
this property. The space X possesses the property C locally if each point of X has 
a neighborhood with property C .  

1 7. 33x .  Prove that a compact space which locally possesses an  additive property 
has this property itself. 

1 7. 3J,x.  Using induction on compactness , deduce the statements of Problems 1 7.R ,  
18 .M, and 18.N. 
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1 8 .  Sequential Compactness 

f18'1 J Sequential Compactness Versus Compactness 

A topological space is sequentially compact if every sequence of its points 
contains a convergent subsequence . 

1 8. A .  If a first countable space is compact, then it is sequentially compact. 
A point b is an accumulation point  of a set A if each neighborhood of b 

contains infinitely many points of A.  

1 8. A . 1 .  Prove that a point b in  a space satisfying the first separation axiom is 
an accumulation point iff b is a limit point .  

1 8. A . 2. Any infinite set  in a compact space has  an accumulation point. 

1 8. A . 3. A space in which each infinite set has an accumulation point is se­
quentially compact. 

1 8.B .  A sequentially compact second countable space is compact. 

1 8. B . 1 .  A decreasing sequence of nonempty closed sets in a sequentially com­
pact space has a nonempty intersection. 

1 8. B . 2. Prove that each nested sequence of nonempty closed sets in a space 
X has a nonempty intersection iff each countable collection of closed sets in X 
with the finite intersection property has a nonempty intersection. 

1 8. B . 3. Derive Theorem 1 8. B  from 18 .B . 1 and 1 8.B . 2. 

1 8. C. For second countable spaces, compactness and sequential compactness 
are equivalent. 

f18'2 J In Metric Space 

A subset A of a metric space X is an c:-net (where c: is a positive number ) 
if p(x , A) < c: for each point x E X . 

1 8.D.  Prove that each compact metric space contains a finite c:-net for each 
c > 0 .  
1 8. E. Prove that each sequentially compact metric space contains a finite 
c:-net for each c: > 0 .  
1 8.F. Prove that a subset A of a metric space i s  everywhere dense iff A is 
an c:-net for each c: > 0 .  

1 8. G.  Any sequentially compact metric space i s  separable. 
1 8. H. Any sequentially compact metric space is second countable . 
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1 8. 1. For metric spaces, compactness and sequential compactness are equiv­
alent. 

1 8. 1 .  Prove that a sequentially compact metric space is bounded. (Cf. 1 8. E  
and 18 .1. )  
1 8. 2. Prove that for each t: > 0 each metric space contains 

( 1 )  a discrete c:-net , and 
(2 ) an c:-net such that the distance between any two of its points is greater 

than c:. 

118'3 J Completeness and Compactness 

A sequence {xn }nEN of points of a metric space is a Cauchy sequence (or 
a fundamental sequence) if for every E > 0 there exists a number N such 
that p(xn , Xm) < E for any n, m 2:: N. A metric space X is complete if every 
Cauchy sequence in X converges .  

1 8. J. A Cauchy sequence containing a convergent subsequence converges. 

1 8. K. Prove that a metric space M is complete iff every nested sequence 
of closed balls in M with radii tending to 0 has a nonempty intersection. 

1 8.L .  Prove that a compact metric space is complete .  

1 8. M. Prove that a complete metric space i s  compact iff for each E > 0 it 
contains a finite E-net . 

1 8. N. Prove that a complete metric space is compact iff it contains a com­
pact E-net for each E > 0 .  

l18'4xj Noncompact Balls in Infinite Dimension 

We denote by zoo the set of all bounded sequences of real numbers . This is 
a vector space with respect to the component-wise operations . There is a natural 
norm in it : l l x ll = sup{ lxn l l  n E N} . 

1 8 . 3x .  Are closed balls of zoo compact? What about spheres? 

1 8.4x .  Is the set {X E zoe I lxn I � Tn ' n E N} compact? 

1 8 . 5x .  Prove that the set {x E zoe I l xn l = 2-n ' n E N} is homeomorphic to the 
Cantor set K introduced in Section 2 .  

1 8 . 6x *. Does there exist an  infinitely dimensional normed space in  which closed 
balls are compact? 

l18'5xJ p-Adic Numbers 

Fix a prime integer p. Denote by Zp the set of series of the form ao + a1p + 
· · · + anpn + . . .  with 0 � an < p, an E N. For x , y E Zp , put p(x , y) = 0 if x = y ,  
and p(x ,  y) = p-m i f  m i s  the smallest number such that the mth coefficients in 
the series x and y are different . 

18 .  7x. Prove that p is a metric on Zp . 
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This metric space is the space of integer p-adic numbers .  There is an injection 
IE ---+ IEp sending ao + a1p + · · · + anpn E IE with 0 :::; ak < p to the series 

ao + a1p + · · · + anpn + Opn+l + Opn+2 + · · · E 1Ep 

and - (ao + a1p + · · · + anpn ) E IE with 0 :::; ak < p to the series 

bo + b1p + · · · + bnpn + (p - 1 )pn+ l + (p - 1 )pn+2 + . . . , 

where 

bo + b1p + · · · + bnpn = pn+ l - (ao + a1p + · · · + anpn ) .  
Cf. 4 . Ux. 

1 8. 8x .  Prove that the image of the injection IE ---+ 1Ep is dense in 1Ep . 

1 8. 9x .  Is IEp a complete metric space? 

1 8. 1 0x .  Is 1Ep compact? 

f18'6x J Spaces of Convex Figures 

Let D C �? be a closed disk of radius p. Consider the set Pn of all convex 
polygons P with the following properties : 

• the perimeter of P is at most p; 
• P is contained in D;  
• P has at  most n vertices (the cases of one and two vertices are not 

excluded; the perimeter of a segment is twice its length) . 

See 4 . Mx, cf. 4 . 0x. 

1 8. 1 1x .  Equip Pn with a natural topological structure . For instance, define a 
natural metric on P n . 
1 8 . 1 2x .  Prove that Pn is compact . 

1 8. 1 3x .  Prove that Pn contains a polygon having the maximal area. 

18 . 14x .  Prove that this polygon is a regular n-gon. 

Consider now the set P oc of all convex polygons that have perimeter at most 
p and are contained in D. In other words, Poo = U;:"=1 Pn . 
1 8. 1 5x .  Construct a topological structure in Poo that induces on Pn the topolog­
ical structures discussed above . 

1 8. 1 6x .  Prove that the space Poe is not compact . 

Consider now the set P of all convex closed subsets of the plane that have 
perimeter at most p and are contained in D .  (Observe that all sets in P are 
compact . ) 
1 8. 1 7x. Construct a topological structure in P that induces the structure intro­
duced above in the space Poe . 

1 8. 1 8x .  Prove that the space P is compact . 

1 8. 1 9x .  Prove that there exists a convex plane set with perimeter at most p having 
a maximal area. 

1 8. 20x.  Prove that this is a disk of radius p/ (27r) . 
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1 9x.  Local C ompactness and 

Paracompactness 

l19' 1x J Local Compactness 

1 1 7  

A topological space X i s  locally compact i f  each point o f  X has a neigh­
borhood with compact closure . 

1 9. 1x .  Compact spaces are locally compact. 

1 9. 2x .  Which of the following spaces are locally compact : 
( 1 )  JR; (2 )  Q; (3) lRn ; (4) a discrete space? 

1 9. 3x .  Find two locally compact sets on the line such that their union is not 
locally compact. 

1 9.Ax .  Is the local compactness hereditary? 

1 9.Bx .  A closed subset of a locally compact space is locally compact . 

1 9. Cx. .  Is it true that an open subset of a locally compact space is locally 
compact? 

1 9. Dx .  A Hausdorff locally compact space is regular . 

1 9. Ex .  An open subset of a locally compact Hausdorff space is locally com­
pact . 

1 9. Fx .  Local compactness is a local property for a Hausdorff space , i . e . , a 
Hausdorff space is locally compact iff each of its points has a locally compact 
neighbor hood. 

l19'2xj One-Point Compactification 

Let (X, n) be a Hausdorff topological space . Let X* be the set obtained 
by adding a point x* to X (of course , x* does not belong to X) .  Let n* be 
the collection of subsets of X* consisting of 

• sets open in X and 
• sets of the form X* " C, where C c X is a compact set : 

n* = n u {X* " c I c c X is a compact set } .  

1 9. Gx . Prove that n* i s  a topological structure on  X* . 

1 9.Hx .  Prove that the space (X* , n* ) is compact . 

1 9./x .  Prove that the inclusion (X, n) � (X* , n* ) is a topological embed­
ding . 



1 1 8  III. Topological Properties 

1 9. Jx .  Prove that if X is locally compact , then the space (X* , 0* ) is Haus­
dorff. (Recall that in the definition of X* we assumed that X is Hausdorff. ) 

A topological embedding of a space X in a compact space Y is a com­
pactification of X if the image of X is dense in Y. In this situation, Y is 
also called a compactification of X.  (To simplify the notation , we identify X 
with its image in Y . )  

1 9. Kx .  Prove that i f  X i s  a locally compact Hausdorff space and Y i s  a 
compactification of X with one-point complement Y -...... X,  then there exists 
a homeomorphism Y ----> X* identical on X.  

Any space Y o f  Problem 1 9.Kx i s  called a one-point compactification or 
Alexandrov compactification of X.  Problem 1 9. Kx says that Y is essentially 
unique . 

1 9. Lx .  Prove that the one-point compactification of the plane is homeo­
morphic to 82 . 

1 9.4x .  Prove that the one-point compactification of Rn is homeomorphic to sn . 
1 9. 5x . Give explicit descriptions for one-point compactifications of the following 
spaces : 

( 1 )  annulus { (x , y) E R2 1 1  < x2 + y2 < 2 } ;  
( 2 )  square without vertices { (x , y) E R2 I x , y E [- 1 ,  1 ] , l xy l < 1 } ;  
(3) strip { (x , y) E R2 I x E [0 , 1 ] } ;  
(4) a compact space . 

1 9. Mx .  Prove that a locally compact Hausdorff space is regular . 

1 9. 6x .  Let X be a locally compact Hausdorff space , K a compact subset of X ,  
and U a neighborhood o f  K. Then K has a neighborhood V such that the closure 
Cl V is compact and contained in U. 

j19'3xj Proper Maps 

A continuous map f : X ----> Y is proper if each compact subset of Y has 
compact preimage . 

Let X and Y be two Hausdorff spaces . Any map f :  X ----> Y obviously 
extends to the map 

j* : X* ----> Y* : x f---t { f (x) 
y* 

if X E X, 
if x = x* . 

1 9. Nx .  Prove that f* is continuous iff f is a proper continuous map . 

1 9. 0x .  Prove that each proper map of a Hausdorff space to a Hausdorff 
locally compact space is closed. 

Problem 1 9. 0x is related to Theorem 1 1. X. 
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1 9. Px .  Extend this analogy: formulate and prove statements corresponding 
to Theorems 1 1. Z and 1 1. Y. 

ll9'4x J Locally Finite Collections of Subsets 

A collection r of subsets of a space X is locally finite if each point b E X 
has a neighborhood U that meets only finitely many sets A E r .  

1 9. Qx . A locally finite cover o f  a compact space i s  finite . 

1 9. 7x .  If a collection r of subsets of a space X is  locally finite , then so is  { Cl A I 
A E r} .  
1 9. 8x . I f  a collection r of  subsets o f  a space X i s  locally finite, then each compact 
set A c X meets only a finite number of sets in r .  
1 9. 9x .  I f  a collection r of  subsets o f  a space X i s  locally finite and each A E r 
has compact closure , then each A E r meets only a finite number of sets in r.  
1 9. 1  Ox .  Any locally finite cover of  a sequentially compact space i s  finite . 

1 9. Rx .  Find an open cover of !Rn that has no locally finite subcovering . 
Let r and .6. be two covers of a set X .  The cover .6. is a refinement of r 

if for each A E .6. there exists B E r such that A c B.  

1 9. Sx .  Prove that any open cover of !Rn has a locally finite open refinement . 

1 9. Tx .  Let {UihEN be a ( locally finite) open cover of !Rn . Prove that there 
exists an open cover {Vi hEN of !Rn such that Cl Vi c Ui for each i E N. 

ll9'5x J Paracompact Spaces 

A space X is paracompact if every open cover of X has a locally finite 
open refinement . 

1 9. Ux . Any compact space is paracompact . 

1 9. Vx . !Rn is paracompact . 

1 9. Wx . Let X = U�1 Xi , where Xi are compact sets such that Xi c 
Int Xi+l · Then X is paracompact . 

1 9. Xx .  Let X be a locally compact space . If X has a countable cover by 
compact sets , then X is paracompact . 

1 9. 1 1x .  Prove that if a locally compact space is second countable, then it is 
paracompact . 

1 9. 1 2x .  A closed subspace of a paracompact space is paracompact . 

1 9. 1 3x .  A disjoint union of paracompact spaces is paracompact. 
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f 19'6xJ Paracompactness and Separation Axioms 

1 9. 14x . Let X be a paracompact topological space, and let F and M be two 
disjoint subsets of X, where F is closed. Suppose that F is covered by open sets 
Uo. whose closures are disjoint with M: Cl Uo. n M = 0 .  Then F and M have 
disjoint neighborhoods. 

1 9. 1 5x .  A Hausdorff paracompact space is regular . 

1 9. 1 6x . A Hausdorff paracompact space is normal . 

1 9. 1 7x. Let X be a Hausdorff locally compact and paracompact space , r a locally 
finite open cover of X. Then X has a locally finite open cover b. such that the 
closures Cl V, where V E b., are compact sets and {Cl V I V E b.} is a refinement 
of r .  

Here i s  a more general (though formally weaker) fact. 

1 9. 1 8x .  Let X be a normal space , r a locally finite open cover of X. Then X has 
a locally finite open cover b. such that { Cl V I V E b.} is a refinement of r. 

Information. M etrizable spaces are paracompact. 

f l9'7xJ Partitions of Unity 

Let X be a topological space , f : X ----+ lR a function. Then the set 
supp f = Cl{x E X  I f (x ) =J 0} is the support of f .  

1 9. 1 9x . Let X b e  a topological space , and let Uo. : X -->  IR}o.EA b e  a family of 
continuous functions whose supports supp(fo. )  constitute a locally finite cover of 
X. Prove that the formula 

f (x) = L fo. (x) 
o. EA  

determines a continuous function f : X --> R 

A family of nonnegative functions f 0 : X ----+ IR+ is a partition of unity if 
the supports supp(f0 )  constitute a locally finite cover of the space X and 
LaEA fa (x ) = 1 .  

A partition of unity {!0 }  is subordinate to a cover r if supp(f0 )  i s  con­
tained in an element of r for each a. We also say that r dominates {!0 } .  

1 9. Yx . Let X b e  a normal space. Then each locally finite open cover of X 
dominates a certain partition of unity. 

1 9. 20x.  Let X be a Hausdorff space . If each open cover of X dominates a certain 
partition of unity, then X is paracompact . 

Information. A Hausdorff space X is paracompact iff each open cover 
of X dominates a certain partition of unity. 
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f19'8x J Application: Making Embeddings from Pieces 

19. 21x.  Let X be a topological space , {Ui }7= 1 an open cover of X. If Ui can be 
embedded in Rn for each i = 1, . . . , k, then X can be embedded in Rk(n+ l ) . 

1 9. 21x . 1 .  Let hi : Ui ---+ JR.n , i = 1 ,  . . .  , k, be embeddings, and let 
fi : X ---+ JR. form a partition of unity subordinate to the cover {Ui } f=l · 
We put hi (x) = (hi (x) , 1 )  E JR.n+l . Show that the map X ---+ JR.k(n+ l )  : 
x � (fi (x )hi (x) ) f=1 is an embedding. 

19. 22x . Riddle. How can you generalize 1 9. 21x? 
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Proofs and Comments 

1 2.A  A set A is open and closed , iff A and X -...... A are open, i ff  A and 
X -...... A are closed . 

1 2.B It suffices to prove the following apparently less general assertion : 
A space having a connected everywhere dense subset is connected . (See 6. 3. ) 
Let X :=J A be the space and the subset . To prove that X is connected , let 
X = U U V, where U and V are disjoint sets open in X, and prove that one 
of them is empty (cf. 12.A ) . U n A  and V n A are disjoint sets open in A, 
and 

A =  X n A =  (U  u V) n A = (U n A) u (V n A) . 

Since A is connected , one of these sets , say U n A,  is empty. Then U is 
empty since A is dense , see 6.M. 

1 2. C To simplify the notation, we may assume that X = U>- A.>- . 
By Theorem 12.A ,  it suffices to prove that if U and V are two open sets 
partitioning X, then either U = 0 or V = 0. For each A E A, since A.>- is 
connected , we have either A.>- C U or A.>- c V (see 12. 14) . Fix a .Xo E A. To 
be definite , let A.>-0 c U.  Since each of the sets A.>- meets A.>-0 , all sets A.>­
also lie in U, and so none of them meets V, whence 

v = v n x  = v n U A->- = U (v n A.>- )  = 0 . 
.A. .A. 

1 2.E  Apply Theorem 12. C to the family {A.>- U A.>-o hEA , which consists 
of connected sets by 12 . D. (Or just repeat the proof of Theorem 12. C. ) 

1 2.F Using 12.D, prove by induction that U�n Ak is connected, and 
apply Theorem 12. C. 

1 2. G The union of all connected sets containing a given point is con­
nected (by 12. C) and obviously maximal . 

1 2.H Let A and B be two connected components with AnB -:f. 0 .  Then 
A U  B is connected by 12.D. By the maximality of connected components , 
we have A :=J A U B C B, whence A = A U B = B .  

1 2.1  ( ==> )  This i s  obvious since the component i s  connected. 
(<=J Since the components of the points are not disjoint , they coincide . 

1 2.K If A is a connected component , then its closure CI A is connected 
by 12 .B. Therefore , CI A C A by the maximality of connected components. 
Hence , A = Cl A because the opposite inclusion holds true for any set A. 

1 2.M See 12. 1 0. 
1 2.N Passing to the map ab (f) : X --+  j (X ) ,  we see that it suffices to 

prove the following theorem: 
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If X is a connected space and f : X ---+ Y is a continuous surjection, 
then Y is also connected . 

Consider a partition of Y in two open sets U and V and prove that one 
of them is empty. The preimages f-1 ( U) and f- 1 (V) are open by continuity 
of f and constitute a partition of X.  Since X is connected, one of them, say 
f- 1 (U) , is empty. Since f is surjective , we also have U = 0 .  

1 2. Q (=>l Let X = U U V, where U and V are nonempty disjoint 
sets open in X.  Set f (x) = - 1  for x E U and f (x) = 1 for x E V. Then f 
is continuous and surjective , is it not? 
(¢:::= ) Assume the contrary : let X be connected . Then 8° is also connected 
by 12 .N, a contradiction . 

1 2. R  By Theorem 12. Q, this statement follows from Cauchy's Interme­
diate Value Theorem. However , it is more natural to deduce Intermediate 
Value Theorem from 12. Q and the connectedness of I .  

So, assume the contrary : let I = [ 0 ,  1 ] be disconnected . Then [0 , 1] = 

U U V,  where U and V are disjoint and open in [0 , 1 ] . Suppose 0 E U ,  
consider the set C = {x E [0 , 1] 1 [ 0 ,  x) c U} and put c = sup C.  Show that 
each of the possibilities c E U and c E V leads to a contradiction. A slightly 
different proof of Theorem 12.R  is sketched in Lemmas 12.R . 1 and 12.R . 2. 

1 2.R . 1 Use induction : for n = 1 ,  2 ,  3 ,  . . .  , set 

if (an + bn )/2  E U ,  
i f  (an + bn )/2  E V. 

1 2. R . 2  On the one hand , we have c E U since c E Cl{an I n E N} , and 
an belong to U, which is closed in I. On the other hand , we have c E V 
since c E Cl{bn I n E N} ,  and bn belong to V ,  which is also closed in I .  
The contradiction means that U and V cannot be both closed , i . e . , I is 
connected. 

1 2. S Every open set on a line is a union of disjoint open intervals 
(see 2. Ix) , each of which contains a rational point . Therefore , each open 
subset U of a line is the union of countably many open intervals . Each 
of them is open and connected, and thus is a connected component of U 
(see 12. T) .  

1 2. T Apply 12. R  and 12 . J. (Cf. 12. U and 12.X. )  
1 2. U Apply 12. R  and 12. J. (Recall that a set K C �n i s  said t o  be 

convex if for any p, q E K we have [p, q] C K. )  

1 2. V Combine 12. R  and 12. C. 
1 2. X  [=>) This is 12. 1 0. (¢:::= ) This is 12. V. 



124 III. Topological Properties 

1 2. Y Singletons and all kinds of intervals (including open and closed 
rays and the whole line) . 

1 2. Z  Use 1 1 . R, 12. U, and , say Theorem 12.B  (or 12. !) .  
1 3. A  Since the segment [a , b] is connected by 12.R ,  its image is an 

interval by 12. 30. Therefore , it contains all points between f (a) and f(b) . 
1 3. B  Combine 12 .N and 12. 1 0. 
1 3. C  Combine 12. V and 12. 30. 
1 3. D  One of them is connected, while the other one is not . 
1 3. E  For each of the spaces , find the number of points with connected 

complement . (This is obviously a topological invariant . )  
1 3. F  Cf. 1 3. 4 .  
1 4 . A  Since the cover { [0 ,  1 /2] , [ 1/2 ,  1 ] } o f  [0 , 1 ]  is fundamental and the 

restriction of uv to each element of the cover is continuous , the entire map 
uv is also continuous . 

1 4 . B  I f  x ,  y E I ,  then I ---+ I :  t �-----+ ( 1 - t )x  + t y  is a path connecting x 
and y .  

14 .  C If  x ,  y E JRn , then [0 , 1 ] ---+ JRn : t �-----+ ( 1  - t )x  + ty i s  a path 
connecting x and y .  

1 4 . D  Use 1 1 . R  and 14 . C. 
1 4 . E  Combine 12.R  and 12. Q. 
1 4 . F  Let x and y be two points in the union, and let A and B be the 

sets in the family that contain x and y .  If A =  B, there is nothing to prove . 
If A =I= B,  take z E A n  B,  join x with z in A by a path u,  and join y with 
z in B by a path v. Then the path uv joins x and y in the union, and it 
remains to use 14 . 5. 

1 4 .  G Consider the union of all path-connected sets containing the point 
and use 14 .F. (Cf. 12. G. ) 

1 4 . H  Similarly to 12.H, only instead of 12.D  use 14 .F. 
1 4 . 1  ( => J  Recall the definition of a path-connected component . 

(<=) This follows from (the proof of )  14 . G. 
1 4 . J  Let X be path-connected, let f : X ---+ Y be a continuous map , 

and let Yl , Y2 E f (X) . If Yi = f (xi ) ,  i = 1 ,  2 ,  and u is a path joining x1 and 
x2 , then how can you construct a path joining Yl and Y2 ? 

1 4 . M  Combine 14 . 8  and 12. J. 
1 4 . N  By 1 1 . Q, A is homeomorphic to (0 ,  +oo) � JR, which is path­

connected by 14 .  C, and so A is also path-connected by 14 .K. Since A 
is connected (combine 12. T and 12. 0, or use 14 .M) and, obviously, A c 
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X c CI A (what i s  CI A ,  by the way? ) ,  i t  follows form 12. 1 5  that X i s  also 
connected. 

1 4 . 0 This is especially obvious for A since A � (0 ,  oo ) (you can also 
use 12. 2) .  

1 4 . P  Prove that any path in X starting at (0 ,  0 )  is constant . 
1 4 . Q Let A and X be as above . Check that A is dense in X (cf. the 

solution to 14 .N) and plug in Problems 14 .N and 14 .P. 
1 4 . R  See 14 . Q. 
1 4 . 8  Let C be a path-connected component of X, and let x E C be an 

arbitrary point .  If Ux is a path-connected neighborhood of x, then Ux lies 
entirely in C (by the definition of a path-connected component ! ) ,  and so x 
is an interior point of C,  which is thus open. 

1 4 .  T 1�1 This is 14 .M. 
(¢:::= ) Since path-connected components of X are open (see Problem 14 . S) 
and X is connected, there can be only one path-connected component . 

1 4 .  U This follows from 14 .  T because spherical neighborhoods in �n 
( i .e . ,  open balls) are path-connected (by 14 . 6  or 14 .  7) .  

1 5. A  If ri + r2 :<::; p (xi , X2 ) , then the balls Bq (XI ) and Br2 (x2 ) are 
disjoint . 

1 5. B  Certainly, I is Hausdorff since it is metrizable. The intervals 
[0 ,  1 /2) and ( 1 /2 ,  1] are disjoint neighborhoods of 0 and 1 ,  respectively. 

1 5. C 1�1 I f  y #- x ,  then x and y have disjoint neighborhoods Ux and 
Vy . Therefore , y tj. Cl Ux , whence y tj. nu3x Cl U. 
(¢:::= ) If y =1- x ,  then y tj. nu3x Cl U ,  and it follows that X has a neighborhood 
Ux such that y tj. Cl Ux . Set Vy = X -...... Cl Ux . 

1 5. D  Assume the contrary: let Xn --> a and Xn --> b ,  where a #- b .  
Let U and V be  disjoint neighborhoods o f  a and b ,  respectively. Then for 
sufficiently large n we have Xn E U n V = 0 ,  a contradiction. 

1 5. E  A neighborhood of a point in �T1 has the form U = � -...... 
{xi , . . . , XN } ,  where , say, X I  < x2 < · · · < XN . Then, obviously, an E U for 
each n > X N . 

1 5. F  Assume that X is a space , A c X is a subspace , and x ,  y E A  are 
two distinct points . If X is Hausdorff, then x and y have disjoint neighbor­
hoods U and V in X.  In this case , UnA and VnA are disjoint neighborhoods 
of x and y in A. (Recall the definition of the relative topology ! )  

1 5. G  ( 1 )::::} (2 )  Let X satisfy TI and let x E X. By Axiom TI , each point 
y E X -...... x has a neighborhood U that does not contain x, i . e . , U C X -...... x ,  
which means that all points in  X -...... x are inner . Therefore , X -...... x i s  open , 
and so its complement { x}  is closed. 
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(2 )::::::? (3 ) If singletons in X are closed, then so are finite subsets of X,  
which are finite unions of singletons . 

(2 )::::::? ( 1 )  If singletons in X are closed and x , y E X are two distinct 
points ,  then X " x is a neighborhood of y that does not contain x, as 
required in T1 . 

1 5.H Combine 1 5. 1 2 and 1 5. G. 
1 5.1  Combine 1 5.A  and 1 5. 1 2. 
1 5. J Each point in 1Rr1 is closed , as required by T1 , but any two 

nonempty sets intersect , which contradicts T2 . 
1 5. K  Combine 1 5. G and 5. 4 ,  and once more use 1 5. G; or just modify 

the proof of 1 5.F. 
1 5.N ( 1 ) ::::::? (2 )  Actually, To precisely says that at least one of the points 

does not lie in the closure of the other one (to see this , use Theorem 6.F) .  
(2 )  ::::::? ( 1 )  Use the above reformulation of To and the fact that if x E Cl{y} 
and y E Cl{x} , then Cl{x} = Cl{y} . 
( 1 )  <=> (3 )  This is obvious . (Recall the definition of the relative topology ! )  
(3) <=> ( 4 )  This i s  also obvious . 

1 5. 0  (=>J This i s  obvious. 
t <= 1 Let X be a To space such that each point x E X has a smallest 
neighborhood Cx . Then we say that x ::5 y if y E Cx . Let us verify the 
axioms of order . Reflexivity is obvious . Transitivity : assume that x ::5 y 
and y ::5 z .  Then Cx is a neighborhood of y ,  whence Cy C Cx , and so also 
z E Cx , which means that x ::5 z. Antisymmetry : if x :::S y and y :::S x, then 
y E Cx and x E Cy , whence Cx = Cy . By To , this is possible only if x = y .  
Verify that this order generates the initial topology. 

1 5. P  Let X be a regular space , and let x ,  y E X be two distinct points . 
Since X satisfies T1 , the singleton {y} is closed, and so we can apply T3 to 
x and {y} . 

1 5. Q (=>) See Problem 1 5. P. 1<=1  See Problem 1 5. 1 2. 
1 5.R Let X be  a metric space , x E X ,  and r > 0 .  Prove that , e .g . , 

Cl Br (x) C B2r (x) , and use 15. 1 9. 
1 5. 8  Apply T4 to a closed set and a singleton, which is also closed by 

T1 . 
1 5. T  (=>) See Problem 1 5. 8. (<=1 See Problem 15. 12. 
1 5. U Let A and B be two disjoint closed sets in a metric space (X, p) . 

Then , obviously, A C U = {x E X  I p(x ,  A) < p(x , B ) }  and B C V = {x E 
X I p(x ,  A) > p(x ,  B) } .  U and V are open (use 1 0. £) and disjoint .  

1 5. Vx . 1  Put U1 = X "- B.  Since X i s  normal , A has an open neighbor­
hood Uo ::::_) A such that Cl Uo c U1 . Let U1;2 be an open neighborhood of 
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Cl Uo such that Cl U1;2 c U1 . Repeating the process , we obtain the required 
collection {Up}pEA · 

1 5. Vx Put f (x ) = inf{.X E A I x E Cl U>.. } · We easily see that f is 
continuous . 

1 5. Wx Slightly modify the proof of 1 5. 35x, using Urysohn Lemma 
1 5. Vx instead of 1 5. 35x. 1 .  

1 6. A  Let f : X -----+ N be  an injection , A C X a subspace . Then the 
restriction J I A : A -----+ N is also an injection . Use 1 6. 1 .  

1 6.B  Let X be  a countable set , f : X -----+ Y a map . Sending each 
y E f (X)  to a point in f- 1 (y ) , we obtain an injection f (X)  -----+ X. Hence , 
f (X) is countable by 1 6. 1 . 

1 6. C Suggest algorithms (or even formulas ! )  for enumerating elements 
in Z and N2 . Find an injection Q -----+ N2 . 

1 6. D  Use 1 6. C. 
1 6. E  We will prove that for any sequence {xn } of real numbers in 

any interval [a , b] c ffi. there exists a real number c E [a , b] which does not 
belong to the sequence . This is more than required . Choose a decreasing 
sequence of segments [a , b] � [a1 , b1 ]  � [a2 , b2 ] � · · · � [an , bn] � . . . such 
that {x1 , . . .  , Xn } n [an , bn] = 0 .  Such a sequence is easy to choose, is 
it not? This gives two monotone sequences of real numbers : increasing 
sequence {an } and decreasing sequence {bn } · Let A = sup{ an I n E N} and 
B = inf{bn I n E N} .  Since an < bn for each n, these are real numbers 
and A :::; B. Then [A, B] = nn [an , bn] and any c E [A , B] has the desired 
property. Cf. to 6. 44 . 

1 6. F Construct a countable set A intersecting each base set (at least ) 
at one point and prove that A is everywhere dense . 

1 6. G  Let X be a second countable space , A C X a subspace . If {Ui }f 
is a countable base in X ,  then {Ui n A}f i s  a countable base in A. (See 5. 1 . )  

1 6. H  Show that i f  the set A = {xn }�=l i s  everywhere dense , then the 
collection {Br (x) I x E A, r E Q, r > 0} is a countable base of X. (Use 
Theorems 4 . 1  and 3.A to show that this is a base and 1 6.D  to show that it 
is countable . )  

1 6. J  Use 1 6. 1  and 1 6. G. 
1 6.K By 1 6. 1  and 1 6. G  (or , more to the point , combine 1 6.H, 1 6. G, 

and 1 6.F) ,  it is sufficient to find a countable everywhere-dense set in ffi.n . 
For example , take Qn = {x E ffi.n I Xi E Q, i = 1 ,  . . . , n} . To see that Qn 
is dense in ffi.n , use the metric pC 00) . To see that Qn is countable , use 1 6. C 
and 1 6.D. 

1 6. L  Use 1 0. 1 5. 
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1 6. M  Let X be the space , let {U} be a countable base in X,  and let 
r = {V} be a cover of X.  Let {Ui }�1 be the base sets that are contained 
in at least one element of the cover: let Ui c 1/i .  Using the definition of a 
base , we easily see that {Ui }�1 is a cover of X.  Then {Vi}�1 is the required 
countable subcovering of r.  

1 6.N Use 3.A .  
1 6. 0  Use 1 6. 12 
1 6. P  Use 1 6.N  and 1 6.A .  
1 6. Q Consider an uncountable discrete space . 
1 6. R  I f  Xn E A and Xn --+ a , then, obviously, a i s  an adherent point 

for A .  
1 6. 8  Let a E CI A ,  and let {Un}nEN be a decreasing neighborhood base 

at a (see 1 6. 1 6) .  For each n, there is Xn E Un n A, and we easily see that 
Xn --+ a .  

1 6. T Indeed, let f : X --+ Y be a continuous map , let b E X,  and let 
an --+ b in X.  We must prove that f (an ) --+ f (b) in Y. Let V C Y be a 
neighborhood of j (b) . Since f is continuous , j- 1 (V) C X is a neighborhood 
of b ,  and since an --+ b ,  we have an E f- 1 (V) for n > N. Then also f(an ) E V 
for n > N, as required .  

1 6. U Assume that f : X --+ Y i s  a sequentially continuous map and 
A c Y is a sequentially closed set . To prove that j- 1 (A) is sequentially 
closed , we must prove that if {xn } C f-1 (A) and Xn --+ a , then a E f- 1 (A) . 
Since f is sequentially continuous , we have f (xn ) --+ f (a) , and since A is 
sequentially closed , we have f (a) E A,  whence a E j-1 (A) , as required. 

1 6. V It suffices to check that if F c Y is a closed set , then so is the 
preimage j-1 (F) c X, i . e . , Cl (J- 1 (F) ) c j- 1 (F) . Let a E Cl(J- 1 (F) ) .  
Since X is first countable , we also have a E SCl (J- 1 (F) ) (see 1 6.S) , and so 
there is a sequence {xn } C f- 1 (F) such that Xn --+ a,  whence f (xn ) --+  f (a) 
because f i s sequentially continuous . Since F is closed , we have f (a) E F 
(by 1 6.R) , i . e . , a E f- 1 (F) , as required. 

1 6. Wx Since l2 is a metric space , it is sufficient to prove that l2 is 
separable (see 1 6.!) , i . e . , to find a countable everywhere dense set A C l2 . 
The first idea here might be to consider the set of sequences with rational 
components , but this set is uncountable ! Instead of this , let A be the set of 
all rational sequences {xi } such that Xi = 0 for all sufficiently large i. (To 
show that A is countable , use 1 6. C and 1 6.D. To show that A is everywhere 
dense , use the fact that if a series I:: Xf converges , then for each E > 0 there 
is k such that I::�k Xf < E · ) 

1 7. A  Each of the spaces has only a finite number of open sets ,  and so 
each open cover is finite . 
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1 7. B  Only the finite ones . (Consider the cover consisting o f  all single-
tons . ) 

1 7. C Consider the cover of � by the open intervals ( - n ,  n) , n E N. 
1 7. D  The latter condition i s  precisely the negation o f  compactness . 
1 7. E  This follows from the Lindelof theorem 1 6.M. 
1 7.F  This follows from the second De  Morgan formula (see 2.E) .  In­

deed, n.A A>. -1 0 iff U.>. (X " A>. ) = X "  n.A A>. -1 X.  
1 7. G ( =-1 Let X be a compact space and let r = {F.>. } be a family 

of closed subsets of X with the finite intersection property. Assume the 
contrary : let n.>. F.>. = 0. Then by the second De Morgan formula we have 
U.>. (X " F.>. ) = X "  n.A F.>. = X ,  i . e . , {X " F.>. } is an open cover of X.  Since 
X is compact , this cover contains a finite subcovering : U�=1 (X " Fi ) = X , 
whence n�=l Fi = 0 ,  which contradicts the finite intersection property of r .  
(<= l  Prove the converse implication on your own. 

1 7. H  t =- 1  Let r = {Ua: }  be a cover o f  A by open subsets of X.  Since 
A is a compact set , the cover of A with the sets A n  Ua contains a finite 
subcovering {A n Ua:Jf . Hence , {Ua:J is a finite subcovering of r .  
(<=J Prove the converse implication on your own. 

1 7. 1  Certainly not . The most classical example which proves this is 
[0 , 1 ] :J (0, 1 ) .  Here [0 , 1 ]  is compact by Theorem 1 1.P, while (0, 1) is not 
compact by 1 7. C. 

Since Theorem 1 7. P is still ahead, here we provide the following abstract 
general construction. Take any non-compact space A, add a point : X = 
A U b, b � A, and define a topological structure in X by saying that a set is 
open in X iff it is either the whole X or is an open subset of A. 

1 7. J  Let X be a compact space , F c X a closed subset , and {Ua: }  
an open cover of A. Then {X " F }  U {Ua: } is an open cover o f  X,  which 
contains a finite subcovering {X " F} U {Ui }f .  Clearly, {Ui }f is a cover of 
F.  

1 7.K This follows from 1 7. £. 
1 7. L  Since X i s  Hausdorff, for each x E A the points x and b possess 

disjoint neighborhoods Ux and Vb(x) . Obviously, {Ux }xEA is an open cover 
of A. Since A is compact , the cover contains a finite subcovering {UxJf . 
Put U = U�1 Ux; and V = n�=l Vb (xi ) · Then U and V are the required 
sets .  (Check that they are disjoint . ) 

1 7. M  Combine 1 7. J  and 1 7. £. 
1 7. N  This follows from 1 7. 0. 
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1 1. 0 ( Cf. the proof of Lemma 1 7. L. ) Let X be a Hausdorff space , 
A,  B C X two compact sets . By Lemma 1 7. L, each x E B has a neigh­
borhood Vx disjoint with a certain neighborhood U(x) of A. Obviously, 
{Vx }xEB is an open cover of B.  Since B is compact , the cover contains a 
finite subcovering {Ux; }f . Put V = U�1 Vx; and U = n7=1 Ub (xi ) · Then U 
and V are the required neighborhoods. (Check that they are disj oint . )  

1 1.P We argue by contradiction . I f  I i s  not compact , then I has a 
cover fo such that no finite part of r0 covers I (see 1 7.D) .  We bisect I and 
denote by h the half that also is not covered by any finite part of fo . Then 
we bisect h ,  etc . As a result , we obtain a sequence of nested intervals In , 
where the length of In is equal to 2-n . By the completeness axiom, they 
have a unique point in common: n�=l In = {xo } .  Consider an element 
Uo E fo containing xo . Since Uo is open, we have In C Uo for sufficiently 
large n, which contradicts the fact that , by construction, no finite part of 
fo covers In . 

1 1. Q  Repeat the argument used in the proof of Theorem 1 7.P, only 
instead of bisecting the segment each time subdivide the current cube into 
2n equal smaller cubes. 

1 1.R Consider the cover by open balls , {Bn (xo ) }�=l · 
1 1. 8  Let , e .g . , X = [0, 1 )  U [2 , 3] . (Or just let X = [0 , 1 ) . )  The set [0 , 1 )  

i s  bounded , i t  i s  also closed in  X, but it i s  not compact . 
1 1. T (=>) Combine Theorems 1 5.A ,  1 7.K, and 1 7.R. 

(<== ) If a subset F C ffi.n is bounded, then F lies in a certain cube , which 
is compact (see Theorem 1 7. Q) . If, in addition, F is closed, then F is also 
compact by 1 7. J. 

1 1. U We use Theorem 1 7.H.  Let r = {U>- }  be a cover of f (X) by 
open subsets of Y.  Since f is continuous , {f- 1 (U.>, ) }  is an open cover of X.  
Since X i s  compact , this cover has a finite subcovering {f- 1 (U>-J }r=l · Then 
{U>-Jr=l is a finite subcovering of r .  

1 1. V By 1 7. U and 1 7. T, the set f (X) C lR i s  closed and bounded . 
Since f (X) is bounded, there exist finite numbers m = inf f(X) and M = 
sup f (X) , whence , in particular , m :::; f (x) :::; M. Since f (X) is closed , we 
have m, M E  f (X) , whence it follows that there are a , b E  X with f (a) = m 
and f (b) = M, as required. 

X.  
1 1. W This follows from 1 7. 23: consider the cover {f- 1 (U) I U E r} of 

1 1. X This immediately follows from 1 7. J, 1 7. K, and 1 7. U. 
1 1. Y Combine 1 7.X and 1 1. 24 .  
1 1. Z See Problem 1 7. Y. 
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1 8. A . 1  (=>l This is  obvious . 
(<=1 Let x be a limit point .  If x is not an accumulation point of A, then x 
has a neighborhood Ux such that the set Ux n A is finite. Show that x has 
a neighborhood Wx such that (Wx "- x) n A = 0 .  

1 8. A .  2 Argue by contradiction: consider the cover of the space by 
neighborhoods having finite intersections with the infinite set . 

1 8. A . 3  Let X be a space , {an } a sequence of points in X. Let A be 
the set of all points in the sequence . If A is finite ,  there is not much to 
prove . So, we assume that A is infinite . By Theorem 18. A . 2, A has an 
accumulation point xo . Let {Un} be a countable neighborhood base of xo , 
and let Xnl E ul n A. Since the set u2 n A is infinite ,  there is n2 > n l 
such that Xn2 E U2 n A.  Prove that the subsequence { Xnk }  thus constructed 
converges to xo . If A is finite, then the argument simplifies a great deal . 

1 8.B. 1 Consider a sequence {xn } ,  Xn E Fn , and show that if Xnk --+ xo , 
then Xn E Fn for all n E N. 

1 8. B . 2  ( => 1  Let {Fk } c X be  a sequence o f  closed sets having 
the finite intersection property. Then {n�=l Fk } is a nested sequence of 
nonempty closed sets ,  whence n�1 Fk -=/:- 0 .  
(<=l This is obvious . 

1 8.B . 3 By the Lindelof theorem 1 6.M, it is sufficient to consider count­
able covers {Un} · If no finite collection of sets in this cover is not a cover , 
then the closed sets Fn = X "- Un form a collection with the finite intersection 
property. 

1 8. C  This follows from 18.B  and 1 8.A .  
1 8. D  Reformulate the definition o f  an c:-net : A is an c:-net i f  { Be: (x) }xEA 

is a cover of X. Now the proof is obvious . 
1 8. E  We argue by contradiction. If {xi }�,:} is not an c:-net , then there 

is a point Xk such that p(xi , xk ) � c:, i = 1 ,  . . . , k - 1 .  As a result , we obtain 
a sequence in which the distance between any two points is at least E, and 
so it has no convergent subsequences . 

1 8. F  (=>l  This i s  obvious because open balls in a metric space are 
open sets . 
(<=1 Use the definition of the metric topology. 

1 8. G  The union of finite 1 /n-nets of the space is countable and every­
where dense. (see 1 8.E) . 

1 8. H  Use 13 .82 .  
1 8. 1  I f  X i s  compact , then X i s  sequentially compact by 18.A .  I f  X 

is sequentially compact , then X is separable , and hence X has a countable 
base . Then 18. C implies that X is compact . 
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1 8. J  Assume that {xn } is a Cauchy sequence and its subsequence Xnk 
converges to a point a. Find a number m such that p(x1 , xk ) < c/2 for 
k ,  l 2 m, and i such that ni > m and p(xni '  a) < c/2 .  Then for all l 2 m 
we have the inequality p(xz , a ) :::; p(xz , Xn; )  + p(xni , a) < E . 

1 8. K  1 => 1  Obvious . 
(<=) Let {xn } be a Cauchy sequence . Let n1 be such that p(xn , Xm) < 1/2 
for all n ,  m 2 n1 . Therefore , Xn E B1;2 (xn1 ) for all n 2 n1 . Further , take 
n2 > n1 so that p(xn , Xm) < 1/4 for all n ,  m 2 n2 . Then Blj4 (xn2 ) C 
B1;2 (xn1 ) .  Proceeding with the construction, we obtain a sequence of de­
creasing disks such that their unique common point xo satisfies Xn � xo . 

1 8. L  Let {xn } be a Cauchy sequence of points of a compact metric 
space X.  Since X is also sequentially compact , { Xn } contains a convergent 
subsequence , and then the initial sequence also converges . 

1 8. M  ( => I  Each compact space contains a finite c-net . 
1 <= 1  We show that the space i s  sequentially compact . Consider an ar­
bitrary sequence {xn } · We denote by An a finite 1 /n-net in X.  Since 
X = UxEA1 B1 (x) , one of the balls contains infinitely many points of the 
sequence ; let Xn1 be the first of them. From the remaining members lying 
in the first ball , we let Xn2 be the first one of those lying in the ball B1;2 (x) , 
x E A2 . Proceeding with this construction , we obtain a subsequence {xnJ ·  
Let us show that the latter is fundamental . Since by assumption the space 
is complete , the constructed sequence has a limit . We have thus proved that 
the space is sequentially compact , and , hence , it is also compact . 

1 8. N  ( <= )  Obvious . 1=>1  This follows from assertion 1 8.M because 
an c/2-net for a c/2-net is an c-net for the entire space . 

1 9. Ax No, it is not : consider Q C R 
1 9. Bx Let X be a locally compact space , F C X a closed subset , and 

x E F.  Let U c X be a neighborhood of x with compact closure . Then 
U n F is a neighborhood of x in F. Since F is closed, the set ClF (U n F) = 
(Cl U) n F (see 6. 3) is compact as a closed subset of a compact set . 

1 9. Cx No, this is wrong in general . Take any space (X, 0) that is not 
locally compact (e .g . , let X = Q) . We put X* = X u x* and 0* = {X* } u O . 
The space (X* , 0* ) is compact for a trivial reason (which one? ) , and ,  hence , 
it is locally compact . Now, X is an open subset of X* , but it is not locally 
compact by our choice of X.  

1 9. Dx Let X be  the space , W a neighborhood o f  a point x E X.  Let Uo 
be a neighborhood of x with compact closure . Since X is Hausdorff, it follows 
that {X} = nu3x Cl u '  whence {X} = nu3x ( Cl Uo n Cl U) . Since each of 
the sets Cl Uo n Cl U is compact , 1 1. 1 1  implies that x has neighborhoods 
U1 , . . .  , Un such that Cl Uo n Cl U1 n · · · n Cl Un c W. Put V = Uo n U1 n 
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· · · n Un . Then Cl V C W. Therefore , each neighborhood of x contains the 
closure of a certain neighborhood (a "closed neighborhood" ) of x. By 1 5. 1 9, 
X is regular . 

1 9. Ex  Let X be the space , V c X the open subset , x E V a  point . Let 
U be a neighborhood of x such that Cl U is compact . By 1 9.Dx and 1 5. 1 9, x 
has a neighborhood W such that Cl W c U n V .  Therefore , Clv W = Cl W 
is compact , and so the space V is locally compact . 

1 9. Fx  ( ==> )  Follows from 1 9.Ex. 
(<=l Let point a of space X have a locally compact neighborhood U .  Then 
it has a neighborhood V of a in U  with compact Clu V. Being an open subset 
in open subspace U c X,  the set V is open in X .  So, V is a neighborhood 
of a in X. The closure Cl V of V in X is Hausdorff (as the Hausdorff 
property is hereditary) and hence its compact subset Clu V is closed in 
Cl V. Therefore Clu V = Cl V, and hence V is a desired neighborhood of a 
in X with compact closure . 

1 9. Gx Since 0 is both open and compact in X ,  we have 0 ,  X* E 0* . 
We verify that unions and finite intersections of subsets in 0* lie in 0* . This 
is obvious for subsets in 0. Let X* -...... K>, E 0* , where K>, c X are compact 
sets , A E A. Then we have U>. (X* ....... K>, ) = X* ....... nA K>, E 0* because X 
is Hausdorff and so n>. K>. is compact . Similarly, if A is finite , then we also 
have nA (X* ....... K>, ) = X* ....... U>. K>, E 0* . Therefore ,  it suffices to consider 
the case where a set in 0* and a set in 0 are united (intersected) .  We leave 
this as an exercise . 

1 9.Hx Let U = X* -...... Ko be an element of the cover that contains the 
added point . Then the remaining elements of the cover provide an open 
cover of the compact set Ko . 

1 9. Ix In other words , the topology of X* induces on X the initial 
topology of X ( i .e . ,  0* n 2x = 0) . We must check that no new open sets 
arise in X. This is true because compact sets in the Hausdorff space X are 
closed. 

1 9. Jx If x, y E X , this is obvious . If , say, y = x* and Ux is a neighbor­
hood of x with compact closure , then Ux and X -...... Cl Ux are neighborhoods 
separating x and x* . 

1 9.Kx Let X* -...... X = {x* } and Y -...... X = {y} . We have an obvious 
bijection 

f : y --+  X* : X 1---+ {X 
X* 

if X E X , 
if X = y .  

If U c X* and U = X* -...... K ,  where K i s  a compact set in X ,  then the set 
f- 1 (U) = Y -...... K is open in Y. Therefore , f is continuous . It remains to 
apply 1 7. Y. 
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1 9. Lx Verify that if an open set U c S2 contains the "North Pole" 
(0 ,  0, 1) of S2 , then the complement of the image of U under the stereo­
graphic projection is compact in IR.2 . 

1 9. Mx X* is compact and Hausdorff by 1 9.Hx and 19. Jx, and , there­
fore , X* is regular by 1 7.M. Since X is a subspace of X* by 1 9. Ix, it remains 
to use the fact that regularity is hereditary by 1 5. 20. See also 1 9.Dx. 

1 9. Nx (�I  If f* i s  continuous , then , obviously, so  i s  f (by 1 9. Ix) . 
Let K c Y be a compact set , and let U = Y -...... K .  Since f* is continuous , 
the set (f* ) - 1 (U) = X* -...... f- 1 (K) is open in X* , i . e . , f- 1 (K) is compact in 
X. Therefore , f is proper . 
(<=I  Use a similar argument . 

1 9. Ox Let f* : X* � Y* be the canonical extension of a map f : X � 

Y.  Prove that if F is closed in X,  then F U { x* } is closed in X* , and hence 
compact . After that , use 1 9.Nx, 1 7.X, and 1 9. Ix. 

1 9. Px  A proper injection of a Hausdorff space into a locally compact 
Hausdorff space is a topological embedding . A proper bij ection of a Haus­
dorff space onto a locally compact Hausdorff space is a homeomorphism. 

1 9. Qx Let r be a locally finite cover, and let Ll be a cover of X by 
neighborhoods each of which meets only a finite number of sets in r .  Since 
X is compact , we can assume that Ll is finite . In this case , obviously, r is 
also finite. 

1 9. Rx Cover JR.n by the balls Bn (O) , n E N. 
1 9. Sx Use a locally finite covering of JR.n by equal open cubes . 
1 9. Tx  Cf. 1 9. 1 7x. 
1 9. Ux This is obvious . 
1 9. Vx This is 1 9. Sx. 
1 9. Wx Let r be an open cover of X.  Since each of the sets Ki = 

Xi -...... Int Xi-1 is compact , r contains a finite subcovering ri of Ki · Observe 
that the sets Wi = Int Xi+l -...... Xi-2 ::J Ki form a locally finite open cover of 
X. Intersecting elements of ri with Wi for each i, we obtain a locally finite 
refinement of r.  

1 9. Xx Using assertion 1 9. 6x, construct a sequence of  open sets Ui such 
that for each i the closure Xi = Cl Ui is compact and lies in Ui+1 c Int Xi+l · 
After that , apply 1 9. Wx. 

1 9. Yx Let r = {Ua }  be the cover. By 1 9. 1 8x, there exists an open 
cover Ll = {Va }  such that Cl Va C Ua for each a . Let 'Pa : X � I be an 
Urysohn function with supp <pa = X -...... Ua and cp;- 1 ( 1 )  = Cl Va (see 1 5. Vx) . 
Put cp(x) = Ea 'Pa (x) . Then the collection { 'Pa (x) /cp(x) } is the required 
partition of unity. 



Chapter IV 

Topological 

Constructions 

2 0 .  Mult iplicat ion 

]20' 1J Set-Theoretic Digression: Product of Sets 

Let X and Y be two sets . The set of ordered pairs (x ,  y) with x E X  and 
y E Y is called the direct product , Cartesian product , or just product of X 
and Y and denoted by X x Y.  If A c X and B c Y,  then A x B c X x Y. 
Sets X x b with b E Y  and a x  Y \vith a E X  are fibers of  the product X x Y. 

20. A .  Prove that for any A1 , A2 c X and B1 . B2 c Y we have 

(Al u A2 ) X (Bl u B2 ) = (Al X Bl ) u (Al X B2 ) u (A2 X Bl ) u (A2 X B2 ) ,  

(A1 x Bl ) n (A2 x B2 ) = (A1 n A2 ) x (B1 n B2) ,  

(Al X Bl ) "  (A2 X B2 ) = ( (Al " A2 ) X Bl ) u (Al X (Bl " B2 ) ) . 

The natural maps 

pr x : X x Y ____. X : ( x. y) f---+ x and pry : X x Y -+ Y : ( x .  y )  - y 
-
u.s 
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are ( natural) projections . 

20.B. Prove that prx1 ( A. )  = A. x Y for each A c X.  

20. 1 .  Find t he corresponding formula for B C Y.  

f20'2 J Graphs 

A map f : X ---> y determines a subset r f of X X y defined by r f = 
{ (x .  f ( x ) )  I x E X} ,  it is called the graph of f . 
20. C. A set r c X x Y is the graph of a map X ---> Y iff for each a E X 
the intersection r n (a X Y) is a singleton. 

20. 2. Prove that for each map f : X --+  Y and each set A c X we have 

f (A) = pry (r 1 n (A x Y))  = pry (r 1 n pr_X1 (A) )  

and r 1 (B) = prx (r n (X  x B ) )  for each B c Y.  

The set � =  { (x , x) I x E X} =  { (x , y) E X  x X I x = y} i s  the diagonal of 
X x X . 
20. 3. Let A and B be two subsets of X .  Prove that (A x B )n � = 0 iff A n B = 0. 

20. 4 .  Prove that the map prx l r is bijective . 
f 

20. 5. Prove that f is injective iff pry I r is injective. 
f 

20. 6. Consider the map T : X x Y --+ Y x X : (x , y) >---> (y , x) . Prove that 
r 1 - 1  = T (r f )  for each invertible map f : X -->  Y. 

f20'3 J Product of Topologies 

Let X and Y be two topological spaces. If U is an open set of X and 
B is an open set of Y,  then we say that U x V is an elementary open set of 
X x Y. 
20. D. The se t  of elementary open sets of X x Y is  a base of a topological 
structure in X x Y .  

The topological structure determined by the base o f  elementary open 
sets is the product topology in X x Y. The product of two spaces X and Y 
is the set X x Y with the product topology. 

20. 7. Prove that for any subspaces A and B of spaces X and Y the product 
topology on A x B coincides with the topology induced from X x Y via the 
natural inclusion A x B C X X Y.  

20. E. Y x X i s  canonically homeomorphic to X x Y .  
The word canonically here means that the homeomorphism between X x 

Y and Y x X ,  which exists according to the statement , can be chosen in 
a nice special (or even obvious? ) way, and so we may expect that it has 
additional pleasant properties . 
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20.F. The canonical bijection X x (Y x Z) -+ (X x Y) x Z is a homeomor­
phism. 

20. 8. Prove that if A is closed in X and B is closed in Y ,  then A x  B is closed in 
X x Y. 

20. 9.  Prove that Cl(A x B) = Cl A x Cl B for any A C X and B C Y .  

20. 1 0. I s  i t  true that Int (A x B) = Int A x Int B? 

20. 1 1 .  Is it  true that Fr (A x B) = Fr A x  Fr B? 

20. 1 2. Is it true that Fr (A x B) = (Fr A x  B) U (A x Fr B)? 

20. 1 3. Prove that Fr(A x B) = ( Fr A x  B) U (A x Fr B) for closed A and B .  

20. 1 4 .  Find a formula for Fr (A x B) in  terms o f  A ,  Fr A,  B ,  and Fr B .  

f20'4J Topological Properties of Projections and Fibers 

20. G. The natural projections prx : X x Y -+ X and pry : X x Y -+ Y 
are continuous for any topological spaces X and Y .  

20.H. The product topology is the coarsest topology with respect t o  which 
pr x and pry are continuous . 

20.1. A fiber of a product is canonically homeomorphic to the corresponding 
factor. The canonical homeomorphism is the restriction to the fiber of the 
natural projection of the product onto the factor. 
20. J. Prove that JR1 x JR1 = JR2 , (JR1 ) n = !Rn , and (I)n  = In .  (We remind 
the reader that In is the n-dimensional unit cube in !Rn . )  

20. 1 5. Let Ex and E y  be bases of spaces X and Y .  Prove that the sets U x V 
with U E Ex and V E Ey constitute a base for X x Y .  

20. 1 6. Prove that a map f : X --> y i s  continuous i ff  p r  X l r f : r f --> X is a 
homeomorphism. 

20. 1 7. Prove that if W is open in X x Y,  then prx (W) is open in X .  

A map from a space X t o  a space Y i s  open ( closed) i f  the image o f  each 
open set under this map is open (respectively, closed) . Therefore, 20. 1 7  states 
that prx : X  x Y -->  X is an open map . 

20. 1 8. Is prx a closed map? 

20. 1 9. Prove that for each space X and each compact space Y the map pr x : 
X x Y --> X is closed. 

120'5 J Cartesian Products of Maps 

Let X, Y, and Z be three sets . A map f :  Z -+ X x Y determines the 
compositions fi = prx of : Z -+  X and h = pry of : Z -+  Y, which are 
called the factors (or components)  of f. Indeed, f is determined by them as 
a sort of product . 
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20.K. Prove that for any maps h : Z --t X and h : Z --t Y there exists a 
unique map f :  Z --t X x Y '"·ith prx of = h and pry of = f2 . 

20. 20. Prove that r 1 (A X B ) = !1 1 (.4. )  n ,2-
1 (B )  for any A c X and B c Y.  

20.L .  Let X,  Y,  and Z be three spaces . Prove that f : Z --t X x Y is 
continuous iff so are h and h .  

Any two maps 91 : X 1 --t Y1 and 92 : X 2 --t Y2 determine a map 

91 X 92 : X1 X X2 --t Y1 X Y2 : (x1 , x2 ) f--+ (91 (x 1 ) , 92 (x2 ) ) ,  
which is their ( Cartesian) product . 

20. 21 .  Prove that (gl X 92 ) (A1 X A2 ) = 91 (A1 ) X 92 (A2 ) for any Al c xl and 
A2 c x2 . 

20. 22. Prove that (g1 x g2 ) - 1 (B1 x B2 ) = g! 1 (Bl ) x g2 1 (B2 )  for any B1 C Y1 
and B2 C Y2 . 

20. M. Prove that the Cartesian product of continuous maps is continuous . 

20. 23. Prove that the Cartesian product of open maps is open . 

20. 24 .  Prove that a metric p : X x X ----> lR is continuous with respect to the 
metric topology. 

20. 25. Let f :  X ....... Y be a map. Prove that the graph r f is the preimage of the 
diagonal �Y = { (y , y) I y E Y} C Y x Y under the map f x idy : X x Y ----> Y x Y .  

f20'6 J Properties of Diagonal and Other Graphs 

20.26. Prove that a space X is Hausdorff iff the diagonal � = { (x ,  x) I x E X} is 
closed in X x X.  

f (x) 
y 

X 

20. 27. Prove that if Y is a Hausdorff space and f :  X ----> Y is a continuous map, 
then the graph r f is closed in X X y .  

20. 28. Let Y be  a compact space . Prove that if a map f : X ----> Y has closed 
graph r f '  then f is continuous . 

20. 29. Prove that the hypothesis on compactness in 20. 28 is necessary. 

20. 30. Let f : lR ----> lR be a continuous function . Prove that its graph is: 

( 1 )  closed; 
(2) connected; 
(3) path-connected; 
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( 4) locally connected; 
(5) locally compact . 

20. 31 . Consider the following functions { 0 if X =  0 .  { 0 
1 )  JR --> JR : X ,_. , : 2) JR --> JR : X ,_. 

1/x ,  otherwise . sin ( 1 /x) . 
their graphs possess the properties listed in 20. 30? 
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if X =  0 ,  
Do 

otherwise. 

20. 32. Does any of the properties of the graph of a function f that are mentioned 
in 20. 30 imply that f is cont inuous'? 

20. 33. Let r f be closed . Then the follm,·ing assertions are equivalent : 

( 1 )  f is continuous : 
(2)  f is locally bounded: 
(3) the graph r f of f is connected : 
( 4) the graph r f of f is path-connected. 

20. 34 .  Prove that if r f is connected and locally connected , then f is cont inuous . 

20. 35. Prove that if r f is connected and locally compact, then f is continuous . 

20. 36. Are some of the assertions in Problems 20. 33-20. 35 true for maps f 
JR2 --> JR? 

f20'7J Topological Properties of Products 

20. N. The product of Hausdorff spaces is Hausdorff. 

20. 37. Prove that the product of regular spaces is regular . 

20. 38. The product of normal spaces is not necessarily normal . 

20. 38. 1 *. Prove that the space R formed by real numbers with the 
topology determined by the base consisting of all semi-open intervals 
[a, b) is normal . 

20. 38. 2. Prove that in the Cartesian square of the space introduced 
in 20. 38. 1 the subspace { (x , y)  I x = -y} is closed and discrete .  

20. 38. 3. Find two disjoint subsets of  { (x ,  y) I x = -y} that have no 
disjoint neighborhoods in the Cartesian square of the space of 20. 38. 1 .  

20 .  0. The product of separable spaces i s  separable. 

20.P. First countability of factors implies first countability of the product. 

20. Q. The product of second countable spaces is second countable . 

20.R.  The product of metrizable spaces is metrizable . 

20. 8. The product of connected spaces is connected. 

20. 39. Prove that for connected spaces X and Y and any proper subsets A C X 
and B C Y the set X x Y '- A x  B is connected . 

20. T. The product of path - connected spaces is path- connected. 

20. U. The product of compact spaces is compact. 
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20.4 0. Prove that the product of locally compact spaces is locally compact.  

20. 4 1 .  If X is a paracompact space and Y is compact , then X x Y is paracompact . 

20.42 .  For which of the topological properties studied above is it true that if 
X x Y possesses the property. then so does X ?  

120'8 J Representation of Special Spaces as Products 

20. v. Prove that JR.2 ....... 0 is homeomorphic to 81 X JR.. 

,1( 

/ / / 
\ 

\ 
\ 
\ 
I 
I 

20. 4 3. Prove that !Rn -.... IRk is homeomorphic to sn-k- l X ]Rk+ l . 

20.44 ·  Prove that sn n {x E !Rn+l I xi + . . . + X� � x�+ l + . . . + x;+d is 

homeomorphic to sk- l X Dn-k+ l . 
20. 4 5. Prove that O(n) is homeomorphic to SO(n) x 0( 1 ) . 

20.46. Prove that GL(n) is homeomorphic to SL(n) x GL( l ) .  

20. 4 7. Prove that GL+ (n) i s  homeomorphic t o  SO(n) x !Rn(n+ l ) /2 , where 

GL+ (n) = {A E L(n, n) I det A > 0 } .  
20.48. Prove that S0(4) i s  homeomorphic t o  S3  X S0(3) . 

The space 81 x 81 is a torus . 

20. W. Construct a topological embedding of the torus in JR.3 • 

The product 81 X . . .  X 81 of k factors is the k-dimensional torus . 

20. X. Prove that the k-dimensional torus can be topologically embedded 
in JR.k+l . 

20. Y. Find topological embeddings of 81 x D2 , 81 x 81 x I ,  and 82 x I in 
JR.3 . 



21 . Quotient Spaces 141 

2 1 .  Quot ient Spaces 

f21'1 J Set-Theoretic Digression : 
Partitions and Equivalence Relations 

Recall that a partition of a set A is a cover of A consisting of painvise 
disjoint sets . 

Each partition of a set X determines an equivalence relation ( i . e . , a rela­
tion, which is reflexive , symmetric . and transitive ) : two elements of X are 
said to be equivalent if they belong to the same element of the partition . 
Vice versa, each equivalence relation on X determines the partition of X 
into classes of equivalent elements. Thus , partitions of a set into nonempty 
subsets and equivalence relations on the set are essentially the same . More 
precisely, they are two ways of describing the same phenomenon . 

Let X be a set , S a partition of X.  The set whose elements are members 
of the partition S (which are subsets of X) is the quotient set or factor set 
of X by S. It is denoted by X/ S· 1 

21 . 1 .  Riddle. How does this operation relate to division of numbers? Why is 
there a similarity in terminology and notation? 

The set X j S is also called the set of equivalence classes for the equivalence 
relation corresponding to the partition S. 

The map pr : X ---+ X/ S that sends x E X  to the element of S containing 
x is the ( canonical) projection or factoriza tion map . A subset of X which is 
a union of elements of a partition is saturated. The smallest saturated set 
containing a subset A of X is the saturation of A. 

21 . 2. Prove that A C X is an element of a partition S of X iff A =  pr- 1 (point) , 
where pr : X -->  X/ 5 is the natural projection. 

21 . A .  Prove that the saturation of a set A equals pr- 1 (pr ( A) ) . 

21 . B. Prove that a set is saturated iff it is equal to its saturation. 

1 At first glance . the definition of a quotient set contradicts one of the very profound principles 
of the set theory, which states that a set is determined by its elements. Indeed, according to this 
principle , we have X/ S = S since S and X/ s have the same elements. Hence, there seems to be 
no need to introduce X/ S· The real sense of the notion of a quotient set lies not in its l iteral 
set-theoretic meaning , but in our way of thinking about elements of partitions. If we remember 
that they are subsets of the original set and want to keep track of their internal structure 1 or .  at 
least , of their elements) . then we speak of a partition. If we think of them as atoms. get t ing rid 
of their possible internal structure. then we speak about the quotient set . 



142 IV. Topological Constructions 

f21 '2 J Quotient Topology 

A quotient set X/ S of a topological space X with respect to a partition S 
into nonempty subsets is equipped with a natural topology: a set U c 
X/ s is said to be open in X/ s if its preimage pr- 1 (U) under the canonical 
projection pr : X --7 X/ S is open. 

21 . C. The collection of these sets is a topological structure in the quotient 
set Xfs . 

This topological structure is the quotient topology . The set X/ s with 
this topology is the quotient space of X by partition S. 

21 . 3. Give an explicit description of  the quotient space of  the segment [0 ,  1 ] by 
the partition consisting of [0, 1 /3] , ( 1 /3 ,  2/3] , and (2/3 ,  1 ] . 

l 
• 
a 

]( ]( 

l 
• 
b 

l 
• 
c 

21 . 4 .  What can you say about a partition S of a space X if the quotient space X/ s 
is known to be discrete? 

21 .D .  A subset of a quotient space X/ S is open iff it is the image of an 
open saturated set under the canonical projection pr . 

21 .E. A subset of a quotient space X/ s is closed, iff its preimage under pr 
is closed in X, iff it is the image of a closed saturated set . 

21 . F. The canonical projection pr : X --7 X/ S is continuous. 

21 . G. Prove that the quotient topology is the finest topology on X/s such 
that the canonical projection pr is continuous with respect to it . 

f21'3 J Topological Properties of Quotient Spaces 

21 . H. A quotient space of a connected space is connected. 

21 . 1. A quotient space of a path- connected space is path- connected. 

21 .J. A quotient space of a separable space is separable . 

21 . K. A quotient space of a compact space is compact. 

21 .L .  The quotient space of the real line by the partition IR + , lR " IR + is 
not Hausdorff. 

21 . M. The quotient space of a space X by a partition S is Hausdorff iff 
any two elements of S have disjoint saturated neighborhoods. 
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21 . 5. Formulate similar necessary and sufficient condit ions for a quotient space 
to satisfy other separation axioms and countability axioms . 

21 . 6. Give an example showing that the second countability can get lost when 
we pass to a quotient space. 

I21'4J Set-Theoretic Digression : Quotients and Maps 

Let S be a partition of a set X into nonempty subsets .  Let f : X ----' Y 
be a map which is constant on each element of S . Then there is a map 
X/ S ____. Y which sends each element A of S to the element f ( a ) . "·here 
a E A. This map is denot ed by f / s and called the quotient map or factor 
map of f (by the partit ion S) . 
21 .N. 1 )  Prove that a map f : X - Y is constant on each element of a 
partition S of X iff there exists a map g : X/ s ____. Y such that the following 
diagram is commutative : 

X � y  

prl / g 

X/s 
2)  Prove that such a map g coincides with f / S· 

More generally, let S and T be partitions of sets X and Y .  Then every 
map f : X ____. Y that maps each subset in S to a subset in T determines a 
map X/ S ____. Y / T which sends an element A of the partition S to the element 
of the partition T containing f (A ) . This map is denoted by f / (S, T) and 
called the quotient map or factor map of f ( with respect to S and T) . 

21 . 0. Formulate and prove for f / S, T a statement generalizing 21 . N. 
A map f : X ____. Y determines the partition of the set X into nonempty 

preimages of the elements of Y. This partition is denoted by S(f ) . 

21 . P. The map f / S(f) : X/ S(f ) ____. Y is injective . 
This map is the injective factor (or injective quotient) of f .  

121 '5 J Continuity of  Quotient Maps 

21 . Q. Let X and Y be two spaces, S a partition of X into nonempty sets, 
and f :  X ____. Y a continuous map constant on each element of S . Then the 
factor f / S of f is continuous. 

21 . 7. If the map f is open, then so is the quotient map f / S. 

21 . 8. Let X and Y be two spaces , S a  partition of X into nonempty sets .  Prow 
that the formula f ,_.... f / S determines a bijection from the set of all cont inuous 
maps X --> Y that are constant on each element of S onto the set of all cont inuous 
maps X/ S --> Y.  
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21 .R .  Let X and Y be two spaces , let S and T be partitions of X and Y,  
respectively, and let f : X � Y be  a continuous map that maps each set in 
S to a set in T. Then the map f / S, T : X/ S � Y/T is continuous . 

l21'6x J Closed Partitions 

A partition S of a space X is closed if the saturation of each closed set 
is closed. 

21 . 9x .  Prove that a partition is closed iff the canonical projection X ---. X/ s is a 
closed map . 

21 . 1 0x .  Prove that if a partition S contains only one element consisting of more 
than one point , then S is closed if this element is a closed set . 

21 . Sx .  Let X be a space satisfying the first separation axiom, S a closed 
partition of X. Then the quotient space X/ s also satisfies the first separa­
tion axiom. 

21 . Tx. The quotient space of a normal space with respect to a closed parti­
tion is normal. 

l2 1 '7x J Open Partitions 

A partition S of a space X is open if the saturation of each open set is 
open. 

21 . 1 1x .  Prove that a partition S is open iff the canonical projection X ---> X/ s 
is an open map . 

21 . 1 2x .  Prove that if a set A is saturated with respect to an open partition, then 
Int A and Cl A are also saturated . 

21 . Ux . The quotient space of a second countable space with respect to an 
open partition is second countable. 

21 . Vx . The quotient space of a first countable space with respect to an open 
partition is first countable. 

21 . Wx . Let X and Y be two spaces, S and T their open partitions. Denote 
by S x T the partition of X x Y consisting of A x B with A E S and 
B E T. Then the injective factor X x Y/ S x T � X/ S x Y IT of prs x prr : 
X x Y � X/s x Y/r is a homeomorphism. 
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2 2 .  Zoo of Quot ient Spaces 

122' 1 J Tool for Identifying a Quotient Space with 
a Known Space 

22. A .  If X is a compact space. Y is a Hausdorff space, and f : X ____, Y 
is a continuous map, then the injective factor f / S(f )  : X/ S(f ) ---.. Y i s  a 
homeomorphism. 

22. B. The injective factor of a cont inuous map from a compact space to a 
Hausdorff one is a topological embedding . 

22. 1 .  Describe explicitly partitions of  a segment such that the corresponding 
quotient spaces are all letters of the alphabet . 

22. 2. Prove that the segment I admits a partition with the quotient space home­
omorphic to square I x I .  

122'2 J Tools for Describing Partitions 

An accurate literal description of a partition can often be somewhat 
cumbersome, but usually it can be shortened and made more understand­
able. Certainly, this requires a more flexible vocabulary with lots of words 
having almost the same meanings . For instance, such words as factorize and 
pass to a quotient can be replaced by attach , glue together, identify ,  contract, 
paste , and other words substituting or accompanying these in everyday life .  

Some elements of this language are easy to formalize. For instance , 
factorization of a space X with respect to a partition consisting of a set A 
and singletons in the complement of A is the contraction (of the subset A to 
a point ) , and the result is denoted b:v X/ A . 

22. 3. Let A, B C X form a fundamental cover of a space X. Prove that the 
quotient map A/ A n B -+ X/ B of the inclusion A <---+ X is a homeomorphism. 

If A and B are two disjoint subspaces of a space X and f : A ____, B is 
a homeomorphism, then passing to the quotient of X by the partition into 
singletons in X ....._ (A U B) and two-element sets {x ,  f (x ) } , where x E A, we 
glue or identify the sets A and B via the homeomorphism f .  

A rather convenient and flexible way for describing partitions i s  t o  de­
scribe the corresponding equivalence relations . The main advantage of this 
approach is that ,  by transitivity, it suffices to specify only some pairs of 
equivalent elements: if one states that x "' y and y "' z, then it is not 
necessary to state that x "' z since this is automatically true . 

Hence, a partition is represented by a list of statements of the form 
x "' y that are sufficient for recovering the equivalence relation . \\-e denote 
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the corresponding partition by such a list enclosed into square brackets .  For 
example , the quotient of a space X obtained by identifying subsets A and B 
by a homeomorphism f : A ---+ B is denoted by Xl [a ,...., J (a) for any a E A] 
or just Xl [a ,...., j (a) ] · 

Some partitions are easily described by a picture , especially if the original 
space can be embedded in the plane . In such a case , as in the pictures below, 
we draw arrows on the segments to be identified to show the directions to 
be identified . 

Below we introduce all kinds of descriptions for partitions and give ex­
amples of their usage , simultaneously providing literal descriptions . The 
latter are not that nice , but they may help the reader to remain confident 
about the meaning of the new words . On the other hand , the reader will 
appreciate the improvement the new words bring in. 

f22'3J Welcome to the Zoo 

22. C. Prove that I I [0 ,...., 1 ] is homeomorphic to 81 . 

In other words , the quotient space of segment I by the partition consist­
ing of {0 , 1 } and {a} with a E (0 ,  1 )  is homeomorphic to a circle . 

22. C. 1 .  Find a surjective continuous map I ---> S1 such that the corresponding 
partition into preimages of points consists of singletons in the interior of the 
segment and the pair of boundary points of the segment . 

22.D.  Prove that nn I sn- 1  is homeomorphic t o  sn . 
In 22.D, we deal with the quotient space of the n-disk Dn by the partition 

{sn- 1 } U { {x} I x E Bn} .  
Here is a reformulation of 22.D: Contracting the boundary of an n­

dimensional ball to a point , we obtain an n-dimensional sphere . 

22. D . 1 .  Find a continuous map of the n-disk Dn to the n-sphere sn that maps 
the boundary of the disk to a single point and bijectively maps the interior of 
the disk onto the complement of this point . 

22. E. Prove that I2 1 [ (0 ,  t )  ,...., ( 1 , t )  for t EI] is homeomorphic to 81 x I .  
Here the partition consists of  pairs of  points { (0 ,  t ) , ( 1 ,  t ) } where t E I , 

and singletons in (0 ,  1 )  x I .  
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Reformulation of 22.E: If we glue the side edges of a square by identifying 
points on the same hight , then we obtain a cylinder . 

--

22. F. 81 X I l [ (z , 0) rv ( z .  1 )  for z E 51 ] is homeomorphic to 81 X 81 . 
Here the partition consists of singletons in 81 x (0. 1) and pairs of points  

of the basis circles lying on the same element of the cylinder . 

Here is a reformulation of 22.F: If we glue the base circles of a cylinder 
by identifying pairs of points on the same element , then we obtain a torus . 

22. G.  !2 / [ (0 ,  t )  rv ( 1 , t ) , ( t ,  0) rv ( t ,  1 ) ]  is homeomorphic to 81 X 81 . 
In 22. G, the partition consists of 

• singletons in the interior (0 ,  1 )  x (0 ,  1 )  of the square , 
• pairs of points on the vertical sides that are the same distance from 

the bottom side ( i .e . , pairs { (0 ,  t ) , ( 1 , t ) } with t E (0 ,  1 ) ) ,  
• pairs of points o n  the horizontal sides that lie on the same vertical 

line (i . e . , pairs { (t , O) ,  ( t ,  1 ) }  with t E (0 ,  1 ) ) ,  
• the four vertices of the square. 

Reformulation of 22. G: Identifying the sides of a square according to 
the picture , we obtain a torus . 

122'4 J Transitivity of Factorization 

A solution of Problem 22. G can be based on Problems 22.E and 22.F 
and the following general theorem. 
22. H Transitivity of Factorization. Let S be a partition of a space 
X, and let S' be a partition of the space X/ S · Then the quotient space 
(X/ s) /  S' is canonically homeomorphic to Xjy, where T is the partition of 
X into preimages of elements of S' under the projection X ----> X/ S · 
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122'5 J Mobius Strip 

The Mobius strip or Mobius band is defined as 12 / [ (0 ,  t ) ,...., ( 1 ,  1 - t) ] · In 
other words , this is the quotient space of the square 12 by the partition into 
centrally symmetric pairs of points  on the vert ical edges of 12 , and singletons 
that do not lie on the vert ical edges . The l\li:ibius strip is obtained, so to 
speak ,  by identifying the vertical sides of a square in such a way that the 
directions shown on them by arrows are superimposed , as shown below. 

D 
22. 1. Prove that the Mobius strip is homeomorphic to the surface that is 
swept in JR3 by a segment rotating in a half-plane around the midpoint , while 
the half-plane rotates around its boundary line . The ratio of the angular 
velocities of these rotations is such that the rotation of the half-plane through 
360° takes the same time as the rotation of the segment through 180° . See 
below. 

122'6 J Contracting Subsets 

22.4 .  Prove that [0 , 1 ] / [ 1/3 ,  2/3] is homeomorphic to [0 ,  1 ] , and [0 , 1 ] / { 1 /3 ,  1 } is 
homeomorphic to letter P .  

22. 5. Prove that the following spaces are homeomorphic: 
(1) ll�?; (2) 'fl.?/J ; (3) R2 /D2 ; (4) R2 /J2 ; 
(5) R2 /A, where A is the union of several segments with a common end point ; 
(6) R2 / B, where B is a simple polyline , i . e . ,  the union of a finite sequence of 

segments h ,  . . . , In such that the initial point of Ji+ l is the final point 
of h 

22. 6. Prove that if f : X --+ Y is a homeomorphism, then the quotient spaces 
X/ A and Y/ J (A ) are homeomorphic. 

22. 7. Let A C R2 be the ray { (x , y) I x 2: O , y = 0}. Is R2 /A homeomorphic to 
Int D2 U { (0 ,  1 ) } ?  
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122'7 J Further Examples 

22. 8. Prove that S1 / [z ...._ e27ri/3 z] is homeomorphic to S1 . 
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The partition in 22. 8 consists of triples of points that are vertices of equilateral 
inscribed triangles. 

22. 9. Prove that the following quotient spaces of the disk D2 are homeomorphic 
to D2 : 

( 1 ) D2 / [ (x ,  y) ...._ ( -x ,  -y) ] • 
(2 )  D2 / [ (x ,  y) ...._ (x ,  -y) ] • 
(3) D2/ [ (x , y) ,..._ ( - y , x ) ] · 

22. 1 0. Find a generalization of 22. 9 with Dn substituted for D2 • 
22. 1 1 .  Describe explicit ly the quotient space of the line JR1 by the equivalence 
relation x ""  y {=} x - y E Z .  

22. 12 .  Represent the Mobius strip as a quotient space o f  cylinder S1 X I .  

122'8 J Klein Bottle 

The Klein bottle is 12 / [ (t ,  O) ,..__ (t ,  1 ) ,  (0, t ) ,..__ ( 1 , 1 - t ) ] · In other words , 
this is the quotient space of square 12 by the partition into 

• singletons in its interior , 
• pairs of points ( t ,  0) , ( t ,  1 )  on horizontal edges that lie on the same 

vertical line , 
• pairs of points (0 .  t ) . ( 1 .  1 - t) symmetric with respect to the center 

of the square that lie on the vert ical edges . and 

• the quadruple of vertices . 

22. 1 3. Present the Klein bottle as a quot ient space of 

( 1 ) a cylinder; 
(2) the Mobius strip.  

22. 1 4 .  Prove that S1 X S1 / [ (z ,  w) ,..._ ( -z , w) ]  is homeomorphic to the Klein bot­
tle. (Here w denotes the complex number conjugate to w . )  

22. 1 5. Embed the Klein bottle in  JR4 (cf. 22. 1 and 20. \IV). 
22. 1 6. Embed the Klein bottle in  JR4 so  that the image o f  this embedding under 
the orthogonal projection JR4 --> JR3 would look as follows : 
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122'9 J Projective Plane 

Let us identify each boundary point of the disk D2 with the antipodal 
point ,  i . e . , we factorize the disk by the partition consisting of singletons in 
the interior of the disk and pairs of points on the boundary circle symmetric 
with respect to the center of the disk . The result is the projective plane. 
This space cannot be embedded in JR3 , too. Thus , we are not able to draw 
it . Instead , we present it differently. 

22.J. A projective plane is a result of gluing together a disk and a Mobius 
strip via a homeomorphism between their boundary circles . 

I22' 10J You May Have Been Provoked to Perform 
an Illegal Operation 

Solving the previous problem, you did something that did not fit into the 
theory presented above . Indeed, the operation with two spaces called gluing 
in 22. J has not appeared yet . It is a combination of two operations : first , we 
make a single space consisting of disjoint copies of the original spaces , and 
then we factorize this space by identifying points of one copy with points of 
another . Let us consider the first operation in detail . 

I22' 1 1J Set-Theoretic Digression: Sums of Sets 

The ( disjoint) sum of a family of sets {Xa }aEA is the set of pairs (xa , a ) 
such that Xa E Xa . The sum is denoted by UaEA Xa . So, we can write 

U Xa = U (Xa x { a} ) . 
aEA aEA 

For each f3 E A, we have a natural injection 

in,e : X  ,a � U Xa : X  f--7 (x ,  B) . 
aEA 

If only two sets X and Y are involved and they are distinct , then we can 
avoid indices and define the sum by setting 

X U Y = { (x , X ) l x E X} U { (y , Y) i y E Y} .  

122' 12  J Sums of Spaces 

22. K. Let {Xa }aEA be a collection of topological spaces . Then the collec­
tion of subsets of UaEA Xa whose preimages under all inclusions ina , a E A, 
are open is a topological structure . 

The sum UaEA Xa with this topology is the ( disjoint) sum of the topo­
logical spaces Xa (a E A) . 
22.L .  The topology described in 22.K is the finest topology with respect to 
which all inclusions ina are continuous . 
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22. 1 7. The maps ini3 : xi3 ---+ u<>EA X"' are topological embeddings, and their 
images are both open and closed in u<>EA X"' . 

22. 1 8. Which of the standard topological properties are inherited from summands 
X"' by the sum u<>EA X"' ? Which are not? 

f22' 13  J Attaching Space 

Let X and Y be two spaces , A a subset of Y, and f : A ---+ X a continuous 
map . The quotient space X Ut Y = (X U  Y)/ [a "' j (a) for a E A] is called 
the result of attaching or gluing the space Y to the space X via f .  The map 
f is the attaching map . 

Here the partit ion of X U Y consist s of singletons in in2 (Y " A)  and 
in1 (X " f (A) ) ,  and sets in1 (x )  U in2 (f- 1 (x ) ) with x E f (A.) . 

22. 1 9. Prove that the composition of the inclusion X ---+ X L  Y and the projection 
X U Y ---+ X U f Y is a topological embedding . 

22. 20. Prove that if X is a point , then X U  f Y is Y /A· 

22. M. Prove that attaching the n-disk Dn to its copy via the identity map 
of the boundary sphere sn- l  we obtain a space homeomorphic to sn . 

22. 21 . Prove that the Klein bottle is a result of gluing together two copies of the 
Mobius strip via the identity map of the boundary circle . 

I 
I 

/ / 

b 

22. 22. Prove that the result of gluing together two copies of a cylinder via the 
identity map of the boundary circles (of one copy to the boundary circles of the 
other) is homeomorphic to 81 x 81 . 
22. 23. Prove that the result of gluing together two copies of the solid torus 81 x D2 

via the identity map of the boundary torus 81 x 81 is homeomorphic to 81 x 82 . 
22. 24 . Obtain the Klein bottle by gluing two copies of the cylinder 81 x I  to each 
other . 

22. 25. Prove that the result of gluing together two copies of the solid torus 81 x D2 

via the map 
81 x 81 ---+ 81 x 81 : (x , y) �--+ (y , x) 

of the boundary torus to its copy is homeomorphic to 83 . 

22.N. Let X and Y be two spaces , A a subset of Y ,  and j, g :  A ---+ X two 
continuous maps. Prove that if there exists a homeomorphism h : X ---+ X 
such that h o f =  g ,  then X Ut Y and X Ug Y are homeomorphic . 
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22. 0. Prove that DnuhDn is homeomorphic to sn for each homeomorphism 
h : sn- 1 --t sn- 1 . 

22. 26. Classify up to homeomorphism the spaces that can be obtained from a 
square by identifying a pair of opposite sides by a homeomorphism. 

22. 27. Classify up to homeomorphism the spaces that can be obtained from two 
copies of 81 X I by ident ifying the copies of 81 X {0 ,  1 }  via a homeomorphism. 

22.28. Prove that the topological type of the space resulting from gluing together 
two copies of the :. Iobius strip via a homeomorphism of the boundary circle does 
not depend on the homeomorphism. 

22. 29. Classify up to homeomorphism the spaces that can be obtained from 81 X I 
by ident ifying 81 X 0 and 81 X 1 via a homeomorphism. 

f22' 14 J Basic Surfaces 

Deleting from the torus 81 x 81 the interior of an embedded disk, we 
obtain a handle . Similarly, deleting from the two-sphere the interior of n 

disjoint embedded disks , we obtain a sphere with n holes . 

22.P. A sphere with a hole is homeomorphic to the disk D2 . 
22. Q. A sphere with two holes is homeomorphic to the cylinder 81 X I .  

,. - - - - -

A sphere with three holes has a special name . It is called pantaloons or 
just pants . 

The result of attaching p copies of a handle to a sphere with p holes via 
embeddings homeomorphically mapping the boundary circles of the handles 
onto those of the holes is a sphere with p handles , or , in a more ceremonial 
way (and less understandable , for a while ) , an orientable connected closed 
surface of genus p.  
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22. 30. Prove that a sphere with p handles i s  well defined up to homeomorphism 
( i . e . , the topological type of the result of gluing does not depend on the attaching 
embeddings) . 

22. R. A sphere with one handle is homeomorphic to the torus S1 X S1 • 

22. 8. A sphere with two handles is homeomorphic to the result of gluing 
together two copies of a handle via the identity map of the boundary circle . 

A sphere with two handles is a pretzel .  Sometimes , this word also denotes 
a sphere with more handles. 

The space obtained from a sphere with q holes by attaching q copies 
of the l\Iobius strip via embeddings of the boundary circles of the Mobius 
strips onto the boundary circles of the holes (the boundaries of the holes) 
is a sphere with q cross-caps , or a nonorientable connected closed surface of 
genus q. 

22. 31 . Prove that a sphere with q cross-caps is well defined up to homeomorphism 
( i . e . , the topological type of the result of gluing does not depend on the attaching 
em beddings ) . 

22. T. A sphere with a cross-cap is homeomorphic to the projective plane . 

22. U. A sphere \Vith two cross-caps is homeomorphic to the Klein bottle . 
A sphere , spheres \Yith handles, and spheres with cross-caps are basic 

surfaces . 

22. V. Prove that a sphere with p handles and q cross-caps is homeomorphic 
to a sphere with 2p + q cross-caps (here q > 0) .  
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22. 32. Classify up to homeomorphism those spaces which are obtained by attach­
ing p copies of S1 x I to a sphere with 2p holes via embeddings of the boundary 
circles of the cylinders onto the boundary circles of the sphere with holes . 
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23 . Proj ect ive Spaces 

This section can be considered as a continuation of the previous one . The 
quotient spaces described here are of too great importance to regard them 
just as examples of quotient spaces . 

123' 1 J Real Projective Space of Dimension n 

This space is defined as the quot ient space of the sphere sn by the 
partition into pairs of ant ipodal point s . and denoted by JR.pn . 

23. A .  The space JR.pn is h omeomorph ic to th e quotient spa ce of th e n ­
disk nn by the partition into singletons i n  the interior of nn . a n d  pairs 
of antipodal point of the boundary sphere sn- 1 . 

23. B. JRP0 is a point . 

23. C. The space JRP1 is homeomorphic to the circle 81 . 

23. D. The space JRP2 is homeomorphic to the projective plane defined in 
the previous section . 

23. E. The space JR.pn is canonically homeomorphic to the quotient space 
of JR.n+l " 0 by the partition into one-dimensional vector subspaces of JR.n+1 
punctured at 0 .  

A point of the space JR.n+1 " 0 is a sequence of real numbers , which are 
not all zeros . These numbers are the homogeneous coordinates of the cor­
responding point of JR.Pn . The point with homogeneous coordinates xo , x1 ,  
. . .  , Xn is denoted by (xo : x 1 : · · · : Xn ) · Homogeneous coordinates deter­
mine a point of JR.pn , but are not determined by this point : proportional 
vectors of coordinates (xo , x1 , . . .  , xn ) and (>.xo , >.x1 , . . . .  >.xn ) determine the 
same point of JR.pn . 

23. F. The space JR.pn is canonically homeomorphic to the metric space 
whose points are lines of JR.n+1 through the origin 0 = (0 ,  . . .  , 0) and the 
metric is defined as the angle between lines {which takes values in [0 , 1r /2] ) .  
Prove that this i s  really a metric .  

23. G. Prove that the map 

i :  lRn ---+ JR.pn : (x 1 ,  . . .  , Xn ) � ( 1 : X1 : · · · : Xn ) 
is a topological embedding . What is its image? What is the inverse map of 
its image onto JR.n? 

23.H. Construct a topological embedding JR.pn-1 ---+ JR.pn with image 
JR.pn " i (JR.n) , where i is the embedding from Problem 23. G. 
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Therefore , the projective space JRpn can be regarded as the result of 
extending IRn by adjoining "improper" or "infinite" points , which constitute 
a projective space JRpn- I . 

23. 1 .  Introduce a natural topological structure in the set of all lines on the plane 
and prove that the resulting space is homeomorphic to a) IRP2 '-- {pt} ; b) open 
Mobius strip ( i . e  . .  a :\Ii:ibius strip with the boundary circle removed) . 

23. 2. Prove that the set of all rotations of the space !R3 around lines passing 
through the origin equipped with the natural topology is homeomorphic to !RP3 . 

f23'2x J Complex Projective Space of Dimension n 

This space is defined as the quotient space of the unit sphere S2n+I in 
en+ I by the partition into circles cut by (complex) lines of en+l passing 
through the point 0. It is denoted by epn . 
23. Ix .  epn is homeomorphic to the quotient space of the unit 2n-disk D2n 
of the space en by the partition whose elements are singletons in the interior 
of D2n and circles cut on the boundary sphere S2n- I by (complex) lines of 
en passing through the origin 0 E en . 
23. Jx .  eP0 is a point . 

The space epi is a complex projective line .  

23.Kx .  The complex projective line epi is homeomorphic to S2 . 
23. Lx .  The space epn is canonically homeomorphic to the quotient space 
of the space en+l " 0 by the partition into complex lines of en+I punctured 
at 0 .  

Hence , epn can be regarded as the space of  complex-proportional non­
zero complex sequences (xo , XI , . . .  , xn ) · The notation (xo : X I : · · · : Xn ) 
and the term homogeneous coordinates introduced in the real case are used 
in the same way for the complex case. 

23. Mx .  The space epn is canonically homeomorphic to the metric space , 
whose points are the (complex) lines of en+ I passing through the origin 0 ,  
and the metric i s  defined as  the angle between lines (which takes values in 
[O . n/2] ) . 

f23'3x J Quaternionic Projective Spaces 

Recall that IR4 bears a remarkable multiplication, which was discovered 
by R. W. Hamilton in 1843. It can be defined by the formula 

(x i , X I , X3 . X-t ) X (YI , Y2 , Y3 , Y4 ) = 

(X IYI - X2Y2 - X3Y3 - X4Y4 , XIY2 + X2YI + X3Y4 - X4Y3 , 
XIY3 - X2Y4 + X3YI + X4Y2 , XIY4 + X2Y3 - X3Y2 + X4YI ) · 
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I t  i s  bilinear , and to describe i t  in a shorter way i t  suffices to specify the 
products of the basis vectors . Following Hamilton, the latter are tradition­
ally denoted ( in this case ) as follows : 

1 = ( 1 , 0 ,  0 ,  0) , i = (0 ,  1 ,  0 ,  0) , j = (0 ,  0 ,  1 , 0) , and k = (0 , 0 ,  0 ,  1 ) .  

In this notation , 1 is really a unity : ( 1 ,  0 ,  0 ,  0 )  x x = x for each x E JR.4 . The 
rest of the multiplication table looks as follows : 

ij = k , j k = i , ki = j , j i  = -k , kj = -i ,  and ik = -j . 

Together with coordinate-wise addition, this multiplication determines a 
structure of algebra in JR.4 . Its elements are quaternions. 

23. Nx .  Check that the quaternion multiplication is associative . 

It is not commutative (e .g . , ij = k -=f. -k = j i ) . Otherwise. quaternions 
are very similar to complex numbers . As in C, there is a transformation 
called conjugation acting in the set of quaternions . As well as the conjugation 
of complex numbers , it is also denoted by a bar :  x � x. It is defined by 
the formula (x 1 , x2 , x3 , x4 ) � (x1 , -x2 , -x3 , -x4 ) and has two remarkable 
properties : 

23. Ox. .  We have ab = ba for any two quaternions a and b. 

23. Px.  We have aa = l a l 2 , i . e . , the product of any quaternion a by the 
conjugate quaternion a equals ( l a l 2 , 0, 0, 0) . 

The latter property allows us to define , for any a E JR.4 , the inverse 
quaternion 

such that aa-1 
= 1 . 

- 1 I 1 -2-a = a a 

Hence , the quaternion algebra is a division algebra or a skew field . It is 
denoted by lHl after Hamilton, who discovered it . 

In the space IH!n = JR.4n , there are right quaternionic lines , i . e . , subsets 
{ ( a1� '  . . .  ' ane) I � E IHI} ,  and similar left quaternionic lines { (�a1 , . . .  ' ean ) I 
� E IHI} . Each of them is a real 4-dimensional subspace of IHin = JR.4n . 

23. Qx . Find a right quaternionic line that is not a left quaternionic line . 

23.Rx .  Prove that two right quaternionic lines in IH!n either meet only at 0 ,  
or coincide . 

The quotient space of the unit sphere S4n+3 of the space JHin+l = JR.4n+-1 
by the partition into its intersections with right quaternionic lines is the 
( right) quaternionic projective space of dimension n. Similarly, but with left 
quaternionic lines , we define the ( left) quaternionic projective space of dimen­
sion n. 
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23. Sx .  Are the right and left quaternionic projective space of the same 
dimension homeomorphic? 

The left quaternionic projective space of dimension n is denoted by JHipn . 

23. Tx .  IHIP0 is a singleton. 

23. Ux . JHipn is homeomorphic to the quotient space of the closed unit disk 
D4n in lHin by the partition into points of the interior of D4n and the 3-spheres 
that are intersections of the boundary sphere s4n- l with (left quaternionic) 
lines of lHin . 

The space 1HIP1 is the quaternionic projective line .  

23. Vx . Quaternionic projective line IHIP1 is homeomorphic to 84 . 

23. Wx . JHipn is canonically homeomorphic to the quotient space of JHin+L., o 
by the partition to left quaternionic lines of JHin+l passing through the origin 
and punctured at it . 

Hence , JHipn can be presented as the space of classes of left proportional 
(in the quaternionic sense) nonzero sequences (xo , . . . , xn ) of quaternions . 
The notation (xo : Xl : · · · : Xn ) and the term homogeneous coordinates in­
troduced above in the real case are used in the same way in the quaternionic 
situation . 

23.Xx .  JHlpn is canonically homeomorphic to the set of (left quaternionic) 
lines of JHin+l equipped with the topology generated by the angular metric 
(which takes values in [0 , 7!'/2] ) .  
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24x. Finite Topological Spaces 

f24' 1x J Set-Theoretic Digression: 
Splitting a Transitive Relation 
Into Equivalence and Partial Order 

In the definitions of equivalence and partial order relations , the condition 
of transitivity seems to be the most important . Below, we supply a formal 
justification of this feeling by shaKing that the other conditions are natural 
companions of transitivity. although they are not its consequences . 

24 . Ax .  Let -< be a transitive relation on a se t  X .  Then th e relat ion � 
defined by 

a � b if a -< b or a = b 
is also transitive (and, furthermore, it is certainly reflexive .. i . e . ,  a � a for 
each a E X). 

A binary relation � on a set X is a preorder i f  i t  i s  transitive and reflec­
tive , i . e . , satisfies the following conditions : 

• Transitivity .  If a � b and b � c, then a � c . 
• Reflexivity . We have a � a for any a .  

A set X equipped with a preorder i s  preordered. 

If a preorder is antisymmetric , then this is a nonstrict order . 

24 . 1x .  Is the relation a I b a preorder on the set Z of integers'? 

24 . Bx .  If (X, �) is a preordered set then the re lat ion "' defined by 

a ,....., b if a � b and b � a 

is an equivalence relation {i . e . ,  it is symmetric . reflexive, and transitive) on 
X .  

24 . 2x .  What equivalence relation is defined on Z by the preorder a I b? 

24 . Gx .  Let (X, �) be a preordered set, and let ,....., be an equivalence relation 
defined on X by � according to 24 . Bx. Then a' ,....., a ,  a � b, and b ,....., b' imply 
a' � b' and in this way � determines a relation on the set of equivalence 
classes X/,....., . This relation is a nonstrict partial order. 

Thus , any transitive relation generates an equivalence relation and a 
partial order on the set of equivalence classes. 

24 . Dx .  How this chain of constructions would degenerate if the original 
relation was 

( 1 )  an equivalence relation , or 
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(2 )  nonstrict partial order? 

24 . Ex .  In any topological space, the relation .::) defined by 

a .::) b if a E Cl{b} 

is a preorder. 

24 . 3x .  In the set of all subsets of an arbitrary topological space, the relation 

A �  B if A c Cl B 

is a preorder .  This preorder determines the following equivalence relation: two 
sets are equivalent iff they have the same closure . 

24 . Fx. .  The equivalence relation determined by the preorder which is defined 
in Theorem 24 . Ex determines the partition of the space into maximal {with 
respect to inclusion) indiscrete subspaces. The quotient space satisfies the 
K olmogorov separation axiom To . 

The quotient space of Theorem 24 . Fx is the maximal To -quotient of X.  

24 . Gx . A continuous image of an indiscrete space is indiscrete .  

24 . Hx .  Prove that any continuous map X -t Y induces a continuous map 
of the maximal To-quotient of X to the maximal To-quotient of Y.  

f24'2x J The Structure of Finite Topological Spaces 

The results of the preceding subsection provide a key to understanding 
the structure of finite topological spaces . Let X be a finite space . By 
Theorem 24 . Fx, X is partitioned to indiscrete clusters of points . By 24 . Gx, 
continuous maps between finite spaces respect these clusters and , by 24 .Hx, 
induce continuous maps between the maximal To-quotient spaces. 

This means that we can consider a finite topological space as its maximal 
To-quotient whose points are equipped with multiplicities , which are positive 
integers : the numbers of points in the corresponding clusters of the original 
space . 

The maximal To-quotient of a finite space is a smallest neighborhood 
space (as a finite space) . By Theorem 1 5. 0, its topology is determined by 
a partial order. By Theorem 1 0.Xx, homeomorphisms between spaces with 
poset topologies are monotone bijections . 

Thus , a finite topological space is characterized up to homeomorphism 
by a finite poset whose elements are equipped with multiplicities (positive 
integers) .  Two such spaces are homeomorphic iff there exists a monotone 
bijection between the corresponding posets that preserves the multiplicities . 
To recover the topological space from a poset with multiplicities , we must 
equip the poset with the poset topology and then replace each of its ele­
ments by an indiscrete cluster of points , the number points in which is the 
multiplicity of the element . 



24x. Finite Topological Spaces 161  

f24'3x J Simplicial Schemes 

Let V be a set , E a certain set of subsets of V. A pair (V, E) is a simplicial 
scheme with the set of vertices V and the set of simplices E if 

• each subset of each set in L: belongs to E ,  
• the intersection o f  any collection o f  sets i n  E belongs to  E ,  
• each singleton in  V belongs to L:.  

The set E i s  partially ordered b�- inclusion. When equipped with the poset 
topology of this partial order . it is  ca lled the space of simplices of the sim­
plicial scheme (X. L: ) .  

A simplicial scheme also yields another topological space . :\"amely. for 
a simplicial scheme ( C  E ) .  consider the set 5 (  I ·. I: )  of all funct ions c :  I · ---> 
[0 , 1] such that 

Supp (c) = {v E V I  c(v) # 0} E L: 
and Z::::vEV c(v) = 1 .  Equip S(V, E) with the topology generated by metric 

p(c1 , cz ) = sup l c1 (v) - cz (v) l -
vEV 

The space S(V, E) is a simplicial or triangulated space . It is covered by 
the sets {c E S I Supp(c) = CT} ,  where O" E E ,  which are called its ( open) 
simplices . 

24 .4x .  Which open simplices of a simplicial space are open sets , which are closed , 
and which are neither closed nor open? 

24 ./x .  For each O" E E, find a homeomorphism of the space 

{c E S I Supp (c) = CT} c S(V, E)  

onto an open simplex whose dimension i s  one less than the number of  vertices 
belonging to O". (Recall that the open n-simplex is the set { ( x1 , . . .  , Xn+l ) E 
]Rn+ 1 I x j > 0 for j = 1 ,  . . .  , n + 1 and Z::::�l Xi = 1 } . )  

24 .Jx .  Prove that for each simplicial scheme (V, E )  the quotient space of the 
simplicial space S (V, E) by its partition into open simplices is homeomorphic 
to the space L: of simplices of the simplicial scheme (V, E ) .  

f24' 4x J Barycentric Subdivision of  a Poset 

24 .Kx .  Find a poset which is not isomorphic to the set of simplices (ordered 
by inclusion) of "·hatever simplicial scheme . 

Let (X, -< )  be a poset . Consider the set X' of all nonempty finite strictly 
increasing sequences a 1  -< az  -< · · · -< an of elements of X. It can also be 
described as the set of all nonempty finite subsets of X in each of \Yhich -< 
determines a linear order . It is naturally ordered by inclusion . 
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The poset (X' , c)  is the barycentric subdivision of (X, -< ) .  

24 . Lx .  For any poset (X , -< ) ,  the pair (X, X' ) is a simplicial scheme . 

There is a natural map X' � X that sends an element of X' ( i . e . , a 
nonempty finite linearly ordered subset of X ) to its greatest element . 

24 . Mx .  Is this map monotone? Strictly monotone? The same questions 
concerning a similar map that sends a nonempty finite linearly ordered sub­
set of X to its smallest element . 

Let (V, �) be a simplicial scheme , and let �' be the barycentric sub­
division of � (ordered by inclusion) .  The simplicial scheme (� ,  �' ) is the 
barycentric subdivision of the simplicial scheme (V, �) . 

There is a natural mapping � � S(V, � )  that sends a simplex u E � 
( i .e . , a subset { vo , v1 , . . .  , Vn } of V) to the function bu : V � � with bu (Vi ) = 
1 / (n + 1 )  and bu (v) = 0 for any v � u .  

Define a map /3 : S (� ,  �' ) � S(V, �) that sends a function cp : � � � 
to the function 

V � � :  v � L cp(u)bu (v ) .  
uEI: 

24 . Nx .  Prove that the map /3 :  S (� ,  �' ) � S(V, � ) is a homeomorphism and 
constitutes , together with the projections S(V, �) � � and S(� ,  �' ) � �' 
and the natural map �' � �'  a commutative diagram 

/3 
----+ S(� ,  �' ) S(V, �) 

1 1 



25x. Spaces of Continuous Maps 163 

2 5x.  Spaces of Continuous Maps 

f25' 1x J Sets of Continuous Mappings 

We denote by C (X, Y ) the set of all continuous maps of a space X to a 
space Y .  

25. 1x .  Let X b e  nonempty. Prow t hat C(X , Y) i s  a singleton iff so i s  } · .  
25. 2x .  Let X be nonempty. Prow that there exists an injection Y --+  C ( X .  } " 1 .  
In other words, the cardinality card C (X. Y) of C (X, Y) is greater than or equal to  
card Y .  

25. 3x .  Ridd le. Find natural condit ions implying that C (X, Y) = Y.  

25.4x . Let Y = {0 ,  1 }  be  equipped with the topology {0 .  {0} , {0 ,  1 } } .  Prove that 
there exists a bijection between C (X, Y) and the topological structure of X .  

25. 5x .  Let X b e  an n-element discrete space . Prove that C(X,  Y )  can b e  identified 
with Y x · · · x Y (n factors) .  

25. 6x .  Let Y be a k-element discrete space . Find a necessary and sufficient 
condition for the set C (X, Y) to contain k2 elements .  

f25'2x J Topologies on a Set of Continuous Mappings 

Let X and Y be two topological spaces , A c X, and B c Y. We define 
W(A, B) = {f E C (X, Y ) I f (A) c B} ,  

�(pw) = {W(a , U )  I a E X , U is open i n  Y} , 

and 
�(co) = {W(C, U) I C C X is compact , U is open in Y } .  

25. Ax . �(pw) i s  a subbase o f  a topological structure on  C (X, Y ) . 
The topological structure generated by � (pw) is the topology of pointwise 

convergence . The set C (X, Y ) equipped with this structure is denoted by 
C(pw) (X, Y ) . 

25. Bx .  �(co) is a subbase of a topological structures on C (X, Y ) . 
The topological structure determined by � ( co) is the compact-open topol­

ogy . Hereafter we denote by C (X, Y ) the space of all continuous maps 
X --? Y with the compact-open topology, unless the contrary is specified 
explicitly. 

25. Cx Compact- Open Versus Pointwise.  The compact-open topology 
is finer than the topology of pointwise convergence . 

25. 7x .  Prove that C ( I . J ) is not homeomorphic to c <Pwl (J , J ) .  

Denote by Const(X, Y) the set o f  all constant maps f : X -+ Y .  
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25. 8x .  Prove that the topology of pointwise convergence and the compact-open 
topology of C(X, Y) induce the same topological structure on Const(X, Y) , which , 
with this topology, is homeomorphic Y .  

25. 9x.  Let X be  an n-element discrete space . Prove that c<pw) (X, Y ) i s  homeo­
morphic Y x · · · x Y (n times ) . Is this true for C (X, Y )? 

f25'3x J Topological Properties of Mapping Spaces 

25. Dx .  If Y is Hausdorff, then C (pw) (X, Y) is Hausdorff for any space X.  
Is this true for C (X, Y)? 

25. 1 0x .  Prove that C(I ,  X) i s  path-connected iff  so  i s  X.  

25. 1 1x .  Prove that c<pw) (J , I) i s  not compact . I s  the space C(I , I) compact? 

f25'4x J Metric Case 

25. Ex .  If Y is metrizable and X is compact , then C (X, Y) is metrizable. 
Let (Y, p) be a metric space , X a compact space . For continuous maps 

f, g : X ----> Y,  let 

d(f, g) = max{p(f (x) , g (x ) )  I x E X} .  

25.Fx This is a Metric.  I f  X i s  a compact space and Y a metric space , 
then d is a metric on the set C (X, Y) . 

Let X be a topological space , Y a metric space with metric p. A sequence 
f n of maps X ----> Y uniformly converges to f : X ----> Y if for each c > 0 there 
exists a positive integer N such that p(fn (x) , f (x ) )  < c for any n > N and 
x E X .  This is a straightforward generalization of the notion of uniform 
convergence which is known from Calculus. 

25. Gx Metric of Uniform Convergence. Let X be a compact space , 
(Y, d) a metric space . A sequence fn of maps X ----> Y converges to f : X ----> Y 
in the topology generated by d iff f n uniformly converges to f .  

25. Hx Completeness of C (X, Y) . Let X be a compact space , (Y, p) a 
complete metric space . Then (C (X , Y ) , d ) is a complete metric space . 

25. /x Uniform Convergence Versus Compact- Open. Let X be a com­
pact space . Y a metric space . Then the topology generated by d on C (X, Y) 
is the compact-open topology. 

25. 12x .  ProYe that the space C(R I) is metrizable . 

25. 1 3x .  Let Y be a bounded metric space , and let X be a topological space 
admitting a presentation X =  U�1 X; , where X; is compact and X; c Int Xi+ 1  
for each i = 1 ,  2 , . . . . Prove that C (X, Y) i s  metrizable. 
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Denote by Cb (X, Y) the set of all continuous bounded maps from a topo­
logical space X to a metric space Y .  For maps J, g E Cb (X, Y) , put 

d00 (f, g) = sup{p(f (x) , g(x ) )  I x E X} . 

25. Jx Metric on Bounded Maps. This is a metric on Cb (X. Y) . 

25.Kx d00 and Uniform Convergence . Let X be a topological space , 
Y a metric space . A sequence f n of bounded maps X ----> Y converges to 
f : X  ----> Y in the topology generated by d00 iff fn uniformly conwrge to f. 

25.Lx When Uniform Is not Compact- Open. Find X and Y such that 
the topology generated by dx on Cb (X. Y) is not the compact-open topology. 

f25'5x J Interactions with Other Constructions 

25.Mx .  For any continuous maps 'P : X' ----> X and 1,.: : Y - 1 " ' .  the map 
C (X, Y) ----> C (X' , Y' ) : f � 'ljJ o f  o 'P is continuous . 

25. Nx Continuity of Restricting. Let X and Y be two spaces, A C X 
a subset . Prove that the map C (X, Y) ----> C (A,  Y) : f � f iA is continuous . 

25. Ox Extending Target. For any spaces X and Y and any B c Y,  the 
map C (X, B) ----> C (X, Y) : f � iB o f is a topological embedding. 

25.Px Maps to Product. For any three spaces X ,  Y ,  and Z ,  the space 
C (X, Y x Z) is canonically homeomorphic to C (X, Y) x C (X, Z) . 
25. Qx Restricting to Sets Covering Source . Let {X1 , . . .  , Xn} be a 
closed cover of X .  Prove that for each space Y the map 

n 
¢ :  C (X, Y) ----> IT C (Xi , Y) : f � U lx1 ,  . . .  , f lxJ 

i= l  
i s  a topological embedding. What i f  the cover i s  not fundamental? 

25.Rx .  Riddle. Can you generalize assertion 25. Qx? 

25. Sx Continuity of Composing. Let X be a space , Y a locally compact 
Hausdorff space . Prove that the map 

C (X, Y) x C (Y, Z) ----> C (X, Z) : (!, g) � g o f 
is continuous . 

25. 14x .  Is local compactness of Y necessary in 25.Sx? 

25. Tx Factorizing Source . Let S be a closed partition2 of a Hausdorff 
compact space X .  Prove that for any space Y the map 

¢ :  C(X/S, Y) ----. C (X, Y) 

is a topological embedding. 

2Recall that a partition is closed if the saturation of each closed set is closed . 
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25. 1 5x .  Are the conditions imposed on S and X in 25. Tx necessary? 

25. Ux The Evaluation Map. Let X and Y be two spaces. Prove that if 
X is locally compact and Hausdorff, then the map 

¢> :  C (X, Y) x X �  Y : (f , x) f-+ f (x )  

i s  continuous . 

25. 1 6x .  Are the conditions imposed on X in 25. Ux necessary? 

l25'6xj Mappings X x Y � Z and X �  C (Y, Z) 

25. Vx . Let X,  Y, and Z be three topological spaces , f : X x Y � Z a 
continuous map . Then the map 

F :  X �  C (Y, Z) : F(x) : y f-+ f (x ,  y) , 

is continuous. 
The converse assertion is also true under certain additional assumptions . 

25. Wx . Let X and Z be two spaces , Y a Hausdorff locally compact space , 
F : X � C (Y, Z) a continuous map . Then the map f : X x Y � Z : 
(x ,  y) f-+ F(x) (y) is continuous . 

25.Xx .  If X is a Hausdorff space and the collection Ey = {Ua } is a subbase 
of the topological structure of Y, then the collection {W(K, U) I U E E} is 
a subbase of the compact-open topology on C (X, Y) . 

25. Yx . Let X,  Y ,  and Z be three spaces . Let 

<I> :  C(X x Y, Z) � C (X, C (Y, Z) ) 
be defined by the relation 

<P (f) (x) : y f-+ f (x , y) . 

Then 

( 1 )  if X is a Hausdorff space , then <I> is continuous ; 
(2 )  if X is a Hausdorff space , while Y is locally compact and Hausdorff, 

then <I> is a homeomorphism. 

25. Zx .  Let S be a partition of a space X .  and let pr : X � X/ S be the 
projection. The space X x Y bears a natural partition S' = {A x y I A E 
S, y E Y} . If the space Y is Hausdorff and locally compact, then the natural 
quotient map f : (X x Y)/ S' � X/ s x Y of the projection pr x idy is a 
homeomorphism. 

25. 1 7x .  Try to prove Theorem 25. Zx directly. 
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Pro ofs and Comments 

20. A For example , let us prove the second relation : 
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(x , y )  E (A1 x B1 ) n (A2 x B2 ) ¢::::::} x E A1 , y E B1 . x E A.2 . y E B2 
¢::::::} x E A 1 n A2 , y E B1 n B2 ¢::::::} (x , y) E (A1 n A2 ) x (B1  n B2 ) .  

20. B Indeed , 

prx1 (A) = {z E X  x Y � pr_x-( .: l ::: A. } =  { ( .r . y ) E X  x Y I :r E A. } = A x  Y. 

20. C I =>  1 Indeed .  [ f r ( .r x } · ) = { ( .r . f ( .1' )  l }  is a singlet on . 
(<=) If r n (x X Y) is a singleton { (x .  y ) } .  then we can put j ( :r )  = y .  

20. D This follows from Theorem 3. A because the intersection of ele­
mentary open sets is an elementary open set . 

20.E Verify that X x Y ---? Y x X :  (x ,  y)  f---t (y ,  x) is a homeomorphism. 
20. F In view of a canonical bijection, we can identify two sets and 

write 

(X x Y) x Z = X  x (Y x Z) = { (x ,  y, z ) I x E X, y E Y, z E Z} .  

However, elementary open sets i n  the spaces (X x Y) x Z and X x (Y x Z) are 
different . Check that the collection {U X v X w I u E nx , v E f!y ' w E 
nz } is a base of the topological structures in both spaces . 

20. G Indeed, for each open set U c X the preimage prx1 (U) = U x Y 
is an elementary open set in X x Y.  

20. H Let n'  be  a topology on  X X y such that the projections prx 
and pry are continuous . Then, for any U E Ox and V E f!y ,  we have 

prx1 (U) n pry:1 (V) = (U x Y) n (X x V) = u x v E n' . 

Therefore , each base set of the product topology lies in n' , whence it follows 
that f!' contains the product topology of X and Y .  

20. 1 Clearly, ab(prx ) : X x Yo ---? X i s  a continuous bijection. To 
see that the inverse map is continuous , we must show that each set open in 
X x Yo as in a subspace of X x Y has the form U x YO · Indeed, if W is open 
in X x Y, then 

Wn(X x yo )  = U(Ua x Va )n (X xyo )  = U (Ua X Yo )  = ( U Ua) x yo .  
a a : yoEV"' a : yoEV"' 

20.J From the point of view of set theory, we have JR1 x JR1 = JR2 . The 
collection of open rectangles is a base of topology on lR 1 x lR 1 (show this) , 
and ,  therefore , the topologies in IR1 x IR1 and IR2 have one and the same base , 
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and so they coincide . The second assertion is proved by induction and , in 
turn, implies the third one by 20. 7. 

20.K Set f (z )  = (fi (z ) , h (z ) ) .  If f (z )  = (x , y) E X  x Y,  then x = 
(prx of) (z )  = fi (z ) . We similarly have y = h (z ) . 

20.L [=-l The maps !I = prx of and h = pry of are continuous as 
compositions of continuous maps (use 20. G) . 
(<=l  Recall the definition of the product topology and use 20. 20. 

20. M Recall the definition of the product topology and use 20. 22. 
20.N Let X and Y be two Hausdorff spaces, (xi , yi ) ,  (x2 , Y2 ) E X  x Y 

two distinct points .  Let , for instance , X I  i= x2 . Since X is Hausdorff, XI and 
x2 have disjoint neighborhoods: Ux1 n Ux2 = 0 .  Then, e .g . , Ux1 x Y and 
Ux2 x Y are disjoint neighborhoods of (xi , YI ) and (x2 , Y2 ) in X x Y.  

20. 0 I f  A and B are countable and dense in  X and Y,  respectively, 
then A x B is a dense countable set in X x Y.  

20. P See the proof of Theorem 20. Q below. 
20. Q If I:xand I:y are countable bases in X and Y,  respectively, then 

2: = {U x V I  U E I:x , V E I:y } is a base in X x Y by 20. 1 5. 
20. R Show that if PI and P2 are metrics on X and Y,  respectively, 

then p ( (xi , YI ) ,  (x2 , y2 ) ) = max{pi (XI , x2 ) , p2 (Yl , Y2 ) }  is a metric on X x Y 
generating the product topology. What form have the balls in the metric 
space (X x Y, p) ? 

20. 8 For any two points (xi , YI ) ,  (x2 , Y2 ) E X  x Y,  the set (X x Y2 ) U 
(xi x Y) is connected and contains these points .  

20. T If u and v are paths joining XI  with x2 and YI with Y2 , respectively, 
then the path u x v joins (xi , yi ) with (x2 , Y2 ) · 

20. U It is sufficient to consider a cover consisting of elementary open 
sets .  Since Y is compact , each fiber x x Y has a finite subcovering {U{ x v?} .  
Put wx = nur Since X is compact , the cover {WX }xEX has a finite 
subcovering wxj . Then {Utj 

X ViXj } is the required finite subcovering . 
20. V Consider the map 

( x, y) f-+ ( x 
, . 

y 
, ln J x2 + y2) . 

...jx2 + y2 ...jx2 + y2 

21 . A  First , the preimage pr- 1 (pr (A) ) is saturated . Second, it is 
the least because if B ::J A is a saturated set , then B = pr- I (pr (B) )  ::J 
pr- I (pr(A) ) . 

21 . C  Put n' = {U c X/ s I pr- 1 (U) E n} .  Let Ua E n' . Since the sets 
p- I (Ua )  are open, the set p- I (Ua Ua) = Ua P- I (Ua )  is also open, whence 
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Ua Ua E n' . Verify the remaining axioms of topological structure on your 
own. 

21 . D  (=>I  I f  a set V C X is  open and saturated . then V = 
pr- 1 (p(V) ) , and , hence , the set U = pr (V) is open in X/ S . 
(<=I  Conversely, i f  U c X/s is open , then U = pr (pr- 1 (U ) ) . where 
V = pr- 1 (U) is open and saturated . 

21 .E  The set F closed . iff  XIs " F i s  open, iff  pr- 1 (X/s " F) = 
X " pr- 1 (F) is open, iff p- 1 (F )  is closed . 

21 . F  This immediately follows from the definit ion of the quot ient topol­
ogy. 

21 . G We must prow that if O' is a topology on X/ s such that the 
factorization map is continuous . then 0' C Ox; s ·  Indeed. if [- E 0' . then 
p- 1 (U)  E Ox , whence U E f2x;s by the definition of the quotient topology. 

21 . H  It is connected as a continuous image of a connected space . 
21 . 1  It is path-connected as a continuous image of a path-connected 

space . 
21 . J  It is separable as a continuous image of a separable space . 
21 . K  It is compact as a continuous image of a compact space . 
21 . L  This quotient space consists o f  two points , one of which is not 

open in it . 
21 . M  (==>) Let a ,  b E  X/ s, and let A, B c X be the corresponding 

elements of the partition . If Ua and Ub are disjoint neighborhoods of a and 
b, then p- 1 (Ua )  and p- 1 (Ub) are disjoint saturated neighborhoods of A and 
B .  ( <= l  This follows from 21 .D. 

21 . N  1 )  ( ==> )  Put g = f / S· (<=) The set f- 1 (y ) = p- 1 (g- 1 (y) ) 
is saturated , i . e . , it consists of elements of the partition S. Therefore , f is 
constant at each of the elements of the partition . 2) If A is an element of 
S, a is the point of the quotient set corresponding to A,  and x E A, then 
f I s(a) = f (A) = g (p (x ) )  = g(a) . 

21 . 0 The map f maps elements of S to those of T iff there exists a 
map g :  X/ s ---+ Yjy such that the diagram 

X � y 

prx 1 pry 1 
X/s � Y/r 

is commutative . Then "-e have f / (S, T) = g .  
21 . P  This i s  s o  because distinct elements o f  the partition S(f )  are 

preimages of distinct points in Y .  
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21 . Q Since p- 1 ( ( !  I s)- l (U ) )  = (!I sop) - 1 (U) = f- 1 (U) , the definition 
of the quotient topology implies that for each u E Oy the set (!I s) - 1 (U)  
i s  open, i . e . , the map f /S is continuous . 

21 . R  See 21 . 0  and 21 . 8. 
21 . Sx Each singleton in X/ S is the image of a singleton in X .  Since 

X satisfies T1 , each singleton in X is closed ,  and its image, by 21 . 9x, is also 
closed . Consequently, the quotient space also satisfies T1 . 

21 . Tx This follows from 1 5. 26. 
21 . Ux Let Un = p(Vn ) ,  n E N, where {Vn}nEN is a base of X. Consider 

an open set W in the quotient space . Since pr- 1 (W) = UnEA Vn , we have 
W = pr (pr- 1 (W) )  = UnEA Un , i . e . , the collection {Un } i s  a base in  the 
quotient space . 

21 . Vx For an arbitrary point y E X/s, consider the image of a count­
able neighborhood base at a certain point x E pr- 1 (y) . 

21 . Wx Since the injective factor of a continuous surjection is a con­
tinuous bijection, it only remains to prove that the factor is an open map , 
which follows by 21 . 7  from the fact that the map X x Y --+  X/ S x Y/T is 
open (see 20. 23) . 

22. A This follows from 21 .P, 21 . Q, 21 .K, and 1 7. Y. 
22. B Use 1 7. Z  instead of 1 7. Y. 
22. C. 1 If f : t E [0 , 1] r-t (cos 27rt ,  sin 27rt) E S1 , then f / S (f)  is a home­

omorphism as a continuous bijection of a compact space onto a Hausdorff 
space , and the partition S(f)  is the initial one . 

22.D. 1 If f : X E Dn r-t ( � sin 1rr, - cos 1rr ) E sn C )Rn+l , then the 
partition S(f) is the initial one and f / S(f)  i s  a homeomorphism. 

22.E Consider the map g = f X id : I2 = I X I ....... S1 X I (! is defined 
as in 22. C. 1) . The partition S (g ) is the initial one , so that g / S (g) is a 
homeomorphism. 

22. F Check that the partition S (id81 x f) is the initial one . 
22. G The partition S(f x f) is the initial one. 
22. H Consider the commutative diagram 

X Pl X/s -----+ 

pl P2 1 
X/T 

q (X/s) /s' -----+ 

where the map q is obviously a bijection . The assertion of the problem 
follows from the fact that a set U is open in (X/ S) / S' iff p! 1 (P2 1 ( U) ) 
p- 1 (q- 1 (U) ) is open in X iff q- 1 (U) is open in X/T· 
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22.1 To simplify the formulas , we replace the square J2 by a rectangle . 
Here is a formal argument : consider the map 

<p :  [0, 27r] x [- ! ,  !J -7 IR3 : (x .  y) f-> 

( ( 1 + y sin � )  cos x ,  ( 1 + y sin � )  sin .r . y cos � )  . 

Check that <p really maps the square onto the l\li::ibius strip and that S( <p) 
is the given partition. Cert ainly. t he st art ing point of the argument is not a 
specific formula. First of all . �·ou should imagine the required map . \\'e map 
the horizontal midsegment of the unit square ont o the midline of the ::\ li::ibius 

strip , and we map each of the wrt ical  segment s of t he square onto a segment 
of the strip orthogonal to the midline .  This mapping maps the wrt ical sides 
of the square to one and the same segment , but here the opposite vert ices 
of the square are identified with each other (check this) . 

22. J  See the following section. 
22. K Actually, it is easier to prove a more general assertion . Assume 

that we are given topological spaces Xa and maps fa : Xo. -7 Y. Then 
n = {U c y I J;;1 (U)  is open in Xa } is the finest topological structure in 
Y with respect to which all maps fa are continuous . 

22.L See the hint to 22.K. 
22. M We map D! u D� to sn so that the images of D! and D� are 

the upper and the lower hemisphere , respectively. The partition into the 
preimages is the partition with quotient space nnuid l sn - l  Dn . Consequently, 
the corresponding quotient map is a homeomorphism. 

22.N Consider the map F : X U  Y -7 X U  Y such that F ix = idx and 
F ly  = h. This mapping maps an element of the partition corresponding 
to the equivalence relation z "" f (x)  to an element of the partition corre­
sponding to the equivalence relation x ""  g (x) . Consequently, there exists a 
continuous bijection H :  X Ut Y -7 X u9 Y.  Since h-1 also is a homeomor­
phism, H-1 is also continuous . 

22. 0 By 22.N, it is sufficient to prove that each homeomorphism f : 
sn- 1 -7 sn-1 extends to a homeomorphism F : Dn -7 Dn , which is obvious . 

22. P For example , the stereographic projection from an inner point of 
the hole maps the sphere with a hole onto a disk homeomorphically. 

22. Q The stereographic projection from an inner point of one of the 
holes homeomorphically maps the sphere with two holes onto a "disk with 
a hole" . Prove that the latter is homeomorphic to a cylinder. (Another 
option: if we take the center of the projection in the hole in an appropriate 
way, then the projection maps the sphere with two holes onto a circular ring , 
which is obviously homeomorphic to a cylinder . )  
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22. R By definition, the handle is homeomorphic to a torus with a hole , 
while the sphere with a hole is homeomorphic to a disk , which precisely fills 
in the hole . 

22. S Cut a sphere with two handles into two symmetric parts each of 
which is homeomorphic to a handle . 

22. T Combine the results of 22.P and 22. J. 
22. U Consider the Klein bottle as a quotient space of a square and 

cut the square into 5 horizontal (rectangular) strips of equal width. Then 
the quotient space of the middle strip is a Mobius band , the quotient space 
of the union of the two extreme strips is one more Mobius band , and the 
quotient space of the remaining two strips is a ring , i . e . , precisely a sphere 
with two holes. (Here is another , maybe more visual , description . Look at 
the picture of the Klein bottle : it has a horizontal plane of symmetry. Two 
horizontal planes close to the plane of symmetry cut the Klein bottle into 
two Mobius bands and a ring . )  

22. V The most visual approach here i s  as follows : single out one of 
the handles and one of the films . Replace the handle by a "tube" whose 
boundary circles are attached to those of two holes on the sphere , which 
should be sufficiently small and close to each other . After that , start moving 
one of the holes . (The topological type of the quotient space does not change 
in the course of such a motion. )  First , bring the hole to the boundary of 
the film, then shift it onto the film, drag it once along the film, shift it from 
the film, and, finally, return the hole to the initial spot . As a result , we 
transform the initial handle (a torus with a hole) into a Klein bottle with a 
hole , which splits into two Mobius bands (see Problem 22. U) ,  i . e . , into two 
films . 

23. A Consider the composition f of the embedding Dn in sn onto a 
hemisphere and of the projection pr : sn � !R.Pn . The partition S(f)  is that 
described in the formulation. Consequently, f I S(f) is a homeomorphism. 

23. c Consider f : S1 � 81 : z 1---+ z2 E c .  Then S1 I S(f) � !RP1 . 

23.D See 23.A .  
23. E Consider the composition f of the embedding of sn in !Rn -...... 

0 with the projection onto the quotient space by the described partition . 
Clearly. the partition S(f)  is the partition factorizing by which we obtain 
the project ive space . Therefore , f I S(f) is a homeomorphism. 

23. F To see that the described function is a metric , use the triangle 
inequality between the plane angles of a trilateral angle. Now, send each 
point X E Sn to the line l (x) through the origin with direction vector X .  
We have thus defined a continuous (check this) map of  sn to  the indicated 
space of lines , whose injective factor is a homeomorphism. 
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23. G The image of this map is the set Uo = { (xo : XI : · · · : Xn ) I xo # 
0 } ,  and the inverse map j : Uo ----+ JR.n is defined by the formula 

(XI  X2 Xn ) (xo : X I : · · · : Xn ) t-> - , - , . . •  , - . xo xo xo 

Since both i and j are continuous .  i is a topological embedding . 
23.H Consider the embedding sn- I = sn n {xn+l = 0} ----+ sn c JR.n+I 

and the induced embedding JR.pn - l  ----+ JR.Pn . 
24 . Ax If a ;:$ b ;:$ c. then \Ye haw a -< b -< c , a = b = c, a -< b = c. or 

a =  b -<  c. In all four cases . \Ye haw a � c. 

24 . Bx The relat ion """' is obviously reflexive . symmetric, and also tran­
sitive . 

24 . Cx Indeed, if a' ,....., a, a ;:$ b, and b ,....., b' , then a' ;:$ a ;:$ b ;:$ b' , whence 
a' ;:$ b' . Clearly, the relation defined on the equivalence classes is transitive 
and reflexive . Now, if two equivalence classes [a] and [b] satisfy both a ;:$ b 
and b ;:$ a ,  then [a] = [b] , i . e . , the relation is antisymmetric, and , hence , it 
is a nonstrict order . 

24 . Dx (a) In this case , we obtain the trivial nonstrict order on a sin­
gleton; (b ) In this case , we obtain the same nonstrict order on the same 
set . 

24 . Ex  The relation is obviously reflexive . Further, if a ;:$  b, then each 
neighborhood U of a contains b, and so U also is a neighborhood of b. Hence , 
if b ;:$ c, then c E U .  Therefore , a E Cl{c} , whence a ;:$ c, and thus the 
relation is also transitive . 

24 . Fx  Consider the element of the partition that consists by definition 
of points each of which lies in the closure of any other point , so that each open 
set in X containing one of the points also contains any other . Therefore , 
the topology induced on each element of the partition is indiscrete . It is 
also clear that each element of the partition is a maximal subset which is an 
indiscrete subspace. Now consider two points in the quotient space and two 
points x .  y E X lying in the corresponding elements of the partition. Since 
x -f y. there is an open set containing exactly one of these points .  Since 
each open set U in X is saturated with respect to the partition , the image 
of U in X/ s is the required neighborhood. 

24 . Gx Obvious . 

24 . Hx This follows from 24 .Fx, 24 . Gx, and 21 .R .  
25. Ax It is sufficient to observe that the sets in Ll (pw) cover the ent ire 

set C (X, Y) . (Actually, C (X. Y) E D.(pw) . ) 

25.Bx Similarly to 25. Ax 
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25. Cx Since each one-point subset is compact , it follows that Ll (pw) C 
_Ll(co) , whence O(pw) c nCco) _ 

25.Dx If f i=- g ,  then there is x E X  such that f (x) i=- g (x ) . Since Y is 
Hausdorff, f (x) and g (x) have disjoint neighborhoods U and V,  respectively. 
The subbase elements W(x .  U) and W(x,  V) are disjoint neighborhoods of 
f and g in the space C(pu· ) (X, Y) . They also are disjoint neighborhoods of 
f and g in C (X, Y) . 

25. Ex See assertion 25. /x. 

25. Hx Consider functions fn E C (X, Y) such that {fn }r is a Cauchy 
sequence . For every point x E X , the sequence {fn (x) } is a Cauchy sequence 
in Y .  Therefore , since Y is a complete space , this sequence converges . Let 
f (x) = lim fn (x) . We have thus defined a function f :  X --> Y .  

Since {fn } is a Cauchy sequence , for each E > 0 there exists a positive 
integer N such that p (fn (x) , fk (x) ) < c/4 for any n ,  k 2': N and x E X .  
Passing to  the limit as k -->  oo ,  we see that p (fn (x) , f (x) ) ::::; c/4 < c/3  for 
any n 2': N and x E X . Thus , to prove that fn --> f as n -->  oo ,  it remains 
to show that f E C (X, Y) . Each a E X has a neighborhood Ua such that 
p (JN (x) , JN (a) ) < c/3 for every x E Ua .  The triangle inequality implies 
that for every x E Ua we have 

p (f (x) , f (a ) ) ::::; p (f (x) , !N (x) ) + p (JN (x) , JN (a) ) + p (JN (a) , f (a) ) < E . 
Therefore , the function f is a continuous limit of the considered Cauchy 
sequence . 

25.Ix Take an arbitrary set W(K, U) in the subbase . Let f E W(K, U) . 
If r = p(f (K) , Y -...... U) , then Dr (!) c W(K, U) . As a consequence , we see 
that each open set in the compact-open topology is open in the topology 
generated by the metric of uniform convergence . To prove the converse 
assertion , it suffices to show that for each map f : X --> Y and each r > 0 
there are compact sets K1 , K2 , . . .  , Kn c X and open sets U1 , U2 , . . .  , Un c 
Y such that 

n 
f E n W(Ki , Ui ) c Dr (!) .  

i= l 
Cover f (X) by a finite number of balls with radius r/4 centered at certain 
points f(xi ) ,  j (x2 ) ,  . . . , f (xn ) · Let Ki be the f-preimage of a closed disk in 
Y with radius r j 4 ,  and let Ui be the open ball with radius r /2 .  By construc­
tion , we have f E W(K1 , U1 ) n · · · n W(Kn , Un ) .  Consider an arbitrary map 
g in this intersection . For each x E K1 , we see that f (x) and g (x) lie in one 
and the same open ball with radius r/2 ,  whence p(f (x) , g (x ) )  < r. Since , 
by construction , the sets K1 , . . .  , Kn cover X,  we have p(f (x) , g (x) ) < r for 
all x E X , whence d(f, g )  < r ,  and , therefore , g E Dr (!) .  
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25.Mx This follows from the fact that for any compact K C X' and 
open U C Y' the preimage of the subbase set W(K, U) E �(co) (X' , Y') is 
the subbase set W(cp(K) , 1)!- 1 (U) )  E �(co) (X, Y) . 

25. Nx This immediately follows from 25. Mx. 

25. Ox Clearly, the indicated map is an injection . To simplify the 
notation, we identify the space C (X. B) with its image under this injection . 
For each compact set K c X and U E OB , we denote by n-B ( K. U) the 
corresponding subbase set in C ( X. B ) .  If V E Oy and U = B � ,  \ ·. then 
we have WB (K, U) = C (X.  B ) � H" t /\-. \ - ) . "·hence it follo"·s that C ( X. Y) 
induces the compact-open topology on C ( X. B ) .  

25.Px Verify that the natural mapping f � ( pr1 · of .  prz c f) is a home­
omorphism.  

25. Qx The injectivity of  o follows from the fact that {Xi }  i s  a cover .  
while the continuity of ¢ follows from assertion 25.Nx. Once more , to sim­
plify the notation, we identify the set C (X, Y) with its image under the 
injection ¢ .  Let K c X be a compact set , U E Oy . Put Ki = K n Xi and 
denote by Wi (Ki ,  U) the corresponding element in the subbase �(co) (Xi ,  Y) . 
Since , obviously, 

the continuous injection ¢ is indeed a topological embedding . 

25. Sx Consider maps f : X --; Y and g : Y --; Z,  a compact set 
K c X, and V E nz such that g (f (K) )  c V, i . e . , ¢ (!, g) E W(K, V) . Then 
we have an inclusion f ( K) c g- 1 (V)  E Oy . Since Y is Hausdorff and locally 
compact and the set f (K) is compact , f (K) has a neighborhood U whose 
closure is compact and also contained in g- 1 (V) (see , 1 9. 6x. ) In this case , 
we have ¢(W(K, U) x W (Cl U, V) ) C W(K, V) , and , consequently, the map 
¢ is continuous. 

25. Tx The continuity of ¢ follows from 25. Mx, and its injectivity is 
obvious . Let K C X Is be a compact set , U E Oy . The image of the open 
subbase set W (K, U) C C (XI s, Y) is the set of all maps g :  X --;  Y constant 
on all elements of the partitions and such that g (pr- 1 (K) ) C U. It remains 
to show that the set W(pr- 1 (K) , U) is open in C (X, Y) . Since the quotient 
space X Is is Hausdorff, it follows that the set K is closed. Therefore , 
the preimage pr- 1 (K) is closed, and hence also compact . Consequently, 
W (pr- 1 (K) , U) is a subbase set in C (X, Y) . 

25. Ux Let fo E C (X. Y) and xo E X. To prove that ¢ is continuous at 
the point (fo ,  xo ) ,  consider a neighborhood V of f0 (x0 ) in Y .  Since the map 
fo is continuous,  the point xo has a neighborhood U' such that fo (U' )  c \ · .  
Since the space X i s  Hausdorff and locally compact , i t  follows that xo  has a 
neighborhood U such that the closure Cl U is a compact subset of U' . Since , 
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obviously, f (x) E V for any map f E W = W(Cl U, V) and any point x E U, 
we see that <P(W x U) C V. 

25.  Vx Assume that xo E X,  K c Y i s  a compact set , V c Oz,  
and F(xo ) E W(K, V) , i .e . , f (  {xo } x K) c V.  We show that the map 
F is continuous . For this purpose , let us find a neighborhood U0 of x0 in 
X such that F(Uo )  C W(K, V) . The latter inclusion is equivalent to the 
fact that f (Uo x K) E V. We cover the set {xo }  x K by a finite number 
of neighborhoods Ui x Vi such that f (Ui x Vi ) c V. It remains to put 
Uo = ni Ui . 

25. Wx Let (xo , Yo )  E X  x Y, and let G be a neighborhood of the point 
zo = f (xo , Yo )  = F(xo ) (yo ) .  Since the map F(xo ) : Y --+ Z is continuous , 
Yo has a neighborhood W such that F(W) c G. Since Y is Hausdorff and 
locally compact , Yo has a neighborhood V with compact closure such that 
Cl V c W and , consequently, F(xo ) (Cl V) c G, i . e . , F(xo ) E W (Cl V, G) . 
Since the map F is continuous , xo has a neighborhood U such that F(U) c 
W (Cl V, G) . Then, if (x ,  y) E U x V,  we have F(x) E W (Cl V, G) , whence 
f(x ,  y) = F(x) (y) E G. Therefore , f (U x V) c G, i . e . , f is continuous . 

25. Xx It suffices to show that for each compact set K C X,  each open 
set U c Y. and each f E vV (K. U) there are compact sets K1 , K2 , . . .  , Km c 
K and open sets U1 . U2 . . . .  , Um E �y such that 

f E W(K1 , Ul ) n W(K2 , U2 ) n · · · n W(Km ,  Um) c W(K, U) . 

Let x E K. Since f (x) E U, there are sets Uf , U!f , . . . , u;_x E �Y such that 
f (x) E Uf n U!f n . . .  n u;_x c U. Since f is continuous , X has a neighborhood 
Gx such that f (Gx ) c Uf n U!f n · · · n u;_x . Since X is locally compact and 
Hausdorff, X is regular , and , consequently, x has a neighborhood Vx such 
that Cl Vx is compact and Cl Vx C Gx . Since the set K is compact , K is 
covered by a finite number of neighborhoods Vx; , i = 1 ,  2, . . .  , n .  We set 
Ki = K n Cl Vxo i = 1 ,  2 ,  . . .  , n, and Uii = Uji , j = 1 ,  2, . . .  , nx; . Then the 
set 

is the required one . 

n ni 
n n W(Kj , Uij ) 
i=l j=l 

25. Yx First of all , we observe that assertion 25. Vx implies that the 
map <I> is well defined ( i . e . , for f E C (X, C (Y, Z) ) we indeed have <I> (f )  E 
C (X, C (Y, Z) ) ) ,  while assertion 25. Wx implies that if Y is locally compact 
and Hausdorff, then <I> is invertible . 
1 )  Let K C X and L C Y be compact sets ,  V E Oz.  The sets of the form 
W(L, V) constitute a subbase in C (Y, Z) . By 25. Xx, the sets of the form 
W(K, W(L, V) )  constitute a subbase in C (X, C (Y, Z) ) .  It remains to observe 
that <I>-1 (W(K, W(L , V) ) )  = W(K x L, V) E �(co) (X x Y, Z) . Therefore ,  
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the map <I> is continuous. 
2)  Let Q c X x Y be a compact set , G E Oz . Let <.p E <I> (W(Q ,  G) ) ,  so 
that r.p(x) : y � f(x , y) for a certain map f E W(Q,  G) . For each q E Q,  
take a neighborhood Uq x Vq of q such that :  the set Cl �·� i s  compact and 
f (Uq X Cl Vq) c G. Since Q is compact , we have Q c u�l (Uqi X VqJ · 
The sets Wi = W(Cl Vqi , G) are open in C (Y, Z) , and, hence . the sets Ti = 
W(px (Q) n Cl Uqi '  Wi ) are open in C (X. C (Y, Z) ) .  Therefore . T = n7=1 Ti 
is a neighborhood of tp .  We shmY that T c <I> (W(Q ,  G) ) .  Indeed . if u E T, 
then 'l/J = <I>(g) , and we haw g ( .r .  y )  E G for (x .  y )  E Q. so that g E H' ( Q .  G) , 
whence 'l/J E <I>(W(Q .  G) ) .  Therefore .  t he set <I> (lY(Q .  G) ) is open.  and so <I> 
is a homeomorph ism . 

25. Zx Obviously. the quot ient map f is a cont inuous bij ection.  Con­
sider the factorization map p :  X x 1 - - (X x 1 - l /5' · By 25. \ x. the map 
<I> : X ---+ C (Y, (X x Y)/ S' ) ,  where <I> (x ) (y) = p(x .  y) . is cont inuous . \\-e ob­
serve that <I> is constant on elements of the partition S, and,  consequently, 
the quotient map � : X/ s ---+ C (Y, (X x Y)/ S' ) is continuous . By 25. Wx, 
the map g : X/s x Y ---+ (X x Y)/s' , where g (z , y) = �(z) (y) , is also 
continuous . It remains to observe that g and f are mutually inverse maps. 





Chapter V 

Topological Algebra 

In this chapter , we study topological spaces strongly related to groups: either 
the space itself is a group in a nice way (so that all the maps coming from 
group theory are continuous) ,  or a group acts on a topological space and 
can be thought of as consisting of homeomorphisms . 

This material has interdisciplinary character. Although it plays impor­
tant roles in many areas of Mathematics , it is not so important in the frame­
work of general topology. Quite often, this material can be postponed till 
the introductory chapters of the mathematical courses that really require it 
(functional analysis ,  Lie groups , etc . ) .  In the framework of general topology, 
this material provides a great collection of exercises . 

In the second part of the book, which is devoted to algebraic topology, 
groups appear in a more profound way. So,  the reader will meet groups no 
later than the next chapter, when studying fundamental groups . 

Groups are attributed to algebra. In the mathematics built on sets ,  
main objects are sets with additional structure . Above, we met a few of the 
most fundamental of these structures : topology, metric, and (partial) order . 
Topology and metric evolved from geometric considerations . Algebra stud­
ied algebraic operations with numbers and similar obj ects and introduced 
into the set-theoretic Mathematics various structures based on operations . 
One of the simplest (and most versatile) of these structures is the structure 
of a group . It emerges in an overwhelming majority of mathematical envi­
ronments .  It often appears together with topology and in a nice interaction 
with it . This interact ion is a subject of topological algebra. 

The second part of this book is called Algebraic Topology. It also treats 
the interaction of topology and algebra, spaces and groups. But this is a 

-
1 79 
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completely different interaction . There the structures of topological space 
and group do not live on the same set , but the group encodes topological 
properties of the space . 
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26x. Generalities on Groups 

This section is included mainly to recall the most elementary definitions and 
statements concerning groups .  We do not mean to present a self-contained 
outline of the group theory. The reader is actually assumed to be familiar 
with groups , homomorphisms , subgroups ,  quotient groups ,  etc .  

I f  this i s  not yet so , we recommend reading one of  the numerous algebraic 
textbooks covering the elementary group theory. The mathematical culture . 
which must be acquired for mastering the material presented previously in 
this book, would make this an easy and pleasant exercise . 

As a temporary solut ion . the reader can read a few definitions and prove 
a few theorems gathered in this section . They provide a sufficient basis for 
most of what follows . 

f26' 1xj The Notion of Group 

Recall that a group is a set G equipped with a group operation. A group 
operation on a set G is a map w : G x G ---+ G satisfying the following three 
conditions (known as group axioms) :  

• Associativity. w (a , w(b , c) ) = w (w (a , b) , c) for any a, b, c E G. 
• Existence of Neutral Element . There exists e E G such that 

w(e , a) = w (a ,  e) =  a for every a E G. 
• Existence of Inverse Element . For any a E G, there exists 

b E G  such that w (a ,  b) = w (b , a) = e . 

26.Ax Uniqueness of Neutral Element. A group contains a unique 
neutral element. 

26.Bx Uniqueness of Inverse Element. Each e lement of a group has a 
unique inverse element. 

26. Cx First Examples of Groups. In each of the following situations , 
check if we have a group . What is its neutral element? How to calculate the 
element inverse to a given one? 

• The set G is the set Z of integers , and the group operation is 
addition: w(a ,  b) = a + b. 

• The set G is the set «.ho of positive rational numbers , and the 
group operation is multiplication : w (a ,  b) = ab. 

• G = IR, and w(a , b) = a + b. 
• G = C, and w(a , b) = a +  b . 
• G = lR "  0 ,  and w(a , b) = ab. 
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• G is the set of all bijections of a set A onto itself, and the group 
operation is composit ion : w (a ,  b) = a  o b .  

26. 1x Simplest Group. 1 )  Can a group be  empty? 2)  Can i t  consist o f  one 
element? 

A group consisting of one element is trivial .  

26. 2x Solving Equations . Let G be a set with an  associative operation w 
G x G ->  G.  ProYe that G is a group iff for any a, b E G the set G contains a unique 
element x such that w (a, x ) = b and a unique element y such that w(y ,  a) = b. 

f26'2x J Additive Versus Multiplicative 

The above notation is never used ! (The only exception may happen, 
as here . ''"hen the definition of group is discussed . )  Instead , one uses either 
multiplica tive or additive notation. 

·c nder the multiplicative notation , the group operation is called multipli­
ca tion and also denoted as multiplication: (a .  b) f---* ab. The neutral element 
is called unity and denoted by 1 or 1c  (or e ) . The element inverse to a is 
denoted by a- 1 . This notation is borrowed, say, from the case of nonzero 
rational numbers with the usual multiplication. 

Under the additive notation , the group operation is called addition and 
also denoted as addition : (a .  b) f---* a + b . The neutral element is called zero 
and denoted by 0 .  The element inverse to a is denoted by -a .  This notation 
is borrowed, say, from the case of integers with the usual addition . 

An operation w : G x G -+ G is commutative if w (a, b) = w (b ,  a) for 
any a ,  b E G. A group with commutative group operation is commutative 
or Abelian .  Traditionally, the additive notation is used only in the case 
of commutative groups , while the multiplicative notation is used both in 
the commutative and noncommutative cases . Below, we mostly use the 
multiplicative notation . 

26. 3x . In each of the following situations , check if we have a group: 

( 1 ) a singleton {a} with multiplication aa = a, 
(2 )  the set §n of bijections of the set { 1 ,  2 ,  . . .  , n} of the first n positive 

integers onto itself with mult iplicat ion determined by composition (the 
symmetric group of degree n ) .  

( 3 )  the sets JRn , en , and lEn with coordinate-wise addition, 
( -1 )  the set H omeo(X) of all homeomorphisms of a topological space X with 

mult iplicat ion determined by composition, 
( 5 )  the set GL ( n . R) of invert ible real n x n matrices equipped with matrix 

mult iplication. 
(6) the set 1\In (lR) of all real n x n matrices with addition determined by 

addition of matrices , 
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(7 )  the set of  all subsets of  a set X with multiplication determined by the 
symmetric difference : 

(A ,  B) f-+ A !::::. B = (A U B) '- (A n B) , 

(8) the set Zn of classes of positive integers congruent modulo n with ad­
dition determined by addition of positive integers , 

(9) the set of complex roots of unity of degree n equipped with usual mul-
tiplication of complex numbers , 

( 10) the set IR>o of posit ive reals with usual multiplication, 
( 1 1 ) 81 c C with standard mult iplication of complex numbers, 
( 12) the set of translations of a plane with multiplication determined by 

composition. 

Associativity implies that every finite sequence of elements in a group 
has a well-defined product , which can be calculated by a sequence of pairwise 
multiplications determined by any placement of parentheses , say, abcde = 
( ab) ( c( de ) ) . The distribution of the parentheses is immaterial . In the case of 
a three-element sequence , this is precisely the associativity: (ab) c = a(bc) . 

26.Dx .  Derive from the associativity that the product of any length does 
not depend on the position of the parentheses. 

For an element a of a group G, the powers an with n E Z are defined by 
the following formulas : a0 = 1 ,  an+l = ana ,  and a-n = (a- 1 )n . 

26. Ex. .  Prove that raising to a power has the following properties : aPaq = 
aP+q and (aP ) q = aPq . 

f26'3x J Homomorphisms 

Recall that a map f : G ---+ H of a group to another one is a homomor­
phism if f (xy) = f (x) f (y) for any x ,  y E G. 

26.4x . In  the above definition of  a homomorphism, the multiplicative notation is 
used . How does this definition look in the additive notation? What if one of the 
groups is multiplicative , while the other is additive? 

26. 5x .  Let a be an element of a multiplicative group G. Is the map Z ----> G :  n f-+ 
a

n a homomorphism? 

26. Fx .  Let G and H be two groups. Is the constant map G ---+ H mapping 
the entire G to the neutral element of H a homomorphism? Is any other 
constant map G ---+ H a homomorphism? 

26. Gx . A homomorphism maps the neutral element to the neutral elemen t .  
and it maps mutually inverse elements to mutually inverse elements . 

26. Hx .  The identity map of a group is a homomorphism. The composit ion 
of homomorphisms is a homomorphism. 
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Recall that a homomorphism f is an epimorphism if f is surjective , f is 
a monomorphism if f is injective , and f is an isomorphism if f is bijective . 

26./x .  The map inverse to an isomorphism is also an isomorphism. 
Two groups are isomorphic if there exists an isomorphism of one of them 

onto another one . 

26. Jx .  Isomorphism is an equivalence relation. 

26. 6x .  Show that the additive group lR is isomorphic to the multiplicative group 
JR>O · 

l26'4x J Subgroups 

A subset A of a group G is a subgroup of G if A is invariant under the 
group operat ion of G ( i .e . , for any a ,  b E  A we have ab E A) and A equipped 
with the group operation induced by that on G is a group. 

For t"·o subsets A and B of a multiplicative group G,  we put AB = { ab I 
a E A,  b E  B}  and A-1 = {a- 1  I a E A} . 

26. Kx .  A subset A of a multiplicative group G is a subgroup of G iff AA C A 
and A-1  C A. 

26. 7x .  The singleton consisting of the neutral element is a subgroup . 

26. 8x .  Prove that a subset A of a finite group is a subgroup if AA C A.  (The 
condition A- 1 C A is superfluous in this case . )  

26. 9x .  List all subgroups o f  the additive group :?:: . 

26. 1 0x .  Is GL(n, R) a subgroup of Mn (R) ? (See 26. 3x for notation . )  

26. Lx .  The image of a group homomorphism f : G ---t H i s  a subgroup of 
H .  

26.Mx .  Let f : G ---t H b e  a group homomorphism, K a subgroup of H.  
Then f- 1 (K) is a subgroup of G.  

In short: The preimage of a subgroup under a group homomorphism is 
a subgroup . 

The preimage of the neutral element under a group homomorphism f : 
G ---t H is called the kernel of f and denoted by Ker f .  

26. Nx Corollary of 26.Mx .  The kernel of a group homomorphism i s  a 
subgroup . 

26. Ox . A group homomorphism is a monomorphism iff its kernel is trivial. 

26.Px .  The intersection of any collection of subgroups of a group is also a 
subgroup. 

A subgroup H of a group G is generated by a subset S c G if H is the 
smallest subgroup of G containing S. 
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26.  Qx . The subgroup H generated by S is the intersection of  all subgroups 
of G that contain S. On the other hand , H is the set of all elements that 
are products of elements in S and elements inverse to elements in S. 

The elements of a set that generates G are generators of G.  A group 
generated by one element is cyclic . 

26.Rx .  A cyclic (multiplicative ) group consists of powers of its generator 
( i . e . , if G is a cyclic group and o generates G, then G = {an I n E Z} ) .  Any 
cyclic group is commutative . 

26. 1 1x .  A group G is cyclic iff t here exist s an epimorphism f :  Z ---> G. 

26. Sx .  A subgroup of a cyclic group is cyclic . 
The number of elements in a group G is the order of G. It is denoted by 

I G I . 

26. Tx .  Let G be a finite cyclic group , d a positive divisor of I G I .  Then G 
contains a unique subgroup H with IH I = d . 

Each element of a group generates a cyclic subgroup , which consists 
of all powers of this element . The order of the subgroup generated by a 
(nontrivial) element a E G is the order of a .  It can be a positive integer or 
the infinity. 

For each subgroup H of a group G, the right cosets of H are the sets 
H a = { xa I x E H} , a E G. Similarly, the sets aH are the left cosets of H .  
The number of distinct right (or left ) cosets o f  H is the index of H .  

26 .  Ux Lagrange theorem. If H i s  a subgroup of a finite group G, then 
the order of H divides that of G . 

A subgroup H of a group G is normal if for any h E H and a E G we have 
aha- 1 E H. Normal subgroups are also called normal divisors or invariant 
subgroups . 

If the subgroup is normal , then left cosets coincide with right cosets ,  
and the set of  cosets i s  a group with multiplication defined by the formula 
(aH ) (bH ) = abH. The group of cosets of H in G is called the quotient group 
or factor group of G by H and denoted by G /H. 

26. Vx . The kernel Ker f of a homomorphism f : G ---+ H is a normal 
subgroup of G. 

26. Wx . The image f (G) of a homomorphism f :  G ---+ H is  isomorphic to 
the quotient group G /Ker f of G by the kernel of f . 

26.Xx .  The quotient group �/z is canonically isomorphic to the group 81 . 
Describe the image of the group Q C � under this isomorphism. 
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26. Yx . Let G be a group , A a normal subgroup of G, and B an arbitrary 
subgroup of G. Then AB is also a normal subgroup of G, while A n  B is a 
normal subgroup of B .  Furthermore , we have AB/ A � B/ A n B · 
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2 7x .  Topological Groups 

f27'1x J Notion of Topological Group 

A topological group is a set G equipped with both a topological structure 
and a group structure such that the maps G x G � G : (x, y) f---+ xy and 
G � G :  x f---+ x-1 are continuous . 

27. 1x .  Let G be a group and a topological space simultaneously. Prove that the 
maps w : G x G ->  G :  (x ,  y) ......, :ry and a : G ->  G :  x >--+ x- 1 are continuous iff so 
is the map /3 :  G x G __, G :  (:r .  y) >- xy- 1 . 

27. 2x .  Prove that if G is a topological group , then the inversion G ->  G :  x >--+ x- 1 
is a homeomorphism. 

27. 3x .  Let G be a topological group , X a topological space , j, g : X -> G two 
maps continuous at a point x0 E X .  Prove that the maps X ->  G :  x >--+ f (x)g (x) 
and X ->  G :  x >--+ (f (x) ) - 1 are continuous at xo . 

27. Ax .  A group equipped with the discrete topology is a topological group . 

27.4x.  Is a group equipped with the indiscrete topology a topological group? 

f27'2x J Examples of Topological Groups 

27. Bx .  The groups listed in 26. Cx equipped with standard topologies are 
topological groups . 

27. 5x .  The unit circle 51 = { l z  = 1 }  C ::: \Yith the st andard mult iplication is a 
topological group . 

27. 6x . In each of the following situations, check if we haYe a topological group. 

( 1 ) The spaces lRn , en , and IHin with coordinate-wise addition. (Cn is iso­
morphic to JR2n ,  while JH[n is isomorphic to :=2n . )  

( 2 )  The sets 11-fn (lR) ,  Mn (C) , and 1\In (ll-'J) o f  all n x n matrices with real , 
complex, and , respectively, quaternion entries , equipped with the prod-

2 
uct topology and entry-wise addition. ( We identify Mn (lR) with JRn , 

' • 2 • 2 
Mn (C) Wlth en , and Mn (IHI) Wlth JH[n . )  

(3) The sets GL(n,  JR) , GL(n, q ,  and GL(n . Jfii ) o f  invertible n x n matrices 
with real , complex, and quaternionic entries , respectively, under the 
matrix multiplication. 

(-!)  SL (n, JR) , SL (n, C) ,  O (n) , O (n , C) ,  U (n) , SO (n) , SO(n, C) , SU(n) , and 
other subgroups of GL(n, K) with K = JR, C , or 111!. 

27. 7x . Introduce a topological group structure on the additive group lR that would 
be distinct from the usual , discrete ,  and indiscrete topological structures . 

27. 8x . Find two nonisomorphic connected topological groups that are homeomor­
phic as topological spaces .  

27. 9x . On the set G = [0 . 1 )  (equipped with the standard topology) ,  "·e define 
addition as follows :  .• : ( :r .  y )  = :r + y (mod 1 ) . I s  ( G ,  w ) a topological group? 
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f27'3x J Translations and Conjugations 

Let G be a group . Recall that the maps La : G ---t G : x f---+ ax and 
Ra : G ---t G : x f---+ xa are left and right translations through a, respectively. 
Note that La o  Lb = Lab , while Ra o Rb = Rba · (To "repair" the last relation, 
some authors define right translations by x f---+ xa - 1 . )  

27. Cx.  A translation of a topological group is a homeomorphism. 
Recall that the conjugation of a group G by an element a E G is the map 

G ---t G : x f---+ axa- 1 . 

27. Dx .  The conjugation of a topological group by any of its elements is a 
homeomorphism. 

The following simple observation allows a certain "uniform" treatment of 
the topology on a group: neighborhoods of distinct points can be compared. 

27. Ex .  If U is an open set in a topological group G, then for each x E G 
the sets xU, Ux, and u-1 are open. 

27. 1 0x . Does the same hold t rue for closed sets? 

27. 1 1x .  Prove that if U and 1/ are subsets of a topological group G and U is 
open, then UV and VU are open. 

27. 1 2x .  Will the same hold true if we replace everywhere the word open by the 
word closed? 

27. 1 3x .  Are the following subgroups of the additive group JR. closed? 

( 1 ) z, 
(2) v'2 z, 
(3) Z + y'2 z? 

27. 14x.  Let G be a topological group, U C G a compact subset , V C G a closed 
subset . Prove that UV and VU are closed. 

27. 1 4x . 1 .  Let F and C be two disjoint subsets of a topological group 
G. If F is closed and C is compact , then la has a neighborhood V such 
that CV U VC does not meet F. If G is locally compact , then V can be 
chosen so that Cl(CV U VC) is compact . 

f27'4xJ Neighborhoods 

27. Fx .  Let r be a neighborhood base of a topological group G at 1 c .  Then 
I: = {aU I a E G, u E r} is a base for topology of G.  

A subset A of  a group G i s  symmetric i f  A- 1 = A. 

27. Gx . Any neighborhood of 1 in a topological group contains a symmetric 
neighborhood of 1 .  

27. Hx .  For any neighborhood U of 1 in a topological group , 1 has a neigh­
borhood V such that VV C U. 
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27. 1 5x .  Let G be a topological group , U a neighborhood of lc ,  and n a positive 
integer. Then lc has a symmetric neighborhood V such that vn c U. 
27. 1 6x .  Let V be a symmetric neighborhood of lc  in a topological group G.  Then 
U::'=l vn is an open-closed subgroup . 

27. 1 7x .  Let G be a group , L: be a collection of subsets of G. Prove that G carries 
a unique topology n such that L: is a neighborhood base for 0 at lc and (G, 0) 
is a topological group , iff L: sat isfies the following five conditions : 

( 1 )  each U E L: contains l c .  
(2 )  for every x E [' E L: .  there exists V E L: such that xV C U ,  
(3 )  for each [' E L: .  t here exist s V E L: such that v- 1 C U, 
(4) for each ['  E L:.  t here exists F E L: such that VV C U, 
(5 )  for any x E G and C E L: .  t here exists V E L:  such that V C x- 1 Ux . 

27./x .  Riddle. In what sense is 2 7. Hx similar to the triangle inequality? 

27. Jx .  Let C be a compact subset of G. Prove that for every neighborhood 
U of lc the unity lc has a neighborhood V such that V c xU x-1 for every 
X E C. 

f27'5x J Separation Axioms 

27. Kx .  A topological group G is Hausdorff, iff G satisfies the first separation 
axiom, iff the unity lc (or, more precisely, the singleton { lc} )  is closed. 

27. Lx .  A topological group G is Hausdorff iff the unity lc is the intersection 
of its neighborhoods . 

27. Mx .  If the unity of a topological group G is closed, then G is regular 
(as a topological space) . 

Use the following fact . 

27. Mx . 1 .  Let G be a topological group , U c G a neighborhood of lc .  Then 
lc has a neighborhood V with closure contained in U: Cl V c U. 

27. Nx Corollary. For topological groups, the first three separation axioms 
are equivalent. 

27. 1 8x .  Prove that a finite group carries as many topological group structures as 
there are normal subgroups . Namely, each finite topological group G contains a 
normal subgroup N such that the sets gN with g E G form a base for the topology 
of G .  

f27'6x J Countability Axioms 

27. Ox . If r is a neighborhood base at lc in a topological group G and 
s c G is a dense set . then � = {aU I a E s, u E r} is a base for the 
topology of G. (Cf. 21.Fx and 1 6. H. )  

27. Px. .  A first countable separable topological group i s  second countable . 



190 V. Topological Algebra 

27. 1 9x  *. (Cf. 1 6. Zx) A first countable Hausdorff topological group G is metriz­
able . Furthermore, G can be equipped ,,-i th a right (left ) invariant metric . 
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28x.  Construct ions 

l28'1x J Subgroups 

28. Ax.  Let H be a subgroup of a topological group G. Then the topological 
and group structures induced from G make H a topological group . 

28. 1x .  Let H be a subgroup of an Abelian group G. Prove that . giwn a st ruct ure 
of topological group in H and a neighborhood base at L G carries a :'truct ure of 
topological group with the same neighborhood base at 1 .  

28. 2x .  Prove that a subgroup of a t opological group is open i ff  i t  cont ains  an 
interior point . 

28. 3x .  ProYe that ewry open subgroup of a topological group is also closed . 

28. 4x . Prove that every closed subgroup of finite index is also open . 

28. 5x .  Find an example of a subgroup of a topological group that 

( 1 )  is closed ,  but not open; 
(2) is neither closed , nor open. 

28. 6x .  Prove that a subgroup H of a topological group is a discrete subspace iff 
H contains an isolated point . 

28. 7x . Prove that a subgroup H of a topological group G is closed , iff there exists 
an open set U C G such that U n H = U n Cl H =I= 0, i .e . , iff H C G is locally 
closed at one of its points. 

28. 8x .  Prove that if H is a non-closed subgroup of a topological group G, then 
Cl H -.... H is dense in Cl H .  

28. 9x .  The closure of a subgroup of a topological group i s  a subgroup. 

28. 1 0x .  Is it true that the interior of a subgroup of a topological group is a 
subgroup? 

28.Bx .  A connected topological group is generated by any neighborhood of 
1 .  

28. Cx .  Let H be a subgroup of a group G.  Define a relation: a "' b if 
ab- 1 E H. Prove that this is an equivalence relation , and the right cosets of 
H in G are the equivalence classes . 

28. 1 1x .  What is the counterpart of 28. Cx for left cosets? 

Let G be a topological group, H c G a subgroup . The set of left (re­
spectively, right ) cosets of H in G is denoted by Gl H (respectively, H\ G) . 
The sets G I H and H\ G carry the quotient topology. Equipped with these 
topologies , they are called spaces of cosets . 

28.Dx .  For any topological group G and its subgroup H, the natural pro­
jections G ---t G I H and G ---t H\ G are open ( i .e . , the image of ewry open 
set is open) . 
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28. Ex.  The space of left (or right ) cosets of a closed subgroup in a topolog­
ical group is regular . 

28. Fx .  The group G is compact (respectively, connected) if so are H and 
GIH· 

28. 1 2x .  I f  H i s  a connected subgroup o f  a group G,  then the preimage o f  each 
connected component of G/ H is a connected component of G.  

28. 1 3x .  We regard the group SO(n - 1 ) as a subgroup of SO(n) . If n � 2 ,  then 
the space SO(n ) / SO(n - 1 ) is homeomorphic to sn- 1 • 

28. 14x .  The groups SO (n) , U (n) , SU(n) , and Sp(n) are 1 ) compact and 2 ) 
connected for any n � 1 . 3) How many connected components do the groups O(n) 
and O(p, q) have? (Here , O(p, q) is the group of linear transformations in JRP+q 
preserving the quadratic form xi + · · · +  x� - yf - · · · - y� . )  

l28'2xj Normal Subgroups 

28. Gx . Prove that the closure of a normal subgroup of a topological group 
is a normal subgroup . 

28. Hx .  The connected component of 1 in a topological group is a closed 
normal subgroup . 

28. 1 5x .  The path-connected component of 1 in a topological group is a normal 
subgroup . 

28.Ix .  The quotient group of a topological group is a topological group 
(provided that it is equipped with the quotient topology) . 

28. Jx .  The natural projection of a topological group onto its quotient group 
is open. 

28. Kx .  If a topological group G is first (respectively, second) countable , 
then so is any quotient group of G. 

28. Lx .  Let H be a normal subgroup of  a topological group G. Then the 
quotient group G I H is regular iff H is closed . 

28. Mx .  Prove that a normal subgroup H of a topological group G is open 
iff the quotient group G I H is discrete. 

The center of a group G is the set C(G) = {x E G I xg = gx for each g E 
G} . 

28. 1 6x .  Each discrete normal subgroup H of a connected group G is contained 
in the center of G.  
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f28'3x J Homomorphisms 

In the case of topological groups ,  a homomorphism is a continuous group 
homomorphism. 

28.Nx .  Let G and H be two topological groups. A group homomorphism 
f : G ---t H is continuous iff f is continuous at 1c . 

Not counting similar modificat ions . which can be summarized by the fol­
lowing principle : everything is assumed to respect the topological structures . 
the terminology of group theory carries over without changes . In part icular .  
an  isomorphism in  group theory i s  an  invertible homomorphism. Its inverse is 
a homomorphism (and hence an isomorphism) automatically. In the theory 
of topological groups , this must be included in the definition : an isomor­
phism of topological groups is an invert ible homomorphism whose inverse 
is also a homomorphism. In other words , an isomorphism of topological 
groups is a map that is both a group isomorphism and a homeomorphism. 
Cf. Section 1 1 .  

28. 1 7x . Prove that the map [0 ,  1 )  ---> S1 : X f-+ e2"ix is a topological group 
homomorphism. 

28. Ox . An epimorphism f : G ---t H is an open map iff the injective factor 
f I S(f) : G I Ker f ---t H of f is an isomorphism. 

28.Px .  An epimorphism of a compact topological group onto a topological 
group with closed unity is open. 

28. Qx . Prove that the quotient group IRIZ of the additive group lR by the 
subgroup Z is isomorphic to the multiplicative group S1 = {z E C : l z l  = 1 }  
of complex numbers with absolute value 1 .  

f28'4x J Local Isomorphisms 

Let G and H be two topological groups . A local isomorphism from G to H 
is a homeomorphism f of a neighborhood U of 1c in G onto a neighborhood 
V of 1H in H such that 

• f (:cy )  = f(x) f (y) for any x ,  y E U such that xy E U, 
• f- 1 (z t )  = f-1 (z )f-1 (t ) for any z ,  t E V such that zt E V.  

Two topological groups G and H are locally isomorphic i f  there exists a 
local isomorphism from G to H .  

28.Rx .  Isomorphic topological groups are locally isomorphic . 

28. Sx .  The additive group lR and the multiplicative group S1 c C are 
locally isomorphic ,  but not isomorphic . 
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28. 1 8x .  Prove that local isomorphism of topological groups is an equivalence 
relation. 

28. 1 9x .  Find neighborhoods of unities in R and 51 and a homeomorphism between 
them that satisfies the first condition in the definition of local isomorphism, but 
does not satisfy the second one . 

28. 20x. Prove that if a homeomorphism between neighborhoods of unities in 
two topological groups satisfies only the first condition in the definition of local 
isomorphism, then it has a submap that is a local isomorphism between these 
topological groups. 

f28'5xJ Direct Products 

Let G and H be two topological groups. In group theory, the product 
G x H is given a group structure . 1 In topology, it is given a topological 
structure (see Section 20) . 

28. Tx .  These two structures are compatible : the group operations in G x H 
are continuous with respect to the product topology. 

Thus . G x H is a topological group . It is called the direct product of the 
topological groups G and H. There are canonical homomorphisms related 
to this : the inclusions ic : G - G x H : x ,....... (x .  1 )  and i H : H ---+ G x H :  
x ,....... ( 1 ,  x) , which are monomorphisms , and the projections pre : G x H ---+ 
G :  (x ,  y) ,....... x and prH : G x H ---+ H :  (x ,  y) ,....... y ,  which are epimorphisms . 

28. 21x.  Prove that the topological groups (G x H)/iH (H) and G are isomorphic. 

28. 22x . The product operation is both commutative and associative: G x H is 
(canonically) isomorphic to H x G, while G x (H x K) is canonically isomorphic 
to (G x H) x K. 

A topological group G decomposes into a direct product of two subgroups 
A and B if the map A x B ---+ G : (x ,  y) ,....... xy is a topological group 
isomorphism. If this is the case , then the groups G and A x B are usually 
identified via this isomorphism. 

Recall that a similar definition exists in ordinary group theory. The 
only difference is that in ordinary group theory an isomorphism is just an 
algebraic isomorphism. Furthermore , in that theory, G decomposes into a 
direct product of its subgroups A and B iff A and B generate G, A and B 
are normal subgroups, and A n B = { 1 } .  Therefore , if these conditions are 
fulfilled in the case of topological groups . then A x B ---+ G : (x ,  y) ,....... xy is 
a group isomorphism. 

28. 23x .  Prove that in this situation the map A x B -->  G :  (x ,  y) >--> xy is contin­
uous . Find an example where the inverse group isomorphism is not continuous . 

1Recall that the multiplication in G x H is defined by the formula (x , u) (y , v)  = (xy , uv) . 
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28. Ux . Prove that if a compact Hausdorff group G decomposes algebraically 
into a direct product of two closed subgroups, then G also decomposes into 
a direct product of these subgroups as a topological group . 

28. 24x. Prove that the multiplicative group JR-..... 0 of nonzero reals is isomorphic (as 
a topological group) to the direct product of the multiplicative groups S0 = { 1 ,  - 1 } 
and lR>o = {x E lR I x > 0} . 

28. 25x .  Prove that the multiplicat ive group <C -..... 0 of nonzero complex numbers 
is isomorphic (as a topological group) to the direct product of the multiplicative 
groups S1 = {z  E <C : i z l = 1 } and iR>O · 

28. 26x .  Prove that the mult iplicat ive group lHI -..... 0 of nonzero quaternions is iso­
morphic (as a topological group) to the direct product of the multiplicative groups 
S3 = {z E lHI : l z l  = 1} and R>O · 

28. 27x.  Prove that the subgroup S0 = { 1 .  - 1 } of S3 = {z  E lHI : i z l  = 1 }  is not 
a direct factor. 

28. 28x . Find a topological group homeomorphic to JRP3 (the three-dimensional 
real projective space) . 

Let a group G contain a normal subgroup A and a subgroup B such 
that AB = G and A n  B = { la } .  If B is also normal , then G is the direct 
product A x  B. Otherwise, G is a semidirect product of A and B .  

28. Vx . Let a topological group G be  a semidirect product o f  its subgroups 
A and B. If for any neighborhoods of unity, U c A and V C B, their 
product UV contains a neighborhood of la ,  then G is homeomorphic to 
A x  B.  

l28'6xJ Groups of  Homeomorphisms 

For any topological space X. the autohomeomorphisms of X form a 
group under composition as the group operation . We denote this group by 
Top X .  To make this group topological . "·e slightly enlarge the topological 
structure induced on Top X by the compact-open topology of C (X. X ) . 

28. Wx . The collection of the sets W(C, U) and (lV(C. U) ) - 1 taken over all 
compact C C X  and open U C X is a subbase for the topological structure 
on Top X.  

In  what follows , we equip Top X with this topological structure . 

28.Xx .  If X is Hausdorff and locally compact , then Top X is a topological 
group . 

28. Xx . 1 .  If X is Hausdorff and locally compact , then the map Top X x Top X ---> 
Top X :  (g ,  h) f--> g o  h is cont inuous . 
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29x. Act ions of Top ological Groups 

f29' 1xj Action of a Group on a Set 

A left action of a group G on a set X is a map G x X -+  X :  (g ,  x) f--+ gx 
such that 1x = x for each x E X and (gh)x = g (hx) for each x E X and 
any g ,  h E  G. A set X equipped with such an action is a left G-set . Right 
G-sets are defined in a similar way. 

29.Ax . If X is a left G-set , then G x X -+ X : (x ,  g) f--+ g- 1x is a right 
action of G on X.  
29.Bx .  I f  X i s  a left G-set , then the map X -+ X : x f--+ gx  i s  a bijection 
for each g E G. 

A left action of  G on X is effective (or faithful) if for each g E G " 1 the 
map G -+  G :  X f--+ gx is not equal to ide . Let xl and x2 be two left G-sets .  
A map f : xl -+ x2 is G-equivariant  if f (gx) = gf (x) for any X E X and 
g E G. 

\Ye say that X is a homogeneous left G-set ,  or , rather , that G acts on X 
transitively if there exists g E G such that y = gx for any x ,  y E X . 

The same terminology applies to right actions with obvious modifica­
tions . 

29. Cx. .  The natural actions of G on G I H and H\ G transform G I H and 

H\ G into homogeneous left and , respectively, right G-sets . 

Let X be a homogeneous left G-set . Consider a point x E X and the 
set ex = {g E G I gx = x} .  We easily see that ex is a subgroup of G. It is 
called the isotropy subgroup of x .  
29.Dx .  Each homogeneous left (respectively, right ) G-set X i s  isomorphic 
to GIH (respectively, H\ G) ,  where H is the isotropy group of a certain 
point in X.  

29. Dx . 1 .  All isotropy subgroups ex , X E X , are pairwise conjugate .  

Recall that the normalizer Nr (H) of a subgroup H of a group G consists 
of all elements g E G such that gHg-1 = H. This is the largest subgroup 
of G containing H as a normal subgroup. 

29.Ex.  The group of all automorphisms of a homogeneous G-set X is iso­
morphic to N(H)I  H, where H is the isotropy group of a certain point in 
X.  

29. Ex . 1 .  I f  two points x ,  y E X  have the same isotropy group, then X has an 
automorphism sending x to y .  
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f29'2x J Continuous Action 

We speak about a left G-space X if X is a topological space , G is a 
topological group acting on X,  and the action G x X -+ X is continuous 
(as a map ) . All terminology (and definitions ) concerning G-sets extends to 
G-spaces literally. 

Note that if G is a discrete group , then each action of G by homeomor­
phisms is continuous and thus provides a G-space . 

29.Fx .  Let X be a left G-space . Then the natural map ¢ : G -+ Top X 
induced by this action is a group homomorphism. 

29. Gx . If in the assumptions of Problem 29. Fx the G-space X is Hausdorff 
and locally compact , then the induced homomorphism ¢ : G -+ Top X is 
continuous . 

29. 1x .  In each of the following situations , check if we have a continuous action 
and a continuous homomorphism G --+ Top X :  

( 1 )  G i s  a topological group, X = G, and G acts o n  X by left (or right) 
translations , or by conjugation; 

(2 )  G is a topological group, H C G is a subgroup, X = G / H, and G acts 
on X via g(aH) = (ga)H; 

(3)  G = GL(n,  K) (where K = JR, C, or JH[) ) ,  and G acts on Kn via matrix 
multiplication; 

(4) G = GL(n, K) (where K = JR, C ,  or JH[) , and G acts on KPn- 1 via 
matrix multiplication; 

(5 ) G = O(n, R) , and G acts on sn- 1 via matrix multiplication; 
(6) the (additive) group JR acts on the torus 8 1 X · · · X 8 1 according to 

formula (t, (w1 , . . . , Wr ) )  >-> (e
2 rr i a 1 1

w 1 . . . . .  e
2 " i a ,. t

wr ) : this action is an 
irrational flow if a 1 , . . . , ar are linearly independent over Ql.  

If the action of G on X is not effective , then we can consider its kernel 

cKer = {g E G I gx = X for all X E X } .  

This kernel i s  a closed normal subgroup of G ,  and the topological group 
G I cKer acts naturally and effectively on X 0 

29.Hx .  The formula gGKer (x)  = gx determines an effective continuous ac­
tion of G/cKer on X .  

A group G acts properly discontinuously o n  X i f  for each compact set 
C c X the set {g E G I (gC) n C # 0} is finite. 

29.Ix .  If G acts properly discontinuously and effectively on a Hausdorff 
locally compact space X. then ¢ (G) is a discrete subset of Top X .  (Here . as 
before, ¢ : G -+ Top X is the monomorphism induced by the G-action . )  In 
particular , G is a discrete group . 

29. 2x .  List , up to similarity, all triangles T c IR2 such that the reflect ions in the 
sides of T generate a group acting on IR2 properly discont inuously. 



198 V. Topological Algebra 

f29'3x J Orbit Spaces 

Let X be a left G-space . For x E X, the set G (x ) = {gx I g E G} is the 
orbit of x . In terms of orbits ,  the action of G on X is transitive iff it has only 
one orbit . For A C X and E C e, we put E(A) = {ga I g E E, a E A} .  We 
denote the set of all orbits by Xle and equip it with the quotient topology. 

29.Jx .  Let e be a compact topological group acting on a Hausdorff space 
X. Then the canonical map e I ex -+ e ( x ) is a homeomorphism for each 
X E X . 

29. 3x .  Give an example where X is Hausdorff, but GIGx is not homeomorphic 
to G(x) . 

29.Kx .  If a compact topological group e acts on a compact Hausdorff space 
X, then Xle is a compact Hausdorff space . 

29.4x . Let G be a compact group, X a Hausdorff G-space , A C X .  If A is closed 
(respectively, compact) ,  then so is G(A) . 

29. 5x .  Consider the canonical action of G = lR -..._ 0 on X =  lR (by multiplication) . 
Find all orbits and all isotropy subgroups of this act ion . Recognize X I G as a 
topological space . 

29. 6x . Let G be the group generated by reflect ions in the sides of a rectangle 
in JR2 . Recognize the quotient space JR2 1 G as a topological space . Recognize the 
group G. 

29. 7x . Let G be the group from Problem 29. 6x, and let H C G be the subgroup 
of index 2 constituted by the orientation-preserving elements in G. Recognize the 
quotient space JR21 H as a topological space . Recognize the groups G and H. 

29. 8x .  Consider the following (diagonal) action of the torus G = (S1 )n+ l on 
X = <CPn : (zo : z1 : . . .  : zn ) ....., (Oozo :01 z1 : . . . : On zn ) · Find all orbits and isotropy 
subgroups. Recognize XIG as a topological space. 

29. 9x .  Consider the canonical action (by permutations of coordinates) of the 
symmetric group G = §n on X =  JRn and X =  en , respectively. Recognize XIG 
as a topological space . 

29. 1 0x .  Let G = 80(3) act on the space X of symmetric 3 x 3 real matrices with 
trace 0 by conjugations x ....., gxg - l . Recognize X I c as a topological space. Find 
all orbits and isotropy groups . 

f29'4x J Homogeneous Spaces 

A G-space is homogeneous if the action of e is transitive . 

29.Lx .  Let e be a topological group , H c e a subgroup . Then G is 
a homogeneous H -space under the translation action of H. The quotient 
space e I H is a homogeneous G-space under the induced action of G.  

29.Mx .  Let X be a Hausdorff homogeneous e-space. If X and e are locally 
compact and e is second countable, then X is homeomorphic to G I ex for 
each x E X . 



29x. Actions of Topological Groups 199 

29.Nx .  Let X be a homogeneous G-space . Then the canonical map G I ex ---t 
X ,  x E X ,  is a homeomorphism iff it is open. 

29. 1 1x .  Show that O(n + 1 ) /0 (n) = 3n and U(n) /U(n _ 1 ) = 82n- 1 • 

29. 1 2x .  Show that O (n + 1 ) /0 (n) x 0( 1 ) = RPn and U(n) /U(n - 1 )  x U( 1 )  = 
c_pn _ 

29. 1 3x .  Show that 8p(n) /8p( n - 1 )  = 84n- 1 , where 

8p(n) = {A E GL(JH[) I AA* = I} . 
29. 14x .  Represent the torus 81 X 81 and the Klein bottle as homogeneous spaces . 

29. 1 5x .  Give a geometric interpretation of the following homogeneous spaces: 
1 )  O (n) /0 ( 1 )n , 2) O ( n ) /O (k )  x O ( n - k) , 3) O (n) /80(k) x O(n - k) , and 4) 
O(n) /O(k) ·  

29. 1 6x .  Represent 8 2  x 82 as a homogeneous space . 

29. 1 7x .  Recognize 80(n, 1 ) / 80(n) as a topological space . 
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Proofs and Comments 

27.Ax Use the fact that any autohomeomorphism of  a discrete space 
is continuous . 

27. Cx Any translation is continuous , and the translations by a and 
a- 1 are mutually inverse . 

27.Dx Any conjugation is continuous , and the conjugations by g and 
g- 1 are mutually inverse . 

27.Ex The sets xU, Ux, and u-1 are the images of U under the 
homeomorphisms Lx and Rx of the left and right translations through x 
and passage to the inverse element ( i .e . , reversing) ,  respectively. 

27.Fx Let V c G be an open set , a E V. If a neighborhood U E r 
is such that U c a- 1 v , then aU c V.  By Theorem 3.A ,  � is a base for 
topology of G. 

27. Gx If U is a neighborhood of L then U n u- 1 is a symmetric 
neighborhood of 1 . 

27.Hx By the cont inuity of multiplication , 1 has two neighborhoods 
V1 and V'2 such that V1 v'2 c U . Put V = V1 n V2 . 

27.Jx Let W be a symmetric neighborhood such that 1c E W and 
W3 c U . Since C is compact , C is covered by finitely many sets of the form 
wl = X!W, . . . ' Wn = XnW with XI , . . . , Xn E C. Put v = n�l (xiWxi1 ) .  
Clearly, V is a neighborhood of 1c . If x E C ,  then x = XiWi for suitable 
i, Wi E W. Finally, we have 

- lv - 1 - lv - lw w3 u X X = Wi Xi XiWi C Wi Wi C C . 

27.Kx If 1c  is closed, then all singletons in G are closed . Therefore , 
G satisfies T1 iff 1c i s  closed . Let us  prove that in  this case the group G 
is also Hausdorff. Consider g i= 1 and take a neighborhood U of 1c not 
containing g. By 21. 1 5x, lc has a symmetric neighborhood V such that 
V2 c U. Verify that gV and V are disjoint , whence it follows that G is 
Hausdorff. 

27.Lx (=>l  Use 1 5. C l<=l  In  this case , each element of  G i s  the 
intersection of its neighborhoods. Hence , G satisfies the first separation 
axiom, and it remains to apply 21.Kx. 

27.Mx . 1 It suffices to take a symmetric neighborhood V such that 
V2 c U. Indeed , then for each g tJ. U the neighborhoods gV and V are 
disjoint , whence Cl V C U. 

27. Ox Let W be an open set , g E W. Let V be a symmetric neigh­
borhood of lc with V2 C W. There 1c has a neighborhood U E r such 
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that U c V. There exists a E S such that a E gU-1 . Then g E aU and 
a E gU- 1 c gV-1 = gV.  Therefore , aU c aV c gV2 c W .  

21.Px This immediately follmvs from 27. Ox. 
28.Bx This follows from 27. 1 6x. 

28.Dx If U is open, then U H ( respectively, HU) is open . see 27. 1 1x. 

28.Ex Let G b e  the group . H C G the subgroup . The space G I H of 
left cosets satisfies the first separat ion axiom since gH is closed in G for any 
g E G. Observe that every open set in G I H has the form {gH I g E cT 
where U is an open set in G. Hence . it is sufficient to check that for ewry 
open neighborhood C of lc; in G the unity lc has a neighborhood V in G 
such that Cl V H c ["H .  Pick a s�·1mnetric neighborhood V with V2 C U.  
see 27. 1 5x. Let x E G belong to Cl l "H .  Then F x  contains a point vh with 
v E F and h E H, so that there exists v' E V such that v'x = vh, whence 
x E v- 1 vH = V2H c UH. 

28.Fx ( Compactness) First , we check that if H is compact , then the 
projection G � GIH is a closed map . Let F c G be a closed set , x � FH. 
Since FH is closed (see 27. 14x) ,  x has a neighborhood U disjoint with FH. 
Then UH is disjoint with FH. Hence , the projection is closed . Now, con­
sider a family of closed sets in G with the finite intersection property. Their 
images also form a family of closed sets in G I H with the finite intersection 
property. Since G I H is compact , the images have nonempty intersection. 
Therefore , there is g E G such that the traces of the closed sets in the family 
on gH have the finite intersection property. Finally. since gH is compact , 
the closed sets in the family have nonempty intersect ion . 
( Connectedness) Let G = U U V, where U and F are disjoint open subsets 
of G. Since all cosets gH, g E G, are connected , each of them is contained 
either in U or in V. Hence , G is decomposed into U H and V H, which 
yields a decomposition of G I H in two disjoint open subsets . Since G I H is 
connected , either U H or V H is empty. Therefore , either U or V is empty. 

28.Hx Let C be the connected component of lc in a topological group 
G. Then c- 1 is connected and contains lc ,  whence c-1 c C. For any 
g E C,  the set gC is connected and meets C,  whence gC C C. Therefore , C 
is a subgroup of G. C is closed since connected components are closed. C 
is normal since gCg - 1 is connected and contains lc ,  whatever g E G is .  

28.Ix Let G be a topological group , H a normal subgroup of G, and 
a, b E G two elements . Let W be a neighborhood of the coset abH in 
G I H. The preimage of W in G is an open set W consisting of cosets of 
H and containing ab. In particular , W is a neighborhood of ab. Since the 
multiplication in G is continuous , a and b have neighborhoods U and F ,  
respectively, such that UV c W. Then (UH) (VH) = (UV)H C WH. 
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Therefore, multiplication of elements in the quotient group determines a 
continuous map G I H x G I H --> G I H. Prove on your own that the map 
GIH x GIH : aH -->  a- 1H is also continuous . 

28.Jx This is special case of 28.Dx. 
28.Kx If {Ui } is a countable (neighborhood) base in G ,  then {UiH} is 

a countable (neighborhood) base in G I H · 
28.Lx This is a special case of 28.Ex. 
28.Mx [=-l In this case , all cosets of H are also open. Therefore , 

each singleton in G I H is open . ( <== l If lc 1 H is open in G I H, then H is 
open in G by the definition of the quotient topology. 

28.Nx [=-l Obvious . (<== l Let a E G, and let b = f (a) E H. For any 
neighborhood U of b, the set b- 1 u is a neighborhood of lH in H .  Therefore , 
lc has a neighborhood V in G such that f(V)  c b- 1 u . Then aV is a 
neighborhood of a ,  and we have f (aV) = f (a )f (V) = bf (V) C bb- 1 U = U. 
Hence , f is continuous at each point a E G, i . e . , f i s  a topological group 
homomorphism. 

28. Ox ( =-J Each open subset of G I Ker f has the form U · Ker f ,  
where U i s  an open subset o f  G .  Since f I S(f) (U  · Ker f) = f (U) , the map 
f I S(f )  is open . 
[<== ) Since the projection G -->  GIKer f is open (see 28.Dx) , the map f is 
open if so is f I S(f) · 

28.Px Combine 28. 0x, 27.Kx, and 1 7. Y. 
28. Qx This follows from 28. Ox since the exponential map lR --> S1 

x f---t e211'xi is open. 
28. Sx The groups are not isomorphic since only one of them is compact . 

The exponential map x f---t e211'xi determines a local isomorphism from lR to 
Sl . 

28. Vx The map A x B --> G : (a ,  b) f---t ab is a continuous bijection . 
To see that it is a homeomorphism, observe that it is open since for any 
neighborhoods of unity, U C A and V C B,  and any points a E A and b E  B,  
the product UaVb = abU'V' , where U' = b- 1 a- 1Uab and V' = b- 1 Vb, 
contains abW' ,  where W' is a neighborhood of lc contained in U'V' . 

28. Wx This immediately follows from 3. 8. 
28.Xx The map Top X --> Top X : g f---t g- 1 is continuous because it 

preserves the subbase for the topological structure on Top X .  It remains to 
apply 28.Xx. 1 .  

28.Xx . 1  It suffices to  check that the preimage o f  every element of 
a subbase is open. For W(C, U) , this is a special case of 25. Sx, where we 
showed that for any gh E W(C, U) there is an open U' , h(C) C U' c g- 1 (U) , 
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such that Cl U' is compact , h E  W(C, U' ) ,  g E W(Cl U' , U) , and 

gh E W(Cl U' , U) o W(C, U' ) c W(C, U) . 
The case of (W(C, U ) ) - 1 reduces to the previous one because for any gh E 
(W(C, U) ) - 1 we have h- 1g- 1 E W(C, U) , and so, applying the above con­
struction, we obtain an open U' such that g- 1 (C) c U' c h (  U ) ,  Cl U' is 
compact , g- 1 E W(C, U' ) ,  h- 1 E W(Cl U' ,  U) , and 

h- 1g- 1 E W(Cl U' . U) o W(C, U' ) c W(C, U) . 
Finally, we have g E (W(C, U' ) ) - 1 . h E  (W(Cl U' ,  U ) ) - 1 , and 

gh E (W(C, U' ) ) - 1 o (W (Cl U' , U) ) - 1 c (W(C, U) ) - 1 . 

We observe that the above map is continuous even for the pure compact­
open topology on Top X .  

29. Gx I t  suffices t o  check that the preimage o f  every element o f  a 
subbase is open. For W(C, U) , this is a special case of 25. Vx. Let ¢(g) E 
(W(C, U) ) - 1 . Then ¢(g- 1 ) E W(C, U) , and therefore g- 1 has an open 
neighborhood V in G with ¢(V) c W(C, U) . It follows that v- 1 is an open 
neighborhood of g in G and ¢(V-1 ) c (W(C, U) ) - 1 . (The assumptions 
about X are needed only to ensure that Top X is a topological group . )  

29.lx Let us check that lc i s  an isolated point o f  G. Consider an 
open set V with compact closure . Let U c V be an open subset with 
compact closure Cl U C V. Then , for each of finitely many gk E G with 
gk (U) n v =I 0, let Xk E X be a point with gk (Xk )  =I Xk , and let uk be an 
open neighborhood of Xk disjoint with gk (xk ) ·  Finally, G n W(Cl U, V) n 
n�=1 W(xk , Uk ) contains only la . 

29.Jx The space Gfcx is compact . the orbit G(x) c X is Hausdorff, 
and the map Gfcx --t G(x)  is a cont inuous bijection . It remains to ap­
ply 1 7. Y. 

29.Kx To prove that X/ G is Hausdorff, consider two disjoint orbits ,  
G(x) and G(y) . Since G(y) i s  compact , there are disjoint open sets U 3 x 
and V =:J G(y) . Since G(x) is compact , there is a finite number of elements 
gk E G such that Uk gkU covers G (x) . Then Cl (Uk gkU) = Uk Cl gkU = 
Uk gk Cl U is disjoint with G(y) , which shows that X/ G is Hausdorff. (Note 
that this part of the proof does not involve the compactness of X. )  Finally, 
X/c is compact as a quotient of the compact space X .  

29.Mx It suffices t o  prove that the canonical map f : G I ex --t X is 
open (see 29.Nx) . 
Take a neighborhood V C G of lc with compact closure and a neighborhood 
U C G of lc with Cl U · Cl U c � · .  Since G contains a dense countable set . it 
follows that there is a sequence gn E G such that {gnU}  is an open cover of G. 
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It remains to prove that at least one of the sets f (gnU) = 9nf (U) = 9nU(x) 
has nonempty interior . 
Assume the contrary. Then , using the local compactness of X ,  its Hausdorff 
property, and the compactness of f (gn Cl U) , we construct by induction a 
nested sequence of open sets Wn C X with compact closure such that Wn 
is disjoint with gkUx with k < n and gnUx n Wn is closed in Wn. Finally, 
we obtain nonempty n�=l Wn disjoint with G(x) , a contradiction. 

29.Nx The canonical map G /ex --> X is continuous and bij ective . 
Hence , it is a homeomorphism iff it is open (and iff it is closed) .  



Part 2 

Elements of Algebraic 

Topology 



This part of the book can be considered an introduction to algebraic 
topology, which is a part of topology that relates topological and algebraic 
problems. The relationship is used in both directions , but the reduction of 
topological problems to algebra is more useful at first stages because algebra 
is usually easier . 

The relation is established according to the following scheme . One in­
vents a construction that assigns to each topological space X under consid­
eration an algebraic object A(X) . The latter may be a group , a ring , a space 
with a quadratic form, an algebra, etc . Another construction assigns to a 
continuous map f : X ---+ Y a homomorphism A(f)  : A (X)  ---+ A(Y) . The 
constructions satisfy natural conditions (in particular ,  they form a functor) , 
which make it possible to relate topological phenomena with their algebraic 
images obtained via the constructions . 

There is an immense number of useful constructions of this kind . In 
this part , we deal mostly with one of them which, historically, was the first 
one : the fundamental group of a topological space . It was invented by Henri 
Poincare in the end of the XIXth century. 



Fundament al Group 

3 0 .  Homotopy 

130' 1 J Continuous Deformations of Maps 

30. A .  Is it possible to deform continuously :  

Chapter VI 

( 1 )  the identity map id : JR2 ---+ JR2 into the constant map JR2 ---+ JR2 : 
X f---+ 0 ,  

(2 )  the identity map id : 51 -. 51 into t he symmetry 51 - 51 : x f---+ 
-x (here x is considered a complex number because t he circle 51 
is { x E C : I x I = 1 } ) ,  

(3) the identity map i d  : 51 ---+ 81 into the const ant map 51 ---+ 51 : 
X f---+ 1 ,  

( 4 )  the identity map i d  : 51 ---+ 51 into the hvo-fold wrapping 81 ---+ 
51 : x f---+ x2 , 

(5 )  the inclusion 51 ---+ JR2 into a constant map , 

(6)  the inclusion 51 ---+ JR2 -...... 0 into a constant map? 

30.B. Riddle. When you (tried to) solve the previous problem, what did 
you mean by "deform continuously" ? 

-
207 



208 VI. Fundamental Group 

The present section is devoted to the notion of homotopy formalizing the 
naive idea of continuous deformation of a map . 

f30'2 J Homotopy as a Map and a Family of Maps 

Let f and g be two continuous maps of a topological space X to a 
topological space Y, and let H : X x I � Y be a continuous map such 
that H(x,  0) = f (x )  and H(x ,  1 )  = g (x )  for each x E X.  Then f and g are 
homotopic , and H is a homotopy between f and g .  

For x E X and t E J .  we denote H(x .  t )  by ht (x) . This change of 
notat ion result s in a change of the point of view of H. Indeed , for a fixed 
t the formula x f---+ h t (x ) determines a map ht : X � Y, and H becomes a 
family of maps ht enumerated by t E J .  

30.  C. Each ht i s  continuous . 

30.D. Does continuity of all ht imply continuity of H? 
The conditions H(x, 0) = f (x )  and H(x, 1 )  = g (x )  in the above defi­

nition of a homotopy can be reformulated as follows : ho = f and h1 = g .  
Thus , a homotopy between f and g can be  regarded as a family o f  continu­
ous maps that connects f and g .  Continuity of a homotopy allows us to say 
that it is a continuous family of continuous maps (see 30' 10 ) . 

f30'3 J Homotopy as a Relation 

30.E. Homotopy of maps is an equivalence relat ion . 

30. E. 1 .  If f : X ---+ Y is  a continuous map. th e n  H :  X x I ---+ Y :  (x ,  t )  � f (x)  
is  a homotopy between f and f .  

30. E. 2.  If H is a homotopy betu ·een f and g ,  then H '  defined b y  H' (x ,  t )  = 
H(x,  1 - t )  is a homotopy between g a nd f .  
30. E. 3. If H is a homotopy between f and J '  and H '  i s  a homotopy between 
f' and f" , then H" defined by 

H" (x t )  = 
{H(x ,  2t) 

' 
H' (x , 2t - 1 ) 

if t E [o ,  1/2] , 

if t E [1/2 ,  1 ] 
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is a homotopy between f and f" . 

Homotopy, being an equivalence relation by 30.E, splits the set C (X, Y) 
of all continuous maps from a space X to a space Y into equivalence classes. 
The latter are homotopy classes . The set of homotopy classes of all contin­
uous maps X � Y is denoted by 7r (X. Y) . Maps homotopic to a constant 
map are also said to be null-homotopic . 

30. 1 .  Prove that the set " I .\ .  I 1 is a singleton for each X .  

30. 2. Prove that two const ant maps X --+ Y are homotopic i ff  their images lie 
in one path-connected component of } · .  
30. 3. Prow t hat the number o f  element s of -. ( ! . } " )  i s  equal to  t he number of 
path- connected component s of } · .  

f30'4 J Rectilinear Homotopy 

30. F. Any two continuous maps of the same space to ffi.n are homotopic . 

30. G. Solve the preceding problem by proving that for continuous maps 
J, g : X  � iRn , the formula H (x , t) = ( 1 - t )f (x) + tg (x) determines a 
homotopy between f and g .  

The homotopy defined in 30 .  G is a rectilinear homotopy. 

30. H. Any two continuous maps of an arbitrary space to a convex subspace 
of !Rn are homotopic . 

f30'5 J Maps to Star-Shaped Sets 

A set A C !Rn is star-shaped if A contains a point a such that for any x E A 
the whole segment [a, x] connecting x to a is contained in A .  The point a is the 
center of the star. (Certainly, the center of the star is not uniquely determined.)  

30. 4 .  Prove that any two continuous maps of a space to a star-shaped subspace 
of !Rn are homotopic. 

f30'6 J Maps of Star-Shaped Sets 

30. 5. Prove that any continuous map of a star-shaped set C C !Rn to any space 
is null-homotopic. 

30. 6. Under what conditions (formulated in terms of known topological properties 
of a space X) are any two continuous maps of any star-shaped set to X homotopic? 
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f30'7 J Easy Homotopies 

30. 7. Prove that each non-surjective map of any topological space to sn is null­
homotopic. 

30. 8. Prove that any two maps of a one-point space to Rn -..... 0 with n > 1 are 
homotopic. 

30. 9. Find two nonhomotopic maps from a one-point space to R -..... 0. 

30. 1 0. For various m ,  n ,  and k ,  calculate the number of homotopy classes of 
maps { 1 ,  2, . . . , m} --+ Rn -..... {x1 , X2 , . . .  , X k } , where { 1 ,  2, . . .  , m} is equipped with 
discrete topology. 

30. 1 1 .  Let f and g be two maps from a topological space X to C -..... 0. Prove that 
if l f (x) - g(x) l < l f (x) l for any x E X, then f and g are homotopic. 

30. 12 .  Prove that for any polynomials p and q over C of the same degree in one 
variable there exists r > 0 such that for any R > r the formulas z ..._.. p(z) and 
z ..._.. q(z) determine maps of the circle {z E C :  l z l = R} to C -..... 0 and these maps 
are homotopic . 

30. 1 3. Let f and g be two maps of an arbitrary topological space X to sn .  Prove 
that if l f (a) - g(a) l < 2 for each a E X , then f is homotopic to g .  
30. 1 4 .  Let  f :  sn __, sn be a continuous map . Prove that if i t  i s  fixed-point-free , 
i . e  . . j ( l' )  =i .r for ewry X E Sn . then j is homotopic to the symmetry X ..._.. - X .  

f30'8J Two Natural Properties of Homotopies 

30.1. Let J, f' : X ___, Y, g : Y ___, B, and h : A ___, X be continuous maps , 
and let F : X x I ___, Y be a homotopy between f and f' . Prove that then 
g o  F o (h x id1 ) is a homotopy between g o  f o h and g o  f' o h. 

30.J. Riddle . In the assumptions of 30. I, define a natural map 

11'(X, Y) ___, 11' (A ,  B) . 
How does it depend on g and h? Write down all nice properties of this 
construction. 

30.K. Prove that two maps fo , h : X ___, Y x Z are homotopic iff pry ofo 
is homotopic to pry o !I and pr z o fo is homotopic to pr z o !I . 

f30'9 J Stationary Homotopy 

Let A be a subset of X.  A homotopy H : X x I ___, Y is fixed or stationary 
on A,  or .  briefly. an A-homotopy if H(J.· .  t )  = H(x,  0) for all x E A, t E I .  
Two maps connected by an A-homotopy are A-homotopic . 

Certainly. any two A-homotopic maps coincide on A.  If we want to 
emphasize that a homotopy is not assumed to be fixed, then we say that it 
is free .  If we want to emphasize the opposite (that the homotopy is fixed) , 
then we say that it is relative . 1 

1Warning: there is a similar , but different kind of homotopy, which is also called relative. 
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30.L .  Prove that , like free homotopy, A-homotopy is an equivalence rela­
tion. 

The classes into which the A-homotopy splits the set of cont inuous maps 
X ---t Y that agree on A with a map f : A ---t Y are A-homotopy classes of 
continuous extensions of f to X.  

30.M. For what A i s  a rectilinear homotopy fixed on  A? 

f30' 10 J Homotopies and Paths 

Recall that a path in a space X is a continuous map from the segment 
I to X .  (See Section 14 . )  

30.N. Riddle. In  what sense i s  any path a homotopy? 

30. 0. Riddle. In what sense does any homotopy consist of paths? 

30.P. Riddle. In what sense is any homotopy a path? 

Recall that the compact-open topology in C(X, Y) is the topology generated 
by the sets { r.p E C (X, Y) I r.p(A) C B} for compact A C X and open B C Y.  

30. 1 5. Prove that any homotopy ht  : X -> Y determines (see 30'2)  a path in 
C (X, Y) with compact-open topology. 

30. 1 6. Prove that if X is locally compact and regular , then any path in C(X,  Y) 
with compact-open topology determines a homotopy. 

f30' 1 1J Homotopy of Paths 

30. Q. Prove that two paths in a space X are freely homotopic iff their 
images belong to the same path-connected component of X .  

This shows that the notion o f  free homotopy i n  the case of paths i s  not 
interesting . On the other hand , there is a sort of relat ive homotopy playing 
a very important role . This is (0 U 1 ) -homotopy. This causes the following 
commonly accepted deviation from the terminology introduced above : ho­
motopy of paths always means not a free homotopy. but a homotopy fixed 
on the endpoints of I ( i . e . ,  on 0 U 1 ) .  

Notation: a homotopy class of a path s is denoted by [ s ] . 
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3 1 .  Homotopy Properties of Path 

Mult iplication 

131 '1  J Multiplication of Homotopy Classes of Paths 

Recall (see Section 14) that two paths u and v in a space X can be 
multiplied, provided that the initial point v (O ) of v is the final point u ( 1 )  of 
u .  The product u v  is defined by 

uv (t ) = {u(2t) 
v (2t - 1 )  

u(O) 

if t E [o , 1 /2] , 
if t E  [ 1/2 , 1 ] . 

31 . A .  If a path u is homotopic to u' , a path v is homotopic to v' , and the 
product uv exists, then u'v' exists and is homotopic to uv . 

Define the product of homotopy classes of paths u and v as the homotopy 
class of uv . So, [u] [v] is defined as [uv ] , provided that uv is defined. This is 
a definition requiring a proof. 

31 .B.  The product of homotopy classes of paths is well defined. 2 

I31'2J Associativity 

31 . C. Is multiplication of paths associative? 
Certainly, this question might be formulated in more detail as follows . 

31 .D.  Let u ,  v ,  and w be paths in a certain space such that products uv 
and vw are defined ( i . e . , u( 1 )  = v (O) and v ( 1) = w (O ) ) . Is it true that 
(uv )w = u (vw ) ? 

31 . 1 .  Prove that for paths in a metric space (uv )w = u (vw ) implies that u, v ,  
and w are constant maps . 

31 . 2. Riddle. Find nonconstant paths u, v ,  and w in an indiscrete space such 
that ( uv )w  = u (vw) . 

31 .E. Multiplication of homotopy classes of paths is associative . 

2of course , when the initial point of  paths in the first class i s  the final point of paths in the 
second class . 
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31 . E. 1 .  Reformulate Theorem 31 . E  i n  terms o f  paths and their homotopies . 

31 . E. 2. Find a map cp :  I --+  I such that if u, v ,  and w are paths with u ( 1 )  = 
v (O) and v ( 1 )  = w(O) , then ( (uv)w)  o cp = u(vw) . 

1 

31 . E. 3. Any path in I starting at 0 and ending at 1 is homotopic to id : I --+  I .  

31 .E. 4 .  Let u, v ,  and w be paths in a space such that products uv and vw 
are defined (thus , u(1)  = v (O) and v ( 1 )  = w(O) ) .  Then (uv)w i s  homotopic to 
u(vw) . 

If you want to understand the essence of 31 .E, then observe that the 
paths ( uv )w and u( vw) have the same trajectories and differ only by the 
time spent in different fragments of the path. Therefore , in order to find 
a homotopy between them, we must find a continuous way to change one 
schedule to the other . The lemmas above suggest a formal way of such a 
change , but the same effect can be achieved in many other ways . 

31 . 3. Present explicit formulas for the homotopy H between the paths (uv )w and 
u (vw) . 

f31'3J Unit 

Let a be a point of a space X .  Denote by ea the path I --+  X : t f-t a .  

31 .F. Is  ea a unit for multiplication of paths? 
The same question in more detailed form: 

31 . G. Is eau = u for paths u with u(O) = a? Is vea = v for paths v with 
v ( l )  = a? 

31 . 4 .  Prove that if ea u = u and the space satisfies the first separation axiom. 
then u = ea .  

31 . H. The homotopy class of ea is a unit for multiplication of homotopy 
classes of paths . 
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131' 4 J Inverse 

Recall that a path u has the inverse path u- 1 : t � u ( 1 - t) (see Sec­
tion 14) . 

31 .1. Is the inverse path inverse with respect to multiplication of paths? 
In other words : 

31 .J. For a path u beginning in a and finishing in b, is it true that uu- 1 = ea 
and u- 1u = e b? 

31 . 5. Prove that for a path u with u(O) = a  equality uu- 1 = ea implies u = ea .  

31 .K. For any path u ,  the homotopy class of the path u- 1 is inverse t o  the 
homotopy class of u .  

31 . K. 1 .  Find a map <p :  I ----. I such that uu- 1 = u o <p for any path u .  

31 . K. 2. Any path i n  I that starts and finishes at 0 i s  homotopic t o  the constant 
path eo : I ----. I .  

\Ve see that from the algebraic point of view multiplication of paths 
is terrible . but it determines multiplication of homotopy classes of paths , 
which has nice algebraic properties . The only unfortunate property is that 
the multiplication of homotopy classes of paths is defined not for any two 
classes. 

31 .L .  Riddle. How to select a subset of the set of homotopy classes of 
paths to obtain a group? 
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3 2 . Fundamental Group 

132' 1 J Definition of Fundamental Group 

Let X be a topological space . xo a point of X. A path in X which starts 
and ends at xo is a loop in X at xo . Denote by 01 (X, xo ) the set of loops 
in X at x0 . Denote by 1r1 (X. xo ) the set of homotopy classes of loops in X 
at xo . 

Both 01 (X, x0 ) and 1ri (X . . ro ) are equipped with a multiplication . 

32.A .  For any topological space X and a point xo E X,  the set 1r1 (X, xo ) 
of homotopy classes of loops at xo with multiplication defined above in Sec­
tion 31 is a group . 

1r1 (X, xo) is the fundamental group of the space X with base point xo . 
It was introduced by Poincare , and this is why it is also called the Poincare 
group. The letter 1r in this notation is also due to Poincare . 

132'2 J Why Index 1?  

The index 1 i n  the designation 1r1 (X, xo ) appeared later than the letter 
1r. It is related to one more name of the fundamental group : the first (or 
one-dimensional) homotopy group . There is an infinite sequence of groups 
7rr (X , xo) with r = 1 ,  2, 3, . . . , the fundamental group being one of them. 
The higher-dimensional homotopy groups were defined by \Yitold Hure,Yicz 
in 1935 ,  thirty years after the fundamental group \Yas defined . Roughly 
speaking, the general definition of 7rr (X, xo) is obtained from the definition 
of 1r1 (X, xo ) by replacing I with the cube fT . 
32.B. Riddle . How to generalize problems of this section in such a way 
that in each of them I would be replaced by Ir ? 

There is even a "zero-dimensional homotopy group' ' r.o (X, xo ) ,  but it 
is not a group , as a rule . It is the set of path-connected components of 
X. Although there is no natural multiplication in 1ro (X, xo ) ,  unless X is 
equipped with some special additional structures, 1ro (X, xo) has a natural 
unit . This is the component containing xo . 

132'3 J Circular loops 

Let X be a topological space , xo E X. A continuous map l : 81 ---+ X 
such that3 l ( 1 )  = x0 is a ( circular) loop at x0 . Assign to each circular loop l 
the composition of l with the exponential map I ---+ 81 : t f--7 e21rit .  This is a 
usual loop at the same point .  

3Recall that 81 i s  regarded as a subset o f  the plane R2 , and the latter i s  identified with C in 
a canonical way. Hence , 1 E 81 = {z E C :  l z l  = 1 } .  
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32. C. Prove that any loop is obtained in this way from a circular loop . 
Two circular loops h and l2 are homotopic if they are !-homotopic. A 

homotopy of a circular loop not fixed at x0 is a free homotopy. 

32.D. Prove that two circular loops are homotopic iff the corresponding 
ordinary loops are homotopic. 

32. 1 .  What kind of homotopy of loops corresponds to free homotopy of circular 
loops? 

32. 2. Describe the operation with circular loops corresponding to the multiplica­
tion of paths . 

32. 3. Let L' and V be the circular loops with common base point U( l ) = V( l ) 
corresponding to the loops u and v .  Prove that the circular loop 

Z f->  
{U(z2 ) i f  Im(z) ;::: 0 ,  V(z2 ) if Im(z ) :S 0 

corresponds to the product of u and r .  

32 . 4 .  Out line a construct ion o f  fundament al group using circular loops .  

132' 4 J The Very First Calculat ions 
32.E. Prove that 1r1 (ffi.n , O ) is a trivial group ( i .e . ,  consists of one element ) . 
32.F. Generalize 32.E to the situations suggested by 30.H and 30. 4 .  

32. 5. Calculate the fundamental group o f  an indiscrete space . 

32. 6. Calculate the fundamental group of the quotient space of disk D2 obtained 
by identifying of each x E D2 with - x .  

32.  7. Prove that if a two-element space X is path-connected , then X i s  simply 
connected. 

32. G. Prove that 1r1 (Sn , ( 1 ,  0 ,  . . .  , 0 ) )  with n 2:: 2 is a trivial group . 

Whether you have solved Problem 32. G or not . we recommend you consid­
ering Problems 32. G. 1 ,  32. G. 2, 32. G. 4 ,  32. G. 5. and 32. G. 6. They are designed 
to give an approach to 32. G, warn about a natural mistake , and prepare an 
important tool for further calculat ions of fundamental groups . 

32. G. l .  Prove that any loop s : I - S" that does not fill the entire sn (i . e . ,  
s (I) =f. S")  i s  null-homotopic . proYided that n � 2 .  (Cf. Problem 30. 7. ) 

\Varning : for any n ,  there exist s a loop filling sn . See Problem 1 0. 49x. 

32. G .2. Can a loop filling 52 be null-homotopic? 

32. G .3  Corollary of Lebesgue Lemma 1 7. W. Let s : I ---+ X be a path, 
r an open cover of a topological space X .  There exists a sequence of points 
a1 , . . .  , aN E I with 0 = a1 < a2 < · · · < aN- l < aN = 1 such that s ( [ai , ai+ l ] )  
is contained in an element of r for each i .  
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32. G.4 . Prove that i f  n � 2 ,  then for any path s : I -+  sn the segment I has a 
subdivision into a finite number of subintervals such that the restriction of s to 
each of the subintervals is homotopic to a map with nowhere-dense image via a 
homotopy fixed on the endpoints of t he subinterval . 

32. G. 5. Prove that if n � 2 .  then any loop in sn is homotopic to a non­
surjective loop . 

32. G. 6. 1 )  Deduce 32. G from 32. G. 1 and 32. G. 5. 2 ) Find all points of the 
proof of 32. G obtained in this \Yay. \Yhere the condition n � 2 is used . 

I32'5J Fundamental Group of a Product 
32.H. The fundam en ta l  gro up of th e product  of topological spaces is can on­
ically isomorphic to th e product of th e fu n dam e n ta l  gro ups of th e factors :  

1r1 (X x Y, (xo , yo ) )  = 1r1 (X, xo ) x 1r1 (Y, yo ) . 
32. 8.  Consider a loop u : I -> X at xo , a loop v : I -> Y at yo , and the loop 
w = u x v : I ->  X x Y. We introduce the loops u' : I ->  X x Y :  t ........ (u(t) , yo ) )  
and v' : I ->  X x Y :  t ........ (xo , v (t) ) .  Prove that u'v' "' w  "' v'u' .  
32. 9 .  Prove that 1r 1  (JRn '- 0 ,  ( 1 ,  0 ,  . . .  , 0 ) )  is trivial i f  n � 3 . 

132'6 J Simply-Connectedness 

A nonempty topological space X is simply connected (or one-connected) 
if X is path-connected and every loop in X is null-homotopic. 

32.1. For a path-connected topological space X. the following statements are 
equivalent: 

( 1) X is simply connected, 
(2 )  each continuous map f : S1 ---> X is (freely) null-h omotopic, 
(3) each continuous map f : S1 ---> X extends to a continuous map 

D2 ---> X ' 
( 4)  any two paths 81 , 82 : I ---> X connecting the same points xo and x1 

are homotopic. 

Theorem 32. I is closely related to Theorem 32. J be1ow. Notice that since 
Theorem 32. J concerns not all loops , but an individual loop , it is applicable 
in a broader range of situations . 

32.J. Let X be a topological space, 8 : S1 ---> X a circular loop . Then the 
following statements are equivalent: 

( 1 )  8 is null-homotopic, 
(2) 8 is freely null-homotopic, 
(3) 8 extends to a continuous map D2 ---> X ,  
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(4) the paths s+ , s_ : I � X defined by the formula S± (t )  = s (e±1rit ) 
are homotopic. 

32. J. 1 .  Riddle. To prove that 4 statements are equivalent , we must prove at 
least 4 implications . What implications would you choose for the easiest proof 
of Theorem 32. fl. 

32. J. 2. Does homotopy of circular loops imply that these circular loops are 
free homotopic? 

32. J. 3. A homotopy between a map of the circle and a constant map possesses 
a quotient map whose source space is homeomorphic to the disk D2 • 

32. J. 4 .  Represent the problem of constructing a homotopy between the paths 
s+ and s_ as a problem of extending a certain continuous map of the boundary 
of a square to the whole square. 

32. J. 5.  \Vhen we solve the extension problem obtained as a result of Prob­
lem .'J2. J. 4 ,  does it help to know that the circular loop S1 --> X  : t � s ( e211'it ) 
extends to  a cont inuous map of a disk? 

32. 1 0. \\'hich of t he following spaces are simply connected :  
( a )  a discrete (b )  an indiscrete 

space : 
(d ) a convex set ; 
(g)  JRn '- 0? 

space ; 
(e)  a star-shaped set ; 

(c) lRn ; 

(f) sn ; 

32. 1 1 .  Prove that if a topological space X is the union of two open simply con­
nected sets U and V with path-connected intersection U n V, then X is simply 
connected. 

32. 1 2. Show that the assumption in 32. 1 1  that U and V are open is necessary. 

32. 1 3 *. Let X be a topological space , U, V C X two open subsets .  Prove that if 
U U V and U n V are simply connected, then so are U and V .  

f32'7x J Fundamental Group of a Topological Group 

Let G be a topological group. Given loops u .  t' : I � G starting at the 
unity 1 E G, we define a loop u 8 v : I � G by the formula u 8 v (t )  
u ( t )  · v (t ) , where · denotes the group operation in  G. 

32.Kx .  Prove that the set O(G,  1 )  of all loops in G starting at 1 equipped 
with the operation 8 is a group . 

32.Lx .  Prove that the operation z on O(G,  1 )  determines a group operation 
on 1T'I (G,  1 ) ,  which coincides with the standard group operation (determined 
by multiplication of paths ) . 

32. Lx . 1 .  For loops u, v --> G starting at 1 ,  find (ue1 ) 8 (e 1 v) .  

32.Mx .  The fundamental group of a topological group is Abelian . 
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f32'8x J High Homotopy Groups 

Let X be a topological space , x0 E X. A continuous map F ---7 X 
mapping the boundary 8fT of F to xo is a spheroid of dimension r of X 
at x0 , or just an r-spheroid . T;Yo r-spheroids are homotopic if they are 
{)Jr -homotopic .  For two r-spheroids u and v of X at xo , r � 1 ,  define the 
product uv by the formula 

( . ) _ { u (. 2 t l . t 2 · · · · , tr ) uv t 1 , t2 , . . . . tr - l ' l 2 t l  - l . t2 . . . .  , tr ) 
if t 1 E [o , 1/2] , 
if t 1 E [ 1 /2 , 1 ] . 

The set of homotop�; classes of r-:'pheroids of a space X at xo is the rth 
(or r-dimensional ) homotop�- group :-:- ,. I X  . .  ro ) of X at .ro .  Thus . 

"r ( X  . . ro ) = ;; ( F .  8F : X . .  ro ) .  
Multiplication of spheroids induces multiplicat ion in "r (X . . ro ) .  which makes 
7rr (X , xo) a group . 

32.Nx .  Find 7rr (IRn , 0) . 
32. Ox . For any X and xo , the group ?Tr (X , xo ) with r � 2 is A belian. 

Similar to 32'3 ,  higher-dimensional homotopy groups can be built up not 
out of homotopy classes of maps (F ,  {)Jr ) ---7 (X, xo ) ,  but as 

7r ( Sr , ( 1 , 0 , . . .  , 0 ) ; X, xo ) .  
Another way, also quite popular , is to define 7r7- (X. xo ) as 

1r ( D r , {)Dr : X. xo ) .  

32.Px .  Construct natural bijections 

1r (F , 8JT ; X, xo ) ---7 1r ( Dr , 8Dr ; X, xo ) --+ 1r (Sr , ( 1 . 0 . . . . . 0) ; X, xo ) .  

32. Qx . Riddle. For any X, xo and r � 2 ,  present group r.r (X, xo ) as the 
fundamental group of some space . 

32.Rx .  Prove the following generalization of 32.H: 

1Tr (X X Y, (xo , Yo ) ) = 7rr (X, xo) x 7rr (Y, Yo ) .  

32. Sx .  Formulate and prove analogs of Problems 32.Kx and 32. Lx for higher 
homotopy groups and 7ro ( G ,  1 ) .  
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33 . The Role of B ase Point 

f33' 1J Overview of the Role of Base Point 

Sometimes the choice of the base point does not matter, sometimes it is 
obviously crucial , and sometimes this is a delicate question . In this section, 
we have to clarify all subtleties related to the base point . We start with 
preliminary formulations describing the subject in its entirety, but without 
some necessary details . 

The role of the base point may be roughly described as follows : 

• When the base point changes within the same path-connected com­
ponent , the fundamental group remains in the same class of isomor­
phic groups. 

• However, if the group is non-Abelian, it is impossible to find a 
natural isomorphism between the fundamental groups at different 
base points even in the same path-connected component . 

• Fundamental groups of a space at base points belonging to different 
path-connected components have nothing to do with each other . 

In this section , these will be demonstrated . The proof involves useful con­
structions , whose importance extends far outside the frameworks of our 
initial question on the role of the base point . 

f33'2 J Definition of Translation Maps 

Let x0 and x1 be two points of a topological space X, and let s be a path 
connecting xo with x1 . Denote by CJ the homotopy class [s] of s . Define a 
map Ts : 7ri (X, xo )  � 11'1 (X, x1 ) by the formula T8 (a) = CJ- 1aCJ .  

33. 1 .  Prove that for any loop a :  I ---+ X representing o E 1r1 (X, xo ) and any path 
8 : I ---+ X with 8 (0) = xo the loop a is connected with a loop representing T. (o) 
by a free homotopy H : I x I ---+ X such that H(O,  t ) = H(l ,  t) = 8 (t ) for t E I. 
33. 2. Let a ,  b : I ---+ X be two loops homotopic via a homotopy H : I x I ---+ X 
such that H(O,  t) = H(l ,  t) ( i . e . , H is a free homotopy of loops : at each moment 
t E I, it keeps the endpoints of the path coinciding) . Set 8 (t ) = H(O ,  t) (hence , 
8 is the path run through by the initial point of the loop under the homotopy) . 
Prove that the homotopy class of b is the image of the homotopy class of a under 
Ts : 1r1 (X, 8 (0) )  ---+ 1r1 (X, 8 ( 1 ) ) .  
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f33'3 J Properties of Ts 

33.A .  T8 is a (group) homomorphism.4 

33.B. If u is a path connecting xo to x 1 and v is a path connecting x1 with 
X2 , then Tuv = Tv o Tu .  In other words, the diagram 

1r1 (X, xo ) � 1r1 (X, x1 ) 

Tuv '\. 1 Tv 

1fl (X, X2 ) 
is commutative .  

33. C.  If paths u and v are homotopic, then Tu = Tv .  

33.D. Tea = id : 1r1 (X, a) --> 1r1 (X, a) . 

33.F. T8 is an isomorphism for any path s .  

33. G .  For any points xo and x1 lying in the same path- connected component 
of X, the groups 1r1 (X, xo ) and 1r1 (X, x1 ) are isomorphic. 

Despite the result of Theorem 33. G, we cannot write 1r1 (X) even if the 
topological space X is path-connected. The reason is that although the 
groups 1r1 (X, xo) and 1r1 (X, x1 ) are isomorphic , there may be no canonical 
isomorphism between them (see 33. J below) . 

33.H. The space X is simply connected iff X is path- connected and the 
group 1r1 (X, xo ) is trivial for a certain point xo E X .  

f33' 4 J Role of Path 

33.1. If a loop s represents an element a- of the fundamental group 1r1 (X, xo ) ,  
then Ts is the inner automorphism of 1r1 (X, xo ) defined by a f--+ a-- 1aa- .  

33.J. Let  xo  and x1 b e  points of a topological space X belonging to  the same 
path-connected component. The isomorphisms T8 : 1r1 (X, xo ) --> 1r1 (X, x1 ) 
do not depend on s iff 1r1 (X, xo) is an A bel ian group. 

Theorem 33. J implies that if the fundamental group of a topological 
space X is Abelian, then we may simply write 1r1 (X) .  

4Recall that this means that T5 (at/3) = T8 (at)Ts (/3) .  
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l33'5x J In Topological Group 

In a topological group G, there is another way to relate 7l"I ( G, xo) with 
7l"I ( G, XI ) :  there are homeomorphisms L9 : G ---t G : x � xg and R9 : 
G ---t G : x � gx , so that there are two induced isomorphisms (L - 1 ) * : Xo X 1  
1l"I (G , xo) ---t 7ri (G, xi ) and (Rx1 x0 1 ) * : 7ri (G, xo ) ---t 7ri (G, xi ) · 
33.Kx .  Let G be a topological group , s : I ---t G a path. Prove that 

Ts = (Ls (o) - 1 s ( I ) ) * = (Rs( I ) s (o) - 1 ) : 7ri (G, s (O ) )  ---t 7ri (G, s ( l ) ) .  

33.Lx .  Deduce from 33.Kx that the fundamental group of a topological 
group is Abelian (cf. 32.Mx) . 

33. 3x .  Prove that the following spaces have Abelian fundamental groups : 

( 1 )  the space of nondegenerate real n x n matrices GL(n,  JR) = {A I det A #-
0} ;  

( 2 )  the space o f  orthogonal real n x n matrices O (n ,  JR) = {A I A ·  ( t  A) = E} ;  
( 3 )  the space of  special unitary complex n x n matrices SU(n) = {A I 

A . (t A) = 1 ,  det A = 1 } .  

f33'6xJ In  High Homotopy Groups 

33.Mx .  Riddle. Guess how T8 is generalized to 7rr (X. xo) with any r .  

Here i s  another form of  the same question . We include i t  because its 
statement contains a greater piece of an answer. 

33.Nx .  Riddle. Given a path s : I ---t X with s (O) = xo and a spheroid 
f : Ir ---t X at xo , how does one make up a spheroid at XI = s ( l )  out of 
these? 

33. Ox. Let s : I ---t X be a path, f : Ir ---t X a spheroid with f (Fr F) = 
s (O ) . Prove that there exists a homotopy ·H : F x I ---t X of f such that 
H (Fr Ir x t )  = s (t ) for any t E I . Furthermore , the spheroid obtained by 
such a homotopy is unique up to homotopy and determines an element of 
11"r (X, s ( l ) ) ,  which is uniquely determined by the homotopy class of s and 
the element of 11"r (X, s (O) ) represented by f .  

Certainly, a solution o f  33. Ox gives an  answer t o  33.Nx and 33.Mx. The 
map 11"r (X, s (O ) ) ---t 11"r (X, s ( l ) )  defined by 33. 0x is denoted by T8 • By 33. 2, 
this Ts generalizes T8 defined in the beginning of the section for the case 
r = l .  

33.Px .  Prove that the properties of T8 formulated in Problems 33.A-33.F 
hold true in all dimensions . 

33. Qx . Riddle. What are the counterparts of 33.Kx and 33.Lx for higher 
homotopy groups? 
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Proofs and Comments 

30. A (a) , (b) , (e) ; yes ; (c) , (d) , (f) : no . See 30.B. 
30.B See 301 2 .  

223 

30. C The map ht is continuous as the restriction of the homotopy H 
to the fiber X x t C X x I . 

30.D Certainly, no , it does not . 
30.E See 30.E. 1 ,  30.E. 2, and 30.E. 3. 
30.E. 1 The map H is continuous as the composition of the projection 

p :  X x I --+  X and the map J, and , furthermore , H(x, 0) = f (x) = H(x, 1 ) .  
Consequently, H is a homotopy. 

30.E. 2 The map H' is continuous as the composition of the homeo­
morphism X x I --+  X x I :  (x ,  t ) � (x ,  1 - t) and the homotopy H, and , 
furthermore , H' (x ,  0) = H(x,  1 )  = g (x) and H' (x ,  1 )  = H(x,  0) = f (x) . 
Therefore , H' is a homotopy. 

30.E. 3 Indeed, H" (x, 0) = f (x) and H" (x , 1 )  = H' (x ,  1 )  = f" (x) . H" 
is continuous since the restriction of H" to each of the sets X x [0, 1 /2] and 
X x [ 1 /2 ,  1] is continuous and these sets constitute a fundamental cover of 
X X I .  

Below we do not prove that homotopies are continuous because this 
always follows from explicit formulas . 

30.F Each of them is homotopic to the constant map mapping the entire 
space to the origin, for example , if H(x,  t) = ( 1 -t )f (x) , then H : X  x i --+ ffi.n 
is a homotopy between f and the constant map x � 0 .  (There is a more 
convenient homotopy between arbitrary maps to ffi.n , see 30. G. ) 

30. G Indeed, H(x, 0) = f (x) and H(x,  1 )  = g(x) . The map H is 
obviously continuous . For example, this follows from the inequality 

I H (x, t ) - H(x' , t' ) I � l f (x) - f(x') l + l g (x) - g(x') l + ( l f (x) l + l g (x) l ) I t - t' l · 

30.H Let K be a convex subset of ffi.n , let J, g : X --+ K be two 
continuous maps, and let H be the rectilinear homotopy between f and 
g .  Then H(x, t) E K for all (x , t) E X x I, and we obtain a homotopy 
H : X X I --+  K. 

30.1 The map H = g oFo  (h x id1 ) : A x I --+  B i s  continuous . H(a .  0 )  = 
g(F(h(a) , O ) )  = g (f (h(a) ) ) ,  and H(a, 1 )  = g (F (h(a) , 1 ) )  = g ( f' ( h ( a ) ) ) . 
Consequently, H is a homotopy. 
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30.J Send f :  X �  Y to g o f o h :  A �  B.  Assertion 30. ! shows that 
this correspondence preserves the homotopy relation , and , hence , it can be 
transferred to homotopy classes of maps . Thus , a map 1r (X , Y) � 1r(A,  B) 
is defined. 

30.K Any map f : X � Y x Z is uniquely determined by its com­
ponents pr x of and pry of .  ( ==> l If H is a homotopy between f and g ,  
then pry oH is  a homotopy between pry of and pry og, and prz oH is  a 
homotopy between prz of and prz og. 
(<=l If Hy is a homotopy between pry of and pry og and Hz is a homotopy 
between prz of and prz og, then a homotopy between f and g is determined 
by the formula H(x ,  t) = (Hy (x ,  t ) , Hz (x, t ) ) .  

30.L The proof does not differ from that of assertion 30.E. 
30.M For the sets A such that f i A  = 9 I A  ( i . e . , for the sets contained 

in the coincidence set of f and g) . 
30.N A path is a homotopy of a map of a point , cf. 30. 8. 
30. 0 For each point x E X . the map Ux : I �  X :  t f---7 h (x , t ) is a 

path. 
30. P If H is a homotopy. then for each t E I the formula ht = H(x, t) 

determines a continuous map X � Y. Thus , we obtain a map 'H : I � 
C(X, Y) of the segment to the set of all continuous maps X � Y.  After 
that , see 30. 1 5  and 30. 1 6. 

30. 1 5  This follows from 25. Vx. 
30. 1 6  This follows from 25. Wx. 
30. Q This follows from the solution to Problem 30. 3. 
31 .A  1 )  We start with a visual description of the required homotopy. 

Let Ut : I � X be a homotopy between u and u' , and let Vt : I � X be 
a homotopy between v and v' . Then the paths UtVt with t E [0 , 1 ]  form a 
homotopy between uv and u' v' . 

2 )  Now we present a more formal argument . Since the product uv is 
defined, we have u ( 1 )  = v (O) . Since u ""'  u' , we have u ( 1 )  = u' ( 1 ) ,  and we 
similarly have v (O) = v' (O) . Therefore , the product u'v' is defined. The 
homotopy between uv and u' v' is the map 

H :  I x I �  X :  (s t) f---7 {H' (2s .  t )  if s E [0 ,  1 /2] , 
' 

H" (2s - 1 ,  t )  if s E [ 1/2 ,  1 ] . 

(H is continuous because the sets [0, 1 /2] x I  and [ 1 /2 ,  1] x I  constitute a 
fundamental cover of the square I x I, and the restriction of H to each of 
these sets is continuous . )  

31 .B  This i s  a straight-forward reformulation o f  31 .A .  
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31 . C  No; see 31 .D, cf. 31 . 1 . 
31 .D No ,  this i s  almost always wrong (see 31 . 1  and 31 . 2) .  Here i s  the 

simplest example . Let u(s )  = 0 and w(s)  = 1 for all s E [0, 1 ]  and v (s )  = s .  
Then we have (uv )w(s )  = 0 only for s E [0 ,  1 /4] , and u(vw) (s ) = 0 for 
s E [0 , 1 /2] . 

31 .E. 1  Reformulation: for any three paths u ,  v ,  and w such that the 
products uv and vw are defined, the paths ( uv )w and u( vw) are homotopic .  

31 .E. 2  Let 
{ s/2 if s E [o , 1 /2] . 

:p (s ) = s - 1 /-! if s E [ 1 / 2 .  3(-!J . 2s - 1  if s E l3/-! . 1 J . 
Verify that :p is the required function. i . e  . .  ( (ur )u: ) (.,; ( s ) ) = u (ru· ) ( s ) .  

31 .E. 3  Consider the rectilinear homotopy, which is in addition fixed 
on {0 ,  1 } .  

31 .E. 4  This follows from 30. ! and 31 .E. 2, and 31 .E. 3. 
31 .F  See 31 . G. 
31 . G Generally speaking, no ; see 31 . 4 .  
31 .H Let 

<p(s )  = { 0 if s E [o , 1/2] , 
2s - 1  if s E  [1/2 , 1 ] . 

Verify that eau = u o <p. Since <p ,...., id1 , we have u o <p ,...., u ,  whence 

[ea] [u] = [eau] = [u o <p] = [u] . 

31 .1  See 31 . J. 
31 .J  Certainly not , unless u = ea . 
31 .K. 1  Consider the map 

<p(s )  = { 2s if s E [0 ,  1 /2] , 
2 - 2s if s E  [1/2 , 1 ] . 

31 .K. 2  Use the rectilinear homotopy. 
31 .L  Groups are the sets of classes of paths u with u(O) = u ( 1 )  = xo ,  

where xo i s  a certain marked point of X,  as well as their subgroups . 
32.A This immediately follows from 31 .B, 31 .E, 31 .H, and 31 .K. 
32.B See Section 32'8x. 
32. C If u : I ---t X is a loop , then there exists a quotient map u : 

I/ {0 ,  1 }  ---t X.  It remains to observe that I/{0 ,  1 }  � S1 . 



226 VI. Fundamental Group 

32.D (=>)  I f  H :  S1 x I ---> X i s  a homotopy of  circular loops , then the 
formula H' (s ,  t) = H(e27ris ,  t) determines a homotopy H' between ordinary 
loops. 
(¢:::= ) Homotopies of circular loops are quotient maps of homotopies of or­
dinary loops by the partition of the square induced by the relation (0 ,  t) "' 
( 1 ,  t ) . 

32.E This is true because there is a rectilinear homotopy between any 
loop in JRn at the origin and a constant loop . 

32.F Here is a possible generalization: for each convex (and even star­
shaped) set V c JRn and any point xo E V, the fundamental group 1r1 (V, xo ) 
is trivial . 

32. G. 1 Let p E sn -...... u(I) . Consider the stereographic projection 
T : sn ....... p ---> ]Rn . The loop v = T 0 u is null-homotopic: let h be the 
corresponding homotopy. Then H = T- l o h is a homotopy joining the loop 
u and a constant loop on the sphere . 

32. G .2  Such loops certainly exist . Indeed, i f  a loop u fills the entire 
sphere , then so does the loop uu- 1 , which , however, is null-homotopic . 

32. G.4 Let x be an arbitrary point of the sphere . We cover the sphere 
by two open sets u = sn ....... X and v = sn ....... { -x }. By Lemma 32. G. 3, there 
is a sequence of points a1 , . . .  , aN E I, where 0 = a1 < a2 < · · · < aN- 1 < 
aN = 1 ,  such that for each i the image u( [ai , ai+l ] )  lies entirely in U or in V .  
Since each of  these sets i s  homeomorphic to JRn , where any two paths with 
the same starting and ending points are homotopic, it follows that each of 
the restrictions u l [ai ,ai+ l ] is homotopic to a path the image of which is , e .g . , 
an "arc of a great circle" of sn . Thus , the path u is homotopic to a path the 
image of which does not fill the sphere , and , moreover , is nowhere dense . 

32. G. 5 This immediately follows from Lemma 32. G. 4 .  
32. G. 6 1 )  This is immediate. 2 )  The assumption n � 2 was used only 

in Lemma 32. G. 4 .  
32.H We send a loop u : I ---> X x Y at the point (xo , yo ) to  the 

pair of loops in X and Y that are the components of u: u1 = prx ou 
and u2 = pry ou. By assertion 30. I, the loops u and v are homotopic iff 
u1 "' v1 and u2 "' v2 . Consequently, sending the class of the loop u to 
the pair ( [u 1 ] ,  [u2] ) ,  we obtain a bijection between the fundamental group 
1r1 (X x Y, ( xo , Yo ) )  of the product of the spaces and the product 1r1 (X, xo ) x 
1r1 (Y, y0 ) of the fundamental groups of the factors . It remains to verify that 
the bijection constructed is a homomorphism, which is also obvious because 
prx o (uv ) = (prx ou) (prx ov) . 

32.1  (a) ====? (b) : The space X i s  simply connected =? each loop in  X 
is null-homotopic =? each circular loop in X is relatively null-homotopic =? 
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each circular loop in X is freely null-homotopic . 
(b) ==? (c) : By assumption, for an arbitrary map f : 81 ---t X there is 
a homotopy h : 81 x I ---t X such that h (p, 0) = f (p) and h (p, 1) = xo .  
Consequently, there is a continuous map h' : 81 x I I ( 31 x 1 )  ---t X such 
that h = h' 0 pr. It remains to observe that 81 X I I ( sl X 1) � D2 . 
(c) ==? (d) : Let g(t ,  0) = u1 (t) , g ( t ,  1 )  = u2 (t) , g (O, t) = xo ,  and g ( 1 ,  t) = x 1 
for t E  I .  Thus , we mapped the boundary of the square I x I  to X .  Since 
the square is homeomorphic to a disk and its boundary is homeomorphic 
to a circle , it follows that the map extends from the boundary to the entire 
square . The extension obtained is a homotopy between u1 and u2 . 
(d) ==? (a) : This is obvious . 

32.J. 1 It is reasonable to consider the following implicat ions : ( a )  ==? 
(b) ==? (c ) ==? (d) ==? (a) . 

32.J. 2 It certainly does . Furthermore , since s is null-homotopic , it 
follows that the circular loop f is also null-homotopic, and the homotopy is 
even fixed at the point 1 E 81 . Thus , (a) ==? (b) . 

32.J. 3 The assertion suggests the main idea of the proof of the impli­
cation (b) ==? (c) . A null-homotopy of a certain circular loop f is a map 
H : 81 x I ---t X constant on the upper base of the cylinder. Consequently, 
there is a quotient map 81 x I I s1 x 1 ---t X .  It remains to observe that the 
quotient space of the cylinder by the upper base is homeomorphic to a disk. 

32.J.4  By the definition of a homotopy H : I x I  ---t X between two 
paths , the restriction of H to the contour of the square is given. Conse­
quently, the problem of constructing a homotopy between two paths is the 
problem of extending a map from the contour of the square to the entire 
square . 

32.J. 5 All that remains to observe for the proof of the implication 
(c) ==? (d) , is the following fact : if F : D2 ---t X is an extension of the circu­
lar loop f ,  then the formula H ( t , T) = F (cos 1rt, ( 2T - 1 )  sin 1rt) determines 
a homotopy between s+ and s_ . 

32.J In order to prove the theorem, it remains to prove the implication 
(d) ==? (a) . We state this assertion without using the notion of a circular 
loop . Let s : I ---t X be a loop . Let s+ (t) = s (2t) and s_ (t) = s ( 1 - 2t) . 
Thus , we must prove that if the paths s+ and s_ are homotopic , then the 
loop s is null-homotopic. Try to prove this on your own. 

32.Kx The associativity of 0 follows from that of the multiplication 
in G; the unity in the set n (G,  1) of all loops is the constant loop at the 
unity of the group ; the element inverse to the loop u is the path v, where 
v (s) = (u(s )r 1 . 

32.Lx . 1  Verify that (ue l )  0 ( e 1 v )  = uv . 
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32.Lx We prove that if u rv UI , then u 0 v  rv UI 0 V . For this purpose , it 
suffices to check that if h is a homotopy between u and u1 , then the formula 
H(s ,  t) = h(s ,  t )v (s )  determines a homotopy between u 0 v and u1 0 v .  
Further , since uel rv u and elv rv v ,  we have uv = (ue1 ) 0 (e lv )  rv u0v ,  and , 
therefore , the paths uv and u0v lie in one homotopy class . Consequently, the 
operation 0 induces the standard group operation on the set of homotopy 
classes of paths . 

32.Mx It is sufficient to prove that uv "' vu, which follows from the 
following chain: 

uv = (uel ) 0 (e lv )  rv u 0 v rv (e lu) 0 (vel ) = vu. 

32.Nx This group is also trivial . The proof is similar to that of asser­
tion 32.E. 

33.A Indeed, if a =  [u] and /3 = [v] , then 

T8 (af3) = 0"- 1a/30" = 0"- 1a0"0"-1/30" = T8 (a)T8 (/3) . 

33.B Indeed , 

Tut· (a )  = [uvr 1 a [uv] = [t·r 1 [ur 1a [u] [v] = Tv (Tu (a) ) . 

33. C By the definition of translation along a path, the homomorphism 
T8 depends only on the homotopy class of s .  

33.D This is so because Tea ( [u] ) = [eauea] = [u] . 
33. E Since s- 1 s "'  exp 33.B-33.D imply that 

T8- l 0 T8 = T8- 1 8 = Tex 1 = id7r1 (X,x1 )  • 

Similarly, we have T8 o Ts- 1 = id7r1 (X,xo ) • whence T8- l = T8- 1 . 
33.F By 33.E, the homomorphism T8 has an inverse and, consequently, 

is an isomorphism. 
33. G If x0 and x1 lie in one path-connected component , then they are 

joined by a path s .  By 33.F, T8 : 1i'I (X, xo) ___.. 1i'I (X, x1 ) is an isomorphism. 
33.H This immediately follows from Theorem 33. G. 
33.1 This directly follows from the definition of Ts . 
3 3. J ( =>) Assume that the translation isomorphism does not depend 

on the path. In particular , the isomorphism of translation along any loop 
at x0 is trivial . Consider an arbitrary element /3 E 11'1 (X, xo ) and a loop 
s in the homotopy class /3. By assumption, /3- 1a/3 = T8 (a) = a for each 
a E 71'1 (X, xo ) .  Therefore , a/3 = f3a for any elements a,  /3 E 11'1 (X, xo ) ,  which 
precisely means that the group 71'1 (X, xo ) is Abelian .  
(<=) Consider two paths s1 and sz joining xo and x1 . Since T81 82 l = 
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T8-;_ 1 o T81 , it follows that T81 = T82 iff T8 1 82 1 = id7r1 (X,xo ) · Let {3 E 1r1 (X, xo) 
be the class of the loop s 1 s;- 1 . If the group 1r1 (X, xo ) is Abelian , then 
T8 1 82 1 (a) = {3- 1a{3 = a ,  whence T8 1 82

1 = id, and so T81 = T82 • 

33.Kx Let u be a loop at s (O) . The formula H(T, t) = u(T) s (o) - 1 s ( l )  
determines a free homotopy between u and the loop Ls (O) - l s ( 1 ) (u) such 
that H(O , t) = H( l ,  t) = s (t ) . Therefore , by 33. 2, the loops Ls (o) - l s ( 1 ) (u) 
and s- 1us are homotopic , whence T8 = (Ls (o) - l s ( 1 )L · The equality for 
Rs(o) - l s ( 1 ) is proved in a similar way. 

33.Lx By 33.Kx, we have Ts = (Le ) * = id7r1 (X,xo ) for each loop s at xo . 
Therefore , if {3 is the class of the loop s ,  then T8 (a )  = e- 1a3 = a ,  whence 
a{3 = {3a .  
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34.  Covering Spaces 

134' 1 J Definition of Covering 

Chapter VII 

Let X and B be topological spaces , p : X -+ B a continuous map . 
Assume that p is surjective and each point of B possesses a neighborhood U 
such that the preimage p- 1 (U) of U is a disjoint union of open sets Va and 
p homeomorphically maps each Va onto U.  Then p : X -+ B is a covering 
(of B) , the space B is the base of this covering , X is the covering space for 
B and the total space of the covering. Neighborhoods like U are said to be 
trivially covered . The map p is a covering map or covering projection. 

34 . A .  Let B be a topological space , F a discrete space . Prove that the 
projection pr B : B x F -+ B is a covering . 

34 . 1 .  If U' C U C B and the neighborhood U is trivially covered , then the 
neighborhood U' is also trivially covered . 

The following statement shows that in a certain sense any covering lo­
cally is organized as the covering of 34 .A .  

34 .B.  A continuous surjective map p :  X -+ B i s  a covering iff  for each point 
a of B the preimage p- 1 (a) is discrete and there exist a neighborhood U of a 

-
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and a homeomorphism h :  p- 1 (U) ---t U xp- 1 (a) such that P lp- l (U) = pru oh. 
Here , as usual , pru : U x p- 1 (a) ---t U.  

However, the coverings of  34 .A  are not interesting . They are trivial .  
Here is the first really interesting example . 

34 . C. Prove that the map lR ---t 51 : x � e21rix is a covering . 

To distinguish the most interesting examples , a covering with a con­
nected total space is called a covering in the narrow sense . Of course , the 
covering of 34 . C is a covering in the narrow sense . 

f34'2 J More Examples 

34 .D.  The map JR2 ---t 51 x lR :  (x , y )  � (e21rix , y) is a covering . 

34 .E. Prove that if p : X ---t B and p' : X' ---t B' are coverings , then so is 
p X p' : X X X' ---t B X B' . 

If p : X ---t B and p' : X' ---t B' are two coverings, then p x p' : X x X' ---t 
B x B' is the product of the coverings p and p' . The first example of the 
product of coverings is presented in 34 .D. 

34 .F. The map C ---t C "  0 : z � ez is a covering . 

34 . 2. Riddle. In what sense are the coverings of 34 . D  and 34 . F  the same? Define 
an appropriate equivalence relation for coverings . 

34 . G. The map JR2 ---t 51 x 51 : (x , y) � (e21rix , e21riy ) is a covering. 

34 .H. For any positive integer n,  the map 51 ---t 51 : z � zn is a covering . 

34 . 3. Prove that for each positive integer n the map C '  0 ->  C '  0 :  z f-+ zn is a 
covering . 

34 .1. For any positive integers p and q ,  the map 51 x 51 ---t 51 x 51 : 
(z ,  w ) � (zP , wq ) is a covering. 

34 .J. The natural projection sn ---t JRpn is a covering . 
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34 .K. Is (0 ,  3 ) --+ 81 : X � e211"iX a covering? (Cf. 34 . 14 . )  

233 

34 .L .  Is the projection JR2 --+ lR :  (x ,  y) � x a covering? Indeed, why isn 't 
an open interval (a ,  b) c lR a trivially covered neighborhood: its preimage 
(a ,  b) x lR is the union of open intervals (a ,  b) x {y} , which are homeomor­
phically projected onto (a ,  b) by the projection (x ,  y) � x? 

34 . 4 .  Find coverings of the Mobius strip by a cylinder. 

34 . 5. Find nontrivial coverings of the Mobius strip by itself. 

34 . 6. Find a covering of the Klein bottle by a torus . Cf. Problem 22. 14 .  

34 . 7.  Find coverings of the Klein bottle by the plane ffi? and the cylinder 81 X JR, 
and a nontrivial covering of the Klein bottle by itself. 

34 . 8. Describe explicitly the partition of JR2 into preimages of points under this 
covering. 

34 . 9 *. Find a covering of a sphere with any number of cross-caps by a sphere 
with handles . 

f34'3 J Local Homeomorphisms versus Coverings 

34 . 1 0. Any covering is an open map. I 

A map f : X --. Y is a local homeomorphism if each point of X has a neighbor­
hood U such that the image f (U) is open in Y and the submap ab(f) : U --.  f (U) 
is a homeomorphism. 

34 . 1 1 .  Any covering is a local homeomorphism. 

34 . 1 2. Find a local homeomorphism which is not a covering. 

34 . 1 3. Prove that the restriction of a local homeomorphism to an open set is a 
local homeomorphism. 

34 . 14 .  For which subsets of lR is the restriction of the map of Problem 34 . C  a 
covering? 

34 . 1 5. Find a nontrivial covering X -+  B with X homeomorphic to B and prove 
that it satisfies the definition of a covering. 

f34'4 J Number of Sheets 

Let p :  X --+  B be a covering . The cardinality (i .e . ,  the number of points) 
of the preimage p- 1 (a ) of a point a E B is the multiplicity of the covering at 
a or the number of sheets of the covering over a .  

34 .M. If the base of a covering is  connected, then the multiplicity of the 
covering at a point does not depend on the point. 

1We remind the reader that a map is open if the image of any open set is open . 
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In the case of a covering with connected base , the multiplicity is called 
the number of sheets of the covering. If the number of sheets is n, then the 
covering is n-sheeted, and we speak about an n-fold covering. Of course , 
if the covering is nontrivial , it is impossible to distinguish the sheets of it , 
but this does not prevent us from speaking about the number of sheets .  
On the other hand, we adopt the following agreement . By definition, the 
preimage p- 1 (U) of any trivially covered neighborhood U C B splits into 
open subsets :  p- 1 (U) = UVa ,  such that the restriction P lv"' : Va ---? U is a 
homeomorphism. Each of the subsets Va is a sheet over U.  

34 . 1 6. What are the numbers o f  sheets for the coverings from Section 34' 2? 

In Problems 34 . 1 7-34 . 1 9, we did not assume that you would rigorously justify 
your answers . This is done below, see Problems 40. 3-4 0. 6. 

34 . 1 7. What numbers can you realize as the number of sheets of a covering of 
the Mobius strip by the cylinder S1 X I? 

34 . 1 8. What numbers can you realize as the number of sheets of a covering of 
the Mobius strip by itself? 

34 . 1 9. \\'hat numbers can you realize as the number of sheets of a covering of 
the Klein bottle by a torus? 

34 . 20. What numbers can you realize as the number of sheets of a covering of 
the Klein bottle by itself? 

34 . 21 .  Construct a d-fold covering of a sphere with p handles by a sphere with 
1 + d(p - 1) handles . 

34 . 22. Let p : X --> Y and q : Y --> Z be coverings. Prove that if q has finitely 
many sheets ,  then q o p : x --> Y is a covering. 

34 . 23 *. Is the hypothesis of finiteness of the number of sheets in Problem 34 . 22 
necessary? 

34 . 24 .  Let p :  X -->  B be a covering with compact base B. 1) Prove that if X is 
compact , then the covering is finite-sheeted. 2 ) If B is Hausdorff and the covering 
is finite-sheeted , then X is compact . 

34 . 25. Let X be a topological space presentable as the union of two open con­
nected sets U and V. Prove that if the intersection U n V is disconnected , then 
X has a connected infinite-sheeted covering . 

f34'5 J Universal Coverings 

A covering p : X ---? B is universal if X is simply connected. The appear­
ance of the word universal in this context is explained below in Section 40. 

34 .N. Which coverings of the problems stated above in this section are 
universal? 
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35 . Theorems on Pat h  Lifting 

f35' 1 J Lifting 

Let p :  X ---t B and f : A ---t B be arbitrary maps. A map g : A ---t X 
such that p o g = f is said to cover f or be a lift of f .  Various topolog­
ical problems can be phrased in terms of finding a continuous lift of some 
continuous map . Problems of this sort are called lifting problems . They 
may involve additional requirements . For example, the required lift must 
coincide with a lift already given on some subspace . 

35.A .  The identity map 51 ---t 51 does not admit a continuous lifting with 
respect to the covering IR ---t 51 : x f--.+ e2rrix . (In other words , there is no 
continuous map g :  51 ---t IR such that e2rrig (x) = x for x E 51 . )  

f35'2 J Path Lifting 

35.B Path Lifting Theorem. Let p : X ---t B be a covering, and let 
xo E X and bo E B be points such that p (xo )  = bo . Then for any path 
s : I ---t B starting at bo there is a unique path s : I ---t X that starts at xo 
and is a lift of s .  (In other words, there exists a unique path s : I ---t X with 
s(O) = xo and p o s = s .) 

We can also prove a more general assertion than Theorem 35. B: see Prob­
lems 35. 1-35. 3. 

35. 1 .  Let p : X ---> B be a trivial covering. Then any continuous map f of any 
space A to B has a continuous lift J : A ---> X.  
35. 2. Let p : X ---> B b e  a trivial covering, and let x 0  E X and b o  E B b e  two 
points such that p(xo ) = b0 •  Then any continuous map f : A ---> B sending a point 
ao to bo has a unique continuous lift J :  A ---> X with f(ao ) = xo . 
35. 3. Let p : X ---> B be a covering, and let A be a connected and locally connected 
space . If J, g : A ---> X are two continuous maps coinciding at some point and 
p o f  = p o g, then f = g . 

35.4 .  If we replace xo , bo , and ao in Problem 35. 2 by pairs of points ,  then the 
lifting problem may happen to have no solution J with f(ao ) = xo . Formulate a 
condition necessary and sufficient for existence of such a solution . 

35. 5. What goes wrong with the Path Lifting Theorem 35. B for the local home­
omorphism of Problem 34 . K?  

35. 6. Consider the covering IC ---> IC -..... 0 : z ,_. ez .  Find lifts of the paths u(t) = 2 - t 
and v (t) = ( 1  + t ) e2"it and their products uv and vu. 

f35'3 J Homotopy Lifting 

35. C Path Homotopy Lifting Theorem. Let p : X ---t B be a covering, 
and let xo E X and bo E B be points such that p (xo )  = bo . Let u, v : I ---t B 
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be paths starting at bo , and let u, v : I ---t X be the lifting paths for u and v 
starting at xo . If the paths u and v are homotopic, then the covering paths 
u and v are homotopic. 
35.D Important Corollary. Under the assumptions of Theorem 35. C, 
the covering paths u and v have the same final point {i. e . ,  u ( l )  = v ( l ) ) .  

Notice that the paths in  35. C and 35.D are assumed to  share the initial 
point xo . In the statement of 35.D, we emphasize that they also share the 
final point .  
35.E Corollary of 35.D. Let p : X ---t B b e  a covering, s : I ---t B a loop . 
If s has a lift s : I ---t X with s (O) -=/= s( l ) (i. e . ,  there exists a covering path 
which is not a loop), then s is not null-homotopic. 

35.F. If a path-connected space B has a nontrivial path-connected covering 
space , then the fundamental group of B is nontrivial . 

35. 7. Prove that any covering p : X --> B with simply connected B and path­
connected X is a homeomorphism. 

35. 8.  What corollaries can you deduce from 35. F and the examples of coverings 
presented above in Section 34? 

35. 9. Riddle.  Is it really important in the hypothesis of Theorem 35. C that u 
and v are paths? To what class of maps can you generalize this theorem? 
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3 6 .  Calculat ion of Fundamental Groups 

by Using Universal Coverings 

f36' 1 J Fundamental Group of Circle 
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For an integer n, denote by sn the loop in 81 defined by the formula 
sn ( t) = e21l"int . The initial point of this loop is 1 .  Denote the homotopy class 
of s 1 by a. Thus, a E 1r1 (81 . 1 ) .  

36.A .  The loop Sn represents an E 11"1 (81 , 1 ) .  

36.B. Find the paths in IR starting at 0 E IR and covering the loops sn with 
respect to the universal covering IR ---> 81 . 

36. C. The homomorphism Z ---> 1r1 (81 , 1 ) : n f--+ an is an isomorphism. 

36. C. 1 .  The formula n f--> an determines a homomorphism Z --+  1r1 (S1 , 1 ) .  

36. C. 2. Prove that a loop s : I --+ S1 starting at 1 i s  homotopic t o  Sn if the 
path s :  I --+  lR covering s and starting at 0 E lR ends at n E lR ( i . e . ,  s ( 1 )  = n) . 

36. C. 3. Prove that if the loop Sn is null-homotopic ,  then n = 0 .  

36. 1 .  Find the image o f  the homotopy class o f  the loop t �--+ e21rit2 under the 
isomorphism of Theorem 36. C. 

Denote by deg the isomorphism inverse to the isomorphism of Theorem 36. C. 

36. 2. For any loop 8 : I --> 81 starting at 1 E 81 , the integer deg ( [8 ] ) is the final 
point of the path starting at 0 E lR and covering 8 .  

36.D Corollary of Theorem 36. C. The fundamental group of (81 ) n is 
a free A belian group of rank n (i. e . ,  isomorphic to zn) .  
36.E. On the torus 81 x 81 , find two loops whose homotopy classes generate 
the fundamental group of the torus . 

36.F Corollary of Theorem 36. C. The fundamental group of the punc­
tured plane IR2 -..... 0 is an infinite cyclic group .  

36. 3. Solve Problems 36. D-36. F without reference to  Theorems 36. C and 32. H, 
but using explicit constructions of the corresponding universal coverings . 

f36'2 J Fundamental Group of Projective Space 

The fundamental group of the projective line is an infinite cyclic group . 
It is calculated in the previous subsection since the projective line is a circle . 
The zero-dimensional projective space is a point , and hence its fundamental 
group is trivial . Now we calculate the fundamental groups of projective 
spaces of all other dimensions . 
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Let n 2: 2 ,  and let l : I -t ]�pn be a loop covered by a path f : I -t sn 
which connects two antipodal points of sn ,  say, the poles P+ = ( 1 ,  0 ,  . . .  , 0 )  
and P_ = ( -1 ,  0 ,  . . .  , 0) . Denote by >. the homotopy class of l .  It  is an 
element of 1r1 (JR.Pn , ( 1  : 0 : · · · : 0) ) . 
36. G. For any n 2: 2 .  the group 1r1 (IR.Pn , ( 1  : 0 : · · · : 0) ) is a cyclic group 
of order 2 .  It has two elements: >. and 1 .  

36. G. 1 Lemma. Any loop in JRpn at ( 1 : 0 :  · · · :  0 )  is homotopic either to l 
or constant. This depends on whether the covering path of the loop connects the 
poles P+ and P_ , or is a loop . 

36.4 .  Where did we use the assumption n ;::: 2 in the proofs of Theorem 36. G and 
Lemma 36. G. l? 

f36'3 J Fundamental Group of Bouquet of Circles 

Consider a family of topological spaces {Xa} · In each of the spaces , 
we mark a point Xa . Take the disjoint sum Ua Xa and identify all marked 
points .  The resulting quot ient space Va Xa is the bouquet of {Xa} · Hence , 
a bouquet of q circles is a space which is the union of q copies of a circle . The 
copies meet at a single common point , and this is the only common point 
for any two of them. The common point is the center of the bouquet . 

Denote the bouquet of q circles by Bq and its center by c. Let u1 , . . .  , 
Uq be loops in Bq starting at c and parameterizing the q copies of the circle 
that constitute Bq . Denote by CXi the homotopy class of Ui · 

36.H. 1r1 (Bq , c) is a free group freely generated by cx1 , . . .  , cxq . 

f36' 4 J Algebraic Digression: Free Groups 

Recall that a group G is a free group freely genera ted by its elements a1 , 
. . .  , aq if: 

• each element x E G is a product of powers (with positive or negative 
integer exponents) of a1 , . . . , aq , i . e . , 

and 
• this expression is unique up to the following trivial ambiguity : we 

can insert or delete factors aiai 1 and a; 1 ai or replace ar by ai af 
with r + s = m.  

36.1. A free group i s  determined up to isomorphism by the number of its 
free generators .  
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The number of free generators is the rank of the free group . For a 
standard representative of the isomorphism class of free groups of rank q ,  
we can take the group o f  words in  an alphabet o f  q letters a 1 , . . .  , aq and their 
inverses a1 1 , . . .  , a;;-- 1 . Two words represent the same element of the group 
iff they are obtained from each other by a sequence of insertions or deletions 
of fragments aiai 1 and a; 1 ai . This group is denoted by lF(a 1 . . . . .  aq ) ,  or 
just lFq if the notation for the generators is not to be emphasized . 

36.J. Each element of JF(a1 , . . .  , aq ) has a unique shortest representative .  
This is a word without fragments that could have been deleted. 

The number l (x ) of letters in the shortest representative of an element 
x E JF(a1 , . . .  , aq ) is the length of x .  Certainly, this number is not well 
defined, unless the generators are fixed. 

36. 5. Show that an automorphism of lFq can map x E lFq to an element with 
different length .  For what value of q does such an example not exist? Is it possible 
to change the length in this way arbitrarily? 

36.K. A group G is a free group freely generated by its elements a1 , . . .  , 
aq iff every map of the set { a1 , . . .  , aq } to any group X extends to a unique 
homomorphism G � X .  

Theorem 36.K is sometimes taken as a definition of a free group . (Defi­
nitions of this sort emphasize relations among different groups, rather than 
the internal structure of a single group . Of course, relations among groups 
can tell everything about the "internal affairs" of each group . )  

Now we can reformulate Theorem 36.H as follows : 

36.L .  The homomorphism 

JF(a1 , . . .  , aq ) � 1r1 (Bq , c) 

taking ai to ai for i =  1 ,  . . .  , q is an isomorphism. 
First , for the sake of simplicity we restrict ourselves to the case where q = 

2 .  This allows us to avoid superfluous complications in notation and pictures. 
This is the simplest case that really represents the general situation. The 
case q = 1 is too special . 

To take advantages of this, we change the notation and put B = B2 , 
u = u 1 , v = u2 , a = a 1 , and (3 = a2 . 

Now Theorem 36.L looks as follows : 
The homomorphism JF(a ,  b) � 1r (B ,  c) taking a to a and b to !3 is an 

isomorphism. 
This theorem can be proved like Theorems 36. C and 36. G. provided that 

we know the universal covering of B .  
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f36'5 J Universal Covering for Bouquet of Circles 

Denote by U and V the points antipodal to c on the circles of B. Cut 
B at these points , removing U and V and replacing each of them with two 
new points .  Whatever this operation is , its result is a cross K, which is the 
union of four closed segments with a common endpoint c. There appears a 
natural map P : K ---+ B that sends the center c of the cross to the center 
c of B and homeomorphically maps the rays of the cross onto half-circles of 
B. Since the circles of B are parameterized by loops u and v, the halves 
of each of the circles are ordered: the corresponding loop passes first one 
of the halves and then the other one . Denote by u+ the point of p- 1 (U) 
belonging to the ray mapped by P onto the second half of  the circle , and 
by u- the other point of p- 1 (U) . We similarly denote points of p- 1 (V) by 
v+ and v- . 

u
+
� u

+ 
� 

u
+ x v+ 

u - � u -

u -
v

-
The restriction of P to K -...... { u+ , u- , v+ , v- } homeomorphically maps 

this set onto B -...... {U, V} . Therefore , P provides a covering of B -...... {U, V} .  
However, i t  fails t o  be  a covering at U and V :  none o f  these points has a 
trivially covered neighborhood. Furthermore , the preimage of each of these 
points consists of 2 points (the endpoints of the cross ) , where P is not even 
a local homeomorphism. To eliminate this defect , we attach a copy of K 
at each of the 4 endpoints of K and extend P in a natural way to the 
result . But then 12 new endpoints appear at which the map is not a local 
homeomorphism. Well , we repeat the trick and restore the property of being 
a local homeomorphism at each of the 12 new endpoints. Then we do this 
at each of the 36 new points ,  etc . However , if we repeat this infinitely many 
times , all bad points become nice ones . 2 

36.M. Formalize the construction of a covering for B described above . 

2This sounds like a story about a battle with Hydra, but the happy ending demonstrates 
that modern mathematicians have a magic power of the sort that the heroes of myths and tales 
could not even dream of. Indeed, we meet a Hydra K with 4 heads , chop off all the heads , but , 
according to the old tradition of the genre , 3 new heads appear in place of each of the original 
heads . We chop them off, and the story repeats .  We do not even try to prevent this multiplication 
of heads . vVe just chop them off. But contrary to the real heroes of tales, we act outside Time 
and hence have no time limitations. Thus, after infinitely many repetitions of the exercise with 
an exponentially growing number of heads , we succeed! No heads left !  

This i s  a typical success story about an  infinite construction in  mathematics. Sometimes , 
as in our case, such a construction can be replaced by a finite one, which, however, deals with 
infinite objects. Nevertheless , there are important constructions where an infinite fragment is 
unavoidable. 
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Consider JF(a ,  b) as a discrete topological space . Take K x JF(a ,  b) . The 
latter space can be thought of as a collection of copies of K enumerated by 
elements of JF( a, b) . Topologically, this is a disjoint sum of the copies because 
JF(a ,  b) is equipped with discrete topology. In K x JF(a ,  b) , we identify points 
(U- , 9) with (U+ , 9a) and (V- , 9) with (V+ , 9b) for each 9 E JF(a , b) . Denote 
the resulting quotient space by X. 

36.N. The composition o f  the projection K x JF(a ,  b )  ---t K and P :  K ---t B 
determines a continuous quotient map p : X ---t B. 

36.  0. p :  X ---t B i s  a covering . 

36.P. X is path-connected. For any 9 E JF(a ,  b) . there is a path connecting 
( c,  1) with ( c,  9) and covering the loop obtained from 9 by replacing a \Yith 
u and b with v .  

36. Q .  X is simply connected. 

36.R *. Let a topological space X be the union of two open path-connected 
sets U and V. Prove that if U n V has at least three connected components ,  
then the fundamental group of X is non-Abelian and , moreover, admits an 
epimorphism onto a free group of rank 2 .  

f36'6 J Fundamental Groups of  Finite Topological Spaces 

36. 6. Prove that if a three-element space X is path-connected, then X is simply 
connected ( cf. 32. 7) .  
36. 7. Consider a topological space X = {a ,  b ,  c ,  d} with topology determined by 
the base { {a} , { c} , {a ,  b, c} , { c, d, a} } .  Prove that X is path-connected , but not 
simply connected. 

36. 8.  Calculate 1r1 (X) . 

36. 9. Let X be a finite topological space with nontrivial fundamental group. Let 
no be the least possible cardinality of X. 1) Find n0 . 2) What nontrivial groups 
arise as fundamental groups of no-element spaces? 

36. 1 0. 1) Find a finite topological space with non-Abelian fundamental group. 
2) What is the least possible cardinality of such a space? 

36. 1 1  *. Find a finite topological space with fundamental group isomorphic to Z2 . 
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Proofs and Comments 

34 .A  Let us show that the set B itself i s  trivially covered . Indeed, 
(prB ) -l (B ) = X = uyEF (B X y) , and since the topology on F is discrete, it 
follows that each of the sets B x y is open in the total space of the covering , 
and the restriction of pr B to each of them is a homeomorphism. 

34 .B ( => J  We construct a homeomorphism h : p- 1 (U) ---+ U x 
p-1 (a) for an arbitrary trivially covered neighborhood U C B of a .  By the 
definition of a trivially covered neighborhood, we have p-1 (U) = Ua Ua . Let 
x E p-1 (U) ,  consider an open set Ua containing x, and send x to the pair 
(p(x) , c) , where {c} = p- 1 (a) nUa . Clearly, the correspondence x � (p(x) , c) 
determines a homeomorphism h :  p- 1 (U) ---+ U x p- 1 (a) . 
(<=J By assertion 34 . 1 , U i s  a trivially covered neighborhood. Hence , 
p :  X ---+ B is a covering. 

34 . C For each point z E S1 , the set Uz = S1 -....,_ {-z } is a trivially 
covered neighborhood of z .  Indeed, let z = e21l"ix . Then the preimage of 
Uz is the union ukEz (x + k - 1/2 ,  X +  k + 1/2 ) , and the restriction of the 
covering to each of the above intervals is a homeomorphism. 

34 .D The product (S1 -....,_ { -z } )  x lR is a trivially covered neighborhood 
of a point (z , y) E S1 x IR; cf. 34 .E. 

34 .E Verify that the product o f  trivially covered neighborhoods of 
points b E B and b' E B' is a trivially covered neighborhood of the point 
(b , b' ) E B X B' . 

34 .F Consider the diagram 

where g (z , x) = zex , h(x ,  y) = y + 27rix , and q (x , y) = (e21l"ix , y) . The equal­
ity g (q (x , y) ) = e21l"ix . eY = eY+21l"ix = p(h(x ,  y) ) implies that the diagram is 
commutative . Clearly, g and h are homeomorphisms. Since q is a covering 
by 34 .D, so is p. 

34 . G By 34 .E, this assertion follows from 34 . C. Certainly, it is not 
difficult to prove it directly. The product (S1 -....,_ { -z} )  x (S1 -....,_ { -z' } )  is a 
trivially covered neighborhood of the point (z , z' ) E S1 x S1 . 

34 .H Let z E S1 . The preimage -z under the projection consists of 
n points , which partition the covering space into n arcs, and the restriction 
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of the projection to each of them determines a homeomorphism of this arc 
onto the neighborhood 81 -...... { - z } of z .  

34 .1  By 34 .E, this assertion follows from 34 .H. 
34 .J  The preimage of a point y E JRpn is a pair {x .  -x } c sn of 

antipodal points. The plane passing through the center of the sphere and 
orthogonal to the vector x splits the sphere into two open hemispheres , each 
of which is homeomorphically projected to a neighborhood (homeomorphic 
to JRn) of the point y E JRpn . 

34 .K No, it is not , because the point 1 E 81 has no trivially covered 
neighborhood. 

34 . L The open intervals mentioned in the statement are not open 
subsets of the plane . Furthermore , since the preimage of any interval is a 
connected set , it cannot be split into disjoint open subsets at all . 

34 .M Prove that the definition of a covering implies that the set of the 
points in the base with preimage of prescribed cardinality is open and use 
the fact that the base of the covering is connected . 

34 .N  Those coverings where the covering space is JR1 , JR2 , ]Rn -...... 0 with 
n 2:: 3, and sn with n 2:: 2, i . e . , a simply connected space . 

35.A Assume that the identity map 81 --+ 81 has a lift g; this is a 
continuous injection 81 --+ JR. We show that there are no such injections . 
Let g (S1 ) = [a , b] . The Intermediate Value Theorem implies that each point 
x E (a ,  b) is the image of at least two points of the circle . Consequently, g 

is not an injection . 
35.B Cover the base by trivially covered neighborhoods and partition 

the segment [0 , 1 ] by points 0 = ao < a1 < · · · < an = 1 such that the 
image s ( [ai , ai+ l ] )  lies entirely in one of the trivially covered neighborhoods; 
s ( [ai , ai+1 ] )  c Ui , i = 0 ,  1, . . . , n - 1 . Since the restriction of the covering to 
p- 1 (Uo )  is a trivial covering and f ( [ao , a1 ] )  C Uo , the path s l [ao ,a 1 ] has a lift 
such that s(ao ) = xo ; let X I  = s(ai ) .  Similarly, there is a unique lift Sl [al ,a2 ] 
such that s(al ) = xl ; let X2 = s(a2 ) , and so on. Thus , there exists a lift 
s :  I --+ X.  Its uniqueness is obvious . If you are not satisfied , use induction. 

35. C Let h : I x I --+ B be a homotopy between the paths u and v ,  
so  that h (T, 0) = u (T ) , h(T, 1 )  = v (T) , h (O ,  t )  = bo , and h ( 1 ,  t) = b1 E B.  
We show that h i s  covered by a map h : I x I --+ X with h (O ,  0) = xo . 
The proof of the existence of the covering homotopy is similar to that of the 
Path Lifting Theorem. We subdivide the square I x I into smaller squares 
such that the h-image of each of them is contained in a certain trivially 
covered neighborhood in B. The restriction hk ,l of the homotopy h 

_
to each 

of the "little" squares h,t is covered by the corresponding map hk. l · In 
order to obtain a homotopy covering h, we must only ensure that these 
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maps coincide on the intersections of these squares . By 35. 3, it suffices to 
require that these maps coincide at least at one point .  Let us make the 
first step : let h(Io ,o ) C Ub0 , and let ho,o : Io ,o ---+ X be a covering map 
such that ho,o (a� co ) = xo . Now we put b1 = h(a1 , co ) an_:! x1 = h (a1 , co ) .  
There is a map h1 ,0 : h,o ---+ X covering � lh ,o such that h1 ,o (a1 , co ) = x1 . 
Proceeding in this wa� we obtain a map h defined on the entire square . It 
remains to verify that h is a homotopy of paths . Consider the covering path 
u : t �---+ h(O , t ) . �nee p o u is a constant __ yath ,  the path u must also be 
constant , whence h (O ,  t )  = xo . Si�ilarly, h ( l ,  t ) = X I  is the marked point 
of the covering space. Therefore , h is a homotopy of paths . In conclusion, 
we observe that the uniqueness of this homotopy follows , once more , from 
Lemma 35. 3. 

35.D Formally speaking, this is indeed a corollary, but actually we 
already proved this when proving Theorem 35. C. 

35.E A constant path is covered by a constant path. By 35.D, each 
null-homotopic loop is covered by a loop . 

36.A Consider the paths Sn : I ---+ lR : t �---+ nt , Sn- 1 : I ---+ lR : t �---+ 

(n - l ) t ,  and 81 : I ---+ lR : t �---+ n - 1  + t covering the paths sn , Sn- 1 , and s 1 , 
respectively. Since the product sn_ 1s1 is defined and has the same starting 
and ending points as the path sn , we have Sn "' Bn- 181 , whence Sn "' Sn- 1 8 1 . 
Therefore , [sn] = [sn- l ] a . Reasoning by induction, we obtain the required 
equality [sn] = an . 

36.B See the proof of assertion 36.A :  this is the path defined by the 
formula Sn ( t) = nt . 

36. C By 36. C. 1 ,  the map in question is indeed a well-defined homo­
morphism. By 36. C. 2, it is an epimorphism, and by 36. C. 3 it is a monomor­
phism. Therefore , it is an isomorphism. 

36. C. 1 If n �---+ an and k �---+ ak , then n + k �---+ an+k = an · ak . 
36. C. 2 Since lR is simply connected, the paths 8 and sn are homotopic , 

and, therefore , the paths s and sn are also homotopic , whence [s] = [sn] = 
an . 

36. C. 3 If n -=f. 0 ,  then the path Sn ends at the point n ,  and, hence , it 
is not a loop . Consequently, the loop Sn is not null-homotopic . 

36.D This follows from the above computation of the fundamental 
group of the circle and assertion 32.H: 

n factors n factors 
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36.E Let 81 X 81 = { (z ,  w) : l z l = 1 ,  l w l  = 1} c c X c. The generators 
of 11'1 (81 x 81 , ( 1 ,  1 ) )  are the loops s1 : t �---+ ( e21rit , 1) and s2 : t �---+ ( 1 ,  e21rit ) .  

36.F Since .IR2 -...... 0 � 81 X .IR ,  we have 11'1 (.IR2 -...... 0 ,  ( 1 ,  0 ) )  � 11'1 (81 , 1 )  X 

11'1 (.IR, 1 )  � z .  
36. G. 1 Let u be a loop in .IRPn , and let u be the path in sn covering 

u. For n 2: 2, the sphere sn is simply connected, and if u is a loop , then u 
and, hence , u are null-homotopic . Now if u is not a loop , then, once more 
since sn is simply connected , we have u ,....., T, whence u ,....., l .  

36. G By  36. G. J ,  the fundamental group consists o f  two elements, and , 
therefore ,  it is a cyclic group of order t\vo . 

36.H See 361 5 .  

36.M See the paragraph following the present assertion. 
36.N This obviously follows from the definition of P. 

36. 0 This obviously follows from the definition of p.  
36.P Use induction. 
36. Q Use the fact that the image of any loop , as a compact set , meets 

only a finite number of the segments constituting the covering space X, and 
use induction on the number of such segments . 





Chapter VIII 

Fundamental Group 

and Maps 

3 7 .  Induced Homomorphisms 

and Their First Applicat ions 

j37'1  J Homomorphisms Induced by a Continuous Map 

Let f : X ---t Y be a continuous map of a topological space X to a 
topological space Y .  Let xo E X  and Yo E Y be points such that f (xo ) = YO · 

The latter property of f is expressed by saying that f maps the pair (X, xo ) 
to the pair (Y, yo ) ,  and writing f :  (X, xo ) ---t (Y, yo ) .  

Consider the map f# : O (X, xo ) ---t O(Y, Yo ) : s � f o s .  This map 
assigns to a loop its composition with f .  

37.A .  The map f# sends homotopic loops to homotopic loops. 

Therefore , f# induces a map f* : 1r1 (X, xo ) ---t 1r1 (Y, yo ) .  

37.B. f* : 1r (X, xo ) ---t 1r 1  (Y, Yo ) is a homomorphism for any continuous 
map f : (X, xo ) ---t (Y, Yo ) .  

f* : 1r (X, xo )  ---t 1r1 (Y, Yo ) is the homomorphism induced by f .  

37. C. Let f : (X, xo ) ---t (Y, Yo ) and g : (Y, yo ) ---t (Z, zo )  b e  {continuous) 
maps. Then we have 

(g o f ) *  = g* o f* : 1r1 (X, xo ) ---t 1r1 (Z, zo ) . 

-
247 
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37.D.  Let f, g : (X, xo) ---t (Y, yo ) be two continuous maps homotopic via a 
homotopy fixed at xo . Then f* = g* . 

37.E. Riddle. How can we generalize Theorem 37.D  to the case of freely 
homotopic f and g? 

37.F. Let f : X ---t Y be a continuous map, and let xo and XI be two points 
of X connected by a path s : I ---t X .  Denote f ( xo ) by Yo and f (X I ) by YI · 
Then the diagram 

1l'I (X, xo) � 1l'I (Y, yo ) 

Ts 1 lTfos 
7l'I (X, xi )  � 7l'I (Y, yi )  

is commutative, i . e . ,  Tjos o f* = f* o T8 •  

37. 1 .  Prove that the map C '- 0 ---+ C '- 0 : z >--> z3 is not homotopic to the identity 
map C "  0 ---+ C "  0 :  z >--> z . 

37. 2. Let X be a subset of !Rn . Prove that if a continuous map f : X ---+ Y 
extends to a continuous map !Rn ____, Y ,  then f. : 1r1 (X, xo ) ---+ 1r1 (Y, j(xo ) )  is a 
trivial homomorphism ( i .e . , sends everything to the unit) for each Xo E X . 
37. 3. Prove that if a Hausdorff space X contains an open set homeomorphic to 
81 X 81 " ( 1 ,  1 ) ,  then X has infinite noncyclic fundamental group . 

37. 3 . 1 .  Prove that a space X satisfying the conditions of 37. 3  can 
be continuously mapped to a space with infinite noncyclic fundamen­
tal group in such a way that the map would induce an epimorphism of 
71'1 (X) onto this infinite group . 

37.4 .  Prove that the space GL(n, C) of complex n x n matrices with nonzero 
determinant has infinite fundamental group. 

f37'2 J Fundamental Theorem of Algebra 

Our goal here is to prove the following theorem, which, at first glance , 
has no relation to fundamental group . 

37. G Fundamental Theorem of Algebra. Every polynomial of positive 
degree in one variable with complex coefficients has a complex root. 

In more detail : 
Let p(z) = zn + ai zn- I + · · · + an be a polynomial of degree n > 0 in z 

with complex coefficients .  Then there exists a complex number w such that 
p(w) = 0 .  

Although it i s  formulated i n  an algebraic way and called "The Funda­
mental Theorem of Algebra," it has no simple algebraic proof. Its proofs 
usually involve topological arguments or use complex analysis . This is so 
because the field C of complex numbers as well as the field lR of reals 
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is extremely difficult to describe in purely algebraic terms : all customary 
constructive descriptions involve a sort of completion construction, cf. Sec­
tion 18 .  

37. G. 1  Reduction t o  Problem o n  a Map. Deduce Theorem 37. G from the 
following statement : 

For any complex polynomial p(z) of a positive degree , the image of the map 
C ---t C :  z �---+ p(z) contains the zero . In other words, the formula z >---> p(z) does 
not determine a map C ---t C ....,_ 0 .  

37. G. 2  Estimate of Remainder. Let p(z) = zn + a1 zn- l + · · · + an be a 
complex polynomial , q(z)  = zn , and r (z) = p(z) - q(z) . Then there exists a 
positive real R such that l r (z) l < l q (z) i = Rn for any z with i z l  = R. 

37. G. 3 Lemma on Lady with Dog. (Cf. 30. 1 1 . )  A lady q(z) and her dog 
p(z) walk on the punctured plane C ....,_ 0 periodically ( i .e . ,  say, with z E 81 ) . 
Prove that if the lady does not let the dog run further than l q (z) l from her , 
then the doggy's loop 81 ---t C ....,_ 0 : z �---+ p(z) is homotopic to the lady 's loop 
81 ---t C ....,_ 0 :  z �---+ q(z ) . 

37. G.4  Lemma for Dummies. (Cf. 30. 12. )  If f :  X ---t Y is a continuous 
map and s : 81 ---t X is a null-homotopic loop, then f o s : 81 ---t Y is also 
null-homotopic . 

l37'3x J Generalization of Intermediate Value Theorem 

37.Hx .  Riddle. How t o  generalize Intermediate Value Theorem 1 3.A  to 
the case of maps f : nn ---t ffi.n? 

37./x .  Find out whether Intermediate Value Theorem 1 3.A  is equivalent to 
the following statement : 
Let f : D1 

---t ffi.1 be a continuous map .  If 0 � f (S0 ) and the submap 
f lso : S0 ---t ffi.1 " 0  of f induces a nonconstant map 1ro (S0 ) ---t 1ro (ffi.1 " 0) ,  
then there exists a point x E D1 such that f (x ) = 0 .  

37.Jx .  Riddle. Suggest a generalization of  Intermediate Value Theorem 
to maps Dn ---t ffi.n which would generalize its reformulation 37. Ix. To do it , 
you must define the induced homomorphism for homotopy groups . 

37.Kx .  Let f : Dn ---t ffi.n be a continuous map. If f (sn-1 ) does not contain 
0 E ffi.n and the submap f l sn- 1 : sn-1 ---t ffi.n '- 0 of f induces a nonconstant 
map 

1fn- 1 (sn-1 ) ---t 1fn-1 (ffi.n '- 0) , 
then there exists a point x E D1 such that f (x ) = 0 . 

Usability of Theorem 37.Kx is impeded by a condition which is difficult 
to check if n > 0. For n = 1 ,  this is still possible in the framework of the 
theory developed above . 
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37. 5x . Let f :  D2 ---> IR2 be a continuous map . If f(S1 ) does not contain a E IR2 

and the circular loop f l s 1 : 81 ---> IR2 , a determines a nontrivial element of 
1r1 (IR2 

' a) , then there exists x E D2 such that f (x) = a. 
37. 6x . Let f : D2 ---> IR2 be a continuous map that leaves fixed each point of the 
boundary circle 81 • Then f(D2 ) :::> D2 . 

37. 7x.  Assume that f : IR2 ---> IR2 is a continuous map and there exists a real 
number m such that l f (x) - x i � m for any x E IR2 . Prove that f is a surjection . 

37. 8x . Let u, v : I ---> I x I be two paths such that u(O) = (0 ,  0) , u( 1 ) = ( 1 ,  1 ) ,  
v (O) = (0 ,  1 ) ,  and v ( 1 )  = ( 1 ,  0) . Prove that u(I) n v (I) =/= 0. 

37. 8x . 1 .  Let u and v be as in 37. 8x. Prove that 0 E IR2 is a value of the 
map w :  I2 ---> IR2 : (x , y) f--+ u(x) - v (y) . 

37. 9x .  Prove that there exist disjoint connected sets F, G C I2 such that the 
corner points (0, 0) and ( 1 ,  1) of the square I2 belong to F, while (0, 1 ) ,  ( 1 ,  0) E G. 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 

37. 1 0x .  In addition, can we require that the sets F and G satisfying the assump­
tions of Problem 37. 9x be closed? 

37. 1 1x .  Let C be a smooth simple closed curve on the plane with two inflection 
points having the form shown in the figure . Prove that there is a line intersecting 
C at four points a, b, c, and d with segments [a, b] , [b, c] , and [c, d) of the same 
length. 

f37'4xj Winding Number 

As we know (see 36.F) ,  the fundamental group of the punctured plane 
IR2 ......_ 0 is isomorphic to Z. There are two isomorphisms, which differ by 
multiplication by -1 .  Choose one of them that sends the homotopy class 
of the loop t t---t (cos 27ft , sin 21rt) to 1 E Z. In terms of circular loops, the 
isomorphism means that each loop f : 81 -t !R2 -...._ 0 is assigned an integer . 
Roughly speaking, it is the number of times the loop goes around 0 (with 
account of direction) .  
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Now we change the viewpoint in this consideration: we fix the loop , but 
vary the point . Let f :  81 � JR2 be a circular loop and let x E JR2 -...... f (S1 ) .  
Then f determines an element in 1!'1 (JR2 -...... x) = Z. (Here we choose basically 
the same identification of 1!'1 (JR2 -...... x) with Z that sends 1 to the homotopy 
class of t f--t x + (cos 27rt , sin 27rt) . ) This number is denoted by ind (f, x) and 
called the winding number or index of x with respect to f .  

It is also convenient t o  characterize the number ind ( u, x) as follows . 
Along with the circular loop u :  81 � JR2 -...... x ,  consider the map 'Pu,x : 8

1 � 

81 : z f--t (u(z) - x)/ lu (z ) - x l .  The homomorphism ('Pu,xt : 1!'1 (81 ) � 

1!'1 (81 ) sends the generator a of the fundamental group of the circle to the 
element ka, where k = ind (u, x) . 

37.Lx .  The formula x f--t ind ( u, x) determines a locally constant function 
on IR2 -...... u(S1 ) .  

37. 1 2x .  Let f :  8 1 ----> ]�_2 be a loop and let x , y E JR2 -.._ f (S1 ) .  Prove that if 
ind(f, x) =1- ind (f, y) , then any path connecting x and y in JR2 meets f (S1 ) .  

37. 1 3x .  Prove that i f  u(S1 ) i s  contained i n  a disk, while a point x is not , then 
ind(u , x) = 0 .  
37. 14x . Find the set of values of  function ind : JR2 -.._ u(S1 ) ---> Z for the following 
loops u :  
a) u(z)  = z ;  b) u(z)  = z;  c) u(z)  = z2 ; d) u(z) = z + z- 1 + z2 - z-2 

(here z E 81 C C) . 

37. 1 5x .  Choose several loops u :  8 1 ---> JR2 such that u(S1 ) is a bouquet of two 
circles (a "lemniscate" ) .  Find the winding number with respect to these loops for 
various points .  

37. 1 6x .  Find a loop f :  81 ---> JR2 such that there exist points x , y E JR2 " f(S1 ) 
with ind (f, x) = ind (f, y ) ,  but belonging to different connected components of 
JR2 " f (Sl ) .  

37. 1 7x. Prove that any ray R radiating from x meets f (S1 ) at least at I ind(f, x) l 
points ( i .e . , the number of points in r 1 (R) is at least l ind(f, x) l ) .  

37.Mx .  If u : 81 � IR2 i s  a restriction of a continuous map F : D2 � IR2 
and ind (u ,  x) # 0 ,  then x E F(D2 ) .  

37.Nx .  If u and v are two circular loops in JR2 with common base point {i . e . .  
u ( 1 )  = v ( 1 ) )  and uv is their product, then ind (uv , x ) = ind (u , x ) + ind (v . x ) 
for each x E JR2 -...... uv (S1 ) .  
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37. Ox . Let u and v be circular loops in JR2 , and let x E JR2 " ( u (81 ) U v (81 ) ) .  
If u and v are connected by a (free) homotopy Ut , t E I such that x E 
JR2 " Ut (81 ) for each t E I ,  then ind (u , x ) = ind(v , x) . 

37. Px .  Let u : 81 --t C be a circular loop, a E C2 " u(81 ) .  Then we have 

. d( ) _ 1 1 i u (z ) - a l d 1n u , a - - z.  
2?Ti s 1  u(z ) - a 

37. Qx . Let p(z) be a polynomial with complex coefficients, let R > 0 , and 
let zo E C. Consider the circular loop u : 81 --t C : z � p(Rz) . If 
zo E C"  u (  81 ) ,  then the polynomial p( z) - zo has (counting the multiplicities) 
precisely ind (u, zo ) roots in the open disk B� = { z  : l z l < R} . 

37. Rx .  Riddle. By what can we replace the circular loop u, the domain 
BR, and the polynomial p(z) so that the assertion remains valid? 

l37'5x J Borsuk-Ulam Theorem 

37. 8x One-Dimensional Borsuk- Ulam. For each continuous map f : 
81 --t JR1 , there exists X E 81 such that f (x ) = f (-x) . 

37. Tx Two-Dimensional Borsuk- Ulam. For each continuous map f :  
82 --t JR2 , there exists x E 82 such that f (x) = f (-x) . 

37. Tx. 1 Lemma. If there exists a continuous map f : 82 ---+ JR2 such that 
f (x) =f. f (-x) for each x E 82 , then there exists a continuous map cp :  JRP2 ---+ 
JRP1 inducing a nonzero homomorphism rr1 (JRP2 ) ---+ rr1 (JRP1 ) .  

37. 1 8x.  Prove that at each instant of time, there is a pair of antipodal points on 
the earth's surface where the pressures and also the temperatures are equal . 

Theorems 37.8x and 37. Tx are special cases of the following general 
theorem. We do not assume the reader is ready to prove Theorem 37. Ux in 
the full generality, but is there another easy special case? 

37. Ux Borsuk- Ulam Theorem. For each continuous map f :  8n --t JRn , 
there exists X E 8n such that f (x) = f (  -x) . 
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3 8 .  Retractions and Fixed Points 

f38' 1 J Retractions and Retracts 

A continuous map of a topological space onto a subspace is a retraction 
if the restriction of the map to the subspace is the identity map . In other 
words , if X is a topological space and A c X, then p : X -----> A is a retraction 
if p is continuous and P IA = idA . 

38. A .  Let p be a continuous map of a space X onto its subspace A. Then 
the following statements are equivalent : 

( 1 )  p is a retraction, 
(2) p (a ) = a  for any a E A, 

(3) p o in = idA , 
( 4) p : X -----+ A is an extension of the identity map A -----> A. 

A subspace A of a space X is a retract of X if there exists a retraction 
X -----+ A .  

38.B. Any one-point subset i s  a retract . 
A two-element set may be not a retract . 

38. C. Any subset of JR. consisting of two points is not a retract of R 

38. 1 .  If A is a retract of X and B is a retract of A,  then B is a retract of X. 

38. 2. If A is a retract of X and B is a retract of Y ,  then A x B is a retract of 
X x Y . 

38. 3. A closed interval [a, b] is a retract of R 

38.4 .  An open interval (a , b) is not a retract of R 

38. 5. What topological properties of ambient space are inherited by a retract? 

38. 6. Prove that a retract of a Hausdorff space is closed.  

38. 7.  Prove that the union of the Y axis and the set { (x ,  y) E JR.2 I x > 0, y = 
sin ( l/x)}  is not a retract of JR.2 and, moreover, is not a retract of any of its 
neighborhoods. 

38.D. 8° is not a retract of D1 . 
The role of the notion of retract is clarified by the following theorem. 

38.E. A subset A of a topological space X is a retract of X iff for each space 
Y each continuous map A -----> Y extends to a continuous map X -----+ Y.  
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138'2 J Fundamental Group and Retractions 

38.F. If p :  X ---+ A is a retraction, i : A ---+ X is the inclusion, and xo E A, 
then p* : 1r1 (X, xo ) ---+ 1r1 (A, xo ) is an epimorphism and i* : 1r1 (A, xo ) ---+ 

1r1 (X, xo ) is a monomorphism. 

38. G. Riddle. Which of the two statements of Theorem 38.F (about p* or 
i * ) is easier to use for proving that a set A C X is not a retract of X? 

38.H Borsuk Theorem in Dimension 2.  81 i s  no t  a retract of D2 . 

38. 8. Is the projective line a retract of the projective plane? 

The following problem is more difficult than 38. H in the sense that its solution 
is not a straightforward consequence of Theorem 38. F, but rather demands to 
reexamine the arguments used in proof of 38. F. 

38. 9. Prove that the boundary circle of the Mobius band is not a retract of the 
Mobius band. 

38. 1 0. Prove that the boundary circle of a handle is not a retract of the handle. 

The Borsuk Theorem in its whole generality cannot be deduced like 
Theorem 38. H from Theorem 38.F. However, we can prove it by using a 
generalization of 38.F to higher homotopy groups. Although we do not 
assume that you can successfully prove it now relying only on the tools 
provided above, we formulate it here . 

38.1 Borsuk Theorem. The (n - I ) -sphere sn- l is not a retract of the 
n-disk nn . 

At first glance this theorem seems to be useless . Why could it be inter­
esting to know that a map with a very special property of being a retraction 
does not exist in this situation? However, in mathematics nonexistence 
theorems are often closely related to theorems that may seem to be more 
attractive . For instance , the Borsuk Theorem implies the Brouwer Theorem 
discussed below. But prior to this we must introduce an important notion 
related to the Brouwer Theorem. 

138'3 J Fixed-Point Property 

Let f : X ---+ X be a continuous map . A point a E X is a fixed point  
of f i f  f (a) = a . A space X has the fixed-point property if every continuous 
map X ---+ X has a fixed point . The fixed point property implies solvability 
of a wide class of equations . 

38. 1 1 .  Prove that the fixed point property is a topological property. 

38. 1 2. A closed interval [a, b] has the fixed point property. 

38. 1 3. Prove that if a topological space has the fixed point property, then so does 
each of its retracts .  
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38. 14 .  Let X and Y be two topological spaces , xo E X,  and yo E Y.  Prove 
that X and Y have the fixed point property iff so does their bouquet X V Y = 
X U Y/ [xo ,...., Yo] · 
38. 1 5. Prove that any finite tree has the fixed-point property. (We recall that a 
tree is a connected space obtained from a finite collection of closed intervals by 
somehow identifying their endpoints so that deleting an internal point from any 
of the segments makes the space disconnected , see 45' 4x. ) Is this statement true 
for infinite trees? 

38. 1 6. Prove that JR" with n > 0 does not have the fixed point property. 

38. 1 7. Prove that sn does not have the fixed point property. 

38. 1 8. Prove that JRpn with odd n does not have the fixed point property. 

38. 1 9 *. Prove that CPn with odd n does not have the fixed point property. 

Information. �pn and cpn with any even n have the fixed point 
property. 

38. J Brouwer Theorem. Dn has the fixed point property. 

38. J. 1 .  Show that the Borsuk Theorem in dimension n ( i .e . , the statement 
that sn- l is not a retract of Dn) implies the Brouwer Theorem in dimension n 
( i .e . ,  the statement that any continuous map Dn ---. Dn has a fixed point ) . 

38.K. Derive the Borsuk Theorem from the Brouwer Theorem. 

The existence of fixed points can follow not only from topological argu­
ments . 

38. 20. Prove that i f  f : JRn --> JRn is a periodic affine transformation (i . e . ,  
f o · · · o f = idJR" for a certain p) , then f has a fixed point . '-v----' 

p times 
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3 9 .  Homotopy Equivalences 

139' 1 J Homotopy Equivalence as Map 

Let X and Y be two topological spaces , and let f : X ---+ Y and g : 

Y ---+ X be continuous maps . Consider the compositions f o g : Y ---+ Y and 
g o f : X ---+ X.  They would be equal to the corresponding identity maps if 
f and g were mutually inverse homeomorphisms . If f o g and g o  f are only 
homotopic to the identity maps , then f and g are homotopy inverse to each 
other . If a continuous map f possesses a homotopy inverse map, then f is 
a homotopy invertible map or a homotopy equivalence . 

39.A .  Prove the following properties of homotopy equivalences : 

( 1 )  any homeomorphism is a homotopy equivalence , 
(2 ) a map homotopy inverse to a homotopy equivalence is a homotopy 

equivalence , 
(3) the composition of two homotopy equivalences is a homotopy equiv­

alence . 

39. 1 .  Find a homotopy equivalence that is not a homeomorphism. 

139'2 J Homotopy Equivalence as Relation 

Two topological spaces X and Y are homotopy equivalent if there exists 
a homotopy equivalence X ---+ Y. 
39.B. Homotopy equivalence of topological spaces is an equivalence rela­
tion. 

The classes of homotopy equivalent spaces are homotopy types , and we 
say that homotopy equivalent spaces have the same homotopy type. 

39. 2. Prove that homotopy equivalent spaces have the same number of path­
connected components. 

39. 3. Prove that homotopy equivalent spaces have the same number of connected 
components. 

39.4 .  Find an infinite set of topological spaces that belong to the same homotopy 
type, but are pairwise non-homeomorphic .  

139'3 J Deformation Retraction 

A retraction p : X ---+ A is a deformation retraction if its composition 
in o p with the inclusion in : A ---+ X is homotopic to the identity idx . If 
in o p is A-homotopic to idx , then p is a strong deformation retraction . If 
X admits a (strong) deformation retraction onto A, then A is a (strong) 
deformation retract of X. 
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39. C. Each deformation retraction is a homotopy equivalence . 

39.D. If A is a deformation retract of X ,  then A and X are homotopy 
equivalent . 

39.E. Any two deformation retracts of one and the same space are homo­
topy equivalent . 

39.F. If A is a deformation retract of X and B is a deformation retract of 
Y,  then A x B is a deformation retract of X x Y. 

f39' 4 J Examples 

39. G. Circle 81 is a deformation retract of IR2 -..... 0 .  

39. 5. Prove that the Mobius strip i s  homotopy equivalent to a circle . 

39. 6. Classify letters of the Latin alphabet up to homotopy equivalence . 

39.H. Prove that a plane with s punctures is homotopy equivalent to the 
union of s circles intersecting at a single point .  

39.1. Prove that the union o f  a diagonal o f  a square and the contour o f  the 
same square is homotopy equivalent to the union of two circles intersecting 
at a single point .  
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39. 7. Prove that a handle is homotopy equivalent to a bouquet of two circles . 
(E.g . , construct a deformation retraction of the handle to the union of two circles 
intersecting at a single point . ) 
39. 8. Prove that a handle is homotopy equivalent to the union of three arcs with 
common endpoints ( i . e . , the letter e) . 
39. 9. Prove that the space obtained from 82 by identifying two (distinct ) points 
is homotopy equivalent to the union of a two-sphere and a circle intersecting at a 
single point . 

39. 1 0. Prove that the space { (p, q) E C : z2 + pz + q has two distinct roots} of 
quadratic complex polynomials with distinct roots is homotopy equivalent to the 
circle . 

39. 1 1 .  Prove that the space GL(n, R) of invertible n x n  real matrices is homotopy 
equivalent to the subspace O(n) consisting of orthogonal matrices . 

39. 1 2. Riddle. Is there any relation between a solution of the preceding problem 
and the Gram-Schmidt orthogonalization? Can the Gram-Schmidt orthogonal­
ization algorithm be regarded as a deformation retraction? 

39. 1 3. Construct the following deformation retractions : (a) R3 -..... R1 --> 81 ; (b ) 
:!Rn -..... Rm __. 8n-m- 1 ; (c) 83 ....._ 81 __. 81 ; (d) 8n ....._ 8m __. 8n-m- 1 (e) RPn -..... Rpm __. 

RPn-m- 1 .  

f39'5 J Deformation Retraction versus Homotopy Equivalence 

39.J. Spaces of Problem 39. 1 cannot be embedded in one another . On the 
other hand , they can be embedded as deformation retracts in the plane with 
two punctures. 

Deformation retractions constitute a very special class of homotopy 
equivalences . For example , they are often easier to visualize . However, 
as follows from 39. J, it may happen that two spaces are homotopy equiva­
lent , but none of them can be embedded in the other one , and so none of 
them is homeomorphic to a deformation retract of the other one . Therefore , 
deformation retractions seem to be insufficient for establishing homotopy 
equivalences. 

However , this is  not the case: 

39. 14 *. Prove that any two homotopy equivalent spaces can be embedded as 
deformation retracts in the same topological space . 

f39'6 J Contractible Spaces 

A topological space X is contractible if the identity map id : X -t X is 
null-homotopic . 

39. 1 5. Show that R and I are contractible . 

39. 1 6. Prove that any contractible space is path-connected . 

39. 1 7. Prove that the following statements about a topological space X are equiv­
alent : 
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( 1 )  X is contractible , 
(2)  X is homotopy equivalent to a point , 
(3) there exists a deformation retraction of X onto a point , 
(4) each point a of X is a deformation retract of X,  
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(5)  each continuous map of any topological space Y to X is  null-homotopic, 
(6) each continuous map of X to any topological space Y is null-homotopic . 

39. 1 8. Is it true that if X is a contractible space, then for any topological space 
y 

( 1 )  any two continuous maps X ---> Y are homotopic? 
(2) any two continuous maps Y ---> X are homotopic? 

39. 1 9. Find out if the spaces on the following list are contractible : 

{ 1 )  JR.n , 
(2) a convex subset of !Rn , 
(3) a star-shaped subset of JR." ,  
(4) { (x , y) E JR.2 : x2 - y2 :S 1 } ,  
(5)  a finite tree ( i . e . ,  a connected space obtained from a finite collection of 

closed intervals by somehow identifying their endpoints so that deleting 
an internal point of each of the segments makes the space disconnected , 
see 45'4x . )  

39. 20. Prove that X x Y is  contractible iff both X and Y are contractible . 

f39'7 J Fundamental Group and Homotopy Equivalences 

39.K. Let f : X -+ Y and g : Y -+ X be two homotopy inverse maps, and 
let xo E X and Yo E Y be two points such that f (xo) = Yo and g (yo )  = xo 
and, moreover, the homotopies connecting f o g with idy and g o f with idx 
are fixed at Yo and xo , respectively. Then f* and g* are mutually mverse 
isomorphisms between the groups 1r1  (X,  xo) and 1r1 (Y, Yo ) . 

39.L Corollary. If p : X -+ A is a strong deformation retraction, xo E 
A, then p* : 1r1 (X, xo) -+ 1r1 (A, xo) and in* : 1r1 (A ,  xo ) -+ 1r1 (X, xo) are 
mutually inverse isomorphisms. 

39. 21 . Calculate the fundamental group of the following spaces : 
(a) JR.a -.... JR.l , (b) JR.N -.... JR.n , (c) JR.a -.... s l , (d) JR.N -.... sn , 
(e.) 8: . . -::-..

b
. 81 b d (f) SN '-. Sk , (g,) JR.P3 -.... JR.ph

l , ,_(h) handle, (iJ lV10 lUS an , nJ spnere Wlt s noYes, 
(k) Klein bottle with a point re- (1) Mobius band with s holes . 

moved, 

39. 22. Prove that the boundary circle of the Mobius band standardly embedded 
in JR.3 (see 22. 18) cannot be the boundary of a disk embedded in JR.3 in such a way 
that its interior does not meet the band . 

39. 23. 1 )  Calculate the fundamental group of the space Q of all complex polyno­
mials ax2 + bx + c with distinct roots. 2) Calculate the fundamental group of the 
subspace Q1 of Q consisting of polynomials with a =  1 (unitary polynomials) .  

39. 24 .  Riddle.  Can you solve 39. 23 along the lines of deriving the customary 
formula for the roots of a quadratic trinomial? 
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39.M. Suppose that the assumptions of Theorem 39.K are weakened as 
follows : g (yo ) =/= xo and/or the homotopies connecting f o g with idy and 
g o f with idx are not fixed at Yo and xo , respectively. How would f* and 
g* be related? Would 7!"1 (X, xo ) and 7!"1 (Y, yo ) be isomorphic? 
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40 . Covering Spaces via Fundamental 

Groups 

I 40' 1 J Homomorphisms Induced by Covering Projections 
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4 0. A .  Let p : X -+ B be a covering , xo E X, and bo = p(xo ) .  Then 
p* : 1r1 (X, x0 ) -+ 1r1 (B , bo ) is a monomorphism. Cf. 35. C. 

The image of the monomorphism p* : 1r1 (X, xo ) -+ 1r1 (B ,  bo ) induced by 
the covering projection p : X -+ B is the group of the covering p with base 
point  xo . 

4 0.B.  Riddle. Is the group of the covering determined by the covering? 

4 0. C  Group of Covering versus Lifting of Loops . Let p :  X -+  B be 
a covering . Describe the loops in B whose homotopy classes belong to the 
group of the covering in terms provided by Path Lifting Theorem 35.B. 

4 0.D.  Let p : X -+ B be a covering, let xo , x1 E X belong to the same 
path-component of X,  and let bo = p(xo ) = p(xi ) · Then p* (7ri (X, xo ) )  
and p* (1r1 (X, x1 ) )  are conjugate subgroups of 7ri (B , bo ) ( i . e . , there is a E 
1r1 (B ,  bo ) such that p* ( 1r1 (X, x1 ) )  = a- 1p* ( 1r1 (X, xo) ) a) .  

4 0.E. Let p : X -+ B b e  a covering, xo E X,  and bo = p(xo ) .  For 
each a E 1r1 (B , bo ) ,  there exists an x1 E p- 1 (bo )  such that p* (7r1 (X, x1 ) )  = 
a-1p* (1r1 (X, xo ) )a . 

4 0. F. Let p : X -+ B be a covering in the narrow sense , and let G c 
1r1 (B ,  bo ) be the group of this covering with a base point xo . A subgroup 
H c 1r1 (B ,  bo ) is a group of the same covering iff H is conjugate to G. 

I 40'2 J Number of Sheets 

4 0. G  Number of Sheets and Index of Subgroup. Let p :  X -+ B be 
a finite-sheeted covering in the narrow sense . Then the number of sheets is 
equal to the index of the group of this covering . 

4 0. H  Sheets and Right Cosets .  Let p : X -+ B be a covering in the 
narrow sense , bo E B, and xo E p- 1 (bo ) .  Construct a natural bij ection 
between p- 1 (bo )  and the set p* (1r1 (X, xo ) ) \7r1 (B ,  bo ) of right cosets of the 
group of the covering in the fundamental group of the base space . 

40. 1 Number of Sheets in Universal Covering. The number of sheets of a 
universal covering equals the order of the fundamental group of the base space. 

40. 2 Nontrivial Covering Means Nontrivial 1r1 • Any topological space that 
has a nontrivial path-connected covering space has a nontrivial fundamental group . 
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4 0. 3. What numbers can appear as the number of sheets of a covering of the 
Mobius strip by the cylinder S1 X I? 

40 .4 .  What numbers can appear as the number of sheets of a covering of the 
Mobius strip by itself? 

4 0. 5. What numbers can appear as the number of sheets of a covering of the 
Klein bottle by a torus? 

4 0. 6. What numbers can appear as the number of sheets of a covering of the 
Klein bottle by itself? 

4 0. 7. What numbers can appear as the numbers of sheets for a covering of the 
Klein bottle by the plane ll�? ? 

4 0. 8. What numbers can appear as the numbers of sheets for a covering of the 
Klein bottle by S1 X JR? 

f40'3 J Hierarchy of Coverings 

Let p : X ---7 B and q : Y ---7 B be two coverings , let xo E X, Yo E Y ,  
and p(xo ) = q (yo )  = bo . The covering q with base point Yo i s  subordinate to 
p with base point x0 if there exists a map <p : X ---7 Y such that q o <p = p 
and cp(xo )  = YO · In this case , the map <p is a subordination. 

4 0.1. A subordination is a covering map . 

4 0.J. If a subordination exists ,  then it is unique . Cf. 35.B. 

Two coverings p : X ---7 B and q : Y ---7 B are equivalent if there exists a 
homeomorphism h : X ---7 Y such that p = q o h. In this case , h and h-1 are 
equivalences . 

4 0.K. If two coverings are subordinated to each other , then the correspond­
ing subordinations are equivalences . 

4 0.L .  The equivalence of coverings is, indeed, an equivalence relation on 
the set of coverings with a given base space . 

4 0.M. Subordination determines a nonstrict partial order on the set of 
equivalence classes of coverings with a given base . 

4 0. 9. What equivalence class of coverings is minimal ( i .e . ,  subordinated to all 
other classes )?  

4 0. N. Let p : X ---7 B and q : Y ---7 B be two coverings , and let xo E X, 
Yo E Y,  and p(xo ) = q (yo ) = bo . If q with base point Yo is subordinated to 
p with base point xo , then the group of the covering p is contained in the 
group of the covering q, i . e . , p* (1r1 (X, xo ) )  C q* (1r1 (Y, yo ) ) .  
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41x.  Classification of Covering Spaces 

f41 '1x J Existence of Subordinations 

A topological space X is locally path-connected if for each point a E X 
and each neighborhood U of a the point a has a path-connected neighbor­
hood V c U. 

4 1 . 1x .  Find a topological space which is path-connected , but not locally path­
connected. 

4 1 .  Ax . Let B be a locally path-connected space, let p : X --t B and q : 
Y --t B be two coverings in the narrow sense , and let xo E X,  Yo E Y,  and 
p(xo) = q (yo ) = bo . If p* (1r1 (X, xo ) )  C q* (1r1 (Y, Yo ) ) , then q is subordinated 
to p. 

4 1 . Ax . 1 .  Under the conditions of 4 1 . Ax, if two paths u, v : I -->  X have the 
same initial point x0 and a common final point , then the paths that cover p o u 
and p o v and have the same initial point y0 also have the same final point . 

4 1 . Ax . 2. Under the conditions of 4 1 . Ax, the map X -->  Y defined by 4 1 . Ax. 1 
(guess what this map is ! )  is continuous . 

4 1 . 2x .  Construct an example proving that the hypothesis of local path connect­
edness in 4 1 .Ax. 2 and 4 1 .Ax is necessary. 

4 1 .Bx .  Two coverings p : X --t B and q : Y --t B with a common locally 
path-connected base are equivalent iff for some xo E X and Yo E Y with 
p(xo ) = q(yo )  = bo the groups p* (1r1 (X, xo ) )  and q* (7r1 (Y, yo ) )  are conjugate 
in 1r1 (B ,  bo ) .  

4 1 . 3x .  Construct an example proving that the assumption of local path connect­
edness of the base in 4 1 .  Bx is necessary. 

f41'2x J Micro Simply Connected Spaces 

A topological space X is micro simply connected if each point a E X has a 
neighborhood U such that the inclusion homomorphism 1r1 (U, a ) --t 1r1 (X, a ) 
is trivial . 

4 1 .4x .  Any simply connected space is micro simply connected. 

4 1 . 5x .  Find a micro simply connected , but not simply connected space. 

A topological space is locally contractible at point a if each neighborhood 
U of a contains a neighborhood V of a such that the inclusion V --t U 
is null-homotopic. A topological space is locally contractible if it is locally 
contractible at each of its points .  
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4 1 .  6x . Any finite topological space is locally contractible . 

4 1 .  7x .  Any locally contractible space is micro simply connected. 

4 1 . 8x .  Find a space which is not micro simply connected . 

In the literature, the micro simply connectedness is also called weak local 
simply connectedness , while a strong local simply connectedness is the follow­
ing property: any neighborhood U of any point x contains a neighborhood 
V such that any loop at x in V is null-homotopic in U. 

4 1 . 9x .  Find a micro simply connected space which i s  not strong locally simply 
connected. 

I 41'3x J Existence of Coverings 

4 1 .  Cx.. A space having a universal covering space is micro simply connected. 

4 1 .Dx Existence of a Covering with a Given Group. If a topological 
space B is path- connected, locally path- connected, and micro simply con­
nected, then for any bo E B and any subgroup 1r of 1r1 ( B, bo ) there exists 
a covering p : X ----. B and a point xo E X such that p(xo ) = bo and 
p* (ni (X, xo ) )  = n .  

4 1 .Dx. 1 .  Suppose that in the assumptions of Theorem 4 1 . Dx there exists a 
covering p : X -; B satisfying all requirements of this theorem. For each 
x E X, describe all paths in B that are p-images of paths connecting x0 to x in 
X .  

4 1 .Dx . 2. Does the solution of Problem 4 1 . Dx. 1 determine an equivalence re­
lation on the set of all paths in B starting at b0 , so that we obtain a one-to-one 
correspondence between the set X and the set of equivalence classes? 

4 1 . Dx . 3. Describe a topology on the set of equivalence classes from 4 1 . Dx. 2 
such that the natural bijection between X and this set is a homeomorphism. 

4 1 . Dx . 4 .  Prove that the reconstruction of X and p : X -; B provided by 
Problems 4 1 . Dx. 1-4 1 . Dx.4 under the assumptions of Theorem 4 1 . Dx determine 
a covering whose existence is claimed by Theorem 4 1 . Dx. 

Essentially, assertions 4 1 . Dx. 1 - 4 1 .Dx. 3 imply the uniqueness of the 
covering with a given group . More precisely, the following assertion holds 
true . 

4 1 . Ex Uniqueness of the Covering with a Given Group. Assume 
that B is path- connected, locally path- connected, and micro simply connected. 
Let p : X ----. B and q : Y ----. B be two coverings, and let p* (n1 (X, xo ) )  = 
q* ( 1r1 (Y, Yo ) ) .  Then the coverings p and q are equivalent, i. e . ,  there exists a 
homeomorphism f :  X ----. Y such that f (xo ) = Yo and p o f = q .  
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4 1 .Fx Classification of Coverings over a Good Space . Let B be a 
path- connected, locally path-connected, and micro simply connected space 
with base point bo . Then there is a one-to-one correspondence between 
classes of equivalent coverings (in the narrow sense) over B and conjugacy 
classes of subgroups of 1r1 ( B, bo ) .  This correspondence identifies the hierar­
chy of coverings (ordered by subordination) with the hierarchy of subgroups 
(ordered by inclusion) . 

Under the correspondence of Theorem 4 1 .Fx, the trivial subgroup cor­
responds to a covering with simply connected covering space . Since this 
covering subordinates any other covering with the same base space , it is 
said to be universal .  

4 1 . 1 0x .  Describe all coverings o f  the following spaces up  to  equivalence and sub­
ordination: 

( 1 )  circle 81 j 
(2)  punctured plane JR2 -..... 0 ;  
(3) Mobius strip; 
(4) four-point digital circle (the space formed by 4 points , a ,  b ,  c, d; with the 

base of open sets formed by {a} ,  {c} , {a ,  b, c} , and {c, d, a} )  
(5) torus 81 X 81 ; 

l41'4xJ Action of Fundamental Group on Fiber 

4 1 . Gx Action of 1r1 on Fiber. Let p :  X ---t B be a covering , bo E B .  
Construct a natural right action o f  1r 1  (B ,  bo ) on  p- 1 (bo ) . 
4 1 . Hx .  When the action in 4 1 .  Gx is transitive? 

l41'5xJ Automorphisms of Covering 

A homeomorphism cp : X ---t X is an automorphism of a covering p : X ---t 

B if p o cp = p. 

4 1 ./x .  Automorphisms of a covering form a group . 

We denote the group of automorphisms of a covering p : X ---t B by 
Aut (p) . 

4 1 . Jx .  An automorphism cp : X  ---t X of the covering p :  X ---t B is deter­
mined by the image cp (xo ) of any xo E X . Cf. 4 0. J. 

4 1 . Kx .  Any two-fold covering has a nontrivial automorphism. 

4 1 . 1 1x .  Find a three-fold covering without nontrivial automorphisms. 

Let G be a group and H its subgroup . Recall that the normalizer N(H) 
of H i s  the subset of G consisting of g E G such that g

- 1 H g = H. This is 
a subgroup of G, which contains H as a normal subgroup . So, N (H) / H is 
a group . 
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4 1 . Lx .  Let p : X ---t B be a covering , xo E X and bo = p(xo ) .  Con­
struct a map 1r1 (B ,  bo ) ---t p-1 (bo )  which induces a bijection of the set 
p* ( 1r1 (X, xo ) ) \1r1 (B ,  bo ) of right cosets onto p- 1 (b0 ) .  

4 1 .Mx .  Show that the bijection p* (7r1 (X, xo ) ) \7r1 (B, bo ) ---t p- 1 (bo )  con­
structed in 4 1 . Lx maps the set of images of x0 under all automorphisms of 
a covering p :  X ---t B to the group N(p* (1r1 (X, xo ) ) ) /p* (7r1 (X, xo ) ) · 
4 1 .Nx .  For any covering p :  X ---t B in the narrow sense, there is a natural 
injective map Aut (p) to the group N(p* (7r1 (X, xo ) ) ) /p* (7r1 (X, xo ) ) · This 
map is an antihomomorphism. 1 

4 1 . 0x .  Under assumptions of Theorem 4 1 .Nx, if B is locally path- connected, 
then the antihomomorphism Aut (p) ---t N (p* ( 1r1 (X, xo ) ) )  / p* ( 1r1 (X, xo ) )  is 
bijective .  

'6x J Regular Coverings 

4 1 . Px.  Regularity of Covering. Let p : X ---t B be a covering in the 
narrow sense, bo E B,  and xo E p-1 (bo ) .  The following conditions are 
equivalent: 

( 1 )  p* (1r1 (X , xo ) ) is a normal subgroup of 1r1 (B , bo ) ;  
(2 )  p* (1r1 (X, x) ) is a normal subgroup of 1r1 (B , p (x ) )  for each x E X ; 
(3 ) all groups p* 1r1 (X, x) for x E p- 1 (b) are the same; 
( 4) for each loop s : I ---t B, either every path in X covering s is a loop 

(independently of the initial point) ,  or none of them is a loop; 
( 5) the automorphism group acts transitively on p - 1 ( bo ) .  

A covering satisfying to (any of) the equivalent conditions of Theo­
rem 4 1 .  Px is said to be regular .  Otherwise, the covering is irregular .  

4 1 . 1 2x .  The coverings R ____, S1 : X ,__.. e2"ix and S1 ____, S1 : z ,__.. zn for integer 
n > 0 are regular . 

4 1 .  Qx . The automorphism group of a regular covering p : X ---t B is nat­
urally anti-isomorphic to the quotient group 7r1 (B , bo ) /p*7r1 (X, xo) of the 
group 1r1 (B ,  bo ) by the group of the covering for any xo E p- 1 (bo ) . 
4 1 . Rx Classification of Regular Coverings over a Good Base .  There 
is a one-to-one correspondence between classes of equivalent coverings (in 
the narrow sense) over a path- connected, locally path-connected, and mi­
cro simply connected space B with a base point bo , on one hand, and anti­
epimorphisms 1r1 ( B, bo ) ---t G, on the other hand. 

1 Recall that a map cp : G --+ H from a group G to a group H is an anti homomorphism if 
cp(ab) = cp(b)cp(a)  for any a ,  b E  G. 
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Algebraic properties of the automorphism group of a regular covering 
are often referred to as if they were properties of the covering itself. For 
instance , a cyclic covering is a regular covering with cyclic automorphism 
group , an Abelian covering is a regular covering with Abelian automorphism 
group , etc . 

1, 1 . 1 3x .  Any two-fold covering is regular . 

1, 1 . 1J,x .  Which coverings considered in the problems of Section 34 are regular? 
Are there any irregular coverings? 

1, 1 . 1 5x .  Find a three-fold irregular covering of a bouquet of two circles . 

1, 1 . 1 6x .  Let p : X __, B be a regular covering, Y C X ,  and C C B ,  and let 
q : Y ---+ C be a submap of p. Prove that if q is a covering, then this covering is 
regular . 

f 41'7x J Lifting and Covering Maps 

4 1 . Sx .  Riddle. Let p : X ---+ B and f : Y ---+ B be continuous maps. 
Let xo E X and Yo E Y be points such that p(xo ) = f (yo ) .  In terms of 
the homomorphisms p* : 1r1 (X, xo ) ---+ 1fl (B , p(xo ) )  and f* : 1r1jY, yo ) ---+ 
1r1 ( B ,  f (yo )  2_, formulate a necessary condition for f to have a lift f : Y ---+ X 
such that f (yo ) = x0 . Find an example in which this condition is not 
sufficient . What additional assumptions can make it sufficient? 

4 1 . Tx Theorem on Lifting a Map. Let p :  X ---+ B be a covering in 
the narrow sense and f : Y ---+ B be a continuous map. Let xo E X and 
Yo E Y be points such that p(xo) = f (Yo ) . If Y is a locally path- connected 
space �and f*1r (Y, y0 ) C p*1r (� xo ) ,  then �there exists a unique continuous 
map f :  Y ---+ X such that p o f =  f and f (yo ) = xo .  

4 1 .  Ux . Let p : X ---+ B and q : Y ---+ C be two coverings in the narrow sense, 
and let f : B ---+ C be a continuous map. Let xo E X and Yo E Y be points 
such that fp(xo) = q (yo ) . If there exists a continuous map F :  X ---+ Y such 
that fp = qF and F (xo ) = yo ,  then we have f*p*7rl (X, xo ) C q*1r1 (Y, yo ) . 

4 1 .  Vx Theorem on Covering of a Map. Let p :  X ---+ B and q :  Y ---+ C 
be two coverings in the narrow sense, f : B ---+ C a continuous map .  Let 
xo E X and Yo E Y be points such that fp(xo ) = q(yo ) . If Y is locally 
path- connected and f*p* 1r1 (X, xo) C q* 1r1 (Y, yo ) ,  then there exists a unique 
continuous map F : X ---+ Y such that fp = qF and F(xo) = YO · 

I 41'8xj Induced Coverings 

4 1 .  Wx . Let p : X ---+ B be a covering, f : A ---+ B a continuous map .  
Denote by W the subspace of A x X consisting of points (a ,  x) such that 
f (a ) = p( x) . Let q : W ---+ A be the restriction of the projection A x X ---+ A .  
Then q : W ---+ A is a covering with the same number of sheets as p .  
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A covering q : W ---+ A obtained as in Theorem 4 1 .  Wx is said to be 
induced from p : X ---+ B by f : A ---+ B.  

4 1 . 1 7x .  Represent coverings from Problems 34 . D  and 34 . F  as coverings induced 
from JR ---> 81 : X >---> e21rix . 

4 1 . 1 8x .  Which of the coverings considered above is induced from the covering of 
Problem 36. 7! 

I 41'9x J High-Dimensional Homotopy Groups of Covering Space 

4 1 .Xx .  Let p : X ---+ B be a covering. Then for any continuous map s : 
In ---+ B and any lift u : Jn- l ---+ X of the restriction s i Jn- 1  the map s has a 
unique lift extending u .  

4 1 .  Yx . For any covering p : X ---+ B and points xo  E X and b o  E B such 
that p (xo )  = bo , the homotopy groups 1rr (X, xo ) and 1rr (B,  bo ) with r > 1 are 
canonically isomorphic. 

4 1 . Zx .  Prove that homotopy groups of dimensions greater than 1 of circle , 
torus , Klein bottle and Mobius strip are trivial . 
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Proofs and Comment s  

37.A  This follows from 30.1. 

269 

37.B  Let [u] , [v] E 7ri (X, xo ) .  Since f o (uv) = (f o u) (f o v ) ,  we have 
f# (uv) = f# (u) f# (v)  and 

f* ( [u] [v] ) = f* ( [uvl ) = [f# (uv) ]  = [f# (u) f# (v) ] 
= [f# (u)] [f# (v ) ]  = f* ( [u] ) f* ( [v] ) .  

37. C Let [u] E 1r1 (X, xo ) .  Since (g o f)# (u) = g o f o u = g# (f# (u) ) ,  
we have 

(g o f) * ( [u] ) = [(g o f)# (u)] = [g# (f# (u) ) ]  = g* ( [f# (u) ] ) = g* (f* (u) ) ,  
and, consequently, (g o f) * = g* o f* . 

37.D Let H : X x I -+  Y be a homotopy between f and g ,  and let 
H ( xo , t) = Yo for all t E I. Then u is a certain loop in X.  Consider the 
map h = H o (u x id1 ) , so that h :  (T, t )  foo--t H(u(T) , t ) . Then h(T, O) = 
H(u(T) , O) = f (u (T) ) and h (T, 1 )  = H(u(T) , 1 )  = g (u(T) ) ,  and thus h is a 
homotopy between the loops f o u and g o u .  Furthermore , we have h(O ,  t )  = 
H(u(O) , t ) = H(xo , t) = yo , and we similarly have h ( 1 ,  t) = YO · Therefore , h 
is a homotopy between the loops f# (u) and g# (v ) ,  whence 

f* ( [u] ) = [f# (u) ] = [g# (u) ] = g* ( [u] ) .  

37. E Let H be a homotopy between the maps f and g ,  and let the loop 
s be defined by the formula s (t) = H(xo , t ) . By assertion 33. 2, g* = T5 o f* . 

37.F  This obviously follows from the equality 

f# (s- 1us) = (f o s) - 1 f# (u) (f o s) . 

37. G. 1 This is the assertion of Theorem 31. G. 
37. G .2  For example , it is sufficient to take R such that 

R > max{ 1 ,  l a1 l + l a2 l + · · · + l an l } .  

37. G. 3  Use the rectilinear homotopy h(z , t )  = tp(z) + ( 1 - t ) q (z ) . It 
remains to verify that h(z ,  t) =/= 0 for all z and t. Indeed, since lp (z) - q (z) l < 
q (z) by assumption, we have 

l h (z , t) l � l q (z) l - t lp(z) - q (z) l � l q (z) l - lp(z) - q (z) l > 0 .  

37. G .4  Indeed, this i s  a quite obvious lemma; see 31.A .  
37. G Take a number R satisfying the assumptions o f  assertion 31. G .  2 

and consider the loop u : u (  t) = Re21rit .  The loop u, certainly, is null­
homotopic in C.  Now we assume that p(z) =/= 0 for all z with l z l ::; R. Then 
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the loop p o u is null-homotopic in <C '  0 ,  by 31. G. 3, and the loop q o u is 
null-homotopic in <C ' 0. However , (q o u ) (t )  = Rne21rint , and,  therefore , this 
loop is not null-homotopic .  A contradiction. 

31.Hx See 31.Kx. 
31./x Yes ,  it is . 

31.Jx See 31.Kx. 
31.Kx Let i : sn- l � on be the inclusion. Assume that J (x ) =f. 0 for 

all X E on . We preserve the designation f for the sub map on � )Rn ' 0  and 
consider the inclusion homomorphisms i* : 11'n- 1 (Sn-l ) � 11'n- 1 (0n ) and 
j* : ?Tn- l (On ) � ?Tn- l (!Rn , o) .  Since all homotopy groups of on are trivial , 
the composition (J o i ) * = f* o i* is a zero homomorphism. However, the 
composition f o i is the map fo , which, by assumption , induces a nonzero 
homomorphism 11'n- l (sn- l ) � ?Tn- 1 (!Rn ' 0) . 

31.Lx Consider a circular neighborhood U of x disjoint with the image 
u(S1 ) of the circular loop under consideration and let y E U. Join x and y 
by a rectilinear path s : t f---+ ty + ( 1 - t )x .  Then 

u(z ) - s (t ) h ( z .  t ) = 'Pu.s (t ) (z )  = 
l u ( z )  _ s (t ) l 

determines a homotopy between 'Pu,x and 'Pu,y , whence ( 'Pu,x ) * = ( 'Pu,y ) * , 
whence it follows that ind (u, y) = ind (u, x ) for any point y E U.  Conse­
quently, the function ind : x f---+ ind ( u, x ) is constant on U. 

31.Mx If x tj. F(02 ) ,  then the circular loop u is null-homotopic in 
JR2 ' x  because u = F o i ,  where i is the standard embedding S1 � 02 , and 
i is null-homotopic in 02 . 

31.Nx This is true because we have [uv] = [u] [v] and ?T1 (JR2 ' x ) � Z 
is a homomorphism. 

31. Ox The formula 

Ut (z ) - X h(z ,  t) = 'Put ,x (z ) = 
I ( ) I Ut Z - X  

determines a homotopy between 'Pu,x and 'Pv,x , whence ind (u, x ) = ind(v ,  x ) ; 
cf. 31. Lx. 

31. Sx We define a map 'P :  S1 � lR :  X f---+ J (x ) - J ( -x ) . Then 

;p( -x ) = J ( -x ) - J (x ) = - (J (x) - J ( -x ) )  = -cp(x) , 
thus cp is an odd map . Consequently, if, for example , cp( l )  =f. 0 ,  then the 
image cp(S1 ) contains values with distinct signs . Since the circle is connected, 
there is a point X E 81 such that j (x) - j( -x ) = cp(x) = 0. 

31. Tx . 1  Assume that f (x ) =f. J (-x ) for all x E 82 . In this case , 
the formula g(x) = (J (x) - f (  -x ) ) / l f (x ) - f (  -x) l determines a map g : 
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S2 ---+ S1 . Since g(-x)  = -g (x) , it  follows that g sends antipodal points of 
S2 to antipodal points of S1 . The quotient map of g is a continuous map 
<p : JRP2 ---+ JRP1 . We show that the induced homomorphism <p* : 1r1 (JRP2 ) ---+ 
1r1 (JRP1 ) is nontrivial . The generator .X of the group 1r1 (JRP2 ) is the class of 
the loop l covered by the path [ joining two opposite points of S2 . The path 
g o  [ also joins two opposite points lying on the circle , and ,  consequently, the 
loop <p o l  covered by g o  [ is not null-homotopic . Thus , <p* (.X)  is a nontrivial 
element of 1r1 (JRP1 ) .  

37. Tx To prove the Borsuk-Ulam Theorem, it only remains to observe 
that there are no nontrivial homomorphisms 1r1 (JRP2 ) ---+ 1r1 (IRP1 ) because 
the first of these groups is isomorphic to Z2 , while the second one is isomor­
phic to Z. 

38.A Prove this assertion on your own. 

38.B Since any map to a singleton is continuous , the map p :  X ---+ {xo }  
is a retraction. 

38. C The line is connected . Therefore , its retract (being its continu­
ous image) is connected, too. However, a pair of points in the line is not 
connected . 

38.D See the proof of assertion 38. C. 
38.E !�1 Let p :  X ---+ A be a retraction , f : A ---+ Y a continuous 

map . Then the composition F = f o p :  X ---+ Y extends f .  
!<=1 Consider the identity map id : A ---+ A .  Its continuous extension to X 
is the required retraction p : X ---+ A. 

38.F Since p* o i*  = (p o i ) *  = (id A ) *  = id 7!'1 (A,xo ) , it follows that 
the homomorphism p* is an epimorphism, and the homomorphism i* is a 
monomorphism. 

38. G About i* ; for example , see the proof of the following assertion . 

38.H Since the group 1r1 (D2 ) is trivial , while 1r1 (S1 ) is not , it follows 
that i* : 1r1 ( Sl , 1 )  ---+ 1r1 ( D2 , 1) cannot be a monomorphism. Consequently, 
by assertion 38.F, the disk D2 cannot be retracted to its boundary S1 . 

38.1 The proof repeats that of Theorem 38.H word for word, we 
must only use ( n - 1 )-dimensional homotopy groups instead of fundamen­
tal groups. The reason for this is that the group 1r n- 1 ( Dn ) is trivial , while 
1l"n- 1 (sn- 1 ) � Z ( i . e . , this group is nontrivial) . 

38.J Assume that a map f : Dn ---+ Dn has no fixed points .  For each 
x E Dn , consider the ray starting at f ( x) E Dn and passing through x .  
and denote by p(x) the point o f  its intersection with the boundary sphere 
sn- 1 • Clearly, p( X ) = X for X E sn- 1 • Prove that the map p is continuous. 
Therefore , p : Dn ---+ sn- 1 is a retraction . However ,  this contradicts the 
Borsuk Theorem. 
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39.A Prove this assertion on your own . 

39.B This immediately follows from assertion 39.A .  
39. C Since p i s  a retraction, i t  follows that one o f  the conditions i n  the 

definition of homotopically inverse maps is automatically fulfilled: p o in = 
idA . The second requirement : in op is homotopic to idx , is fulfilled by 
assumption. 

39.D This immediately follows from assertion 39. C. 
39.E This follows from 39.D and 39.B. 
39.F Let Pl : X --+ A and P2 : Y --+ B be deformation retractions . 

Prove that Pl x P2 is a deformation retraction. 

39. G Let the map p : �2 ......_ 0 --+ S1 be defined by the formula p(x) = 
xf l x l . The formula h(x ,  t) = ( 1  - t)x + txf l x l determines a rectilinear 
homotopy between the identity map of �2 ......_ 0 and the composition p o i , 
where i is the standard inclusion S1 --+ �2 ......_ 0 .  

39.H The topological type of  �2 ......_ {x1 , x2 , . . .  , x8 } does not depend on 
the position of the points x1 , x2 , . . .  , x8 in the plane . We put them on the 
unit circle : for example , let them be roots of unity of degree s. Consider 
s simple closed curves on the plane each of which encloses exactly one of 
the points and passes through the origin, and which have no other common 
points except the origin. Instead of curves , maybe it is simpler to take , e .g . , 
rhombi with centers at our points .  It remains to prove that the union of the 
curves (or rhombi) is a deformation retract of the plane with s punctures . 
Clearly, it makes little sense to write down explicit formulas , although this 
is possible . Consider an individual rhombus R and its center c.  The central 
projection maps R ......_ c to the boundary of R, and there is a rectilinear 
homotopy between the projection and the identical map of R ......_ c .  It remains 
to show that the part of the plane lying outside the union of the rhombi also 
admits a deformation retraction to the union of their boundaries . What can 
we do in order to make the argument look more like a proof? First consider 
the polygon P whose vertices are the vertices of the rhombi opposite to the 
origin . We easily see that P is a strong deformation retract of the plane (as 
well as the disk is) . It remains to show that the union of the rhombi is a 
deformation retract of P, which is obvious , is it not? 

39.1 We subdivide the square into four parts by two midsegments and 
consider the set K formed by the contour , the midsegments ,  and the two 
quarters of the square containing one of the diagonals. Show that each of 
the following sets is a deformation retract of K: the union of the contour 
and the mentioned diagonal of the square; the union of the contours of the 
"empty" quarters of this square . 
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39.J 1 )  None of these spaces can be embedded in another . Prove 
this on your own, using the following lemma. Let Jn be the union of n 
segments with a common endpoint . Then Jn cannot be embedded in Jk for 
any n > k 2:: 2 .  2 )  The second question is answered in the affirmative ; see 
the proof of assertion 39.!. 

39.K Since the composition g o  f is xo-null-homotopic, we have 9* o f* = 
(9 o f) * = id7r1 (X,xo ) · Similarly, f* o 9* = id7r1 (Y,yo ) · Thus , f* and 9* are two 
mutually inverse homomorphisms . 

39.L Indeed, this immediately follows from Theorem 39.K. 
39.M Let x1 = g (xo) . For any homotopy h between idx and g o  j ,  

the formula s (t )  = h(xo , t )  determines a path at xo . By  the answer to  Rid­
dle 31.E, the composition g* o f* = T8 is an isomorphism. Similarly, the 
composition f* o g* is an isomorphism. Therefore , f* and g* are isomor­
phisms . 

4 0.A  If u is a loop in X such that the loop p o u  in B is null-homotopic, 
then by the Path Homotopy Lifting Theorem 35. C the loop u is also null­
homotopic . Thus, if p* ( [u] ) = [p o u] = 0 , then [u] = 0 , which precisely 
means that p* is a monomorphism. 

4 0.B No, it is not . If p(xo ) = p(xl ) = bo , xo i= x 1 , and the group 
1r1 (B ,  bo ) is non-Abelian , then the subgroups p* (1r1 (X, xo ) )  and p* ( 1r1 (X, x1 ) )  
can easily b e  distinct (see 40.D) .  

4 0. C The group p* (1r1 (X, xo ) )  of the covering consists of the homotopy 
classes of those loops at bo whose covering path starting at xo is a loop. 

4 0. D  Let s be a path in X joining xo and x1 . Denote by a the class 
of the loop p o s and consider the inner automorphism r.p : 1r1 ( B ,  bo ) --t 

1r1 (B , bo ) : (3 t-t a- 1{3a .  We prove that the following diagram is commuta­
tive :  

1r1 (B ,  bo ) � 1r1 (B ,  bo ) .  

Indeed, since T8 ( [u] ) = [s- 1us] , we have 

Since the diagram is commutative and T8 is an isomorphism, it follows that 

thus , the groups p* ( 1r1 (X, xo ) )  and p* ( 1r1 (X, x1 ) )  are conjugate. 
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4 0. E Let s be a loop in X representing the class a E 1r1 ( B ,  bo ) . Let the 
path s cover 8 and start at xo . If we put x 1 = 8( 1 ) ,  then, as it follows from 
the proof of assertion 4 0.D, we have p* (tr1 (X, x1 ) )  = a-1p* (tr1 (X, x0 ) ) a . 

4 0.F  This follows from 4 0.D  and 4 0. E. 

4 0. G See 40 .H. 

4 0.H For brevity, put H = p* (1r1 (X, xo) ) .  Consider an arbitrary point 
x 1 E p- 1 (bo ) ; let 8 be the path starting at xo and ending at x1 , and let 
a = [p o 8 ] .  Send x1 to the right coset H a c 1r1 ( B ,  bo ) . Let us verify 
that this definition is correct . Let 8 1 be another path from x0 to x1 , and let 
a1 = [po8I ] · The path 881 1 is a loop , so that aa1 1 E H, whence Ha = Ha 1 . 
Now we prove that the described correspondence is a surjection. Let Ha 
be a coset . Consider a loop u representing the class a;  let u be the path 
covering u and starting at xo , and x 1 = u ( 1 )  E p- 1 (bo ) . By construction, 
x1 is sent to the coset H a,  and ,  therefore ,  the above correspondence is 
surjective . Finally, we prove that it is injective . Let x1 , x2 E p- 1 (b0 ) , let 
8 1 and 82 be two paths joining xo with XI and x2 , respectively, and let 
ai = [p o 8i ] ,  i = 1 ,  2. Assume that Ha1 = Ha2 and show that then XI = x2 . 
Consider a loop u = (p o 8 1 ) (p o 82 1 ) and the path u covering u, which is a 
loop because a1a2 1 E H. It remains to observe that the paths 8� and 8; , 
where 8� (t) = u (t/2) and 8; (t) = u ( 1 - t/2) , start at xo and cover the paths 
p o 8 1 and p o 82 , respectively. Therefore , 8 1 = 8� and 82 = 8; , and,  thus , 

4 0. 1  Consider an arbitrary point y E Y ,  let b = q (y) , and let Ub be a 
neighborhood of b that is trivially covered for both p and q .  Further , let V be 
the sheet over Ub containing y ,  and let {Wa } be the collection of sheets over 
Ub the union of which is cp-1 (V ) . Clearly, the map cp lw, = (q l v  )-1 o P lw, 
is a homeomorphism. 

4 0. J  Let p and q be two coverings . Consider an arbitrary point x E X  
and a path 8 joining the marked point xo with x .  Let u = p o 8 .  By 
assertion 35.B, there exists a unique path u :  I --+ Y covering u and starting 
at y0 . Therefore , u = cp o 8, and , consequently, the point cp(x) = cp (8 ( 1 ) )  = 
u( 1 )  is uniquely determined. 

4 0.K Let cp : X --+ Y and '1/J : Y --+ X be subordinations , and let 
cp(xo ) = Yo and '1/J(yo ) = xo . Clearly, the composition '1/Jocp  is a subordination 
of the covering p : X --+ B to itself. Consequently, by the uniqueness of 
a subordination (see 4 0. 1) ,  we have '1/J o cp = idx . Similarly, cp o '1/J = idy , 
which precisely means that the subordinations cp and '1/J are mutually inverse 
equivalences . 

4 0.L  This relation is obviously symmetric , reflexive , and transitive . 
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4 0.M Clearly, if two coverings p and p' are equivalent and q is subor­
dinated to p, then q is also subordinated to p' , and, therefore , the relation 
of subordination is transferred from coverings to their equivalence classes . 
This relation is obviously reflexive and transitive, and it is proved in 4 0. K  
that two coverings subordinated t o  each other are equivalent , and, therefore , 
this relation is antisymmetric. 

4 0.N Since p* = (q o <p) * = q* o <p* , we have 

p* (7ri (X, xo ) )  = q* (<p* (7ri (X, xo ) ) )  c q* (7ri (Y, Yo ) ) .  

4 1 . Ax . 1  Let u, v :  I �  Y b e  the paths starting at Yo and covering the 
paths p o u and p o v, respectively. Consider the path uv- I , which is a loop 
at x0 by assumption, the loop (p o u) (p o v )- I = p o (uv- I ) , and its class 
a E p* (7ri (X, xo ) )  c q* (7ri (Y, yo ) ) .  Thus , we have a E q* (7ri (Y, yo ) ) , and , 
therefore , the path starting at Yo and covering the loop (p o u) (p o v ) - I is 
also a loop . Consequently, the paths covering p o u and p o v and starting at 

Yo end at one and the same point .  It remains to observe that they are the 
paths u and v. 

4 1 . Ax . 2  We define the map <p :  X �  Y as follows . Let x E X , and let u 
be a path joining xo and x . Then we have <p(x) = y ,  where y is the endpoint 
of the path u : I � Y covering the path p o u .  By assertion 4 1 . Ax. 1 ,  the 
map <p is well defined. We prove that <p : X � Y is continuous . Let XI E X ,  
b i  = p(xi ) ,  and YI = <p(xi ) · Then, by construction , we have q (yi ) = bi . 
Consider an arbitrary neighborhood V of YI · We can assume that V is a 
sheet over a trivially covered path-connected neighborhood U of bi . Let 
W be the sheet over U containing XI · Then the neighborhood W is also 
path-connected. Consider an arbitrary point x E W. Let a path v :  I �  W 
join XI and x . Clearly, the image of the path v starting at YI and covering 
the path p o v  is contained in the neighborhood V, whence <p(x) E V. Thus , 
<p(W) c V,  and, consequently, <p is continuous at x .  

4 1 . Bx This follows from 4 0. E  and 4 1 . Ax, and 4 0. K. 

4 1 .  Cx Let X � B be a universal covering , U a trivially covered neigh­
borhood of a point a E B ,  and V one of the "sheets" over U. Then the 
inclusion i : U � B is the composition p o j o (P i v ) - I , where j is the inclu­
sion V � X .  Since the group 7ri (X) is trivial , the inclusion homomorphism 
i* : 7ri (U, a) � 7ri (B , a) is also trivial . 

4 1 .Dx . 1  Let two paths UI and u2 join bo and b .  The paths covering 
them and starting at xo end at one and the same point x iff the class of the 
loop UIU2I lies in the subgroup 1r .  

4 1 . Dx . 2  Yes ,  i t  does . Consider the set of  all paths in  B starting a t  bo . 
equip it with the following equivalence relation: UI "" u2 if [ul'u.2I ] E 1r ,  and 

let X be the quotient set by this relation. A natural bijection between X 
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and X is constructed as follows . For each point x E X,  we consider a path 

"!:_joining the marked point x0 with a point x. The class of the path p o u in 
X is the i�age of x. The �scribed correspondence is obviously a bijection 
f : X ----+ X.  The map g : X ----+ X inverse to f has the following structure . 
Let u : I ----+ B represent a class y E X .  Consider the path v : I ----+ X 
covering u and starting at xo . Then g (y) = v ( l ) .  

4 1 . Dx . 3 We define a base for the topology on X.  For each pair (U, x ) ,  
where U i s  an open set i n  B and x E X,  the set Ux consists of the classes 
of all possible paths uv , where u is a path in the class x, and v is a path in 
U starting at u ( l ) .  It is not difficult to prove that for each point y E Ux we 
have the identity Uy = Ux , whence it follows that the collection of the sets 

of the form Ux is a base for the topology on X. In order to prove that f 
and g are homeomorphisms, it is sufficient to verify that both f and g maps 
each set in a certain base for the topology to an open set . Consider the base 
consisting of trivially covered neighborhoods U C B, such that , first , U is 
path-connected and , second , each loop in U is null-homotopic in B.  

4 1 . Dx .4  The space X i s  defined in 4 1 .Dx. 2. The projection p : X ----+ B 
is defined as follows : p(y) = u( l ) ,  where u is a path in the class y E X.  
The map p i s  continuous without any assumptions on  the properties o f  B .  
Prove that i f  a set U in B is open and path-connected and each loop in U 
is null-homotopic in B,  then U is a trivially covered neighborhood. 

4 1 .� Consider the subgroups 1r c 1ro c 1r1 (B ,  bo ) and let p : X ----+ B 
and q :  Y ----+ B be the coverings constructed by 1r and 1ro , respectiv�y. T�e 
construction of the covering implies that there exists a map f : X ----+ Y. 
Show that f i s  the required subordination. 

4 1 .  Gx We say that the group G acts from the right on a set F if each 
element a E G determines a map t.pa : F ----+ F so that : 1 )  i.{)af3 = i.{)a o <p13 ; 2 )  
i f  e i s  the unity of  the group G, then t.pe = idF . Let F = p- 1 (bo ) .  For each 
a E 1r1 ( B ,  bo ) ,  we define a map I.{) a : F ----+ F as follows . Let x E F. Consider 
a loop u at bo such that [u] = a . Let u be the path covering u and starting 
at x. Denote u( l ) by t.pa (x ) . 

The Path Homotopy Lifting Theorem implies that the map t.pa depends 
only on the homotopy class of u, and ,  therefore, the definition is correct . If 
[u] = e ,  i . e . , the loop u is null-homotopic , then the path u is also a loop , 
whence u( l )  = x ,  thus , i.{)e = idF . Verify that the first property in the 
definition of an action of a group on a set is also fulfilled . 

4 1 .Hx See 4 1 .Px. 
4 1 ./x The group operation on the set of all automorphisms is their 

composition. 

4 1 .Jx This follows from 40. J. 
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4 1 .  Kx Show that the map transposing the two points in the preimage 
of each point in the base is a homeomorphism. 

4 1 . Lx This is assertion 4 0. H.  

4 1 . Qx This follows from 4 1 . Nx and 4 1 . Px. 





Chapter IX 

Cellular Techniques 

42 . Cellular Spaces 

I 42' 1 J Definition of Cellular Spaces 

In this section, we study a class of topological spaces that play a very 
important role in algebraic topology. Their role in the context of this book 
is more restricted : this is the class of spaces for which we learn how to 
calculate the fundamental group . 1 

A zero-dimensional cellular space is just a discrete space . Points of a a­
dimensional cellular space are also called (zero-dimensiona� cells , or 0-cells . 

A one-dimensional cellular space is a space that can be obtained as follows . 
Take any 0-dimensional cellular space Xo . Take a family of maps i.{)a : 8° --+ 
Xo . Attach the sum of a family of copies of D1 to Xo via <pu (the copies are 
indexed by the same indices a as the maps <p0} 

The images of copies of the interior parts Int D1 of D1 are called (open ) ! ­
dimensional cells , 1 -cells , one-cells , or  edges . The subsets obtained from D1 

are closed 1 -cells . The cells of Xo ( i .e . , points of Xo ) are also called vertices . 

1This class of spaces was introduced by J. H. C. Whitehead. He called these spaces CW ­
complexes , and they are known under this name . However, it is not a good name for plenty 
of reasons. With very rare exceptions (one of which is CW -complex, the other is simplicial 
complex) , the word complex is used nowadays for various algebraic notions , but not for spaces. 
We have decided to use the term cellular space instead of CW - complex following D. B .  Fuchs and 
V.  A.  Rokhlin [2]. 

-
279 
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Open 1-cells and 0-cells constitute a partition of a one-dimensional cellular 
space . This partition is included in the notion of cellular space . In other 
words, a one-dimensional cellular space is a topological space equipped with 
a partition that can be obtained in this way. 2 

A two-dimensional cellular space is a space that can be obtained as follows . 
Take any cellular space X1 of dimension 0 or 1 .  Take a family of continuous3 

maps <.pcx : 81 --t x1 · Attach the sum of a family of copies of D2 to x1 VIa 

<.pcx :  

The images of the interior parts of copies of D2 are (open ) 2-dimensional 
cells , 2-ce//s , two-cells , or faces . The cells of X 1 are also regarded as cells 
of the 2-dimensional cellular space . Open cells of both kinds constitute a 
partition of a 2-dimensional cellular space . This partition is included in the 
notion of cellular space , i . e . , a two-dimensional cellular space is a topological 
space equipped with a partition that can be obtained in the way described 
above . The set obtained out of a copy of the ,...-hole D2 is a closed 2-ce// . 

A cellular space of dimension n is defined in a similar way: This is a 
space equipped with a partition . It is obtained from a cellular space Xn - 1  

of dimension less than n by attaching a family of  copies of  the n-disk Dn 

via a family of continuous maps of their boundary spheres: 

Xn - 1  Uu<p, (U Dn) . 
ex 

The images of the interiors of the attached n-disks are (open ) n-dimensional 
cells or simply n-ee/Is . The images of the entire n-disks are closed n-ee/Is . 
Cells of Xn- 1 are also regarded as cells of the n-dimensional cellular space . 

20ne-dimensional cellular spaces are also associated with the word graph.  However,  rather 
often, this word is used for objects of other classes . For example , one can call in this way one­
dimensional cellular spaces in which attaching maps of different one-cells cannot coincide, or the 
boundaries of one-cells cannot consist of a single vertex. \Vhen one-dimensional cellular spaces 
are to be considered anyway, inspite of this terminological disregard, they are called multigraphs 
or pseudographs . Furthermore, sometimes one includes an additional structure into the notion 
of graph-say. a choice of orientation on each edge . Certainly, all of these variations contradict 
a general tendency in mathematical terminology to give simple names to decent objects of a 
more general nature , passing to more complicated terms while adding structures and imposing 
restrictions . HoweYer. in t his specific situation there is no hope to implement that tendency. Any 
attempt to fix a meaning for the word graph apparently only contributes to this chaos , and we just 
keep this word away from important formulations, using it as a short informal synonym for the 
more formal term of one-dimensional cellular space. (Other overused common words , like curve 
and surface , also deserve this sort of caut ion . )  

3In the above definition o f  a 1-dimensional cellular space, the attaching maps 'P o.  were also 
continuous, although their continuity was not required since any map of so to any space is 
continuous . 
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Each of the mappings C{Ja is an attaching map, and the restriction of the 
corresponding factorization map to the n-disk Dn is the characteristic map. 

A cellular space is obtained as the union of an increasing sequence of 
cellular spaces Xo c X1 c · · · c Xn c . . .  obtained in this way from 
each other . The sequence may be finite or infinite. In the latter case, the 
topological structure is introduced by saying that the cover of the union by 
the sets Xn is fundamental , i . e . , a set U C U�=O Xn is open iff its intersection 
U n Xn with each Xn is open in Xn . 

The partition of a cellular space into its open cells is a cellular decompo­
sition. The union of all cells of dimension less than or equal to n of a cellular 
space X is the n-dimensional skeleton of X .  This term may be misleading 
since the n-dimensional skeleton may contain no n-cells , and so it may coin­
cide with the ( n - 1  )-dimensional skeleton. Thus , the n-dimensional skeleton 
may have dimension less than n. For this reason, it is better to speak about 
the nth skeleton or n-skeleton. 

42. 1 .  In a cellular space , skeletons are closed. 

A cellular space is finite if it contains a finite number of cells . A cellular 
space is countable if it contains a countable number of cells . A cellular space 
is locally finite if each of its points has a neighborhood that meets finitely 
many cells . 

Let X be a cellular space . A subspace A c X is a cellular subspace of 
X if A is a union of open cells and together with each cell e contains the 
closed cell e. This definition admits various equivalent reformulations . For 
instance, A C X is a cellular subspace of X iff A is both a union of closed cells 
and a union of open cells . Another option: together with each point x E A 
the subspace A contains the closed cell e E x .  Certainly, A is equipped 
with a partition into the open cells of X contained in A. Obviously, the 
k-skeleton of a cellular space X is a cellular subspace of X .  

42.2 .  Prove that the union and intersection o f  any collection o f  cellular subspaces 
are cellular subspaces . 

42. A .  Prove that a cellular subspace of a cellular space is a cellular space . 
(Probably, your proof will involve assertion 43.Fx. ) 

42 .A . 1 .  Let X be a topological space, and let X1 c X2 c . . .  be an increasing 
sequence of subsets constituting a fundamental cover of X. Let A c X be a 
subspace; denote A n  Xi by Ai · Let one of the following conditions be fulfilled : 
1 )  Xi is open in X for each i ;  
2) A i  i s  open in X for each i ;  
3) Ai  i s  closed in  X for each i .  
Then { Ai } i s  a fundamental cover o f  A.  
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I 42'2 J First Examples 

4 2.B.  A cellular space consisting of two cells , where one is a 0-cell and the 
other one is an n-cell , is homeomorphic to sn . 

4 2. C. Represent Dn with n > 0 as a cellular space made of three cells. 

4 2.D.  A cellular space consisting of a single 0-cell and q one-cells is a bou­
quet of q circles . 

42 .E. Represent torus 81 x 81 as a cellular space with one 0-cell , two 1-cells , 
and one 2-cell . 

42 .F. How would you obtain a presentation of torus 81 X 81 as a cellular 
space with 4 cells from a presentation of 81 as a cellular space with 2 cells? 

42. 3. Prove that if X and Y are finite cellular spaces, then X x Y has a natural 
structure of a finite cellular space . 

42 .4 *. Does the statement of Problem 42. 3 remain true if we skip the finiteness 
condition in it? If yes , prove this; if no , find an example in which the product is 
not a cellular space . 

42 .  G. Represent the sphere sn as a cellular space such that the spheres 
S0 c 81 c 82 c · · · c sn- l are its skeletons . 

42 .H. Represent �pn as a cellular space with n + 1 cells . Describe the 
attaching maps of the cells . 

42. 5. Represent ICPn as a cellular space with n + 1 cells . Describe the attaching 
maps of its cells . 

42. 6. Represent the following topological spaces as cellular ones 
(a) handle; (b) Mobius strip ; (c) S1 x I , 
(d) sphere with p (e) sphere with p 

handles ; cross-caps . 

42. 7. What is the minimal number of cells in a cellular space homeomorphic to 
(a) Mobius strip ; (b) sphere with p (c) sphere with p 

handles; cross-caps? 

42 .8 .  Find a cellular space where the closure of a cell is not equal to a union of 
other cells . What is the minimal number of cells in a space containing a cell of 
this sort? 
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42. 9. Consider the disjoint sum of countably many copies of the closed interval 
I and identify the copies of 0 in all of them. Represent the result (which is the 
bouquet of the countable family of intervals) as a countable cellular space . Prove 
that this space is not first countable. 

42 .1. Represent JR1 as a cellular space. 

42. 1 0. Prove that for any two cellular spaces homeomorphic to 1R.1 there exists a 
homeomorphism between them which homeomorphically maps each cell of one of 
them onto a cell of the other one . 

42 .J. Represent JR.n as a cellular space . 

Denote by lR.00 the union of the sequence of Euclidean spaces JR.° C 
JR.1 C · · · C JR.n C canonically included to each other : JR.n = { x E JR.n+l : 
Xn+l = 0} . Equip lR.00 with the topological structure for which the spaces 
JR.n constitute a fundamental cover . 

42 .K. Represent JR.<)() as a cellular space . 

42. 1 1 .  Show that lR.00 is not metrizable. 

I 42'3 J Further Two-Dimensional Examples 

We consider a class of 2-dimensional cellular spaces that admit a simple 
combinatorial description. Each space in this class is a quotient space of a 
finite family of convex polygons by identification of sides via affine homeo­
morphisms . The identification of vertices is determined by the identification 
of the sides . The quotient space has a natural decomposition into 0-cells , 
which are the images of vertices ; 1-cells , which are the images of sides ; and 
faces , which are the images of the interior parts of the polygons . 

To describe such a space , we first need to show what sides are identi­
fied . Usually this is indicated by writing the same letters at the sides to be 
identified . There are only two affine homeomorphisms between two closed 
intervals .  To specify one of them, it suffices to show the orientations of the 
intervals that are identified by the homeomorphism. Usually this is done 
by drawing arrows on the sides . Here is a description of this sort for the 
standard presentation of torus 81 x 81 as the quotient space of square : 

b 

aD a 

b 

We can replace a picture by a combinatorial description. To do this , put 
letters on all sides of the polygon, go around the polygons counterclockwise 
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and write down the letters that stay at the sides of polygon along the con­
tour . The letters corresponding to the sides whose orientation is opposite 
to the counterclockwise direction are put with exponent -1 .  This yields a 
collection of words , which contains sufficient information about the family 
of polygons and the partition. For instance , the presentation of the torus 
shown above is encoded by the word ab- 1 a- 1 b . 

42. 1 2. Prove that : 

( 1 )  the word a- 1 a describes a cellular space homeomorphic to S2 , 
(2 )  the word aa describes a cellular space homeomorphic to JRP2 , 
(3) the word aba- 1 b- 1 c describes a handle , 
(4) the word abcb- 1 describes cylinder S1 X I ,  
(5 )  each of  the words aab and abac describe Mobius strip, 
(6) the word abab describes a cellular space homeomorphic to JRP2 , 
(7) each of the words aabb and ab- 1 ab describe Klein bottle, 
(8) the word 

a1 b1 a! 1 b! 1 a2 b2a2 1 b2 1 . . .  a9b9a; 1 b; 1 

describes sphere with g handles, 
(9) the word a1 a1 a2a2 . . .  a9a9 describes sphere with g cross-caps. 

142' 4j Embedding in Euclidean Space 

42 .L .  Any countable 0-dimensional cellular space can be embedded in R 

42 .M. Any countable locally finite !-dimensional cellular space can be em­
bedded in JR3 . 

42. 1 3. Find a 1-dimensional cellular space which you cannot embed in JR2 . (We 
do not ask you to prove rigorously that no embedding is possible . )  

42 .N. Any finite dimensional countable locally finite cellular space can be 
embedded in a Euclidean space of sufficiently high dimension. 

42 .N. 1 .  Let X and Y be topological spaces such that X can be embedded in JR.P , 
Y can be embedded in JR.q , and both embeddings are proper maps. (See 19'3x; 
in particular , their images are closed in JR.P and )R.Q , respectively. ) Let A be a 
closed subset of Y .  Assume that A has a neighborhood U in Y such that there 
exists a homeomorphism h :  Cl U ___, A x I mapping A to A x 0. Let cp :  A ___, X 
be a proper continuous map. Then the initial embedding X ___, JR.P extends to 
an embedding X u'P Y ___, JR.P+q+l .  
42 .N. 2. Let X be a locally finite countable k-dimensional cellular space , A the 
( k - 1 )-skeleton of X. Prove that if A can be embedded in JR.P , then X can be 
embedded in JR.P+k+ l . 

42.  0. Any countable locally finite cellular space can be embedded in lR00 • 

42 .P. Any finite cellular space is metrizable . 

4 2. Q.  Any finite cellular space is normal . 
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42 .R.  Any countable cellular space can be embedded in :IR00 • 

42. 8. Any cellular space is normal . 

42.  T. Any locally finite cellular space is metrizable . 

I 42'5x J Simplicial Spaces 

285 

Recall that in 24'3x we introduced a class of topological spaces : simpli­
cial spaces . Each simplicial space is equipped with a partition into subsets ,  
called open simplices , which are indeed homeomorphic to open simplices of 
Euclidean space . 

4 2. Ux . Any simplicial space is cellular , and its partition into open simplices 
is the corresponding partition into open cells . 
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43x . Topological Propert ies of Cellular 

Spaces 

The present section contains assertions of mixed character. For example, 
we study conditions ensuring that a cellular space is compact ( 43. Jx) or 
separable (43.Nx) . We also prove that a cellular space X is connected, iff X 
is path-connected ( 43.Rx) , iff the 1-skeleton of X is path-connected ( 43. Ux) . 
On the other hand, we study the cellular topological structure as such . For 
example , any cellular space is Hausdorff (43.Ax) .  Further , it is not clear 
at all from the definition of a cellular space that a closed cell is the closure 
of the corresponding open cell (or that closed cells are closed sets) . In this 
connection , the present section includes assertions of technical character . 
(We do not formulate them as lemmas to individual theorems because often 
they are lemmas for several assertions . )  For example : closed cells constitute 
a fundamental cover of a cellular space ( 4 3. Cx) . 

We notice that in textbooks (say, in the textbook [2] by Fuchs and 
Rokhlin) a cellular space is defined as a Hausdorff topological space equipped 
by a cellular partition with two properties : 
( C ) each closed cell meets only a finite number of (open) cells ;  
( W) closed cells constitute a fundamental cover of the space . 

The results of assertions 43.Ax, 43.Bx, and 43.Ex imply that cellular 
spaces in the sense of the above definition are cellular spaces in the sense 
of Fuchs - Rokhlin ' textbook ( i .e . ,  in the standard sense) , the possibility of 
inductive construction for which is proved in [2] . Thus , both definitions of 
a cellular space are equivalent . 

An advice to the reader: first try to prove the above assertions for finite 
cellular spaces. 

4 3.Ax .  Each cellular space is a Hausdorff topological space . 

4 3.Bx .  In a cellular space , the closure of any cell e is the closed cell e. 

43. Cx. Closed cells constitute a fundamental cover of a cellular space . 

4 3. Dx .  Each cover of a cellular space by cellular subspaces is fundamental. 

43 .Ex .  In a cellular space , any closed cell meets only a finite number of 
open cells . 

4 3. Fx .  If A is cellular subspace of a cellular space X,  then A is closed in 
X.  

4 3. Gx . The space obtained as a result of pasting two cellular subspaces 
together along their common subspace, is cellular . 
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4 3. Hx .  If a subset A of a cellular space X intersects each open cell along 
a finite set , then A is closed . Furthermore, the induced topology on A is 
discrete .  

4 3.Ix .  Prove that each compact subset of a cellular space meets a finite 
number of cells . 

4 3.Jx Corollary. A cellular space is compact iff it is finite . 

43 .Kx .  Any cell of a cellular space is contained in a finite cellular subspace 
of this space . 

4 3.Lx .  Any compact subset of a cellular space is contained in a finite cellular 
subspace . 

43 .Mx .  A subset of a cellular space is compact iff it is closed and meets 
only a finite number of open cells . 

4 3. Nx .  A cellular space is separable iff it is countable . 

4 3. Ox . Any path-connected component of a cellular space is a cellular sub­
space . 

4 3.Px.  A cellular space is locally path-connected . 

4 3. Qx . Any path-connected component of a cellular space is both open and 
closed. It is a connected component . 

4 3.Rx .  A cellular space is connected iff it is path-connected. 

4 3. Sx .  A locally finite cellular space is countable iff it has countable 0-
skeleton. 

4 3. Tx. Any connected locally finite cellular space is countable. 

4 3. Ux . A cellular space is connected iff its ! -skeleton is connected. 
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44 . Cellular Constructions 

I 44' 1 J Euler Characteristic 

Let X be a finite cellular space . Let ci (X) denote the number of its cells 
of dimension i .  The Euler characteristic of X is the alternating sum of ci (X) :  

x(X) = co (X) - c1 (X) + c2 (X) - · · · + ( - l ) i ci (X) + . . . .  
44 . A .  Prove that the Euler characteristic is additive in the following sense: 
for any cellular space X and its finite cellular subspaces A and B we have 

x(A U B) = x (A) + x(B) - x(A n B) . 

44 .B. Prove that the Euler characteristic is multiplicative in the following 
sense : for any finite cellular spaces X and Y, the Euler characteristic of 
their product X X y is x(X)x (Y) . 

I 44'2 J Collapse and Generalized Collapse 

Let X be a cellular space , e and f its open cells of dimensions n and 
n - 1 ,  respectively. Suppose : 

• the attaching map 'Pe : sn- 1 ---+ Xn-1 of e determines a homeomor­
phism of the open upper hemisphere s�- 1 onto f ,  

• f does not meet the images o f  attaching maps o f  cells distinct from 
e ,  

• the cell e i s  disjoint from the image o f  the attaching map o f  any 
cell . 

44 . C. X "  ( e  U f)  is a cellular subspace of X.  

44 .D.  X "  (e U f)  is a deformation retract of X .  
We say that X "  (e  U f)  is obtained from X by an elementary collapse , 

and we write X �  X "  (e  U f) . 
If a cellular subspace A of a cellular space X is obtained from X by a 

sequence of elementary collapses , then we say that X is collapsed onto A 
and also write X �  A. 

44 . E. Collapsing does not change the Euler characteristic: if X is a finite 
cellular space and X �  A, then x(A) = x(X) . 
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As above , let X be a cellular space , let e and f be its open cells of dimen­
sions n and n - 1 ,  respectively, and let the attaching map 'Pe : sn ---t Xn-1 
of e determine a homeomorphism of s�- 1 onto f .  Unlike the preceding 
situation, here we assume neither that f is disjoint from the images of at­
taching maps of cells different from e , nor that e is disjoint from the images 
of attaching maps of whatever cells . Let Xe : Dn ---t X be a characteristic 
map of e. Furthermore, let 'ljJ : Dn ---t sn- 1 " cp-; 1 (!) = sn- l " s�-l be a 
deformation retraction. 

44 .F. Under these conditions , the quotient space X/ [xe (x) rv 'Pe ('IP (x) ) ] of 
X is a cellular space where the cells are the images under the natural pro­
jections of all cells of X except e and f .  

We say that the cellular space X/ [xe (x) rv 'Pe ('t/J(x) ) ]  i s  obtained by can­
cella tion of cells e and f .  

44 . G. The projection X ---t X/ [xe (x) rv 'Pe ('t/J(x) ) ]  is a homotopy equiva­
lence. 

44 . G. 1 .  Find a cellular subspace Y of a cellular space X such that the pro­
jection Y ---+ Y/ [xe (x) ,...., 'Pe ('l/' (x) ) ] would be a homotopy equivalence by Theo­
rem 44 . D. 

44 . G .2. Extend the map Y ---+ Y "  ( e  U f) to a map X ---+ X' ,  which is a 
homotopy equivalence by 44 . 6x. 

I 44'3xj Homotopy Equivalences of Cellular Spaces 

44 . 1x .  Let X = A u., Dn be the space obtained by attaching an n-disk to a topo­
logical space A via a continuous map 'P : sn- 1 ---+ A.  Prove that the complement 
X "  x of any point x E X "  A admits a (strong) deformation retraction to A.  
44 .2x .  Let X be an n-dimensional cellular space , and let K be a set intersecting 
each of the open n-cells of X at a single point . Prove that the (n - I )-skeleton 
Xn- 1  of X is a deformation retract of X "  K. 

44 . 3x .  Prove that the complement JRpn '- POint is homotopy equivalent to JRpn- 1 ; 
the complement CP" " point is homotopy equivalent to cpn- 1 . 

44 ·4x .  Prove that the punctured solid torus D2 X 81 " point , where point is an 
arbitrary interior point , is homotopy equivalent to a torus with a disk attached 
along the meridian 81 X 1 . 

44 . 5x .  Let A be cellular space of dimension n, and let 'P :  sn --+ A and 1/J :  sn ...... A 
be two continuous maps . Prove that if 'P and 1/J are homotopic , then the spaces 
X., = A u, D"- 1 and X", = A U.,u Dn+ 1 are homotopy equivalent . 

Below we need a more general fact .  

44 . 6x .  Let f : X __,  Y be a homotopy equivalence , and let 'P : S" - 1  __, X  and ..p' : 
sn- 1 __, Y continuous maps . Prove that if f o ..p "' ..p' , then X u, Dn � Y u,,  D" . 
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44 .  7x.  Let X be a space obtained from a circle by attaching two copies of a disk 
by the maps 81 ---> 81 : z >--+ z2 and 81 ---> 81 : z >--+ z3 , respectively. Find a cellular 
space homotopy equivalent to X with the smallest possible number of cells . 

44 . 8x .  Riddle. Generalize the result of Problem 44 .  7x. 
44 - 9x .  Prove that the space K obtained by attaching a disk to the torus 81 X 81 
along the fibre 81 X 1 is homotopy equivalent to the bouquet 82 V 81 . 
44 - 1 0x.  Prove that the torus 81 X 81 with two disks attached along the meridian 
{ 1} X 81 and parallel 81 X 1 ,  respectively, is homotopy equivalent to 82 . 
44 . 1 1x .  Consider three circles in JR3 : 81 = {x2 + y2 = 1 ,  z = 0} ,  82 = {x2 + y2 = 
1 ,  z = 1 } ,  and 83 = {z2 + (y - 1 ) 2 = 1 ,  x = 0 } .  Since JR3 � 83 '- point ,  we can 
assume that 81 , 82 , and 83 lie in 83 . Prove that the space X = 83 '- (81 u 82 ) is 
not homotopy equivalent to the space Y = 83 '- (81 U 83 ) .  

44 .Hx .  Let X b e  a cellular space , A c X a cellular subspace . Then the 
union (X x 0) U (A x I) is a retract of the cylinder X x I. 

44 ./x .  Let X be a cellular space , A c X a cellular subspace. Assume 
that we are given a map F : X -+ Y and a homotopy h : A x I -+ Y 
of the restriction f = F IA ·  Then the homotopy h extends to a homotopy 
H : X x I -+ Y of F. 

44 . Jx .  Let X be a cellular space , A C X a contractible cellular subspace . 
Then the projection pr : X -+  X/ A is a homotopy equivalence . 

Problem 44 . Jx implies the following assertions . 

44 .Kx .  If a cellular space X contains a closed 1-cell e homeomorphic to 
I ,  then X is homotopy equivalent to the cellular space X/ e obtained by 
contraction of e .  

44 .Lx .  Any connected cellular space is homotopy equivalent t o  a cellular 
space with one-point 0-skeleton. 

44 .Mx .  A simply connected finite 2 -dimensional cellular space is homotopy 
equivalent to a cellular space with one-point 1 -skeleton. 

44 . 1 2x..  Solve Problem 44 . 9x with the help of Theorem 44 . Jx. 
44 . 1 3x .  Prove that the quotient space 

CP2 / [ (zo : z 1 : z2 ) "" (zo : Z1 : z2 ) ]  
of the complex projective plane CP2 i s  homotopy equivalent to 84 • 

Information. We have CP2 / [z ,..__ r (z ) ] � 84 . 

44 .Nx .  Let X be a cellular space , and let A be a cellular subspace of X 
such that the inclusion in : A -+  X is a homotopy equivalence . Then A is a 
deformation retract of X.  
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45 . O ne-Dimensional Cellular Spaces 

I 45' 1 J Homotopy Classification 

4 5. A .  Any connected finite 1 -dimensional cellular space is homotopy equiv­
alent to a bouquet of circles. 

4 5. A . 1  Lemma. Let X be a 1-dimensional cellular space , and let e be a 1-cell 
of X attached by an injectiYe map S0 -+ X0 (i . e . ,  e has two distinct endpoints ) . 
Prove that the project ion X -+ X/ e is a homotopy equivalence . Describe the 
homotopy inYerse map explicit ly. 

4 5.B.  A finite connected cellular space X of dimension one is homotopy 
equivalent to the bouquet of 1 - x(X)  circles, and its fundamental group is 
a free group of rank 1 - x(X) . 

4 5. C Corollary. The Euler characteristic of a finite connected one-dimen­
sional cellular space is invariant under homotopy equivalence . It is not 
greater than one. It equals one iff the space is homotopy equivalent to point. 

4 5. D  Corollary. The Euler characteristic of a finite one-dimensional cel­
lular space is not greater than the number of its connected components . It 
is equal to this number iff each of its connected components is homotopy 
equivalent to a point. 

4 5.E  Homotopy Classification of Finite 1 -Dimensional Cellular 
Spaces .  Finite connected one-dimensional cellular spaces are homotopy 
equivalent, iff their fundamental groups are isomorphic, iff their Euler char­
acteristics are equal. 

4 5. 1 .  The fundamental group of a 2-sphere punctured at n points is a free group 
of rank n - 1 .  

4 5. 2. Prove that the Euler characteristic o f  a cellular space homeomorphic t o  S2 
is equal to 2 .  

4 5. 3  The Euler Theorem. For any convex polyhedron i n  JR3 , the sum o f  the 
number of its vertices and the number of its faces equals the number of its edges 
plus two . 

45 .4 .  Prove the Euler Theorem without using fundamental groups. 

4 5. 5. Prove that the Euler characteristic of any cellular space homeomorphic to 
the torus is equal to 0 .  

Information. The Euler characteristic is homotopy invariant , but the 
usual proof of this fact involves the machinery of singular homology theory, 
which lies far beyond the scope of our book. 
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145'2 J Spanning Trees 

A one-dimensional cellular space is a tree if it is connected , while the 
complement of each of its (open) 1-cells is disconnected. A cellular subspace 
A of a cellular space X is a spanning tree of X if A is a tree and is not 
contained in any other cellular subspace B C X which is a tree . 

4 5.F. Any finite connected one-dimensional cellular space contains a span­
ning tree . 

4 5. G. Prove that a cellular subspace A of a cellular space X is a spanning 
tree iff A is a tree and contains all vertices of X.  

Theorem 4 5. G explains the term spanning tree . 

4 5. H. Prove that a cellular subspace A of a cellular space X is a spanning 
tree iff it is a tree and the quotient space X/ A is a bouquet of circles . 

4 5.1. Let X be a one-dimensional cellular space , A its cellular subspace. 
Prove that if A is a tree, then the projection X ----t X/ A is a homotopy 
equivalence. 

Problems 4 5. F, 4 5. !, and 45 .H provide one more proof of Theorem 4 5. A .  

l45'3x J Dividing Cells 

4 5. Jx .  In a one-dimensional connected cellular space, each connected com­
ponent of the complement of an edge meets the closure of the edge. The 
complement has at most two connected components. 

A complete local characterization of a vertex in a one-dimensional cel­
lular space is its degree . This is the total number of points in the preimages 
of the vertex under attaching maps of all one-cells of the space . It is more 
traditional to define the degree of a vertex v as the number of edges incident 
to v ,  counting with multiplicity 2 the edges that are incident only to v .  

4 5. Kx .  1 }  Each connected component of the complement of a vertex in a 
connected one-dimensional cellular space contains an edge with boundary 
containing the vertex. 2} The complement of a vertex of degree m has at 
most m connected components . 

145' 4x J Trees and Forests 

A one-dimensional cellular space is a tree if it is connected, while the 
complement of each of its (open) 1-cells is disconnected . A one-dimensional 
cellular space is a forest if each of its connected components is a tree . 

4 5.Lx .  Any cellular subspace of a forest is a forest . In particular , any 
connected cellular subspace of a tree is a tree . 
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4 5.Mx .  In a tree , the complement of an edge has two connected compo­
nents .  

4 5. Nx .  In a tree , the complement of a vertex of degree m has m connected 
components .  

4 5. Ox . A finite tree has a vertex of degree one . 

4 5.Px .  Any finite tree collapses to a point and has Euler characteristic one . 

4 5. Qx. .  Prove that any point of a tree is its deformation retract . 

4 5.Rx .  Any finite one-dimensional cellular space that can be collapsed to 
a point is a tree . 

45 .Sx .  In any finite one-dimensional cellular space , the sum of degrees of 
all vertices is twice the number of edges. 

4 5. Tx. A finite connected one-dimensional cellular space with Euler char­
acteristic one has a vertex of degree one . 

4 5. Ux . A finite connected one-dimensional cellular space with Euler char­
acteristic one collapses to a point . 

l45'5xJ Simple Paths 

Let X be a one-dimensional cellular space . A simple path of length n in 
X is a finite sequence (v1 , e 1 , v2 , e2 , . . . , en , Vn+ l ) formed by vertices Vi and 
edges ei of X such that each term appears in it only once and the boundary 
of every edge ei consists of the preceding and subsequent vertices Vi and Vi+ 1 · 
The vertex v1 is the initial vertex, and Vn+l is the final one . The simple path 
connects these vertices . They are connected by a path I ---> X, which is a 
topological embedding with image contained in the union of all cells involved 
in the simple path. The union of these cells is a cellular subspace of X .  It 
is called a simple broken line .  

4 5. Vx . In a connected one-dimensional cellular space, any two vertices are 
connected by a simple path. 

4 5. Wx Corollary. In a connected one-dimensional cellular space X, any 
two points are connected by a path I ---> X which is a topological embedding. 

4 5. 6x .  Can a path-connected space contain two distinct points that cannot be 
connected by a path which is a topological embedding? 

4 5. 7x . Can you find a Hausdorff space with this property? 

4 5.Xx .  A connected one-dimensional cellular space X is a tree iff there 
exists no topological embedding 81 ---> X .  
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4 5. Yx . In a one-dimensional cellular space X ,  there exists a non-null­
homotopic loop 81 ---t X iff there exists a topological embedding 81 ---t X.  

4 5. Zx .  A one-dimensional cellular space is a tree iff any two distinct vertices 
are connected in it by a unique simple path. 

45 .8x .  Prove that any finite tree has fixed point property. 

Cf. 38. 12, 38. 13, and 38. 14 .  

4 5. 9x.  Is this true for each tree? For each finite connected one-dimensional cellular 
space? 
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46 . Fundamental Group of a Cellular 

Space 

146' 1 J One-Dimensional Cellular Spaces 
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4 6.A .  The fundamental group of a connected finite one-dimensional cellular 
space X is a free group of rank 1 - x(X) . 

4 6.B. Let X be a finite connected one-dimensional cellular space , T a span­
ning tree of X,  and xo E T. For each 1-cell e C X -...... T , choose a loop Se that 
starts at xo , goes inside T to e , then goes once along e , and then returns to 
xo in T. Prove that 11"1 (X, xo) is freely generated by the homotopy classes 
of Se · 

146'2 J Generators 

4 6. C. Let A be a topological space , xo E A. Let cp : sk- 1 ---+ A be a 
continuous map , X =  A Ucp Dk . If k > 1 ,  then the inclusion homomorphism 
1r1 (A , xo )  ---+ 1r1 (X, xo ) is surjective . Cf. 4 6. G.4 and 4 6. G. 5. 

4 6.D.  Let X be a cellular space, let x0 be its 0 - cell, and let X1 be the ! ­

skeleton of X .  Then the inclusion homomorphism 

1r1 (X1 , xo ) ---+ 11"1 (X, xo) 
is surjective . 

4 6.E. Let X be a finite cellular space , T a spanning tree of X1 . and xo E T. 
For each cell e c x1 ....... T, choose a loop Se that starts at Xo , goes inside 
T to e , then goes once along e, and finally returns to xo in T. Prove that 
1r1 (X, xo) is generated by the homotopy classes of se . 

4 6. 1 .  Deduce Theorem 32. G from Theorem 4 6. D. 
4 6. 2. Find 1r1 (CPn ) .  

146'3 J Relations 

Let X be a cellular space , xo its 0-cell . Denote by Xn the n-skeleton 
of X.  Recall that X2 is obtained from X1 by attaching copies of the disk 
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D2 via continuous maps r.p01 : 81 ---t X 1 . The attaching maps are circular 
loops in X1 . For each a, choose a path s01 : I ---t X1 connecting r.p01 ( 1 )  with 
xo . Denote by N the normal subgroup of 1r1 (X, xo) generated (as a normal 
subgroup4) by the elements 

TsJr.pu] E 1r1 (X1 , xo ) . 

4 6.F. N does not depend on the choice of the paths Su . 

4 6. G. The normal subgroup N is the kernel of the inclusion homomorphism 
in* : 1r1 (X 1 , xo) ---t 1r1 (X, xo) . 

Theorem 4 6. G can be proved in various ways . For example , we can de­
rive it from the Seifert-van Kampen Theorem (see 4 6. 1x) . Here we prove 
Theorem 46. G by constructing a "rightful" covering space . The inclusion 
N C Ker in* is rather obvious (see 4 6. G. 1 ) .  The proof of the converse in­
clusion involves the existence of a covering p : Y ---t X whose submap over 
the 1-skeleton of X is a covering p1 : Y1 ---t X1 with group N,  and the fact 
that Ker in* is contained in the group of each covering over X 1 that extends 
to a covering over the entire X.  The scheme of the argument suggested in 
Lemmas 1-7 can also be modified . The thing is that the inclusion Xz ---t X 
induces an isomorphism of fundamental groups . It is not difficult to prove 
this , but the techniques involved, though quite general and natural , never­
theless lie beyond the scope of our book. Here we just want to emphasize 
that this result replaces Lemmas 4 and 5 .  

4 6. G. 1  Lemma 1 .  N c Ker i * , cf. 32. J (3) . 

4 6. G .2  Lemma 2. Let P1 : Y1 ---+ X1 be a covering with covering group N .  
Then for any a: and any point y E p1 1 (rp0 ( l ) )  the loop rp0 has a lift 'Pa : S1 ---+ Y1 
with 'Pa ( l )  = y .  

4 6. G. 3 Lemma 3 .  Let Y2 be a cellular space obtained by attaching copies 
of a disk to Y1 along all lifts of attaching maps rp0 . Then there exists a map 
P2 : Y2 ---+ X2 that extends Pl and is a covering. 

4 6. G.4 Lemma 4 ·  Attaching maps of n-cells with n :2: 3 lift to any covering 
space . Cf. 4 1 . Xx and 4 1 .  Yx. 

4 6. G. 5 Lemma 5. Covering p2 : Y2 ---+ X2 extends to a covering of the whole 
X .  

4 6. G. 6  Lemma 6 .  Any loop s : I ---+ X 1  realizing an element of Ker i *  ( i . e . , 
null-homotopic in X ) is covered by a loop of Y .  The covering loop is contained 
in Y1 . 

4 6. G. 7  Lemma 7. N = Ker in* . 

4Recall that a subgroup N is normal if N coincides with all conj ugate subgroups of N. The 

normal subgroup N generated by a set A is the minimal normal subgroup containing A .  As a 

subgroup, N is generated by elements of A and elements conjugate to them . This means t hat 

each element of N is a product of elements conjugate to elements of A .  
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4 6.H. The inclusion in2 : X2 ---+ X induces an isomorphism between the 
fundamental groups of a cellular space and its 2-skeleton. 

4 6. 3. Check that the covering over the cellular space X constructed in the proof 
of Theorem 4 6. G  is universal . 

I 46' 4 J Writing Down Generators and Relations 

Theorems 4 6.E  and 4 6. G imply the following recipe for writing down a 
presentation for the fundamental group of a finite dimensional cellular space 
by generators and relations : 

Let X be a finite cellular space , xo a 0-cell of X.  Let T be a spanning 
tree of the 1-skeleton of X. For each 1-cell e (j_ T of X, choose a loop Se 
that starts at xo , goes inside T to e , goes once along e ,  and then returns 
to xo in T. Let g1 , . . . , 9m be the homotopy classes of these loops . Let 
<p1 , . . .  , 'Pn : S1 ---+ X1 be the attaching maps of 2-cells of X. For each <pi , 
choose a path Si connecting 'Pi ( 1 )  with xo in the 1-skeleton of X.  Express 
the homotopy class of the loop s-; 1<piSi as a product of powers of generators 
9j · Let r1 , . . .  , rn be the words in letters g1 , . . .  , 9m obtained in this way. 
The fundamental group of X is generated by 91 , . . .  , gm , which satisfy the 
defining relations r1 = 1 ,  . . .  , rn = 1 .  

4 6.1. Check that this rule gives correct answers i n  the cases of Jl�pn and S1 x 
S1 for the cellular presentations of these spaces provided in Problems 42.H 
and 42.E. 

In assertion 44 .Mx proved above, we assumed that the cellular space is 
2-dimensional . The reason for this was that at that moment we did not 
know that the inclusion X2 ---+ X induces an isomorphism of fundamental 
groups. 

4 6.J. Each finite simply connected cellular space is homotopy equivalent to 
a cellular space with one-point 1-skeleton . 

I 46'5 J Fundamental Groups of Basic Surfaces 

4 6.K. The fundamental group of a sphere with g handles admits the follow­
ing presentation: 

(a1 , b1 , a2 , b2 , . . .  a9 ,  b9 I a1 b1 a} 1 b} 1 a2b2a2 1 b2 1 . . .  a9b9a; 1 b; 1 = 1 ) .  

4 6.L .  The fundamental group of a sphere with g cross-caps admits the fol­
lowing presentation: 

(a1 , a2 , . . .  a9 I aia� . . .  a� = 1 ) .  

4 6.M. Spheres with different numbers of handles have non-isomorphic fun­
damental groups. 
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When we want to prove that two finitely presented groups are not iso­
morphic , one of the first natural moves is to abelianize the groups. (Recall 
that to abelianize a group G means to quotient G out by the commutator 
subgroup . The commutator subgroup [G, G] is the normal subgroup gener­
ated by the commutators a- 1 b- 1 ab for all a, b E G. Abelianization means 
adding relations ab = ba for any a, b E  G. )  

Abelian finitely generated groups are well known. Any finitely generated 
Abelian group is isomorphic to a product of a finite number of cyclic groups . 
If the abelianized groups are not isomorphic, then the original groups are 
not isomorphic as well . 

4 6. M. 1 .  The abelianized fundamental group of a sphere with g handles is a free 
A belian group of rank 2g (i. e . ,  is isomorphic to Z29 ) . 

4 6.N. Fundamental groups of spheres with different numbers of cross- caps 
are not isomorphic. 

4 6. N. 1 .  The abelianized fundamental group of a sphere with g cross- caps is 
isomorphic to zg- l  X Z2 . 

4 6. 0. Spheres with different numbers of handles are not homotopy equiva­
lent. 

4 6. P. Spheres with different numbers of cross- caps are not homotopy equiv­
alent. 

4 6. Q. A sphere with handles is not homotopy equivalent to a sphere with 
cross- caps. 

If X is a path-connected space , then the abelianized fundamental group 
of X is the !-dimensional (or first) homology group of X and denoted by 
H1 (X) . If X is not path-connected, then H1 (X) is the direct sum of the first 
homology groups of all path-connected components of X. Thus 4 6.M. 1  can 
be rephrased as follows : if F9 is a sphere with g handles , then H1 (F9 )  = 71}9 . 

[46'6x J Seifert-van Kampen Theorem 

To calculate fundamental group , one often uses the Seifert-van Kampen 
Theorem, instead of the cellular techniques presented above . 

4 6. Rx Seifert-van Kampen Theorem. Let X be a path- connected topo­
logical space, let A and B be its open path- connected subspaces covering X,  
and let C = A n  B b e  also path- connected. Then 7fl (X )  can b e  presented as 
the amalgamated product of 11"1 (A) and 11"1 (B) with identified subgroup 11"1 (C) . 
In other words, if xo E C, 

7rl (A , xo) = (a 1 , . . .  , ap I Pl = · · · = Pr = 1 ) , 
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1r1 ( B ,  xo ) = (!31 , . . .  , /3q I 0"1 = · · · = O" s = 1 ) ,  
1r1 ( C, xo ) is generated by its elements 1'1 , . . .  , l't · and inA : C ---. A and 
inB : C ---. B are inclusions, then 1r1 (X, xo ) can be presented as 

(a1 , . . .  , ap , /31 , . . .  , {3q I 

P1 = · · · = Pr = 0"1 = · · · = O" s = 1 , 
inA* (/'1 ) = inB* (/'1 ) , . . .  , inA* bt ) = inB* bt ) ) . 

Now we consider the situation where the space X and its subsets A and 
B are cellular . 

4 6. Sx .  Assume that X is a connected finite cellular space , and A and B 
are two cellular subspaces of X covering X.  Denote A n  B by C.  How are 
the fundamental groups of X,  A, B ,  and C related to each other? 

4 6. Tx Seifert-van Kampen Theorem. Let X be a connected finite cel­
lular space, let A and B be two connected cellular subspaces covering X,  and 
let C = A n B .  Assume that C is also connected. Let xo E C be a 0 -cell . 

1r1 (A , xo ) = (a1 , . . . , ap I P1 = · · · = Pr = 1 ) ,  

1r1 (B , xo) = (/31 , . . .  , /3q I 0"1 = · · · = O"s = 1 ) ,  
and let the group 1r1 ( C, xo ) be generated by the elements 1'1 . . . .  , l't . Denote 
by �i (a1 , . . .  , ap ) and rli (P1 , . . .  , /3q ) the images of the elements l'i {more pr·e­
cisely, their expression via the generators) under the inclusion homomor­
phisms 

1r1 ( C, xo ) ---. 1r1 (A, xo ) and, respectively, 1r1 ( C, xo) ---. 1r1 ( B , xo ) .  
Then 

1r1 (X, xo) = (a1 , . . .  , ap , (31 , · · · · Pq I 

P1 = · · · = Pr = 0"1 = · · · = O" s = 1 , 

6 = 'TJ1 , . . . •  f;t = TJt ) .  
4 6.4x .  Let X ,  A ,  B ,  and C be as above . Assume that A and B are simply 
connected and C has two connected components. Prove that 1r 1  (X ) is isomorphic 
to Z. 
46. 5x .  Is  Theorem 46. Tx a special case of  Theorem 46. Rx? 

4 6. 6x .  I\lay the assumption of openness of A and B in 46. Rx be omitted? 

4 6. 7x . Deduce Theorem 46. G  from the Seifert-van Kampen Theorem 46. Rx. 

4 6. 8x .  Compute the fundamental group of the lens space , which is obtained by 
pasting together two solid tori via the homeomorphism S1 X S1 ---> S1 X S1 : 
(u , v)  >--+ (ukv1 , umvn ) ,  where kn - lm = 1 .  

46. 9x .  Determine the homotopy and the topological type of the lens space for 
m = 0 , 1 .  
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4 6. 1 0x. Find a presentation for the fundamental group of the complement in 
JR3 of a torus knot K of type (p, q) , where p and q are relatively prime positive 
integers . This knot lies on the revolution torus T, which is described by parametric 
equations { x = (2 + cos 21ru) cos 27rv 

y = (2 + cos 21ru) sin 21rv 
z = sin 21ru, 

and K is described on T by equation pu = qv . 

4 6. 1 1x .  Let (X, xo ) and (Y, Yo ) be two simply connected topological spaces with 
marked points , and let Z = X V Y be their bouquet . 

( 1 )  Prove that if X and Y are cellular spaces , then Z is simply connected. 
(2) Prove that if xo and Yo have neighborhoods Ux0 C X and Vy0 C Y that 

admit strong deformation retractions to x0 and y0 , respectively, then Z 
is simply connected . 

(3) Construct two simply connected topological spaces X and Y with a 
non-simply connected bouquet . 

I 46'7x J Group-Theoretic Digression: 
Amalgamated Product of Groups 

At first glance , description of the fundamental group of X given above 
in the statement of the Seifert-van Kampen Theorem is far from being 
invariant : it depends on the choice of generators and relations of other 
groups involved. However ,  this is actually a detailed description of a group­
theoretic construction in terms of generators and relations . After solving 
the next problem, you will get a more complete picture of the subject . 

4 6. Ux . Let A and B be two groups: 

A =  (a1 ,  . . . , ap I P1 = · · · = Pr = 1 ) ,  

B = (/31 ' . . .  ' /3q I (71 = . . .  = () s = 1 ) ' 

and let C be a group generated by '/'1 , . . .  'Yt . Let � : C --7 A and rJ : C --7 B 
be arbitrary homomorphisms . Then 

X =  (a1 ,  . . . , ap , /31 , · · · , /3q I 

P1 = · · · = Pr = (71 = · · · = () s = 1 ,  
� ( '/'1 ) = 'r/h1 ) , . . .  ' �ht ) = rJht ) ) ' 

and homomorphisms <P : A --7 X : ai f--t ai , i = 1 ,  . . .  , p  and 'ljJ : B --7 X : 
/3j f--t /3j , j = 1 ,  . . .  , q take part in commutative diagram 
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A 

� �  
C X 

� /r  
B 

30 1 

and for each group X' and homomorphisms c.p' : A ----+ X' and '¢' : B ----+ X' 
involved in commutative diagram 

A 

� �  
C X' 

� �  
B 

there exists a unique homomorphism ( : X ----+ X' such that diagram 

A / �  C X - - ,.. X' � �  B 

is commutative . The latter determines the group X up to isomorphism. 

The group X described in 4 6. Ux is a free product of A and B with amal­
gamated subgroup C. It is denoted by A *c B.  Notice that the name is not 
quite precise, since it ignores the role of the homomorphisms ¢ and 'lj; and 
the possibility that they may be not injective . 

If the group C is trivial , then A *C B is denoted by A *  B and called the 
free product of A and B .  

4 6. 1 2x .  Is a free group of rank n a free product of n copies of Z? 

4 6. 1 3x .  Represent the fundamental group of Klein bottle as Z * z  Z. Does this 
decomposition correspond to a decomposition of Klein bottle? 

4 6. 14x .  Riddle. Define a free product as a set of equivalence classes of words in 
which the letters are elements of the factors . 

4 6. 1 5x .  Investigate algebraic properties of free multiplication of groups: is it 
associative, commutative and, if it is ,  then in what sense? Do homomorphisms of 
the factors determine a homomorphism of the product? 
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4 6. 1 6x *. Find decomposition of the modular group 

Mod = SL(2 ,  'll) / (-�/ 
() ) - 1  

as a free product '1l 2  * '1l3 . 

r 46'8x J Addendum to Seifert-van Kampen Theorem 

The Seifert-van Kampen Theorem appeared and is used mostly as a 
tool for calculation of fundamental groups .  However , it does not help in 
many situations . For example , it does not work under the assumptions of 
the following theorem. 

4 6. Vx . Let X be a topological space, A and B open sets covering X,  and 
C = A n B .  Assume that A and B are simply connected and C has two 
connected components .  Then 1T1 (X) is isomorphic to Z .  

Theorem 4 6. Vx also holds true i f  we assume that C has two path­
connected components . The difference seems to be immaterial , but the 
proof becomes incomparably more technical . 

Seifert and van Kampen needed a more universal tool for calculation of 
fundamental groups, and theorems they published were much more general 
than Theorem 46.Rx. Theorem 4 6.Rx is all that could find its way from 
the original papers to textbooks . Theorem 46. 4x is another special case 
of their results .  The most general formulation is rather cumbersome , and 
we restrict ourselves to one more special case that was distinguished by 
van Kampen. Together with 46.Rx, it allows one to calculate fundamental 
groups in all situations that are available with the most general formulations 
by van Kampen, although not that fast . We formulate the original version 
of this theorem, but first we recommend starting with a cellular version , 
in which the results presented in the beginning of this section allow one to 
obtain a complete answer about calculation of fundamental groups . After 
that is done consider the general situation . 

First , let us describe the situation common for both formulations . Let 
A be a topological space , B its closed subset , and U a neighborhood of B in 
A such that U "- B is the union of two disjoint sets , M1 and M2 , open in A. 
Put Ni = B U Afi . Let C be a topological space that can be represented as 
(A "- U) U (N1 U N2 ) and such that the sets (A "- U) U N1 and (A "- U) U N2 
with the topology induced from A form a fundamental cover of C .  There 
are two copies of B in C, which come from N1 and N2 . The space A can be 
identified with the quotient space of C obtained by identifying the two copies 
of B via the natural homeomorphism. However , our description begins with 
A, since this is the space whose fundamental group we want to calculate, 
while the space B is auxiliary constructed out of A (see Figure 1 ) .  
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A ....----
- - - - - - - - -

M1 M2 
B 

Figure 1 

In the cellular version of the statement formulated below, it is supposed 
that the space A is cellular and B is its cellular subspace . Then C is also 
equipped with a natural cellular structure such that the natural map C ---+ A 
is cellular . 

4 6. Wx . In the situation described above, assume that C is path-connected 
and xo E C -...... ( B1 U B2 ) .  Let 11"1 ( C, xo ) be presented by generators a 1 , . . .  , an 
and relations 'l/J1 = 1 ,  . . . , '1/Jm = 1 .  Assume that base points Yi E Bi are 
mapped to the same point y under the map C ---+ A, and Ui is a homotopy 
class of a path connecting xo with Yi in C. Let {31 , . . .  , {3p be generators of 
11"1 (B , y) , and let f31i ,  . . .  , {3pi be the corresponding elements of 11"1 (Bi , Yi ) · 
Denote by 'Pli a word representing uif3liui 1 in terms of a 1 , . . .  , an . Then 
11"1 (A, xo ) has the following presentation: 

(a1 , . . .  , an , '"'f  I 'l/J1 = · · ·  = '1/Jm = l , '"'(r.pn = 'P12'"'f ,  . . .  , '"'f'Pp1 = 'Pp2'"'f) . 
4 6. 1 7x.. Using 46. Wx, calculate the fundamental groups of the torus and the Klein 
bottle . 

4 6. 1 8x.  Using 4 6. Wx, calculate the fundamental groups of basic surfaces . 

4 6. 1 9x . Deduce Theorem 46-4x from 46. Rx and 4 6. Wx. 

4 6. 20x.  Riddle. Develop an algebraic theory of the group-theoretic construction 
contained in Theorem 46. Wx. 
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Proofs and Comments 

42. A  Let A be  a cellular subspace of a cellular space X.  For n = 
0 ,  1 ,  . . .  , we see that A n  Xn+l is obtained from A n  Xn by attaching the 
(n+ l )-cells contained in A. Therefore , if A is contained in a certain skeleton, 
then A certainly is a cellular space and the intersections An = A n  Xn , 
n = 0 ,  1 ,  . . . , are the skeletons of A. In the general case , we must verify that 
the cover of A by the sets An is fundamental , which follows from assertion 
3 of Lemma 42 .A . 1  below, Problem 42. 1 , and assertion 43.Fx. 

42. A . 1  We prove only assertion 3 because it is needed for the proof 
of the theorem. Assume that a subset F c A intersects each of the sets Ai 
along a set closed in Ai . Since F n Xi = F n A  is closed in Ai , it follows that 
this set is closed in Xi . Therefore , F is closed in X since the cover {Xi }  
is fundamental . Consequently, F is also closed i n  A, which proves that the 
cover { Ai } is fundamental . 

42 .B This is true because by attaching Dn to a point along the bound­
ary sphere we obtain the quotient space Dn I sn-1 � sn . 

42. C These (open) cells are : a point , the (n - 1 )-sphere sn- 1 without 
this point , the n-ball Bn bounded by sn- 1 : e0 = X  E sn- 1 c Dn , en- 1 = 
sn ......_ x ,  and en = Bn . 

42 .D Indeed , factorizing the disjoint union of segments by the set of 
all of their endpoints , we obtain a bouquet of circles . 

42 .E We present the product I x I as a cellular space consisting of 
9 cells : four 0-cells , the vertices of the square ; four 1-cells , the sides of 
the square ; and a 2-cell , the interior of the square . After the standard 
factorization under which the square becomes a torus , from the four 0-cells 
we -obtain one 0-cell , and from the four 1-cells we obtain two 1-cells . 

42 .F Each open cell o f  the product i s  a product of  open cells of  the 
factors , see Problem 42. 3. 

42.  G Let Sk = sn n JRk+l , where 

1Rk+1 = { (x1 , X2 , . . . , Xk+1 • 0, . . .  , 0) } C ffi.n+1 . 

If we present sn as the union of the constructed spheres of smaller dimen­
sions : sn = u�=O Sk ' then for each k E { 1 ' . . .  ' n} the difference sk ....... sk- 1 
consists of exactly two k-cells : open hemispheres. 

4 2.H Consider the cellular partition o f  sn described in  the solution 
to Problem 42. G. Then the factorization sn ----+ ffi.pn identifies both cells 
in each dimension into one . Each of the attaching maps is the projection 
Dk ----+ ffi.pk mapping the boundary sphere sk- 1 onto ffi.pk-1 . 
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.42 .1 0-cells are all integer points , and 1-cells are the open intervals 
( k ,  k + 1 ) ,  k E Z. 

42.J Since !Rn = lR x · · · x lR (n factors) ,  a cellular structure of !Rn 
can be determined by those of the factors (see 42. 3) .  Thus , the 0-cells are 
the points with integer coordinates . The 1-cells are open intervals with end­
points (k1 , . . .  , ki , . . .  , kn ) and (k1 , . . .  , ki + 1 ,  . . .  , kn ) ,  i . e . ,  segments parallel 
to the coordinate axes. The 2-cells are squares parallel to the coordinate 
2-planes , etc. 

42 .K See the solution to Problem 42. 1. 
42 .L This i s  obvious : each infinite countable 0-dimensional space is 

homeomorphic to N c R 
42 .M We map 0-cells to integer points Ak (k ,  0 ,  0) on the x axis . The 

embeddings of 1-cells will be piecewise linear and performed as follows . Take 
the nth 1-cell of X to the pair of points with coordinates Cn (O ,  2n - 1 ,  1 )  
and Dn (O ,  2n, 1 ) ,  n E N.  I f  the endpoints o f  the 1-cell are mapped t o  Ak 
and Az , then the image of the 1-cell is the three-link polyline AkCnDnAz 
(possibly, closed) . We easily see that the images of distinct open cells are 
disjoint (because their outer third parts lie on two skew lines) . We have thus 
constructed an injection f : X ---t JR3 , which is obviously continuous . The 
inverse map is continuous because it is continuous on each of the constructed 
polylines, which in addition constitute a closed locally-finite cover of f (X) , 
which is fundamental by 1 0. U. 

42 .N Use induction on skeletons and 42.N. 2. The argument is simpli­
fied a great deal in the case when the cellular space is finite. 

42 .N. 1  We assume that X c JRP C JRP+q+l , where JRP is the coordinate 
space of the first p coordinate lines in JRP+q+l , and Y c )RQ c JRP+q+l , 
where )RQ is the coordinate space of the last q coordinate lines in )RP+Q+l . 
Now we define a map f : X U  Y ---t JRP+q+l . Set f (x) = x if x E X,  and 
f (y) = (0 ,  . . .  , 0 , 1 , y ) if y � V = h- 1 (A x [0 , 1/2) ) . Finally, if y E U, 
h(y) = (a , t ) ,  and t E [0 ,  1/2] , then we define 

f (y) = ( ( 1 - 2t)<p(a) , 2t , 2ty) . 
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We easily see that f is a proper map . The quotient map f :  XUcpY ---+ JRP+q+l 

is a proper injection, and , therefore , f is an embedding by 1 9. 0x (cf. 1 9.Px) . 
42 .N. 2  By the definition of a cellular space , X is obtained by attaching 

a disjoint union of closed k-disks to the (k - I )-skeleton of X.  Let Y be 
a countable union of k-balls , A the union of their boundary spheres . (The 
assumptions of Lemma 42 .N. l  is obviously fulfilled : let the neighborhood U 
be the complement of the union of concentric disks with radius 1/2 . )  Thus , 
Lemma 42.N. 2  follows from 42.N. 1 . 

4 2. 0 This follows from 42.N. 2  by the definition of the cellular topology. 
42 .P This follows from 42. 0 and 42.N. 
42 .  Q This follows from 42.P. 
42 .R Try to  prove this assertion at least for !-dimensional spaces. 
42. 8  This can be proved by somewhat complicating the argument used 

in the proof of 43.Ax. 
4 2. T See, [FR, p. 93] . 
42.  Ux We easily see that the closure of any open simplex is canonically 

homeomorphic to the closed n-simplex , and , since any simplicial space � is 
Hausdorff, � is homeomorphic to the quotient space obtained from a disjoint 
union of several closed simplices by pasting them together along entire faces 
via affine homeomorphisms. Since each simplex b. is a cellular space and 
the faces of b. are cellular subspaces of b.,  it remains to use Problem 43. Gx. 

4 3. Ax Let X be a cellular space , x, y E X. Let n be the smallest 
number such that x, y E Xn . We construct their disjoint neighborhoods Un 
and Vn in Xn . Let , for example , x E e ,  where e is an open n-cell . Then let 
Un be a small ball centered at x, and let Vn be the complement (in Xn) of 
the closure of Un . Now let a be the center of an (n+ 1 )-cell , <p : sn ---+ Xn the 
corresponding attaching map . Consider the open cones over <p-1 (Un ) and 
<p- 1 (Vn ) with vertex a. Let Un+l and Vn+1 be the unions of the images of 
such cones over all ( n+ 1 )-cells of X. Clearly, they are disjoint neighborhoods 
of X and y in Xn+1 ·  The sets u = U�n uk and v = U�n vk are disjoint 
neighborhoods of x and y in X.  

43 .Bx Let X be  a cellular space , let e c X be  a cell o f  X,  and let 
'ljJ : Dn ---+ X be the characteristic map of e. As usual , B = Bn c Dn is 
the open unit ball . Since the map 'ljJ is continuous , we have e = '1/J(Dn) = 
'ljJ (Cl B) c Cl('!/J (B) ) = Cl(e) . On the other hand , 'ljJ(Dn ) is a compact set , 
which is closed by 43.Ax, whence e = 'ljJ(Dn) :J Cl(e) . 

43. Cx Let X be a cellular space , Xn the n-skeleton of X,  n E N. 
The definition of the quotient topology easily implies that Xn_ 1 and closed 
n-cells of X form a fundamental cover of Xn . Starting with n = 0 and 
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reasoning by induction, we prove that the cover of Xn by closed k-cells with 
k ::; n is fundamental . Also , since the cover of X by the skeletons Xn is 
fundamental by the definition of the cellular topology, so is the cover of X 
by closed cells (see 1 0. 31) . 

4 3.Dx This follows from assertion 43. Cx, the fact that , by the definition 
of a cellular subspace , each closed cell is contained in an element of the cover , 
and assertion 1 0. 31 .  

4 3.Ex Let X be  a cellular space , Xk the k-skeleton o f  X.  First , we 
prove that each compact set K c Xk meets only a finite number of open 
cells in Xk . We use induction on the dimension of the skeleton. Since the 
topology on the 0-skeleton is discrete, each compact set can contain only a 
finite number of 0-cells of X. Let us perform the step of induction. Consider 
a compact set K C Xn . For each n-cell eo: meeting K, take an open ball 
Uo: c eo: such that KnUo: =!= 0 .  Consider the cover r = {eo: , Xn '-.. U Cl (Uo: ) } .  
Clearly, r is an open cover of K. Since K is compact , r contains a finite 
subcovering . Therefore , K meets finitely many n-cells . The intersection of 
K with the (n - I )-skeleton is closed, and , therefore , it is compact . By the 
inductive hypothesis , this set ( i . e . , KnXn-1 ) meets finitely many open cells . 
Therefore , the set K also meets finitely many open cells . 

Now let ;p : sn- 1 ---* Xn- 1 be the attaching map for the n-cell , F = 
;p(sn- 1 ) c Xn_ 1 . Since F is compact , F can meet only a finite number of 
open cells . Thus , we see that each closed cell meets only a finite number of 
open cells . 

4 3. Fx  Let A be  a cellular subspace o f  X. By  43. Cx, it is sufficient to 
verify that A n e is closed for each cell e of X. Since a cellular subspace is 
a union of open (as well as of closed) cells , i . e . , A = U eo: = U eo: , it follows 
from 43.Ex that we have 

n n 
A n e =  (U eo:) n e =  (U eo:; ) n e e (U eo:; ) n e c A n e  

0: i= 1 i=1 

and , consequently, the inclusions in this chain are equalities. Consequently, 
by 43.Bx, the set A n  e = U�=1 (eo:; n e) is closed as the union of a finite 
number of closed sets . 

4 3. Hx Since , by 43.Ex, each closed cell meets only a finite number of 
open cells , it follows that the intersection of any closed cell e with A is finite 
and consequently (since cellular spaces are Hausdorff) closed, both in X,  and 
a fortiori in e. Since , by 43. Cx, closed cells constitute a fundamental cover , 
the set A itself is also closed . Similarly, each subset of A is also closed in X 
and a fortiori in A. Thus , indeed , the induced topology on A is discrete . 
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4 3. /x Let K C X be a compact subset . In each of the cells ea meeting 
K, we take a point X0 E e0 n K and consider the set A =  {x0 } .  By 43.Hx, 
the set A is closed, and the topology on A is discrete . Since A is compact as 
a closed subset of a compact set , it follows that A is finite. Consequently, 
K meets only a finite number of open cells . 

43 .Jx 1�1  Use 43. Ix. !<=J A finite cellular space is compact as 
the union of a finite number of compact sets - closed cells . 

4 3.Kx We can use induction on the dimension of the cell because the 
closure of any cell meets finitely many cells of smaller dimension . Notice 
that the closure itself is not necessarily a cellular subspace . 

43 .Lx This follows from 43. Ix, 43.Kx, and 42. 2. 
43 .Mx 1�1  Let K be a compact subset of a cellular space . Then K 

is closed because each cellular space is Hausdorff. Assertion 43. Ix implies 
that K meets only a finite number of open cells . 
!<=1  I f  K meets finitely many open cells , then by 43.Kx K lies in a finite 
cellular subspace Y, which is compact by 43. Jx, and K is a closed subset of 
Y .  

4 3.Nx Let X be a cellular space . 1�1  We argue by contradiction . 
Let X contain an uncountable set of n-cells e� . Denote e� by U'{; . Each 
of the sets U'{; is open in the n-skeleton Xn of X.  Now we construct an 
uncountable collection of disjoint open sets in X .  Let a be the center of a 
certain (n+ l )-cell , cp :  sn --t Xn the attaching map of the cell . We construct 
the cone over cp-1 (U'{; ) with vertex at a and denote by u;;+l the union of 
such cones over all (n + 1 )-cells of X .  Clearly, { u;;+l } is an uncountable 
collection of sets open in Xn+l · Then the sets Ua = U�n U� constitute 
an uncountable collection of disjoint sets that are open in the entire X .  
Therefore , X i s  not second countable and , therefore ,  nonseparable . 
!<=J If X has a countable set of cells , then , taking in each cell a countable 
everywhere dense set and uniting them, we obtain a countable set dense in 
the entire X (check this ! ) .  Thus , X is separable . 

4 3. Ox Indeed, any path-connected component Y of a cellular space 
together with each point x E Y entirely contains each closed cell containing 
x, and , in particular , it contains the closure of the open cell containing x .  

4 3. Qx Cf. the argument used in the solution to Problem 43.Nx. 
4 3. Qx This is so because a cellular space is locally path-connected , 

see 43. Px. 
4 3. Rx This follows from 43. Qx. 
4 3. Sx 1�1  Obvious . !<=J  We show by induction that the number 

of cells in each dimension is countable . For this purpose , it is sufficient to 
prove that each cell meets finitely many closed cells . It is more convenient 



Proofs and Comments 309 

to prove a stronger assertion : any closed cell e meets finitely many closed 
cells . Clearly, any neighborhood meeting the closed cell also meets the cell 
itself. Consider the cover of e by neighborhoods each of which meets finitely 
many closed cells . It remains to use the fact that e is compact . 

4 3. Tx By Problem 43. Sx, the 1-skeleton of X is connected . The result 
of Problem 43. Sx implies that it is sufficient to prove that the 0-skeleton of 
X is countable . Fix a 0-cell xo . Denote by A1 the union of all closed 1-cells 
containing xo . Now we consider the set A2-the union of all closed 1-cells 
meeting A1 . Since X is locally finite ,  each of the sets A1 and A2 contains a 
finite number of cells . Proceeding in a similar way, we obtain an increasing 
sequence of !-dimensional cellular subspaces A1 C A2 C · · · C An C . . . , 
each of which is finite .  Let A = U� 1 Ak . The set A contains countably 
many cells . The definition of the cellular topology implies that A is both 
open and closed in X 1 . Since X 1 is connected, we have A = X 1 . 

4 3. Ux !=====- 1 Assume the contrary : let the 1-skeleton X1 be discon-
nected . Then X1 is the union of two closed sets : X1 = X� U X? . Each 
2-cell is attached to one of these sets , whence X2 = X� U X� . A similar 
argument shows that for each positive integer n the n-skeleton is a union of 
its closed subsets . Let X' = U�=O X� and X" = U�=o X� . By the defini­
tion of the cellular topology, X' and X" are closed, and , consequently, X is 
disconnected. ( <= J This is obvious . 

44 . A  This immediately follows from the obvious equality ci (A U B) = 
ci (A) + ci (B) - ci (A n B) . 

44 .B  Here we use the following artificial trick .  We introduce the poly­
nomial XA (t) = co (A) + c1 (A)t + · · · + ci (A)ti + . . . .  This is the Poincare poly­
nomial ,  and its most important property for us here is that x (X) = xx ( - 1 ) . 
Since ck (X x Y) = 'l:�=O ci (X)ck-i (Y) , we have 

XX xY (t) = Xx (t) · XY (t) , 

whence x(X X Y) = XX x Y ( -1 ) = xx ( - 1 ) . XY ( -1 ) = x(X) . x (Y ) .  
44 .  C Set X' = X -...... ( e U f) . I t  follows from the definition that the 

union of all open cells in X' coincides with the union of all closed cells in 
X' , and , consequently, X' is a cellular subspace of X.  

44 -D The deformation retraction o f  Dn to the lower closed hemisphere 
S'.!._- 1 determines a deformation retraction X ---t X -...... ( e U f) . 

44 - E The assertion is obvious because each elementary combinatorial 
collapse decreases by one the number of cells in each of two neighboring 
dimensions . 



310  IX. Cellular Techniques 

44 .F  Let p :  X ---t X' be the factorization map . The space X' has the 
same open cells as X except e and f. The attaching map for each of them 
is the composition of the initial attaching map and p. 

44 . G. 1  Let Y = Xn- 1 Ucp. Dn . Clearly, Y' � Y -..... (e U f) , and so 
we identify these spaces. Then the projection p' : Y ---t Y' is a homotopy 
equivalence by 44 .D. 

44 . G .2  Let { ea } be a collection of n-cells of X distinct from the cell 
e, and let 'Pa be the corresponding attaching maps. Consider the map 
p' : Y ---t Y' . Since 

we have 
X� = Y' u (U, p'ocp, ) (U D�) . 

Q 

Since p' is a homotopy equivalence by 44 . G. l , the result of 44 . 6x implies 
that p' extends to a homotopy equivalence Pn : Xn ---t X� . Using induction 
on skeletons , we obtain the required assertion. 

44 .Hx We use induction on the dimension . Clearly, we should consider 
only those cells which do not lie in A. If there is a retraction 

Pn- 1 : (Xn-1 U A) X I ---t (Xn- 1 X 0)  U (A X I) , 

and we construct a retraction 

Pn : (Xn U A) X I ---t (Xn X 0) U ( (Xn- 1 U A) X I) , 

then it is obvious how, using their "composition" , we can obtain a retraction 

Pn : (Xn U A) X I ---t (Xn X 0) U (A X I) . 

We need the standard retraction p : Dn x I ---t (Dn x 0) U (sn- 1 x I) . (It 
is most easy to define p geometrically. Place the cylinder in a standard 
way in ffi.n+l and consider a point p lying over the center of the upper 
base . For z E Dn x I, let p(z)  be the point of intersection of the ray 
starting at p and passing through z with the union of the base Dn x 0 and 
the lateral area sn-1 x I of the cylinder . )  The quotient map p is a map 
e X I ---t (Xn X 0) u (Xn- 1 X I) . Extending it identically to Xn-1 X I, we 
obtain a map 

Pe : (e X I) U (Xn- 1 X I) ---t (Xn X 0) U (Xn- 1 X I) . 

Since the closed cells constitute a fundamental cover of a cellular space , the 
retraction Pn is thus defined. 

44 .Ix The formulas H(x, 0) = F(x) for x E X  and H(x, t) = h(x, t ) for 
(x ,  t) E A x  I determine a map ii :  (X x 0) U (A x I) ---t Y. By 44 .Hx, there 
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i s  a retraction p :  X x I ---t (X  x 0 )  U (A x I) . The composition H = H o p  
is the required homotopy. 

44 .Jx Let h : A x I ---t A be a homotopy between the identity map 
£f A and the constant map A ---t A : a f-+ xo:..... Consider the homotopy 
h = i o h : A x I ---t X. By Theorem 44 .Ix, h extends to a homotopy 
H : X x I ---t X of the identity map of the entire X. Consider the_ map 
f : X ---t X : x f-+ H(x ,  1 ) .  By the construction of the homotopy h, we 
have f (A) = { xo } .  Consequently, the quotient map of f is a continuous 
map g :  X/ A ---t X . We prove that pr and g are mutually inverse homotopy 
equivalences . To do this we must verify that g o pr "' idx and pr og "' idx;A · 
1 )  We observe that H(x ,  1 )  = g (pr (x) ) by the definition of g .  Since H(x ,  0) = 
x for all x E X ,  it follows that H is a homotopy between idx and the 
composition g o  pr. 
2) If we factorize each fiber X x t by A x t, then, since H(x ,  t) E A for all 
x E A and t E I, the homotopy H determines a homotopy ii : X/ A ---t X/ A 
between idx;A and the composition p o g .  

44 .Mx Let X be the space . By 44 .Lx, we can assume that X has one 
0-cell , and therefore the 1-skeleton X1 is a bouquet of circles . Consider the 
characteristic map 'ljJ : I ---t X1 of a certain 1-cell. Instead of the loop '1/J, it is 
more convenient to consider the circular loop 81 ---t X1 , which we denote by 
the same letter . Since X is simply connected, the loop 'ljJ extends to a map 
f :  D2 ---t X. Now consider the disk D3 . To simplify the notation, we assume 
that f is defined on the lower hemisphere 8'3._ C D3 . Let Y = X U f D3 � X.  
The space Y i s  cellular and i s  obtained by adding two cells t o  X:  a 2- and a 
3-cell . The new 2-cell e , i . e . , the image of the upper hemisphere in D3 , is a 
contractible cellular space . Therefore , we have Y j e � Y,  and Y / e contains 
one 1-cell less than the initial space X. Proceeding in this way, we obtain 
a space with one-point 2-skeleton. Notice that our construction yielded 
a 3-dimensional cellular space . Actually, in our assumptions the space is 
homotopy equivalent to : a point , a 2-sphere , or a bouquet of 2-spheres, but 
the proof of this fact involves more sophisticated techniques (the homology) . 

44 . Nx Let f : X ---t A be a map homotopically inverse to the inclusion 
inA . By assumption, the restriction of f to the subspace A, i . e . , the compo­
sition f o in, is homotopic to the identity map idA . By Theorem 44 . Ix, this 
homotopy extends to a homotopy H :  X x I  ---t A of f. Set p(x) = H(x ,  1 ) ;  
then p(x) = x for all x E A . Consequently, p is a retraction . It remains to 
observe that , since p is homotopic to f, it follows that in op is homotopic 
to the composition inA of ,  which is homotopic to idx because f and in are 
homotopically inverse by assumption. 

4 5.A  Prove this by induction, using Lemma 45.A . 1 . 
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4 5. A . 1 Certainly, the fact that the projection is a homotopy equiv­
alence is a special case of assertions 44 . Kx and 44 . G. However , here we 
present an independent argument , which is more visual in the !-dimensional 
case . All homotopies will be fixed outside a neighborhood of the 1-cell e 
of the initial cellular space X and outside a neighborhood of the 0-cell x o ,  

which is  the image of e in the quotient space Y = X/ e · For this reason , 
we consider only the closures of such neighborhoods. Furthermore , to sim­
plify the notation, we assume that the spaces under consideration coincide 
with these neighborhoods. In this case , X is the 1-cell e with the segments 
h ,  I2 , . . .  , h (respectively, J1 , J2 , . . .  , Jn ) attached to the left endpoint , (re­
spectively, to the right endpoint ) . The space Y is simply a bouquet of all 
these segments with a common point xo . The map f : X ---t Y has the 
following structure: each of the segments Ii and Jj is mapped onto itself 
identically, and the cell e is mapped to xo . The map g : Y ---t X sends 
xo to the midpoint of e and maps a half of each of the segments Is and Jt 
to the left and to the right half of e ,  respectively. Finally, the remaining 
half of each of these segments is mapped (with double extension) onto the 
entire segment . We prove that the described maps are mutually homotopi­
cally inverse. Here it is important that the homotopies be fixed on the free 
endpoints of Is and Jt . The composition f o g  : Y ---t Y has the following 
structure . The restriction of f o g to each of the segments in the bouquet is, 
strictly speaking, the product of the identical path and the constant path, 
which is known to be homotopic to the identical path. Furthermore , the 
homotopy is fixed both on the free endpoints of the segments and on xo . 

The composition g o f maps the entire cell e to the midpoint of e ,  while 
the halves of each of the segments Is and Jt adjacent to e are mapped to 
a half of e , and their remaining parts are extended twice and mapped onto 
the entire corresponding segment . Certainly, the map under consideration 
is homotopic to the identity. 

4 5. B  By 45. A . 1 ,  each connected !-dimensional finite cellular space X 
is homotopy equivalent to a space X' , where the number of 0- and 1-cells 
is one less than in X, whence x(X) = x(X' ) .  Reasoning by induction, we 
obtain as a result a space with a single 0-cell and with Euler characteristic 
equal to x(X) (cf. 44 .E) .  Let k be the number of 1-cells in this space . Then 
we have x (X) = 1 - k, whence k = 1 - x (X) . It remains to observe that k 
is precisely the rank of 1r1 (X) .  

4 5. C This follows from 45.B  because the fundamental group of a space 
is invariant with respect to homotopy equivalences. 

4 5. D  This follows from 45. C. 
4 5. E  By 45.B, if two finite connected !-dimensional cellular spaces have 

isomorphic fundamental groups (or equal Euler characteristics ) , then each 
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of  them i s  homotopy equivalent to a bouquet consisting of  one and the same 
number of circles . Therefore , the spaces are homotopy equivalent . If the 
spaces are homotopy equivalent , then , certainly, their fundamental groups 
are isomorphic ,  and , by 45. C, their Euler characteristics are also equal . 

4 5. Jx Let e be an open cell . If the image I.Pe (S0 ) of the attaching 
map of e is a singleton, then X -...... e is obviously connected. Assume that 
I.Pe (S0 ) = {xo , x1 } . Prove that each connected component of X -...... e contains 
at least one of the points xo and x1 . 

4 5. Kx 1 )  Let X be a connected !-dimensional cellular space , x E X  a 
vertex. If a connected component of X -...... x contains no edges whose closure 
contains x, then , since cellular spaces are locally connected , the component 
is both open and closed in the entire X,  contrary to the connectedness of 
X.  2) This follows from the fact that a vertex of degree m lies in the closure 
of at most m distinct edges . 

4 6. A  See 45.B. 
4 6.B This follows from 45.I (or 44 . Jx) because o f  36.L. 
4 6. C It is sufficient to prove that each loop u : I --+ X is homotopic 

to a loop v with v (I) c A. Let U c Dk be the open ball with radius 2/3 ,  
and let V be the complement in X of a closed disk with radius 1/3 .  By 
the Lebesgue Lemma 1 7. W, the segment I can be subdivided into segments 
h ,  . . .  , IN so that the image of each of them lies entirely in one of the sets 
U or V. 

Assume that u(Iz )  c U. Since any two paths in Dk with the same 
starting and ending points are homotopic , it follows that the restriction u l 11 
is homotopic to a path that does not meet the center a E Dk . Therefore , 
the loop u is homotopic to a loop u' whose image does not contain a . It 
remains to observe that the space A is a deformation retract of X -...... a ,  and , 
therefore , u' is homotopic to a loop v with image lying in A .  

4 6. D  Let s be  a loop at xo .  Since the set s (I) is compact , s (I) is 
contained in a finite cellular subspace Y of X. It remains to apply asser­
tion 4 6. C and use induction on the number of cells in Y .  

4 6.E  This follows from 46.D  and 46.B. 
4 6.F  If we take another collection of paths s� , then the elements T8"' [I.Pa] 

and Ts:,li.Pa] are conjugate in 1r1 (X1 , xo ) ,  and since the subgroup N is normal , 
N contains the collection of elements {Tsa [<pal } iff N contains the collection 
{Ts:, li.Pa] } .  

4 6. G  We can assume that the 0-skeleton of X is the singleton {xo } .  
so that the 1-skeleton X1 is a bouquet of circles. Consider a covering 
Pl : Y1 --+ X1 with group N. Its existence follows from the more gen­
eral Theorem 4 1 .Dx on the existence of a covering with given group . In the 
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case considered, the covering space is a !-dimensional cellular space. Now 
the proof of the theorem consists of several steps , each of which is the proof 
of one of the following seven lemmas . It is also convenient to assume that 
'Pa ( l )  = Xo , so that Ts"' ['Pal = ['Pal · 

4 6. G. 1  Since , clearly, in* ( [cpa] ) = 1 in 7ri (X, xo ) ,  we have in* ( [cpa] ) = 1 
in 1r1 (X, xo ) ,  and ,  therefore , each of the elements ['Pal lies in Ker i * . Since 
the subgroup Ker i* is normal , it contains N, which is the smallest subgroup 
generated by these elements . 

4 6. G.  2 This follows from 4 1 .  Px. 
4 6. G. 3 Let F = P1 1 (xo ) be the fiber over xo . The map pz is a quotient 

map 
Y1 u (U U n; ,y) __. x1 u (u n;) , 

a yEF01 a 

whose submap Y1 --> X1 is PI , and the maps UyEFa D� --> D� are identities 
on each of the disks D� . Clearly, the entire interior of the disk is a trivially 
covered neighborhood for each point x E Int D� C Xz . Now assume that 
for point x E X1 the set U1 is a trivially covered neighborhood of x with 
respect to the covering PI · Let U = U1 U (Ua' '1/Ja' (Ba' ) ) , where Ba' is the 
open cone with vertex at the center of n;, and base cp-;,_,1 (U) . The set U is 
a trivially covered neighborhood of x with respect to pz . 

4 6. G.4 First , we prove this for n = 3 .  So, let p : X --> B be an 
arbitrary covering , cp : 82 --> B an arbitrary map . Consider the subset 
A = 81 X OU l X IuS1 X 1 of the cylinder 81 X I, and let q : 81 X I --t  81 X I I A 
be the factorization map . We easily see that 81 x I I A � 82 . Therefore , we 
assume that q : 81 x I --> 82 . The composition h = cp o q : 81 x I --> B 
is a homotopy between one and the same constant loop in the base of the 
covering . By the Path _!Iomotopy Lifting Theorem 35. C, the homotopy h 
is covered by the map h,  which also is a homotopy between two constant 
paths , and , therefore , the quotient map of h is the map rp : 82 --> X covering 
cp. For n > 3, use 4 1 .  Yx. 

4 6. G. 5 The proof is similar to that of Lemma 3 .  
4 6. G .  6 Since the loop in os : I --> X is null-homotopic , i t  i s  covered by 

a loop , the image of which automatically lies in Y1 . 
4 6. G.  7 Let s be a loop in X1 such that [sl E Ker (i 1 ) * . Lemma 6 

implies that s is covered by a loop s :  I -->  Y1 , whence [sl = (PI ) * ( [s ] ) E N. 
Therefore , Ker in* C N, whence N = Ker in* by Lemma 1 .  

4 6.1  For example , IRP2 is obtained by attaching D2 t o  81 via the map 
cp : 81 __. 81 : z �---+ z2 . The class of the loop cp in 1r1 (81 ) = Z is the doubled 
generator , whence 1r1 (JRP2 ) � Zz , as it should have been expected. The 
torus 81 X 81 is obtained by attaching D2 to the bouquet 81 v 81 via a map 
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r.p representing the commutator o f  the generators o f  1r1 ( 81 V 81 ) . Therefore , 
as expected , the fundamental group of the torus is �} . 

4 6.K See 42. 12  (h) . 
4 6.L  See 42. 12  (i ) . 
4 6.M. 1  Indeed , the single relation in the fundamental group of the 

sphere with 9 handles means that the product of 9 commutators of the 
generators ai and bi equals 1 ,  and so it "vanishes" after the abelianization . 

4 6.N. 1  Taking the elements a1 , . . .  , ag- l ,  and bn = a 1 a2 . . .  a9 as 
generators in the commuted group , we obtain an Abelian group with a 
single relation b� = 1 .  

4 6 .  0 This follows from 4 6. M. 1 .  
4 6. 0  This follows from 46.N. 1 . 
4 6. Q  This follows from 46.M. 1  and 46.N. 1 . 
4 6.Rx \Ve do not assume that you can prove this theorem on your own. 

The proof can be found , for example , in [5] . 
4 6. Sx Draw a commutative diagram that contains all inclusion homo­

morphisms induced by all inclusions occurring in this situation. 
4 6. Tx In Section 46'7x we will see that the group presented as above 

up to canonical isomorphism does not depend on the choice of generators 
and relations in 1r1 (A, xo ) and 1r1 ( B,  xo) and the choice of generators in 
7fl (C, xo ) .  Therefore we can use the presentation which is most convenient 
for us . We derive the theorem from Theorems 46.D  and 46. G. First of 
all ,  it is convenient to replace X,  A, B ,  and C by homotopy equivalent 
spaces with one-point 0-skeletons . We do this with the help of the following 
construction. Let Tc be a spanning tree in the 1-skeleton of C. We complete 
Tc to a spanning tree TA ::J Tc in A, and also complete Tc to a spanning 
tree TB ::J Tc .  The union T = TA U  TB is a spanning tree in X. It remains 
to replace each of the spaces under consideration with its quotient space 
by a spanning tree . Thus , the 1-skeleton of each of the spaces X,  A, B ,  
and C either coincides with the 0-cell xo , or is a bouquet of circles . Each 
of the circles of the bouquets determines a generator of the fundamental 
group of the corresponding space . The image of 'Yi E 1r1 ( C, xo) under the 
inclusion homomorphism is one of the generators , let it be ai (f3i ) in 1r1 (A ,  xo ) 
(respectively, in 1r1 ( B, xo ) ) . Thus , we have �i = ai and 'r/i = !3i . The relations 
�i = 'r/i and , in this case, ai = ,Bi , i = 1 ,  . . . , t, arise because each of the circles 
lying in C determines a generator of 1r1 (X, xo) . Assertion 4 6. G implies that 
all remaining relations are determined by the attaching maps of the 2-cells 
of X,  each of which lies in at least one of the sets A or B and , hence , is a 
relation between the generators of the fundamental groups of these spaces. 
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4 6. Ux Let F be a free group with generators a1 , . . .  , ap , !31 , . . .  , /3q · By 
definition , the group X is the quotient group of F by the normal hull N of 
the elements 

{p1 , · · · ' Pr ,  0"1 , · · · ' O"s , �('Yl ) ry(1'1 ) - l , · · · , �('Yt )'I]('Yt ) - 1 } .  
Since the first diagram is commutative , it follows that the subgroup N lies 
in the kernel of the homomorphism F --? X' : ai f---+ rp' (ai ) ,  f3i f---+ 'lj;' (ai ) · 
Consequently, there is a homomorphism ( : X --? X' . Its uniqueness is 
obvious . Prove the last assertion of the theorem on your own. 

4 6. Vx Construct a universal covering of X. 



Hints , Comments , 

Advices , Solutions , and 

Answers 

1 . 1  The set {0}  consists of one element , which is the empty set 0 .  
Certainly, this element itself is the empty set and contains no elements, but 
the set { 0} consists of a single element 0 .  

1 .  2 1 )  and 2 )  are correct , while 3) is not . 
1 .  3 Yes ,  the set { { 0} }  is a singleton: its single element is the set { 0 } .  
1 . 4 2 ,  3 ,  1 ,  2 ,  2 ,  2 ,  1 ,  2 for x # 1/2 and 1 if x = 1/2 .  
1 . 5  (a) { 1 , 2 , 3 , 4} ; (b ) { } ; (c) {- 1 , -2 , -3 , -4 , -5 , -6 ,  . . .  } 
1 . 8  The set of solutions for a system of equations is equal to the inter­

section of the sets of solutions of individual equations in the system. 
2. 1 The solution involves the equality Ua (aa ; +oo) = ( inf aa ; +oo) . 

Prove it . By the way, the collection of closed rays [a ; +oo) is not a topo­
logical structure since it may happen that Ua [aa ; +oo) = (ao ; +oo) (give an 
example ) . 

2. 2 Yes ,  it is . The proof almost literally coincides with the solution to 
the preceding problem. 

2. 3 The main point here is to realize that the axioms of topological 
structure are conditions on the collection of subsets , and if these conditions 
are fulfilled, then the collection is a topological structure . The second col­
lection is not a topological structure because it contains the sets {a} and 
{ b, d} , but does not contain {a ,  b, d} = {a} U { b, d} . Find two elements of 

-
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the third collection such that their intersection does not belong to it . By 
this you would prove that this is not a topology. Finally, we easily see that 
all unions and intersections of elements of the first collection still belong to 
the first collection, which thus is a topological structure . 

2. 1 0  The following sets are closed 

( 1 )  in a discrete space : all sets ; 
(2 )  in an indiscrete space: only the sets that are also open, i . e . , the 

empty set and the whole space ; 
(3) in the arrow: 0 ,  the whole space and segments of the form [0 , a] ; 
(4) in t; :  the sets X, 0 , {b ,  c , d} , {a ,  c, d} , {b ,  d} , {d} , and {c ,  d} ; 
(5 )  in IRT1 :  all finite sets and the whole R 

2. 1 1  Here it is important to overcome the feeling that the question is 
completely obvious . Why is (0 ,  1] not open? If (0 ,  1 ]  = Ua< (aa< , ba< ) ,  then 
1 E (aa<0 , ba<0 ) for some ao , whence ba<o > 1 ,  and it follows that Ua< (aa< , ba< ) =f­
(0 ,  1 ] . The set 

lR "  (0 ,  1 ] = ( -oo,  0] U ( 1 ,  +oo) 
is not open for similar reasons . On the other hand , we have 

oc [ 1 ] 00 ( n + 1 ) 
(0 ,  1] = !J1 ;;: •  1 = [l 0 ,  -n- . 

2. 1 3  Verify that n = {U I X "  u E F} is a topological structure . 
2. 14 A control sum: the number of  such collections i s  14 . 
2. 1 5  By this point , you must already know everything needed for solv­

ing this problem, so solve it on your own. Please , don't be lazy. 
3. 1 Certainly not ! A topological structure is determined by its base as 

the set of unions of all collections of sets in the base . 
3. 2 

( 1 )  A discrete space admits the base consisting of all one-point subsets 
of the space , and this base is minimal . (Why?) 

(2 )  For a base in t; ,  we can take , say, { {a } ,  {b} , {a , c} , {a , b , c, d} } .  
(3) The minimal base in an indiscrete space is formed by a single set : 

the whole space . 
(4) In the arrow, { [O , +oo) , (r, +oo) }rEIQ+ is a base . 

3. 3 We show that by removing any element from any base of the 
standard topology of the line we obtain a base of the same topology! Let 
U be an arbitrary element of a base B. Obviously, U is a union of open 
intervals that are shorter than the distance between some two points of U .  



Solutions, and Answers 319  

We would need at least two such intervals. Each of  them, in  turn , i s  a union 
of sets in B. U is not involved in these unions since U is not contained in 
such short intervals . Hence , U is a union of elements in B distinct from U ,  
and i t  can be replaced by this union in  any presentation o f  an open set as a 
union of elements of the base . 

3.4 The whole topological structure is its own base . So, the question 
is, when is this the only base . No open set in such a space is the union of 
two open sets distinct from the entire space . Hence , open sets are linearly 
ordered by inclusion. (The notion of linear order is discussed in detail in 
Section 7'6 below . )  Furthermore, the space should contain no increasing 
infinite sequence of open sets since , otherwise, an open set could be obtained 
as a union of sets in such a sequence . 

3. 5, 3. 6 The following easy lemma may be of use in the solution to 
each of these problems : A = Ua Ba , where Ba E B,  iff V x E A ::1 Bx E B :  
X E Bx C A. 

3. 7 The statement : "B is a base of a topological structure" is equivalent 
to the following: the set of unions of all collections of sets in B is a topological 
structure . �1 is a base of some topology by 3.B and 3. 6. So, you must prove 
analogs of 3. 6 for �2 and �00 • To prove that the structures determined , say, 
by the bases �1 and �2 coincide , you need to prove that each union of disks 
is a union of squares, and vice versa. Is it sufficient to prove that a disk is 
a union of squares? What is the simplest way to do this? (Cf. our advice 
concerning problems 3. 5 and 3. 6. ) 

3. 9 Observe that a nonempty intersection of several arithmetic pro­
gressions is an arithmetic progression . 

3. 1 0  Since the sets { i , i + d, i + 2d, . . . } ,  i = 1 ,  . . . , d , are open and 
pairwise disjoint and their union is the entire N, it follows that each of them 
is closed. In particular , for each prime number p the set {p, 2p, 3p, . . .  } is 
closed . The union of all sets of the form {p, 2p, 3p, . . . } is N "- { 1 } .  Hence , 
if the set of prime numbers were finite , then the set { 1 }  would be open. 
However, it is not a union of arithmetic progressions . 

3. 1 1  The inclusion D1 c D2 means that a set open in the first topology 
( i .e . ,  a set in Dr )  also belongs to D2 . Therefore , you must only prove that 
lR "- {xi }�1 is open in the canonical topology of the line . 

4 . 2  Cf. Problem 4 .B. 
4 -4 Look for the answer to 4 .  7. 
4 .  7 Squares with sides parallel to the coordinate axes and bisectors of 

the coordinate angles , respectively. 
4 . 8  We have D1 (a) = X ,  D1;2 (a) = {a} , and S1;2 (a) = 0 .  
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4 . 9  For example , let X = D1 (0) C IR1 . Then D3;2 (5/6) C D1 (0) . 
4 . 1 0  Three points suffice . 
4 . 1 1  Let R > r and let DR(b) C Dr (a) . Take c E DR(b) and use the 

triangle inequality p(b ,  c) :::; p(b ,  a) + p(a ,  c) . 
4 . 1 2  Put u = b - x and t = x - a. The Cauchy inequality becomes an 

equality iff the vectors u and t have the same direction, i . e . , x lies on the 
segment connecting a and b. 

4 . 1 3  For the metric p(P) with p > 1 ,  this set is the segment connecting 
a and b, while for the metric p( l ) it is a rectangular parallelepiped whose 
opposite vertices are a and b . 

4 . 14 See the proof of 4 .F. 
4 . 1 9  The discrete one . 
4 . 20 Just recall that you need to prove that X "- Dr (a) = {x I p(x ,  a ) > 

r} is open. 
4 . 23 Use the obvious equality X "- Sr (a) = Br (a) U (X "- Dr (a) ) and 

the result of 4 . 20. 
4 . 25 Only the line and discrete spaces . 
4 . 26 By 3. 7, the metrics p(2) , p< 1 l , and p(oo) are equivalent for n = 2 ;  

similar arguments work for n > 2 ,  too. Cf. 4 . 30. 
4 . 21 First , we prove that 02 c 01 provided that p2 (x ,  y) :::; Cp1 (x ,  y) . 

Indeed, the inequality P2 :::; Cp1 implies B�p1 ) (a) C B2f: l . Now let us 
use Theorem 4 . 1.  The inequality cp1 (x ,  y) :::; p2 (x ,  y) can be written as 
PI (x ,  y) :::; � p2 (x ,  y) . Hence , 01 c 02 . 

4 . 28 The metrics PI (x , y) = l x - y l and P2 (x , y) = arctan l x - y l on the 
line are equivalent , but obviously there is no constant C such that Pl :::; C P2 · 

4 . 29 Two metrics PI and P2 are equivalent if there exist c, C, d > 0 
such that PI (x , y) :::; d implies cp1 (x , y) :::; P2 (x , y) :::; Cp1 (x , y) . 

4 . 30 Use the result of Problem 4 . 21. Show that for any pair of metrics 
p(P) , 1 :::; p :::; oo, there exist appropriate constants c and C. 

4 . 31 We have 01 c Oc because PI U, g) :::; pc (f, g) . On the other 
hand , no PI-ball centered at the origin is contained in BiPc) ( 0) since for each 
E > 0 there is a function f such that f0

1
l f (x) l dx < E and max[o , l] lf (x ) l � 1 .  

Therefore , Oc ct. 01 . 
4 . 32 Clearly, the only thing in all five cases which is to be proved and 

is not completely obvious is the triangle inequality. It is also obvious for 
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PI + P2 . Furthermore, 

PI (x ,  y) � PI (x ,  z) + PI (z ,  y)  
� max{p1 (x ,  z) ,  p2 (x , z) } + max{p1 (y ,  z) , P2 (y ,  z ) } .  

A similar inequality holds true for p2 (x ,  y) , and, therefore , max{p1 , P2 } is 
a metric . Construct examples which would prove that neither min{p1 , P2 } ,  
nor pi /  P2 , nor PlP2 is a metric . (To do this , it would suffice to find three 
points with appropriate pairwise distances . )  

4 . 33 Assertion (c) i s  quite obvious . Assertions (a) and (b) follow from 
(c) for j (t) = t/ ( 1  + t) and f (t) = min{ 1 ,  t} , respectively. Thus , it suffices 
to check that these functions satisfy the assumptions of assertion (c) . 

4 - 34 Since we have p/ ( 1  + p) � p and the inequality !p(x ,  y) � 
p(x ,  y) / ( 1  + p(x , y) ) holds true for p(x ,  y) � 1 ,  the statement follows from 
the result of 4 . 29. 

li. 1 In the same way as the relative topology: if L: is a base in X,  then 
L:A = {A n V I V E L:} is a base of the relative topology on A. 

5. 2 

( 1 )  Discrete because (n - 1 ,  n + 1 )  n N = { n } ;  
(2 )  0N = { (k , k + 1 , k + 2 ,  . . .  ) } kEN i  
(3 ) discrete ;  
(4) n = {0, { 2 } ,  { 1 ,  2}  } .  

5. 3 Yes ,  it is open since [0, 1 )  = ( - 1 ,  1 )  n [0 , 2] , and ( - 1 ,  1 )  is open on 
the line . 

5. 5 (�J Set V = U .  (<== ! Use Problem 5.E. 
5. 6 Consider the interval ( - 1 ,  1 )  c lR c JR2 and the open disk with 

radius 1 and center at (0 ,  0) on the plane JR2 . Another solution is suggested 
by the following general statement : any open set is locally closed . Indeed , if 
U is open in X, then U is a neighborhood of each of its points , while U n U 
is closed in U.  

5. 7 The metric topology on A i s  determined by the base L: 1 = {B;.4- (a) I 
a E A} , where B;,4- (a) = {x E A I p(x , a) < r} is the open ball in A with 
center a and radius r . The second topology is determined by the base 
L:2 = {A n Br (x) I x E X} ,  where Br (x) is an open ball in X.  Obviously, 
B;,4- (a) = A n  Br (a) for a E A. Therefore , L: 1 c L:2 , whence 0 1 c 02 . 
However , it may happen that L: 1 # L:2 . It remains to prove that elements of 
L:2 are open in the topology determined by L:1 . For this purpose , check that 
for each point x of an element U E L:2 , there is V E L: 1 such that x E V C U.  

6. 1 We have Int{ a ,  b ,  d} = {a ,  b} since this i s  really the greatest set 
that is open in 'v and contained in {a ,  b, d} . 
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6. 2 The interior of the interval (0 ,  1 )  on the line with the Zariski topol­
ogy is empty because no nonempty open set of this space is contained in 
(0 ,  1 ) .  

6. 3 Indeed, we have 

ClA B =  n F =  n (H n A) = A n  n H = A n Clx B .  

The second equality may obviously be  violated. Indeed, let X = IR2 and let 
A =  B = IR1 . Then IntA B = IR1 =f. 0 = (Intx B) n A.  

6.4 Cl{a} = {a ,  c, d} . 
6. 5 Fr{a} = {c , d} . 
6. 6 1 )  This follows from 6.K. 2) See 6. 7. 
6. 8 The space (X, f h )  contains less open sets , and hence less closed 

sets than (X, 02 ) .  Therefore , the intersection of all sets closed in (X, 01 ) 
and containing A cannot be smaller than the intersection of all sets closed 
in (X, 02 ) and containing A .  

6. 9 Int 1 A c Int2 A .  
6. 1 0  Since Int A is  an open set contained in B ,  i t  i s  also contained in 

Int B, which is the greatest one of such sets . 
6. 1 1  Since the set Int A is open, it coincides with its interior . 
6. 1 2  (8) The obvious inclusion Int A n Int B c A n B implies Int A n 

Int B c Int (A n B ) .  Further, we have Int A =:J Int (A n B) since A =:J A n  B .  
Similarly, Int B =:J Int (A n B) . Therefore , Int A n  Int B =:J Int (A n B) . (9) 
The second statement is false , see Problem 6. 1 3. 

6. 1 3  Let A = [- 1 ,  0] and B = [0, 1] . Then we have Int (A U B) = 
Int [- 1 ,  1] = ( - 1 ,  1 )  =f. ( - 1 ,  0) U (0 ,  1 )  = Int A U  Int B .  

6. 14  We always have Int A U int B C Int (A U B) because Int A U int B 
is an open set contained in A U B .  

6. 1 5  We have A c B ===? Cl A c Cl B ,  Cl Cl A = Cl A, Cl A U Cl B  = 
Cl(A U B) ,  and Cl A n Cl B  =:J Cl(A n B) .  

6. 1 6  Cl{ 1 }  = [0 , 1 ] , Int [O , 1 ] = 0 ,  and Fr(2 ,  +oo) = [0 , 2] . 
6. 1 7  Int ( (O ,  1] U {2} )  = (0 ,  1 ) ,  Cl{ 1/n I n  E N} =  {0} U { 1 /n I n  E N} ,  

and Fr Q = R 
6. 1 8  Cl N = IR, Int (O ,  1 )  = 0 ,  and Fr [O , 1] = R Indeed, any closed set 

in 1Rr1 is either a finite set or the whole line . Therefore , the closure of any 
infinite set is . . .  
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6. 1 9  Yes ,  it does . Indeed, since Dr (x) is closed, we have Cl Br (x) C 
Dr (x) , whence 

Fr Br (x) = Cl Br (x) '- Br (x) C Dr (x) '- Br (x) = Sr (x) . 

6. 20 Yes ,  it does . Indeed, since Br (x) is open, we have Int Dr (x) ::J 
Br (x) , whence 

Fr Dr (x) = Dr (x) '- Int Dr (x) C Dr (x) '- Br (x) = Sr (x) . 

6. 21 Let X =  [0 , l ] U {2}  with metric p (x ,  y)  = l x-y l . Then S2 (0) = {2} 
and Cl B2 (0) = [ 0 ,  1] . 

6. 22. 1 For instance , A =  [0 , 1 ) .  
6. 22. 2 Take A =  [0 , 1 )  u ( 1 ,  2] u (Q n [3 , 4] ) u { 5 } .  
6 .  22. 3 Since Int A C Cl int A and Int A i s  open, it follows that Int A C 

Int Cl Int A. Therefore , Cl Int A c Cl Int Cl Int A. 
Since Int Cl Int A C Cl Int A and Cl Int A is closed , i t  follows that Cl Int A ::J 
Cl Int Cl Int A. 

6. 23 We construct consecutively sets Jn , n � 1 ,  such that Jn i s  a union 
of intervals of length 3-n . Put Jo = UnEz (2n, 2n+ l ) .  If the sets Jo , . . .  , ln- 1 
are constructed , then let Jn be the union of the open middle thirds of the 
segments constituting lR "  u�:6 Jk . If A = U�o lsk . B = U�o J3k+l , 
and C = U�o J3k+2 ' then Fr A = Fr B = Fr C  = Cl (U�o Cl Jk ) · (In a 
similar way, we easily construct an infinite family of open sets with common 
boundary. ) 

6. 24 If the two segments have close endpoints , then each point on one 
of the segments is close to some point on the other one. If two points belong 
to the interior of a convex set , then the convex set contains a cylindric 
neighborhood of the segment connecting the points. 

6. 27  By ( 1 ) ,  we have X E !1.  From (2) it follows that Cl* X = X ,  
whence 0 E !1 .  For U1 , U2 E !1,  (3) implies that U1 n U2 E !1.  Prior to 
checking that the 1st axiom of topological structure is fulfilled, show that 
it implies monotonicity of Cl* : if A c B,  then Cl* A c Cl* B ;  and deduce 
that Cl* (na Aa ) c na Cl* Aa for any family of sets Aa . 
To prove that the operations Cl* and Cl coincide , we recommend, as usual , 
to replace equality of sets by two inclusions and use the fact that a set F is 
closed iff F = Cl* F .  (You must use property ( 4) somewhere ! )  

6. 29 1 )  Nonempty sets ; 2) unbounded sets ; 3 ) infinite sets . 
6. 30 ! ==> I  Since each set in a discrete space i s  closed, the only every­

where dense set is the whole space . 
!<=I Argue by contradiction. If the space X is not discrete, then there 
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exists a point x such that the singleton { x} is not open, and hence X -...... x is 
everywhere dense , as well as the entire X .  

6. 31 There are many ways to  formulate this property. For example : 
the intersection of all nonempty open sets is nonempty. See 2. 6. 

6. 32 1 )  Yes ,  it is . This follows from monotonicity of closure. 2 )  No, 
it is not . The simplest counterexample can be constructed in an indiscrete 
space . We recommend constructing a counterexample in lR and taking Q as 
one of the sets .  

6. 33 Let A and B be two open everywhere dense sets , U an open set . 
Hint : U n (A n B) = (U n A) n B .  

6. 34 Only one of two sets needs to be open. 
6. 35 1) Let {Uk } be a countable family of open everywhere dense 

sets , V a nonempty open set on the line . Construct a sequence of nested 
intervals [a l , bl ] ::J . . . ::J [an , bn] ::J . . .  such that [an , bn] c v n n�=l uk 
and bn - an -----7 0 .  The point sup{an } = inf{bn } belongs to each of the 
segments. Therefore , V n n�1 Uk # 0 , and hence n�1 Uk is everywhere 
dense . 2) The second question is answered in the negative . 

6. 36 Let Un ::J Q, n E N, be open sets .  Since they contain Q,  all of 
them are everywhere dense. First , we enumerate all rational numbers : let 
Q = {xn I n  E N} . After that , we find a segment [a1 , b1 ] c U1 such that x1 tf­
Ul . Since U2 is everywhere dense , it contains a segment [a2 , b2 ] c [a1 , b1 ] n U2 
such that x2 tf- [a2 , b2 ] .  Proceeding further in this way, we obtain a sequence 
{ [an , bn] }  of nested intervals such that 1) [an , bn] C Un and 2) Xn tf_ [an , bn] · 
By a standard theorem of Calculus , there exists a point c E n:'=dan , bn] ·  
Obviously, c E (n:'=1 Un ) -...... Q. 

6. 37 Of course, it cannot because the exterior of an everywhere dense 
set is empty. (We assume that X # 0 . )  

6 .  38 It is empty. 
6. 39 Yes ,  it is . 
6. 4 0  It suffices to observe that X -...... Int Cl A =  Cl (X -...... Cl A) = Cl lnt (X-...... 

A) = X. 
6.4 1  1 )  Let F be a closed set in a space X .  Then Fr F has the exterior 

X -...... Int Fr F = (X -...... F) U Int F,  whence Cl (X -...... Int Fr F ) = Cl ( (X -...... F ) U 

Int F ) = X  because Cl (X -...... F ) = (X -...... F) U Fr F.  
2)  Yes ,  this i s  also true . The boundary of  an open set U i s  nowhere dense 
since Fr U is also the boundary of the closed set X -...... U.  
3 )  In  general , the statement i s  not true for arbitrary sets :  for instance , 
Fr Q = R  
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6 .42 Clearly, 

X "  c1 (Q A) = X "  Q Cl Ai = Q(x " Cl Ai ) · 

Now the result follows from 6. 33. 
6. 4 3  This set is Int C l  A .  
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6.44 Let Yn C IR, n E N, be nowhere-dense sets . Since Y1 is nowhere 
dense , there is a segment [a 1 , b1 ] C lR "  Y1 . Since Y2 also is nowhere dense , 
[a1 , b1 ] contains a segment [a2 , b2] C lR "  Y2 , and so on. Proceeding further 
in this way, we obtain a sequence { [an , bn] }  of nested intervals such that 
[an , bn] c lR "  Yn . By a standard theorem of Calculus , there exists a point 
c E n�=dan , bn] ·  Obviously, c E lR '- n�=l Yn =f. 0 .  

6.4 5  For example , each point o f  a finite set A on  the line i s  an adherent 
point of A ,  but not a limit point . 

6 .4 7 The set of limit points of N in 1Rr1 is the whole 1Rr1 . 
6.48  ( 1 )  ===? (2 ) : Consider V = UxEA Ux , where Ux are the neigh­

borhoods that exist by the definition of local closeness , and show that 
A =  V n Cl A . 
(2) ===? (3 ) : Use the definition of the relative topology induced on a subset . 
(3) ===? ( 1 ) :  For neighborhoods Ux , one can take a set independent of x .  

7. 1 No because i t  i s  not antisymmetric . Indeed, - 1  I I  and 1 I - 1 ,  but 
- 1  =f. 1 .  

7. 2 The hypotheses of Theorem 7. J turn into the following restric­
tions on C: C is closed with respect to addition , contains the zero , and no 
nontrivial translation bij ectively maps C onto C.  

7. 6 1 )  0 bviously, the greatest element is maximal and the smallest 
one is minimal , but the converse statements are not true . 2) These notions 
coincide for any subset of a poset iff any two elements of the poset are 
comparable ( i . e . , one of them is greater than the other) . 
(==>I  Indeed , consider , e .g . , a two-element subset . I f  the two elements 
were incomparable , then each of them would be maximal ,  and hence , by 
assumption, the greatest one . However , the greatest element is unique . A 
contradiction. 
(<=I Comparability of any two elements obviously implies that in any subset 
any maximal element is the greatest one , and any minimal element is the 
smallest one . 

7. 9 The relation of inclusion on the set of all subsets of X is a linear 
order iff X is either empty or a singleton . 

7. 1 1  Consider , say, the following condition: for arbitrary a ,  b ,  and c 
such that a -< c and b -<  c, there is an element d such that a ::::; d, b ::::; d, and 



326 Hints, Comments, Advices, 

d -< c. Show that this condition implies that the right rays form a base of 
a topology; show that it holds true in any linearly ordered set . Also show 
that this condition holds true if the right rays form a base of a topology. 

7. 1 3  A point open in the poset topology is maximal in the entire poset . 
Similarly, a point closed in the poset topology is minimal in the entire poset . 

7. 14  Rays of the forms (a ,  oo ) and [a ,  oo ) , the empty set , and the whole 
line . 

7. 1 6  The lower cone of the point . 
7. 1 7  A singleton consisting of an element that is greater than any other 

element of the entire poset . 
9. 1 Yes ,  they do. Let us prove , for example, the latter equality. Let x E 

f- 1 (Y ......_ A) . Then f (x) E Y ......_ A ,  whence f (x) tJ. A.  Therefore , x tj. f- 1 (A) 
and x E X ......_ f- 1 (A) . We have thus proved that f- 1 (Y ......_ A) C X ......_ f- 1 (A) . 
Each step in this argument is reversible . This gives rise to the opposite 
inclusion. 

9. 2 Let us prove ( 13 ) . If y E f (A U B) , then we can find x E A U  B 
such that f (x) = y .  If x E A ,  then y E f (A) , while if x E B ,  then y E f (B) . 
In both cases , we have y E f (A) U f (B) . The opposite inclusion admits an 
even simpler proof. The inclusion A C A U  B implies f(A) c f (A U B) . 
Similarly, f (B) C f (A U B) . Thus , f (A) U f (B) C f(A U B) . The other two 
equalities may happen to be wrong, see 9. 3 and 9. 4 .  

9. 3 Consider the constant map f : {0 ,  1 }  -+ {0} . Let A = {0} and 
B = { 1 } . Then f (A) n f (B) = {0} , while f (A n B) = f (0) = 0 .  Similarly, 
f (X ......_ A) = f (B) = {0} =/= 0 ,  although Y ......_ f (A) = 0 .  

9 . 4  We have f (A n B )  c f (A) n f (B) . (Prove this ! ) However, there 
is no natural inclusion between f(X ......_ A) and Y ......_ f (A) . Indeed , we can 
arbitrarily change a map on X ......_ A without changing it on A, and hence 
without changing Y ......_ f (A) . 

9. 5 The bijectivity of f suffices for any equality of this kind. The injec­
tivity is necessary and sufficient for ( 14) , while the surjectivity is necessary 
for ( 1 5 ) .  Thus , the bijectivity of f is necessary to make all equalities of 9. 2 
correct . 

9. 6 First , let us prove inclusion B n f (A) c f (f- 1 (B) n A) . Let 
y E Bnf (A) . Then y = f (x) , where x E A . On the other hand , x E f- 1 (B) , 
whence x E f- 1 (B)nA ,  and therefore y E f (f- 1 (B) nA) . Prove the opposite 
inclusion on your own.  

9. 7 No, not necessarily. Example : f : {0} -+ {0 ,  1 } ,  g : {0 ,  1}  -+ {0 } .  
Surely, f must be injective (see 9.K) ,  and g surjective (see 9.M) .  
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1 0. 1  The map id is continuous iff U = id-1 (U) E D1 for each U E D2 , 
i . e . , n2 c n1 . 

1 0. 2  ( 1 ) , (4) : Yes ,  it is . (2 ) , (3) : Not necessarily. 
1 0. 3  1 )  Any map X �  Y is continuous . 2) A map Y � X  is continuous 

iff the preimage of each point is open. Only constant maps Y � X ( i . e . , 
the maps that map the whole Y to a single point of X) are necessarily 
continuous . 

1 0. 4  1 )  All maps Y � X are continuous . 2)  A map X � Y is 
continuous iff its image is indiscrete . Therefore , only constant maps X � Y 
are continuous independently of the topology on Y. 

1 0. 5  n' = {f- 1 (U) I u E n} is  a topology on A. Furthermore , this is 
the coarsest topology on A with respect to which f is continuous . 

1 0. 6  t�l  We have A C Cl A for any A,  whence f- 1 (A) c f- 1 (Cl A) . 
If f is continuous , then f- 1 (Cl A) is closed, and f- 1 (A) c f- 1 (Cl A) implies 
Cl f- 1 (A) c f- 1 (Cl A) . ( ¢=: )  For closed A,  we have Cl f- 1 (A) C f- 1 (A) . 
Therefore , the set f- 1 (A) coincides with its closure and hence is closed .  
Thus , the preimage of any closed set i s  closed . By l O.A ,  the map f is 
continuous . 

1 0. 7  f is continuous , iff 

• Int f- 1 (A) ::J f- 1 (Int A) for each A C Y, iff 

• Cl f (A) ::J f (Cl A) for each A c X, iff 

• Int f (A) C f (Int A) for each A C X.  

1 0. 8  t�l  By definition. (¢=:) Use the fact that the preimage of an 
open set is a union of preimages of base sets . 

1 0. 9  An experience with continuous functions gained in Calculus and 
a natural expectation that the continuity studied in Calculus is not too 
different from the continuity studied here give strong evidence in favor of a 
negative answer. The following argument based on the above definition also 
provides it : the set U = ( 1 ,  2] is open in [0, 2] , but its preimage f- 1 ( ( 1 ,  2] ) = 
[ 1 , 2) is not . 

1 0. 1 0  Yes, f is continuous . Indeed, what can the set f- 1 (a ,  +oo) 
( i . e . , the preimage of a set open in the arrow) be? By the way, what about 
continuity of the map g that coincides with f everywhere except at x = 1 
and has g ( 1 )  = 2? 

1 0. 1 1  Constant maps . If, for instance , 0 ,  1 E f (IRz ) ,  then consider the 
sets f- 1 ( ( -oo,  1/2 ) )  and f- 1 ( ( 1 /2 ,  +oo) ) . Can both of them be open? 

1 0. 1 2  Constant maps and maps such that the preimage of each point 
is finite . 
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1 0. 1 3  The functions that are monotonically increasing and continu­
ous from the left .  (Recall that a monotonically increasing function f is 
continuous from the left if sup{f (x) I x < a} =  f (a) for each a . )  

1 0. 14 The map f i s  continuous , while g- 1 i s  not . Indeed, the topology 
on Z+ is discrete , while the singleton {0} is not open in the topology on 
f (Z+ ) · 

1 0. 1 5  Let A b e  an everywhere dense subset of a space X,  and let 
f :  X -t Y be a continuous surjection . By Theorem 6.M, it suffices to prove 
that f (A) meets each nonempty open subset U of Y. Since f is surjective 
and continuous , the preimage f- 1 (U) of such a set is also nonempty and 
open. Therefore , its intersection with A is nonempty. Hence , U n f (A) = 
f (f- 1 (U) n A) is also nonempty. 

1 0. 1 6  Of course, this is not true . For example , the projection JR2 -t 

lR :  (x , y )  �---+ x maps the line { (x , y) E JR2 I y = 0} , which is nowhere dense 
in JR2 , onto the whole target space . 

1 0. 1 1  Yes ,  such a set exists . Let A be the Cantor set and consider 
the map that sends the number 2:.:::� � ,  where ai = 0; 2, to the number 
2:.:::�� 2�];.1 . It  must be checked that this map is continuous . Please , do this 
on your own. 

1 0. 1 8  Let us prove the first statement . Let Ua be a neighborhood 
of a E X such that f (Ua) C ( -E/2 + f (a) , f (a) + c/2) , and let Va be a 
similar neighborhood for g . Taking Wa = Ua n Va , we obtain (f + g) (Wa)  C 
( -E + f (a) , f (a) + c) . 

1 0. 20 Let 
X :S 0 ,  

0 :S X :S 1/ i ,  
X � 1/ i .  

Then the formula x �---+ sup{ fi (x) I i E N } determines a function that takes 
value 0 at x :::; 0 and 1 at x > 0 .  

1 0. 21 The topology on JRn i s  generated by the metric 

p(oc) (x , y) = max{ l x 1 - YI I , .  · · , l xn - Yn l } 

(see 4 .26) . Observe that p(oc) (f (x) , f (a) ) < E iff l fi (x) - fi (a) l < E for all 
i = 1 ,  2 ,  . . . , n .  

1 0. 22 Use 1 0. 21 and 1 0. 1 8. 
1 0. 23 Use 1 0. 21 ,  1 0. 1 8, and 1 0. 1 9. 
1 0. 24 If 0' is a topology such that the map x �---+ p(x ,  A) is continuous 

for each A, then 0' contains all open balls . Therefore , 0' contains all sets 
open in the metric topology. 

1 0. 25 If p(x , a) < E ,  then p (f (x) , f (a) ) :::; ac < E . 
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1 0. 27 Where we deal with closed sets . 
1 0. 28 Use the following property of polynomials : a polynomial P 

with real coefficients that takes value 0 on a nonempty open set identically 
vanishes . For polynomials in one variable , this property easily follows from 
Bezout 's theorem, while for polynomials in many variables it is proved by 
induction on the number of variables . The continuity of the function x f--+ 

P(x) on Rn implies that the set of zeros {x I P(x) = 0} of P is closed. 
Cf . 1 0. 0. 

1 0. 29 In cases ( 1 ) ,  (3) , and (4) , this is not true . Consider functions 
constant on each element of these covers , but not constant on the whole 
space . 
In case (2 ) , this is true . Try to prove this using arguments that you know 
from calculus . (Cf. 1 0. T. ) 

1 0. 31 If the intersection of a set U with each element of r is open in this 
element , then the same is true for any element of r' . Since , by assumption, 
r' is a fundamental cover, it follows that U is open in the whole space . Thus , 
the cover r is fundamental . 

1 0. 32 If B n U is open in U for each U E r,  and A E .6.,  then 
(B n U) n A =  (B n A) n (U n A) is open in U n A. Hence , B n A is open in 
A. Since the cover .6. is fundamental, B is open in X .  

1 0. 33 This follows from the preceding statement . What cover should 
be taken as .6.? 

1 0. 34x Consider map f : [0 , 2] --+ lR with f (x) = x for x E [0 , 1] and 
f (x) = x + 1 for x E ( 1 ,  2] . 

1 0. 35x No. Here are two of many counterexamples . First , the map 
f :  {±1/n, O}�=l --+ { - 1 , 0 ,  1 } ,  which sends positive numbers to 1 ,  negative 
to - 1 ,  and 0 to 0. Secondly, consider JR2 with the following relation: 

(a ,  b) -< (a' , b' ) if a <  a' or (a = a' and b < b' ) .  

This is a linear order (check! ) .  The projection JR2 --+ lR : (x ,  y )  f--+ x is 
monotone (but not strictly monotone) with respect to -< and < ,  but the 
preimage of any proper open subset U c lR is not open in the interval 
topology determined by -< .  

1 0. 36x Yes ,  it is . Furthermore , it suffices to require only that f be 
non-strictly monotone . 

1 0. 37x Construct Z as the disjoint union of X and Y .  In the union, 
define the distance between two points in (the copy of) X (respectively, Y) to 
be equal to the distance between the corresponding points in X (respectively, 
Y) . To define the distance between points of different copies, choose points 
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xo E X and Yo E Y, and set p(a ,  b) = px (a ,  xo ) + py (yo ,  b) + 1 for a E X 
and b E Y. Check (this is easy, really) that this determines a metric . 

1 0. 38x Yes .  For example, consider a singleton and any unbounded 
space . 

1 0. 39x Although, as we have seen when solving the previous problem, 
the Gromov-Hausdorff distance can be infinite , while the symmetry and the 
triangle inequality were formulated above (in Section 4) only for functions 
with finite values ,  the two properties make sense if infinite values are admit­
ted. (The triangle inequality should be considered fulfilled if two or three of 
the quantities involved are infinite , and not fulfilled if only one of them is 
infinite . )  The following construction helps to prove the triangle inequality. 
Let metric spaces X and Y be isometrically embedded in a metric space A,  
and let metric spaces Y and Z be isometrically embedded in  a metric space 
B .  Construct a new metric space in which A and B would be isometrically 
embedded and meeting along Y. To do this , add to A all points of B .,..,_ A. 
Define the distances between these points to be equal to the distances be­
tween them in B.  Define the distance between x E A .,..,_ B and z E B .,..,_ A 
to be equal to inf{pA (x , y) + PB (y ,  z ) I y E A n B} .  Compare this construc­
tion \Vith the construction from the solution to Problem 1 0. 37x. Prove that 
this gives a metric space and use the triangle inequality for the Hausdorff 
distance between X,  Y, and Z in this space . 

1 0. 4 0x  Partially, the answer is obvious . The Gromov-Hausdorff dis­
tance is certainly nonnegative ! But what if it is zero? In what sense should 
the spaces be equal then? First , the most optimistic idea is that there should 
exist an isometric bijection between the spaces. However, this is not true , as 
we can see looking at the spaces Q and � equipped with standard distances . 
Nevertheless , this is true for compact metric spaces . 

1 1 . 1  Statements 1 1 .  G-1 1 .E  imply that homeomorphism is an equiv­
alence relation : 1 1 .  C implies reflexivity of homeomorphism, 1 1 .  D implies 
transitivity, and 1 1 . E  implies symmetry. 

1 1 . 2  Show that T o T  = id, whence T-1 = T .  To see that the inversion 
is continuous, write T down in coordinates and use 1 0. 1 8, 1 0. 1 9, and 1 0. 21 .  

1 1 . 3  Show that Im(f(x + iy) ) = (ad - bc)y/ l cz + d l 2 , whence f ('H) C 
H .  Find the inverse map (it is determined by a similar formula) . Use 1 0. 1 8, 
1 0. 1 9, and 1 0. 21 to prove the continuity. 

1 1.. 4  [=>l Use Intermediate Value Theorem. [<== l Use 1 1 .M. 
1 1 . 5  Cf. 1 1 .H. 1 ) ,  2) This is obvious . 3) Any bijection �z ---> �z 

establishes a one-to-one correspondence between finite ( i .e . ,  closed ! )  subsets . 
1 1 .  6 Only the identity map of 'v is a homeomorphism. 
1 1 . 7  Use 1 0. 1 3  and 1 1 . M. 



Solutions, and Answers 

1 1 . 8  Let X = Y = U�o [2k ,  2k + 1 )  and consider the bijection 

X --t Y :  x � { !21 
x - 2  

if x E [0, 1 ) ,  
if x E [2 , 3) , 
if X � 4 .  
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1 1 . 1 0  To solve all assertions , except (6) and (9) , apply maps used in 
the solution to Problem 1 1 . 0. To solve (6) and (9) , use polar coordinates . 

1 1 . 1 1  In assertion (2 ) : each nonempty open convex set in IR2 is home­
omorphic to IR2 . 

1 1 . 1 2 Every such set is homeomorphic to one of the following sets :  a 
point , a segment , a ray, a disk , a strip , a half-plane , a plane . (Prove this ! )  

1 1 . 1 3  In  Problems 1 1 .  T and 1 1 . 1 1 ,  i t  i s  sufficient to  replace the 2-disk 
D2 by the n-disk Dn and the open 2-disk B2 by the open n-ball Bn . The 
situation with Problem 1 1 . 12 is more complicated . Let K c !Rn be a closed 
convex set . First , we can assume that Int K # 0 because, otherwise, K 
is isometric to a subset of JRk with k < n.  Secondly, we assume that K is 
unbounded . (Otherwise, K is homeomorphic to a closed disk, see above . )  If 
K does not contain a line , then K is homeomorphic to a half-space . If K 
contains a line , then K is isometric to a "cylinder" with convex closed "base" 
in !Rn- 1 and "elements" parallel to the nth coordinate axis , which allows us 
to use induction on dimension . Try to formulate a complete answer. 

1 1 . 14 l'vfap each link of the polygon homeomorphically to a suitable 
arc of the circle . 

1 1 . 1 5  Map each link of the polyline homeomorphically to a suitable 
part of the segment . (Cf. the preceding problem. The homeomorphism can 
easily be chosen piecewise linear . )  

1 1 . 1 6  Accurately plug in the definitions ! 
1 1 . 1 7  Combining the techniques of Problems 1 1 . 8  and 1 1 . 0 (assertion 

(e) ) ,  show that the "infinite cross" is homeomorphic to the set K = { I  x I  + 
I Y I :::; 2} -...... { (0 ,  ±2) , (±2 ,  0) } (another square without vertices) .  

1 1 . 1 8  The proof is elementary, but rather complicated ! 
1 1 . 1 9  Using homeomorphisms of Problem 1 1 .  0, you can construct , 

e .g . , the following homeomorphisms : ( 1 )  � (4) � (6) , (4) � (5 )  � (8) � (2 ) , 
(8) � (7) � (3 ) . 

1 1 . 20 Using homeomorphisms of Problem 1 1 . 0, you can construct , 
e .g . , the following homeomorphisms : (c) � (b) � (a) � (d) � (e) � (g) .  
This proves that , e .g . , (d) � (f) . 

1 1 . 21 For the case of one segment , this is assertion 1 1 . 20 (6) . In 
the general case , use 1 1 . 1 9  ( i .e . ,  the fact that ( 1 )  � (h) ; observe that the 
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homeomorphism can be fixed on the boundary of the square) .  Surround the 
segments by disjoint rhombi and apply the above homeomorphism in each 
of them. 

1 1 . 22 Use induction on the number of links of the polyline X.  Each 
time , applying the argument used in the solution of Problem 1 1 . 21 to the 
outer link of X, we homeomorphically map JR2 -...... X onto the complement of 
a polyline with a smaller number of links . 

1 1 . 23 Prove that for any p, q E Int D2 there is a homeomorphism 
f : D2 ---t D2 such that j (p) = f (q) and ab (f)  : 81 ---t 81 is the identity. 
After that , use induction. 
Here is a more explicit construction. Let K = { (xi , Yi ) }f= I ·  We can as­
sume that Xi ' s are pairwise distinct . (Why?) Take any continuous function 
f : lR ---t lR such that f (xi ) = Yi , i = 1 ,  . . .  , n .  Then F : JR2 ---t JR2 : 

(x , y )  �---t (x , y - f (x) ) is a homeomorphism with F(K) c JR1 . There is a 
homeomorphism g : lR ---t lR such that g (xi ) = i ,  i = 1 ,  . . .  , n .  Consider 
the homeomorphism G : IR2 ---t JR2 : (x ,  y) �---t (g(x ) ,  y) . Then we have 
(G o F) (K) = { 1 ,  . . .  , n} , whence JR2 -...... K � JR2 -...... { 1 ,  . . .  , n} . 

1 1 . 24 Use the homeomorphism (b) � (c) in Problem 1 1 . 20. 
1 1 . 25 Use Problems 1 1 . 24 and 1 1 . 23. 
1 1 . 26 Use the homeomorphism (x ,  t) �---t (x ,  ( 1 - t) f (x) + tg (x) ) .  
1 1 . 27 The first question is as follows : what is the mug from the math-

ematical point of view? How is it presented? Actually, there is a precise 
approach to describing similar objects and introducing the corresponding 
class of spaces ( "manifolds" ) ,  but for now we use "common sense" . We 
start with a cylinder, which is homeomorphic to a closed 3-disk, which in 
turn is homeomorphic to a half-disk , is not it? Further , if we delete from 
the half-disk a concentric half-disk of smaller radius , then the rest ( i . e . , the 
"skin of a half of a watermelon" ) is still homeomorphic to the half-disk. (We 
can prove this quite rigorously, and even give the required formulas . )  The 
remaining "skin" is a mug without a handle , which is thus homeomorphic 
to a cylinder . Furthermore , we can assume that the "disks" along which the 
handle adjoins the mug correspond to the bases of the cylinder, cf. 1 1 . 25, 
while the handle is a (deformed) cylinder itself. "Pasting together" two 
cylinders , we certainly obtain a doughnut as a result ! 

1 1 . 28 The following objects are homeomorphic to a coin : a saucer , a 
glass , a spoon, a fork, a knife ,  a plate , a nail , a screw, a bolt , a nut , a drill . 
The remaining objects are homeomorphic to a wedding ring: a cup , a flower 
pot , a key. 

1 1 . 29 Formulate and prove the plane version of the problem. After 
that , use rotation. An intermediate shape here is a 3-disk in which a thin 



Solutions, and Answers 333 

cylinder is drilled out . We can also single out the following useful lemma. 
Let Co be a cylinder, C c Co a smaller cylinder with upper base lying 
inside that of C0 . Then there exists a homeomorphism f :  Cl(Co " C) � Co 
identical on Fr Co " C .  

1 1 . 30 Our argument is close to that used in the solution of Prob­
lem 1 1 . 27. Repeating the first step of the solution to Problem 1 1 . 29, we 
"get rid" of the large spherical hole at the end of the "tube" . After that , 
we observe that the knotted tube has a neighborhood homeomorphic to a 
cylinder . Applying the lemma formulated in the above solution, we obtain 
a homeomorphism between the ball with a knotted hole and the whole ball . 

1 1 . 33 Both spaces are homeomorphic to 83 " (81 U point) . To see this , 
use the homeomorphism �3 � 83 " point of Problem 1 1 .R. (The second 
time, take the point to be deleted on the circle 81 . )  This argument also 
works in the general case of �n . But what happens if we replace 81 by 8k? 

1 1 . 34 The stereographic projection 8n " (0, . . .  , 0, 1 )  � �n maps our 
set to a (spherically symmetric) neighborhood of 8k - l , which is easily seen 
to be homeomorphic to �n " �n-k

. 

1 1 .  3 5 Here are properties that distinguish each of the spaces from the 
remaining ones : Z is discrete, Q is countable , each proper closed subset of 
�T1 is finite , and, finally, any two nonempty open sets in the arrow have 
nonempty intersection. 

1 1 . 36 Set X =  {k}=� u U�0 [2k ; 2k + 1 ) and Y =  X U { 1 } and consider 
the bijections 

{ x + 1 
X � Y : x f--t � 

X 
x/2 

if X �  -2 , 

if X = - 1 ,  
if X 2: 0 ;  

i f  X < 0 ,  

(x - 1 ) /2 
if X E [0 , 1 ] , 
if x E [2 , 3) , 

X - 2 if X 2: 4 .  

Similar tricks are called "Hilbert 's hotel" . Guess why. 
1 1 . 37 This is indeed very simple . Take [0 , 1] and R (Actually, any 

two nonhomeomorphic subsets of � with nonempty interiors would do . )  
1 1 . 38 The topology on Q is not discrete. 
1 1 . 39 1 ) , 2 )  If the discrete space is not a singleton, this is impossible . 
1 1 .4 0  See 1 1 . 35. 
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1 2. 1  1 )-3)  Yes :  in each of these spaces , two nonempty open sets always 
have nonempty intersection. 

1 2. 2  The empty space and a singleton. 
1 2. 3  A disconnected two-element space is obviously discrete . 
1 2.4  1 )  No ,  Q i s  not connected since , for instance , 

Q = (Q n ( -oo, V2)) u (Q n (V2, +oo) ) . 

2)  lR -...._ Q is also disconnected for a similar (and even simpler ) reason .  
1 2. 5  1 )  Yes ,  if (X, !11 ) is connected, then so is (X, !12 ) :  if X = U U V ,  

where U, V E !11 , then U, V E !12 . 2)  No, the connectedness o f  (X, !11 ) does 
not imply that of (X, !12 ) :  consider the case where !11 is indiscrete ,  !12 is 
discrete , and X contains more than one point . 

1 2. 6 A subset A of a space X is disconnected iff there exist open subsets 
U, V c X such that A c U u V,  U n V n A  = 0, U n A  f:: 0, and V n A  f:: 0 .  

1 2. 7  1 ) ,  3) : No, it i s  not , because the relative topology on  { 0 ,  1 }  is 
discrete (see 12. 2) .  2) : Yes ,  it is ,  because the relative topology on {0, 1} is 
not discrete (see 12. 3) .  

12. 8  1 )  Every subset of the arrow is connected . 2 )  A subset of 1Rr1 is 
connected iff it is empty, a singleton, or an infinite set . 

1 2. 9  Show that [0 , 1] is both open and closed in [0 , 1] U (2 ,  3] . 
12. 1 0  Given x ,  y E A C IR, z E (x , y) , and z cj. A, produce two 

nonempty sets open in A that partition A. Cf. 12 .4 .  
1 2. 1 1  [=-1 Let B and C be two nonempty subsets of A open in A 

that partition A.  
(�l Use the fact that if B n Clx C = 0,  then B = A n (X -...._ Clx C) . 

12. 1 2  Let X = A U  x* , x* (j. A, and let n* consist of the empty set and 
all sets containing x* . Is this a topological structure in X? What topology 
does it induce on A? 

12. 1 3  Let A be disconnected, and let B and C satisfy the hypothesis 
of 12. 1 1 .  Then we can set 

U = {x E !Rn I p (x , B) < p(x , C) } and V = {x E !Rn I p(x ,  B) > p(x ,  C) } .  

Notice that the conclusion of 12 . 1 3  would still hold true i f  i n  the hypothesis 
we replaced !Rn by an arbitrary space where every open subspace is normal , 
see Section 15 .  

12. 1 5  Obvious . (Cf. 12. 6. )  
12. 1 5  The set A is dense in B equipped with the relative topology 

induced from the ambient space. Therefore , we can apply 12 .B. 
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1 2. 1 6  Assume the contrary : let A U B be disconnected . Then the 
ambient space contains open subsets U and V such that A U B C U U V ,  
U n (A u B) =f: 0 ,  V n (A u B) =/: 0 ,  and U n V n (A u B) = 0 (cf. the 
solution to Problem 12. 6) .  Since A U  B c U U V, the set A meets at least 
one of the sets U and V.  Without loss of generality, we can assume that 
A n  U =/: 0 .  Then A n  V = 0 by the connectedness of A, whence A c U.  
Since U i s  a neighborhood of each point in A n  Cl B ,  i t  meets B .  The set V 
also meets B since V n (A U B) =/: 0 ,  while A n  V = 0 .  This contradicts the 
connectedness of B since B n U and B n V form a partition of B into two 
nonempty sets open in B .  

1 2. 1 7  I f  A U B i s  disconnected, then X contains open sets U and V 
such that U U V ::J A U  B ,  U n (A U B) =/: 0,  V n (A U B) =/: 0 ,  and 
U n V n (A U B) = 0 .  Since A is connected , A is contained in U or V .  
Without loss of generality, we may assume that A c U.  Set B1 = B n V .  
Since B i s  open i n  X -....._ A and V C X -....._ A ,  the set B1 i s  open in V. Therefore , 
B1 is open in X.  Furthermore , we have B1 c X -....._ U C X -....._ A ,  and , therefore, 
B1 is closed in X -....._ U and hence also in X. Thus, B1 is both open and closed 
in X, contrary to the connectedness of X. 

1 2. 1 8  No, it does not . Example : put A =  Q and B = lR -....._ Q. 
1 2. 1 9  1 )  If A and B are open and A is disconnected, then A = U U V ,  

where U and V are disjoint nonempty sets open in  A. Since A n B is 
connected , then either A n B  c U, or A n B c V. Without loss of generality, 
we can assume that A n B c U. Then {V, U U B} is a partition of A U B  into 
nonempty open sets . (U and V are open in A U  B because an open subset 
of an open set is open . )  This contradicts the connectedness of A U B .  
2 )  In  the case when A and B are closed, the same arguments work i f  openness 
is everywhere replaced by closedness . 

1 2 . 20 Not necessarily. Consider the closed sets Kn = { (x ,  y) I x 2: 
0 ,  y E {0 ,  1 } } U { (x , y) I x E N, x 2: n ,  y E [- 1 ,  1 ] } ,  n E N. (An infinite 
ladder , railroad , fence , hedge , handrail , balustrade , or banisters, whichever 
you prefer . )  Their intersection is the union of the rays { y = 1 ,  x 2: 0} and 
{y = - 1 , x 2: 0} .  

1 2. 21 Let C be  a connected component of X,  and let x E C be  an 
arbitrary point . If Ux is a connected neighborhood of x , then Ux lies entirely 
in C, and so x is an interior point of C, which is thus open . 

1 2 . 22 Theorem 12 .1  allows us to transform the statement under con­
sideration into the following obvious statement : if a set !11 is connected and 
A is both open and closed , then either M C A, or M c X -....._ A.  

1 2. 23 See the next problem. 
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1 2. 24 Prove that no two points in the Cantor set belong to the same 
connected component . 

1 2. 25 If Fr A = 0 ,  then A = Cl A = Int A is a nontrivial open-closed 
set . 

1 2. 26 If F n Fr A =  0,  then F = (F n CI A) u (F n Cl(X " A) )  and 
F n CI A n Cl(X " A) = 0 .  

1 2. 27 I f  CI A i s  disconnected, then CI A = F1 U F2 , where H and F2 
are nonempty disjoint sets closed in X .  Each of them meets A since F1 U F2 
is the smallest closed set containing A.  Therefore , A splits into the union 
of nonempty sets A1 = A n  F1 and A2 = A n  F2 , whose boundaries Fr A1 
and Fr A2 are nonempty by 12. 25. This contradicts the connectedness of 
Fr A  = Fr A1 U Fr A2 . 

1 2. 30 Combine 12 .N and 12. 1 0. 
1 2. 31 Let M be the connected component of unity. For each x E M, 

the set x · M is connected and contains x = x · 1 .  Therefore , x · M meets 
M, whence x · M C M. Thus , M is a subgroup of X .  Furthermore , for each 
x E X the set x- 1 · AI ·  x is connected and contains the unity. Consequently 
x- 1 · Af · x c AI . Hence , the subgroup !11 is normal . 

1 2. 32 Let U C lR be an open set . For each x E U,  let (mx , Mx ) c U be 
the largest open interval containing x .  (Take the union of all open intervals 
in U that contain x . )  Any two such intervals either coincide or are disjoint , 
i . e . , they constitute a partition of U .  

1 2. 3  3 1 )  Certainly, i t  i s  connected because i f  l i s  the spiral , then 
Cl l = l u 81 . 2) Obviously, the answer will not change if we add to the 
spiral only a part of the limit circle . 

1 2. 34 ( 1 )  This set is disconnected since , for example , so is its projection 
to the x axis . 

(2 )  This set is connected because any two of its points are joined by a 
polyline (with at most two segments) . 

(3 )  This set is connected. Consider the set X c JR2 defined as the union 
of lines y = kx with k E Q. Clearly, the coordinates (x ,  y) of any point in X 
are either both rational or both irrational .  Obviously X is connected , while 
the set under consideration is contained in the closure of X (coinciding with 
the whole plane) . 

1 4 . 1 7  Let A C JRn be the connected set . Use the fact that balls 
in JRn are connected by 12. U (or by 12. V) and apply 12 .E to the family 
{A} U {Be (x) }xEA · 

1 2. 36 For x E A, let Vx C U be a spherical neighborhood of x .  Consider 
the neighborhood UxEA Vx of A .  To show that it is connected, use the fact 
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that balls in !Rn are connected by 12. U (or by 12. V) and apply 12 .E to the 
family {A} U {Vx }xEA · 

1 2. 31 Let 

X =  { (0 , 0) , (0 ,  1 ) }  U { (x , y ) I x E [0 , 1 ] , y = � '  n E N} C JR2 . 

Prove that any open and closed set contains both points A(O ,  0) and B( 1 ,  0) . 
1 3. 1  This immediately follows from Theorem 1 3.A .  Indeed , any real 

polynomial of odd degree takes both positive and negative values (for values 
of the argument with sufficiently large absolute values) . 

1 3. 2  Combine 12. Z, 1 3.B, and 1 3.E. 
1 3. 3  There are nine topological types, namely: ( 1 )  A,  R; (2 )  B ;  (3) C ,  

G ,  I ,  J , L ,  M ,  N ,  5 ,  U ,  V ,  W,  Z ;  (4) D ,  0 ;  ( 5 )  E ,  F ,  T ,  Y;  ( 6 )  H ,  K ;  ( 7 )  P ;  (8) 
Q ;  (9) X. Notice that the answer depends on the graphics of the letters . For 
example , we can draw letter R homeomorphic not to A,  but to Q .  To prove 
that letters of different types are not homeomorphic , use arguments similar 
to that in the solution of 1 3.E. 

1 3.4  A square with any of its points removed is still connected (prove 
this ! ) ,  while the segment is not . (We emphasize that the sentence , "Be­
cause a square cannot be partitioned into two nonempty open sets" , cannot 
serve as a proof of the mentioned fact . The simplest approach would be to 
use 12. 1. )  

1 3. 5  Use 1 1 .R .  
1 3. 1x This i s  so  because for any xo E X  the set {x I f (x) = f (xo ) }  is 

both open and closed (prove this ! ) .  Here is another version of the argument . 
Each point y in the source space has open preimage f- 1 (y) . 

1 3. 9x  Fix h E H and consider the map x � xhx- 1 . Since H is a 
normal subgroup , the image of G is contained in H.  Since H is discrete , 
this map is locally constant . Therefore. by 13. 7x. it is constant . Since the 
unity is mapped to h, it follows that xhx- 1 = h for any x E G. Therefore , 
gh = hg for any g E G and h E  H. 

1 3. 1  Ox Consider the union of all sets with property £ containing a 
point a .  (Is it not natural to call this set a component of a in the sense of 
£?)  Prove that such sets constitute an open partition of X .  Therefore , if X 
is connected, any such a set is the whole X .  

1 3. 1 2x Introduce a coordinate system with y axis l ,  and consider the 
function f sending t E lR to the area of the part A that lies to the left of the 
line x = t. Prove that f is continuous . Observe that the set of values of f 
is the segment [0 ; S] , where S is the area of A, and apply the Intermediate 
Value Theorem. 
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1 3. 1 3x If A is connected, then the function introduced in the solution 
to Problem 1 3. 12x is strictly monotone on f- 1 ( (0 ,  S) ) . 

1 3. 14x Fix a Cartesian coordinate system on the plane and , for any c.p E 
[0 , 1r] , consider also the coordinate system obtained by rotating the fixed one 
through an angle of c.p around the origin. Let fA and f B be functions defined 
by the following property : the line defined by x = fA ( c.p) (respectively, x = 
f B ( c.p) ) in the corresponding coordinate system divides A (respectively, B)  in 
two parts of equal areas . Put g (c.p) = fA (c.p) - fB (c.p) . Clearly, g (1r) = -g(O) . 
Hence , if we proved the continuity of fA and fB , then the Intermediate 
Value Theorem would imply existence of c.po such that g (c.po) = 0. The 
corresponding line x = fA ( c.po) divides each of the figures in two parts of 
equal areas . Prove continuity of fA and f B ! 

1 3  . 1 5x The idea of solution is close to the idea of solution to the 
preceding problem. Find an appropriate function whose zero would give 
rise to the required lines , while the existence of a zero follows from the 
Intermediate Value Theorem. 

14 . 1  Combine 12.R and 12.N.  
14 . 2  Combine 14 . 1  and 12. 26. 
14 . 3  (==>) This is obvious since inA is continuous . 

(�l Indeed, u is continuous as a submap of the continuous map inA ou. 
14 . 4  A one-point discrete space , an indiscrete space , the arrow, and 1Rr1 

are path-connected . Also notice that the points a and c in 'v are connected 
by a path! 

14 . 5  Use 14 . 3. 
14 . 6 Combine (the formula of) 14 . 0 and 14 . 5. 
14 . 7  Use (the formula of) 14 .  C, 14 .A ,  and 14 . 5. 
14 . 8  Indeed, let u :  I �  X be a path. Then any two points u(x) , u(y) E 

u(I) are connected by the path defined as the composition of u and I �  I :  
t �----+ ( 1  - t )x + ty . 

14 . 9  A path in the space of polygons looks like a deformation of a 
polygon. Let us join an arbitrary polygon P with a regular triangle T. We 
take a vertex V of P and move it to (say, the midpoint of) the diagonal of P 
joining the neighboring vertices of V ,  thus reducing the number of vertices of 
P. Proceeding by induction, we come to a triangle , which is easy to deform 
into T. 
It is also easy to see that any convex n-gon can be deformed into a regular 
n-gon in the space of convex n-gons . 

14 . 1 1  We consider the case where A and B are open and prove that 
A is path-connected . Let x ,  y E A, and let u be a path joining x and y in 
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A U  B. If u(I) ct. A, then we set [ = sup{t I u ( [O ,  t] ) c A} . Since A is 
open, u(t) E B. Since B is open, there is to < [ with u(to )  E B, whence 
u(to) E A n  B. In a similar way, we find ti E I such that u(ti ) E A n  B and 
u ( [ti , 1 ] ) c A. It remains to join u(to) and u(ti ) by a path in A n  B .  

14 . 1 2  1 ) ,  2) The assertion about the boundary i s  trivial , and an ex­
ample is easy to find in JRI . It is also easy to find a path-connected set in 
JR2 with disconnected interior . (Why are there no such examples in JRI ?)  

14 . 1 3  Let x , y E Cl A. Assume that x , y E Int A. (Otherwise . the 
argument becomes even simpler . )  Then we join x and y with points x' . y' E 
Fr A by segments and join x' and y' by a path in Fr A.  

14 . 1 6  (=>I This is 14 .M. 
(<=J Combine the result of 12. Y with 14 . 6  (or 14 .B) .  

14 . 1 7  Combine Problem 12. 35 and Theorem 14 .  U. 
14 . 1 8  Combine Problem 12. 36 and Theorem 14 . U. 
14 . 1 9x Use multiplication of paths . 
14 . 20x Obvious . 
14 . 21x Obvious . 
14 . 22x Define polyline-connected components and show that they are 

open for open sets in !Rn . 
14 . 23x For example , set A =  SI . 
14 . 24x Let x , y E JR2 " X . Draw two nonparallel lines through x and 

y that do not meet X .  
1 4 . 25x Let x ,  y E !Rn "x .  Draw a plane through x and y that intersects 

each of the affine subspaces at most at one point and apply Problem 14 . 24x. 
(In order to find such a plane , use the orthogonal projection of !Rn to the 
orthogonal complement of the line through x and y . )  

1 4 . 26x Let WI , W2 E en " X.  Observe that the complex line through 
WI and w2 meets each of the algebraic subsets at a finite number of points 
and apply Problem 14 . 24x. 

1 4 . 27x The set Symm(n; JR) = {A I tA =  A} is a linear subspace in the 
space of all matrices , and , hence , it is path-connected . To handle the other 
subspaces . use the function A �----+ det A. Since (obviously) it is continuous 
and in each case takes both positive and negative values, but never vanishes , 
it immediately follows that GL(n; JR) , O(n;  JR) , Symm(n; JR) n GL(n; JR) , and 
{A I A2 = IE} are disconnected . In fact , each of them has two path-connected 
components. Let us show, for example , that GL+ (n; JR) = {A I det A >  0 } 
is path-connected . The following assertion is of use here , as well as below . 
For each basis { ei } in !Rn , there exist paths ei : I ---+ !Rn such that :  1 )  for 
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each t E [0 , 1 ] the collection {ei (t) } is a basis ; 2) ei (O) = ei , i = 1 ,  . . .  , n ; 3)  
{ e i  ( 1 ) }  i s  an orthonormal basis. (Prove this . )  

14 .  28x G L ( n ,  C)  i s  even poly line-connected by 14 .  26x since det A = 0 
is an algebraic equation in cn2 • The other spaces are path-connected. 

1 5. 1  Only the discrete space is Hausdorff (and, formally, indiscrete 
singletons) .  

1 5. 2  Read the following formula written with quantifiers : :3 Ub V N E 
N :3 n > N : an E X -...... Ub . 

1 5.4 Let J ,  g : X ---+ Y be two continuous maps, and let Y be a 
Hausdorff space . To prove that the coincidence set C(f, g) is closed , we show 
that its complement is open . If x E X -...... C(f, g) , then f (x) -=f. g (x) . Since 
Y is Hausdorff, f (x) and g (x) have disjoint neighborhoods U and V. For 
each y E f- 1 (U) n g- 1 (V) , we obviously have f (y) -=f. g (y) , whence f- 1 (U) n 
g- 1 (V) C X -...... C(f, g) . Since f and g are continuous , this intersection is a 
neighborhood of y .  

1 5. 5 Consider the following two maps from I to the arrow: x f--t 1 and 
x f--t sgn x .  (Here , sgn : lR ---+ lR is the function that sends negative numbers 
to - 1 ,  0 to 0, and positive numbers to 1 . )  

1 5. 6  This follows from 15. 4  because , obviously, the fixed point set of 
f is C(f, idx ) .  

1 5. 7  Let X b e  the arrow. Consider the map f :  X ---+ X :  x f--t x + sin x . 
What is the fixed point set of f? Is it closed in X? 

1 5. 8  By 1 5.4 ,  the coincidence set C(f, g )  of f and g i s  closed in  X .  
Since C(f, g) contains the everywhere dense set A ,  i t  coincides with the 
entire X .  

1 5. 1 0  Only the first two properties are hereditary. 
1 5. 1 1  We have {X} = nu3x u iff for each y -=1- X the point X has a 

neighborhood U that does not contain y ,  which is precisely T1 . 
1 5. 1 2 This is obvious . 
1 5. 1 3  See 1 5. J.  
1 5. 14 Consider a neighborhood of f(a) that does not contain f (b) and 

take its preimage . 
1 5. 1 5  Otherwise , the indiscrete space would contain nontrivial closed 

subsets (preimages of singletons) .  
1 5. 1 6  This is a complete analog of the topology on 1Rr1 : only finite 

sets and the entire space are closed. 
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1 5. 1 7  Consider the coarsest topology on lR that contains the usual 
topology and is such that the set A = { 1 /n I n E N } is closed . Show that in 
this space the point 0 and the set A cannot be separated by neighborhoods. 

1 5. 1 8  An obvious example is the indiscrete space . A more instructive 
example is the "real line with two zeros" , which is also of interest in some 
other cases : let X = lR U O' , and let the base of the topology on X consist 
of all usual open intervals (a ,  b) C lR and of "modified intervals" (a ,  b) ' = 
(a ,  0)  U O' U (0 ,  b) , where a < 0 < b. (Verify that this is indeed a base . )  
Axiom T3 i s  fulfilled , but 0 and O' have no disjoint neighborhoods i n  X.  

1 5. 1 9  I =-J Let a space X satisfy T3 .  If b E X and W is a neighbor hood 
of b ,  then, applying T3 to b and X " W, we obtain disjoint open sets U and 
V such that b E  U and X "  W c V.  Obviously, Cl (U) c X "  V c W. 
(<=J  Let X be the space , F c X a closed set , and b E X " F. Then 
X "  F is a neighborhood of x, and we can find a neighborhood U of x with 
Cl (U) C X "  F. Then X "  Cl(U) is the required neighborhood of F disjoint 
with U .  

1 5. 20 Let X be a space , A c X a subspace, and B a closed subset of 
A. If x tt. B ,  then x tt. F, where F is closed in X and F n A =  B. The rest 
is obvious . 

1 5. 21 For example , consider an indiscrete space or the arrow. 
1 5. 22 Cf. the proof of assertion 1 5. 1 9. 1=-1 Let a space X satisfy 

T4 . If F c X is a closed set and W is a neighborhood of F ,  then, applying 
T4 to F and X "  W, we obtain disjoint open sets U and V such that F c U 
and X "  W c V.  Obviously, Cl (U) c X "  V c W. 
I<=J Let X be the space , F, G C X two disjoint closed sets . Then X "  G is 
a neighborhood of F ,  and we can find a neighborhood U of F with Cl(U) C 
X "  G. Then X "  Cl(U) is the required neighborhood of F disjoint with U .  

1 5. 23 Use the fact that a closed subset of  a closed subspace i s  closed 
in the entire space and recall the definition of the relative topology. 

1 5. 25 For example, consider A =  N and B = { n + 1/n }�  in R 
1 5. 26 Let F1 , F2 c Y be two disjoint closed sets . Since f is continuous , 

their preimages j- 1 (F1 ) and j- 1 (F2 )  are also closed in X.  Since X satisfies 
T4 , the preimages have disjoint neighborhoods W1 and W2 . By assumption, 
the closed sets Ai = X "  Wi , i = 1, 2, have closed images Bi . Since B1 u B2 = 
j (A1 ) U j (A2 ) = j (A1 U A2 ) = f(X) = Y, the open sets U1 = Y "  B1 and 
U2 = Y " B2 are disjoint . Check that Fi c Ui , i = 1 ,  2 .  

1 5. 27x. Let x ,  y E N  be two distinct points .  If at least one of them lies 
in 1{, then, obviously, they have disjoint neighborhoods. Now if x, y E JR1 , 
then they are separated by certain disjoint disks Dx and Dy . 
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1 5. 28x Verify that if an open disk D c 1t touches JR1 at a point x ,  
then Cl (D U x)  = Cl D .  After that , use 1 5. 1 9. 

1 5. 29x The discrete structure. 
1 5. 30x Since JR1 is closed in N and the relative topology on JR1 is 

discrete, each subset of JR1 is closed in N. Let us prove that the closed sets 
{ (x, 0) I x E Q} and { (x, 0) I x E lR -..... Q} have no disjoint neighborhoods in 
N. Let U be a Nemytskii neighborhood of JR1 -..... Q .  For each x E JR1 -..... Q, 
fix an r (x) such that an open disk Dr(x) c U of radius r (x )  touches JR1 at 
x .  Define Zn = {x E JR1 I r (x) > 1/n} .  Since , obviously, Q U U�=l Zn = JRl , 
the result of 6. 44 implies that there is (sufficiently large) n such that Zn is 
not nowhere dense. Therefore , Cl Zn contains a segment [a , b] c JR1 , whence 
it follows that U U [a, b] contains a whole neighborhood of [a , b] , which meets 
each neighborhood in N of any rational in [a, b] . Hence , U meets each 
neighborhood of Q, and so , indeed , N is not normal . 

1 5. 32x Add a point x* to N: N* = N U x* . The topology 0* on N* 
is obtained from the topology n on N by adding sets of the form x* U U,  
where U E 0 contains all points in JR1 except a finite number. Verify that 
(N* , O* ) is a normal space . 

p(x ,  A) 
1 5. 34x Set f (x) = 

( A) ( B) · p x ,  + p x ,  
1 5. 35x . 1  Set A =  j- 1 ( [ -1 ,  - 1 /3] ) and B = j- 1 ( [ 1/3 ,  1 ] ) .  Use 1 5. 34x 

to prove that there exists a function 9 : X -t [ -2/3 ,  2/3] such that 9 (A) = 
- 1/3 and 9 (B)  = 1/3 .  

1 5. 35x By 1 5. 35x. 1 ,  there i s  a function 91 : X  -t [ - 1/3 ,  1/3] such that 
l f (x) - 9l (x) l ::; 2/3 for every x E F.  Put JI (x) = f (x ) - 91 (x) . Slightly 
modifying the proof of 15. 35x. 1 we obtain a function 92 : X  -t [ -2/9 ,  2/9] 
such that I JI (x) - 92 (x) l :S 4/9 for every x E F, i . e . , l f (x) - 9l (x) - 92 (x) l :S 
4/9. Repeating this process , we construct a sequence of functions 9n : X  -t 

[ -2n- l j3n , 2n- 1 /3n] such that 

I J (x) - 91 (x) - · · · - 9n (x) l :S �: . 
Use 25.Hx to prove that the sum 91 (x) + · · +9n (x) converges to a continuous 
function 9 :  X -t [- 1 , 1 ] . Obviously, 9 I F = f . 

1 6. 1  This is obvious . 
1 6. 2  Sending each curve C in � to a pair of points in Q2 c JR2 lying 

inside two "halves" of C, we obtain an injection � -t Q4 . It remains to 
observe that Q4 is countable and use 1 6. 1 . (In order to show that Q4 is 
countable , use 1 6. C  and 1 6.D. )  

1 6. 3  The arrow i s  second countable : { (x ,  +oo)  I x E Q} i s  a countable 
base . (Use 1 6. C. )  Use 1 6.E  to show that 1Rr1 is not second countable . 
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1 6. 4  Yes ,  they are : N i s  dense both i n  the arrow and i n  �r1 • 
1 6. 5  Consider the space from Problem 2. 6. 
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1 6. 6  Take an uncountable set (e .g . , �) with all distances between 
distinct points equal to 1 .  (See 4 .A . )  

1 6. 7  Let X be  a separable space , let {Ua}aEJ be  a collection of pairwise 
disjoint open sets of X,  and let A c X be a countable everywhere-dense 
subset . Taking for each a E J a point p(a) E A n  Ua =!= 0, we obtain an 
injection J ---+ A. 

1 6. 8  Use 12.H, 14 . U, 14 . 8, 1 6.K, and 1 6. 7. 
1 6. 9  Consider id : � ---+ �T1 and use 1 6.K  and the result of 1 6. 3. 
1 6. 1 0  Let X be the space , Bo a countable base of X,  and B an arbitrary 

base of X.  By the Lindelof Theorem 1 6.M, each set in Bo is the union of 
countably many sets in B. It remains to use 1 6.D. 

1 6. 1 2  0 bviously, it suffices to prove only the last assertion. If U is an 
open set and a E U ,  then there is r > 0 such that Br (a) C U.  Since rn ---+ 0 ,  
there i s  k E N  such that rk < r ,  whence Brk (a) C U. 

1 6. 1 3  If X is a discrete (respectively, indiscrete) space , then the min­
imal base at a point x E X  is { {x } }  (respectively, {X} ) .  

1 6. 14 All spaces except �Tp cf. 1 6. 3. 
1 6. 1 5  Equip � with the topology determined by the base { [a ,  b) I a ,  b E  

�, a <  b} . 
1 6. 1 6  If {Vi}j"" is a countable neighborhood base , then let ui = n�l l;i .  
1 6. 1 1  In this space , Xn ---+ a i ff  Xn = a for all sufficiently large n .  It 

follows that SCl A = A for each A c R Check that SCl [O ,  1 ] = [0 , 1 ] =!= 
Cl [O ,  1] = R 

1 6. 1 8  Consider the identical map of the space from Problem 1 6. 1 7  to 

1 1. 1  1) If (X, f!2) is compact , then, obviously, so is (X, f!l ) .  2)  The 
converse is wrong in general . 

1 1. 2  The arrow is compact . (Which set must belong to each cover of 
the arrow?) The space �T1 is also compact : if r is an open cover of �r1 , 
then any nonempty element of r covers the entire �r1 except a finite number 
of points , each of which, in turn, is covered by an element of r . 

1 1. 3  This set is not compact in � since , e .g . , the cover { (0 ,  2 - 1/n) }nEN 
contains no finite subcovering . 

1 1. 4  The set [ 1 , 2) is compact i n  the arrow because any open set con­
taining 1 ( i . e . , a ray (a ,  +oo) with a < 1 ,  or even [0 , +oo) itself) contains 
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the entire [ 1 , 2) . Notice that the set ( 1 ,  2] is not compact (to prove this, 
use 1 7.D) . 

1 7. 5 A is compact in the arrow iff inf A E A. 
1 7. 6  See the solution to 1 7. 2. 
1 7. 7 1 )  If r covers A U B,  then r covers both A and B .  Therefore , 

r contains both a finite subcovering of A and a finite subcovering of B ,  
whose union i s  a finite cover o f  A U B.  2) The set A n  B i s  not necessarily 
compact (use 1 7. 5  to construct the corresponding example) . Unfortunately, 
sometimes students present a "proof" of the fact that A n B is compact . 
Here is a typical argument . "Since A is compact , A has a finite cover , and 
since B is compact , B also has a finite cover . Taking pairwise intersections 
of the elements of these covers , we obtain a finite cover of the intersection 
A n  B . "  Why doesn't this argument imply in any way that the intersection 
of two compact sets is compact? 

1 7. 8  Take an open cover r of A,  and let Uo E r be an open set 
containing 0. Then Uo covers the entire A except for a finite number of 
points , each of which, in turn , is covered by an element of r. (Cf. the 
solution to 1 7. 2. ) 

1 7. 9  Consider an indiscrete two-element space and its one-point subset . 
1 7. 1 0  Combine 1 7.K, 2.F, and 1 7. J. 
1 7. 1 1  Take any .Ao E A .  Then {X -...... K.xhEA is an open cover of 

the compact set K.x0 -...... U. If {X -...... K.x; }f is a finite subcovering, then 
u ::) n?=l K.xi . 

1 7. 12 By 1 7.K, all sets Kn are closed subsets of K1 . Since the collection 
{Kn} obviously has the finite intersection property and K1 is compact , we 
have n�=l Kn #- 0 is nonempty (see Theorem 1 7. G) . Assume the contrary: 
let n�=l Kn = F1 U F2 , where F1 and F2 are two disjoint nonempty closed 
sets . By Theorem 1 3 . 1 7  and 1 7. 0, they have disjoint neighborhoods U1 and 
U2 . Applying 1 7. 1 1  to U1 u U2 , we see that for some n we have U1 U U2 :J 
Kn :J F1 U F2 , which contradicts the connectedness of Kn . 

1 7. 1 3  Only if the space is finite . 
1 7. 14 From 1 7. T it follows that Sl , sn , and the ellipsoid are compact . 

The remaining sets are not compact : [0, 1 )  and [0 ,  1 )  n Ql are not closed in 
ffi., while the ray and the hyperboloid are unbounded .  

1 7. 1 5  GL(n) i s  not even closed in L(n, n) = ffi.n2 , while SL (n) and 
space (4) are not bounded . Therefore , only O(n) is compact because it is 
both closed and bounded (check this) . 

1 7. 1 6  By 1 3. C and Theorems 1 7. P and 1 7. U, f (I) is a compact interval , 
i . e . , a segment . 
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1 7. 1 7  (�J This is 1 7. V. 
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(<== ) Since the function A ---+ R :  x �---+ p(O , x )  is bounded , A is bounded. Let 
us prove that A is closed. Assume the contrary: let xo E Cl A -..... A. Then 
the function A ---+ R : x �---+ 1/ p(x ,  xo) is unbounded, a contradiction. Since 
A is closed and bounded , it is compact by 1 7. T. 

1 7. 1 8  Consider the function f : G ---+ R : x �---+ p(x ,  F) . By 4 . 35, f is 
continuous . Since p(G, F) = infxEG f (x) , it remains to apply 1 7. V. Recall 
that f takes only positive values ! (See 4 . L. )  

1 7. 1 9  Use 1 7. 1 8 and , e .g . , let E = p(A, X -..... U) . 
1 7. 20 Prove that if A c Rn is a closed set , then for each x E Rn 

there is y E A such that p(x ,  y) = p(x ,  A) , whence V = UxEA Dc (x) . The 
set UxEA Be ( x) is path-connected as a connected open subset of Rn , which 
implies that V is also path-connected . 

1 7. 22 Consider the function r.p :  X ---+ R :  x �---+ p(x ,  f (x) ) .  If f (x) =/= x ,  
then, by assumption, we have r.p(f (x) ) = p(f(x) , f (f (x) ) )  < p(x ,  f (x ) ) = 
r.p (x) . Prove that r.p is continuous . Since X is compact , r.p attains its minimal 
value at a certain point xo by 1 7. V. However , if f (xo) =/= xo , then r.p(f (xo ) )  < 
r.p(xo ) ,  and so r.p(xo ) is not the minimal value of r.p,  a contradiction. 

1 7. 23 Let U1 , . . .  , Un be a finite subcovering of the initial cover . We 
put fi (x) = p(x, X -..... Ui ) ·  Since the functions fi (x)  are continuous , so is the 
function r.p :  x �---+ max{fi (x) }f .  Since X is compact , r.p attains its minimal 
value r .  Since Ui cover X,  we have r > 0 .  

1 7. 24 Obvious . 
1 7. 25 If X is not compact , then use , e .g . , 1 1 . B. If Y is not Hausdorff, 

then consider , e .g . , the identical map id of I with the usual topology to I 
with the Zariski topology, or simply the identical map of a discrete space to 
the same set with indiscrete topology. 

1 7. 26 No, there is no such subspace. Let A c Rn be a noncompact 
set . If A is not closed , then the inclusion in : A ---+ Rn is not a closed map. 
If A =  Rn , then there exists a homeomorphism Rn ---+ {x E Rn I x 1 > 0 } .  If 
A is closed , but not bounded , then take xo tj. A and consider an inversion 
with center xo . 

1 7. 27 Use 5. F: closed sets of a closed subspace are closed in the ambient 
space . 

1 7. 29x Let p :  Rn ---+ R be a norm. The inequality 

implies that p is continuous at zero (here , { ei } is the standard basis in Rn) . 
Show that p is also continuous at each other point of Rn . 
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1 1. 30x Since the sphere is compact , there are real numbers c, C > 0 
such that c l x l :<::; p(x) :<::; C lx l , where I · I is the usual Euclidean norm. Now 
use 4 . 21. 

1 1. 31x Certainly not ! 
1 1. 32x. Consider a cover of X by neighborhoods on which f is bounded . 
1 8. 1  This obviously follows from 1 8.E. 
1 8. 2  By Zorn's lemma, there exists a maximal set in which the distances 

between the points are at least E"; this set is the required €-net . 
1 8. 3x  No, they are not compact . Consider the sequence {en } , where 

en is the unit basis vector. What are the pairwise distances between these 
points? 

1 8.4x This set is compact because the set 

A =  {x E zoo l l xn l :<::; 2-n for n :<::; k ,  Xn = 0 for n > k} 

is a 2-k-net in the set . 
1 8. 6x No, there does not exist such normed space . Prove that if E is 

a finite-dimensional subspace of a normed space (X, p) , x tt. E,  and y E E 
is a point in E closest to x ,  then the point xo = (x - y) f l x - Y l is such 
that p(xo - z ) ;::: 1 .  (This fact is called the "Lemma on a Perpendicular" . ) 
Using this assertion, we can construct by induction a sequence Xn E X  such 
that p(xn ) = 1 ,  p(xn - xk ) ;::: 1 for n i- k. Clearly, it has no convergent 
subsequence. 

1 8. 1x See 4. Ux. 
1 8. 8x If x = ao + a1p + . . .  and y = ao + a1p + · · · + akpk , then 

p(x ,  y) :-::; p-k- 1 . 
1 8. 9x  Yes ,  Zp is complete .  To prove this , use the following assertion: 

if x = ao + a1p + . . .  , y = bo + b1p + . . .  , and p(x ,  y) < p-k , then ai = bi for 
all i = 1 ,  . . .  , k .  

1 8. 1 0x  Yes ,  Zp is compact . Since the finite set A =  { y  = ao + a1p + 
· · · + akpk } is a p-k-1-net in Zp , the completeness of Zp proved in 18. 9x 
implies that it is compact . 

1 8. 1 1x Use the Hausdorff metric. 
1 8. 1 2x. We can view JR2n as the space of n-tuples of points in the plane. 

Each n-tuple has a convex hull , which is a convex polygon with at most n 
vertices . Let K C JR2n be the set of all n-tuples with convex hulls contained 
in Pn · We easily see that K is bounded and closed, i . e . , K is compact . The 
map K ---t Pn taking an n-tuple to its convex hull is obviously continuous 
and surjective , whence it follows that Pn is compact . 
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1 8. 1 3x Use the fact that Pn is compact and the area determines a 
continuous function S : P n ---7 R 

1 8. 14x It is sufficient to show that if a polygon P C  D is not regular , 
then we can find a polygon P' c D that has perimeter at most p and area 
greater than that of P, or perimeter less than p and area at least that of 
P. 1) First , it is convenient to assume that P (as well as P' ) contains the 
center of D. 2) If P has two neighboring sides of different length, then we 
can make them equal of smaller length without changing the area. 3) If P 
is equilateral , but has different angles , we once more enlarge the area, this 
time even decreasing the perimeter . 

1 8. 1 5x As in 1 8. 1 1x, the Hausdorff metric would do. 
1 8. 1 6x Consider a sequence consisting of regular polygons of perimeter 

p with increasing number of vertices . Show that this sequence has no limit 
in P 00 • Therefore , no such sequence contains a convergent sequence , and so 
P00 is not even sequentially compact . 

1 8. 1 7x  Once more , use the Hausdorff metric , as in 1 8. 1 1x and 1 8. 1 5x. 
1 8. 1 8x By 18 .N, it suffices to show that 1 )  P contains a compact 

c:-net for each (arbitrarily small) c: > 0, and 2) P is complete . 1 )  Pn 
with sufficiently large n would do . (What finite c:-net would you sug­
gest?) 2) Let K1 , K2 , . . .  be a Cauchy sequence in P. Show that K* = 
Cl (U:=l (n:n Ki ) )  is a convex set in P, and Ki ---7 K* as i ---7 oo .  

1 8. 1 9x This follows from 18. 18x and the continuity o f  the area function 
S : P ---7 R (Cf. 1 8. 1 3x. ) 

1 8. 20x Similarly to 1 8. 14x, it suffices to show that we can increase 
the area of a compact set X distinct from a disk without increasing the 
perimeter of X. 1) First , we take two points A, B E Fr X that divide Fr X 
in two parts of equal length. 2) The line AB splits X into two parts , X1 and 
X2 . Suppose that the area of X1 is at least that of X2 . Then, if we replace 
X2 by a mirror reflection of X1 , we do not decrease S(X ) .  If X1 is not a 
half-disk, then there is a point C E X 1 n Fr X such that LAC B -=f. 1r /2 , and 
we easily increase S (X) . 

1 9. 1x Obvious . 
1 9. 2x All of them, except Q.  
1 9. 3x Let A =  U�=l ( 1 / (n + 1 ) ,  1 /n) and B = {0 } .  The sets A and 

B are locally compact , but the point 0 E A U  B has no neighborhood with 
compact closure (in A U  B) . 

1 9.4x See 19. Lx. 
1 9. 7x This is obvious since an open set U meets an A E r iff U meets 

Cl A .  
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1 9. 8x This immediately follows from 1 9. Qx. 
1 9. 9x  Use 1 9. 8x. 
1 9. 1 1x Let X be a locally compact space . Then X has a base consisting 

of open sets with compact closures . By the Lindelof theorem, the base (being 
an open cover of X) contains a countable subcovering of X. It remains to 
use assertion 1 9.Xx. 

1 9. 1 2x  Repeat the proof of a similar fact about compactness. 
1 9. 1 3x This is obvious . (Recall the definitions . )  
1 9. 14x Consider the cover r' = {X -...... F, Ua } of X .  Let {Va }  be a 

locally finite refinement of r' . Then 6. = {Va I Va n F # 0} is a cover of F. 
Let W = Uv, E� Va . Since 6. is locally finite, K = Uv, E� Cl Va is a closed 
set . Then W and X -...... K are the required disjoint neighborhoods of F and 
M. 

1 9. 1 5x This immediately follows from 1 9. 14x (or 1 9. 1 6x) . 
1 9. 1 6x This immediately follows from 1 9. 14x. 
1 9. 1 7x Since X is Hausdorff and locally compact , each point x E Ua E 

r has a neighborhood Va,x with compact closure lying in Ua . Since X is 
paracompact , the open cover {Va,x }  of X has a locally finite refinement 6.,  
as required . 

1 9. 1 8x The argument involves Zorn's lemma. Consider the set M of 
all open covers 6. of X such that for each V E 6. either V E r ,  or Cl V is 
contained in an element of r .  We assign to 6. E M  the subset A� = {Va I 
Cl Va c Ua} C r.  Introduce a natural order on the set {A� I 6. E M}  
and show that this set has a largest element A�0 , which coincides with the 
entire r, and ,  therefore , 6.o is the required cover. 

1 9. 20x This is next to obvious . 
20. 1 pry1 (B) = X  x B .  
20. 2 We have: 

pry (r1 n (A x Y) )  = pry ( { (x , j (x) ) I x E A} ) = {f (x) I x E A} = f (A) . 

Prove the second identity on your own. 
20. 3 Indeed, we have 

(A x B) n 6.  = { (x , y) I x E A, y E B ,  x = y} = { (x , x) I x E A n B} . 

20.4 prx l r1 : (x ,  f (x ) )  +-+ x .  
20. 5 Indeed, j (x1 ) = j (x2 ) iff pry (x1 , j (x1 ) )  = pry (x2 , j (x2 ) ) .  
20. 6 This obviously follows from the relation T(x , j (x) ) = (J (x) , x )  = 

(y ,  j- l (y) ) .  
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20. 7 Use the following relation: 

A X B n u Ua X Va = U(A X B ) n (Ua X Va) = U (A n Ua) X (B n Va) ·  

20. 8 Use the third formula of 20.A :  

(X x Y) "- (A x  B ) = ( (X "- A) x Y) U (X x (Y "- B ) )  E Ox x Y · 

20. 9 As usual , for proving equality of sets , we prove the two inclusions . 
[g Use 20. 8. [2] If x and y are adherent points of A and B ,  respectively, 
then, obviously, (x ,  y ) is an adherent point of A x B .  

20. 1 0  Yes ,  this i s  true . Once again , prove two inclusions . [g This 
is obvious . [2] If z = (x ,  y ) E Int (A x B ) , then z has an elementary 
neighborhood: z E W = U x V c A x B ,  which means that x has a 
neighborhood Ux C A and y has a neighborhood Vy C B ,  i .e . ,  x E Int A and 
y E Int B ,  whence z = (x ,  y ) E Int A x  Int B ) . 

20. 1 1  Certainly not ! For instance , the boundary of the square I x I C 
JR2 is the contour of the square , while the product Fr I x Fr I consists of four 
points .  

20. 1 2  No, it is not in general ; consider the set ( - 1 ,  1 )  x ( -1 ,  1 )  c JR2 . 
20. 1 3  Since A and B are closed, we have Fr A = A "- Int A and Fr B = 

B "- Int B .  The set A x B is also closed by 20. 8, whence by the third formula 
in 20.A we have 

Fr (A x B ) = (A x  B ) "- Int (A x B ) = (A x  B ) "- (Int A x Int B ) 

= ( (A "- Int A) x B ) u (A x (B " Int B ) ) = (Fr A x  B ) u (A x  Fr B ) . 
(23) 

20. 14 Using 20. 9, 20. 1 0, and the third formula of  20.A ,  we obtain 

Fr (A x B ) = Cl (A x B ) "- Int (A x B ) 

= (CI A x Cl B ) "- (Int A x Int B ) 

= ( (CI A "- Int A) x Cl B) U (CI A x (Cl B "- Int B ) )  

= (Fr A x Cl  B ) U (Cl A x Fr B ) 

= (Fr A x (B U Fr B ) )  U ( (A U  Fr A) x Fr B ) 

= (Fr A x  B ) U (Fr A x  Fr B ) U (A x  Fr B ) . 

20. 1 5  It is sufficient to show that each elementary open set in the 
product topology of X x Y is a union of sets of such form. Indeed ,  

U Ua X U V13 = U(Ua X V13) .  
a !3 a ,iJ 
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20. 1 6  (=>I The restriction prx l r1 is obviously a continuous bijection. 
The inverse map X � r 1 : x f--t ( x ,  f ( x ) )  is continuous iff so is the map g : 

X �  X x Y :  x f--t (x , J (x) ) ,  which is true because g-1 (U x V) = Unj-1 (V) . 
( ¢::::: ) Use the relation f = pry o (prx l r1 ) - 1 . 

20. 1 7  Indeed, prx (W) = prx (Ua (Ua X Va) )  = Ua Prx (Ua X Va) = 

Ua Ua . (We assumed that Va i= 0 . )  

20. 1 8  No, it is not ; consider the projection of the hyperbola A = 

{ (x , y) I xy = 1 }  c JR2 to the x axis . 
20. 1 9  Let F c X x Y be a closed set , and let x tJ_ prx (F) . Then 

( x x Y) n F = 0 ,  and for each y E Y the point ( x, y) has an elementary 
neighborhood Ux (Y) x Vy C (X x Y) ......_ F .  Since the fiber x x Y is compact , 
there is a finite subcovering {VyJf=1 . The neighborhood U = nr=1 Ux (Yi )  
i s  obviously disjoint with prx (F) . Therefore , the complement o f  prx (F) is 
open, and so prx (F) is closed. 

20. 20 Plug in the definitions . 
20. 21 This is rather straightforward. 
20. 22 This is also quite straightforward . 
20. 23 Recall the definition of the product topology and use 20. 21 .  
20. 24 Let us check that p is continuous at each point (x 1 , x2 ) E X  x X.  

Indeed, let d = p(x1 , x2 ) ,  E > 0 .  Then, using the triangle inequality, we 
easily see that p (Bc;2 (x1 ) x Bc;2 (x2 ) )  C (d - E , d + E) .  

20. 25 This is quite straightforward. 
20. 26 (=>I Let (x ,  y) tJ_ � - Then the points x and y are distinct , and 

so they have disjoint neighborhoods : Ux n Vy = 0 .  Then (Ux x Vy ) n � = 0 
by 20. 3, i . e . , Ux x Vy C X x X ......_ � - Therefore , (X x X) ......_ � is open. 
( ¢::::: ) Let x and y be two distinct points of X .  Then (x ,  y) E (X x X) ......_ � ' 
and , since � is closed, (x , y) has an elementary neighborhood Ux x Vy C 
X X X ....... � - It follows that Ux X Vy is disjoint with � ' whence Ux n Vy = 0 
by 20. 3, as required. 

20. 27 Combine 20. 26 and 20. 25. 
20. 28 The projection prx : X �  Y is a closed map by 20. 1 9. There­

fore , the restriction prx l r : r � X is also closed by 1 1. 27, it is a homeo­
morphism by 1 1. 24 ,  and so f is continuous by 20. 1 6. 
Another option: use 20. 1 9  and the identity f- 1 (F) = pr x (r 1 n (X x F) ) . { 0 if X =  0 ,  

20. 29 Consider the map lR � lR :  x f--t 
/ 1 x ,  otherwise . 
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20. 32 Only the path connectedness implies the continuity. The func­
tions described in Problem 20. 31 provide counterexamples to other asser­
tions . 

20. 36 No, they are not . 
20. 37 It is convenient to use the following property, which is equivalent 

to the regularity of a space (see 1 5. 1 9) .  For each neighborhood W of (x ,  y) , 
there is a neighborhood U of (x ,  y) such that Cl U C W. It is sufficient 
to consider the case where W is an elementary neighborhood. Use the 
regularity of X and Y and Problem 20. 9. 

20. 38. 1 Let A and B be two disjoint closed sets .  For each a E A.  
there exists an open set Ua = [a ,  Xa ) C X ....,_ B .  Put U = UaEA Ua . The 
neighbor hood V :J B is defined similarly. If U n V i= 0, then for some a E A 
and b E  B we have [a, Xa ) n [b , Yb ) i= 0 .  Let , say, a <  b. Then b E  [x , xb ) , a 
contradiction . 

20. 38. 2 The set \7 is closed in �2 , a fortiori \7 is closed in R x R. 
Since { (x ,  -x) } = \i' n  ( [x , x +  1) x [-x, -x + 1 ) ) , it follows that each point 
of \7 is open in \7 .  

20. 38. 3 See 1 5. 30x. 
20. 39 Modify the argument used in the proof of assertion 20.8. 
20.40 This follows from 20. U and 20. 9. 
20.43  �n ....,_�k � (�n-k ....,_ o) x �k � (8n-k- I x �) x �k � sn-k- I x �k+I . 

20.45  The space O(n) is the union of 80 (n) and a disjoint open subset 
homeomorphic to SO(n) . Therefore , O(n) is homeomorphic to 80 (n) x 
{ - 1 ,  1 } � 80(n) x 0( 1 ) .  

20. 46  It is sufficient t o  show that GL+ (n) = {A I det A > 0} is 
homeomorphic to 8L(n) x (0, +oo) . The required homeomorphism sends a 
matrix A E GL+ (n) to the pair ( �d�t A A, det A) . 

20.48  The existence of such a homeomorphism is directly connected 
with the existence of quaternions (see the last subsection in 23) , and there­
fore in the proof we also use properties of quaternions . Let { xo , XI , x2 , X3 } be 
a quadruple of pairwise orthogonal unit quaternions determining a point in 
80(4) . The required homeomorphism sends this quadruple to the pair con­
sisting of the unit quaternion xo E 83 and the triple { x0 I XI , x0 I x2 , x0 I X3 } 
of pairwise orthogonal vectors in �3 , which determines an element in 80(3) . 
(Notice that ,  e .g . , 80(5)  is not homeomorphic to 84 x 80(4) ! )  

21 . 2  The map pr sends each point to the element of the partition 
(regarded as an element of the quotient set ) containing the point , and so 
the preimage pr- I (point) = pr- I (pr(x) ) is also the element of the partition 
containing the point x E X .  
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21 . 3  Let X/ s = {a ,  b, c} ,  where p-1 (a) = [0 , 1/3] , p-1 (b) = ( 1 /3 ,  2/3] , 
and p- 1 (c) = (2/3 ,  1 ] . Then nx;s = {0 ,  {c} ,  {b ,  c} ,  {a , b, c} } . 

21 . 4  All elements o f  the partition are open i n  X .  
21 . 6  Let X =  N x I. Let the partition S consist of the fiber N = N x 0 

and singletons . Let pr(N) = x* E X/ S· We prove that the point x* has no 
countable neighborhood base . Assume the contrary : let {Uk} be a countable 
neighborhood base at x* . Each of the sets pr- 1 (Uk ) is open in X and 
contains each of the points Xn = (n ,  0) E X.  For each (n ,  0) choose a 
neighborhood Vn in n x I  that is strictly smaller than pr- 1 (Un ) n n x I. It 
remains to observe that W = pr (Un Vn ) is a neighborhood of x* which does 
not contain any of the neighborhoods Un of x* , a contradiction. 

21 . 7  For each open set U c X/s , the image f/s(U) = f (pr- 1 (U) ) is 
open as the image of the open set pr- 1 (U) under the open map f .  

21 . 9x  ( => I  If F i s  a closed set in X ,  then the set pr- 1 (pr(F) ) is 
closed. [-=1 For each closed set F in X the set pr (F) is closed by 
assumption that pr is a closed map. Its preimage pr- 1 (pr(F) ) is closed 
because pr is continuous . This is the saturation of F .  

21 . 1  Ox Let A be the non-one-point closed element of  the partition . 
The saturation of any closed set F is either F itself, or the union F U A, i .e . ,  
a closed set . 

21 . 1 1x This is similar to 21 . 9x. 
21 . 1 2x If A is saturated , then for each subset U c A the saturation 

of U is also a subset of A. Consequently, the saturation of Int A lies in A ,  
and, since the saturation i s  open, i t  coincides with Int A. Since X ......_ A is 
also saturated, Int (X ......_ A) = X ......_ Cl A is saturated, too, and so Cl A is also 
saturated . 

22. 1 Here is a partition of the segment with quotient space home­
omorphic to the letter A. It consists of two-element sets: { 1/6 ,  2/3} and 
{2/3 - x, 2/3 + x} for x E (0 ,  1/6] ;  the other elements are singletons . The 
idea of the proof is the same as that used in 22. 2: we construct a continuous 
surjection of the segment onto the letter A. Consider the map defined by the 
following formulas : 

f (t) = 

(3t ,  6t )  
(3t ,  4 - 6t) 
(9/2 - 6t ,  1 )  
(6t - 7/2 , 1 )  
(3t - 1 ,  6 - 6t) 

if X E [0 , 1 /3] , 
if X E [ 1 /3 ,  1 /2] , 
if X E [ 1 /2 ,  2/3] , 
if X E [2/3 ,  5/6] , 
if X E [5/6 , 1 ] . 

Show that f (I) is precisely the letter A,  and the partition into the preimages 
under f is the partition described in the beginning of the solution . 
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22. 2 Let u :  I � I x I be a Peano curve , i . e . , a continuous surj ection . 
Then the injective factor of the map u is a homeomorphism of a certain 
quotient space of the segment onto the square . 

22. 3 Let S be the partition of A into A n B and singletons in X -...... B = 

A -...... B ,  let T be the partition of X into B and singletons in X -...... B ,  and 
let prA : A � A/ S and prx : X � X/T be the projections . Since the 
quotient map q : A/ A n  B � X/ B is obviously a continuous bijection, to 
prove that q is a homeomorphism, it suffices to check that q is an open 
map . Let U c A/ A n  B be an open set , V = pr_A1 U. Then V is open in 
A and saturated in X. If V n B = 0, then V is also open in X because 
{A,  B} is a fundamental cover of X ,  and so q (U)  = prx (V) is open in 
Xjy. If V n B -=f. 0, then, obviously, V :J A n B, and so the saturated set 
W = V U E  is open in X .  In this case , q(U) = prx (W) is also open in XfB · 

22. 4  Consider the map f : I � I ,  where 

{ ;!X 

f (x) = �/2 
(3x - 1 ) /2 

if X E [0 , 1 /3] , 
if X E [ 1/3 ,  2/3] , 
if X E [2/3 ,  1 ] , 

and prove that S(f)  is the given partition . Therefore , f / S(f)  : I/ S(f)  � I. 
22. 5 Consider the function r.p : ffi.+ � ffi.+ that vanishes for t E [0 , 1] 

and is equal to t - 1  for t �  1 and the map f :  ffi.2 � ffi.2 , where f (x , y) = 

( 'P�) x ,  'P�) y) ; here , as before , r = Jx2 + y2 . By construction , ffi.2 /D2 = 

ffi.2 / S(f) · The map f / S(f) is a continuous bijection . In order to see that 
f / S(f)  is a homeomorphism, use 1 9. Ox ( 1 9.Px) . In order to see that ffi.2 is 
also homeomorphic to other spaces , use the constructions described in the 
solutions of Problems 1 1 .  2o-1 1 .  22. 

22. 6 Let S be the partition of X into A and singletons in X \ A. Let 
T be the partition of Y into f (A) and singletons in Y \ f (A) . Show that 
f / ( S, T) is a homeomorphism. 

22. 7 No, it is not . The quotient space ffi.2 /A has no countable base at 
the image of A, while Int D2 U { (0 ,  1 ) }  is first countable as a subspace of ffi.2 . 
We can construct a continuous map ffi.2 � Int D2 U { (0 ,  1 ) }  that maps A 
to (0 ,  1 )  and determines a homeomorphism ffi.2 -...... A � Int D2 . This map 
determines a continuous map ffi.2 /A � D2 U { (0 ,  1 ) } ,  but the inverse map is 
not continuous . 

22. 8 The partition S ( r.p) , where r.p : 81 � 81 c C : z f-oot z3 , is precisely 
the partition into given triples , whence 81 / s � 81 . 

22. 9 For the first equivalence relation , consider the map rp(z )  = z2 . 
22. 1 0  Notice : the quotient space of Dn by the equivalence relation 

x rv y ¢=:::? Xi = -yi is not homeomorphic to Dn ! 
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22. 1 1  Consider f : lR ---+ 81 : X I-t (cos 21TX , sin 21TX) . Clearly, X "' 
y ¢:=:::> f (x) = J (y) ,  and so the partition S(J) is the given one . Un­
fortunately, here we cannot simply apply Theorem 1 7. Y because lR is not 
compact . Prove that ,  nevertheless , this quotient space is compact . 

22. 12  The quotient space of the cylinder by the equivalence relation 
(x , p) "' (y , q) if x + y = 1 and p = -q (here x, y E [0, 1] and p, q E 81 ) ,  is 
homeomorphic to the Mobius strip . 

22. 1 3  Use the transitivity of factorization (Theorem 22.H) .  Let S be 
the partition of the square into pairs of points on vertical sides lying on one 
horizontal line ; all of the remaining elements of the partition are singletons . 
We see that the quotient space !2 Is is homeomorphic to the cylinder . Now 
let S' be the partition of the cylinder into pairs of points on the bases 
symmetric with respect to the center of the cylinder ; the other elements are 
singletons . Then the partition T of the square into the preimages under the 
map p : 12 ---+ 12 Is of the preimages of elements of S' coincides with the 
partition the quotient space by which is the Klein bottle . 

22. 1 7  The first assertion follows from the fact that the open sets in 
the topology induced from UaEA Xa on the image in,a (X,a)  have the form 
{ (x ,  j3) I x E U} ,  where U is an open set in X ,a ,  and so ab in.a : X  ,a ---+ in,a (X,a)  
i s  a homeomorphism. Furthermore , each of  these images i s  open in the sum 
of the spaces (because each of its in0-preimages is either empty, or equal to 
X.a) ,  and hence is also closed . 

22. 1 8  The separation axioms and the first axiom of countability are 
inherited. The separability and the second axiom of countability require 
that the index set be countable. The space UaEA X0 is disconnected if 
the number of summands is greater than one . The space is compact if the 
number of summands is finite and each of the summands is compact . 

22. 1 9  The composition c.p = pr o in2 is injective because each element 
of the partition in X1 U X2 contains at most one point in in2 (X2 ) .  The 
continuity of c.p is obvious . Consider an open set U c X2 . The set in1 (X1 ) U 
in2 (U) is open in X1 u X2 and saturated, and so its image W is open in 
X2 UJ X1 . Since the intersection W n c.p(X2 ) = c.p(U)  is open in c.p (X2 ) ,  it 
follows that c.p is a topological embedding. 

22. 20 Thus , X = {* } .  Put Y' = Y U { * } and A' = A U {* } .  Clearly, 
the factor g : Y I A ---+ Y' I A' of the injection in : Y ---+ Y' is a continuous 
bijection . Prove that the map g is open. 

22. 21 The Klein bottle is obtained by factorization of the square , as 
shown in the left picture on the next page . Cut the square as shown in 
the middle . Glue the upper and lower triangles along the horizontal sides 
marked with letter c.  We get two parallelograms shown on the right hand 
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To obtain from the parallelograms the Klein bottle , one needs to glue in 
each of them the vertical sides to each other , and then attach them to each 
other along the cuts which we made at the beginning. The gluing of the 
vertical sides turns the parallelograms to Mobius strips . The last operation 
is gluing the Mobius strips to each other along their boundary circles . 

22. 22 Use the map 

( ids1 x i+ ) U ( ids1 x i _ ) : (81 X I) U (81 X I) ----+ 81 x 81 , 

where i± are embeddings of I in 81 onto the upper and, respectively, lower 
semicircle . 

22. 23 See 22.M and 22. 22. 
22. 24 If the square , whose quotient space is the Klein bottle , is cut by 

a vertical segment in two rectangles, then by gluing together the horizontal 
sides we obtain two cylinders . 

22. 25 Let 83 = { (z1 , z2 ) l l z1 l 2 + l z2 l 2 = 1 }  C C2 . The subset of the 
sphere determined by the equation l z1 l = l z2 l consists of all pairs (z1 , z2 ) 
such that l z1 l = l z2 l = 1 /-/2, and , therefore, the set is a torus . Now consider 
the subset T1 determined by the inequality I z1 l :S I z2 l and the map taking 
(zl , Z2 ) E Tl to (u,  v ) = (zd l z2 1 ,  Z2 / l z2 1 )  E C2 . Show that this map is a 
homeomorphism of T1 onto D2 x 81 and complete the argument on your 
own. 

22. 26 The cylinder or the Mobius strip . Consider a homeomorphism g 

between the vertical sides of the square , let g :  (0 ,  x) f--t ( 1 ,  f (x) ) .  The map 
f is a homeomorphism I ----+ I, and, therefore , f is a (strictly) monotone 
function . Assume that the function f is increasing , in particular , f (O) = 0 
and f ( 1 )  = 1 .  We show that there is a homeomorphism h : I2 ----+ I2 such 
that h(O ,  x) = x and h ( 1 ,  x) = ( 1 ,  f (x) ) for all x E I. For this purpose , we 
subdivide the square by the diagonals into four parts , and define h on the 
right-hand triangle by the formula 

h ( ltt ' 12t + tx) = ett ' 12t + tf(x) ) , 

t ,  x E I .  On the remaining three triangles , h is identical . Clearly. the 
homeomorphism sends the element { (O , x) , ( 1 , x) } of the partition to the 
element { (O , x ) , ( 1 , f (x) ) } ,  and , therefore ,  we obtain a continuous bijection 
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(and , consequently, a homeomorphism) of the cylinder onto the result of 
gluing the square together via the homeomorphism g of its vertical sides . If 
the function f is decreasing, then, arguing in a similar way, we see that the 
result of this gluing is the Mobius strip . 

22. 27 The torus and the Klein bottle ; similarly to 22. 26. 
22. 28 Show that each homeomorphism of the boundary circle extends 

to the entire Mobius strip . 
22. 29 See 22. 27. 
22. 30 Show that each autohomeomorphism of the boundary circle of a 

handle extends to an autohomeomorphism of the entire handle . (Compare 
Problem 22. 28. When solving both problems , it is convenient to use the 
following fact : each autohomeomorphism of the outer boundary circle of a 
ring extends to an autohomeomorphism of the entire ring that is fixed on 
the inner boundary circle or determines a mirror symmetry of it . )  

22. 31 See the solutions to Problems 22. 28 and 22. 30. 
22. 32 We can assume that the holes are split into the pairs of holes 

connected by "tubes" . (Compare the solution to Problem 22. V.)  Together 
with a disk surrounding such a pair , each tube either forms a handle or 
a Klein bottle with a hole . If each of the tubes forms a handle , then we 
obtain a sphere with handles . Otherwise, we transform all handles into 
Klein bottles with holes (see the solution to Problem 22. V) and obtain a 
sphere with films . 

23. 1 There exists a natural one-to-one correspondence between lines 
in the plane that are determined by equations of the form ax + by + c = 0 
and points (a :  b :  c) in �P2 . Observe that the complement of the image of 
the set of all lines is the singleton { ( 0 : 0 : 1 ) } .  

24 . 1x Yes ,  it is .  A number a always divides a (formally speaking, even 
0 divides 0) . Further , if a divides b and b divides c, then a divides c. 

24 . 2x a ,...., b iff a = ±b. 
24 . 3x This is obvious because A c Cl B iff Cl A c Cl B .  
25. 1x This i s  obvious . (Cf. Problem 25. 2x. ) 
25. 2x Sending each point y E Y to the constant map X �  Y :  x 1---7 y ,  

we obtain an injection Y � C (X, Y) . 
25.4-x The formula f 1---7 f-1 (0) determines a bij ection C (X, Y) � Dx . 
25. 5x Since X is a discrete space , each map f : X � Y is continuous . 

If X = {x1 , x2 , . . .  , xn } ,  then f is uniquely determined by the collection 
{f (x1 ) ,  . . .  , f (xn ) }  E yn . 

25. 6x The set X has two connected components. 
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25. 7x It is clear (prove this) that the topological structures C (I ,  I) and 
C (pw) (I ,  I) are distinct , and,  consequently, the identical map of the set C (I ,  I) 
is not a homeomorphism. In order to prove that the spaces considered are 
not homeomorphic ,  we must find a topological property such that one of the 
spaces satisfies it , while the other does not . Show that C (I ,  I) satisfies the 
first axiom of countability, while C(pw) (I ,  I) does not . 

25. 8x We identify Y with Const (X, Y) via the map y f-t jy : x f-t 

y .  Consider the intersections of sets in the subbase with the image of Y 
under the above map . We have W(x ,  U) n Const (X, Y) = U, and, hence , 
the intersection of Y with any subbase set in the topology of pointwise 
convergence is open in Y. Conversely, for each open set U in Y and for each 
x E X we have U = W(x ,  U) n Const (X, Y) . The same argument is also 
valid in the case of the compact-open topology. 

25. 9x The mapping f f-t (f (x 1 ) ,  j (x2 ) ,  . . .  , f (xn ) )  maps the subbase set 
W(xl , Ul ) n W(x2 , U2 ) n . . . n W(xn , Un ) to the base set ul X u2 X . . .  X Un 
of the product topology. Finally, it is clear that if X is finite, then the 
topologies nco (x, Y) and f2PW (X, Y) coincide . 

25. 1 0x  (==>) Use 25. Wx. (<=l Since X is a path-connected 
space , any two paths in X are fre�ly homotopic . Consider a homotopy 
h :  I x I �  X.  By 25. Vx, the map h :  I �  C (I ,  X) defined by the formula 
h(t) (s )  = h(t ,  s ) , is continuous . Therefore , any two paths in X are joined by 
a path in the space of paths , which precisely means that the space C (I ,  X)  
i s  path-connected. 

25 . 1 1x The space C(pw) (I , I) is noncom pact since the sequence of 
functions fn (x) = xn has no accumulation points in this space . The same 
sequence has no limit points in C (I ,  I) , and ,  hence , this space is also not 
compact . 

Let 

25. 1 2x Let 

dn (f, g) = max{ l f (x) - g (x) l : x E [- n , n] } , n E N. 

d(j ) � dn (J, g) 
' g = LJ 2n ( 1  + d (J ) )  

. 
n=l n , g  

We easily see that d is a metric . Show that d generates the compact-open 
topology. 

25 . 1 3x.  The proof is similar to that of assertion 25. 12x. We only need to 
observe that since, obviously, X =  U�1 Int Xi , for each compact set K c X 
there is n such that K C Xn . 

26. 1x 1 )  No, it cannot . 2) Yes ,  it can . 
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27. 1x Use the fact that 1 )  (J(x , y) = w(x , a (y) ) ,  and 2) a(x) = (3 ( 1 , x) 
and w (x ,  y) = (J(x, a (y) ) .  1=-1 Use the continuity of compositions . (<== 1 
Write b- 1 = 1 · b- 1 and ab = a · ( 1 · b- 1 ) - 1 . 

27. 2x In the notation used in the proof of assertion 21. 1x, a is a 
continuous map inverse to itself. Therefore , a is a homeomorphism. 

27. 3x Use the fact that the former map is the composition w o (f  x g) , 
while the latter is the composition a o f (in the notation used in the proof 
of 21. 1x) .  

27.4x Yes ,  it is . In order to prove this , use the fact that any auto­
homeomorphism of an indiscrete space is continuous . 

27. 5x If the topology on a group is induced by the standard topology 
of the Euclidean space , then in order to verify that the maps (x , y) f---7 xy 
and x f---7 x- 1 are continuous it suffices to check that they are determined 
by continuous functions . If x = a + ib and y = c + id, then xy = ( ac -
bd) + i (ad + be) . Therefore, the multiplication is determined by the function 
(a ,  b ,  c, d) f---7 (ac - bd, ad + be) , which is obviously continuous . The passage 
to the inverse element is also determined by the continuous function (on 
JR2 ....... 0) 

2 2 ( a -b  ) lR -...... 0 --+ IR -...... O : (a , b) f---7 a2 + b2 ' a2 + b2 . 

27. 6x Use the idea of the solution to Problem 21. 5x and the fact that 
addition , multiplication, and their compositions are continuous . 

27. 7x Consider , e .g . , the cofinite topology of Problem 2. 5, or, what 
would be more interesting, the topology of an irrational flow lR --+ T2 . 
(See 29. 1x (f) . )  

27. 8x Consider any two (algebraically) nonisomorphic discrete finite 
groups of equal order . Here is a more meaningful example : the topological 
group G£+ (2 ,  JR) C G£(2 ,  JR) of invertible 2 x 2 matrices with positive deter­
minant is homeomorphic to 0+ (2)  X JR3 . (Here , 0+ ( 2 )  = 0(2) n G£+ (2 ,  JR) . )  
The two groups are not isomorphic because the first one i s  not Abelian ,  while 
the second one is . 

27. 1 0x  Yes ,  it does . (For the same reason as in 21.Ex. ) 
27. 1 1x Use the fact that UV = UxEV Ux and VU = UxEV xU.  
27. 1 2x No, it will not . A counterexample is given by a point by 

point sum U + V of a singleton U c lR with an open interval V E R A 
counterexample in which both U and V are closed is given in 21. 13x 

27. 1 3x (a) , (b) Yes .  (c) No. This group is everywhere dense , but 
obviously does not coincide with R (e .g . , because it is countable , while lR 
is not . )  
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27. 14x Let X � uv. Then u and xv-1 are disjoint . Apply 27. 14x. 1 
and take a neighborhood W of la such that WU does not meet xv- 1 . Then 
w-1x does not meet uv. 

27. 14x . 1  For each x E C, the unity la has a neighborhood Vx such 
that xVx does not meet F. By 27.Hx, la has a neighborhood Wx such 
that w; c Vx . Since C is compact , C is covered by finitely many sets 
of the form w1 = X1 Wxl ,  . . .  , Wn = Xn Wxn .  Put v1 = n�1 Wx; .  Then 
cv1 c u�=1 wi v c u�1 Xi w;i c u�=l Xi Vxi , so that cv does not meet F. 
In a similar way, we construct a neighborhood V2 of la such that V2C does 
not meet F. The neighborhood V = V1 n V2 possesses the required property. 
If G is a locally compact group , then we choose the neighborhood Vx with 
compact closure and then proceed as before . 

27. 1 5x By 27.Hx, la has a neighborhood V' with V'V' C U . By 27. Gx, 
V' contains a symmetric neighborhood V2 of la .  Then V2 V2 c V'V' c U .  
After that , proceed by induction, replacing U by V2 and choosing as Vn a 
symmetric neighborhood V of la such that vn- 1 c V2 . Then vn c Vl c U. 
Observe that V c VV. 

27. 1 6x The set H = U�=1 vn is open. Clearly, we have 1 E H,  
H-1 C H,  and HH C H.  Hence , H is a subgroup . I t  remains to observe 
that an open subgroup is always closed (see 28. 3x) . 

27. 1 8x Let N be the intersection of all neighborhoods of la .  Since 
G is finite, there are only finitely many neighborhoods involved, and hence 
N is open. From 27. Gx and 27.Hx it follows that N = N-1 and N2 = N. 
Hence , N i s  a subgroup . I t  i s  normal since otherwise N n gN g- 1 would be 
a smaller neighborhood of  la than N .  

28. 2x (=>J Obvious . (Consider the unity. ) (<=) Let H be the 
subgroup , U an open set , g E U C H. Then h E hg- 1U C H for each 
h E H, and , therefore , each point of H is inner . 

28. 3x For any subgroup H and any g � H, the sets H and gH are 
disjoint . Hence , the complement of H is the union of gH over all g � H. 
Therefore , the complement of  H i s  open i f  H i s  open . 

28.4x Use the same argument as in the solution to Problem 28. 3x and 
observe that in the case of finite index there are only finitely many distinct 
cosets gH such that g � H. 

28. 5x Consider Z C lR and , respectively, Q C R 
28. 6x Show that if H contains an isolated point , then all points of H 

are isolated . 
28. 7x Let U c G be an open set such that UnH = UnCl H f- 0 .  If g � 

H and gH n U f- 0 ,  then g belongs to the open set UhEH h(U "- H) disjoint 
with H.  If gH is disjoint with U ,  take h' E H n U and a symmetric open 
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neighborhood V of 1 such that Vh' C U. Then V g is an open neighborhood 
of g disjoint with H.  (Otherwise , vg = h implies gh- 1 h' = v- 1 h' E Vh' . ) 

28. 8x By 28. 1x, the closure of Cl H -...._ H contains H.  
28. 9x Use the fact that (Cl H) - 1 = Cl H-1 and Cl H · Cl H c Cl (H · 

H) = Cl H.  
28. 1 0x.  This is true if the interior is nonempty, see 28. 2x. 
28. 1 2x Repeat the argument used in the solution to 28.Fx. 
28. 1 3x We identify elements of SO(n) with positively oriented or­

thonormal bases in �n . The map p :  SO(n) -+ sn- 1 sends each basis to its 
last vector . The preimage of a point x E sn- 1 is the right coset of SO(n - 1 ) 
(prove this) . Clearly, p is continuous . The quotient map of p is a continuous 
bijection p :  SO (n) / SO (n _ 1 ) -+ sn- 1 . Since SO(n) is compact and sn- 1 
is Hausdorff, p is a homeomorphism. 

28. 14x 1 )  The groups SO(n) , U (n) , SU(n) , and Sp(n) are bounded 
closed subsets of the corresponding matrix spaces. Therefore , they are com­
pact . 

2 )  To check that SO(n) is connected, combine 28. 13x and 28.Fx, and 
then use induction (we observe that the group S0(2) � S1 is connected) .  
(Another , more hand-operated, method consists in using normal forms . For 
example, for any x E SO(n) , there is g E SO(n) such that the matrix 
gxg- 1 consists of diagonal blocks of S0( 1 )  and S0(2) matrices. The latter 
block matrices belong to the connected component C of the unity in SO (n) . 
Since C is a normal subgroup (see 28.Hx) , it follows that x E C. )  In order 
to prove that U ( n) , SU ( n) , and Sp( n) are connected , state and prove the 
corresponding counterparts of 28. 1 3x and then use 28.Fx. 

3) The group O(n) has two connected components :  SO(n) and its com­
plement (the only nontrivial coset of SO(n) ) .  The group O(p, q) has four 
connected components if p > 0 and q > 0 .  To check this, use induction on 
p and q, at each step using 28. 12x and 19. 0x. 

28. 1 5x See the solution to 28.Hx. 
28. 1 6x Let h E H. Since H is normal , we have a map TJ : G -+  H : 

g � ghg- 1 . Since G is connected, the image of rJ is a connected subset of 
H.  Since H is discrete , it is a point , and so TJ is constant . Since ry ( 1 )  = h,  
we have ghg- 1 = ry (g) = h for all g E G. Therefore , gh = gh for all g E G, 
i . e . , h E  C(G) . 

28. 1 9x Consider the exponential map � -+  S1 : x � e21l"xi and an open 
interval in � containing 0 and 1/2 .  

28. 20x. Let U and V be neighborhoods of  unity in topological groups 
G and H, respectively. Let f : U -+ V be a homeomorphism such that 
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f (xy) = f (x )f (y) for any x , y E U. By 27.Hx, la has a neighborhood fJ 
in G such that U2 c U. Since fJ C U, we have f (xy) = f (x) f (y) for any 
x ,  y E fJ with xy E fJ.  Put V = f (U) and consider z ,  t E V with zt E V. 
Then z = f (x) and t = f (y) , where x ,  y E fJ, whence xy E U, and so 
f (xy) = f (x )f (y) = zt. Therefore , we have x = f- 1 (z) and y = f- 1 (t) , 
whence f-1 (z )f- 1 (t) = xy = f- 1 (zt) . 

28. 21x This follows from 28. Ox because the projection pre : G x H ---> 
G is an open map .  

28. 23x The map i s  continuous as a restriction of  the continuous map 
G x G ---> G : (x ,  y) f---+ xy. As an example , consider the case where G = JR., 
A = Q, and B is generated by the irrational elements of a Hamel basis 
of JR. ( i . e . , a basis of JR. as of a vector space over Q) . The inverse group 
isomorphism JR. ---> A x B here is not continuous since , e .g . , JR. is connected, 
while A x  B is not . 

28. Ux Let a compact Hausdorff group G be the direct product of two 
closed subgroups A and B . Then A and B are compact and Hausdorff, and 
so A x B ---> G : (a ,  b) f---+ ab is a continuous bij ection from a compact space 
to a Hausdorff one . By 1 7. Y, it is a homeomorphism. 

28. 24x An isomorphism is S0 x IR.>o ---> JR. "'- 0 : (8 ,  r ) f---+ r8 . 
28. 25x An isomorphism is 81 x JR. >O ---> C "'- 0 : ( 8 ,  r ) f---+ r 8 .  
28. 26x An isomorphism is S3 x IR.>o ---> lHI "'- 0 :  (8 , r ) f---+ r8 .  
28. 27x This is obvious because the 3-sphere S3 i s  connected ,  while 

S0 is not . However , the subgroup S0 = { 1 ,  - 1 }  of S3 = {z E lHI : l z l = 1 } 
is not a direct factor even group-theoretically. Indeed , otherwise any value 
±1  of the projection S3 ---> S0 on the standard generators i ,  j ,  and k would 
lead to a contradiction. 

28. 28x Take the quotient group in 28. 27x. 
29. 1x In ( 1 )  and (2 ) , the map G ---> Top X is continuous (see the 

solution to 29. Gx) . However , if we require Top X to be a topological group , 
then we need additional assumptions , e .g . , the Hausdorff axiom and local 
compactness . 

29. 2x Each of the angles has the form 1r jn, n E N. Therefore , there 
are only two solutions : (7r/2 , 7r/3 , 7r/6) and (7r/3 , 7r/3 , 7r/3) . 

29. 3x Such examples are given by the irrational flow (see 29. 1x (f) ) ,  or 
by the action of Z + .J2z regarded as a discrete group acting by translations 
on R In the latter case, we have G = Gjcx , while G(x) is not discrete . 
(Cf. 27. 13x. ) 

29.4x Let A be closed. In order to prove that G(A) is closed, consider 
an orbit G(x) disjoint with G(A) . For each g E G, let U(g) C X and 
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V(g) c G be neighborhoods of x and g, respectively, such that V(g)U(g) is 
disjoint with G(A) . Since G is compact , there is a finite number of elements 
9k E G such that V(gk ) cover G. Then the saturation of n�=l U(gk ) is an 
open set disjoint with G(A) and containing G(x) . 
If A is compact , then so is G(A) as the image of the compact space G x A 
under the continuous action G x A ---+ X.  

29. 5x There are two orbits : { 0 }  and lR -...... 0 .  The corresponding isotropy 
subgroups are G and { la } .  The quotient space is a two-element set , say 
{0 ,  1 } ,  with nontrivial topology (neither discrete , nor indiscrete) . 

29. 6x The quotient space is canonically homeomorphic to the rectangle 
itself. A homeomorphism is induced by the inclusion of the rectangle to JR2 
(a continuous section of the quotient map) . The group G is described in 
Problem 29. 7x. 

29. 7x Using the transitivity of factorization, replace IR2 / G by the quo­
tient of two adjacent rectangles that is obtained by identifying the points 
on their distinct edges via the reflection in their common edge . The latter 
quotient is homeomorphic to S2 (a "pillow" ) . 
The group G is the direct square C x C of the free product C of two copies 
of Z/2 (see 46' 7x) ,  and H C G is a subgroup of elements of even degree . 

29. 8x Two points belong to the same orbit iff their vectors of absolute 
values l zo l ,  . . .  , l zn l are proportional . In other words , the orbits correspond 
in a one-to-one manner to "positive quadrant" directions in JRn+l . The 
isotropy subgroups are coordinate subtori , i . e . , the subtori of G where some 
of the coordinates vanish: the same coordinates as the zero coordinates of the 
points in the orbit . By transitivity of factorization, X/ G is homeomorphic 
to the projectivization of the "positive quadrant" JR�61 /JR>o · The latter is 
a closed n-simplex. 

29. 9x Two points belong to the same orbit iff all symmetric functions 
of their coordinates coincide . Thus , at least set-theoretically, the Vieta map 
evaluating the unitary ( i .e . ,  with leading coefficient 1) polynomial equation 
of degree n with given n roots identifies X/ G with the space of unitary 
polynomials of degree n, i . e . , en . Since both spaces are locally compact and 
the group G = §n is compact (even finite) ,  the quotient map X/ G ---+ en is 
a homeomorphism. 

29. 1 Ox Two such matrices belong to the same orbit iff the matri­
ces have the same eigenvalues , counting the multiplicities . Thus , at least 
set-theoretically, the map evaluating the eigenvalues in decreasing order , 
.\1 � .\2 � .\3 , identifies X/c with the subspace of JR3 determined by the 
above inequalities and the relation .\1 + .\2 + A3 = 0 . Since this map has a 
continuous section (that given by diagonal matrices) ,  it follows that X/ G is 
homeomorphic to the above subspace of JR3 , which is a plane region bounded 
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by two rays making an angle of 21r /3. The isotropy group of an interior point 
in the region is Z/U£/Z/2 .  For interior points of the rays , the isotropy group 
is the normalizer of 80(2 ) , and the orbits are real projective planes . For 
AI = .\2 = A3 = 0, the isotropy group is the entire 80(3 ) ,  while the orbit is 
a singleton . 

29. 1 1x The sphere 8n c JRn+l (respectively, 82n- I c ccn ) is a Haus­
dorff homogeneous G-space , on which G = O (n+ 1 )  (respectively, G = U (n ) )  
acts naturally. For any point x E 8n (respectively, X E 82n- l ) ,  the isotropy 
group is a standardly embedded O (n) C O(n + 1 )  (respectively, U(n - 1 )  C 
U(n) ) .  So ,  it remains to apply 29.Mx. 

29. 1 2x The above action of O (n + 1 )  (respectively, U (n) ) descends to 
]Rpn (respectively, (Cpn- l ) . For any point x E 8n (respectively, x E 82n- I ) , 
the isotropy group is O (n) x 0( 1 )  (respectively, U(n - 1 )  x U( 1 ) ) .  

29. 1 3x Similarly to 29. 1 1x, this follows from the representation of 
84n- l c IHin as a homogeneous 8p(n)-space . 

29. 14x The torus is lR2 /H , where H = Z2 c JR2 • To obtain the Klein 
bottle in the form JR2 / G, add to H the reflection ( x, y) f---+ ( 1 - x, y) . 

29. 1 5x 1 )  The space of n-tuples (L I , . . .  , Ln) of pairwise orthogonal 
vector lines Lk in JRn . 
2) The Grassmannian of (non-oriented) vector k-planes in JRn . 
3) The Grassmannian of oriented vector k-planes in JRn . 
4) The Stiefel variety of (n - k)-orthogonal unit frames in JRn . 

29. 1 6x 1 )  Use the fact that the product of two homogeneous spaces is 
a homogeneous space . (Over what group?)  2) A more interesting option: 
shmv that 82 x 82 is homeomorphic to the Grassmannian of oriented vector 
2-planes in JR4 . 

29. 1 7x By definition, the group 80 (n, 1 )  acts transitively on the 
quadric Q in JRn+I given by the equation -x6+xi+ · +x; = 0. The isotropy 
group of any point of Q is the standardly embedded 80(n) c 80(n, 1 ) .  
By 29. A!x. the quotient space 80 (n, 1 ) /  80 (n) is homeomorphic to Q, which 
in turn is homeomorphic to a disjoint sum of two open n-balls . 

30. 1 For each continuous map f : X ---> I , the map H : H (x , t) = 
( 1 - t )f (x )  is a homotopy between f and the constant map ho : x f---+ 0 .  

30. 2 Let fo , h : X ---> Y be two constant maps with fo (X)  = {xo }  and 
fi (X) = {xi } . [==?) If H is a homotopy between fo and JI , then for any 
z* E X the path u : t f---+ H(z* , t) joins xo and XI , which thus lie in the same 
path-connected component of Y. 
[�l If xo and XI are joined by a path u :  I ---> Y , then X x I ---> Y : (z ,  t) f---+ 

u(t) is a homotopy between fo and fi . 
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30. 3 Let us show that an arbitrary map f : I -t  Y is null-homotopic. 
Indeed, if H(s ,  t )  = f(s · ( 1 - t) ) ,  then H(s ,  0) = f (s) and H(s ,  1) = f(O) . 
Consider two continuous maps J, g : I -t Y.  We show that if f (I) and 
g (I) lie in one and the same path-connected component of Y, then they are 
homotopic . Each of the maps f and g is null-homotopic, and, therefore ,  
they are homotopic due to the transitivity of  the homotopy relation and 
the result of Problem 30. 2. To make the picture complete ,  we present an 
explicit homotopy joining f and g :  

{ f(s  · ( 1 - 3t) )  for t E [0 ,  1 /3] , 
H(s ,  t) = u (3s - 1 )  for t E  [ 1/3 ,  2/3] , 

g ( s  · (3t - 2 ) )  for t E  [2/3 ,  1 ] . 

30.4 Prove that each continuous map to a star-shaped set is homotopic 
to the constant map with image equal to the center of the star . 

30. 5 Let f : C -t X be a continuous map , a the center of the set 
C. Then the required homotopy H :  C x I -t X is defined by the formula 
H(c, t) = f (ta + ( 1 - t )c) . 

30. 6 The space X is path-connected . 
30. 7 Use assertion 30.F and the fact that sn , point � IR.n . 
30. 8 If a path u : I -t IR.n ' 0 joins x = f (O) and y = g (O) , then u 

determines a homotopy between f and g because 0 x I � I. 
30. 9 Consider the maps f and g defined by the formulas f (O) = - 1  

and g (O) = 1 .  They are not homotopic because the points 1 and - 1 lie in 
distinct path-connected components of lR '  0 .  

30. 1 0  If n > 1 ,  then there i s  a unique homotopy class . For n = 1 ,  
there are (k  + l )m such classes. 

30. 1 1  Since for each point x E X and each real t E I we have the 
inequality 

1 ( 1 - t )f (x) + tg (x) l = I J (x) + t (g (x) - f (x ) )  I 2: l f (x) l - l g (x) - f (x) l > 0 ,  

i t  follows that the image o f  the rectilinear homotopy joining f and g lies in 
IR.n ' 0, and, therefore , these maps are homotopic . 

30. 12  For simplicity, we assume that the leading coefficients of p and 
q are equal to 1 .  Use 30. 1 1  to show that the maps determined by the 
polynomial p( x) of degree n and the monomial zn are homotopic. 

30. 1 3  The required homotopy is given by the formula 

H ( 1 - t )f (x) + tg (x) (x ,  t )  = 
1 1 ( 1 - t) f (x) + tg (x) l l

. 

Where have we used the assumption l f (x) - g (x) l < 2? 



Solutions, and Answers 

30. 14 This immediately follows from 30. 13. 
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31 . 1  To shorten the notation, put a = (uv )w and {3 = u (vw ) ; by 
assumption, a(s )  = f3 (s ) for all s E [0 , 1 ] . In the proof of assertion 31 .E. 2, we 
construct a function cp such that a o cp = {3.  Consequently, a(s)  = a(cp(s ) ) ,  
whence a(s )  = a(cpn (s) ) for all s E [0, 1 ] and n E N (here cpn is the n­

fold composition of cp) . Since cp(s )  < s for s E (0 ,  1 ) , it follows that the 
sequence cpn (s) is monotone decreasing , and we easily see that it tends to 
zero for each s E (0 ,  1 ) . By assumption, we have a : I --+ X .  Therefore ,  
a(s )  = a(cpn (s ) )  --+ a(O) = xo for all s E [0 ,  1 ) , whence a (s ) = xo also for 
all s E [0 , 1 ) . Consequently, we also have a ( 1 )  = xo .  

31 . 2  The solution to Problem 31 .D  implies that we must construct 
three paths u, v, and w in a certain space such that a(cp(s ) ) = a(s )  for all 
s E [0, 1 ] (here, as in 31 . 1 , a = (uv )w ) . Consider, for example , the paths 
I --+  [0 , 3] defined by the formulas u (s ) = s, v (s ) = s + 1, and w (s ) = s + 2 ;  
the path a : [ 0 ,  1 ] --+ [0 , 3] i s  a bij ection. We introduce in  [ 0 ,  3] the following 
equivalence relation: x rv y if there are n, k E N such that x = a( cpk ( s ) )  and 
y = a(cpn (s) ) .  Let X be the quotient space of [0 , 3] by this relation. Then 
the paths u' = pr ou ,  v' = pr ov ,  and w' = pr ow satisfy (u'v' )w' = u' (v'w' ) . 

31 . 4  I f  u (s ) = eau (s ) , then 

u (s ) = { a if s E [o , 1/2] , 
u (2s - 1 ) if s E  [1/2 , 1 ] . 

Thus , u (s ) = a for all s E [0, 1/2] . Further , if s E [1/2 ,  3/4] , then 2s -
1 E [0 ,  1 /2] , whence it follows that u (s ) = u (2s - 1 ) = a also for all s E 
[ 1 /2 ,  3/4] . Reasoning further in a similar way, we see as a result that u (s ) = 
a for all s E [0 , 1 ) . If we put no restrictions on the space X ,  then it is quite 
possible that u ( 1 ) = x =/= a (show this ) . Also show that the assumptions of 
the problem imply that u ( 1 ) = a  (cf. 31 . 1 ) .  

31 . 5  This is quite obvious . 
32. 1 The homotopies h such that h(O ,  t) = h ( 1 ,  t) for all t E I .  
32. 2 See Problem 32. 3. 
3 2. 3 If z = e21ris ,  then 

if s E [0, 1/2] , 
= {U (z2 ) if Im z � 0 ,  

i f  s E [1/2 ,  1 ] V (z2 ) if lm z :::; 0 .  

32.4 Consider the set of homotopy classes of circular loops at a certain 
point xo ,  where the operation is defined as in Problem 32. 3. 

32. 5 The group is trivial because any map to such a space is continuous , 
and so any two loops (at the same point ) are homotopic . 
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32. 6 This group is trivial because the quotient space in question is 
homeomorphic to D2 . 

32. 1 Up to homeomorphism, a two-element set admits only three topo­
logical structures: the indiscrete one , the discrete one , and the topology 
where only one point of the two is open. The first case is considered in 32. 5, 
while the discrete space is not path-connected. Therefore , we should only 
consider the case where Ox = {0 , X, {a} } , a E X . Let u be a loop at a .  
Then the formula 

h (s , t ) � { : (s ) if t = 0 ,  
if t E (0 ,  1 ]  

determines a homotopy between u and a constant loop . Indeed , the continu­
ity of h follows from the fact that the set h- 1 (a) = (u- 1 (a) x I) U (I x (0 ,  1 ] )  
is open i n  the square I x I .  

32. 9 Use Theorem 32.H, the fact that JR.n -...... 0 � JR.  x sn- 1 , and Theo­
rem 32. G. 

32. 1 0  A discrete space is simply connected iff it is a singleton. An in­
discrete space , JR.n , a convex set . and a star-shaped set are simply connected . 
The sphere sn is simply connected iff n � 2 .  The space JR.n -...... 0 is simply 
connected iff n � 3 .  

32. 1 1  We observe that since the space X i s  path-connected , we have 
U n V of. 0 . Consider a loop u : I � X;  for the sake of definiteness , let 
u(O ) = u ( 1 )  = xo E U. By 32. G. 3, there is a sequence of points a1 , . . .  aN E 
I , where 0 = a1 < a2 < · · · < aN- 1 < aN = 1 ,  such that for each i the image 
u ( [ai , ai+1 ] ) is contained in U or in V. Furthermore , (uniting the segments ) 
we can assume that if u ( [ak- 1 , ak ] )  ct. U (or V) , then u ( [ak > ak+1 ] )  C U 
(respectively, U) , whence u(ak ) E U n  V for all k = 1 ,  2 ,  . . .  , N - 1 . Consider 
the segment [ak , ak+1 ] such that u ( [ak , ak+1 ] )  C V. The points u(ak ) and 
u(ak+l )  are joined by a path vk : [ak . ak+l ]  � U n V. Since V is simply 
connected , u l [ak ,ak+ l l and Vk are joined by a homotopy hk : [ak . ak+ 1 ] x I �  
V,  and , consequently, u is homotopic to a loop v : I � U. Since the set U is 
also simply connected, it follows that v is null-homotopic , thus , X is simply 
connected. 

32. 1 2  Actually, at the moment we cannot give a complete solution of 
the problem because up to now we have not seen any example of a non­
simply connected space . In what follows , we prove , e .g . , that the circle is 
not simply connected . Let 

U = { (x, y) E S1 I y > O} u { ( 1 , 0) } , V = { (x , y) E S1 I y :S O} . 

Each of the sets is homeomorphic to an interval . Therefore , they are simply 
connected , and their intersection is a singleton , which is path-connected . 
However , the space U U V = 81 is not simply connected. 
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32. 1 3  Consider an arbitrary loop 8 : I ---t U .  Since U U V is simply 
connected , it follows that this loop is null-homotopic in UUV, and, therefore ,  
8 i s  connected with a constant path by a homotopy H : I x I ---t U U V .  We 
subdivide the unit square I x I by segments parallel to its sides into smaller 
squares Kn so that the image of each of the squares lies entirely in U or 
V. Consider the union K of those squares of the partition whose images 
are contained in V. Let L be a contour consisting of the boundaries of the 
squares in K and enclosing a certain part of K. Clearly, L c U n V c U, 
and , therefore , the homotopy H extends from L to the set bounded by L so 
that the image of the set be contained in U. Reasoning further in a similar 
way, we obtain a homotopy H' : I x I  ---t U. 

33. 1 I t  i s  easy to describe a family of  loops at constituting a free 
homotopy between the loop a and a loop representing the element T8 (a ) . 
Namely, the loop at starts at 8 (t ) , it reaches the point xo = 8 (0) at the 
moment t/3 ,  after that it runs along the path a and returns to the point xo 
at the moment 1 - t/3 ,  and ,  finally, returns to the point 8 (t ) . In this case , 
the loop ao is the initial loop a. The loop a1 is defined by the formulas 

{ 8 ( 1 - 3T) if T E [0, 1 /3] , 
a1 (T) = a (3T - 1 )  if T E [ 1/3 ,  2/3] , 

8 (3T - 2) if T E [2/3 , 1 ] , 

and , consequently, the homotopy class of a1 is that of 0'- 1a0' .  To complete 
the argument , we present a formula for the above homotopy : 

if T E [O , t/3] , { 8 (t - 3T ) 
H(T, t) = a (t_-;D 

8 (3T + t - 3) 
if T E [t/3 , 1 - t/3] , 
if T E [ 1 - t/3 . 1] . 

3 3. 2 Consider the homotopy defined by the formula 

{ 8 ( 1 - 3T) 
H' (T t ) = H ( 3T+t- l t) ' 2t+l ' 

8 (3T - 2) 

if T E [0 , ( 1 - t) /3] , 
if T E [ ( 1 - t )/3 ,  (t + 2) /3] , 
if T E [ ( t + 2) /3 ,  1 ] , 

and verify that H' (T, 1 )  = b(T) , and the correspondence T �----+ H' (T , O ) deter­
mines a path in the homotopy class [8- 1 a8] . 

33. 3x This immediately follows from assertion 33. Lx. 
34 . 1  If PI v" : Va ---t U is a homeomorphism, then p homeomorphic ally 

maps Va n p- 1 (U' ) onto U' . 

34 . 2  See the proof of assertion 34 .F; the coverings p and q are said to 
be isomorphic. 



368 Hints, Comments, Advices, 

34 . 3  This follows from 34 .H  and 34 .E  because C -...... 0 � 81 x JR. and 
p' : JR. -t JR. : x �----+ nx is a trivial covering. Also sketch a trivially covered 
neighborhood of a point z E C -...... 0 .  

34 .4  Consider the following two partitions of  the rectangle K = [0 , 2 ]  x 
[0 , 1 ] . The partition R consists of the two-element sets { (0 , y) , (2 , y) I y E 
[0 , 1 ] } ,  all the remaining sets in R are singletons . The partition R' consists 
of the two-element sets { (x , y) , (x + 1 , 1 - y) I x E (0 ,  1 ) , y E [0 , 1 ] } and the 
three-element sets { (0 , y) , ( 1 , 1 - y) , (2 , y) I x E (0 , 1 ) ,  y E [0 ,  1] } .  Since each 
element of the first partition is contained in a certain element of the second 
partition , it follows that a quotient map p : K I R -t K I R' is defined, which 
is the required covering of the Mobius strip by a cylinder. There is also a 
simpler option . We introduce an equivalence relation on 8 1 x I : (z ,  t) "' 
( - z ,  1 - t ) . Verify that the quotient space by this relation is homeomorphic 
to the Mobius strip , and the factorization projection is a covering . 

34 . 5  The solution is similar to that of Problem 34 .4 .  Consider two 
partitions of the rectangle K = [0 ,  3] x [0 , 1] . The two-point elements of 
the first one are the pairs { (0 , y ) , ( 3 ,  1 - y ) I y E [0 ,  1 ] } ,  and the four-point 
elements of the second one are quadruples { (0 , y) , ( 1 ,  1 - y ) , (2 , y ) , (3 ,  1 - y) I 
x E (0 .  1 ) ,  y E [0 . 1 ] } .  

34 . 6  l\Iodify the solution to Problem 34 . 4 ,  including into the par­
tition R the quadruple of the vertices of the rectangle K and the pairs 
{ ( x , 0) , ( x, 1) I x E ( 0 , 2 ) } .  Another approach to constructing the same 
covering involves introducing the following equivalence relation on 81 x 81 : 
(z ,  w ) "' ( - z ,  w ) (see the solution to Problem 34 .4 ) . 

34 . 7  There are standard coverings JR. x 81 -t 81 x 81 and JR. x JR. -t 81 x 
81 such that their compositions with the covering outlined in the solution 
to Problem 34 . 6  are coverings of the Klein bottle by a cylinder and by 
the plane . Modifying the solution of Problem 34 . 5, we obtain a nontrivial 
covering of the Klein bottle by the Klein bottle . We also present a more 
geometric description of the required covering . Let q : M -t M be a covering 
of the Mobius strip by the Mobius strip , let M1 and M2 be two copies of 
the Mobius strip , and let q1 : M1 -t M1 and q2 : M2 -t M2 be two copies of 
q. If we paste M1 and M2 together along their common boundary, then we 
obtain the Klein bottle . Clearly, as a result we construct a covering of the 
Klein bottle by the Klein bottle . 

34 . 8  The preimages of points have the form { (x+k , 1 12+(  - 1 ) k- 1 ( 1 12-
y ) + z ) 1 k , z E z} . 

34 . 9  We already have coverings 82 -t JRP2 and 81 x 81 -t K, where 
K is the Klein bottle . Thus , we have coverings of the sphere with k cross­
caps by a sphere with k - 1 handles for k = 1 , 2. We prove that such a 
covering exists for each k .  Let 81 and 82 be two copies of the sphere with 
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k holes . Denote by 8 the "basic" sphere with k holes and consider the map 
p' : 81 u 82 --+ 8. Now we fill the holes in 8 by cross-caps (i . e . ,  by Mobius 
strips ) , and we fill the corresponding pairs of holes in 81 and 82 by the 
cylinders 81 x I. As a result , we obtain K, which is a sphere with k cross­
caps , and 81 U 82 with k attached cylinders is homeomorphic to the sphere 
M with k - 1 handles. Since the Mobius strip is covered by a cylinder , p' 
extends to a two-fold covering p :  M --+  K. 

34 . 1 0  Actually, we prove that each local homeomorphism is an open 
map , and , as it follows from 34 . 1 1 ,  each covering is a local homeomorphism. 
So, let the set V be open in X, and let V' = p (V ) . Consider a point 
b = p(  x ) E V' , where x E V.  By the definition of a local homeomorphism, 
x has a neighborhood U such that p(U) is an open set and P I  : U --+ p(U) 
i s  a homeomorphism. Therefore , the set p (U n V ) i s  open in V' , thus , i t  is 
open in B, and hence it is a neighborhood of b lying in p (V ) . Thus , p (U) is 
an open set . 

34 . 1 1  If x E X, U is a trivially covered neighborhood of the point 
b = p(x) , and p- 1 (U) = Uo: Vo: , then there is a set Vo: containing x. By the 
definit ion of a covering , P i v" : Vo: --+ U is a homeomorphism. 

34 . 1 2  See , e .g . , 34 .K. 
34 . 1 3  Let f : X --+ Y be a local homeomorphism, let G be an open 

subset of X, and let x E G. Assume that U is a neighborhood of x ( in 
X) such that f(U)  is open in Y and the restriction f l u  : U --+ f (U) is a 
homeomorphism. If V = W n U, then f(W) is open in f (U ) ,  and , therefore , 
f (H' )  is also open in Y .  Clearly, J lw  : W --+  f (W) is a homeomorphism. 

34 . 14 Only for the entire line . We show that if A is a proper subset 
of llt then PI A  : A --+  81 is not a covering. Indeed, A has a boundary point 
xo , let bo = p(xo ) .  We easily see that bo has no trivially covered (for P i A )  
neighbor hood. 

34 . 1 5  See, for example , 34 .H. 
34 . 1 6  For example, the covering of Problem 34 . I  is pq-fold . In many 

examples . the number of sheets is infinite (countable ) . 
34 . 1 7  All even positive integers and only them. The first assertion is 

obvious (cf. 34 .4 ) , but at the moment we actually cannot prove the second 
one . The argument below involves methods and results presented in subse­
quent sections (cf. 40. 3) .  Consider the homomorphism p* : 1r1 (81 x I) --+ 

1r1 ( M) , which is a monomorphism. It is known that 1r1 ( 81 x I) � IE. � 1r1 ( 1\1 ) . 
and , furthermore, the generator of 1r1 ( 81 x I) is sent to the 2k-fold gener­
ator of 7ri (l\1 ) . Consequently, by 40. G (or 4 0. H) ,  the covering has an even 
number of sheets . 

34 . 1 8  All odd positive integers (cf. 34 . 5) and only them (see 40.4 ) . 
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34 . 1 9  All even positive integers (cf. 34 . 6) and only them (see 4 0. 5) .  
34 . 20 All positive integers (cf. 34 . 7) .  
34 . 21 Consider the covering T1 = 81 x 81 � T2 = 81 x 81 : (z ,  w ) f--t 

( zd, w ) . Denote by 82 the surface obtained from the torus T2 by making p - 1 
holes . The preimage of 82 under this covering is a surface 81 homeomorphic 
to a torus with d(p - 1) holes . Let us fill each of the holes (in 81 and 
82 ) by a handle . Then we attach p - 1 handles to 82 , and as a result we 
obtain a surface lvf2 , which is a sphere with p handles . We also attach 
d(p - 1 )  handles to 81 , thus obtaining a surface M1 , which is a sphere with 
d(p - 1) + 1 handles. Clearly, the covering 81 � 82 extends to a d-fold 
covering M1 � M2 . 

34 . 22 Consider an arbitrary point z E Z,  let q- 1 (z) = {Yl , y2 , . . . , Ya} . 
If a neighborhood V of z is trivially covered with respect to the projection 
q, and Wk are neighborhoods of the points Yk , k = 1 ,  2 , . . .  , d, trivially 
covered with respect to the projection p, then U = n%=1 q (Wk n q- 1 (V) ) is 
a neighborhood of z trivially covered with respect to the projection q o p. 
Therefore , q o p :  X �  Z is a covering. 

34 . 23 Let Z be the union of an infinite set of the circles determined by 
the equations x2 +y2 = 2xjn, n E N , and let Y be the union of the y axis and 
the "twice" infinite family x2 + (y - k) 2 = 2xjn, where n E N, n > 1 ,  k E Z. 
The covering q : Y � Z has the following structure : the y axis covers the 
outer circle of Z, while the restrictions of q to the other circles are parallel 
translations . Construct a covering p : X � Y whose composition with q is 
not a covering. Furthermore , the covering p can even be two-fold . 

34 . 24 1 )  We observe that the topology on the fiber (induced from X) 
i s  discrete. Therefore , i f  X i s  compact , then the fiber F = p- 1 (b) i s  closed 
in X and, consequently, is compact . Therefore , the set F is finite , thus the 
covering is finite-sheeted . 2) Since B is compact and Hausdorff, it follows 
that B is regular , and ,  therefore , each point has a neighborhood Ux such that 
the compact closure Cl Ux lies in a certain trivially covered neighborhood. 
Since the base is compact , we have B = UUx; and X = Up-1 (Cl UxJ · 
Since the covering is finite-sheeted, X is thus covered by a finite number of 
compact sets , and , therefore , X is compact itself. 

34 . 25 Let U n V = Go U G1 , where Go and G1 are open subsets . 
Consider the product X x Z and the subset 

Y = { (x ,  k) I x E U, k even} U { (x , k) I x E V, k odd} , 

which is a disjoint union of countably many copies of U and V.  We introduce 
in Y the following relation : 

(x , k) ""' (x ,  k + 1 )  i f  x E G1 , k even, 
(x , k) ""' (x ,  k - 1 )  i f  x E G0 , k odd. 
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Consider the partition of Y into pairs of points equivalent to each other and 
into singletons in (Y -..... (U n V) ) x Z. Denote by Z the quotient space by 
this partition . Let p : Z ---t X be the factorization of the restriction pr x I Y ,  
where prx : X x Z ---t X i s  the standard projection . Verify that p : Z ---t X is 
an infinite-sheeted covering . Apply the described construction to the circle 
81 , which is the union of two open arcs with disconnected intersection; what 
covering will result? 

35. 1 By assumption, we have X = B x F, where F is a discrete space , 
and p = prB . Let Yo E F be the second coordinate of the_point xo . The 
correspondence a r---+ (f (a) , Yo ) determines a continuous lift f : A ---t X of f .  

35. 2 Let xo = (bo , yo ) E B x F = X . Consider the map g = prF of : 

A ---t F. Since the set A is connected and the topology on F is discrete, 
it follows that g is a constant map . Therefore , ](a) = (! (a) , yo ) ,  and , 
consequently, the lifting is unique . 

35. 3 Consider the coincidence set G = {a E A I f (a) = g (a) } of f and 
g; by assumption, G -=/= 0 .  For each point a E A, take a connected neigh­
borhood Va c r.p- 1 (Ub ) ,  where Ub is a certain trivially covered neighborhood 
of b = <p(a) . If Va n G -=/=  0, then Va c G by 35. 2. In particular , if a E G, 
then Va c G, and , consequently, the set G is open. Similarly, if a rt.  G, then 
Va n G = 0, i . e . , Va c A -..... G, and, therefore ,  the set A -..... G is also open. By 
assumption, A is connected and G -=/=  0, whence A =  G. 

35. 5 Show that if bo = -1 and x0 = 1/2 ,  then the path u :  t r---+ e31rit 
has no lifts .  

35.� We ha�e:  u(t) = ln (2 - t) , v(t) = ln( 1  + t) + 27rit, uv = uv, and 
Vii = vu, where u = ln (2 - t) + 27ri . 

35. F If the covering is nontrivial and the covering space is path­
connected, then there is a path s joining two distinct points xo , x1 E p- 1 (bo ) .  
By assertion 35.E, the loop p o s is not null-homotopic , and, therefore , B is 
not simply connected. 

35. 7 This follows from 35.F. 
35. 8 For example , JRP2 is not simply connected. 
35. 9 For example , generalize Theorem 35. C to the case of maps f : 

sn ---t B with n > 1 .  (Cf. 4 1 .Xx and 4 1 .  Yx. )  
36. 1 This i s  the class a .  Indeed , the path s(t) = t 2  covering the loop 

ends at the point 1 E IR, and , therefore , s is homotopic to s 1 . 
36. 2 If [s] = an , then s ,...., Sn , and , therefore , the paths s and Sn end 

at the same point . 
36. 3 The universal covering space for the n-dimensional torus is !R n ,  

the covering p i s  defined by the formula p ( x1 , . . .  , Xn ) = ( e21rix 1 , . . .  , e21rixn ) .  



372 Hints, Comments, Advices, 

The map deg : 1r1 ( (S1 )n , ( 1 ,  1 ,  . . .  , 1 ) )  ---t zn is defined as follows . If u is a 
loop on the torus and u is the path covering u and starting at the origin, 
then deg( [u] ) = u( 1 )  E zn C !Rn . Prove that this map is well defined and is 
an isomorphism. 

36.4 This assumption was used when we used the fact that the n-sphere 
is simply connected , in other words , the covering sn ---t JRP2 is universal only 
for n � 2 .  

32. 7 Consider the following three cases, where X:  1 )  contains no open 
singletons ( i .e . , no "open points" ) ;  2) contains a unique open singleton; 3 )  
contains two open singletons . 

36. 7 For example , construct an infinite-sheeted covering (in the narrow 
sense) of X (see 7. V) .  

36. 8 Let us show that 1r1 (X) � Z.  The universal covering space of X 
is Z = (Z, D4 ) ,  where the topology D4 is determined by the base consisting 
of singletons {2k} ,  k E Z, and 3-element sets {2k ,  2k + 1 ,  2k + 2 } ,  k E Z. 
The projection p : Z ---t X is such that 

p-1 (a) = {4k I k E Z} . p-1 (b) = {4k + 1 I k E Z} , 

p- 1 (c) = {4k + 2 1 k E Z} , p-1 (d) = {4k + 3 1 k E Z} . 

As when calculating the fundamental group of the circle , it suffices to show 
that Z is simply connected . We can start , e .g . , with the fact that the sets 
U = {0 ,  1 ,  2} and V = {2 ,  3, 4} are open in U U  V and simply connected , and 
their intersection U U V is path-connected . Therefore , their union U U V is 
also simply connected (see 32. 1 1 ) .  After that , use induction. Here is another 
argument showing that Z is simply connected . Let Jn = {0 ,  1 , . . . , 2n} and 
define Hn : Jn x I ----* Jn as follows : 

Hn (x, t) = x for X E Jn-1 1 Hn (2n - 1 ,  t) = 
{ 2n - 1  

2n - 2 

{ 2n 
Hn (2n, t) = 2n - 1 

2n - 2  

if t E [0 , 1/3) , 
if t E [1/3 ,  2/3] , 
if t E  (2/3 , 1 ] . 

if t = 0 ,  
if t E (0 , 1 ] , 

Let u be a loop at 0 with image lying in Jn . Then the formula hn (s ,  t) = 
Hn (u (s ) , t) determines a homotopy between u and a loop with image lying 
in Jn- l · Using induction, we see that u is null-homotopic . 

36. 9 1 )  The results of Problems 32. 1, 36. 6, and 36. 1 imply that no = 4 .  
2 )  The computation presented in the solution to Problem 36. 8 implies that 
Z is the fundamental group of a certain 4-element space . Show that this is 
the only option. 
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36. 1 0  1) Consider the 7-element space Z = {a , b , c, d , e , f, g} ,  where 
the topology is determined by the base { {a} , {b} , { c} ,  {a , b , d} , {b , c, e } ,  
{a , b , f } ,  {b , c, g} } .  To see that Z i s  not simply connected, observe that the 
universal covering of Z is constructed in the same way as that of the bouquet 
of two circles , with minor changes only. Instead of the "cross" K, use the 
space K = {a , b+ , b_ , c+ , c_ , d, e , f, g} .  2 ) By 36. 9, at least five points are 
needed . Consider the 5-element space Y = {a ,  b, c, d, e } ,  where the topology 
is determined by the base { {a} , {c} , {a , b , c} , {a , c, d} , {a , c, e } } .  Verify that 
the fundamental group of Y is a free group with two generators . 

36. 1 1  Consider a topological space 

)( = {ao , bo , co , al , a� , bl , b� , cl , c� , a2 , b2 , c2 , d2 } 
with topology determined by the base 

{ao } ,  {ao , bo , cl } ,  {ao , bo , c� } ,  {ao , bo , co , al , b� , c� , a2 } ,  
{bo } ,  {ao , bl , co } ,  {ao , b� , co } ,  {ao , bo , co , a� , bl , c� , b2 } ,  
{ co } ,  {al , bo , co } ,  {a� , bo , co } ,  {ao , bo , co , a� , b� , cl , c2 } ,  

{ao , bo , co , al , bl , cl , d2 } · 

37. 1  First of all ,  we observe that , since the fundamental group of the 
punctured plane is Abelian , the operator of translation along any loop is the 
identity homomorphism. Consequently, two homotopic maps j, g : C -...... 0 ---+ 

C -...... 0 induce the same homomorphism on the level of fundamental groups. 
Let f be the map z r---t z3 . The generator of the group 7!'1 ( C -...... 0 , 1) is the 
class a of the loop s ( t ) = e21rit .  The image of f * (a ) is the class of the loop 
f# (u) = f o u, and , therefore ,  f# (u) (t ) = e61rit ,  whence f* (a ) = a3 -=f. a .  
Consequently, f* -=f. id7r1 (c ,o , l ) > whence i t  follows that f i s  not homotopic to 
the identity. 

37. 2  Denote by i the inclusion )( ---+ :!Rn . If the map f extends to 
F : :!Rn ---+ Y, then f = F o i , whence f* = F* o i* .  However, since :!Rn 
is simply connected, it follows that the homomorphism F* is trivial , and , 
consequently, so is the homomorphism f* . 

37. 3. 1  Denote by c.p a homeomorphism of an open set U c )( onto 
81 X 81 -...... ( 1 ,  1 ) .  If )( = U, then the assertion is obvious because the group 
7!'1 ( 81 X 81 -...... ( 1 ' 1 ) )  is a free group with two generators . Otherwise, we define 
f : )( ---+ 81 x 81 by letting { c.p(x) for x E U, f (x )  = ( 1 ,  1 )  for x rf- U. 

Verify that f is a continuous map. Now we take a point xo E U and consider 
the homomorphism 

f* : 1l'l ()(, xo) ---+ 7!'1 (81 X S1 , j (xo ) ) .  
We easily see that f* is an epimorphism. 
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37.4  Let f (z )  = diag{z , 1 , 1 ,  . . . , 1 } for each point z E 81 , and let 
g (A) = 1�:���� � for each matrix A E GL(n, C) . We have thus defined two 
maps f : 81 ---+ GL(n, C) and g : GL(n, C) ---+ 81 , whose composition g o  f 
is the identity map . Since g* o f* = (g o f) * = id7r1 (Sl ) , it follows that g* is 
an epimorphism, and, consequently, the fundamental group of GL(n, C) is 
infinite .  

37. 5x This is assertion 31.Kx. 
37. 6x By 31. 5x, it is sufficient to check that if a E Int D2 and i is the 

standard embedding of the standard circle 81 in IR.2 " a , then the circular 
loop i determines a nontrivial element in the group 1r1 (IR.2 ....._ a) . Indeed, the 
formula h(z , t) = z + ta determines a homotopy between i and a circular 
loop whose class obviously generates the fundamental group of IR.2 " a . 

37. 7x Take an arbitrary point a E IR.2 , let R > I a I + m. Consider the 
circular loops 'P :  81 ---+ IR.2 ....._ a : z f---* f (Rz) and iR : 81 ---+ IR.2 ....._ a : z f---* Rz .  
I f  h(z , t) = t'{J (z) + ( 1 - t) iR(z ) , then 

l h (z , t) l = I Rz + t (f (Rz) - Rz) l � R - l f (Rz) - rz l � R - m > l a l , 

and , therefore , h determines a homotopy between 'P and iR in IR.2 ....._ a .  Since 
the loop iR is not null-homotopic in IR.2 ....._ a, it follows that 'P is also not 
null-homotopic . By 31. 5x, a = f (Rz) , where l z l  < 1 .  Thus, the point a 
belongs to the image of f .  

37. 8x . 1 The easiest way here would be  to  check that the correspond­
ing circular loop is not null-homotopic in IR.2 ....._ 0 and to use Theorem 31. 5x. 
(Certainly, the latter theorem concerns a disk , and not a square , but the 
square is homeomorphic to a disk, so that from the topological point of view 
there is no difference between the pairs ( /2 , Fr /2 ) and ( D2 , 81 ) . )  However, 
in order to help the reader better grasp the main idea of the proof of Theo­
rem 31. 5x, we also present a solution making no use of the theorem. Assume 
that w ( x , y) =f 0 for all ( x , y) E /2 . Consider the following paths going along 
the sides of the square : 

8 1 (r) = ( 1 , r) ; 82 (r) = ( 1 - r, 1 ) ; 83 (r) = (0 , 1 - r) ; 84 (r) = (r, O) .  

Clearly, the product 8 = 8 1 82 8384 is defined , which is a null-homotopic loop 
in the square /2 . Now we consider the loop w o 8 and show that it is not 
null-homotopic in the punctured plane IR.2 " 0 . Since w (8 I ( r) )  = u ( 1 ) - v( r) ,  
the image of the path w o 81 lies in the first quadrant . It starts at the point 
u ( 1 ) - v (O) = ( 1 , 0) and ends at the point u ( 1 )  - v ( 1 )  = (0 , 1 ) .  Since the 
first quadrant is a simply connected set , it follows that the path w o 8 1 is 
homotopic there to any path joining the same points , for example , to the 
path '{J1 (t) = e1rit/2 . Similarly, the path w o 82 lies in the second quadrant 
and is homotopic there to the path 'P2 (t) = e7ri (t+l ) /2 . Thus , the path w o 8 is 
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homotopic in JR2 ......_ 0 to the path <p = 'PI 'P2'P3'P4 : T f---* e21rir .  Consequently, 
the class of the loop w o s generates 1r1 (JR2 ......_ ( 1 , 0) ) ,  and , in particular , 
this loop is not null-homotopic. On the other hand, the loop w o s is null­
homotopic in JR2 ......_ 0 by 37. G.4 .  The contradiction obtained proves that 
u(x) - v (y) = w(x ,  y) = 0 for certain x E I and y E I ( i .e . , the paths u and 
v intersect ) .  

37. 9x For example , consider the sets 
00 

F = { ( 1 , 1 ) }  U ( [0 , 1 )  X 0) U u ( 2��� X [0 ,  2��1 ] ) 
n=l 
00 

G = { ( 1 , 0 ) }  U ( [0 , 1 )  X 1 ) U U ( 2��1 X [ 2n�l '  1 ] ) . 
n=l 

37. 1 0x  No, we cannot . We argue by contradiction. Let c = p(F, G) > 
0 .  The result of Problem 14 . 1 7 implies that the points (0 , 0) , ( 1 ,  1 )  E F are 
joined by a path u with image in the c/2-neighborhood of F,  and the points 
(0 ,  1 ) ,  ( 1 , 0) E G are joined by a path v with image in the c/2-neighborhood 
of G. Furthermore , u (I) n v (I) = 0 by our choice of c ,  which contradicts 
the assertion of Problem 37. 8x. 
Now we also present another solution to this problem. The result of Prob­
lem 14 . 22x implies that there exists a simple polyline joining (0 ,  0) and 
( 1 , 1 )  and disjoint with G. Consider the polygon Ko . . .  KnPQR. One of 
the remaining vertices lies inside the polygon, while the other one lies out­
side , whence these points cannot belong to a connected set disjoint with the 
polygon. 

37. 1 2x We prove that if x and y are joined by a path that does not 
intersect the set u( 81 ) ,  then ind( u, X ) = ind( u, y) 0 Indeed, if there exists 
such a path s , then the formula 

u(z) - s (t) h(z, t) = 'Pu,s (t ) (z ) = 
l u (z )  _ s (t ) l 

determines a homotopy between I.Pu,x and I.Pu,y i we proceed further as in the 
proof of 37. Lx. Thus , if ind (u, x) # ind(u, y) , then x and y cannot be joined 
by a path whose image not meet the set u( 81 ) .  

37. 1 3x Assume for the simplicity that the disk contains the origin. 
The formula 

h(z t )  _ ( 1 - t )u (z ) - x 
' - 1 ( 1 - t )u (z ) - x l  

shows that I.Pu,x is null-homotopic , whence ind (u, x) = 0 .  
37. 14x (a) ind(u, x) = 1 i f  l x l  < 1 ,  and ind(u, x) = 0 i f  l x l  > 1 .  (b) 

ind(u , x )  = -1 if l x l  < 1 , and ind(u, x) = 0 if l x l > 1. (c) { ind(u, x) I x E 
JR2 ......_ u(S1 ) }  = {0 ,  1 , -1 } .  
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37. 1 5x The lemniscate L splits the plane in three components .  Any 
loop with image L has zero index with respect to any point in the unbounded 
component . For each pair (k , l) of integers , there is a loop u having index k 
with respect to points in one bounded component , and having index l with 
respect to points in the other bounded component . 

37. 1 6x See the solution of Problem37. 1 5x. 
37. 1 7x.  We can assume that x is the origin and the ray R is the positive 

half of the x axis. It is more convenient to consider the loop u : I ---+ 81 , 
u(t) = f(e27rit ) / l f ( e27rit ) l .  Assume that the set f- 1 (R) is finite and consists 
of n points . Consequently, u- 1 ( 1 )  = {to , t 1 , . . .  , tn } ,  and we have to = 0 and 
tn = 1 .  The loop u is homotopic to the product of loops ui , i = 1 , 2 ,  . . .  , n ,  
each of  which has the following property : ui (t) = 1 only for t =  0 ,  1 .  Prove 
that [ui] is equal either to zero , or to a generator of 1r1 (81 ) . Therefore , if 
the integers ki and k = ind (f, x) , respectively, are the images of [ui] and [u] 
under the isomorphism 1r1 (81 ) ---+ Z , then we have 

because each of the numbers ki is 0 or ±1 .  
37. 1 8x Apply the Borsuk-Ulam Theorem t o  the function taking each 

point on the surface of Earth to the pair of numbers ( t , p) , where t is the 
temperature at the point and p is the pressure . 

38. 1 If PI : X ---+ A and P2 : A ---+ B are retractions , then p2 oP1 : X ---+ B 
is also a retraction. 

38. 2 If PI : X ---+ A and P2 : Y ---+ B are retractions , then so is 
PI X P2 : X X y --t A X B.  

38. 3 Put f (x)  = a  for x :::; a ,  f (x) = x for x E [a, b] , and f (x)  = b for 
x 2: b ( i . e . , f (x)  = max{a, min{x , b} } ) .  Then f :  lR ---+ [a , b] is a retraction. 

38.4 This follows from 38. 6, or , in a more customary way: if f (x) = x 
for all x E (a ,  b) , then the continuity of f implies that f (b) = b, and , thus , 
there exists no continuous function on lR with image (a ,  b) . 

38. 5 The properties that are transferred from topological spaces to 
their subspaces and (or) to continuous images . For example , the Hausdorff 
axiom, connectedness, compactness , etc .  

38. 6 This follows from 15.4 .  
38. 7 Since this space i s  not path-connected . 
38. 8 No, it is not . Indeed , the group 1r1 (JRP2 ) � Z2 is finite ,  while the 

group 1r1 (JRP1 ) = 1r1 (81 ) � Z is infinite , and , consequently, the former group 
admits no epimorphism onto the latter one (there also is no monomorphism 
in the opposite direction) . Therefore , by assertion 38.F, there exists no 
retraction JRP2 ---+ JRP1 . 
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38. 9 Let L be the boundary circle of a Mobius strip M. Clearly, 
1r1 (L) � 1r1 (M) � Z. However (cf. 34 .4 ) , we easily see (verify this ! )  that the 
homomorphism i* induced by the inclusion i : L -t M sends the generator 
a E 1r1 ( L) to the element 2/3, where {3 is the generator of 1r1 ( M) � Z. If 
there is a retraction p : M -t L , then the composition p* o i* sends the 
generator a E 1r1 ( L) to the element 2p* ({3) =!= a, contrary to the fact that 
the composition is the identical isomorphism of 1r1 ( L) . 

38. 1 0  Let L be the boundary circle of a handle K. Clearly, we have 
1r1 (L) � Z, and 1r1 (K) is a free group with two generators a and b .  Fur­
thermore , it can be checked (do it ! )  that the inclusion homomorphism 
i* : 1r1 (L) -t 1r1 (K) sends the generator a E 1r1 (L) to the commutator 
aba- 1 b- 1 . Assume the contrary : let p : K -t L be a retraction. Then the 
composition p* o i* sends the generator a E 1r1 (L) to the neutral element of 
1r1 ( L) because the element 

p* o i* (a) = p* (aba-1 b- 1 ) = p* (a)p* (b) p* (a) -
1p* (b) - 1 

is neutral since the group Z is Abelian . On the other hand, this composition 
must coincide with id1rl (L) · A contradiction . 

38. 1 1  The assertion is obvious because each property stated in topo­
logical terms is topological . However , the following question is of interest . 
Let a space X have the fixed point property, and let h : X -t Y be a home­
omorphism. Thus , we know that each continuous map f : X -t X has a 
fixed point . How, knowing this , can we prove that an arbitrary continuous 
map g : Y -t Y also has a fixed point? Show that one of the fixed points of 
g is h(x) , where x is a fixed point of a certain map X -t X .  

38. 1 2  Consider a continuous function f :  [a , b] -t [a ,  b] and the auxiliary 
function g (x)  = f(x)  - x . Since g (a) = f (a) - a � 0 and g (b) = f (b) - b ::; 0 ,  
there i s  a point x E [a ,  b] such that g (x) = 0 .  Thus , f (x)  = x , i . e . , x i s  a 
fixed point of f .  

38. 1 3  Let p :  X -t A be a retraction. Consider an arbitrary continuous 
map f : A -t  A and the composition g = in of o p :  X -t X .  Let x be a 
fixed point of g ,  whence x = f (p(x) ) .  Since p(x) E A, we also have x E A, 
so that p(x) = x , whence x = f (x) . 

38. 14  Denote by w the point of the bouquet which is the image of the 
pair {xo ,  Yo } under the factorization map . (=>) This follows from 38. 13. 
[<=) Consider an arbitrary continuous map f :  X V Y  -t X V Y. For the sake 
of definiteness , assume that f (w) E X. Let i : X -t X V  Y be the standard 
inclusion, and let p : X V Y -t X be a retraction mapping the entire Y to 
the point w .  By assumption, the map p o f o i has a fixed point x E X ,  
p (f (i (x) ) )  = x , s o  that p(f (x) ) = x .  I f  f (x) E Y,  then p(f (x) ) = w ,  s o  that 
x = w .  On the other hand , we assumed that f (w)  E X , and , consequently, 
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f (w)  = w is a fixed point of f .  Now we assume that f (x) E X . In this case , 
we have 

x = (p o f o i ) (x )  = p(f(x) ) = f (x ) ,  
and, therefore , x i s  a fixed point of f .  

38. 1 5  Since the segment has the fixed point property (see 38. 12) ,  
hence , by 38. 14 ,  reasoning by induction, we see that each finite tree has this 
property. An arbitrary infinite tree does not necessarily have this property ; 
an example is the real line . However , try to state an additional assumption 
under which an infinite tree also has the fixed point property. 

38. 1 6  For example , a parallel translation has no fixed points . 
38. 1 7  For example , the antipodal map x �---+ -x has no fixed points . 
38. 1 8  Let n = 2k - 1 .  For example , the map 

(XI : X2 : " · · : X2k- l : X2k ) 1--+ ( -X2 : Xl : " "  · : -X2k : X2k- l ) 
has no fixed points . 

38. 1 9  Let n = 2k - 1 . For example , the map 

(zl : Z2 : · · · : Z2k- l : Z2k ) �---+ ( -Z2 : Zl : · · · : -Z2k : Z2k- l ) 
has no fixed points . 

39. 1 The map f : [0 , 1 ] � {0} is a homotopy equivalence ; the corre­
sponding homotopically inverse map is, for example , the inclusion i : {0} � 
[0 , 1 ] . The composition i o f is homotopic to id1 because any two continuous 
maps I � I are homotopic , and the composition f o i : {0} � {0} is the 
identity map itself. Certainly, f is not a homeomorphism. 

39. 2 Let X and Y be two homotopy equivalent spaces and denote 
by 1ro (X) and 7ro (Y) the sets of path-connected components of X and 
Y, respectively. Let f : X � Y and g : Y � X be two mutually in­
verse homotopy equivalences. Since f is a continuous map , it maps path­
connected sets to path-connected ones . Consequently, f and g induce maps 
f :  1ro (X) � 1ro (Y) and g :  7ro (Y) � 1ro (X) . Since the composition g o  f is 
homotopic to idx , it follows that each point x E X lies in the same path­
connected component as the point g (f (x) ) .  Consequently, the composition 
g o j is the identity map .  Similarly, f o g is also identical . Consequently, f 
and g are mutually inverse maps; in particular , the sets 7ro (X) and 1ro (Y) 
have equal cardinalities . 

39. 3 The proof is similar to that of 39. 2. 
39.4 For example , consider : a point ,  a segment , a bouquet of n seg­

ments with n � 3 .  
39. 5 We prove that the midline L of the Mobius strip M (i . e . , the 

image of the segment I x ! under factorization I x I � M) is a strong 
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deformation retract of M. The geometric argument is obvious : we define ht 
as the contraction of M towards L with ratio 1 - t .  Thus , ho is identical ,  
while h1 maps M to L.  Now we present the corresponding formulas . Since 
M is a quotient space of the square , first , consider the homotopy 

H :  I x I x I ---+ I x I : (u, v , t )  1--t (u , ( 1 - t)v + � ) . 

Furthermore , we have H (u, 1/2 , t) = (u , 1/2) for all t E I .  Since ( 1 - t )v + 
t/2 + ( 1 - t) ( 1 - v)  + t/2 = 1 ,  it follows that this homotopy is compatible 
with the factorization and thus induces a homotopy h : M x I ---+ M. We 
have H(u ,  v ,  0) = (u , v ) , whence ho = idM and H1 (u, v )  = (u , 1/2) . 

39. 6 The letters E, F, G, H, J, J, K, L , M, N,S, T, U, V, W,X, Y,Z are homotopy 
equivalent to a point ; A, O, P, Q, R  are homotopy equivalent to a circle ; finally, 
8 is homotopy equivalent to a bouquet of two circles. 

39. 7 This can be proved in various ways . For example , we can produce 
circles lying in the handle H whose union is a strong deformation retract 
of H .  For this purpose , we present the handle as a result of factorizing the 
annulus A = {z I 1 /2  � l z l � 1 }  by the following relation: eicp "'"' -e-icp 
for <p E [-7r/4, n"/4J , and eicp "'"' e-icp for rp E [7r/4, 37r/4] . The image of the 
standard unit circle under the factorization by the above equivalence relation 
is the required bouquet of two circles lying in of the handle . The formula 
H (z , t) = ( 1 - t) z + tzf l z l  determines a homotopy between the identity map 
of A and the map z 1--t z/ l z l  of A onto the outer rim of A, and H (z , t) = z 
for all z E 81 and t E I . The quotient map of H is the required homotopy. 

39. 8 This follows from 39. 1 and 39. 1. 
39. 9 Embed each of these spaces in JR3 -...... 51 so that the image of the 

embedding be a deformation retract of JR3 -...... 81 . We present one more space 
homotopy equivalent to our two spaces: the union X of 52 with one of 
the diameters . This X can also be embedded in JR3 -...... 51 as a deformation 
retract . 

39. 1 0 Put A =  { (z1 , z2 ) I 4z2 = zi } C <C2 . Consider the map f : 
<C x (<C -...... 0) ---+ <C2 -...... A : (z1 , z2 ) 1--t (z1 , z2 + zfj 4) . Verify that f is a 
homeomorphism and <C2 ....... A ::= <C X (<C ....... 0) ::= 81 . Furthermore , the circle 
can be embedded in <C -...... A as a deformation retract . 

39. 1 1  We prove that O(n) is a deformation retract of GL(n, !R.) . Let 
(f1 , f2 , . . .  , fn ) be the collection of columns of a matrix A E GL(n, JR.) .  each 
of which is regarded as an element of IR.n . Let ( e1 , e2 , . . .  , en ) be the result of 
the Gram-Schmidt orthogonalization procedure . Thus , the columns formed 
by the coordinates of these vectors constitute an orthogonal matrix . The 
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vectors ek are expressed in terms of the vectors fk by the formulas 

e1 = A.nf1 , 
e2 = A.21 f1 + A.22f2 , 

en = A.n1 f1 + A.n2f2 + · · · + Annfn , 
where Akk > 0 for all k = 1 , 2 ,  . . . , n . 
We introduce the vectors 

Wk (t) = t (Anl fl + An2f2 + · · · + Akk- l fk- 1 ) + ( tAkk + 1 - t ) fk 
and consider the matrix h(A, t) with columns consisting of the coordinates 
of these vectors . Clearly, the correspondence (A, t) f---t h(A, t) determines a 
continuous map GL(n, �) x I  --t GL(n, �) . We easily see that h(A, 0) = A, 
h(A , 1 )  E O(n) , and h(B , t) = B for all B E O(n) . Thus , the map A f---t 

h(A, 1 )  is the required deformation retraction. 
39. 1 3  Use, e .g . , 20.43. 
39. 14  We need the notion of  the cylinder ZJ of  a continuous map 

f :  X --t Y.  By definition , ZJ is obtained by attaching the ordinary cylinder 
X x I to Y via the map X x 0 --t Y : (x , 0) f---t f (x) . Hence , ZJ is a 
result of factorization of the disjoint union (X x I) U Y,  under which the 
point (x ,  0) E X x 0 is identified with the point f (x )  E Y. We identify X 
and X x 1 c Z f ,  and it is also natural to assume that the space Y lies in 
the mapping cylinder. There is an obvious strong deformation retraction 
py : ZJ --t Y, which leaves Y fixed and sends the point (x ,  t) E X x (0 , 1 )  
t o  f (x) . It remains t o  prove that if f i s  a homotopy equivalence , then X is 
also a deformation retract of Z f .  Let g : Y --t X be a homotopy equivalence 
inverse to f. Thus , there exists a homotopy H : X x I --t X such that 
H(x , 0) = g (f (x ) )  and H(x , 1 )  = x .  We define the retraction p :  ZJ --t X as 
a quotient map of the map (X x I) U Y --t X :  (x , t) f---t h(x , t ) , y f---t g (y) . It 
remains to prove that the map p is a deformation retraction, i . e . , to verify 
that inx op is homotopic to idzf ' This follows from the chain below,  where 
the "" sign denotes a homotopy between compositions of homotopic maps : 

inx op = p = p o idz1 "" p  o py = g o py = idz1 o (g o py ) "" 
"" py o (g o py ) = (py o g) o py = (f  o g) o py "" id y opy = py "" idz 1 . 

39. 1 5  Use rectilinear homotopies . 
39. 1 6  Let h : X x I  --t X be a homotopy between idx and the constant 

map x f---t xo . The formula ux (t) = h(x , t) determines a path joining (an 
arbitrary) point x in X with xo .  Consequently, X is path-connected. 

39. 1 1  Assertions (a)- (d) are obviously pairwise equivalent . We prove 
that they are also equivalent to assertions (e) and (f) . 
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(a) ===?- (e ) : Let h :  X x I  ---t X be a homotopy between idx and a constant 
map . For each continuous map f : Y ---t X, the formula H = h o (f  x id1 ) 
(or, in a different way: H(y ,  t) = h(f (y) , t) ) determines a homotopy between 
f and a constant map . 
(e) ===?- (a) : Put Y = X and f = idx . 
(a) ===?- (f ) : Let h be the same as before . The formula H = f o h determines 
a homotopy between f : X ---t Y and a constant map . 
(f) ===?- (a) : Put Y = X and f = idx . 

39. 1 8  Assertion (b ) is true ; assertion (a) holds true iff Y is path­
connected. 

39. 1 9  Each of the spaces (a)- ( e ) is contractible . 
39. 20 (=>I Let H be a homotopy between idx xY and a constant 

map (x ,  y) �----+ (xo , yo ) .  Then X x I  : (x ,  t) �----+ prx ( H(x ,  yo , t ) ) is a homotopy 
between idx and the constant map x �----+ x0 . The contractibility of Y is 
proved in a similar way. 
( ¢:::= ) Assume that X and Y are contractible , h is a homotopy between idx 
and the constant map x �----+ xo , and 9 is a homotopy between idy and the 
constant map y �----+ YO · The formula H(x ,  y, t) = (h(x ,  t ) , 9 (y ,  t ) ) determines 
a homotopy between idx xY  and the constant map ( x ,  y )  �----+ (xo ) ,  yo ) .  

39. 21 (a) Since X = JR3 ....... JR1 � (JR2 ....... o ) x lR1 � 81 , we have 1r1 (X) � Z . 
(b ) Clearly, X = JR.N '-.. lR.n � (JR.N-n '-.. 0) X JR.n � sN-n- 1 . Consequently, if 
N = n + 1 ,  then X �  S0 ; if N = n + 2 , then X �  81 , whence 1r1 (X) � Z; if 
N > n + 2, then X is simply connected. 
(c) Since S3 "' 81 � JR2 x 81 , we have 1r1 (S3 "' 81 ) � Z . 
(d) If N = n + 1 ,  then X = JR.N "' SN - 1 has two components , one of which is 
an open N-ball , and hence is contractible , while the second one is homotopy 
equivalent to sN-1 . If N > n + 1 ,  then X is homotopy equivalent to the 
bouquet SN - 1 V SN -n- 1 . Consequently, for N = 2 and n = 0 1r1 (X) is a 
free group with two generators ; for N > 2 or N = n + 2 ,  we obtain the 
group Z; in all remaining cases, X is simply connected. 
(e ) JR3 "' 81 admits a deformation retraction to a sphere with two points 
identified , which is homotopy equivalent to the bouquet X = S1 V S2 by 39. 9. 
The universal covering of X is the real line JR1 , to which at all of the integer 
points 2-spheres are attached (a "garland" ) . Therefore , we have 1r1 (JR3 "' 
81 ) � 1r1 (X) � Z . 
(f ) If N = k + 1 '  then sN '-.. sN - 1 is homeomorphic to the union of two open 
N-balls , so that each of its two components is simply connected. Certainly, 
this fact is a consequence from the following general result : SN '-.. Sk � 
sN-k- 1 X JR.k+1 , whence 1f1 (SN '-.. sk ) � z for N = k + 2 and this group is 
trivial in other cases . 
(g) It can be shown that JRP3 '-.. lR.P1 � JR2 x 81 , but it is easier to show that 
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this space admits a deformation retraction to 81 . In both cases , it is clear 
that 11"1 (JRP3 " JRP1 ) � Z. 
(h) Since a handle is homotopy equivalent to a bouquet of two circles, it has 
free fundamental group with two generators . 
( i ) The midline (the core circle) of the Mobius strip M is a deformation 
retract of M, and, therefore , the fundamental group of .f.lvf is isomorphic to 
z. 
(j ) The sphere with s holes is homotopy equivalent to a bouquet of s - 1 
circles and so has free fundamental group with s - 1 generators (which, 
certainly, is trivial for s = 1 ) .  
(k) The punctured Klein bottle is homotopy equivalent t o  a bouquet of two 
circles , and so has free fundamental group with two generators . 
(1) The punctured Mobius strip is homotopy equivalent to the letter () ,  which, 
in turn , is homotopy equivalent to a bouquet of two circles. The Mobius 
strip with s punctures is homotopy equivalent to a bouquet of s + 1 circles 
and thus has free fundamental group with s + 1 generators . 

39. 22 Let K be the boundary circle of a Mobius strip M, L the midline 
of .flvf , and T a solid torus whose boundary contains K. Consider the embed­
dings i : K � T "  S and j : T " S � JR3 "- S. Since T " S � (D2 " 0) x Sl , 
we have 11"1 (T " S) � Z EB Z. Denote by a and b the generators of the 
group 11"1 (T " S) . Let a be the generator of 11"1K � Z, then i* (a) = a + 2b. 
Furthermore , j* (a) is a generator of 7r1 (JR3 " S) , and j* (b) = 0 .  Therefore , 
j* ( i* (a) )  =f. 0 .  If there existed a disk D spanning K and having no other 
common points with M, then we would have D C  JR3 " S. Consequently, K 
would determine a null-homotopic loop in JR3 " S. However , j* (i* (a) )  =f. 0 .  

39. 23 1 )  Using the notation introduced in 39. 1 0, consider the map 

Q � (C " 0) X (C2 " A) � 81 X 81 : (a , b , c) f-.+ (a , � ' � ) . 

This is a homeomorphism. Therefore , the fundamental group of Q is iso­
morphic to Z EB Z.  

2 )  The result of  Problem 39. 1 0  implies that Q1 i s  homotopy equivalent 
to the circle , and , consequently, has fundamental group isomorphic to Z. 

40. 1  This follows from 40.H since the group p* (7r1 (X, xo ) )  of the uni­
versal covering is trivial ,  and , therefore , its index is equal to the order of the 
fundamental group 11"1 (B ,  bo ) of the base of the covering . 

4 0. 2  This follows from 4 0. H because a group having a subgroup of 
nonzero index is obviously nontrivial . 

4 0. 3  All even positive integers. It can be proved that each of the 
boundary circles of the cylinder is mapped onto the boundary S of the 
Mobius strip M. Let a be the generator of the group 11"1 (81 x I) . Then 
p* ( 1) = bk , where the element b E 11"1 ( M) is the image of the generator 
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of 1r1 (S) under the homomorphism induced by the embedding S ---t M. 
I t  remains to  observe that b = a

2 , where a i s  the generator o f  the group 
1r1 (M) � Z. Thus , p* (a) = a

2k
, and, consequently, the index of p* (1r1 (S1 x 

I ) )  is an even positive integer . We easily see that there are coverings with 
an arbitrary even number of sheets (see 34 .4 ) . 

4 0.4  All odd positive integers ,  see 4 1 . 1 0x. 
4 0. 5  All even positive numbers , see 4 1 . 1 0x. 
4 0. 6  All positive integers , see 4 1 . 1 0x. 
4 0. 7  If the base of the covering is compact , while the covering space is 

not , then the covering is infinite sheeted by 34 . 24 .  
4 0. 8  See the hint to Problem 4 0. 1. 

4 0. 9  The class of the identity map . 
4 1 . 1x For example, consider the union of the standard unit segments 

on the x and y axes and of the segments In = { (.IlL jn, y) I y E I } , n E N 
(the "hair comb" ) .  

4 1 .4x This is obvious because the group 1r1 (X, a) is trivial , and we can 
put U = X.  

4 1 .  5x Consider the circle . 
4 1 .  6x Let V be the smallest neighborhood of a .  Therefore , the topology 

on V is indiscrete . Let ht (x) = x for t < 1 , and let h1 (x ) = a. Prove that 
h : V x I ---t V is a homotopy. 

4 1 .  7x This is true because if U and V are the neighborhood of a point 
a which are involved in the definition local contractibility, then the inclusion 
homomorphism 1r1 (V, a ) ---t 1r1 ( U, a ) is trivial . 

4 1 . 8x For example , D2 "- { ( 1 /n, 0) I n E N} is such a space (consider 
the point (0 ,  0) ) .  

4 1 . 9x Consider the cone over the space of Problem 4 1 . 8x. 
4 1 . 1  Ox By Theorem 4 1 .  Fx, it suffices to describe the hierarchy of the 

classes of conjugate subgroups in the fundamental group of the base and 
present coverings with a given subgroup . In all examples except (e) , the 
fundamental group of the space in question (the base) is Abelian . There­
fore , it is sufficient to list all subgroups of the fundamental group and to 
determine their order with respect to the inclusion . In each case , all cover­
ings are subordinated to the universal covering , and the trivial covering is 
subordinated to all coverings . 
(a) The universal covering is the map p : lR ---t 81 . The covering Pk : 81 ---t 

81 : z f-t zk , where k E N, is subordinated to the covering p1 iff k divides l .  
and the subordination is the covering Pl/k · 

(b) Since JR2 ....__ 0 � S1 x JR, the answer is similar to the preceding one . 
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(c) If M is a Mobius strip , then 1r1 (M) � Z. Thus , as in the first example , 
all subgroups of the fundamental group of the base have the form kZ.  The 
difference is as follows : if k is odd, then the covering space is the Mobius 
strip , while if k is even, then the covering space is the cylinder 81 x I . 
(d) The universal covering was constructed in the solution of Problem 36. 1. 
Since the fundamental group of this space is isomorphic to Z, it is sufficient 
to present coverings with group kZ C Z. Construct them on your own. 
In contrast to example (a) , the total spaces are not homeomorphic because 
each of them has its own number of points . 
(e ) The universal covering of the torus is the map p :  JR1 x JR1 ---+ S1 x S1 : 
(x , y) � ( e21rix , e21riy ) . An example of a covering with group kZ EB lZ is the 
following map of the torus to itself: 

Pk X Pl : 81 X 81 ---+ 81 X 81 : (z , w ) � (zk , w1 ) . 

More generally, for each integer matrix A = ( � � ) we can consider the 

covering PA : 81 X 81 ---+ 81 X 81 : (z ,  w ) � (zawb , zcwd ) , the group of 
which is the lattice L C Z EB Z with basis vectors a( a, c) and b(b, d) . The 
covering PA is subordinated to the covering PA' determined by the matrix 
A' = ( �; �; ) if the lattice L' with basis vectors a' (a' , c' ) and b' (b' , d' ) is 
contained in the lattice L. In this case , the bases {a, b} in L and {a' , b' } in L' 
can be chosen to be coordinated, i . e . , so that a' = ka and b' = lb for certain 
k , l E N. The subordination here is the covering Pk x pz . Infinite-sheeted 
coverings are described up to equivalence by cyclic subgroups in Z x Z, 
i . e . , by the cyclic vectors a( a ,  c) E Z x Z. Every such a vector determines 
the map Pa : 81 x lR ---+ 81 x 81 : (z ,  t) � (zae21rit , zb ) . The covering 
Pa is subordinated to the covering Pb if b = ka, k E Z. In this case, the 
subordination has the form 81 x lR ---+ 81 x lR :  (z ,  t) � (zk , t ) . Description 
of subordinations between finite-sheeted and infinite-sheeted coverings is left 
to the reader as an exercise . 

4 1 . 1 1x See the figure . 

4 1 . 1 2x  Indeed, any subgroup of an Abelian group is normal . We can 
also verify directly that for each loop s : I ---+ B either each path in X 
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covering s is a loop ( independently of the starting point ) , or none of these 
paths is a loop . 

4 1 . 1 3x This is true because any subgroup of index two is normal . 
4 1 . 1 5x See the example constructed in the solution to Problem 4 1 . 1 1x. 
4 1 . 1 6x This follows from assertion 4 1 . Px, (d) . 
4 2. 3 The cellular partition of Z is obvious : if em is an open cell in X and 

en is an open cell in Y ,  then em x en is an open cell in Z because Bm x Bn � 
Bm+n . Thus, the n-skeleton of Z is formed by pairwise products of all cells 
in X and Y with sums of dimensions at most n. Now we must describe the 
attaching maps of the corresponding closed cells . In order to construct the 
cellular space X, we start with a discrete topological space Xo ,  and then for 
each m E N  we construct the space Xm by attaching to Xm-1 the disjoint 
union of m-disks D)( a via an attaching map Ua sr;_-;} -7 Xm-1 · Clearly, X 
is a result of a simult�neous factorization of the disj�int union Um a D)( a by 
a certain single identification . The same is true for Y .  Since in the pr�sent 
case the operations of factorization and multiplication of topological spaces 
commute (see 25. Tx) , the product X x Y is homeomorphic to the result of 
factorizing the disjoint union 

U Dx,a x Dy,/3 
m , O< 
n , /3 

of pairwise products of disks involved in the construction of X and Y .  It 
remains to observe that this factorization, in turn, can be performed "by 
skeletons" , starting with a discrete topological space Zo = U ( D1-,a x D�,/3) . 
Attaching to Zo 1-cells of the form Dl-,a x D�,/3 and D1-,a x D�,/3 ' we 
obtain the 1-skeleton Z1 , etc . In dimensions grater than 1 ,  description 
of the attaching maps can cause difficulties . Consider a cell of the form 
em X en . Its characteristic map Dm X Dn -7 X X y is simply the product 
of the characteristic maps of the cells em and en , which maps the image 
of the boundary sphere of the "disk" Dm X Dn to the skeleton Zn+m- 1 , 
which is already constructed . We have thus defined the attaching map 
w : sn+m-1 -t Zn+m- 1 . We can also give an explicit description of w .  To 
do this, we need the standard homeomorphism /'i, : Dm+n -7 Dm X Dn with 
K(sm+n-1 ) = (sm- 1 X Dn ) u (Dm X sn- 1 ) . Let 1.()1 : sm-1 -7 Xm-1 and 
<p2 : sn- 1 -7 Yn-1 be the attaching maps of the cells em and en . Then w 
can be described as a composition 

sm+n- 1 -7 (Dm X sn- 1 ) u (sm- 1 X Dn) -7 

-t [ (Xm-1 Ucp1 Dm) x Yn-1 ] U [Xm- 1 x (Yn-1 Ucp2 Dn) ]  � Zm+n- 1 · 
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where the first map is a submap of the homeomorphism K, the second one 
is the obvious map defined on each part as the product of the characteristic 
and the attaching map , and the third one is an inclusion. 

42 .4  No, it does not . Show that the product topology on the product 
of two copies of the cellular space of Problem 42. 9 is not cellular . 

42. 5 Actually, when solving Problem 42. H, we used, firstly, the pre­
sentation ]Rpn = U�=O ]Rpk , and , secondly, the fact that ]Rpk '-.. ]Rpk- l is 
an open k-cell . Use the presentation cpn = U�=O !f:_pk . Prove that for all 
integer k � 0 the difference !f:_pk " !f:_pk- l � B2k . Furthermore , it is clear 
that the attaching map S2k- l ---t cpk- l is the factorization map . 

4 2. 6 (a) Delete from the square a set homeomorphic to the open disk 
and bounded by a curve starting and ending at a certain vertex of the square 
!2 . The rest splits into 10 cells , and the quotient space of the complement 
splits into 5 cells and is homeomorphic to a handle . 
(b ) The Mobius strip is the quotient space of the square , which has a cellular 
partition consisting of 9 cells . After factorization, we obtain a partition of 
the Mobius strip consisting of 6 cells . 
(c) As well as the space in the preceding item, S1 x I is a quotient space of 
the square . Another solution can be extracted from 42. 3. 
(d)- (e) See 42. 12. 

42. 7 (a) 4 cells : present the Mobius strip as a result of factorization of 
a triangle under which all three vertices are identified into one . Show that 
one 1-cell is insufficient . 
(b ) 2p + 2 cells ; (c) q + 2 cells . See 42. 12. In order to show that this number 
of cells is the smallest possible , use the computation of the fundamental 
groups of the above spaces , see 46'5 .  

4 2. 8  We need at least three cells : a 0-cell , a 1-cell , and one more cell . 

4 2. 9 See 21 . 6. 

4 2. 1 1  Notice that since any two points in lR00 lie in a certain subspace 
]RN , the distance between them is easy to define . Thus , we have a metric on 
lR00 ,  but it generates on lR00 a wrong topology. To show that the topology 
on lR00 is not generated by any metric ,  use the fact that lR00 is not first 
countable (prove this ) . 

42. 1 2  We prove several assertions in this list . 
(a) The word aa-

1 describes the quotient space of D2 by the partition into 
pairs of points of S1 that are symmetric with respect to one of the diameters . 
This quotient space is homeomorphic to S2 . The cellular partition has two 
0-cells , a 1-cell, and a 2-cell . 
(b ) The word aa describes the quotient space of D2 by the partition into 
pairs of centrally symmetric points of the circle (and singletons formed by 
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the remaining points) .  It is homeomorphic to the projective plane . The 
cellular partition has three cells : a 0-cell , a 1-cell , and a 2-cell . 
(g) Consider the p-gon P with vertices at the common endpoints of the pairs 
of edges marked by a1 and b; 1 , a2 and b1 1 , . . .  , ap and b;� 1 , and cut the 
initial 4p-gon along the sides of P. Factorizing P, we obtain a sphere with 
p holes . Factorizing the remaining pentagons , we obtain p handles . 

4 2. 1 3  For example , consider the so-called complete 5-graph K5 , i . e . , 
the space with 5 vertices pairwise joined by edges . To prove that it cannot 
be embedded in JR2 , use the Euler Theorem 45. 3. 

44 . 1x Let 'ljJ : Dn ----> X be the characteristic map of the attached cell , 
and let i : A ----> X be the inclusion . We can assume that x = '1/J (O) , where 0 
is the center of Dn . We introduce the map 

if z E A, 
i f  z tJ_ A.  

We prove that the maps idx,x and i o g are A-homotopic. Consider the 
rectilinear homotopy h :  (Dn " x ) X I ---t nn " X between the identity map 
and the projection p :  Dn '-.. X ----> Dn '-.. X : z � z/ l z l . We define the homotopy 

by letting 

h (z , t )  = { h(:, t) if z E A, 

if z E Dn . 

The quotient map H : (X " x ) x I ----> X "  x of h is the required A-homotopy 
between idx,A and i o g .  

44 . 2x This follows from 44 . Jx because closed n-cells together with Xn-1 
constitute a fundamental cover of X. 

44 . 3x The assertion on ffi.pn follows from 44 . 1x because ffi.pn is a 
result of attaching an n-cell to ffi.pn- 1 , see 42. H.  The assertion about cpn 
is proved in a similar way; see 42. 5. On the other hand, try to find explicit 
formulas for deformation retractions ffi.pn " point ---t ffi.pn- 1 and cpn " 
point ---t cpn- 1 . 

44 .4x Consider a cellular partition of the solid torus that has one 3-
cell and 2-skeleton homeomorphic to a torus with a disk attached along the 
meridian 81 x 1 ,  and apply assertion 44 . 1x. 

44 . 5x Let e:p : nn+1 ----> X.p and e1f; : nn+I ----> X'I/J be the characteristic 
maps of the ( n + 1 )-cell attached to y. Let h : sn X I ---t y be a homotopy 
joining c.p and '1/J .  Consider the maps f' : Yunn+1 ----> X:p and g' 

: Yunn+l ----> 
X1f; that are the standard embeddings on Y, and are defined on the disks 
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nn+ 1 by the formulas 

1 { e1/J (2x) for l x l ::::; 1 /2 ,  
f (x )  = h ( 1� 1 , 2 ( 1 - l x l ) ) for 1/2 ::::; l x l ::::; 1 ,  

1 { ecp (2x) for l x l  ::::; 1/2 ,  
9 (x )  = h ( 1� 1 , 2 l x l - 1 ) for 1/2 ::::; l x l ::::; 1 .  

We easily see that the quotient maps f : Xcp � X'f/; and g : XI/J � Xcp of 
j1 and g1 are defined. Show that f and g are mutually inverse homotopy 
equivalences. 

44 . 6x Slightly modify the argument used in the solution to Prob­
lem 44 . 5x. 

44 . 7x Let A be the space obtained by attaching a disk to the circle 
via the map a : 81 � 81 : z ;----; z2 . Then we have A � IRP2 , whence 
1r1 (A) � Z2 . Consequently, the map <p : 81 � A : z ;----; z3 is homotopic to 
'ljJ = id81 . By 44 . 5x, X is homotopy equivalent to the space A U!/J D2 , which 
coincides with D2 Ua D2 . Since the map a : 81 � D2 is null-homotopic , 
it follows (also by 44 . 5x) that X is homotopy equivalent to the bouquet 
D2 V 82 , which is homotopy equivalent to 82 : 

X � A U!/J D2 � D2 Ua D2 � D2 V 82 � 82 . 
The sphere has a partition consisting of two cells , which, obviously, is the 
smallest possible number of cells. 

44 . 9x The torus 81 x 81 is obtained from the bouquet 8 1 V 81 by 
attaching a 2-cell via a certain map <p : 81 � 81 v 81 . We let i : 81 v 81 � 
A = ( 1  x 81 ) U (D2 x 1 )  be the inclusion and show that the composition 
i o <p : 81 � A is null-homotopic . Indeed, let a, (3 be the standard generators 
of 1r1 (81 V 81 ) .  Then [cp] = af3a- 1(3- 1 , and 

[i o cp] = i* ( [cp] ) = i* (af3a-1(3-1 ) = 

i* (a) i* (/3) i* (a) - 1 i* (/3) - 1 = i* (a) i* (a) - 1 = 1 ,  

because i *  ((3) = 1 E 1r1 (A) . B y  Theorem 44 . 5x, we have 

A Ucp D2 � A V 82 = 81 V D2 V 82 � 81 V 82 . 

44 . 1 0x  Use the result of Problem 44 . 9x and assertion 44 . 5x. 

44 . 1 1x Prove that X � 81 V 81 V 82 , whence 1r1 (X) � F2 , while 
y � 81 X 81 , so that 7r1 (Y) � Z2 . Since 7rl (X) � 7r1 (Y) ' it follows that X 
and Y are not homotopy equivalent . 

44 . 1 3x Consider a cellular partition of CP2 consisting of one 0-cell , one 
1-cell , two 2-cells , and one 4-cell . Furthermore , we can assume that the 2-
skeleton of the cellular space obtained is CP1 C CP2 , while the 1-skeleton is 
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the real part RPI c ccpi . Let T : CCP2 � CCP2 be the involution of complex 
conjugation , by which we factorize. Clearly, ccpi I [ z "' r ( z) l � D2 . Consider 
the characteristic map 1/J : D4 � CCPI of the 4-cell of the initial cellular 
partition. The quotient space D4/ [z "' r(z) ] is obviously homeomorphic to 
D4 . Therefore , the quotient map 

D4/ [z "' r (z) ]  � CCPI / [z "' r (z) ]  

is the characteristic map for the 4-cell of X.  Thus , X i s  a cellular space 
with 2-skeleton D2 . Therefore , by 44 . Jx, we have X �  84 . 

4 5. 1  See 39. 21 .  
4 5. 2  Let X �  S2 . Denote by v = co (X) ,  e = ci (X) , and f = c2 (X) 

the number of 0- , 1 - ,  and 2-cells in X,  respectively. Deleting a point in each 
2-cell of X,  we obtain a space X' admitting a deformation retraction to its 
1-skeleton. On the one hand, by 45. 1 ,  7ri (X' )  is a free group of rank f - 1 .  
O n  the other hand, we have 7ri (X' )  � 7ri (XI ) ,  and the rank of the latter 
group is equal to 1 - x(XI ) = 1 - v + e by 45.B. Thus , f - 1 = 1 - e + v ,  
whence i t  follows that x(X) = v - e + f = 2 .  

4 5. 3  This follows from 45 .2. 
4 6. 1  The fundamental group of sn with n > 1 is trivial because sn 

has a cellular partition with one-point 1-skeleton. 
4 6. 2  The group 7ri (CCPn) is trivial for the same reason. 
4 6.4x Take a point (xo and x i )  in each connected component of C so 

that we could join them in the 1-skeleton X I by two embedded segments 
eA c A and eB c B, whose only common points are xo and XI . The idea 
is to replace all spaces by homotopy equivalent ones so that the 1-skeleton 
of X be the circle formed by the segments eA and eB . For this purpose , we 
can use the techniques used in the solution to Problem 44 .Mx. As a result , 
we obtain a space having 1-skeleton with fundamental group isomorphic to 
Z.  It remains to observe that the image of the attaching map r.p of a 2-cell 
cannot be the whole 1-skeleton since this cell lies either in A, or B,  but not 
in both. Therefore , r.p is null-homotopic, and, consequently, when we attach 
a 2-cell , no relations arise . 

4 6. 5x No, because in Theorem 4 6.Rx the sets A and B are open in 
X, while in Theorem 4 6. 5x they are cellular subspaces, which are open only 
in exceptional cases . On the other hand , we can derive Theorem 4 6. Tx 
from 4 6.Rx if we construct neighborhoods of the cellular subspaces A, B ,  
and C that admit deformation retractions t o  the spaces themselves . 

4 6. 6x Generally speaking, no, it may not (give an example) .  
4 6 .  7x Let us see how the fundamental group changes when we attach 

2-cells to the 1-skeleton of X.  We assume that the 0-skeleton is {xo } .  At 
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the first step , we attach a 2-cell e to X 1 , let r.p : 81 � X 1 be the attaching 
map, and let x : D2 � X2 be the characteristic map of e. Let F c D2 
be a closed disk (for example, of radius 1/2) , let 8 be the boundary of F ,  
let A =  x(D2 " Int F) U X1 , and let B = x(F) . Then C = x(8) � 81 . 
Clearly, X1 is a (strong) deformation retract of the set A. Therefore , the 
group 1r1 (A) � 1r1 (X1 ) is a free group with generators ai . On the other 
hand, we have B � D2 . Therefore , B is simply connected. The map x i s 
is homotopic to r.p,  and, consequently, the image of the generator of 1r1 (C) 
is the class p = [r.p] E 1r1 (X, xo ) of the attaching map of e .  Consequently, 
in the fundamental group 1r1 (X, xo ) we have a relation p = 1 .  When we 
attach cells of the highest dimension, no new relations in this group arise, 
since in this case the space C � 8k is simply connected because k > 1. The 
Seifert-van Kampen Theorem implies that the relations [r.pi ] = 1 exhaust all 
relations between the standard generators of the fundamental group of the 
space . 

4 6. 8x If m =/= 0 ,  then the fundamental group is a cyclic group of order 
lm l ; if m = 0, then the fundamental group is isomorphic to Z. 

4 6. 9x These spaces are homeomorphic to 82 x 81 and 83 , respectively. 
4 6. 1 Ox Instead of the complement of K, we consider the complement 

of a certain open neighborhood U of K homeomorphic to Int D2 x 81 , for 
which K is the axial circle . It is more convenient to assume that all sets 
under consideration lie not in JR3 , but in 83 . We set X = 83 " U. The torus 
T splits 83 into two solid tori G = D2 X 81 and F = 81 X D2 . Put A = G "  u 
and B = F ....... U. Then X = A U B , and C = A n B  is the complement in T of 
the open strip , which is a neighborhood of the curve determined on T by the 
equation pu = qv , whence 1r1 (C ) � 1r1 (A) � 1r1 (B) � Z. By the Seifert-van 
Kampen Theorem, we have 1r1 (X) = (a, {3 I i * ('y) = j* ('y ) ) , where i and j 
are the inclusions i : C � A and j : C � B.  The loop in C representing 
the generator of 1r1 (C) p times passes the torus along the parallel and q 
t imes along the meridian , whence i *  ( 'Y) = aP and j* ( 'Y) = bq . Therefore , 
1r1 (X) = (a , b I aP = bq ) .  Show that H1 (X) � Z (do not forget that p and q 
are co-prime) . 

4 6. 1 1x (a) This immediately follows from Theorem 46 (or 4 6. Tx) . 
(b) Since the sets A =  X V  Vy0 and B = Ux0 V Y constitute an open cover 
of Z and their intersection A n  B = Ux0 V Vy0 is connected, we see that the 
fact that Z is simply connected follows from the result of Problem 32. 1 1 . 
(c) * Let X C JR3 be the cone with vertex ( - 1 ,  0 ,  1 )  over the union of the 
circles determined in the plane IR2 by the equations x2 + 2xjn + y2 = 0 ,  
n E N, and let Y be symmetric to X with respect to  the z axis .  Both X and 
Y are obviously contractible and, therefore , simply connected. Try to prove 
(which is not easy at all) that their union X U Y is not simply connected. 
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4 6. 1 2x Yes ,  it  is . 

4 6. 1 3x  The Klein bottle is the union of two Mobius strips pasted 
together along their the boundary circles. 

4 6. 1 6x Verify that the class of the matrix (-�\ �) has order 2, and the 

class of ( �1 n has order 3 .  

4 6. 1 7x We cut the torus (respectively, the Klein bottle) along a circle 
B so that as a result we obtain a cylinder , which will be our space C. Denote 
by f3 the generator of 1r1 (B) � Z, and by a the generator of 1r1 (C) � Z. In 
the case of a torus , we have r.p1 = r.p2 = a, while for the Klein bottle we have 
r.p1 = a = r.p21 . Thus , by Theorem 4 6. Wx, we obtain a presentation of the 
fundamental group of the torus : (a , 'Y I "(0! = a"() , and of the Klein bottle: 
(a , "(  I "fO! = O!"f- 1 ) .  
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bijective 55 
characteristic of a cell 281 
closed 112,  137 
continuous 59 

at a point 61 
contractive 62 
equivariant 196 
factorization 141 
graph of 136 
homotopy inverse 256 
homotopy invertible 256 
identity 57 
image of 56 
inclusion 57 
injective 55 
inverse 57 
invertible 57 
locally bounded 1 13  
locally constant 90  
monotone 64 
null-homotopic 209 
one-to-one 55 
open 137 
proper 1 18 
surjective 55 

mapping 55 
maximal To-quotient of a space 160 
metric 18 

p(P) 18 
p-adic 25 
equivalent 22 
Euclidean 18  
Hausdorff 24 
of  uniform convergence 164 
space 18 

complete 1 1 5  
Mobius band 148 
Mobius strip 148 
monomorphism 184 
multiplicity of a covering 233 
naive set theory 3 
neighborhood 

base at a point 105 
of a point 14 
trivially covered 231 
symmetric 188 

e-neighborhood of a set 1 1 1  
e-net 1 14 
norm 21,  1 12  
normalizer 196 
notation 

additive 182 
multiplicative 182 

one-point compactification 1 18  
open 

set 1 1 , 13  
in  a subspace 27 

orbit 198 
order 

cyclic 42, 42 
linear 38 
nonstrict partial 35 
strict partial 35 
of a group 185 
of a group element 185 

p-adic numbers 1 15  
pantaloons 153 
partition 83 , 141  

closed 144 
of unity 120 

to a cover 120 
of a set 83 
open 144 

path 92,  2 1 1 
inverse 92 
lifting homotopy theorem 235 
lifting theorem 235 
simple 293 
stationary 92 

path-connected 
cellular space 287 
component 94 
set 93 
space 93 

Peano curve 66 
plane 

with holes 72 
with punctures 72 

Poincare group 215 
point 1 1 
polygon-connectedness 95 
poset 36 
preimage of a set 56 
preorder 159 
pretzel 153 
product 

free 301 

Index 

with amalgamated subgroup 301 
cellular spaces 282 
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fiber of 135 
of coverings 232 
of homotopy classes of paths 212  
of  maps 138 ,  138 
of paths 92 ,  212  
of  sets 135 
of topological groups 194 
of topological spaces 136, 139 
semidirect 195 

projection 
of a product to a factor 136 
onto a quotient space 141 

projective plane 150 
projective space 

real 155 
complex 156 
quaternionic 158 

quaternion 157 
quaternionic projective line 158 
quotient 

group 185 
set 141 
space 142 
map 143 
topology 142 

relation 
equivalence 141 
linear order 38 
nonstrict partial order 35 
reflexive 35 
strict partial order 35 
transitive 35 ,  159 

restriction of a map 58 
retract 253 

deformation 257 
strong 257 

retraction 253 
deformation 257 

strong 257 
saturation of a set 141 
skeleton of a cellular space 281 
Seifert-van Kampen Theorem 298 , 303 
separation axiom 

To (Kolmogorov axiom) 100 
T1 (Tikhonov axiom) 99 
T2 (Hausdorff axiom) 97 
T3 101 
T4 101  
in  a topological group 189 

sequentially 
compact 1 14 
continuous 106 

sequential closure 106 
set 3 

algebraic 96 
cardinality of 103 
connected 84 

countable 103 
compact 109 
dense in a set 32 
empty 5 
everywhere dense 32 
bounded 21 
closed 13 
coincidence of maps 98 
convex 21,  70 
countable 103 
cyclicly ordered 42 
fixed point 98 
linearly ordered 38 
locally closed 34 
locally finite 1 19  
nowhere dense 33 
open 1 1  
partially ordered 36 
path-connected 93 
saturated 141 
star-shaped 209 

sets 
disjoint 8 
of matrices 96 , 1 1 1  

simple path 293 
simply connected space 217  
simplicial 

scheme 161 
space 161 

singleton 5 
skeleton 281 
space 

arcwise connected 93 
asymmetric 26 
cellular 279 

countable 281 
finite 281 
locally finite 281 

compact 108 
connected 83 
contractible 258 
covering 231 
disconnected 83 
discrete 1 1  
finite 160 
first countable 105 
Hausdorff 97 
indiscrete 1 1  
locally compact 1 1 7  
locally contractible 264 
locally path-connected 263 
metric 18 

complete 1 15  
metrizable 22 ,  107 
micro simply connected 263 
Niemyski 102 
normal 101 
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normed 21 
of continuous maps 163 
of convex figures 1 16  
of  cosets 19 1  
o f  simplices 161  
paracompact 1 19  
path-connected 93  
regular 101  
second countable 104 
separable 104 
sequentially compact 1 14 
Sierpinski 12  
simplicial 161  
simply connected 217  
smallest neighborhood 39 
topological 1 1  
totally disconnected 86 
triangulated 161 
ultrametric 25 

spaces 
homeomorphic 67 
homotopy equivalent 256 

sphere 19 
with crosscups 153 
with handles 153 
with holes 152 

spheroid 219  
subbase 17  
subcover, subcovering 108 
subgroup 184 

isotropy 196 
normal 185 

of a topological group 192 
of a topological group 191 

submap 58 
subordination of coverings 262 
subset 6 

proper 6 
subspace 

cellular 281 
of a metric space 20 
of a topological space 27 

sum 
of sets 150 
of spaces 150 

support of a function 120 
surjection 55 
symmetric difference of sets 10 
Tietze Theorem 102 
Tikhonov axiom 99 
topological space 1 1 ,  see space 
topological structure 1 1  

coarser than another one 1 7  
induced by a metric 2 2  
interval 39 
cellular 281 
compact-open 163 

finer than another one 17 
left (right) ray 39 
metric 22 
of cyclic order 44 
of pointwise convergence 163 
particular point 12 
relative 27 
subspace 27 
poset 39 

topological invariant 73 
topological property 73 

hereditary 99 

Index 

topology 1 1 ,  see topological structure 
torus 140 
translation (left or right) 188 
translation along a path 220 

for homotopy groups 222 
in a topological group 222 

tree 292, 292 
spanning 292 

ultrametric 25 
union of sets 8 
Urysohn Lemma 102 
Venn diagram 9 
vertex 279 
winding number 251 
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